Sample records for alamos county landfill

  1. EVALUATION OF COLLIER COUNTY, FLORIDA LANDFILL MINING DEMONSTRATION

    EPA Science Inventory

    This report describes the landfill mining process as demonstrated under the U.S. EPA, Risk Reduction Engineering Laboratory's Municipal Waste Innovative Technology Evaluation (MITE) Program by the Collier County (Florida) Solid Waste Management Department. Landfill mining is the ...

  2. EVALUATION OF THE COLLIER COUNTY, FLORIDA LANDFILL MINING DEMONSTRATION

    EPA Science Inventory

    This report describes the landfill mining process as demonstrated under the U.S. EPA, Risk Reduction Engineering Laboratory's Municipal Waste Innovative Technology Evaluation (MITE) Program by the Collier County (Florida) Solid Waste Management Department. Landfill mining is the ...

  3. Public health assessment for petitioned public health assessment, Old Douglas County Landfill (a/k/a Douglas County/Cedar Mountain Landfill), Douglasville, Douglas County, Georgia, Region 4: CERCLIS Number GAD984279232. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Old Douglas County Landfill in Douglasville, Georgia, operated from 1973 until 1987 as a municipal waste landfill. Existing landfill records specify that household wastes were received, however, industrial wastes are suspected to have been disposed at this landfill. The Agency for Toxic Substances and Disease Registry (ATSDR) concludes that private well water near the landfill is safe to drink. The surface water from Gothard`s Creek and the settling ponds on the landfill do not have chemicals present at levels of public health concern. The settling ponds on the landfill and parts of Gothard`s Creek contain elevated levels of lead,more » manganese, and iron in the sediment that are not harmfull to humans under typical exposure conditions. The soil located on- and off-site also had elevated levels of lead, manganese, and iron, however, these metals do not pose a threat to human health under typical exposure conditions. Currently, human contact with contaminants in soil, sediment, and surface water associated with Old Douglas County Landfill is not expected to result in adverse health effects. ATSDR determined that the methane monitoring locations and frequency at the landfill are inadequate to fully evaluate conditions at the perimeter of the landfill or near adjacent houses.« less

  4. 75 FR 30831 - Cooksey Brothers Landfill Fire Superfund Site; Ashland, Boyd County, KY; Notice of Settlement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-02

    ... Landfill Fire Superfund Site; Ashland, Boyd County, KY; Notice of Settlement AGENCY: Environmental... Brothers Landfill Fire Superfund Site located in Ashland, Boyd County, Kentucky for publication. DATES: The..., identified by Docket ID No. EPA-RO4- SFUND-2010- 0447 or Site name Cooksey Brothers Landfill Superfund Site...

  5. Construction, lithologic, and water-level data for wells near the Dickson County landfill, Dickson County, Tennessee, 1995

    USGS Publications Warehouse

    Ladd, D.E.

    1996-01-01

    Organic compounds were detected in water samples collected from Sullivan Spring during several sampling events in 1994. Prior to this, the spring was the drinking-water source for two families in the Dickson, Tennessee area. An investigation was conducted by the U.S. Geological Survey, in cooperation with Dickson County Solid Waste Management, to determine if Sullivan Spring is hydraulically downgradient from the Dickson County landfill. This report describes the data collected during the investigation. Five monitoring wells were installed near the northwestern corner of the landfill at points between the landfill and Sullivan Spring. Water-level measurements were made on June 1 and 2, 1995, at these wells and 13 other wells near the landfill to determine ground- water altitudes in the area. Water-level altitudes in the five new monitoring wells and three other landfill-monitoring wells were higher (750.04 to 800.17 feet) than the altitude of Sullivan Spring (approximately 725 feet). In general, wells in topographically high areas had higher water-level altitudes than Sullivan Spring and wells near streams in lowland areas.

  6. Feasibility Study of Economics and Performance of Solar Photovoltaics at Johnson County Landfill

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salasovich, J.; Mosey, G.

    2012-01-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Johnson County Landfill in Shawnee, Kansas, for a feasibility study of renewable energy production. Citizens of Shawnee, city planners, and site managers are interested in redevelopment uses for landfills in Kansas that are particularly well suited for grid-tied solar photovoltaic (PV) installation. This report assesses the Johnson County Landfill for possible grid-tied PV installations and estimates the cost, performance, and site impacts of three different PV options: crystalline silicon (fixed tilt), crystalline silicon (single-axis tracking), and thin film (fixed tilt). Each option represents amore » standalone system that can be sized to use an entire available site area. In addition, the report outlines financing options that could assist in the implementation of a system. The feasibility of PV systems installed on landfills is highly impacted by the available area for an array, solar resource, operating status, landfill cap status, distance to transmission lines, and distance to major roads. The report findings are applicable to other landfills in the surrounding area.« less

  7. A survey of macromycete diversity at Los Alamos National Laboratory, Bandelier National Monument, and Los Alamos County; A preliminary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarmie, N.; Rogers, F.J.

    The authors have completed a 5-year survey (1991--1995) of macromycetes found in Los Alamos County, Los Alamos National Laboratory, and Bandelier National Monument. The authors have compiled a database of 1,048 collections, their characteristics, and identifications. The database represents 123 (98%) genera and 175 (73%) species reliably identified. Issues of habitat loss, species extinction, and ecological relationships are addressed, and comparisons with other surveys are made. With this baseline information and modeling of this baseline data, one can begin to understand more about the fungal flora of the area.

  8. FLORIDA HAZARDOUS WASTE AND SANITARY LANDFILL REPORT, COUNTY DATA. GENERATOR DATA AND CHARACTERISTICS OF SANITARY LANDFILLS. PART 2. COUNTIES: BROWARD, CALHOUN, CHARLOTTE, CITRUS, CLAY, COLLIER

    EPA Science Inventory

    The report provides data on the use of sanitary landfills (Subtitle D facilities) for hazardous waste disposal in Florida by small quantity generators. It consists of eleven parts including a part called Study Area Data which contains the data aggregated across the counties cover...

  9. Reclamation of sanitary landfills: A case study in Shelby County, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riddick, P.M.; Kirsch, S.; Kung, Hsiang-Te

    1992-07-01

    Approximately 30,000 sanitary landfills were in operation in the United States in 1976; today, there are <7,000. The remaining 23,000 closed sites can be reclaimed to actually enhance the surrounding community; cost is the only limiting factor. Abandoned sanitary landfill sites do have problems, namely leachates, methane build-up, and subsidence. However, with modern techniques and planning, these problems can be overcome. Across the nation, old landfills have been converted into golf courses, parks, ski resorts, libraries, and even methane power plants. In some cases, a community's property value has actually increased after reclamation of the local landfill. Shelby County, inmore » southwestern Tennessee, currently has four closed sanitary landfills. Only one site has been fully utilized as a recreational facility. At this site, four soccer fields are home to over 150 league soccer teams. Two sites are home to airplane radio-control clubs, although most land at these sites is currently unused. The fourth site is completely unused and up for sale. All of these closed sanitary landfills have potential use as recreation areas, but, as is often the case, lack of money and initiative is preventing development. 7 refs.« less

  10. Hydrogeology and ground-water-quality conditions at the Linn County landfill, eastern Kansas, 1988-89

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falwell, R.; Bigsby, P.R.; Myers, N.C.

    1991-01-01

    An investigation of the hydrogeology and groundwater quality conditions near the Linn County Landfill, eastern Kansas was conducted from July 1988 through June 1989. The landfill is located in an unreclaimed coal strip-mine area near Prescott. Analysis of water levels from nine temporary wells and from strip-mine ponds indicated that groundwater flows southwest through the present landfill. A county road west of the landfill acts as a barrier to shallow westerly groundwater flow. Seasonal variations in the direction of groundwater flow may occur. Water samples from monitoring wells and a strip-mine pond were analyzed for inorganic and organic compounds. Iron,more » manganese, and dissolved-organic-carbon concentrations were good indicators of the presence of landfill leachate in the groundwater. Benzene, carbon tetrachloride, 1,1-dichloroethane, and 1,1,1-trichloroethane were also detected. None of the inorganic or organic compounds detected exceeded Kansas primary drinking-water standards. Chemical concentrations and water levels in some nested wells indicate there is a hydraulic connection between the strip-mine spoil material and the underlying limestone. Leachate-contaminated groundwater has the potential to migrate southwest corner of the landfill through either strip-mine spoil material or through the underlying Pawnee Limestone.« less

  11. Superfund record of decision (EPA Region 9): Mather Air Force Base, Landfill Operable Unit, Sacramento County, CA, August 3, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This decision document presents the selected remedial actions for the Landfill OU Sites, at the inactive Mather AFB, Sacramento County, California. The Installation Restoration Program (IRP) sites which comprise the Landfill OU at the inactive Mather AFB include: Site 1 - Runway Overrun Landfill; Site 2 - `8150` Area Landfill; Site 3 - Northeast Perimeter Landfill No. 1; Site 4 - Northeast Perimeter Landfill No. 2; Site 5 - Northeast Perimeter Landfill No. 3; and Site 6 - Firing Range Landfill Sites.

  12. Ground-water quality in the Davie Landfill, Broward County, Florida

    USGS Publications Warehouse

    Mattraw, H.C.

    1976-01-01

    Ground-water adjacent to a disposal pond for septic tank sludge, oil, and grease at the Davie landfill, Broward County, Florida was tested for a variety of ground-water contaminants. Three wells adjacent to the disposal pond yielded water rich in nutrients, organic carbon and many other chemical constituents. Total coliform bacteria ranged from less than 100 to 660 colonies per 100 milliliters in samples collected from the shallowest well (depth 20 feet). At well depths of 35 and 45 feet bacterial counts were less than 20 colonies per 100 milliliters or zero. Concentrations of several constituents in water samples collected from the wells downgradient from the landfill, disposal pond, and an incinerator wash pond were greater than in samples collected from wells immediately upgradient of the landfill. A comparison of sodium-chloride ion ratios indicated that downgradient ground-water contamination was related to the incinerator wash water pond rather than the septic tank sludge pond. (Woodard-USGS)

  13. Groundwater Quality Assessment Plan: Dickson County Landfill, Dickson County, Tennessee, including Application for Authorization for Class V Underground Injection Well

    EPA Pesticide Factsheets

    Contains site investigation plan & data for assessment of groundwater quality at Dickson County Landfill, Dickson, Tennessee, with figures, tables, appendices, November 1994, including Application for Authorization for Class V Underground Injection Well.

  14. Water-quality conditions at selected landfills in Mecklenburg County, North Carolina, 1986-92

    USGS Publications Warehouse

    Ferrell, G.M.; Smith, D.G.

    1995-01-01

    Water-quality conditions at five municipal landfills in Mecklenburg County, North Carolina, were studied during 1986-92. Analytical results of water samples from monitoring wells and streams at and near the landfills were used to evaluate effects of leachate on surface and ground water. Ground-water levels at monitoring wells were used to determine directions of ground-water flow at the landfills. Data from previous studies were used for analysis of temporal trends in selected water-quality properties and chemical constituents. Effects of leachate, such as large biochemical- and chemical-oxygen demands, generally were evident in small streams originating within the landfills, whereas effects of leachate generally were not evident in most of the larger streams. In larger streams, surface-water quality upstream and downstream from most of the landfills was similar. However, the chemical quality of water in Irwin Creek appears to have been affected by the Statesville Road landfill. Concentrations of several constituents indicative of leachate were larger in samples collected from Irwin Creek downstream from the Statesville Road landfill than in samples collected from Irwin Creek upstream from the landfill. The effect of leachate on ground-water quality generally was largest in water from wells adjacent to waste-disposal cells. Concentrations of most constituents considered indicative of leachate generally were smaller with increasing distance from waste-disposal cells. Water samples from offsite wells generally indicated no effect or very small effects of leachate. Action levels designated by the Mecklenburg County Engineering Department and maximum contaminant levels established by the U.S. Environmental Protection Agency were exceeded in some samples from the landfills. Ground-water samples exceeded action levels and maximum contaminant levels more commonly than surface-water samples. Iron and manganese were the constituents that most commonly exceeded action levels

  15. Yolo County's Accelerated Anaerobic and Aerobic Composting (Full-Scale Controlled Landfill Bioreactor) Project

    NASA Astrophysics Data System (ADS)

    Yazdani, R.; Kieffer, J.; Akau, H.; Augenstein, D.

    2002-12-01

    Sanitary landfilling is the dominant method of solid waste disposal in the United States, accounting for about 217 million tons of waste annually (U.S. EPA, 1997) and has more than doubled since 1960. In spite of increasing rates of reuse and recycling, population and economic growth will continue to render landfilling as an important and necessary component of solid waste management. Yolo County Department of Planning and Public Works, Division of Integrated Waste Management is demonstrating a new landfill technology called Bioreactor Landfill to better manage solid waste. In a Bioreactor Landfill, controlled quantities of liquid (leachate, groundwater, gray-water, etc.) are added and recirculated to increase the moisture content of the waste and improve waste decomposition. As demonstrated in a small-scale demonstration project at the Yolo County Central Landfill in 1995, this process significantly increases the biodegradation rate of waste and thus decreases the waste stabilization and composting time (5 to 10 years) relative to what would occur within a conventional landfill (30 to 50 years or more). When waste decomposes anaerobically (in absence of oxygen), it produces landfill gas (biogas). Biogas is primarily a mixture of methane, a potent greenhouse gas, carbon dioxide, and small amounts of Volatile Organic Compounds (VOC's) which can be recovered for electricity or other uses. Other benefits of a bioreactor landfill composting operation include increased landfill waste settlement which increases in landfill capacity and life, improved leachate chemistry, possible reduction of landfill post-closure management time, opportunity to explore decomposed waste for landfill mining, and abatement of greenhouse gases through highly efficient methane capture over a much shorter period of time than is typical of waste management through conventional landfilling. This project also investigates the aerobic decomposition of waste of 13,000 tons of waste (2.5 acre) for

  16. Ground-water quality in the vicinity of landfill sites, southern Franklin County, Ohio

    USGS Publications Warehouse

    De Roche, J.T.; Razem, A.C.

    1981-01-01

    The hydrogeology and ground-water quality in the vicinity of five landfills in southern Franklin County, Ohio, were investigated by use of data obtained from 46 existing wells, 1 seep, 1 surface-water site, and 1 leachate-collection site. Interpretation was based on data from the wells, a potentiometric-surface map, and chemical analyses. Four of the five landfills are in abandoned sand and gravel pits. Pumping of water from a quarry near the landfills has modified the local ground-water flow pattern, increased the hydraulic gradient, and lowered the water table. Ground water unaffected by the landfills is a hard, calcium bicarbonate type with concentrations of dissolved iron and dissolved sulfate as great as 3.0 milligrams per liter and 200 milligrams per liter, respectively. Water sampled from wells downgradient from two landfills shows an increase in sodium, chloride, and other constituents. The change in water quality cannot be traced directly to the landfills, however, because of well location and the presence of other potential sources of contamination. Chemical analysis of leachate from a collection unit at one landfill shows significant amounts of zinc, chromium, copper, and nickel, in addition to high total organic carbon, biochemical oxygen demand, and organic nitrogen. Concentrations of chloride, iron, lead, manganese and phenolic compounds exceed Ohio Environmental Protection Agency Water Quality Standards for drinking water. Water from unaffected wells within the study area have relatively small amounts of these constituents. (USGS)

  17. Health assessment for Skinner Landfill, West Chester, Butler County, Ohio, Region 5. CERCLIS No. OHD063963714. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-08-10

    The Skinner Landfill is a former landfill in West Chester, Butler County, Ohio. On-site soil, groundwater, and surface water are contaminated with volatile organic compounds (VOCs), semivolatile organic compounds, pesticides, arsenic, and lead. Off-site contamination is minimal. The Skinner Landfill site poses an indeterminate public health hazard. Potential exposure pathways of concern are the ingestion of surface soils containing lead and the ingestion of VOCs in groundwater. Groundwater is a potential exposure pathway because there are uncertainties concerning the potential for contaminated groundwater to move off site.

  18. Oppenheimer's Box of Chocolates: Remediation of the Manhattan Project Landfill at Los Alamos National Laboratory - 12283

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Donald L.; Ramsey, Susan S.; Finn, Kevin P.

    2012-07-01

    Material Disposal Area B (MDA B) is the oldest radioactive waste disposal facility at Los Alamos National Laboratory. Operated from 1944-48, MDA B was the disposal facility for the Manhattan Project. Recognized as one of the most challenging environmental remediation projects at Los Alamos, the excavation of MDA B received $110 million from the American Recovery and Reinvestment Act of 2009 to accelerate this complex remediation work. Several factors combined to create significant challenges to remediating the landfill known in the 1940's as the 'contaminated dump'. The secrecy surrounding the Manhattan Project meant that no records were kept of radiologicalmore » materials and chemicals disposed or of the landfill design. An extensive review of historical documents and interviews with early laboratory personnel resulted in a list of hundreds of hazardous chemicals that could have been buried in MDA B. Also, historical reports of MDA B spontaneously combusting on three occasions -with 50-foot flames and pink smoke spewing across the mesa during the last incident in 1948-indicated that hazardous materials were likely present in MDA B. To complicate matters further, though MDA B was located on an isolated mesa in the 1940's, the landfill has since been surrounded by a Los Alamos commercial district. The local newspaper, hardware store and a number of other businesses are located directly across the street from MDA B. This close proximity to the public and the potential for hazardous materials in MDA B necessitated conducting remediation work within protective enclosures. Potential chemical hazards and radiological inventory were better defined using a minimally intrusive sampling method called direct push technology (DPT) prior to excavation. Even with extensive sampling and planning the project team encountered many surprises and challenges during the project. The one area where planning did not fail to meet reality was safety. There were no serious worker

  19. A Preliminary evaluation of hydrology and water quality near the Tacoma Landfill, Pierce County, Washington

    USGS Publications Warehouse

    Lum, W.E.; Turney, G.L.

    1985-01-01

    The Tacoma landfill, located in western Pierce County, Washington, has been used for the disposal of waste since about 1960. Disposal operations are planned to continue at this site until at least 1990. Data were compiled and interpreted to help understand the possible effects of the landfill on water quality in the surrounding area. Data were collected from published and unpublished reports of the U.S. Geological Survey, and from predominantly unpublished data in the files of other government agencies. The Tacoma landfill is underlain by unconsolidated, glacially derived deposits that consist of a wide variety of mixtures of clay to boulder-sized materials. Ground water is mostly the result of rainfall on the land surface, and moves through artesian aquifers (under the landfill) that are tapped for both domestic and municipal use. Hazardous liquid and dissolved wastes are probably present in the landfill, and potential flow paths for waste migration exist. An undetermined number of single-family domestic wells and 18 public-supply wells are within 3 miles of the landfill, three as close as 0.2 miles. There is only limited evidence indicating ground- and surface-water contamination. Further investigations of the geology, hydrology and water quality are needed to characterize the impact the landfill has on ground- and surface-water of the surrounding area. (USGS)

  20. FOCUSED FEASIBILITY STUDY OF PHYTOREMEDIATION ALTERNATIVE FOR THE INDUSTRIAL EXCESS LANDFILL SITE IN STARK COUNTY, OHIO.

    EPA Science Inventory

    Focused feasibility study of phytoremediation alternative for the Industrial Excess Landfill site in Stark County, Ohio. More information can be found on the NPL Fact Sheet for this site at www.epa.gov/region5/superfund/npl/ohio/OHD000377971.htm

  1. A Water Balance Study of Four Landfill Cover Designs at Material Disposal Area B in Los Alamos, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David D. Breshears; Fairley J. Barnes; John W. Nyhan

    1998-09-01

    The goal of disposing of low-level radioactive and hazardous waste in shallow landfills is to reduce risk to human health and the environment by isolating contaminants until they no longer pose an unacceptable hazard. In order to achieve this, the Department of Energy Environmental Restoration Program is comparing the performance of several different surface covers at Material Disposal Area (MDA) B in Los Alamos. Two conventional landfill were compared with an improved cover designed to minimize plant and animal intrusion and to minimize water infiltration into the underlying wastes. The conventional covers varied in depth and both conventional and improvedmore » designs had different combinations of vegetation (grass verses shrub) and gravel mulch (no mulch verses mulch). These treatments were applied to each of 12 plots and water balance parameters were measured from March1987 through June 1995. Adding a gravel mulch significantly influenced the plant covered field plots receiving no gravel mulch averaged 21.2% shrub cover, while plots with gravel had a 20% larger percent cover of shrubs. However, the influence of gravel mulch on the grass cover was even larger than the influence on shrub cover, average grass cover on the plots with no gravel was 16.3%, compared with a 42% increase in grass cover due to gravel mulch. These cover relationships are important to reduce runoff on the landfill cover, as shown by a regression model that predicts that as ground cover is increased from 30 to 90%,annual runoff is reduced from 8.8 to 0.98 cm-a nine-fold increase. We also found that decreasing the slope of the landfill cover from 6 to 2% reduced runoff from the landfill cover by 2.7-fold. To minimize the risk of hazardous waste from landfills to humans, runoff and seepage need to be minimized and evapotranspiration maximized on the landfill cover. This has to be accomplished for dry and wet years at MDA B. Seepage consisted of 1.9% and 6.2% of the precipitation in the

  2. Hydrogeology and simulation of ground-water flow near the Lantana Landfill, Palm Beach County, Florida

    USGS Publications Warehouse

    Russell, G.M.; Wexler, E.J.

    1993-01-01

    The Lantana landfill in Palm Beach County has a surface that is 40 to 50 feet above original ground level and consists of about 250 acres of compacted garbage and trash. Parts of the landfill are below the water table. Surface-resistivity measurements and water-quality analyses indicate that leachate-enriched ground water along the eastern perimeter of the landfill has moved about 500 feet eastward toward an adjacent lake. Concentrations of chloride and nutrients within the leachate-enriched ground water were greater than background concentrations. The surficial aquifer system in the area of the landfill consists primarily of sand of moderate permeability, from land surface to a depth of about 68 feet deep, and consists of sand interbedded with sandstone and limestone of high permeability from a depth of about 68 feet to a depth of 200 feet. The potentiometric surface in the landfill is higher than that in adjacent areas to the east, indicating ground-water movement from the landfill toward a lake to the east. Steady-state simulation of ground-water flow was made using a telescoping-grid technique where a model covering a large area is used to determine boundaries and fluxes for a finer scale model. A regional flow model encompassing a 500-square mile area in southeastern Palm Beach County was used to calculate ground-water fluxes in a 126.5-square mile subregional area. Boundary fluxes calculated by the subregional model were then used to calculate boundary fluxes for a local model of the 3.75-square mile area representing the Lantana landfill site and vicinity. Input data required for simulating ground-water flow in the study area were obtained from the regional flow models, thus, effectively coupling the models. Additional simulations were made using the local flow model to predict effects of possible remedial actions on the movement of solutes in the ground-water system. Possible remedial actions simulated included capping the landfill with an impermeable layer

  3. Controlled Landfill Project in Yolo County, California for Environmental Benefits of Waste Stabilization and Minimization of Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Yazdani, R.; Augenstein, D.; Kieffer, J.; Cohen, K.

    2003-12-01

    The Department of Public Works of Yolo County, California, USA has been testing an advanced approach to landfill bioreactors, controlled (or "enhanced") landfilling, at its Yolo County Central Landfill site near Davis, CA, since 1994. Overall objectives have been the management of waste landfilling for: (1) rapid completion of total gas generation; (2) maximum, high-efficiency gas capture; (3) waste volume reduction; and (4) maximum greenhouse gas and carbon sequestration benefits. Methane generation is controlled and enhanced through carefully managed moisture additions, and by taking advantage of landfill temperature elevation. The generated landfill methane, an important greenhouse gas, is recovered with high efficiency through extraction from a porous recovery layer beneath a surface geomembrane cover. Instrumentation included a total of 56 moisture and 15 temperature sensors in the two cells, gas flow monitoring by positive displacement gas meters, and accurate quantification of liquid inputs and outputs. Gas composition, waste volume reduction, base hydrostatic head, and a range of environmental compliance parameters has been monitored since 1995. Partitioning gas tracer tests using the injection of two gases at dilute concentrations in the landfill have also been initiated to compute the fraction of pore space occupied by water between the points of tracer injection and tracer measurement. There has been rapid waste volume reduction in the enhanced cell that corresponds to the solids' reduction to gas. Monitoring is planned for the next several years, until stabilization parameters are determined complete. Encouraging performance is indicated by: (1) sensor data; (2) gas generation results; (3) data from landfill cores; and (4) decomposition-related indicators including rapid volume reduction. When data are synthesized, project results have attractive implications for new approaches to landfill management. Over seven-years, methane recoveries have averaged

  4. Hydrogeology, ground-water quality, and potential for water-supply contamination near the Shelby County landfill in Memphis, Tennessee

    USGS Publications Warehouse

    Parks, W.S.; Mirecki, J.E.

    1992-01-01

    An investigation was conducted from 1989 to 1991 to collect and interpret hydrogeologic and ground-water-quality data specific to the Shelby County landfill in east Memphis, Tennessee. Eighteen wells were installed in the alluvial and Memphis aquifers at the landfill. Hydrogeologic data collected showed that the confining unit separating the alluvial aquifer from the Memphis aquifer was thin or absent just north of the landfill and elsewhere consists predominantly of fine sand and silt with lenses of clay. A water-table map of the landfill vicinity confirms the existence of a depression in the water table north and northeast of the landfill and indicates that ground water flows northeast from the Wolf River passing beneath the landfill toward the depression in the water table. A map of the potentiometric surface of the Memphis aquifer shows that water levels were anomalously high just north of the landfill, indicating downward leakage of water from the alluvial aquifer to the Memphis aquifer. An analysis of water-quality data for major and trace inorganic constituents and nutrients confirms that leachate from the landfill has migrated northeastward in the alluvial aquifer toward the depression in the water table and that contaminants in the alluvial aquifer have migrated downward into the Memphis aquifer. The leachate plume can be characterized by concentrations of certain major and trace inorganic constituents that are 2 to 20 times higher than samples from upgradient and background alluvial aquifer wells. The major and trace constituents that best characterize the leachate plume are total organic carbon, chloride, dissolved solids, iron, ammonia nitrogen, calcium, sodium, iodide, barium, strontium, boron, and cadmium. Several of these constituents (specifically dissolved solids, calcium, sodium, and possibly ammonia nitrogen, chloride, barium, and strontium) were detected in elevated concentrations in samples from certain Memphis aquifer wells. Elevated

  5. Hydrologic environments and water-quality characteristics at four landfills in Mecklenburg County, North Carolina, 1980-86

    USGS Publications Warehouse

    Cardinell, A.P.; Barnes, C.R.; Eddins, W.H.; Coble, R.W.

    1989-01-01

    A water-quality study was conducted during 1980-86 at four landfills in Mecklenburg County, North Carolina. Each landfill has a three-layered hydrogeologic system typical of the Piedmont, consisting of (1) the regolith; (2) a transition zone; and (3) unweathered, fractured crystalline bedrock. As much as 7.6 inches per year of rainfall enters the ground-water system and has the potential to generate leachate within landfill cells. Ground water and leachate discharge to tributaries within the landfill sites or to streams adjacent to them. Water-quality samples were collected from 53 monitoring wells and 20 surface-water sites. Samples were analyzed for selected physical and biological characteristics, major inorganic ions, nutrients, trace elements, and organic compounds. Selected indicators of water quality, including specific conductance; hardness; and concentrations of chloride, manganese, dissolved solids, total organic carbon, and specific organic compounds were analyzed to determine the effects of each landfill on ground- and surface-water quality. Increases in concentrations of inorganic constituents above background levels were detected in ground water downgradient of the landfills. The increases were generally greatest in samples from wells in close proximity to the older landfill cells. In general, the increases in concentrations in downgradient wells were greater for calcium, magnesium, and chloride than for other major ions. Manganese exhibited the largest relative increase in concentration between upgradient and downgradient wells of any constituent, and manganese concentration data were effective in defining areas with extensive anaerobic biological activity. Differences between upgradient and downgradient concentrations of total organic carbon and specific organic compounds generally were not as apparent. The most frequently identified organic contaminants were the herbicides 2,4-D and 2,4,5-T. Chlorofluoromethanes were identified in three of four

  6. Public health assessment for Muskego Sanitary Landfill, Muskego, Waukesha County, Wisconsin, Region 5. Cerclis No. WID000713180. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-09-06

    The Muskego Sanitary Landfill site is situated within the City of Muskego, Waukesha County, in the State of Wisconsin. Muskego Sanitary Landfill is a former sand and gravel pit which received unspecified types and amounts of municipal and industrial wastes over a period of approximately 25 years. Muskego Sanitary Landfill site is a public health hazard because in the past some nearby residents probably drank private well water containing site-related contamination. The groundwater around the site might pose a future public health hazard if no further action were taken to clean up the site. Ambient air near Muskego Sanitary Landfillmore » is an indeterminate public health hazard. Wisconsin's Department of Health and Social Services, Division of Health (DOH) recommends the continued monitoring of groundwater in the vicinity of the site.« less

  7. Hydrogeology, water quality, and ecology of Anderton Branch near the Quail Hollow Landfill, Bedford County, Tennessee, 1995-99

    USGS Publications Warehouse

    Farmer, James

    2004-01-01

    The Quail Hollow Landfill, located in southeastern Bedford County on the Highland Rim overlooking the Central Basin karst region of Tennessee, is constructed on the gravelly, clay-rich residuum of the Fort Payne Formation of Mississippian age. A conceptual hydrologic model of the landfill indicated that Anderton Branch was at risk of being affected by the landfill. Ground water flowing beneath the landfill mixes with percolating rainwater that has passed through the landfill and discharges to the surface from numerous weeps, seeps, and springs present in the area. Anderton Branch, adjacent to the landfill site on the north and east, receives most of the discharge from these weeps, seeps, and springs. Anderton Branch also receives water from the Powell Branch drainage basin to the west and south because of diverted flow of ground water through Harrison Spring Cave. The U.S. Geological Survey, in cooperation with the Bedford County Solid Waste Authority, conducted a study to evaluate the effect of the Quail Hollow Landfill on ground- and surface-water quality. During storm runoff, specific conductance was elevated, and cadmium, iron, manganese, lead, and nickel concentrations in Anderton Branch frequently exceeded maximum contaminant levels for drinking water for the State of Tennessee. High chloride inputs to Anderton Branch were detected at two locations?a barnyard straddling the stream and a tributary draining a pond that receives water directly from the landfill. The chloride inputs probably contribute to chloride load levels that are three times higher for Anderton Branch than for the control stream Anthony Branch. Although toxic volatile organic compounds were detected in water from monitoring wells at the landfill, no organic contaminants were detected in domestic water wells adjacent to the landfill or in Anderton Branch. Sons Spring, a karst spring near the landfill, has been affected by the landfill as indicated by an increase in chloride concentrations

  8. Los Alamos County Fire Department LAFD: TA-55 PF-4 Facility Familiarization Tour, OJT 55260

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutherford, Victor Stephen

    Los Alamos National Laboratory (LANL) will conduct familiarization tours for Los Alamos County Fire Department (LAFD) personnel at the Plutonium Facility (PF-4) at Technical Area (TA)-55. These familiarization tours are official LANL business; the purpose of these tours is to orient the firefighters to the facility so that they can respond efficiently and quickly to a variety of emergency situations. This orientation includes the ingress and egress of the area and buildings, layout and organization of the facility, evacuation procedures and assembly points, and areas of concern within the various buildings at the facility. LAFD firefighters have the skills andmore » abilities to perform firefighting operations and other emergency response tasks that cannot be provided by other LANL personnel who have the required clearance level. This handout provides details of the information, along with maps and diagrams, to be presented during the familiarization tours. The handout will be distributed to the trainees at the time of the tour. A corresponding checklist will also be used as guidance during the familiarization tours to ensure that all required information is presented to LAFD personnel.« less

  9. Public health assessment for Plymouth Avenue Landfill, Deland, Volusia County, Florida, Region 4. Cerclis No. FLD984167569. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-08-24

    The Plymouth Avenue Landfill is about 1.75 miles west of the City of DeLand in rural western Volusia County, Florida. From 1971 to 1988 it was a Class I landfill and received all types of nonhazardous industrial and municipal solid waste. From June 1978 to October 1980, the landfill reportedly received 4,500 gallons per week of process waste slurry from the Brunswick Corporation. The authors selected the following contaminants of concern: barium, chromium, 1,2-dichloroethene, iron, nitrate, sulfate, and vinyl chloride. Ingestion of ground water is a past completed human exposure pathway. Concentrations of the contaminants of concern found so farmore » are unlikely to have caused illness in the nearby residents. Analysis of water samples has been inadequate, however, to assess the public health threat from ingestion of sulfate, giardia, or vinyl chloride. Based on the information currently available, the authors classify the public health hazard at this landfill as indeterminate. Groundwater sampling is needed to determine the extent of vinyl chloride contamination.« less

  10. Structural Geology of the Northwestern Portion of Los Alamos National Laboratory, Rio Grande Rift, New Mexico: Implications for Seismic Surface Rupture Potential from TA-3 to TA-55

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamie N. Gardner: Alexis Lavine; Giday WoldeGabriel; Donathon Krier

    1999-03-01

    Los Alamos National Laboratory lies at the western boundary of the Rio Grande rift, a major tectonic feature of the North American Continent. Three major faults locally constitute the modem rift boundary, and each of these is potentially seismogenic. In this study we have gathered structural geologic data for the northwestern portion of Los Alamos National Laboratory through high-precision geologic mapping, conventional geologic mapping, stratigraphic studies, drilling, petrologic studies, and stereographic aerial photograph analyses. Our study area encompasses TA-55 and TA-3, where potential for seismic surface rupture is of interest, and is bounded on the north and south by themore » townsite of Los Alamos and Twomile Canyon, respectively. The study area includes parts of two of the potentially active rift boundary faults--the Pajarito and Rendija Canyon faults-that form a large graben that we name the Diamond Drive graben. The graben embraces the western part of the townsite of Los Alamos, and its southern end is in the TA-3 area where it is defined by east-southeast-trending cross faults. The cross faults are small, but they accommodate interactions between the two major fault zones and gentle tilting of structural blocks to the north into the graben. North of Los Alamos townsite, the Rendija Canyon fault is a large normal fault with about 120 feet of down-to-the-west displacement over the last 1.22 million years. South from Los Alamos townsite, the Rendija Canyon fault splays to the southwest into a broad zone of deformation. The zone of deformation is about 2,000 feet wide where it crosses Los Alamos Canyon and cuts through the Los Alamos County Landfill. Farther southwest, the fault zone is about 3,000 feet wide at the southeastern corner of TA-3 in upper Mortandad Canyon and about 5,000 feet wide in Twomile Canyon. Net down-to-the-west displacement across the entire fault zone over the last 1.22 million years decreases to the south as the fault zone

  11. Water Supply at Los Alamos 1998-2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard J. Koch; David B. Rogers

    2003-03-01

    For the period 1998 through 2001, the total water used at Los Alamos from all sources ranged from 1325 million gallons (Mg) in 1999 to 1515 Mg in 2000. Groundwater production ranged from 1323 Mg in 1999 to 1506 Mg in 2000 from the Guaje, Pajarito, and Otowi fields. Nonpotable surface water used from Los Alamos reservoir ranged from zero gallons in 2001 to 9.3 Mg in 2000. For years 1998 through 2001, over 99% of all water used at Los Alamos was groundwater. Water use by Los Alamos National Laboratory (LANL) between 1998 and 2001 ranged from 379 Mgmore » in 2000 to 461 Mg in 1998. The LANL water use in 2001 was 393 Mg or 27% of the total water use at Los Alamos. Water use by Los Alamos County ranged from 872 Mg in 1999 to 1137 Mg in 2000, and averaged 1006 Mg/yr. Four new replacement wells in the Guaje field (G-2A, G-3A, G-4A, and G-5A) were drilled in 1998 and began production in 1999; with existing well G-1A, the Guaje field currently has five producing wells. Five of the old Guaje wells (G-1, G-2, G-4, G-5, and G-6) were plugged and abandoned in 1999, and one well (G-3) was abandoned but remains as an observation well for the Guaje field. The long-term water level observations in production and observation (test) wells at Los Alamos are consistent with the formation of a cone of depression in response to water production. The water level decline is gradual and at most has been about 0.7 to 2 ft per year for production wells and from 0.4 to 0.9 ft/yr for observation (test) wells. The largest water level declines have been in the Guaje field where nonpumping water levels were about 91 ft lower in 2001 than in 1951. The initial water levels of the Guaje replacement wells were 32 to 57 ft lower than the initial water levels of adjacent original Guaje wells. When production wells are taken off-line for pump replacement or repair, water levels have returned to within about 25 ft of initial static levels within 6 to 12 months. Thus, the water-level trends suggest no

  12. Remediation System Evaluation, Douglas Road Landfill Superfund Site

    EPA Pesticide Factsheets

    The Douglas Road Landfill Superfund Site is located in St. Joseph County just north of Mishawaka,Indiana. The site consists of a 16-acre capped landfill located on an approximately 32-acre lot (includingthe land purchased in 1999 for a wetlands...

  13. Water-quality data from a landfill-leachate treatment and disposal site, Pinellas County, Florida, January 1979-August 1980

    USGS Publications Warehouse

    Barr, G.L.; Fernandez, Mario

    1981-01-01

    Water-quality data collected between January 1979 and August 1980 at the landfill leachate treatment site in Pinellas County, Fla., are presented. Data include field and laboratory measurements of physical properties, major chemical constituents , nitrogen and phosphorus species, chemical oxygen demand, trace metals, coliform bacteria, taxonomy of macroinvertebrates and phytoplankton, and chlorophyll analyses. Data were collected as part of a study to determine water-quality changes resulting from aeration and ponding of leachate pumped from landfill burial trenches and for use in determining the rate of movement and quality changes as the leachate migrates through the surficial aquifer. Samples were collected from 81 surficial-aquifer water-quality monitoring wells constructed in January 1975, February 1979, and March 1979, and 8 surface-water quality monitoring sites established in January 1975, February 1978, and November 1978. (USGS)

  14. Superfund Record of Decision (EPA Region 3): Buckingham County Landfill Superfund Site, VA, September 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-10-01

    The Record of Decision (ROD) presents the final remedial action selected for the Buckingham County Landfill Superfund Site (Site), located near the town of Sprouse's Corner in Buckingham County, Virginia. The remedial action was chosen in accordance with the requirements of the Comprehensive Environmental Response Compensation and Liability Act of 1980 (CERCLA), 42 U.S.C. Section 9601 et. seg., as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA), and the National Oil and Hazardous Substances Pollution Contingency Plan (NCP), 40 C.F.R. Part 300. The decision document explains the factual and legal basis for selecting the remedial action. Themore » selected remedy includes the two following options, both of which are fully protective of human health and the environment: Monitor the ground water and cap the hazardous waste disposal area; and Implement the source control measures.« less

  15. Health assessment for Master Disposal Service Landfill, Waukesha County, Brookfield, Wisconsin, Region 5. CERCLIS No. WID980820070. Preliminary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-12-10

    The Master Disposal Service Landfill is listed on the National Priorities List. The site is located on the western edge of Brookfield in Waukesha County, Wisconsin. From 1962 to 1982, Master Disposal Service, Inc. operated a 40-acre landfill and filled a 26-acre wetland area by accepting in excess of 1.5 million gallons of industrial wastes. The wastes included solvents, paint products, adhesives, oils, and foundry wastes. State sampling established that ground water near the site is contaminated by chromium, lead, phenols, and PCBs. Based on the available information, the site is considered to be of potential public health concern becausemore » of the risk to human health caused by the possibility of exposure to hazardous substances via contaminated ground water, surface water, soil and air.« less

  16. Amphibians and Reptiles of Los Alamos County

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teralene S. Foxx; Timothy K. Haarmann; David C. Keller

    Recent studies have shown that amphibians and reptiles are good indicators of environmental health. They live in terrestrial and aquatic environments and are often the first animals to be affected by environmental change. This publication provides baseline information about amphibians and reptiles that are present on the Pajarito Plateau. Ten years of data collection and observations by researchers at Los Alamos National Laboratory, the University of New Mexico, the New Mexico Department of Game and Fish, and hobbyists are represented.

  17. Status of the waste assay for nonradioactive disposal (WAND) project

    NASA Astrophysics Data System (ADS)

    Arnone, Gaetano L.; Foster, Lynn A.; Foxx, Charles L.; Hagan, Roland C.; Martin, E. R.; Myers, Steven C.; Parker, Jack L.

    1999-01-01

    The WAND (Waste Assay for Nonradioactive Disposal) system scans thought-to-be-clean, low-density waste (mostly paper and plastics) to verify the absence of radioactive contaminants at very low-levels. Much of the low-density waste generated in radiologically controlled areas, formally considered `suspect' radioactive, is now disposed more cheaply at the Los Alamos County Landfill as opposed to the LANL Radioactive Waste Landfill.

  18. Water chemistry near the closed Norman Landfill, Cleveland County, Oklahoma 1995

    USGS Publications Warehouse

    Schlottmann, Jamie L.

    2001-01-01

    The Norman Landfill was selected for study as part of the U.S. Geological Survey Toxic Substances Hydrology Program in 1994. The landfill is located south of the City of Norman on alluvial deposits of the Canadian River. Type of waste deposited in the landfill from 1922 to 1973 was largely unrestricted and may include substances now recognized as hazardous. Dissolved and suspended substances leached from wastes in the closed and capped landfill are now in ground water extending toward the Canadian River as a plume of leachate. Water samples were collected from two stock wells, one domestic well, temporary drive-point wells, the Canadian River, and a small intermittent stream hydraulically downgradient of the capped landfill known as the slough. Most constituent concentrations were greater in ground water downgradient from the capped landfill than in background ground water and were greater in the slough than in the Canadian River. Concentrations of most constituents in the Canadian River, other than sulfate, manganese, and iron, were similar to concentrations in background ground water. Some constituents measured in ground-water for this investigation are potential indicators of leachate contamination. Potential indicators that could be used to differentiate leachate contaminated water from uncontaminated ground water of the alluvial aquifer include specific conductance, chloride, alkalinity, dissolved organic carbon, boron, and dD. Specific conductance and chloride were greater in water from wells downgradient of the landfill than water from background wells. Dissolved organic carbon and boron also were greater in the leachate contaminated ground water than in background ground water.

  19. 76 FR 6153 - Supplemental Environmental Impact Statement for the Proposed Campo Regional Landfill Project on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-03

    ... for the Proposed Campo Regional Landfill Project on the Campo Indian Reservation, San Diego County, CA... proposed Campo Regional Landfill Project (Proposed Action) to be located on the Campo Indian Reservation... Landfill Project (Proposed Action). There is no Federal action of amended lease and amended sublease...

  20. 40 CFR 62.7856 - Albuquerque/Bernalillo County Air Quality Control Board.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... POLLUTANTS New Mexico Landfill Gas Emissions from Existing Municipal Solid Waste Landfills § 62.7856... County Municipal Solid Waste Landfill Designated Pollutant Plan, as adopted by the Albuquerque/Bernalillo... all existing municipal solid waste landfills under the jurisdiction of the Albuquerque/Bernalillo...

  1. Measuring Water in Bioreactor Landfills

    NASA Astrophysics Data System (ADS)

    Han, B.; Gallagher, V. N.; Imhoff, P. T.; Yazdani, R.; Chiu, P.

    2004-12-01

    Methane is an important greenhouse gas, and landfills are the largest anthropogenic source in many developed countries. Bioreactor landfills have been proposed as one means of abating greenhouse gas emissions from landfills. Here, the decomposition of organic wastes is enhanced by the controlled addition of water or leachate to maintain optimal conditions for waste decomposition. Greenhouse gas abatement is accomplished by sequestration of photosynthetically derived carbon in wastes, CO2 offsets from energy use of waste derived gas, and mitigation of methane emission from the wastes. Maintaining optimal moisture conditions for waste degradation is perhaps the most important operational parameter in bioreactor landfills. To determine how much water is needed and where to add it, methods are required to measure water within solid waste. However, there is no reliable method that can measure moisture content simply and accurately in the heterogeneous environment typical of landfills. While well drilling and analysis of solid waste samples is sometimes used to determine moisture content, this is an expensive, time-consuming, and destructive procedure. To overcome these problems, a new technology recently developed by hydrologists for measuring water in the vadose zone --- the partitioning tracer test (PTT) --- was evaluated for measuring water in solid waste in a full-scale bioreactor landfill in Yolo County, CA. Two field tests were conducted in different regions of an aerobic bioreactor landfill, with each test measuring water in ≈ 250 ft3 of solid waste. Tracers were injected through existing tubes inserted in the landfill, and tracer breakthrough curves were measured through time from the landfill's gas collection system. Gas samples were analyzed on site using a field-portable gas chromatograph and shipped offsite for more accurate laboratory analysis. In the center of the landfill, PTT measurements indicated that the fraction of the pore space filled with water

  2. Geologic and hydrologic data for the municipal solid waste landfill facility, U.S. Army Air Defense Artillery Center and Fort Bliss, El Paso County, Texas

    USGS Publications Warehouse

    Abeyta, Cynthia G.; Frenzel, P.F.

    1999-01-01

    Geologic and hydrologic data for the Municipal Solid Waste Landfill Facility on the U.S. Army Air Defense Artillery Center and Fort Bliss in El Paso County, Texas, were collected by the U.S. Geological Survey in cooperation with the U.S. Department of the Army. The 106.03-acre landfill has been in operation since January 1974. The landfill contains household refuse, Post solid wastes, bulky items, grass and tree trimmings from family housing, refuse from litter cans, construction debris, classified waste (dry), dead animals, asbestos, and empty oil cans. The depth of the filled areas is about 30 feet and the cover, consisting of locally derived material, is 2 to 3 feet thick. Geologic and hydrologic data were collected at or adjacent to the landfill during (1) drilling of 10 30- to 31-foot boreholes that were completed with gas-monitoring probes, (2) drilling of a 59-foot borehole, (3) drilling of a 355-foot borehole that was completed as a ground-water monitoring well, and (4) in situ measurements made on the landfill cover. After completion, the gas- monitoring probes were monitored on a quarterly basis (1 year total) for gases generated by the landfill. Water samples were collected from the ground-water monitoring well for chemical analysis. Data collection is divided into two elements: geologic data and hydrologic data. Geologic data include lithologic descriptions of cores and cuttings, geophysical logs, soil- gas and ambient-air analyses, and chemical analyses of soil. Hydrologic data include physical properties, total organic carbon, and pH of soil and sediment samples; soil-water chloride and soil-moisture analyses; physical properties of the landfill cover; measurements of depth to ground water; and ground-water chemical analyses. Interpretation of data is not included in this report.

  3. NPDES Permit for Transit Waste's Bondad Landfill in Colorado

    EPA Pesticide Factsheets

    Under National Pollutant Discharge Elimination System permit number CO-R050005, Transit Waste, LLC is authorized to discharge from the Bondad Landfill facility in La Plata County, Colorado, to an unnamed tributary of the Animas River.

  4. Superfund Record of Decision (EPA Region 10): Colbert Landfill, Washington (first remedial action), September 1987. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-09-29

    The Colbert Landfill, a 40-acre county-owned sanitary landfill is located in Spokane County, Washington. From 1968 through 1986, the landfill received both municipal and commercial wastes. During five years, from 1975 to 1980, a local electronics manufacturing company, Key Tronic Corporation, disposed of several hundred gallons per month of spent organic solvents, mainly methylene chloride and 1,1,1-trichloroethane (TCA) at the landfill. These wastes were typically brought to the landfill in drums and poured down the sides of open trenches to mix with the soil or ordinary municipal refuse already in the trench. During the same period, Fairchild Air Force Base,more » disposed of various solvent wastes at the site. Pesticides and refinery tar residues were also disposed on site, but to date, these contaminants have not been detected in the ground water. In 1980, nearby residents complained to the Eastern Regional Office of the Washington Department of Ecology about these disposal practices.« less

  5. Hydrogeology and effects of landfills on ground-water quality, southern Franklin County, Ohio

    USGS Publications Warehouse

    De Roche, J.T.

    1985-01-01

    Hydrogeology and water quality were evaluated near five land-fills along a 5-mile segment of the Scioto River valley south of Columbus, Ohio. Heterogenous surficial deposits o sand, gravel, and till up to 160 feet thick are hydraulically connected to the underlying Devonian limestone, the landfills and Scioto River, which has been leveed with 12 to 35 feet of refuse. Ground-water withdrawals caused a maximum 21-foot decline in ground-water levels from 1979 to 1982. The study reach of Scioto River within the influence of ground-water pumping is a losing stream, except for s small segment adjacent to one landfill. Analysis of variance indicated significant difference in ground-water quality between wells upgradient of landfills, down-gradient of landfills, and wells penetrating refuse. Elevated specific conductance and concentrations of total dissolved solids, ammonia, carbon dioxide, and dissolved organic carbon in water from wells downgradient from and penetrating landfills indicate leachate production and migration is occurring. Analysis of bed-material samples from Scioto River and Scioto Big Run revealed concentrations of polynuclear aromatic hydrocarbons ranging from 220 to 9,440 micograms per kilogram of sediment (?g/kg) and concentrations of toxic metals ranging from 1 to 720 ?g/kg. Samples from an upstream control station on Scioto River contained no organic compounds and lower concentrations of metals (ranging from 1 to 260 ?g/kg). Because of multiple land uses within the study area, organic compounds recovered from the streamed sediments cannot be attributed to any single source. The generation of hydrogen sulfide and methane gases, presence of a zone of increased hardness, elevated concentrations of common ionic species, and dominance of ammonia over other nitrogen species indicate that leachate is being produced and its migrating from four landfills and the river levee. Based on hydraulic relationships between ground water and surface water, it is highly

  6. Phytoremediation of landfill leachate using Populus

    Treesearch

    Jill A. Zalesny; Ronald S., Jr. Zalesny; Adam H. Wiese; Richard B. Hall; Bart Sexton

    2006-01-01

    Proper genotype selection is required for successful phytoremediation. We selected eight Populus clones (NC13460, NC14018, DM115, NC14104, NC14106, DN5, NM2, NM6) of four genomic groups after three cycles of phyto-recurrent selection for a field trial that began June 2005 at the Oneida County Landfill in Rhinelander, WI, USA.

  7. Approximate Boundaries for West Lake Landfill, Missouri, 2014, EPA REG 07

    EPA Pesticide Factsheets

    This ESRI File Geodatabase Feature Class contains polygons for GIS depicting the approximate boundaries for West Lake Landfill (MOD079900932), Missouri, 2014, EPA REG 07These polygons are for graphically representing the site. The estimated boundary was developed using St. Louis County Parcels (2014). The boundaries of the individual landfill cells and areas within the site are interpolated based on sample results from the Remedial Investigation Report, ??EMSI, 2000, Remedial Investigation Report, West Lake Landfill Operable Unit 1, April 10.??Boundaries for Operational Units derived from CAD drawings provided by Aquaterra Environmental Solutions, Inc based on work provided by Herst & Associates Inc. and published in the Record of Decision, West Lake Landfill Site, Bridgeton, Missouri, Operable Unit 2, July 2008. CERCLIS ID MOD079900932.

  8. Title V Operating Permit: CR Group, LLC - Tekoi Landfill

    EPA Pesticide Factsheets

    Final First Renewal of the Operating Permit (Permit Number: V-SV-000001-2016.00), Response to Public Comments and the Administrative Permit Record for the CR Group, LLC, Tekoi Landfill, located on the Skull Valley Indian Reservation, in Tooele County, UT.

  9. Water Supply at Los Alamos during 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. N. Maes; S. G. McLin; W. D. Purtymun

    1998-12-01

    Production of potable municipal water supplies during 1997 totaled about 1,285.9 million gallons from wells in the Guaje, Pajarito, and Otowi well fields. There was no water used from the spring gallery in Water Canyon or from Guaje Reservoir during 1997. About 2.4 million gallons of water from Los Alamos Reservoir was used to irrigate public parks and recreational lands. The total water usage in 1997 was about 1,288.3 million gallons, or about 135 gallons per day per person living in Los Alamos County. Groundwater pumpage was down about 82.2 million gallons in 1997 compared with the pumpage in 1996.more » Four new replacement wells were drilled and cased in Guaje Canyon between October 1997 and March 1998. These wells are currently being developed and aquifer tests are being performed. A special report summarizing the geological, geophysical, and well construction logs will be issued in the near future for these new wells.« less

  10. Assessment of ground-water contamination near Lantana landfill, Southeast Florida

    USGS Publications Warehouse

    Russell, G.M.; Higer, A.L.

    1988-01-01

    The Lantana landfill located in Palm Beach County rises 40 to 50 feet above normal ground level and consists of about 250 acres of compacted garbage and trash, some below the water table. Surface-resistivity measurements and water-quality analyses indicate a contaminant plume along the eastern perimeter of the landfill that has migrated about 300 feet eastward toward an adjacent lake. Concentrations of chloride, ammonia, and nitrate were elevated within the plume. The surficial aquifer consists primarily of sand from 0 to about 68 feet, and sand interbedded with sandstone and limestone from 68 to 220 feet. A slight hydraulic gradient exists, indicating ground-water movement from the landfill toward a lake to the east. Analyses of geoelectric, lithologic, and water-quality data indicate that surface geophysical techniques were successful in determining the areal and vertical extent of leachate migration at this location.The Lantana landfill located in Palm Beach County rises 40 to 50 feet above normal ground level and consists of about 250 acres of compacted garbage and trash, some below the water table. Surface-resistivity measurements and water-quality analyses indicate a contaminant plume along the eastern perimeter of the landfill that has migrated about 300 feet eastward toward an adjacent lake. Concentrations of chloride, ammonia, and nitrate were elevated within the plume. The surficial aquifer consists primarily of sand from 0 to about 68 feet, and sand interbedded with sandstone and limestone from 68 to 220 feet. A slight hydraulic gradient exists, indicating ground-water movement from the landfill toward a lake to the east. Analyses of geoelectric, lithologic, and water-quality data indicate that surface geophysical techniques were successful in determining the areal and vertical extent of leachate migration at this location.

  11. Superfund record of decision (EPA Region 5): Skinner Landfill, Butler County, Union Township, West Chester, OH. (First remedial action), September 1992. Interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-09-30

    The 78-acre Skinner Landfill site is located in West Chester, Butler County, Ohio. Land use in the immediate vicinity includes business and residential uses to the west and crop farming to the north. The site was used in the past for the mining of sand and gravel, and was operated for the landfilling of a wide variety of materials from approximately 1934 through 1990. Materials deposited onsite include demolition debris, household refuse, and a wide variety of chemical wastes. In 1982, EPA conducted an investigation that showed that the groundwater southeast of the buried waste lagoon was contaminated with VOCs.more » RI studies conducted between 1986 and 1989 investigated the site ground water, surface water, soil, and sediment. In 1990, the state closed the site to further landfilling activities. The ROD is an interim action to protect human health by limiting site access to prevent ingestion of and direct contact with contaminated soil, and to protect the potentially affected users of ground water on and near the site. The primary contaminants of concern affecting the soil and ground water are VOCs, including benzene; organics, including PAHs, PCBs, and pesticides; and metals, including arsenic. The selected interim remedial action for the site are included.« less

  12. Hydrogeologic characterization of a proposed landfill expansion in Pickens County near Easley, South Carolina

    USGS Publications Warehouse

    Stringfield, W.J.

    1994-01-01

    This report presents the results of a hydrogeologic study in the Piedmont physiographic province of South Carolina to obtain geologic, hydrologic, and water-quality data from the site of a proposed landfill expansion in Pickens County near Easley, South Carolina. The geology of the study area is typical of the Piedmont region. The unconsolidated regolith on the site is soil and saprolite, which is a product of the weathered parent rock. The soil ranges in thickness from about 5 to 20 feet. The saprolite ranges in thickness from about 5 to 134 feet. The most abundant parent rock type in the area is a biotite gneiss. Ground- and surface-water data were collected at the site. Slug tests on the saprolite indicate a mean hydraulic conductivity of 3 x 0.000003 feet per second. Transmissivity ranges from 12 to 27 cubic feet per day per feet (squared per day). The ground-water velocity for the site ranges from 3 to 6 feet per year. The closest major stream to the site is Golden Creek. Based on low-flow data for Golden Creek, the estimated minimum 7 consecutive day flow that has a recurrence interval of 10 years (7Q10) at station 02186102 is 2.4 cubic feet per second. Water samples were collected from five monitoring wells at the proposed landfill expansion site and from one stream adjacent to the expansion site. Measured pH units ranged from 5.5 to 8.1, and alkalinity concentrations ranged from 5.1 to 73 milligrams per liter as CaCO3. Other water- quality data obtained included temperature and specific conductance, and 5-day BOD (biochemical oxygen demand), bicarbonate, ammonia-nitrogen, nitrite-nitrogen, nitrite plus nitrate, organic carbon, calcium, magnesium, sodium, potassium, chloride, sulfate, fluoride, and selected trace metal concentrations.

  13. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2003-08-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes ofmore » air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell is nearly complete with only the biofilter remaining and is scheduled to be complete by the end of August 2003. The current project status and preliminary monitoring results are summarized in this report.« less

  14. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2003-12-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes ofmore » air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The remaining task to be completed is to test the biofilter prior to operation, which is currently anticipated to begin in January 2004. The current project status and preliminary monitoring results are summarized in this report.« less

  15. 40 CFR 62.7856 - Albuquerque/Bernalillo County Air Quality Control Board.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Albuquerque/Bernalillo County Air... Albuquerque/Bernalillo County Air Quality Control Board. (a) Identification of Plan. Albuquerque-Bernalillo County Municipal Solid Waste Landfill Designated Pollutant Plan, as adopted by the Albuquerque/Bernalillo...

  16. 40 CFR 62.7856 - Albuquerque/Bernalillo County Air Quality Control Board.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Albuquerque/Bernalillo County Air... Albuquerque/Bernalillo County Air Quality Control Board. (a) Identification of Plan. Albuquerque-Bernalillo County Municipal Solid Waste Landfill Designated Pollutant Plan, as adopted by the Albuquerque/Bernalillo...

  17. 40 CFR 62.7856 - Albuquerque/Bernalillo County Air Quality Control Board.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Albuquerque/Bernalillo County Air... Albuquerque/Bernalillo County Air Quality Control Board. (a) Identification of Plan. Albuquerque-Bernalillo County Municipal Solid Waste Landfill Designated Pollutant Plan, as adopted by the Albuquerque/Bernalillo...

  18. NPDES Permit for Fort Carson Landfill No. 5 in Colorado

    EPA Pesticide Factsheets

    Under NPDES permit CO-0034771, the United States Army, HQ, Fort Carson, is authorized to discharge groundwater seepage from the Landfill No. 5 facility at the Fort Carson Army Post in El Paso County, Colorado, to B Ditch, a tributary of Fountain Creek.

  19. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Snohomish County Cathcart Landfill Site in Snohomish County, Washington. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olis, D.; Salasovich, J.; Mosey, G.

    2013-04-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Snohomish County Cathcart Landfill Site in Snohomish County, Washington, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  20. The Tompkins County Solid Waste Annual Fee: Background and overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penniman, P.W.

    1995-05-01

    This report outlines the development by Tompkins County of a new revenue source for solid waste programs -- The Solid Waste Annual Fee. Over the past two decades in New York State, regulatory demands and the decline in available landfill space have combined to cause a rapid escalation in the cost of solid waste disposal. While the New York State Department of Environmental Conservation (NYSDEC) has implemented tighter regulations for the siting of solid waste landfills, they have also mandated the permitting or closure of all existing landfills in the state. The result is that all communities have been requiredmore » to invest millions of dollars in landfill siting, closure and solid waste processing facilities. In addition, programs for reducing and recycling solid wastes have been mandated to reduce the outflow to landfills. Until recent years, solid waste services in most New York counties have been funded almost entirely through a collection of property taxes. During the past six years, fiscal stress has stimulated a movement toward funding solid waste programs by other means. Alternatives to the property tax include: (1) special assessment taxes or fees; (2) user charges (including tipping fees); and (3) intergovernment grants.« less

  1. Landfill cover soil, soil solution, and vegetation responses to municipal landfill leachate applications.

    PubMed

    Macdonald, Neil W; Rediske, Richard R; Scull, Brian T; Wierzbicki, David

    2008-01-01

    Municipal solid waste landfill leachate must be removed and treated to maintain landfill cover integrity and to prevent contamination of surface and ground waters. From 2003 to 2007, we studied an onsite disposal system in Ottawa County, Michigan, where leachate was spray irrigated on the vegetated landfill cover. We established six 20-m-diameter circular experimental plots on the landfill; three were spray irrigated as part of the operational system, and three remained as untreated control plots. We quantified the effects of leachate application on soil properties, soil solution chemistry, vegetative growth, and estimated solute leaching. The leachate had high mean levels of electrical conductivity (0.6-0.7 S m(-1)), Cl (760-900 mg L(-1)), and NH(4)-N (290-390 mg L(-1)) but was low in metals and volatile organic compounds. High rates of leachate application in 2003 (32 cm) increased soil electrical conductivity and NO(3)-N leaching, so a sequential rotation of spray areas was implemented to limit total leachate application to <9.6 cm yr(-1) per spray area. Concentrations of NO(3)-N and leaching losses remained higher on irrigated plots in subsequent years but were substantially reduced by spray area rotation. Leachate irrigation increased plant biomass but did not significantly affect soil metal concentrations, and plant metal concentrations remained within normal ranges. Rotating spray areas and timing irrigation to conform to seasonal capacities for evapotranspiration reduced the localized impacts of leachate application observed in 2003. Careful monitoring of undiluted leachate applications is required to avoid adverse impacts to vegetation or soils and elevated solute leaching losses.

  2. Geohydrologic evaluation of a landfill in a coastal area, St Petersburg, Florida

    USGS Publications Warehouse

    Hutchinson, C.B.; Stewart, Joseph W.

    1978-01-01

    The 250-acre Toytown landfill site is in a poorly-drained area in coastal Pinellas County, Florida. Average altitude of land surface at the landfill is less than 10 feet. About 1000 tons of solid waste and about 200,000 gallons of digested sewage sludge are disposed of daily at the landfill. The velocity of ground-water flow through the 23-foot thick surficial aquifer northeast from the landfill toward Old Tampa Bay probably ranges from 1 to 10 feet per year, and downward velocity through the confining bed is about 0.00074 foot per day. The horizontal and vertical flow velocities indicate that leachate moves slowly downgradient, and that leachate has not yet seeped through the confining bed after 12 years of landfill operation. Untreated surface run-off from the site averages about 15 inches per year, and ground-water outflow averages about 3.3 inches per year. The Floridan aquifer is used as a limited source of water for domestic supply in this area. (Woodard-USGS)

  3. Evaluation of borehole geophysical and video logs, at Butz Landfill Superfund Site, Jackson Township, Monroe County, Pennsylvania

    USGS Publications Warehouse

    Low, Dennis J.; Conger, Randall W.

    2001-01-01

    Between February 1996 and November 2000, geophysical logging was conducted in 27 open borehole wells in and adjacent to the Butz Landfill Superfund Site, Jackson Township, Monroe County, Pa., to determine casing depth and depths of water-producing zones, water-receiving zones, and zones of vertical borehole flow. The wells range in depth from 57 to 319 feet below land surface. The geophysical logging determined the placement of well screens and packers, which allow monitoring and sampling of water-bearing zones in the fractured bedrock so that the horizontal and vertical distribution of contaminated ground water migrating from known sources could be determined. Geophysical logging included collection of caliper, natural-gamma, single-point-resistance, fluid-resistivity, fluid-temperature, and video logs. Caliper and video logs were used to locate fractures, joints, and weathered zones. Inflections on single-point-resistance, fluid-temperature, and fluid-resistivity logs indicated possible water-bearing fractures, and heatpulse-flowmeter measurements verified these locations. Natural-gamma logs provided information on stratigraphy.

  4. Leachate treatment in landfills is a significant N2O source.

    PubMed

    Wang, Xiaojun; Jia, Mingsheng; Zhang, Chengliang; Chen, Shaohua; Cai, Zucong

    2017-10-15

    The importance of methane (CH 4 ) emissions from landfills has been extensively documented, while the nitrous oxide (N 2 O) emissions from landfills are considered negligible. In this study, three landfills were selected to measure CH 4 and N 2 O emissions using the static chamber method. Dongbu (DB) and Dongfu (DF) landfills, both located in Xiamen city, Fujian Province, were classified as sanitary. The former started to receive solid waste from Xiamen city in 2009, and the latter was closed in 2009. Nanjing (NJ) landfill, located in Nanjing county, Fujian Province, was classified as managed. Results showed that for the landfill reservoirs, CH 4 emissions were significant, while N 2 O emissions occurred mainly in operating areas (on average, 16.3 and 19.0mgN 2 Om -2 h -1 for DB and NJ landfills, respectively) and made a negligible contribution to the total greenhouse gas emissions in term of CO 2 equivalent. However, significant N 2 O emissions were observed in the leachate treatment systems of sanitary landfills and contributed 72.8% and 45.6% of total emissions in term of CO 2 equivalent in DB and DF landfills, respectively. The N 2 O emission factor (EF) of the leachate treatment systems was in the range of 8.9-11.9% of the removed nitrogen. The total N 2 O emissions from the leachate treatment systems of landfills in Xiamen city were estimated to be as high as 8.55gN 2 O-Ncapita -1 yr -1 . These results indicated that N 2 O emissions from leachate treatment systems of sanitary landfills were not negligible and should be included in national and/or local inventories of greenhouse gas emissions. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. A preliminary evaluation of the geohydrology and water quality of the Greenacres Landfill area, Spokane County, Washington

    USGS Publications Warehouse

    Lum, W. E.; Turney, G.L.; Alvord, R.C.

    1986-01-01

    The Greenacres Landfill, located about 11 mi east of the city of Spokane, Washington, was used for the disposal of waste from 1951 to 1972. Materials in the landfill include household and industrial waste materials, and various hazardous wastes. In 1983 the landfill was designated by the U.S. EPA as a ' Superfund ' site. The purposes of this investigation were to gather, describe, and interpret all the existing data concerning the hydrology and groundwater quality of the area surrounding the landfill, and to identify any additional data needed to describe the hydrology of the area. The quantity of water flow through the landfill as a result of precipitation on the landfill and in the drainage basin above the landfill probably ranges from 21,000 to 85,000 gal/day. This water movement may be creating a leachate and transporting some of the wastes out of the landfill. The plume would encompass an area where groundwater provides most of the water used for municipal, industrial, irrigation, and domestic purposes. Water quality analyses of water from numerous wells in the area which are open to the Spokane aquifer are available, but well 25/45-16K1 is the only well where groundwater contamination was consistently apparent. This well is only 500 ft from the landfill. Contamination of water in this well was indicated by high concentrations of dissolved mineral constituents and several organic compounds, including trans-dichloroethene (115 to 392 micrograms/L). Available data are insufficient to completely interpret the groundwater flow system near this well and the source of the contamination cannot be determined conclusively. While the existing data are adequate to provide background information, more data are needed to: (1) determine the source of contamination in well 25/45-16K1; (2) determine groundwater flow in the Spokane aquifer near well 25/45-16K1; and (3) determine the extent of contamination in the Spokane aquifer. The degree of the influence of the landfill on

  6. Landfills

    EPA Pesticide Factsheets

    To provide information on landfills, including laws/regulations, and technical guidance on municipal solid waste, hazardous waste, industrial, PCBs, and construction and debris landfills. To provide resources for owners and operators of landfills.

  7. Cutting Electricity Costs in Miami-Dade County, Florida

    ScienceCinema

    Alvarez, Carlos; Oliver, LeAnn; Kronheim, Steve; Gonzalez, Jorge; Woods-Richardson, Kathleen

    2018-02-06

    Miami-Dade County, Florida will be piping methane gas from their regional landfill to the adjacent wastewater plant to generate a significant portion of the massive facility's future electricity needs.

  8. Basic hydrogeologic and remote sensing data for selection of sanitary landfill sites

    NASA Technical Reports Server (NTRS)

    Brooks, H. K.; Ruth, B. E.; Degner, J. D.

    1977-01-01

    Solid waste disposal were studied in Volusia County to protect the water supply in the area. Highlands in this County are of limited areal extent and, most significantly, the sand hills and ridges are in areas where recharge of the Floridan aquifer occurs. This study proves that well drained soils meeting the current State requirements are of limited areal extent. These areas should not be utilized as sanitary landfill sites! Rather, it is recommended that the Tomoka Farm Road site into the adjacent wetlands be extended. The County site on Rima Ridge recommended by Greenleaf-Telesca as the primary waste burial site in the County should be re-evaluated because of potential danger to the Daytona Beach water supply.

  9. Los Alamos Science Facilities

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  10. Living in Los Alamos

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  11. Superfund Record of Decision (EPA Region 5): New Lyme, Ashtabula County, Ohio, September 1985. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-09-27

    The New Lyme Landfill is located near State Route 11 on Dodgeville Road in Ashtabula County, approximately 20 miles south of the City of Ashtabula, Ohio. The landfill occupies about 40 acres of a 100-acre tract. Operations began at the site in 1969, and were initially managed by two farmers. In 1971, the landfill was licensed by the State of Ohio and operations were taken over by a licensed landfill operator. According to documentation, the New Lyme Landfill received household, industrial, commercial, and institutional wastes and construction and demolition debris. However, numerous violations of the license occurred, including: open dumping;more » improper spreading and compacting of wastes; no State approval for disposal of certain industrial wastes; and excavation of trenches into the shale bedrock. In August 1978, the landfill was closed by the Ashtabula County Health Department. Documents indicate that wastes at the New Lyme Landfill site included: coal tar distillates, asbestos, coal tar, resins and resin tar, paint sludge, oils, paint lacquer thinner, peroxide, corrosive liquids, acetone, xylene, toluene, kerosene, naptha, benzene, linseed oil, mineral oil, fuel oil, chlorinated solvents, 2,4-D, and laboratory chemicals. The selected remedial action is included.« less

  12. Geohydrology, simulation of ground-water flow, and ground-water quality at two landfills, Marion County, Indiana

    USGS Publications Warehouse

    Duwelius, R.F.; Greeman, T.K.

    1989-01-01

    Concentrations of dissolved inorganic substances in ground-water samples indicate that leachate from both landfills is reaching the shallow aquifers. The effect on deeper aquifers is small because of the predominance of horizontal ground-water flow and discharge to the streams. Increases in almost all dissolved constituents were observed in shallow wells that are screened beneath and downgradient from the landfills. Several analyses, especially those for bromide, dissolved solids, and ammonia, were useful in delineating the plume of leachate at both landfills.

  13. Landfill site selection using combination of GIS and fuzzy AHP, a case study: Iranshahr, Iran.

    PubMed

    Torabi-Kaveh, M; Babazadeh, R; Mohammadi, S D; Zaresefat, M

    2016-03-09

    One of the most important recent challenges in solid waste management throughout the world is site selection of sanitary landfill. Commonly, because of simultaneous effects of social, environmental, and technical parameters on suitability of a landfill site, landfill site selection is a complex process and depends on several criteria and regulations. This study develops a multi-criteria decision analysis (MCDA) process, which combines geographic information system (GIS) analysis with a fuzzy analytical hierarchy process (FAHP), to determine suitable sites for landfill construction in Iranshahr County, Iran. The GIS was used to calculate and classify selected criteria and FAHP was used to assess the criteria weights based on their effectiveness on selection of potential landfill sites. Finally, a suitability map was prepared by overlay analyses and suitable areas were identified. Four suitability classes within the study area were separated, including high, medium, low, and very low suitability areas, which represented 18%, 15%, 55%, and 12% of the study area, respectively. © The Author(s) 2016.

  14. Leaky Landfills.

    ERIC Educational Resources Information Center

    Jones, Linda L. Cronin

    1992-01-01

    Provides background information on landfills and describes an activity where students learn how a modern landfill is constructed and develop an understanding of the reasons for several regulations regarding modern landfill construction. Students design and construct working models of three types of landfills. (PR)

  15. Superfund Record of Decision (EPA Region 2): Helen Kramer Landfill, Mantua Township, New Jersey, September 1985. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-09-27

    The Helen Kramer Landfill is located in Mantua Township, Gloucester County, New Jersey. The site encompasses a 66-acre refuse area and an 11-acre stressed area between the refuse and Edwards Run which is located immediately east of the landfill. The Helen Kramer Landfill site was originally operated as a sand and gravel pit. The site became an operating landfill between 1963 and 1965, during which time landfilling occurred simultaneously with sand excavation. In 1963, large volumes of wastes were deposited just north of the south ravine. Ponds of standing liquid were also located around the north ravine. Between 1963 andmore » 1965, the fill was extended into the south ravine, and the north ravine was filled and graded. Very little is known about the landfill activities between 1965 and 1970. Throughout 1970 to 1981 it was alleged by area residents that sporadic chemical dumping continued.« less

  16. Lubrication contributes to improved landfill cogeneration plant operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-10-01

    The Prince George`s county, Maryland, cogeneration plant consists of three lean-burn, 12-cylinder, Waukesha 5790GL turbocharged gas engines, each powering an 850 kW Kato generator. Four Waukesha F1197G engines run gas compressors that draw and compress gas from the landfill, pumping an average of 28000 m{sup 3}/day at 6.2 bar from 29 wells. Landfill gas is 50% methane, 30% carbon dioxide, 10% nitrogen and 10% other gas constituents. These other gas constituents consist of 160 chemical compounds, many of which are very destructive to engines and other equipment. Probably the worst of these are the total organic halide expressed as chloridemore » (TOH/CL), formed from the decomposition of household cleaning preparations and other materials containing chlorides. Landfill gas also contains an abundance of water, which combines not only with the TOH/CLs but with oxides of nitrogen, which are by-products of the combustion process, to form acids. To handle the highly contaminated landfill gas, the Waukesha Engine Division and people from Curtis Engine and Equipment modified the equipment and maintenance practices. One of the first changes was in lubrication. Curtis switched from a standard gas engine oil to Mobile Pegasus 446 oil, an SAE 40 oil that has a total base number (TBN) of 9.5, because of its extended acid-neutralizing capabilities.« less

  17. Ground-water quality near an inactive landfill and sludge-spreading area, Tallahassee, Florida

    USGS Publications Warehouse

    Berndt, M.P.

    1993-01-01

    Groundwater quality at and near a landfill southwest of Tallahassee, Florida, where sludge from a municipal sewage-treatment plant was also applied, was assessed by sampling 21 monitoring wells and analyzing for various constituents. Water quality in the Upper Floridan aquifer at the site was compared to the water quality of 20 background wells in Leon County. Water quality in all samples from wells at the site was evaluated in relation to the landfill and sludge-spreading and nonsludge- spreading areas. Results from nonparametric statistical tests showed that potassium and nitrate concentrations were significantly different in samples from the Upper Floridan aquifer at the site and in samples from background wells. Median potassium concentrations were 0.7 mg/L in samples collected at the site and 0.4 mg/L in samples collected from background wells, whereas median nitrate concentration was 6.48 mg/L at the site and 0.51 mg/L in background wells. Graphical comparison of concentration distributions in six categories of wells; upgradient, landfill, adjacent to the landfill, downgradient onsite, downgradient offsite, and from background wells in Leon County, indicated that sodium, bicarbonate, sulfate, iron, manganese, dissolved solids, and specific conductance had highest concentrations in water from wells within the landfill. Nitrate concentrations were lowest in samples from wells in the landfill compared to the other categories. Concentrations of trace metals and organic constituents were mostly below detection limits although State maximum contaminant levels of 1.0 microg/L for benzene and vinyl chloride and 3.0 microg/L for tetrachloroethene were exceeded in water from some wells. Nitrate and chloride concentrations were significantly different in sludge-spreading and nonsludge-spreading areas. Median nitrate and chloride concentrations of 6.9 microg/L and 2.9 microg/L were detected in groundwater in sludge-spreading areas compared to 1.1 mg/L and 1.8 mg/L in

  18. Public health assessment for Wheeling Disposal Service Company Landfill, Amazonia, Andrew County, Missouri, Region 7, CERCLIS number MOD000830554. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-08-25

    The Wheeling Disposal Service Company, Inc., (Wheeling Disposal) site is a closed municipal and industrial waste landfill, approximately 1 mile southeast of Amazonia, Andrew County, Missouri. On-site shallow groundwater is contaminated with Volatile Organic Compounds (VOCs) (methylene chloride, carbon tetrachloride, trichloroethylene) and metals; however, no one is using that water for potable purposes at present. Isolated farm houses are situated in the vicinity of the site, but the houses that would most likely be affected are connected to the public water system. From the information reviewed, DOH concludes that the Wheeling Disposal site currently poses no apparent public health hazard.more » No exposures are known to be occurring at this time. Potential exposure pathways have been identified, but remedial actions eliminated them.« less

  19. Stockpile Stewardship: Los Alamos

    ScienceCinema

    McMillan, Charlie; Morgan, Nathanial; Goorley, Tom; Merrill, Frank; Funk, Dave; Korzekwa, Deniece; Laintz, Ken

    2018-01-16

    "Heritage of Science" is a short video that highlights the Stockpile Stewardship program at Los Alamos National Laboratory. Stockpile Stewardship was conceived in the early 1990s as a national science-based program that could assure the safety, security, and effectiveness of the U.S. nuclear deterrent without the need for full-scale underground nuclear testing. This video was produced by Los Alamos National Laboratory for screening at the Lab's Bradbury Science Museum in Los Alamos, NM and is narrated by science correspondent Miles O'Brien.

  20. New Mexico: Los Alamos

    Atmospheric Science Data Center

    2014-05-15

    article title:  Los Alamos, New Mexico     View Larger JPEG image ... kb) Multi-angle views of the Fire in Los Alamos, New Mexico, May 9, 2000. These true-color images covering north-central New Mexico ...

  1. Landfill disposal systems.

    PubMed

    Slimak, K M

    1978-12-01

    The current status of landfill disposal of hazardous wastes in the United States is indicated by presenting descriptions of six operating landfills. These landfills illustrate the variety of techniques that exist in landfill disposal of hazardous wastes. Although some landfills more effectively isolate hazardous waste than others, all landfills must deal with the following problems. Leachate from hazardous waste landfills is generally highly polluted. Most landfills attempt to contain leachate at the site and prevent its discharge to surface or groundwaters. To retain leachate within a disposal area, subsurface barriers of materials such as concrete, asphalt, butyl rubber, vinyl, and clay are used. It is difficult to assure that these materials can seal a landfill indefinitely. When a subsurface barrier fails, the leachate enters the groundwater in a concentrated, narrow band which may bypass monitoring wells. Once a subsurface barrier has failed, repairs are time-consuming and costly, since the waste above the repair site may have to be removed. The central problem in landfill disposal is leachate control. Recent emphasis has been on developing subsurface barriers to contain the wastes and any leachate. Future emphasis should also be on techniques for removing water from hazardous wastes before they are placed in landfills, and on methods for preventing contact of the wastes with water during and after disposal operations. When leachate is eliminated, the problems of monitoring, and subsurface barrier failure and repair can be addressed, and a waste can be effectively isolated.A surface seal landfill design is recommended for maintaining the dry state of solid hazardous wastes and for controlling leachate. Any impervious liner is utilized over the top of the landfill to prevent surface water from seeping into the waste. The surface barrier is also the site where monitoring and maintenance activities are focused. Barrier failure can be detected by visual

  2. Leachate plumes in ground water from Babylon and Islip landfills, Long Island, New York

    USGS Publications Warehouse

    Kimmel, Grant E.; Braids, O.C.

    1980-01-01

    Landfills operated by the towns of Babylon and Islip in southwest and central Suffolk County, N.Y., contain urban refuse incinerated garbage, and scavenger (cesspool) waste; some industrial refuse is deposited at the Babylon site. The Islip landfill was started in 1933, the Babylon landfill in 1947. The landfills are in contact with and discharge leachate into the highly permeable upper glacial aquifer (hydraulic conductivity 190 and 500 ft/d). The aquifer is 74 feet thick at the Babylon landfill and 170 feet thick at the Islip landfill. The leachate-enriched water occupies the boundaries retard downward migration of the plumes to deeper aquifers. The Babylon plume is 1,900 feet wide at the landfill and narrows to about 700 feet near its terminus 10,000 feet from the landfill. The Islip plume is 5,000 feet from the landfill. Hydrochemical maps and sections show the distribution of the major chemical constituents of the plumes. The most highly leachate-enriched ground water obtained was from the Babylon site; it contained 860 mg/L sodium, 110 mg/L potassium, 565 mg/L calcium, 100 mg/L magnesium, 2,7000 mg/L bicarbonate, and 1,300 mg/L chloride. Simulation of the movement and dispersion of the Babylon plume with a mathematical dispersion model indicated the coefficient of the longitudinal dispersion to be about 60 feet squared per day and the ground-water velocity to be 1 ft/d. However, the velocity determined from the hydraulic gradient and public-supply wells in the area was 4 ft/d, which would cause a plume four times as long as that predicted by the model. (Kosco-USGS)

  3. Public health assessment for Adams County Quincy landfills 2 and 3, Quincy, Adams County, Illinois, Region 5. Cerclis No. ILD980607055. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-09-28

    Since the completion of remedial activities at the site, the Quincy landfill 2 and 3 site poses no apparent public health hazard. No one is currently exposed to contamination at the site. Any past exposure would not have been at levels of health concern. Based on current conditions, IDPH recommends that the Quincy Landfill 2 and 3 participating respondents group: Encourage the homeowner 1/2 mile west of the site to connect to Mill Creek Public Water supply and to seal the private well to eliminate possible exposure to site-related contaminants in groundwater; provide groundwater containment and treatment if groundwater cleanupmore » levels are not met and maintained; continue proper maintenance of the leachate collection system and tank; maintain the landfill cap, particularly to address any erosion that occurs; and maintain a 6-foot-high security fence around the perimeter of the site to prevent trespassing.« less

  4. Landfill Methane

    USDA-ARS?s Scientific Manuscript database

    Landfill methane (CH4) accounts for approximately 1.3% (0.6 Gt) of global anthropogenic greenhouse gas emissions relative to total emissions from all sectors of about 49 Gt CO2-eq yr-1. For countries with a history of controlled landfilling, landfills can be one of the larger national sources of ant...

  5. Science and Innovation at Los Alamos

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  6. Leachate treatment system using constructed wetlands, Town of Fenton sanitary landfill, Broome County, New York. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-11-01

    Municipal sanitary landfills generate leachate that New York State regulations require to be collected and treated to avoid contaminating surface water and groundwater. One option for treating leachate is to haul it to municipal wastewater treatment facility. This option may be expensive, may require excessive energy for transportation, and may require pretreatment to protect the receiving facility`s processes. An alternative is on-site treatment and discharge. Personnel from the Town of Fenton, New York; Hawk Engineering, P.C.; Cornell University; and Ithaca College designed, built, and operated a pilot constructed wetland for treating leachate at the Town of Fenton`s municipal landfill. Themore » system, consisting of two overland flow beds and two subsurface flow beds has been effective for 18 months in reducing levels of ammonia (averaging 85% removal by volatilization and denitrification) and total iron (averaging 95% removal by precipitation and sedimentation), two key constituents of the Fenton landfill`s leachate. The system effects these reductions with zero chemical and energy inputs and minimal maintenance. A third key constituent of the leachate, manganese, apparently passes through the beds with minimal removal. Details and wetland considerations are described.« less

  7. Geohydrology of the unsaturated zone and simulated time of arrival of landfill leachate at the water table, municipal solid waste landfill facility, US Army Air Defense Artillery Center and Fort Bliss, El Paso County, Texas

    USGS Publications Warehouse

    Frenzel, Peter F.; Abeyta, Cynthia G.

    1999-01-01

    The U.S. Air Defense Artillery Center and Fort Bliss Municipal Solid Waste Landfill Facility (MSWLF) is located about 10 miles northeast of downtown El Paso, Texas. The landfill is built on the Hueco Bolson, a deposit that yields water to five public-supply wells within 1.1 miles of the landfill boundary on all sides. The bolson deposits consist of lenses and mixtures of sand, clay, silt, gravel, and caliche. The unsaturated zone at the landfill is about 300 feet thick. The Hydrologic Evaluation of Landfill Performance (HELP) and the Multimedia Exposure Assessment Model for Evaluating the Land Disposal of Wastes (MULTIMED) computer models were used to simulate the time of first arrival of landfill leachate at the water table. Site-specific data were collected for model input. At five sites on the landfill cover, hydraulic conductivity was measured by an in situ method; in addition, laboratory values were obtained for porosity, moisture content at field capacity, and moisture content at wilting point. Twenty-seven sediment samples were collected from two adjacent boreholes drilled near the southwest corner of the landfill. Of these, 23 samples were assumed to represent the unsaturated zone beneath the landfill. The core samples were analyzed in the laboratory for various characteristics required for the HELP and MULTIMED models: initial moisture content, dry bulk density, porosity, saturated hydraulic conductivity, moisture retention percentages at various suction values, total organic carbon, and pH. Parameters were calculated for the van Genuchten and Brooks-Corey equations that relate hydraulic conductivity to saturation. A reported recharge value of 0.008 inch per year was estimated on the basis of soil- water chloride concentration. The HELP model was implemented using input values that were based mostly on site-specific data or assumed in a conservative manner. Exceptions were the default values used for waste characteristics. Flow through the landfill was

  8. Los Alamos Climatology 2016 Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruggeman, David Alan

    The Los Alamos National Laboratory (LANL or the Laboratory) operates a meteorology monitoring network to support LANL emergency response, engineering designs, environmental compliance, environmental assessments, safety evaluations, weather forecasting, environmental monitoring, research programs, and environmental restoration. Weather data has been collected in Los Alamos since 1910. Bowen (1990) provided climate statistics (temperature and precipitation) for the 1961– 1990 averaging period, and included other analyses (e.g., wind and relative humidity) based on the available station locations and time periods. This report provides an update to the 1990 publication Los Alamos Climatology (Bowen 1990).

  9. Los Alamos offers Fellowships

    NASA Astrophysics Data System (ADS)

    Los Alamos National Laboratory in New Mexico is calling for applications for postdoctoral appointments and research fellowships. The positions are available in geoscience as well as other scientific disciplines.The laboratory, which is operated by the University of California for the Department of Energy, awards J. Robert Oppenheimer Research Fellowships to scientists that either have or will soon complete doctoral degrees. The appointments are for two years, are renewable for a third year, and carry a stipend of $51,865 per year. Potential applicants should send a resume or employment application and a statement of research goals to Carol M. Rich, Div. 89, Human Resources Development Division, MS P290, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 by mid-November.

  10. Ecological baseline studies in Los Alamos and Guaje Canyons County of Los Alamos, New Mexico. A two-year study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foxx, T.S.

    1995-11-01

    During the summers of 1993 and 1994, the Biological Resource Evaluations Team (BRET) of the Environmental Protection Group (ESH-8) conducted baseline studies within two canyon systems, Los Alamos and Guaje Canyons. Biological data was collected within each canyon to provide background and baseline information for Ecological Risk models. Baseline studies included establishment of permanent vegetation plots within each canyon along the elevational gradient. Then, in association with the various vegetation types, surveys were conducted for ground dwelling insects, birds, and small mammals. The stream channels associated with the permanent vegetation plots were characterized and aquatic macroinvertebrates collected within the streammore » monthly throughout a six-month period. The Geographic Position System (GPS) in combination with ARC INFO was used to map the study areas. Considerable data was collected during these surveys and are summarized in individual chapters.« less

  11. Superfund record of decision (EPA Region 5): Spickler Landfill, Spencer, WI. (First remedial action), June 1992. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The 10-acre Spickler Landfill site is an inactive municipal and industrial landfill located in Spencer, Marathon County, Wisconsin. The site consists of a mercury brine pit and two fill areas called the Old and New Fill Areas. In 1974, the state ordered the owners of the site to terminate operations and close the landfill. The ROD provides a final remedy for the first operable unit (OU1), which consists of the mercury brine pit, and the landfill. The primary contaminants of concern affecting the soil and sludge are VOCs, including benzene, PCE, toluene, and xylenes; other organics, including pesticides; metals, includingmore » arsenic, chromium, and lead; and other inorganics, including asbestos. The selected remedial action for the operable unit includes solidifying and/or stabilizing wastes in the mercury brine pit based on treatability test results, followed by installing and maintaining an impermeable and a solid waste cap over the New and Old Fill areas.« less

  12. Los Alamos National Lab: National Security Science

    Science.gov Websites

    SKIP TO PAGE CONTENT Los Alamos National Laboratory Delivering science and technology to protect Permit for Storm Water Public Reading Room Environment Home News Los Alamos National Lab: National deposition operations for the Center for Integrated Nanotechnologies at Los Alamos. Innovation drives his

  13. Public-health assessment for Algoma Municipal Landfill, Algoma, Kewaunee County, Wisconsin, Region 5. CERCLIS No. WID980610380. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-07-22

    The Algoma Landfill Superfund Site is a former municipal landfill which accepted hazardous industrial waste from several area companies. The contaminant of concern is benzene in on-site groundwater. Samples taken from off-site private water supplies in the vicinity of the landfill did not indicate the presence of contaminants. On-site soil and sediment samples revealed low levels of inorganic chemicals. Although soil samples were not analyzed for asbestos it remains a contaminant of concern since asbestos-containing debris was reportedly buried as the site. The Algoma Landfill Superfund Site is a indeterminate public health hazard. There is insufficient data to evaluate workermore » exposure to airborne asbestos in the past when Kalo dust was deposited at the site. The public health assessment recommends that access to the site be restricted to prevent trespassing and disturbance of the soil. Additional groundwater monitoring and characterization is recommended as well as sampling of surface soil for asbestos contamination.« less

  14. Optimization Review, Optimization Review, Sidney and Richardson Hill Road Landfills, Delaware County, New York

    EPA Pesticide Factsheets

    The Sidney Landfill site is located on Richardson Hill Road approximately 10 miles southeast of Sidney, New York. In March 1989, the site was added to the National Priorities List (NPL) based on investigations completed by the New York State Department...

  15. Evaluation Of Landfill Gas Decay Constant For Municipal Solid Waste Landfills Operated As Bioreactors

    EPA Science Inventory

    Prediction of the rate of gas production from bioreactor landfills is important to optimize energy recovery and to estimate greenhouse gas emissions. Landfill gas (LFG) composition and flow rate were monitored for four years for a conventional and two bioreactor landfill landfil...

  16. Aerobic landfill bioreactor

    DOEpatents

    Hudgins, Mark P; Bessette, Bernard J; March, John; McComb, Scott T.

    2000-01-01

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  17. Aerobic landfill bioreactor

    DOEpatents

    Hudgins, Mark P; Bessette, Bernard J; March, John C; McComb, Scott T.

    2002-01-01

    The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  18. A CASE STUDY OF THE LOS ANGELES COUNTY PALOS VERDES LANDFILL GAS DEVELOPMENT PROJECT

    EPA Science Inventory

    This report documents the first-ever-attempt to capture sanitary landfill gases and beneficiate them to natural gas pipeline quality--or very nearly so. For this reason the authors must credit the entrepreneurs for a successful first full-scale demonstration of a technology that ...

  19. Spatio-temporal variation of landfill gas in pilot-scale semi-aerobic and anaerobic landfills over 5years.

    PubMed

    Wu, Xiaohui; Yue, Bo; Huang, Qifei; Wang, Qi; Lin, Ye; Zhang, Wei; Yan, Zhuoyi

    2017-04-01

    Variation of CH 4 , CO 2 , and O 2 concentrations in layers of different depths in semi-aerobic and anaerobic landfills was analyzed over a period of 5years. The results showed that most of the municipal solid waste became basically stable after 5years of landfill disposal. In the upper and middle layer, the concentration of CH 4 in the semi-aerobic landfill was significantly lower than that in the anaerobic landfill in different landfill periods, while in the lower layer, there was little difference in the CH 4 concentration between the semi-aerobic and anaerobic landfills. The average concentration of CH 4 and CO 2 in the anaerobic landfill was always higher than that in the semi-aerobic landfill, while the O 2 concentration showed an opposite variation in different landfill periods. This was related to the aerobic reaction of landfill waste around the perforated pipe in the semi-aerobic landfill, which inhibited effective landfill gas generation. Copyright © 2016. Published by Elsevier B.V.

  20. Use of the landfill water pollution index (LWPI) for groundwater quality assessment near the landfill sites.

    PubMed

    Talalaj, Izabela A; Biedka, Pawel

    2016-12-01

    The purpose of the paper is to assess the groundwater quality near the landfill sites using landfill water pollution index (LWPI). In order to investigate the scale of groundwater contamination, three landfills (E, H and S) in different stages of their operation were taken into analysis. Samples of groundwater in the vicinity of studied landfills were collected four times each year in the period from 2004 to 2014. A total of over 300 groundwater samples were analysed for pH, EC, PAH, TOC, Cr, Hg, Zn, Pb, Cd, Cu, as required by the UE legal acts for landfill monitoring system. The calculated values of the LWPI allowed the quantification of the overall water quality near the landfill sites. The obtained results indicated that the most negative impact on groundwater quality is observed near the old Landfill H. Improper location of piezometer at the Landfill S favoured infiltration of run-off from road pavement into the soil-water environment. Deep deposition of the groundwater level at Landfill S area reduced the landfill impact on the water quality. Conducted analyses revealed that the LWPI can be used for evaluation of water pollution near a landfill, for assessment of the variability of water pollution with time and for comparison of water quality from different piezometers, landfills or time periods. The applied WQI (Water Quality Index) can also be an important information tool for landfill policy makers and the public about the groundwater pollution threat from landfill.

  1. Landfill Gas Energy Project Data and Landfill Technical Data

    EPA Pesticide Factsheets

    This page provides data from the LMOP Database for U.S. landfills and LFG energy projects in Excel files, a map of project and candidate landfill counts by state, project profiles for a select group of projects, and information about Project Expo sites.

  2. A CASE STUDY DEMONSTRATING U.S. EPA GUIDANCE FOR EVALUATING LANDFILL GAS EMISSIONS FROM CLOSED OR ABANDONED FACILITIES--BUSH VALLEY LANDFILL, HARFORD COUNTY, MARYLAND

    EPA Science Inventory

    The purpose of the activities described in this document is to provide a demonstration of the procedures and methodologies described within the "Guidance for Evaluating Landfill Gas Emissions from Closed or Abandoned Facilities" (Guidance). This demonstration provides an example ...

  3. Monitoring in landfills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuckols, T.E.

    Environmental monitoring is a very important activity performed on landfills. The data obtained is vital to ensuring that the landfill is in compliance with the regulatory standards. More importantly monitoring data can be used as historical documentation should enforcement or legal action be taken against the landfill. It is very difficult, if not impossible, to defend against alleged mismanagement or misconduct when there is no record to prove otherwise.

  4. Landfill Gas Energy

    EPA Pesticide Factsheets

    This guide describes how local governments and communities can achieve energy, environmental, health, and economic benefits by using landfill gas (LFG) recovered from municipal solid waste landfills as a source of renewable energy.

  5. FIELD TEST MEASUREMENTS AT FIVE MUNICIPAL SOLID WASTE LANDFILLS WITH LANDFILL GAS CONTROL TECHNOLOGY--FINAL REPORT

    EPA Science Inventory

    Research was conducted to evaluate landfill gas emissions at five municipal solid waste landfills which have modern control technology for landfill gas emissions. Comprehensive testing was conducted on the raw landfill gas and the combustion outlet exhaust. The project had two ...

  6. Superfund Record of Decision (EPA Region 2): Kin-Buc Landfill, Edison Township, Middlesex County, NJ. (Second remedial action), September 1992. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-09-28

    The 200-acre Kin-Buc Landfill consists of several inactive disposal areas and is located in Edison Township, Middlesex County, New Jersey. Land use in the area is predominantly industrial and commercial, with some residences within 2 miles north of the site. No drinking water supply wells are located within a 2-mile radius of the site. As a result of an oil spill in 1976, EPA conducted an investigation of the property. In 1980, clean-up activities were initiated under the Clean Water Act and included removal, treatment, and disposal of leachate and drummed waste. The ROD addresses a final remedy for OU2more » consisting of the sediment and groundwater in the Edmonds Creek wetlands area, Mill Brook/Martins Creek, Mound B, and the low-lying area. The primary contaminants of concern affecting the sediment and ground water are VOCs, including benzene and xylenes; other organics, including PAHs, PCBs, and pesticides; and metals, including arsenic and lead. The selected remedy for the site are included.« less

  7. Learning from Landfills.

    ERIC Educational Resources Information Center

    Galus, Pamela

    2000-01-01

    Describes a project in which students developed an all-class laboratory activity called "The Decomposition of Organic and Inorganic Substances in a Landfill". Explores what conditions are necessary to facilitate decomposition in a landfill. (SAH)

  8. Landfill aeration for emission control before and during landfill mining.

    PubMed

    Raga, Roberto; Cossu, Raffaello; Heerenklage, Joern; Pivato, Alberto; Ritzkowski, Marco

    2015-12-01

    The landfill of Modena, in northern Italy, is now crossed by the new high velocity railway line connecting Milan and Bologna. Waste was completely removed from a part of the landfill and a trench for the train line was built. With the aim of facilitating excavation and further disposal of the material extracted, suitable measures were defined. In order to prevent undesired emissions into the excavation area, the aerobic in situ stabilisation by means of the Airflow technology took place before and during the Landfill Mining. Specific project features involved the pneumatic leachate extraction from the aeration wells (to keep the leachate table low inside the landfill and increase the volume of waste available for air migration) and the controlled moisture addition into a limited zone, for a preliminary evaluation of the effects on process enhancement. Waste and leachate were periodically sampled in the landfill during the aeration before the excavation, for quality assessment over time; the evolution of biogas composition in the landfill body and in the extraction system for different plant set-ups during the project was monitored, with specific focus on uncontrolled migration into the excavation area. Waste biological stability significantly increased during the aeration (waste respiration index dropped to 33% of the initial value after six months). Leachate head decreased from 4 to 1.5m; leachate recirculation tests proved the beneficial effects of moisture addition on temperature control, without hampering waste aerobization. Proper management of the aeration plant enabled the minimization of uncontrolled biogas emissions into the excavation area. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Landfill reduction experience in The Netherlands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scharff, Heijo, E-mail: h.scharff@afvalzorg.nl

    Highlights: • ‘Zero waste’ initiatives never consider risks, side effects or experience of achieved low levels of landfill. • This paper provides insight into what works and what not. • Where strong gradients in regulations and tax occur between countries, waste will find its way to landfills across borders. • Strong landfill reduction can create a fierce competition over the remaining waste to be landfilled resulting in losses. • At some point a public organisation should take responsibility for the operation of a ‘safety net’ in waste management. - Abstract: Modern waste legislation aims at resource efficiency and landfill reduction.more » This paper analyses more than 20 years of landfill reduction in the Netherlands. The combination of landfill regulations, landfill tax and landfill bans resulted in the desired landfill reduction, but also had negative effects. A fierce competition developed over the remaining waste to be landfilled. In 2013 the Dutch landfill industry generated €40 million of annual revenue, had €58 million annual costs and therefore incurred an annual loss of €18 million. It is not an attractive option to prematurely end business. There is a risk that Dutch landfill operators will not be able to fulfil the financial obligations for closure and aftercare. Contrary to the polluter pays principle the burden may end up with society. EU regulations prohibiting export of waste for disposal are in place. Strong differentials in landfill tax rate between nations have nevertheless resulted in transboundary shipment of waste and in non-compliance with the self-sufficiency and proximity principles. During the transformation from a disposal society to a recycling society, it is important to carefully plan required capacity and to guide the reorganisation of the landfill sector. At some point, it is no longer profitable to provide landfill services. It may be necessary for public organisations or the state to take responsibility

  10. 76 FR 62831 - Notice of Realty Action: Direct Sale of Public Land in Shasta County, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-11

    ... landfill on adjacent non- Federal land. The sale of this land to the County of Shasta would serve an... public land laws, including the mining laws, except for the sale provisions of the FLPMA. Until...

  11. Landfill reduction experience in The Netherlands.

    PubMed

    Scharff, Heijo

    2014-11-01

    Modern waste legislation aims at resource efficiency and landfill reduction. This paper analyses more than 20 years of landfill reduction in the Netherlands. The combination of landfill regulations, landfill tax and landfill bans resulted in the desired landfill reduction, but also had negative effects. A fierce competition developed over the remaining waste to be landfilled. In 2013 the Dutch landfill industry generated €40 million of annual revenue, had €58 million annual costs and therefore incurred an annual loss of €18 million. It is not an attractive option to prematurely end business. There is a risk that Dutch landfill operators will not be able to fulfil the financial obligations for closure and aftercare. Contrary to the polluter pays principle the burden may end up with society. EU regulations prohibiting export of waste for disposal are in place. Strong differentials in landfill tax rate between nations have nevertheless resulted in transboundary shipment of waste and in non-compliance with the self-sufficiency and proximity principles. During the transformation from a disposal society to a recycling society, it is important to carefully plan required capacity and to guide the reorganisation of the landfill sector. At some point, it is no longer profitable to provide landfill services. It may be necessary for public organisations or the state to take responsibility for the continued operation of a 'safety net' in waste management. Regulations have created a financial incentive to pass on the burden of monitoring and controlling the impact of waste to future generations. To prevent this, it is necessary to revise regulations on aftercare and create incentives to actively stabilise landfills. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Water-quality reconnaissance of the north Dade County solid-waste facility, Florida

    USGS Publications Warehouse

    McKenzie, D.J.

    1982-01-01

    A water-quality sampling reconnaissance of the north Dade County solid-waste disposal facility (landfill) near Carol City, Florida, was conducted during 1977-78. The purpose of the reconnaissance was to determine selected quality characteristics of the surface- and ground-water of the landfill and contiguous area; and to assess, generally, if leachate produced by the decomposition of landfill wastes was adversely impacting the downgradient water quality. Sampling results indicated that several water-quality characteristics were present in landfill ground water at significantly higher levels than in ground water upgradient or downgradient from the landfill. Moreover, many of these water-quality characteristics were found at slightly higher levels at down gradient site 5 than at upgradient site 1 which suggested that some downgradient movement of landfill leachate had occurred. For example, chloride and alkalinity in ground water had average concentrations of 20 and 290 mg/L at background wells (site 1), 144 and 610 mg/L at landfill wells (sites 2 and 4), and 29 and 338 mg/L at downgradient wells (site 5). A comparison of the 1977-78 sampling results with the National Primary and Secondary Drinking Water Regulations indicated that levels of iron and color in ground water of the study area frequently exceeded national maximum contaminant levels, dissolved solids, turbidity, lead, and manganese occasionally exceeded regulations. Concentrations of iron and levels of color and turbidity in some surface water samples also exceeded National maximum contaminant levels. (USGS)

  13. LANL OPERATING EXPERIENCE WITH THE WAND AND HERCULES PROTOTYPE SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. M. GRUETZMACHER; C. L. FOXX; S. C. MYERS

    2000-09-01

    The Waste Assay for Nonradioactive Disposal (WAND) and the High Efficiency Radiation Counters for Ultimate Low Emission Sensitivity (HERCULES) prototype systems have been operating at Los Alamos National Laboratory's (LANL's) Solid Waste Operation's (SWO'S) non-destructive assay (NDA) building since 1997 and 1998, respectively. These systems are the cornerstone of the verification program for low-density Green is Clean (GIC) waste at the Laboratory. GIC waste includes all non-regulated waste generated in radiological controlled areas (RCAS) that has been actively segregated as clean (i.e., nonradioactive) through the use of waste generator acceptable knowledge (AK). The use of this methodology alters LANL's pastmore » practice of disposing of all room trash generated in nuclear facilities in radioactive waste landfills. Waste that is verified clean can be disposed of at the Los Alamos County Landfill. It is estimated that 50-90% of the low-density room trash from radioactive material handling areas at Los Alamos might be free of contamination. This approach avoids the high cost of disposal of clean waste at a radioactive waste landfill. It also reduces consumption of precious space in the radioactive waste landfill where disposal of this waste provides no benefit to the public or the environment. Preserving low level waste (LLW) disposal capacity for truly radioactive waste is critical in this era when expanding existing radioactive waste landfills or permitting new ones is resisted by regulators and stakeholders. This paper describes the operating experience with the WAND and HERCULES since they began operation at SWO. Waste for verification by the WAND system has been limited so far to waste from the Plutonium Facility and the Solid Waste Operations Facility. A total of461 ft3 (13.1 m3) of low-density shredded waste and paper have been verified clean by the WAND system. The HERCULES system has been used to verify waste from four Laboratory facilities. These are

  14. 75 FR 80841 - Notice of Realty Action: Direct Sale of Public Land in Kern County, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ... County wishes to secure the land for a buffer zone for their existing landfill. In accordance with 43 CFR..., including the mining laws, except for the sale provisions of the FLPMA. Until completion of the sale, the...

  15. Model input and output files for the simulation of time of arrival of landfill leachate at the water table, Municipal Solid Waste Landfill Facility, U.S. Army Air Defense Artillery Center and Fort Bliss, El Paso County, Texas

    USGS Publications Warehouse

    Abeyta, Cynthia G.; Frenzel, Peter F.

    1999-01-01

    This report contains listings of model input and output files for the simulation of the time of arrival of landfill leachate at the water table from the Municipal Solid Waste Landfill Facility (MSWLF), about 10 miles northeast of downtown El Paso, Texas. This simulation was done by the U.S. Geological Survey in cooperation with the U.S. Department of the Army, U.S. Army Air Defense Artillery Center and Fort Bliss, El Paso, Texas. The U.S. Environmental Protection Agency-developed Hydrologic Evaluation of Landfill Performance (HELP) and Multimedia Exposure Assessment (MULTIMED) computer models were used to simulate the production of leachate by a landfill and transport of landfill leachate to the water table. Model input data files used with and output files generated by the HELP and MULTIMED models are provided in ASCII format on a 3.5-inch 1.44-megabyte IBM-PC compatible floppy disk.

  16. Biostabilization of landfill waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, D.L.

    1995-06-01

    In November 1991, the city of Albany, N.Y., together with the principals of Landfill Service Corp. (Apalachin, N.Y.), proposed to demonstrate the successful practice of biostabilized solid waste placement in the newly constructed, double-composite-lined Interim Landfill located in the city of Albany. The small landfill covers just 12 acres and is immediately adjacent to residential neighbors. The benefits of this biostabilization practice include a dramatic improvement in the orderliness of waste placement, with significant reduction of windblown dust and litter. The process also reduces the presence of typical landfill vectors such as flies, crows, seagulls, and rodents. The physically andmore » biologically uniform character of the stabilized waste mass can result in more uniform future landfill settlement and gas production properties. This can allow for more accurate prediction of post-closure conditions and reduction or elimination of remedial costs attendant to post-closure gross differential settlement.« less

  17. Ox Mountain Sanitary Landfill Apanolio Canyon Expansion Site, San Mateo County, California. Volume 2. Appendix

    DTIC Science & Technology

    1989-04-01

    old-growth forest located between Sonoma County and the Oregon border. The exact northern limit of the small southern I population is not known...meadow habitat on the inland side of sand dunes at Pt. Reyes (Matin County) and Bodega Bay ( Sonoma County ). Historically, the silverspot also probably...and Sonoma County (6.5 mi. northeast of Penngrove). Collection dates ranged from 27IJanuary to 30 July. Most of the species of Hydrochara are similar

  18. Methane emissions from MBT landfills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heyer, K.-U., E-mail: heyer@ifas-hamburg.de; Hupe, K.; Stegmann, R.

    2013-09-15

    Highlights: • Compilation of methane generation potential of mechanical biological treated (MBT) municipal solid waste. • Impacts and kinetics of landfill gas production of MBT landfills, approach with differentiated half-lives. • Methane oxidation in the waste itself and in soil covers. • Estimation of methane emissions from MBT landfills in Germany. - Abstract: Within the scope of an investigation for the German Federal Environment Agency (“Umweltbundesamt”), the basics for the estimation of the methane emissions from the landfilling of mechanically and biologically treated waste (MBT) were developed. For this purpose, topical research including monitoring results regarding the gas balance atmore » MBT landfills was evaluated. For waste treated to the required German standards, a methane formation potential of approximately 18–24 m{sup 3} CH{sub 4}/t of total dry solids may be expected. Monitoring results from MBT landfills show that a three-phase model with differentiated half-lives describes the degradation kinetics in the best way. This is due to the fact that during the first years of disposal, the anaerobic degradation processes still proceed relatively intensively. In addition in the long term (decades), a residual gas production at a low level is still to be expected. Most of the soils used in recultivation layer systems at German landfills show a relatively high methane oxidation capacity up to 5 l CH{sub 4}/(m{sup 2} h). However, measurements at MBT disposal sites indicate that the majority of the landfill gas (in particular at non-covered areas), leaves the landfill body via preferred gas emission zones (hot spots) without significant methane oxidation. Therefore, rather low methane oxidation factors are recommended for open and temporarily covered MBT landfills. Higher methane oxidation rates can be achieved when the soil/recultivation layer is adequately designed and operated. Based on the elaborated default values, the First Order

  19. Landfill Gas | Climate Neutral Research Campuses | NREL

    Science.gov Websites

    Landfill Gas Landfill Gas For campuses located near an active or recently retired landfill , landfill gas offers an opportunity to derive significant energy from a renewable energy resource. The following links go to sections that describe when and where landfill gas systems may fit into your climate

  20. Demonstration of landfill gas enhancement techniques in landfill simulators

    NASA Astrophysics Data System (ADS)

    Walsh, J. J.; Vogt, W. G.

    1982-02-01

    Various techniques to enhance gas production in sanitary landfills were applied to landfill simulators. These techniques include (1) accelerated moisture addition, (2) leachate recycling, (3) buffer addition, (4) nutrient addition, and (5) combinations of the above. Results are compiled through on-going operation and monitoring of sixteen landfill simulators. These test cells contain about 380 kg of municipal solid waste. Quantities of buffer and nutrient materials were placed in selected cells at the time of loading. Water is added to all test cells on a monthly basis; leachate is withdrawn from all cells (and recycled on selected cells) also on a monthly basis. Daily monitoring of gas volumes and refuse temperatures is performed. Gas and leachate samples are collected and analyzed on a monthly basis. Leachate and gas quality and quantity reslts are presented for the first 18 months of operation.

  1. Terpenoids as major precursors of dissolved organic matter in landfill leachates, surface water, and groundwater

    USGS Publications Warehouse

    Leenheer, J.A.; Nanny, M.A.; McIntyre, C.

    2003-01-01

    13C NMR analyses of hydrophobic dissolved organic matter (DOM) fractions isolated from a landfill leachate contaminated groundwater near Norman, OK; the Colorado River aqueduct near Los Angeles, CA; Anaheim Lake, an infiltration basin for the Santa Ana River in Orange County, CA; and groundwater from the Tomago Sand Beds, near Sydney, Australia, found branched methyl groups and quaternary aliphatic carbon structures that are indicative of terpenoid hydrocarbon precursors. Significant amounts of lignin precursors, commonly postulated to be the major source of DOM, were found only in trace quantities by thermochemolysis/gas chromatography/mass spectrometry of the Norman Landfill and Tomago Sand Bed hydrophobic DOM fractions. Electrospray/tandem mass spectrometry of the Tomago Sand Bed hydrophobic acid DOM found an ion series differing by 14 daltons, which is indicative of aliphatic and aryl-aliphatic polycarboxylic acids. The product obtained from ozonation of the resin acid, abietic acid, gave a similar ion series. Terpenoid precursors of DOM are postulated to be derived from resin acid paper sizing agents in the Norman Landfill, algal and bacterial terpenoids in the Colorado River and Anaheim Lake, and terrestrial plant terpenoids in the Tomago Sand Beds.

  2. Terpenoids as major precursors of dissolved organic matter in landfill leachates, surface water, and groundwater.

    PubMed

    Leenheer, Jerry A; Nanny, Mark A; McIntyre, Cameron

    2003-06-01

    13C NMR analyses of hydrophobic dissolved organic matter (DOM) fractions isolated from a landfill leachate contaminated groundwater near Norman, OK; the Colorado River aqueduct near Los Angeles, CA; Anaheim Lake, an infiltration basin for the Santa Ana River in Orange County, CA; and groundwater from the Tomago Sand Beds, near Sydney, Australia, found branched methyl groups and quaternary aliphatic carbon structures that are indicative of terpenoid hydrocarbon precursors. Significant amounts of lignin precursors, commonly postulated to be the major source of DOM, were found only in trace quantities by thermochemolysis/gas chromatography/mass spectrometry of the Norman Landfill and Tomago Sand Bed hydrophobic DOM fractions. Electrospray/tandem mass spectrometry of the Tomago Sand Bed hydrophobic acid DOM found an ion series differing by 14 daltons, which is indicative of aliphatic and aryl-aliphatic polycarboxylic acids. The product obtained from ozonation of the resin acid, abietic acid, gave a similar ion series. Terpenoid precursors of DOM are postulated to be derived from resin acid paper sizing agents in the Norman Landfill, algal and bacterial terpenoids in the Colorado River and Anaheim Lake, and terrestrial plant terpenoids in the Tomago Sand Beds.

  3. Floristic composition and plant succession on near-surface radioactive-waste-disposal facilities in the Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tierney, G.D.; Foxx, T.S.

    1982-03-01

    Since 1946, low-level radioactive waste has been buried in shallow landfills within the confines of the Los Alamos National Laboratory. Five of these sites were studied for plant composition and successional patterns by reconnaissance and vegetation mapping. The data show a slow rate of recovery for all sites, regardless of age, in both the pinon-juniper and ponderosa pine communities. The sites are not comparable in succession or composition because of location and previous land use. The two oldest sites have the highest species diversity and the only mature trees. All sites allowed to revegetate naturally tend to be colonized bymore » the same species that originally surrounded the sites. Sites on historic fields are colonized by the old field flora, whereas those in areas disturbed only by grazing are revegetated by the local native flora.« less

  4. Landfill gas to electricity demonstration project

    NASA Astrophysics Data System (ADS)

    Giuliani, A. J.; Cagliostro, L. A.

    1982-03-01

    Medium Btu methane gas is a naturally occurring by product of anaerobic digestion of landfilled municipal solid waste. The energy potential of landfill gas in New York State is estimated to be 61 trillion Btu's per year or the equivalent of 10 percent of the natural gas used annually in the State. The 18-month Landfill Gas to Electricity Demonstration Project conducted at the Fresh Kills Landfill in Staten Island, New York conclusively demonstrated that landfill gas is an acceptable fuel for producing electricity using an internal combustion engine/generator set. Landfill gas proved to be a reliable and consistent fuel source during a six-month field test program. Engine exhaust emissions were determined to be comparable to that of natural gas and no unusually high corrosion rates on standard pipeline material were found.

  5. PRACTICE REVIEW OF FIVE BIOREACTOR/RECIRCULATION LANDFILLS

    EPA Science Inventory

    Six bioreactor landfills were analyzed to provide a perspective of current practice and technical issues that differentiate bioreactor landfills from conventional landfills. Five of the bioreactor landfills were anaerobic and one was aerated. In one case, nearly identical cells e...

  6. 77 FR 47090 - Notice of Realty Action; Proposed Competitive Sale of Public Lands in Washington County, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-07

    ...\\SE\\1/4\\NW\\1/4\\. The area described contains 12.56 acres in Washington County. Landfill T. 42 S., R... mining laws, except the sale provisions of the FLPMA. Until completion of the sale, the BLM is no longer...

  7. Health assessment for Lake Sandy Jo Landfill, Gary, Indiana, Region 5. CERCLIS No. IND980500524. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-11-21

    The 50-acre Lake Sandy Jo Landfill is located in the Black Oak community (predominantly residential) of southwestern Gary in Lake County, Indiana. From about 1971 until about 1980, the lake was filled in with construction and demolition debris, municipal garbage, industrial wastes, hazardous materials, and possibly drummed wastes. These wastes are partly to completely exposed on the landfill surface. Surface soil, subsurface soil, surface water, sediment, and ground water show a variety of metal and organic chemical carcinogens. Toxic noncarcinogen priority pollutants found were chloromethane, copper, cyanide, lead, mercury, and silver. Inorganic soil levels found on the site for leadmore » and cadmium exceed levels of concern that would permit unrestricted use of the site. Remedial measures would be necessary before the site could be granted unrestricted use.« less

  8. Degradability of Chlorinated Solvents in Landfill Environment

    NASA Astrophysics Data System (ADS)

    Wang, J. Y.; Litman, M.

    2002-12-01

    The use of landfills as an in situ remediation system represents a cost-effective alternative for groundwater remediation in the source area. This research was conducted to investigate the intrinsic bioattenuation capacity of the landfill ecosystem for chlorinated aliphatic hydrocarbons (CAHs). This research, using excavated refuse samples, studied how the reductive dechlorination of CAHs is linked to the decomposition of solid waste in landfills. Most research effort in groundwater remediation has focused on the contaminant plumes beneath and downgradient from landfills, while the source area remediation has received increasing attention. Bioreactor landfill and leachate recirculation projects have been planned and implemented by the USEPA and some states. However, the use of bioreactor landfill has primarily been considered only to expedite refuse decomposition. This research provides an understanding of the biological fate of CAHs in landfills, an understanding that can lead to the bioreactor landfill system designed to promote the degradation of pollutants right at the source. The research was conducted in two complementary systems: simulated landfill bioreactors and batch degradation experiment in serum bottles. Refuse samples were excavated from a municipal solid waste landfill located in Wayland, Massachusetts, USA. Bioreactors were designed and operated to facilitate refuse decomposition under landfilling conditions. For each reactor, leachate was collected and recirculated back to the reactor and gas was collected into a gas bag and the methane production rate was monitored. Target CAHs, tetrachloroethene (PCE) and trichloroethene (TCE), were added to selected reactors and maintained at about 20 uM each in leachate. The design is to study the effect of long-term exposure of refuse microorganisms to CAHs on the degradation potential of these chemicals in landfills. Changes of biochemical conditions in bioreactors, including leachate pH, leachate COD, and

  9. Los Alamos Fires From Landsat 7

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On May 9, 2000, the Landsat 7 satellite acquired an image of the area around Los Alamos, New Mexico. The Landsat 7 satellite acquired this image from 427 miles in space through its sensor called the Enhanced Thematic Mapper Plus (ETM+). Evident within the imagery is a view of the ongoing Cerro Grande fire near the town of Los Alamos and the Los Alamos National Laboratory. Combining the high-resolution (30 meters per pixel in this scene) imaging capacity of ETM+ with its multi-spectral capabilities allows scientists to penetrate the smoke plume and see the structure of the fire on the surface. Notice the high-level of detail in the infrared image (bottom), in which burn scars are clearly distinguished from the hotter smoldering and flaming parts of the fire. Within this image pair several features are clearly visible, including the Cerro Grande fire and smoke plume, the town of Los Alamos, the Los Alamos National Laboratory and associated property, and Cerro Grande peak. Combining ETM+ channels 7, 4, and 2 (one visible and two infrared channels) results in a false color image where vegetation appears as bright to dark green (bottom image). Forested areas are generally dark green while herbaceous vegetation is light green. Rangeland or more open areas appear pink to light purple. Areas with extensive pavement or urban development appear light blue or white to purple. Less densely-developed residential areas appear light green and golf courses are very bright green. The areas recently burned appear black. Dark red to bright red patches, or linear features within the burned area, are the hottest and possibly actively burning areas of the fire. The fire is spreading downslope and the front of the fire is readily detectable about 2 kilometers to the west and south of Los Alamos. Combining ETM+ channels 3, 2, and 1 provides a true-color image of the greater Los Alamos region (top image). Vegetation is generally dark to medium green. Forested areas are very dark green

  10. Applicability of leachates originating from solid-waste landfills for irrigation in landfill restoration projects.

    PubMed

    Erdogan, Reyhan; Zaimoglu, Zeynep; Sucu, M Yavuz; Budak, Fuat; Kekec, Secil

    2008-09-01

    Since, landfill areas are still the most widely used solid waste disposal method across the world, leachate generated from landfills should be given importance. Leachate of landfills exerts environmental risks mostly on surface and groundwater with its high pollutant content, which may cause unbearable water quality. This leads to the obligation for decontamination and remediation program to be taken into progress for the landfill area. Among a number of alternatives to cope with leachate, one is to employ the technology of phytoremediation. The main objective of this study was to determine the N accumulation ratios and the effects of landfill leachate in diluted proportions of chosen ratios (as 1/1, 1/2, 1/4, 0), on the growth and development of Cynodon dactylon, Stenotaphrum secundatum, Paspalum notatum, Pennisetum clandestinum, Mentha piperita, Rosmarinus officinalis, Nerium oleander, Pelargonium peltatum and Kochia scoparia species. In order to simulate the actual conditions of the landfill, soil covering the landfill is taken and used as medium for the trials. The study showed that S. secundatum, K. scoparia and N. oleander species had an impressive survival rate of 100%, being irrigated with pure leachate, while the others' survival rates were between 0 to 35% under the same conditions. As expected, application of leachate to the plants caused an increase in the accumulation of N, in the upper parts of all plants except P. peltatum. The highest N content increase was observed at S. Secundatum set, accumulating 3.70 times higher than its control set, whereas P. clandestinum value was 3.41 times of its control set.

  11. Soil contamination in landfills: a case study of a landfill in Czech Republic

    NASA Astrophysics Data System (ADS)

    Adamcová, D.; Vaverková, M. D.; Bartoň, S.; Havlíček, Z.; Břoušková, E.

    2016-02-01

    A phytotoxicity test was determined to assess ecotoxicity of landfill soil. Sinapis alba L. was used as a bioindicator of heavy metals. Soil samples 1-8, which were taken from the landfill body, edge of the landfill body, and its vicinity meet the limits for heavy metals Co, Cd, Pb, and Zn specified in the applicable legislation. Hg and Mn threshold values are not established in legislation, but values have been determined for the needs of the landfill operator. For heavy metals Cr, Cu, and Ni sample 2 exceeded the threshold values, which attained the highest values of all the samples tested for Cr, Cu, and Ni. For Cr and Ni the values were several times higher than values of the other samples. The second highest values for Cr, Cu, and Ni showed sample 6 and 7. Both samples exceeded the set limits. An increase in plant biomass was observed in plants growing on plates with soil samples, but no changes in appearance, slow growth, or necrotic lesions appeared. Ecotoxicity tests show that tested soils (concentration of 50 %) collected from the landfill body, edge of the landfill body, and its vicinity reach high percentage values of germination capacity of seeds of Sinapis alba L. (101-137 %). At a concentration of 25 %, tested soil samples exhibit lower values of germination capacity - in particular samples 3 to 8 - yet the seed germination capacity in all eight samples of tested soils ranges between 86 and 137 %.

  12. Soil contaminations in landfill: a case study of the landfill in Czech Republic

    NASA Astrophysics Data System (ADS)

    Adamcová, D.; Vaverková, M. D.; Bartoň, S.; Havlíček, Z.; Břoušková, E.

    2015-10-01

    Phytotoxicity test was determined to assess ecotoxicity of landfill soil. Sinapis alba L. was used as heavy metals bioindicator. Soil samples 1-8, which were taken from the landfill body, edge of the landfill body and its vicinity meet the limits for heavy metals Co, Cd, Pb, and Zn specified in the applicable legislation. Hg and Mn threshold values are not established in legislation, but values have been determined for the needs of the landfill operator. For heavy metals Cr, Cu, and Ni sample 2 exceeded the threshold values, which attained the highest values of all the samples tested for Cr, Cu and Ni. For Cr and Ni the values were several times higher than values of the other samples. The second highest values for Cr, Cu, and Ni showed sample 6 and 7. Both samples exceeded the set limits. An increase in plant biomass was observed in plants growing on plates with soil samples, but no changes in appearance, slow growth or necrotic lesions appeared. Ecotoxicity tests show that tested soils (concentration of 50 %) collected from the landfill body, edge of the landfill body and its vicinity reach high percentage values of germination capacity of seeds of Sinapis alba L. (101-137 %). At a concentration of 25 %, tested soil samples exhibit lower values of germination capacity; in particular samples 3 to 8, yet the seed germination capacity in all 8 samples of tested soils range between 86 and 137 %.

  13. LANDFILL BIOREACTOR PERFORMANCE, SECOND INTERIM REPORT

    EPA Science Inventory

    A bioreactor landfill is a landfill that is operated in a manner that is expected to increase the rate and extent of waste decomposition, gas generation, and settlement compared to a traditional landfill. This Second Interim Report was prepared to provide an interpretation of fie...

  14. Eastern Rensselaer County Community Warehouse. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-02-01

    The Eastern Rensselaer County Community Warehouse (ERCCW) project was conducted to determine if reuse is a feasible waste-management technology. The project had three phases: determining the feasibility of economically collecting, warehousing, refurbishing, and selling salvageable items from transfer stations, individuals, and businesses located in a rural area; preparing an operational plan; implementing the plan. Project findings suggest that, with proper management, a warehouse for waste reuse is feasible and can be self-sustaining. It also found that reuse results in the short-term saving of landfill capacity, and can provide low-cost goods to residents of rural areas. The study concludes that reuse,more » through retailing, is a viable waste-management practice. The report has been prepared as a how-to guide for municipalities, organizations, and individuals interested in reducing landfill waste and in establishing a reuse/recycling facility. Questions to consider, resources, and an overview of the ERCCW project are provided.« less

  15. [Biodegradation of landfill leachate in soil].

    PubMed

    Fu, Mei-yun; Zhou, Li-xiang

    2007-01-01

    With aerobic and anaerobic incubation tests, this paper studied the biodegradation of three kind landfill leachates in acidic and calcareous soils. The leachates were collected from a landfill just receiving refuse (fresh sample) and the landfills having received refuse for 4-5 years (Tianjingwa sample) and 12 years (Shuige sample). The results showed that in the first seven days of incubation, these three landfill leachates degraded more quickly. Under aerobic condition, the apparent degradation rate of fresh sample, Tianjingwa sample and Shuige sample was 88.9%, 60.5% and 25.0% in acidic soil, and 96.6%, 80.4%, and 65.0% in calcareous soil, respectively. Seven days after, a lower degradation rate was observed. In same test soils, the shorter the landfilling age, the higher apparent degradation rate of the leachates was. Similar results were obtained under anaerobic condition, but the degradation rates were lower. The degradation of test landfill leachates fitted first-order kinetics model well, with a half-life of 12-16 days for fresh sample, and 20-30 days for Tianjingwa and Shuige samples. Once the leachates penetrated into soil, their degradation quickened greatly, suggesting that soil treatment of landfill leachate could have definite efficacy.

  16. EVIDENCE FOR METAL ATTENUATION IN ACID MINE WATER BY SULFATE REDUCTION, PENN MINE, CALAVERAS COUNTY, CALIFORNIA

    EPA Science Inventory

    The Penn Mine in Calaveras County, California, produced Cu from massive sulfide ores from 1861 to 1953. Mine wastes were removed to a landfill during the late 1990s, improving surface-water quality, but deep mine workings were not remediated and contain metalliferous water with p...

  17. Internship at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunham, Ryan Q.

    2012-07-11

    Los Alamos National Laboratory (LANL) is located in Los Alamos, New Mexico. It provides support for our country's nuclear weapon stockpile as well as many other scientific research projects. I am an Undergraduate Student Intern in the Systems Design and Analysis group within the Nuclear Nonproliferation division of the Global Security directorate at LANL. I have been tasked with data analysis and modeling of particles in a fluidized bed system for the capture of carbon dioxide from power plant flue gas.

  18. Cultural Resources Review for Closure of the nonradioactive Dangerous Waste Landfill and Solid Waste Landfill in the 600 Area, Hanford Site, Benton County, Washington, HCRC# 2010-600-018R

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutzeit, Jennifer L.; Kennedy, Ellen P.; Bjornstad, Bruce N.

    2011-02-02

    The U.S. Department of Energy Richland Operations Office is proposing to close the Nonradioactive Dangerous Waste Landfill (NRDWL) and Solid Waste Landfill (SWL) located in the 600 Area of the Hanford Site. The closure of the NRDWL/SWL entails the construction of an evapotranspiration cover over the landfill. This cover would consist of a 3-foot (1-meter) engineered layer of fine-grained soil, modified with 15 percent by weight pea gravel to form an erosion-resistant topsoil that will sustain native vegetation. The area targeted for silt-loam borrow soil sits in Area C, located in the northern central portion of the Fitzner/Eberhardt Arid Landsmore » Ecology (ALE) Reserve Unit. The pea gravel used for the mixture will be obtained from both off-site commercial sources and an active gravel pit (Pit #6) located just west of the 300 Area of the Hanford Site. Materials for the cover will be transported along Army Loop Road, which runs from Beloit Avenue (near the Rattlesnake Barricade) east-northeast to the NRDWL/SWL, ending at State Route 4. Upgrades to Army Loop Road are necessary to facilitate safe bidirectional hauling traffic. This report documents a cultural resources review of the proposed activity, conducted according to Section 106 of the National Historic Preservation Act of 1966.« less

  19. Analysis of landfills with historic airphotos

    NASA Technical Reports Server (NTRS)

    Erb, T. L.; Philipson, W. R.; Teng, W. L.; Liang, T.

    1981-01-01

    An investigation is conducted regarding the value of existing aerial photographs for waste management, including landfill monitoring. The value of historic aerial photographs for documenting landfill boundaries is shown in a graph in which the expansion of an active landfill is traced over a 40-year period. Historic aerial photographs can also be analyzed to obtain general or detailed land-use and land-cover information. In addition, the photographs provide information regarding other elements of the physical environment, including geology, soils, and surface and subsurface drainage. The value of historic photos is discussed, taking into account applications for inventory, assessing contamination/health hazards, planning corrective measures, planning waste collection and facilities, developing inactive landfills, and research concerning improved land-filling operations.

  20. Publications of Los Alamos Research, 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheridan, C.J.; McClary, W.J.; Rich, J.A.

    1984-10-01

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos National Laboratory for 1983. Papers published in 1982 are included regardless of when they were actually written. Publications received too late for inclusion in earlier compilations have also been listed. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted - even those papers, themselves unclassified, which were published only as part of a classified document. If a paper was published more than once, all places of publication are included. The bibliography includes Los Alamos National Laboratory reports, papers releasedmore » as non-Laboratory reports, journal articles, books, chapters of books, conference papers either published separately or as part of conference proceedings issued as books or reports, papers publishd in congressional hearings, theses, and US patents. Publications by Los Alamos authors that are not records of Laboratory-sponsored work are included when the Library becomes aware of them.« less

  1. Optimization of the monitoring of landfill gas and leachate in closed methanogenic landfills.

    PubMed

    Jovanov, Dejan; Vujić, Bogdana; Vujić, Goran

    2018-06-15

    Monitoring of the gas and leachate parameters in a closed landfill is a long-term activity defined by national legislative worldwide. Serbian Waste Disposal Law defines the monitoring of a landfill at least 30 years after its closing, but the definition of the monitoring extent (number and type of parameters) is incomplete. In order to define and clear all the uncertainties, this research focuses on process of monitoring optimization, using the closed landfill in Zrenjanin, Serbia, as the experimental model. The aim of optimization was to find representative parameters which would define the physical, chemical and biological processes in the closed methanogenic landfill and to make this process less expensive. Research included development of the five monitoring models with different number of gas and leachate parameters and each model has been processed in open source software GeoGebra which is often used for solving optimization problems. The results of optimization process identified the most favorable monitoring model which fulfills all the defined criteria not only from the point of view of mathematical analyses, but also from the point of view of environment protection. The final outcome of this research - the minimal required parameters which should be included in the landfill monitoring are precisely defined. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Airport-Noise Levels and Annoyance Model (ALAMO) system's reference manual

    NASA Technical Reports Server (NTRS)

    Deloach, R.; Donaldson, J. L.; Johnson, M. J.

    1986-01-01

    The airport-noise levels and annoyance model (ALAMO) is described in terms of the constituent modules, the execution of ALAMO procedure files, necessary for system execution, and the source code documentation associated with code development at Langley Research Center. The modules constituting ALAMO are presented both in flow graph form, and through a description of the subroutines and functions that comprise them.

  3. Movement of unlined landfill under preloading surcharge.

    PubMed

    Al-Yaqout, Anwar F; Hamoda, Mohamed F

    2007-01-01

    As organic solid waste is decomposed in a landfill and mass is lost due to gas and leachate formation, the landfill settles. Settlement of a landfill interferes with the rehabilitation and subsequent use of the landfill site after closure. This study examined the soil/solid waste movement at the Al-Qurain landfill in Kuwait after 15 years of closure as plans are underway for redevelopment of the landfill site that occupies about a km(2) with an average depth of 8-15m. Field experiments were conducted for 6 mo to measure soil/solid waste movement and water behavior within the landfill using two settlement plates with a level survey access, Casagrande-type piezometers, pneumatic piezometers, and magnetic probe extensometers. Previous results obtained indicated that biological decomposition of refuse continued after closure of the landfill site. The subsurface water rise enhanced the biological activities, which resulted in the production of increasing quantities of landfill gas. The refuse fill materials recorded a high movement rate under the imposed preloading as a result of an increase in the stress state. Up to 55% of the total movement was observed during the first 2 weeks of fill placement and increased to 80% within the first month of the 6-mo preloading test. Pneumatic piezometers showed an increase in water head, which is attributed to the developed pressure of gases escaping during the preloading period.

  4. Public health assessment for master disposal service landfill, Brookfield, Waukesha County, Wisconsin, Region 5. Cerclis No. WID980820070. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-02-08

    The Master Disposal Service Landfill (MDSL) accepted industrial wastes from 1962 to 1982. The wastes were placed in a 26-acre wetland area and were confined by surrounding berms. Groundwater, surface water, soil and sediments have been contaminated with volatile organic compounds and metals. The remedial investigation of the landfill identified a plume of contaminated groundwater extending from beneath the site to approximately 675 feet southwest of the site. There is no evidence of human exposure. The site is of no apparent public health hazard at the present time. However, this could change if no remediation of contaminated groundwater occurs.

  5. Reconnaissance assessment of erosion and sedimentation in the Canada de los Alamos basin, Los Angeles and Ventura Counties, California

    USGS Publications Warehouse

    Knott, J.M.

    1980-01-01

    An assessment of present erosion and sedimentation conditions in the Ca?ada de los Alamos basin was made to aid in estimating the impact of off-road-vehicle use on the sediment yield of the basin. Impacts of off-road vehicles were evaluated by reconnaissance techniques and by comparing the study area with other offroad-vehicle sites in California. Major-storm sediment yields for the basin were estimated using empirical equations developed for the Transverse Ranges and measurements of gully erosion in a representative off-road-vehicle basin. Normal major-storm yields of 73,200 cubic yards would have to be increased to about 98,000 cubic yards to account for the existing level of accelerated erosion caused by off-road vehicles. Long-term sediment yield of the Ca?ada de los Alamos basin upstream from its confluence with Gorman Creek, under present conditions of off-road-vehicle use, is approximately 420 cubic yards per square mile per year--a rate that is considerably lower than a previous estimate of 1,270 cubic yards per square mile per year for the total catchment area above Pyramid Lake.

  6. Public health assessment for Freeway Sanitary Landfill, Burnsville, Dakota County, Minnesota, Region 5. CERCLIS No. MND038384004. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-03-30

    The Freeway Sanitary Landfill National Priorities List (NPL) site in Burnsville, Minnesota is situated in the Lower Minnesota River Valley. Shallow groundwater beneath the site is contaminated with low levels of volatile organic hydrocarbons and heavy metals. Under current conditions, no human exposures to site-related contaminants are known to occur at levels of health concern. Based on currently available information, the Minnesota Department of Health concludes that the site poses an indeterminate public health hazard under current conditions because exposure to volatile gases released to the air is possible, but cannot be evaluated from the very limited information available. Theremore » are also a few physical hazards on the site which pose a risk of accident or injury if trespassing occurs. Otherwise, there are no indications that people have been, or are being, exposed to site-related contaminants at levels that would be of health concern. The Agency For Toxic Substances and Disease Registry (ATSDR) Health Activities Recommendation Panel has evaluated the Freeway Sanitary Landfill Public Health Assessment for appropriate follow-up activities. The Panel has recommended that health education be considered to assist site workers in better understanding their potential for exposure to landfill gases.« less

  7. Chromium in soil layers and plants on closed landfill site after landfill leachate application.

    PubMed

    Zupancic, Marija; Justin, Maja Zupancic; Bukovec, Peter; Selih, Vid Simon

    2009-06-01

    Landfill leachate (LL) usually contains low concentrations of heavy metals due to the anaerobic conditions in the methanogenic landfill body after degradation of easily degradable organic matter and the neutral pH of LL, which prevents mobilization and leaching of metals. Low average concentrations of metals were also confirmed in our extensive study on the rehabilitation of an old landfill site with vegetative landfill cover and LL recirculation after its treatment in constructed wetland. The only exception was chromium (Cr). Its concentrations in LL ranged between 0.10 and 2.75 mg/L, and were higher than the concentrations usually found in the literature. The objectives of the study were: (1) to understand why Cr is high in LL and (2) to understand the fate and transport of Cr in soil and vegetation of landfill cover due to known Cr toxicity to plants. The total concentration of Cr in LL, total and exchangeable concentrations of Cr in landfill soil cover and Cr content in the plant material were extensively monitored from May 2004 to September 2006. By obtained data on Cr concentration in different landfill constituents, supported with the data on the amount of loaded leachate, amount of precipitation and potential evapotranspiration (ETP) during the performance of the research, a detailed picture of time distribution and co-dependency of Cr is provided in this research. A highly positive correlation was found between concentrations of Cr and dissolved organic carbon (r=0.875) in LL, which indicates the co-transport of Cr and dissolved organic carbon through the system. Monitoring results showed that the substrate used in the experiment did not contribute to Cr accumulation in the landfill soil cover, resulting in percolation of a high proportion of Cr back into the waste layers and its circulation in the system. No negative effects on plant growth appeared during the monitoring period. Due to low uptake of Cr by plants (0.10-0.15 mg/kg in leaves and 0.05-0.07 mg

  8. A Sailor in the Los Alamos Navy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judd, D. L.; Meade, Roger Allen

    As part of the War Department’s Manhattan Engineer District (MED), Los Alamos was an Army installation during World War II, complete with a base commander and a brace of MPs. But it was a unique Army installation, having more civilian then military personnel. Even more unique was the work performed by the civilian population, work that required highly educated scientists and engineers. As the breadth, scope, and complexity of the Laboratory’s work increased, more and more technically educated and trained personnel were needed. But, the manpower needs of the nation’s war economy had created a shortage of such people. Tomore » meet its manpower needs, the MED scoured the ranks of the Army for anyone who had technical training and reassigned these men to its laboratories, including Los Alamos, as part of its Special Engineer Detachment (SED). Among the SEDs assigned to Los Alamos was Val Fitch, who was awarded the Nobel Prize in Physics in 1980. Another was Al Van Vessem, who helped stack the TNT for the 100 ton test, bolted together the Trinity device, and rode shotgun with the bomb has it was driven from Los Alamos to ground zero.« less

  9. Environmental analysis of Lower Pueblo/Lower Los Alamos Canyon, Los Alamos, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferenbaugh, R.W.; Buhl, T.E.; Stoker, A.K.

    1994-12-01

    The radiological survey of the former radioactive waste treatment plant site (TA-45), Acid Canyon, Pueblo Canyon, and Los Alamos Canyon found residual contamination at the site itself and in the channel and banks of Acid, Pueblo, and lower Los Alamos Canyons all the way to the Rio Grande. The largest reservoir of residual radioactivity is in lower Pueblo Canyon, which is on DOE property. However, residual radioactivity does not exceed proposed cleanup criteria in either lower Pueblo or lower Los Alamos Canyons. The three alternatives proposed are (1) to take no action, (2) to construct a sediment trap in lowermore » Pueblo Canyon to prevent further transport of residual radioactivity onto San Ildefonso Indian Pueblo land, and (3) to clean the residual radioactivity from the canyon system. Alternative 2, to cleanup the canyon system, is rejected as a viable alternative. Thousands of truckloads of sediment would have to be removed and disposed of, and this effort is unwarranted by the low levels of contamination present. Residual radioactivity levels, under either present conditions or projected future conditions, will not result in significant radiation doses to persons exposed. Modeling efforts show that future transport activity will not result in any residual radioactivity concentrations higher than those already existing. Thus, although construction of a sediment trap in lower Pueblo Canyon is a viable alternative, this effort also is unwarranted, and the no-action alternative is the preferred alternative.« less

  10. New Generation of Los Alamos Opacity Tables

    NASA Astrophysics Data System (ADS)

    Colgan, James; Kilcrease, D. P.; Magee, N. H.; Sherrill, M. E.; Abdallah, J.; Hakel, P.; Fontes, C. J.; Guzik, J. A.; Mussack, K. A.

    2016-05-01

    We present a new generation of Los Alamos OPLIB opacity tables that have been computed using the ATOMIC code. Our tables have been calculated for all 30 elements from hydrogen through zinc and are publicly available through our website. In this poster we discuss the details of the calculations that underpin the new opacity tables. We also show several recent applications of the use of our opacity tables to solar modeling and other astrophysical applications. In particular, we demonstrate that use of the new opacities improves the agreement between solar models and helioseismology, but does not fully resolve the long-standing `solar abundance' problem. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC5206NA25396.

  11. THE USEPA'S LANDFILL RESEARCH AND REGULATORY STRATEGY

    EPA Science Inventory

    The priorities and initiatives of Environmental Protection Agency's landfill research and regulatory program over the next five years will be described. This will include municipal solid waste landfills as well as abandoned hazardous waste landfills.

    Regarding municipals s...

  12. Bioreactor Landfills State-Of-The Practice Review

    EPA Science Inventory

    Recently approved regulations by the U.S. Environmental Protection Agency (EPA) give approved states the power to grant landfill variance under Subtitle D by allowing these landfills to introduce bulk liquids into the solid waste mass. These types of landfills are called bioreac...

  13. APPROACH FOR ESTIMATING GLOBAL LANDFILL METHANE EMISSIONS

    EPA Science Inventory

    The report is an overview of available country-specific data and modeling approaches for estimating global landfill methane. Current estimates of global landfill methane indicate that landfills account for between 4 and 15% of the global methane budget. The report describes an ap...

  14. METHANE PHYTOREMEDIATION BY VEGETATIVE LANDFILL COVER SYSTEMS

    EPA Science Inventory

    Landfill gas, consisting of methane and other gases, is produced from organic compounds degrading in landfills, contributes to global climate change, is toxic to various types of vegetation, and may pose a combustion hazard at higher concentrations. New landfills are required to ...

  15. BIOREACTOR LANDFILLS, THEORETICAL ADVANTAGES AND RESEARCH CHALLENGES

    EPA Science Inventory

    Bioreactor landfills are municipal solid waste landfills that utilize bulk liquids in an effort to accelerate solid waste degradation. There are few potential benefits for operating a MSW landfill as a bioreactor. These include leachate treatment and management, increase in the s...

  16. Treatment of landfill leachate using an aerated, horizontal subsurface-flow constructed wetland.

    PubMed

    Nivala, J; Hoos, M B; Cross, C; Wallace, S; Parkin, G

    2007-07-15

    A pilot-scale subsurface-flow constructed wetland was installed at the Jones County Municipal Landfill, near Anamosa, Iowa, in August 1999 to demonstrate the use of constructed wetlands as a viable low-cost treatment option for leachate generated at small landfills. The system was equipped with a patented wetland aeration process to aid in removal of organic matter and ammonia nitrogen. The high iron content of the leachate caused the aeration system to cease 2 years into operation. Upon the installation of a pretreatment chamber for iron removal and a new aeration system, treatment efficiencies dramatically improved. Seasonal performance with and without aeration is reported for 5-day biochemical oxygen demand (BOD(5)), chemical oxygen demand (COD), ammonia nitrogen (NH(4)-N), and nitrate nitrogen (NO(3)-N). Since winter air temperatures in Iowa can be very cold, a layer of mulch insulation was installed on top of the wetland bed to keep the system from freezing. When the insulation layer was properly maintained (either through sufficient litterfall or replenishing the mulch layer), the wetland sustained air temperatures of as low as -26 degrees C without freezing problems.

  17. OUTER LOOP LANDFILL CASE STUDY

    EPA Science Inventory

    This presentation will describe the interim data reaulting from a CRADA between USEPA and Waste Management, Inc. at the outer Loop Landfill Bioreactor research project located in Louisville, KY. Recently updated data will be presented covering landfill solids, gas being collecte...

  18. ELECTRICITY GENERATION FROM LANDFILL GAS IN TURKEY.

    PubMed

    Salihoglu, Nezih Kamil

    2018-05-08

    Landfill gas (LFG)-to-energy plants in Turkey were investigated, and the LFG-to-energy plant of a metropolitan municipal landfill was monitored for 3 years. Installed capacities and actual gas engine working hours were determined. An equation was developed to estimate the power capacity for LFG-to-energy plants for a given amount of landfilled waste. Monitoring the actual gas generation rates enabled determination of LFG generation factors for Turkish municipal waste. A significant relationship (R = 0.524, p < 0.01, 2-tailed) was found between the amounts of landfilled waste and the ambient temperature, which can be attributed to food consumption and kitchen waste generation behaviors influenced by the ambient temperature. However, no significant correlation was found between the ambient temperature and the generated LFG. A temperature buffering capacity was inferred to exist within the landfill, which enables the anaerobic reactions to continue functioning even during cold seasons. The average LFG and energy generation rates were 45 m 3 LFG/ton waste landfilled and 0.08 MWh/ton waste landfilled, respectively. The mean specific LFG consumption for electricity generation was 529 ± 28 m 3 /MWh.

  19. Are closed landfills free of CH_{4} emissions? A case study of Arico's landfill, Tenerife, Canary Islands

    NASA Astrophysics Data System (ADS)

    Barrancos, José; Cook, Jenny; Phillips, Victoria; Asensio-Ramos, María; Melián, Gladys; Hernández, Pedro A.; Pérez, Nemesio M.

    2016-04-01

    Landfills are authentic chemical and biological reactors that introduce in the environment a wide amount of gas pollutants (CO2, CH4, volatile organic compounds, etc.) and leachates. Even after years of being closed, a significant amount of landfill gas could be released to the atmosphere through the surface in a diffuse form, also known as non-controlled emission. The study of the spatial-temporal distribution of diffuse emissions provides information of how a landfill degassing takes place. The main objective of this study was to estimate the diffuse uncontrolled emission of CH4 into the atmosphere from the closed Arico's landfill (0.3 km2) in Tenerife Island, Spain. To do so, a non-controlled biogenic gas emission survey of nearly 450 sampling sites was carried out during August 2015. Surface gas sampling and surface landfill CO2 efflux measurements were carried out at each sampling site by means of a portable non-dispersive infrared spectrophotometer (NDIR) model LICOR Li800 following the accumulation chamber method. Landfill gases, CO2 and CH4, were analyzed using a double channel VARIAN 4900 micro-GC. The CH4 efflux was computed combining CO2 efflux and CH4/CO2 ratio in the landfill's surface gas. To quantify the total CH4 emission, CH4 efflux contour map was constructed using sequential Gaussian simulation (sGs) as interpolation method. The total diffuse CH4 emission was estimated in 2.2 t d-1, with CH4 efflux values ranging from 0-922 mg m-2 d-1. This type of studies provides knowledge of how a landfill degasses and serves to public and private entities to establish effective systems for extraction of biogas. This aims not only to achieve higher levels of controlled gas release from landfills resulting in a higher level of energy production but also will contribute to minimize air pollution caused by them.

  20. Passive drainage and biofiltration of landfill gas: Australian field trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dever, S.A.; Swarbrick, G.E.; Stuetz, R.M.

    2007-07-01

    In Australia a significant number of landfill waste disposal sites do not incorporate measures for the collection and treatment of landfill gas. This includes many old/former landfill sites, rural landfill sites, non-putrescible solid waste and inert waste landfill sites, where landfill gas generation is low and it is not commercially viable to extract and beneficially utilize the landfill gas. Previous research has demonstrated that biofiltration has the potential to degrade methane in landfill gas, however, the microbial processes can be affected by many local conditions and factors including moisture content, temperature, nutrient supply, including the availability of oxygen and methane,more » and the movement of gas (oxygen and methane) to/from the micro-organisms. A field scale trial is being undertaken at a landfill site in Sydney, Australia, to investigate passive drainage and biofiltration of landfill gas as a means of managing landfill gas emissions at low to moderate gas generation landfill sites. The design and construction of the trial is described and the experimental results will provide in-depth knowledge on the application of passive gas drainage and landfill gas biofiltration under Sydney (Australian) conditions, including the performance of recycled materials for the management of landfill gas emissions.« less

  1. MONITORING GUIDANCE FOR BIOREACTOR LANDFILLS

    EPA Science Inventory

    Experimental bioreactor landfill operations at operating Municipal Solid Waste (MSW) landfills can be approved under the research development and demonstration (RD&D) provisions of 30CFR 258.4. To provide a basis for consistent data collection for future decision-making in suppor...

  2. MONITORING APPROACHES FOR BIOREACTOR LANDFILLS

    EPA Science Inventory

    Experimental bioreactor landfill operations at operating Municipal Solid Waste (MSW) landfills can be approved under the research development and demonstration (RD&D) provisions of 40 CFR 258.4. To provide a basis for consistent data collection for future decision-making in suppo...

  3. Landfill mining: Development of a cost simulation model.

    PubMed

    Wolfsberger, Tanja; Pinkel, Michael; Polansek, Stephanie; Sarc, Renato; Hermann, Robert; Pomberger, Roland

    2016-04-01

    Landfill mining permits recovering secondary raw materials from landfills. Whether this purpose is economically feasible, however, is a matter of various aspects. One is the amount of recoverable secondary raw material (like metals) that can be exploited with a profit. Other influences are the costs for excavation, for processing the waste at the landfill site and for paying charges on the secondary disposal of waste. Depending on the objectives of a landfill mining project (like the recovery of a ferrous and/or a calorific fraction) these expenses and revenues are difficult to assess in advance. This situation complicates any previous assessment of the economic feasibility and is the reason why many landfills that might be suitable for landfill mining are continuingly operated as active landfills, generating aftercare costs and leaving potential hazards to later generations. This article presents a newly developed simulation model for landfill mining projects. It permits identifying the quantities and qualities of output flows that can be recovered by mining and by mobile on-site processing of the waste based on treatment equipment selected by the landfill operator. Thus, charges for disposal and expected revenues from secondary raw materials can be assessed. Furthermore, investment, personnel, operation, servicing and insurance costs are assessed and displayed, based on the selected mobile processing procedure and its throughput, among other things. For clarity, the simulation model is described in this article using the example of a real Austrian sanitary landfill. © The Author(s) 2016.

  4. Los Alamos National Laboratory Overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neu, Mary

    Mary Neu, Associate Director for Chemistry, Life and Earth Sciences at Los Alamos National Laboratory, delivers opening remarks at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.

  5. A practical approach for calculating the settlement and storage capacity of landfills based on the space and time discretization of the landfilling process.

    PubMed

    Gao, Wu; Xu, Wenjie; Bian, Xuecheng; Chen, Yunmin

    2017-11-01

    The settlement of any position of the municipal solid waste (MSW) body during the landfilling process and after its closure has effects on the integrity of the internal structure and storage capacity of the landfill. This paper proposes a practical approach for calculating the settlement and storage capacity of landfills based on the space and time discretization of the landfilling process. The MSW body in the landfill was divided into independent column units, and the filling process of each column unit was determined by a simplified complete landfilling process. The settlement of a position in the landfill was calculated with the compression of each MSW layer in every column unit. Then, the simultaneous settlement of all the column units was integrated to obtain the settlement of the landfill and storage capacity of all the column units; this allowed to obtain the storage capacity of the landfill based on the layer-wise summation method. When the compression of each MSW layer was calculated, the effects of the fluctuation of the main leachate level and variation in the unit weight of the MSW on the overburdened effective stress were taken into consideration by introducing the main leachate level's proportion and the unit weight and buried depth curve. This approach is especially significant for MSW with a high kitchen waste content and landfills in developing countries. The stress-biodegradation compression model was used to calculate the compression of each MSW layer. A software program, Settlement and Storage Capacity Calculation System for Landfills, was developed by integrating the space and time discretization of the landfilling process and the settlement and storage capacity algorithms. The landfilling process of the phase IV of Shanghai Laogang Landfill was simulated using this software. The maximum geometric volume of the landfill error between the calculated and measured values is only 2.02%, and the accumulated filling weight error between the

  6. Transpiration as landfill leachate phytotoxicity indicator.

    PubMed

    Białowiec, Andrzej

    2015-05-01

    An important aspect of constructed wetlands design for landfill leachate treatment is the assessment of landfill leachate phytotoxicity. Intravital methods of plants response observation are required both for lab scale toxicity testing and field examination of plants state. The study examined the toxic influence of two types of landfill leachate from landfill in Zakurzewo (L1) and landfill in Wola Pawłowska (L2) on five plant species: reed Phragmites australis (Cav.) Trin. ex Steud, manna grass Glyceria maxima (Hartm.) Holmb., bulrush Schoenoplectus lacustris (L.) Palla, sweet flag Acorus calamus L., and miscanthus Miscanthus floridulus (Labill) Warb. Transpiration measurement was used as indicator of plants response. The lowest effective concentration causing the toxic effect (LOEC) for each leachate type and plant species was estimated. Plants with the highest resistance to toxic factors found in landfill leachate were: sweet flag, bulrush, and reed. The LOEC values for these plants were, respectively, 17%, 16%, 9% in case of leachate L1 and 21%, 18%, 14% in case of L2. Leachate L1 was more toxic than L2 due to a higher pH value under similar ammonia nitrogen content, i.e. pH 8.74 vs. pH 8.00. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Photovoltaics on Landfills in Puerto Rico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salasovich, J.; Mosey, G.

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Commonwealth of Puerto Rico for a feasibility study of m0treAlables on several brownfield sites. The EPA defines a brownfield as 'a property, the expansion, redevelopment, or reuse of which may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant.' All of the brownfields in this study are landfill sites. Citizens of Puerto Rico, city planners, and site managers are interested in redevelopment uses for landfills in Puerto Rico, which are particularly well suited for solar photovoltaic (PV) installation.more » The purpose of this report is to assess the landfills with the highest potential for possible solar PV installation and estimate cost, performance, and site impacts of three different PV options: crystalline silicon (fixed-tilt), crystalline silicon (single-axis tracking), and thin film (fixed-tilt). Each option represents a standalone system that can be sized to use an entire available site area. In addition, the report outlines financing options that could assist in the implementation of a system. The feasibility of PV systems installed on landfills is highly impacted by the available area for an array, solar resource, operating status, landfill cap status, distance to transmission lines, and distance to major roads. All of the landfills in Puerto Rico were screened according to these criteria in order to determine the sites with the greatest potential. Eight landfills were chosen for site visits based on the screening criteria and location. Because of time constraints and the fact that Puerto Rico is a relatively large island, the eight landfills for this visit were all located in the eastern half of the island. The findings from this report can be applied to landfills in the western half of the island. The economics of a potential PV system on landfills in Puerto Rico depend greatly

  8. Back-Analyses of Landfill Instability Induced by High Water Level: Case Study of Shenzhen Landfill

    PubMed Central

    Peng, Ren; Hou, Yujing; Zhan, Liangtong; Yao, Yangping

    2016-01-01

    In June 2008, the Shenzhen landfill slope failed. This case is used as an example to study the deformation characteristics and failure mode of a slope induced by high water levels. An integrated monitoring system, including water level gauges, electronic total stations, and inclinometers, was used to monitor the slope failure process. The field measurements suggest that the landfill landslide was caused by a deep slip along the weak interface of the composite liner system at the base of the landfill. The high water level is considered to be the main factor that caused this failure. To calculate the relative interface shear displacements in the geosynthetic multilayer liner system, a series of numerical direct shear tests were carried out. Based on the numerical results, the composite lining system simplified and the centrifuge modeling technique was used to quantitatively evaluate the effect of water levels on landfill instability. PMID:26771627

  9. 40 CFR 761.75 - Chemical waste landfills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Chemical waste landfills. 761.75... PROHIBITIONS Storage and Disposal § 761.75 Chemical waste landfills. This section applies to facilities used to dispose of PCBs in accordance with the part. (a) General. A chemical waste landfill used for the disposal...

  10. 40 CFR 761.75 - Chemical waste landfills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Chemical waste landfills. 761.75... PROHIBITIONS Storage and Disposal § 761.75 Chemical waste landfills. This section applies to facilities used to dispose of PCBs in accordance with the part. (a) General. A chemical waste landfill used for the disposal...

  11. 40 CFR 761.75 - Chemical waste landfills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Chemical waste landfills. 761.75... PROHIBITIONS Storage and Disposal § 761.75 Chemical waste landfills. This section applies to facilities used to dispose of PCBs in accordance with the part. (a) General. A chemical waste landfill used for the disposal...

  12. Global Biogenic Emission of Carbon Dioxide from Landfills

    NASA Astrophysics Data System (ADS)

    Lima, R.; Nolasco, D.; Meneses, W.; Salazar, J.; Hernández, P.; Pérez, N.

    2002-12-01

    Human-induced increases in the atmospheric concentrations of greenhouse gas components have been underway over the past century and are expected to drive climate change in the coming decades. Carbon dioxide was responsible for an estimated 55 % of the antropogenically driven radiactive forcing of the atmosphere in the 1980s and is predicted to have even greater importance over the next century (Houghton et al., 1990). A highly resolved understanding of the sources and sinks of atmospheric CO2, and how they are affected by climate and land use, is essential in the analysis of the global carbon cycle and how it may be impacted by human activities. Landfills are biochemical reactors that produce CH4 and CO2 emissions due to anaerobic digestion of solid urban wastes. Estimated global CH4 emission from landfills is about 44 millions tons per year and account for a 7.4 % of all CH4 sources (Whiticar, 1989). Observed CO2/CH4 molar ratios from landfill gases lie within the range of 0.7-1.0; therefore, an estimated global biogenic emission of CO2 from landfills could reach levels of 11.2-16 millions tons per year. Since biogas extraction systems are installed for extracting, purifying and burning the landfill gases, most of the biogenic gas emission to the atmosphere from landfills occurs through the surface environment in a diffuse and disperse form, also known as non-controlled biogenic emission. Several studies of non-controlled biogenic gas emission from landfills showed that CO2/CH4 weight ratios of surface landfill gases, which are directly injected into the atmosphere, are about 200-300 times higher than those observed in the landfill wells, which are usually collected and burned by gas extraction systems. This difference between surface and well landfill gases is mainly due to bacterial oxidation of the CH4 to CO2 inducing higher CO2/CH4 ratios for surface landfill gases than those well landfill gases. Taking into consideration this observation, the global biogenic

  13. Venice Park landfill: Working with the community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McAdams, C.L.

    1993-09-01

    Venice Park landfill was one of the first sites to be permitted under Michigan's proposed Public Act 641. PA 641 essentially changed the rules and regulations for landfills from the simple design of digging a hole and filling it. It also upgraded standards to those that are more sophisticated, including liners, leachate collection systems, and gas extraction systems. In 1992, methane gas from the landfill was collected into wells drilled into the trash varying in depth from 30-50 feet in depth. A vacuum pulls the gas from the trash into the wells, then through a piping system. The landfill usesmore » about 80-100 kilowatts in-house. The remainder of the gas is sold to Consumers Power Co. which uses landfill gas to supply power to homes.« less

  14. Material flow-based economic assessment of landfill mining processes.

    PubMed

    Kieckhäfer, Karsten; Breitenstein, Anna; Spengler, Thomas S

    2017-02-01

    This paper provides an economic assessment of alternative processes for landfill mining compared to landfill aftercare with the goal of assisting landfill operators with the decision to choose between the two alternatives. A material flow-based assessment approach is developed and applied to a landfill in Germany. In addition to landfill aftercare, six alternative landfill mining processes are considered. These range from simple approaches where most of the material is incinerated or landfilled again to sophisticated technology combinations that allow for recovering highly differentiated products such as metals, plastics, glass, recycling sand, and gravel. For the alternatives, the net present value of all relevant cash flows associated with plant installation and operation, supply, recycling, and disposal of material flows, recovery of land and landfill airspace, as well as landfill closure and aftercare is computed with an extensive sensitivity analyses. The economic performance of landfill mining processes is found to be significantly influenced by the prices of thermal treatment (waste incineration as well as refuse-derived fuels incineration plant) and recovered land or airspace. The results indicate that the simple process alternatives have the highest economic potential, which contradicts the aim of recovering most of the resources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. MICROBIAL AND BIOCHEMICAL CHARACTERISTICS OF FRESHLY LANDFILLED WASTE: COMPARISONS TO LANDFILLED WASTES OF DIFFERENT AGES

    EPA Science Inventory

    A cooperative research and development agreement was initiated between U.S. EPA and Waste Management Inc. for a multi-year study of landfill bioreactors at the Outer Loop Landfill in Louisville, KY. As part of the agreement a research project is underway to study the microbiolog...

  16. Effects of a temporary HDPE cover on landfill gas emissions: multiyear evaluation with the static chamber approach at an Italian landfill.

    PubMed

    Capaccioni, Bruno; Caramiello, Cristina; Tatàno, Fabio; Viscione, Alessandro

    2011-05-01

    According to the European Landfill Directive 1999/31/EC and the related Italian Legislation ("D. Lgs. No. 36/2003"), monitoring and control procedures of landfill gas emissions, migration and external dispersions are clearly requested. These procedures could be particularly interesting in the operational circumstance of implementing a temporary cover, as for instance permitted by the Italian legislation over worked-out landfill sections, awaiting the evaluation of expected waste settlements. A possible quantitative approach for field measurement and consequential evaluation of landfill CO(2), CH(4) emission rates in pairs consists of the static, non-stationary accumulation chamber technique. At the Italian level, a significant and recent situation of periodical landfill gas emission monitoring is represented by the sanitary landfill for non-hazardous waste of the "Fano" town district, where monitoring campaigns with the static chamber have been annually conducted during the last 5 years (2005-2009). For the entire multiyear monitoring period, the resulting CO(2), CH(4) emission rates varied on the whole up to about 13,100g CO(2) m(-2)d(-1) and 3800 g CH(4) m(-2)d(-1), respectively. The elaboration of these landfill gas emission data collected at the "Fano" case-study site during the monitoring campaigns, presented and discussed in the paper, gives rise to a certain scientific evidence of the possible negative effects derivable from the implementation of a temporary HDPE cover over a worked-out landfill section, notably: the lateral migration and concentration of landfill gas emissions through adjacent, active landfill sections when hydraulically connected; and consequently, the increase of landfill gas flux velocities throughout the reduced overall soil cover surface, giving rise to a flowing through of CH(4) emissions without a significant oxidation. Thus, these circumstances are expected to cause a certain increase of the overall GHG emissions from the given

  17. Public-health assessment for Old City of York Landfill, Seven Valleys, Pennsylvania, rRgion 3. CERCLIS No. PAD980692420. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-06-19

    The Old City of York Landfill National Priority List (NPL) site is adjacent to South Road, approximately two miles southeast of the borough of Seven Valleys in Springfield Township, York County, Pennsylvania. Site soils, groundwater, springs, seeps, and collection vaults were contaminated with volatile and semi-volatile organic compounds. Human exposure could occur through ingestion or dermal absorption of site contaminants from the aforementioned media. The population at potential risk includes children, hunters, hikers, or other trespassers on the site who may come into direct contact with contaminated site soils. However, environmental media associated with the site appear minimally affected bymore » the landfill. The site represents no apparent public health hazard because there is no evidence of trespassing on the site, and because nearby residents have been provided municipal water.« less

  18. Artificial sweeteners as potential tracers of municipal landfill leachate.

    PubMed

    Roy, James W; Van Stempvoort, Dale R; Bickerton, Greg

    2014-01-01

    Artificial sweeteners are gaining acceptance as tracers of human wastewater in the environment. The 3 artificial sweeteners analyzed in this study were detected in leachate or leachate-impacted groundwater at levels comparable to those of untreated wastewater at 14 of 15 municipal landfill sites tested, including several closed for >50 years. Saccharin was the dominant sweetener in old (pre-1990) landfills, while newer landfills were dominated by saccharin and acesulfame (introduced 2 decades ago; dominant in wastewater). Cyclamate was also detected, but less frequently. A case study at one site illustrates the use of artificial sweeteners to identify a landfill-impacted groundwater plume discharging to a stream. The study results suggest that artificial sweeteners can be useful tracers for current and legacy landfill contamination, with relative abundances of the sweeteners potentially providing diagnostic ability to distinguish different landfills or landfill cells, including crude age-dating, and to distinguish landfill and wastewater sources. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  19. Modern technology for landfill waste placement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, D.L.

    1995-12-31

    The City of Albany, New York, together with the principals of Landfill Service Corporation, proposed in November 1991 to demonstrate the successful practice of biostabilized solid waste placement in the newly constructed, double composite lined Interim Landfill located at Rapp Road in the City of Albany. This is a small facility, only 12 acres in area, which is immediately adjacent to residential neighbors. Significant advancements have been made for the control of environmental factors (odors, vectors, litter) while successfully achieving waste stabilization and air space conservations goals. Also, the procedure consumes a significant quantity of landfill leachate. The benefits ofmore » this practice include a dramatic improvement in the orderlines of waste placement with significant reduction of windblown dust and litter. The biostabilization process also reduces the presence of typical landfill vectors such as flies, crows, seagulls and rodents. All of these factors can pose serious problems for nearby residents to the City of Albany`s Interim landfill site. The physically and biologically uniform character of the stabilized waste mass can result in more uniform future landfill settlement and gas production properties. This can allow for more accurate prediction of postclosure conditions and reduction or elimination of remedial costs attendant to post closure gross differential settlement. Recent research in Europe indicates that aerobic pretreatment of waste also reduces contaminant loading of leachate.« less

  20. Landfill mining: Resource potential of Austrian landfills--Evaluation and quality assessment of recovered municipal solid waste by chemical analyses.

    PubMed

    Wolfsberger, Tanja; Aldrian, Alexia; Sarc, Renato; Hermann, Robert; Höllen, Daniel; Budischowsky, Andreas; Zöscher, Andreas; Ragoßnig, Arne; Pomberger, Roland

    2015-11-01

    Since the need for raw materials in countries undergoing industrialisation (like China) is rising, the availability of metal and fossil fuel energy resources (like ores or coal) has changed in recent years. Landfill sites can contain considerable amounts of recyclables and energy-recoverable materials, therefore, landfill mining is an option for exploiting dumped secondary raw materials, saving primary sources. For the purposes of this article, two sanitary landfill sites have been chosen for obtaining actual data to determine the resource potential of Austrian landfills. To evaluate how pretreating waste before disposal affects the resource potential of landfills, the first landfill site has been selected because it has received untreated waste, whereas mechanically-biologically treated waste was dumped in the second. The scope of this investigation comprised: (1) waste characterisation by sorting analyses of recovered waste; and (2) chemical analyses of specific waste fractions for quality assessment regarding potential energy recovery by using it as solid recovered fuels. The content of eight heavy metals and the net calorific values were determined for the chemical characterisation tests. © The Author(s) 2015.

  1. Stabilizing Waste Materials for Landfills

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1977

    1977-01-01

    The test procedures used to evaluate the suitability of landfilled materials of varying stability and to determine the leachate from such materials are reviewed. A process for stabilizing a mixture of sulfur dioxide sludge, fly ash, and bottom ash with lime and other additives for deposition in landfills is detailed. (BT)

  2. SEDs at Los Alamos: A Personal Memoir

    NASA Astrophysics Data System (ADS)

    Bederson, Benjamin

    2001-03-01

    I have written this personal memoir approximately 55 years after the events I describe. It is based almost exclusively on memory, since apart from the diary I kept while on Tinian, I have few documents concerning it. It covers my service in the U.S. Army's Special Engineering Detachment (SED) in Oak Ridge and Los Alamos in 1944-45, on Tinian island, the launching pad for the bombing raids on Japan, in the summer and fall of 1945, and my return to Los Alamos until my discharge in January 1946.

  3. Landfills potential source for cores -- computer model analyzes landfills for on-site recycling operations

    Treesearch

    Philip A. Araman; R.J. Bush; E.B. Hager; A.L. Hammett

    1999-01-01

    Are you having trouble finding enough used pallet cores? Do you have trouble finding more than one reliable source of used pallet parts? Have you ever considered your local landfill as a "source?" In 1995, more pallets ended up in landfills that at pallet recovery-repair companies. Virginia Tech and the U.S. Forest Service have developed a business plan...

  4. Landfill mining: Developing a comprehensive assessment method.

    PubMed

    Hermann, Robert; Wolfsberger, Tanja; Pomberger, Roland; Sarc, Renato

    2016-11-01

    In Austria, the first basic technological and economic examinations of mass-waste landfills with the purpose to recover secondary raw materials have been carried out by the 'LAMIS - Landfill Mining Österreich' pilot project. A main focus of its research, and the subject of this article, is the first conceptual design of a comprehensive assessment method for landfill mining plans, including not only monetary factors (like costs and proceeds) but also non-monetary ones, such as the concerns of adjoining owners or the environmental impact. Detailed reviews of references, the identification of influences and system boundaries to be included in planning landfill mining, several expert workshops and talks with landfill operators have been performed followed by a division of the whole assessment method into preliminary and main assessment. Preliminary assessment is carried out with a questionnaire to rate juridical feasibility, the risk and the expenditure of a landfill mining project. The results of this questionnaire are compiled in a portfolio chart that is used to recommend, or not, further assessment. If a detailed main assessment is recommended, defined economic criteria are rated by net present value calculations, while ecological and socio-economic criteria are examined in a utility analysis and then transferred into a utility-net present value chart. If this chart does not support making a definite statement on the feasibility of the project, the results must be further examined in a cost-effectiveness analysis. Here, the benefit of the particular landfill mining project per capital unit (utility-net present value ratio) is determined to make a final distinct statement on the general benefit of a landfill mining project. © The Author(s) 2016.

  5. Environmental compatibility of closed landfills - assessing future pollution hazards.

    PubMed

    Laner, David; Fellner, Johann; Brunner, Paul H

    2011-01-01

    Municipal solid waste landfills need to be managed after closure. This so-called aftercare comprises the treatment and monitoring of residual emissions as well as the maintenance and control of landfill elements. The measures can be terminated when a landfill does not pose a threat to the environment any more. Consequently, the evaluation of landfill environmental compatibility includes an estimation of future pollution hazards as well as an assessment of the vulnerability of the affected environment. An approach to assess future emission rates is presented and discussed in view of long-term environmental compatibility. The suggested method consists (a) of a continuous model to predict emissions under the assumption of constant landfill conditions, and (b) different scenarios to evaluate the effects of changing conditions within and around the landfill. The model takes into account the actual status of the landfill, hence different methods to gain information about landfill characteristics have to be applied. Finally, assumptions, uncertainties, and limitations of the methodology are discussed, and the need for future research is outlined.

  6. Evaluating operational vacuum for landfill biogas extraction.

    PubMed

    Fabbricino, Massimiliano

    2007-01-01

    This manuscript proposes a practical methodology for estimating the operational vacuum for landfill biogas extraction from municipal landfills. The procedure is based on two sub-models which simulate landfill gas production from organic waste decomposition and distribution of gas pressure and gas movement induced by suction at a blower station. The two models are coupled in a single mass balance equation, obtaining a relationship between the operational vacuum and the amount of landfill gas that can be extracted from an assigned system of vertical wells. To better illustrate the procedure, it is applied to a case study, where a good agreement between simulated and measured data, within +/- 30%, is obtained.

  7. Landfill alternative offers powerful case.

    PubMed

    Baillie, Jonathan

    2011-04-01

    With many of Europe's landfill sites now close to capacity, and the EU Landfill Directive requiring that, by 2020, the amount of waste sent to landfill should be just 35% of the volume similarly disposed of in 1995, pressure is mounting to find environmentally acceptable waste disposal alternatives. At a recent IHEEM waste seminar, Gary Connelly, a technical consultant at environmental technology consultancy the Cameron Corporation, described a technology which he explained can effectively convert 85% of the European Waste Catalogue of materials into an inert residue, is "cleaner and cheaper" than incineration, and can generate both electricity an waste heat. As HEJ editor Jonathan Baillie reports, a key target market is healthcare facilities.

  8. A framework for assessment and characterisation of municipal solid waste landfill leachate: an application to the Turbhe landfill, Navi Mumbai, India.

    PubMed

    Mishra, Harshit; Rathod, Merwan; Karmakar, Subhankar; Kumar, Rakesh

    2016-06-01

    Rapid industrialisation, growing population and changing lifestyles are the root causes for the generation of huge amounts of solid waste in developing countries. In India, disposal of municipal solid waste (MSW) through open dumping is the most common waste disposal method. Unfortunately, leachate generation from landfill is high due to the prolonged and prominent monsoon season in India. As leachate generation rate is high in most of the tropical countries, long-term and extensive monitoring efforts are expected to evaluate actual environmental pollution potential due to leachate contamination. However, the leachate characterisation involves a comprehensive process, which has numerous shortcomings and uncertainties possibly due to the complex nature of landfilling process, heterogeneous waste characteristics, widely varying hydrologic conditions and selection of analytes. In order to develop a sustainable MSW management strategy for protecting the surface and ground water resources, particularly from MSW landfill leachate contamination, assessment and characterisation of leachate are necessary. Numerous studies have been conducted in the past to characterise leachate quality from various municipal landfills; unfortunately, none of these propose a framework or protocol. The present study proposes a generic framework for municipal landfill leachate assessment and characterisation. The proposed framework can be applied to design any type of landfill leachate quality monitoring programme and also to facilitate improved leachate treatment activities. A landfill site located at Turbhe, Navi Mumbai, India, which had not been investigated earlier, has been selected as a case study. The proposed framework has been demonstrated on the Turbhe landfill site which is a comparatively new and the only sanitary landfill in Navi Mumbai.

  9. ESTIMATE OF METHANE EMISSIONS FROM U.S. LANDFILLS

    EPA Science Inventory

    The report describes the development of a statistical regression model used for estimating methane (CH4) emissions, which relates landfill gas (LFG) flow rates to waste-in-place data from 105 landfills with LFG recovery projects. (NOTE: CH4 flow rates from landfills with LFG reco...

  10. US EPA record of decision review for landfills: Sanitary landfill (740-G), Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-06-01

    This report presents the results of a review of the US Environmental Protection Agency (EPA) Record of Decision System (RODS) database search conducted to identify Superfund landfill sites where a Record of Decision (ROD) has been prepared by EPA, the States or the US Army Corps of Engineers describing the selected remedy at the site. ROD abstracts from the database were reviewed to identify site information including site type, contaminants of concern, components of the selected remedy, and cleanup goals. Only RODs from landfill sites were evaluated so that the results of the analysis can be used to support themore » remedy selection process for the Sanitary Landfill at the Savannah River Site (SRS).« less

  11. Fifty-one years of Los Alamos Spacecraft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fenimore, Edward E.

    2014-09-04

    From 1963 to 2014, the Los Alamos National Laboratory was involved in at least 233 spacecraft. There are probably only one or two institutions in the world that have been involved in so many spacecraft. Los Alamos space exploration started with the Vela satellites for nuclear test detection, but soon expanded to ionospheric research (mostly barium releases), radioisotope thermoelectric generators, solar physics, solar wind, magnetospheres, astrophysics, national security, planetary physics, earth resources, radio propagation in the ionosphere, and cubesats. Here, we present a list of the spacecraft, their purpose, and their launch dates for use during RocketFest

  12. Report: landfill alternative daily cover: conserving air space and reducing landfill operating cost.

    PubMed

    Haughey, R D

    2001-02-01

    Title 40, Part 258 of the Code of Federal Regulations, Solid Waste Disposal Facility Criteria, commonly referred to as Subtitle D, became effective on October 9, 1993. It establishes minimum criteria for solid waste disposal facility siting, design, operations, groundwater monitoring and corrective action, and closure and postclosure maintenance, while providing EPA-approved state solid waste regulatory programs flexibility in implementing the criteria. Section 258.21(a) [40 CFR 258.21(a)] requires owners or operators of municipal solid waste landfill (MSWLF) units to cover disposed solid waste with 30cm of earthen material at the end of the operating day, or at more frequent intervals, if necessary, to control disease vectors, fires, odours, blowing litter, and scavenging. This requirement is consistent with already existing solid waste facility regulations in many states. For many MSWLFs, applying daily cover requires the importation of soil which increases landfill operating costs. Daily cover also uses valuable landfill air space, reducing potential operating revenue and the landfill's operating life. 40 CFR 258.21 (b) allows the director of an approved state to approve alternative materials of an alternative thickness if the owner or operator demonstrates that the alternative material and thickness will control disease vectors, fires, odours, blowing litter, and scavenging without presenting a threat to human health and the environment. Many different types of alternative daily cover (ADC) are currently being used, including geosynthetic tarps, foams, garden waste, and auto shredder fluff. These materials use less air space than soil and can reduce operating costs. This paper discusses the variety of ADCs currently being used around the country and their applicability to different climates and operating conditions, highlighting the more unusual types of ADC, the types of demonstrations necessary to obtain approval of ADC, and the impact on landfill air space

  13. MONITORING APPROACHES FOR BIOREACTOR LANDFILLS - Report

    EPA Science Inventory

    Experimental bioreactor landfill operations at operating Municipal Solid Waste (MSW) landfills can be approved under the research development and demonstration (RD&D) provisions of 30CFR 258.4. To provide a basis for consistent data collection for future decision-making in suppor...

  14. Environmental Isotope Characteristics of Landfill Leachates and Gases

    USGS Publications Warehouse

    Hackley, Keith C.; Liu, Chao-Li; Coleman, D.D.

    1996-01-01

    The isotopic characteristics of municipal landfill leachate and gases (carbon dioxide and methane) are unique relative to the aqueous and gaseous media in most other natural geologic environments. The ??13 C of the CO2 in landfills is significantly enriched in 13C, with values as high as +20??? reported. The ?? 13C and ??D values of the methane fall within a range of values representative of microbial methane produced primarily by the acetate-fermentation process. The ??D of landfill leachate is strongly enriched in deuterium, by approximately 30??? to nearly 60??? relative to local average precipitation values. This deuterium enrichment is undoubtedly due to the extensive production of microbial methane within the limited reservoir of a landfill. The concentration of the radiogenic isotopes, 14C and 3H, are significantly elevated in both landfill leachate and methane. The 14C values range between approximately 120 and 170 pMC and can be explained by the input of organic material that was affected by the increased 14C content of atmospheric CO2 caused by atmospheric testing of nuclear devices. The tritium measured in leachate, however, is often too high to be explained by previous atmospheric levels and must come from material buried within the landfill. The unique isotopic characteristics observed in landfill leachates and gases provide a very useful technique for confirming whether contamination is from a municipal landfill or some other local source.

  15. Generating CO(2)-credits through landfill in situ aeration.

    PubMed

    Ritzkowski, M; Stegmann, R

    2010-04-01

    Landfills are some of the major anthropogenic sources of methane emissions worldwide. The installation and operation of gas extraction systems for many landfills in Europe and the US, often including technical installations for energy recovery, significantly reduced these emissions during the last decades. Residual landfill gas, however, is still continuously produced after the energy recovery became economically unattractive, thus resulting in ongoing methane emissions for many years. By landfill in situ aeration these methane emissions can be widely avoided both, during the aeration process as well as in the subsequent aftercare period. Based on model calculations and online monitoring data the amount of avoided CO(2-eq). can be determined. For an in situ aerated landfill in northern Germany, acting as a case study, 83-95% (depending on the kind and quality of top cover) of the greenhouse gas emission potential could be reduced under strictly controlled conditions. Recently the United Nations Framework Convention on Climate Change (UNFCCC) has approved a new methodology on the "Avoidance of landfill gas emissions by in situ aeration of landfills" (UNFCCC, 2009). Based on this methodology landfill aeration projects might be considered for generation of Certified Emission Reductions (CERs) in the course of CDM projects. This paper contributes towards an evaluation of the potential of landfill aeration for methane emissions reduction. Copyright 2009 Elsevier Ltd. All rights reserved.

  16. Using the Internet in Middle Schools: A Model for Success. A Collaborative Effort between Los Alamos National Laboratory (LANL) and Los Alamos Middle School (LAMS).

    ERIC Educational Resources Information Center

    Addessio, Barbara K.; And Others

    Los Alamos National Laboratory (LANL) developed a model for school networking using Los Alamos Middle School as a testbed. The project was a collaborative effort between the school and the laboratory. The school secured administrative funding for hardware and software; and LANL provided the network architecture, installation, consulting, and…

  17. Municipal solid waste landfills harbor distinct microbiomes

    USGS Publications Warehouse

    Stamps, Blake W.; Lyles, Christopher N.; Suflita, Joseph M.; Masoner, Jason R.; Cozzarelli, Isabelle M.; Kolpin, Dana W.; Stevenson, Bradley S.

    2016-01-01

    Landfills are the final repository for most of the discarded material from human society and its “built environments.” Microorganisms subsequently degrade this discarded material in the landfill, releasing gases (largely CH4 and CO2) and a complex mixture of soluble chemical compounds in leachate. Characterization of “landfill microbiomes” and their comparison across several landfills should allow the identification of environmental or operational properties that influence the composition of these microbiomes and potentially their biodegradation capabilities. To this end, the composition of landfill microbiomes was characterized as part of an ongoing USGS national survey studying the chemical composition of leachates from 19 non-hazardous landfills across 16 states in the continental U.S. The landfills varied in parameters such as size, waste composition, management strategy, geography, and climate zone. The diversity and composition of bacterial and archaeal populations in leachate samples were characterized by 16S rRNA gene sequence analysis, and compared against a variety of physical and chemical parameters in an attempt to identify their impact on selection. Members of the Epsilonproteobacteria, Gammaproteobacteria, Clostridia, and candidate division OP3 were the most abundant. The distribution of the observed phylogenetic diversity could best be explained by a combination of variables and was correlated most strongly with the concentrations of chloride and barium, rate of evapotranspiration, age of waste, and the number of detected household chemicals. This study illustrates how leachate microbiomes are distinct from those of other natural or built environments, and sheds light on the major selective forces responsible for this microbial diversity.

  18. Municipal Solid Waste Landfills Harbor Distinct Microbiomes

    PubMed Central

    Stamps, Blake W.; Lyles, Christopher N.; Suflita, Joseph M.; Masoner, Jason R.; Cozzarelli, Isabelle M.; Kolpin, Dana W.; Stevenson, Bradley S.

    2016-01-01

    Landfills are the final repository for most of the discarded material from human society and its “built environments.” Microorganisms subsequently degrade this discarded material in the landfill, releasing gases (largely CH4 and CO2) and a complex mixture of soluble chemical compounds in leachate. Characterization of “landfill microbiomes” and their comparison across several landfills should allow the identification of environmental or operational properties that influence the composition of these microbiomes and potentially their biodegradation capabilities. To this end, the composition of landfill microbiomes was characterized as part of an ongoing USGS national survey studying the chemical composition of leachates from 19 non-hazardous landfills across 16 states in the continental U.S. The landfills varied in parameters such as size, waste composition, management strategy, geography, and climate zone. The diversity and composition of bacterial and archaeal populations in leachate samples were characterized by 16S rRNA gene sequence analysis, and compared against a variety of physical and chemical parameters in an attempt to identify their impact on selection. Members of the Epsilonproteobacteria, Gammaproteobacteria, Clostridia, and candidate division OP3 were the most abundant. The distribution of the observed phylogenetic diversity could best be explained by a combination of variables and was correlated most strongly with the concentrations of chloride and barium, rate of evapotranspiration, age of waste, and the number of detected household chemicals. This study illustrates how leachate microbiomes are distinct from those of other natural or built environments, and sheds light on the major selective forces responsible for this microbial diversity. PMID:27148222

  19. Electrochemical oxidation for landfill leachate treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Yang; Englehardt, James D.

    2007-07-01

    This paper aims at providing an overview of electrochemical oxidation processes used for treatment of landfill leachate. The typical characteristics of landfill leachate are briefly reviewed, and the reactor designs used for electro-oxidation of leachate are summarized. Electrochemical oxidation can significantly reduce concentrations of organic contaminants, ammonia, and color in leachate. Pretreatment methods, anode materials, pH, current density, chloride concentration, and other additional electrolytes can considerably influence performance. Although high energy consumption and potential chlorinated organics formation may limit its application, electrochemical oxidation is a promising and powerful technology for treatment of landfill leachate.

  20. Washing of waste prior to landfilling.

    PubMed

    Cossu, Raffaello; Lai, Tiziana

    2012-05-01

    The main impact produced by landfills is represented by the release of leachate emissions. Waste washing treatment has been investigated to evaluate its efficiency in reducing the waste leaching fraction prior to landfilling. The results of laboratory-scale washing tests applied to several significant residues from integrated management of solid waste are presented in this study, specifically: non-recyclable plastics from source separation, mechanical-biological treated municipal solid waste and a special waste, automotive shredded residues. Results obtained demonstrate that washing treatment contributes towards combating the environmental impacts of raw wastes. Accordingly, a leachate production model was applied, leading to the consideration that the concentrations of chemical oxygen demand (COD) and total Kjeldahl nitrogen (TKN), parameters of fundamental importance in the characterization of landfill leachate, from a landfill containing washed wastes, are comparable to those that would only be reached between 90 and 220years later in the presence of raw wastes. The findings obtained demonstrated that washing of waste may represent an effective means of reducing the leachable fraction resulting in a consequent decrease in landfill emissions. Further studies on pilot scale are needed to assess the potential for full-scale application of this treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Los Alamos, Toshiba probing Fukushima with cosmic rays

    ScienceCinema

    Morris, Christopher

    2018-01-16

    Los Alamos National Laboratory has announced an impending partnership with Toshiba Corporation to use a Los Alamos technique called muon tomography to safely peer inside the cores of the Fukushima Daiichi reactors and create high-resolution images of the damaged nuclear material inside without ever breaching the cores themselves. The initiative could reduce the time required to clean up the disabled complex by at least a decade and greatly reduce radiation exposure to personnel working at the plant. Muon radiography (also called cosmic-ray radiography) uses secondary particles generated when cosmic rays collide with upper regions of Earth's atmosphere to create images of the objects that the particles, called muons, penetrate. The process is analogous to an X-ray image, except muons are produced naturally and do not damage the materials they contact. Muon radiography has been used before in imaginative applications such as mapping the interior of the Great Pyramid at Giza, but Los Alamos's muon tomography technique represents a vast improvement over earlier technology.

  2. Martial recycling from renewable landfill and associated risks: A review.

    PubMed

    Ziyang, Lou; Luochun, Wang; Nanwen, Zhu; Youcai, Zhao

    2015-07-01

    Landfill is the dominant disposal choice for the non-classified waste, which results in the stockpile of materials after a long term stabilization process. A novel landfill, namely renewable landfill (RL), is developed and applied as a strategy to recycle the residual materials and reuse the land occupation, aim to reduce the inherent problems of large land occupied, materials wasted and long-term pollutants released in the conventional landfill. The principle means of RL is to accelerate the waste biodegradation process in the initial period, recover the various material resources disposal and extend the landfill volume for waste re-landfilling after waste stabilized. The residual material available and risk assessment, the methodology of landfill excavation, the potential utilization routes for different materials, and the reclamation options for the unsanitary landfill are proposed, and the integrated beneficial impacts are identified finally from the economic, social and environmental perspectives. RL could be draw as the future reservoirs for resource extraction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. New Rad Lab for Los Alamos

    ScienceCinema

    None

    2017-12-09

    The topping out ceremony for a key construction stage in the Los Alamos National Laboratory's newest facility, the Radiological Laboratory Utility & Office Building. This is part of the National Nu...  

  4. Notes on Los Alamos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meade, Roger Allen

    In 1954 an unknown author drafted a report, reprinted below, describing the Laboratory and the community as they existed in late 1953. This report, perhaps intended to be crafted into a public relations document, is valuable because it gives us an autobiographical look at Los Alamos during the first half of the 1950s. It has been edited to enhance readability.

  5. EVALUATION PLAN FOR TWO LARGE-SCALE LANDFILL BIOREACTOR TECHNOLOGIES

    EPA Science Inventory

    Abstract - Waste Management, Inc., is operating two long-term bioreactor studies at the Outer Loop Landfill in Louisville, KY, including facultative landfill bioreactor and staged aerobic-anaerobic landfill bioreactor demonstrations. A Quality Assurance Project Plan (QAPP) was p...

  6. Talking trash: the economic and environmental issues of landfills.

    PubMed Central

    Taylor, D

    1999-01-01

    The U.S. per-capita figure for garbage production has topped four pounds per person per day, and that amount is rising at roughly 5% per year. In the past, municipal solid waste was sent to the nearest local landfill or incinerator. But in 1988, the U.S. Environmental Protection Agency instituted the first federal standards for landfills, designed to make them safer. Over 10,000 small municipal landfills have since been consolidated into an estimated 3,500 newer, safer landfills, some of which are "megafills" that can handle up to 10,000 tons of waste a day. The new landfills are outfitted to prevent air and water pollution and limit the spread of disease by scavengers. Although the new landfills provide better controls against air and water pollution as well as an alternate source of municipal income, they are not entirely problem-free. Some experts believe the new landfill technology has not been properly tested and will therefore not provide protection in the long run. Others feel that poorer, less well-informed communities are targeted as sites for new landfills. In addition, many people that live near megafills, which may draw garbarge from several states, are unhappy about the noise, truck traffic, odors, and pests caused by the facilities. PMID:10417373

  7. Short-term landfill methane emissions dependency on wind.

    PubMed

    Delkash, Madjid; Zhou, Bowen; Han, Byunghyun; Chow, Fotini K; Rella, Chris W; Imhoff, Paul T

    2016-09-01

    Short-term (2-10h) variations of whole-landfill methane emissions have been observed in recent field studies using the tracer dilution method for emissions measurement. To investigate the cause of these variations, the tracer dilution method is applied using 1-min emissions measurements at Sandtown Landfill (Delaware, USA) for a 2-h measurement period. An atmospheric dispersion model is developed for this field test site, which is the first application of such modeling to evaluate atmospheric effects on gas plume transport from landfills. The model is used to examine three possible causes of observed temporal emissions variability: temporal variability of surface wind speed affecting whole landfill emissions, spatial variability of emissions due to local wind speed variations, and misaligned tracer gas release and methane emissions locations. At this site, atmospheric modeling indicates that variation in tracer dilution method emissions measurements may be caused by whole-landfill emissions variation with wind speed. Field data collected over the time period of the atmospheric model simulations corroborate this result: methane emissions are correlated with wind speed on the landfill surface with R(2)=0.51 for data 2.5m above ground, or R(2)=0.55 using data 85m above ground, with emissions increasing by up to a factor of 2 for an approximately 30% increase in wind speed. Although the atmospheric modeling and field test are conducted at a single landfill, the results suggest that wind-induced emissions may affect tracer dilution method emissions measurements at other landfills. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Treatment of mechanically sorted organic waste by bioreactor landfill: Experimental results and preliminary comparative impact assessment with biostabilization and conventional landfill.

    PubMed

    Di Maria, Francesco; Micale, Caterina; Sisani, Luciano; Rotondi, Luca

    2016-09-01

    Treatment and disposal of the mechanically sorted organic fraction (MSOF) of municipal solid waste using a full-scale hybrid bioreactor landfill was experimentally analyzed. A preliminary life cycle assessment was used to compare the hybrid bioreactor landfill with the conventional scheme based on aerobic biostabilization plus landfill. The main findings showed that hybrid bioreactor landfill was able to achieve a dynamic respiration index (DRI)<1000 mgO2/(kgVSh) in 20weeks, on average. Landfill gas (LFG) generation with CH4 concentration >55% v/v started within 140days from MSOF disposal, allowing prompt energy recovery and higher collection efficiency. With the exception of fresh water eutrophication with the bioreactor scenario there was a reduction of the impact categories by about 30% compared to the conventional scheme. Such environmental improvement was mainly a consequence of the reduction of direct and indirect emissions from conventional aerobic biostabilization and of the lower amount of gaseous loses from the bioreactor landfill. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Pre Incident Planning For The Los Alamos National Laboratory

    DTIC Science & Technology

    2017-12-01

    laboratory was asked to design and build the world’s first atomic bomb . The Los Alamos Fire Department (LAFD) provides emergency response services to...Project: the newly established laboratory was asked to design and build the world’s first atomic bomb . The Los Alamos Fire Department (LAFD) provides...lower priority despite its importance to the responders’ scene safety.20 In a Carolina Fire Rescue EMS Journal article, retired New York City

  10. Gas production and migration in landfills and geological materials.

    PubMed

    Nastev, M; Therrien, R; Lefebvre, R; Gélinas, P

    2001-11-01

    Landfill gas, originating from the anaerobic biodegradation of the organic content of waste, consists mainly of methane and carbon dioxide, with traces of volatile organic compounds. Pressure, concentration and temperature gradients that develop within the landfill result in gas emissions to the atmosphere and in lateral migration through the surrounding soils. Environmental and safety issues associated with the landfill gas require control of off-site gas migration. The numerical model TOUGH2-LGM (Transport of Unsaturated Groundwater and Heat-Landfill Gas Migration) has been developed to simulate landfill gas production and migration processes within and beyond landfill boundaries. The model is derived from the general non-isothermal multiphase flow simulator TOUGH2, to which a new equation of state module is added. It simulates the migration of five components in partially saturated media: four fluid components (water, atmospheric air, methane and carbon dioxide) and one energy component (heat). The four fluid components are present in both the gas and liquid phases. The model incorporates gas-liquid partitioning of all fluid components by means of dissolution and volatilization. In addition to advection in the gas and liquid phase, multi-component diffusion is simulated in the gas phase. The landfill gas production rate is proportional to the organic substrate and is modeled as an exponentially decreasing function of time. The model is applied to the Montreal's CESM landfill site, which is located in a former limestone rock quarry. Existing data were used to characterize hydraulic properties of the waste and the limestone. Gas recovery data at the site were used to define the gas production model. Simulations in one and two dimensions are presented to investigate gas production and migration in the landfill, and in the surrounding limestone. The effects of a gas recovery well and landfill cover on gas migration are also discussed.

  11. Tests for the evaluation of ammonium attenuation in MSW landfill leachate by adsorption into bentonite in a landfill liner.

    PubMed

    Pivato, A; Raga, R

    2006-01-01

    Uncontrolled leachate emissions are one of the key factors in the environmental impact of municipal solid waste (MSW) landfills. The concentration of ammonium, given the anaerobic conditions in traditional landfills, can remain significantly high for a very long period of time, as degradation does not take place and volatilisation is not significant (the pH is not high enough to considerably shift the equilibrium towards un-ionised ammonia). Recent years have witnessed a continuous enhancement of landfill technology in order to minimize uncontrolled emissions into the environment; bottom lining systems have been improved and more attention has been devoted to the study of the attenuation of the different chemicals in leachate in case of migration through the mineral barrier. Different natural materials have been considered for use as components of landfill liners in the last years and tested in order to evaluate the performance of the different alternatives. Among those materials, bentonite is often used, coupled with other materials in two different ways: in addition to in situ soil or in geocomposite clay liner (GCL). A lab-scale test was carried out in order to further investigate the influence of bentonite on the attenuation of ammonium in leachate passing through a landfill liner. Two different tests were conducted: a standardized batch test with pulverized bentonite and a batch test with compacted bentonite. The latter was proposed in order to better simulate the real conditions in a landfill liner. The two tests produced values for the partition coefficient K(d) higher than the average measured for other natural materials usually utilized as components of landfill liners. Moreover, the two tests showed similar results, thus providing a further validation of the suitability of the standard batch test with pulverized bentonite. A thorough knowledge of attenuation processes of ammonium in landfill liners is the basis for the application of risk analysis models

  12. Los Alamos Programming Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergen, Benjamin Karl

    This is the PDF of a powerpoint presentation from a teleconference on Los Alamos programming models. It starts by listing their assumptions for the programming models and then details a hierarchical programming model at the System Level and Node Level. Then it details how to map this to their internal nomenclature. Finally, a list is given of what they are currently doing in this regard.

  13. A decision support tool for landfill methane generation and gas collection.

    PubMed

    Emkes, Harriet; Coulon, Frédéric; Wagland, Stuart

    2015-09-01

    This study presents a decision support tool (DST) to enhance methane generation at individual landfill sites. To date there is no such tool available to provide landfill decision makers with clear and simplified information to evaluate biochemical processes within a landfill site, to assess performance of gas production and to identify potential remedies to any issues. The current lack in understanding stems from the complexity of the landfill waste degradation process. Two scoring sets for landfill gas production performance are calculated with the tool: (1) methane output score which measures the deviation of the actual methane output rate at each site which the prediction generated by the first order decay model LandGEM; and (2) landfill gas indicators' score, which measures the deviation of the landfill gas indicators from their ideal ranges for optimal methane generation conditions. Landfill gas indicators include moisture content, temperature, alkalinity, pH, BOD, COD, BOD/COD ratio, ammonia, chloride, iron and zinc. A total landfill gas indicator score is provided using multi-criteria analysis to calculate the sum of weighted scores for each indicator. The weights for each indicator are calculated using an analytical hierarchical process. The tool is tested against five real scenarios for landfill sites in UK with a range of good, average and poor landfill methane generation over a one year period (2012). An interpretation of the results is given for each scenario and recommendations are highlighted for methane output rate enhancement. Results demonstrate how the tool can help landfill managers and operators to enhance their understanding of methane generation at a site-specific level, track landfill methane generation over time, compare and rank sites, and identify problems areas within a landfill site. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The new Waste Law: Challenging opportunity for future landfill operation in Indonesia.

    PubMed

    Meidiana, Christia; Gamse, Thomas

    2011-01-01

    The Waste Law No. 18/2008 Article 22 and 44 require the local governments to run environmentally sound landfill. Due to the widespread poor quality of waste management in Indonesia, this study aimed to identify the current situation by evaluating three selected landfills based on the ideal conditions of landfill practices, which are used to appraise the capability of local governments to adapt to the law. The results indicated that the local governments have problems of insufficient budget, inadequate equipment, uncollected waste and unplanned future landfill locations. All of the selected landfills were partially controlled landfills with open dumping practices predominating. In such inferior conditions the implementation of sanitary landfill is not necessarily appropriate. The controlled landfill is a more appropriate solution as it offers lower investment and operational costs, makes the selection of a new landfill site unnecessary and can operate with a minimum standard of infrastructure and equipment. The sustainability of future landfill capacity can be maintained by utilizing the old landfill as a profit-oriented landfill by implementing a landfill gas management or a clean development mechanism project. A collection fee system using the pay-as-you-throw principle could increase the waste income thereby financing municipal solid waste management.

  15. Emissions from the Bena Landfill

    NASA Astrophysics Data System (ADS)

    Schafer, C.; Blake, D. R.; Hughes, S.

    2016-12-01

    In 2013, Americans generated 254 million tons of municipal solid waste (MSW). The gas generated from the decomposition of MSW is composed of approximately 50% methane, 50% carbon dioxide, and a small proportion of non-methane organic compounds (NMOCs). NMOCs constitute less than 1% of landfill emissions, but they can have a disproportionate environmental impact as they are highly reactive ozone precursors. During the 2016 Student Airborne Research Program (SARP), whole air samples were collected at the Bena landfill outside of Bakersfield, CA and throughout Bakersfield and analyzed using gas chromatography in order to quantify NMOC emissions. This area was determined to have elevated concentrations of benzene, trichloroethylene, and tetrachloroethylene, all of which are categorized by the EPA as hazardous to human health. Benzene was found to have a concentration of 145 ± 4 pptv, four times higher than the background levels in Bakersfield (36 ± 1 pptv). Trichloroethylene and tetrachloroethylene had concentrations of 18 ± 1 pptv and 31 ± 1 pptv which were 18 and 10 times greater than background concentrations, respectively. In addition, hydroxyl radical reactivity (ROH) was calculated to determine the potential for tropospheric ozone formation. The total ROH of the landfill was 7.5 ± 0.2 s-1 compared to total background ROH of 1.0 ± 0.1 s-1 . NMOCs only made up 0.6% of total emissions, but accounted for 67% of total ROH.These results can help to shape future landfill emission policies by highlighting the importance of NMOCs in addition to methane. More research is needed to investigate the ozone forming potential of these compounds at landfills across the country.

  16. Hydrogeology and leachate plume delineation at a closed municipal landfill, Norman, Oklahoma

    USGS Publications Warehouse

    Becker, Carol J.

    2002-01-01

    The City of Norman operated a solid-waste municipal landfill at two sites on the Canadian River alluvium in Cleveland County, Oklahoma from 1970 to 1985. The sites, referred to as the west and east cells of the landfill, were originally excavations in the unconsolidated alluvial deposits and were not lined. Analysis of ground-water samples indicate that leachate from the west cell is discharging into an adjacent abandoned river channel, referred to as the slough, and is migrating downgradient in ground water toward the Canadian River. The report describes the hydrogeologic features at the landfill, including the topography of the bedrock, water-level changes in the alluvial aquifer, and delineates the leachate plume using specific conductance data. The leading edge of the leachate plume along the 35-80 transect extended over 250 meters downgradient of the west cell. The leading edge of the leachate plume along the 40-SOUTH transect had moved about 60 meters from the west cell in a south-southwesterly direction and had not moved past the slough as of 1997. Specific conductance measurements exceeding 7,000 microsiemens per centimeter at site 40 indicate the most concentrated part of the plume remained in the upper half of the alluvial aquifer adjacent to the west cell. The direction of ground-water flow in the alluvial aquifer surrounding the landfill was generally north-northeast to south-southwest toward the river. However, between the west cell and the slough along the 40-SOUTH transect, head measurements indicate a directional change to the east and southeast toward a channel referred to as the sewage outfall. Near the 35-80 transect, at 0.5 meter below the water table and at the base of the aquifer, the direction of ground-water flow was south-southeast with a gradient of about 30 centimeters per 100 meters. Generally, ground-water levels in the alluvial aquifer were higher during the winter months and lower during summer months, due to a normal decrease in

  17. QUALITY ASSURANCE AND SYSTEMATIC PLANNING FOR THE EVALUATION OF TWO LANDFILL BIOREACTOR OPERATIONAL TECHNIQUES AT AN EXISTING LANDFILL

    EPA Science Inventory

    A Quality Assurance Project Plan (QAPP) was prepared to document the primary objectives and data collection and interpretation efforts for two landfill bioreactor studies at the Outer Loop Landfill in Louisville, KY, operated by Waste Management, Inc. WMI). The two multi-year stu...

  18. THE ROLE OF QUALITY ASSURANCE IN THE EVALUTION OF TWO LANDFILL BIOREACTOR OPERATIONAL TECHNIQUES AT AN EXISTING LANDFILL

    EPA Science Inventory

    A Quality Assurance Project Plan (QAPP) was prepared to document the primary objectives and data collection and interpretation efforts for two landfill bioreactor studies at the Outer Loop Landfill in Louisville, KY, operated by Waste Management, Inc. WMI). The two multi-year stu...

  19. A progress report on UNICOS misuse detection at Los Alamos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, J.L.; Jackson, K.A.; Stallings, C.A.

    An effective method for detecting computer misuse is the automatic monitoring and analysis of on-line user activity. During the past year, Los Alamos enhanced its Network Anomaly Detection and Intrusion Reporter (NADIR) to include analysis of user activity on Los Alamos` UNICOS Crays. In near real-time, NADIR compares user activity to historical profiles and tests activity against expert rules. The expert rules express Los Alamos` security policy and define improper or suspicious behavior. NADIR reports suspicious behavior to security auditors and provides tools to aid in follow-up investigations. This paper describes the implementation to date of the UNICOS component ofmore » NADIR, along with the operational experiences and future plans for the system.« less

  20. Los Alamos, Toshiba probing Fukushima with cosmic rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, Christopher

    2014-06-16

    Los Alamos National Laboratory has announced an impending partnership with Toshiba Corporation to use a Los Alamos technique called muon tomography to safely peer inside the cores of the Fukushima Daiichi reactors and create high-resolution images of the damaged nuclear material inside without ever breaching the cores themselves. The initiative could reduce the time required to clean up the disabled complex by at least a decade and greatly reduce radiation exposure to personnel working at the plant. Muon radiography (also called cosmic-ray radiography) uses secondary particles generated when cosmic rays collide with upper regions of Earth's atmosphere to create imagesmore » of the objects that the particles, called muons, penetrate. The process is analogous to an X-ray image, except muons are produced naturally and do not damage the materials they contact. Muon radiography has been used before in imaginative applications such as mapping the interior of the Great Pyramid at Giza, but Los Alamos's muon tomography technique represents a vast improvement over earlier technology.« less

  1. Field performance of alternative landfill covers vegetated with cottonwood and eucalyptus trees.

    PubMed

    Abichou, Tarek; Musagasa, Jubily; Yuan, Lei; Chanton, Jeff; Tawfiq, Kamal; Rockwood, Donald; Licht, Louis

    2012-01-01

    A field study was conducted to assess the ability of landfill covers to control percolation into the waste. Performance of one conventional cover was compared to that of two evapotranspiration (ET) tree covers, using large (7 x 14 m) lined lysimeters at the Leon County Solid Waste management facility in Tallahassee, Florida. Additional unlined test sections were also constructed and monitored in order to compare soil water storage, soil temperature, and tree growth inside lysimeters and in unlined test sections. The unlined test sections were in direct contact with landfill gas. Surface runoff on the ET covers was a small proportion of the water balance (1% of precipitation) as compared to 13% in the conventional cover. Percolation in the ET covers averaged 17% and 24% of precipitation as compared to 33% in the conventional cover. On average, soil water storage was higher in the lined lysimeters (429 mm) compared to unlined test sections (408 mm). The average soil temperature in the lysimeters was lower than in the unlined test sections. The average tree height inside the lysimeters was not significantly lower (8.04 mfor eucalyptus and 7.11 mfor cottonwood) than outside (8.82 m for eucalyptus and 8.01 m for cottonwood). ET tree covers vegetated with cottonwood or eucalyptus are feasible for North Florida climate as an alternative to GCL covers.

  2. Biological assessment for the effluent reduction program, Los Alamos National Laboratory, Los Alamos, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cross, S.P.

    1996-08-01

    This report describes the biological assessment for the effluent recution program proposed to occur within the boundaries of Los Alamos National Laboratory. Potential effects on wetland plants and on threatened and endangered species are discussed, along with a detailed description of the individual outfalls resulting from the effluent reduction program.

  3. Quantifying landfill biogas production potential in the U.S.

    USDA-ARS?s Scientific Manuscript database

    This study presents an overview of the biogas (biomethane) availability in U.S. landfills, calculated from EPA estimates of landfill capacities. This survey concludes that the volume of landfill-derived methane in the U.S. is 466 billion cubic feet per year, of which 66 percent is collected and onl...

  4. Landfill mining: A critical review of two decades of research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krook, Joakim, E-mail: joakim.krook@liu.se; Svensson, Niclas; Eklund, Mats

    Highlights: Black-Right-Pointing-Pointer We analyze two decades of landfill mining research regarding trends and topics. Black-Right-Pointing-Pointer So far landfill mining has mainly been used to solve waste management issues. Black-Right-Pointing-Pointer A new perspective on landfills as resource reservoirs is emerging. Black-Right-Pointing-Pointer The potential of resource extraction from landfills is significant. Black-Right-Pointing-Pointer We outline several key challenges for realization of resource extraction from landfills. - Abstract: Landfills have historically been seen as the ultimate solution for storing waste at minimum cost. It is now a well-known fact that such deposits have related implications such as long-term methane emissions, local pollution concerns, settlingmore » issues and limitations on urban development. Landfill mining has been suggested as a strategy to address such problems, and in principle means the excavation, processing, treatment and/or recycling of deposited materials. This study involves a literature review on landfill mining covering a meta-analysis of the main trends, objectives, topics and findings in 39 research papers published during the period 1988-2008. The results show that, so far, landfill mining has primarily been seen as a way to solve traditional management issues related to landfills such as lack of landfill space and local pollution concerns. Although most initiatives have involved some recovery of deposited resources, mainly cover soil and in some cases waste fuel, recycling efforts have often been largely secondary. Typically, simple soil excavation and screening equipment have therefore been applied, often demonstrating moderate performance in obtaining marketable recyclables. Several worldwide changes and recent research findings indicate the emergence of a new perspective on landfills as reservoirs for resource extraction. Although the potential of this approach appears significant, it is argued that

  5. Sustainable Impact of Landfill Siting towards Urban Planning in Malaysia

    NASA Astrophysics Data System (ADS)

    Sin Tey, Jia; Goh, Kai Chen; Ern Ang, Peniel Soon

    2017-10-01

    Landfill is one of the most common, widely used waste management technique in Malaysia. The ever increasing of solid waste has made the role of landfill become prominent despite the negative impacts that caused by the landfill is unavoidable. The public and government regulations are getting more aware with the negative impacts that could be brought by the landfill towards the community. It led to the cultural shift to integrate the concept of sustainability into the planning of siting a landfill in an urban area. However, current urban planning tends to emphasize more on the environmental aspect instead of social and economic aspects. This is due to the existing planning guidelines and stakeholder’s understandings are more on the environmental aspect. This led to the needs of incorporating the concept of sustainability into the urban planning. Thus, this paper focuses on the industry stakeholders view on the negative impacts that will cause by the landfill towards the urban planning. The industry stakeholders are those who are related to the decision-making in the selection of a landfill site in the government department. The scope of the study is within the country of Malaysia. This study was conducted through the semi-structured interviews with a total of fifteen industry stakeholders to obtain their perspective on the issues of impacts of siting a landfill in the urban area. The data obtained was analysed using the software, QSR NVivo version 10. Results indicate that landfill bought significant sustainability-related impacts towards landfill siting in urban planning. The negative impacts stated by the respondents are categorized under all three sustainable aspects such as environmental, social and economic. Among the results are such as the pollution, such as the generation of leachate, the objection in siting a landfill site against by the public, and the negotiating and getting money contribution from local authorities. The results produced can be served

  6. [Odor pollution from landfill sites and its control: a review].

    PubMed

    Hu, Bin; Ding, Ying; Wu, Wei-Xiang; Hu, Bei-Gang; Chen, Ying-Xu

    2010-03-01

    Landfill sites are the major sources of offensive odor in urban public facilities. With the progress of urbanization and the residents' demands for a higher living environment quality, the odor emission from landfill sites has become a severe pollution problem, and the odor control at landfill sites has been one of the research hotspots. This paper summarized the main components and their concentrations of the odor from landfill sites, and expatiated on the research progress in the in-situ control of the odor. The further research directions in in-situ control of the odor from landfill sites were prospected.

  7. Findings of the wetland survey of the David Witherspoon, Inc., 1630 Site, South Knoxville, Knox County, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosensteel, B.A.

    1997-03-01

    In accordance with Department of Energy (DOE) Regulations surveys for wetland presence or absence were conducted in September 1996 on the DWI-1630 site (Witherspoon Landfill) located in South Knoxville, Knox County, Tennessee. The DWI-1630 site includes a closed, capped landfill area, areas of past disturbance adjacent to the capped area, and patches of hardwood forest. Wetlands were identified on the landfill cap and in a small bottomland that was formerly used for a retention pond in the southwest corner of the DWI-1630 site. The wetlands identified on the cap are man-induced, atypical situation wetlands. These areas have hydrophytic vegetation andmore » wetland hydrology, but the soils do not have hydric characteristics. Wetland development appears to be due to a combination of the grading or subsidence of the clay landfill cap, the low permeability of the clay fill soil, and the absence of surface drainage outlets from the depressions. These atypical situation wetland areas may not be considered by the US Army Corps of Engineers or the State of Tennessee to be jurisdictional wetlands. The wetland in the former retention pond area has hydrophytic vegetation, wetland hydrology, and hydric soils and is a jurisdictional wetland.« less

  8. Optimization of landfill leachate management in the aftercare period.

    PubMed

    Wang, Yu; Pelkonen, Markku; Kaila, Juha

    2012-08-01

    The management of sanitary landfills after closure is an important engineering, economic and sustainability issue and is referred to as the greatest unresolved landfill challenge. Most sanitary landfills are operated according to the dry tomb principle, resulting in aftercare periods of hundreds of years. To study landfill body behaviour, long-term leachate emissions were studied with anaerobic landfill simulators, and a forecast model was developed targeting the behaviour of NH(4)-N, COD and chlorides as a function of temperature and the L/S-ratio (liquid-to-solid). It was found that NH(4)-N is the decisive factor in leachate management, requiring the highest L/S-ratio (around 6) to meet the direct discharge limit values. Various scenarios were constructed to find optimal leachate management strategies both in large (waste height H = 25 m) and medium-sized landfills (H = 10 m) with corresponding temperature ranges. The results show that by minimizing the aftercare period length with leachate pre-treatment and recirculation, both sustainability and economic benefits can be achieved. The results provide new views on how to manage the long-term leachate aftercare problem. In the case of large landfills, further efforts are needed to reach stabilization within a reasonable time frame.

  9. The effect of landfill age on municipal leachate composition.

    PubMed

    Kulikowska, Dorota; Klimiuk, Ewa

    2008-09-01

    The influence of municipal landfill age on temporal changes in municipal leachate quality on the basis of elaboration of 4 years monitoring of leachate from landfill in Wysieka near Bartoszyce (Poland) is presented in this study. In leachate, concentrations of organic compounds (COD, BOD(5)), nutrients (nitrogen, phosphorus), mineral compounds, heavy metals and BTEX were investigated. It was shown that the principal pollutants in leachate were organics and ammonia - as landfill age increased, organics concentration (COD) in leachate decreased from 1,800 mg COD/l in the second year of landfill exploitation to 610 mg COD/l in the sixth year of exploitation and increase of ammonia nitrogen concentration from 98 mg N(NH)/l to 364 mg N(NH4) /l was observed. Fluctuation of other indexes (phosphorus, chlorides, calcium, magnesium, sulfate, dissolved solids, heavy metals, BTEX) depended rather on season of the year (seasonal variations) than landfill age. Moreover, the obtained data indicate that despite of short landfill's lifetime some parameters e.g. high pH (on average 7.84), low COD concentration (<2,000 mg COD/l), low BOD(5)/COD ratio (<0.4) and low heavy metal concentration, indicated that the landfill was characterized by methanogenic conditions already at the beginning of the monitoring period.

  10. Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable

    Science.gov Websites

    Natural Gas Landfills Convert Biogas Into Renewable Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Twitter Bookmark

  11. Los Alamos Using Neutrons to Stop Nuclear Smugglers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Favalli, Andrea; Swinhoe, Martyn; Roark, Kevin

    Los Alamos National Laboratory researchers have successfully demonstrated for the first time that laser-generated neutrons can be enlisted as a useful tool in the War on Terror. The international research team used the short-pulse laser at Los Alamos's TRIDENT facility to generate a neutron beam with novel characteristics that interrogated a closed container to confirm the presence and quantity of nuclear material inside. The successful experiment paves the way for creation of a table-top-sized or truck-mounted neutron generator that could be installed at strategic locations worldwide to thwart smugglers trafficking in nuclear materials.

  12. Los Alamos Using Neutrons to Stop Nuclear Smugglers

    ScienceCinema

    Favalli, Andrea; Swinhoe, Martyn; Roark, Kevin

    2018-02-14

    Los Alamos National Laboratory researchers have successfully demonstrated for the first time that laser-generated neutrons can be enlisted as a useful tool in the War on Terror. The international research team used the short-pulse laser at Los Alamos's TRIDENT facility to generate a neutron beam with novel characteristics that interrogated a closed container to confirm the presence and quantity of nuclear material inside. The successful experiment paves the way for creation of a table-top-sized or truck-mounted neutron generator that could be installed at strategic locations worldwide to thwart smugglers trafficking in nuclear materials.

  13. Evaluation of landfill gas emissions from municipal solid waste landfills for the life-cycle analysis of waste-to-energy pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Uisung; Han, Jeongwoo; Wang, Michael

    Various waste-to-energy (WTE) conversion technologies can generate energy products from municipal solid waste (MSW). Accurately evaluating landfill gas (LFG, mainly methane) emissions from base case landfills is critical to conducting a WTE life-cycle analysis (LCA) of their greenhouse gas (GHG) emissions. To reduce uncertainties in estimating LFG, this study investigated key parameters for its generation, based on updated experimental results. These results showed that the updated parameters changed the calculated GHG emissions from landfills significantly depending on waste stream; they resulted in a 65% reduction for wood (from 2412 to 848 t CO 2e/dry t) to a 4% increase formore » food waste (from 2603 to 2708 t CO 2e/dry t). Landfill GHG emissions also vary significantly based on LFG management practices and climate. In LCAs of WTE conversion, generating electricity from LFG helps reduce GHG emissions indirectly by displacing regional electricity. When both active LFG collection and power generation are considered, GHG emissions are 44% less for food waste (from 2708 to 1524 t CO 2e/dry t), relative to conventional MSW landfilling. The method developed and data collected in this study can help improve the assessment of GHG impacts from landfills, which supports transparent decision-making regarding the sustainable treatment, management, and utilization of MSW.« less

  14. Evaluation of landfill gas emissions from municipal solid waste landfills for the life-cycle analysis of waste-to-energy pathways

    DOE PAGES

    Lee, Uisung; Han, Jeongwoo; Wang, Michael

    2017-08-05

    Various waste-to-energy (WTE) conversion technologies can generate energy products from municipal solid waste (MSW). Accurately evaluating landfill gas (LFG, mainly methane) emissions from base case landfills is critical to conducting a WTE life-cycle analysis (LCA) of their greenhouse gas (GHG) emissions. To reduce uncertainties in estimating LFG, this study investigated key parameters for its generation, based on updated experimental results. These results showed that the updated parameters changed the calculated GHG emissions from landfills significantly depending on waste stream; they resulted in a 65% reduction for wood (from 2412 to 848 t CO 2e/dry t) to a 4% increase formore » food waste (from 2603 to 2708 t CO 2e/dry t). Landfill GHG emissions also vary significantly based on LFG management practices and climate. In LCAs of WTE conversion, generating electricity from LFG helps reduce GHG emissions indirectly by displacing regional electricity. When both active LFG collection and power generation are considered, GHG emissions are 44% less for food waste (from 2708 to 1524 t CO 2e/dry t), relative to conventional MSW landfilling. The method developed and data collected in this study can help improve the assessment of GHG impacts from landfills, which supports transparent decision-making regarding the sustainable treatment, management, and utilization of MSW.« less

  15. LANDFILL GAS PRETREATMENT FOR FUEL CELL APPLICATIONS

    EPA Science Inventory

    The paper discusses the U.S. EPA's program, underway at International Fuel Cells Corporation, to demonstrate landfill methane control and the fuel cell energy recovery concept. In this program, two critical issues are being addressed: (1) a landfill gas cleanup method that would ...

  16. Public Infrastructure Disparities and the Microbiological and Chemical Safety of Drinking and Surface Water Supplies in a Community Bordering a Landfill

    PubMed Central

    Heaney, Christopher D.; Wing, Steve; Wilson, Sacoby M.; Campbell, Robert L.; Caldwell, David; Hopkins, Barbara; O’Shea, Shannon; Yeatts, Karin

    2015-01-01

    The historically African-American Rogers-Eubanks community straddles unincorporated boundaries of two municipalities in Orange County, North Carolina, and predates a regional landfill sited along its border in 1972. Community members from the Rogers-Eubanks Neighborhood Association (RENA), concerned about deterioration of private wells and septic systems and a lack of public drinking water and sewer services, implemented a community-driven research partnership with university scientists and community-based organizations to investigate water and sewer infrastructure disparities and the safety of drinking and surface water supplies. RENA drafted memoranda of agreement with partners and trained community monitors to collect data (inventory households, map water and sewer infrastructure, administer household water and sewer infrastructure surveys, and collect drinking and surface water samples). Respondents to the surveys reported pervasive signs of well vulnerability (100%) and septic system failure (68%). Each 100-m increase in distance from the landfill was associated with a 600 most probable number/100 mL decrease in enterococci concentrations in surface water (95% confidence interval = −1106, −93). Pervasive private household water and sewer infrastructure failures and poor water quality were identified in this community bordering a regional landfill, providing evidence of a need for improved water and sanitation services. PMID:23858663

  17. Assessment of groundwater contamination by landfill leachate: a case in México.

    PubMed

    Reyes-López, Jaime A; Ramírez-Hernández, Jorge; Lázaro-Mancilla, Octavio; Carreón-Diazconti, Concepción; Garrido, Miguel Martín-Loeches

    2008-01-01

    In México, uncontrolled landfills or open-dumps are regularly used as "sanitary landfills". Interactions between landfills/open-dumps and shallow unconfined aquifers have been widely documented. Therefore, evidence showing the occurrence of aquifer contamination may encourage Mexican decision makers to enforce environmental regulations. Traditional methods such as chemical analysis of groundwater, hydrological descriptions, and geophysical studies including vertical electrical sounding (VES) and ground penetrating radar (GPR) were used for the identification and delineation of a contaminant plume in a shallow aquifer. The Guadalupe Victoria landfill located in Mexicali is used as a model study site. This landfill has a shallow aquifer of approximately 1m deep and constituted by silty sandy soil that may favor the transport of landfill leachate. Geophysical studies show a landfill leachate contaminant plume that extends for 20 and 40 m from the SE and NW edges of the landfill, respectively. However, the zone of the leachate's influence stretches for approximately 80 m on both sides of the landfill. Geochemical data corroborates the effects of landfill leachate on groundwater.

  18. COMMERCIAL-SCALE AEROBIC-ANAEROBIC BIOREACTOR LANDFILL OPERATIONS

    EPA Science Inventory

    A sequential aerobic-anaerobic treatment system has been applied at a commercial scale (3,000 ton per day) municipal solid waste landfill in Kentucky, USA since 2001. In this system, the uppermost layer of landfilled waste is aerated and liquid waste including leachate, surface w...

  19. Field Water Balance of Landfill Final Covers

    EPA Science Inventory

    Landfill covers are critical to waste containment, yet field performance of specific cover designs has not been well documented and seldom been compared in side-by-side testing. A study was conducted to assess the ability of landfill final covers to control percolation into unde...

  20. BIOREACTOR LANDFILL DESIGN

    EPA Science Inventory

    Modern landfill design entails many elements including foundations, liner systems, leachate collection systems, stormwater control systems, slope stability considerations, leachate management systems, gas extraction systems, and capping and closure. The use of bioreactor technolo...

  1. Digestate application in landfill bioreactors to remove nitrogen of old landfill leachate.

    PubMed

    Peng, Wei; Pivato, Alberto; Lavagnolo, Maria Cristina; Raga, Roberto

    2018-04-01

    Anaerobic digestion of organics is one of the most used solution to gain renewable energy from waste and the final product, the digestate, still rich in putrescible components and nutrients, is mainly considered for reutilization (in land use) as a bio-fertilizer or a compost after its treatment. Alternative approaches are recommended in situations where conventional digestate management practices are not suitable. Aim of this study was to develop an alternative option to use digestate to enhance nitrified leachate treatment through a digestate layer in a landfill bioreactor. Two identical landfill columns (Ra and Rb) filled with the same solid digestate were set and nitrified leachate was used as influent. Ra ceased after 75 day's operation to get solid samples and calculate the C/N mass balance while Rb was operated for 132 days. Every two or three days, effluent from the columns were discarded and the columns were refilled with nitrified leachate (average N-NO 3 - concentration = 1,438 mg-N/L). N-NO 3 - removal efficiency of 94.7% and N-NO 3 - removal capacity of 19.2 mg N-NO 3 - /gTS-digestate were achieved after 75 days operation in Ra. Prolonging the operation to 132 days in Rb, N-NO 3 - removal efficiency and N-NO 3 - removal capacity were 72.5% and 33.1 mg N-NO 3 - /gTS-digestate, respectively. The experimental analysis of the process suggested that 85.4% of nitrate removal could be attributed to denitrification while the contribution percentage of adsorption was 14.6%. These results suggest that those solid digestates not for agricultural or land use, could be used in landfill bioreactors to remove the nitrogen from old landfill leachate. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Nitrogen Removal from Landfill Leachate by Microalgae.

    PubMed

    Pereira, Sérgio F L; Gonçalves, Ana L; Moreira, Francisca C; Silva, Tânia F C V; Vilar, Vítor J P; Pires, José C M

    2016-11-17

    Landfill leachates result from the degradation of solid residues in sanitary landfills, thus presenting a high variability in terms of composition. Normally, these effluents are characterized by high ammoniacal-nitrogen (N-NH₄⁺) concentrations, high chemical oxygen demands and low phosphorus concentrations. The development of effective treatment strategies becomes difficult, posing a serious problem to the environment. Phycoremediation appears to be a suitable alternative for the treatment of landfill leachates. In this study, the potential of Chlorella vulgaris for biomass production and nutrients (mainly nitrogen and phosphorus) removal from different compositions of a landfill leachate was evaluated. Since microalgae also require phosphorus for their growth, different loads of this nutrient were evaluated, giving the following N:P ratios: 12:1, 23:1 and 35:1. The results have shown that C. vulgaris was able to grow in the different leachate compositions assessed. However, microalgal growth was higher in the cultures presenting the lowest N-NH₄⁺ concentration. In terms of nutrients uptake, an effective removal of N-NH₄⁺ and phosphorus was observed in all the experiments, especially in those supplied with phosphorus. Nevertheless, N-NO₃ - removal was considered almost negligible. These promising results constitute important findings in the development of a bioremediation technology for the treatment of landfill leachates.

  3. Nitrogen Removal from Landfill Leachate by Microalgae

    PubMed Central

    Pereira, Sérgio F. L.; Gonçalves, Ana L.; Moreira, Francisca C.; Silva, Tânia F. C. V.; Vilar, Vítor J. P.; Pires, José C. M.

    2016-01-01

    Landfill leachates result from the degradation of solid residues in sanitary landfills, thus presenting a high variability in terms of composition. Normally, these effluents are characterized by high ammoniacal-nitrogen (N–NH4+) concentrations, high chemical oxygen demands and low phosphorus concentrations. The development of effective treatment strategies becomes difficult, posing a serious problem to the environment. Phycoremediation appears to be a suitable alternative for the treatment of landfill leachates. In this study, the potential of Chlorella vulgaris for biomass production and nutrients (mainly nitrogen and phosphorus) removal from different compositions of a landfill leachate was evaluated. Since microalgae also require phosphorus for their growth, different loads of this nutrient were evaluated, giving the following N:P ratios: 12:1, 23:1 and 35:1. The results have shown that C. vulgaris was able to grow in the different leachate compositions assessed. However, microalgal growth was higher in the cultures presenting the lowest N–NH4+ concentration. In terms of nutrients uptake, an effective removal of N–NH4+ and phosphorus was observed in all the experiments, especially in those supplied with phosphorus. Nevertheless, N–NO3− removal was considered almost negligible. These promising results constitute important findings in the development of a bioremediation technology for the treatment of landfill leachates. PMID:27869676

  4. Appendix E: Research papers. Analysis of landfills with historic airphotos

    NASA Technical Reports Server (NTRS)

    Liang, T.; Philipson, W. R. (Principal Investigator); Erb, T. L.; Teng, W. L.

    1980-01-01

    The nature of landfill-related information that can be derived from existing, or historic, aerial photographs, is reviewed. This information can be used for conducting temporal assessments of landfill existence, land use and land cover, and the physical environment. As such, analysis of low cost, readily available aerial photographs can provide important, objective input to landfill inventories, assessing contamination or health hazards, planning corrective measures, planning waste collection and facilities, and developing on inactive landfills.

  5. U.S. ENVIRONMENTAL PROTECTION AGENCY'S LANDFILL GAS EMISSION MODEL (LANDGEM)

    EPA Science Inventory

    The paper discusses EPA's available software for estimating landfill gas emissions. This software is based on a first-order decomposition rate equation using empirical data from U.S. landfills. The software provides a relatively simple approach to estimating landfill gas emissi...

  6. LEACHATE NITROGEN CONCENTRATIONS AND BACTERIAL NUMBERS FROM TWO BIOREACTOR LANDFILLS

    EPA Science Inventory

    The U.S. EPA and Waste Management Inc. have entered into a cooperative research and development agreement (CRADA) to study landfills operated as bioreactors. Two different landfill bioreactor configurations are currently being tested at the Outer Loop landfill in Louisville, KY...

  7. Comparing field investigations with laboratory models to predict landfill leachate emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fellner, Johann; Doeberl, Gernot; Allgaier, Gerhard

    2009-06-15

    Investigations into laboratory reactors and landfills are used for simulating and predicting emissions from municipal solid waste landfills. We examined water flow and solute transport through the same waste body for different volumetric scales (laboratory experiment: 0.08 m{sup 3}, landfill: 80,000 m{sup 3}), and assessed the differences in water flow and leachate emissions of chloride, total organic carbon and Kjeldahl nitrogen. The results indicate that, due to preferential pathways, the flow of water in field-scale landfills is less uniform than in laboratory reactors. Based on tracer experiments, it can be discerned that in laboratory-scale experiments around 40% of pore watermore » participates in advective solute transport, whereas this fraction amounts to less than 0.2% in the investigated full-scale landfill. Consequences of the difference in water flow and moisture distribution are: (1) leachate emissions from full-scale landfills decrease faster than predicted by laboratory experiments, and (2) the stock of materials remaining in the landfill body, and thus the long-term emission potential, is likely to be underestimated by laboratory landfill simulations.« less

  8. Design of landfill daily cells.

    PubMed

    Panagiotakopoulos, D; Dokas, I

    2001-08-01

    The objective of this paper is to study the behaviour of the landfill soil-to-refuse (S/R) ratio when size, geometry and operating parameters of the daily cell vary over realistic ranges. A simple procedure is presented (1) for calculating the cell parameters values which minimise the S/R ratio and (2) for studying the sensitivity of this minimum S/R ratio to variations in cell size, final refuse density, working face length, lift height and cover thickness. In countries where daily soil cover is required, savings in landfill space could be realised following this procedure. The sensitivity of minimum S/R to variations in cell dimensions decreases with cell size. Working face length and lift height affect the S/R ratio significantly. This procedure also offers the engineer an additional tool for comparing one large daily cell with two or more smaller ones, at two different working faces within the same landfill.

  9. Landfilling of waste: accounting of greenhouse gases and global warming contributions.

    PubMed

    Manfredi, Simone; Tonini, Davide; Christensen, Thomas H; Scharff, Heijo

    2009-11-01

    Accounting of greenhouse gas (GHG) emissions from waste landfilling is summarized with the focus on processes and technical data for a number of different landfilling technologies: open dump (which was included as the worst-case-scenario), conventional landfills with flares and with energy recovery, and landfills receiving low-organic-carbon waste. The results showed that direct emissions of GHG from the landfill systems (primarily dispersive release of methane) are the major contributions to the GHG accounting, up to about 1000 kg CO(2)-eq. tonne( -1) for the open dump, 300 kg CO(2)-eq. tonne( -1) for conventional landfilling of mixed waste and 70 kg CO(2)-eq. tonne(-1) for low-organic-carbon waste landfills. The load caused by indirect, upstream emissions from provision of energy and materials to the landfill was low, here estimated to be up to 16 kg CO(2)-eq. tonne(-1). On the other hand, utilization of landfill gas for electricity generation contributed to major savings, in most cases, corresponding to about half of the load caused by direct GHG emission from the landfill. However, this saving can vary significantly depending on what the generated electricity substitutes for. Significant amounts of biogenic carbon may still be stored within the landfill body after 100 years, which here is counted as a saved GHG emission. With respect to landfilling of mixed waste with energy recovery, the net, average GHG accounting ranged from about -70 to 30 kg CO(2)-eq. tonne(- 1), obtained by summing the direct and indirect (upstream and downstream) emissions and accounting for stored biogenic carbon as a saving. However, if binding of biogenic carbon was not accounted for, the overall GHG load would be in the range of 60 to 300 kg CO(2)-eq. tonne( -1). This paper clearly shows that electricity generation as well as accounting of stored biogenic carbon are crucial to the accounting of GHG of waste landfilling.

  10. Enhanced Landfill Mining case study: Innovative separation techniques

    NASA Astrophysics Data System (ADS)

    Cuyvers, Lars; Moerenhout, Tim; Helsen, Stefan; Van de Wiele, Katrien; Behets, Tom; Umans, Luk; Wille, Eddy

    2014-05-01

    In 2011, a corporate vision on Enhanced Landfill Mining (ELFM)1 was approved by the OVAM Board of directors, which resulted in an operational programme over the period 2011-2015. OVAM (Public Waste Agency of Flanders) is the competent authority in charge of waste, Sustainable Materials Management (SMM) and contaminated soil management in Flanders. The introduction of the ELFM concept needs to be related with the concept of SMM and the broader shift to a circular economy. Within the concept of ELFM, landfills are no longer considered to be a final and static situation, but a dynamic part of the materials cycle. The main goal of this research programme is to develop a comprehensive policy on resource management to deal with the issue of former landfills. In order to investigate the opportunities of ELFM, the OVAM is applying a three step approach including mapping, surveying and mining of these former landfills. As a result of the mapping part over 2,000 landfill sites, that will need to be dealt with, were revealed. The valorisation potential of ELFM could be assigned to different goals, according to the R³P-concept : Recycling of Materials, Recovery of Energy, Reclamation of Land and Protection of drinking water supply. . On behalf of the OVAM, ECOREM was assigned to follow-up a pilot case executed on a former landfill, located in Zuienkerke, Flanders. Within this case study some technical tests were carried out on the excavated waste material to investigate the possibilities for a waste to resource conversion. The performance of both on site and off site techniques were evaluated. These testings also contribute to the mapping part of OVAM's research programme on ELFM and reveal more information on the composition of former landfills dating from different era's. In order to recover as many materials as possible, five contractors were assigned to perform separation tests on the bulk material from the Zuienkerke landfill. All used techniques were described

  11. Permitting of Landfill Bioreactor Operations: Ten Years after ...

    EPA Pesticide Factsheets

    Prior to promulgation of the Rule, there were approximately 20 full-scale bioreactor projects in North America, including one in Canada. Of these, six were permitted by EPA (four Project XL sites and two projects listed separately under a cooperative research agreement at the Outer Loop Landfill in Kentucky). In March 2014, there were about 40 bioreactor projects reported, including 30 active RD&D projects in 11 approved states and one project on tribal lands. Wisconsin features the largest number of projects at 13, due primarily to the fact that landfill owners in the state must either eliminate landfill disposal of biodegradable materials or to achieve the complete stabilization of deposited organic waste at MSW landfills within 40 years after closure. Most landfill operators have selected a bioreactor approach to attempt to achieve the latter goal. In summary, only 16 of 50 (32%) states have currently adopted the Rule, meaning that development of RD&D permitting procedures that are consistent with EPA’s requirements has generally not occurred. The predominant single reason cited for not adopting the Rule was lack of interest amongst landfill facilities in the state. Subtitle D and its state derivatives already allow leachate recirculation over prescriptive (i.e., minimum technology) liner systems, which is often the primary goal of site operators seeking to control leachate treatment costs. Other reasons related to concerns over increased time, cost

  12. Ground-water flow and quality beneath sewage-sludge lagoons, and a comparison with the ground-water quality beneath a sludge-amended landfill, Marion County, Indiana

    USGS Publications Warehouse

    Bobay, K.E.

    1988-01-01

    The groundwater beneath eight sewage sludge lagoons, was studied to characterize the flow regime and to determine whether leachate had infiltrated into the glacio-fluvial sediments. Groundwater quality beneath the lagoons was compared with the groundwater quality beneath a landfill where sludge had been applied. The lagoons and landfills overlie outwash sand and gravel deposits separated by discontinuous clay layers. Shallow groundwater flows away from the lagoons and discharges into the White River. Deep groundwater discharges to the White River and flows southwest beneath Eagle Creek. After an accumulation of at least 2 inches of precipitation during 1 week, groundwater flow is temporarily reversed in the shallow aquifer, and all deep flow is along a relatively steep hydraulic gradient to the southwest. The groundwater is predominantly a calcium bicarbonate type, although ammonium accounts for more than 30% of the total cations in water from three wells. Concentrations of sodium, chloride, sulfate, iron, arsenic, boron, chemical oxygen demand, total dissolved solids, and methylene-blue-active substances indicate the presence of leachate in the groundwater. Concentrations of cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc were less than detection limits. The concentrations of 16 of 19 constituents or properties of groundwater beneath the lagoons are statistically different than groundwater beneath the landfill at the 0.05 level of significance. Only pH and concentrations of dissolved oxygen and bromide are higher in groundwater beneath the landfill than beneath the lagoons. 

  13. Flaws found in Los Alamos safety procedures

    NASA Astrophysics Data System (ADS)

    Gwynne, Peter

    2017-12-01

    A US government panel on nuclear safety has discovered a series of safety issues at the Los Alamos National Laboratory, concluding that government oversight of the lab's emergency preparation has been ineffective.

  14. 75 FR 72829 - Los Alamos Historical Document Retrieval and Assessment (LAHDRA) Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-26

    ... Historical Document Retrieval and Assessment (LAHDRA) Project The Centers for Disease Control and Prevention... release of the Final Report of the Los Alamos Historical Document Retrieval and Assessment (LAHDRA)Project... information about historical chemical or radionuclide releases from facilities at the Los Alamos National...

  15. Investigating landfill leachate as a source of trace organic pollutants.

    PubMed

    Clarke, Bradley O; Anumol, Tarun; Barlaz, Morton; Snyder, Shane A

    2015-05-01

    Landfill leachate samples (n=11) were collected from five USA municipal solid waste (MSW) landfills and analyzed for ten trace organic pollutants that are commonly detected in surface and municipal wastewater effluents (viz., carbamazepine, DEET, fluoxetine, gemfibrozil, PFOA, PFOS, primidone, sucralose, sulfamethoxazole and trimethoprim). Carbamazepine, DEET, PFOA and primidone were detected in all leachate samples analyzed and gemfibrozil was detected in samples from four of the five-landfill sites. The contaminants found in the highest concentrations were DEET (6900-143000 ng L(-1)) and sucralose (<10-621000 ng L(-1)). Several compounds were not detected (fluoxetine) or detected infrequently (sulfamethoxazole, trimethoprim and PFOS). Using the average mass of DEET in leachate amongst the five landfills and scaling the mass release from the five test landfills to the USA population of landfills, an order of magnitude estimate is that over 10000 kg DEET yr(-1) may be released in leachate. Some pharmaceuticals have similar annual mean discharges to one another, with the estimated annual discharge of carbamazepine, gemfibrozil, primidone equating to 53, 151 and 128 kg year(-1). To the authors knowledge, this is the first time that primidone has been included in a landfill leachate study. While the estimates developed in this study are order of magnitude, the values do suggest the need for further research to better quantify the amount of chemicals sent to wastewater treatment facilities with landfill leachate, potential impacts on treatment processes and the significance of landfill leachate as a source of surface water contamination. Copyright © 2015. Published by Elsevier Ltd.

  16. FIRST ORDER KINETIC GAS GENERATION MODEL PARAMETERS FOR WET LANDFILLS

    EPA Science Inventory

    Landfill gas is produced as a result of a sequence of physical, chemical, and biological processes occurring within an anaerobic landfill. Landfill operators, energy recovery project owners, regulators, and energy users need to be able to project the volume of gas produced and re...

  17. A physicists guide to The Los Alamos Primer

    NASA Astrophysics Data System (ADS)

    Reed, B. Cameron

    2016-11-01

    In April 1943, a group of scientists at the newly established Los Alamos Laboratory were given a series of lectures by Robert Serber on what was then known of the physics and engineering issues involved in developing fission bombs. Serber’s lectures were recorded in a 24 page report titled The Los Alamos Primer, which was subsequently declassified and published in book form. This paper describes the background to the Primer and analyzes the physics contained in its 22 sections. The motivation for this paper is to provide a firm foundation of the background and contents of the Primer for physicists interested in the Manhattan Project and nuclear weapons.

  18. Trends in sustainable landfilling in Malaysia, a developing country.

    PubMed

    Fauziah, S H; Agamuthu, P

    2012-07-01

    In Malaysia, landfills are being filled up rapidly due to the current daily generation of approximately 30,000 tonnes of municipal solid waste. This situation creates the crucial need for improved landfilling practices, as sustainable landfilling technology is yet to be achieved here. The objective of this paper is to identify and evaluate the development and trends in landfilling practices in Malaysia. In 1970, the disposal sites in Malaysia were small and prevailing waste disposal practices was mere open-dumping. This network of relatively small dumps, typically located close to population centres, was considered acceptable for a relatively low population of 10 million in Malaysia. In the 1980s, a national programme was developed to manage municipal and industrial wastes more systematically and to reduce adverse environmental impacts. The early 1990s saw the privatization of waste management in many parts of Malaysia, and the establishment of the first sanitary landfills for MSW and an engineered landfill (called 'secure landfill' in Malaysia) for hazardous waste. A public uproar in 2007 due to contamination of a drinking water source from improper landfilling practices led to some significant changes in the government's policy regarding the country's waste management strategy. Parliament passed the Solid Waste and Public Cleansing Management (SWPCM) Act 2007 in August 2007. Even though the Act is yet to be implemented, the government has taken big steps to improve waste management system further. The future of the waste management in Malaysia seems somewhat brighter with a clear waste management policy in place. There is now a foundation upon which to build a sound and sustainble waste management and disposal system in Malaysia.

  19. Occurrence and prevalence of antibiotic resistance in landfill leachate.

    PubMed

    Wang, Yangqing; Tang, Wei; Qiao, Jing; Song, Liyan

    2015-08-01

    Antibiotic resistance (AR) is extensively present in various environments, posing emerging threat to public and environmental health. Landfill receives unused and unwanted antibiotics through household waste and AR within waste (e.g., activated sludge and illegal clinical waste) and is supposed to serve as an important AR reservoir. In this study, we used culture-dependent methods and quantitative molecular techniques to detect and quantify antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in 12 landfill leachate samples from six geographic different landfills, China. Five tested ARGs (tetO, tetW, bla(TEM), sulI, and sulII) and seven kinds of antibiotic-resistant heterotrophic ARB were extensively detected in all samples, demonstrating their occurrence in landfill. The detected high ratio (10(-2) to 10(-5)) of ARGs to 16S ribosomal RNA (rRNA) gene copies implied that ARGs are prevalent in landfill. Correlation analysis showed that ARGs (tetO, tetW, sulI, and sulII) significantly correlated to ambient bacterial 16S rRNA gene copies, suggesting that the abundance of bacteria in landfill leachate may play an important role in the horizontal spread of ARGs.

  20. 76 FR 45552 - Proposed Administrative Settlement Agreement Under Section 122(h) of the Comprehensive...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-29

    ... Landfill and Development Superfund Site, Located in Burlington County, NJ AGENCY: Environmental Protection... provides for Settling Parties' payment of certain past costs incurred at the Landfill and Development, Inc. (``Landfill and Development'') Superfund Site, located in Burlington County, New Jersey (``Site''). The...

  1. CCA-treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW landfill disposal.

    PubMed

    Jambeck, Jenna; Weitz, Keith; Solo-Gabriele, Helena; Townsend, Timothy; Thorneloe, Susan

    2007-01-01

    Chromated copper arsenate (CCA)-treated wood is a preservative treated wood construction product that grew in use in the 1970s for both residential and industrial applications. Although some countries have banned the use of the product for some applications, others have not, and the product continues to enter the waste stream from construction, demolition and remodeling projects. CCA-treated wood as a solid waste is managed in various ways throughout the world. In the US, CCA-treated wood is disposed primarily within landfills; however some of the wood is combusted in waste-to-energy (WTE) facilities. In other countries, the predominant disposal option for wood, sometimes including CCA-treated wood, is combustion for the production of energy. This paper presents an estimate of the quantity of CCA-treated wood entering the disposal stream in the US, as well as an examination of the trade-offs between landfilling and WTE combustion of CCA-treated wood through a life-cycle assessment and decision support tool (MSW DST). Based upon production statistics, the estimated life span and the phaseout of CCA-treated wood, recent disposal projections estimate the peak US disposal rate to occur in 2008, at 9.7 million m(3). CCA-treated wood, when disposed with construction and demolition (C&D) debris and municipal solid waste (MSW), has been found to increase arsenic and chromium concentrations in leachate. For this reason, and because MSW landfills are lined, MSW landfills have been recommended as a preferred disposal option over unlined C&D debris landfills. Between landfilling and WTE for the same mass of CCA-treated wood, WTE is more expensive (nearly twice the cost), but when operated in accordance with US Environmental Protection Agency (US EPA) regulations, it produces energy and does not emit fossil carbon emissions. If the wood is managed via WTE, less landfill area is required, which could be an influential trade-off in some countries. Although metals are concentrated

  2. Post-closure care of engineered municipal solid waste landfills.

    PubMed

    Bagchi, Amalendu; Bhattacharya, Abhik

    2015-03-01

    Post-closure care is divided into perpetual care (PPC) and long-term care (LTC). Guidelines for post-closure care and associated costs are important for engineered municipal solid waste (MSW) landfills. In many states in the USA, landfill owners are required to set aside funds for 30-40 years of LTC. Currently there are no guidelines for PPC, which is also required. We undertook a pilot study, using two landfills (note: average landfill capacity 2.5 million MT MSW waste) in Wisconsin, to establish an approach for estimating the LTC period using field data and PPC funding need. Statistical analysis of time versus concentration data of selected leachate parameters showed that the concentration of most parameters is expected to be at or below the preventive action limit of groundwater and leachate volume will be very low, within 40 years of the LTC period. The gas extraction system may need to be continued for more than 100 years. Due to lack of data no conclusion could be made regarding adequacy of the LTC period for the groundwater monitoring system. The final cover must be maintained for perpetuity. The pilot study shows that although technology is available, the financial liability of maintaining a 'Dry Tomb' design for landfills is significantly higher than commonly perceived. The paper will help landfill professionals to estimate realistic post-closure funding and to develop field-based policies for LTC and PPC of engineered MSW landfills. © The Author(s) 2015.

  3. Landfill mining: Case study of a successful metals recovery project.

    PubMed

    Wagner, Travis P; Raymond, Tom

    2015-11-01

    Worldwide, the generation of municipal solid waste (MSW) is increasing and landfills continue to be the dominant method for managing solid waste. Because of inadequate diversion of reusable and recoverable materials, MSW landfills continue to receive significant quantities of recyclable materials, especially metals. The economic value of landfilled metals is significant, fostering interest worldwide in recovering the landfilled metals through mining. However, economically viable landfill mining for metals has been elusive due to multiple barriers including technological challenges and high costs of processing waste. The objective of this article is to present a case study of an economically successful landfill mining operation specifically to recover metals. The mining operation was at an ashfill, which serves a MSW waste-to-energy facility. Landfill mining operations began in November 2011. Between December 2011 and March 2015, 34,352 Mt of ferrous and non-ferrous metals were recovered and shipped for recycling, which consisted of metals >125 mm (5.2%), 50-125 mm (85.9%), <50mm (3.4%), zorba (4.6%), and mixed products (0.8%). The conservative estimated value of the recovered metal was $7.42 million. Mining also increased the landfill's airspace by 10,194 m(3) extending the life of the ashfill with an estimated economic value of $267,000. The estimated per-Mt cost for the extraction of metal was $158. This case study demonstrates that ashfills can be profitably mined for metals without financial support from government. Although there are comparatively few ashfills, the results and experience obtained from this case study can help foster further research into the potential recovery of metals from raw, landfilled MSW. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Environmental surveillance at Los Alamos during 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-07-01

    This report describes environmental monitoring activities at Los Alamos National Laboratory for 1994. Data were collected to assess external penetrating radiation, airborne emissions, liquid effluents, radioactivity of environmental materials and food stuffs, and environmental compliance.

  5. In situ nitrogen removal from leachate by bioreactor landfill with limited aeration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao Liming; He Pinjing; Li Guojian

    2008-07-01

    The feasibility of simultaneous nitrification and denitrification in a bioreactor landfill with limited aeration was assessed. Three column reactors, simulating bioreactor landfill operations under anaerobic condition (as reference), intermittent forced aeration and enhanced natural aeration were hence established, where aerated columns passed through two phases, i.e., fresh landfill and well-decomposed landfill. The experimental results show that limited aeration decreased nitrogen loadings of leachate distinctly in the fresh landfill. In the well-decomposed landfill, the NH{sub 4}{sup +}-N of the input leachate could be nitrified completely in the aerated landfill columns. The nitrifying loadings of the column cross section reached 7.9 gmore » N/m{sup 2} d and 16.9 g N/m{sup 2} d in the simulated landfill columns of intermittent forced aeration and enhanced natural aeration, respectively. The denitrification was influenced by oxygen distribution in the landfill column. Intermittent existence of oxygen in the landfill with the intermittent forced aeration was favorable to denitrify the NO{sub 2}{sup -}-N and NO{sub 3}{sup -}-N, indicated by the high denitrification efficiency (>99%) under the condition of BOD{sub 5}/TN of more than 5.4 in leachate; locally persistent existence of oxygen in the landfill with enhanced natural aeration could limit the denitrification, indicated by relatively low denitrification efficiency of about 75% even when the BOD{sub 5}/TN in leachate had an average of 7.1.« less

  6. Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers

    Science.gov Websites

    Refuse Vehicles Renewable Natural Gas From Landfill Powers Refuse Vehicles to someone by E-mail Share Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Facebook Tweet about Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse

  7. Modelling of the Installed Capacity of Landfill Power Stations

    NASA Astrophysics Data System (ADS)

    Blumberga, D.; Kuplais, Ģ.; Veidenbergs, I.; Dāce, E.; Gušča, J.

    2009-01-01

    More and more landfills are being developed, in which biogas is produced and accumulated, which can be used for electricity production. Currently, due to technological reasons, electricity generation from biogas has a very low level of efficiency. In order to develop this type of energy production, it is important to find answers to various engineering, economic and ecological issues. The paper outlines the results obtained by creating a model for the calculations of electricity production in landfill power stations and by testing it in the municipal solid waste landfill "Daibe". The algorithm of the mathematical model for the operation of a biogas power station consists of four main modules: • initial data module, • engineering calculation module, • tariff calculation module, and • climate calculation module. As a result, the optimum capacity of the power station in the landfill "Daibe" is determined, as well as the analysis of the landfill's economic data and cost-effectiveness is conducted.

  8. Superfund Record of Decision (EPA Region 5): Northside Sanitary Landfill (Enviro-Chem), Zionsville, IN. (First remedial action), (Amendment), June 1991. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Northside Sanitary Landfill site is a hazardous and solid waste disposal facility in Boone County, Indiana. Adjacent to the Northside Sanitary Landfill (NSL) site is another Superfund site, Enviro-Chem which, prior to the Record of Decision (ROD) amendment, was to be remediated in a combined remedy for both sites. Land use in the area is agricultural to the south and east, and residential to the north and west. The ROD amendment provides a comprehensive remedy and addresses both source control and ground water remediation. The primary contaminants of concern affecting the soil and ground water are VOCs including benzene,more » PCE, TCE, and toluene; other organics including phenols; metals including arsenic, chromium, and lead; and oils. The amended remedial action for the site includes constructing a pipeline to pump ground water and leachate offsite to the city sewer system at the city wastewater treatment plant and constructing a hydraulic isolation wall system.« less

  9. Quantifying Uncontrolled Air Emissions from Two Florida Landfills

    EPA Science Inventory

    Landfill gas emissions, if left uncontrolled, contribute to air toxics, climate change, trospospheric ozone, and urban smog. Measuring emissions from landfills presents unique challenges due to the large and variable source area, spatial and temporal variability of emissions, and...

  10. Management of landfill leachate: The legacy of European Union Directives.

    PubMed

    Brennan, R B; Healy, M G; Morrison, L; Hynes, S; Norton, D; Clifford, E

    2016-09-01

    Landfill leachate is the product of water that has percolated through waste deposits and contains various pollutants, which necessitate effective treatment before it can be released into the environment. In the last 30years, there have been significant changes in landfill management practices in response to European Union (EU) Directives, which have led to changes in leachate composition, volumes produced and treatability. In this study, historic landfill data, combined with leachate characterisation data, were used to determine the impacts of EU Directives on landfill leachate management, composition and treatability. Inhibitory compounds including ammonium (NH4-N), cyanide, chromium, nickel and zinc, were present in young leachate at levels that may inhibit ammonium oxidising bacteria, while arsenic, copper and silver were present in young and intermediate age leachate at concentrations above inhibitory thresholds. In addition, the results of this study show that while young landfills produce less than 50% of total leachate by volume in the Republic of Ireland, they account for 70% of total annual leachate chemical oxygen demand (COD) load and approximately 80% of total 5-day biochemical oxygen demand (BOD5) and NH4-N loads. These results show that there has been a decrease in the volume of leachate produced per tonne of waste landfilled since enactment of the Landfill Directive, with a trend towards increased leachate strength (particularly COD and BOD5) during the initial five years of landfill operation. These changes may be attributed to changes in landfill management practices following the implementation of the Landfill Directive. However, this study did not demonstrate the impact of decreasing inputs of biodegradable municipal waste on leachate composition. Increasingly stringent wastewater treatment plant (WWTP) emission limit values represent a significant threat to the sustainability of co-treatment of leachate with municipal wastewater. In addition

  11. Fungal and enzymatic treatment of mature municipal landfill leachate.

    PubMed

    Kalčíková, Gabriela; Babič, Janja; Pavko, Aleksander; Gotvajn, Andreja Žgajnar

    2014-04-01

    The aim of our study was to evaluate biotreatability of mature municipal landfill leachate by using white rot fungus and its extracellular enzymes. Leachates were collected in one active and one closed regional municipal landfill. Both chosen landfills were operating for many years and the leachates generated there were polluted by organic and inorganic compounds. The white rot fungus Dichomitus squalens was able to grow in the mature leachate from the closed landfill and as it utilizes present organic matter as a source of carbon, the results were showing 60% of DOC and COD removal and decreased toxicity to the bacterium Aliivibrio fischeri. On the other hand, growth of the fungus was inhibited in the presence of the leachate from the active landfill. However, when the leachate was introduced to a crude enzyme filtrate containing extracellular ligninolytic enzymes, removal levels of COD and DOC reached 61% and 44%, respectively. Furthermore, the treatment led to detoxification of the leachate to the bacterium Aliivibrio fischeri and to reduction of toxicity (42%) to the plant Sinapis alba. Fungal and enzymatic treatment seems to be a promising biological approach for treatment of mature landfill leachates and their application should be further investigated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Water-quality, discharge, and biologic data for streams and springs in the Highland Rim Escarpment of southeastern Bedford County, Tennessee

    USGS Publications Warehouse

    Hollyday, E.F.; Byl, T.D.

    1995-01-01

    From November 1994 through April 1995, streams and springs in 9 drainage basins were observed and sampled at 176 sites to obtain information on environmental quality near the Quail Hollow landfill, Bedford County, Tennessee. Reconnaissance data were collected to establish a regional pattern. Water samples from 26 seepage sites were analyzed to determine water-quality conditions. During the reconnaissance, conductivity ranged regionally from 17 to 617 microsiemens per centimeter. The greatest biologic diversity was in Bennett Branch, followed by Daniel Hollow, Prince, Powell and Renegar, County Line, and Anthony Branches, Hurricane Creek, and Anderton Branch, respectively. In general, conductivity was less than 50 microsiemens per centimeter at and upstream of the Chattanooga Shale but increased downstream to between 200 and 300 microsiemens per centimeter. Of the constituents and properties analyzed, only pH and four metals at six sites had values that were not within the limits set by the State of Tennessee for drinking water. Chloride and dissolved manganese concentrations were highest for a spring and a seep adjacent to the landfill. Scans indicated the presence of about 37 unidentified organic compounds at these same two sites.

  13. Bioreactor Landfill Research and Demonstration Project Northern Oaks Landfill, Harrison, MI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xiando; Voice, Thomas; and Hashsham, Syed A.

    2006-08-29

    A bioreactor landfill cell with 1.2-acre footprint was constructed, filled, operated, and monitored at Northern Oaks Recycling and Disposal Facility (NORDF) at Harrison, MI. With a filled volume of 74,239 cubic yards, the cell contained approximately 35,317 tons of municipal solid waste (MSW) and 20,777 tons of cover soil. It was laid on the slope of an existing cell but separated by a geosynthetic membrane liner. After the cell reached a design height of 60 feet, it was covered with a geosynthetic membrane cap. A three-dimensional monitoring system to collect data at 48 different locations was designed and installed duringmore » the construction phase of the bioreactor cell. Each location had a cluster of monitoring devices consisting of a probe to monitor moisture and temperature, a leachate collection basin, and a gas sampling port. An increase in moisture content of the MSW in the bioreactor cell was achieved by pumping leachate collected on-site from various other cells, as well as recirculation of leachate from the bioreactor landfill cell itself. Three types of leachate injection systems were evaluated in this bioreactor cell for their efficacy to distribute pumped leachate uniformly: a leachate injection pipe buried in a 6-ft wide horizontal stone mound, a 15-ft wide geocomposite drainage layer, and a 60-ft wide geocomposite drainage layer. All leachate injection systems were installed on top of the compacted waste surface. The distribution of water and resulting MSW moisture content throughout the bioreactor cell was found to be similar for the three designs. Water coming into and leaving the cell (leachate pumped in, precipitation, snow, evaporation, and collected leachate) was monitored in order to carry out a water balance. Using a leachate injection rate of 26 – 30 gal/yard3, the average moisture content increased from 25% to 35% (wet based) over the period of this study. One of the key aspects of this bioreactor landfill study was to evaluate

  14. A model for prioritizing landfills for remediation and closure: A case study in Serbia.

    PubMed

    Ubavin, Dejan; Agarski, Boris; Maodus, Nikola; Stanisavljevic, Nemanja; Budak, Igor

    2018-01-01

    The existence of large numbers of landfills that do not fulfill sanitary prerequisites presents a serious hazard for the environment in lower income countries. One of the main hazards is landfill leachate that contains various pollutants and presents a threat to groundwater. Groundwater pollution from landfills depends on various mutually interconnected factors such as the waste type and amount, the amount of precipitation, the landfill location characteristics, and operational measures, among others. Considering these factors, lower income countries face a selection problem where landfills urgently requiring remediation and closure must be identified from among a large number of sites. The present paper proposes a model for prioritizing landfills for closure and remediation based on multicriteria decision making, in which the hazards of landfill groundwater pollution are evaluated. The parameters for the prioritization of landfills are the amount of waste disposed, the amount of precipitation, the vulnerability index, and the rate of increase of the amount of waste in the landfill. Verification was performed using a case study in Serbia where all municipal landfills were included and 128 landfills were selected for prioritization. The results of the evaluation of Serbian landfills, prioritizing sites for closure and remediation, are presented for the first time. Critical landfills are identified, and prioritization ranks for the selected landfills are provided. Integr Environ Assess Manag 2018;14:105-119. © 2017 SETAC. © 2017 SETAC.

  15. Evaluation of landfill leachate in arid climate-a case study.

    PubMed

    Al-Yaqout, A F; Hamoda, M F

    2003-08-01

    Generation of leachate from municipal solid waste (MSW) landfill in arid regions has long been neglected on the assumption that minimal leachate could be formed in the absence of precipitation. Therefore, a case study was conducted at two unlined MSW landfills, of different ages, in the state of Kuwait in order to determine the chemical characteristics of leachate and examine the mechanism of leachate formation. Leachate quality data were collected from both active and old (closed) landfills where co-disposal of MSW and other solid and liquid wastes is practiced. The analysis of data confirms that leachates from both landfills are severely contaminated with organics, salts and heavy metals. However, the organic strength of the leachate collected from the old landfill was reduced due to waste decomposition and continuous gas flaring. A significant degree of variability was encountered and factors which may influence leachate quality were identified and discussed. A water balance at the landfill site was assessed and a conceptual model was presented which accounts for leachate generation due to rising water table, capillary water and moisture content of the waste.

  16. 75 FR 53339 - Notice of Realty Action; Recreation and Public Purposes Act Classification for Conveyance of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... existing landfill. DATES: Interested parties may submit written comments regarding this classification for... . Please reference ``Conveyance of Federal Land to Emery County for Expansion of an Existing Landfill'' on... suitability of the land for the expansion of the existing county landfill. Comments on the classification are...

  17. 75 FR 65323 - Proposed Administrative Settlement Agreement Under Section 122 of the Comprehensive Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ... Vantage Landfill Superfund Site Located in Alexandria Township, Hunterdon County, NJ. AGENCY... EPA at the Crown Vantage Landfill Superfund Site located in Alexandria Township, Hunterdon County, New... reference the Crown Vantage Landfill Superfund Site, EPA Index No. 02-2010-2021 and should be sent to the U...

  18. Impact Of Landfill Closure Designs On Long-Term Natural Attenuation Of Chlorinated Hydrocarbons

    DTIC Science & Technology

    2002-03-01

    chlorinated aliphatic hydrocarbons (CAHs) (i.e., chlorinated solvents) in landfills and landfill- leachate -contaminated groundwater. The project was divided...attenuation rather than expensive leachate collection and treatment systems. At some landfills, surface infiltration may accelerate the leaching of...the “source” and reduce the time required for biological stabilization of the landfilled waste. Recirculation of landfill leachate could also be

  19. Recent Infrasound Calibration Activity at Los Alamos

    NASA Astrophysics Data System (ADS)

    Whitaker, R. W.; Marcillo, O. E.

    2014-12-01

    Absolute infrasound sensor calibration is necessary for estimating source sizes from measured waveforms. This can be an important function in treaty monitoring. The Los Alamos infrasound calibration chamber is capable of absolute calibration. Early in 2014 the Los Alamos infrasound calibration chamber resumed operations in its new location after an unplanned move two years earlier. The chamber has two sources of calibration signals. The first is the original mechanical piston, and the second is a CLD Dynamics Model 316 electro-mechanical unit that can be digitally controlled and provide a richer set of calibration options. During 2008-2010 a number of upgrades were incorporated for improved operation and recording. In this poster we give an overview of recent chamber work on sensor calibrations, calibration with the CLD unit, some measurements with different porous hoses and work with impulse sources.

  20. Department of Defense Landfill Database: A Collection of DoD-Wide Landfill Data for the Assessment of Implementing the Flex Energy Powerstation for Landfill Gas to Energy Projects

    DTIC Science & Technology

    2011-06-01

    Microturbine. Given the approximate nature of the source data and the gas production models , this material can only be used for a preliminary assessment...methane generation rate, k, used in the first order decay model can vary widely from landfill to landfill and are partly dependent on waste composition...State Status (active/closed/ closure in progress) Gross Power Generation Potential (kW) 345 ARMY WHITE SANDS MISSLE RANGE DONA ANA NM ACTIVE

  1. Superfund record of decision (EPA Region 5): Muskego Sanitary Landfill, Muskego, WI. (First remedial action), June 1992. Interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-06-12

    The 56-acre Muskego Sanitary Landfill site was located in the City of Muskego, Waukesha County, Wisconsin. From the 1950's to 1981, municipal waste, waste oils, paint products, and other waste were disposed of at the site. The site was separated into three disposal areas: the Old Fill Area (38 acres); the Southeast Fill Area (16 acres); and the Non-Contiguous Fill Area (4.2 acres), composed of a drum trench, north and south refuse trenches, and an L-shaped fill area, all containing waste similar to the Old Fill Area. As a result of deteriorating water quality at onsite ground water monitoring wells,more » Waste Management of Wisconsin Inc. (WMWI) and the state conducted numerous investigations that revealed elevated levels of contaminants in the ground water. Two separate areas at the site were discovered to contain buried drums and contaminated soil. The first area was located east of the Non-Contiguous Fill Area. The second area, known as the drum trench, was discovered in a portion of the Non-Contiguous Fill Area and contained 989 drums and 2,500 cubic yards of contaminated soil. The interim ROD addressed the control and remediation of the contamination sources, including landfill waste, contaminated soils, leachate, and landfill gas. The primary contaminants of concern affecting the soil and ground water were VOCs, including benzene, toluene, and xylenes; and other organics, including chlorinated ethanes, ketones, PAHs, PCBs, pesticides, phenols, and phthalates.« less

  2. Fuel Flexibility: Landfill Gas Contaminant Mitigation for Power Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storey, John Morse; Theiss, Timothy J; Kass, Michael D

    This research project focused on the mitigation of silica damage to engine-based renewable landfill gas energy systems. Characterization of the landfill gas siloxane contamination, combined with characterization of the silica deposits in engines, led to development of two new mitigation strategies. The first involved a novel method for removing the siloxanes and other heavy contaminants from the landfill gas prior to use by the engines. The second strategy sought to interrupt the formation of hard silica deposits in the engine itself, based on inspection of failed landfill gas engine parts. In addition to mitigation, the project had a third taskmore » to develop a robust sensor for siloxanes that could be used to control existing and/or future removal processes.« less

  3. A COMPARISON OF METHODS FOR ESTIMATING GLOBAL METHANE EMISSIONS FROM LANDFILLS

    EPA Science Inventory

    Landfills are a significant source of methane, ranking third in anthropogenic sources after rice paddies and ruminants. Estimating the contribution of landfills to global methane flux is hampered by a lack of accurate refuse and landfill data, and therefore depends heavily on the...

  4. EVALUATION OF MUNICIPAL SOLID WASTE LANDFILL COVER DESIGNS

    EPA Science Inventory

    The HELP (Hydrologic Evaluation of Landfill Performance) Model was used to evaluate the hydrologic behavior of a series of one-, two-, and three-layer cover designs for municipal solid waste landfill cover designs were chosen to isolate the effects of features such as surface veg...

  5. Distribution of Escherichia Coli as Soil Pollutant around Antang Landfills

    NASA Astrophysics Data System (ADS)

    Artiningsih, Andi; Zubair, Hazairin; Imran, A. M.; Widodo, Sri

    2018-03-01

    Tamangapa Antang Landfill locates around the residential area and faces an air and water pollution due to an open dumping system in its operation. The system arises a potential pollution in air, water and soil. Sampling was done surround the landfill in two parts, parallel and perpendicular to the ground water flow. This study shows the abundance of E. coli bacteria in soil around the Antang Landfills at depth of 10 to 20 cm (93x105 cfu/gr of soil) in the direction of groundwater flow. While in other locations the E. coli bacteria is not detected. The abundance of E. coli bacteria is a conjunction factor from landfill and human activities surround the area. The absence of E. coli bacteria in other location highly interpreted that the landfill is the major contributor of pollutant.

  6. Evaluation of Persistence of Viruses in Landfill Leachate ...

    EPA Pesticide Factsheets

    Report The purpose of this effort was to assess the persistence of viruses in landfill leachate. To determine whether active viruses could pose a threat to human and environmental health once introduced into a landfill, laboratory testing was performed to measure the decay rate of viral agents in landfill leachate. This effort was performed using surrogate test agents similar to BW agents following the well-established hypothesis that, though the diversity of viral contaminants may be quite large, a limited list of viral surrogates can be chosen that qualitatively represent the likely BW threat agents of interest.

  7. Methods of Sensing Land Pollution from Sanitary Landfills

    NASA Technical Reports Server (NTRS)

    Nosanov, Myron Ellis; Bowerman, Frank R.

    1971-01-01

    Major cities are congested and large sites suitable for landfill development are limited. Methane and other gases are produced at most sanitary landfills and dumps. These gases may migrate horizontally and vertically and have caused fatalities. Monitoring these gases provides data bases for design and construction of safe buildings on and adjacent to landfills. Methods of monitoring include: (1) a portable combustible gas indicator; and (2) glass flasks valved to allow simultaneous exhaust of the flask and aspiration of the sample into the flask. Samples are drawn through tubing from probes as deep as twenty-five feet below the surface.

  8. Speciation of heavy metals in landfill leachate: a review.

    PubMed

    Baun, Dorthe L; Christensen, Thomas H

    2004-02-01

    The literature was reviewed with respect to metal speciation methods in aquatic samples specifically emphasizing speciation of heavy metals in landfill leachate. Speciation here refers to physical fractionation (particulate, colloidal, dissolved), chemical fractionation (organic complexes, inorganic complexes, free metal ions), as well as computer-based thermodynamic models. Relatively few landfill leachate samples have been speciated in detail (less than 30) representing only a few landfills (less than 15). This suggests that our knowledge about metal species in landfill leachate still is indicative. In spite of the limited database and the different definitions of the dissolved fraction (< 0.45 microm or < 0.001 microm) the studies consistently show that colloids as well as organic and inorganic complexes are important for all heavy metals in landfill leachate. The free metal ion constitutes less than 30%, typically less than 10%, of the total metal concentration. This has significant implications for sampling, since no standardized procedures exist, and for assessing the content of metals in leachate in the context of its treatment, toxicity and migration in aquifers.

  9. Geothermal investigation of spring and well waters of the Los Alamos Region, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goff, F.E.; Sayer, S.

    1980-04-01

    The chemical and isotopic characters of 20 springs and wells in the Los Alamos area were investigated for indications of geothermal potential. These waters were compared with known hot and mineral springs from adjacent Valles Caldera and San Ysidro. All waters in the Los Alamos area are composed of meteoric water. Isotopic data show that the two primary aquifers beneath the Los Alamos region have different recharge areas. Relatively high concentrations of lithium, arsenic, chlorine, boron, and fluorine in some of the Los Alamos wells suggest these waters may contain a small fraction of thermal/mineral water of deep origin. Thermalmore » water probably rises up high-angle faults associated with a graben of the Rio Grande rift now buried by the Pajarito Plateau.« less

  10. Wastewater disposal to landfill-sites: a synergistic solution for centralized management of olive mill wastewater and enhanced production of landfill gas.

    PubMed

    Diamantis, Vasileios; Erguder, Tuba H; Aivasidis, Alexandros; Verstraete, Willy; Voudrias, Evangelos

    2013-10-15

    The present paper focuses on a largely unexplored field of landfill-site valorization in combination with the construction and operation of a centralized olive mill wastewater (OMW) treatment facility. The latter consists of a wastewater storage lagoon, a compact anaerobic digester operated all year round and a landfill-based final disposal system. Key elements for process design, such as wastewater pre-treatment, application method and rate, and the potential effects on leachate quantity and quality, are discussed based on a comprehensive literature review. Furthermore, a case-study for eight (8) olive mill enterprises generating 8700 m(3) of wastewater per year, was conceptually designed in order to calculate the capital and operational costs of the facility (transportation, storage, treatment, final disposal). The proposed facility was found to be economically self-sufficient, as long as the transportation costs of the OMW were maintained at ≤4.0 €/m(3). Despite that EU Landfill Directive prohibits wastewater disposal to landfills, controlled application, based on appropriately designed pre-treatment system and specific loading rates, may provide improved landfill stabilization and a sustainable (environmentally and economically) solution for effluents generated by numerous small- and medium-size olive mill enterprises dispersed in the Mediterranean region. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Chlorophenols in leachates originating from different landfills and aerobic composting plants.

    PubMed

    Ozkaya, Bestamin

    2005-09-30

    Both type and concentration of organic contaminants in landfill leachates show great variation depending on many factors, such as type of wastes, rate of water application, moisture content, landfill design and operation age. In this paper, highly toxic chlorophenol derivatives, poorly biodegradable, carcinogenic existence and recalcitrant properties are determined by solid phase microextraction (SPME)-GC/FID in different leachates from landfill and composting plant in Istanbul. Leachates originated from acidogenic, methanogenic phases of Odayeri sanitary landfill (OSL) and from an aerobic composting plant are considered for different chlorophenol types. It is observed that acidogenic leachate from Odayeri landfill includes 2,4-dichlorophenol, 2,6-dichlorophenol, 2,3,4-trichlorophenol, 2,3,4,5-tetrachlorophenol and 2,3,4,6-tetrachlorophenol at concentration ranges, 15-130, 18-65, 8-40, 5-20 and 10-25 microg/l, respectively. Whereas, only 2,4-dichlorophenol at a concentration range 8-40 microg/l is determined in the methanogenic leachate of the landfill, which can be considered as an indication of reductive dechlorination. There is no chlorophenol derivative in aerobic composting leachate. It is determined that acidogenic leachate from Odayeri landfill includes more species of chlorinated phenols at higher concentration.

  12. Penetrating radiation: applications at Los Alamos National Laboratory

    NASA Astrophysics Data System (ADS)

    Watson, Scott; Hunter, James; Morris, Christopher

    2013-09-01

    Los Alamos has used penetrating radiography extensively throughout its history dating back to the Manhattan Project where imaging dense, imploding objects was the subject of intense interest. This interest continues today as major facilities like DARHT1 have become the mainstay of the US Stockpile Stewardship Program2 and the cornerstone of nuclear weapons certification. Meanwhile, emerging threats to national security from cargo containers and improvised explosive devices (IEDs) have invigorated inspection efforts using muon tomography, and compact x-ray radiography. Additionally, unusual environmental threats, like those from underwater oil spills and nuclear power plant accidents, have caused renewed interest in fielding radiography in severe operating conditions. We review the history of penetrating radiography at Los Alamos and survey technologies as presently applied to these important problems.

  13. Quantification of methane emissions from 15 Danish landfills using the mobile tracer dispersion method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mønster, Jacob; Samuelsson, Jerker, E-mail: jerker.samuelsson@fluxsense.se; Kjeldsen, Peter

    2015-01-15

    Highlights: • Quantification of whole landfill site methane emission at 15 landfills. • Multiple on-site source identification and quantification. • Quantified methane emission from shredder waste and composting. • Large difference between measured and reported methane emissions. - Abstract: Whole-site methane emissions from 15 Danish landfills were assessed using a mobile tracer dispersion method with either Fourier transform infrared spectroscopy (FTIR), using nitrous oxide as a tracer gas, or cavity ring-down spectrometry (CRDS), using acetylene as a tracer gas. The landfills were chosen to represent the different stages of the lifetime of a landfill, including open, active, and closed coveredmore » landfills, as well as those with and without gas extraction for utilisation or flaring. Measurements also included landfills with biocover for oxidizing any fugitive methane. Methane emission rates ranged from 2.6 to 60.8 kg h{sup −1}, corresponding to 0.7–13.2 g m{sup −2} d{sup −1}, with the largest emission rates per area coming from landfills with malfunctioning gas extraction systems installed, and the smallest emission rates from landfills closed decades ago and landfills with an engineered biocover installed. Landfills with gas collection and recovery systems had a recovery efficiency of 41–81%. Landfills where shredder waste was deposited showed significant methane emissions, with the largest emission from newly deposited shredder waste. The average methane emission from the landfills was 154 tons y{sup −1}. This average was obtained from a few measurement campaigns conducted at each of the 15 landfills and extrapolating to annual emissions requires more measurements. Assuming that these landfills are representative of the average Danish landfill, the total emission from Danish landfills were calculated at 20,600 tons y{sup −1}, which is significantly lower than the 33,300 tons y{sup −1} estimated for the national greenhouse gas

  14. Phytoremediation of landfill leachate.

    PubMed

    Jones, D L; Williamson, K L; Owen, A G

    2006-01-01

    Leachate emissions from landfill sites are of concern, primarily due to their toxic impact when released unchecked into the environment, and the potential for landfill sites to generate leachate for many hundreds of years following closure. Consequently, economically and environmentally sustainable disposal options are a priority in waste management. One potential option is the use of soil-plant based remediation schemes. In many cases, using either trees (including short rotation coppice) or grassland, phytoremediation of leachate has been successful. However, there are a significant number of examples where phytoremediation has failed. Typically, this failure can be ascribed to excessive leachate application and poor management due to a fundamental lack of understanding of the plant-soil system. On balance, with careful management, phytoremediation can be viewed as a sustainable, cost effective and environmentally sound option which is capable of treating 250m(3)ha(-1)yr(-1). However, these schemes have a requirement for large land areas and must be capable of responding to changes in leachate quality and quantity, problems of scheme establishment and maintenance, continual environmental monitoring and seasonal patterns of plant growth. Although the fundamental underpinning science is well understood, further work is required to create long-term predictive remediation models, full environmental impact assessments, a complete life-cycle analysis and economic analyses for a wide range of landfill scenarios.

  15. Phytoremediation of landfill leachate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, D.L.; Williamson, K.L.; Owen, A.G.

    Leachate emissions from landfill sites are of concern, primarily due to their toxic impact when released unchecked into the environment, and the potential for landfill sites to generate leachate for many hundreds of years following closure. Consequently, economically and environmentally sustainable disposal options are a priority in waste management. One potential option is the use of soil-plant based remediation schemes. In many cases, using either trees (including short rotation coppice) or grassland, phytoremediation of leachate has been successful. However, there are a significant number of examples where phytoremediation has failed. Typically, this failure can be ascribed to excessive leachate applicationmore » and poor management due to a fundamental lack of understanding of the plant-soil system. On balance, with careful management, phytoremediation can be viewed as a sustainable, cost effective and environmentally sound option which is capable of treating 250 m{sup 3} ha{sup -1} yr{sup -1}. However, these schemes have a requirement for large land areas and must be capable of responding to changes in leachate quality and quantity, problems of scheme establishment and maintenance, continual environmental monitoring and seasonal patterns of plant growth. Although the fundamental underpinning science is well understood, further work is required to create long-term predictive remediation models, full environmental impact assessments, a complete life-cycle analysis and economic analyses for a wide range of landfill scenarios.« less

  16. A finite element simulation of biological conversion processes in landfills.

    PubMed

    Robeck, M; Ricken, T; Widmann, R

    2011-04-01

    Landfills are the most common way of waste disposal worldwide. Biological processes convert the organic material into an environmentally harmful landfill gas, which has an impact on the greenhouse effect. After the depositing of waste has been stopped, current conversion processes continue and emissions last for several decades and even up to 100years and longer. A good prediction of these processes is of high importance for landfill operators as well as for authorities, but suitable models for a realistic description of landfill processes are rather poor. In order to take the strong coupled conversion processes into account, a constitutive three-dimensional model based on the multiphase Theory of Porous Media (TPM) has been developed at the University of Duisburg-Essen. The theoretical formulations are implemented in the finite element code FEAP. With the presented calculation concept we are able to simulate the coupled processes that occur in an actual landfill. The model's theoretical background and the results of the simulations as well as the meantime successfully performed simulation of a real landfill body will be shown in the following. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. The leaching of lead from lead-based paint in landfill environments.

    PubMed

    Wadanambi, Lakmini; Dubey, Brajesh; Townsend, Timothy

    2008-08-30

    Lead leaching from lead-based paint (LBP) was examined using standardized laboratory protocols and tests with leachate from actual and simulated landfill environments. Two different LBP samples were tested; leaching solutions included leachates from three municipal solid waste (MSW) landfills and three construction and demolition (C&D) debris landfills. The toxicity characteristic leaching procedure (TCLP) and the synthetic precipitation leaching procedure (SPLP) were also performed. Lead concentrations were many times higher using the TCLP compared to the SPLP and the landfill leachates. No significant difference (alpha=0.05) was observed in leached lead concentrations from the MSW landfill and C&D debris landfill leachates. The impact of other building materials present in LBP debris on lead leaching was examined by testing mixtures of LBP (2%) and different building materials (98%; steel, wood, drywall, concrete). The type of substrate present impacted lead leaching results, with concrete demonstrating the most dramatic impact; the lowest lead concentrations were measured in the presence of concrete under both TCLP and SPLP extractions.

  18. Factors affecting water balance and percolate production for a landfill in operation.

    PubMed

    Poulsen, Tjalfe G; Møoldrup, Per

    2005-02-01

    Percolate production and precipitation data for a full-scale landfill in operation measured over a 13-year period were used to evaluate the impact and importance of the hydrological conditions of landfill sections on the percolate production rates. Both active (open) and closed landfill sections were included in the evaluation. A simple top cover model requiring a minimum of input data was used to simulate the percolate production as a function of precipitation and landfill section hydrology. The results showed that changes over time in the hydrology of individual landfill sections (such as section closure or plantation of trees on top of closed sections) can change total landfill percolate production by more than 100%; thus, percolate production at an active landfill can be very different from percolate production at the same landfill after closure. Furthermore, plantation of willow on top of closed sections can increase the evapotranspiration rate thereby reducing percolate production rates by up to 47% compared to a grass cover. This process, however, depends upon the availability of water in the top layer, and so the evaporation rate will be less than optimal during the summer where soil-water contents in the top cover are low.

  19. Anaerobic degradation of nonylphenol mono- and diethoxylates in digestor sludge, landfilled municipal solid waste, and landfilled sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ejlertsson, J.; Oequist, M.; Svensson, B.H.

    1999-01-15

    The aim of this study was to investigate the extent to which anaerobic digestor sludge, landfilled sludge, and landfilled municipal solid waste (MSW) degrade NPEOs [nonylphenol ethoxylates] under methanogenic conditions. NPEO1 and NPEO2 (NPEO1-2), used in a mixture, were chosen as model compounds. Anaerobic experimental bottles were amended with 100% digestor sludge at three different concentrations of NPEO1-2: 2, 60, and 308 mg L{sup {minus}1}. [U-{sup 14}C]-NPEO1-2 was used to detect any possible decomposition of the aromatic moiety of the NPEO1-2. All inoculates used degraded NPEO1-2 at 2 mg L{sup {minus}1}, with nonylphenol (NP) forming the ultimate degradation product. Themore » NP formed was not further degraded, and the incubations with labeled NPEO showed that the aromatic structure remained intact. Both landfill inoculates also transformed NPEO1-2 at 60 mg L{sup {minus}1}. CH{sub 4} production was temporarily hampered in bottles with MSW landfill inoculum at 60 and 308 mg L{sup {minus}1}. With 2 mg L{sup {minus}1} of NPEO, CH{sub 4} production closely followed that in the controls. Both NP and NPEO1-2 interacted with the organic matter which resulted in sorption to the solid phase.« less

  20. Integrating remediation and resource recovery: On the economic conditions of landfill mining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frändegård, Per, E-mail: per.frandegard@liu.se; Krook, Joakim; Svensson, Niclas

    Highlights: • We compare two remediation scenarios; one with resource recovery and one without. • Economic analysis includes relevant direct costs and revenues for the landfill owner. • High degrees of metal and/or combustible contents are important economic factors. • Landfill tax and the access to a CHP can have a large impact on the result. • Combining landfill mining and remediation may decrease the project cost. - Abstract: This article analyzes the economic potential of integrating material separation and resource recovery into a landfill remediation project, and discusses the result and the largest impact factors. The analysis is donemore » using a direct costs/revenues approach and the stochastic uncertainties are handled using Monte Carlo simulation. Two remediation scenarios are applied to a hypothetical landfill. One scenario includes only remediation, while the second scenario adds resource recovery to the remediation project. Moreover, the second scenario is divided into two cases, case A and B. In case A, the landfill tax needs to be paid for re-deposited material and the landfill holder does not own a combined heat and power plant (CHP), which leads to disposal costs in the form of gate fees. In case B, the landfill tax is waived on the re-deposited material and the landfill holder owns its own CHP. Results show that the remediation project in the first scenario costs about €23/ton. Adding resource recovery as in case A worsens the result to −€36/ton, while for case B the result improves to −€14/ton. This shows the importance of landfill tax and the access to a CHP. Other important factors for the result are the material composition in the landfill, the efficiency of the separation technology used, and the price of the saleable material.« less

  1. A cost-benefit analysis of landfill mining and material recycling in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Chuanbin, E-mail: cbzhou@rcees.ac.cn; Gong, Zhe; Hu, Junsong

    Highlights: • Assessing the economic feasibility of landfill mining. • We applied a cost-benefit analysis model for landfill mining. • Four material cycling and energy recovery scenarios were designed. • We used net present value to evaluate the cost-benefit efficiency. - Abstract: Landfill mining is an environmentally-friendly technology that combines the concepts of material recycling and sustainable waste management, and it has received a great deal of worldwide attention because of its significant environmental and economic potential in material recycling, energy recovery, land reclamation and pollution prevention. This work applied a cost-benefit analysis model for assessing the economic feasibility, whichmore » is important for promoting landfill mining. The model includes eight indicators of costs and nine indicators of benefits. Four landfill mining scenarios were designed and analyzed based on field data. The economic feasibility of landfill mining was then evaluated by the indicator of net present value (NPV). According to our case study of a typical old landfill mining project in China (Yingchun landfill), rental of excavation and hauling equipment, waste processing and material transportation were the top three costs of landfill mining, accounting for 88.2% of the total cost, and the average cost per unit of stored waste was 12.7 USD ton{sup −1}. The top three benefits of landfill mining were electricity generation by incineration, land reclamation and recycling soil-like materials. The NPV analysis of the four different scenarios indicated that the Yingchun landfill mining project could obtain a net positive benefit varying from 1.92 million USD to 16.63 million USD. However, the NPV was sensitive to the mode of land reuse, the availability of energy recovery facilities and the possibility of obtaining financial support by avoiding post-closure care.« less

  2. Biogeochemical transformations of mercury in solid waste landfills and pathways for release.

    PubMed

    Lee, Sung-Woo; Lowry, Gregory V; Hsu-Kim, Heileen

    2016-02-01

    Mercury (Hg) is present in a variety of solid wastes including industrial wastes, household products, consumer electronics, and medical wastes, some of which can be disposed in conventional landfills. The presence of this neurotoxic metal in landfills is a concern due to the potential for it to leach or volatilize from the landfill and impact local ecosystems. The objective of this review is to describe general practices for the disposal of mercury-bearing solid wastes, summarize previous studies on the release of mercury from landfills, and delineate the expected transformations of Hg within landfill environments that would influence transport of Hg via landfill gas and leachate. A few studies have documented the emissions of Hg as landfill gas, primarily as gaseous elemental Hg(0) and smaller amounts as methylated Hg species. Much less is known regarding the release of Hg in leachate. Landfill conditions are unique from other subsurface environments in that they can contain water with very high conductivity and organic carbon concentration. Landfills also experience large changes in redox potential (and the associated microbial community) that greatly influence Hg speciation, transformations, and mobilization potential. Generally, Hg is not likely to persist in large quantities as dissolved species, since Hg(0) tends to evolve in the gas phase and divalent Hg(ii) sorbs strongly to particulate phases including organic carbon and sulfides. However, Hg(ii) has the potential to associate with or form colloidal particles that can be mobilized in porous media under high organic carbon conditions. Moreover, the anaerobic conditions within landfills can foster the growth of microorganisms that produced monomethyl- and dimethyl-Hg species, the forms of mercury with high potential for bioaccumulation. Much advancement has recently been made in the mercury biogeochemistry research field, and this study seeks to incorporate these findings for landfill settings.

  3. Effects of landfill gas on subtropical woody plants

    NASA Astrophysics Data System (ADS)

    Chan, G. Y. S.; Wong, M. H.; Whitton, B. A.

    1991-05-01

    An account is given of the influence of landfill gas on tree growth in the field at Gin Drinkers' Bay (GDB) landfill, Hong Kong, and in the laboratory. Ten species ( Acacia confusa, Albizzia lebbek, Aporusa chinensis, Bombax malabaricum, Castanopsis fissa, Liquidambar formosana, Litsea glutinosa, Machilus breviflora, Pinus elliottii, and Tristania conferta), belonging to eight families, were transplanted to two sites, one with a high concentration of landfill gas in the cover soil (high-gas site, HGS) and the other with a relatively low concentration of gas (low-gas site, LGS). Apart from the gaseous composition, the general soil properties were similar. A strong negative correlation between tree growth and landfill gas concentration was observed. A laboratory study using the simulated landfill gas to fumigate seedlings of the above species showed that the adventitious root growth of Aporusa chinensis, Bombax malabaricum, Machilus breviflora, and Tristania confera was stimulated by the gas, with shallow root systems being induced. Acacia confusa, Albizzia lebbek, and Litsea glutinosa were gas-tolerant, while root growth of Castanopsis fissa, Liquidambar formosana, and Pinus elliottii was inhibited. In most cases, shoot growth was not affected, exceptions being Bombax malabaricum, Liquidambar formosana, and Tristania conferta, where stunted growth and/or reduced foliation was observed. A very high CO2 concentration in cover soil limits the depth of the root system. Trees with a shallow root system become very susceptible to water stress. The effects of low O2 concentration in soil are less important than the effects of high CO2 concentration. Acacia confusa, Albizzia lebbek, and Tristania conferta are suited for growth on subtropical completed landfills mainly due to their gas tolerance and/or drought tolerance.

  4. Evaluation of Hydraulically Significant Discontinuities in Dockum Group Mudrocks in Andrews County, Texas

    NASA Astrophysics Data System (ADS)

    Holt, R. M.; Kuszmaul, J. S.; Cao, S.; Powers, D. W.

    2013-12-01

    Triassic mudrocks of the Dockum Group (Cooper Canyon Formation) host four, below-grade landfills at the Waste Control Specialists (WSC) site in Andrews County, Texas, including: a hazardous waste landfill and three radioactive waste landfills. At the study site, the Dockum consists of mudrocks with sparse siltstone/sandstone interbeds that developed in a semi-arid environment from an ephemeral meandering fluvial system. Sedimentary studies reveal that the mudrocks are ancient floodplain vertisols (soils with swelling clays) and siltstone/sandstone interbeds are fluvial channel deposits that were frequently subaerially exposed. Rock discontinuities, including fractures and syndepositional slickensided surfaces, were mapped during the excavation of the WCS radioactive waste landfills along vertical faces prepared by the construction contractor. Face locations were selected to insure a sampled area with nearly complete vertical coverage for each landfill. Individual discontinuities were mapped and their strike, dip, length, roughness, curvature, staining, and evidence of displacement were described. In the three radioactive waste disposal landfills, over 1750 discontinuities across 35 excavated faces were mapped and described, where each face was nominally 8 to 10 ft tall and 50 to 100 ft long. Genetic units related to paleosol development were identified. On average, the orientation of the discontinuities was horizontal, and no other significant trends were observed. Mapping within the landfill excavations shows that most discontinuities within Dockum rocks are horizontal, concave upward, slickensided surfaces that developed in the depositional environment, as repeated wetting and drying cycles led to shrinking and swelling of floodplain vertisols. Fractures that showed staining (a possible indicator of past or present hydraulic activity) are rare, vertical to near-vertical, and occur mainly in, and adjacent to, mechanically stiff siltstone and sandstone interbeds

  5. Aeration of the teuftal landfill: Field scale concept and lab scale simulation.

    PubMed

    Ritzkowski, Marco; Walker, Beat; Kuchta, Kerstin; Raga, Roberto; Stegmann, Rainer

    2016-09-01

    Long lasting post-closure care (PCC) is often the major financial burden for operators of municipal solid waste (MSW) landfills. Beside costs for the installation and maintenance of technical equipment and barriers, in particular long term treatment of leachate and landfill gas has to be paid from capital surplus. Estimations based on laboratory experiments project time periods of many decades until leachate quality allows for direct discharge (i.e. no need for further purification). Projections based on leachate samples derived from the last 37years for 35 German landfills confirm these assumption. Moreover, the data illustrate that in particular ammonium nitrogen concentrations are likely to fall below limit values only after a period of 300years. In order to avoid long lasting PCC the operator of Teuftal landfill, located in the Swiss canton Bern, decided to biologically stabilize the landfill by means of a combined in situ aeration and moisturization approach. In December 2014 the aeration started at a landfill section containing approximately 30% of the total landfill volume. From summer 2016 onwards the remaining part of the landfill will be aerated. Landfill aeration through horizontal gas and leachate drains is carried out for the first time in field scale in Europe. The technical concept is described in the paper. Parallel to field scale aeration, investigations for the carbon and nitrogen turnover are carried out by means of both simulated aerated landfills and simulated anaerobic landfills. The results presented in this paper demonstrate that aeration is capable to enhance, both carbon mobilization and discharge via the gas phase. This effect comes along with a significant increase in bio-stabilization of the waste organic fraction, which positively affects the landfill emission behavior in the long run. In terms of leachate pollution reduction it could be demonstrated that the organic load decrease fast and widely independent of the adjusted aeration

  6. Estimating water content in an active landfill with the aid of GPR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yochim, April, E-mail: ayochim@regionofwaterloo.ca; Zytner, Richard G., E-mail: rzytner@uoguelph.ca; McBean, Edward A., E-mail: emcbean@uoguelph.ca

    Highlights: • Limited information in the literature on the use of GPR to measure in situ water content in a landfill. • Developed GPR method allows measurement of in situ water content in a landfill. • Developed GPR method is appealing to waste management professionals operating landfills. - Abstract: Landfill gas (LFG) receives a great deal of attention due to both negative and positive environmental impacts, global warming and a green energy source, respectively. However, predicting the quantity of LFG generated at a given landfill, whether active or closed is difficult due to the heterogeneities present in waste, and themore » lack of accurate in situ waste parameters like water content. Accordingly, ground penetrating radar (GPR) was evaluated as a tool for estimating in situ water content. Due to the large degree of subsurface heterogeneity and the electrically conductive clay cap covering landfills, both of which affect the transmission of the electromagnetic pulses, there is much scepticism concerning the use of GPR to quantify in situ water content within a municipal landfill. Two landfills were studied. The first landfill was used to develop the measurement protocols, while the second landfill provided a means of confirming these protocols. GPR measurements were initially completed using the surface GPR approach, but the lack of success led to the use of borehole (BH) GPR. Both zero offset profiling (ZOP) and multiple offset gathers (MOG) modes were tried, with the results indicating that BH GPR using the ZOP mode is the most simple and efficient method to measure in situ water content. The best results were obtained at a separation distance of 2 m, where higher the water content, smaller the effective separation distance. However, an increase in water content did appear to increase the accuracy of the GPR measurements. For the effective separation distance of 2 m at both landfills, the difference between GPR and lab measured water contents were

  7. Upper Ottawa street landfill site health study.

    PubMed Central

    Hertzman, C; Hayes, M; Singer, J; Highland, J

    1987-01-01

    This report describes the design and conduct of two sequential historical prospective morbidity surveys of workers and residents from the Upper Ottawa Street Landfill Site in Hamilton, Ontario. The workers study was carried out first and was a hypothesis-generating study. Workers and controls were administered a health questionnaire, which was followed by an assessment of recall bias through medical chart abstraction. Multiple criteria were used to identify health problems associated with landfill site exposure. Those problems with highest credibility included clusters of respiratory, skin, narcotic, and mood disorders. These formed the hypothesis base in the subsequent health study of residents living adjacent to the landfill site. In that study, the association between mood, narcotic, skin, and respiratory conditions with landfill site exposure was confirmed using the following criteria: strength of association; consistency with the workers study; risk gradient by duration of residence and proximity to the landfill; absence of evidence that less healthy people moved to the area; specificity; and the absence of recall bias. The validity of these associations were reduced by three principal problems: the high refusal rate among the control population; socioeconomic status differences between the study groups; and the fact that the conditions found in excess were imprecisely defined and potentially interchangeable with other conditions. Offsetting these problems were the multiple criteria used to assess each hypothesis, which were applied according to present rules. Evidence is presented that supports the hypothesis that vapors, fumes, or particulate matter emanating from the landfill site, as well as direct skin exposure, may have lead to the health problems found in excess. Evidence is also presented supporting the hypothesis that perception of exposure and, therefore, of risk, may explain the results of the study. However, based on the analyses performed, it is

  8. Potential tree species for use in the restoration of unsanitary landfills.

    PubMed

    Kim, Kee Dae; Lee, Eun Ju

    2005-07-01

    Given that they represent the most economical option for disposing of refuse, waste landfills are widespread in urban areas. However, landfills generate air and water pollution and require restoration for landscape development. A number of unsanitary waste landfills have caused severe environmental problems in developing countries. This study aimed to investigate the colonization status of different tree species on waste landfills to assess their potential for restoring unsanitary landfills in South Korea. Plot surveys were conducted using 10 x 10-m quadrats at seven waste landfill sites: Bunsuri, Dugiri, Hasanundong, Gomaeri, Kyongseodong, Mojeonri, and Shindaedong. We determined the height, diameter at breast height (DBH), and number of tree species in the plots, and enumerated all saplings < or =1 m high. Because black locust, Robinia pseudoacacia, was the dominant tree species in the waste landfills, we measured the distance from the presumed mother plant (i.e., the tallest black locust in a patch), height, and DBH of all individuals in black locust patches to determine patch structure. Robinia pseudoacacia, Salix koreensis, and Populus sieboldii formed canopy layers in the waste landfills. The basal area of black locust was 1.51 m(2)/ha, and this species had the highest number of saplings among all tree species. The diameter of the black locust patches ranged from 3.71 to 11.29 m. As the patch diameter increased, the number of regenerated saplings also tended to increase, albeit not significantly. Black locust invaded via bud banks and spread clonally in a concentric pattern across the landfills. This species grew well in the dry habitat of the landfills, and its growth rate was very high. Furthermore, black locust has the ability to fix nitrogen symbiotically; it is therefore considered a well-adapted species for waste landfills. Eleven woody species were selected for screening: Acer palmatum, Albizzia julibrissin, Buxus microphylla var. koreana, Ginkgo

  9. Los Alamos National Laboratory Human and Intellectual Capital for Sustaining Nuclear Deterrence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McAlpine, Bradley

    2015-04-01

    This paper provides an overview of the current human and intellectual capital at Los Alamos National Laboratory, through specific research into the statistics and demographics as well as numerous personal interviews at all levels of personnel. Based on this information, a series of recommendations are provided to assist Los Alamos National Laboratory in ensuring the future of the human and intellectual capital for the nuclear deterrence mission. While the current human and intellectual capital is strong it stands on the precipice and action must be taken to ensure Los Alamos National Laboratory maintains leadership in developing and sustaining national nuclearmore » capabilities. These recommendations may be applicable to other areas of the nuclear enterprise, including the Air Force, after further research and study.« less

  10. Los Alamos Before and After the Fire

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On May 4, 2000, a prescribed fire was set at Bandelier National Monument, New Mexico, to clear brush and dead and dying undergrowth to prevent a larger, subsequent wildfire. Unfortunately, due to high winds and extremely dry conditions in the surrounding area, the prescribed fire quickly raged out of control and, by May 10, the blaze had spread into the nearby town of Los Alamos. In all, more than 20,000 people were evacuated from their homes and more than 200 houses were destroyed as the flames consumed about 48,000 acres in and around the Los Alamos area. The pair of images above were acquired by the Enhanced Thematic Mapper Plus (ETM+) sensor, flying aboard NASA's Landsat 7 satellite, shortly before the Los Alamos fire (top image, acquired April 14) and shortly after the fire was extinguished (lower image, June 17). The images reveal the extent of the damage caused by the fire. Combining ETM+ channels 7, 4, and 2 (one visible and two infrared channels) results in a false-color image where vegetation appears as bright to dark green. Forested areas are generally dark green while herbaceous vegetation is light green. Rangeland or more open areas appear pink to light purple. Areas with extensive pavement or urban development appear light blue or white to purple. Less densely-developed residential areas appear light green and golf courses are very bright green. In the lower image, the areas recently burned appear bright red. Landsat 7 data courtesy United States Geological Survey EROS DataCenter. Images by Robert Simmon, NASA GSFC.

  11. Critical partnerships: Los Alamos, universities, and industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, C.L.

    1997-04-01

    Los Alamos National Laboratory, situated 35 miles northwest of Santa Fe, NM, is one of the Department of Energy`s three Defense Programs laboratories. It encompasses 43 square miles, employees approximately 10,000 people, and has a budget of approximately $1.1B in FY97. Los Alamos has a strong post-cold war mission, that of reducing the nuclear danger. But even with that key role in maintaining the nation`s security, Los Alamos views partnerships with universities and industry as critical to its future well being. Why is that? As the federal budget for R&D comes under continued scrutiny and certain reduction, we believe thatmore » the triad of science and technology contributors to the national system of R&D must rely on and leverage each others capabilities. For us this means that we will rely on these partners to help us in 5 key ways: We expect that partnerships will help us maintain and enhance our core competencies. In doing so, we will be able to attract the best scientists and engineers. To keep on the cutting edge of research and development, we have found that partnerships maintain the excellence of staff through new and exciting challenges. Additionally, we find that from our university and corporate partners we often learn and incorporate {open_quotes}best practices{close_quotes} in organizational management and operations. Finally, we believe that a strong national system of R&D will ensure and enhance our ability to generate revenues.« less

  12. Los Alamos National Laboratory Facility Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Ronald Owen

    2015-06-05

    This series of slides depicts the Los Alamos Neutron Science Center (LANSCE). The Center's 800-MeV linac produces H + and H - beams as well as beams of moderated (cold to 1 MeV) and unmoderated (0.1 to 600 MeV) neutrons. Experimental facilities and their capabilities and characteristics are outlined. Among these are LENZ, SPIDER, and DANCE.

  13. Bioreactor tests preliminary to landfill in situ aeration: A case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raga, Roberto, E-mail: roberto.raga@unipd.it; Cossu, Raffaello

    Highlights: ► Carbon and nitrogen mass balances in aerated landfill simulation reactors. ► Waste stabilization in aerated landfill simulation reactors. ► Effect of temperature on biodegradation processes in aerated landfills. - Abstract: Lab scale tests in bioreactor were carried out in the framework of the characterization studies of a landfill where in situ aeration (possibly followed by landfill mining) had been proposed as part of the novel waste management strategy in a region in northern Italy. The tests were run to monitor the effects produced by aerobic conditions at different temperatures on waste sampled at different depths in the landfill,more » with focus on the carbon and nitrogen conversion during aeration. Temperatures ranging from 35 to 45 °C were chosen, in order to evaluate possible inhibition of biodegradation processes (namely nitrification) at 45 °C in the landfill. The results obtained showed positive effects of the aeration on leachate quality and a significant reduction of waste biodegradability. Although a delay of biodegradation processes was observed in the reactor run at 45 °C, biodegradation rates increased after 2 months of aeration, providing very low values of the relevant parameters (as in the other aerated reactors) by the end of the study. Mass balances were carried out for TOC and N-NH{sub 4}{sup +}; the findings obtained were encouraging and provided evidence of the effectiveness of carbon and nitrogen conversion processes in the aerated landfill simulation reactors.« less

  14. Influence of ozonation on COD in stabilized landfill leachate: Case study at Alor Pongsu landfill site, Perak

    NASA Astrophysics Data System (ADS)

    Zakaria, Siti Nor Farhana; Aziz, Hamidi Abdul

    2017-10-01

    One of an anaerobic stabilized landfill leachate in Malaysia underwent ozonation process. The sample rich in chemical oxygen demand (COD) was collected from Alor Pongsu Landfill Site, Perak (APLS). This site has been operating since year 2000. The leachate also contains other pollutants that exceeded the standard discharge limit for wastewater effluents. The effectiveness of ozone (O3) dosage, pH variation, and reaction time during ozonation was evaluated to measure the performance of O3 and determine the maximum operational conditions for this treatment. The maximum removal efficiency for COD was 50% at an ozone dosage of 31 g/m3, natural of pH 8.5, and reaction time of 60 min. The biodegradability ratio (BOD5/COD) improved from 0.08 to 0.23 after treatment with O3. The ozonation method has enhanced the biodegradability ratio and resulted high percentage removal of COD. This improvement showed that oxidation has a great potential to remediate recalcitrant pollutant wastes, such as landfill leachate.

  15. Los Alamos National Laboratory Prepares for Fire Season

    ScienceCinema

    L’Esperance, Manny

    2018-01-16

    Through the establishment of a Wildland Fire Program Office, and the Interagency Fire Base located on Laboratory property, Los Alamos National Laboratory is continuing and improving a program to prepare for wildland fire.

  16. Los Alamos National Laboratory Prepares for Fire Season

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L’Esperance, Manny

    Through the establishment of a Wildland Fire Program Office, and the Interagency Fire Base located on Laboratory property, Los Alamos National Laboratory is continuing and improving a program to prepare for wildland fire.

  17. Socio-Environmental and Hematological Profile of Landfill Residents (São Jorge Landfill-Sao Paulo, Brazil).

    PubMed

    Palmeira Wanderley, Vivianni; Affonso Fonseca, Fernando Luiz; Vala Quiaios, André; Nuno Domingues, José; Paixão, Susana; Figueiredo, João; Ferreira, Ana; de Almeida Pinto, Cleonice; da Silva, Odair Ramos; Alvarenga, Rogério; Machi Junior, Amaury; Luiz Savóia, Eriane Justo; Daminello Raimundo, Rodrigo

    2017-01-11

    We are experiencing an unprecedented urbanization process that, alongside physical, social and economic developments, has been having a significant impact on a population's health. Due to the increase in pollution, violence and poverty, our modern cities no longer ensure a good quality of life so they become unhealthy environments. This study aims to assess the effect of social, environmental and economic factors on the hematologic profile of residents of Santo André's landfill. In particular, we will assess the effect of social, economic, and environmental factors on current and potential disease markers obtained from hematological tests. The research method is the observational type, from a retrospective cohort, and by convenience sampling in Santo André in the Greater ABC (municipalities of Santo André, São Bernardo do Campo and São Caetano do Sul, southeast part of the Greater São Paulo Metropolitan Area, Brazil). The study determined a socio-environmental profile and the hematologic diseases screening related to a close location to the landfill. The disease manifests itself within a broad spectrum of symptoms that causes changes in blood count parameters. The objective of this work is to show that there is an association between social, environmental and economic factors and a variety of serious disease outcomes that may be detected from blood screening. A causal study of the effect of living near the landfill on these disease outcomes would be a very expensive and time-consuming study. This work we believe is sufficient for public health officials to consider policy and attempt remediation of the effects of living near a landfill.

  18. Co-occurrence of mobile genetic elements and antibiotic resistance genes in municipal solid waste landfill leachates: A preliminary insight into the role of landfill age.

    PubMed

    Yu, Zhuofeng; He, Pinjing; Shao, Liming; Zhang, Hua; Lü, Fan

    2016-12-01

    Since municipal solid waste (MSW) landfill harbours miscellaneous wastes, pollutants and microorganisms, it gradually becomes a huge potential reservoir for breeding antibiotic resistance genes (ARGs). The objective of this study was to determine the prevalence and diversity of ARGs associated with various mobile genetic elements (MGEs) in MSW landfill leachates. The relationship of ARGs with leachate characteristics was also studied to explore the influence of landfill age. Seven sulfonamides (sulfapyridine, sulfadiazine, sulfathiazole, sulfamethoxazole, sulfamerazine, sulfamethazine and sulfaquinoxaline), three encoded ARGs (sul-I, sul-II and sul-III) and four types of MGEs (plasmids, transposons, integrons and insertion sequences) were quantified in leachates with landfill ages ranging from 3 months-6 years. ARGs increased to an absolute concentration of 10 6 copies/μL and were positively correlated (p < 0.05) to MGEs. Significant correlations (p < 0.05) were also discovered among ARGs and the increasing humic acids, heavy metals (Zn, Cu and Co) and antibiotics (except for sulfathiazole and sulfaquinoxaline), implying landfilling might contribute to the enrichment of ARGs in the long-term. Non-target full scans revealed the role of persistent unknown compounds in stimulating the ARGs dissemination. Overall, this study demonstrates the exacerbation of ARGs pollution in landfill environment and a detailed delineation of the complex inter-relationships between ARGs and the substances harbouring in landfills is badly required. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Impact assessment of intermediate soil cover on landfill stabilization by characterizing landfilled municipal solid waste.

    PubMed

    Qi, Guangxia; Yue, Dongbei; Liu, Jianguo; Li, Rui; Shi, Xiaochong; He, Liang; Guo, Jingting; Miao, Haomei; Nie, Yongfeng

    2013-10-15

    Waste samples at different depths of a covered municipal solid waste (MSW) landfill in Beijing, China, were excavated and characterized to investigate the impact of intermediate soil cover on waste stabilization. A comparatively high amount of unstable organic matter with 83.3 g kg(-1) dry weight (dw) total organic carbon was detected in the 6-year-old MSW, where toxic inorganic elements containing As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn of 10.1, 0.98, 85.49, 259.7, 530.4, 30.5, 84.0, and 981.7 mg kg(-1) dw, respectively, largely accumulated because of the barrier effect of intermediate soil cover. This accumulation resulted in decreased microbial activities. The intermediate soil cover also caused significant reduction in moisture in MSW under the soil layer, which was as low as 25.9%, and led to inefficient biodegradation of 8- and 10-year-old MSW. Therefore, intermediate soil cover with low permeability seems to act as a barrier that divides a landfill into two landfill cells with different degradation processes by restraining water flow and hazardous matter. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Modeling impact of small Kansas landfills on underlying aquifers

    USGS Publications Warehouse

    Sophocleous, M.; Stadnyk, N.G.; Stotts, M.

    1996-01-01

    Small landfills are exempt from compliance with Resource Conservation and Recovery Act Subtitle D standards for liner and leachate collection. We investigate the ramifications of this exemption under western Kansas semiarid environments and explore the conditions under which naturally occurring geologic settings provide sufficient protection against ground-water contamination. The methodology we employed was to run water budget simulations using the Hydrologic Evaluation of Landfill Performance (HELP) model, and fate and transport simulations using the Multimedia Exposure Assessment Model (MULTIMED) for several western Kansas small landfill scenarios in combination with extensive sensitivity analyses. We demonstrate that requiring landfill cover, leachate collection system (LCS), and compacted soil liner will reduce leachate production by 56%, whereas requiring only a cover without LCS and liner will reduce leachate by half as much. The most vulnerable small landfills are shown to be the ones with no vegetative cover underlain by both a relatively thin vadose zone and aquifer and which overlie an aquifer characterized by cool temperatures and low hydraulic gradients. The aquifer-related physical and chemical parameters proved to be more important than vadose zone and biodegradation parameters in controlling leachate concentrations at the point of compliance. ??ASCE.

  1. Evaluation and application of site-specific data to revise the first-order decay model for estimating landfill gas generation and emissions at Danish landfills.

    PubMed

    Mou, Zishen; Scheutz, Charlotte; Kjeldsen, Peter

    2015-06-01

    Methane (CH₄) generated from low-organic waste degradation at four Danish landfills was estimated by three first-order decay (FOD) landfill gas (LFG) generation models (LandGEM, IPCC, and Afvalzorg). Actual waste data from Danish landfills were applied to fit model (IPCC and Afvalzorg) required categories. In general, the single-phase model, LandGEM, significantly overestimated CH₄generation, because it applied too high default values for key parameters to handle low-organic waste scenarios. The key parameters were biochemical CH₄potential (BMP) and CH₄generation rate constant (k-value). In comparison to the IPCC model, the Afvalzorg model was more suitable for estimating CH₄generation at Danish landfills, because it defined more proper waste categories rather than traditional municipal solid waste (MSW) fractions. Moreover, the Afvalzorg model could better show the influence of not only the total disposed waste amount, but also various waste categories. By using laboratory-determined BMPs and k-values for shredder, sludge, mixed bulky waste, and street-cleaning waste, the Afvalzorg model was revised. The revised model estimated smaller cumulative CH₄generation results at the four Danish landfills (from the start of disposal until 2020 and until 2100). Through a CH₄mass balance approach, fugitive CH₄emissions from whole sites and a specific cell for shredder waste were aggregated based on the revised Afvalzorg model outcomes. Aggregated results were in good agreement with field measurements, indicating that the revised Afvalzorg model could provide practical and accurate estimation for Danish LFG emissions. This study is valuable for both researchers and engineers aiming to predict, control, and mitigate fugitive CH₄emissions from landfills receiving low-organic waste. Landfill operators use the first-order decay (FOD) models to estimate methane (CH₄) generation. A single-phase model (LandGEM) and a traditional model (IPCC) could result in

  2. Landfill Gas Energy Cost Model Version 3.0 (LFGcost-Web V3 ...

    EPA Pesticide Factsheets

    To help stakeholders estimate the costs of a landfill gas (LFG) energy project, in 2002, LMOP developed a cost tool (LFGcost). Since then, LMOP has routinely updated the tool to reflect changes in the LFG energy industry. Initially the model was designed for EPA to assist landfills in evaluating the economic and financial feasibility of LFG energy project development. In 2014, LMOP developed a public version of the model, LFGcost-Web (Version 3.0), to allow landfill and industry stakeholders to evaluate project feasibility on their own. LFGcost-Web can analyze costs for 12 energy recovery project types. These project costs can be estimated with or without the costs of a gas collection and control system (GCCS). The EPA used select equations from LFGcost-Web to estimate costs of the regulatory options in the 2015 proposed revisions to the MSW Landfills Standards of Performance (also known as New Source Performance Standards) and the Emission Guidelines (herein thereafter referred to collectively as the Landfill Rules). More specifically, equations derived from LFGcost-Web were applied to each landfill expected to be impacted by the Landfill Rules to estimate annualized installed capital costs and annual O&M costs of a gas collection and control system. In addition, after applying the LFGcost-Web equations to the list of landfills expected to require a GCCS in year 2025 as a result of the proposed Landfill Rules, the regulatory analysis evaluated whether electr

  3. Quantitative Analysis of Critical Factors for the Climate Impact of Landfill Mining.

    PubMed

    Laner, David; Cencic, Oliver; Svensson, Niclas; Krook, Joakim

    2016-07-05

    Landfill mining has been proposed as an innovative strategy to mitigate environmental risks associated with landfills, to recover secondary raw materials and energy from the deposited waste, and to enable high-valued land uses at the site. The present study quantitatively assesses the importance of specific factors and conditions for the net contribution of landfill mining to global warming using a novel, set-based modeling approach and provides policy recommendations for facilitating the development of projects contributing to global warming mitigation. Building on life-cycle assessment, scenario modeling and sensitivity analysis methods are used to identify critical factors for the climate impact of landfill mining. The net contributions to global warming of the scenarios range from -1550 (saving) to 640 (burden) kg CO2e per Mg of excavated waste. Nearly 90% of the results' total variation can be explained by changes in four factors, namely the landfill gas management in the reference case (i.e., alternative to mining the landfill), the background energy system, the composition of the excavated waste, and the applied waste-to-energy technology. Based on the analyses, circumstances under which landfill mining should be prioritized or not are identified and sensitive parameters for the climate impact assessment of landfill mining are highlighted.

  4. A review of groundwater contamination near municipal solid waste landfill sites in China.

    PubMed

    Han, Zhiyong; Ma, Haining; Shi, Guozhong; He, Li; Wei, Luoyu; Shi, Qingqing

    2016-11-01

    Landfills are the most widely used method for municipal solid waste (MSW) disposal method in China. However, these facilities have caused serious groundwater contamination due to the leakage of leachate. This study, analyzed 32 scientific papers, a field survey and an environmental assessment report related to groundwater contamination caused by landfills in China. The groundwater quality in the vicinity of landfills was assessed as "very bad" by a comprehensive score (FI) of 7.85 by the Grading Method in China. Variety of pollutants consisting of 96 groundwater pollutants, 3 organic matter indicators, 2 visual pollutants and 6 aggregative pollutants had been detected in the various studies. Twenty-two kinds of pollutants were considered to be dominant. According to the Kruskal-Wallis test and the median test, groundwater contamination differed significantly between regions in China, but there were no significant differences between dry season and wet season measurements, except for some pollutants in a few landfill sites. Generally, the groundwater contamination appeared in the initial landfill stage after five years and peaked some years afterward. In this stage, the Nemerow Index (PI) of groundwater increased exponentially as landfill age increased at some sites, but afterwards decreased exponentially with increasing age at others. After 25years, the groundwater contamination was very low at selected landfills. The PI values of landfills decreased exponentially as the pollutant migration distance increased. Therefore, the groundwater contamination mainly appeared within 1000m of a landfill and most of serious groundwater contamination occurred within 200m. The results not only indicate that the groundwater contamination near MSW landfills should be a concern, but also are valuable to remediate the groundwater contamination near MSW landfills and to prevent the MSW landfill from secondary pollutions, especially for developing countries considering the similar

  5. History of Los Alamos Participation in Active Experiments in Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pongratz, Morris B.

    Beginning with the Teak nuclear test in 1958, Los Alamos has a long history of participation in active experiments in space. The last pertinent nuclear tests were the five explosions as part of the Dominic series in 1962. The Partial Test Ban Treaty signed in August 1963 prohibited all test detonations of nuclear weapons except for those conducted underground. Beginning with the “Apple” thermite barium release in June 1968 Los Alamos has participated in nearly 100 non-nuclear experiments in space, the last being the NASA-sponsored “AA-2” strontium and europium doped barium thermite releases in the Arecibo beam in July ofmore » 1992. The rationale for these experiments ranged from studying basic plasma processes such as gradientdriven structuring and velocity-space instabilities to illuminating the convection of plasmas in the ionosphere and polar cap to ionospheric depletion experiments to the B.E.A.R. 1-MeV neutral particle beam test in 1989. This report reviews the objectives, techniques and diagnostics of Los Alamos participation in active experiments in space.« less

  6. Reduced sulfur compounds in gas from construction and demolition debris landfills.

    PubMed

    Lee, Sue; Xu, Qiyong; Booth, Matthew; Townsend, Timothy G; Chadik, Paul; Bitton, Gabriel

    2006-01-01

    The biological conversion of sulfate from disposed gypsum drywall to hydrogen sulfide (H(2)S) in the anaerobic environment of a landfill results in odor problems and possible health concerns at many disposal facilities. To examine the extent and magnitude of such emissions, landfill gas samples from wells, soil vapor samples from the interface of the waste and cover soil, and ambient air samples, were collected from 10 construction and demolition (C&D) debris landfills in Florida and analyzed for H(2)S and other reduced sulfur compounds (RSC). H(2)S was detected in the well gas and soil vapor at all 10 sites. The concentrations in the ambient air above the surface of the landfill were much lower than those observed in the soil vapor, and no direct correlation was observed between the two sampling locations. Methyl mercaptan and carbonyl sulfide were the most frequently observed other RSC, though they occurred at smaller concentrations than H(2)S. This research confirmed the presence of H(2)S at C&D debris landfills. High concentrations of H(2)S may be a concern for employees working on the landfill site. These results indicate that workers should use proper personal protection at C&D debris landfills when involved in excavation, landfill gas collection, or confined spaces. The results indicate that H(2)S is sufficiently diluted in the atmosphere to not commonly pose acute health impacts for these landfill workers in normal working conditions. H(2)S concentrations were extremely variable with measurements occurring over a very large range (from less than 3 ppbv to 12,000 ppmv in the soil vapor and from less than 3 ppbv to 50 ppmv in ambient air). Possible reasons for the large intra- and inter-site variability observed include waste and soil heterogeneities, impact of weather conditions, and different site management practices.

  7. Sustainable disposal of municipal solid waste: post bioreactor landfill polishing.

    PubMed

    Batarseh, Eyad S; Reinhart, Debra R; Berge, Nicole D

    2010-11-01

    Sustainable disposal of municipal solid waste (MSW) requires assurance that contaminant release will be minimized or prevented within a reasonable time frame before the landfill is abandoned so that the risk of contamination release is not passed to future generations. This could be accomplished through waste acceptance criteria such as those established by the European Union (EU) that prohibit land disposal of untreated organic matter. In the EU, mechanical, biological and/or thermal pretreatment of MSW is therefore necessary prior to landfilling which is complicated and costly. In other parts of the world, treatment within highly engineered landfills is under development, known as bioreactor landfills. However, the completed bioreactor landfill still contains material, largely nonbiodegradable carbon and ammonia that may be released to the environment over the long-term. This paper provides a conceptual analysis of an approach to ensure landfill sustainability by the rapid removal of these remaining materials, leachate treatment and recirculation combined with aeration. The analysis in this paper includes a preliminary experimental evaluation using real mature leachate and waste samples, a modeling effort using a simplified mass balance approach and input parameters from real typical bioreactor cases, and a cost estimate for the suggested treatment method. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. ADVANCING THE FIELD EVALUATIONS AND APPLICATIONS OF LANDFILL BIOREACTORS

    EPA Science Inventory

    The US Environmental Protection Agency (EPA) is undertaking a long-term program to conduct field evaluations of landfill bioreactors. The near-term effort is focused on the development of appropriate monitoring strategies to ensure adequate control of the landfill bioreactors an...

  9. 78 FR 20073 - Adequacy of Oregon's Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ...] Adequacy of Oregon's Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection Agency... Oregon's approved Municipal Solid Waste Landfill Program. On March 22, 2004, EPA issued final regulations... Oregon's Municipal Solid Waste Landfill permit program to allow for Research, Development, and...

  10. U.S. EPA'S RESEARCH TO UPDATE GUIDANCE FOR QUANTIFYING LANDFILL GAS EMISSIONS

    EPA Science Inventory

    Landfill emissions, if left uncontrolled, contribute to air toxics, climate change, tropospheric ozone, and urban smog. EPA's Office of Research and Development is conducting research to help update EPA's landfill gas emission factors. The last update to EPA's landfill gas emiss...

  11. Resident support for a landfill-to-park transformation

    Treesearch

    Christine A. Vogt; David B. Klenosky; Stephanie A. Snyder; Lindsay K. Campbell

    2015-01-01

    Globally, landfills are being transformed into other uses because land resources scarce, property values are increasing, and governments seek to reduce urban blight and adaptively reuse space. Park planners and city managers are likely to find that gauging public perceptions of a landfill-to-park project transformation and promoting such sites to potential visitors as...

  12. Electrocoagulation and decolorization of landfill leachate

    NASA Astrophysics Data System (ADS)

    Mussa, Zainab Haider; Othman, Mohamed Rozali; Abdullah, Md Pauzi

    2013-11-01

    In this study, several operating conditions such as electrode material, treatment time, applied voltage, Cl□ concentration and PH of solution were tested on treatability of landfill leachate by using electrocoagulation (EC) method. According to the results, EC method can be used efficiently for the treatment of landfill leachate by using proper operating conditions. The best removal rats were obtained when C (rod) electrode as anode, operating time is 120 min, voltage applied is 10 V, NaCl concentration is 5.85 g/L and the raw PH, for these conditions, 70% color removal was obtained.

  13. Regional landfills methane emission inventory in Malaysia.

    PubMed

    Abushammala, Mohammed F M; Noor Ezlin Ahmad Basri; Basri, Hassan; Ahmed Hussein El-Shafie; Kadhum, Abdul Amir H

    2011-08-01

    The decomposition of municipal solid waste (MSW) in landfills under anaerobic conditions produces landfill gas (LFG) containing approximately 50-60% methane (CH(4)) and 30-40% carbon dioxide (CO(2)) by volume. CH(4) has a global warming potential 21 times greater than CO(2); thus, it poses a serious environmental problem. As landfills are the main method for waste disposal in Malaysia, the major aim of this study was to estimate the total CH(4) emissions from landfills in all Malaysian regions and states for the year 2009 using the IPCC, 1996 first-order decay (FOD) model focusing on clean development mechanism (CDM) project applications to initiate emission reductions. Furthermore, the authors attempted to assess, in quantitative terms, the amount of CH(4) that would be emitted from landfills in the period from 1981-2024 using the IPCC 2006 FOD model. The total CH(4) emission using the IPCC 1996 model was estimated to be 318.8 Gg in 2009. The Northern region had the highest CH(4) emission inventory, with 128.8 Gg, whereas the Borneo region had the lowest, with 24.2 Gg. It was estimated that Pulau Penang state produced the highest CH(4) emission, 77.6 Gg, followed by the remaining states with emission values ranging from 38.5 to 1.5 Gg. Based on the IPCC 1996 FOD model, the total Malaysian CH( 4) emission was forecast to be 397.7 Gg by 2020. The IPCC 2006 FOD model estimated a 201 Gg CH(4) emission in 2009, and estimates ranged from 98 Gg in 1981 to 263 Gg in 2024.

  14. Geotechnical behavior of the MSW in Tianziling landfill.

    PubMed

    Zhu, Xiang-Rong; Jin, Jian-Min; Fang, Peng-Fei

    2003-01-01

    The valley shaped Tianziling landfill of Hangzhou in China built in 1991 to dispose of municipal solid waste (MSW) was designed for a service life of 13 years. The problem of waste landfill slope stability and expansion must be considered from the geotechnical engineering point of view, for which purpose, it is necessary to understand the geotechnical properties of the MSW in the landfill, some of whose physical properties were measured by common geotechnical tests, such as those on unit weight, water content, organic matter content, specific gravity, coefficient of permeability, compressibility, etc. The mechanical properties were studied by direct shear test, triaxial compression test, and static and dynamic penetration tests. Some strength parameters for engineering analysis were obtained.

  15. 78 FR 5350 - Adequacy of Massachusetts Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-25

    ...] Adequacy of Massachusetts Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... modification of its approved Municipal Solid Waste Landfill Program. On March 22, 2004, EPA issued final... solid waste landfills by approved states. On December 7, 2012 Massachusetts submitted an application to...

  16. Pilot investigations of surface parts of three closed landfills and factors affecting them.

    PubMed

    Saarela, Jouko

    2003-05-01

    Aftercare of closed sanitary landfills in a major environmental problem. Rehabilitation of the landfill with vegetation and reducing leachate production are two issues that must be dealt. For this reason, Finnish Environment Institute has conducted several projects on closed landfills. This research aims at determining the physical and chemical properties of the soils at three closed landfills in Helsinki, Finland. Research was conducted to understand the impact by studying the following properties: Chemical, nutrient metal, gamma and radon analysis of surface soils of three closed landfills in Helsinki area.

  17. Multiple geophysical surveys for old landfill monitoring in Singapore.

    PubMed

    Yin, Ke; Tong, Huanhuan; Giannis, Apostolos; Wang, Jing-Yuan; Chang, Victor W-C

    2017-01-01

    One-dimensional boring presents limitations on mapping the refuse profile in old landfills owning to waste heterogeneity. Electrical imaging (EI) and multiple-analysis of surface wave (MASW) were hereby deployed at an old dumping ground in Singapore to explore the subsurface in relation to geotechnical analysis. MASW estimated the refuse boundary with a higher precision as compared to EI, due to its endurance for moisture variation. EI and MASW transection profiles suggested spots of interest, e.g., refuse pockets and leachate mounds. 3D inversion of EI and MASW data further illustrated the transformation dynamics derived by natural attenuation, for instance the preferential infiltration pathway. Comparison of geophysical surveys at different years uncovered the subterranean landfill conditions, indicating strong impacts induced by aging, precipitation, and settlement. This study may shed light on a characterization framework of old landfills via combined geophysical models, thriving landfill knowledge with a higher creditability.

  18. Health assessment for Welsh Road/Barkman Landfill, Honey Brook, Chester County, Pennsylvania, Region 3. CERCLIS No. PAD980829527. Preliminary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-12-02

    The Welsh Road/Barkman Landfill site in Honey Brook, Pennsylvania was an unpermitted residential and commercial refuse disposal facility that operated from 1963 to sometime in the 1980s. After 1977, the landfill continued to operate in defiance of legal action to support a closure plan. Various investigations conducted in the 1980s revealed that industrial and hazardous waste had been accepted by the site. The environmental contamination on-site consists of copper, lead, 1,2-dichloropropane, toluene, chloroform and methylene chloride in drummed wastes; and mercury, toluene, dichlorofluoromethane, methylene chloride, trichlorofluoromethane, 5-methyl-2-hexanone, trichloroethylene, 1,2-dichloroethane, and 1,3,5-cycloheptatriene in groundwater. One time sampling indicated the presence ofmore » volatile compounds in air (hydrogen chloride and chloroform). The environmental contamination off-site consists of cadmium in sediment; and chloromethane, chloroform, xylenes, dichlorofluoromethane, 1,1-dichloroethane, tetrachloroethylene, p-cresol, toluene, methyl isobutyl ketone, di-n-butyl phthalate, lead, mercury, and zinc in residential well water. The site is considered to be of potential public health concern because of the risk to human health caused by the possibility of exposure to hazardous substances via contaminated groundwater, surface water, soil, sediment, and airborne gases, vapors, and particulate.« less

  19. A cost-benefit analysis of landfill mining and material recycling in China.

    PubMed

    Zhou, Chuanbin; Gong, Zhe; Hu, Junsong; Cao, Aixin; Liang, Hanwen

    2015-01-01

    Landfill mining is an environmentally-friendly technology that combines the concepts of material recycling and sustainable waste management, and it has received a great deal of worldwide attention because of its significant environmental and economic potential in material recycling, energy recovery, land reclamation and pollution prevention. This work applied a cost-benefit analysis model for assessing the economic feasibility, which is important for promoting landfill mining. The model includes eight indicators of costs and nine indicators of benefits. Four landfill mining scenarios were designed and analyzed based on field data. The economic feasibility of landfill mining was then evaluated by the indicator of net present value (NPV). According to our case study of a typical old landfill mining project in China (Yingchun landfill), rental of excavation and hauling equipment, waste processing and material transportation were the top three costs of landfill mining, accounting for 88.2% of the total cost, and the average cost per unit of stored waste was 12.7USDton(-1). The top three benefits of landfill mining were electricity generation by incineration, land reclamation and recycling soil-like materials. The NPV analysis of the four different scenarios indicated that the Yingchun landfill mining project could obtain a net positive benefit varying from 1.92 million USD to 16.63 million USD. However, the NPV was sensitive to the mode of land reuse, the availability of energy recovery facilities and the possibility of obtaining financial support by avoiding post-closure care. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Los Alamos high-power proton linac designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, G.P.

    1995-10-01

    Medium-energy high-power proton linear accelerators have been studied at Los Alamos as drivers for spallation neutron applications requiring large amounts of beam power. Reference designs for such accelerators are discussed, important design factors are reviewed, and issues and concern specific to this unprecedented power regime are discussed.

  1. Where Are Used Pallets Going? New Study to Connect Landfills and Pallet Recycling

    Treesearch

    Philip A. Araman; Robert Bush

    1995-01-01

    What's happening across the U.S. with landfills and used pallets? Are landfills still accepting wood pallets? And, if so, how many? Have the number of pallets being landfilled increased or decreased? Are separated pallets being recycled at the landfills, or are they simply buried? What are the tipping fees? Are tipping fees lower if pallets are separated prior to...

  2. Evolution of nitrogen species in landfill leachates under various stabilization states.

    PubMed

    Zhao, Renzun; Gupta, Abhinav; Novak, John T; Goldsmith, C Douglas

    2017-11-01

    In this study, nitrogen species in landfill leachates under various stabilization states were investigated with emphasis on organic nitrogen. Ammonium nitrogen was found to be approximately 1300mg/L in leachates from younger landfill units (less than 10years old), and approximately 500mg/L in leachates from older landfill units (up to 30years old). The concentration and aerobic biodegradability of organic nitrogen decreased with landfill age. A size distribution study showed that most organic nitrogen in landfill leachates is <1kDa. The Lowry protein concentration (mg/L-N) was analyzed and showed a strong correlation with the total organic nitrogen (TON, mg/L-N, R 2 =0.88 and 0.98 for untreated and treated samples, respectively). The slopes of the regression curves of untreated (protein=0.45TON) and treated (protein=0.31TON) leachates indicated that the protein is more biodegradable than the other organic nitrogen species in landfill leachates. XAD-8 resin was employed to isolate the hydrophilic fraction of leachate samples, and it was found that the hydrophilic fraction proportion in terms of organic nitrogen decreased with landfill age. Solid-state 15 N nuclear magnetic resonance (NMR) was utilized to identify the nitrogen species. Proteinaceous materials were found to be readily biodegradable, while heterocyclic nitrogen species were found to be resistant to biodegradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Quantitative option analysis for implementation and management of landfills.

    PubMed

    Kerestecioğlu, Merih

    2016-09-01

    The selection of the most feasible strategy for implementation of landfills is a challenging step. Potential implementation options of landfills cover a wide range, from conventional construction contracts to the concessions. Montenegro, seeking to improve the efficiency of the public services while maintaining affordability, was considering privatisation as a way to reduce public spending on service provision. In this study, to determine the most feasible model for construction and operation of a regional landfill, a quantitative risk analysis was implemented with four steps: (i) development of a global risk matrix; (ii) assignment of qualitative probabilities of occurrences and magnitude of impacts; (iii) determination of the risks to be mitigated, monitored, controlled or ignored; (iv) reduction of the main risk elements; and (v) incorporation of quantitative estimates of probability of occurrence and expected impact for each risk element in the reduced risk matrix. The evaluated scenarios were: (i) construction and operation of the regional landfill by the public sector; (ii) construction and operation of the landfill by private sector and transfer of the ownership to the public sector after a pre-defined period; and (iii) operation of the landfill by the private sector, without ownership. The quantitative risk assessment concluded that introduction of a public private partnership is not the most feasible option, unlike the common belief in several public institutions in developing countries. A management contract for the first years of operation was advised to be implemented, after which, a long term operating contract may follow. © The Author(s) 2016.

  4. The decay of wood in landfills in contrasting climates in Australia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ximenes, Fabiano, E-mail: fabiano.ximenes@dpi.nsw.gov.au; Björdal, Charlotte; Cowie, Annette

    Highlights: • We examine decay in wood from landfills in contrasting environments in Australia. • Analysis is based on changes in chemical composition and microscopy. • Climate did not influence levels of decay observed. • Microscopy of retrieved samples revealed most of the decay was aerobic in nature. • Current default factors for wood decay in landfills overestimate methane emissions. - Abstract: Wood products in landfill are commonly assumed to decay within several decades, returning the carbon contained therein to the atmosphere, with about half the carbon released as methane. However, the rate and extent of decay is not wellmore » known, as very few studies have examined the decay of wood products in landfills. This study reports on the findings from landfill excavations conducted in the Australian cities of Sydney and Cairns located in temperate and tropical environments, respectively. The objective of this study was to determine whether burial of the wood in warmer, more tropical conditions in Cairns would result in greater levels of decay than occurs in the temperate environment of Sydney. Wood samples recovered after 16–44 years in landfill were examined through physical, chemical and microscopic analyses, and compared with control samples to determine the carbon loss. There was typically little or no decay in the wood samples analysed from the landfill in Sydney. Although there was significant decay in rainforest wood species excavated from Cairns, decay levels for wood types that were common to both Cairns and Sydney landfills were similar. The current Intergovernmental Panel on Climate Change (IPCC, 2006) default decay factor for organic materials in landfills is 50%. In contrast, the carbon loss determined for Pinus radiata recovered from Sydney and Cairns landfills was 7.9% and 4.4%, respectively, and 0% for Agathis sp. This suggests that climate did not influence decay, and that the more extensive levels of decay observed for some wood

  5. Application of iron nanaoparticles in landfill leachate treatment - case study: Hamadan landfill leachate.

    PubMed

    Kashitarash, Zahra Esfahani; Taghi, Samadi Mohammad; Kazem, Naddafi; Abbass, Afkhami; Alireza, Rahmani

    2012-12-27

    This study was performed with the objective of determining the efficiency of iron nanoparticles for reducing chemical oxygen demand (COD), 5-day biological oxygen demand (BOD5), total solids (TS) and color of Hamadan city landfill leachate. Experiments were performed in a batch reactor and the main effective factors of pH, reaction time and concentration of iron nanoparticles were investigated. The obtained data were analyzed with One-Way ANOVA statistical test and SPSS-13 software. Maximum removal efficiencies were 47.94%, 35%, 55.62% and 76.66% for COD, BOD5, TS and color, respectively (for 2.5 g/L iron nanoparticles dosage, pH = 6.5 and 10 min reaction time). The results showed that the removal of COD, BOD5 and color had reverse relationship with contact time and TS removal followed a direct relationship (P < 0.05). Iron nanoparticles could remove averagely 53% of leachate COD, BOD5, TS and color in a short contact time (10 min) increasing pH up to 6.5, increased the removal efficiency for COD, BOD5, TS and color and then removal efficiency decreased with increasing pH to 8.5. Increasing the dosage of nanoparticles to 2.5 g/L increased the efficiency of process. High compatibility and efficiency of this process was proven by landfill leachate pre-treatment or post-treatment, so this removal method may be recommended for municipal solid waste landfill leachate treatment plants.

  6. Application of iron nanaoparticles in landfill leachate treatment - case study: Hamadan landfill leachate

    PubMed Central

    2012-01-01

    This study was performed with the objective of determining the efficiency of iron nanoparticles for reducing chemical oxygen demand (COD), 5-day biological oxygen demand (BOD5), total solids (TS) and color of Hamadan city landfill leachate. Experiments were performed in a batch reactor and the main effective factors of pH, reaction time and concentration of iron nanoparticles were investigated. The obtained data were analyzed with One-Way ANOVA statistical test and SPSS-13 software. Maximum removal efficiencies were 47.94%, 35%, 55.62% and 76.66% for COD, BOD5, TS and color, respectively (for 2.5 g/L iron nanoparticles dosage, pH = 6.5 and 10 min reaction time). The results showed that the removal of COD, BOD5 and color had reverse relationship with contact time and TS removal followed a direct relationship (P < 0.05). Iron nanoparticles could remove averagely 53% of leachate COD, BOD5, TS and color in a short contact time (10 min) increasing pH up to 6.5, increased the removal efficiency for COD, BOD5, TS and color and then removal efficiency decreased with increasing pH to 8.5. Increasing the dosage of nanoparticles to 2.5 g/L increased the efficiency of process. High compatibility and efficiency of this process was proven by landfill leachate pre-treatment or post-treatment, so this removal method may be recommended for municipal solid waste landfill leachate treatment plants. PMID:23369361

  7. Review of the fate and transformation of per- and polyfluoroalkyl substances (PFASs) in landfills.

    PubMed

    Hamid, Hanna; Li, Loretta Y; Grace, John R

    2018-04-01

    A critical review of existing publications is presented i) to summarize the occurrence of various classes of per- and polyfluoroalkyl substances (PFASs) and their sources in landfills, ii) to identify temporal and geographical trends of PFASs in landfills; iii) to delineate the factors affecting PFASs in landfills; and iv) to identify research gaps and future research directions. Studies have shown that perfluoroalkyl acids (PFAAs) are routinely detected in landfill leachate, with short chain (C4-C7) PFAAs being most abundant, possibly indicating their greater mobility, and reflecting the industrial shift towards shorter-chain compounds. Despite its restricted use, perfluorooctanoic acid (PFOA) remains one of the most abundant PFAAs in landfill leachates. Recent studies have also documented the presence of PFAA-precursors (e.g., saturated and unsaturated fluorotelomer carboxylic acids) in landfill leachates at concentrations comparable to, or higher than, the most frequently detected PFAAs. Landfill ambient air also contains elevated concentrations of PFASs, primarily semi-volatile precursors (e.g., fluorotelomer alcohols) compared to upwind control sites, suggesting that landfills are potential sources of atmospheric PFASs. The fate of PFASs inside landfills is controlled by a combination of biological and abiotic processes, with biodegradation releasing most of the PFASs from landfilled waste to leachate. Biodegradation in simulated anaerobic reactors has been found to be closely related to the methanogenic phase. The methane-yielding stage also results in higher pH (>7) of leachates, correlated with higher mobility of PFAAs. Little information exists regarding PFAA-precursors in landfills. To avoid significant underestimation of the total PFAS released from landfills, PFAA-precursors and their degradation products should be determined in future studies. Owing to the semi-volatile nature of some precursor compounds and their degradation products, future studies

  8. Gas emission into the atmosphere from controlled landfills: an example from Legoli landfill (Tuscany, Italy).

    PubMed

    Raco, Brunella; Battaglini, Raffaele; Lelli, Matteo

    2010-07-01

    Landfill gas (LFG) tends to escape from the landfill surface even when LFG collecting systems are installed. Since LFG leaks are generally a noticeable percentage of the total production of LFG, the optimisation of the collection system is a fundamental step for both energy recovery and environmental impact mitigation. In this work, we suggest to take into account the results of direct measurements of gas fluxes at the air-cover interface to achieve this goal. During the last 5 years (2004-2009), 11 soil gas emission surveys have been carried out at the Municipal Solid Waste landfill of Legoli (Peccioli municipality, Pisa Province, Italy) by means of the accumulation chamber method. Direct and simultaneous measurements of CH(4) and CO(2) fluxes from the landfill cover (about 140,000 m(2)) have been performed to estimate the total output of both gases discharged into the atmosphere. Three different data processing have been applied and compared: Arithmetic mean of raw data (AMRD), sequential Gaussian conditional simulations (SGCS) and turning bands conditional simulations (TBCS). The total amount of LFG (captured and not captured) obtained from processing of direct measurements has been compared with the corresponding outcomes of three different numerical models (LandGEM, IPCC waste model and GasSim). Measured fluxes vary from undetectable values (<0.05 mol m(-2) day(-1) for CH(4) and <0.02 mol m(-2) day(-1) for CO(2)) to 246 mol m(-2) day(-1) for CH(4) and 275 mol m(-2) day(-1) for CO(2). The specific CH(4) and CO(2) fluxes (flux per surface unit) vary from 1.8 to 7.9 mol m(-2) day(-1) and from 2.4 to 7.8 mol m(-2) day(-1), respectively. The three different estimation methodologies (AMRD, SGCS and TBCS) used to evaluate the total output of diffused CO(2) and CH(4) fluxes from soil provide similar estimations, whereas there are some mismatches between these results and those of numerical LFG production models. Isoflux maps show a non-uniform spatial distribution

  9. Audit Report, "Fire Protection Deficiencies at Los Alamos National Laboratory"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-06-01

    The Department of Energy's Los Alamos National Laboratory (Los Alamos) maintains some of the Nation's most important national security assets, including nuclear materials. Many of Los Alamos' facilities are located in close proximity to one another, are occupied by large numbers of contract and Federal employees, and support activities ranging from nuclear weapons design to science-related activities. Safeguarding against fires, regardless of origin, is essential to protecting employees, surrounding communities, and national security assets. On June 1, 2006, Los Alamos National Security, LLC (LANS), became the managing and operating contractor for Los Alamos, under contract with the Department's National Nuclearmore » Security Administration (NNSA). In preparation for assuming its management responsibilities at Los Alamos, LANS conducted walk-downs of the Laboratory's facilities to identify pre-existing deficiencies that could give rise to liability, obligation, loss or damage. The walk-downs, which identified 812 pre-existing fire protection deficiencies, were conducted by subject matter professionals, including fire protection experts. While the Los Alamos Site Office has overall responsibility for the effectiveness of the fire protection program, LANS, as the Laboratory's operating contractor, has a major, day-to-day role in minimizing fire-related risks. The issue of fire protection at Los Alamos is more than theoretical. In May 2000, the 'Cerro Grande' fire burned about 43,000 acres, including 7,700 acres of Laboratory property. Due to the risk posed by fire to the Laboratory's facilities, workforce, and surrounding communities, we initiated this audit to determine whether pre-existing fire protection deficiencies had been addressed. Our review disclosed that LANS had not resolved many of the fire protection deficiencies that had been identified in early 2006: (1) Of the 296 pre-existing deficiencies we selected for audit, 174 (59 percent) had not been

  10. 77 FR 65875 - Adequacy of Arizona Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ... Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... modification to Arizona's municipal solid waste landfill (MSWLF) permit program to allow the State to issue... amending the municipal solid waste landfill criteria at 40 CFR 258.4 to allow for Research, Development...

  11. Challenges and issues in moving towards sustainable landfilling in a transitory country - Malaysia.

    PubMed

    Agamuthu, P; Fauziah, S H

    2011-01-01

    Malaysia disposes of 28,500 tonnes of municipal solid waste directly into landfills daily. This fact alone necessitates sustainable landfills to avoid adverse impacts on the population and the environment. The aim of the present study was to elucidate the issues and challenges faced by waste managers in moving towards sustainable landfilling in Malaysia. Various factors influence the management of a landfill. Among them is the human factor, which includes attitude and public participation. Although Malaysia's economy is developing rapidly, public concern and awareness are not evolving in parallel and therefore participation towards sustainable waste management through the 'reduce, reuse and recycle' approach (3Rs) is severely lacking. Consequently, landfill space is exhausted earlier than scheduled and this is no longer sustainable in terms of security of disposal. Challenges also arise from the lack of funding and the increase in the price of land. Thus, most waste managers normally aim for 'just enough' to comply with the regulations. Investment for the establishment of landfills generally is minimized since landfilling operations are considered uneconomical after closure. Institutional factors also hamper the practice of sustainable landfilling in the country where 3Rs is not mandatory and waste separation is totally absent. Although there are huge obstacles to be dealt with in moving towards sustainable landfilling in Malaysia, recent developments in waste management policy and regulations have indicated that positive changes are possible in the near future. Consequently, with the issues solved and challenges tackled, landfills in Malaysia can then be managed effectively in a more sustainable manner.

  12. Spatial and temporal migration of a landfill leachate plume in alluvium

    USGS Publications Warehouse

    Masoner, Jason R.; Cozzarelli, Isabelle M.

    2015-01-01

    Leachate from unlined or leaky landfills can create groundwater contaminant plumes that last decades to centuries. Understanding the dynamics of leachate movement in space and time is essential for monitoring, planning and management, and assessment of risk to groundwater and surface-water resources. Over a 23.4-year period (1986–2010), the spatial extent of the Norman Landfill leachate plume increased at a rate of 7800 m2/year and expanded by 878 %, from an area of 20,800 m2 in 1986 to 203,400 m2 in 2010. A linear plume velocity of 40.2 m/year was calculated that compared favorably to a groundwater-seepage velocity of 55.2 m/year. Plume-scale hydraulic conductivity values representative of actual hydrogeological conditions in the alluvium ranged from 7.0 × 10−5 to 7.5 × 10−4 m/s, with a median of 2.0 × 10−4 m/s. Analyses of field-measured and calculated plume-scale hydraulic conductivity distributions indicate that the upper percentiles of field-measured values should be considered to assess rates of plume-scale migration, spreading, and biodegradation. A pattern of increasing Cl− concentrations during dry periods and decreasing Cl− concentrations during wet periods was observed in groundwater beneath the landfill. The opposite occurred in groundwater downgradient from the landfill; that is, Cl− concentrations in groundwater downgradient from the landfill decreased during dry periods and increased during wet periods. This pattern of changing Cl−concentrations in response to wet and dry periods indicates that the landfill retains or absorbs leachate during dry periods and produces lower concentrated leachate downgradient. During wet periods, the landfill receives more recharge which dilutes leachate in the landfill but increases leachate migration from the landfill and produces a more concentrated contaminant plume. This approach of quantifying plume expansion, migration, and concentration during variable hydrologic

  13. Modelling of environmental impacts of solid waste landfilling within the life-cycle analysis program EASEWASTE.

    PubMed

    Kirkeby, Janus T; Birgisdottir, Harpa; Bhander, Gurbakash Singh; Hauschild, Michael; Christensen, Thomas H

    2007-01-01

    A new computer-based life-cycle assessment model (EASEWASTE) has been developed to evaluate resource and environmental consequences of solid waste management systems. This paper describes the landfilling sub-model used in the life-cycle assessment program EASEWASTE, and examines some of the implications of this sub-model. All quantities and concentrations of leachate and landfill gas can be modified by the user in order to bring them in agreement with the actual landfill that is assessed by the model. All emissions, except the generation of landfill gas, are process specific. The landfill gas generation is calculated on the basis of organic matter in the landfilled waste. A landfill assessment example is provided. For this example, the normalised environmental effects of landfill gas on global warming and photochemical smog are much greater than the environmental effects for landfill leachate or for landfill construction. A sensitivity analysis for this example indicates that the overall environmental impact is sensitive to the gas collection efficiency and the use of the gas, but not to the amount of leachate generated, or the amount of soil or liner material used in construction. The landfill model can be used for evaluating different technologies with different liners, gas and leachate collection efficiencies, and to compare the environmental consequences of landfilling with alternative waste treatment options such as incineration or anaerobic digestion.

  14. Holistic assessment of a landfill mining pilot project in Austria: Methodology and application.

    PubMed

    Hermann, Robert; Baumgartner, Rupert J; Vorbach, Stefan; Wolfsberger, Tanja; Ragossnig, Arne; Pomberger, Roland

    2016-07-01

    Basic technical and economic examinations of Austrian mass waste landfills, concerning the recovery of secondary raw materials, have been carried out by the 'LAMIS - Landfill Mining Austria' pilot project for the first time in Austria. A main focus of the research - the subject of this article - was the first devotion of a pilot landfill to an integrated ecological and economic assessment so that its feasibility could be verified before a landfill mining project commenced. A Styrian mass waste landfill had been chosen for this purpose that had been put into operation in 1979 and received mechanically-biologically pre-treated municipal waste till 2012. The whole assessment procedure was divided into preliminary and main assessment phases to evaluate the general suitability of a landfill mining project with little financial and human resource expense. A portfolio chart, based on a questionnaire, was created for the preliminary assessment that, as a result, has provided a recommendation for subsequent investigation - the main assessment phase. In this case, specific economic criteria were assessed by net present value calculation, while ecological or socio-economic criteria were rated by utility analysis, transferring the result into a utility-net present value chart. In the case of the examined pilot landfill, assessing the landfill mining project produced a higher utility but a lower net present value than a landfill leaving-in for aftercare. Since no clearly preferable scenario could be identified this way, a cost-revenue analysis was carried out in addition that determined a dimensionless ratio: the 'utility - net present value quotient' of both scenarios. Comparing this quotient showed unmistakably that in the overall assessment, 'leaving the landfill in aftercare' was preferable to a 'landfill mining project' in that specific case. © The Author(s) 2016.

  15. Greenhouse gas reduction by recovery and utilization of landfill methane and CO{sub 2} technical and market feasibility study, Boului Landfill, Bucharest, Romania. Final report, September 30, 1997--September 19, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, W.J.; Brown, W.R.; Siwajek, L.

    1998-09-01

    The project is a landfill gas to energy project rated at about 4 megawatts (electric) at startup, increasing to 8 megawatts over time. The project site is Boului Landfill, near Bucharest, Romania. The project improves regional air quality, reduces emission of greenhouse gases, controls and utilizes landfill methane, and supplies electric power to the local grid. The technical and economic feasibility of pre-treating Boului landfill gas with Acrion`s new landfill gas cleanup technology prior to combustion for power production us attractive. Acrion`s gas treatment provides several benefits to the currently structured electric generation project: (1) increase energy density of landfillmore » gas from about 500 Btu/ft{sup 3} to about 750 Btu/ft{sup 3}; (2) remove contaminants from landfill gas to prolong engine life and reduce maintenance;; (3) recover carbon dioxide from landfill gas for Romanian markets; and (4) reduce emission of greenhouse gases methane and carbon dioxide. Greenhouse gas emissions reduction attributable to successful implementation of the landfill gas to electric project, with commercial liquid CO{sub 2} recovery, is estimated to be 53 million metric tons of CO{sub 2} equivalent of its 15 year life.« less

  16. Preliminary Evaluation of Method to Monitor Landfills Resilience against Methane Emission

    NASA Astrophysics Data System (ADS)

    Chusna, Noor Amalia; Maryono, Maryono

    2018-02-01

    Methane emission from landfill sites contribute to global warming and un-proper methane treatment can pose an explosion hazard. Stakeholder and government in the cities in Indonesia been found significant difficulties to monitor the resilience of landfill from methane emission. Moreover, the management of methane gas has always been a challenging issue for long waste management service and operations. Landfills are a significant contributor to anthropogenic methane emissions. This study conducted preliminary evaluation of method to manage methane gas emission by assessing LandGem and IPCC method. From the preliminary evaluation, this study found that the IPCC method is based on the availability of current and historical country specific data regarding the waste disposed of in landfills while from the LandGEM method is an automated tool for estimating emission rates for total landfill gas this method account total gas of methane, carbon dioxide and other. The method can be used either with specific data to estimate emissions in the site or default parameters if no site-specific data are available. Both of method could be utilize to monitor the methane emission from landfill site in cities of Central Java.

  17. Livingston Parish Landfill Methane Recovery Project (Feasibility Study)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Steven

    The Woodside Landfill is owned by Livingston Parish, Louisiana and is operated under contract by Waste Management of Louisiana LLC. This public owner/private operator partnership is commonplace in the solid waste industry today. The landfill has been in operation since approximately 1988 and has a permitted capacity of approximately 41 million cubic yards. Based on an assumed in-place waste density of 0.94 ton per cubic yard, the landfill could have an expected design capacity of 39.3 million tons. The landfill does have an active landfill gas collection and control system (LFGCCS) in place because it meets the minimum thresholds formore » the New Source Performance Standards (NSPS). The initial LFGCS was installed prior to 2006 and subsequent phases were installed in 2007 and 2010. The Parish received a grant from the United States Department of Energy in 2009 to evaluate the potential for landfill gas recovery and utilization at the Woodside Landfill. This includes a technical and economic feasibility study of a project to install a landfill gas to energy (LFGTE) plant and to compare alternative technologies. The LFGTE plant can take the form of on-site electrical generation, a direct use/medium Btu option, or a high-Btu upgrade technology. The technical evaluation in Section 2 of this report concludes that landfill gas from the Woodside landfill is suitable for recovery and utilization. The financial evaluations in sections 3, 4, and 5 of this report provide financial estimates of the returns for various utilization technologies. The report concludes that the most economically viable project is the Electricity Generation option, subject to the Parish’s ability and willingness to allocate adequate cash for initial capital and/or to obtain debt financing. However, even this option does not present a solid return: by our estimates, there is a 19 year simple payback on the electricity generation option. All of the energy recovery options discussed in this report

  18. Methane emissions from a landfill in north-east India: Performance of various landfill gas emission models.

    PubMed

    Gollapalli, Muralidhar; Kota, Sri Harsha

    2018-03-01

    Rapid urbanization and economic growth has led to significant increase in municipal solid waste generation in India during the last few decades and its management has become a major issue because of poor waste management practices. Solid waste generated is deposited into open dumping sites with hardly any segregation and processing. Carbon dioxide (CO 2 ), methane (CH 4 ) and nitrous oxide (N 2 O) are the major greenhouse gases that are released from the landfill sites due to the biodegradation of organic matter. In this present study, CH 4 and CO 2 emissions from a landfill in north-east India are estimated using a flux chamber during September, 2015 to August, 2016. The average emission rates of CH 4 and CO 2 are 68 and 92 mg/min/m 2 , respectively. The emissions are highest in the summer whilst being lowest in winter. The diurnal variation of emissions indicated that the emissions follow a trend similar to temperature in all the seasons. Correlation coefficients of CH 4 and temperature in summer, monsoon and winter are 0.99, 0.87 and 0.97, respectively. The measured CH 4 in this study is in the range of other studies around the world. Modified Triangular Method (MTM), IPCC model and the USEPA Landfill gas emissions model (LandGEM) were used to predict the CH 4 emissions during the study year. The consequent simulation results indicate that the MTM, LandGEM-Clean Air Act, LandGEM-Inventory and IPCC models predict 1.9, 3.3, 1.6 and 1.4 times of the measured CH 4 emission flux in this study. Assuming that this higher prediction of CH 4 levels observed in this study holds well for other landfills in this region, a new CH 4 emission inventory (Units: Tonnes/year), with a resolution of 0.1 0  × 0.1 0 has been developed. This study stresses the importance of biodegradable composition of waste and meteorology, and also points out the drawbacks of the widely used landfill emission models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. First-order kinetic gas generation model parameters for wet landfills.

    PubMed

    Faour, Ayman A; Reinhart, Debra R; You, Huaxin

    2007-01-01

    Landfill gas collection data from wet landfill cells were analyzed and first-order gas generation model parameters were estimated for the US EPA landfill gas emissions model (LandGEM). Parameters were determined through statistical comparison of predicted and actual gas collection. The US EPA LandGEM model appeared to fit the data well, provided it is preceded by a lag phase, which on average was 1.5 years. The first-order reaction rate constant, k, and the methane generation potential, L(o), were estimated for a set of landfills with short-term waste placement and long-term gas collection data. Mean and 95% confidence parameter estimates for these data sets were found using mixed-effects model regression followed by bootstrap analysis. The mean values for the specific methane volume produced during the lag phase (V(sto)), L(o), and k were 33 m(3)/Megagrams (Mg), 76 m(3)/Mg, and 0.28 year(-1), respectively. Parameters were also estimated for three full scale wet landfills where waste was placed over many years. The k and L(o) estimated for these landfills were 0.21 year(-1), 115 m(3)/Mg, 0.11 year(-1), 95 m(3)/Mg, and 0.12 year(-1) and 87 m(3)/Mg, respectively. A group of data points from wet landfills cells with short-term data were also analyzed. A conservative set of parameter estimates was suggested based on the upper 95% confidence interval parameters as a k of 0.3 year(-1) and a L(o) of 100 m(3)/Mg if design is optimized and the lag is minimized.

  20. Landfill gas control at military installations. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shafer, R.A.; Renta-Babb, A.; Bandy, J.T.

    1984-01-01

    This report provides information useful to Army personnel responsible for recognizing and solving potential problems from gas generated by landfills. Information is provided on recognizing and gauging the magnitude of landfill gas problems; selecting appropriate gas control strategies, procedures, and equipment; use of computer modeling to predict gas production and migration and the success of gas control devices; and safety considerations.

  1. Advanced Oxidation Processes: Process Mechanisms, Affecting Parameters and Landfill Leachate Treatment.

    PubMed

    Su-Huan, Kow; Fahmi, Muhammad Ridwan; Abidin, Che Zulzikrami Azner; Soon-An, Ong

    2016-11-01

      Advanced oxidation processes (AOPs) are of special interest in treating landfill leachate as they are the most promising procedures to degrade recalcitrant compounds and improve the biodegradability of wastewater. This paper aims to refresh the information base of AOPs and to discover the research gaps of AOPs in landfill leachate treatment. A brief overview of mechanisms involving in AOPs including ozone-based AOPs, hydrogen peroxide-based AOPs and persulfate-based AOPs are presented, and the parameters affecting AOPs are elaborated. Particularly, the advancement of AOPs in landfill leachate treatment is compared and discussed. Landfill leachate characterization prior to method selection and method optimization prior to treatment are necessary, as the performance and practicability of AOPs are influenced by leachate matrixes and treatment cost. More studies concerning the scavenging effects of leachate matrixes towards AOPs, as well as the persulfate-based AOPs in landfill leachate treatment, are necessary in the future.

  2. 40 CFR 62.3630 - Identification of plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Rule 8. Municipal Solid Waste Landfills Located in Clark, Floyd, Lake and Porter Counties and Rule 8.1. Municipal Solid Waste Landfills Not Located in Clark, Floyd, Lake and Porter Counties added at 21 Indiana...

  3. TEST RESULTS FOR FUEL-CELL OPERATION ON LANDFILL GAS

    EPA Science Inventory

    Test results from a demonstration of fuel-cell (FC) energy recovery and control of landfill gas emissions are presented. The project addressed two major issues: (i) the design, construction, and testing of a landfill-gas cleanup system; and (ii) a field test of a commercial phos...

  4. LEACHATE RECIRCULATION, METHANOGENS AND METAL CONCENTRATIONS IN BIOREACTOR LANDFILLS

    EPA Science Inventory

    The idea of operating landfills as bioreactors has received a lot of attention owing to many of the economic and waste treatment benefits. Portions of the Outer Loop landfill in Louisville, KY, owned and operated by WMI, Inc., are currently being used to test two different decom...

  5. USERS MANUAL: LANDFILL GAS EMISSIONS MODEL - VERSION 2.0

    EPA Science Inventory

    The document is a user's guide for a computer model, Version 2.0 of the Landfill Gas Emissions Model (LandGEM), for estimating air pollution emissions from municipal solid waste (MSW) landfills. The model can be used to estimate emission rates for methane, carbon dioxide, nonmet...

  6. ENGINEERING BULLETIN: LANDFILL COVERS

    EPA Science Inventory

    Landfill covers are used at Superfund sites to minimize surface water infiltration and control gas migration. In many cases covers are used in conjunction with other waste treatment technologies, such as slurry walls, ground water pump-and-treat systems, and gas collection. This ...

  7. GeoChip-based Analysis of Groundwater Microbial Diversity in Norman Landfill

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Zhenmei; He, Zhili; Parisi, Victoria

    The Norman Landfill is a closed municipal solid waste landfill located on an alluvium associated with the Canadian River in Norman, Oklahoma. It has operated as a research site since 1994 because it is typical of many closed landfill sites across the U.S. Leachate from the unlined landfill forms a groundwater plume that extends downgradient approximately 250 m from the landfill toward the Canadian River. To investigate the impact of the landfill leachate on the diversity and functional structure of microbial communities, groundwater samples were taken from eight monitoring wells at a depth of 5m, and analyzed using a comprehensivemore » functional gene array covering about 50,000 genes involved in key microbial processes, such as biogeochemical cycling of C, N, P, and S, and bioremediation of organic contaminants and metals. Wells are located within a transect along a presumed flow path with different distances to the center of the leachate plume. Our analyses showed that microbial communities were obviously impacted by the leachate-component from the landfill. The number of genes detected and microbial diversity indices in the center (LF2B) and its closest (MLS35) wells were significantly less than those detected in other more downgradient wells, while no significant changes were observed in the relative abundance (i.e., percentage of each gene category) for most gene categories. However, the microbial community composition or structure of the landfill groundwater did not clearly show a significant correlation with the distance from well LF2B. Burkholderia sp. and Pseudomonas sp. were found to be the dominant microbial populations detected in all wells, while Bradyrhizobium sp. and Ralstonia sp. were dominant populations for seven wells except LF2B. In addition, Mantel test and canonical correspondence analysis (CCA) indicate that pH, sulfate, ammonia nitrogen and dissolved organic carbon (DOC) have significant effects on the microbial community structure. The

  8. Non-controlled biogenic emissions to the atmosphere from Lazareto landfill, Tenerife, Canary Islands.

    PubMed

    Nolasco, Dácil; Lima, R Noemí; Hernández, Pedro A; Pérez, Nemesio M

    2008-01-01

    [corrected] Historically, landfills have been the simplest form of eliminating urban solid waste with the minimum cost. They have been the most usual method for discarding solid waste. However, landfills are considered authentic biochemical reactors that introduce large amounts of contaminants into the environment in the form of gas and leachates. The dynamics of generation and the movement of gas in landfills depend on the input and output parameters, as well as on the structure of the landfill and the kind of waste. The input parameters include water introduced through natural or artificial processes, the characteristics of the urban solid waste, and the input of atmospheric air. The main output parameters for these biochemical reactors include the gases and the leachates that are potentially pollutants for the environment. Control systems are designed and installed to minimize the impact on the environment. However, these systems are not perfect and a significant amount of landfill gas could be released to the atmosphere through the surface in a diffuse form, also known as Non-controlled emission. In this paper, the results of the Non-controlled biogenic gas emissions from the Lazareto landfill in Tenerife, Canary Islands, are presented. The purpose of this study was to evaluate the concentration of CH4 and CO2 in the soil gas of the landfill cover, the CH4 and CO2 efflux from the surface of the landfill and, finally, to compare these parameters with other similar landfills. In this way, a better understanding of the process that controls biogenic gas emissions in landfills is expected. A Non-controlled biogenic gas emission survey of 281 sampling sites was carried out during February and March, 2002. The sampling sites were selected in order to obtain a well-distributed sampling grid. Surface landfill CO2 efflux measurements were carried out at each sampling site on the surface landfill together with soil gas collection and ground temperatures at a depth of 30

  9. Los Alamos on Radio Café: Nina Lanza

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lanza, Nina; Domandi, Mary-Charlotte

    2017-04-11

    First up in the new series is Los Alamos National Laboratory’s Nina Lanza from the Space and Remote Sensing group. Lanza is a planetary geologist who has been part of the Mars Curiosity Rover “ChemCam” team since 2012.

  10. Integrating remediation and resource recovery: On the economic conditions of landfill mining.

    PubMed

    Frändegård, Per; Krook, Joakim; Svensson, Niclas

    2015-08-01

    This article analyzes the economic potential of integrating material separation and resource recovery into a landfill remediation project, and discusses the result and the largest impact factors. The analysis is done using a direct costs/revenues approach and the stochastic uncertainties are handled using Monte Carlo simulation. Two remediation scenarios are applied to a hypothetical landfill. One scenario includes only remediation, while the second scenario adds resource recovery to the remediation project. Moreover, the second scenario is divided into two cases, case A and B. In case A, the landfill tax needs to be paid for re-deposited material and the landfill holder does not own a combined heat and power plant (CHP), which leads to disposal costs in the form of gate fees. In case B, the landfill tax is waived on the re-deposited material and the landfill holder owns its own CHP. Results show that the remediation project in the first scenario costs about €23/ton. Adding resource recovery as in case A worsens the result to -€36/ton, while for case B the result improves to -€14/ton. This shows the importance of landfill tax and the access to a CHP. Other important factors for the result are the material composition in the landfill, the efficiency of the separation technology used, and the price of the saleable material. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Landfill aeration in the framework of a reclamation project in Northern Italy.

    PubMed

    Raga, Roberto; Cossu, Raffaello

    2014-03-01

    In situ aeration by means of the Airflow technology was proposed for landfill conditioning before landfill mining in the framework of a reclamation project in Northern Italy. A 1-year aeration project was carried out on part of the landfill with the objective of evaluating the effectiveness of the Airflow technology for landfill aerobization, the evolution of waste biological stability during aeration and the effects on leachate and biogas quality and emissions. The main outcomes of the 1-year aeration project are presented in the paper. The beneficial effect of the aeration on waste biological stability was clear (63% reduction of the respiration index); however, the effectiveness of aeration on the lower part of the landfill is questionable, due to the limited potential for air migration into the leachate saturated layers. During the 1-year in situ aeration project approx. 275 MgC were discharged from the landfill body with the extracted gas, corresponding to 4.6 gC/kgDM. However, due to the presence of anaerobic niches in the aerated landfill, approx. 46% of this amount was extracted as CH4, which is higher than reported in other aeration projects. The O2 conversion quota was lower than reported in other similar projects, mainly due to the higher air flow rates applied. The results obtained enabled valuable recommendations to be made for the subsequent application of the Airflow technology to the whole landfill. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. The impact of Mpererwe landfill in Kampala Uganda, on the surrounding environment

    NASA Astrophysics Data System (ADS)

    Mwiganga, M.; Kansiime, F.

    Mpererwe landfill site receives solid wastes from the city of Kampala, Uganda. This study was carried out to assess and evaluate the appropriateness of the location and operation of this landfill, to determine the composition of the solid waste dumped at the landfill and the extent of contamination of landfill leachate to the neighbouring environment (water, soil and plants). Field observations and laboratory measurements were carried out to determine the concentration of nutrients, metals and numbers of bacteriological indicators in the landfill leachate. The landfill is not well located as it is close to a residential area (<200 m) and cattle farms. It is also located upstream of a wetland. The landfill generates nuisances like bad odour; there is scattering of waste by scavenger birds, flies and vermin. Industrial and hospital wastes are disposed of at the landfill without pre-treatment. The concentration of variables (nutrients, bacteriological indicators, BOD and heavy metals) in the leachate were higher than those recommended in the National Environment Standards for Discharge of Effluent into Water and on Land. A composite sample that was taken 1500 m down stream indicated that the wetland considerably reduced the concentration of the parameters that were measured except for sulfides. Despite the fact that there was accumulation of metals in the sediments, the concentration has not reached toxic levels to humans. Soil and plant analyses indicated deficiencies of zinc and copper. The concentration of these elements was lowest in the leachate canal.

  13. Airport-Noise Levels and Annoyance Model (ALAMO) user's guide

    NASA Technical Reports Server (NTRS)

    Deloach, R.; Donaldson, J. L.; Johnson, M. J.

    1986-01-01

    A guide for the use of the Airport-Noise Level and Annoyance MOdel (ALAMO) at the Langley Research Center computer complex is provided. This document is divided into 5 primary sections, the introduction, the purpose of the model, and an in-depth description of the following subsystems: baseline, noise reduction simulation and track analysis. For each subsystem, the user is provided with a description of architecture, an explanation of subsystem use, sample results, and a case runner's check list. It is assumed that the user is familiar with the operations at the Langley Research Center (LaRC) computer complex, the Network Operating System (NOS 1.4) and CYBER Control Language. Incorporated within the ALAMO model is a census database system called SITE II.

  14. Landfill Gas Energy Benefits Calculator

    EPA Pesticide Factsheets

    This page contains the LFG Energy Benefits Calculator to estimate direct, avoided, and total greenhouse gas reductions, as well as environmental and energy benefits, for a landfill gas energy project.

  15. Analysis of the contaminants released from municipal solid waste landfill site: A case study.

    PubMed

    Samadder, S R; Prabhakar, R; Khan, D; Kishan, D; Chauhan, M S

    2017-02-15

    Release and transport of leachate from municipal solid waste landfills pose a potential hazard to both surrounding ecosystems and human populations. In the present study, soil, groundwater, and surface water samples were collected from the periphery of a municipal solid waste landfill (located at Ranital of Jabalpur, Madhya Pradesh, India) for laboratory analysis to understand the release of contaminants. The landfill does not receive any solid wastes for dumping now as the same is under a landfill closure plan. Groundwater and soil samples were collected from the bore holes of 15m deep drilled along the periphery of the landfill and the surface water samples were collected from the existing surface water courses near the landfill. The landfill had neither any bottom liner nor any leachate collection and treatment system. Thus the leachate generated from the landfills finds paths into the groundwater and surrounding surface water courses. Concentrations of various physico-chemical parameters including some toxic metals (in collected groundwater, soil, and surface water samples) and microbiological parameters (in surface water samples) were determined. The analyzed data were integrated into ArcGIS environment and the spatial distribution of the metals and other physic- chemical parameter across the landfill was extrapolated to observe the distribution. The statistical analysis and spatial variations indicated the leaching of metals from the landfill to the groundwater aquifer system. The study will help the readers and the municipal engineers to understand the release of contaminants from landfills for better management of municipal solid wastes. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Evaluation of Heavy Metal Exposure to Soil and Paddy Plant around the Closed Municipal Solid Waste Landfill: Case Study at Gunung Tugel Landfill, Banyumas-Central Java

    NASA Astrophysics Data System (ADS)

    Kasam; Rahmawati, Suphia; Mulya Iresha, Fajri; Wacano, Dhandhun; Farida Fauziah, Ida; Afif Amrullah, Muhammad

    2018-01-01

    This work was focused on assessing the exposure of heavy metal from closed municipal solid waste (MSW) landfill on soil and paddy plants. This study aimed to determine heavy metal content whether at the soil in the around Gunung Tugel landfill included and accumulated in the paddy plant tissues. The investigated metals include chromium (Cr), copper (Cu), cadmium (Cd), iron (Fe), and zinc (Zn). The samples were acid-digested before the desired elements were measured using Atomic Absorption Spectrophotometry (AAS). The results are presented as distribution map of the landfill area based on the total heavy metals content distribution in the soil and paddy plants. The samples shown that the concentrations of heavy metals around Gunung Tugel landfill are 6.27-34.71 mg/kg, 0.17-0.42 mg/kg, 28.29-48.69 mg/kg, 18,997.26-32,572.29 mg/kg, 342.74-834.49 mg/kg, 136.10-290.14 mg/kg at the top soil and 0.00-1.70 mg/kg, 0.00-0.26 mg/kg, 0.79-10.46 mg/kg, 13.88-61.46 mg/kg, 18.79-50.56 mg/kg, 87.27-273.22 mg/kg at the paddy for Cr, Cd, Cu, Fe, Mn, and Zn respectively. According to the results, The Gunung Tugel landfill is not a direct source of heavy metal pollution at paddy plant in the landfill area, but through surface water and soil media. Rainfall around landfill is quite high ie more 2000 mm/year of rainfall and soil permeability is 1.0 cm/sec.

  17. Evaluation of alternative landfill cover soils for attenuating hydrogen sulfide from construction and demolition (C&D) debris landfills.

    PubMed

    Plaza, Cristine; Xu, Qiyong; Townsend, Timothy; Bitton, Gabriel; Booth, Matthew

    2007-08-01

    Hydrogen sulfide (H(2)S) generated from C&D debris landfills has emerged as a major environmental concern due to odor problems and possible health impacts to landfill employees and surrounding residents. Research was performed to evaluate the performance of various cover materials as control measures for H(2)S emissions from C&D debris landfills. Twelve laboratory-scale simulated landfill columns containing gypsum drywall were operated under anaerobic conditions to promote H(2)S production. Five different cover materials were placed on top of the waste inside duplicate columns: (1) sandy soil, (2) sandy soil amended with lime, (3) clayey soil, (4) fine concrete (particle size less than 2.5 cm), and (5) coarse concrete (particle size greater than 2.5 cm). No cover was placed on two of the columns, which were used as controls. H(2)S concentrations measured from the middle of the waste layer ranged from 50,000 to 150,000 ppm. The different cover materials demonstrated varying H(2)S removal efficiencies. The sandy soil amended with lime and the fine concrete were the most effective for the control of H(2)S emissions. Both materials exhibited reduction efficiencies greater than 99%. The clayey and sandy soils exhibited lower reduction efficiencies, with average removal efficiencies of 65% and 30%, respectively. The coarse concrete was found to be the least efficient material as a result of its large particle size.

  18. Chemical composition and genotoxicity assessment of sanitary landfill leachate from Rovinj, Croatia.

    PubMed

    Gajski, Goran; Oreščanin, Višnja; Garaj-Vrhovac, Vera

    2012-04-01

    Chemical analysis and an in vitro approach were performed to assess elemental composition and genotoxic effects of the samples of landfill leachate taken from Lokva Vidotto sanitary landfill the official landfill for Rovinj town, Croatia. Two samples of landfill leachate were collected and analyzed in order to evaluate macro, micro and trace elements by atomic absorption spectroscopy, energy dispersive X-ray spectrometry and colorimetry. Genotoxicity of sanitary landfill leachate was evaluated in human lymphocytes by the use of the micronucleus test and comet assay. Samples were characterized with relatively low concentrations of heavy metals while organic component level exceeded upper permissible limit up to 39 times. Observed genotoxic effects should be connected with high concentrations of ammonia nitrogen, which exceeded permissible limit up to 180 times. Leachate samples of both sanitary landfills increased the frequency of micronuclei, nucleoplasmic bridges and nuclear buds. Increase of DNA damage in human lymphocytes was also detected by virtue of measuring comet assay parameters. All parameters showed statistically significant difference compared to negative control. Increased micronucleus and comet assay parameters indicate that both samples of sanitary landfill leachate are genotoxic and could pose environmental and human health risk if discharged to an aquatic environment. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Construction quality assurance report for the Y-12 Construction/Demolition Landfill VII (CDL VII), Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burton, P.M.

    This Construction Quality Assurance (CQA) Report provides documentation that Bid Option 2 of the Y-12 Plant Construction Demolition Landfill 7 (CDL-7) was constructed in substantial compliance with the Tennessee Department of Environment and Conservation (TDEC) approved design, as indicated and specified in the permit drawings, approved changes, and specifications. CDL-7 is located in Anderson County on the south side of Chestnut Ridge, approximately 0.5 miles south of the Y-12 Plant in Oak Ridge, Tennessee. This report applies specifically to the limits of excavation for Area No. 1 portions of the perimeter maintenance road and drainage channel and Sedimentation Pond No.more » 3. A partial ``As-Built`` survey was performed and is included.« less

  20. Organic carbon storage change in China's urban landfills from 1978-2014

    NASA Astrophysics Data System (ADS)

    Ge, Shidong; Zhao, Shuqing

    2017-10-01

    China has produced increasingly large quantities of waste associated with its accelerated urbanization and economic development and deposited these wastes into landfills, potentially sequestering carbon. However, the magnitude of the carbon storage in China’s urban landfills and its spatial and temporal change remain unclear. Here, we estimate the total amount of organic carbon (OC) stored in China's urban landfills between 1978 and 2014 using a first order organic matter decomposition model and data compiled from literature review and statistical yearbooks. Our results show that total OC stored in China’s urban landfills increased nearly 68-fold from the 1970s to the 2010s, and reached 225.2-264.5 Tg C (95% confidence interval, hereafter) in 2014. Construction waste was the largest OC pool (128.4-157.5 Tg C) in 2014, followed by household waste (67.7-83.8 Tg C), and sewage sludge was the least (19.7-34.1 Tg C). Carbon stored in urban landfills accounts for more than 10% of the country’s carbon stocks in urban ecosystems. The annual increase (i.e. sequestration rate) of OC in urban landfills in the 2010s (25.1 ± 4.3 Tg C yr-1, mean ± 2SD, hereafter) is equivalent to 1% of China's carbon emissions from fossil fuel combustion and cement production during the same period, but represents about 9% of the total terrestrial carbon sequestration in the country. Our study clearly indicates that OC dynamics in landfills should not be neglected in regional to national carbon cycle studies as landfills not only account for a substantial part of the carbon stored in urban ecosystems but also have a respectable contribution to national carbon sequestration.

  1. 75 FR 51483 - Notice of Lodging of Consent Decree Under the Clean Air Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-20

    ... given that on August 9, 2010, a proposed Consent Decree in United States v. Middlesex County Utilities... Air Pollution Control Act, N.J.S.A. 26:2C-1 et seq., at the Middlesex County landfill in East... to the United States and New Jersey, and shall upgrade the Middlesex County Landfill Gas Collection...

  2. Comparison of fuzzy AHP and fuzzy TODIM methods for landfill location selection.

    PubMed

    Hanine, Mohamed; Boutkhoum, Omar; Tikniouine, Abdessadek; Agouti, Tarik

    2016-01-01

    Landfill location selection is a multi-criteria decision problem and has a strategic importance for many regions. The conventional methods for landfill location selection are insufficient in dealing with the vague or imprecise nature of linguistic assessment. To resolve this problem, fuzzy multi-criteria decision-making methods are proposed. The aim of this paper is to use fuzzy TODIM (the acronym for Interactive and Multi-criteria Decision Making in Portuguese) and the fuzzy analytic hierarchy process (AHP) methods for the selection of landfill location. The proposed methods have been applied to a landfill location selection problem in the region of Casablanca, Morocco. After determining the criteria affecting the landfill location decisions, fuzzy TODIM and fuzzy AHP methods are applied to the problem and results are presented. The comparisons of these two methods are also discussed.

  3. Does Disposing of Construction and Demolition Debris in Unlined Landfills Impact Groundwater Quality? Evidence from 91 Landfill Sites in Florida.

    PubMed

    Powell, Jon T; Jain, Pradeep; Smith, Justin; Townsend, Timothy G; Tolaymat, Thabet M

    2015-08-04

    More than 1,500 construction and demolition debris (CDD) landfills operate in the United States (U.S.), and U.S. federal regulations do not require containment features such as low-permeability liners and leachate collection systems for these facilities. Here we evaluate groundwater quality from samples collected in groundwater monitoring networks at 91 unlined, permitted CDD landfills in Florida, U.S. A total of 460,504 groundwater sample results were analyzed, with a median of 10 years of quarterly or semiannual monitoring data per site including more than 400 different chemical constituents. Downgradient concentrations of total dissolved solids, sulfate, chloride, iron, ammonia-nitrogen, and aluminum were greater than upgradient concentrations (p < 0.05). At downgradient wells where sulfate concentrations were greater than 150 mg/L (approximately 10% of the maximum dissolved sulfate concentration in water, which suggests the presence of leachate from the landfill), iron and arsenic were detected in 91% and 43% of samples, with median concentrations of 1,900 μg/L and 11 μg/L, respectively. These results show that although health-based standards can be exceeded at unlined CDD landfills, the magnitude of detected chemical concentrations is generally small and reflective of leached minerals from components (wood, concrete, and gypsum drywall) that comprise the bulk of discarded CDD by mass.

  4. An overview of municipal solid waste management and landfill leachate treatment: Malaysia and Asian perspectives.

    PubMed

    Kamaruddin, Mohamad Anuar; Yusoff, Mohd Suffian; Rui, Lo Ming; Isa, Awatif Md; Zawawi, Mohd Hafiz; Alrozi, Rasyidah

    2017-12-01

    Currently, generation of solid waste per capita in Malaysia is about 1.1 kg/day. Over 26,500 t of solid waste is disposed almost solely through 166 operating landfills in the country every day. Despite the availability of other disposal methods, landfill is the most widely accepted and prevalent method for municipal solid waste (MSW) disposal in developing countries, including Malaysia. This is mainly ascribed to its inherent forte in terms cost saving and simpler operational mechanism. However, there is a downside. Environmental pollution caused by the landfill leachate has been one of the typical dilemmas of landfilling method. Leachate is the liquid produced when water percolates through solid waste and contains dissolved or suspended materials from various disposed materials and biodecomposition processes. It is often a high-strength wastewater with extreme pH, chemical oxygen demand (COD), biochemical oxygen demand (BOD), inorganic salts and toxicity. Its composition differs over the time and space within a particular landfill, influenced by a broad spectrum of factors, namely waste composition, landfilling practice (solid waste contouring and compacting), local climatic conditions, landfill's physico-chemical conditions, biogeochemistry and landfill age. This paper summarises an overview of landfill operation and leachate treatment availability reported in literature: a broad spectrum of landfill management opportunity, leachate parameter discussions and the way forward of landfill leachate treatment applicability.

  5. Potential SRF generation from a closed landfill in northern Italy.

    PubMed

    Passamani, Giorgia; Ragazzi, Marco; Torretta, Vincenzo

    2016-01-01

    The aim of this work is to assess the possibility of producing solid recovered fuel (SRF) and "combustible SRF" from a landfill located in the north of Italy, where the waste is placed in cylindrical wrapped bales. Since the use of landfills for the disposal of municipal solid waste has many technical limitations and is subject to strict regulations and given that landfill post-closure care is very expensive, an interesting solution is to recover the bales that are stored in the landfill. The contents of the bales can then be used for energy recovery after specific treatments. Currently the landfill is closed and the local municipal council together with an environmental agency are considering constructing a mechanical biological treatment (MBT) plant for SRF production. The municipal solid waste that is stored in the landfill, the bio-dried material produced by the hypothetically treated waste in a plant for bio-drying, and the SRF obtained after the post-extraction of inert materials, metals and glass from the bio-dried material were characterized according to the quality and classification criteria of regulations in Italy. The analysis highlighted the need to treat the excavated waste in a bio-drying plant and later to remove the inert waste, metals and glass. Thus in compliance with Italian law, the material has a high enough LHV to be considered as "combustible SRF", (i.e. an SRF with enhanced characteristics). Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Methodology for assessing thioarsenic formation potential in sulfidic landfill environments.

    PubMed

    Zhang, Jianye; Kim, Hwidong; Townsend, Timothy

    2014-07-01

    Arsenic leaching and speciation in landfills, especially those with arsenic bearing waste and drywall disposal (such as construction and demolition (C&D) debris landfills), may be affected by high levels of sulfide through the formation of thioarsenic anions. A methodology using ion chromatography (IC) with a conductivity detector was developed for the assessment of thioarsenic formation potential in sulfidic landfill environments. Monothioarsenate (H2AsSO3(-)) and dithioarsenate (H2AsS2O2(-)) were confirmed in the IC fractions of thioarsenate synthesis mixture, consistent with previous literature results. However, the observation of AsSx(-) (x=5-8) in the supposed trithioarsenate (H2AsS3O(-)) and tetrathioarsenate (H2AsS4(-)) IC fractions suggested the presence of new arsenic polysulfide complexes. All thioarsenate anions, particularly trithioarsenate and tetrathioarsenate, were unstable upon air exposure. The method developed for thioarsenate analysis was validated and successfully used to analyze several landfill leachate samples. Thioarsenate anions were detected in the leachate of all of the C&D debris landfills tested, which accounted for approximately 8.5% of the total aqueous As in the leachate. Compared to arsenite or arsenate, thioarsenates have been reported in literature to have lower adsorption on iron oxide minerals. The presence of thioarsenates in C&D debris landfill leachate poses new concerns when evaluating the impact of arsenic mobilization in such environments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Methanogenesis acceleration of fresh landfilled waste by micro-aeration.

    PubMed

    Shao, Li-Ming; He, Pin-Jing; Zhang, Hua; Yu, Xiao-Hua; Li, Guo-Jian

    2005-01-01

    When municipal solid waste (MSW) with high content of food waste is landfilled, the rapid hydrolysis of food waste results in the imbalance of anaerobic metabolism in the landfill layer, indicated by accumulation of volatile fatty acids (VFA) and decrease of pH value. This occurrence could lead to long lag time before the initiation of methanogenesis and to the production of strong leachate. Simulated landfill columns with forced aeration, with natural ventilation, and with no aeration, were monitored regarding their organics degradation rate with leachate recirculation. Hydrolysis reactions produced strong leachate in the column with no aeration. With forced aeration, the produced VFA could be effectively degraded, leading to the reduction in COD of the leachate effluent since the week 3. The CH4 in the landfill gas from the column with aeration rate of 0.39 m3/(m3 x d) and frequency of twice/d, leachate recirculation rate of 12.2 mm/d and frequency of twice/d, could amount to 40% (v/v) after only 20 weeks. This amount had increased up to 50% afterward even with no aeration. Most of COD in the recirculated leachate was removed. Using natural ventilation, CH4 could also be produced and the COD of the leachate effluent be reduced after 10 weeks of operation. However, the persistent existence of oxygen in the landfill layer yielded instability in methanogenesis process.

  8. Endogenous mitigation of H2S inside of the landfills.

    PubMed

    Fang, Yuan; Zhong, Zhong; Shen, Dongsheng; Du, Yao; Xu, Jing; Long, Yuyang

    2016-02-01

    Vast quantities of hydrogen sulfide (H2S) emitted from landfill sites require urgent disposal. The current study focused on source control and examined the migration and conversion behavior of sulfur compounds in two lab-scale simulated landfills with different operation modes. It aimed to explore the possible strategies and mechanisms for H2S endogenous mitigation inside of landfills during decomposition. It was found that the strength of H2S emissions from the landfill sites was dependent on the municipal solid waste (MSW) degradation speed and vertical distribution of sulfide. Leachate recirculation can shorten both the H2S influence period and pollution risk to the surrounding environment. H2S endogenous mitigation may be achieved by chemical oxidation, biological oxidation, adsorption, and/or precipitation in different stages. Migration and conversion mainly affected H2S release behavior during the initial stabilization phase in the landfill. Microbial activities related to sulfur, nitrogen, and iron can further promote H2S endogenous mitigation during the high reducing phase. Thus, H2S endogenous mitigation can be effectively enhanced via control of the aforementioned processes.

  9. A New Generation of Los Alamos Opacity Tables

    DOE PAGES

    Colgan, James Patrick; Kilcrease, David Parker; Magee, Jr., Norman H.; ...

    2016-01-26

    We present a new, publicly available, set of Los Alamos OPLIB opacity tables for the elements hydrogen through zinc. Our tables are computed using the Los Alamos ATOMIC opacity and plasma modeling code, and make use of atomic structure calculations that use fine-structure detail for all the elements considered. Our equation-of-state (EOS) model, known as ChemEOS, is based on the minimization of free energy in a chemical picture and appears to be a reasonable and robust approach to determining atomic state populations over a wide range of temperatures and densities. In this paper we discuss in detail the calculations thatmore » we have performed for the 30 elements considered, and present some comparisons of our monochromatic opacities with measurements and other opacity codes. We also use our new opacity tables in solar modeling calculations and compare and contrast such modeling with previous work.« less

  10. Characteristics of Leachate at Sukawinatan Landfill, Palembang, Indonesia

    NASA Astrophysics Data System (ADS)

    Sri Yusmartini, Eka; Setiabudidaya, Dedi; Ridwan; Marsi; Faizal

    2013-04-01

    Landfill (TPA) Sukawinatan Palembang is an open dumping system which covers an area of 25 hectares. This system may bring an environmental damage to the surrounding area because it does not provide leachate treatment. Leachate is the landfill waste that dissolves many compounds that contain pollutants from both organic substances and heavy metal origin. This paper presents the results of laboratory analysis on samples of leachate as well as shallow groundwater from the surrounding area. The results were compared to established quality standards to evaluate whether the leachate has influenced the quality of the shallow groundwater in the surrounding area. The results show that there are some indications that the quality of groundwater has been polluted by the leachate of both organic substances and heavy metals produced by the Sukawinatan landfill.

  11. Landfill Leachate Treatment by Electrocoagulation and Fiber Filtration.

    PubMed

    Li, Runwei; Wang, Boya; Owete, Owete; Dertien, Joe; Lin, Chen; Ahmad, Hafiz; Chen, Gang

    2017-11-01

    Landfilling is widely adopted as one of the most economical processes for solid waste disposal. At the same time, landfill leachate is also a great environmental concern owing to its complex composition and high concentrations of contaminants. This research investigated electrocoagulation and fiber filtration for the treatment of landfill leachate. Besides electrical current (i.e., current density) and reaction time, pH played a very important role in arsenic and phosphorus removal by electrocoagulation. The combination of electrocoagulation with fiber filtration achieved a 94% chemical oxygen demand (COD), 87% arsenic, 96% iron, and 86% phosphorus removal. During electrocoagulation, the micro-particles that could not be settled by gravity were removed by the first stage of fiber filtration. Organic contaminants in the leachate were further removed by biodegradation in the second stage of fiber biofiltration.

  12. Effects of concentrated leachate injection modes on stabilization of landfilled waste.

    PubMed

    He, Ruo; Wei, Xiao-Meng; Chen, Min; Su, Yao; Tian, Bao-Hu

    2016-02-01

    Injection of concentrated leachate to landfills is a simple and cost-effective technology for concentrated leachate treatment. In this study, the effects of injection mode of concentrated leachate and its hydraulic loading rate on the stabilization of landfilled waste were investigated. Compared with the injection of concentrated leachate, the joint injection of leachate and concentrated leachate (1:1, v/v) was more beneficial to the degradation of landfilled waste and mitigated the discharge amount of pollutants at the hydraulic loading rate of 5.9 L m(-2) day(-1). As the hydraulic loading rate of the joint injection of leachate and concentrated leachate was increased from 5.9 to 17.6 L m(-2) day(-1), the organic matter, biologically degradable matter, and total nitrogen of landfilled waste were degraded more rapidly, with the degradation constant of the first-order kinetics of 0.005, 0.004, and 0.003, respectively. Additionally, NO2(-)-N and NO3(-)-N in the concentrated leachate could be well removed in the landfill bioreactors. These results showed that a joint injection of concentrated leachate and raw leachate might be a good way to relieve the inhibitory effect of high concentrations of toxic pollutants in the concentrated leachate and accelerate the stabilization of landfilled waste.

  13. Methane emission to the atmosphere from landfills in the Canary Islands

    NASA Astrophysics Data System (ADS)

    Hernández, Pedro A.; Asensio-Ramos, María; Rodríguez, Fátima; Alonso, Mar; García-Merino, Marta; Amonte, Cecilia; Melián, Gladys V.; Barrancos, José; Rodríguez-Delgado, Miguel A.; Hernández-Abad, Marta; Pérez, Erica; Alonso, Monica; Tassi, Franco; Raco, Brunella; Pérez, Nemesio M.

    2017-04-01

    Methane (CH4) is one of the most powerful greenhouse gases, and is increasing in the atmosphere by 0.6% each year (Intergovernmental Panel on Climate Change, IPCC, 2013). This gas is produced in landfills in large quantities following the anaerobic degradation of organic matter. The IPCC has estimated that more than 10% of the total anthropogenic emissions of CH4 are originated in landfills. Even after years of being no operative (closed), a significant amount of landfill gas could be released to the atmosphere through its surface as diffuse or fugitive degassing. Many landfills currently report their CH4 emissions to the atmosphere using model-based methods, which are based on the rate of production of CH4, the oxidation rate of CH4 and the amount of CH4 recovered (Bingemer and Crutzen, 1987). This approach often involves large uncertainties due to inaccuracies of input data and many assumptions in the estimation. In fact, the estimated CH4 emissions from landfills in the Canary Islands published by the Spanish National Emission and Pollutant Sources Registration (PRTR-Spain) seem to be overestimated due to the use of protocols and analytical methodologies based on mathematical models. For this reason, direct measurements to estimate CH4 emissions in landfills are essential to reduce this uncertainty. In order to estimate the CH4 emissions to the atmosphere from landfills in the Canary Islands 23 surveys have been performed since 1999. Each survey implies hundreds of CO2and CH4 efflux measurements covering the landfill surface area. Surface landfill CO2 efflux measurements were carried out at each sampling site by means of a portable non-dispersive infrared spectrophotometer (NDIR) model LICOR Li800 following the accumulation chamber method. Samples of landfill gases were taken in the gas accumulated in the chamber and CO2 and CH4 were analyzed using a double channel VARIAN 4900 micro-GC. The CH4 efflux measurent was computed combining CO2 efflux and CH4/CO2 ratio

  14. MOLECULAR AND CULTURAL METHODOLOGIES FOR ENUMERATING BACTERIA IN LANDFILL LEACHATES

    EPA Science Inventory

    Landfill bioreactor technology has been under investigation in the field for its potential economic and waste treatment benefits over conventional landfill systems. A better understanding of biological influences on the stabilization process is needed for incorporation into the e...

  15. 75 FR 53220 - Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ...] Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... approved municipal solid waste landfill (MSWLF) program. The approved modification allows the State to..., and demonstration (RD&D) permits to be issued to certain municipal solid waste landfills by approved...

  16. James L. Tuck Los Alamos ball lightning pioneer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, D.A.

    1999-07-01

    James Tuck was well known for starting the Project Sherwood group at Los Alamos Scientific Laboratory in 1952. This group was formed to study and develop concepts for controlled fusion energy. In his later years after retiring from Controlled Fusion Division, he continued research at Los Alamos on the topic of ball lightning. He traveled widely giving lectures on both observations of others and his own experimental efforts. He collected anecdotal observations obtained from those in his lecture audiences during his travels and from responses from newspaper articles where he asked for specific information from ball lightning observers. He finallymore » cut off this collection of data when the number of responses became overwhelming. The author's primary publication on ball lightning was a short laboratory report. He planned on publishing a book on the subject but this was never completed before his death. Tuck focused his experimental effort on attempting to duplicate the production of plasma balls claimed to be observed in US Navy submarines when a switch was opened under overload conditions with battery power. During lunch breaks he made use of a Los Alamos N-division battery bank facility to mock up a submarine power pack and switch gear. This non-funded effort was abruptly terminated when an explosion occurred in the facility. An overview of Tuck's research and views will be given. The flavor Jim's personality as well as a ball produced with his experimental apparatus will be shown using video chips.« less

  17. Assessment of Hyperspectral and SAR Remote Sensing for Solid Waste Landfill Management

    NASA Astrophysics Data System (ADS)

    Ottavianelli, Giuseppe; Hobbs, Stephen; Smith, Richard; Bruno, Davide

    2005-06-01

    Globally, waste management is one of the most critical environmental concerns that modern society is facing. Controlled disposal to land (landfill) is currently important, and due to the potentially harmful effects of gas emissions and leachate land contamination, the monitoring of a landfill is inherent in all phases of the site's life cycle. Data from satellite platforms can provide key support to a number of landfill management and monitoring practices, potentially reducing operational costs and hazards, and meeting the challenges of the future waste management agenda.The few previous studies performed show the value of EO data for mapping landcover around landfills and monitoring vegetation health. However, these were largely qualitative studies limited to single sensor types. The review of these studies highlights three key aspects. Firstly, with regard to leachate and gas monitoring, space-borne remote sensing has not proved to be a valid tool for an accurate quantitative analysis, it can only support ground remediation efforts based on the expertise of the visual interpreter and the knowledge of the landfill operator. Secondly, the additional research that focuses on landfill detection concentrates only on the images' data dimension (spatial and spectral), paying less attention to the sensor-independent bio- and geo-physical variables and the modelling of remote sensing physical principles for both active and restored landfill sites. These studies show some ambiguity in their results and additional aerial images or ground truth visits are always required to support the results. Thirdly, none of the studies explores the potential of Synthetic Aperture Radar (SAR) remote sensing and SAR interferometric processing to achieve a more robust automatic detection algorithm and extract additional information and knowledge for landfill management.Based on our previous work with ERS radar images and SAR interferometry, expertise in the waste management sector, and

  18. Improved methodology to assess modification and completion of landfill gas management in the aftercare period

    USDA-ARS?s Scientific Manuscript database

    Municipal solid waste landfills represent the dominant option for waste disposal in many parts of the world. While some countries have greatly reduced their reliance on landfills, there remain thousands of landfills that require aftercare. The development of cost-effective strategies for landfill af...

  19. Spatially distributed potential of landfill biogas production and electric power generation in Brazil.

    PubMed

    Lima, Rodolfo M; Santos, Afonso H M; Pereira, Camilo R S; Flauzino, Bárbara K; Pereira, Ana Cristina O S; Nogueira, Fábio J H; Valverde, José Alfredo R

    2018-04-01

    Due to the relatively low investment, operation costs, and technical requirements, landfills are still the most widespread alternative for final disposal of municipal solid waste (MSW). The biogas produced in the landfill, a renewable energy source, may be an important alternative for electric power generation. Brazil has a significant number of operating landfills, which receive the most part of the collected MSW. However, the country has only 17 landfill biogas power plants (LBPPs), resulting in about 122 MW of capacity. The United Kingdom, for instance, which is about 3 times smaller than Brazil in population, has 442 LBPPs (corresponding to 1051 MW of capacity). This fact highlights a considerable unexplored potential of landfill biogas in Brazil. It is also important to estimate this potential throughout the country to provide information for the government, researchers and companies in decision making, planning and formulation of public policies regarding this use of landfill biogas. Therefore, this study aims at estimating the spatially distributed potential of landfill biogas production that can be used for electric power generation in Brazil from 2015 to 2045, considering two scenarios: (i) operating sanitary landfills and (ii) hypothetical scenario of Territorial Arrangements (TA) comprising every Brazilian city, considering one landfill per TA. The total installed capacity estimated in 2018 for scenario 1 is about 523 MW and 87% of this number are related to LBPPs bigger than 1 MW. In this same year, the total installed capacity estimated for scenario 2 is 768 MW and 95% of this number are related to LBPPs bigger than 1 MW. These results emphasize that Brazil has a considerable unexplored potential of landfill biogas and the importance of municipal consortiums for MSW management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Landfill restoration and biodiversity: a case of study in Northern Italy.

    PubMed

    Camerini, Giuseppe; Groppali, Riccardo

    2014-08-01

    Landfilling is a worldwide common waste treatment method. Final recovery usually consists of capping the area with top soil on which vegetation can grow. Depending on the suitability of the recovery pattern, landfill sites can work as potential reserve of semi-natural habitats. A recovery pattern applied to land reclamation of two hazardous waste landfills sited in Northern Italy (Po floodplain) was studied to assess the results in terms of biodiversity. These landfills lie within a landscape dominated by intensive agriculture. After final sealing, both landfills were covered by soil on which a meadow was sown and a hedgerow was planted around the borders. One of the compared areas was not provided with a pond and the hedgerow was incomplete. Butterflies and birds were used as indicators, and their seasonal abundance was related to habitat structure and ecological factors. Meadows grown on both areas supported a rich butterfly population (30 species), including some species that are by now uncommon in the Po floodplain. In both areas butterfly abundance was affected by summer drought. The birds' community included 57 species; 16 Species of European Conservation Concern (SPECs) were observed. Each bird community was different in the compared study areas because of their different size and habitat structure. For example, landfill A, provided with a pond and a more complex structure of the hedgerow, supported a richer birds community (52 species versus 39). Both restored landfills worked well as a stepping stone for migratory birds, but they were a reproductive habitat of poor quality. © The Author(s) 2014.

  1. Review on landfill leachate treatment by electrochemical oxidation: Drawbacks, challenges and future scope.

    PubMed

    Mandal, Pubali; Dubey, Brajesh K; Gupta, Ashok K

    2017-11-01

    Various studies on landfill leachate treatment by electrochemical oxidation have indicated that this process can effectively reduce two major pollutants present in landfill leachate; organic matter and ammonium nitrogen. In addition, the process is able to enhance the biodegradability index (BOD/COD) of landfill leachate, which make mature or stabilized landfill leachate suitable for biological treatment. The elevated concentration of ammonium nitrogen especially observed in bioreactor landfill leachate can also be reduced by electrochemical oxidation. The pollutant removal efficiency of the system depends upon the mechanism of oxidation (direct or indirect oxidation) which depends upon the property of anode material. Applied current density, pH, type and concentration of electrolyte, inter-electrode gap, mass transfer mode, total anode area to volume of effluent to be treated ratio, temperature, flow rate or flow velocity, reactor geometry, cathode material and lamp power during photoelectrochemical oxidation may also influence the system performance. In this review paper, past and present scenarios of landfill leachate treatment efficiencies and costs of various lab scale, pilot scale electrochemical oxidation studies asa standalone system or integrated with biological and physicochemical processes have been reviewed with the conclusion that electrochemical oxidation can be employed asa complementary treatment system with biological process for conventional landfill leachate treatment as well asa standalone system for ammonium nitrogen removal from bioreactor landfill leachate. Furthermore, present drawbacks of electrochemical oxidation process asa landfill leachate treatment system and relevance of incorporating life cycle assessment into the decision-making process besides process efficiency and cost, have been discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. 76 FR 270 - Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ...] Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... approved Municipal Solid Waste Landfill (MSWLF) permit program. The approved modification allows the State..., EPA issued a final rule (69 FR 13242) amending the Municipal Solid Waste Landfill (MSWLF) criteria in...

  3. Parametric sensitivity analysis of leachate transport simulations at landfills.

    PubMed

    Bou-Zeid, E; El-Fadel, M

    2004-01-01

    This paper presents a case study in simulating leachate generation and transport at a 2000 ton/day landfill facility and assesses leachate migration away from the landfill in order to control associated environmental impacts, particularly on groundwater wells down gradient of the site. The site offers unique characteristics in that it is a former quarry converted to a landfill and is planned to have refuse depths that could reach 100 m, making it one of the deepest in the world. Leachate quantity and potential percolation into the subsurface are estimated using the Hydrologic Evaluation of Landfill Performance (HELP) model. A three-dimensional subsurface model (PORFLOW) was adopted to simulate ground water flow and contaminant transport away from the site. A comprehensive sensitivity analysis to leachate transport control parameters was also conducted. Sensitivity analysis suggests that changes in partition coefficient, source strength, aquifer hydraulic conductivity, and dispersivity have the most significant impact on model output indicating that these parameters should be carefully selected when similar modeling studies are performed. Copyright 2004 Elsevier Ltd.

  4. Economic aspects of the rehabilitation of the Hiriya landfill.

    PubMed

    Ayalon, O; Becker, N; Shani, E

    2006-01-01

    The Hiriya landfill, Israel's largest, operated from 1952 to 1998. The landfill, located in the heart of the Dan Region, developed over the years into a major landscape nuisance and environmental hazard. In 1998, the Israeli government decided to close the landfill, and in 2001 rehabilitation activities began at the site, including site investigations, engineering and scientific evaluations, and end-use planning. The purpose of the present research is to perform a cost-benefit analysis of engineering and architectural-landscape rehabilitation projects considered for the site. An engineering rehabilitation project is required for the reduction of environmental impacts such as greenhouse gas emissions, slope instability and leachate formation. An architectural-landscape rehabilitation project would consider improvements to the site to make it suitable for future end uses such as a public park. The findings reveal that reclamation is worthwhile only in the case of architectural-landscape rehabilitation of the landfill, converting it into a public park. Engineering rehabilitation alone was found to be unjustified, but is essential to enable the development of a public park.

  5. Nonradioactive Ambient Air Monitoring at Los Alamos National Laboratory 2001--2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. Gladney; J.Dewart, C.Eberhart; J.Lochamy

    2004-09-01

    During the spring of 2000, the Cerro Grande forest fire reached Los Alamos National Laboratory (LANL) and ignited both above-ground vegetation and disposed materials in several landfills. During and after the fire, there was concern about the potential human health impacts from chemicals emitted by the combustion of these Laboratory materials. Consequently, short-term, intensive air-monitoring studies were performed during and shortly after the fire. Unlike the radiological data from many years of AIRNET sampling, LANL did not have an adequate database of nonradiological species under baseline conditions with which to compare data collected during the fire. Therefore, during 2001 themore » Meteorology and Air Quality Group designed and implemented a new air-monitoring program, entitled NonRadNET, to provide nonradiological background data under normal conditions. The objectives of NonRadNET were to: (1) develop the capability for collecting nonradiological air-monitoring data, (2) conduct monitoring to develop a database of typical background levels of selected nonradiological species in the communities nearest the Laboratory, and (3) determine LANL's potential contribution to nonradiological air pollution in the surrounding communities. NonRadNET ended in late December 2002 with five quarters of data. The purpose of this paper is to organize and describe the NonRadNET data collected over 2001-2002 to use as baseline data, either for monitoring during a fire, some other abnormal event, or routine use. To achieve that purpose, in this paper we will: (1) document the NonRadNET program procedures, methods, and quality management, (2) describe the usual origins and uses of the species measured, (3) compare the species measured to LANL and other area emissions, (4) present the five quarters of data, (5) compare the data to known typical environmental values, and (6) evaluate the data against exposure standards.« less

  6. LANDFILLS AS BIOREACTORS: RESEARH AT THE OUTER LOOP LANDFILL, LOUISVILLE, KENTUCKY; FIRST INTERIM REPORT

    EPA Science Inventory

    Interim report resulting from a cooperative research and development agreement (CRADA) between US EP A's Officeof Research and Development - National Risk Management Research Laboratory and a n ongoing field demonstration
    of municipal waste landfills being operated as bioreact...

  7. Characteristics and biological treatment of leachates from a domestic landfill

    USDA-ARS?s Scientific Manuscript database

    Waste material from urban areas is a major environmental concern and landfill application is a frequent method for waste disposal. The leachate from landfills can, however, negatively affect the surrounding environment. A bioreactor cascade containing submerged biofilms was used to treat newly forme...

  8. LANDFILL GAS EMISSIONS MODEL (LANDGEM) VERSION 3.02 USER'S GUIDE

    EPA Science Inventory

    The Landfill Gas Emissions Model (LandGEM) is an automated estimation tool with a Microsoft Excel interface that can be used to estimate emission rates for total landfill gas, methane, carbon dioxide, nonmethane organic compounds, and individual air pollutants from municipal soli...

  9. Study on detecting leachate leakage of municipal solid waste landfill site.

    PubMed

    Liu, Jiangang; Cao, Xianxian; Ai, Yingbo; Zhou, Dongdong; Han, Qiting

    2015-06-01

    The article studies the detection of the leakage passage of leachate in a waste landfill dam. The leachate of waste landfill has its own features, like high conductivity, high chroma and an increasing temperature, also, the horizontal flow velocity of groundwater on the leakage site increases. This article proposes a comprehensive tracing method to identify the leakage site of an impermeable membrane by using these features. This method has been applied to determine two leakage sites of the Yahu municipal solid waste landfill site in Pingshan District, Shenzhen, China, which shows that there are two leachate leakage passages in the waste landfill dam A between NZK-2 and NZK-3, and between NZK-6 and NZK-7. © The Author(s) 2015.

  10. Methane oxidation at a surface-sealed boreal landfill.

    PubMed

    Einola, Juha; Sormunen, Kai; Lensu, Anssi; Leiskallio, Antti; Ettala, Matti; Rintala, Jukka

    2009-07-01

    Methane oxidation was studied at a closed boreal landfill (area 3.9 ha, amount of deposited waste 200,000 tonnes) equipped with a passive gas collection and distribution system and a methane oxidative top soil cover integrated in a European Union landfill directive-compliant, multilayer final cover. Gas wells and distribution pipes with valves were installed to direct landfill gas through the water impermeable layer into the top soil cover. Mean methane emissions at the 25 measuring points at four measurement times (October 2005-June 2006) were 0.86-6.2 m(3) ha(-1) h(-1). Conservative estimates indicated that at least 25% of the methane flux entering the soil cover at the measuring points was oxidized in October and February, and at least 46% in June. At each measurement time, 1-3 points showed significantly higher methane fluxes into the soil cover (20-135 m(3) ha(-1) h(-1)) and methane emissions (6-135 m(3) ha(-1) h(-1)) compared to the other points (< 20 m(3) ha(-1) h(-1) and < 10 m(3) ha(-1) h(-1), respectively). These points of methane overload had a high impact on the mean methane oxidation at the measuring points, resulting in zero mean oxidation at one measurement time (November). However, it was found that by adjusting the valves in the gas distribution pipes the occurrence of methane overload can be to some extent moderated which may increase methane oxidation. Overall, the investigated landfill gas treatment concept may be a feasible option for reducing methane emissions at landfills where a water impermeable cover system is used.

  11. 75 FR 53268 - Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ...] Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... modification of its approved Municipal Solid Waste Landfill Program. On March 22, 2004, EPA issued final... solid waste landfills by approved states. On June 28, 2010 New Hampshire submitted an application to EPA...

  12. Permeability test and slope stability analysis of municipal solid waste in Jiangcungou Landfill, Shaanxi, China.

    PubMed

    Yang, Rong; Xu, Zengguang; Chai, Junrui; Qin, Yuan; Li, Yanlong

    2016-07-01

    With the rapid increase of city waste, landfills have become a major method to deals with municipal solid waste. Thus, the safety of landfills has become a valuable research topic. In this paper, Jiangcungou Landfill, located in Shaanxi, China, was investigated and its slope stability was analyzed. Laboratory tests were used to obtain permeability coefficients of municipal solid waste. Based on the results, the distribution of leachate and stability in the landfill was computed and analyzed. These results showed: the range of permeability coefficient was from 1.0 × 10(-7) cm sec(-1) to 6.0 × 10(-3) cm sec(-1) on basis of laboratory test and some parameters of similar landfills. Owing to the existence of intermediate cover layers in the landfill, the perched water level appeared in the landfill with heavy rain. Moreover, the waste was filled with leachate in the top layer, and the range of leachate level was from 2 m to 5 m in depth under the waste surface in other layers. The closer it gets to the surface of landfill, the higher the perched water level of leachate. It is indicated that the minimum safety factors were 1.516 and 0.958 for winter and summer, respectively. Additionally, the slope failure may occur in summer. The research of seepage and stability in landfills may provide a less costly way to reduce accidents. Landslides often occur in the Jiangcungou Landfill because of the high leachate level. Some measures should be implemented to reduce the leachate level. This paper investigated seepage and slope stability of landfills by numerical methods. These results may provide the basis for increasing stability of landfills.

  13. Upgrades and Enclosure of Building 15 at Technical Area 40: Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plimpton, Kathryn D; Garcia, Kari L. M; Brunette, Jeremy Christopher

    The U.S. Department of Energy, National Nuclear Security Administration, Los Alamos Field Office (Field Office) proposes to upgrade and enclose Building 15 at Technical Area (TA) 40, Los Alamos National Laboratory. Building TA-40-15, a Cold War-era firing site, was determined eligible for listing in the National Register of Historic Places (Register) in DX Division’s Facility Strategic Plan: Consolidation and Revitalization at Technical Areas 6, 8, 9, 14, 15, 22, 36, 39, 40, 60, and 69 (McGehee et al. 2005). Building TA-40-15 was constructed in 1950 to support detonator testing. The firing site will be enclosed by a steel building tomore » create a new indoor facility that will allow for year-round mission capability. Enclosing TA-40-15 will adversely affect the building by altering the characteristics that make it eligible for the Register. In compliance with Section 106 of the National Historic Preservation Act of 1966, as amended, the Field Office is initiating consultation for this proposed undertaking. The Field Office is also requesting concurrence with the use of standard practices to resolve adverse effects as defined in the Programmatic Agreement among the U.S. Department of Energy, National Nuclear Security Administration, Los Alamos Field Office, the New Mexico State Historic Preservation Office and the Advisory Council on Historic Preservation Concerning Management of the Historic Properties at Los Alamos National Laboratory, Los Alamos, New Mexico.« less

  14. Augmenting groundwater monitoring networks near landfills with slurry cutoff walls.

    PubMed

    Hudak, Paul F

    2004-01-01

    This study investigated the use of slurry cutoff walls in conjunction with monitoring wells to detect contaminant releases from a solid waste landfill. The 50 m wide by 75 m long landfill was oriented oblique to regional groundwater flow in a shallow sand aquifer. Computer models calculated flow fields and the detection capability of six monitoring networks, four including a 1 m wide by 50 m long cutoff wall at various positions along the landfill's downgradient boundaries and upgradient of the landfill. Wells were positioned to take advantage of convergent flow induced downgradient of the cutoff walls. A five-well network with no cutoff wall detected 81% of contaminant plumes originating within the landfill's footprint before they reached a buffer zone boundary located 50 m from the landfill's downgradient corner. By comparison, detection efficiencies of networks augmented with cutoff walls ranged from 81 to 100%. The most efficient network detected 100% of contaminant releases with four wells, with a centrally located, downgradient cutoff wall. In general, cutoff walls increased detection efficiency by delaying transport of contaminant plumes to the buffer zone boundary, thereby allowing them to increase in size, and by inducing convergent flow at downgradient areas, thereby funneling contaminant plumes toward monitoring wells. However, increases in detection efficiency were too small to offset construction costs for cutoff walls. A 100% detection efficiency was also attained by an eight-well network with no cutoff wall, at approximately one-third the cost of the most efficient wall-augmented network.

  15. Decision making guidelines for mining historic landfill sites in Flanders.

    PubMed

    Winterstetter, A; Wille, E; Nagels, P; Fellner, J

    2018-04-20

    This study aims at showing how the United Nations Framework Classification for Resources (UNFC) can help to classify potential landfill mining projects with different levels of maturity, from exploration to production, under technical, socio-economic and project-planning aspects. Taking the example of three former landfill sites in Flanders general decision making guidelines regarding the future management of old landfills are provided. Using the ECLAR methodology for the evaluation (E) and classification (CL) of anthropogenic resources (AR), the individual projects, where clean land and/or materials are recovered, are mapped under the three-dimensional UNFC system. The Bornem project, yields a negative Net Present Value (NPV) of -17 Mio € (-44 €/t of excavated waste), i.e. the project is currently not economically viable. In case of changing key parameters the landfill has, however, reasonable prospects for future economic extraction. The Turnhout land development turned out to be economically viable with a NPV of 361,000 € (8 €/t of excavated waste). The Zuienkerke remediation project is at a too early stage to determine its socioeconomic viability. The main focus to compare and prioritize potential landfill mining projects in Flanders should be on (1) site specific conditions (e.g. landfill's composition, land prices), (2) project related factors (e.g. remediation required vs. resource/land recovery, selected technologies and project set-ups, private vs. public evaluation perspective) and (3) the timing of mining, considering future development of costs, prices, laws, available data and information. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Seismic analysis for translational failure of landfills with retaining walls.

    PubMed

    Feng, Shi-Jin; Gao, Li-Ya

    2010-11-01

    In the seismic impact zone, seismic force can be a major triggering mechanism for translational failures of landfills. The scope of this paper is to develop a three-part wedge method for seismic analysis of translational failures of landfills with retaining walls. The approximate solution of the factor of safety can be calculated. Unlike previous conventional limit equilibrium methods, the new method is capable of revealing the effects of both the solid waste shear strength and the retaining wall on the translational failures of landfills during earthquake. Parameter studies of the developed method show that the factor of safety decreases with the increase of the seismic coefficient, while it increases quickly with the increase of the minimum friction angle beneath waste mass for various horizontal seismic coefficients. Increasing the minimum friction angle beneath the waste mass appears to be more effective than any other parameters for increasing the factor of safety under the considered condition. Thus, selecting liner materials with higher friction angle will considerably reduce the potential for translational failures of landfills during earthquake. The factor of safety gradually increases with the increase of the height of retaining wall for various horizontal seismic coefficients. A higher retaining wall is beneficial to the seismic stability of the landfill. Simply ignoring the retaining wall will lead to serious underestimation of the factor of safety. Besides, the approximate solution of the yield acceleration coefficient of the landfill is also presented based on the calculated method. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Los Alamos on Radio Café: Ludmil Alexandrov

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domandi, Mary-Charlotte; Alexandrov, Ludmil

    In a creative breakthrough in cancer research, Ludmil Alexandrov, the J. Robert Oppenheimer Distinguished Postdoctoral Fellow at Los Alamos National Laboratory, combines Big Data, supercomputing and machine-learning to identify the telltale mutations of cancer. Knowing these mutational signatures can help researchers develop new methods of prevention.

  18. Stable isotope signatures for characterising the biological stability of landfilled municipal solid waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wimmer, Bernhard, E-mail: bernhard.wimmer@ait.ac.at; Hrad, Marlies; Huber-Humer, Marion

    Highlights: ► The isotopic signature of δ{sup 13}C-DIC of leachates is linked to the reactivity of MSW. ► Isotopic signatures of leachates depend on aerobic/anaerobic conditions in landfills. ► In situ aeration of landfills can be monitored by isotope analysis in leachate. ► The isotopic analysis of leachates can be used for assessing the stability of MSW. ► δ{sup 13}C-DIC of leachates helps to define the duration of landfill aftercare. - Abstract: Stable isotopic signatures of landfill leachates are influenced by processes within municipal solid waste (MSW) landfills mainly depending on the aerobic/anaerobic phase of the landfill. We investigated themore » isotopic signatures of δ{sup 13}C, δ{sup 2}H and δ{sup 18}O of different leachates from lab-scale experiments, lysimeter experiments and a landfill under in situ aeration. In the laboratory, columns filled with MSW of different age and reactivity were percolated under aerobic and anaerobic conditions. In landfill simulation reactors, waste of a 25 year old landfill was kept under aerobic and anaerobic conditions. The lysimeter facility was filled with mechanically shredded fresh waste. After starting of the methane production the waste in the lysimeter containments was aerated in situ. Leachate and gas composition were monitored continuously. In addition the seepage water of an old landfill was collected and analysed periodically before and during an in situ aeration. We found significant differences in the δ{sup 13}C-value of the dissolved inorganic carbon (δ{sup 13}C-DIC) of the leachate between aerobic and anaerobic waste material. During aerobic degradation, the signature of δ{sup 13}C-DIC was mainly dependent on the isotopic composition of the organic matter in the waste, resulting in a δ{sup 13}C-DIC of −20‰ to −25‰. The production of methane under anaerobic conditions caused an increase in δ{sup 13}C-DIC up to values of +10‰ and higher depending on the actual reactivity of

  19. Organic carbon storage change in China's urban landfills from 1978 to 2014

    NASA Astrophysics Data System (ADS)

    Ge, S.; Zhao, S.

    2017-12-01

    China has produced increasingly large quantities of waste associated with her accelerated urbanization and economic development and deposited these wastes into landfills potentially sequestering carbon. However, the magnitude of the carbon storage in China's urban landfills and its spatial and temporal change remain unclear. Here, we estimate the total amount of organic carbon (OC) stored in China's urban landfills between 1978 and 2014 using a first order organic matter decomposition model and data compiled from literature review and statistical yearbooks. Our results show that total OC stored in China's urban landfills increased nearly 68 folds from the 1970s to the 2010s, and reached 225.2 - 264.5 Tg C (95% confidence interval, hereafter) in 2014. Construction waste was the largest OC pool (128.4 - 157.5 Tg C) in 2014, followed by household waste (67.7 - 83.8 Tg C), and sewage sludge was the least (19.7 - 34.1 Tg C). Carbon stored in urban landfills accounts for more than 10% of the country's carbon stocks in urban ecosystems. The annual increase (i.e., sequestration rate) of OC in urban landfills in the 2010s (25.1 ± 4.3 Tg C yr-1, mean±2SD, hereafter) is equivalent to 1% of China's carbon emissions from fossil fuel combustion and cement production during the same period, but represents about 9% of the total terrestrial carbon sequestration in the country. Our study clearly indicates that OC dynamics in landfills should not be neglected in regional to national carbon cycle studies as landfills not only account for a substantial part of the carbon stored in urban ecosystems but also contribute respectably to national carbon sequestration.

  20. Where Should the Landfill Go?

    ERIC Educational Resources Information Center

    Fazio, Rosario P.; McFaden, Dennis

    1993-01-01

    Describes a project where students were involved in finding the most suitable site for a landfill in their community. This two-month project was conducted using team teaching. Two twelfth grade geoscience classes were involved. (PR)

  1. A Wildfire Behavior Modeling System at Los Alamos National Laboratory for Operational Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.W. Koch; R.G.Balice

    2004-11-01

    To support efforts to protect facilities and property at Los Alamos National Laboratory from damages caused by wildfire, we completed a multiyear project to develop a system for modeling the behavior of wildfires in the Los Alamos region. This was accomplished by parameterizing the FARSITE wildfire behavior model with locally gathered data representing topography, fuels, and weather conditions from throughout the Los Alamos region. Detailed parameterization was made possible by an extensive monitoring network of permanent plots, weather towers, and other data collection facilities. We also incorporated a database of lightning strikes that can be used individually as repeatable ignitionmore » points or can be used as a group in Monte Carlo simulation exercises and in other randomization procedures. The assembled modeling system was subjected to sensitivity analyses and was validated against documented fires, including the Cerro Grande Fire. The resulting modeling system is a valuable tool for research and management. It also complements knowledge based on professional expertise and information gathered from other modeling technologies. However, the modeling system requires frequent updates of the input data layers to produce currently valid results, to adapt to changes in environmental conditions within the Los Alamos region, and to allow for the quick production of model outputs during emergency operations.« less

  2. Intelligence Control System for Landfills Based on Wireless Sensor Network

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Huang, Chuan; Gong, Jian

    2018-06-01

    This paper put forward an intelligence system for controlling the landfill gas in landfills to make the landfill gas (LFG) exhaust controllably and actively. The system, which is assigned by the wireless sensor network, were developed and supervised by remote applications in workshop instead of manual work. An automatic valve control depending on the sensor units embedded is installed in tube, the air pressure and concentration of LFG are detected to decide the level of the valve switch. The paper also proposed a modified algorithm to solve transmission problem, so that the system can keep a high efficiency and long service life.

  3. Waste disposal mapping with electrical resistivity tomography case: Leuwigajah landfill

    NASA Astrophysics Data System (ADS)

    Aryanti, Erisha; Ardi, Ahmad Puji; Almunziri, Muaz; Xanggam, Zael Yahd; Eleazar, Adino; Widodo

    2017-07-01

    Leuwigajah landfill as administrative is located between district of Bandung and Cimahi citythat has an environmental and social problem that caused aquifer contamination due to the big amount of waste from Bandung city, Cimahi and Bandung regency. It is occupied in abandoned andesite mine site with an area of about 25 hectare. The aim of this research is to map the geology structure and to study the leachate towards aquifer layer below Leuwigajah landfill. Here, we present the study of Leuwigajah landfill subsurface using Electrical Resistivity Tomography (ERT). ERT is one of the most promising prospecting techniques mainly concerning its effective contribution to resolve several environmental problems, was applied for the geophysical modeling. ERT is a robust imaging method the theory and implementation of which are well documented in geophysical research literature. The geological setting comprises clayed weathered layer, fractured andesitic dike. Due to the above-mentioned geological singularity and in the light of the requirement for an environmentally safe construction of the landfill, an ERT survey was carried out with dipole-dipole array, 78 m of acquisition line and 6 m of electrode spacing. The model consists of 4 layers below the Leuwigajah landfill and andesitic fracture until depth of 18.7 m below the surface.

  4. LCA and economic evaluation of landfill leachate and gas technologies.

    PubMed

    Damgaard, Anders; Manfredi, Simone; Merrild, Hanna; Stensøe, Steen; Christensen, Thomas H

    2011-07-01

    Landfills receiving a mix of waste, including organics, have developed dramatically over the last 3-4 decades; from open dumps to engineered facilities with extensive controls on leachate and gas. The conventional municipal landfill will in most climates produce a highly contaminated leachate and a significant amount of landfill gas. Leachate controls may include bottom liners and leachate collection systems as well as leachate treatment prior to discharge to surface water. Gas controls may include oxidizing top covers, gas collection systems with flares or gas utilization systems for production of electricity and heat. The importance of leachate and gas control measures in reducing the overall environmental impact from a conventional landfill was assessed by life-cycle-assessment (LCA). The direct cost for the measures were also estimated providing a basis for assessing which measures are the most cost-effective in reducing the impact from a conventional landfill. This was done by modeling landfills ranging from a simple open dump to highly engineered conventional landfills with energy recovery in form of heat or electricity. The modeling was done in the waste LCA model EASEWASTE. The results showed drastic improvements for most impact categories. Global warming went from an impact of 0.1 person equivalent (PE) for the dump to -0.05 PE for the best design. Similar improvements were found for photochemical ozone formation (0.02 PE to 0.002 PE) and stratospheric ozone formation (0.04 PE to 0.001 PE). For the toxic and spoiled groundwater impact categories the trend is not as clear. The reason for this was that the load to the environment shifted as more technologies were used. For the dump landfill the main impacts were impacts for spoiled groundwater due to lack of leachate collection, 2.3 PE down to 0.4 PE when leachate is collected. However, at the same time, leachate collection causes a slight increase in eco-toxicity and human toxicity via water (0.007 E to 0

  5. Lateral movement of contaminated ground water from Merrill Field Landfill, Anchorage, Alaska

    USGS Publications Warehouse

    Brunett, J.O.

    1990-01-01

    A sanitary landfill used in Anchorage, Alaska, since the 1940 's was closed in 1987. Leachate from the landfill does not appear to be contaminating a small creek flowing through a conduit in the landfill, but leachate is being transported by groundwater into a wetlands to the south. An electromagnetic survey of the unconfined aquifer and subsequent sampling from wells indicate that minor amounts of contaminants have reached much of the wetlands as far as Chester Creek, about 2,200 ft to the south. However, concentrations of these contaminants in the groundwater are generally less than U.S. Environmental Protection Agency standards for drinking water except within the landfill itself. (USGS)

  6. Influence of tropical seasonal variations on landfill leachate characteristics--results from lysimeter studies.

    PubMed

    Tränkler, J; Visvanathan, C; Kuruparan, P; Tubtimthai, O

    2005-01-01

    Considering the quality of design and construction of landfills in developing countries, little information can be derived from randomly taken leachate samples. Leachate generation and composition under monsoon conditions have been studied using lysimeters to simulate sanitary landfills and open cell settings. In this study, lysimeters were filled with domestic waste, highly organic market waste and pre-treated waste. Results over two subsequent dry and rainy seasons indicate that the open cell lysimeter simulation showed the highest leachate generation throughout the rainy season, with leachate flow in all lysimeters coming to a halt during the dry periods. More than 60% of the precipitation was found in the form of leachate. The specific COD and TKN load discharged from the open cell was 20% and 180% more than that of the sanitary landfill lysimeters. Types of waste material and kind of pre-treatment prior to landfilling strongly influenced the pollutant load. Compared to the sanitary landfill lysimeter filled with domestic waste, the specific COD and TKN load discharged from the pre-treated waste lysimeter accounted for only 4% and 16%, respectively. Considering the local settings of tropical landfills, these results suggest that landfill design and operation has to be adjusted. Leachate can be collected and stored during the rainy season, and recirculation of leachate is recommended to maintain a steady and even accelerated degradation during the prolonged dry season. The open cell approach in combination with leachate recirculation is suggested as an option for interim landfill operations.

  7. Determination of trigger levels for groundwater quality in landfills located in historically human-impacted areas.

    PubMed

    Stefania, Gennaro A; Zanotti, Chiara; Bonomi, Tullia; Fumagalli, Letizia; Rotiroti, Marco

    2018-05-01

    Landfills are one of the most recurrent sources of groundwater contamination worldwide. In order to limit their impacts on groundwater resources, current environmental regulations impose the adoption of proper measures for the protection of groundwater quality. For instance, in the EU member countries, the calculation of trigger levels for identifying significant adverse environmental effects on groundwater generated by landfills is required by the Landfill Directive 99/31/EC. Although the derivation of trigger levels could be relatively easy when groundwater quality data prior to the construction of a landfill are available, it becomes challenging when these data are missing and landfills are located in areas that are already impacted by historical contamination. This work presents a methodology for calculating trigger levels for groundwater quality in landfills located in areas where historical contaminations have deteriorated groundwater quality prior to their construction. This method is based on multivariate statistical analysis and involves 4 steps: (a) implementation of the conceptual model, (b) landfill monitoring data collection, (c) hydrochemical data clustering and (d) calculation of the trigger levels. The proposed methodology was applied on a case study in northern Italy, where a currently used lined landfill is located downstream of an old unlined landfill and others old unmapped waste deposits. The developed conceptual model stated that groundwater quality deterioration observed downstream of the lined landfill is due to a degrading leachate plume fed by the upgradient unlined landfill. The methodology led to the determination of two trigger levels for COD and NH 4 -N, the former for a zone representing the background hydrochemistry (28 and 9 mg/L for COD and NH 4 -N, respectively), the latter for the zone impacted by the degrading leachate plume from the upgradient unlined landfill (89 and 83 mg/L for COD and NH 4 -N, respectively). Copyright

  8. Induction Inserts at the Los Alamos PSR

    NASA Astrophysics Data System (ADS)

    Ng, K. Y.

    2002-12-01

    Ferrite-loaded induction tuners installed in the Los Alamos Proton Storage Ring have been successful in compensating space-charge effects. However, the resistive part of the ferrite introduces unacceptable microwave instability and severe bunch lengthening. An effective cure was found by heating the ferrite cores up to ˜ 130°C. An understanding of the instability and cure is presented.

  9. Los Alamos Team Demonstrates Bottle Scanner Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espy, Michelle; Schultz, Larry

    2014-05-06

    Los Alamos scientists are demonstrating a Nuclear Magnetic Resonance Imaging (NMR) technology that may provide a breakthrough for screening liquids at airport security. By adding low-power X-ray data to the NMR mix, scientists believe they have unlocked a new detection technology. Funded in part by the Department of Homeland Security's Science and Technology Directorate, the new technology is called MagRay.

  10. Los Alamos Team Demonstrates Bottle Scanner Technology

    ScienceCinema

    Espy, Michelle; Schultz, Larry

    2018-02-13

    Los Alamos scientists are demonstrating a Nuclear Magnetic Resonance Imaging (NMR) technology that may provide a breakthrough for screening liquids at airport security. By adding low-power X-ray data to the NMR mix, scientists believe they have unlocked a new detection technology. Funded in part by the Department of Homeland Security's Science and Technology Directorate, the new technology is called MagRay.

  11. Stable isotope signatures for characterising the biological stability of landfilled municipal solid waste.

    PubMed

    Wimmer, Bernhard; Hrad, Marlies; Huber-Humer, Marion; Watzinger, Andrea; Wyhlidal, Stefan; Reichenauer, Thomas G

    2013-10-01

    Stable isotopic signatures of landfill leachates are influenced by processes within municipal solid waste (MSW) landfills mainly depending on the aerobic/anaerobic phase of the landfill. We investigated the isotopic signatures of δ(13)C, δ(2)H and δ(18)O of different leachates from lab-scale experiments, lysimeter experiments and a landfill under in situ aeration. In the laboratory, columns filled with MSW of different age and reactivity were percolated under aerobic and anaerobic conditions. In landfill simulation reactors, waste of a 25year old landfill was kept under aerobic and anaerobic conditions. The lysimeter facility was filled with mechanically shredded fresh waste. After starting of the methane production the waste in the lysimeter containments was aerated in situ. Leachate and gas composition were monitored continuously. In addition the seepage water of an old landfill was collected and analysed periodically before and during an in situ aeration. We found significant differences in the δ(13)C-value of the dissolved inorganic carbon (δ(13)C-DIC) of the leachate between aerobic and anaerobic waste material. During aerobic degradation, the signature of δ(13)C-DIC was mainly dependent on the isotopic composition of the organic matter in the waste, resulting in a δ(13)C-DIC of -20‰ to -25‰. The production of methane under anaerobic conditions caused an increase in δ(13)C-DIC up to values of +10‰ and higher depending on the actual reactivity of the MSW. During aeration of a landfill the aerobic degradation of the remaining organic matter caused a decrease to a δ(13)C-DIC of about -20‰. Therefore carbon isotope analysis in leachates and groundwater can be used for tracing the oxidation-reduction status of MSW landfills. Our results indicate that monitoring of stable isotopic signatures of landfill leachates over a longer time period (e.g. during in situ aeration) is a powerful and cost-effective tool for characterising the biodegradability and

  12. TECHNICAL ASSESSMENT OF FUEL CELL OPERATION ON LANDFILL GAS AT THE GROTON, CT, LANDFILL

    EPA Science Inventory

    The paper summarizes the results from a seminal assessment conducted on a fuel cell technology which generates electrical power from waste landfill gas. This assessment/ demonstration was the second such project conducted by the EPA, the first being conducted at the Penrose Power...

  13. Brownfields and health risks--air dispersion modeling and health risk assessment at landfill redevelopment sites.

    PubMed

    Ofungwu, Joseph; Eget, Steven

    2006-07-01

    Redevelopment of landfill sites in the New Jersey-New York metropolitan area for recreational (golf courses), commercial, and even residential purposes seems to be gaining acceptance among municipal planners and developers. Landfill gas generation, which includes methane and potentially toxic nonmethane compounds usually continues long after closure of the landfill exercise phase. It is therefore prudent to evaluate potential health risks associated with exposure to gas emissions before redevelopment of the landfill sites as recreational, commercial, and, especially, residential properties. Unacceptably high health risks would call for risk management measures such as limiting the development to commercial/recreational rather than residential uses, stringent gas control mechanisms, interior air filtration, etc. A methodology is presented for applying existing models to estimate residual landfill hazardous compounds emissions and to quantify associated health risks. Besides the toxic gas constituents of landfill emissions, other risk-related issues concerning buried waste, landfill leachate, and explosive gases were qualitatively evaluated. Five contiguously located landfill sites in New Jersey intended for residential and recreational redevelopment were used to exemplify the approach.

  14. Landfill Leachate Toxicity Removal in Combined Treatment with Municipal Wastewater

    PubMed Central

    Kalka, J.

    2012-01-01

    Combined treatment of landfill leachate and municipal wastewater was performed in order to investigate the changes of leachate toxicity during biological treatment. Three laboratory A2O lab-scale reactors were operating under the same parameters (Q-8.5–10 L/d; HRT-1.4–1.6 d; MLSS 1.6–2.5 g/L) except for the influent characteristic and load. The influent of reactor I consisted of municipal wastewater amended with leachate from postclosure landfill; influent of reactor II consisted of leachate collected from transient landfill and municipal wastewater; reactor III served as a control and its influent consisted of municipal wastewater only. Toxicity of raw and treated wastewater was determinted by four acute toxicity tests with Daphnia magna, Thamnocephalus platyurus, Vibrio fischeri, and Raphidocelis subcapitata. Landfill leachate increased initial toxicity of wastewater. During biological treatment, significant decline of acute toxicity was observed, but still mixture of leachate and wastewater was harmful to all tested organisms. PMID:22623882

  15. Evaluation and selection of decision-making methods to assess landfill mining projects.

    PubMed

    Hermann, Robert; Baumgartner, Rupert J; Vorbach, Stefan; Ragossnig, Arne; Pomberger, Roland

    2015-09-01

    For the first time in Austria, fundamental technological and economic studies on recovering secondary raw materials from large landfills have been carried out, based on the 'LAMIS - Landfill Mining Austria' pilot project. A main focus of the research - and the subject of this article - was to develop an assessment or decision-making procedure that allows landfill owners to thoroughly examine the feasibility of a landfill mining project in advance. Currently there are no standard procedures that would sufficiently cover all the multiple-criteria requirements. The basic structure of the multiple attribute decision making process was used to narrow down on selection, conceptual design and assessment of suitable procedures. Along with a breakdown into preliminary and main assessment, the entire foundation required was created, such as definitions of requirements to an assessment method, selection and accurate description of the various assessment criteria and classification of the target system for the present 'landfill mining' vs. 'retaining the landfill in after-care' decision-making problem. Based on these studies, cost-utility analysis and the analytical-hierarchy process were selected from the range of multiple attribute decision-making procedures and examined in detail. Overall, both methods have their pros and cons with regard to their use for assessing landfill mining projects. Merging these methods or connecting them with single-criteria decision-making methods (like the net present value method) may turn out to be reasonable and constitute an appropriate assessment method. © The Author(s) 2015.

  16. Mercury emission to the atmosphere from municipal solid waste landfills: A brief review

    NASA Astrophysics Data System (ADS)

    Tao, Zhengkai; Dai, Shijin; Chai, Xiaoli

    2017-12-01

    Municipal solid waste (MSW) landfill is regarded as an important emission source of atmospheric mercury (Hg), which is associated with potential health and environmental risks, as outlined by the Minamata Convention on Hg. This review presents the current state of knowledge with regards to landfill Hg sources, Hg levels in MSW and cover soils, Hg emission to the atmosphere, available Hg biogeochemical transformations, research methods for Hg emission, and important areas for future research. In addition, strategies for controlling landfill Hg emissions are considered, including reducing the Hg load in landfill and in situ controls. These approaches mainly focus on Hg source reduction, Hg recycling programs, public education, and in situ technology such as timely soil cover, vegetation, and end-of-pipe technology for controlling Hg emission from landfill gas.

  17. Limits and dynamics of methane oxidation in landfill cover soils

    USDA-ARS?s Scientific Manuscript database

    In order to understand the limits and dynamics of methane (CH4) oxidation in landfill cover soils, we investigated CH4 oxidation in daily, intermediate, and final cover soils from two California landfills as a function of temperature, soil moisture and CO2 concentration. The results indicate a signi...

  18. DEVELOPMENT OF AN EMPIRICAL MODEL OF METHANE EMISSIONS FROM LANDFILLS

    EPA Science Inventory

    The report gives results of a field study of 21 U.S. landfills with gas recovery systems, to gather information that can be used to develop an empirical model of methane (CH4) emissions. Site-specific information includes average CH4 recovery rate, landfill size, tons of refuse (...

  19. Characterization of H2S removal and microbial community in landfill cover soils.

    PubMed

    Xia, Fang-Fang; Zhang, Hong-Tao; Wei, Xiao-Meng; Su, Yao; He, Ruo

    2015-12-01

    H2S is a source of odors at landfills and poses a threat to the surrounding environment and public health. In this work, compared with a usual landfill cover soil (LCS), H2S removal and biotransformation were characterized in waste biocover soil (WBS), an alternative landfill cover material. With the input of landfill gas (LFG), the gas concentrations of CH4, CO2, O2, and H2S, microbial community and activity in landfill covers changed with time. Compared with LCS, lower CH4 and H2S concentrations were detected in the WBS. The potential sulfur-oxidizing rate and sulfate-reducing rate as well as the contents of acid-volatile sulfide, SO4(2-), and total sulfur in the WBS and LCS were all increased with the input of LFG. After exposure to LFG for 35 days, the sulfur-oxidizing rate of the bottom layer of the WBS reached 82.5 μmol g dry weight (d.w.)(-1) day(-1), which was 4.3-5.4 times of that of LCS. H2S-S was mainly deposited in the soil covers, while it escaped from landfills to the atmosphere. The adsorption, absorption, and biotransformation of H2S could lead to the decrease in the pH values of landfill covers; especially, in the LCS with low pH buffer capacity, the pH value of the bottom layer dropped to below 4. Pyrosequencing of 16S ribosomal RNA (rRNA) gene showed that the known sulfur-metabolizing bacteria Ochrobactrum, Paracoccus, Comamonas, Pseudomonas, and Acinetobacter dominated in the WBS and LCS. Among them, Comamonas and Acinetobacter might play an important role in the metabolism of H2S in the WBS. These findings are helpful to understand sulfur bioconversion process in landfill covers and to develop techniques for controlling odor pollution at landfills.

  20. Geophysical experiments for the pre-reclamation assessment of industrial and municipal waste landfills

    NASA Astrophysics Data System (ADS)

    Balia, R.; Littarru, B.

    2010-03-01

    Two examples of combined application of geophysical techniques for the pre-reclamation study of old waste landfills in Sardinia, Italy, are illustrated. The first one concerned a mine tailings basin and the second one a municipal solid waste landfill; both disposal sites date back to the 1970-80s. The gravity, shallow reflection, resistivity and induced polarization methods were employed in different combinations at the two sites, and in both cases useful information on the landfill's geometry has been obtained. The gravity method proved effective for locating the boundaries of the landfill and the shallow reflection seismic technique proved effective for the precise imaging of the landfill's bottom; conversely the electrical techniques, though widely employed for studying waste landfills, provided mainly qualitative and debatable results. The overall effectiveness of the surveys has been highly improved through the combined use of different techniques, whose individual responses, being strongly dependent on their specific basic physical characteristic and the complexity of the situation to be studied, did not show the same effectiveness at the two places.

  1. Household hazardous waste in municipal landfills: contaminants in leachate.

    PubMed

    Slack, R J; Gronow, J R; Voulvoulis, N

    2005-01-20

    Household hazardous waste (HHW) includes waste from a number of household products such as paint, garden pesticides, pharmaceuticals, photographic chemicals, certain detergents, personal care products, fluorescent tubes, waste oil, heavy metal-containing batteries, wood treated with dangerous substances, waste electronic and electrical equipment and discarded CFC-containing equipment. Data on the amounts of HHW discarded are very limited and are hampered by insufficient definitions of what constitutes HHW. Consequently, the risks associated with the disposal of HHW to landfill have not been fully elucidated. This work has focused on the assessment of data concerning the presence of hazardous chemicals in leachates as evidence of the disposal of HHW in municipal landfills. Evidence is sought from a number of sources on the occurrence in landfill leachates of hazardous components (heavy metals and xenobiotic organic compounds [XOC]) from household products and the possible disposal-to-emissions pathways occurring within landfills. This review demonstrates that a broad range of xenobiotic compounds occurring in leachate can be linked to HHW but further work is required to assess whether such compounds pose a risk to the environment and human health as a result of leakage/seepage or through treatment and discharge.

  2. 40 CFR 264.555 - Disposal of CAMU-eligible wastes in permitted hazardous waste landfills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... permitted hazardous waste landfills. 264.555 Section 264.555 Protection of Environment ENVIRONMENTAL...-eligible wastes in permitted hazardous waste landfills. (a) The Regional Administrator with regulatory... hazardous waste landfills not located at the site from which the waste originated, without the wastes...

  3. 75 FR 1793 - Study Team for the Los Alamos Historical Document Retrieval and Assessment (LAHDRA) Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-13

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Study Team for the Los Alamos Historical Document Retrieval and Assessment (LAHDRA) Project The Centers for Disease... the following meeting. Name: Public Meeting of the Study Team for the Los Alamos Historical Document...

  4. Emerging contaminants at a closed and an operating landfill in Oklahoma

    USGS Publications Warehouse

    Andrews, William J.; Masoner, Jason R.; Cozzarelli, Isabelle M.

    2012-01-01

    Landfills are the final depositories for a wide range of solid waste from both residential and commercial sources, and therefore have the potential to produce leachate containing many organic compounds found in consumer products such as pharmaceuticals, plasticizers, disinfectants, cleaning agents, fire retardants, flavorings, and preservatives, known as emerging contaminants (ECs). Landfill leachate was sampled from landfill cells of three different age ranges from two landfills in Central Oklahoma. Samples were collected from an old cell containing solid waste greater than 25 years old, an intermediate age cell with solid waste between 16 and 3 years old, and operating cell with solid waste less than 5 years old to investigate the chemical variability and persistence of selected ECs in landfill leachate of differing age sources. Twenty-eight of 69 analyzed ECs were detected in one or more samples from the three leachate sources. Detected ECs ranged in concentration from 0.11 to 114 μg/L and included 4 fecal and plant sterols, 13 household\\industrial, 7 hydrocarbon, and 4 pesticide compounds. Four ECs were solely detected in the oldest leachate sample, two ECs were solely detected in the intermediate leachate sample, and no ECs were solely detected in the youngest leachate sample. Eleven ECs were commonly detected in all three leachate samples and are an indication of the contents of solid waste deposited over several decades and the relative resistance of some ECs to natural attenuation processes in and near landfills.

  5. Influences of operational practices on municipal solid waste landfill storage capacity.

    PubMed

    Li, Yu-Chao; Liu, Hai-Long; Cleall, Peter John; Ke, Han; Bian, Xue-Cheng

    2013-03-01

    The quantitative effects of three operational factors, that is initial compaction, decomposition condition and leachate level, on municipal solid waste (MSW) landfill settlement and storage capacity are investigated in this article via consideration of a hypothetical case. The implemented model for calculating landfill compression displacement is able to consider decreases in compressibility induced by biological decomposition and load dependence of decomposition compression for the MSW. According to the investigation, a significant increase in storage capacity can be achieved by intensive initial compaction, adjustment of decomposition condition and lowering of leachate levels. The quantitative investigation presented aims to encourage landfill operators to improve management to enhance storage capacity. Furthermore, improving initial compaction and creating a preferential decomposition condition can also significantly reduce operational and post-closure settlements, respectively, which helps protect leachate and gas management infrastructure and monitoring equipment in modern landfills.

  6. Assessment of leachates from uncontrolled landfill: Tangier case study

    NASA Astrophysics Data System (ADS)

    Elmaghnougi, I.; Afilal Tribak, A.; Maatouk, M.

    2018-05-01

    Landfill site of Tangier City is non-engineered low lying open dump. It has neither bottom liner nor leachate collection and treatment system. Therefore, all the leachate generated finds its paths into the surrounding environment Leachate samples of landfill site were collected and analyzed to estimate its pollution potential. The analyzed samples contained a high concentration of organic and inorganic compounds, beyond the permissible limits.

  7. Total electron content (TEC) variability at Los Alamos, New Mexico: A comparative study: FORTE-derived TEC analysis

    NASA Astrophysics Data System (ADS)

    Huang, Zhen; Roussel-Dupré, Robert

    2005-12-01

    Data collected from Fast On-Orbit Recording of Transient Events (FORTE) satellite-received Los Alamos Portable Pulser (LAPP) signals during 1997-2002 are used to derive the total electron content (TEC) at Los Alamos, New Mexico. The LAPP-derived TECs at Los Alamos are analyzed for diurnal, seasonal, interannual, and 27-day solar cycle variations. Several aspects in deriving TEC are analyzed, including slant to vertical TEC conversion, quartic effects on transionosperic signals, and geomagnetic storm effects on the TEC variance superimposed on the averaged TEC values.

  8. Geologic map of the Puye Quadrangle, Los Alamos, Rio Arriba, Sandoval, and Santa Fe Counties, New Mexico

    USGS Publications Warehouse

    Dethier, David P.

    2003-01-01

    The Puye quadrangle covers an area on the eastern flank of the Jemez Mountains, north of Los Alamos and west of Espanola, New Mexico. Most of the quadrangle consists of a dissected plateau that was formed on the resistant caprock of the Bandelier Tuff, which was erupted from the Valles caldera approximately 1 to 2 million years ago. Within the canyons of the east-flowing streams that eroded this volcanic tableland, Miocene and Pliocene fluvial deposits of the Puye Formation and Santa Fe Group are exposed beneath the Bandelier Tuff. These older units preserve sand and gravel that were deposited by streams and debris flows flowing from source areas located mostly north and northeast of the Puye quadrangle. The landscape of the southeastern part of the quadrangle is dominated by the valley of the modern Rio Grande, and by remnants of piedmont-slope and river-terrace deposits that formed during various stages of incision of the Rio Grande drainage on the landscape. Landslide deposits are common along the steep canyon walls where broad tracts of the massive caprock units have slumped toward the canyons on zones of weakness in underlying strata, particularly on silt/clay-rich lacustrine beds within the Puye Formation.

  9. Emissions of C&D refuse in landfills: a European case.

    PubMed

    López, Ana; Lobo, Amaya

    2014-08-01

    A field study was developed in a new landfill for refuse from construction and demolition (C&D) material recovery plants of small size (4 Ha.) in Europe, with the aim of evaluating the liquid and gas emissions in this type of facility at a large scale. It included characterization of the materials, monitoring leachate and gas quantity and composition. Besides thermometers, piezometers and sampling ports were placed in several points within the waste. This paper presents the data obtained for five years of the landfill life. The materials disposed were mainly made up of wood and concrete, similar to other C&D debris sites, but the amount of gypsum drywall (below 3% of the waste) was significantly smaller than other available studies, where percentages above 20% had been reported. Leachate contained typical C&D pollutants, such as different inorganic ions and metals, some of which exceeded other values reported in the literature (conductivity, ammonium, lead and arsenic). The small net precipitation in the area and the leachate recirculation into the landfill surface help explain these higher concentrations, thus highlighting the impact of liquid to solid (L/S) ratio on leachate characteristics. In contrast to previous studies, neither odor nuisances nor significant landfill gas over the surface were detected. However, gas samples taken from the landfill inside revealed sulfate reducing and methanogenic activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Economic and environmental benefits of landfill gas utilisation in Oman.

    PubMed

    Abushammala, Mohammed Fm; Qazi, Wajeeha A; Azam, Mohammed-Hasham; Mehmood, Umais A; Al-Mufragi, Ghithaa A; Alrawahi, Noor-Alhuda

    2016-08-01

    Municipal solid waste disposed in landfill sites decomposes under anaerobic conditions and produces so-called landfill-gas, which contains 30%-40% of carbon dioxide (CO2) and 50%-60% of methane (CH4). Methane has the potential of causing global warming 25 times more than CO2 Therefore, migration of landfill-gas from landfills to the surrounding environment can potentially affect human life and environment. Thus, this research aims to determine municipal solid waste generation in Oman over the years 1971-2030, to quantify annual CH4 emissions inventory that resulted from this waste over the same period of time, and to determine the economic and environmental benefits of capturing the CH4 gas for energy production. It is found that cumulative municipal solid waste landfilled in Oman reaches 3089 Giga gram (Gg) in the year 2030, of which approximately 85 Gg of CH4 emissions are produced in the year 2030. The study also found that capturing CH4 emissions between the years 2016 and 2030 could attract revenues of up to US$333 million and US$291 million from the carbon reduction and electricity generation, simultaneously. It is concluded that CH4 emissions from solid waste in Oman increases enormously with time, and capture of this gas for energy production could provide a sustainable waste management solution in Oman. © The Author(s) 2016.

  11. DRAFT LANDSAT DATA MOSAIC: MONTGOMERY COUNTY, TEXAS; HARRIS COUNTY, TEXAS; FORT BEND COUNTY, TEXAS; BRAZORIA COUNTY, TEXAS; GALVESTON COUNTY, TEXAS

    EPA Science Inventory

    This is a draft Landsat Data Mosaic, which contains remote sensing information for Montgomery County, Texas Harris County, Texas Fort Bend County, Texas Brazoria County, Texas Galveston County, and Texas Imagery dates on the following dates: October 6, 1999 and September 29, 200...

  12. EPA and partners celebrate redevelopment at Charles George Landfill Superfund Site

    EPA Pesticide Factsheets

    The Charles George Reclamation Trust Landfill Superfund site, a former landfill, is now home to a new solar facility. The USEPA oversaw the cleanup of the 70-acre Superfund site, preventing any exposure to contaminants and reducing leachate generation.

  13. Los Alamos Novel Rocket Design Flight Tested

    ScienceCinema

    Tappan, Bryce

    2018-04-16

    Los Alamos National Laboratory scientists recently flight tested a new rocket design that includes a high-energy fuel and a motor design that also delivers a high degree of safety. Researchers will now work to scale-up the design, as well as explore miniaturization of the system, in order to exploit all potential applications that would require high-energy, high-velocity, and correspondingly high safety margins.

  14. Los Alamos Novel Rocket Design Flight Tested

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tappan, Bryce

    Los Alamos National Laboratory scientists recently flight tested a new rocket design that includes a high-energy fuel and a motor design that also delivers a high degree of safety. Researchers will now work to scale-up the design, as well as explore miniaturization of the system, in order to exploit all potential applications that would require high-energy, high-velocity, and correspondingly high safety margins.

  15. Evaluation of methane oxidation activity in waste biocover soil during landfill stabilization.

    PubMed

    He, Ruo; Wang, Jing; Xia, Fang-Fang; Mao, Li-Juan; Shen, Dong-Sheng

    2012-10-01

    Biocover soil has been demonstrated to have high CH(4) oxidation capacity and is considered as a good alternative cover material to mitigate CH(4) emission from landfills, yet the response of CH(4) oxidation activity of biocover soils to the variation of CH(4) loading during landfill stabilization is poorly understood. Compared with a landfill cover soil (LCS) collected from Hangzhou Tianziling landfill cell, the development of CH(4) oxidation activity of waste biocover soil (WBS) was investigated using simulated landfill systems in this study. Although a fluctuation of influent CH(4) flux occurred during landfill stabilization, the WBS covers showed a high CH(4) removal efficiency of 94-96% during the entire experiment. In the LCS covers, the CH(4) removal efficiencies varied with the fluctuation of CH(4) influent flux, even negative ones occurred due to the storage of CH(4) in the soil porosities after the high CH(4) influent flux of ~137 gm(-2) d(-1). The lower concentrations of O(2) and CH(4) as well as the higher concentration of CO(2) were observed in the WBS covers than those in the LCS covers. The highest CH(4) oxidation rates of the two types of soil covers both occurred in the bottom layer (20-30 cm). Compared to the LCS, the WBS showed higher CH(4) oxidation activity and methane monooxygenase activity over the course of the experiment. Overall, this study indicated the WBS worked well for the fluctuation of CH(4) influent flux during landfill stabilization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. ESTIMATE OF GLOBAL METHANE EMISSIONS FROM LANDFILLS AND OPEN DUMPS

    EPA Science Inventory

    The report presents an empirical model to estimate global methane (CH4) emissions from landfills and open dumps based on EPA data from landfill gas (LFG) recovery projects. The EPA CH4 estimates for 1990 range between 19 and 40 teragrams (10 to the 12th power) per year (Tg/yr), w...

  17. Improved methodology to assess modification and completion of landfill gas management in the aftercare period

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, Jeremy W.F., E-mail: jmorris@geosyntec.com; Crest, Marion, E-mail: marion.crest@suez-env.com; Barlaz, Morton A., E-mail: barlaz@ncsu.edu

    Highlights: Black-Right-Pointing-Pointer Performance-based evaluation of landfill gas control system. Black-Right-Pointing-Pointer Analytical framework to evaluate transition from active to passive gas control. Black-Right-Pointing-Pointer Focus on cover oxidation as an alternative means of passive gas control. Black-Right-Pointing-Pointer Integrates research on long-term landfill behavior with practical guidance. - Abstract: Municipal solid waste landfills represent the dominant option for waste disposal in many parts of the world. While some countries have greatly reduced their reliance on landfills, there remain thousands of landfills that require aftercare. The development of cost-effective strategies for landfill aftercare is in society's interest to protect human health and the environmentmore » and to prevent the emergence of landfills with exhausted aftercare funding. The Evaluation of Post-Closure Care (EPCC) methodology is a performance-based approach in which landfill performance is assessed in four modules including leachate, gas, groundwater, and final cover. In the methodology, the objective is to evaluate landfill performance to determine when aftercare monitoring and maintenance can be reduced or possibly eliminated. This study presents an improved gas module for the methodology. While the original version of the module focused narrowly on regulatory requirements for control of methane migration, the improved gas module also considers best available control technology for landfill gas in terms of greenhouse gas emissions, air quality, and emissions of odoriferous compounds. The improved module emphasizes the reduction or elimination of fugitive methane by considering the methane oxidation capacity of the cover system. The module also allows for the installation of biologically active covers or other features designed to enhance methane oxidation. A methane emissions model, CALMIM, was used to assist with an assessment of the methane oxidation

  18. IN SITU BIOREMEDIATION IN A LANDFILL: LEACHATE CHEMICAL AND MICROBIAL PARAMETERS

    EPA Science Inventory

    In recent years the conversion of landfills to landfill bioreactors has received increased attention owing to potential economic and waste treatment benefits. The U.S. EPA has entered into a Cooperative Research and Development Agreement (CRADA), with Waste Management Inc., testi...

  19. Mathematical numeric models for assessing the groundwater pollution from Sanitary landfills

    NASA Astrophysics Data System (ADS)

    Petrov, Vasil; Stoyanov, Nikolay; Sotinev, Petar

    2014-05-01

    Landfills are among the most common sources of pollution in ground water. Their widespread deployment, prolonged usage and the serious damage they cause to all of the elements of the environment are the reasons, which make the study of the problem particularly relevant. Most dangerous of all are the open dumps used until the middle of the twentieth century, from which large amounts of liquid emissions flowed freely (landfill infiltrate). In recent decades, the problem is solved by the construction of sanitary landfills in which they bury waste or solid residue from waste utilization plants. The bottom and the sides of the sanitary landfills are covered with a protective waterproof screen made of clay and polyethylene and the landfill infiltrate is led outside through a drainage system. This method of disposal severely limits any leakage of gas and liquid emissions into the environment and virtually eliminates the possibility of contamination. The main topic in the conducted hydrogeological study was a quantitative assessment of groundwater pollution and the environmental effects of re-landfilling of an old open dump into a new sanitary landfill, following the example of the municipal landfill of Asenovgrad, Bulgaria. The study includes: 1.A set of drilling, geophysical and hydrogeological field and laboratory studies on: -the definition and designation of the spatial limits of the main hydrogeological units; -identification of filtration parameters and migration characteristics of the main hydrogeological units; -clarifying the conditions for the sustentation and drainage of groundwater; -determininng the structure of the filtration field; -identifying and assessing the size and the extent of groundwater contamination from the old open dump . 2.Mathematical numeric models of migration and entry conditions of contaminants below the bottom of the landfill unit, with which the natural protection of the geological environment, the protective effect of the engineering

  20. EVALUATION OF LANDFILL-LINER DESIGNS

    EPA Science Inventory

    The effectiveness of landfill-liner designs is evaluated in terms of the slope, drainage length, and saturated hydraulic conductivity of the lateral drainage layer, the saturated hydraulic conductivity of the soil liner, and the fraction of the area under a synthetic liner where ...

  1. Los Alamos Science: The Human Genome Project. Number 20, 1992

    DOE R&D Accomplishments Database

    Cooper, N. G.; Shea, N. eds.

    1992-01-01

    This document provides a broad overview of the Human Genome Project, with particular emphasis on work being done at Los Alamos. It tries to emphasize the scientific aspects of the project, compared to the more speculative information presented in the popular press. There is a brief introduction to modern genetics, including a review of classic work. There is a broad overview of the Genome Project, describing what the project is, what are some of its major five-year goals, what are major technological challenges ahead of the project, and what can the field of biology, as well as society expect to see as benefits from this project. Specific results on the efforts directed at mapping chromosomes 16 and 5 are discussed. A brief introduction to DNA libraries is presented, bearing in mind that Los Alamos has housed such libraries for many years prior to the Genome Project. Information on efforts to do applied computational work related to the project are discussed, as well as experimental efforts to do rapid DNA sequencing by means of single-molecule detection using applied spectroscopic methods. The article introduces the Los Alamos staff which are working on the Genome Project, and concludes with brief discussions on ethical, legal, and social implications of this work; a brief glimpse of genetics as it may be practiced in the next century; and a glossary of relevant terms.

  2. Bioassays for toxicological risk assessment of landfill leachate: A review.

    PubMed

    Ghosh, Pooja; Thakur, Indu Shekhar; Kaushik, Anubha

    2017-07-01

    Landfilling is the most common solid waste management practice. However, there exist a potential environmental risk to the surface and ground waters due to the possible leaching of contaminants from the landfill leachates. Current municipal solid waste landfill regulatory approaches consider physicochemical characterization of the leachate and do not assess their potential toxicity. However, assessment of toxic effects of the leachates using rapid, sensitive and cost-effective biological assays is more useful in assessing the risks as they measure the overall toxicity of the chemicals in the leachate. Nevertheless, more research is needed to develop an appropriate matrix of bioassays based on their sensitivity to various toxicants in order to evaluate leachate toxicity. There is a need for a multispecies approach using organisms representing different trophic levels so as to understand the potential impacts of leachate on different trophic organisms. The article reviews different bioassays available for assessing the hazard posed by landfill leachates. From the review it appears that there is a need for a multispecies approach to evaluate leachate toxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Environmental impact of an urban landfill on a coastal aquifer (El Jadida, Morocco)

    NASA Astrophysics Data System (ADS)

    Chofqi, Amina; Younsi, Abedelkader; Lhadi, El Kbir; Mania, Jacky; Mudry, Jacques; Veron, Alain

    2004-06-01

    The El Jadida landfill is one among many uncontrolled dumping sites in Morocco with no bottom liner. About 150 tons/day of solid wastes from mixed urban and industrial origins are placed directly on the ground. At the site of this landfill, the groundwaters circulate deeply (10-15 m) in the Cenomanian rock (calcareous-marl), which is characterised by an important permeability from cracks. The soil is sand-clay characterized by a weak coefficient of retention. The phreatic water ascends to the bottom of three quarries, which are located within the landfill. These circumstances, along with the lack of a leachate collection system, worsen the risks for a potential deterioration of the aquifer. To evaluate groundwater pollution due to this urban landfill, piezometric level and geochemical analyses have been monitored since 1999 on 60 wells. The landfill leachate has been collected from the three quarries that are located within the landfill. The average results of geochemical analyses show an important polluant charge vehiculed by landfill leachate (chloride = 5680 mg l -1, chemical oxygen demand = 1000 mg l -1, iron = 23 000 μg l -1). They show also an important qualitative degradation of the groundwater, especially in the parts situated in the down gradient area and in direct proximity to the landfill. In these polluted zones, we have observed the following values: higher than 4.5 mS cm -1 in electric conductivity, 1620 and 1000 mg l -1 respectively in chlorides and sulfate ( SO42-), 15-25 μg l -1 in cadmium, and 60-100 μg l -1 in chromium. These concentrations widely exceed the standard values for potable water. Several determining factors in the evolution of groundwater contamination have been highlighted, such as (1) depth of the water table, (2) permeability of soil and unsaturated zone, (3) effective infiltration, (4) humidity and (5) absence of a system for leachate drainage. So, to reduce the pollution risks of the groundwater, it is necessary to set a

  4. Implementation of the semi-aerobic landfill system (Fukuoka method) in developing countries: a Malaysia cost analysis.

    PubMed

    Chong, Theng Lee; Matsufuji, Yasushi; Hassan, Mohd Nasir

    2005-01-01

    Most of the existing solid waste landfill sites in developing countries are practicing either open dumping or controlled dumping. Proper sanitary landfill concepts are not fully implemented due to technological and financial constraints. Implementation of a fully engineered sanitary landfill is necessary and a more economically feasible landfill design is crucial, particularly for developing countries. This study was carried out by focusing on the economics from the development of a new landfill site within a natural clay area with no cost of synthetic liner up to 10 years after its closure by using the Fukuoka method semi-aerobic landfill system. The findings of the study show that for the development of a 15-ha landfill site in Malaysia with an estimated volume of 2,000,000 m(3), the capital investment required was about US 1,312,895 dollars, or about US 0.84 dollars/tonne of waste. Assuming that the lifespan of the landfill is 20 years, the total cost of operation was about US 11,132,536 dollars or US 7.15 dollars/tonne of waste. The closure cost of the landfill was estimated to be US 1,385,526 dollars or US 0.89 dollars/tonne of waste. Therefore, the total cost required to dispose of a tonne of waste at the semi-aerobic landfill was estimated to be US 8.89 dollars. By considering an average tipping fee of about US 7.89 dollars/tonne of waste in Malaysia in the first year, and an annual increase of 3% to about US 13.84 dollars in year-20, the overall system recorded a positive revenue of US 1,734,749 dollars. This is important information for the effort of privatisation of landfill sites in Malaysia, as well as in other developing countries, in order to secure efficient and effective landfill development and management.

  5. Geohydrology and ground-water geochemistry at a sub-arctic landfill, Fairbanks, Alaska

    USGS Publications Warehouse

    Downey, J.S.

    1990-01-01

    The Fairbanks-North Star Borough, Alaska, landfill is located on silt, sand, and gravel deposits of the Tanana River flood plain, about 3 miles south of the city of Fairbanks water supply wells. The landfill has been in operation for about 25 years in this sub-arctic region of discontinuous permafrost. The cold climate limits biological activity within the landfill with corresponding low gas and leachate production. Chloride concentrations, specific conductance, water temperature, and earth conductivity measurements indicate a small plume of leachate flowing to the northwest from the landfill. The leachate remains near the water table as it flows northwestward toward a drainage ditch. Results of computer modeling of this local hydrologic system indicate that some of the leachate may be discharging to the ditch. Chemical data show that higher-than-background concentrations of several ions are present in the plume. However, the concentrations appear to be reduced to background levels within a short distance along the path of groundwater flow from the landfill, and thus the leachate is not expected to affect the water supply wells. (USGS)

  6. Behavior and influence of desiccation cracking in loess landfill covers

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Lan, Ji-wu; Qiu, Qing-wen; He, Hai-jie; Li, He

    2017-11-01

    In the northwest region of China, loess was the main closure cover material of local landfills. Tests in a full-scale testing facility were conducted to investigate the behavior and influence of desiccation cracking in loess landfill covers. The desiccation cracks in the loess landfill cover intersected with T-shape, and the intersection angles were close to 90 degrees. The desiccation cracks formed as a result of drying, and would heal with the increase of moisture content of the loess. In addition, desiccation cracking in loess covers would promote the formation of preferential flow channels. As a consequence, the gas permeability of the loess cover was improved, and methane emissions increased obviously.

  7. Hydrogeology and leachate movement near two chemical-waste sites in Oswego County, New York

    USGS Publications Warehouse

    Anderson, H.R.; Miller, Todd S.

    1986-01-01

    Forty-five observation wells and test holes were installed at two chemical waste disposal sites in Oswego County, New York, to evaluate the hydrogeologic conditions and the rate and direction of leachate migration. At the site near Oswego groundwater moves northward at an average velocity of 0.4 ft/day through unconsolidated glacial deposits and discharges into White Creek and Wine Creek, which border the site and discharge to Lake Ontario. Leaking barrels by chemical wastes have contaminated the groundwater within the site, as evidenced by detection of 10 ' priority pollutant ' organic compounds, and elevated values of specific conductance, chloride, arsenic, lead, and mercury. At the site near Fulton, where 8,000 barrels of chemical wastes are buried, groundwater in the sandy surficial aquifer bordering the landfill on the south and east moves southward and eastward at an average velocity of 2.8 ft/day and discharges to Bell Creek, which discharges to the Oswego River, or moves beneath the landfill. Leachate is migrating eastward, southeastward, and southwestward, as evidenced by elevated values of specific conductance, temperature, and concentrations of several trace metals at wells east, southeast, and southwest of the site. (USGS)

  8. Risk-Based Prioritization Method for the Classification of Groundwater Pollution from Hazardous Waste Landfills.

    PubMed

    Yang, Yu; Jiang, Yong-Hai; Lian, Xin-Ying; Xi, Bei-Dou; Ma, Zhi-Fei; Xu, Xiang-Jian; An, Da

    2016-12-01

    Hazardous waste landfill sites are a significant source of groundwater pollution. To ensure that these landfills with a significantly high risk of groundwater contamination are properly managed, a risk-based ranking method related to groundwater contamination is needed. In this research, a risk-based prioritization method for the classification of groundwater pollution from hazardous waste landfills was established. The method encompasses five phases, including risk pre-screening, indicator selection, characterization, classification and, lastly, validation. In the risk ranking index system employed here, 14 indicators involving hazardous waste landfills and migration in the vadose zone as well as aquifer were selected. The boundary of each indicator was determined by K-means cluster analysis and the weight of each indicator was calculated by principal component analysis. These methods were applied to 37 hazardous waste landfills in China. The result showed that the risk for groundwater contamination from hazardous waste landfills could be ranked into three classes from low to high risk. In all, 62.2 % of the hazardous waste landfill sites were classified in the low and medium risk classes. The process simulation method and standardized anomalies were used to validate the result of risk ranking; the results were consistent with the simulated results related to the characteristics of contamination. The risk ranking method was feasible, valid and can provide reference data related to risk management for groundwater contamination at hazardous waste landfill sites.

  9. Woody plant roots fail to penetrate a clay-lined landfill: Managment implications

    NASA Astrophysics Data System (ADS)

    Robinson, George R.; Handel, Steven N.

    1995-01-01

    In many locations, regulatory agencies do not permit tree planting above landfills that are sealed with a capping clay, because roots might penetrate the clay barrier and expose landfill contents to leaching. We find, however, no empirical or theoretical basis for this restriction, and instead hypothesize that plant roots of any kind are incapable of penetrating the dense clays used to seal landfills. As a test, we excavated 30 trees and shrubs, of 12 species, growing over a clay-lined municipal sanitary landfill on Staten Island, New York. The landfill had been closed for seven years, and featured a very shallow (10 to 30-cm) soil layer over a 45-cm layer of compacted grey marl (Woodbury series) clay. The test plants had invaded naturally from nearby forests. All plants examined—including trees as tall as 6 m—had extremely shallow root plates, with deformed tap roots that grew entirely above and parallel to the clay layer. Only occasional stubby feeder roots were found in the top 1 cm of clay, and in clay cracks at depths to 6 cm, indicating that the primary impediment to root growth was physical, although both clay and the overlying soil were highly acidic. These results, if confirmed by experimental research should lead to increased options for the end use of many closed sanitary landfills.

  10. Environmental impact assessment of Gonabad municipal waste landfill site using Leopold Matrix.

    PubMed

    Sajjadi, Seyed Ali; Aliakbari, Zohreh; Matlabi, Mohammad; Biglari, Hamed; Rasouli, Seyedeh Samira

    2017-02-01

    An environmental impact assessment (EIA) before embarking on any project is a useful tool to reduce the potential effects of each project, including landfill, if possible. The main objective of this study was to assess the environmental impact of the current municipal solid waste disposal site of Gonabad by using the Iranian Leopold matrix method. This cross-sectional study was conducted to assess the environmental impacts of a landfill site in Gonabad in 2015 by an Iranian matrix (modified Leopold matrix). This study was conducted based on field visits of the landfill, and collected information from various sources and analyzing and comparing between five available options, including the continuation of the current disposal practices, construction of new sanitary landfills, recycling plans, composting, and incineration plants was examined. The best option was proposed to replace the existing landfill. The current approach has a score of 2.35, the construction of new sanitary landfill has a score of 1.59, a score of 1.57 for the compost plant, and recycling and incineration plant, respectively, have scores of 1.68 and 2.3. Results showed that continuation of the current method of disposal, due to severe environmental damage and health problems, is rejected. A compost plant with the lowest negative score is the best option for the waste disposal site of Gonabad City and has priority over the other four options.

  11. Optical velocimetry at the Los Alamos Proton Radiography Facility

    NASA Astrophysics Data System (ADS)

    Tupa, Dale; Tainter, Amy; Neukirch, Levi; Hollander, Brian; Buttler, William; Holtkamp, David; The Los Alamos Proton Radiography Team Team

    2016-05-01

    The Los Alamos Proton Radiography Facility (pRad) employs a high-energy proton beam to image the properties and behavior of materials driven by high explosives. We will discuss features of pRad and describe some recent experiments, highlighting optical diagnostics for surface velocity measurements.

  12. Aqueous Nitrate Recovery Line at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finstad, Casey Charles

    2016-06-15

    This powerpoint is part of the ADPSM Plutonium Engineering Lecture Series, which is an opportunity for new hires at LANL to get an overview of work done at TA55. It goes into detail about the aqueous nitrate recovery line at Los Alamos National Laboratory.

  13. Implications of variable waste placement conditions for MSW landfills.

    PubMed

    Cox, Jason T; Yesiller, Nazli; Hanson, James L

    2015-12-01

    This investigation was conducted to evaluate the influence of waste placement practices on the engineering response of municipal solid waste (MSW) landfills. Waste placement conditions were varied by moisture addition to the wastes at the time of disposal. Tests were conducted at a California landfill in test plots (residential component of incoming wastes) and full-scale active face (all incoming wastes including residential, commercial, and self-delivered components). The short-term effects of moisture addition were assessed by investigating compaction characteristics and moisture distribution and the long-term effects by estimating settlement characteristics of the variably placed wastes. In addition, effects on engineering properties including hydraulic conductivity and shear strength, as well as economic aspects were investigated. The unit weight of the wastes increased with moisture addition to a maximum value and then decreased with further moisture addition. At the optimum moisture conditions, 68% more waste could be placed in the same landfill volume compared to the baseline conditions. Moisture addition raised the volumetric moisture content of the wastes to the range 33-42%, consistent with values at and above field capacity. Moisture transfer occurred between consecutive layers of compacted wastes and a moisture addition schedule of 2 days of as-received conditions and 1 day of moisture addition was recommended. Settlement of wastes was estimated to increase with moisture addition, with a 34% increase at optimum moisture compared to as-received conditions. Overall, moisture addition during compaction increased unit weight, the amount of incoming wastes disposed in a given landfill volume, biological activity potential, and predicted settlement. The combined effects have significant environmental and economic implications for landfill operations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Modelling biogas production of solid waste: application of the BGP model to a synthetic landfill

    NASA Astrophysics Data System (ADS)

    Rodrigo-Ilarri, Javier; Segura-Sobrino, Francisco

    2013-04-01

    Production of biogas as a result of the decomposition of organic matter included on solid waste landfills is still an issue to be understood. Reports on this matter are rarely included on the engineering construction projects of solid waste landfills despite it can be an issue of critical importance while operating the landfill and after its closure. This paper presents an application of BGP (Bio-Gas-Production) model to a synthetic landfill. The evolution in time of the concentrations of the different chemical compounds of biogas is studied. Results obtained show the impact on the air quality of different management alternatives which are usually performed in real landfills.

  15. Polybrominated diphenyl ethers (PBDEs) in leachates from selected landfill sites in South Africa.

    PubMed

    Odusanya, David O; Okonkwo, Jonathan O; Botha, Ben

    2009-01-01

    The last few decades have seen dramatic growth in the scale of production and the use of polybrominated diphenyl ethers (PBDEs) as flame retardants. Consequently, PBDEs such as BDE -28, -47, -66, -71, -75, -77, -85, -99, -100, -119, -138, -153, -154, and -183 have been detected in various environmental matrices. Generally, in South Africa, once the products containing these chemicals have outlived their usefulness, they are discarded into landfill sites. Consequently, the levels of PBDEs in leachates from landfill sites may give an indication of the general exposure and use of these compounds. The present study was aimed at determining the occurrence and concentrations of most common PBDEs in leachates from selected landfill sites. The extraction capacities of the solvents were also tested. Spiked landfill leachate samples were used for the recovery tests. Separation and determination of the PBDE congeners were carried out with a gas chromatograph equipped with Ni63 electron capture detector. The mean percentage recoveries ranged from 63% to 108% (n=3) for landfill leachate samples with petroleum ether giving the highest percentage extraction. The mean concentrations of PBDEs obtained ranged from ND to 2670pgl(-1), ND to 6638pgl(-1), ND to 7230pgl(-1), 41 to 4009pgl(-1), 90 to 9793pgl(-1) for the Garankuwa, Hatherly, Kwaggarsrand, Soshanguve and Temba landfill sites, respectively. Also BDE -28, -47, -71 and BDE-77 were detected in the leachate samples from all the landfill sites; and all the congeners were detected in two of the oldest landfill sites. The peak concentrations were recorded for BDE-47 at three sites and BDE-71 and BDE-75 at two sites. The highest concentration, 9793+/-1.5pgl(-1), was obtained for the Temba landfill site with the highest BOD value. This may suggest some influence of organics on the level of PBDEs. Considering the leaching characteristics of brominated flame retardants, there is a high possibility that with time these compounds may

  16. Bioreactor tests preliminary to landfill in situ aeration: a case study.

    PubMed

    Raga, Roberto; Cossu, Raffaello

    2013-04-01

    Lab scale tests in bioreactor were carried out in the framework of the characterization studies of a landfill where in situ aeration (possibly followed by landfill mining) had been proposed as part of the novel waste management strategy in a region in northern Italy. The tests were run to monitor the effects produced by aerobic conditions at different temperatures on waste sampled at different depths in the landfill, with focus on the carbon and nitrogen conversion during aeration. Temperatures ranging from 35 to 45°C were chosen, in order to evaluate possible inhibition of biodegradation processes (namely nitrification) at 45°C in the landfill. The results obtained showed positive effects of the aeration on leachate quality and a significant reduction of waste biodegradability. Although a delay of biodegradation processes was observed in the reactor run at 45°C, biodegradation rates increased after 2 months of aeration, providing very low values of the relevant parameters (as in the other aerated reactors) by the end of the study. Mass balances were carried out for TOC and NNH4(+); the findings obtained were encouraging and provided evidence of the effectiveness of carbon and nitrogen conversion processes in the aerated landfill simulation reactors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Treatment of landfill leachate using ASBR combined with zeolite adsorption technology.

    PubMed

    Lim, Chi Kim; Seow, Ta Wee; Neoh, Chin Hong; Md Nor, Muhamad Hanif; Ibrahim, Zaharah; Ware, Ismail; Mat Sarip, Siti Hajar

    2016-12-01

    Sanitary landfilling is the most common way to dispose solid urban waste; however, improper landfill management may pose serious environmental threats through discharge of high strength polluted wastewater also known as leachate. The treatment of landfill leachate to fully reduce the negative impact on the environment, is nowadays a challenge. In this study, an aerobic sequencing batch reactor (ASBR) was proposed for the treatment of locally obtained real landfill leachate with initial ammoniacal nitrogen and chemical oxygen demand (COD) concentration of 1800 and 3200 mg/L, respectively. ASBR could remove 65 % of ammoniacal nitrogen and 30 % of COD during seven days of treatment time. Thereafter, an effective adsorbent, i.e., zeolite was used as a secondary treatment step for polishing the ammoniacal nitrogen and COD content that is present in leachate. The results obtained are promising where the adsorption of leachate by zeolite further enhanced the removal of ammoniacal nitrogen and COD up to 96 and 43 %, respectively. Furthermore, this combined biological-physical treatment system was able to remove heavy metals, i.e. aluminium, vanadium, chromium, magnesium, cuprum and plumbum significantly. These results demonstrate that combined ASBR and zeolite adsorption is a feasible technique for the treatment of landfill leachate, even considering this effluent's high resistance to treatment.

  18. Streamflow, water-quality, and biological conditions in the Big Black Creek basin, St. Clair County, Alabama, 1997

    USGS Publications Warehouse

    Journey, Celeste A.; Clark, Amy E.; Stricklin, Victor E.

    1998-01-01

    In 1997 synoptic streamflow, water-quality, and biological investi- gations in the Big Black Creek Basin were conducted by the U.S. Geological Survey in cooperation with the City of Moody, St. Clair County, and the Birmingham Water Works Board. Data obtained during these synoptic investigations provide a one-time look at the streamflow and water-quality conditions in the Big Black Creek Basin during a stable, base-flow period when streamflow originated only from ground-water discharge. These data were used to assess the degree of water-quality degradation in the Big Black Creek Basin from land-use activities in the basin, including leakage of leachate from the Acmar Regional Land- fill. Biological data from the benthic invertebrate community investigation provided an assessment of the cumulative effects of stream conditions on organisms in the basin. The synoptic measurement of streamflow at 28 sites was made during a period of baseflow on August 27, 1997. Two stream reaches above the landfill lost water to the ground-water system, but those below the landfill had significantly higher ground-water gains. If significant leakage of leachate from the landfill had occurred during the measurement period, the distribution of ground-water discharge suggests that leachate would travel relatively short distances before resurfacing as ground-water discharge to the stream. Benthic invertebrate communities were sampled at four sites in the Big Black Creek Basin during July 16-17, 1997. Based on Alabama Department of Environmental Management criteria and on comparison with a nearby unimparied reference site, the benthic invertebrate communities at the sites sampled were considered unimpaired or only slightly impaired during the sample period. This would imply that landfill and coal-mining activities did not have a detrimental effect on the benthic invertebrate communities at the time of the study. Synoptic water-column samples were collected at nine sites on Big Black Creek and

  19. Field assessment of semi-aerobic condition and the methane correction factor for the semi-aerobic landfills provided by IPCC guidelines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Sangjae; Nam, Anwoo; Yi, Seung-Muk

    Highlights: • CH{sub 4}/CO{sub 2} and CH{sub 4} + CO{sub 2}% are proposed as indices to evaluate semi-aerobic landfills. • A landfill which CH{sub 4}/CO{sub 2} > 1.0 is difficult to be categorized as semi-aerobic landfill. • Field conditions should be carefully investigated to determine landfill types. • The MCF default value for semi-aerobic landfills underestimates the methane emissions. - Abstract: According to IPCC guidelines, a semi-aerobic landfill site produces one-half of the amount of CH{sub 4} produced by an equally-sized anaerobic landfill site. Therefore categorizing the landfill type is important on greenhouse gas inventories. In order to assess semi-aerobicmore » condition in the sites and the MCF value for semi-aerobic landfill, landfill gas has been measured from vent pipes in five semi-aerobically designed landfills in South Korea. All of the five sites satisfied requirements of semi-aerobic landfills in 2006 IPCC guidelines. However, the ends of leachate collection pipes which are main entrance of air in the semi-aerobic landfill were closed in all five sites. The CH{sub 4}/CO{sub 2} ratio in landfill gas, indicator of aerobic and anaerobic decomposition, ranged from 1.08 to 1.46 which is higher than the values (0.3–1.0) reported for semi-aerobic landfill sites and is rather close to those (1.0–2.0) for anaerobic landfill sites. The low CH{sub 4} + CO{sub 2}% in landfill gas implied air intrusion into the landfill. However, there was no evidence that air intrusion has caused by semi-aerobic design and operation. Therefore, the landfills investigated in this study are difficult to be classified as semi-aerobic landfills. Also MCF of 0.5 may significantly underestimate methane emissions compared to other researches. According to the carbon mass balance analyses, the higher MCF needs to be proposed for semi-aerobic landfills. Consequently, methane emission estimate should be based on field evaluation for the semi-aerobically designed

  20. Temporal and Spatial Pore Water Pressure Distribution Surrounding a Vertical Landfill Leachate Recirculation Well

    PubMed Central

    Kadambala, Ravi; Townsend, Timothy G.; Jain, Pradeep; Singh, Karamjit

    2011-01-01

    Addition of liquids into landfilled waste can result in an increase in pore water pressure, and this in turn may increase concerns with respect to geotechnical stability of the landfilled waste mass. While the impact of vertical well leachate recirculation on landfill pore water pressures has been mathematically modeled, measurements of these systems in operating landfills have not been reported. Pressure readings from vibrating wire piezometers placed in the waste surrounding a liquids addition well at a full-scale operating landfill in Florida were recorded over a 2-year period. Prior to the addition of liquids, measured pore pressures were found to increase with landfill depth, an indication of gas pressure increase and decreasing waste permeability with depth. When liquid addition commenced, piezometers located closer to either the leachate injection well or the landfill surface responded more rapidly to leachate addition relative to those far from the well and those at deeper locations. After liquid addition stopped, measured pore pressures did not immediately drop, but slowly decreased with time. Despite the large pressures present at the bottom of the liquid addition well, much smaller pressures were measured in the surrounding waste. The spatial variation of the pressures recorded in this study suggests that waste permeability is anisotropic and decreases with depth. PMID:21655145

  1. Simulation of municipal solid waste degradation in aerobic and anaerobic bioreactor landfills.

    PubMed

    Patil, Bhagwan Shamrao; C, Agnes Anto; Singh, Devendra Narain

    2017-03-01

    Municipal solid waste generation is huge in growing cities of developing nations such as India, owing to the rapid industrial and population growth. In addition to various methods for treatment and disposal of municipal solid waste (landfills, composting, bio-methanation, incineration and pyrolysis), aerobic/anaerobic bioreactor landfills are gaining popularity for economical and effective disposal of municipal solid waste. However, efficiency of municipal solid waste bioreactor landfills primarily depends on the municipal solid waste decomposition rate, which can be accelerated through monitoring moisture content and temperature by using the frequency domain reflectometry probe and thermocouples, respectively. The present study demonstrates that these landfill physical properties of the heterogeneous municipal solid waste mass can be monitored using these instruments, which facilitates proper scheduling of the leachate recirculation for accelerating the decomposition rate of municipal solid waste.

  2. 40 CFR 49.22 - Federal implementation plan for Tri-Cities landfill, Salt River Pima-Maricopa Indian Community.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-Cities landfill, Salt River Pima-Maricopa Indian Community. 49.22 Section 49.22 Protection of Environment... Authority § 49.22 Federal implementation plan for Tri-Cities landfill, Salt River Pima-Maricopa Indian... River Project at the Tri-Cities landfill, which are fueled by collected landfill gas. Secondary...

  3. Corrective Action Plan for Corrective Action Unit 453: Area 9 UXO Landfill, Tonopah Test Range, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bechtel Nevada

    1998-09-30

    This corrective action plan proposes the closure method for the area 9 unexploded Ordnance landfill, corrective action unit 453 located at the Tonopah Test Range. The area 9 UXO landfill consists of corrective action site no. 09-55-001-0952 and is comprised of three individual landfill cells designated as A9-1, A9-2, and A9-3. The three landfill cells received wastes from daily operations at area 9 and from range cleanups which were performed after weapons testing. Cell locations and contents were not well documented due to the unregulated disposal practices commonly associated with early landfill operations. However, site process knowledge indicates that themore » landfill cells were used for solid waste disposal, including disposal of UXO.« less

  4. Risk of adverse birth outcomes in populations living near landfill sites

    PubMed Central

    Elliott, Paul; Briggs, David; Morris, Sara; de Hoogh, Cornelis; Hurt, Christopher; Jensen, Tina Kold; Maitland, Ian; Richardson, Sylvia; Wakefield, Jon; Jarup, Lars

    2001-01-01

    Objective To investigate the risk of adverse birth outcomes associated with residence near landfill sites in Great Britain. Design Geographical study of risks of adverse birth outcomes in populations living within 2 km of 9565 landfill sites operational at some time between 1982 and 1997 (from a total of 19 196 sites) compared with those living further away. Setting Great Britain. Subjects Over 8.2 million live births, 43 471 stillbirths, and 124 597 congenital anomalies (including terminations). Main outcome measures All congenital anomalies combined, some specific anomalies, and prevalence of low and very low birth weight (<2500 g and <1500 g). Results For all anomalies combined, relative risk of residence near landfill sites (all waste types) was 0.92 (99% confidence interval 0.907 to 0.923) unadjusted, and 1.01 (1.005 to 1.023) adjusted for confounders. Adjusted risks were 1.05 (1.01 to 1.10) for neural tube defects, 0.96 (0.93 to 0.99) for cardiovascular defects, 1.07 (1.04 to 1.10) for hypospadias and epispadias (with no excess of surgical correction), 1.08 (1.01 to 1.15) for abdominal wall defects, 1.19 (1.05 to 1.34) for surgical correction of gastroschisis and exomphalos, and 1.05 (1.047 to 1.055) and 1.04 (1.03 to 1.05) for low and very low birth weight respectively. There was no excess risk of stillbirth. Findings for special (hazardous) waste sites did not differ systematically from those for non-special sites. For some specific anomalies, higher risks were found in the period before opening compared with after opening of a landfill site, especially hospital admissions for abdominal wall defects. Conclusions We found small excess risks of congenital anomalies and low and very low birth weight in populations living near landfill sites. No causal mechanisms are available to explain these findings, and alternative explanations include data artefacts and residual confounding. Further studies are needed to help differentiate between the various

  5. Evaluation of Macroinvertebrate Communities and Habitat for Selected Stream Reaches at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L.J. Henne; K.J. Buckley

    2005-08-12

    This is the second aquatic biological monitoring report generated by Los Alamos National Laboratory's (LANL's) Water Quality and Hydrology Group. The study has been conducted to generate impact-based assessments of habitat and water quality for LANL waterways. The monitoring program was designed to allow for the detection of spatial and temporal trends in water and habitat quality through ongoing, biannual monitoring of habitat characteristics and benthic aquatic macroinvertebrate communities at six key sites in Los Alamos, Sandia, Water, Pajarito, and Starmer's Gulch Canyons. Data were collected on aquatic habitat characteristics, channel substrate, and macroinvertebrate communities during 2001 and 2002. Aquaticmore » habitat scores were stable between 2001 and 2002 at all locations except Starmer's Gulch and Pajarito Canyon, which had lower scores in 2002 due to low flow conditions. Channel substrate changes were most evident at the upper Los Alamos and Pajarito study reaches. The macroinvertebrate Stream Condition Index (SCI) indicated moderate to severe impairment at upper Los Alamos Canyon, slight to moderate impairment at upper Sandia Canyon, and little or no impairment at lower Sandia Canyon, Starmer's Gulch, and Pajarito Canyon. Habitat, substrate, and macroinvertebrate data from the site in upper Los Alamos Canyon indicated severe impacts from the Cerro Grande Fire of 2000. Impairment in the macroinvertebrate community at upper Sandia Canyon was probably due to effluent-dominated flow at that site. The minimal impairment SCI scores for the lower Sandia site indicated that water quality improved with distance downstream from the outfall at upper Sandia Canyon.« less

  6. Los Alamos - A Short History

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meade, Roger A.

    At 5:45 am on the morning of July 16, 1945, the world’s first atomic bomb exploded over a remote section of the southern New Mexican desert known as the Jornada del Muerto, the Journey of Death. Three weeks later, the atomic bombs known as Little Boy and Fat Man brought World War II to an end. Working literally around the clock, these first atomic bombs were designed and built in just thirty months by scientists working at a secret scientific laboratory in the mountains of New Mexico known by its codename, Project Y, better known to the world as Losmore » Alamos.« less

  7. Responses to Public Comments on EPA’s Standards of Performance for Municipal Solid Waste Landfills and Emission Guidelines and Compliance Times for Municipal Solid Waste Landfills: Proposed Rules - July 2016

    EPA Pesticide Factsheets

    Responses to Public Comments on EPA’s Standards of Performance for Municipal Solid Waste Landfills and Emission Guidelines and Compliance Times for Municipal Solid Waste Landfills: Proposed Rules - July 2016

  8. Comparison of slope stability in two Brazilian municipal landfills.

    PubMed

    Gharabaghi, B; Singh, M K; Inkratas, C; Fleming, I R; McBean, E

    2008-01-01

    The implementation of landfill gas to energy (LFGTE) projects has greatly assisted in reducing the greenhouse gases and air pollutants, leading to an improved local air quality and reduced health risks. The majority of cities in developing countries still dispose of their municipal waste in uncontrolled 'open dumps.' Municipal solid waste landfill construction practices and operating procedures in these countries pose a challenge to implementation of LFGTE projects because of concern about damage to the gas collection infrastructure (horizontal headers and vertical wells) caused by minor, relatively shallow slumps and slides within the waste mass. While major slope failures can and have occurred, such failures in most cases have been shown to involve contributory factors or triggers such as high pore pressures, weak foundation soil or failure along weak geosynthetic interfaces. Many researchers who have studied waste mechanics propose that the shear strength of municipal waste is sufficient such that major deep-seated catastrophic failures under most circumstances require such contributory factors. Obviously, evaluation of such potential major failures requires expert analysis by geotechnical specialists with detailed site-specific information regarding foundation soils, interface shearing resistances and pore pressures both within the waste and in clayey barrier layers or foundation soils. The objective of this paper is to evaluate the potential use of very simple stability analyses which can be used to study the potential for slumps and slides within the waste mass and which may represent a significant constraint on construction and development of the landfill, on reclamation and closure and on the feasibility of a LFGTE project. The stability analyses rely on site-specific but simple estimates of the unit weight of waste and the pore pressure conditions and use "generic" published shear strength envelopes for municipal waste. Application of the slope stability

  9. Hydrogeology and historical assessment of a classic sequential-land use landfill site, Illinois, U.S.A.

    NASA Astrophysics Data System (ADS)

    Booth, Colin J.; Vagt, Peter J.

    1990-05-01

    The Blackwell site in northeastern Illinois was a classic sequential-use project combining land reclamation, a sanitary landfill, and a recreational park. This paper adds a recent assessment of leachate generation and groundwater contamination to the site's unfinished record. Hydrogeological studies show that (1) the landfill sits astride an outwash aquifer and a till mound, which are separated from an underlying dolomite aquifer by a thin, silty till; (2) leachate leaks from the landfill at an estimated average rate between 48 and 78 m3/d; (3) the resultant contaminant plume is virtually stagnant in the till but rapidly diluted in the outwash aquifer, so that no off-site contamination is detected; (4) trace VOC levels in the dolomite probably indicate that contaminants have migrated there from the landfill-derived plume in the outwash. Deviations from the original landfill concepts included elimination of a leachate collection system, increased landfill size, local absence of a clay liner, and partial use of nonclay cover. The hydrogeological setting was unsuitable for the landfill as constructed, indicating the importance of detailed geological consideration in landfill and land-use planning.

  10. Geohydrology and ground-water quality at the Pueblo Depot activity landfill near Pueblo, Colorado

    USGS Publications Warehouse

    Watts, Kenneth R.; Ortiz, Roderick F.

    1990-01-01

    Groundwater samples were collected from the shallow unconfined aquifer at the Pueblo Depot Activity (Colorado) landfill and downstream from the landfill. The Pueblo Depot Activity is a U.S. Department of the Army facility in southeastern Colorado about 15 miles east of Pueblo, Colorado. The land-fill is underlain by upland alluvial terrace deposits that overlie a thick and almost impermeable shale. Saturated thickness of the aquifer generally is from 5 to 10 feet. Groundwater flow at the landfill is to the south-southeast toward the Arkansas River valley. Though not hydraulically connected to the upland terrace deposits, the alluvium underlying the Arkansas River valley may be recharged by groundwater that is discharged from seeps at the contact of the upland terrace deposits and the Pierre Shale. The water is classified as a mixed-cation mixed-anion type water that has concentrations of dissolved solids of 710 to 1,810 mg/L. Dissolved-solids concentrations increase downgradient. Chemical analysis, done to determine possible contamination of the groundwater, indicated that concentrations of trichloroethylene ranged from 5.2 to 2,900 microg/L and of trans-1,2-dichloroethylene ranged from 5 to 720 microg/L. The areal distribution of these volatile organic compounds indicate that there possibly are two sources of contamination of groundwater at the landfill, one upgradient from the landfill and the other within the landfill. Analysis of water samples from wells and seeps offsite and downgradient from the landfill did not indicate either contaminant in groundwater from the alluvial aquifer underlying the Arkansas River valley. (USGS)

  11. 40 CFR 62.14353 - Standards for municipal solid waste landfill emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Standards for municipal solid waste... POLLUTANTS Federal Plan Requirements for Municipal Solid Waste Landfills That Commenced Construction Prior to... municipal solid waste landfill emissions. (a) The owner or operator of a designated facility having a design...

  12. 40 CFR 62.14353 - Standards for municipal solid waste landfill emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Standards for municipal solid waste... POLLUTANTS Federal Plan Requirements for Municipal Solid Waste Landfills That Commenced Construction Prior to... municipal solid waste landfill emissions. (a) The owner or operator of a designated facility having a design...

  13. 40 CFR 62.14353 - Standards for municipal solid waste landfill emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... POLLUTANTS Federal Plan Requirements for Municipal Solid Waste Landfills That Commenced Construction Prior to... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Standards for municipal solid waste... municipal solid waste landfill emissions. (a) The owner or operator of a designated facility having a design...

  14. Removal of non-biodegradable organic matter from landfill leachates by adsorption.

    PubMed

    Rodríguez, J; Castrillón, L; Marañón, E; Sastre, H; Fernández, E

    2004-01-01

    Leachates produced at the La Zoreda landfill in Asturias, Spain, were recirculated through a simulated landfill pilot plant. Prior to recirculation, three loads of different amounts of Municipal Solid Waste (MSW) were added to the plant, forming in this way consecutive layers. When anaerobic digestion was almost completed, the leachates from the landfill were recirculated. After recirculation, a new load of MSW was added and two new recirculations were carried out. The organic load of the three landfill leachates recirculated through the anaerobic pilot plant decreased from initial values of 5108, 3782 and 2560 mg/l to values of between 1500 and 1600 mg/l. Despite achieving reductions in the organic load of the leachate, a residual organic load still remained that was composed of non-biodegradable organic constituents such as humic substances. Similar values of the chemical oxygen demand (COD) were obtained when the landfill leachate was treated by a pressurised anoxic-aerobic process followed by ultrafiltration. After recirculation through the pilot plant, physico-chemical treatment was carried out to reduce the COD of the leachate. The pH of the leachate was decreased to a value of 1.5 to precipitate the humic fraction, obtaining a reduction in COD of about 13.5%. The supernatant liquid was treated with activated carbon and different resins, XAD-8, XAD-4 and IR-120. Activated carbon presented the highest adsorption capacities, obtaining COD values for the treated leachate in the order of 200mg/l. Similar results were obtained when treating with activated carbon, the leachate from the biological treatment plant at the La Zoreda landfill; in this case without decreasing the pH.

  15. Los Alamos Science: The Human Genome Project. Number 20, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, N G; Shea, N

    1992-01-01

    This article provides a broad overview of the Human Genome Project, with particular emphasis on work being done at Los Alamos. It tries to emphasize the scientific aspects of the project, compared to the more speculative information presented in the popular press. There is a brief introduction to modern genetics, including a review of classic work. There is a broad overview of the Genome Project, describing what the project is, what are some of its major five-year goals, what are major technological challenges ahead of the project, and what can the field of biology, as well as society expect tomore » see as benefits from this project. Specific results on the efforts directed at mapping chromosomes 16 and 5 are discussed. A brief introduction to DNA libraries is presented, bearing in mind that Los Alamos has housed such libraries for many years prior to the Genome Project. Information on efforts to do applied computational work related to the project are discussed, as well as experimental efforts to do rapid DNA sequencing by means of single-molecule detection using applied spectroscopic methods. The article introduces the Los Alamos staff which are working on the Genome Project, and concludes with brief discussions on ethical, legal, and social implications of this work; a brief glimpse of genetics as it may be practiced in the next century; and a glossary of relevant terms.« less

  16. Environmental impact assessment of Gonabad municipal waste landfill site using Leopold Matrix

    PubMed Central

    Sajjadi, Seyed Ali; Aliakbari, Zohreh; Matlabi, Mohammad; Biglari, Hamed; Rasouli, Seyedeh Samira

    2017-01-01

    Introduction An environmental impact assessment (EIA) before embarking on any project is a useful tool to reduce the potential effects of each project, including landfill, if possible. The main objective of this study was to assess the environmental impact of the current municipal solid waste disposal site of Gonabad by using the Iranian Leopold matrix method. Methods This cross-sectional study was conducted to assess the environmental impacts of a landfill site in Gonabad in 2015 by an Iranian matrix (modified Leopold matrix). This study was conducted based on field visits of the landfill, and collected information from various sources and analyzing and comparing between five available options, including the continuation of the current disposal practices, construction of new sanitary landfills, recycling plans, composting, and incineration plants was examined. The best option was proposed to replace the existing landfill. Results The current approach has a score of 2.35, the construction of new sanitary landfill has a score of 1.59, a score of 1.57 for the compost plant, and recycling and incineration plant, respectively, have scores of 1.68 and 2.3. Conclusion Results showed that continuation of the current method of disposal, due to severe environmental damage and health problems, is rejected. A compost plant with the lowest negative score is the best option for the waste disposal site of Gonabad City and has priority over the other four options. PMID:28465797

  17. An independent evaluation of plutonium body burdens in populations near Los Alamos Laboratory using human autopsy data.

    PubMed

    Gaffney, Shannon H; Donovan, Ellen P; Shonka, Joseph J; Le, Matthew H; Widner, Thomas E

    2013-06-01

    In the mid-1940s, the United States began producing atomic weapon components at the Los Alamos National Laboratory (LANL). In an attempt to better understand historical exposure to nearby residents, this study evaluates plutonium activity in human tissue relative to residential location and length of time at residence. Data on plutonium activity in the lung, vertebrae, and liver of nearby residents were obtained during autopsies as a part of the Los Alamos Tissue Program. Participant residential histories and the distance from each residence to the primary plutonium processing buildings at LANL were evaluated in the analysis. Summary statistics, including Student t-tests and simple regressions, were calculated. Because the biological half-life of plutonium can vary significantly by organ, data were analyzed separately by tissue type (lung, liver, vertebrae). The ratios of plutonium activity (vertebrae:liver; liver:lung) were also analyzed in order to evaluate the importance of timing of exposure. Tissue data were available for 236 participants who lived in a total of 809 locations, of which 677 were verified postal addresses. Residents of Los Alamos were found to have higher plutonium activities in the lung than non-residents. Further, those who moved to Los Alamos before 1955 had higher lung activities than those who moved there later. These trends were not observed with the liver, vertebrae, or vertebrae:liver and liver:lung ratio data, however, and should be interpreted with caution. Although there are many limitations to this study, including the amount of available data and the analytical methods used to analyze the tissue, the overall results indicate that residence (defined as the year that the individual moved to Los Alamos) may have had a strong correlation to plutonium activity in human tissue. This study is the first to present the results of Los Alamos Autopsy Program in relation to residential status and location in Los Alamos. Copyright © 2012

  18. Observations on the methane oxidation capacity of landfill soils.

    PubMed

    Chanton, Jeffrey; Abichou, Tarek; Langford, Claire; Spokas, Kurt; Hater, Gary; Green, Roger; Goldsmith, Doug; Barlaz, Morton A

    2011-05-01

    The objective of this study was to determine the role of CH(4) loading to a landfill cover in the control of CH(4) oxidation rate (gCH(4)m(-2)d(-1)) and CH(4) oxidation efficiency (% CH(4) oxidation) in a field setting. Specifically, we wanted to assess how much CH(4) a cover soil could handle. To achieve this objective we conducted synoptic measurements of landfill CH(4) emission and CH(4) oxidation in a single season at two Southeastern USA landfills. We hypothesized that percent oxidation would be greatest at sites of low CH(4) emission and would decrease as CH(4) emission rates increased. The trends in the experimental results were then compared to the predictions of two differing numerical models designed to simulate gas transport in landfill covers, one by modeling transport by diffusion only and the second allowing both advection and diffusion. In both field measurements and in modeling, we found that percent oxidation is a decreasing exponential function of the total CH(4) flux rate (CH(4) loading) into the cover. When CH(4) is supplied, a cover's rate of CH(4) uptake (gCH(4)m(-2)d(-2)) is linear to a point, after which the system becomes saturated. Both field data and modeling results indicate that percent oxidation should not be considered as a constant value. Percent oxidation is a changing quantity and is a function of cover type, climatic conditions and CH(4) loading to the bottom of the cover. The data indicate that an effective way to increase the % oxidation of a landfill cover is to limit the amount of CH(4) delivered to it. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Characterization of Leachate at Simpang Renggam Landfill Site, Johor, Malaysia

    NASA Astrophysics Data System (ADS)

    Zailani, L. W. M.; Amdan, N. S. M.; Zin, N. S. M.

    2018-04-01

    Nowadays, the world facing a major problem in managed solid waste due to the increasing of solid waste. Malaysia, one of the country also involves in this matter which is 296 landfills are open to overcome this problem. Currently, the best alternative option to manage solid waste is by using landfilling method because it has low costing advantages. The disadvantage of landfill method, it might cause a pollution by producing leachate that will give an effect to the ground and surface water resources. This study focuses on analysing the leachate composition at Simpang Renggam Landfill(SRL) site for seven parameters such as COD, BOD, SS, turbidity, pH, BOD5/COD, and ammonia (NH3-N). All the data obtained were compared with previous researcher and Malaysia Environmental Quality Act 1974. From the result, SRL site was categorized as partially stabilized leachate with the parameter of BOD5/COD > 0.1. The SRL site is recommended to use a physical-chemical method for a better treatment because the leachate composition is classified as old leachate and aerated lagoon method are not satisfied to be used in treating the aging leachate at SRL site.

  20. Characterization of landfill leachates and studies on heavy metal removal.

    PubMed

    Ceçen, F; Gürsoy, G

    2000-10-01

    This study covers a thorough characterisation of landfill leachates emerging from a sanitary landfill area. The landfill leachates were obtained in the acidic stage of landfill stabilisation. Their organic content was high as reflected by the high BOD5 (5 day biological oxygen demand) and COD (chemical oxygen demand) values. They were also highly polluted in terms of the parameters TKN (total Kjeldahl nitrogen), NH4-N, alkalinity, hardness and heavy metals. Nickel was present in these wastewaters at a significant concentration. With regard to the high heavy metal content of these wastewaters, several physicochemical removal alternatives for the heavy metals Cu, Pb, Zn, Ni, Cd, Cr, Mn and Fe were tested using coagulation, flocculation, precipitation, base addition and aeration. Additionally, COD removal and ammonia stripping were examined. Co-precipitation with either alum or iron salts did not usually lead to significantly higher heavy metal removal than lime alone. The major methods leading to an effective heavy metal removal were aeration and lime addition. Nickel and cadmium seemed to be strongly complexed and were not removed by any method. Also lead removal proved to be difficult. The results are also discussed in terms of compliance with standards.