Science.gov

Sample records for alamos magnetospheric plasma

  1. Calculation of Moments from Measurements by the Los Alamos Magnetospheric Plasma Analyzer

    SciTech Connect

    M. F. Thomsen; E. Noveroske; J. E. Borovsky; D. J. McComas

    1999-05-01

    The various steps involved in computing the moments (density, velocity, and temperature) of the ion and electron distributions measured with the Los Alamos Magnetospheric Plasma Analyzer (MPA) are described. The assumptions, constants, and algorithms contained in the FORTRAN code are presented, as well as the output parameters produced by the code.

  2. Magnetospheric Plasma Data from the Los Alamos Magnetospheric Plasma Analyzer (MPA)

    DOE Data Explorer

    NIS-1 MPA Team, LANL

    The MPA instruments were designed and built to measure the three-dimensional plasma, electron, and ion distributions at geosynchronous orbit [Bame et al.,Rev. Sci. Instrum., 1993]. MPAs have been fielded by Los Alamos National Laboratory, in collaboration with Sandia National Laboratory, on a series of geosynchronous spacecraft. The plasma environments sampled include the plasmasphere, the plasmasheet, the trough, the magnetosheath, the low latitude boundary layer, and the lobe. The resulting data plots analyze the occurrence frequency of MPA observations of these different plasma regimes as a function of local time. LANL's MPA website also provides access to two special event studies: The National Space Weather Initiative, conducted in November of 1993 and the ISTP Sun-Earth Connection Event, conducted in January of 1997.

  3. Plasma and magnetospheric research

    NASA Technical Reports Server (NTRS)

    Comfort, R. H.; Horwitz, J. L.

    1985-01-01

    Research and development in plasmas and magnetospheric environments is reported. Topics discussed include: analysis and techniques of software development; data analysis and modeling; spacecraft sheath effects; laboratory plasma flow studies; instrument development.

  4. Origins of magnetospheric plasma

    SciTech Connect

    Moore, T.E. )

    1991-01-01

    A review is given of recent (1987-1990) progress in understanding of the origins of plasmas in the earth's magnetosphere. In counterpoint to the early supposition that geomagnetic phenomena are produced by energetic plasmas of solar origin, 1987 saw the publication of a provocative argument that accelerated ionospheric plasma could supply all magnetospheric auroral and ring current particles. Significant new developments of existing data sets, as well as the establishment of entirely new data sets, have improved the ability to identify plasma source regions and to track plasma through the magnetospheric system of boundary layers and reservoirs. These developments suggest that the boundary between ionospheric and solar plasmas, once taken to lie at the plasmapause, actually lies much nearer to the magnetopause. Defining this boundary as the surface where solar wind and ionosphere contribute equally to the plasma, it is referred to herein as the 'geopause'. It is now well established that the infusion of ionospheric O(+) plays a major role in the storm-time distention of the magnetotail and inflation of the inner magnetosphere. After more than two decades of observation and debate, the question remains whether magnetosheric are protons of solar or terrestrial origin. 161 refs.

  5. Plasmas in Saturn's magnetosphere

    NASA Technical Reports Server (NTRS)

    Frank, L. A.; Burek, B. G.; Ackerson, K. L.; Wolfe, J. H.; Mihalov, J. D.

    1980-01-01

    The solar wind plasma analyzer on board Pioneer 2 provides first observations of low-energy positive ions in the magnetosphere of Saturn. Measurable intensities of ions within the energy-per-unit charge (E/Q) range 100 eV to 8 keV are present over the planetocentric radial distance range about 4 to 16 R sub S in the dayside magnetosphere. The plasmas are found to be rigidly corotating with the planet out to distances of at least 10 R sub S. At radial distances beyond 10 R sub S, the bulk flows appear to be in the corotation direction but with lesser speeds than those expected from rigid corotation. At radial distances beyond the orbit of Rhea at 8.8 R sub S, the dominant ions are most likely protons and the corresponding typical densities and temperatures are 0.5/cu cm and 1,000,000 K, respectively, with substantial fluctuations. It is concluded that the most likely source of these plasmas in the photodissociation of water frost on the surface of the ring material with subsequent ionization of the products and radially outward diffusion. The presence of this plasma torus is expected to have a large influence on the dynamics of Saturn's magnetosphere since the pressure ratio beta of these plasmas approaches unity at radial distances as close to the planet as 6.5 R sub S. On the basis of these observational evidences it is anticipated that quasi-periodic outward flows of plasma, accompanied with a reconfiguration of the magnetosphere beyond about 6.5 R sub S, will occur in the local night sector in order to relieve the plasma pressure from accretion of plasma from the rings.

  6. Magnetospheric Plasma Physics

    NASA Astrophysics Data System (ADS)

    Mauk, Barry H.

    Magnetospheric Plasma Physics is volume 4 of an ongoing series of review books entitled Developments in Earth and Planetary Sciences organized by the Center for Academic Publications Japan. The series is intended to stress Japanese work; however, the present volume was written by seven internationally selected authors who have reviewed works from a broad range of sources. This volume is composed of articles drawn from five lecture series presented at the Autumn College o f Plasma Physics, International Center for Theoretical Physics, Trieste, Italy, October-November 1979. The audiences for these lecture series were plasma and/or space plasma physicists, or students of the same, and the level and tone of this volume clearly reflect that condition.

  7. Magnetospheric space plasma investigations

    NASA Technical Reports Server (NTRS)

    Comfort, Richard H.; Horwitz, James L.

    1995-01-01

    Topics and investigations covering this period of this semiannual report period (August 1994 - January 1995) are as follows: (1) Generalized SemiKinetic (GSK) modeling of the synergistic interaction of transverse heating of ionospheric ions and magnetospheric plasma-driven electric potentials on the auroral plasma transport. Also, presentations of GSK modeling of auroral electron precipitation effects on ionospheric plasma outflows, of ExB effects on such outflow, and on warm plasma thermalization and other effects during refilling with pre-existing warm plasmas; (2) Referees' reports received on the statistical study of the latitudinal distributions of core plasmas along the L = 4.6 field line using DE-1/RIMS data. Other work is concerned in the same field, field-aligned flows and trapped ion distributions; and (3) A short study has been carried out on heating processes in low density flux tubes in the outer plasmasphere. The purpose was to determine whether the high ion temperatures observed in these flux tubes were due to heat sources operating through the thermal electrons or directly to the ions. Other investigations center along the same area of plasmasphere-ionosphere coupling. The empirical techniques and model, the listing of hardware calibrated, and/or tested, and a description of notable meetings attended is included in this report, along with a list of all present publication in submission or accepted and those reference papers that have resulted from this work thus far.

  8. Plasma convection in Neptune's magnetosphere

    NASA Technical Reports Server (NTRS)

    Selesnick, R. S.

    1990-01-01

    The magnetosphere of Neptune changes its magnetic configuration continuously as the planet rotates, leading to a strong modulation of the convection electric field. Even though the corotation speed is considerably larger, the modulation causes the small convection speed to have a cumulative effect, much like the acceleration of particles in a cyclotron. A model calculation shows that plasma on one side of the planet convects out of the magnetosphere in a few planetary rotations, while on the other side it convects slowly planetward. The observation of nitrogen ions from a Triton plasma torus may provide a critical test of the model.

  9. Plasma in the Jovian magnetosphere

    NASA Technical Reports Server (NTRS)

    Goertz, C. K.

    1975-01-01

    It is shown that the plasma in Jupiter's ionosphere is collisionless above a certain level. In the outer magnetosphere, where the rotational force dominates the gravitational force, the collisionless plasma has a beam-like distribution and gives rise to a two-stream instability. This leads to trapping of plasma in the centrifugally dominated region of the magnetosphere. Plasma is lost by recombination. Equilibrium-trapped particle densities are calculated by requiring a balance between trapping by wave-particle interaction and loss by recombination. The results are compared with recent observations from Pioneer 10. It is suggested that the observations require an unexplained ion-heating mechanism. Some consequences of the model are discussed.

  10. Magnetospheric plasma regions and boundaries

    NASA Technical Reports Server (NTRS)

    Heikkila, W. J.

    1975-01-01

    The boundaries of the various regions of the magnetospheric plasma are considered, taking into account the bow shock, the magnetopause, the outer boundary of the plasma sheet, the inner boundary of the plasma sheet, and the trapping boundary for energetic particles. Attention is given to the steady state, or quasi-steady state, to substorm effects in which temporal changes are important, and to primary auroral processes. A description is presented of the high latitude lobes of the magnetotail. The characteristics of magnetic field topology associated with interconnected interplanetary and geomagnetic field lines are illustrated with the aid of a graph.

  11. Plasma motions in planetary magnetospheres.

    PubMed

    Hill, T W; Dessler, A J

    1991-04-19

    Before direct exploration by spacecraft, Jupiter was the only planet other than Earth that was known to have a magnetic field, as revealed by its nonthermal radio emissions. The term "magnetosphere" did not exist because there was no clear concept of such an entity. The space age provided the opportunity to explore Earth's neighborhood in space and to send instruments to seven of the other eight planets. It was found that interplanetary space is pervaded by a supersonic "solar wind" plasma and that six planets, including Earth, have magnetic fields of sufficient strength to deflect this solar wind and form a comet-shaped cavity called a magnetosphere. Comparative study of these magnetospheres aims to elucidate both the general principles and characteristics that they share in common, and the specific environmental factors that cause the important, and sometimes dramatic, differences in behavior between any two of them. A general understanding of planetary magnetospheres holds the promise of wide applicability in astrophysics, which, for the indefinite future, must rely solely on remote sensing for experimental data. PMID:17740940

  12. Plasma and magnetospheric research

    NASA Technical Reports Server (NTRS)

    Comfort, R. H.; Horwitz, J. L.

    1985-01-01

    Several programs and variations have been developed to determine statistical means of different plasma parameters when binned in different variables. These parameters include temperature, densities and spacecraft potentials for any of the ion species, as well as ratios of these variables for any other ion species to the corresponding variable for H(+). The variables for binning include L, radial distance, and geomagnetic latitude; and separate statistics are automatically run for local morning and local evening data. These programs all run from output files from the plasma parameter thin sheath analysis program. A variant program also bins for magnetic activity, using either Kp or Dst, which requires an additional magnetic activity input file. These programs can be run either interactively or in batch mode, using file listings generated by a DIRECTORY command. In addition to printed output, these programs generate output files which can be used to plot the results. Programs to plot these averaged data are under development.

  13. Preface: Plasma transport across magnetospheric boundaries

    NASA Astrophysics Data System (ADS)

    Nĕmeček, Zdenek; Shea, M. A.

    2016-07-01

    A plasma entering the magnetosphere crosses two principal boundaries - the bow shock and magnetopause. The crossing of the bow shock significantly modifies plasma parameters as well as the direction and magnitude of the frozen-in interplanetary magnetic field (IMF) creating a key region - the magnetosheath - for a transfer of solar wind mass and momentum to the magnetosphere. A highly turbulent magnetosheath plasma and magnetic field then interact with the magnetopause and can penetrate deeper into the magnetosphere.

  14. Magnetospheric space plasma investigations

    NASA Technical Reports Server (NTRS)

    Comfort, Richard H.; Horwitz, James L.

    1994-01-01

    A time dependent semi-kinetic model that includes self collisions and ion-neutral collisions and chemistry was developed. Light ion outflow in the polar cap transition region was modeled and compared with data results. A model study of wave heating of O+ ions in the topside transition region was carried out using a code which does local calculations that include ion-neutral and Coulomb self collisions as well as production and loss of O+. Another project is a statistical study of hydrogen spin curve characteristics in the polar cap. A statistical study of the latitudinal distribution of core plasmas along the L=4.6 field line using DE-1/RIMS data was completed. A short paper on dual spacecraft estimates of ion temperature profiles and heat flows in the plasmasphere ionosphere system was prepared. An automated processing code was used to process RIMS data from 1981 to 1984.

  15. Plasma Circulation in the Magnetosphere

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Fok, Mei-Ching; Delcourt, D. C.; Slinker, S.; Fedder, J. A.; Buenfil, M.

    2006-01-01

    We investigate the global structure and dynamics of plasma circulation produced by prototypical solar wind disturbances of the interplanetary magnetic field and dynamic pressure. We track the global circulation and energization of solar wind, polar wind, and auroral wind plasmas throughout the magnetosphere, until they precipitate or escape into the downstream solar wind. We use the full equations of motion of the plasma ions within fields produced by a global MHD simulation of the dynamic solar wind interaction. We use the dynamic hot plasma density and Poynting energy flux specified at the inner boundary of the MHD simulation as drivers of conjugate ion outflow fluxes using local empirical relations obtained from the FAST and Polar missions. Birkeland currents computed by the MHD code are used to derive a field-parallel potential drop from a Knight-like relation [as modified by Lyons and Evans, 1980]. This potential drop is applied to each ion as an initial bulk energy, added to a thermal heating driven by the locally incident Poynting flux. The solar wind pressure increase case (B(sub Y) = 5; B(sub z) = 0 nT) produces an immediate substorm owing to compression of pre-existing plasmas. The SB(sub z), interval (embedded in NB(sub z)) produces a substorm after about one hour of development. Both disturbances enhance the auroral wind flux and heavy ion pressure of the magnetosphere substantially, with complex dynamic structuring by auroral acceleration vortexes and dynamic reconnection. Comparisons are made with observations during disturbed periods including the Halloween 2003 super-storm and other periods.

  16. The earth's magnetosphere. [as astrophysical plasma laboratory

    NASA Technical Reports Server (NTRS)

    Roederer, J. G.

    1974-01-01

    A qualitative description of the general magnetospheric configuration is given, with emphasis on some of the physical processes governing the magnetosphere that are the main targets of current research. The magnetosphere behaves like a huge 'bag' of plasma and radiation that swells and contracts under the influence of the solar wind. The electric field, the magnetospheric plasma, the magnetospheric substorm, and the radiation belt and wave particle interactions are discussed. During the past 15 years, the study of the earth's magnetosphere man's immediate plasma and radiation environment - has undergone a successful stage of discovery and exploration. Investigators have obtained a morphological description of the magnetospheric field, the particle population embedded in it, and its interface with the solar wind, and have identified and are beginning to understand many of the physical processes involved. Quite generally, the magnetosphere reveals itself as a region where it is possible to observe some of the fundamental plasma processes at work that are known to occur elsewhere in the universe.

  17. Dusty Plasmas in Planetary Magnetospheres Award

    NASA Technical Reports Server (NTRS)

    Horanyi, Mihaly

    2005-01-01

    This is my final report for the grant Dusty Plasmas in Planetary Magnetospheres. The funding from this grant supported our research on dusty plasmas to study: a) dust plasma interactions in general plasma environments, and b) dusty plasma processes in planetary magnetospheres (Earth, Jupiter and Saturn). We have developed a general purpose transport code in order to follow the spatial and temporal evolution of dust density distributions in magnetized plasma environments. The code allows the central body to be represented by a multipole expansion of its gravitational and magnetic fields. The density and the temperature of the possibly many-component plasma environment can be pre-defined as a function of coordinates and, if necessary, the time as well. The code simultaneously integrates the equations of motion with the equations describing the charging processes. The charging currents are dependent not only on the instantaneous plasma parameters but on the velocity, as well as on the previous charging history of the dust grains.

  18. Detached plasma in Saturn's front side magnetosphere

    NASA Technical Reports Server (NTRS)

    Goertz, C. K.

    1983-01-01

    Plasma observations in the outer front side Saturnian magnetosphere are discussed which indicate the existence of dense flux tubes outside the plasma sheets. It is suggested that flux tubes are detached from the plasma sheet by a centifugally driven flute instability. The same instability leads to a dispersal of Titan-injected plasma. It is shown that the detached flux tubes will probably break open as they convect into the nightside magnetotail and lose their content in the form of a planetary wind.

  19. Azimuthal plasma flow in the Kronian magnetosphere

    NASA Astrophysics Data System (ADS)

    Mueller, A.; Saur, J. S.; Krupp, N.; Mitchell, D. G.; Krimigis, S. M.

    2009-12-01

    We study the azimuthal plasma velocity in Saturn's magnetosphere between 3 and 13 Saturnian radii by analysing energetic particle injection events using data of the Magnetospheric Imaging Instrument (MIMI) onboard the Cassini spacecraft. During such events high energetic plasma is transported into the inner part of the magnetosphere. This transport may be evoked by the interchange instability which could be identified as the generation process of injections near Io in the Jovian system. Due to the magnetic drifts, the injected particles begin to disperse and leave an imprint in the electron as well as in the ion spectrograms of the MIMI data. The shape of these profiles strongly depends on the azimuthal velocity distribution of the magnetospheric plasma and the age of the injection event. Comparison of theoretically computed dispersion profiles with observed ones enables us to characterize the azimuthal flow of the plasma. The measured flow profile clearly shows that the plasma tends to subcorotate. Knowledge of the flow profile and the ages of each injection event enables us to calculate the location where the energetic particles were injected into the inner magnetosphere. The night and morning sector are favoured by injections.

  20. Azimuthal plasma flow in the Kronian magnetosphere

    NASA Astrophysics Data System (ADS)

    Müller, A. L.; Saur, J.; Krupp, N.; Roussos, E.; Mauk, B. H.; Rymer, A. M.; Mitchell, D. G.; Krimigis, S. M.

    2010-08-01

    We study the azimuthal plasma velocity in Saturn's magnetosphere between 3 and 13 Saturn radii (Rs) by analyzing energetic particle injection events using data of the Magnetospheric Imaging Instrument (MIMI) onboard the Cassini spacecraft in orbit around Saturn. Due to the magnetic drifts, the injected particles at various energies begin to disperse and leave an imprint in the electron as well as in the ion energy spectrograms of the MIMI instrument. The shape of these profiles strongly depends on the azimuthal velocity distribution of the magnetospheric plasma and the age of the injection event. Comparison of theoretically computed dispersion profiles with observed ones enables us to characterize the azimuthal flow of the plasma. The measured flow profile clearly shows that the plasma subcorotates with velocities as low as 80% of full corotation at radial distances between 8 Rs to 13 Rs. With knowledge of the flow profile and the ages of each injection event we can calculate the location where the energetic particles were injected into the inner magnetosphere. The night and morning sector of the Kronian magnetosphere are preferred regions for the generation of hot plasma injections.

  1. Thermal plasma in the inner kronian magnetosphere

    NASA Technical Reports Server (NTRS)

    Eviatar, A.; Richardson, J. D.

    1992-01-01

    Since the flybys of the twin Voyager spacecraft through the magnetosphere of Saturn in the early 1980s, conflicting interpretations of the phenomena observed have appeared in the literature. An attempt is made here to constrain the transport rate in the inner magnetosphere by appeal to plasma observations of density and temperature. The conflicting models range from those entailing fast transport, which limits the density, to models in which the ion density is limited by the process of recombination. The coupled differential equations for Coulomb and radiative heat transfer between hot electrons, thermal electrons and thermal heavy ions are solved. It is concluded that diffusive transport is not the dominant factor in determining the plasma state of the inner magnetosphere of Saturn. Support is found for a previously proposed model of a ring source for the cold dense plasma observed by Voyager 2 at the ring plane crossing.

  2. Magnetospheric radio and plasma wave research - 1987-1990

    SciTech Connect

    Kurth, W.S. )

    1991-01-01

    This review covers research performed in the area of magnetospheric plasma waves and wave-particle interactions as well as magnetospheric radio emissions. The report focuses on the near-completion of the discovery phase of radio and plasma wave phenomena in the planetary magnetospheres with the successful completion of the Voyager 2 encounters of Neptune and Uranus. Consideration is given to the advances made in detailed studies and theoretical investigations of radio and plasma wave phenomena in the terrestrial magnetosphere or in magnetospheric plasmas in general.

  3. Magnetospheric electrostatic emissions and cold plasma densities

    NASA Technical Reports Server (NTRS)

    Hubbard, R. F.; Birmingham, T. J.

    1978-01-01

    A synoptic study of electric wave, magnetometer, and plasma data from IMP-6 was carried out for times when banded electrostatic waves are observed between harmonics of the electron gyrofrequency in the earth's outer magnetosphere. Four separate classes of such waves were previously identified. The spatial and temporal occurrences of waves in each class are summarized here, as are correlations of occurrence with geomagnetic activity. Most importantly, associations between the observations of waves of different classes and the relative portions of cold and hot electrons present at the position of the spacecraft are established. Finally, evidence for the signature of the loss cone is sought in the plasma data.

  4. LANL Studies Earth's Magnetosphere

    ScienceCinema

    Daughton, Bill

    2016-07-12

    A new 3-D supercomputer model presents a new theory of how magnetic reconnection works in high-temperature plasmas. This Los Alamos National Laboratory research supports an upcoming NASA mission to study Earth's magnetosphere in greater detail than ever.

  5. LANL Studies Earth's Magnetosphere

    SciTech Connect

    Daughton, Bill

    2011-04-15

    A new 3-D supercomputer model presents a new theory of how magnetic reconnection works in high-temperature plasmas. This Los Alamos National Laboratory research supports an upcoming NASA mission to study Earth's magnetosphere in greater detail than ever.

  6. On plasma convection in Saturn's magnetosphere

    NASA Astrophysics Data System (ADS)

    Livi, Roberto

    We use CAPS plasma data to derive particle characteristics within Saturn's inner magnetosphere. Our approach is to first develop a forward-modeling program to derive 1-dimensional (1D) isotropic plasma characteristics in Saturn's inner, equatorial magnetosphere using a novel correction for the spacecraft potential and penetrating background radiation. The advantage of this fitting routine is the simultaneous modeling of plasma data and systematic errors when operating on large data sets, which greatly reduces the computation time and accurately quantifies instrument noise. The data set consists of particle measurements from the Electron Spectrometer (ELS) and the Ion Mass Spectrometer (IMS), which are part of the Cassini Plasma Spectrometer (CAPS) instrument suite onboard the Cassini spacecraft. The data is limited to peak ion flux measurements within +/-10° magnetic latitude and 3-15 geocentric equatorial radial distance (RS). Systematic errors such as spacecraft charging and penetrating background radiation are parametrized individually in the modeling and are automatically addressed during the fitting procedure. The resulting values are in turn used as cross-calibration between IMS and ELS, where we show a significant improvement in magnetospheric electron densities and minor changes in the ion characteristics due to the error adjustments. Preliminary results show ion and electron densities in close agreement, consistent with charge neutrality throughout Saturn's inner magnetosphere and confirming the spacecraft potential to be a common influence on IMS and ELS. Comparison of derived plasma parameters with results from previous studies using CAPS data and the Radio And Plasma Wave Science (RPWS) investigation yields good agreement. Using the derived plasma characteristics we focus on the radial transport of hot electrons. We present evidence of loss-free adiabatic transport of equatorially mirroring electrons (100 eV - 10 keV) in Saturn's magnetosphere between

  7. Further determination of the characteristics of magnetospheric plasma vortices with Isee 1 and 2

    NASA Technical Reports Server (NTRS)

    Hones, E. W., Jr.; Bame, S. J.; Asbridge, J. R.; Birn, J.; Paschmann, G.; Sckopke, N.; Haerendel, G.

    1981-01-01

    Further studies of the vortices in magnetospheric plasma flow with the Los Alamos Scientific Laboratory/Max-Planck-Institut (LASL/MPI) fast plasma experiment on Isee 1 and 2 have revealed that the pattern of vortical flow has a wavelength of approximately 20-40 earth radii and moves tailward through the magnetosphere at speeds of several hundred kilometers per second. The tendency toward vorticity pervades the total breadth of the plasma sheet tailward of the dawn-dusk meridian. The sense of rotation of the plasma flow (as viewed from above the ecliptic plane) is clockwise in the morning side of the plasma sheet and counterclockwise in the evening side. The sense of rotation in the morning and evening boundary layers is reversed from that in the contiguous regions of the plasma sheet. The occurrence of vortical flow is independent of the level of geomagnetic activity but is associated with long-period geomagnetic pulsations.

  8. Thermal Plasma Flow in Saturn's Inner Magnetosphere.

    NASA Astrophysics Data System (ADS)

    Wilson, R. J.; Tokar, R. L.; Henderson, M. G.; Thomsen, M. F.; Hill, T. W.; Pontius, D.

    2007-12-01

    Ion counting data from the Cassini plasma spectrometer (CAPS) in Saturn's inner magnetosphere are utilized to calculate bulk plasma moments including densities, temperatures, and flow velocities. The study covers radial distances from about 5.5 to 10.0 RS, outside of the Encleadus orbit and the region where significant fresh pick up ions are observed1. In order to generate the ion moments from the non-spinning craft and a restricted view of phase space, a forward modeling approach is utilized where two Maxwellian populations (a light ion (H+) and a water group ion (W+)) are fit to the available data. Data are processed from the equatorial plane during periods of actuator arm activity yielding good CAPS viewing, i.e. through the predominant plasma flow direction on each actuator sweep. The magnetospheric plasma is found to be sub co-rotating in this region at about 80%. This is in good agreement with velocity results from MIMI data despite their results not being confined to the equatorial plane, while the densities calculated also agree well with density values from RPWS. The W+ temperature anisotropy appears to be >1 at low values of RS and becomes more isotropic at larger distances. Using the generated ion moments, estimates of the mass loading throughout this region are given. 1.) Tokar, R.L. et al., this meeting.

  9. Fast Plasma Investigation for Magnetospheric Multiscale

    NASA Astrophysics Data System (ADS)

    Pollock, C.; Moore, T.; Jacques, A.; Burch, J.; Gliese, U.; Saito, Y.; Omoto, T.; Avanov, L.; Barrie, A.; Coffey, V.; Dorelli, J.; Gershman, D.; Giles, B.; Rosnack, T.; Salo, C.; Yokota, S.; Adrian, M.; Aoustin, C.; Auletti, C.; Aung, S.; Bigio, V.; Cao, N.; Chandler, M.; Chornay, D.; Christian, K.; Clark, G.; Collinson, G.; Corris, T.; De Los Santos, A.; Devlin, R.; Diaz, T.; Dickerson, T.; Dickson, C.; Diekmann, A.; Diggs, F.; Duncan, C.; Figueroa-Vinas, A.; Firman, C.; Freeman, M.; Galassi, N.; Garcia, K.; Goodhart, G.; Guererro, D.; Hageman, J.; Hanley, J.; Hemminger, E.; Holland, M.; Hutchins, M.; James, T.; Jones, W.; Kreisler, S.; Kujawski, J.; Lavu, V.; Lobell, J.; LeCompte, E.; Lukemire, A.; MacDonald, E.; Mariano, A.; Mukai, T.; Narayanan, K.; Nguyan, Q.; Onizuka, M.; Paterson, W.; Persyn, S.; Piepgrass, B.; Cheney, F.; Rager, A.; Raghuram, T.; Ramil, A.; Reichenthal, L.; Rodriguez, H.; Rouzaud, J.; Rucker, A.; Saito, Y.; Samara, M.; Sauvaud, J.-A.; Schuster, D.; Shappirio, M.; Shelton, K.; Sher, D.; Smith, D.; Smith, K.; Smith, S.; Steinfeld, D.; Szymkiewicz, R.; Tanimoto, K.; Taylor, J.; Tucker, C.; Tull, K.; Uhl, A.; Vloet, J.; Walpole, P.; Weidner, S.; White, D.; Winkert, G.; Yeh, P.-S.; Zeuch, M.

    2016-03-01

    The Fast Plasma Investigation (FPI) was developed for flight on the Magnetospheric Multiscale (MMS) mission to measure the differential directional flux of magnetospheric electrons and ions with unprecedented time resolution to resolve kinetic-scale plasma dynamics. This increased resolution has been accomplished by placing four dual 180-degree top hat spectrometers for electrons and four dual 180-degree top hat spectrometers for ions around the periphery of each of four MMS spacecraft. Using electrostatic field-of-view deflection, the eight spectrometers for each species together provide 4pi-sr field-of-view with, at worst, 11.25-degree sample spacing. Energy/charge sampling is provided by swept electrostatic energy/charge selection over the range from 10 eV/q to 30000 eV/q. The eight dual spectrometers on each spacecraft are controlled and interrogated by a single block redundant Instrument Data Processing Unit, which in turn interfaces to the observatory's Instrument Suite Central Instrument Data Processor. This paper describes the design of FPI, its ground and in-flight calibration, its operational concept, and its data products.

  10. Plasma Transport, Acceleration, and Loss in Mercury's Magnetosphere and Comparison with Other Planetary Magnetospheres

    NASA Astrophysics Data System (ADS)

    Schriver, D.; Travnicek, P. M.; Anderson, B. J.; Ashour-Abdalla, M.; Baker, D. N.; Benna, M.; Boardsen, S. A.; Hellinger, P.; Ho, G. C.; Korth, H.; Krimigis, S. M.; McNutt, R. L., Jr.; Raines, J. M.; Richard, R. L.; Slavin, J. A.; Starr, R. D.; Solomon, S. C.; Zurbuchen, T.

    2014-12-01

    Mercury has the distinction of having the smallest planetary magnetosphere in the solar system, in contrast to the mid-sized magnetosphere of Earth and the very large magnetospheres of the outer planets. Observations by the MESSENGER spacecraft in orbit around Mercury have established that Mercury's magnetosphere has a global structure similar to those found in the other planetary magnetospheres, i.e., a foreshock, bow shock, magnetosheath, magnetopause, cusps, and magnetotail. There are also auroral signatures observed at Mercury associated with the precipitation of electrons; those signatures are not in the visible range, however, but rather appear as nightside X-ray fluorescence. Heavy ions (primarily Na+) from the planet surface mass load Mercury's magnetosphere in a manner analogous to the internal sources of heavy ions in the other planetary magnetospheres, e.g., Earth's ionosphere and moons of the outer planets. One feature not found at Mercury compared with the other planetary magnetospheres is the presence of a high-energy (> hundreds of keV) trapped radiation belt region. Although there are observations of high energy electron bursts within Mercury's magnetosphere, these are not stably trapped and instead Mercury has a quasi-trapped population of ions and electrons with 1-10 keV bulk energies at about 1.5 RM (RM is Mercury's radius = 2440 km) radial distance from the planet center. MESSENGER spacecraft observations and results from a global kinetic simulation model of the solar wind interaction with Mercury's magnetosphere provide a basis for describing the transport, acceleration, and loss of plasma, those features and processes unique to Mercury, as well as those in common with other planetary magnetospheres in the solar system.

  11. Magnetospheric and auroral plasmas - A short survey of progress

    NASA Technical Reports Server (NTRS)

    Frank, L. A.

    1975-01-01

    Important milestones in our researches of auroral and magnetospheric plasmas for the past quadrennium 1971-1975 are reviewed. Many exciting findings, including those of the polar cusp, the polar wind, the explosive disruptions of the magnetotail, the interactions of hot plasmas with the plasmapause, the auroral field-aligned currents, and the striking inverted V electron precipitation events, were reported during this period. Solutions to major questions concerning the origins and acceleration of these plasmas appear possible in the near future. A comprehensive bibliography of current research is appended to this brief survey of auroral and magnetospheric plasmas.

  12. Structuring of the Magnetospheric Plasma by the Solar Terrestrial Interactions

    NASA Astrophysics Data System (ADS)

    Fontaine, Dominique

    The existence of a magnetospheric cavity around a planet depends on the interactions of the planet including its atmospheric and magnetic environment with the interplanetary medium. A magnetized planet like the Earth sets a magnetic obstacle against the supersonic super-Alfvénic solar wind flow. The solar wind pressure shapes the magnetosphere, compressing it on the dayside to a few Earth's radii while the nightside tail extends to hundreds of Earth's radii. Away from a homogeneous and constant distribution, very different plasma regions have been identified inside the magnetosphere. Mass and energy transfers with the solar wind are considered as responsible for the magnetospheric plasma structure and dynamics at large-scale as well as for impulsive or transient events. However, these transfer processes remain poorly understood, and reconnection and other working assumptions are presently put forward and developed. Detailed descriptions of the magnetosphere at various complexity levels can be found in textboo ks on space plasma physics. This simplified introduction only aims at proposing keys to get an insight into the structure of the magnetospheric plasma, into a few basic concepts and specific processes at the root of the present understanding and also into questions and issues to be addressed in the future.

  13. North-south asymmetries in magnetospheric and ionospheric plasma circulation

    NASA Astrophysics Data System (ADS)

    Haaland, S.; Foerster, M.; Laundal, K.; McCracken, K. G.; Maes, L.; Lybekk, B.; Pedersen, A.

    2015-12-01

    Interaction between the solar wind and the dayside terrestrial magnetopause causes a transfer of energy and momentum from the solar wind to the magnetosphere. Consequently, a large scale circulation - the Dungey cycle - is set up in the magnetosphere. Since the magnetosphere is magnetically connected to the ionosphere, a corresponding circulation of plasma is also set up in the high-latitude ionosphere. Influences from external drivers, in particular the orientation of the radial component of the interplanetary magnetic field as well as daily and seasonal variations in the Earth's tilt angle are known to set up temporal north-south asymmetries in the magnetospheric and ionospheric plasma circulation. There are also persistent north-south asymmetries, which cannot easily be explained by the influence of external drivers. In this presentation, we show examples of such asymmetries in ionospheric convection and asymmetries in magnetospheric lobe density, presumably related to hemispheric asymmetries in ion outflow. We infer that these persistent asymmetries are mainly caused by differences in the strength and configuration of the geomagnetic field between the Northern and Southern Hemispheres. Since the ionosphere is magnetically connected to the magnetosphere, this difference will also be reflected in the magnetosphere in the form of different feedback from the two hemispheres.

  14. Magnetospheric and Plasma Science with Cassini-Huygens

    NASA Astrophysics Data System (ADS)

    Blanc, M.; Bolton, S.; Bradley, J.; Burton, M.; Cravens, T. E.; Dandouras, I.; Dougherty, M. K.; Festou, M. C.; Feynman, J.; Johnson, R. E.; Gombosi, T. G.; Kurth, W. S.; Liewer, P. C.; Mauk, B. H.; Maurice, S.; Mitchell, D.; Neubauer, F. M.; Richardson, J. D.; Shemansky, D. E.; Sittler, E. C.; Tsurutani, B. T.; Zarka, Ph.; Esposito, L. W.; Grün, E.; Gurnett, D. A.; Kliore, A. J.; Krimigis, S. M.; Southwood, D.; Waite, J. H.; Young, D. T.

    2002-07-01

    Magnetospheric and plasma science studies at Saturn offer a unique opportunity to explore in-depth two types of magnetospheres. These are an ‘induced’ magnetosphere generated by the interaction of Titan with the surrounding plasma flow and Saturn's ‘intrinsic’ magnetosphere, the magnetic cavity Saturn's planetary magnetic field creates inside the solar wind flow. These two objects will be explored using the most advanced and diverse package of instruments for the analysis of plasmas, energetic particles and fields ever flown to a planet. These instruments will make it possible to address and solve a series of key scientific questions concerning the interaction of these two magnetospheres with their environment. The flow of magnetospheric plasma around the obstacle, caused by Titan's atmosphere/ionosphere, produces an elongated cavity and wake, which we call an ‘induced magnetosphere’. The Mach number characteristics of this interaction make it unique in the solar system. We first describe Titan's ionosphere, which is the obstacle to the external plasma flow. We then study Titan's induced magnetosphere, its structure, dynamics and variability, and discuss the possible existence of a small intrinsic magnetic field of Titan. Saturn's magnetosphere, which is dynamically and chemically coupled to all other components of Saturn's environment in addition to Titan, is then described. We start with a summary of the morphology of magnetospheric plasma and fields. Then we discuss what we know of the magnetospheric interactions in each region. Beginning with the innermost regions and moving outwards, we first describe the region of the main rings and their connection to the low-latitude ionosphere. Next the icy satellites, which develop specific magnetospheric interactions, are imbedded in a relatively dense neutral gas cloud which also overlaps the spatial extent of the diffuse E ring. This region constitutes a very interesting case of direct and mutual coupling

  15. Imaging the earth's magnetosphere - Effects of plasma flow and temperature

    NASA Technical Reports Server (NTRS)

    Garrido, D. E.; Smith, R. W.; Swift, D. S.; Akasofu, S.-I.

    1991-01-01

    The effects of Doppler shifting on the line centers of the magnetospheric O(+) cross section are investigated, and the resulting structure of the scattering rate as a function of bulk density is explained. Whereas the Doppler shifting frequently results in a decrease of the scattering rate, it is demonstrated that for certain drift speeds the overlap of the cross section and the solar intensity profile can lead to an increased rate, thus enhancing the relative brightness of the image above that obtained when v(p) is zero. Simulated images of the magnetosphere are obtained which are used to show quantitively how the magnetospheric image responds to variations in plasma drift speed and temperature. Changes in the brightness of the magnetospheric images also depend on the variability of the solar flux at 83.4 nm. In regions where there are plasma drifts, the brightness in the image is governed by the structure of the scattering rate, assuming a fixed temperature.

  16. Modeling plasma pressure anisotropy's effect on Saturn's global magnetospheric dynamics

    NASA Astrophysics Data System (ADS)

    Tilley, M.; Harnett, E. M.; Winglee, R.

    2014-12-01

    A 3D multi-fluid, multi-scale plasma model with a complete treatment of plasma pressure anisotropy is employed to study global magnetospheric dynamics at Saturn. Cassini has observed anisotropies in the Saturnian magnetosphere, and analyses have showed correlations between anisotropy and plasma convection, ring current structure and intensity, confinement of plasma to the equatorial plane, as well as mass transport to the outer magnetosphere. The energization and transport of plasma within Saturn's magnetosphere is impactful upon the induced magnetic environments and atmospheres of potentially habitable satellites such as Enceladus and Titan. Recent efforts to couple pressure anisotropy with 3D multi-fluid plasma modeling have shown a significant move towards matching observations for simulations of Earth's magnetosphere. Our approach is used to study the effects of plasma pressure anisotropy on global processes of the Saturnian magnetosphere such as identifying the effect of pressure anisotropy on the centrifugal interchange instability. Previous simulation results have not completely replicated all aspects of the structure and formation of the interchange 'fingers' measured by Cassini at Saturn. The related effects of anisotropy, in addition to those mentioned above, include contribution to formation of MHD waves (e.g. reduction of Alfvén wave speed) and formation of firehose and mirror instabilities. An accurate understanding of processes such as the interchange instability is required if a complete picture of mass and energy transport at Saturn is to be realized. The results presented here will detail how the inclusion of a full treatment of pressure anisotropy for idealized solar wind conditions modifies the interchange structure and shape of the tail current sheet. Simulation results are compared to observations made by Cassini.

  17. Jupiter's Magnetosphere: Plasma Description from the Ulysses Flyby.

    PubMed

    Bame, S J; Barraclough, B L; Feldman, W C; Gisler, G R; Gosling, J T; McComas, D J; Phillips, J L; Thomsen, M F; Goldstein, B E; Neugebauer, M

    1992-09-11

    Plasma observations at Jupiter show that the outer regions of the Jovian magnetosphere are remarkably similar to those of Earth. Bow-shock precursor electrons and ions were detected in the upstream solar wind, as at Earth. Plasma changes across the bow shock and properties of the magnetosheath electrons were much like those at Earth, indicating that similar processes are operating. A boundary layer populated by a varying mixture of solar wind and magnetospheric plasmas was found inside the magnetopause, again as at Earth. In the middle magnetosphere, large electron density excursions were detected with a 10-hour periodicity as planetary rotation carried the tilted plasma sheet past Ulysses. Deep in the magnetosphere, Ulysses crossed a region, tentatively described as magnetically connected to the Jovian polar cap on one end and to the interplanetary magnetic field on the other. In the inner magnetosphere and lo torus, where corotation plays a dominant role, measurements could not be made because of extreme background rates from penetrating radiation belt particles.

  18. Jupiter's magnetosphere: Plasma description from the Ulysses flyby

    SciTech Connect

    Bame, S.J.; Barraclough, B.L.; Feldman, W.C.; Gisler, G.R.; Gosling, J.T.; McComas, D.J.; Phillips, J.L.; Thomsen, M.F. ); Goldstein, B.E.; Neugebauer, M. )

    1992-09-11

    Plasma observations at Jupiter show that the outer regions of the Jovian magnetosphere are remarkably similar to those of Earth. Bow-shock precursor electrons and ions were detected in the upstream solar wind, as at Earth. Plasma changes across the bow shock and properties of the magnetosheath electrons were much like those at Earth, indicating that similar processes are operating. A boundary layer populated by a varying mixture of solar wind and magnetospheric plasmas was found inside the magnetopause, again as at Earth. In the middle magnetosphere, large electron density excursions were detected with a 10-hour periodicity as planetary rotation carried the tilted plasma sheet past Ulysses. Deep in the magnetosphere, Ulysses crossed a region, tentatively described as magnetically connected to the Jovian polar cap on one end and to the interplanetary magnetic field on the other. In the inner magnetosphere and Io torus, where corotation plays a dominant role, measurements could not be made because of extreme background rates from penetrating radiation belt particles.

  19. Characterization of Magnetospheric Spacecraft Charging Environments Using the LANL Magnetospheric Plasma Analyzer Data Set

    NASA Technical Reports Server (NTRS)

    Hardage, Donna (Technical Monitor); Davis, V. A.; Mandell, M. J.; Thomsen, M. F.

    2003-01-01

    An improved specification of the plasma environment has been developed for use in modeling spacecraft charging. It was developed by statistically analyzing a large part of the LANL Magnetospheric Plasma Analyzer (MPA) data set for ion and electron spectral signature correlation with spacecraft charging, including anisotropies. The objective is to identify a relatively simple characterization of the full particle distributions that yield an accurate predication of the observed charging under a wide variety of conditions.

  20. Cross-Frequency Coupling of Plasma Waves in the Magnetosphere

    NASA Astrophysics Data System (ADS)

    Khazanov, G. V.

    2014-12-01

    Wave-particle and wave-wave interactions are crucial elements of magnetosphere and ionosphere plasma dynamics. Such interactions provide a channel of energy redistribution between different plasma populations, and lead to connections between physical processes developing on different spatial and temporal scales. The lower hybrid waves (LHWs) are particularly interesting for plasma dynamics, because they couple well with both electrons and ions. The excitation of LHWs is a widely discussed mechanism of interaction between plasma species in space and is one of the unresolved questions of magnetospheric multi-ion plasmas. It is demonstrated that large-amplitude Alfven and/or EMIC waves, in particular those associated with lower frequency (LF) turbulence, may generate LHWs in the auroral zone and ring current region and in some cases this serves as the Alfven and/or EMIC waves saturation mechanism. We believe that this described scenario, as well as some other cross-frequency coupling of plasma waves processes that will be discussed in this presentation, can play a vital role in various parts of the magnetospheric plasma, especially in the places under investigation by the NASA THEMIS and Van Allen Probes (formerly known as the Radiation Belt Storm Probes (RBSP)) missions.

  1. A quantitative model of plasma in Neptune's magnetosphere

    NASA Astrophysics Data System (ADS)

    Richardson, J. D.

    1993-07-01

    A model encompassing plasma transport and energy processes is applied to Neptune's magnetosphere. Starting with profiles of the neutral densities and the electron temperature, the model calculates the plasma density and ion temperature profiles. Good agreement between model results and observations is obtained for a neutral source of 5 x 10 exp 25/s if the diffusion coefficient is 10 exp -8 L3R(N)/2s, plasma is lost at a rate 1/3 that of the strong diffusion rate, and plasma subcorotates in the region outside Triton.

  2. Convective transport of plasma in the inner Jovian magnetosphere

    NASA Astrophysics Data System (ADS)

    Liu, W. W.; Hill, T. W.

    1990-04-01

    The transport of plasma in the inner Jovian magnetosphere is investigated according to the corotating convection model of Hill et al. (1981), emphasizing mathematical aspects of the theory. A simplified but physically plausible boundary condition at the inner Io torus, representing a 5 percent density enhancement of S(+) ions in an 'active sector' that is fixed in Jovian (system III) longitude is employed. The convection electric field pattern resulting from this longitudinal mass anomaly alone is investigated, and then the theory to include the effects of Coriolis force and plasma acceleration is generalized. It is found that even a small (about 5 percent) longitudinal asymmetry of the inner torus produces a convection system capable of removing torus plasma from the magnetosphere on a time scale of order one month.

  3. A predicted Triton plasma torus in Neptune's magnetosphere

    NASA Technical Reports Server (NTRS)

    Delitsky, Mona L.; Eviatar, Aharon; Richardson, John D.

    1989-01-01

    The possibility of the formation of a plasma torus generated by the satellite Triton in the magnetosphere of Neptune is investigated. A set of coupled differential equations is solved that describe the evolution of material sputtered from the surface of atmosphere of Triton in the conditions likely to exist in an assumed Neptunian magnetosphere for various combinations of nitrogen and methane that may exist on Triton. The model assumes a mechanism for transport that gives upper limits for predicted torus concentrations. It is concluded that a successful detection of plasma by the Voyager Plasma Science instrument may be possible and could be an important source of information about the composition of Triton's surface and atmosphere.

  4. Water group plasma in the magnetosphere of Saturn

    NASA Technical Reports Server (NTRS)

    Eviatar, Aharon; Richardson, John D.

    1990-01-01

    The paper deals with the question of the composition and spatial distribution of water group plasma in the magnetosphere of Saturn. It is suggested that the problem of the coexistence of neutral atomic hydrogen and such a plasma can be resolved if the dominant ion is taken to be H2O(+) or H3O(+). It is also suggested that this ion may provide a means of radiative cooling of the inner magnetosphere plasma which is possibly easier to realize than transport of nitrogen from Titan. As a source for this plasma in the region inward of the icy satellites, the ring atmosphere is suggested. The depleted plasma density in the domain between the Dione-Tethys torus and the ring plane crossing of Voyager may provide an explanation for the survival of the E-ring. Data are presented which indicate that H2O(+) or H3O(+) is also a favored candidate in the outer magnetosphere and that it can diffuse without loss through the hot electron gas.

  5. Observations of Magnetic Reconnection and Plasma Dynamics in Mercury's Magnetosphere

    NASA Astrophysics Data System (ADS)

    DiBraccio, Gina A.

    Mercury's magnetosphere is formed as a result of the supersonic solar wind interacting with the planet's intrinsic magnetic field. The combination of the weak planetary dipole moment and intense solar wind forcing of the inner heliosphere creates a unique space environment, which can teach us about planetary magnetospheres. In this work, we analyze the first in situ orbital observations at Mercury, provided by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. Magnetic reconnection and the transport of plasma and magnetic flux are investigated using MESSENGER Magnetometer and Fast Imaging Plasma Spectrometer measurements. Here, we report our results on the effect of magnetic reconnection and plasma dynamics on Mercury's space environment: (1) Mercury's magnetosphere is driven by frequent, intense magnetic reconnection observed in the form of magnetic field components normal to the magnetopause, BN, and as helical bundles of flux, called magnetic flux ropes, in the cross-tail current sheet. The high reconnection rates are determined to be a direct consequence of the low plasma beta, the ratio of plasma to magnetic pressure, in the inner heliosphere. (2) As upstream solar wind conditions vary, we find that reconnection occurs at Mercury's magnetopause for all orientations of the interplanetary magnetic field, independent of shear angle. During the most extreme solar wind forcing events, the influence of induction fields generated within Mercury's highly conducting core are negated by erosion due to persistent magnetopause reconnection. (3) We present the first observations of Mercury's plasma mantle, which forms as a result of magnetopause reconnection and allows solar wind plasma to enter into the high-latitude magnetotail through the dayside cusps. The energy dispersion observed in the plasma mantle protons is used to infer the cross-magnetosphere electric field, providing a direct measurement of solar wind momentum

  6. Plasma sheets in induced magnetospheres of Mars and Venus

    NASA Astrophysics Data System (ADS)

    Dubinin, Eduard; Fraenz, Markus; Woch, Joahim; Zhang, Tielong; Wei, Yong; Fedorov, Andrei; Barabash, Stas; Lundin, Rickard

    2013-04-01

    Mars and Venus have no a global intrinsic field and solar wind interacts directly with their conductive ionospheric shells producing the induced magnetospheres with magnetic tails. Plasma sheet is the region in the tail where the magnetic field tensions transfer the momentum back to the ionospheric plasmas which escape the planets. It is one of the main loss channels for the planetary ions. Mars Express and Venus Express have provided a wealth of the data on properties of the induced magnetic tails and plasma sheets. We will discuss their main characteristics including mechanisms of ion energization and their control by solar wind and the interplanetary magnetic field variations.

  7. Mini-Magnetospheric Plasma Propulsion Experiment (MMPX)

    NASA Astrophysics Data System (ADS)

    Ziemba, Tim; Slough, John; Winglee, Robert

    1999-11-01

    The MMPX is a new laboratory device that is designed to study plasma dynamics and confinement in a magnetic dipole with field strengths ranging from 0.01 to 0.2 T. The magnetic dipole is constructed of two short solenoidal Helmholtz coils with a 0.3 m diameter. Plasma is injected onto the field lines by a Helicon source located on the inner, high field side of the dipole field. Plasma densities of 1-2× 10^19m-3 are expected with electron temperatures of 4 eV or greater. As plasma flows out along the dipole field, the background neutral pressure is kept low to maintain the plasma in a collisionless, ``frozen-in'' state. As the local field decreases, the plasma pressure eventually exceeds the field pressure. At this point the magnetic flux will be pulled dynamically outward with the plasma. Observation of this flux expansion is the major goal of the experiment. In space the continued expansion of the dipole flux will be inhibited only by the solar wind pressure. The configuration would thus act as a large scale ( ~ 30 km) magneto-plasma barrier to the solar wind, and would allow for spacecraft propulsion with megawatt thrust power from a kilowatt source.

  8. Investigating Fresh Hot Plasma Injections in Saturn's Inner-Magnetosphere

    NASA Astrophysics Data System (ADS)

    Vandegriff, J. D.; Loftus, K.; Rymer, A. M.; Mitchell, D. G.

    2015-12-01

    A decreasing density gradient in Saturn's plasma disk allows for centrifugal interchange instability between the dense, heavy plasma inside 10 Rs and the lighter plasma outside. This instability results in the less dense plasma of the mid-magnetosphere moving inward to the inner-magnetosphere. As flux tubes move inward, their volume decreases, and the contained plasma heats adiabatically. Most studies of interchange have focused on older events that have had time to gradient and curvature drift such that they are easily identified by a characteristic "V" energy dispersion signature in the ion and electron data [e.g. Hill et al., 2005; Chen et al., 2010]. Recently, Kennelly et al. (2013) used radio wave data to identify >300 possible "fresh" injection events. These are characterized in the plasma data by a bite-out at low energies, an enhancement at high energies, and little to no energy dispersion. Our study builds on the Kennelly et al. study to investigate the shape and frequency of injection events in order to better characterize how hot plasma transports into the inner magnetosphere. In most models of centrifugal interchange at Saturn, the time and spatial scales for inward and outward transport are fairly symmetric, but Cassini data suggests that inward injections of plasma move at much greater velocity and in narrower flow channels than their outgoing counterparts. Here we investigate the morphology of Kronian inward injection events to see if our dataset of young injections can inform on whether the inward injections are extended fingers or more like "bubbles", isolated flux tubes. Specifically, we apply minimum variance analysis to Cassini magnetic field data to determine the boundary normals at the spacecraft's entrance and exit points for each event, from which we can statistically analyze the structure's cross section. We will present our initial results on the morphology as well as the distribution of the injections over radial distance, latitude, and

  9. Penetration of magnetosheath plasma into dayside magnetosphere: 2. Magnetic field in plasma filaments

    NASA Astrophysics Data System (ADS)

    Lyatsky, Wladislaw; Pollock, Craig; Goldstein, Melvyn L.; Lyatskaya, Sonya; Avanov, Levon

    2016-08-01

    In this paper, we examined plasma structures (filaments), observed in the dayside magnetosphere but containing magnetosheath plasma. These filaments show the stable antisunward motion (while the ambient magnetospheric plasma moved in the opposite direction) and the existence of a strip of magnetospheric plasma, separating these filaments from the magnetosheath. These results, however, contradict both theoretical studies and simulations by Schindler (1979), Ma et al. (1991), Dai and Woodward (1994, 1998), and other researchers, who reported that the motion of such filaments through the magnetosphere is possible only when their magnetic field is directed very close to the ambient magnetic field, which is not the situation that is observed. In this study, we show that this seeming contradiction may be related to different events as the theoretical studies and simulations are related to the case when the filament magnetic field is about aligned with filament orientation, whereas the observations show that the magnetic field in these filaments may be rotating. In this case, the rotating magnetic field, changing incessantly its direction, drastically affects the penetration of plasma filaments into the magnetosphere. In this case, the filaments with rotating magnetic field, even if in each moment it is significantly inclined to the ambient magnetic field, may propagate through the magnetosphere, if their average (for the rotation period) magnetic field is aligned with the ambient magnetic field. This shows that neglecting the rotation of magnetic field in these filaments may lead to wrong results.

  10. Low-Energy Hot Plasma and Particles in Saturn's Magnetosphere.

    PubMed

    Krimigis, S M; Armstrong, T P; Axford, W I; Bostrom, C O; Gloeckler, G; Keath, E P; Lanzerotti, L J; Carbary, J F; Hamilton, D C; Roelof, E C

    1982-01-29

    The low-energy charged particle instrument on Voyager 2 measured low-energy electrons and ions (energies greater, similar 22 and greater, similar 28 kiloelectron volts, respectively) in Saturn's magnetosphere. The magnetosphere structure and particle population were modified from those observed during the Voyager 1 encounter in November 1980 but in a manner consistent with the same global morphology. Major results include the following. (i) A region containing an extremely hot ( approximately 30 to 50 kiloelectron volts) plasma was identified and extends from the orbit of Tethys outward past the orbit of Rhea. (ii) The low-energy ion mantle found by Voyager 1 to extend approximately 7 Saturn radii inside the dayside magnetosphere was again observed on Voyager 2, but it was considerably hotter ( approximately 30 kiloelectron volts), and there was an indication of a cooler ( < 20 kiloelectron volts) ion mantle on the nightside. (iii) At energies greater, similar 200 kiloelectron volts per nucleon, H(1), H(2), and H(3) (molecular hydrogen), helium, carbon, and oxygen are important constituents in the Saturnian magnetosphere. The presence of both H(2) and H(3) suggests that the Saturnian ionosphere feeds plasma into the magnetosphere, but relative abundances of the energetic helium, carbon, and oxygen ions are consistent with a solar wind origin. (iv) Low-energy ( approximately 22 to approximately 60 kiloelectron volts) electron flux enhancements observed between the L shells of Rhea and Tethys by Voyager 2 on the dayside were absent during the Voyager 1 encounter. (v) Persistent asymmetric pitch-angle distributions of electrons of 60 to 200 kiloelectron volts occur in the outer magnetosphere in conjunction with the hot ion plasma torus. (vi) The spacecraft passed within approximately 1.1 degrees in longitude of the Tethys flux tube outbound and observed it to be empty of energetic ions and electrons; the microsignature of Enceladus inbound was also observed. (vii

  11. Plasma Transport at the Magnetospheric Flank Boundary. Final report

    SciTech Connect

    Otto, Antonius

    2012-04-23

    Progress is highlighted in these areas: 1. Model of magnetic reconnection induced by three-dimensional Kelvin Helmholtz (KH) modes at the magnetospheric flank boundary; 2. Quantitative evaluation of mass transport from the magnetosheath onto closed geomagnetic field for northward IMF; 3. Comparison of mass transfer by cusp reconnection and Flank Kelvin Helmholtz modes; 4. Entropy constraint and plasma transport in the magnetotail - a new mechanism for current sheet thinning; 5. Test particle model for mass transport onto closed geomagnetic field for northward IMF; 6. Influence of density asymmetry and magnetic shear on (a) the linear and nonlinear growth of 3D Kelvin Helmholtz (KH) modes, and (b) three-dimensional KH mediated mass transport; 7. Examination of entropy and plasma transport in the magnetotail; 8. Entropy change and plasma transport by KH mediated reconnection - mixing and heating of plasma; 9. Entropy and plasma transport in the magnetotail - tail reconnection; and, 10. Wave coupling at the magnetospheric boundary and generation of kinetic Alfven waves.

  12. An oblique pulsar magnetosphere with a plasma conductivity

    NASA Astrophysics Data System (ADS)

    Cao, Gang; Zhang, Li; Sun, Sineng

    2016-09-01

    An oblique pulsar magnetosphere with a plasma conductivity is studied by using a pseudo-spectral method. In the pseudo-spectral method, the time-dependent Maxwell equations are solved, both electric and magnetic fields are expanded in terms of the vector spherical harmonic functions in spherical geometry and the divergencelessness of magnetic field is analytically enforced by a projection method. The pulsar magnetospheres in infinite (i.e., force free approximation) and finite conductivities are simulated and a family of solutions that smoothly transition from the Deutsch vacuum solution to the force-free solution are obtained. The sin2α dependence of the spin-down luminosity on the magnetic inclination angle α in which the full electric current density are taken into account is retrieved in the force-free regime.

  13. The magnetosphere of uranus: hot plasma and radiation environment.

    PubMed

    Krimigis, S M; Armstrong, T P; Axford, W I; Cheng, A F; Gloeckler, G; Hamilton, D C; Keath, E P; Lanzerotti, L J; Mauk, B H

    1986-07-01

    The low-energy charged-particle (LECP) instrument on Voyager 2 measured lowenergy electrons and ions near and within the magnetosphere of Uranus. Initial analysis of the LECP measurements has revealed the following. (i) The magnetospheric particle population consists principally of protons and electrons having energies to at least 4 and 1.2 megaelectron volts, respectively, with electron intensities substantially excceding proton intensities at a given energy. (ii) The intensity profile for both particle species shows evidence that the particles were swept by planetry satellites out to at least the orbit of Titania. (iii) The ion and electron spectra may be described by a Maxwellian core at low energies (less than about 200 kiloelectron volts) and a power law at high energies (greater than about 590 kiloelectron volts; exponentmicro, 3 to 10) except inside the orbit of Miranda, where power-law spectra (micro approximately 1.1 and 3.1 for electrons and protons, respectively) are observed. (iv) At ion energies between 0.6 and 1 megaelectron volt per nucleon, the composition is dominated by protons with a minor fraction (about 10(-3)) of molecular hydrogen; the lower limit for the ratio of hydrogen to helium is greater than 10(4). (v) The proton population is sufficiently intense that fluences greater than 10(16) per square centimeter can accumulate in 10(4) to 10(') years; such fluences are sufficient to polymerize carbon monoxide and methane ice surfaces. The overall morphology of Uranus' magnetosphere resembles that of Jupiter, as evidenced by the fact that the spacecraft crossed the plasma sheet through the dawn magnetosheath twice per planetary rotation period (17.3 hours). Uranus' magnetosphere differs from that of Jupiter and of Saturn in that the plasma 1 is at most 0.1 rather than 1. Therefore, little distortion ofthe field is expected from particle loading at distances less than about 15 Uranus radii.

  14. Plasma flows in Saturn's nightside magnetosphere

    NASA Astrophysics Data System (ADS)

    Thomsen, M. F.; Jackman, C. M.; Tokar, R. L.; Wilson, R. J.

    2014-06-01

    The plasma properties, especially the flow parameters, obtained from numerical integration of Cassini Plasma Spectrometer (CAPS) Ion Mass Spectrometer measurements during intervals when the CAPS field of view encompassed both inward and outward flow directions relative to corotation are examined for nightside data (18-06 local time) during 2006, 2009, and 2010. The results show good agreement with previously reported values derived using different selection criteria and a different analysis technique. Nightside flows are predominantly in or near the corotation direction, indicating continuing influence of connection to the ionosphere. There is no evidence for a quasi-steady reconnection x line within the surveyed region of the tail, although dynamic events attributable to transient reconnection have been observed. There is a net radial mass outflow, leading to an estimated net mass loss between 18 and 03 local time of ~34 kg/s. Part of this mass loss occurs as a "planetary wind" along the dusk flank. The remainder probably occurs ultimately much deeper in the tail and along the distant dawn magnetopause, when the mass disconnects from the weakened planetary magnetic field.

  15. The ionospheric source of magnetospheric plasma is not a black box input for global models

    NASA Astrophysics Data System (ADS)

    Welling, D. T.; Liemohn, M. W.

    2016-06-01

    Including ionospheric outflow in global magnetohydrodynamic models of near-Earth outer space has become an important step toward understanding the role of this plasma source in the magnetosphere. Of the existing approaches, however, few tie the outflowing particle fluxes to magnetospheric conditions in a self-consistent manner. Doing so opens the magnetosphere-ionosphere system to nonlinear mass-energy feedback loops, profoundly changing the behavior of the magnetosphere-ionosphere system. Based on these new results, it is time for the community eschew treating ionospheric outflow as a simple black box source of magnetospheric plasma.

  16. Plasma bulk flow in Jupiter's dayside middle magnetosphere

    NASA Technical Reports Server (NTRS)

    Sands, Mark R.; Mcnutt, Ralph L., Jr.

    1988-01-01

    Using the plasma data obtained during the Voyager 1 encounter and the full response function of the Plasma Science (PLS) experiment, convective plasma velocities have been determined in the dayside middle magnetosphere of Jupiter (r = 10-25 Jupiter radii). It is found that temperature anisotropies have very little effect on plasma velocity determination and that the plasma data are well approximated by convected, isotropic Maxwellian ion distribution functions. The insensitivity of the analysis to any thermal anisotropies which may exist allows a good determination of the bulk plasma flow velocity. In addition to the subcorotational azimuthal flow, there exists a substantial nonazimuthal component of plasma flow. This nonazimuthal flow is mostly aligned (antialigned) with the local magnetic field but also exhibits a cross-field component. The velocity pattern is inconsistent with enhanced plasma outflow in the active sector, as suggested by the corotating convection model of plasma transport. The contribution of field-aligned flow along the curved magnetic field lines to the stress on the magnetic field is evaluated. In the region studied, such flow contributes up to one half the stress produced by the azimuthal plasma flow.

  17. Plasma-depleted Flux Tubes in the Saturnian Magnetosphere

    NASA Astrophysics Data System (ADS)

    Lai, H.; Russell, C. T.; Wei, H.; Jia, Y. D.; Dougherty, M. K.

    2015-12-01

    Similar to Io's mass loading in the jovian magnetosphere, Saturn's moon, Enceladus, provides 100s of kilograms of water group neutrals and plasma to the planet's magnetosphere every second. The newly added plasma, being accelerated and convecting outward due to the centrifugal force, is then lost through magnetic reconnection in the tail. To conserve the total magnetic flux established by the internal dynamo, the 'empty' reconnected magnetic flux must return from the tail back to the inner magnetosphere. At both Jupiter and Saturn, flux tubes with enhanced field strength relative to their surroundings have been detected and are believed to be taking the role of returning the magnetic flux. However, at Saturn, flux tubes with depressed field strength are also reported. To reveal the relationship between the two kinds of flux tubes, we have systematically surveyed all the available 1-sec magnetic field data measured by Cassini and studied their statistical properties. The spatial distributions show that enhanced-field flux tubes are concentrated near the equator and closer to the planet while depressed-field flux tubes are distributed in a larger latitudinal region and can be detected at larger distances. In addition, we find that for both types of flux tubes, their occurrence rates vary with the local time in the same pattern and their magnetic flux is in the same magnitude. Therefore, the two types of flux tubes are just different manifestations of the same phenomenon: near the equator with high ambient plasma density, the flux tubes convecting in from the tail are compressed, resulting in increased field strength; off the equator, these flux tubes expand slightly, resulting in decreased field strength. Here we also present the lifecycle of the enhanced-field flux tubes: they gradually break into smaller ones when convecting inward and become indistinguishable from the background inside an L-value of about 4.

  18. Thermal and suprathermal plasma densities in the outer magnetosphere

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Frank, L. A.

    1973-01-01

    Using the low-frequency cutoff of electromagnetic noise trapped in the magnetosphere at frequencies above the local plasma frequency, it is now possible to make very accurate, + or - 1%, electron density measurements in the low density region between the magnetopause and plasmapause. This technique for measuring the total plasma density was used, together with measurements of the suprathermal proton intensities with the LEPEDEA instrumentation on the IMP-6 spacecraft, to determine the thermal proton densities in the region between the plasmapause and magnetopause. Although the thermal protons usually account for a significant fraction, approximately 50%, of the total proton density in this region, in some cases, particularly at the larger radial distances the density of the thermal protons sometimes drops to a very small fraction, 5%, of the total density and nearly all of the plasma consists of suprathermal particles.

  19. Flute instability in the plasma shell of the earth's magnetosphere

    SciTech Connect

    Ivanov, V.N.; Pokhotelov, O.A.

    1987-12-01

    In the plasma shell of the earth's magnetosphere, the surfaces of constant pressure may not coincide with surfaces of constant specific volume. This circumstance forces a reexamination of the theory for the flute instability, in which the pressure has been assumed to remain constant on surfaces of constant specific volume. The MHD equations for flute waves in a curvilinear magnetic field are used to show that an instability of a new type, with a pressure which does not remain constant on surfaces of constant specific volume, can occur in the plasma shell of the magnetosphere. An expression is derived for the growth rate of this instability. Analysis of the equation also shows that perturbations with wavelengths shorter than the ion Larmor radius are stable by virtue of magnetodrift effects. The growth rates of the flute instabilities are calculated for both a dipole magnetic field and an arbitrary magnetic-field configuration. Growth rates calculated for typical values of the characteristics of the earth's plasma shell are reported.

  20. The Earth's magnetosphere as a sample of the plasma universe

    NASA Technical Reports Server (NTRS)

    Faelthammar, Carl-Gunne

    1986-01-01

    Plasma processes in the Earth's neighborhood determine the environmental conditions under which space-based equipment for science or technology must operate. These processes are peculiar to a state of matter that is rare on Earth but dominates the universe as whole. The physical, and especially the electrodynamic, properties of this state of matter is still far from well understood. By fortunate circumstances, the magnetosphere-ionosphere system of the Earth provides a rich sample of widely different plasma populations, and, even more importantly, it is the site of a remarkable variety of plasma processes. In different combinations such processes must be important throughout the universe, which is overwhelmingly dominated by matter in the plasma state. Therefore, observations and experiments in the near-Earth plasma serve a multitude of purposes. They will not only (1) clarify the dynamics of the space environment but also (2) widen the understanding of matter, (3) form a basis for interpretating remote observations of astrophysical objects, thereby even (4) help to reconstruct events that led to the evolution of the solar system. Last but not least they will (5) provide know-how required for adapting space-based technology to the plasma environment. Such observations and experiments will require a close mutual interplay between science and technology.

  1. Penetration of Magnetosheath Plasma into Dayside Magnetosphere: Magnetic Field in Plasma Filaments

    NASA Astrophysics Data System (ADS)

    Lyatsky, Wladislaw

    2016-04-01

    In this study, we examined a large number of plasma structures (filaments), observed with the Cluster spacecraft during two years (2007-2008) in the dayside magnetosphere but consisting of magnetosheath plasma. To reduce the effects observed in cusp regions and on magnetosphere flanks, we consider these events inside the narrow cone (≤30°) about the subsolar point. Two important features of these filaments are: (i) their stable anti-sunward motion inside the magnetosphere whereas the ambient magnetospheric plasma moves in the opposite (sunward) direction, and (ii) between these filaments and the magnetopause there is a strip of magnetospheric plasma, separating these filaments from the magnetosheath. The stable earthward motion of these filaments and the existence of a strip of magnetospheric plasma between these filaments and the magnetopause show the disconnection of these filaments from the magnetosheath, as suggested earlier by many researchers. These events cannot also be a consequent of back and forth motions of magnetopause position or surface waves propagating on the magnetopause. However, these observation results contradict the theoretical studies by Schmidt, 1960; Schindler, 1979; Ma et al., 1991; Dai and Woodward, 1994, 1998; et al., who reported that the motion of such filaments through the magnetosphere is possible only when the magnetic field in these filaments is aligned with (or very close to) the ambient magnetic field, that is not consistent with observation results. And the main goal of this study is to resolve this problem. For this purpose, we examined a large number of these events and showed that this contradiction may exist because of the theoretical studies and observations are related to different events: the theoretical studies are related to the case when the magnetic field in these filaments is aligned with the filament orientation, whereas the observation results may be related to the cases of a rotating magnetic field in these

  2. On the generation of plasma waves in Saturn's inner magnetosphere

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.; Kurth, W. S.

    1993-01-01

    Voyager 1 plasma wave measurements of Saturn's inner magnetosphere are reviewed with regard to interpretative aspects of the wave spectrum. A comparison of the wave emission profile with the electron plasma frequency obtained from in situ measurements of the thermal ion density shows good agreement with various features in the wave data identified as electrostatic modes and electromagnetic radio waves. Theoretical calculations of the critical flux of superthermal electrons able to generate whistler-mode waves and electrostatic electron cyclotron harmonic waves through a loss-cone instability are presented. The comparison of model results with electron measurements shows excellent agreement, thereby lending support to the conclusion that a moderate perpendicular anisotropy in the hot electron distribution is present in the equatorial region of L = 5-8.

  3. On the generation of plasma waves in Saturn's inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Barbosa, D. D.; Kurth, W. S.

    1993-06-01

    Voyager 1 plasma wave measurements of Saturn's inner magnetosphere are reviewed with regard to interpretative aspects of the wave spectrum. A comparison of the wave emission profile with the electron plasma frequency obtained from in situ measurements of the thermal ion density shows good agreement with various features in the wave data identified as electrostatic modes and electromagnetic radio waves. Theoretical calculations of the critical flux of superthermal electrons able to generate whistler-mode waves and electrostatic electron cyclotron harmonic waves through a loss-cone instability are presented. The comparison of model results with electron measurements shows excellent agreement, thereby lending support to the conclusion that a moderate perpendicular anisotropy in the hot electron distribution is present in the equatorial region of L = 5-8.

  4. Composition and dynamics of plasma in Saturn's magnetosphere.

    PubMed

    Young, D T; Berthelier, J-J; Blanc, M; Burch, J L; Bolton, S; Coates, A J; Crary, F J; Goldstein, R; Grande, M; Hill, T W; Johnson, R E; Baragiola, R A; Kelha, V; McComas, D J; Mursula, K; Sittler, E C; Svenes, K R; Szegö, K; Tanskanen, P; Thomsen, M F; Bakshi, S; Barraclough, B L; Bebesi, Z; Delapp, D; Dunlop, M W; Gosling, J T; Furman, J D; Gilbert, L K; Glenn, D; Holmlund, C; Illiano, J-M; Lewis, G R; Linder, D R; Maurice, S; McAndrews, H J; Narheim, B T; Pallier, E; Reisenfeld, D; Rymer, A M; Smith, H T; Tokar, R L; Vilppola, J; Zinsmeyer, C

    2005-02-25

    During Cassini's initial orbit, we observed a dynamic magnetosphere composed primarily of a complex mixture of water-derived atomic and molecular ions. We have identified four distinct regions characterized by differences in both bulk plasma properties and ion composition. Protons are the dominant species outside about 9 RS (where RS is the radial distance from the center of Saturn), whereas inside, the plasma consists primarily of a corotating comet-like mix of water-derived ions with approximately 3% N+. Over the A and B rings, we found an ionosphere in which O2+ and O+ are dominant, which suggests the possible existence of a layer of O2 gas similar to the atmospheres of Europa and Ganymede.

  5. Electromagnetic radiation trapped in the magnetosphere above the plasma frequency

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Shaw, R. R.

    1973-01-01

    An electromagnetic noise band is frequently observed in the outer magnetosphere by the Imp 6 spacecraft at frequencies from about 5 to 20 kHz. This noise band generally extends throughout the region from near the plasmapause boundary to near the magnetopause boundary. The noise typically has a broadband field strength of about 5 microvolts/meter. The noise band often has a sharp lower cutoff frequency at about 5 to 10 kHz, and this cutoff has been identified as the local electron plasma frequency. Since the plasma frequency in the plasmasphere and solar wind is usually above 20 kHz, it is concluded that this noise must be trapped in the low-density region between the plasmapause and magnetopause boundaries. The noise bands often contain a harmonic frequency structure which suggests that the radiation is associated with harmonics of the electron cyclotron frequency.

  6. Rotation Rate of Saturn's Magnetosphere using CAPS Plasma Measurements

    NASA Technical Reports Server (NTRS)

    Sittler, E.; Cooper, J.; Hartle, R.; Simpson, D.; Johnson, R.; Thomsen, M.; Arridge, C.

    2011-01-01

    We present the present status of an investigation of the rotation rate of Saturn's magnetosphere using a 3D velocity moment technique being developed at Goddard which is similar to the 2D version used by Sittler et al. for SOI and similar to that used by Thomsen et al.. This technique allows one to nearly cover the full energy range of the Cassini Plasma Spectrometer (CAPS) IMS from 1 V . E/Q < 50 kV. Since our technique maps the observations into a local inertial frame, it does work during roll maneuvers. We make comparisons with the bi-Maxwellian fitting technique developed by Wilson et al. and the similar velocity moment technique by Thomsen et al. . We concentrate our analysis when ion composition data is available, which is used to weight the non-compositional data, referred to as singles data, to separate H+, H2+ and water group ions (W+) from each other. The chosen periods have high enough telemetry rates (4 kbps or higher) so that coincidence ion data, similar to that used by Sittler et al. for SOI is available. The ion data set is especially valuable for measuring flow velocities for protons, which are more difficult to derive using singles data within the inner magnetosphere, where the signal is dominated by heavy ions (i.e., proton peak merges with W+ peak as low energy shoulder). Our technique uses a flux function, which is zero in the proper plasma flow frame, to estimate fluid parameter uncertainties. The comparisons investigate the experimental errors and potential for systematic errors in the analyses, including ours. The rolls provide the best data set when it comes to getting 4PI coverage of the plasma but are more susceptible to time aliasing effects. In the future we will then make comparisons with magnetic field observations, Saturn ionosphere conductivities as presently known and the field aligned currents necessary for the planet to enforce corotation of the rotating plasma.

  7. Rotation Rate of Saturn's Magnetosphere using CAPS Plasma Measurements

    NASA Technical Reports Server (NTRS)

    Sittler, E.; Cooper, J.; Simpson, D.; Paterson, W.

    2012-01-01

    We present the present status of an investigation of the rotation rate of Saturn 's magnetosphere using a 3D velocity moment technique being developed at Goddard which is similar to the 2D version used by Sittler et al. (2005) [1] for SOI and similar to that used by Thomsen et al. (2010). This technique allows one to nearly cover the full energy range of the CAPS IMS from 1 V less than or equal to E/Q less than 50 kV. Since our technique maps the observations into a local inertial frame, it does work during roll manoeuvres. We have made comparisons with Wilson et al. (2008) [2] (2005-358 and 2005-284) who performs a bi-Maxwellian fit to the ion singles data and our results are nearly identical. We will also make comparisons with results by Thomsen et al. (2010) [3]. Our analysis uses ion composition data to weight the non-compositional data, referred to as singles data, to separate H+, H2+ and water group ions (W+) from each other. The ion data set is especially valuable for measuring flow velocities for protons, which are more difficult to derive using singles data within the inner magnetosphere, where the signal is dominated by heavy ions (i.e., proton peak merges with W+ peak as low energy shoulder). Our technique uses a flux function, which is zero in the proper plasma flow frame, to estimate fluid parameter uncertainties. The comparisons investigate the experimental errors and potential for systematic errors in the analyses, including ours. The rolls provide the best data set when it comes to getting 4PI coverage of the plasma but are more susceptible to time aliasing effects. Since our analysis is a velocity moments technique it will work within the inner magnetosphere where pickup ions are important and velocity distributions are non-Maxwellian. So, we will present results inside Enceladus' L shell and determine if mass loading is important. In the future we plan to make comparisons with magnetic field observations, use Saturn ionosphere conductivities as

  8. Tethys and Dione as sources of outward-flowing plasma in Saturn's magnetosphere.

    PubMed

    Burch, J L; Goldstein, J; Lewis, W S; Young, D T; Coates, A J; Dougherty, M K; André, N

    2007-06-14

    Rotating at over twice the angular speed of Earth, Saturn imposes a rapid spin on its magnetosphere. As a result, cold, dense plasma is believed to be flung outward from the inner magnetosphere by centrifugal force and replaced by hotter, more tenuous plasma from the outer magnetosphere. The centrifugal interchange of plasmas in rotating magnetospheres was predicted many years ago and was conclusively demonstrated by observations in Jupiter's magnetosphere, which--like that of Saturn (but unlike that of Earth)--is rotationally dominated. Recent observations in Saturn's magnetosphere have revealed narrow injections of hot, tenuous plasma believed to be the inward-moving portion of the centrifugal interchange cycle. Here we report observations of the distribution of the angle between the electron velocity vector and the magnetic field vector ('pitch angle') obtained in the cold, dense plasma adjacent to these inward injection regions. The observed pitch-angle distributions are indicative of outward plasma flow and consistent with centrifugal interchange in Saturn's magnetosphere. Further, we conclude that the observed double-peaked ('butterfly') pitch-angle distributions result from the transport of plasma from regions near the orbits of Dione and Tethys, supporting the idea of distinct plasma tori associated with these moons.

  9. Analysis of transfer processes through plasma boundaries of the magnetosphere

    NASA Astrophysics Data System (ADS)

    Kozak, Liudmyla; Savin, Sergey; Lui, Anthony Tat Yin; Prokhorenkov, Andrew

    Studying the fundamental properties of the interaction of the solar wind with the magnetosphere found superdiffusion processes in the boundary layers space plasma and 'distant' transfer mechanism (the influence of local microprocesses to global, and vice versa). Since the developed turbulence is characterized by a great number of degrees of freedom, nonlinearly interacting modes, multi-scale structure and random fluctuations of velocities so that the methods of statistical physics and theory of probability are most suitable for its description. In this study based on the mission Cluster measurements the characteristic turbulent regions in the boundary layers of Earth’s magnetosphere are being separated and the statistical characteristics are being obtained, which determine the transfer processes through plasma boundaries. Meanwhile, the set of different techniques was used which are based on the analysis of fluctuation distribution function and its moments. For the analysis of the turbulent processes we have carried out an investigation of structure functions for different orders and studied diffusion processes in different regions determined by a character of the dependence of the generalized diffusion coefficient on time. Basing on the results of studying structural functions of various orders, the conclusion is drawn that small scale turbulence in the foreshock, magnetosheath, turbulent boundary layer is described by different phenomenological models. Besides, we have obtained an increase of diffusion coefficient with time for the regions of magnetosheath. The work is done in the frame of complex program of NAS of Ukraine on space researches for 2012-1016, within the framework of the educational program No.2201250 “Education, Training of students, PhD students, scientific and pedagogical staff abroad” launched by the Ministry of Education and Science of Ukraine and under a partial support of the grant No. F 53.2/039.

  10. Plasma distribution in Mercury's magnetosphere derived from MESSENGER Magnetometer and Fast Imaging Plasma Spectrometer observations

    NASA Astrophysics Data System (ADS)

    Korth, Haje; Anderson, Brian J.; Gershman, Daniel J.; Raines, Jim M.; Slavin, James A.; Zurbuchen, Thomas H.; Solomon, Sean C.; McNutt, Ralph L.

    2014-04-01

    We assess the statistical spatial distribution of plasma in Mercury's magnetosphere from observations of magnetic pressure deficits and plasma characteristics by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. The statistical distributions of proton flux and pressure were derived from 10 months of Fast Imaging Plasma Spectrometer (FIPS) observations obtained during the orbital phase of the MESSENGER mission. The Magnetometer-derived pressure distributions compare favorably with those deduced from the FIPS observations at locations where depressions in the magnetic field associated with the presence of enhanced plasma pressures are discernible in the Magnetometer data. The magnitudes of the magnetic pressure deficit and the plasma pressure agree on average, although the two measures of plasma pressure may deviate for individual events by as much as a factor of ~3. The FIPS distributions provide better statistics in regions where the plasma is more tenuous and reveal an enhanced plasma population near the magnetopause flanks resulting from direct entry of magnetosheath plasma into the low-latitude boundary layer of the magnetosphere. The plasma observations also exhibit a pronounced north-south asymmetry on the nightside, with markedly lower fluxes at low altitudes in the northern hemisphere than at higher altitudes in the south on the same field line. This asymmetry is consistent with particle loss to the southern hemisphere surface during bounce motion in Mercury's offset dipole magnetic field.

  11. Plasma Distribution in Mercury's Magnetosphere Derived from MESSENGER Magnetometer and Fast Imaging Plasma Spectrometer Observations

    NASA Technical Reports Server (NTRS)

    Korth, Haje; Anderson, Brian J.; Gershman, Daniel J.; Raines, Jim M.; Slavin, James A.; Zurbuchen, Thomas H.; Solomon, Sean C.; McNutt, Ralph L.

    2014-01-01

    We assess the statistical spatial distribution of plasma in Mercury's magnetosphere from observations of magnetic pressure deficits and plasma characteristics by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. The statistical distributions of proton flux and pressure were derived from 10months of Fast Imaging Plasma Spectrometer (FIPS) observations obtained during the orbital phase of the MESSENGER mission. The Magnetometer-derived pressure distributions compare favorably with those deduced from the FIPS observations at locations where depressions in the magnetic field associated with the presence of enhanced plasma pressures are discernible in the Magnetometer data. The magnitudes of the magnetic pressure deficit and the plasma pressure agree on average, although the two measures of plasma pressure may deviate for individual events by as much as a factor of approximately 3. The FIPS distributions provide better statistics in regions where the plasma is more tenuous and reveal an enhanced plasma population near the magnetopause flanks resulting from direct entry of magnetosheath plasma into the low-latitude boundary layer of the magnetosphere. The plasma observations also exhibit a pronounced north-south asymmetry on the nightside, with markedly lower fluxes at low altitudes in the northern hemisphere than at higher altitudes in the south on the same field line. This asymmetry is consistent with particle loss to the southern hemisphere surface during bounce motion in Mercury's offset dipole magnetic field.

  12. Magnetosphere-ionosphere coupling and scale breaking of a plasma cloud in the magnetosphere

    NASA Astrophysics Data System (ADS)

    Haerendel, Gerhard; Mende, Stephen B.

    2012-09-01

    The goal of this paper is to deliver a long-missing interpretation of a central issue of the NASA-MPE barium injection experiment performed in September 1971. It pertains to the interaction with the ionosphere. Observations of the cloud's motion revealed no obvious sign of such interaction. The barium vapor was released from a Scout rocket at an altitude of 31,000 km above South America during late evening hours and was observed for more than 4000 s. The barium plasma split into several field-parallel streaks which moved for a long time as if subject to constant acceleration as viewed from the inertial frame of the rocket at release. This means that no reflection of energy due to a mismatch of ionospheric conductivity and the characteristic impedance of an impinging Alfvén wave was observed. It is this finding that has never been properly interpreted. Furthermore, after a careful assessment of the barium cloud properties and environmental parameters, we find a theoretical coupling time to the ambient flow which turns out to be substantially longer than observed. Although this appears to indicate that some interaction with the ionosphere occurred, we can rule out multiple wave reflections during the observed acceleration phase. Discarding other possibilities, we interpret the observed motions as sign of perfect matching of the momentum and energy flux into the ionosphere with the rate of dissipation. This is achieved during the initial phase by scale breaking of the cloud into streaks with narrow widths which allow parallel potential drops along the Alfvén wings because of the waves' inertial nature and inside the lower ionosphere owing to the finite parallel resistivity, thereby greatly reducing the effective Pedersen conductivity. The significance of this finding goes beyond understanding the barium injection experiment. It sheds light on how magnetospheric plasma irregularities can share momentum and energy with the ionosphere in an optimized fashion.

  13. Transport and acceleration of plasma in the magnetospheres of Earth and Jupiter and expectations for Saturn

    NASA Astrophysics Data System (ADS)

    Kivelson, M. G.

    The first comparative magnetospheres conference was held in Frascati, Italy thirty years ago this summer, less than half a year after the first spacecraft encounter with Jupiter's magnetosphere (Formisano, V. (Ed.), The Magnetospheres of the Earth and Jupiter, Proceedings of the Neil Brice Memorial Symposium held in Frascati, Italy, May 28-June 1, 1974. D. Reidel Publishing Co., Boston, USA, 1975). Disputes highlighted various issues still being investigated, such as how plasma transport at Jupiter deviates from the prototypical form of transport at Earth and the role of substorms in Jupiter's dynamics. Today there is a wealth of data on which to base the analysis, data gathered by seven missions that culminated with Galileo's 8-year orbital tour. We are still debating how magnetic flux is returned to the inner magnetosphere following its outward transport by iogenic plasma. We are still uncertain about the nature of sporadic dynamical disturbances at Jupiter and their relation to terrestrial substorms. At Saturn, the centrifugal stresses are not effective in distorting the magnetic field, so in some ways the magnetosphere appears Earthlike. Yet the presence of plasma sources in the close-in equatorial magnetosphere parallels conditions at Jupiter. This suggests that we need to study both Jupiter and Earth when thinking about what to anticipate from Cassini's exploration of Saturn's magnetosphere. This paper addresses issues relevant to plasma transport and acceleration in all three magnetospheres.

  14. Survey of low energy plasma electrons in Saturn's magnetosphere: Voyagers 1 and 2

    NASA Technical Reports Server (NTRS)

    Sittler, E. C., Jr.; Ogilvie, K. W.; Scudder, J. D.

    1983-01-01

    The low energy plasma electron environment within Saturn's magnetosphere was surveyed by the Plasma Science Experiment (PLS) during the Voyager encounters with Saturn. Over the full energy range of the PLS instrument (10 eV to 6 keV) the electron distribution functions are clearly non-Maxwellian in character; they are composed of a cold (thermal) component with Maxwellian shape and a hot (suprathermal) non-Maxwellian component. A large scale positive radial gradient in electron temperature is observed, increasing from less than 1 eV in the inner magnetosphere to as high as 800 eV in the outer magnetosphere. Three fundamentally different plasma regimes were identified from the measurements: (1) the hot outer magnetosphere, (2) the extended plasma sheet, and (3) the inner plasma torus.

  15. Penetration of magnetosheath plasma into dayside magnetosphere: 1. Density, velocity, and rotation

    NASA Astrophysics Data System (ADS)

    Lyatsky, Wladislaw; Pollock, Craig; Goldstein, Melvyn L.; Lyatskaya, Sonya; Avanov, Levon

    2016-08-01

    In this study, we examine a large number of plasma structures (filaments), observed with the Cluster spacecraft during 2 years (2007-2008) in the dayside magnetosphere but consisting of magnetosheath plasma. To reduce the effects observed in the cusp regions and on magnetosphere flanks, we consider these events predominantly inside the narrow cone ≤30° about the subsolar point. Two important features of these filaments are (i) their stable antisunward (earthward) motion inside the magnetosphere, whereas the ambient magnetospheric plasma moves usually in the opposite direction (sunward), and (ii) between these filaments and the magnetopause, there is a region of magnetospheric plasma, which separates these filaments from the magnetosheath. The stable earthward motion of these filaments and the presence of a region of magnetospheric plasma between these filaments and the magnetopause show the possible disconnection of these filaments from the magnetosheath, as suggested earlier by many researchers. The results also show that these events cannot be a result of back-and-forth motions of magnetopause position or surface waves propagating on the magnetopause. Another important feature of these filaments is their rotation about the filament axis, which might be a result of their passage through the velocity shear on magnetopause boundary. After crossing the velocity shear, the filaments get a rotational velocity, which has opposite directions in the noon-dusk and noon-dawn sectors. This rotation velocity may be an important factor, supporting the stability of these filaments and providing their motion into the magnetosphere.

  16. Differential drift of plasma clouds in the magnetosphere: an update

    NASA Astrophysics Data System (ADS)

    Lemaire, J. F.

    2001-07-01

    First, Brice's (Journal of Geophysical Research 72 (1967) 5193) original theory for the formation of the plasmapause is recalled. Next, the motivation for writing a modification to this early theory is pointed out. The key aspects of Brice's manuscript are outlined and discussed. The mechanism of interchange driven by gravitational forces, centrifugal effects and kinetic pressure is considered in the cases when the integrated Pedersen conductivity is (i) negligibly small (as in Chandrasekhar's, Plasma Physics, University of Chicago Press, Chicago, 1960, 217 pp. and Longmire's, Elementary Plasma Physics, Wiley Interscience, New York, 1963, 296 pp., textbooks), (ii) infinitely large (as in many magnetospheric convection models), or (iii) has a finite value of the order of 0.2 mho, as in the Earth's ionosphere. Updates of this theory of interchange resulting from the existence of weak double layers, from quasi-interchange, or from the effects of an additional population of energetic ring-current particles forming the extended tail of the velocity distribution function, have also been reexamined.

  17. Modeling the Enceladus Plasma and Neutral Torus in Saturn's Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Jia, Yingdong; Russell, C. T.; Khurana, K. K.; Gombosi, T. I.

    2010-10-01

    Saturn's moon Enceladus, produces hundreds of kilograms of water vapor every second. These water molecules form a neutral torus which is comparable to the Io torus in the Jovian system. These molecules become ionized producing a plasma disk in the inner magnetosphere of Saturn which exchanges momentum with the "corotating” magnetospheric plasma. To balance the centripetal force of this plasma disk, Saturn's magnetic field is stretched in the radial direction and to accelerate the azimuthal speed to corotational values, the field is stretched in the azimuthal direction. At Enceladus the massive pickup of new ions from its plume slows down the corotating flow and breaks this force balance, causing plasma flows in the radial direction. Such radial flows in the inner magnetosphere of Saturn are supported by Cassini observations using various particle and field instruments. In this study we develop a global model of the inner magnetosphere of Saturn in an attempt to reproduce such processes.

  18. Hot Plasma Composition Analyzer for the Magnetospheric Multiscale Mission

    NASA Astrophysics Data System (ADS)

    Young, D. T.; Burch, J. L.; Gomez, R. G.; De Los Santos, A.; Miller, G. P.; Wilson, P.; Paschalidis, N.; Fuselier, S. A.; Pickens, K.; Hertzberg, E.; Pollock, C. J.; Scherrer, J.; Wood, P. B.; Donald, E. T.; Aaron, D.; Furman, J.; George, D.; Gurnee, R. S.; Hourani, R. S.; Jacques, A.; Johnson, T.; Orr, T.; Pan, K. S.; Persyn, S.; Pope, S.; Roberts, J.; Stokes, M. R.; Trattner, K. J.; Webster, J. M.

    2016-03-01

    This paper describes the science motivation, measurement objectives, performance requirements, detailed design, approach and implementation, and calibration of the four Hot Plasma Composition Analyzers (HPCA) for the Magnetospheric Multiscale mission. The HPCA is based entirely on electrostatic optics combining an electrostatic energy analyzer with a carbon-foil based time-of-flight analyzer. In order to fulfill mission requirements, the HPCA incorporates three unique technologies that give it very wide dynamic range capabilities essential to measuring minor ion species in the presence of extremely high proton fluxes found in the region of magnetopause reconnection. Dynamic range is controlled primarily by a novel radio frequency system analogous to an RF mass spectrometer. The RF, in combination with capabilities for high TOF event processing rates and high current micro-channel plates, ensures the dynamic range and sensitivity needed for accurate measurements of ion fluxes between ˜1 eV and 40 keV that are expected in the region of reconnection events. A third technology enhances mass resolution in the presence of high proton flux.

  19. Hot Plasma and Energetic Particles in Neptune's Magnetosphere.

    PubMed

    Krimigis, S M; Armstrong, T P; Axford, W I; Bostrom, C O; Cheng, A F; Gloeckler, G; Hamilton, D C; Keath, E P; Lanzerotti, L J; Mauk, B H; Van Allen, J A

    1989-12-15

    The low-energy charged particle (LECP) instrument on Voyager 2 measured within the magnetosphere of Neptune energetic electrons (22 kiloelectron volts /=0.5 MeV per nucleon) energies, using an array of solid-state detectors in various configurations. The results obtained so far may be summarized as follows: (i) A variety of intensity, spectral, and anisotropy features suggest that the satellite Triton is important in controlling the outer regions of the Neptunian magnetosphere. These features include the absence of higher energy (>/=150 keV) ions or electrons outside 14.4 R(N) (where R(N) = radius of Neptune), a relative peak in the spectral index of low-energy electrons at Triton's radial distance, and a change of the proton spectrum from a power law with gamma >/= 3.8 outside, to a hot Maxwellian (kT [unknown] 55 keV) inside the satellite's orbit. (ii) Intensities decrease sharply at all energies near the time of closest approach, the decreases being most extended in time at the highest energies, reminiscent of a spacecraft's traversal of Earth's polar regions at low altitudes; simultaneously, several spikes of spectrally soft electrons and protons were seen (power input approximately 5 x 10(-4) ergs cm(-2) s(-1)) suggestive of auroral processes at Neptune. (iii) Composition measurements revealed the presence of H, H(2), and He(4), with relative abundances of 1300:1:0.1, suggesting a Neptunian ionospheric source for the trapped particle population. (iv) Plasma pressures at E >/= 28 keV are maximum at the magnetic equator with beta approximately 0.2, suggestive of a relatively empty magnetosphere, similar to that of Uranus. (v) A potential signature of satellite 1989N1 was seen, both inbound and outbound; other possible signatures of the moons and rings are evident in the data but cannot be positively identified in the

  20. Hot Plasma and Energetic Particles in Neptune's Magnetosphere.

    PubMed

    Krimigis, S M; Armstrong, T P; Axford, W I; Bostrom, C O; Cheng, A F; Gloeckler, G; Hamilton, D C; Keath, E P; Lanzerotti, L J; Mauk, B H; Van Allen, J A

    1989-12-15

    The low-energy charged particle (LECP) instrument on Voyager 2 measured within the magnetosphere of Neptune energetic electrons (22 kiloelectron volts /=0.5 MeV per nucleon) energies, using an array of solid-state detectors in various configurations. The results obtained so far may be summarized as follows: (i) A variety of intensity, spectral, and anisotropy features suggest that the satellite Triton is important in controlling the outer regions of the Neptunian magnetosphere. These features include the absence of higher energy (>/=150 keV) ions or electrons outside 14.4 R(N) (where R(N) = radius of Neptune), a relative peak in the spectral index of low-energy electrons at Triton's radial distance, and a change of the proton spectrum from a power law with gamma >/= 3.8 outside, to a hot Maxwellian (kT [unknown] 55 keV) inside the satellite's orbit. (ii) Intensities decrease sharply at all energies near the time of closest approach, the decreases being most extended in time at the highest energies, reminiscent of a spacecraft's traversal of Earth's polar regions at low altitudes; simultaneously, several spikes of spectrally soft electrons and protons were seen (power input approximately 5 x 10(-4) ergs cm(-2) s(-1)) suggestive of auroral processes at Neptune. (iii) Composition measurements revealed the presence of H, H(2), and He(4), with relative abundances of 1300:1:0.1, suggesting a Neptunian ionospheric source for the trapped particle population. (iv) Plasma pressures at E >/= 28 keV are maximum at the magnetic equator with beta approximately 0.2, suggestive of a relatively empty magnetosphere, similar to that of Uranus. (v) A potential signature of satellite 1989N1 was seen, both inbound and outbound; other possible signatures of the moons and rings are evident in the data but cannot be positively identified in the

  1. High Resolution Plasma Measurements From The Fast Plasma Investigation On Magnetospheric Multiscale

    NASA Astrophysics Data System (ADS)

    Pollock, C. J.

    2015-12-01

    NASA's Magnetospheric Multiscale (MMS) mission, launched in March 2015, targets understanding of the fundamental physics of magnetic reconnection using Earth's magnetosphere as a laboratory within which to study this naturally occurring process. The first mission phase, currently in progress, focuses on reconnection occurring at Earth's dayside magnetopause. The relevant electron and ion scale processes have never before been fully resolved and differentiated, owing to limitations in the time (thus spatial) resolution available. The Fast Plasma Investigation (FPI) was developed for flight on MMS in order to fully resolve 3D plasma distribution functions on both the ion scale and the substantially smaller electron scale. MMS is designed to provide multi-point measurements of fast plasma, electric and magnetic fields, ion composition and energetic particles at the four points of a variably sized tetrahedron. Thus, MMS enables specification of all relevant plasma parameters and their spatial derivatives in order to understand the roles of the various terms in the Generalized Ohm's Law that governs the plasma behavior at reconnection sites. In this talk, we provide a brief description of FPI and show a sampling of early results, including MMS crossings of the magnetopause.

  2. Low Energy Plasma in the Outer Magnetosphere as Observed by Interball Tail Probe

    NASA Technical Reports Server (NTRS)

    Coffey, Victoria N.; Vaisberg, Oleg L.; Gallagher, Dennis L.; Chandler, Michael O.

    1999-01-01

    The Interball Tail Probe crosses the dayside magnetopause at low latitudes where it frequently measures low energy ion plasma (<100 eV) in the outer magnetosphere. We present the plasma characteristics of this cold component, including it's dependence on solar wind parameters and interaction with PC-5 type waves.

  3. Convection of Plasmaspheric Plasma into the Outer Magnetosphere and Boundary Layer Region: Initial Results

    NASA Technical Reports Server (NTRS)

    Ober, Daniel M.; Horwitz, J. L.; Gallagher, D. L.

    1998-01-01

    We present initial results on the modeling of the circulation of plasmaspheric- origin plasma into the outer magnetosphere and low-latitude boundary layer (LLBL), using a dynamic global core plasma model (DGCPM). The DGCPM includes the influences of spatially and temporally varying convection and refilling processes to calculate the equatorial core plasma density distribution throughout the magnetosphere. We have developed an initial description of the electric and magnetic field structures in the outer magnetosphere region. The purpose of this paper is to examine both the losses of plasmaspheric-origin plasma into the magnetopause boundary layer and the convection of this plasma that remains trapped on closed magnetic field lines. For the LLBL electric and magnetic structures we have adopted here, the plasmaspheric plasma reaching the outer magnetosphere is diverted anti-sunward primarily along the dusk flank. These plasmas reach X = -15 R(sub E) in the LLBL approximately 3.2 hours after the initial enhancement of convection and continues to populate the LLBL for 12 hours as the convection electric field diminishes.

  4. New Insight Into the Nightside Magnetosphere Ion Plasma Regimes With the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Jahn, J.; Goldstein, J.; Reeves, G. D.; Spence, H.; Skoug, R. M.; Funsten, H. O.

    2013-12-01

    The recent successful launch of the twin Van Allen spacecraft (formerly known as RBSP) provides a new and unprecedented window into the structure and dynamics of inner magnetospheric plasma content and dynamics. The equatorially orbiting Van Allen spacecraft are returning clean, high resolution, very low background ion composition and electron plasma data throughout the radiation belt and ring current region inside geosynchronous orbit. Since both Van Allen spacecraft are positioned in near-identical chase orbits, lapping each other continuously throughout the mission, we are able to study both spatial and temporal variability in the inner magnetosphere with unprecedented resolution on a range of time and length scales. In this paper we present initial results from plasma composition measurements in the nightside of Earth's magnetosphere, focusing on plasma fractional plasma composition of H+, He+, and O+ in the plasmasphere through lower ring current energies (< 50 keV). Early results indicate a remarkable spatial and temporal variability in plasma ion composition in the inner magnetosphere. We detect frequent occurrences of multiple peak energy distributions in this energy range occurring in ring current, plasmasphere and plasma sheet. We observe distinct differences between the three ion species in these spectra. Energy spectra with 5 peaks for a single species have been observed repeatedly. We discuss possible explanations for these observations, and possible ramifications for the evolution of the outer radiation belt.

  5. New Insight into the Inner Magnetosphere Plasma Regimes with the van Allen Probes (RBSP)

    NASA Astrophysics Data System (ADS)

    Jahn, Joerg-Micha; Denton, Richard E.; Funsten, Herbert O.; Reeves, Geoff; Spence, Harlan E.

    2013-04-01

    The recent successful launch of the twin van Allen spacecraft (formerly known as RBSP) provides a new and unprecedented window into the structure and dynamics of inner magnetospheric plasma content and dynamics. The equatorially orbiting van Allen spacecraft are returning clean high resolution, very low background ion composition and electron plasma data throughout the radiation belt and ring current region inside geosynchronous orbit. Since both van Allen spacecraft are positioned in near-identical chase orbits, lapping each other continuously throughout the mission, we are able to study both spatial and temporal variability in the inner magnetosphere with unprecedented resolution on a range of time and length scales. In this paper we are presenting initial results from plasma composition measurements in the nightside of Earth's magnetosphere, focussing on plasma fractional plasma composition of H+, He+, and O+ in the plasmasphere through lower ring current energies (< 50 keV). Early results do not only indicate a remarkable spatial and temporal variability in plasma ion composition in the inner magnetosphere, they also show frequent occurrences of multiple peak energy distributions in this energy range. Multi-peaked energy distributions with several peaks occurring in ring current, plasmasphere and (less often) plasma sheet are frequently observed, with distinct differences between the three ion species. Energy spectra with 5-6 peaks for a single species have been observed repeatedly.

  6. Convection of Plasmaspheric Plasma into the Outer Magnetosphere and Boundary Layer Region: Initial Results

    NASA Technical Reports Server (NTRS)

    Ober, Daniel M.; Horwitz, J. L.

    1998-01-01

    We present initial results on the modeling of the circulation of plasmaspheric-origin plasma into the outer magnetosphere and low-latitude boundary layer (LLBL), using a dynamic global core plasma model (DGCPM). The DGCPM includes the influences of spatially and temporally varying convection and refilling processes to calculate the equatorial core plasma density distribution throughout the magnetosphere. We have developed an initial description of the electric and magnetic field structures in the outer magnetosphere region. The purpose of this paper is to examine both the losses of plasmaspheric-origin plasma into the magnetopause boundary layer and the convection of this plasma that remains trapped on closed magnetic field lines. For the LLBL electric and magnetic structures we have adopted here, the plasmaspheric plasma reaching the outer magnetosphere is diverted anti-sunward primarily along the dusk flank. These plasmas reach X= -15 R(sub E) in the LLBL approximately 3.2 hours after the initial enhancement of convection and continues to populate the LLBL for 12 hours as the convection electric field diminishes.

  7. Plasma dynamics in Saturn's middle-latitude ionosphere and implications for magnetosphere-ionosphere coupling

    NASA Astrophysics Data System (ADS)

    Sakai, Shotaro; Watanabe, Shigeto

    2016-08-01

    A multifluid model is used to investigate how Saturn's magnetosphere affects ionosphere. The model includes a magnetospheric plasma temperature of 2 eV as a boundary condition. The main results are: (1) H+ ions are accelerated along magnetic field lines by ambipolar electric fields and centrifugal force, and have an upward velocity of about 10 km/s at 8000 km; (2) the ionospheric plasma temperature is 10,000 K at 5000 km, and is significantly affected by magnetospheric heat flow at high altitudes; (3) modeled electron densities agree with densities from occultation observations if the maximum neutral temperature at a latitude of 54˚ is about 900 K or if electrons are heated near an altitude of 2500 km; (4) electron heating rates from photoelectrons (≈100 K/s) can also give agreement with observed electron densities when the maximum neutral temperature is lower than 700 K (note that Cassini observations give 520 K); and (5) the ion temperature is high at altitudes above 4000 km and is almost the same as the electron temperature. The ionospheric height-integrated Pedersen conductivity, which affects the magnetospheric plasma velocity, varies with local time with values between 0.4 and 10 S. We suggest that the sub-corotating ion velocity in the inner magnetosphere depends on the local time, because the conductivity generated by dust-plasma interactions in the inner magnetosphere is almost comparable to the ionospheric conductivity. This indicates that magnetosphere-ionosphere coupling is highly important in the Saturn system.

  8. Yosemite Conference on Ionospheric Plasma in the Magnetosphere: Sources, Mechanisms and Consequences, meeting report

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Burch, J. L.; Klumpar, D. M.; Moore, T. E.; Waite, J. H., Jr.

    1987-01-01

    The sixth biennial Yosemite topical conference and the first as a Chapman Conference was held on February 3 to 6, 1986. Due to the recent changes in our perception of the dynamics of the ionospheric/magnetospheric system, it was deemed timely to bring researchers together to discuss and contrast the relative importance of solar versus terrestrial sources of magnetospheric plasma. Although the solar wind was once thought to dominate the supply of plasma in the Earth's magnetosphere, it is now thought that the Earth's ionosphere is a significant contributor. Polar wind and other large volume outflows of plasma have been seen at relatively high altitudes over the polar cap and are now being correlated with outflows found in the magnetotail. The auroral ion fountain and cleft ion fountain are examples of ionospheric sources of plasma in the magnetosphere, observed by the Dynamics Explorer 1 (DE 1) spacecraft. The conference was organized into six sessions: four consisting of prepared oral presentations, one poster session, and one session for open forum discussion. The first three oral sessions dealt separately with the three major topics of the conference, i.e., the sources, mechanisms, and consequences of ionospheric plasma in the magnetosphere. A special session of invited oral presentations was held to discuss extraterrestrial ionospheric/magnetospheric plasma processes. The poster session was extended over two evenings during which presenters discussed their papers on a one-on-one basis. The last session of the conferences was reserved for open discussions of those topics or ideas considered most interesting or controversial.

  9. Magnetic and plasma response of the Earth's magnetosphere to interplanetary shock

    NASA Astrophysics Data System (ADS)

    Du, A.; Cao, X.; Wang, R.; Zhang, Y.

    2013-12-01

    In this paper, we investigate the global response of magnetosphere to interplanetary shock, and focus on the magnetic and plasma variations related to aurora. The analysis utilizes data from simultaneous observations of interplanetary shocks from available spacecraft in the solar wind and the Earth's magnetosphere such as ACE, Wind and SOHO in solar wind, LANL and GOES in outer magnetosphere, TC1 in the midinight neutral plasma sheet, Geotail and Polar in dusk side of plasma sheet, and Cluster in downside LLBL. The shock front speed is ~1051 km/s in the solar wind, and ~981km/s in the Earth's magnetosphere. The shock is propagating anti-sunward (toward the Earth) in the plasma frame with a speed of ~320 km/s. After the shock bumps at the magnetopause, the dayside aurora brightens, then nightside aurora brightens and expanses to poleward. During the aurora activity period, the fast earthward and tailward flows in plasma sheet are observed by TC1 (X~7.1 Re, Y~1.2 Re). The variation of magnetic field and plasma in duskside of magnetosphere is weaker than that in dawnside. At low latitude boundary layer (LLBL), the Cluster spacecraft detected rolled-up large scale vortices generated by the Kelvin-Helmholtz instability (KHI). Toroidal oscillations of the magnetic field in the LLBL might be driven by the Kelvin-Helmholtz instability. The strong IP shock highly compresses the magnetopause and the outer magnetosphere. This process may also lead to particle precipitation and auroral brightening (Zhou and Tsurutani, 1999; Tsurutani et al., 2001 and 2003).

  10. Linking Plasma Conditions in the Magnetosphere with Ionospheric Signatures

    NASA Technical Reports Server (NTRS)

    Rastaetter, Lutz; Kozyra, Janet; Kuznetsova, Maria M.; Berrios, David H.

    2012-01-01

    Modeling of the full magnetosphere, ring current and ionosphere system has become an indispensable tool in analyzing the series of events that occur during geomagnetic storms. The CCMC has a full model suite available for the magnetosphere, together with visualization tools that allow a user to perform a large variety of analyses. The January, 21, 2005 storm was a moderate-size storm that has been found to feature a large penetration electric field and unusually large polar caps (low-latitude precipitation patterns) that are otherwise found in super storms. Based on simulations runs at CCMC we can outline the likely causes of this behavior. Using visualization tools available to the online user we compare results from different magnetosphere models and present connections found between features in the magnetosphere and the ionosphere that are connected magnetically. The range of magnetic mappings found with different models can be compared with statistical models (Tsyganenko) and the model's fidelity can be verified with observations from low earth orbiting satellites such as DMSP and TIMED.

  11. Plasma Density and Radio Echoes in the Magnetosphere

    NASA Technical Reports Server (NTRS)

    Calvert, W.

    1995-01-01

    This project provided a opportunity to study a variety of interesting topics related to radio sounding in the magnetosphere. The results of this study are reported in two papers which have been submitted for publication in the Journal of Geophysical Research and Radio Science, and various aspects of this study were also reported at meetings of the American Geophysical Union (AGU) at Baltimore, Maryland and the International Scientific Radio Union (URSI) at Boulder, Colorado. The major results of this study were also summarized during a one-day symposium on this topic sponsored by Marshall Space Flight Center in December 1994. The purpose of the study was to examine the density structure of the plasmasphere and determine the relevant mechanisms for producing radio echoes which can be detected by a radio sounder in the magnetosphere. Under this study we have examined density irregularities, biteouts, and outliers of the plasmasphere, studied focusing, specular reflection, ducting, and scattering by the density structures expected to occur in the magnetosphere, and predicted the echoes which can be detected by a magnetospheric radio sounder.

  12. Electrostatic and electromagnetic gyroharmonic emissions due to energetic electrons in magnetospheric plasma

    NASA Technical Reports Server (NTRS)

    Curtis, S. A.; Wu, C. S.

    1979-01-01

    The paper derives the growth rates and growth lengths of the electrostatic emission for spatially homogeneous and inhomogeneous energetic electrons, and numerically evaluates the growth rate and growth length spectra for several parameter sets representative of magnetospheric plasmas. In addition, the growth rates are derived for the case of electromagnetic emission modeled by the ordinary mode. The numerical results of the electromagnetic and electrostatic cases are compared with observations made by satellites in the earth's magnetosphere. It is concluded that the electrostatic gyroharmonic excitation is possible without the cold composition of plasma which is often postulated in the existing literature.

  13. Plasma composition in Jupiter's magnetosphere - Initial results from the Solar Wind Ion Composition Spectrometer

    NASA Technical Reports Server (NTRS)

    Geiss, J.; Gloeckler, G.; Balsiger, H.; Fisk, L. A.; Galvin, A. B.; Gliem, F.; Hamilton, D. C.; Ipavich, F. M.; Livi, S.; Mall, U.

    1992-01-01

    The ion composition in the Jovian environment was investigated with the Solar Wind Ion Composition Spectrometer on board Ulysses. A hot tenuous plasma was observed throughout the outer and middle magnetosphere. In some regions two thermally different components were identified. Oxygen and sulfur ions with several different charge states, from the volcanic satellite Io, make the largest contribution to the mass density of the hot plasma, even at high latitude. Solar wind particles were observed in all regions investigated. Ions from Jupiter's ionosphere were abundant in the middle magnetosphere, particularly in the high-latitude region on the dusk side, which was traversed for the first time.

  14. Plasma Composition in Jupiter's Magnetosphere: Initial Results from the Solar Wind Ion Composition Spectrometer.

    PubMed

    Geiss, J; Gloeckler, G; Balsiger, H; Fisk, L A; Galvin, A B; Gliem, F; Hamilton, D C; Ipavich, F M; Livi, S; Mall, U; Ogilvie, K W; von Steiger, R; Wilken, B

    1992-09-11

    The ion composition in the Jovian environment was investigated with the Solar Wind Ion Composition Spectrometer on board Ulysses. A hot tenuous plasma was observed throughout the outer and middle magnetosphere. In some regions two thermally different components were identified. Oxygen and sulfur ions with several different charge states, from the volcanic satellite lo, make the largest contribution to the mass density of the hot plasma, even at high latitude. Solar wind particles were observed in all regions investigated. Ions from Jupiter's ionosphere were abundant in the middle magnetosphere, particularly in the highlatitude region on the dusk side, which was traversed for the first time.

  15. A Review of General Physical and Chemical Processes Related to Plasma Sources and Losses for Solar System Magnetospheres

    NASA Astrophysics Data System (ADS)

    Seki, K.; Nagy, A.; Jackman, C. M.; Crary, F.; Fontaine, D.; Zarka, P.; Wurz, P.; Milillo, A.; Slavin, J. A.; Delcourt, D. C.; Wiltberger, M.; Ilie, R.; Jia, X.; Ledvina, S. A.; Liemohn, M. W.; Schunk, R. W.

    2015-10-01

    The aim of this paper is to provide a review of general processes related to plasma sources, their transport, energization, and losses in the planetary magnetospheres. We provide background information as well as the most up-to-date knowledge of the comparative studies of planetary magnetospheres, with a focus on the plasma supply to each region of the magnetospheres. This review also includes the basic equations and modeling methods commonly used to simulate the plasma sources of the planetary magnetospheres. In this paper, we will describe basic and common processes related to plasma supply to each region of the planetary magnetospheres in our solar system. First, we will describe source processes in Sect. 1. Then the transport and energization processes to supply those source plasmas to various regions of the magnetosphere are described in Sect. 2. Loss processes are also important to understand the plasma population in the magnetosphere and Sect. 3 is dedicated to the explanation of the loss processes. In Sect. 4, we also briefly summarize the basic equations and modeling methods with a focus on plasma supply processes for planetary magnetospheres.

  16. Instrument technology for magnetosphere plasma imaging from high Earth orbit. Design of a radio plasma sounder

    NASA Technical Reports Server (NTRS)

    Haines, D. Mark; Reinisch, Bodo W.

    1995-01-01

    The use of radio sounding techniques for the study of the ionospheric plasma dates back to G. Briet and M. A. Tuve in 1926. Ground based swept frequency sounders can monitor the electron number density (N(sub e)) as a function of height (the N(sub e) profile). These early instruments evolved into a global network that produced high-resolution displays of echo time delay vs frequency on 35-mm film. These instruments provided the foundation for the success of the International Geophysical Year (1958). The Alouette and International Satellites for Ionospheric Studies (ISIS) programs pioneered the used of spaceborne, swept frequency sounders to obtain N(sub e) profiles of the topside of the ionosphere, from a position above the electron density maximum. Repeated measurements during the orbit produced an orbital plane contour which routinely provided density measurements to within 10%. The Alouette/ISIS experience also showed that even with a high powered transmitter (compared to the low power sounder possible today) a radio sounder can be compatible with other imaging instruments on the same satellite. Digital technology was used on later spacecraft developed by the Japanese (the EXOS C and D) and the Soviets (Intercosmos 19 and Cosmos 1809). However, a full coherent pulse compression and spectral integrating capability, such as exist today for ground-based sounders (Reinisch et al., 1992), has never been put into space. NASA's 1990 Space Physics Strategy Implementation Study "The NASA Space Physics Program from 1995 to 2010" suggested using radio sounders to study the plasmasphere and the magnetopause and its boundary layers (Green and Fung, 1993). Both the magnetopause and plasmasphere, as well as the cusp and boundary layers, can be observed by a radio sounder in a high-inclination polar orbit with an apogee greater than 6 R(sub e) (Reiff et al., 1994; Calvert et al., 1995). Magnetospheric radio sounding from space will provide remote density measurements of

  17. Plasma Boundaries and Kinetic-Scale Electric Field Structures in the Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Malaspina, David; Larsen, Brian; Ergun, R. E.; Skoug, Ruth; Wygant, John; Reeves, Geoffrey; Jaynes, Allison

    2016-07-01

    Recent advances in spacecraft instrumentation have enabled fresh examination of coupling between macro-scale and micro-scale physics in the terrestrial magnetosphere, demonstrating not only that cross-scale interactions are a key component of magnetospheric dynamics, but also that plasma boundaries play a crucial role in mediating cross-scale coupling. We use Van Allen Probe observations to study the cross-scale interaction between inner magnetospheric plasma boundaries (including the plasmapause and injection fronts) and kinetic-scale electric field structures including kinetic Alfven waves, double layers, phase space holes, and nonlinear whistler mode waves. We focus on the spatial distribution of these kinetic structures in the inner magnetosphere and their interaction with plasma boundaries. We demonstrate that both the occurrence probability and amplitude of these structures peak at plasma boundaries. Further, it is found that regions of kinetic-scale electric field structure activity travel with plasma boundaries. These observations imply that kinetic-scale electric field structures are continually generated by instabilities localized to these boundaries, constraining their ability to energize radiation belt particles over large spatial regions.

  18. Conductance Effects on Inner Magnetospheric Plasma Morphology: Model Comparisons with IMAGE EUV, MENA, and HENA Data

    NASA Technical Reports Server (NTRS)

    Liemohn, M.; Ridley, A. J.; Kozyra, J. U.; Gallagher, D. L.; Brandt, P. C.; Henderson, M. G.; Denton, M. H.; Jahn, J. M.; Roelof, E. C.; DeMajistre, R. M.

    2004-01-01

    Modeling results of the inner magnetosphere showing the influence of the ionospheric conductance on the inner magnetospheric electric fields during the April 17, 2002 magnetic storm are presented. Kinetic plasma transport code results are analyzed in combination with observations of the inner magnetospheric plasma populations, in particular those from the IMAGE satellite. Qualitative and quantitative comparisons are made with the observations from EW, MENA, and HENA, covering the entire energy range simulated by the model (0 to 300 keV). The electric field description, and in particular the ionospheric conductance, is the only variable between the simulations. Results from the data-model comparisons are discussed, detailing the strengths and weaknesses of each conductance choice for each energy channel.

  19. The impact of Callisto's atmosphere on its plasma interaction with the Jovian magnetosphere

    NASA Astrophysics Data System (ADS)

    Liuzzo, Lucas; Feyerabend, Moritz; Simon, Sven; Motschmann, Uwe

    2015-11-01

    The interaction between Callisto's atmosphere and ionosphere with the surrounding magnetospheric environment is analyzed by applying a hybrid simulation code, in which the ions are treated as particles and the electrons are treated as a fluid. Callisto is unique among the Galilean satellites in its interaction with the ambient magnetospheric plasma as the gyroradii of the impinging plasma and pickup ions are large compared to the size of the moon. A kinetic representation of the ions is therefore mandatory to adequately describe the resulting asymmetries in the electromagnetic fields and the deflection of the plasma flow near Callisto. Multiple model runs are performed at various distances of the moon to the center of Jupiter's magnetospheric current sheet, with differing angles between the corotational plasma flow and the ionizing solar radiation. When Callisto is embedded in the Jovian current sheet, magnetic perturbations due to the plasma interaction are more than twice the strength of the background field and may therefore obscure any magnetic signal generated via induction in a subsurface ocean. The magnetic field perturbations generated by Callisto's ionospheric interaction are very similar at different orbital positions of the moon, demonstrating that local time is only of minor importance when disentangling magnetic signals generated by the magnetosphere-ionosphere interaction from those driven by induction. Our simulations also suggest that deflection of the magnetospheric plasma around the moon cannot alone explain the density enhancement of 2 orders of magnitude measured in Callisto's wake during Galileo flybys. However, through inclusion of an ionosphere surrounding Callisto, modeled densities in the wake are consistent with in situ measurements.

  20. Preliminary feasibility study of pallet-only mode for magnetospheric and plasmas in space payloads, volume 4

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Results of studies performed on the magnetospheric and plasma portion of the AMPS are presented. Magnetospheric and plasma in space experiments and instruments are described along with packaging (palletization) concepts. The described magnetospheric and plasma experiments were considered as separate entities. Instrumentation ospheric and plasma experiments were considered as separate entities. Instrumentation requirements and operations were formulated to provide sufficient data for unambiguous interpretation of results without relying upon other experiments of the series. Where ground observations are specified, an assumption was made that large-scale additions or modifications to existing facilities were not required.

  1. Effects of finite plasma pressure on centrifugally driven convection in Saturn's magnetosphere

    NASA Astrophysics Data System (ADS)

    Liu, X.; Hill, T. W.

    2011-12-01

    We have previously shown simulation results for centrifugally driven plasma convection in Saturn's inner magnetosphere, using the Rice Convection Model, including a continuously active distributed plasma source, and effects of the Coriolis force and the pickup current. These simulations result in a quasi-steady state, in which fast, narrow inflow channels alternate with slower, wider outflow channels, consistent with Cassini Plasma Spectrometer observations. Comparison of different plasma source models indicates that the inner plasma source distribution is a key element in determining the plasma convection pattern. Previous simulations, however, did not include the effects of finite plasma pressure and the associated gradient-curvature drift. We will investigate here the effects of finite plasma pressure and gradient-curvature drift by giving the cold plasma a finite temperature. We will also add a source of hot tenuous plasma at the outer simulation boundary in an attempt to simulate the injection/dispersion events observed by Cassini.

  2. The Magnetospheric Multiscale Mission...Resolving Fundamental Processes in Space Plasmas

    NASA Technical Reports Server (NTRS)

    Curtis, S.

    1999-01-01

    The Magnetospheric Multiscale (MMS) mission is a multiple-spacecraft Solar-Terrestrial Probe designed to study the microphysics of magnetic reconnection, charged particle acceleration, and turbulence in key boundary regions of Earth's magnetosphere. These three processes, which control the flow of energy, mass, and momentum within and across plasma boundaries, occur throughout the universe and are fundamental to our understanding of astrophysical and solar system plasmas. Only in Earth's magnetosphere, however, are they readily accessible for sustained study through in-situ measurement. MMS will employ five co-orbiting spacecraft identically instrumented to measure electric and magnetic fields, plasmas, and energetic particles. The initial parameters of the individual spacecraft orbits will be designed so that the spacecraft formation will evolve into a three-dimensional configuration near apogee, allowing MMS to differentiate between spatial and temporal effects and to determine the three dimensional geometry of plasma, field, and current structures. In order to sample all of the magnetospheric boundary regions, MMS will employ a unique four-phase orbital strategy involving carefully sequenced changes in the local time and radial distance of apogee and, in the third phase, a change in orbit inclination from 10 degrees to 90 degrees. The nominal mission operational lifetime is two years. Launch is currently scheduled for 2006.

  3. Radio and Plasma Waves in the Magnetosphere of Saturn: Similarities to Earth and Jupiter

    NASA Astrophysics Data System (ADS)

    Gurnett, D.; Kurth, W.; Hospodarsky, G.; Persoon, A.; Cecconi, B.; Desch, M.; Farrell, W.; Kaiser, M.; Kellogg, P.; Goetz, K.; Lecacheux, A.; Zarka, P.; Harvey, C.; Louarn, P.; Canu, P.; Cornilleau-Wehrlin, N.; Galopeau, P.; Roux, A.; Fischer, G.; Ladreiter, H.; Rucker, H.; Alleyne, H.; Bostrom, R.; Gustafsson, G.; Wahlund, J.; Pedersen, A.

    2005-05-01

    With a few notable exceptions, most of the radio and plasma waves observed in the magnetosphere of Saturn are remarkably similar to those observed in the magnetospheres of Earth and Jupiter. For example, Saturn kilometric radiation, terrestrial kilometric radiation, and Jovian decametric radiation have many characteristics in common and are all generated by the same basic plasma mechanism, namely the cyclotron maser instability. Similar statements can be made about a broad range of other radio and plasma wave phenomena, for example, electrostatic emissions at the upper hybrid frequency, electrostatic waves near odd half-integral harmonics of the electron cyclotron frequency, and various whistler-mode electromagnetic emissions. What is different at these various planets are the plasma parameters and the types of interactions that lead to the plasma instabilities. Thus, the frequencies of the cyclotron maser radiation at Saturn, Earth and Jupiter are all different because the magnetic field strengths are different. And, there is no terrestrial analog of the Io-controlled Jovian decametric radiation, since there is no moon orbiting in the inner region of the terrestrial magnetosphere. In this talk, we will review the radio and plasma wave observations obtained by the Cassini Radio and Plasma Wave Science (RPWS) instrument in the vicinity of Saturn, and compare these to similar observations at Earth and Jupiter with the objective of contrasting and understanding the physical processes involved.

  4. Multifluid MHD Investigation of Plasma Production and Transport in Saturn's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Rajendar, A.; Paty, C. S.; Arridge, C. S.

    2014-12-01

    The dynamics of Saturn's inner magnetosphere are driven by the planet's strong magnetic field, rapid rotation rate, and interactions between magnetospheric plasma and Saturn's distributed neutral cloud. This cloud is composed mostly of water and OH molecules and primarily originates from the cryovolcanic plumes of Enceladus. Charge-exchange collisions between ions and neutrals result in a loss of momentum from the plasma, while photoionization and electron-impact ionization of neutrals produces new, slow-moving water group ions that are accelerated in the corotation direction by the J×Bforce associated with magnetosphere-ionosphere coupling currents. Unbalanced centrifugal stresses cause this newly-produced plasma to move radially outward, eventually leaving the magnetosphere. The characteristic signature of this process is the development of inward-moving fingers of hot, rarefied, outer magnetosphere plasma, as required by the conservation of magnetic flux. We investigate the dynamics of Saturn's inner magnetosphere using the latest iteration of the Saturn multifluid model with refined plasma-neutral interaction physics. Earlier versions of this model were used to investigate the external triggering of plasmoids and the interchange process using a fixed internal source rate. We use a static representation of Saturn's neutral cloud and modified multifluid MHD equations incorporating mass- and momentum-loading terms. Our collision physics calculations have been updated to include energy-dependent rate coefficients, and includes the ability to specify a radially-dependent suprathermal electron distribution to investigate ionization by this component. We validate our results using data from the Cassini Plasma Spectrometer and Magnetometer instruments (CAPS and MAG) during Saturn solstice. Inclusion of self-consistent ion-neutral interactions in our simulation allows us to examine the spatial and temporal variation in mass- and momentum-loading in the inner

  5. Nuclear burst plasma injection into the magnetosphere and resulting spacecraft charging

    NASA Technical Reports Server (NTRS)

    Pavel, A. L.; Cipolla, J. A.; Silevitch, M. B.; Golden, K. I.

    1977-01-01

    The passage of debris from a high altitude ( 400 km) nuclear burst over the ionospheric plasma is found to be capable of exciting large amplitude whistler waves which can act to structure a collisionless shock. This instability will occur in the loss cone exits of the nuclear debris bubble, and the accelerated ambient ions will freestream along the magnetic field lines into the magnetosphere. Using Starfish-like parameters and accounting for plasma diffusion and thermalization of the propagating plasma mass, it is found that synchronous orbit plasma fluxes of high temperature electrons (near 10 keV) will be significantly greater than those encountered during magnetospheric substorms. These fluxes will last for sufficiently long periods of time so as to charge immersed bodies to high potentials and arc discharges to take place.

  6. Measurements of plasma wave spectra in Jupiter's magnetosphere

    NASA Technical Reports Server (NTRS)

    Scarf, F. L.; Gurnett, D. A.; Kurth, W. S.

    1981-01-01

    Compressed plots of E field averages for all of the 16-channel spectrum analyzer data from the Voyager 1 and 2 magnetosphere traversals are presented to provide an overall framework for the discussion. The importance of considering peaks as well as averages is illustrated by using 16-channel measurements from the first inbound and last outbound bow shock for Voyager 2. Selected wideband measurements from the waveform receivers are presented to demonstrate how many important wave bursts are variable in times less than or comparable to the 4-s scan period of the 16-channel analyzer.

  7. Modeling of the Convection and Interaction of Ring Current, Plasmaspheric and Plasma Sheet Plasmas in the Inner Magnetosphere

    NASA Technical Reports Server (NTRS)

    Fok, Mei-Ching; Chen, Sheng-Hsien; Buzulukova, Natalia; Glocer, Alex

    2010-01-01

    Distinctive sources of ions reside in the plasmasphere, plasmasheet, and ring current regions at discrete energies constitute the major plasma populations in the inner/middle magnetosphere. They contribute to the electrodynamics of the ionosphere-magnetosphere system as important carriers of the global current system, in triggering; geomagnetic storm and substorms, as well as critical components of plasma instabilities such as reconnection and Kelvin-Helmholtz instability at the magnetospheric boundaries. Our preliminary analysis of in-situ measurements shoves the complexity of the plasmas pitch angle distributions at particularly the cold and warm plasmas, vary dramatically at different local times and radial distances from the Earth in response to changes in solar wind condition and Dst index. Using an MHD-ring current coupled code, we model the convection and interaction of cold, warm and energetic ions of plasmaspheric, plasmasheet, and ring current origins in the inner magnetosphere. We compare our simulation results with in-situ and remotely sensed measurements from recent instrumentation on Geotail, Cluster, THEMIS, and TWINS spacecraft.

  8. Plasma streams in the Hermean dayside magnetosphere: Solar wind injection through the reconnection region

    NASA Astrophysics Data System (ADS)

    Varela, J.; Pantellini, F.; Moncuquet, M.

    2016-03-01

    The aim of this research is to simulate the interaction of the solar wind with the magnetic field of Mercury and to study the particle fluxes between the magnetosheath and the planet surface. We simulate the magnetosphere structure using the open source MHD code PLUTO in spherical geometry with a multipolar expansion of the Hermean magnetic field (Anderson et al., 2010). We perform two simulations with realistic solar wind parameters to study the properties of a plasma stream originated in the reconnection region between the interplanetary and the Hermean magnetic field. The plasma precipitates along the open magnetic field lines to the planet surface showing a fast expansion, rarefaction and cooling. The plasma stream is correlated with a flattening of the magnetic field observed by MESSENGER due to the adjacency of the reconnection region where the solar wind is injected into the inner magnetosphere.

  9. Plasma Magnetosphere of Oscillating and Rotating Neutron Stars in General Relativity

    NASA Astrophysics Data System (ADS)

    Ahmedov, Bobomurat; Morozova, Viktoriya; Zanotti, Olindo

    2016-07-01

    We discuss a number of analytical studies, aimed at adding the influence of oscillations experienced by a pulsar/magnetar on its plasma magnetopshere. We show that particular modes of oscillations may considerably increase the pulsar/magnetar luminosity and apply the obtained theoretical results on the plasma magnetosphere of oscillating and rotating neutron stars i) to propose a qualitative model for the explanation of the phenomenology of intermittent part time pulsars, ii) to study the conditions for radio emission in rotating and oscillating magnetars by focusing on the main physical processes determining the position of their death lines, i.e. of those lines that separate the regions where the neutron star may be radio loud or radio quiet, iii) to explain the subpulse drift phenomena adopting the space-charge limited flow model and comparing the plasma drift velocity in the inner region of pulsar magnetospheres with the observed velocity of drifting subpulses.

  10. Interaction of energetic electrons with dust whistler-mode waves in magnetospheric dusty plasmas

    NASA Astrophysics Data System (ADS)

    Jafari, S.

    2016-04-01

    In this Letter, a new conceptual approach has been presented to investigate the interaction of energetic electrons with dust whistler-mode waves in magnetospheric dusty (complex) plasmas. Dust whistler-mode waves generated in the presence of charged dust grains in the magnetized dusty plasma, can scatter the launched electrons into the loss-cone leading to precipitation into the upper atmosphere which is an important loss process in the radiation belts and provides a major source of energy for the diffuse and pulsating aurora. To study the scattered electrons and chaotic regions, a Hamiltonian model of the electron-dust wave interaction has been employed in the magnetospheric plasma by considering the launched electron beam self-fields. Numerical simulations indicate that an electron beam interacting with the whistler-mode wave can easily trigger chaos in the dust-free plasma, while in the presence of dust charged grains in the plasma, the chaotic regions are quenched to some extent in the magnetosphere. Consequently, the rate of scattered electrons into the loss-cone reduces for the regions that the dust grains are present.

  11. Characterization of low frequency plasma waves and their energy deposition in the Martian magnetosphere with MAVEN

    NASA Astrophysics Data System (ADS)

    Ruhunusiri, S.; Halekas, J. S.; Connerney, J. E. P.; Espley, J. R.; McFadden, J. P.; Larson, D. E.; Mitchell, D. L.; Mazelle, C. X.; Jakosky, B. M.; Brain, D. A.; Harada, Y.; Livi, R.

    2015-12-01

    Mars has one of the unique environments in the solar system for the exploration of plasma waves. Mars does not have an intrinsic magnetosphere, but it has an induced magnetosphere due to the interaction of the solar wind with its ionosphere. Mars also possesses an extended exosphere, which spans beyond its bow shock. The interaction of the solar wind with the magnetosphere and the exosphere leads to excitation of low frequency waves that have frequencies near or below the proton gyro-frequency. MAVEN has been orbiting Mars since the late September of 2014, traversing through various regions of the Martian magnetosphere and the upstream region. MAVEN has a number of particle and field instruments for performing plasma diagnostics. Thus, for the first time at Mars, we have a complete set of plasma instruments for characterizing these low frequency plasma waves. The goal of this work is to distinguish the observed waves as one of the four low frequency wave modes (Alfven, fast, slow, and mirror) and to characterize their occurrence ratios and energy deposition in the various regions of the Martian magnetosphere and in the upstream region. To identify these waves, we use ratios and phase differences among the ion moment fluctuations and magnetic field fluctuations. To measure the ion moment fluctuations, in particular, we use two of the MAVEN ion instruments, solar wind ion analyzer (SWIA) and suprathermal and thermal ion composition instrument (STATIC). We use the MAVEN magnetometer for obtaining the magnetic field fluctuations. SWIA and STATIC have sampling cadence of 4s, much higher than that of their predecessors flown to Mars, and this is often adequate to detect the low frequency waves at Mars. We find that the Alfven waves are the most dominant waves in the upstream region and in the Martian magnetosphere. Fast waves, on the other hand, have the second highest occurrence ratio and they are found frequently near the bow shock and near the magnetic pileup boundary

  12. On the Azimuthal Variation of Core Plasma in the Equatorial Magnetosphere

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Craven, P. D.; Comfort, R. H.; Moore, T. E.

    1995-01-01

    Previous results of plasmapause position surveys have been synthesized into a description of the underlying global distribution of plasmasphere-like or core plasma densities unique to a steady state magnetosphere. Under these steady conditions, the boundary between high- and low-density regions is taken to represent the boundary between diurnal near-corotation and large-scale circulation streamlines that traverse the entire magnetosphere. Results indicate a boundary that has a pronounced bulge in the dusk sector that is rotated westward and markedly reduced in size at increased levels of geomagnetic activity (and presumably magnetospheric convection). The derived profile is empirical confirmation of an underlying 'tear drop' distribution of core plasma, which is valid only for prolonged steady conditions and is somewhat different from that associated with the simple superposition of sunward flow and corotation, both in its detailed shape and in its varying orientation. Variation away from the tear drop profile suggests that magnetospheric circulation departs from a uniform flow field, having a radial dependence with respect to the Earth that is qualitatively consistent with electrostatic shielding of the convection electric field and which is rotated westward at increased levels of geophysical activity.

  13. The magnetospheric clock of Saturn—A self-organized plasma dynamo

    SciTech Connect

    Olson, J.; Brenning, N.

    2013-08-15

    The plasma in the inner magnetosphere of Saturn is characterized by large-amplitude azimuthal density variations in the equatorial plane, with approximately a sinusoidal dependence on the azimuthal angle [D. A. Gurnett et al., Science 316, 442 (2007)]. This structure rotates with close to the period of the planet itself and has been proposed to steer other nonaxisymmetric phenomena, e.g., the Saturn kilometric radiation SKR [W. S. Kurth et al., Geophys. Res. Lett. 34, L02201 (2007)], and inner-magnetosphere magnetic field perturbations [D. J. Southwood and M. G. Kivelson, J. Geophys. Res. 112(A12), A12222 (2007)]. There is today no consensus regarding the basic driving mechanism. We here propose it to be a plasma dynamo, located in the neutral gas torus of Enceladus but coupled both inwards, through electric currents along the magnetic field lines down to the planet, and outwards through the plasma flow pattern there. Such a dynamo mechanism is shown to self-regulate towards a state that, with realistic parameters, can reproduce the observed configuration of the magnetosphere. This state is characterized by three quantities: the Pedersen conductivity in the polar cap, the ionization time constant in the neutral gas torus, and a parameter characterizing the plasma flow pattern. A particularly interesting property of the dynamo is that regular (i.e., constant-amplitude, sinusoidal) variations in the last parameter can lead to complicated, non-periodic, oscillations around the steady-state configuration.

  14. Large-Scale Mini-Magnetosphere Plasma Propulsion (M2P2) Experiments

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Slough, J.; Ziemba, T.; Euripides, P.; Adrian, M. L.; Gallagher, D.; Craven, P.; Tomlinson, W.; Cravens, J.; Burch, J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Mini-Magnetosphere Plasma Propulsion (M2P2) is an innovative plasma propulsion system that has the potential to propel spacecraft at unprecedented speeds of 50 to 80 km per second with a low-power requirement of approx. 1 kW per 100 kg of payload and approx. 1 kg of neutral gas [fuel] consumption per day of acceleration. Acceleration periods from several days to a few months are envisioned. High specific impulse and efficiency are achieved through coupling of the spacecraft to the 400 km per second solar wind through an artificial magnetosphere. The mini-magnetosphere or inflated magnetic bubble is produced by the injection of cold dense plasma into a spacecraft-generated magnetic field envelope. Magnetic bubble inflation is driven by electromagnetic processes thereby avoiding the material and deployment problems faced by mechanical solar sail designs, Here, we present the theoretical design of M2P2 as well as initial results from experimental testing of an M2P2 prototype demonstrating: 1) inflation of the dipole magnetic field geometry through the internal injection of cold plasma; and 2) deflection of and artificial solar wind by the prototype M2P2 system. In addition, we present plans for direct laboratory measurement of thrust imparted to a prototype M2P2 by an artificial solar wind during the summer of 2001.

  15. Large-Scale Mini-Magnetosphere Plasma Propulsion (M2P2) Experiments

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Slough, J.; Ziemba, T.; Euripides, P.; Gallagher, D.; Craven, P.; Adrian, M. L.; Tomlinson, W.; Cravens, J.; Burch, J.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Mini-Magnetosphere Plasma Propulsion (M2P2) is an innovative plasma propulsion system that has the potential to propel spacecraft at unprecedented speeds of 50 to 80 km/s, with a low power requirement of approx. 1 kW per 100 kg of payload and -1 kg of neutral gas [fuel] consumption per day of acceleration. Acceleration periods from several days to a few months are envisioned. High specific impulse and efficiency are achieved through coupling of the spacecraft to the 400 km/s. solar wind through an artificial magnetosphere. The mini-magnetosphere or inflated magnetic bubble is produced by the injection of cold dense plasma into a spacecraft-generated magnetic field envelope. Magnetic bubble inflation is driven by electromagnetic processes thereby avoiding the material and deployment problems faced by mechanical solar sail designs. Here, we present the theoretical design of M2P2 as well as initial results from experimental testing of an M2P2 prototype demonstrating: 1) inflation of the dipole magnetic field geometry through the internal injection of cold plasma; and 2) deflection of and artificial solar wind by the prototype M2P2 system. In addition, we present plans for direct laboratory measurement of thrust imparted to a prototype M2P2 by an artificial solar wind during the summer of 2001.

  16. AMPS sciences objectives and philosophy. [Atmospheric, Magnetospheric and Plasmas-in-Space project on Spacelab

    NASA Technical Reports Server (NTRS)

    Schmerling, E. R.

    1975-01-01

    The Space Shuttle will open a new era in the exploration of earth's near-space environment, where the weight and power capabilities of Spacelab and the ability to use man in real time add important new features. The Atmospheric, Magnetospheric, and Plasmas-in-Space project (AMPS) is conceived of as a facility where flexible core instruments can be flown repeatedly to perform different observations and experiments. The twin thrusts of remote sensing of the atmosphere below 120 km and active experiments on the space plasma are the major themes. They have broader implications in increasing our understanding of plasma physics and of energy conversion processes elsewhere in the universe.

  17. Effect of the ponderomotive force caused by Alfvén waves on a background plasma in the dayside magnetosphere

    NASA Astrophysics Data System (ADS)

    Nekrasov, A. K.; Feygin, F. Z.

    2016-07-01

    The effect of the ponderomotive force on the background plasma modification near magnetic holes, which form at the dayside magnetospheric boundary under the action of the solar wind, has been studied. It was shown that this effect results in a substantial increase in a nonlinear plasma density disturbance. The dependence of the ponderomotive force on the magnetospheric parameters (the magnetic longitude, distance from the Earth's surface, ratio of the wave frequency to the proton gyrofrequency, and ionospheric ion cyclotron wave amplitude) has been studied. Nonlinear plasma density disturbances will be maximal in the region of magnetic holes, which are located in the dayside magnetosphere at λ ~ 0°-30° geomagnetic longitudes (λ = 0° corresponds to noon), where the effect of the solar wind pressure is maximal. A similar effect is also observed in the dependence of a nonlinear plasma density disturbance on other magnetospheric parameters.

  18. RPWS Cold Plasma Results from the Inner Magnetosphere of Saturn - dust-plasma interaction near the E-ring?

    NASA Astrophysics Data System (ADS)

    Wahlund, J.; Boström, R.; Eriksson, A. I.; Gustafsson, G.; Modolo, R.; Morooka, M. W.; Averkamp, T. F.; Gurnett, D. A.; Hospodarsky, G. B.; Kurth, W. S.; Jacobsen, K. S.; Pedersen, A.; Hoegy, W. R.

    2006-12-01

    We present new results indicating that the negatively charged E-ring ice-dust inside 6 RS couples electro- dynamically to the dense cold plasma in the inner magnetosphere of Saturn. The measurements by the Radio and Plasma Wave Science (RPWS) on board the Cassini spacecraft, in particular by the Langmuir probe, determine continuously the cold plasma characteristics of the inner magnetosphere. Typical values reveal a cold plasma component (Te~0.5-5 eV, Ti < few eV) near the ring plane with densities near 100 cm-3 and dominated by water group ions. The moon Enceladus and the E-ring are probable sources for this plasma (after ionization of the water rich gas). Langmuir probe voltage sweeps indicate that the cold plasma rotates around Saturn with a speed significantly less than co-rotation. New interferometer results based on density inhomogeneities in the plasma suggest that there are two ion components associated with this flow. One has a low temperature (Ti < 5 eV) and is trapped around the few volts negatively charged ice grains and therefore moves with a near Keplerian speed around Saturn. The other is a hotter ion population (Ti > 5 eV) that has been picked-up by co-rotational induced electric field and therefore co-rotates with Saturn. Parameter estimates suggests that a large part of the E-ring interacts with the plasma disk as true dusty plasma.

  19. Gamma-ray bursts from magnetospheric plasma oscillations. II - Model spectra

    NASA Technical Reports Server (NTRS)

    Melia, Fulvio

    1990-01-01

    Several mechanisms for the primary release of energy in gamma-ray bursts (GRBs) may result in the excitation of relativistic, magnetospheric plasma oscillations above the polar cap of a neutron star. This paper presents a survey of detailed calculations of the inverse Compton scattering interaction between the sinusoidally accelerated particles in relativistic, magnetospheric plasma oscillations and the self-consistently determined thermal radiation from the stellar surface. The upscattered photons are boosted to gamma-ray energies and a Monte Carlo simulation is used to obtain the spectrum for different viewing angles relative to the magnetic field in the oscillating region. It is shown that several GRB spectral characteristics may be understood in the context of a model wherein the overall spectrum changes with aspect angle as a result of the superposition of four components with different angular distributions.

  20. Ion cyclotron heating experiments in magnetosphere plasma device RT-1

    SciTech Connect

    Nishiura, M. Yoshida, Z.; Yano, Y.; Kawazura, Y.; Saitoh, H.; Yamasaki, M.; Mushiake, T.; Kashyap, A.; Takahashi, N.; Nakatsuka, M.; Fukuyama, A.

    2015-12-10

    The ion cyclotron range of frequencies (ICRF) heating with 3 MHz and ∼10 kW is being prepared in RT-1. The operation regime for electron cyclotron resonance (ECR) heating is surveyed as the target plasmas. ECRH with 8.2 GHz and ∼50 kW produces the plasmas with high energy electrons in the range of a few ten keV, but the ions still remain cold at a few ten eV. Ion heating is expected to access high ion beta state and to change the aspect of plasma confinement theoretically. The ICRF heating is applied to the target plasma as an auxiliary heating. The preliminary result of ICRF heating is reported.

  1. The Transport of Plasma and Magnetic Flux in Giant Planet Magnetospheres

    NASA Astrophysics Data System (ADS)

    Russell, C. T.

    2013-05-01

    Both Jupiter and Saturn have moons that add significant quantities of neutrals and/or dust beyond geosynchronous orbit. This material becomes charged and interacts with the planetary plasma that is "orbiting" the planets at near corotational speeds, driven by the planetary ionospheres. Since this speed is greater than the keplerian orbital speed at these distances, the net force on the newly added charged mass is outward. The charged material is held in place by the magnetic field which stretches to the amount needed to balance centripetal and centrifugal forces. The currents involved in this process close in the ionosphere which is an imperfect conductor and the feet of the field lines hence slip poleward and the material near the equator moves outward. This motion allows the magnetosphere to divest itself of the added mass by transferring it to the magnetotail. The magnetotail in turn can rid itself of the newly added mass by the process of reconnection, interior to the region of added mass, freeing an island of magnetized plasma which then moves down the magnetotail no longer connected to the magnetosphere. This maintains a quasi-stationary conservation of mass in the magnetosphere with roughly constant mass and "periodic" disturbances. However, there is one other steady state the magnetosphere needs to maintain. It needs to replace the mass loaded flux tubes with emptied flux tubes. Thus the "emptied" flux tubes in the tail must move inward against the outgoing mass-loaded flux tubes. That they are buoyant is a help in this regard but it appears also to be helpful if the returning flux separates into thin flux tubes, just like air bubbles rising in a container with a leak in the bottom. In this way the magnetospheres of Jupiter and Saturn maintain their dynamic, steady-state convection patterns.

  2. Interaction between whistler waves and ion-cyclotron waves in magnetospheric plasma

    SciTech Connect

    Taranenko, Y.N.; Chmyrev, V.M.

    1986-11-01

    The authors have analyzed accurate solutions of a system of abbreviated equations which describe the decay interaction of whistler waves with ion-cyclotron waves in magnetospheric plasma. The equations allow for longitudinal and transverse drift of wave packets. As a result of this analysis, they show that the modulation period of a whistle which is received near the earth's surface is determined by the velocity of the ion-cyclotron waves and by the magnitude of the initial signal amplitude.

  3. Expectations of BepiColombo MMO: Space plasma physics of the Hermean magnetosphere

    NASA Astrophysics Data System (ADS)

    Fujimoto, M.; Murakami, G.

    2015-12-01

    Little had been known about the Hermean magnetosphere until MESSENGER explored the region. The region is formed as the weak planetary magnetic field stands against the intense solar wind in the close proximity of the Sun. Various prediction had been given by noting the difference in the parameters from the well-studied terrestiral magnetosphere of a similar setting and scaling the well-knowns to the Hermean environment. MESSENGER results, however, show a wide varieity of phenomena that are out of the scope of what one could have reasonably argued. The micro-magnetosphere of Mercury is much more dynamic than one had predicted. BepiColombo MMO, the JAXA spacecraft of the BepiColombo Mercury exploration mission, is equipped to study the space environment of the planet Mercury. Being a spinning spacecraft, BepiColombo MMO has much less constraint for plasma observations and is expected to extract essential elements of space plasma physics that become visible in the Hermean environment. Here we review MESSENGER results and how MMO will contribute to deepen our understanding of space plasmas by addressing the puzzles raised by MESSEGNER.

  4. Plasma convection in the nightside magnetosphere of Saturn determined from energetic ion anisotropies

    NASA Astrophysics Data System (ADS)

    Kane, M.; Mitchell, D. G.; Carbary, J. F.; Krimigis, S. M.

    2014-02-01

    The Cassini Ion and Neutral Camera measures intensities of hydrogen and oxygen ions and neutral atoms in the Saturnian magnetosphere and beyond. We use the measured intensity spectrum and anisotropy of energetic hydrogen and oxygen ions to detect, qualify, and quantify plasma convection. We find that the plasma azimuthal convection speed relative to the local rigid corotation speed decreases with radial distance, lagging the planetary rotation rate, and has no significant local time dependences. Plasma in the dusk-midnight quadrant sub-corotates at a large fraction of the rigid corotation speed, with the primary velocity being azimuthal but with a distinct radially outward component. The duskside velocities are similar to those obtained from earlier orbits in the midnight-dawn sector, in contrast to the depressed velocities measured at Jupiter using Energetic Particles Detector measurements on the Galileo spacecraft in the dusk-midnight quadrant. We find significant radial outflow in most of the nightside region. The radial component of the flow decreases with increasing local time in the midnight-dawn sector and reverses as dawn is approached. This and previous results are consistent with a plasma disk undergoing a centrifugally induced expansion as it emerges into the nightside, while maintaining partial rotation with the planet. The magnetodisk expansion continues as plasma rotates across the tail to the dawnside. We do not see evidence in the convection pattern for steady state reconnection in Saturn's magnetotail. The outermost region of the magnetodisk, having undergone expansion upon emerging from the dayside magnetopause confinement, is unlikely to recirculate back into the dayside. We conclude that plasma in the outer magnetodisk [at either planet] rotates from the dayside, expands at the dusk flank, but remains magnetically connected to the respective planet while moving across the tail until it interacts with and is entrained into the dawnside

  5. Magnetosphere-ionosphere interactions: Near Earth manifestations of the plasma universe

    NASA Technical Reports Server (NTRS)

    Faelthammar, Carl-Gunne

    1986-01-01

    As the universe consists almost entirely of plasma, the understanding of astrophysical phenomena must depend critically on the understanding of how matter behaves in the plasma state. In situ observations in the near Earth cosmical plasma offer an excellent opportunity of gaining such understanding. The near Earth cosmical plasma not only covers vast ranges of density and temperature, but is the site of a rich variety of complex plasma physical processes which are activated as a results of the interactions between the magnetosphere and the ionosphere. The geomagnetic field connects the ionosphere, tied by friction to the Earth, and the magnetosphere, dynamically coupled to the solar wind. This causes an exchange of energy an momentum between the two regions. The exchange is executed by magnetic-field-aligned electric currents, the so-called Birkeland currents. Both directly and indirectly (through instabilities and particle acceleration) these also lead to an exchange of plasma, which is selective and therefore causes chemical separation. Another essential aspect of the coupling is the role of electric fields, especially magnetic field aligned (parallel) electric fields, which have important consequences both for the dynamics of the coupling and, especially, for energization of charged particles.

  6. Average patterns of precipitation and plasma flow in the plasma sheet flux tubes during steady magnetospheric convection

    NASA Technical Reports Server (NTRS)

    Sergeev, V. A.; Lennartsson, W.; Pellinen, R.; Vallinkoski, M.; Fedorova, N. I.

    1990-01-01

    Average patterns of plasma drifts and auroral precipitation in the nightside auroral zone were constructed during a steady magnetospheric convection (SMC) event on February 19, 1978. By comparing these patterns with the measurements in the midtail plasma sheet made by ISEE-1, and using the corresponding magnetic field model, the following features are inferred: (1) the concentration of the earthward convection in the midnight portion of the plasma sheet (convection jet); (2) the depleted plasma energy content of the flux tubes in the convection jet region; and (3) the Region-1 field-aligned currents generated in the midtail plasma sheet. It is argued that these three elements are mutually consistent features appearing in the process of ionosphere-magnetosphere interaction during SMC periods. These configurational characteristics resemble the corresponding features of substorm expansions (enhanced convection and 'dipolarized' magnetic field within the substorm current wedge) and appear to play the same role in regulating the plasma flow in the flux tubes connected to the plasma sheet.

  7. Magnetic Dipole Inflation with Cascaded ARC and Applications to Mini-Magnetospheric Plasma Propulsion

    NASA Technical Reports Server (NTRS)

    Giersch, L.; Winglee, R.; Slough, J.; Ziemba, T.; Euripides, P.

    2003-01-01

    Mini-Magnetospheric Plasma Propulsion (M2P2) seeks to create a plasma-inflated magnetic bubble capable of intercepting significant thrust from the solar wind for the purposes of high speed, high efficiency spacecraft propulsion. Previous laboratory experiments into the M2P2 concept have primarily used helicon plasma sources to inflate the dipole magnetic field. The work presented here uses an alternative plasma source, the cascaded arc, in a geometry similar to that used in previous helicon experiments. Time resolved measurements of the equatorial plasma density have been conducted and the results are discussed. The equatorial plasma density transitions from an initially asymmetric configuration early in the shot to a quasisymmetric configuration during plasma production, and then returns to an asymmetric configuration when the source is shut off. The exact reasons for these changes in configuration are unknown, but convection of the loaded flux tube is suspected. The diffusion time was found to be an order of magnitude longer than the Bohm diffusion time for the period of time after the plasma source was shut off. The data collected indicate the plasma has an electron temperature of approximately 11 eV, an order of magnitude hotter than plasmas generated by cascaded arcs operating under different conditions. In addition, indirect evidence suggests that the plasma has a beta of order unity in the source region.

  8. Rice Convection Model Simulation of Injection of an Observed Plasma Bubble Into the Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Wolf, R. A.; Zhang, J.; Erickson, G. M.; Toffoletto, F. R.; Yang, J.

    2008-12-01

    An RCM simulation has been carried out for the growth and early expansion phase of a substorm that occurred on July 22, 1998. This is the first substorm simulation for which the RCM boundary conditions and the inputted magnetic field model have been carefully tailored for consistency with measurements made in the inner plasma sheet during the event (Geotail near X=-9, Y=0 in GSM coordinates). The simulation focuses on the injection into the inner magnetosphere of a bubble (region with low specific entropy) that was observed by Geotail. Potential and inductive contributions to the magnetospheric electric field are both important, and their patterns are compared and discussed. One preliminary conclusion from the simulation is that the bubble drifts in a channel that narrows as it approaches the inner magnetosphere, which results in a plasma-sheet inner edge that resembles the injection boundary proposed many years ago by Carl McIlwain. The corresponding distinctive pattern in the auroral electric field is compared with published substorm observations. The model also predicts a distinctive substorm-onset-associated prompt-penetration electric field in the low- and mid-latitude ionosphere.

  9. Evidence of m = 1 density mode (plasma cam) in Saturn's rotating magnetosphere

    NASA Astrophysics Data System (ADS)

    Goldstein, J.; Waite, J. H.; Burch, J. L.; Livi, R.

    2016-03-01

    Cassini field and plasma data measured in the rotating Saturn Longitude System 3 (SLS3) coordinate system show positive evidence of structure whose dominant azimuthal wave number is m = 1: a long-lived, nonaxisymmetric, cam-shaped, global plasma distribution in Saturn's magnetosphere. Previous studies have identified evidence of this plasma cam in wave-derived electron density data and in Cassini Plasma Spectrometer (CAPS) W+ ion counts data. In this paper we report the first comprehensive analysis of CAPS ion moments data to identify the m = 1 density cam. We employ a multiyear, multispecies database of 685,678 CAPS density values, binned into a 1 RS by 4.8° discretized grid, spanning 4-19 RS. Fourier (harmonic) analysis shows that at most radial distances the dominant azimuthal mode is m = 1, for both W+ and H+ ion distributions. The majority (63%) of m = 1 ion peaks are clustered in an SLS3 quadrant centered at 330°. The plasma cam's existence has important implications for the global interchange-driven convection cycle and is a clue to solving the mystery of the rotational periodicities in Saturn's magnetosphere.

  10. Radial energy transport by magnetospheric ULF waves: Effects of magnetic curvature and plasma pressure

    NASA Technical Reports Server (NTRS)

    Kouznetsov, Igor; Lotko, William

    1995-01-01

    The 'radial' transport of energy by internal ULF waves, stimulated by dayside magnetospheric boundary oscillations, is analyzed in the framework of one-fluid magnetohydrodynamics. (the term radial is used here to denote the direction orthogonal to geomagnetic flux surfaces.) The model for the inhomogeneous magnetospheric plasma and background magnetic field is axisymmetric and includes radial and parallel variations in the magnetic field, magnetic curvature, plasma density, and low but finite plasma pressure. The radial mode structure of the coupled fast and intermediate MHD waves is determined by numerical solution of the inhomogeneous wave equation; the parallel mode structure is characterized by a Wentzel-Kramer-Brillouin (WKB) approximation. Ionospheric dissipation is modeled by allowing the parallel wave number to be complex. For boudnary oscillations with frequencies in the range from 10 to 48 mHz, and using a dipole model for the background magnetic field, the combined effects of magnetic curvature and finite plasma pressure are shown to (1) enhance the amplitude of field line resonances by as much as a factor of 2 relative to values obtained in a cold plasma or box-model approximation for the dayside magnetosphere; (2) increase the energy flux delivered to a given resonance by a factor of 2-4; and (3) broaden the spectral width of the resonance by a factor of 2-3. The effects are attributed to the existence of an 'Alfven buoyancy oscillation,' which approaches the usual shear mode Alfven wave at resonance, but unlike the shear Alfven mode, it is dispersive at short perpendicular wavelengths. The form of dispersion is analogous to that of an internal atmospheric gravity wave, with the magnetic tension of the curved background field providing the restoring force and allowing radial propagation of the mode. For nominal dayside parameters, the propagation band of the Alfven buoyancy wave occurs between the location of its (field line) resonance and that of the

  11. Plasma in Saturn's Nightside Magnetosphere and the Implications for Global Circulation

    NASA Technical Reports Server (NTRS)

    McAndrews, H.J.; Thomsen, M.F.; Arridge, C.S.; Jackman, C.M.; Wilson, R.J.; Henderson, M.G.; Tokar, R.L.; Khurana, K.K.; Sittler, E. C.; Coates, A.J.; Dougherty, M.K.

    2009-01-01

    We present a bulk ion flow map from the nightside, equatorial region of Saturn's magnetosphere derived from the Cassini CAPS ion mass spectrometer data. The map clearly demonstrates the dominance of corotation flow over radial flow and suggests that the flux tubes sampled are still closed and attached to the planet up to distances of 50RS. The plasma characteristics in the near-midnight region are described and indicate a transition between the region of the magnetosphere containing plasma on closed drift paths and that containing flux tubes which may not complete a full rotation around the planet. Data from the electron spectrometer reveal two plasma states of high and low density. These are attributed either to the sampling of mass-loaded and depleted flux tubes, respectively, or to the latitudinal structure of the plasma sheet. Depleted, returning flux tubes are not, in general, directly observed in the ions, although the electron observations suggest that such a process must take place in order to produce the low-density population. Flux-tube content is conserved below a limit defined by the mass-loading and magnetic field strength and indicates that the flux tubes sampled may survive their passage through the tail. The conditions for mass-release are evaluated using measured densities, angular velocities and magnetic field strength. The results suggest that for the relatively dense ion populations detectable by the ion mass spectrometer (IMS), the condition for flux-tube breakage has not yet been exceeded. However, the low-density regimes observed in the electron data suggest that loaded flux tubes at greater distances do exceed the threshold for mass-loss and subsequently return to the inner magnetosphere significantly depleted of plasma.

  12. Plasma in Saturn's nightside magnetosphere and the implications for global circulation

    SciTech Connect

    Mcandrews, Hazel J; Thomsen, Michelle F; Wilson, Robert J; Henderson, Michael G; Tokar, Robert L; Arridge, Chris S; Khurana, Krishan K; Sittler, Edward C; Coates, Andrew J; Dougherty, Michele K

    2008-01-01

    We present a bulk ion flow map from the nightside, equatorial region of Saturn's magnetosphere derived from the Cassini CAPS ion mass spectrometer data. The map clearly demonstrates the dominance of corotation flow over radial flow and suggests that the flux tubes sampled are still closed and attached to the planet up to distances of 50 RS. The plasma characteristics in the near-midnight region are described and indicate a transition between the region of the magnetosphere containing plasma on closed drift paths and that containing flux tubes which may not complete a full rotation around the planet. Data from the electron spectrometer reveal two plasma states of high and low density. These are attributed either to the sampling of mass-loaded and depleted flux tubes, respectively, or to the latitudinal structure of the plasma sheet. Depleted, returning flux tubes are not, in general, directly observed in the ions, although the electron observations suggest that such a process must take place in order to produce the low density population. An example of such a low-density interval containing hot electrons with a dipolarised, swept-forward field configuration is described and strongly suggests that reconnection must have occurred planetward of Cassini. Flux tube content is conserved below a limit defined by the mass-loading and magnetic field strength and indicates that the flux tubes sampled may survive their passage through the tail. The conditions for mass release are evaluated using measured densities, angular velocities and magnetic field strength. The results suggest that for the relatively dense ion populations detectable by IMS, the condition for flux-tube breakage has not yet been exceeded. However, the low-density regimes observed in the electron data suggest that loaded flux tubes at greater distances do exceed the threshold for mass loss and subsequently return to the inner magnetosphere significantly depleted of plasma.

  13. Plasma in Saturn's nightside magnetosphere and the implications for global circulation

    SciTech Connect

    Mcandrews, Hazel J; Wilson, R J; Henderson, M G; Tokar, R L; Jackman, C M; Khurana, K K; Sittler, E C; Dougherty, M K

    2009-01-01

    We present a bulk ion flow map from the nightside equatorial region of Saturn's magnetosphere derived from the Cassini CAPS ion mass spectrometer data. The map clearly demonstrates the dominance of corotation flow over radial flow and suggests that the flux tubes sampled are still closed and attached to the planet up to distances of 50 R{sub s}. The plasma characteristics in the near-midnight region are described and indicate a transition between the region of the magnetosphere containing plasma on closed drift paths and that containing flux tubes which may not complete a full rotation around the planet. Data from the electron spectrometer reveal two plasma states of high and low density. These are attributed either to the sampling of mass-loaded and depleted flux tubes, respectively, or to the latitudinal structure of the plasma sheet Depleted, returning flux tubes are not, in general, directly observed in the ions, although the electron observations suggest that such a process must take place in order to produce the low density population. Flux tube content is conserved below a limIt defined by the mass-loading and magnetic field strength and indicates that the flux tubes sampled may survive their passage through the tail. The conditions for mass release are evaluated using measured densities, angular velocities and magnetic field strength, The results suggest that for the relatively dense ion populations detectable by IMS, the condition for flux-tube breakage has not yet been exceeded, However, the low-density regimes observed in the electron data suggest that loaded flux tubes at greater distances do exceed the threshold for mass loss and subsequently return to the inner magnetosphere significantly depleted of plasma.

  14. Variable frequency VLF signals in the magnetosphere Associated phenomena and plasma diagnostics

    NASA Technical Reports Server (NTRS)

    Carlson, C. R.; Helliwell, R. A.; Carpenter, D. L.

    1985-01-01

    Coherent variable-frequency signals (ramps) extending from 1 to 8 kHz, injected into the magnetosphere from Siple Station, Antarctica (L=4.3), exhibit upper and lower cutoffs when received at the conjugate station, Roberval, Quebec. Ramp group delay measurements and ionospheric sounding data are used to determine the cold plasma density and L shell of the propagation path. Relationships among f, df/dt, and the 'phase equator' for gyroresonance are calculated using second-order resonance equations generalized to relativistic electrons. The concept thereby introduced is used to develop a diagnostic technique which, for an assumed g(alpha)(v exp -n) electron distribution, provides an estimate of the energy dependence n. Additional aspects of the magnetospheric response to ramp injection, such as emission triggering, curvature due to dispersion, and amplitude saturation, are discussed.

  15. Theories of radio emissions and plasma waves. [in Jupiter magnetosphere

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.; Goertz, C. K.

    1983-01-01

    The complex region of Jupiter's radio emissions at decameter wavelengths, the so-called DAM, is considered, taking into account the basic theoretical ideas which underly both the older and newer theories and models. Linear theories are examined, giving attention to direct emission mechanisms, parallel propagation, perpendicular propagation, and indirect emission mechanisms. An investigation of nonlinear theories is also conducted. Three-wave interactions are discussed along with decay instabilities, and three-wave up-conversio. Aspects of the Io and plasma torus interaction are studied, and a mechanism by which Io can accelerate electrons is reviewed.

  16. Electrostatic ion-cyclotron waves in magnetospheric plasmas Nonlocal aspects

    NASA Technical Reports Server (NTRS)

    Ganguli, G.; Bakshi, P.; Palmadesso, P.

    1984-01-01

    The importance of the effect of the magnetic shear and the finite size of current channel on the electrostatic ion-cyclotron instability for the space plasmas is illustrated. A non-local treatment is used. When the channel width Lc, is larger than the shear length Ls, there is a large reduction in the growth rate along with a noteworthy reduction of the band of the unstable perpendicular wavelengths. For Lc less than or = Ls/10 the growth rate is not much altered from its local value, however for Lc/pi i less than or = 10 to the second power the growth rate starts falling below the local value and vanishes for Lc pi i. The non-local effects lead to enhanced coherence in the ion cyclotron waves. Previously announced in STAR as N84-14917

  17. A Model for Plasma Transport in a Corotation-Dominated Magnetosphere.

    NASA Astrophysics Data System (ADS)

    Pontius, Duane Henry, Jr.

    1988-06-01

    The gross structures of the magnetospheres of the outer planets are decided by processes quite different from those predominant in that of the earth. The terrestrial plasmapause, the boundary beyond which plasma motion is principally determined by magnetospheric interaction with the solar wind, is typically inside geosynchronous orbit. Within the plasmasphere, rotational effects are present, but gravity exceeds the centrifugal force of corotation. In contrast, the Jovian plasmasphere extends to a distance at least twenty times farther than synchronous orbit, affording a large region where rotational effects are expected to he clearly manifest (Brice and Ioannidis, 1970). The goal of this thesis is to develop an appropriate theoretical model for treating the problem of plasma transport in a corotation dominated plasmasphere. The model presented here is intended to describe the radial transport of relatively cold plasma having an azimuthally uniform distribution in a dipolar magnetic field. The approach is conceptually similar to that of the radial diffusion model in that small scale motions are examined to infer global consequences, but the physical understanding of those small scale motions is quite different. In particular, discrete flux tubes of small cross section are assumed to move over distances large compared to their widths. The present model also differs from the corotating convection model by introducing a mechanism whereby the conservation of flux tube content along flowlines is violated. However, it is quite possible that a global convection pattern co -exists with the motions described here, leading to longitudinal asymmetries in the plasma distribution.

  18. Planetary magnetospheres

    NASA Technical Reports Server (NTRS)

    Stern, D. P.; Ness, N. F.

    1981-01-01

    A concise overview is presented of our understanding of planetary magnetospheres (and in particular, of that of the Earth), as of the end of 1981. Emphasis is placed on processes of astrophysical interest, e.g., on particle acceleration, collision-free shocks, particle motion, parallel electric fields, magnetic merging, substorms, and large scale plasma flows. The general morphology and topology of the Earth's magnetosphere are discussed, and important results are given about the magnetospheres of Jupiter, Saturn and Mercury, including those derived from the Voyager 1 and 2 missions and those related to Jupiter's satellite Io. About 160 references are cited, including many reviews from which additional details can be obtained.

  19. Magnetospheres of black hole systems in force-free plasma

    SciTech Connect

    Palenzuela, Carlos; Garrett, Travis; Lehner, Luis; Liebling, Steven L.

    2010-08-15

    The interaction of black holes with ambient magnetic fields is important for a variety of highly energetic astrophysical phenomena. We study this interaction within the force-free approximation in which a tenuous plasma is assumed to have zero inertia. Blandford and Znajek used this approach to demonstrate the conversion of some of the black hole's energy into electromagnetic Poynting flux in stationary and axisymmetric single black hole systems. We adopt this approach and extend it to examine asymmetric and, most importantly, dynamical systems by implementing the fully nonlinear field equations of general relativity coupled to Maxwell's equations. For single black holes, we study, in particular, the dependence of the Poynting flux and show that, even for misalignments between the black hole spin and the direction of the asymptotic magnetic field, a Poynting flux is generated with a luminosity dependent on such misalignment. For binary black hole systems, we show both in the head-on and orbiting cases that the moving black holes generate a Poynting flux.

  20. Inner Magnetospheric Superthermal Electron Transport: Photoelectron and Plasma Sheet Electron Sources

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Liemohn, M. W.; Kozyra, J. U.; Moore, T. E.

    1998-01-01

    Two time-dependent kinetic models of superthermal electron transport are combined to conduct global calculations of the nonthermal electron distribution function throughout the inner magnetosphere. It is shown that the energy range of validity for this combined model extends down to the superthermal-thermal intersection at a few eV, allowing for the calculation of the en- tire distribution function and thus an accurate heating rate to the thermal plasma. Because of the linearity of the formulas, the source terms are separated to calculate the distributions from the various populations, namely photoelectrons (PEs) and plasma sheet electrons (PSEs). These distributions are discussed in detail, examining the processes responsible for their formation in the various regions of the inner magnetosphere. It is shown that convection, corotation, and Coulomb collisions are the dominant processes in the formation of the PE distribution function and that PSEs are dominated by the interplay between the drift terms. Of note is that the PEs propagate around the nightside in a narrow channel at the edge of the plasmasphere as Coulomb collisions reduce the fluxes inside of this and convection compresses the flux tubes inward. These distributions are then recombined to show the development of the total superthermal electron distribution function in the inner magnetosphere and their influence on the thermal plasma. PEs usually dominate the dayside heating, with integral energy fluxes to the ionosphere reaching 10(exp 10) eV/sq cm/s in the plasmasphere, while heating from the PSEs typically does not exceed 10(exp 8) eV/sq cm/s. On the nightside, the inner plasmasphere is usually unheated by superthermal electrons. A feature of these combined spectra is that the distribution often has upward slopes with energy, particularly at the crossover from PE to PSE dominance, indicating that instabilities are possible.

  1. Propagation of small size magnetic holes in the magnetospheric plasma sheet

    NASA Astrophysics Data System (ADS)

    Yao, S. T.; Shi, Q. Q.; Li, Z. Y.; Wang, X. G.; Tian, A. M.; Sun, W. J.; Hamrin, M.; Wang, M. M.; Pitkänen, T.; Bai, S. C.; Shen, X. C.; Ji, X. F.; Pokhotelov, D.; Yao, Z. H.; Xiao, T.; Pu, Z. Y.; Fu, S. Y.; Zong, Q. G.; De Spiegeleer, A.; Liu, W.; Zhang, H.; Rème, H.

    2016-06-01

    Magnetic holes (MHs), characteristic structures where the magnetic field magnitude decreases significantly, have been frequently observed in space plasmas. Particularly, small size magnetic holes (SSMHs) which the scale is less than or close to the proton gyroradius are recently detected in the magnetospheric plasma sheet. In this study of Cluster observations, by the timing method, the minimum directional difference (MDD) method, and the spatiotemporal difference (STD) method, we obtain the propagation velocity of SSMHs in the plasma flow frame. Furthermore, based on electron magnetohydrodynamics (EMHD) theory we calculate the velocity, width, and depth of the electron solitary wave and compare it to SSMH observations. The result shows a good accord between the theory and the observation.

  2. Rhea’s interaction with Saturn’s magnetosphere: Evidence for a plasma source

    NASA Astrophysics Data System (ADS)

    Jones, G. H.; Roussos, E.; Coates, A. J.; Arridge, C. S.; Kanani, S. J.; Young, D. T.; Krupp, N.; Krimigis, S. M.; Baragiola, R. A.; Berthelier, J.; Burger, M. H.; Cooper, J. F.; Crary, F. J.; Johnson, R. E.; Martens, H. R.; Reisenfeld, D. B.; Tokar, R. L.; Wilson, R. J.

    2009-12-01

    Rhea is Saturn’s second-largest moon, and orbits at 8.7 Saturn radii from the planet. The moon is continuously bombarded by magnetospheric plasma: the absorption of thermal plasma that overtakes Rhea in its orbit results in the formation of an upstream plasma wake. High energy electron dropouts - microsignatures, caused by the absorption of more energetic particles by the moon, are also observed. The unusually broad electron microsignatures observed near the moon are suggested to be evidence for the existence of a debris disk orbiting the moon (Jones et al. 2008). We present our current state of knowledge of the Rhea-magnetosphere interaction, based on data obtained by the Cassini CAPS and MIMI instruments during the spacecraft’s two closest encounters with the moon to date, on November 26, 2005, and August 30, 2007. We report on the detection of pickup ions at the moon by the CAPS instrument. This detection agrees with the results of Martens et al. (2008), who previously reported an enhancement in molecular oxygen ion distributions at the L shell of Rhea. We also summarize expectations for the upcoming close encounter on March 2, 2010.

  3. Low energy magnetospheric plasma interactions with space systems: The role of predictions. [spacecraft charging

    NASA Technical Reports Server (NTRS)

    Garrett, H. B.

    1979-01-01

    The present status of low energy magnetospheric plasma interactions with space systems is reviewed. The role of predictions in meeting user needs in assessing the impact of such interactions is described. In light of the perceived needs of the user community and of the current status of modeling and prediction efforts, it is suggested that for most user needs more detailed statistical models of the low energy environment are required. In order to meet current prediction requirements, real-time in situ measurements are proposed as a near-term solution.

  4. A multi-satellite study of the nature of wavelike structures in the magnetospheric plasma

    NASA Technical Reports Server (NTRS)

    Shelley, E. G.

    1974-01-01

    An intercomparison is made of the wavelike structures in the data from the light ion mass spectrometer and the fluxgate magnetometer on OGO 5. The wavelike structures appear simultaneously in the data from both experiments. The waves contain both transverse and compressional modes and exhibit periods of 100 to 200 seconds. The waves are usually observed outside the plasmapause and are located primarily on the dayside of the magnetosphere. One possible cause of the apparent density fluctuation is a velocity modulation of the thermal plasma which causes the particles to drift into and out of the ion spectrometer.

  5. Phase A conceptual design study of the Atmospheric, Magnetospheric and Plasmas in Space (AMPS) payload

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The 12 month Phase A Conceptual Design Study of the Atmospheric, Magnetospheric and Plasmas in Space (AMPS) payload performed within the Program Development Directorate of the Marshall Space Flight Center is presented. The AMPS payload makes use of the Spacelab pressurized module and pallet, is launched by the space shuttle, and will have initial flight durations of 7 days. Scientific instruments including particle accelerators, high power transmitters, optical instruments, and chemical release devices are mounted externally on the Spacelab pallet and are controlled by the experimenters from within the pressurized module. The capability of real-time scientist interaction on-orbit with the experiment is a major characteristic of AMPS.

  6. Pulsars Magnetospheres

    NASA Technical Reports Server (NTRS)

    Timokhin, Andrey

    2012-01-01

    Current density determines the plasma flow regime. Cascades are non-stationary. ALWAYS. All flow regimes look different: multiple components (?) Return current regions should have particle accelerating zones in the outer magnetosphere: y-ray pulsars (?) Plasma oscillations in discharges: direct radio emission (?)

  7. Los Alamos NEP research in advanced plasma thrusters

    NASA Technical Reports Server (NTRS)

    Schoenberg, Kurt; Gerwin, Richard

    1991-01-01

    Research was initiated in advanced plasma thrusters that capitalizes on lab capabilities in plasma science and technology. The goal of the program was to examine the scaling issues of magnetoplasmadynamic (MPD) thruster performance in support of NASA's MPD thruster development program. The objective was to address multi-megawatt, large scale, quasi-steady state MPD thruster performance. Results to date include a new quasi-steady state operating regime which was obtained at space exploration initiative relevant power levels, that enables direct coaxial gun-MPD comparisons of thruster physics and performance. The radiative losses are neglible. Operation with an applied axial magnetic field shows the same operational stability and exhaust plume uniformity benefits seen in MPD thrusters. Observed gun impedance is in close agreement with the magnetic Bernoulli model predictions. Spatial and temporal measurements of magnetic field, electric field, plasma density, electron temperature, and ion/neutral energy distribution are underway. Model applications to advanced mission logistics are also underway.

  8. Los Alamos research in nozzle based coaxial plasma thrusters

    NASA Technical Reports Server (NTRS)

    Scheuer, Jay; Schoenberg, Kurt; Gerwin, Richard; Henins, Ivars; Moses, Ronald, Jr.; Wurden, Glen

    1992-01-01

    The topics are presented in viewgraph form and include the following: research approach; perspectives on efficient magnetoplasmadynamic (MPD) operation; NASA and DOE supported research in ideal magnetohydrodynamic plasma acceleration and flow, electrode phenomena, and magnetic nozzles; and future research directions and plans.

  9. A DE-1/whistler study of the thermal plasma structure and dynamics in the dusk bulge sector of the magnetosphere

    NASA Technical Reports Server (NTRS)

    Carpenter, D. L.

    1992-01-01

    The objective of this research was to obtain new understanding of the thermal plasma structure and dynamics of the plasmasphere bulge region of the magnetosphere, with special emphasis on the erosion process that results in a reduction in plasmasphere size and on the manner in which erosion leads to the presence of patches of dense plasma in the middle and outer afternoon-dusk magnetosphere. Case studies involving data from the DE 1, GEOS 2, and ISEE 1 satellites and from ground whistler stations Siple, Halley, and Kerguelen were used. A copy of the published paper entitled 'A case study of plasma structure in the dusk sector associated with enhanced magnetospheric convection,' is included.

  10. A parametric study of the linear growth of magnetospheric EMIC waves in a hot plasma

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Cao, Xing; Gu, Xudong; Ni, Binbin; Zhou, Chen; Shi, Run; Zhao, Zhengyu

    2016-06-01

    Since electromagnetic ion cyclotron (EMIC) waves in the terrestrial magnetosphere play a crucial role in the dynamic losses of relativistic electrons and energetic protons and in the ion heating, it is important to pursue a comprehensive understanding of the EMIC wave dispersion relation under realistic circumstances, which can shed significant light on the generation, amplification, and propagation of magnetospheric EMIC waves. The full kinetic linear dispersion relation is implemented in the present study to evaluate the linear growth of EMIC waves in a multi-ion (H+, He+, and O+) magnetospheric plasma that also consists of hot ring current protons. Introduction of anisotropic hot protons strongly modifies the EMIC wave dispersion surface and can result in the simultaneous growth of H+-, He+-, and O+-band EMIC emissions. Our parametric analysis demonstrates that an increase in the hot proton concentration can produce the generation of H+- and He+-band EMIC waves with higher possibility. While the excitation of H+-band emissions requires relatively larger temperature anisotropy of hot protons, He+-band emissions are more likely to be triggered in the plasmasphere or plasmaspheric plume where the background plasma is denser. In addition, the generation of He+-band waves is more sensitive to the variation of proton temperature than H+-band waves. Increase of cold heavy ion (He+ and O+) density increases the H+ cutoff frequency and therefore widens the frequency coverage of the stop band above the He+ gyrofrequency, leading to a significant damping of H+-band EMIC waves. In contrast, O+-band EMIC waves characteristically exhibit the temporal growth much weaker than the other two bands, regardless of all considered variables, suggesting that O+-band emissions occur at a rate much lower than H+- and He+-band emissions, which is consistent with the observations.

  11. Relation of plasma sheet flows to different modes of magnetospheric response

    NASA Astrophysics Data System (ADS)

    McPherron, R. L.; Hsu, T.; Kissinger, J.; Angelopoulos, V.

    2009-12-01

    Recent studies have demonstrated that every known type of auroral zone magnetic activity can be associated with flux closure in the magnetotail. These include pseudo breakups, substorms, poleward boundary intensifications, steady magnetospheric convection, and sawtooth injection events. As flux closure is caused by magnetic reconnection we expect that each of these can also be associated with fast flows in the tail. We have scanned magnetic index data during the 2008 and 2009 intervals when the Themis spacecraft passed through the tail (December-May) identifying examples of each type of event. We demonstrate that each mode of magnetospheric response can be associated with plasma flows. We examine the temporal relation of these flows to the onset times of each type of event as determined by a variety of onset signatures. We also describe the spatial distribution and properties of the flows. Since no sawtooth events have been identified in the Themis era we use Geotail plasma data in earlier more disturbed times to study this association.

  12. The inner magnetosphere of Saturn: Cassini RPWS cold plasma results from the first encounter

    NASA Astrophysics Data System (ADS)

    Wahlund, J.-E.; Boström, R.; Gustafsson, G.; Gurnett, D. A.; Kurth, W. S.; Averkamp, T.; Hospodarsky, G. B.; Persoon, A. M.; Canu, P.; Pedersen, A.; Desch, M. D.; Eriksson, A. I.; Gill, R.; Morooka, M. W.; André, M.

    2005-09-01

    We present new results from the inner magnetosphere of Saturn obtained by the Radio and Plasma Wave Science (RPWS) investigation onboard Cassini around the period of the Saturn orbit injection (July 1, 2004). Plasma wave electric field emissions, voltage sweeps by the Langmuir probe (LP) and radio sounder data were used to infer the cold plasma (<100 eV) characteristics within 20 RS of Saturn. A dense (<150 cm-3) and cold (<7 eV) plasma torus was found just outside the visible F-ring. This torus of partly dusty plasma does not perfectly co-rotate with Saturn, which suggests the cold plasma is electro-dynamically coupled to the charged ring-dust particles. The spacecraft potential was a few volts negative above the E- and G-rings, indicating the dust-particles were likewise negatively charged. The cold ion characteristics changed near the magnetically conjugate position of Dione, indicating release of volatile material from this icy moon.

  13. Electron density estimation in cold magnetospheric plasmas with the Cluster Active Archive

    NASA Astrophysics Data System (ADS)

    Masson, A.; Pedersen, A.; Taylor, M. G.; Escoubet, C. P.; Laakso, H. E.

    2009-12-01

    Electron density is a key physical quantity to characterize any plasma medium. Its measurement is thus essential to understand the various physical processes occurring in the environment of a magnetized planet. However, any magnetosphere of the solar system is far from being an homogeneous medium with a constant electron density and temperature. For instance, the Earth’s magnetosphere is composed of a variety of regions with densities and temperatures spanning over at least 6 decades of magnitude. For this reason, different types of scientific instruments are usually carried onboard a magnetospheric spacecraft to estimate in situ the electron density of the various plasma regions crossed by different means. In the case of the European Space Agency Cluster mission, five different instruments on each of its four identical spacecraft can be used to estimate it: two particle instruments, a DC electric field instrument, a relaxation sounder and a high-time resolution passive wave receiver. Each of these instruments has its pros and cons depending on the plasma conditions. The focus of this study is the accurate estimation of the electron density in cold plasma regions of the magnetosphere including the magnetotail lobes (Ne ≤ 0.01 e-/cc, Te ~ 100 eV) and the plasmasphere (Ne> 10 e-/cc, Te <10 eV). In these regions, particle instruments can be blind to low energy ions outflowing from the ionosphere or measuring only a portion of the energy range of the particles due to photoelectrons. This often results in an under estimation of the bulk density. Measurements from a relaxation sounder enables accurate estimation of the bulk electron density above a fraction of 1 e-/cc but requires careful calibration of the resonances and/or the cutoffs detected. On Cluster, active soundings enable to derive precise density estimates between 0.2 and 80 e-/cc every minute or two. Spacecraft-to-probe difference potential measurements from a double probe electric field experiment can be

  14. An EMHD soliton model for small-scale magnetic holes in magnetospheric plasmas

    NASA Astrophysics Data System (ADS)

    Li, Ze-Yu; Sun, Wei-Jie; Wang, Xiao-Gang; Shi, Quan-Qi; Xiao, Chi-Jie; Pu, Zu-Yin; Ji, Xiao-Fei; Yao, Shu-Tao; Fu, Sui-Yan

    2016-05-01

    Small-scale magnetic holes (SSMHs) in the magnetosphere plasma sheet are investigated in this paper. A developed electron magnetohydrodynamics (EMHD) soliton model is proposed as a new approach to SSMHs formation. The Biermann battery effect is taken into account in resolving the magnetic evolution equation with a slow-mode solution in the weak nonlinear regime. Statistical investigation of SSMH observation data in the plasma sheet by Cluster is carried out in comparison with the theory. We apply multispacecraft data for distinguishing sheet-like or cylindrical SSMHs observed and clarified by the solitary wave in the EMHD model. Furthermore, the major parameters, such as amplitude, width, maximum magnetic field perturbation, and perpendicular temperature variation of the SSMHs, are found consistent with the theoretical analysis.

  15. The evolution of high-temperature plasma in magnetar magnetospheres and its implications for giant flares

    SciTech Connect

    Takamoto, Makoto; Kisaka, Shota; Suzuki, Takeru K.; Terasawa, Toshio E-mail: kisaka@post.kek.jp E-mail: terasawa@icrr.u-tokyo.ac.jp

    2014-05-20

    In this paper we propose a new mechanism describing the initial spike of giant flares in the framework of the starquake model. We investigate the evolution of a plasma on a closed magnetic flux tube in the magnetosphere of a magnetar in the case of a sudden energy release, and discuss the relationship with observations of giant flares. We perform one-dimensional, numerical simulations of the relativistic magnetohydrodynamics in Schwarzschild geometry. We assume energy is injected at the footpoints of the loop by a hot star surface containing random perturbations of the transverse velocity. Alfvén waves are generated and propagate upward, accompanying very hot plasma which is also continuously heated by nonlinearly generated compressive waves. We find that the front edges of the fireball regions collide at the top of the tube with their symmetrically launched counterparts. This collision results in an energy release that can describe the light curve of the initial spikes of giant flares.

  16. Research on fission induced plasmas and nuclear pumped lasers at the Los Alamos Scientific Laboratory

    NASA Technical Reports Server (NTRS)

    Helmick, H. H.

    1979-01-01

    A program of research on gaseous uranium and uranium plasmas is being conducted at The Los Alamos Scientific Laboratory under sponsorship of the National Aeronautics and Space Administration. The objective of this work is twofold: (1) to demonstrate the proof of principle of a gaseous uranium fueled reactor, and (2) pursue fundamental research on nuclear pumped lasers. The relevancy of the two parallel programs is embodied in the possibility of a high-performance uranium plasma reactor being used as the power supply for a nuclear pumped laser system. The accomplishments in the two above fields are summarized

  17. Diodelike response of high-latitude plasma in magnetosphere-ionosphere coupling in the presence of field-aligned currents

    NASA Technical Reports Server (NTRS)

    Mitchell, H. G., Jr.; Ganguli, Supriya B.; Palmadesso, P. J.

    1992-01-01

    The dynamic processes in the plasma along high-latitude field lines plays an important role in ionosphere-magnetosphere coupling process. A time-dependent, large-scale simulation of these dynamics parallel to the geomagnetic field lines from the ionosphere well into the magnetosphere is created. The plasma consists of hot e(-) and H(+) of magnetospheric origin and low-energy e(-), H(+), and O(+) of ionospheric origin. Including multiple electron species, a major improvement to the model, made it possible for the first time to simulate the upward current region properly and to dynamically simulate the diodelike response of the field-line plasma to the parallel currents coupling the ionosphere and magnetosphere. It is shown that return currents flow with small resistance, while upward currents produce kilovolt-sized potential drops along the field, as concluded from satellite observations. The kilovolt potential drops are due to the effect of the converging magnetic field on the high-energy magnetospheric electrons.

  18. Seasonal variation and dynamics of Saturn's magnetospheric plasma, after 8 years of Cassini in orbit.

    NASA Astrophysics Data System (ADS)

    Sergis, N.

    2012-12-01

    Saturn orbits the Sun with a period of nearly 29.5 years and has an obliquity of 26.73°. As a result, Saturn presents seasonal variations similar to Earth's, but with much longer seasons, as the tilt between the planet's spin axis and the solar wind vary (approximately sinusoidally) with time between solstices. Saturn was close to its equinox (tilt below 8.1°) during the Pioneer 11 and Voyager 1 and 2 flybys that took place between September 1979 and August 1981, so any seasonal effects would have been relatively hard to see in the limited data from these missions. More than 2 decades later, on July 4, 2004, Cassini began orbiting Saturn, returning a variety of in situ and remote measurements. During the last 8 years, Cassini covered a large part of the Saturnian system and offered the opportunity of sampling the planetary magnetosphere not just at different seasons, but also at seasonal phases that are symmetric to the Saturnian equinox (August 2009). In this talk, we focus on the seasonal effects seen in the magnetosphere of Saturn as the angle between the solar wind flow and the Saturn-Sun direction changes from +23.7° (northern hemisphere winter) at the arrival of Cassini, to -14.9° (northern hemisphere summer) on July 2012. Particle and magnetic field data taken from a extensive set of equatorial and high latitude orbits of Cassini, at various distances and local times, show that: (a) the plasma sheet of Saturn has the form of a magnetodisk, with an energy-dependent vertical structure, being thicker by a factor of ~2 in the energetic particle range than in the electron plasma, and (b) it exhibits intense dynamical behavior, evident in in-situ particle measurements but also in energetic neutral atom (ENA) emissions. The study of the pre-equinox high latitude orbits revealed that the night side plasma sheet was tilted northward beyond a radial distance of ~15 Rs (1Rs=60,258 km). As equinox approached, Cassini observed a clear decrease in the tilt of the

  19. Interchange Injection and Drift Dispersion of Hot Plasma in Saturn's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Hill, T. W.; Burch, J. L.; Crary, F. J.; Thomsen, M. F.; Delapp, D.; Rymer, A. M.; Coates, A. J.; Young, D. T.; Bolton, S. J.; Sittler, E. C.

    2004-12-01

    During the first pass of the Cassini-Huygens spacecraft through Saturn's magnetosphere, the Cassini Plasma Spectrometer (CAPS) observed several intermittent occurrences of multi-keV ions and electrons superimposed on a cooler (10 - 100 eV) background plasma. These events are tentatively interpreted as signatures of centrifugally driven interchange motions that inject isolated flux tubes of hot tenuous plasma toward Saturn, similar to injection events reported at Jupiter by the Galileo spacecraft. Both ions and electrons show evidence of energy-time dispersion resulting from adiabatic (gradient-curvature) drift relative to the partially corotating plasma frame of reference. Rotation converts a longitude structure in the rotating frame into a temporal structure in the spacecraft frame. Ions (electrons) drift eastward (westward) relative to the rotating frame with a speed proportional to thermal energy. Thus ions (electrons) display a negative (positive) slope in an energy-time spectrogram. The magnitude of the slope is a measure of the elapsed time since injection. Such events are observed both inbound and outbound in a radial range L = 6 - 10, and are frequently associated with narrow but deep density cavities in the cooler background plasma.

  20. Magnetospheres: Jupiter, Satellite Interactions

    NASA Astrophysics Data System (ADS)

    Neubauer, F.; Murdin, P.

    2000-11-01

    Most of the satellites of Jupiter, notably the large Galilean satellites Io, Europa, Ganymede and Callisto (see JUPITER: SATELLITES), orbit deep inside the magnetosphere of Jupiter (see JUPITER: MAGNETOSPHERE) and are therefore immersed in the flow of magnetospheric plasma (made of a mixture of electrons and ions) and subjected to an interaction with the strong Jovian magnetic field. These intera...

  1. Simulation of Mini-Magnetospheric Plasma Propulsion (M2P2) Interacting with an External Plasma Wind

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Euripides, P.; Ziemba, T.; Slough, J.; Giersch, L.

    2003-01-01

    Substantial progress has been made over the last year in the development of the laboratory Mini-Magnetospheric Plasma Propulsion (M2P2) prototype. The laboratory testing has shown that that the plasma can be produced at high neutral gas efficiency, at high temperatures (a few tens of eV) with excellent confinement up to the point where chamber wall interactions dominate the physics. This paper investigates the performance of the prototype as it is opposed by an external plasma acting as a surrogate for the solar wind. The experiments were performed in 5ft diameter by 6ft long vacuum chamber at the University of Washington. The solar wind source comprised of a 33 kWe arc jet attached to a 200 kWe inductively generated plasma source. The dual plasma sources allow the interaction to be studied for different power levels, shot duration and production method. It is shown that plasma from the solar wind source (SWS) is able to penetrate the field of the M2P2 magnetic when no plasma is present. With operation of the M2P2 plasma source at only 1.5 kWe, the penetration of the SWS even at the highest power of operation at 200 kWe is stopped. This deflection is shown to be greatly enhanced over that produced by the magnet alone. In addition it is shown that with the presence of the SWS, M2P2 is able to produce enhanced magnetized plasma production out to at least 10 magnet radii where the field strength is only marginally greater than the terrestrial field. The results are consistent with the initial predictions that kWe M2P2 systems would be able to deflect several hundred kWe plasma winds to produce enhanced propulsion for a spacecraft.

  2. Laser experiments to simulate coronal mass ejection driven magnetospheres and astrophysical plasma winds on compact magnetized stars

    NASA Astrophysics Data System (ADS)

    Horton, W.; Ditmire, T.; Zakharov, Yu. P.

    2010-06-01

    Laboratory experiments using a plasma wind generated by laser-target interaction are proposed to investigate the creation of a shock in front of the magnetosphere and the dynamo mechanism for creating plasma currents and voltages. Preliminary experiments are shown where measurements of the electron density gradients surrounding the obstacles are recorded to infer the plasma winds. The proposed experiments are relevant to understanding the electron acceleration mechanisms taking place in shock-driven magnetic dipole confined plasmas surrounding compact magnetized stars and planets. Exploratory experiments have been published [P. Brady, T. Ditmire, W. Horton, et al., Phys. Plasmas 16, 043112 (2009)] with the one Joule Yoga laser and centimeter sized permanent magnets.

  3. Energy and Mass Transport of Magnetospheric Plasmas during the November 2003 Magnetic Storm

    NASA Technical Reports Server (NTRS)

    Fok, Mei-Chging; Moore, Thomas

    2008-01-01

    Intensive energy and mass transport from the solar wind across the magnetosphere boundary is a trigger of magnetic storms. The storm on 20-21 November 2003 was elicited by a high-speed solar wind and strong southward component of interplanetary magnetic field. This storm attained a minimum Dst of -422 nT. During the storm, some of the solar wind particles enter the magnetosphere and eventually become part of the ring current. At the same time, the fierce solar wind powers strong outflow of H+ and O+ from the ionosphere, as well as from the plasmasphere. We examine the contribution of plasmas from the solar wind, ionosphere and plasmasphere to the storm-time ring current. Our simulation shows, for this particular storm, ionospheric O+ and solar wind ions are the major sources of the ring current particles. The polar wind and plasmaspheric H+ have only minor impacts. In the storm main phase, the strong penetration of solar wind electric field pushes ions from the geosynchronous orbit to L shells of 2 and below. Ring current is greatly intensified during the earthward transport and produces a large magnetic depression in the surface field. When the convection subsides, the deep penetrating ions experience strong charge exchange loss, causing rapid decay of the ring current and fast initial storm recovery. Our simulation reproduces very well the storm development indicated by the Dst index.

  4. Global Time Variability in the Thermal Plasma Composition of the Saturnian Magnetosphere

    NASA Astrophysics Data System (ADS)

    Ip, W.

    2013-12-01

    The Saturnian magnetosphere is characterized by strong coupling between the charged particles and the neutral gas cloud emitted from Enceladus and the rings. Besides the mass-loading effect due to ionization of the water-group gas, the charge transfer process leading to the generation of energetic neutral atoms is a key process of particle loss and atmospheric precipitation. Detailed measurements by the plasma instruments like CAPS and MIMI have provided many insights to the magnetospheric composition and dynamics driven by such plasma-gas interaction. For example, a statistical study of the CAPS measurements by Thomsen et al. (2010) has shown the relative abundances and radial profiles of different ion species in the corotating thermal plasma disc. Another interesting result has to do with the seasonal variability of the suprathermal O2+ molecular ions detected by the CHEMS/MIMI experiment (Christon et al., 2013) which might have to do with the extended oxygen atmosphere of the ring system (Tseng et al., 2010). In this work, we will use a time-dependent radial diffusion transport model coupled with ion chemistry calculation (Ip, 2000) to simulate the global distributions of various ions (H+, H2+, O+, OH+, H2O+, H3O+, and O2+ )between the outer edge of the A ring to the orbit of Titan. Our parametric study will examine how the thermal ion composition of the Saturnian magnetosphere would be affected by solar cycle effect, seasonal variation of the ring atmosphere, and the suprathermal electron flux. Christon, S.P., Hamilton, D.C., DiFabio, R.D., Mitchell, D.G., Krimigis, S.M., and Jontof-Hutter, D.S., J. Geophys. Res., 118, 3446-3462, 2013. Ip, W.-H., Planet. Space Sci., 48, 775-783, 2000. Thomsen, M.F., Reisenfeld, D.B., Delapp, D.M., Tokar, R.C., Young, D.T., Crary, F.J., Sittler, E.C., McGraw, M.A., and Williams, J.D., J. Geophys. Res., 115, A10220, 2010. Tseng, W.-L., Ip, W.-H., Johnson, R.E., Cassidy, T.A., and Elrod, M.K., Icarus, 206, 382-389, 2010.

  5. The measurement of cold ion densities in the plasma trough. [in magnetosphere

    NASA Technical Reports Server (NTRS)

    Harris, K. K.

    1974-01-01

    The cold ion density in the plasma trough region is an important fundamental parameter in the currently proposed mechanisms to describe magnetospheric dynamics. Direct in situ measurements of the cold ion density are generally difficult owing to uncertainties in vehicle potentials and ion temperatures. It is shown that the light ion mass spectrometer from Ogo 5 was very successful in acquiring these data and that vehicle potentials appear not to have been a prohibitive factor. The cold ion plasma trough data show a great deal of variability, indicating a strong dependence on the state of the convection electric field; consequently, average values of cold ion densities in the plasma trough may be significantly different from the actual time-dependent values. The local time plot of plasma trough densities at L = 7 for data acquired over a 1-year period shows the anticipated increase in cold ion density during the daytime and the expected decrease in cold ion density during dusk and early nighttime.

  6. Cluster observations of near-Earth magnetospheric lobe plasma densities a statistical study

    NASA Astrophysics Data System (ADS)

    Svenes, K. R.; Lybekk, B.; Pedersen, A.; Haaland, S.

    2008-09-01

    The Cluster-mission has enabled a study of the near-Earth magnetospheric lobes throughout the waning part of solar cycle 23. During the first seven years of the mission the satellites crossed this region of space regularly from about July to October. We have obtained new and more accurate plasma densities in this region based on spacecraft potential measurements from the EFW-instrument. The plasma density measurements are found by converting the potential measurements using a functional relationship between these two parameters. Our observations have shown that throughout this period a full two thirds of the measurements were contained in the range 0.007 0.092 cm-3 irrespective of solar wind conditions or geomagnetic activity. In fact, the most probable density encountered was 0.047 cm-3, staying roughly constant throughout the entire observation period. The plasma population in this region seems to reflect an equilibrium situation in which the density is independent of the solar wind condition or geomagnetic activity. However, the high density tail of the population (ne>0.2 cm-3) seemed to decrease with the waning solar cycle. This points to a source region influenced by the diminishing solar UV/EUV-intensity. Noting that the quiet time polar wind has just such a development and that it is magnetically coupled to the lobes, it seems likely to assume that this is a prominent source for the lobe plasma.

  7. On the adiabatic walking of plasma waves in a pulsar magnetosphere

    SciTech Connect

    Melikidze, George I.; Gil, Janusz; Mitra, Dipanjan E-mail: jag@astro.ia.uz.zgora.pl

    2014-10-20

    The pulsar radio emission is generated in the near magnetosphere of the neutron star, and it must propagate through the rest of it to emerge into the interstellar medium. An important issue is whether this propagation affects the planes of polarization of the generated radiation. Observationally, there is sufficient evidence that the emerging radiation is polarized parallel or perpendicular to the magnetic field line planes that should be associated with the ordinary (O) and extraordinary (X) plasma modes, respectively, excited by some radiative process. This strongly suggests that the excited X and O modes are not affected by the so-called adiabatic walking that causes a slow rotation of polarization vectors. In this paper, we demonstrate that the conditions for adiabatic walking are not fulfilled within the soliton model of pulsar radio emission, in which the coherent curvature radiation occurs at frequencies much lower than the characteristic plasma frequency, The X mode propagates freely and observationally represents the primary polarization mode. The O mode has difficulty escaping from the pulsar plasma; however, it is sporadically observed as a weaker secondary polarization mode. We discuss a possible scenario under which the O mode can also escape from the plasma and reach an observer.

  8. Collisionless Plasma Turbulence: Insights from Magnetohydrodynamic and Hall Magnetohydrodynamic Simulations and Observations of the Earth's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Stawarz, Julia E.

    Turbulence is a ubiquitous phenomenon that occurs throughout the universe, in both neutral fluids and plasmas. For collisionless plasmas, kinetic effects, which alter the nonlinear dynamics and result in small-scale dissipation, are still not well understood in the context of turbulence. This work uses direct numerical simulations (DNS) and observations of Earth's magnetosphere to study plasma turbulence. Long-time relaxation in magnetohydrodynamic (MHD) turbulence is examined using DNS with particular focus on the role of magnetic and cross helicity and symmetries of the initial configurations. When strong symmetries are absent or broken through perturbations, flows evolve towards states predicted by statistical mechanics with an energy minimization principle, which features two main regimes; one magnetic helicity dominated and one with quasi-equipartition of kinetic and magnetic energy. The role of the Hall effect, which contributes to the dynamics of collisionless plasmas, is also explored numerically. At scales below the ion inertial length, a transition to a magnetically dominated state, associated with advection becoming subdominant to dissipation, occurs. Real-space current, vorticity, and electric fields are examined. Strong current structures are associated with alignment between the current and magnetic field, which may be important in collisionless plasmas where field-aligned currents can be unstable. Turbulence within bursty bulk flow braking events, thought to be associated with near-Earth magnetotail reconnection, are then studied using the THEMIS spacecraft. It is proposed that strong field-aligned currents associated with turbulent intermittency destabilize into double layers, providing a collisionless dissipation mechanism for the turbulence. Plasma waves may also radiate from the region, removing energy from the turbulence and potentially depositing it in the aurora. Finally, evidence for turbulence in the Kelvin-Helmholtz instability (KHI) on the

  9. Comment on "Mode Conversion of Waves In The Ion-Cyclotron Frequency Range in Magnetospheric Plasmas"

    SciTech Connect

    Kim, Eun; Johnson, J. R.

    2014-02-01

    Recently, Kazakov and Fulop [1] studied mode conversion (MC) at the ion-ion hybrid (IIH) resonance in planetary magnetospheric plasmas by simplifying the dispersion relation of the fast wave (FW) modes to describe a cutoff-resonance (CR) pair near the IIH resonance, which can be reduced to a Budden problem. They suggested that when the IIH resonance frequency (ωS) approaches the crossover frequency (ωcr), and the parallel wavenumber (k∥) is close to the critical wavenumber k* ∥(ωS = ωcr), MC can be efficient for arbitrary heavy ion density ratios. In this Comment, we argue that (a) the FW dispersion relation cannot be simplified to the CR pair especially near ωcr because in many parameter regimes there is a cutoff-resonance-cutoff (CRC) triplet that completely changes the wave absorption; and (b) the maximum MC efficiency does not always occur near k∥ ≈ k*∥∥.

  10. Plasma physics and environmental perturbation laboratory. [magnetospheric experiments from space shuttle

    NASA Technical Reports Server (NTRS)

    Vogl, J. L.

    1973-01-01

    Current work aimed at identifying the active magnetospheric experiments that can be performed from the Space Shuttle, and designing a laboratory to carry out these experiments is described. The laboratory, known as the PPEPL (Plasma Physics and Environmental Perturbation Laboratory) consists of 35-ft pallet of instruments connected to a 25-ft pressurized control module. The systems deployed from the pallet are two 50-m booms, two subsatellites, a high-power transmitter, a multipurpose accelerator, a set of deployable canisters, and a gimbaled instrument platform. Missions are planned to last seven days, during which two scientists will carry out experiments from within the pressurized module. The type of experiments to be performed are outlined.

  11. Plasma and Field Observations at the Day-Side, Equatorial Magnetopause, Boundary Layers and Magnetosphere

    NASA Technical Reports Server (NTRS)

    Chandler, M. O.; Craven, P. D.; Moore, T. E.; Coffey, V. N.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Polar spacecraft's orbit has precessed in latitude to an orientation that places it at the dayside magnetopause every 18 hours. In this configuration the various regions near the magnetopause(LLBL, turbulent boundary layer, magnetosphere, and magnetosheath) are sampled with high temporal and spatial resolution. These observational periods-ranging from several minutes to more than two hours-provide an unprecedented look at plasma conditions in these regions. Initial analysis of the low-energy ion data from TIDE reveal plasmaspheric-like ions within the turbulent boundary layer. Within this layer, circularly polarized waves accelerate these ions to 30-40 kilometers per second perpendicular to the local magnetic field. These relatively high velocities allow the H(+) to be observed above the -2V spacecraft potential. They also put the low-density O(+) in the higher-energy, higher sensitivity channels such that densities of order 10e-2 can be observed.

  12. Multifluid MHD simulation of Saturn's magnetosphere: Dynamics of mass- and momentum-loading, and seasonal variation of the plasma sheet

    NASA Astrophysics Data System (ADS)

    Rajendar, A.; Paty, C. S.; Arridge, C. S.; Jackman, C. M.; Smith, H. T.

    2013-12-01

    Saturn's magnetosphere is driven externally, by the solar wind, and internally, by the planet's strong magnetic field, rapid rotation rate, and the addition of new plasma created from Saturn's neutral cloud. Externally, the alignment of the rotational and magnetic dipole axes, combined with Saturn's substantial inclination to its plane of orbit result in substantial curvature of the plasma sheet during solstice. Internally, new water group ions are produced in the inner regions of the magnetosphere from photoionization and electron-impact ionization of the water vapor and OH cloud sourced from Enceladus and other icy bodies in Saturn's planetary system. In addition to this, charge-exchange collisions between the relatively fast-moving water group ions and the slower neutrals results in a net loss of momentum from the plasma. In order to study these phenomena, we have made significant modifications to the Saturn multifluid model. This model has been previously used to investigate the external triggering of plasmoids and the interchange process using a fixed internal source rate. In order to improve the fidelity of the model, we have incorporated a physical source of mass- and momentum-loading by including an empirical representation of Saturn's neutral cloud and modifying the multifluid MHD equations to include mass- and momentum-loading terms. Collision cross-sections between ions, electrons, and neutrals are calculated as functions of closure velocity and energy at each grid point and time step, enabling us to simulate the spatially and temporally varying plasma-neutral interactions. In addition to this, by altering the angle of incidence of the solar wind relative to Saturn's rotational axis and applying a realistic latitudinally- and seasonally-varying ionospheric conductivity, we are also able to study seasonal effects on Saturn's magnetosphere. We use the updated multifluid simulation to investigate the dynamics of Saturn's magnetosphere, focusing specifically

  13. Two Dual Ion Spectrometer Flight Units of the Fast Plasma Instrument Suite (FPI) for the Magnetospheric Multiscale Mission (MMS)

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi

    2014-01-01

    Two Dual Ion Spectrometer flight units of the Fast Plasma Instrument Suite (FPI) for the Magnetospheric Multiscale Mission (MMS) have returned to MSFC for flight testing. Anticipated to begin on June 30, tests will ensue in the Low Energy Electron and Ion Facility of the Heliophysics and Planetary Science Office (ZP13), managed by Dr. Victoria Coffey of the Natural Environments Branch of the Engineering Directorate (EV44). The MMS mission consists of four identical spacecraft, whose purpose is to study magnetic reconnection in the boundary regions of Earth's magnetosphere.

  14. Modeling the seasonal variability of the plasma environment in Saturn's magnetosphere between main rings and Mimas

    NASA Astrophysics Data System (ADS)

    Tseng, W.-L.; Johnson, R. E.; Elrod, M. K.

    2013-03-01

    The detection of O2+ and O+ ions over Saturn's main rings by the Cassini INMS and CAPS instruments at Saturn orbit insertion (SOI) in 2004 confirmed the existence of the ring atmosphere and ionosphere. The source mechanism was suggested to be primarily photolytic decomposition of water ice producing neutral O2 and H2 (Johnson et al., 2006). Therefore, we predicted that there would be seasonal variations in the ring atmosphere and ionosphere due to the orientation of the ring plane to the sun (Tseng et al., 2010). The atoms and molecules scattered out of the ring atmosphere by ion-molecule collisions are an important source for the inner magnetosphere (Johnson et al., 2006; Martens et al., 2008; Tseng et al., 2010, 2011). This source competes with water products from the Enceladus' plumes, which, although possibly variable, do not appear to have a seasonal variability (Smith et al., 2010). Recently, we found that the plasma density, composition and temperature in the region from 2.5 to 3.5 RS exhibited significant seasonal variation between 2004 and 2010 (Elrod et al., submitted for publication). Here we present a one-box ion chemistry model to explain the complex and highly variable plasma environment observed by the CAPS instrument on Cassini. We combine the water products from Enceladus with the molecules scattered from a corrected ring atmosphere, in order to describe the temporal changes in ion densities, composition and temperature detected by CAPS. We found that the observed temporal variations are primarily seasonal, due to the predicted seasonal variation in the ring atmosphere, and are consistent with a compressed magnetosphere at SOI.

  15. Measurement of RF electric field in high- β plasma using a Pockels detector in magnetosphere plasma confinement device RT-1

    NASA Astrophysics Data System (ADS)

    Mushiake, Toshiki; Nishiura, M.; Yoshida, Z.; Yano, Y.; Kawazura, Y.; Saitoh, H.; Yamasaki, M.; Kashyap, A.; Takahashi, N.; Nakatsuka, M.; Fukuyama, Atsushi

    2015-11-01

    The magnetosphere plasma confinement device RT-1 generates a dipole magnetic field that can confine high- β plasma by using a levitated superconducting coil. So far it is reported that high temperature electrons (up to 50keV) exist and that the local electron βe value exceeds more than 100%. However, the ion β value βi remains low in the present high- β state. To realize a high-βi state, we have started Ion Cyclotron Heating (ICH) experiments. For efficient ICH in a dipole topology, it is important to measure RF electric fields and characterize the propagation of RF waves in plasmas. On this viewpoint, we started direct measurement of local RF electric fields in RT-1 with a Pockels sensor system. A non-linear optical crystal in the Pockels sensor produces birefringence in an ambient electric field. The refractive index change of the birefringence is proportional to the applied electric field strength, which can be used to measure local electric fields. RF electric field distribution radiated from an ICH antenna was measured inside RT-1 in air, and was compared with numerical results calculated by TASK code. Results on the measurement of electric field distribution in high- β plasma and evaluation of the absorbed RF power into ions will be reported. Supported by JSPS KAKENHI Grant Numbers 23224014.

  16. Correlations Between Narrowband Radio Emissions and Transient Rotating Plasma Clouds in Saturn's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Gurnett, D. A.; Kurth, W. S.; Mitchell, D. G.

    2007-12-01

    The RPWS (Radio and Plasma Wave Science) instrument onboard the Cassini spacecraft has frequently detected a series of narrowband electromagnetic emissions from the inner magnetosphere of Saturn from May 2005 to July 2007. Frequency-time spectrograms show that the strongest narrowband emissions tend to occur at frequencies near 5 kHz with bandwidths of about 2 to 3 kHz. Other apparently associated bands also occur at higher frequencies, sometimes as high as 30 kHz. Analysis of all the events detected over a two-year period shows that the emissions tend to be observed more frequently on the night side of the planet, as well as at latitudes away from the equator. The longitude of the Sun using a longitude system recently developed by Kurth et al. organizes the narrowband radio emissions better than the longitude of the spacecraft, indicating that the modulation of the radio emissions is acting more like a flashing light than a rotating beacon. The narrowband radio emissions are believed to be produced by mode conversion from electrostatic waves near the upper hybrid frequency at about L ~ 7 to 8 and latitudes of ±30 degrees. Our studies show that the transient hot plasma clouds rotating around the planet inside the orbit of Titan, may be the source for narrowband radio emissions for three reasons. First, the hot plasma clouds are produced by ENA (energetic neutral atom) emissions, which are detected by MIMI (INCA), through charge exchange. ENA images of Saturn's magnetosphere show that the hot plasma clouds rotate around the planet in the region from 7 to 8 RS, and this agrees with the source location required by the above mode conversion model. Second, ENA emissions tend to show stronger intensities on the night side of Saturn, consistent with the narrowband radio emissions that are also observed more frequently on the night side. Third, the narrowband radio emissions and ENA emissions are well correlated in time. In most cases (20 out of 30), narrowband radio

  17. Magnetospheric disturbance induced equatorial plasma bubble development and dynamics: A case study in Brazilian sector

    NASA Astrophysics Data System (ADS)

    Abdu, M. A.; Batista, I. S.; Takahashi, H.; MacDougall, J.; Sobral, J. H.; Medeiros, A. F.; Trivedi, N. B.

    2003-12-01

    Equatorial ionospheric plasma bubble irregularity development and dynamics during the major magnetospheric storm of 26 August 1998 are investigated using the data collected by a multistation and multi-instrument diagnostic network operated at equatorial and low latitude sites in Brazil, and auroral electrojet activity (AU/AL), IMF, and Dst indices. A magnetospheric disturbance onset in the morning of 26 August 1998 was initiated by a solar wind shock and associated IMF Bz polarity reversals and ssc that were soon followed by a succession of substorm-like auroral electrojet (AE) intensifications and Dst development. An IMF Bz southward turning and associated AE intensifications in the Brazilian dusk sector produced intense prompt penetration eastward electric field that caused large F region vertical drift and consequently the developments of intense postsunset equatorial anomaly and a series of intense plasma bubbles, the latter event lasting the entire night, as observed by digital ionosondes at São Luís (2.33°S, 315.8°E, dip angle: -.5°) and Fortaleza (3.9°S, 321.55°W, dip angle: -9°) and an all-sky imager, two scanning photometers, and a Digisonde at the low-latitude site Cachoeira Paulista (22.6°S, 315°E dip angle: -28°). A notable aspect of the dynamics of the bubbles was their initially very low eastward drift velocity which turned into steadily increasing westward velocity that lasted till early morning hours. The results show for the first time a relationship between the zonal drift velocities of optically observed large-scale bubbles (tens to hundreds of kilometers) and that of the smaller scale (kilometer sizes) structures as observed by a digital ionosonde. The results point to the dominant role of a disturbance dynamo associated westward thermospheric wind to maintain the plasma irregularity drift increasingly westward going into postmidnight hours. As an important finding, the results further show that significant contribution to the

  18. Empirical probability model of cold plasma environment in the Jovian magnetosphere

    NASA Astrophysics Data System (ADS)

    Futaana, Yoshifumi; Wang, Xiao-Dong; Barabash, Stas; Roussos, Elias; Truscott, Pete

    2015-04-01

    We analyzed the Galileo PLS dataset to produce a new cold plasma environment model for the Jovian magneto- sphere. Although there exist many sophisticated radiation models, treating energetic plasma (e.g. JOSE, GIRE, or Salammbo), only a limited number of simple models has been utilized for cold plasma environment. By extend- ing the existing cold plasma models toward the probability domain, we can predict the extreme periods of Jovian environment by specifying the percentile of the environmental parameters. The new model was produced in the following procedure. We first referred to the existing cold plasma models of Divine and Garrett, 1983 (DG83) or Bagenal and Delamere 2011 (BD11). These models are scaled to fit the statistical median of the parameters obtained from Galileo PLS data. The scaled model (also called as "mean model") indicates the median environment of Jovian magnetosphere. Then, assuming that the deviations in the Galileo PLS parameters are purely due to variations in the environment, we extended the mean model toward the percentile domain. The input parameter of the model is simply the position of the spacecraft (distance, magnetic longitude and lati- tude) and the specific percentile (e.g. 0.5 for the mean model). All the parameters in the model are described in mathematical forms; therefore the needed computational resources are quite low. The new model can be used for assessing the JUICE mission profile. The spatial extent of the model covers the main phase of the JUICE mission; namely from the Europa orbit to 40 Rj (where Rj is the radius of Jupiter). In addition, theoretical extensions toward the latitudinal direction are also included in the model to support the high latitude orbit of the JUICE spacecraft.

  19. Calculation of Magnetospheric Equilibria and Evolution of Plasma Bubbles with a New Finite-Volume MHD/Magnetofriction Code

    NASA Astrophysics Data System (ADS)

    Silin, I.; Toffoletto, F.; Wolf, R.; Sazykin, S. Y.

    2013-12-01

    We present a finite-volume MHD code for simulations of magnetospheric dynamics of the plasma sheet and the inner magnetosphere. The code uses staggered non-uniform Cartesian grids to preserve the divergence-free magnetic fields, along with various numerical approximations and flux limiters for the plasma variables. The code can be initialized with empirical magnetic field models, such as the Tsyganenko models along with pressure information from either the Tsyganenko-Mukai models, or observational data, such as DMSP pressure maps. Artificial "friction term" can be added to the momentum equation, which turns the MHD code into "magnetofriction" code which can be used to construct approximate equilibrium solutions. We demonstrate some applications for our code, in both the "magnetofriction" and MHD mode, including relaxation of the empirical models to equilibrium and the evolution of a plasma bubble in the near magnetotail. The latter MHD simulation results exhibit oscillations about their equilibrium position in agreement with recent observations.

  20. The magnetospheres of the outer planets

    SciTech Connect

    Mcnutt, R.L., Jr. )

    1991-01-01

    Research on the magnetospheres of all of the outer planets including Jupiter, Uranus, Neptune, and Pluto is reviewed for the 1987-1990 time period. Particular attention is given to magnetospheric structure, plasma transport, Jovian aurora, Io and the plasma torus, Titan and its magnetospheric interactions, rings and dusty plasmas, magnetospheric convection, and satellite interactions.

  1. Mercury's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Slavin, J. A.

    1999-01-01

    Among the major discoveries made by the Mariner 10 mission to the inner planets was the existence of an intrinsic magnetic field at Mercury with a dipole moment of approx. 300 nT R(sup 3, sub M). This magnetic field is sufficient to stand off the solar wind at an altitude of about 1 R(sub M) (i.e. approx. 2439 km). Hence, Mercury possesses a 'magnetosphere' from which the so]ar wind plasma is largely excluded and within which the motion of charged particles is controlled by the planetary magnetic field. Despite its small size relative to the magnetospheres of the other planets, a Mercury orbiter mission is a high priority for the space physics community. The primary reason for this great interest is that Mercury unlike all the other planets visited thus far, lacks a significant atmosphere; only a vestigial exosphere is present. This results in a unique situation where the magnetosphere interacts directly with the outer layer of the planetary crust (i.e. the regolith). At all of the other planets the topmost regions of their atmospheres become ionized by solar radiation to form ionospheres. These planetary ionospheres then couple to electrodynamically to their magnetospheres or, in the case of the weakly magnetized Venus and Mars, directly to the solar wind. This magnetosphere-ionosphere coupling is mediated largely through field-aligned currents (FACs) flowing along the magnetic field lines linking the magnetosphere and the high-latitude ionosphere. Mercury is unique in that it is expected that FACS will be very short lived due to the low electrical conductivity of the regolith. Furthermore, at the earth it has been shown that the outflow of neutral atmospheric species to great altitudes is an important source of magnetospheric plasma (following ionization) whose composition may influence subsequent magnetotail dynamics. However, the dominant source of plasma for most of the terrestrial magnetosphere is the 'leakage'of solar wind across the magnetopause and more

  2. Theory of ballooning-mirror instabilities for anisotropic pressure plasmas in the magnetosphere

    SciTech Connect

    Cheng, C.Z.; Qian, Q.

    1993-09-01

    This paper deals with a kinetic-MHD eigenmode stability analysis of low frequency ballooning-mirror instabilities for anisotropic pressure plasmas in the magnetosphere. The ballooning mode is a dominant transverse wave driven unstable by pressure gradient in the bad curvature region. The mirror mode with a dominant compressional magnetic field perturbation is excited when the product of plasma beta and pressure anisotropy is large. The field-aligned eigenmode equations take into account the coupling of the transverse and compressional components of the perturbed magnetic field and describe the coupled ballooning-mirror mode. Because the energetic trapped ions precess very rapidly across the {rvec B} field, their motion becomes very rigid with respect to low frequency MHD perturbations with symmetric structure of parallel perturbed magnetic field {delta}B{sub {parallel}} and electrostatic potential {Phi} along the north-south ambient magnetic field, and the symmetric ballooning-mirror mode is shown to be stable. On the other hand, the ballooning-mirror mode with antisymmetric {delta}B{sub {parallel}}, and {Phi} structure along the north-south ambient magnetic field is only weakly influenced by energetic trapped particle kinetic effects due to rapid trapped particle bounce motion and has the lowest instability threshold determined by MHD theory. With large plasma beta ({beta}{sub {parallel}} {ge} O(1)) and pressure anisotropy (P{sub {perpendicular}}/P{sub {parallel}} > 1) at equator the antisymmetric ballooning-mirror mode structures resemble the field-aligned wave structures of the multisatellite observations of a long lasting compressional Pc 5 wave event during November 14--15, 1979 [Takahashi et al.]. The study provides the theoretical basis for identifying the internal excitation mechanism of ULF (Pc 4-5) waves by comparing the plasma stability parameters computed from the satellite particle data with the theoretical values.

  3. Storm time plasma transport in a unified and inter-coupled global magnetosphere model

    NASA Astrophysics Data System (ADS)

    Ilie, R.; Liemohn, M. W.; Toth, G.

    2014-12-01

    We present results from the two-way self-consistent coupling between the kinetic Hot Electron and Ion Drift Integrator (HEIDI) model and the Space Weather Modeling Framework (SWMF). HEIDI solves the time dependent, gyration and bounced averaged kinetic equation for the phase space density of different ring current species and computes full pitch angle distributions for all local times and radial distances. During geomagnetic times the dipole approximation becomes unsuitable even in the inner magnetosphere. Therefore the HEIDI model was generalized to accommodate an arbitrary magnetic field and through the coupling with SWMF it obtains a magnetic field description throughout the HEIDI domain along with a plasma distribution at the model outer boundary from the Block Adaptive Tree Solar Wind Roe Upwind Scheme (BATS-R-US) magnetohydrodynamics (MHD) model within SWMF. Electric field self-consistency is assured by the passing of convection potentials from the Ridley Ionosphere Model (RIM) within SWMF. In this study we test the various levels of coupling between the 3 physics based models, highlighting the role that the magnetic field, plasma sheet conditions and the cross polar cap potential play in the formation and evolution of the ring current. We show that the dynamically changing geospace environment itself plays a key role in determining the geoeffectiveness of the driver. The results of the self-consistent coupling between HEIDI, BATS-R-US and RIM during disturbed conditions emphasize the importance of a kinetic self-consistent approach to the description of geospace.

  4. The polarization electric field and its effects in an anisotropic rotating magnetospheric plasma

    NASA Technical Reports Server (NTRS)

    Huang, T. S.; Birmingham, T. J.

    1992-01-01

    Spatial variations of density and temperature along a magnetic field line are evaluated for a plasma undergoing adiabatic motion in a rotating magnetosphere. The effects of centrifugal and gravitational forces are accounted for, as is anisotropy in the pitch angle distribution functions of individual species. A polarization electric field is invoked to eliminate the net electric charge density resulting from the aforementioned mass dependent forces and different anisotropies. The position of maximum density in a two-component, electron-ion plasma is determined both in the absence and in the presence of the polarization effect and compared. A scale height, generalized to include anisotropies, is derived for the density fall-off. The polarization electric field is also included in the parallel guiding center equation; equilibrium points are determined and compared in both individual and average senses with the position of density maximum. Finally a transverse (to magnetic field lines) electric component is deduced as a consequence of dissimilar charge neutralization on adjacent field lines. The E x B velocity resultant from such a 'fringing' electric field is calculated and compared with the magnitude of other drifts.

  5. Numerical simulation of torus-driven plasma transport in the Jovian magnetosphere

    NASA Technical Reports Server (NTRS)

    Yang, Y. S.; Wolf, R. A.; Spiro, R. W.; Hill, T. W.; Dessler, A. J.

    1994-01-01

    The Rice convection model has been modified for application to the transport of Io-generated plasma through the Jovian magnetosphere. The new code, called the RCM-J, has been used for several ideal-magnetohydrodynamic (MHD) numerical simulations to study how interchange instability causes an initially assumed torus configuration to break up. In simulations that start from a realistic torus configuration but include no energetic particles, the torus disintegrates too quickly (approximately 50 hours). By adding an impounding distribution of energetic particles to suppress the interchange instability, resonable lifetimes were obtained. For cases in which impoundment is insufficient to produce ideal-MHD stability, the torus breaks up predominantly into long fingers, unless the initial condition strongly favors some other geometrical form. If the initial torus has more mass on one side of the planet than the other, fingers form predominatly on the heavy side (which we associate with the active sector). Coriolis force bends the fingers to lag corotation. The simulation results are consistent with the idea that the fingers are formed with a longitudinal thickness that is roughly equal to the latitudinal distance over which the invariant density declines at the outer edges of the initial torus. Our calculations give an average longitudinal distance between plasma fingers of about 15 deg which corresponds to 20 to 30 minutes of rotation of the torus. We point to some Voyager and Ulysses data that are consistent with this scale of torus longitudinal irregularity.

  6. Plasma Transport in Saturn's Inner Magnetosphere: Transition from Small-scale to Large-scale Interchange Convection Cells

    NASA Astrophysics Data System (ADS)

    Hill, T. W.; Jaggi, A.; Sazykin, S. Y.; Wolf, R.

    2015-12-01

    Rice Convection Model simulations of plasma transport in Saturn's inner magnetosphere (2 < L < 12) with an imposed source of cool plasma distributed in the range 5 < L < 10 typically exhibit a chaotic interchange convection pattern with narrow outflow channels of cool dense plasma interspersed with even narrower inflow channels of hot tenuous plasma from the outer magnetosphere. We have now extended these simulations to a larger range of L (2 < L < 20) and to much longer simulation times, T ~ 1000 hours ~ 20 circulation time scales. At times greater than a few circulation time scales the simulations reveal a new type of behavior in the outer region, with many narrow fingers coalescing to form fewer but broader outflow fingers. The Fourier spectrum of the azimuthal convection structure, initially dominated by azimuthal wavenumbers m ~ 20 - 40, becomes dominated instead by wavenumbers m ~ 1. Work is in progress to understand this behavior at an analytical level, and to investigate its possible role in producing spin-periodic phenomena in Saturn's otherwise symmetric magnetosphere.

  7. Shape of the terrestrial plasma sheet in the near-Earth magnetospheric tail as imaged by the Interstellar Boundary Explorer

    SciTech Connect

    Dayeh, M. A.; Fuselier, S. A.; Funsten, H. O.; McComas, D. J.; Ogasawara, K.; Petrinec, S. M.; Schwadron, N. A.; Valek, P.

    2015-04-11

    We present remote, continuous observations from the Interstellar Boundary Explorer of the terrestrial plasma sheet location back to -16 Earth radii (RE) in the magnetospheric tail using energetic neutral atom emissions. The time period studied includes two orbits near the winter and summer solstices, thus associated with large negative and positive dipole tilt, respectively. Continuous side-view images reveal a complex shape that is dominated mainly by large-scale warping due to the diurnal motion of the dipole axis. Superposed on the global warped geometry are short-time fluctuations in plasma sheet location that appear to be consistent with plasma sheet flapping and possibly twisting due to changes in the interplanetary conditions. We conclude that the plasma sheet warping due to the diurnal motion dominates the average shape of the plasma sheet. Over short times, the position of the plasma sheet can be dominated by twisting and flapping.

  8. Shape of the terrestrial plasma sheet in the near-Earth magnetospheric tail as imaged by the Interstellar Boundary Explorer

    DOE PAGES

    Dayeh, M. A.; Fuselier, S. A.; Funsten, H. O.; McComas, D. J.; Ogasawara, K.; Petrinec, S. M.; Schwadron, N. A.; Valek, P.

    2015-04-11

    We present remote, continuous observations from the Interstellar Boundary Explorer of the terrestrial plasma sheet location back to -16 Earth radii (RE) in the magnetospheric tail using energetic neutral atom emissions. The time period studied includes two orbits near the winter and summer solstices, thus associated with large negative and positive dipole tilt, respectively. Continuous side-view images reveal a complex shape that is dominated mainly by large-scale warping due to the diurnal motion of the dipole axis. Superposed on the global warped geometry are short-time fluctuations in plasma sheet location that appear to be consistent with plasma sheet flapping andmore » possibly twisting due to changes in the interplanetary conditions. We conclude that the plasma sheet warping due to the diurnal motion dominates the average shape of the plasma sheet. Over short times, the position of the plasma sheet can be dominated by twisting and flapping.« less

  9. Investigating the energy crisis in Io's plasma torus: plasma energetics in rotating magnetospheres

    NASA Astrophysics Data System (ADS)

    Ramer, K. M.; Kivelson, M.; Vogt, M.; Khurana, K. K.; Walker, R. J.; Strangeway, R. J.

    2015-12-01

    It has long been recognized that there is something lacking in our understanding of the temperature of the Io plasma torus. In situ observations show that the temperature in the torus increases more than can be accounted for by ion pickup; as much as 20% of the needed energy is missing. However, the role of centrifugal acceleration has not been investigated as a potential source of plasma heating. Analysis of the role of centrifugal forces on the plasma population is difficult as the effects are both energy and pitch-angle dependent: adiabatic outward displacement of flux tubes in a rotating frame results in net cooling of equatorially mirroring plasma even when a centrifugal force is acting, but this is not necessarily the case for particles mirroring off the equator. An ion in a rotating, adiabatically stretching system bouncing away from its mirror point will gain parallel energy from the centrifugal force, but will lose it again as it moves back towards its mirror point; the bounce-averaged change in energy is small. Therefore the centrifugal force in an adiabatically expanding system is only able to impart significant energy to a particle if the timescale of the stretching is less than that of a bounce period. As a prelude to a full Large Scale Kinetic (LSK) simulation of particles in a rotating magnetic field, here we check that two prerequisite conditions are met. Firstly, we estimate an upper bound to the thermal energy that could be gained through centrifugal acceleration in order to demonstrate that there is sufficient energy to account for the temperature anomaly observed at Io's plasma torus. Secondly, we calculate the bounce period of ions typical to the torus to establish the range of energies for which the quarter bounce times are is shorter than the ~4 days required for the field in the Io plasma torus to stretch from 6-10 RJ. We will also describe preliminary results from our modeling efforts.

  10. The Magnetospheric Multiscale Missions Fast Plasma Investigations Dual Electron Spectrometer Development

    NASA Technical Reports Server (NTRS)

    Shappirio, M.; Adrian, M.; Aulleti, C.; Avanov, L.; Barrie, A.; Chornay, D.; Moore, T.; Rosnack, T.; Tucker, C.

    2009-01-01

    The Magnetospheric Multiscale mission (MMS) is designed to examine magnetic reconnection that occurs on both the Earths dayside magnetopause and in the magnetotail region on Earths night side. In order to resolve fine structures of the three dimensional electron distributions in both regions, the Fast Plasma Investigation's (FPI) Dual Electron Spectrometer (DES) is designed to measure electron distributions with a time resolution of 30 ms. In order to achieve this unprecedented sampling rate, the DES will have eight individual spectrometers each sampling 180 x 45 degree sections of the sky. Because of the field of view limitations of top hat analyzers, each spectrometer will use electro-static deflectors to change its look direction. The engineering model of the DES has been fabricated and tested. We will present the results of measurements for fields of view, angular FVVHM responses, dE/E, analyzer constant, and geometric factors for all deflection states. We will compare these results to simulation results and discuss causes of the response variations.

  11. Rescaling analyses on time series from turbulent magnetospheric and solar wind plasmas

    NASA Astrophysics Data System (ADS)

    Watkins, Nicholas; Hnat, Bogdan; Chapman, Sandra; Greenhough, John; Freeman, Mervyn

    2003-10-01

    Self-similarity, estimated by various measures such as R/S analysis or power spectra has recently become of increased interest in plasma physics, partly because of its importance as a diagnostic for self-oraganised criticality. We present a survey of our recent work on the extent to which time series drawn from the auroral indices (which estimate ionospheric currents), and from various in-situ solar windplasma measures such as magnetic field energy density, are self-similar. In contrast to previous work on multifractality, we use a simple scaling collapse method [1] to show how several of these time series are effectively monofractal, and we quantify this with scaling exponents. We compare the solar wind and magnetospheric time series [2,3], and discuss how this relatively new approach may help to resolve earlier apparently contradictory results for this comparison [4]. [1] Hnat et al, GRL, 29(10), 10.1029/2001GL014587 (2002) [2]Hnat et al, GRL, 29(22), 2078, 10.1029/2002GL016054 (2002). See also erratum, GRL, 2003. [3] Hnat et al, GRL, submitted [4] M. P. Freeman et al, GRL, 27, 1087-1090, (2000)

  12. Competing mechanisms of plasma transport in inhomogeneous configurations with velocity shear: the solar-wind interaction with earth's magnetosphere.

    PubMed

    Faganello, M; Califano, F; Pegoraro, F

    2008-01-11

    Two-dimensional simulations of the Kelvin-Helmholtz instability in an inhomogeneous compressible plasma with a density gradient show that, in a transverse magnetic field configuration, the vortex pairing process and the Rayleigh-Taylor secondary instability compete during the nonlinear evolution of the vortices. Two different regimes exist depending on the value of the density jump across the velocity shear layer. These regimes have different physical signatures that can be crucial for the interpretation of satellite data of the interaction of the solar wind with the magnetospheric plasma.

  13. Competing mechanisms of plasma transport in inhomogeneous configurations with velocity shear: the solar-wind interaction with earth's magnetosphere.

    PubMed

    Faganello, M; Califano, F; Pegoraro, F

    2008-01-11

    Two-dimensional simulations of the Kelvin-Helmholtz instability in an inhomogeneous compressible plasma with a density gradient show that, in a transverse magnetic field configuration, the vortex pairing process and the Rayleigh-Taylor secondary instability compete during the nonlinear evolution of the vortices. Two different regimes exist depending on the value of the density jump across the velocity shear layer. These regimes have different physical signatures that can be crucial for the interpretation of satellite data of the interaction of the solar wind with the magnetospheric plasma. PMID:18232777

  14. The geometric factor of electrostatic plasma analyzers: A case study from the Fast Plasma Investigation for the Magnetospheric Multiscale mission

    SciTech Connect

    Collinson, Glyn A.; Dorelli, John C.; Moore, Thomas E.; Pollock, Craig; Mariano, Al; Shappirio, Mark D.; Adrian, Mark L.; Avanov, Levon A.; Lewis, Gethyn R.; Kataria, Dhiren O.; Bedington, Robert; Owen, Christopher J.; Walsh, Andrew P.; Arridge, Chris S.; Gliese, Ulrik; Barrie, Alexander C.; Tucker, Corey

    2012-03-15

    We report our findings comparing the geometric factor (GF) as determined from simulations and laboratory measurements of the new Dual Electron Spectrometer (DES) being developed at NASA Goddard Space Flight Center as part of the Fast Plasma Investigation on NASA's Magnetospheric Multiscale mission. Particle simulations are increasingly playing an essential role in the design and calibration of electrostatic analyzers, facilitating the identification and mitigation of the many sources of systematic error present in laboratory calibration. While equations for laboratory measurement of the GF have been described in the literature, these are not directly applicable to simulation since the two are carried out under substantially different assumptions and conditions, making direct comparison very challenging. Starting from first principles, we derive generalized expressions for the determination of the GF in simulation and laboratory, and discuss how we have estimated errors in both cases. Finally, we apply these equations to the new DES instrument and show that the results agree within errors. Thus we show that the techniques presented here will produce consistent results between laboratory and simulation, and present the first description of the performance of the new DES instrument in the literature.

  15. The Geometric Factor of Electrostatic Plasma Analyzers: A Case Study from the Fast Plasma Investigation for the Magnetospheric Multiscale mission

    NASA Technical Reports Server (NTRS)

    Collinson, Glyn A.; Dorelli, John Charles; Avanov, Leon A.; Lewis, Gethyn R.; Moore, Thomas E.; Pollock, Craig; Kataria, Dhiren O.; Bedington, Robert; Arridge, Chris S.; Chornay, Dennis J.; Gliese,Ulrik; Mariano, Al.; Barrie, Alexander C; Tucker, Corey; Owen, Christopher J.; Walsh, Andrew P.; Shappirio, Mark D.; Adrian, Mark L.

    2012-01-01

    We report our findings comparing the geometric factor (GF) as determined from simulations and laboratory measurements of the new Dual Electron Spectrometer (DES) being developed at NASA Goddard Space Flight Center as part of the Fast Plasma Investigation on NASA's Magnetospheric Multiscale mission. Particle simulations are increasingly playing an essential role in the design and calibration of electrostatic analyzers, facilitating the identification and mitigation of the many sources of systematic error present in laboratory calibration. While equations for laboratory measurement of the Geometric Factpr (GF) have been described in the literature, these are not directly applicable to simulation since the two are carried out under substantially different assumptions and conditions, making direct comparison very challenging. Starting from first principles, we derive generalized expressions for the determination of the GF in simulation and laboratory, and discuss how we have estimated errors in both cases. Finally, we apply these equations to the new DES instrument and show that the results agree within errors. Thus we show that the techniques presented here will produce consistent results between laboratory and simulation, and present the first description of the performance of the new DES instrument in the literature.

  16. Plasma and energetic electron flux variations in the Mercury 1 C event - Evidence for a magnetospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Christon, S. P.

    1989-06-01

    Charge-particle and magnetic-field data obtained during the first encounter (on March 29, 1974) of Mariner 10 with the planet Mercury are reexamined, and a new interpretation of the Mariner 10 energetic electron, plasma electron, and magnetic field data near the outbound magnetopause at Mercury is presented. It is shown that Mariner 10 sampled the hot substorm energized magnetospheric plasma sheet for the first 36 sec of the C event and, for the next 48 sec, alternatiely sampled hot (plasma sheet) and cold (boundary-layer magnetosheathlike) plasma regions. It is argued that the counting rate of the ID1 event (i.e., a particle event triggering detector D1 but not the D2, D3, or D7 detectors) thoughout the C event most probably represents a pulse pileup response to about 35-175 keV electrons, rather than the nominal above-175 keV electrons presumed in the earlier interpretations.

  17. In Flight Calibration of the Magnetospheric Multiscale Mission Fast Plasma Investigation

    NASA Technical Reports Server (NTRS)

    Barrie, Alexander C.; Gershman, Daniel J.; Gliese, Ulrik; Dorelli, John C.; Avanov, Levon A.; Salo, Chad L.; Tucker, Corey J.; Holland, Mathew P.; Pollock, Craig J.

    2015-01-01

    The Fast Plasma Investigation (FPI) on the Magnetospheric Multiscale mission (MMS) combines data from eight spectrometers, each with four deflection states, into a single map of the sky. Any systematic discontinuity, artifact, noise source, etc. present in this map may be incorrectly interpreted as legitimate data and incorrect conclusions reached. For this reason it is desirable to have all spectrometers return the same output for a given input, and for this output to be low in noise sources or other errors. While many missions use statistical analyses of data to calibrate instruments in flight, this process is difficult with FPI for two reasons: 1. Only a small fraction of high resolution data is downloaded to the ground due to bandwidth limitations and 2: The data that is downloaded is, by definition, scientifically interesting and therefore not ideal for calibration. FPI uses a suite of new tools to calibrate in flight. A new method for detection system ground calibration has been developed involving sweeping the detection threshold to fully define the pulse height distribution. This method has now been extended for use in flight as a means to calibrate MCP voltage and threshold (together forming the operating point) of the Dual Electron Spectrometers (DES) and Dual Ion Spectrometers (DIS). A method of comparing higher energy data (which has low fractional voltage error) to lower energy data (which has a higher fractional voltage error) will be used to calibrate the high voltage outputs. Finally, a comparison of pitch angle distributions will be used to find remaining discrepancies among sensors.

  18. In Flight Calibration of the Magnetospheric Multiscale Mission Fast Plasma Investigation

    NASA Technical Reports Server (NTRS)

    Barrie, Alexander C.; Gershman, Daniel J.; Gliese, Ulrik; Dorelli, John C.; Avanov, Levon A.; Rager, Amy C.; Schiff, Conrad; Pollock, Craig J.

    2015-01-01

    The Fast Plasma Investigation (FPI) on the Magnetospheric Multiscale mission (MMS) combines data from eight spectrometers, each with four deflection states, into a single map of the sky. Any systematic discontinuity, artifact, noise source, etc. present in this map may be incorrectly interpreted as legitimate data and incorrect conclusions reached. For this reason it is desirable to have all spectrometers return the same output for a given input, and for this output to be low in noise sources or other errors. While many missions use statistical analyses of data to calibrate instruments in flight, this process is insufficient with FPI for two reasons: 1. Only a small fraction of high resolution data is downloaded to the ground due to bandwidth limitations and 2: The data that is downloaded is, by definition, scientifically interesting and therefore not ideal for calibration. FPI uses a suite of new tools to calibrate in flight. A new method for detection system ground calibration has been developed involving sweeping the detection threshold to fully define the pulse height distribution. This method has now been extended for use in flight as a means to calibrate MCP voltage and threshold (together forming the operating point) of the Dual Electron Spectrometers (DES) and Dual Ion Spectrometers (DIS). A method of comparing higher energy data (which has low fractional voltage error) to lower energy data (which has a higher fractional voltage error) will be used to calibrate the high voltage outputs. Finally, a comparison of pitch angle distributions will be used to find remaining discrepancies among sensors.

  19. Active Measurement of Mercury's Plasma experiment: a part of the Plasma Wave Investigation consortium aboard the BepiColombo Mercury Magnetospheric Orbiter

    NASA Astrophysics Data System (ADS)

    Trotignon, Jean Gabriel; Trotignon, Jean Gabriel; Lagoutte, Dominique; Kasaba, Yasumasa; Kojima, Hiro; Blomberg, Lars; Lebreton, Jean-Pierre

    The Active Measurement of Mercury's Plasma experiment, AM2 P, is designed to measure the thermal electron density and temperature in the environment of planet Mercury from the solar wind down to the inner magnetosphere. Detailed analyses of the returned data should also give more information on the electron distribution function itself. AM2 P as part of the Plasma Wave Investigation consortium, PWI, shall then contribute to the study of the intricate and poorly known interaction between the solar wind and the Mercury's magnetosphere, exosphere, and surface. AM2 P shall indeed give another insight into the thermal coupling between neutral and charged particles, the characterization of the spectral distribution of natural waves, the detection of plasma boundaries, and the identification of the plasma regimes inside the Hermean magnetosphere. The AM2 P basic mode is to measure the self-impedance of the MEFISTO (Mercury Electric Field In Situ TOol) double-sphere antenna in a frequency range comprising the plasma frequency which is expected to lie in the various regions encountered by the Mercury Magnetospheric Orbiter, MMO. In this mode, different operations are possible, giving complementary plasma parameter information, mainly in the vicinity of the plasma resonance: normal dipole, monopole, and mutual impedance, according to the antenna elements that are used for the transmitting and receiving functions. In the secondary MEFISTO double-wire antenna mode, the external shield of the wire-boom is used as a 2 x 15 m long dipole antenna. As the dependence upon plasma parameters of the double-wire antenna impedance differs significantly from the double-sphere one, both modes may be of great benefit for achieving reliable and complementary plasma diagnoses. This is actually very useful in the Mercury's dilute media. As a bonus, AM2 P will contribute to the onboard calibrations of the WPT wire electric-antenna and the SC-DB and SC-LF search coils (calibration signal

  20. Observation of a new high-β and high-density state of a magnetospheric plasma in RT-1

    SciTech Connect

    Saitoh, H.; Yano, Y.; Yoshida, Z.; Nishiura, M.; Morikawa, J.; Kawazura, Y.; Nogami, T.; Yamasaki, M.

    2014-08-15

    A new high-β and high-density state is reported for a plasma confined in a laboratory magnetosphere. In order to expand the parameter regime of an electron cyclotron resonance heating experiment, the 8.2 GHz microwave power of the Ring Trap 1 device has been upgraded with the installation of a new waveguide system. The rated input power launched from a klystron was increased from 25 to 50 kW, which enabled the more stable formation of a hot-electron high-β plasma. The diamagnetic signal (the averaged value of four magnetic loops signals) of a plasma reached 5.2 mWb. According to a two-dimensional Grad-Shafranov analysis, the corresponding local β value is close to 100%.

  1. An analytical estimate of the coefficient for radial charged particle diffusion in Jupiter's magnetosphere using plasma radial distribution

    NASA Astrophysics Data System (ADS)

    Gubar, Yu. I.

    2015-11-01

    A radial profile of the plasma mass distribution in Jupiter's magnetosphere in the region beyond Io's orbit up to ˜15 Jupiter radii R J constructed according to the results of measurements on the Voyager 1 and Galileo spacecraft is used to determine the radial dependence and radial diffusion coefficient D LL . The initial profile is approximated by a function decreasing as L -5 ± 1. For this radial mass distribution, radial ion diffusion outside of Io's orbit caused by centrifugal forces is possible. An estimate of (1.2-6.7)10-11 L 6 ± 1 for D LL was obtained.

  2. SOURCES AND SINKS OF NEUTRALS AND PLASMA IN THE SATURNIAN MAGNETOSPHERE (Invited)

    NASA Astrophysics Data System (ADS)

    Richardson, J. D.

    2009-12-01

    This talk will review current knowledge on the source and sinks of plasm and energy in Saturn's magnetosphere. Enceladus dominates the water group source, with most of the material escaping from the plume near the southern pole. The relatively low corotation energy in this region results in less energy being available to heat electrons. The electrons are too cold to ionize the neutrals and the inner magnetosphere is dominated by neutrals. In addition, Saturn's atmosphere is a large source of neutral H, the rings contribute O2, and Titan is a source whose magnitude is controversial. In the inner magnetosphere most particles and energy are removed as fast neutrals; transport is more important further out and may be dominated by fingers of inflow and outflow as at Jupiter.

  3. The magnetosphere of Saturn

    NASA Technical Reports Server (NTRS)

    Schardt, A. W.

    1982-01-01

    Information about the magnetosphere of Saturn is provided: the magnetic dipole moment is axisymmetric, the bow shock stand-off distance is about 22 R sub S. The satellites Titan, Dione, and Tethys are probably the primary sources of magnetospheric plasma. Outside of approx. 4 R sub S, energetic particles are energized by diffusing inward while conserving their first and second adiabatic invariants. Particles are lost by satellite sweep-out, absorption byt the E ring and probably also by plasma interactions. The inner magnetosphere is characterized.

  4. Application of the Convected Kappa Distribution Function to Hot Plasma Ion Populations Observed in the Magnetospheres of Jupiter and Saturn

    NASA Astrophysics Data System (ADS)

    Kane, M.; Mitchell, D. G.; Mauk, B.; Carbary, J. F.; Krimigis, S. M.

    2015-12-01

    The Voyager, Galileo, and Cassini missions have measured the hot ion plasma pervading the magnetospheres of Jupiter and Saturn. In the middle and outer regions, the convected kappa distribution function, with isotropy in the rest (subcorotating with the planet) frame, has been found to fit hot ion particle distributions well and has been useful for extracting physical plasma parameters including the vector bulk velocity and the characteristic energy (temperature) of the distribution. The kappa model of the plasma distribution function using hydrogen and oxygen ions (Saturn) and hydrogen, oxygen, and sulfur ions (Jupiter) applied to observations generally indicates the presence of a hot ion population, energized in inner regions and adiabatically transported to the outer regions, but with significant exceptions. Higher mass species generally have a higher temperature. From the anisotropy of the distribution in the spacecraft frame, vector bulk velocity may be determined. From this analysis rotation curves for the plasma disks at Jupiter and Saturn reveal a plasma with significant subcorotation with a fraction that falls with increasing distance from the planet. There are local time asymmetries observed in the radial convection pattern. The plasma azimuthal convection patterns at Jupiter and Saturn and the characteristic temperature profiles are remarkably similar when scaled by the magnetopause distance and radial size of the planets.

  5. Analytical study of whistler mode waves in presence of parallel DC electric field for relativistic plasma in the magnetosphere of Uranus

    NASA Astrophysics Data System (ADS)

    Pandey, R. S.; Kaur, Rajbir

    2016-10-01

    In present paper, field aligned whistler mode waves are analyzed, in the presence of DC field in background plasma having relativistic distribution function in the magnetosphere of Uranus. The work has been examined for relativistic Maxwellian and loss-cone distribution function. In both the cases, we have studied the effect of various plasma parameters on the growth rate of waves by using the method of characteristics and discussed using data provided by Voyager 2. Growth rate has increased by increasing the magnitude of electric field, temperature anisotropy, energy density and number density of particles for Maxwellian and loss-cone background. However, when relativistic factor (λ =√{ 1 -v2 /c2 }) increases, growth rate decreases. The significant increase in real frequency of whistler waves can be observed. The results can be used for comparative study of planetary magnetospheres. The derivation can also be adapted to study various other instabilities in magnetosphere of Uranus.

  6. Planetary Rotation Modulation of Various Measured Plasma Parameters in Saturns Magnetosphere: a Possible Mechanism

    NASA Astrophysics Data System (ADS)

    Mitchell, D. G.; Brandt, P. C.; Carbary, J. F.; Krimigis, S. M.; Mauk, B. E.; Paranicas, C. P.; Roelof, E. C.; Jones, G.; Krupp, N.; Lagg, A.; Gurnett, D. A.; Kurth, W. S.; Dougherty, M. K.; Southwood, D. J.; Saur, J.; Zarka, P.

    2006-05-01

    The period of Saturn kilometric radiation (SKR) modulation established by Voyagers 1 and 2 in 1980 and 1981 (10 hours, 39 minutes, 22.4 +/- 7s) has been adopted by the International Astronomical Union as the official rotation period of Saturn. Other quantities seen to exhibit modulation at about the same period include the magnetic field, energetic electron spectral slope, and energetic neutral atom (ENA) emission. However first the Ulysses spacecraft, and later Cassini, have measured a significantly different the SKR period than the Voyagers (approximately 10 hours, 45minutes). This change is problematic, because if the field is truly locked to Saturns rotation, this would imply a huge change in angular momentum over a relatively short period. Furthermore, no consensus model has been accepted to explain how the effects of the rotation are communicated from the planetary body out to distances as large as over 20 Rs (Saturn radii). In this paper, we explore the possibility that the observed SKR period is not Saturns intrinsic rotation period, but rather stems from friction between the ionosphere and Saturns zonal wind flows. We suggest that the SKR location reflects a high conductivity anomaly in Saturns ionosphere, whereby rigid rotation is imposed on that part of the magnetosphere that connects via the magnetic field and field-aligned currents with this high conductivity anomaly (this is similar to the hypothesis of the camshaft model for the magnetic perturbation suggested by Espinosa et al., 2003). In that work, Espinosa et al. suggest that the high conductivity region exists because of a high order magnetic anomaly, that affects ionospheric conductivity locally. We extend that model to include a feed-back loop with the magnetosphere. In this scenario, a magnetospheric disturbance initially triggered by interaction with the field-aligned currents results in additional energy deposition in the ionosphere. This further increases the ionospheric conductivity, but

  7. Dawn-dusk asymmetry in ion pitch-angle anisotropy in the near-Earth magnetosphere and tail plasma sheet

    NASA Astrophysics Data System (ADS)

    Wang, C.; Zaharia, S. G.; Lyons, L. R.; Angelopoulos, V.

    2012-12-01

    We found a strong dawn-dusk asymmetry in ion pitch-angle anisotropy from spatial distributions statistically determined using THEMIS observations. The asymmetry varies significantly with ion energies and is a result of different processes. The anisotropy of ions below several hundreds eV in the tail plasma sheet (beyond X = 10 Re) and the near-Earth magnetosphere (inside r = 10 Re) is dominantly negative (relatively higher particle fluxes near 0 and 180 degree pitch-angle) and is more strongly negative in the post-midnight sector than the pre-midnight sector. The negative anisotropy is likely caused by field-aligned ionosphere outflow and the post-midnight enhancement is correlated with stronger electron precipitation energy fluxes that create stronger outflow. For ions between 1 to 10 keV in the near-Earth magnetosphere, anisotropy is found to be strongly positive (relatively higher fluxes near 90 degree pitch-angle) in the morning sector while near isotropic in the evening sector. Comparing the fluxes within the region of the positive anisotropy with other MLTs suggests that the positive anisotropy is caused by field-aligned ions not being able to drift as earthward as 90 degree ions. For ions of 10 keV and above, magnetic drift shell splitting results in strongly positive anisotropy on the dayside, while additional magnetopause shadowing causes strongly negative anisotropy in the post-midnight sector.

  8. Satellite and Ground Signatures of Kinetic and Inertial Scale ULF Alfven Waves Propagating in Warm Plasma in Earth's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Rankin, R.; Sydorenko, D.

    2015-12-01

    Results from a 3D global numerical model of Alfven wave propagation in a warm multi-species plasma in Earth's magnetosphere are presented. The model uses spherical coordinates, accounts for a non-dipole magnetic field, vertical structure of the ionosphere, and an air gap below the ionosphere. A realistic density model is used. Below the exobase altitude (2000 km) the densities and the temperatures of electrons, ions, and neutrals are obtained from the IRI and MSIS models. Above the exobase, ballistic (originating from the ionosphere and returning to ionosphere) and trapped (bouncing between two reflection points above the ionosphere) electron populations are considered similar to [Pierrard and Stegen (2008), JGR, v.113, A10209]. Plasma parameters at the exobase provided by the IRI are the boundary conditions for the ballistic electrons while the [Carpenter and Anderson (1992), JGR, v.97, p.1097] model of equatorial electron density defines parameters of the trapped electron population. In the simulations that are presented, Alfven waves with frequencies from 1 Hz to 0.01 Hz and finite azimuthal wavenumbers are excited in the magnetosphere and compared with Van Allen Probes data and ground-based observations from the CARISMA array of ground magnetometers. When short perpendicular scale waves reflect form the ionosphere, compressional Alfven waves are observed to propagate across the geomagnetic field in the ionospheric waveguide [e.g., Lysak (1999), JGR, v.104, p.10017]. Signals produced by the waves on the ground are discussed. The wave model is also applied to interpret recent Van Allen Probes observations of kinetic scale ULF waves that are associated with radiation belt electron dynamics and energetic particle injections.

  9. Performance of a Discrete Wavelet Transform for Compressing Plasma Count Data and its Application to the Fast Plasma Investigation on NASA's Magnetospheric Multiscale Mission

    NASA Technical Reports Server (NTRS)

    Barrie, Alexander C.; Yeh, Penshu; Dorelli, John C.; Clark, George B.; Paterson, William R.; Adrian, Mark L.; Holland, Matthew P.; Lobell, James V.; Simpson, David G.; Pollock, Craig J.; Moore, Thomas E.

    2015-01-01

    Plasma measurements in space are becoming increasingly faster, higher resolution, and distributed over multiple instruments. As raw data generation rates can exceed available data transfer bandwidth, data compression is becoming a critical design component. Data compression has been a staple of imaging instruments for years, but only recently have plasma measurement designers become interested in high performance data compression. Missions will often use a simple lossless compression technique yielding compression ratios of approximately 2:1, however future missions may require compression ratios upwards of 10:1. This study aims to explore how a Discrete Wavelet Transform combined with a Bit Plane Encoder (DWT/BPE), implemented via a CCSDS standard, can be used effectively to compress count information common to plasma measurements to high compression ratios while maintaining little or no compression error. The compression ASIC used for the Fast Plasma Investigation (FPI) on board the Magnetospheric Multiscale mission (MMS) is used for this study. Plasma count data from multiple sources is examined: resampled data from previous missions, randomly generated data from distribution functions, and simulations of expected regimes. These are run through the compression routines with various parameters to yield the greatest possible compression ratio while maintaining little or no error, the latter indicates that fully lossless compression is obtained. Finally, recommendations are made for future missions as to what can be achieved when compressing plasma count data and how best to do so.

  10. Inner magnetosphere imager mission: a new window on the plasma universe

    SciTech Connect

    Johnson, C.L.; Herrmann, M. )

    1994-02-01

    The proposed Inner Magnetosphere Imager mission will obtain the first simultaneous images of the component regions of the inner magnetosphere and will enable scientists to relate these global images to internal and external influences, as well as local observations. They are performing at the George C. Marshall Space Flight Center a concept definition study of the proposed mission. The baseline mission calls for an instrument complement of approximately seven imagers to fly in an elliptical Earth orbit with an apogee of seven Earth radii (R[sub e]) and a perigee of approximately 4,800 km. Several spacecraft concepts are being considered for the mission. The first concept utilizes a spinning space-craft with a despun platform. The second concept splits the instruments onto two smaller satellites--a spinning spacecraft and a complementary three-axis stabilized spacecraft. Launch options being assessed for the spacecraft range from a Delta 2, for the single- and dual-spacecraft concepts, to dual Taurus launches, for the two smaller spacecraft. An additional option, that of downsizing the mission to fit within the guidelines of the Space Physics Division's new class of solar terrestrial probes, is also being considered.

  11. Observation of 'Band' Structures in Spacecraft Observations of Inner Magnetosphere Plasma Electrons

    NASA Astrophysics Data System (ADS)

    Mohan Narasimhan, Kirthika; Fazakerley, Andrew; Milhaljcic, Branislav; Grimald, Sandrine; Dandouras, Iannis; Owen, Chris

    2013-04-01

    In previous studies, several authors have reported inner magnetosphere observations of proton distributions confined to narrow energy bands in the range of 1-25 keV. These structures have been known as "nose structures", with reference to their appearance in energy-time spectrograms and are known as "bands" if they are observed for extended periods of time. These proton structures have been studied quite extensively with multiple mechanisms proposed for their formation, not all of which apply for electrons. We examine Double-Star TC1 PEACE electron data recorded in the inner magnetosphere (L<15) near the equatorial plane to see if these features are also observed in the electron energy spectra. These "bands" also appear in electron spectrograms, spanning an energy range of 0.2-30 keV, and are shown to occur predominantly towards the dayside and dusk sectors. We also see multiple bands in some instances. We investigate the properties of these multi-banded structures and carry out a statistical survey analysing them as a function of geomagnetic activity, looking at both the Kp and Auroral Indices, in an attempt to explain their presence.

  12. Inner Magnetosphere Imager Mission: A New Window on the Plasma Universe

    NASA Technical Reports Server (NTRS)

    Johnson, Charles L.; Herrmann, Melody

    1994-01-01

    The proposed Inner Magnetosphere Imager mission will obtain the first simultaneous images of the component regions of the inner magnetosphere and will enable scientists to relate these global images to internal and external influences, as well as local observations. We are performing at the George C. Marshall Space Flight Center a concept definition study of the proposed mission. The baseline mission calls for an instrument complement of approximately seven imagers to fly in an elliptical Earth orbit with an apogee of seven Earth radii (Re) and a perigee of approximately 4800 km. Several spacecraft concepts are being considered for the mission. The first concept utilizes a spinning spacecraft with a despun platform. The second concept splits the instruments onto two smaller satellites-a spinning spacecraft and a complementary three-axis stabilized spacecraft. Launch options being assessed for the spacecraft range from a Delta-2, for the single- and dual-spacecraft concepts, to dual Taurus launches, for the two smaller spacecraft. An additional option, that of downsizing the mission to fit within the guidelines of the Space Physics Division's new class of solar terrestrial probes, is also being considered.

  13. Studies for the Europagenic Plasma Source in Jupiter's Inner Magnetosphere during the Galileo Europa Mission

    NASA Technical Reports Server (NTRS)

    Smyth, William H.

    2004-01-01

    Progress in research to understand the three-dimensional nature of the Europagenic plasma torus is summarized. Efforts to improve the plasma torus description near Europa's orbit have included a better understanding of Europa's orbit and an improved description of the planetary magnetic field. New plasma torus chemistry for molecular and atomic species has been introduced and implemented in Europa neutral cloud models. Preliminary three-dimensional model calculations for Europa's neutral clouds and their plasma sources are presented.

  14. Boundary layers of the earth's outer magnetosphere

    NASA Technical Reports Server (NTRS)

    Eastman, T. E.; Frank, L. A.

    1984-01-01

    The magnetospheric boundary layer and the plasma-sheet boundary layer are the primary boundary layers of the earth's outer magnetosphere. Recent satellite observations indicate that they provide for more than 50 percent of the plasma and energy transport in the outer magnetosphere although they constitute less than 5 percent by volume. Relative to the energy density in the source regions, plasma in the magnetospheric boundary layer is predominantly deenergized whereas plasma in the plasma-sheet boundary layer has been accelerated. The reconnection hypothesis continues to provide a useful framework for comparing data sampled in the highly dynamic magnetospheric environment. Observations of 'flux transfer events' and other detailed features near the boundaries have been recently interpreted in terms of nonsteady-state reconnection. Alternative hypotheses are also being investigated. More work needs to be done, both in theory and observation, to determine whether reconnection actually occurs in the magnetosphere and, if so, whether it is important for overall magnetospheric dynamics.

  15. Saturn's outer magnetosphere

    NASA Technical Reports Server (NTRS)

    Schardt, A. W.; Behannon, K. W.; Carbary, J. F.; Eviatar, A.; Lepping, R. P.; Siscoe, G. L.

    1983-01-01

    Similarities between the Saturnian and terrestrial outer magnetosphere are examined. Saturn, like Earth, has a fully developed magnetic tail, 80 to 100 RS in diameter. One major difference between the two outer magnetospheres is the hydrogen and nitrogen torus produced by Titan. This plasma is, in general, convected in the corotation direction at nearly the rigid corotation speed. Energies of magnetospheric particles extend to above 500 keV. In contrast, interplanetary protons and ions above 2 MeV have free access to the outer magnetosphere to distances well below the Stormer cutoff. This access presumably occurs through the magnetotail. In addition to the H+, H2+, and H3+ ions primarily of local origin, energetic He, C, N, and O ions are found with solar composition. Their flux can be substantially enhanced over that of interplanetary ions at energies of 0.2 to 0.4 MeV/nuc.

  16. Connections between large-scale transport to the inner magnetosphere from the distant plasma sheet, region 2 coupling to the ionosphere, and substorm and storm dynamics (Invited)

    NASA Astrophysics Data System (ADS)

    Lyons, L. R.; Wang, C.; Zou, S.; Gkioulidou, M.; Nishimura, Y.; Shi, Y.; Kim, H.; Xing, X.; Nicolls, M. J.; Heinselman, C. J.

    2009-12-01

    Studies using a variety of ground-based and spacecraft observations, as well as the Rice Convection Model, have taught us much about the connection between plasma sheet transport and particle distributions within the inner plasma sheet. These studies have shown that plasma moves earthward (equatorward in the ionosphere) after enhancements in convection to reach the near-Earth plasma sheet, leading to the enhancements in plasma sheet pressure that are responsible for the growth phase of substorms and the partial ring current. The highest inner plasma sheet pressures likely occur in the subauroral polarization streams (SAPS) region of the evening-side convection cell, lying equatorward of the Harang reversal. Both the Harang reversal and SAPS are manifestations of the region 2 (R2) electrodynamical coupling, so that transport to the near-Earth plasma sheet is strongly influenced by the R2 magnetosphere-ionosphere coupling. Modeling results show that this transport, together with the concurrent R2 coupling, is also strongly dependent on the plasma distributions that enter the plasma sheet. However, the entering plasma distribution is expected to have substantial spatial and temporal structure, which should impart substantial spatial structure and time dependencies to the inner plasma sheet particle distributions. In addition, very recent analyses indicate that the temporal variations of the particle distribution entering the plasma sheet, and the ensuing transport of new particle distributions within the plasma sheet, is fundamental to understanding the substorm expansion phase. Taken together, the above results indicate that an important understanding of inner magnetosphere particle distributions and their dynamics, as well as of major geomagnetic disturbances, is likely to come from integrated studies of plasma sheet particle entry, particle transport, and electrodynamical coupling to the ionosphere.

  17. Saturn: atmosphere, ionosphere, and magnetosphere.

    PubMed

    Gombosi, Tamas I; Ingersoll, Andrew P

    2010-03-19

    The Cassini spacecraft has been in orbit around Saturn since 30 June 2004, yielding a wealth of data about the Saturn system. This review focuses on the atmosphere and magnetosphere and briefly outlines the state of our knowledge after the Cassini prime mission. The mission has addressed a host of fundamental questions: What processes control the physics, chemistry, and dynamics of the atmosphere? Where does the magnetospheric plasma come from? What are the physical processes coupling the ionosphere and magnetosphere? And, what are the rotation rates of Saturn's atmosphere and magnetosphere?

  18. Overview - Electric fields. [in magnetosphere

    NASA Technical Reports Server (NTRS)

    Cauffman, D. P.

    1979-01-01

    The electric fields session is designed to review progress in observation, theory, and modeling of magnetospheric electric fields, and to expose important new results. The present report comments on the state and prospects of electric field research, with particular emphasis on relevance to quantitative modeling of the magnetospheric processes. Attention is given to underlying theories and models. Modeling philosophy is discussed relative to explanatory models and representative models. Modeling of magnetospheric electric fields, while in its infancy, is developing rapidly on many fronts employing a variety of approaches. The general topic of magnetospheric electric fields is becoming of prime importance in understanding space plasmas.

  19. Saturn: atmosphere, ionosphere, and magnetosphere.

    PubMed

    Gombosi, Tamas I; Ingersoll, Andrew P

    2010-03-19

    The Cassini spacecraft has been in orbit around Saturn since 30 June 2004, yielding a wealth of data about the Saturn system. This review focuses on the atmosphere and magnetosphere and briefly outlines the state of our knowledge after the Cassini prime mission. The mission has addressed a host of fundamental questions: What processes control the physics, chemistry, and dynamics of the atmosphere? Where does the magnetospheric plasma come from? What are the physical processes coupling the ionosphere and magnetosphere? And, what are the rotation rates of Saturn's atmosphere and magnetosphere? PMID:20299587

  20. Iogenic Plasma and its Rotation-Driven Transport in Jupiter's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Smyth, William H.

    2001-01-01

    Model calculations are reported for the Iogenic plasma source created by atomic oxygen and sulfur above Io's exobase in the corona and extended clouds (Outer Region). On a circumplanetary scale, two-dimensional distributions produced by integrating the proper three dimensional rate information for electron impact and charge exchange processes along the magnetic field lines are presented for the pickup ion rates, the net-mass and total-mass loading rates, the mass per unit magnetic flux rate, the pickup conductivity, the radial pickup current, and the net-energy loading rate for the plasma torus. All of the two-dimensional distributions are highly peaked at Io's location and hence highly asymmetric about Jupiter. The Iogenic plasma source is also calculated on a much smaller near-Io scale to investigate the structure of the highly peak rates centered about lo's instantaneous location. The Iogenic plasma source for the Inner Region (pickup rates produced below Io's exobase) is, however, expected to be the dominant source near lo for the formation of the plasma torus ribbon and to be a comparable source, if not a larger contributor, to the energy budget of the plasma torus, so as to provide the necessary power to sustain the plasma torus radiative loss rate.

  1. EMIC-wave-moderated flux limitations of ring current energetic ion intensities in the multi-species plasmas of Earth's inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Mauk, B.

    2013-12-01

    One of the early sophisticated integrations of theory and observations of the space age was the development in 1966 of the integral Kennel-Petschek flux limit for trapped energetic electrons and ions within Earth's inner magnetosphere. Specifically, it was proposed that: 1) trapped particle distributions in the magnetic bottle configuration of the inner magnetosphere are intrinsically unstable to the generation various plasma waves and 2) ionospheric reflection of some waves back into the trapped populations leads to runaway growth of the waves and dramatic loss of particles for particle integral intensities that rise above a fairly rigidly specified upper limit. While there has been a long hiatus in utilization of the KP limit in inner magnetospheric research, there have been recent highly successful reconsiderations of more general forms of the KP limit for understanding radiation belt electron intensities and spectral shapes, resulting from improvements in theoretical tools. Such a reconsideration has not happened for energetic trapped ions, perhaps due to the perceived immense complexity of the generation of the Electromagnetic Ion Cyclotron (EMIC) waves, that scatter the energetic ions, for plasmas containing multiple ionic species (H, He, O). Here, a differential Kennel-Petschek (KP) flux limit for magnetospheric energetic ions is devised taking into account multiple ion species effects on the EMIC waves. This new theoretical approach is applied to measured Earth magnetosphere energetic ion spectra (~ keV to ~ 1 MeV) for radial positions (L) 3 to 6.7 RE. The flatness of the most intense spectral shapes for <100 keV indicate sculpting by just such a mechanism, but modifications of traditional KP parameters are needed to account for maximum intensities up to 5 times greater than expected. Future work using the Van Allen Probes mission will likely resolve outstanding uncertainties.

  2. Oscillatory flow braking: inner magnetosphere observations

    NASA Astrophysics Data System (ADS)

    Panov, E. V.; Nakamura, R.; Baumjohann, W.; Angelopoulos, V.

    2013-12-01

    We search for damped oscillatory flow braking events observed by THEMIS/ARTEMIS in the near-Earth plasma sheet when their counterpart in the inner magnetosphere was observed. By comparing the particle and magnetic field data in the two locations we analyze the feedback of the inner magnetosphere to plasma sheet oscillatory flow braking. We discuss the possible role of the oscillatory flow events for plasma injection into the inner magnetosphere.

  3. Plasma wave turbulence associated with an interplanetary shock. [wave in solar wind upstream of magnetosphere

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Neubauer, F. M.; Schwenn, R.

    1979-01-01

    The present paper deals with interplanetary shocks, detected and analyzed to date, from the Helios 1 and 2 spacecraft in eccentric solar orbits. The plasma wave turbulence associated with the shock observed on March 30, 1976 is studied in detail. This event is of particular interest because it represents a clearly defined burst of turbulence against a quiet solar wind background both upstream and downstream of the shock. The shock itself is an oblique shock with upstream parameters characterized by a low Mach number, a low beta, and an abnormally large electron to ion temperature ratio. The types of plasma wave detected are discussed.

  4. Magnetospheric energy principle for spherically symmetric monopolar magnetospheres.

    PubMed

    Miura, Akira

    2013-05-24

    A new magnetospheric energy principle is developed for spherically symmetric monopolar magnetospheres with open straight field lines. The principle is based on the self-adjointness of the force operator, which ensures energy conservation in the unperturbed magnetospheric plasma volume. A Neuman-type boundary condition for the perpendicular displacement at the ionosphere yields a negative contribution to the potential energy variation. This contribution makes high-mode-number incompressible field-line-bending modes unstable owing to the plasma displacement over the spherical ionospheric surface. PMID:23745887

  5. The magnetospheric trough

    SciTech Connect

    Thomsen, M.F.; McComas, D.J.; Elphic, R.C.; Borovsky, J.E.

    1997-03-04

    The authors review the history of the concepts of the magnetospheric cold-ion trough and hot-electron trough and conclude that the two regions are actually essentially the same. The magnetospheric trough may be viewed as a temporal state in the evolution of convecting flux tubes. These flux tubes are in contact with the earth`s upper atmosphere which acts both as a sink for precipitating hot plasma sheet electrons and as a source for the cold ionospheric plasma leading to progressive depletion of the plasma sheet and refilling with cold plasma. Geosynchronous plasma observations show that the rate of loss of plasma-sheet electron energy density is commensurate with the precipitating electron flux at the low-latitude edge of the diffuse aurora. The rate at which geosynchronous flux tubes fill with cold ionospheric plasma is found to be consistent with previous estimates of early-time refilling. Geosynchronous observations further indicate that both Coulomb collisions and wave-particle effects probably play a role in trapping ionospheric material in the magnetosphere.

  6. Magnetosphere--Ionosphere Coupling: Effects of Plasma Alfven Wave Relative Motion

    NASA Astrophysics Data System (ADS)

    Christiansen, P. J.; Dum, C. T.

    1989-06-01

    The introduction of relative perpendicular motion between a flux-tube supporting shear Alfven wave activity and the background plasma is studied in the context of the coupling of a wave generating region with a distant ionosphere. The results of a representative simulation, using an extended version of the code developed by Lysak & Dum (J. geophys. Res. 88, 365 (1983)), are used as a basis for interpreting some aspects of recent satellite observations.

  7. Magnetosphere-ionosphere coupling: effects of plasma Alfvén wave relative motion.

    NASA Astrophysics Data System (ADS)

    Christiansen, P. J.; Dum, C. T.

    The introduction of relative perpendicular motion between a flux-tube supporting shear Alfvén wave activity and the background plasma is studied in the context of the coupling of a wave generating region with a distant ionosphere. The results of a representative simulation, using an extended version of the code developed by Lysak & Dum, are used as a basis for interpreting some aspects of recent satellite observations.

  8. 3D magnetospheric parallel hybrid multi-grid method applied to planet-plasma interactions

    NASA Astrophysics Data System (ADS)

    Leclercq, L.; Modolo, R.; Leblanc, F.; Hess, S.; Mancini, M.

    2016-03-01

    We present a new method to exploit multiple refinement levels within a 3D parallel hybrid model, developed to study planet-plasma interactions. This model is based on the hybrid formalism: ions are kinetically treated whereas electrons are considered as a inertia-less fluid. Generally, ions are represented by numerical particles whose size equals the volume of the cells. Particles that leave a coarse grid subsequently entering a refined region are split into particles whose volume corresponds to the volume of the refined cells. The number of refined particles created from a coarse particle depends on the grid refinement rate. In order to conserve velocity distribution functions and to avoid calculations of average velocities, particles are not coalesced. Moreover, to ensure the constancy of particles' shape function sizes, the hybrid method is adapted to allow refined particles to move within a coarse region. Another innovation of this approach is the method developed to compute grid moments at interfaces between two refinement levels. Indeed, the hybrid method is adapted to accurately account for the special grid structure at the interfaces, avoiding any overlapping grid considerations. Some fundamental test runs were performed to validate our approach (e.g. quiet plasma flow, Alfven wave propagation). Lastly, we also show a planetary application of the model, simulating the interaction between Jupiter's moon Ganymede and the Jovian plasma.

  9. Formation and evolution of flapping and ballooning waves in magnetospheric plasma sheet

    NASA Astrophysics Data System (ADS)

    Ma, J. Z. G.; Hirose, A.

    2016-05-01

    By adopting Lembége & Pellat's 2D plasma-sheet model, we investigate the flankward flapping motion and Sunward ballooning propagation driven by an external source (e.g., magnetic reconnection) produced initially at the sheet center. Within the ideal MHD framework, we adopt the WKB approximation to obtain the Taylor-Goldstein equation of magnetic perturbations. Fourier spectral method and Runge-Kutta method are employed in numerical simulations, respectively, under the flapping and ballooning conditions. Studies expose that the magnetic shears in the sheet are responsible for the flapping waves, while the magnetic curvature and the plasma gradient are responsible for the ballooning waves. In addition, the flapping motion has three phases in its temporal development: fast damping phase, slow recovery phase, and quasi-stabilized phase; it is also characterized by two patterns in space: propagating wave pattern and standing wave pattern. Moreover, the ballooning modes are gradually damped toward the Earth, with a wavelength in a scale size of magnetic curvature or plasma inhomogeneity, only 1-7% of the flapping one; the envelops of the ballooning waves are similar to that of the observed bursty bulk flows moving toward the Earth.

  10. Estimation of magnetospheric plasma ion composition for 1956-1975 by using high time resolution geomagnetic field data created from analog magnetograms

    NASA Astrophysics Data System (ADS)

    Yamamoto, K.; Nosé, M.; Mashiko, N.; Morinaga, K.; Nagamachi, S.

    2016-06-01

    This study addresses the ion composition in the magnetosphere before the satellite era. We estimate the plasma ion mass for 1956-1975 from the period of low-latitude Pi2 pulsations found in digital geomagnetic field data that are created from analog magnetograms at Kakioka. The period of investigation covers most of solar cycle 19 and the whole solar cycle 20. To consider long-term variation, the moving average of the estimated plasma ion mass is calculated with a 1 year time window. We find that 1 year moving average of the plasma ion mass changed by a factor of ˜2 during one solar cycle (i.e., between ˜1.1 amu and ˜2.4 amu for solar cycle 19 and between ˜1.1 amu and ˜2.0 amu for solar cycle 20). The correlation coefficient between the 1 year moving average of the plasma ion mass and that of the F10.7 index is 0.86. This result supports the idea that in long-term variation, solar radiation increases the density and the temperature of O+ ions in the ionosphere, leads to the outflow of O+ ions, and contributes to the enhancement of the plasma ion mass in the nightside magnetosphere. The digital data created from analog magnetograms provide an important clue to know the space environment in old days and are advantageous for studies of the space weather and space climate.

  11. Spatial Distribution of Dense Plasma in the Near-Earth Plasma Sheet and its Transport Into the Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Izutsu, T.; Nishino, M. N.; Fujimoto, M.; Lavraud, B.; Hasegawa, H.; Angelopoulos, V.; McFadden, J. P.; Larson, D.; Auster, U.; Saito, Y.; Thomsen, M. F.

    2008-12-01

    We investigate the cold-dense plasma sheet (CDPS) on November 12 and 13, 2007 by using THEMIS, Geotail, and LANL satellite. During the last extend period of northward IMF, 2-component CDPS in the duskside plasma sheet (PS), single component CDPS in the dawnside PS, and hot-dense ions (HDIs) at the inner edge of the PS on the dawnside were observed by Geotail, THC, and THA simultaneously. Then, super-dense plasma sheet (SDPS) was detected near the midnight region at geosynchronous orbit (GEO) (i) 1 hour after the southward turning of the IMF and (ii) at the rapid enhancement of the solar wind density (4 hours after (i)). Focusing on (i), duskward moving HDIs and earthward fast flow were encountered by Geotail in the pre-midnight PS. The appearance of SDPS and energetic electrons was in good association with this fast flow. We suggest that HDIs on the dawnside moved to the pre-midnight PS and they were pushed into GEO by the fast flow. After both observations of SDPS, the dense plasma was not seen on the dawnside where THA had detected HDIs (X < ~-5 Re), while it existed earthward of the region. Although these periods were front parts of corotating interaction region (CIR), geomagnetic activity was very weak. We discuss the transport mechanism and the geoeffectiveness of the dense plasma.

  12. Onset of magnetospheric substorms.

    NASA Technical Reports Server (NTRS)

    Tsurutani, B.; Bogott, F.

    1972-01-01

    An examination of the onset of magnetospheric substorms is made by using ATS 5 energetic particles, conjugate balloon X rays and electric fields, all-sky camera photographs, and auroral-zone magnetograms. It is shown that plasma injection to ATS distances, conjugate 1- to 10-keV auroral particle precipitation, energetic electron precipitation, and enhancements of westward magnetospheric electric-field component all occur with the star of slowly developing negative magnetic bays. No trapped or precipitating energetic-particle features are seen at ATS 5 when later sharp negative magnetic-bay onsets occur at Churchill or Great Whale River.

  13. Measurement of direct current electric fields and plasma flow speeds in Jupiter's magnetosphere

    NASA Technical Reports Server (NTRS)

    Kellogg, Paul J.; Goetz, K.; Howard, R. L.; Monson, S. J.; Balogh, A.; Forsyth, R. J.

    1993-01-01

    During the encounter of Ulysses with Jupiter, we have measured two components of the dc electric field and deduced from them the flow speed in the Io toms, as well as the presence of a polar cap region end what we interpret as a cleft region. Within the toms the flow speed is approximately equal to the speed of a plasma corotating with Jupiter but has significant deviations. The dominant deviations have an apparent period of the order of Jupiter's rotation period, but this might be a latitudinal effect. Other important periods are about 40 min and less than 25 min.

  14. Energy and momentum flow in electromagnetic fields and plasma. [solar wind-magnetospheric interaction

    NASA Technical Reports Server (NTRS)

    Parish, J. L.; Raitt, W. J.

    1983-01-01

    The energy momentum tensor for a perfect fluid in a magnetic field is used to predict the momentum density, energy density, momentum flow, and energy flow of the fluid and the electromagnetic field. It is shown that taking the momentum flow from the energy momentum tensor, rather than starting with differential magnetohydrodynamic equations, can produce more accurate results on the basis of magnetic field data. It is suggested that the use of the energy momentum tensor has the potential for application to analysis of data from the more dynamic regions of the solar system, such as the plasma boundaries of Venus, the Jovian ionosphere, and the terrestrial magnetopause.

  15. Kinetic model of auroral plasma formation by magnetospheric convection and injection. I - Electrons

    NASA Astrophysics Data System (ADS)

    Chiu, Y. T.; Kishi, A. M.

    1984-07-01

    It is shown that Green's function solutions to the collisionless time-dependent Boltzmann equation can be economically used to construct a time-dependent model of auroral plasma formation by global time-dependent convection electric fields in dipolar magnetic geometry. It is shown that recently observed features, such as formation of field-aligned distributions, formation of injection fronts and formation of inverse dispersion signatures, can be accounted for in a global time-dependent convection model. This paper also sets forth the theoretical and presentation framework for subsequent data analytic studies of convected electron and ion distribution functions.

  16. Magnetosphere of a Kerr black hole immersed in magnetized plasma and its perturbative mode structure

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Zhang, Fan; Lehner, Luis

    2015-06-01

    This paper studies jetlike electromagnetic configurations surrounding a slowly spinning black-hole immersed in a uniformly magnetized force-free plasma. In the first part of this paper, we present a family of stationary solutions that are jet capable. While these solutions all satisfy the force-free equations and the appropriate boundary conditions, our numerical experiments show a unique relaxed state starting from different initial data, and so one member of the family is likely preferred over the others. In the second part of this paper, we analyze the perturbations of this family of jetlike solutions, and show that the perturbative modes exhibit a similar split into the trapped and traveling categories previously found for perturbed Blandford-Znajek solutions. In the eikonal limit, the trapped modes can be identified with the fast magnetosonic waves in the force-free plasma and the traveling waves are essentially the Alfvén waves. Moreover, within the scope of our analysis, we have not seen signs of unstable modes at the light-crossing time scale of the system, within which the numerical relaxation process occurs. This observation disfavors mode instability as the selection mechanism for picking out a preferred solution. Consequently, our analytical study is unable to definitively select a particular solution out of the family to serve as the aforementioned preferred final state. This remains an interesting open problem.

  17. Saturn's variable magnetosphere.

    PubMed

    Gombosi, Tamas I; Hansen, Kenneth C

    2005-02-25

    Since the Cassini spacecraft reached Saturn's orbit in 2004, its instruments have been sending back a wealth of data on the planet's magnetosphere (the region dominated by the magnetic field of the planet). In this Viewpoint, we discuss some of these results, which are reported in a collection of reports in this issue. The magnetosphere is shown to be highly variable and influenced by the planet's rotation, sources of plasma within the planetary system, and the solar wind. New insights are also gained into the chemical composition of the magnetosphere, with surprising results. These early results from Cassini's first orbit around Saturn bode well for the future as the spacecraft continues to orbit the planet.

  18. Hot flow anomaly formation by magnetic deflection. [regions of hot plasma in earth magnetosphere

    NASA Technical Reports Server (NTRS)

    Onsager, T. G.; Thomsen, M. F.; Winske, D.

    1990-01-01

    Hot flow anomalies (HFAs) are localized plasma structures observed in the solar wind and magnetosheath near the earth's quasi-parallel bow shock. This paper presents one-dimensional hybrid computer simulations illustrating a formation mechanism for HFAs in which the single hot ion population results from a spatial separation of two counterstreaming ion beams. The higher-density cooler regions are dominated by the background (solar wind) ions, and the lower-density hotter internal regions are dominated by the beam ions. The spatial separation of the beam and background is caused by the deflection of the ions in large-amplitude magnetic fields which are generated by ion/ion streaming instabilities.

  19. Statistical Study of Plasma-depleted Flux Tubes in Saturnian Magnetosphere

    NASA Astrophysics Data System (ADS)

    Lai, H. R.; Russell, C. T.; Wei, H. Y.; Dougherty, M. K.; Jia, Y. D.

    2015-10-01

    We have surveyed the occurrence of flux tubes with both enhanced and depressed field strength relative to their surroundings as observed in Cassini magnetometer data. Consistent with earlier studies, enhanced field flux tubes are concentrated near the equator while depressed field flux tubes are distributed in a larger latitudinal region. For both types of flux tubes, their occurrence rates vary with the local time in the same pattern and they contain the same magnetic flux. Therefore, we suggest that those two types of tubes are just different manifestations of the same phenomenon. Near the equator with high ambient plasma density, the flux tubes convecting in from the tail are compressed, resulting in increased field strength. Off the equator,these flux tubes expand slightly, resulting in decreased field strength. The enhanced flux tubes gradually break into smaller ones as they convect inward. Inside an L value of about 5, they become indistinguishable from the background.

  20. The interaction between ULF waves and thermal plasma ions in the magnetosphere

    NASA Astrophysics Data System (ADS)

    Zong, Qiugang

    2016-07-01

    During substorm activities, energetic particle injections associated with ULF waves have been detected when Cluster fleet was traveling inbound in the Southern Hemisphere. Substorm-injected energetic particles are strong and clearly modulated by these ULF waves. The ULF waves with the period of 1 min are probably the third harmonic mode. The periodic pitch angle dispersion signatures at 5.2-6.9 keV energy channel were detected by Cluster satellite. These thermal plasma have high coherence with the electric field of the third harmonic poloidal mode and satisfy the drift-bounce resonant condition of N = 2. In addition, ion outflows from the Earth's ionosphere (tens to hundreds of eV) are also observed to be modulated by these ULF waves. To the best of our knowledge, this is the first report to show that ULF waves can simultaneously interact with both substorm-injected "hot" particles from the magnetotail and cold outflow ions from the Earth's ionosphere.

  1. Magnetosphere imager science definition team interim report

    NASA Technical Reports Server (NTRS)

    Armstrong, T. P.; Johnson, C. L.

    1995-01-01

    For three decades, magnetospheric field and plasma measurements have been made by diverse instruments flown on spacecraft in may different orbits, widely separated in space and time, and under various solar and magnetospheric conditions. Scientists have used this information to piece together an intricate, yet incomplete view of the magnetosphere. A simultaneous global view, using various light wavelengths and energetic neutral atoms, could reveal exciting new data nd help explain complex magnetospheric processes, thus providing a clear picture of this region of space. This report documents the scientific rational for such a magnetospheric imaging mission and provides a mission concept for its implementation.

  2. Magnetosphere imager science definition team: Executive summary

    NASA Technical Reports Server (NTRS)

    Armstrong, T. P.; Gallagher, D. L.; Johnson, C. L.

    1995-01-01

    For three decades, magnetospheric field and plasma measurements have been made by diverse instruments flown on spacecraft in many different orbits, widely separated in space and time, and under various solar and magnetospheric conditions. Scientists have used this information to piece together an intricate, yet incomplete view of the magnetosphere. A simultaneous global view, using various light wavelengths and energetic neutral atoms, could reveal exciting new data and help explain complex magnetospheric processes, thus providing a clear picture of this region of space. This report summarizes the scientific rationale for such a magnetospheric imaging mission and outlines a mission concept for its implementation.

  3. Dust waves in rotating planetary magnetospheres

    SciTech Connect

    Haque, Q.; Saleem, H.

    2005-10-31

    Low frequency electrostatic drift and acoustic waves are studied in rotating dusty plasmas. Linear dispersion relation is found. It is pointed out that rotation of the planet can introduce dust drift waves through Coriolis force in the planetary magnetospheres. This mode can couple with dust acoustic mode. Coriolis force effect may give rise to dipolar vortices in rotating dusty plasmas of planetary magnetospheres.

  4. P24 Plasma Physics Summer School 2012 Los Alamos National Laboratory Summer lecture series for students

    SciTech Connect

    Intrator, Thomas P.; Bauer, Bruno; Fernandez, Juan C.; Daughton, William S.; Flippo, Kirk A.; Weber, Thomas; Awe, Thomas J.; Kim, Yong Ho

    2012-09-07

    This report covers the 2012 LANL summer lecture series for students. The lectures were: (1) Tom Intrator, P24 LANL: Kick off, Introduction - What is a plasma; (2) Bruno Bauer, Univ. Nevada-Reno: Derivation of plasma fluid equations; (3) Juan Fernandez, P24 LANL Overview of research being done in p-24; (4) Tom Intrator, P24 LANL: Intro to dynamo, reconnection, shocks; (5) Bill Daughton X-CP6 LANL: Intro to computational particle in cell methods; (6) Kirk Flippo, P24 LANL: High energy density plasmas; (7) Thom Weber, P24 LANL: Energy crisis, fission, fusion, non carbon fuel cycles; (8) Tom Awe, Sandia National Laboratory: Magneto Inertial Fusion; and (9) Yongho Kim, P24 LANL: Industrial technologies.

  5. Simulations of Steady Magnetospheric Convection

    NASA Astrophysics Data System (ADS)

    Lemon, C.; Toffoletto, F.; Sazykin, S.; Wolf, R.

    2003-12-01

    Steady Magnetospheric Convection in the Earth's magnetosphere is typically defined as a period of several hours of enhanced solar wind driving of the magnetosphere (i.e. the Interplanetary Magnetic Field is southward) during which the magnetosphere is nonetheless devoid of substorm signatures. We present and discuss model results of generic Steady Magnetospheric Convection (SMC) events using the Self-consistent Rice Convection Model. The SRCM consists of two coupled models that are used to separately compute the plasma and magnetic field evolution. The Rice Convection Model (RCM) is a multi-fluid guiding-center plasma drift code used to simulate plasma dynamics under the assumption that convection can be modeled quasi-statically as a sequence of force-balanced states. The RCM has been coupled to an equilibrium solver that computes a magnetic field that is in force-balance (and is therefore self-consistent) with the RCM's plasma distribution. Various levels of steady external driving conditions are imposed in order to contrast the ability of the model magnetosphere to respond to differing rates of energy input and form a steady-state convection pattern. Model results will be compared with empirical SMC morphology.

  6. Plasma in the Jovian magnetosphere: An X-ray and EUV study of the aurora and the Io plasma torus

    NASA Astrophysics Data System (ADS)

    Kraft, Ralph

    2013-09-01

    We propose 4x40 ks Chandra/HRC-I and 2x40 ks XMM-Newton observations of the Jovian aurora and Io plasma torus in conjunction with the Japanese SPRINT-A satellite. SPRINT-A will continuously observe Jupiter from Dec 2013 to Apr 2014, making sensitive EUV spectroscopic observations of the aurora and IPT. We will correlate variations in the X-ray flux from the aurora and IPT with changes in the EUV flux observed by SPRINT-A and with the properties of the solar wind. We will conclusively resolve the puzzle of the origin of the Jovian X-ray emission and determine if the precipitating particles originate from Io or from the solar wind.

  7. Constraining electric fields from electrostatic deflector plates: A brief report and case study from the Fast Plasma Investigation for the Magnetospheric Multiscale Mission

    NASA Astrophysics Data System (ADS)

    Collinson, Glyn A.; McFadden, James P.; Chornay, Dennis J.; Gershman, Daniel; Moore, Thomas E.

    2016-08-01

    A common feature of top hat space plasma analyzers are electrostatic "deflector plates" mounted externally to the aperture which steer the incoming particles and permit the sensor to rapidly scan the sky without moving. However, the electric fields generated by these plates can penetrate the mesh or grid on the outside of the sensor, potentially violating spacecraft electromagnetic cleanliness requirements. In this brief report we discuss how this issue was addressed for the Dual Electron Spectrometer for the Magnetospheric Multiscale Mission using a double-grid system and the simple modeling technique employed to assure the safe containment of the stray fields from its deflector plates.

  8. Magnetospheres of the outer planets

    SciTech Connect

    Cheng, A.F.

    1986-12-01

    The magnetospheres of the outer planets have been shown by Voyager explorations to strongly interact with the surfaces and atmospheres of their planetary satellites and rings. In the cases of Jupiter, Saturn and Uranus, the processes of charged particle sputtering, neutral gas cloud formation, and rapid plasma injection from the ionization of the neutral clouds, have important implications both for the magnetospheres as a whole and for the surfaces and atmospheres of their satellites. The general methodology employed in these researches has involved comparisons of the planetary magnetospheres in order to identify common physical processes. 16 references.

  9. Global magnetosphere-like 3D structure formation in kinetics by hot magnetized plasma flow characterized by shape of the particle distribution function

    NASA Astrophysics Data System (ADS)

    Gubchenko, Vladimir

    The task was to provide an analytical elementary magnetosphere-like model in kinetics for verification of the 3D EM PIC codes created for space/aerospace and HED plasmas applications. Kinetic approach versus cold MHD approach takes into account different behavior in the EM fields of resonant and non resonant particles in the velocity phase space, which appears via shape characteristics of the particle velocity distribution function (PVDF) and via the spatial dispersion effect forming the collisionless dissipation in the EM fields. The external flow is a hot collisionless plasma characterized by the particle velocity distribution function (PVDF) with different shapes: Maxwellian, kappa, etc. The flow is in a “hot regime”: it can be supersonic but its velocity remains less the thermal velocity of the electrons. The “internal” part of the magnetosphere formed by trapped particles is the prescribed 3D stationary magnetization considered as a spherical “quasiparticle” with internal magnetodipole and toroidal moments represented as a broadband EM driver. We obtain after the linearization of Vlasov/Maxwell equations a self-consistent 3D large scale kinetic solution of the classic problem. Namely, we: model the “outer” part of the magnetosphere formed by external hot plasma flow of the flyby particles. Solution of the Vlasov equation expressed via a tensor of dielectric permittivity of nonmagnetized and magnetized flowing plasma. Here, we obtain the direct kinetic dissipative effect of the magnetotail formation and the opposite diamagnetic effect of the magnetosphere “dipolization”. We get MHD wave cone in flow magnetized by external guiding magnetic (GM) field. Magnetosphere in our consideration is a 3D dissipative “wave” package structure of the skinned EM fields formed by the “waves” excited at frequency bands where we obtain negative values and singularities (resonances) of squared EM refractive index of the cold plasma. The hot regime

  10. Instrument technology for magnetosphere plasma imaging from high Earth orbit. Design of a radio plasma sounder. Final report

    SciTech Connect

    Haines, D.M.; Reinisch, B.W.

    1995-01-01

    The use of radio sounding techniques for the study of the ionospheric plasma dates back to G. Briet and M. A. Tuve in 1926. Ground based swept frequency sounders can monitor the electron number density (N{sub e}) as a function of height (the N{sub e} profile). These early instruments evolved into a global network that produced high-resolution displays of echo time delay vs frequency on 35-mm film. These instruments provided the foundation for the success of the International Geophysical Year. The Alouette and International Satellites for Ionospheric Studies (ISIS) programs pioneered the used of spaceborne, swept frequency sounders to obtain N{sub e} profiles of the topside of the ionosphere, from a position above the electron density maximum. Repeated measurements during the orbit produced an orbital plane contour which routinely provided density measurements to within 10%. The Alouette/ISIS experience also showed that even with a high powered transmitter (compared to the low power sounder possible today) a radio sounder can be compatible with other imaging instruments on the same satellite. Digital technology was used on later spacecraft developed by the Japanese (the EXOS C and D) and the Soviets (Intercosmos 19 and Cosmos 1809). However, a full coherent pulse compression and spectral integrating capability, such as exist today for ground-based sounders (Reinisch et al.), has never been put into space. NASA`s 1990 Space Physics Strategy Implementation Study `The NASA Space Physics Program from 1995 to 2010` suggested using radio sounders to study the plasmasphere and the magnetopause and its boundary layers (Green and Fung). Both the magnetopause and plasmasphere, as well as the cusp and boundary layers, can be observed by a radio sounder in a high-inclination polar orbit with an apogee greater than 6 R{sub e} (Reiff et al.; Calvert et al.).

  11. The solar wind and magnetospheric dynamics

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1974-01-01

    The dynamic processes involved in the interaction between the solar wind and the earth's magnetosphere are reviewed. The evolution of models of the magnetosphere is first surveyed. The existence of the auroral substorm and the cyclical polar magnetic substorm is evidence that the magnetosphere is a dynamic system. The dynamic changes occurring in the magnetosphere, including erosion of the magnetopause, changes in the size of the polar cap, variations in the flaring angle of the tail, neutral point formation, plasma sheet motions, and the inward collapse of the midnight magnetosphere, are discussed. The cyclical variations of geomagnetic activity are explained in terms of the control of the solar wind-magnetosphere interaction by the north-south component of the interplanetary magnetic field. Present phenomenological models allow prediction of geomagnetic activity from interplanetary measurements, but modeling of detailed magnetospheric processes is still in its infancy.

  12. Turbulent transport of cold and dense solar wind plasma into the magnetosphere by 3-D evolution of the Kelvin-Helmholtz instability

    NASA Astrophysics Data System (ADS)

    Matsumoto, Y.; Seki, K.

    2006-12-01

    An appearance of cold and dense plasma at the geosynchronous orbit is one of the characteristic natures after a prolonged northward IMF duration. This cold dense material can contribute to the enhancement of the ring current density, which results a further declination of Dst. Therefore investigating the origin, path and fate of the cold dense plasma is important to understand how it preconditions the magnetosphere during a quiet interval before storm [Borovsky and Steinberg, 2006]. Observational evidences have shown that the cold dense material builds up during the northward IMF intervals in the flanks of the magnetosphere [e.g., Wing and Newell, 2002] which is referred to as the low latitude boundary layer (LLBL). The entry process of the solar wind plasma into the magnetosphere during the northward IMF conditions has been controversial in contrast to the Dungey's reconnection model for the southward IMF cases. The major candidate processes are the double lobe reconnection model [Song et al., 1999], in which newly closed magnetic field lines on the dayside magnetopause capture the solar wind plasma, and the turbulent transport by the Kelvin-Helmholtz instability (KHI) driven by the fast solar wind flow. We have studied the solar wind entry process by the KHI. Matsumoto and Hoshino [2004, 2006] showed by 2- D MHD and full particle simulation studies that the strong flow turbulence is a natural consequence of the nonlinear development of the KHI through the secondary Rayleigh-Taylor instability, if there is a large density difference between the two media. The mechanism is fundamentally two-dimensional and therefore we term it the 2-D secondary instability. They also showed that the turbulent development greatly contributes to the solar wind plasma transport deep into the magnetosphere. Based on the previous 2-D studies, the 3-D nonlinear evolution of the KHI is studied by performing MHD simulation. Starting with a uniform background field configuration and a

  13. Satellites of Uranus control its magnetosphere

    SciTech Connect

    Cheng, A.F.; Hill, T.W.

    1984-10-01

    The importance of the satellites of Uranus as sources of magnetospheric plasma were investigated. It is found that neither an Io like plasma source nor a Titan like source is likely at Uranus. The likely presence of a heavy ion plasma torus maintained by charged particle sputtering of the icy satellites is examined. Sputtering of Saturn's icy satellites is considered an important source of heavy ion (oxygen) plasma in Saturn's inner magnetosphere. A major unresolved question is whether this sputtering process does depend on the preexistence of magnetospheric heavy ions derived from another source, Titian.

  14. The Magnetosphere of Ganymede (Invited)

    NASA Astrophysics Data System (ADS)

    Kivelson, M.

    2013-12-01

    Before the 1980s who would have guessed that Jupiter's moon Ganymede was destined to become an exemplar of extremes? Titan had long been described as the largest moon in the solar system with a radius > 2800 km [e.g., Smith, 1980]. Only after Voyager 1 measured the scale of its atmosphere did Titan (radius 2575 km) cede its place as the largest moon in the solar system to Ganymede (radius 2634.1 km). Thereafter Galileo's flybys established additional extraordinary properties of Ganymede. It is the only moon with an intrinsic magnetic field, the only body in the solar system whose magnetosphere forms in a sub-Alfvénic flow, and the only body that does not rotate relative to the symmetry axis of its magnetosphere. Its magnetospheric structure is of special interest as a prototype for magnetospheres in a parameter regime not found in the solar wind. Our knowledge of its properties is based on a combination of in situ and remote sensing measurements, somewhat sketchy but most informative, supplemented by results from computer simulations. To some extent Ganymede's magnetosphere is remarkable for what it lacks. It has no bow shock, no radiation belts, and no plasmasphere. Its shape is also unique, with Alfvén wings stretched almost transverse to the upstream flow replacing tail lobes folded back in the flow direction. It is the only magnetosphere embedded within a magnetosphere, a situation that implies highly predictable and slowly changing upstream plasma and field conditions. This predictability has enabled us to characterize the properties of reconnection under known, steady upstream conditions. Ganymede's magnetosphere becomes even more interesting when compared with other planetary magnetospheres. Using Mach numbers to order magnetospheres from Ganymede to the gas giants, we learn a great deal about the physics relevant to such systems. Even the heliosphere can be fit into the picture. The IBEX spacecraft [McComas et al., 2009] measures the spatial distribution

  15. Magnetospheric space plasma investigations

    NASA Technical Reports Server (NTRS)

    Comfort, Richard H.; Horwitz, James L.

    1996-01-01

    The discussion in this final report is limited to a summary of important accomplishments. These accomplishments include the generalized semikinetic (GSK) model, O(+) outflows in the F-region ionosphere, field-aligned flows and trapped ion distributions, ULF wave ray-tracing, and plasmasphere-ionosphere coupling.

  16. RESISTIVE SOLUTIONS FOR PULSAR MAGNETOSPHERES

    SciTech Connect

    Li, Jason; Spitkovsky, Anatoly; Tchekhovskoy, Alexander

    2012-02-10

    The current state of the art in the modeling of pulsar magnetospheres invokes either the vacuum or force-free limits for the magnetospheric plasma. Neither of these limits can simultaneously account for both the plasma currents and the accelerating electric fields that are needed to explain the morphology and spectra of high-energy emission from pulsars. To better understand the structure of such magnetospheres, we combine accelerating fields and force-free solutions by considering models of magnetospheres filled with resistive plasma. We formulate Ohm's law in the minimal velocity fluid frame and construct a family of resistive solutions that smoothly bridges the gap between the vacuum and the force-free magnetosphere solutions. The spin-down luminosity, open field line potential drop, and the fraction of open field lines all transition between the vacuum and force-free values as the plasma conductivity varies from zero to infinity. For fixed inclination angle, we find that the spin-down luminosity depends linearly on the open field line potential drop. We consider the implications of our resistive solutions for the spin-down of intermittent pulsars and sub-pulse drift phenomena in radio pulsars.

  17. Physics of magnetospheric boundary layers

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.

    1995-01-01

    This final report was concerned with the ideas that: (1) magnetospheric boundary layers link disparate regions of the magnetosphere-solar wind system together; and (2) global behavior of the magnetosphere can be understood only by understanding its internal linking mechanisms and those with the solar wind. The research project involved simultaneous research on the global-, meso-, and micro-scale physics of the magnetosphere and its boundary layers, which included the bow shock, the magnetosheath, the plasma sheet boundary layer, and the ionosphere. Analytic, numerical, and simulation projects were performed on these subjects, as well as comparisons of theoretical results with observational data. Other related activity included in the research included: (1) prediction of geomagnetic activity; (2) global MHD (magnetohydrodynamic) simulations; (3) Alfven resonance heating; and (4) Critical Ionization Velocity (CIV) effect. In the appendixes are list of personnel involved, list of papers published; and reprints or photocopies of papers produced for this report.

  18. Configuration of the Jovian magnetosphere

    NASA Technical Reports Server (NTRS)

    Hill, T. W.; Dessler, A. J.; Michel, F. C.

    1974-01-01

    A model is presented in which the Jovian magnetosphere is severely inflated by the centrifugal stress of partially corotating plasma streaming out along field lines from the ionosphere. The model is consistent with observations reported from the Pioneer 10 encounter, including the disk-like field configuration, the diurnal modulation of trapped-particle fluxes, and the inferred departure from rigid corotation in the outer magnetosphere. The field configuration is closed on the dayside, but on the nightside the plasma can force the magnetic field open to form a planetary wind flowing in the antisolar direction.

  19. Magnetospheric convection strength inferred from inner edge of the electron plasma sheet and its relation to the polar cap potential drop

    NASA Astrophysics Data System (ADS)

    Jiang, F.; Kivelson, M. G.; Walker, R. J.; Khurana, K. K.; Angelopoulos, V.

    2010-12-01

    The sharp inner edge of the nightside electron plasma sheet observed by the THEMIS spacecraft is shown to provide a measure of the effective convection strength that transports plasma sheet plasma into the inner magnetosphere. The effective convection strength is characterized by the difference of potential between the magnetopause terminators at dawn and at dusk. We have surveyed inner boundary crossings of the electron plasma sheet measured by three THEMIS probes on orbits from Nov. 2007 to Apr. 2009. The values of the convection electric potential are inferred from the locations of the inner edge for different energy channels using a steady-state drift boundary model with a dipole magnetic field and a Volland-Stern electric field. When plotted against the solar wind electric field ( ), the convection electric potential is found to have a quasi-linear relationship with the driving solar wind electric field for the range of values tested (meaningful statistics only for Esw < 1.5 mV/m). Reasonably good agreement is found between the convection electric potential and the polar-cap potential drop calculated from model of Boyle et al. [1997] when the degree of shielding in the Volland-Stern potential is selected as gamma=1.5.

  20. Nonlinear, relativistic Langmuir waves in astrophysical magnetospheres

    NASA Technical Reports Server (NTRS)

    Chian, Abraham C.-L.

    1987-01-01

    Large amplitude, electrostatic plasma waves are relevant to physical processes occurring in the astrophysical magnetospheres wherein charged particles are accelerated to relativistic energies by strong waves emitted by pulsars, quasars, or radio galaxies. The nonlinear, relativistic theory of traveling Langmuir waves in a cold plasma is reviewed. The cases of streaming electron plasma, electronic plasma, and two-streams are discussed.

  1. Vortex-like plasma flow structures observed by Cluster at the boundary of the outer radiation belt and ring current: A link between the inner and outer magnetosphere

    NASA Astrophysics Data System (ADS)

    Zong, Q.-G.; Wang, Y. F.; Yang, B.; Zhang, H.; Tian, A. M.; Dunlop, M.; Fritz, T. A.; Kistler, L. M.; Korth, A.; Daly, P. W.; Pedersen, A.

    2009-10-01

    Two vortex-like plasma flow structures have been observed at the outer radiation belt and/or the ring current region on 11 April 2002, from 0415 to 0635 UT, when the Cluster fleet entered (in the Southern Hemisphere) and exited (in the Northern Hemisphere) the boundary layer of the inner magnetosphere near 2130 MLT. On 11 April 2002 during the period of interest, the solar wind speed was high, and the geomagnetic activity was moderate. These two vortices have opposite rotation directions and are characterized by bipolar signatures in the flow V x components with peak-to-peak amplitudes of about 40 km/s. The inflection points of the plasma flow coincide precisely with the local maxima of the duskward core flow V y (30 km/s) which exceed the surrounding flow by 3-4 times in magnitude for both vortices. A pair of bidirectional current sheets and bipolar electric fields (E y ) are found to be closely associated with these vortices. Whereas magnetic field disturbances are observed only in B x and B y components, the magnetic magnitude stays almost unchanged. Vortices observed both inbound and outbound at the boundary of the radiation belt at nearly the same location (L shell and latitude), suggesting they may last for more than 140 min. The scale sizes of the two vortices are about 810 km and 1138 km, respectively. Interestingly, it is found that Earth's ionospheric singly charged oxygen are precipitating in the vortex dynamic process, having energies less than 1 keV and having a strong field-aligned pitch angle distribution. These plasma flow vortices are suggested to be formed at the interface between the enhanced ionospheric outflow stream from the polar ionosphere and a sudden braking and/or azimuthal deflection of bursty bulk flows generated by the tail reconnection. These observed flow vortices provide a link among the inner magnetosphere, the tail plasma sheet, and the Earth's ionosphere by coupling magnetic shear stresses and plasma flow momentum.

  2. The Role of Self-Organized Criticality in the Substorm Phenomenon and its Relation to Localized Reconnection in the Magnetospheric Plasma Sheet

    NASA Technical Reports Server (NTRS)

    Klimas, Alex J.; Valdivia, J. A.; Vassiliadis, D.; Baker, D. N.; Hesse, M.; Takalo, J.

    1999-01-01

    Evidence is presented that suggests there is a significant self-organized criticality (SOC) component in the dynamics of substorms in the magnetosphere. Observations of BBFs, fast flows, localized dipolarizations, plasma turbulence, etc. are taken to show that multiple localized reconnection sites provide the basic avalanche phenomenon in the establishment of SOC in the plasma sheet. First results are presented from a continuing plasma physical study of this avalanche process. A one-dimensional resistive MHD model of a magnetic field reversal is discussed. Resistivity, in this model, is self-consistently generated in response to the excitation of an idealized current-driven instability. When forced by convection of magnetic flux into the field reversal region, the model yields rapid magnetic field annihilation through a dynamic behavior that is shown to exhibit many of the characteristics of SOC. Over a large range of forcing strengths, the annihilation rate is shown to self-adjust to balance the rate at which flux is convected into the reversal region. Several analogies to magnetotail dynamics are discussed: (1) It is shown that the presence of a localized criticality in the model produces a remarkable stability in the global configuration of the field reversal while simultaneously exciting extraordinarily dynamic internal evolution. (2) Under steady forcing, it is shown that a loading-unloading cycle may arise that, as a consequence of the global stability, is quasi-periodic and, therefore, predictable despite the presence of internal turbulence in the field distribution. Indeed, it is shown that the global loading-unloading cycle is a consequence of the internal turbulence. (3) It is shown that, under steady, strong forcing the loading-unloading cycle vanishes. Instead, a recovery from a single unloading persists indefinitely. The field reversal is globally very steady while internally it is very dynamic as field annihilation goes on at the rate necessary to

  3. The Active Magnetospheric Particle Tracer Explorers program

    NASA Technical Reports Server (NTRS)

    Krimigis, S. M.; Mcentire, R. W.; Haerendel, G.; Paschmann, G.; Bryant, D. A.

    1983-01-01

    In order to study the access of solar wind ions to the magnetosphere, together with the processes that transport and accelerate magnetospheric particles, the Active Magnetospheric Particle Tracer Explorers (AMPTE) mission will release and monitor lithium and barium tracer ions in both the solar wind and the magnetosphere. A single, massive release of barium in the dawn magnetosheath will in addition create a visible artificial comet in the flowing solar wind plasma, within which studies of a range of different plasma effects will be undertaken. The AMPTE will obtain comprehensive measurements of natural magnetospheric particle populations' elemental composition and dynamics. AMPTE comprises three spacecraft: the Ion Release Module, the Charge Composition Explorer, and the United Kingdom Subsatellite.

  4. Magnetic Reconnection in the Earth's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Tsurutani, B. T.; Lakhina, G. S.

    1997-01-01

    The process of magnetic reconnection plays an important role during the interaction of the solar wind with the Earth's magnetosphere which leads to the exchange of mass, momentum, and energy between these two highly conducting plasmas.

  5. Wave emissions from planetary magnetospheres

    NASA Technical Reports Server (NTRS)

    Grabbe, Crockett L.

    1989-01-01

    An important development in the Earth magnetosphere was the discovery of the boundary of the plasma sheet and its apparent role in the dynamics of the magnetotails. Three instabilities (negative energy mode, counterstreaming, and the Buneman instability) were investigated through analytical and numerical studies of their frequency and growth rate as a function of the angle of propagation.

  6. Compressional perturbations of the dayside magnetosphere during high-speed-stream-driven geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Borovsky, Joseph E.; Denton, Michael H.

    2016-05-01

    The quasi-DC compressions of the Earth's dayside magnetic field by ram-pressure fluctuations in the solar wind are characterized by using multiple GOES spacecraft in geosynchronous orbit, multiple Los Alamos spacecraft in geosynchronous orbit, global MHD simulations, and ACE and Wind solar wind measurements. Owing to the inward-outward advection of plasma as the dayside magnetic field is compressed, magnetic field compressions experienced by the plasma in the dayside magnetosphere are greater than the magnetic field compressions measured by a spacecraft. Theoretical calculations indicate that the plasma compression can be a factor of 2 higher than the observed magnetic field compression. The solar wind ram-pressure changes causing the quasi-DC magnetospheric compressions are mostly owed to rapid changes in the solar wind number density associated with the crossing of plasma boundaries; an Earth crossing of a plasma boundary produces a sudden change in the dayside magnetic field strength accompanied by a sudden inward or outward motion of the plasma in the dayside magnetosphere. Superposed epoch analysis of high-speed-stream-driven storms was used to explore solar wind compressions and storm time geosynchronous magnetic field compressions, which are of particular interest for the possible contribution to the energization of the outer electron radiation belt. The occurrence distributions of dayside magnetic field compressions, solar wind ram-pressure changes, and dayside radial plasma flow velocities were investigated: all three quantities approximately obey power law statistics for large values. The approximate power law indices for the distributions of magnetic compressions and ram-pressure changes were both -3.

  7. Magnetospheric dynamo processes

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1984-01-01

    Three processes are examined whereby an effective electromotive force and energy input arise in circuits of magnetospheric currents, even in the absence of time-varying magnetic fields. The first involves currents on 'open' field lines, linking the ionosphere with the solar wind, and it underscores the role of polarization currents. The second may exist on the current filament observed in the vicinity of Jupiter's satellite Io. The third may operate along the high-latitude boundary of the earth's magnetic tail, from where it pumps energy into the plasma sheet.

  8. Theoretical Predictions of Inner-Magnetospheric Disturbances Associated with Geosynchronous Particle Flux Decreases

    NASA Astrophysics Data System (ADS)

    Sazykin, S.; Wolf, R. A.; Spiro, R. W.; Thomsen, M. F.; DeZeeuw, D. L.; Gombosi, T. I.

    2001-05-01

    Observations of low-energy (below 50 keV) particle fluxes by Los Alamos geosynchronous satellites raise the possibility that the inner plasma sheet particle pressure sometimes decreases significantly in the early recovery phase of a magnetic storm. Numerical simulations of the inner magnetospheric dynamics have been carried out with the Rice Convection Model (RCM) to explore the consequences of such plasma sheet pressure reduction. For these runs, the RCM's outer boundary is placed at geosynchronous orbit. In the ideal one-fluid MHD picture, entrance of low-pressure plasma into the nightside inner magnetosphere following a ring current injection is interchange-unstable. The numerical RCM multi-fluid simulations, which take transport by gradient-curvature drift into account, suggest that the real system, while more stable than in ideal MHD, can nevertheless display interchange instability. If the plasma sheet pressure at the RCM boundary is assumed to drop dramatically while convection remains strong, the results indicate a strong interchange instability, with highly structured inner plasma sheet density, wave-like large-scale modulations of the equatorward edge of the diffuse aurora, and swirl-like patterns of the potential in the low-latitude part of the auroral zone. Such a global disturbance should be observable with global imaging measurement techniques and ground-based instruments. Results will be presented from additional computer experiments designed to determine the sensitivity of the instability to the assumed geosynchronous pressure reduction and convection rate.

  9. Inference of the angular velocity of plasma in the Jovian magnetosphere from the sweepback of magnetic field

    NASA Technical Reports Server (NTRS)

    Khurana, Krishan K.; Kivelson, Margaret G.

    1993-01-01

    The averaged angular velocity of plasma from magnetic observations is evaluated using plasma outflow rate as a parameter. New techniques are developed to calculate the normal and azimuthal components of the magnetic field in and near to the plasma sheet in a plasma sheet coordinate system. The revised field components differ substantially from the quantities used in previous analyses. With the revised field values, it appears that during the Voyager 2 flyby for an outflow rate of 2.5 x 10 exp 29 amu/s, the observed magnetic torque may be sufficient to keep the plasma in corotation to radial distances of 50 Rj in the postmidnight quadrant.

  10. Helicon plasma generator-assisted surface conversion ion source for the production of H- ion beams at the Los Alamos Neutron Science Centera)

    NASA Astrophysics Data System (ADS)

    Tarvainen, O.; Rouleau, G.; Keller, R.; Geros, E.; Stelzer, J.; Ferris, J.

    2008-02-01

    The converter-type negative ion source currently employed at the Los Alamos Neutron Science Center (LANSCE) is based on cesium enhanced surface production of H- ion beams in a filament-driven discharge. In this kind of an ion source the extracted H- beam current is limited by the achievable plasma density which depends primarily on the electron emission current from the filaments. The emission current can be increased by increasing the filament temperature but, unfortunately, this leads not only to shorter filament lifetime but also to an increase in metal evaporation from the filament, which deposits on the H- converter surface and degrades its performance. Therefore, we have started an ion source development project focused on replacing these thermionic cathodes (filaments) of the converter source by a helicon plasma generator capable of producing high-density hydrogen plasmas with low electron energy. In our studies which have so far shown that the plasma density of the surface conversion source can be increased significantly by exciting a helicon wave in the plasma, and we expect to improve the performance of the surface converter H- ion source in terms of beam brightness and time between services. The design of this new source and preliminary results are presented, along with a discussion of physical processes relevant for H- ion beam production with this novel design. Ultimately, we perceive this approach as an interim step towards our long-term goal, combining a helicon plasma generator with an SNS-type main discharge chamber, which will allow us to individually optimize the plasma properties of the plasma cathode (helicon) and H- production (main discharge) in order to further improve the brightness of extracted H- ion beams.

  11. Helicon plasma generator-assisted surface conversion ion source for the production of H(-) ion beams at the Los Alamos Neutron Science Center.

    PubMed

    Tarvainen, O; Rouleau, G; Keller, R; Geros, E; Stelzer, J; Ferris, J

    2008-02-01

    The converter-type negative ion source currently employed at the Los Alamos Neutron Science Center (LANSCE) is based on cesium enhanced surface production of H(-) ion beams in a filament-driven discharge. In this kind of an ion source the extracted H(-) beam current is limited by the achievable plasma density which depends primarily on the electron emission current from the filaments. The emission current can be increased by increasing the filament temperature but, unfortunately, this leads not only to shorter filament lifetime but also to an increase in metal evaporation from the filament, which deposits on the H(-) converter surface and degrades its performance. Therefore, we have started an ion source development project focused on replacing these thermionic cathodes (filaments) of the converter source by a helicon plasma generator capable of producing high-density hydrogen plasmas with low electron energy. In our studies which have so far shown that the plasma density of the surface conversion source can be increased significantly by exciting a helicon wave in the plasma, and we expect to improve the performance of the surface converter H(-) ion source in terms of beam brightness and time between services. The design of this new source and preliminary results are presented, along with a discussion of physical processes relevant for H(-) ion beam production with this novel design. Ultimately, we perceive this approach as an interim step towards our long-term goal, combining a helicon plasma generator with an SNS-type main discharge chamber, which will allow us to individually optimize the plasma properties of the plasma cathode (helicon) and H(-) production (main discharge) in order to further improve the brightness of extracted H(-) ion beams.

  12. Solar terrestrial coupling through space plasma processes

    SciTech Connect

    Birn, J.

    2000-12-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project investigates plasma processes that govern the interaction between the solar wind, charged particles ejected from the sun, and the earth's magnetosphere, the region above the ionosphere governed by the terrestrial magnetic field. Primary regions of interest are the regions where different plasma populations interact with each other. These are regions of particularly dynamic plasma behavior, associated with magnetic flux and energy transfer and dynamic energy release. The investigations concerned charged particle transport and energization, and microscopic and macroscopic instabilities in the magnetosphere and adjacent regions. The approaches combined space data analysis with theory and computer simulations.

  13. Magnetospheric convection pattern and its implications

    NASA Technical Reports Server (NTRS)

    Zhu, Xiaoming

    1993-01-01

    When we use 14 months of the Fast Plasma Experiment ion velocity measurements, the mean magnetospheric circulation pattern is constructed. It is shown that the magnetospheric convection velocity is of the order tens of kilometers per second. The convection is largely restricted to the outer magnetosphere. During magnetically active periods the convection velocity increases and the convection boundary extends to the region closer to the Earth, indicating more magnetic field flux is being transported to the dayside magnetosphere. It is also shown that the convective flows tend to follow contours of constant unit flux volume as they move around the Earth, especially on the duskside of the magnetosphere. This helps to avoid the pressure balance inconsistency often found in two-dimensional magnetotail models.

  14. Relation Between Magnetospheric State Parameters and the Occurrence of Plasma Depletion Events in the Nighttime Midlatitude F Region

    NASA Technical Reports Server (NTRS)

    Seker, Ilgin; Fung, Shing F.; Mathews, John D.

    2011-01-01

    Studies using all-sky imagers have revealed the presence of various ionospheric irregularities in the nighttime midlatitude F region. The most prevalent and well known of these are the medium-scale traveling ionospheric disturbances (MSTIDs) that usually occur when the geomagnetic activity is low and midlatitude spread F plumes that are often observed when the geomagnetic activity is high. The inverse and direct relations between geomagnetic activity and the occurrence rate of MSTIDs and midlatitude plumes, respectively, have been observed by several studies using different instruments; however, most of them focus on MSTIDs only and use only Kp to characterize geomagnetic activity. In order to understand the underlying causes of these two relations and to distinguish between MSTIDs and plumes, it is illuminating to better characterize the occurrence of MSTIDs and plumes using multiple magnetospheric state parameters. Here we statistically compare multiple geomagnetic driver and response parameters (such as Kp, AE, Dst, and solar wind parameters) with the occurrence rates of nighttime MSTIDs and plumes observed using an all ]sky imager at Arecibo Observatory (AO) between 2003 and 2008. We also present seasonal and annual variations of MSTIDs and plumes at AO. The results not only allow us to better distinguish MSTIDs and plumes, but also to shed further light on the generation mechanism and electrodynamics of these two different phenomena occurring at nighttime in the midlatitude F region.

  15. Penetration of the interplanetary magnetic field B(sub y) magnetosheath plasma into the magnetosphere: Implications for the predominant magnetopause merging site

    NASA Technical Reports Server (NTRS)

    Newell, Patrick T.; Sibeck, David G.; Meng, Ching-I

    1995-01-01

    Magnetosheath plasma peertated into the magnetospere creating the particle cusp, and similarly the interplanetary magnetic field (IMF) B(sub y) component penetrates the magnetopause. We reexamine the phenomenology of such penetration to investigate implications for the magnetopause merging site. Three models are popular: (1) the 'antiparallel' model, in which merging occurs where the local magnetic shear is largest (usually high magnetic latitude); (2) a tilted merging line passing through the subsolar point but extending to very high latitudes; or (3) a tilted merging line passing through the subsolar point in which most merging occurs within a few Earth radii of the equatorial plane and local noon (subsolar merging). It is difficult to distinguish between the first two models, but the third implies some very different predictions. We show that properties of the particle cusp imply that plasma injection into the magnetosphere occurs most often at high magnetic latitudes. In particular, we note the following: (1) The altitude of the merging site inferred from midaltitude cusp ion pitch angle dispersion is typically 8-12 R(sub E). (2) The highest ion energy observable when moving poleward through the cusp drops long before the bulk of the cusp plasma is reached, implying that ions are swimming upstream against the sheath flow shortly after merging. (3) Low-energy ions are less able to enter the winter cusp than the summer cusp. (4) The local time behavior of the cusp as a function of B(sub y) and B(sub z) corroborates predictions of the high-latitude merging models. We also reconsider the penetration of the IMF B(sub y) component onto closed dayside field lines. Our approach, in which closed field lines ove to fill in flux voids created by asymmetric magnetopause flux erosion, shows that strich subsolar merging cannot account for the observations.

  16. International sun-earth explorer 1 and 2 (ISEE 1 and 2) magnetospheric and interplanetary plasma instruments

    NASA Technical Reports Server (NTRS)

    Frank, L. A.

    1995-01-01

    Major accomplishments are summarized for ISEE 1 and 2, and a bibliographic list of publications resulting from this University of Iowa research is attached. Most accomplishments center on the magnetotail, magnetosheath, and plasma sheet.

  17. Nitrogen In Saturn's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Smith, H. T.; Sittler, E. C.; Johnson, R. E.; McComas, D. J.; Reisenfeld, D.; Shappirio, M. D.; Baragiola, R.; Michael, M.; Shematovich, V. I.; Crary, F.; Young, D. T.

    2004-12-01

    We are analyzing CAPS instrument data on Cassini to look for nitrogen ions in Saturn's magnetosphere. Because Voyager could not separate oxygen and nitrogen, there has been considerable controversy on nitrogen's presence and relative importance. Two principal sources have been suggested: Titan's atmosphere and nitrogen species trapped in Saturn's icy satellite surfaces (Sittler et al 2004). The latter may be primordial nitrogen, likely as NH3 in ice (Stevenson 1982; Squyers et al. 1983) or nitrogen ions that have been implanted in the surface (Delitsky and Lane 2002). We will present the results of Saturnian nitrogen cloud modeling and relevant CAPS observations. We recently described the Titan source (Michael, et al. 2004; Shematovich et al. 2003; Smith et al. 2004; Sittler et al. 2004) in preparation for Cassini's Saturnian plasma measurements. Two components were identified: energetic nitrogen ions formed near Titan and energized as they diffused inward (Sittler et al. 2004) and neutrals in orbits with small perigee that became ionized in the inner magnetosphere (Smith et al 2004). The latter component would be a source of lower energy, co-rotating nitrogen ions in the inner magnetosphere. Such a component would have an energy spectrum similar to nitrogen species sputtered from the icy satellite surfaces (Johnson and Sittler 1990). However, the mass spectrum would differ, likely containing NHx and NOx species also, and, hence, may be separated from the Titan source. Our preliminary analysis for nitrogen species in the CAPS data will be compared to our models. Of interest will be the energy spectra, which can indicate whether any nitrogen present is formed locally or near Titan's orbit and diffused inward. This work is supported by the NASA Planetary Atmospheres, NASA Graduate Student Research, Virginia Space Grant Consortium Graduate Research Fellowship and CAPS Cassini instrument team programs.

  18. An overview of plasma wave observations obtained during the Galileo A34 pass through the inner region of the Jovian magnetosphere

    NASA Astrophysics Data System (ADS)

    Gurnett, D. A.; Kurth, W. S.; Menietti, J. D.; Roux, A.; Bolton, S. J.; Alexander, C. J.

    2003-04-01

    On November 5, 2002, the Galileo spacecraft, which is in orbit around Jupiter, made a pass in to a radial distance of 1.98 RJ (Jovian radii) from Jupiter, much closer than on any previous orbit. Data were successfully acquired during the entire inbound pass through the hot and cold plasma torii, and through the region inside the cold torus to a radial distance of 2.32 RJ, at which point the data system went into safing due to the intense radiation in the inner region of the magnetosphere. The purpose of this paper is to give an overview of the results obtained from the plasma wave investigation during this pass, which is designated A34. As on previous passes through the Io plasma torus a narrowband electrostatic emission at the upper hybrid resonance frequency provided a very accurate measurement of the electron density. The peak electron density, 2.6 x 103 cm-3, occurs just before the inner edge of the hot torus, which is at 5.62 RJ. As the spacecraft enters the cold torus the electron density drops to about 6.0 x 102 cm-3 and then gradually increases as the spacecraft approaches Jupiter, reaching a peak of about 2.5 x 103 cm-3 at 4.86 RJ, shortly before the inner edge of the cold torus. At the inner edge of the cold torus, which occurs at 4.76 RJ, the electron density drops dramatically to levels on the order of 1 cm-3. The electron density in this inner region is difficult to interpret because the upper hybrid emission can no longer be clearly identified, and there are numerous narrowband emissions with cutoffs that may or may not be associated with the local electron plasma frequency. As in the hot torus, the low density region inside the cold torus has a persistent level of plasma wave noise below about 103 Hz that is tentatively interpreted as whistler mode noise. The intensity of the whistler mode noise increases noticeably as the spacecraft crosses Thebe's orbit at 3.1 RJ, and increases markedly as the spacecraft crosses Amalthea's orbit at 2.6 RJ. The

  19. Observations of magnetospheric substorms occurring with no apparent solar wind/IMF trigger

    SciTech Connect

    Henderson, M.G.; Reeves, G.D.; Belian, R.D.; Murphree, J.S.

    1996-03-01

    An outstanding topic in magnetospheric physics is whether substorms are always externally triggered by disturbances in either the interplanetary magnetic field or solar wind, or whether they can also occur solely as the result of an internal magnetospheric instability. Over the past decade, arguments have been made on both sides of this issue. Horwitz and McPherron have shown examples of substorm onsets which they claimed were not externally triggered. However, as pointed out by Lyons, there are several problems associated with these studies that make their results somewhat inconclusive. In particular, in the McPherron et al. study, fluctuations in the B{sub y} component were not considered as possible triggers. Furthermore, Lyons suggests that the sharp decreases in the AL index during intervals of steady IMF/solar wind, are not substorms at all but rather that they are just enhancements of the convection driven DP2 current system that are often observed to occur during steady magnetospheric convection events. In the present study, we utilize a much more comprehensive dataset (consisting of particle data from the Los Alamos energetic particle detectors at geosynchronous orbit, IMP 8 magnetometer and plasma data, Viking UV auroral imager data, mid-latitude Pi2 pulsation data, ground magnetometer data and ISEE1 magnetic field and energetic particle data) to show as unambiguously as possible that typical substorms can indeed occur in the absence of an identifiable trigger in the solar wind/IMF.

  20. Does Enceladus govern magnetospheric dynamics at Saturn?

    PubMed

    Kivelson, Margaret Galland

    2006-03-10

    Instruments on the Cassini spacecraft reveal that a heat source within Saturn's moon Enceladus powers a great plume of water ice particles and dust grains, a geyser that jets outward from the south polar regions and most likely serves as the dominant source of Saturn's E ring. The interaction of flowing magnetospheric plasma with the plume modifies the particle and field environment of Enceladus. The structure of Saturn's magnetosphere, the extended region of space threaded by magnetic-field lines linked to the planet, is shaped by the ion source at Enceladus, and magnetospheric dynamics may be affected by the rate at which fresh ions are created.

  1. Does Enceladus govern magnetospheric dynamics at Saturn?

    PubMed

    Kivelson, Margaret Galland

    2006-03-10

    Instruments on the Cassini spacecraft reveal that a heat source within Saturn's moon Enceladus powers a great plume of water ice particles and dust grains, a geyser that jets outward from the south polar regions and most likely serves as the dominant source of Saturn's E ring. The interaction of flowing magnetospheric plasma with the plume modifies the particle and field environment of Enceladus. The structure of Saturn's magnetosphere, the extended region of space threaded by magnetic-field lines linked to the planet, is shaped by the ion source at Enceladus, and magnetospheric dynamics may be affected by the rate at which fresh ions are created. PMID:16527963

  2. Simulations of Dynamic Relativistic Magnetospheres

    NASA Astrophysics Data System (ADS)

    Parfrey, Kyle Patrick

    Neutron stars and black holes are generally surrounded by magnetospheres of highly conducting plasma in which the magnetic flux density is so high that hydrodynamic forces are irrelevant. In this vanishing-inertia—or ultra-relativistic—limit, magnetohydrodynamics becomes force-free electrodynamics, a system of equations comprising only the magnetic and electric fields, and in which the plasma response is effected by a nonlinear current density term. In this dissertation I describe a new pseudospectral simulation code, designed for studying the dynamic magnetospheres of compact objects. A detailed description of the code and several numerical test problems are given. I first apply the code to the aligned rotator problem, in which a star with a dipole magnetic field is set rotating about its magnetic axis. The solution evolves to a steady state, which is nearly ideal and dissipationless everywhere except in a current sheet, or magnetic field discontinuity, at the equator, into which electromagnetic energy flows and is dissipated. Magnetars are believed to have twisted magnetospheres, due to internal magnetic evolution which deforms the crust, dragging the footpoints of external magnetic field lines. This twisting may be able to explain both magnetars' persistent hard X-ray emission and their energetic bursts and flares. Using the new code, I simulate the evolution of relativistic magnetospheres subjected to slow twisting through large angles. The field lines expand outward, forming a strong current layer; eventually the configuration loses equilibrium and a dynamic rearrangement occurs, involving large-scale rapid magnetic reconnection and dissipation of the free energy of the twisted magnetic field. When the star is rotating, the magnetospheric twisting leads to a large increase in the stellar spin-down rate, which may take place on the long twisting timescale or in brief explosive events, depending on where the twisting is applied and the history of the system

  3. Energetics of the magnetosphere

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1980-01-01

    The approximate magnitudes of several power inputs and energies associated with the Earth's magnetosphere will be derived. They include: Solar wind power impinging on the dayside magnetopause approximately 1.4 10 to the 13th power watt; power input to cross tail current approximately 3 10 to the 11th power watt; energy of moderate magnetic storm approximately 2 10 to the 15th power joule; power related to the flow of j approximately 1 to 3 10 to the 11th power watt; average power deposited by the aurora approximately 2 10 to the 10th power watt. Stored magnetic energy: released in a substorm approximately 1.5 10 to the 14th power joule. Compared to the above, the rate at which energy is released locally in magnetospheric regions where magnetic merging occurs is probably small. Merging is essential, however, for the existence of open field lines, which provide the most likely explanation for some major energy inputs listed here. Merging is also required if part of the open flux of the tail lobes is converted into closed flux, as seems to happen during substorms. Again, most of the energy release becomes evident only beyond the merging region, though some particles may gain appreciable energy in that region itself, if the plasma sheet is completely squeezed out and the high latitude lobes interact directly.

  4. The Physics of the Laboratory Magnetosphere

    NASA Astrophysics Data System (ADS)

    Mauel, Michael

    2015-11-01

    During the past decade, experiments and simulations have characterized a new regime of high-beta toroidal plasma confinement using unique facilities, called laboratory magnetospheres. In a laboratory magnetosphere, a large plasma is confined by a relatively small, magnetically levitated, superconducting current ring. Nonlinear processes, including the inverse cascade of turbulent fluctuations and turbulent self-organization, are studied and controlled in near steady-state conditions. Because a dipole's magnetic field lines resemble the inner regions of planetary magnetospheres, these studies link laboratory and space plasma physics. However, unlike planetary magnetospheres, the magnetic field lines from a levitated dipole are axisymmetric and closed, imparting unique properties to the laboratory magnetosphere. A levitated dipole confines plasma without field-aligned currents, even when plasma pressure exceeds the local magnetic pressure (β > 1). Particle drifts are omnigeneous, and the dynamics of passing and trapped particles are similar. Because parallel currents can be a source for instability, many well-known low-frequency instabilities found in other toroidal configurations, like kink, tearing, ballooning, and drift modes, are not found in a dipole plasma torus. Instead, interchange and entropy modes, which resonate with bounce-averaged magnetic drifts, dominate plasma dynamics. This review emphasizes observations from the levitated dipole experiments at MIT and at the University of Tokyo, shows the application of gyrokinetic simulations and bounce-averaged fluid models with drift-kinetic closures to model the physics of the up-gradient turbulent pinch, describes the structure and chaotic dynamics of interchange and entropy mode instability, and introduces opportunities to apply the new physics of the laboratory magnetosphere to explore turbulent transport processes within a large quasi-steady magnetized plasma torus. Acknowledging contributions from Drs. D

  5. Study of Static Microchannel Plate Saturation Effects for the Fast Plasma Investigation Dual Electron Spectrometers on NASA's Magnetospheric MultiScale Mission

    NASA Technical Reports Server (NTRS)

    Avanov, L. A.; Gliese, U.; Pollock, C. J.; Moore, T. E.; Chornay, D. J.; Barrie, A. C.; Kujawski, J. T.; Gershman, D. J.; Tucker, C. J.; Mariano, A.; Smith, D. L.; Jacques, A. D.

    2015-01-01

    Imaging detecting systems based on microchannel plates (MCPs) are the most common for low energy plasma measurements for both space borne and ground applications. One of the key parameters of these detection systems is the dynamic range of the MCP's response to the input fluxes of charged particles. For most applications the dynamic range of the linear response should be as wide as possible. This is especially true for the Dual Electron Spectrometers (DESs) of the Fast Plasma Investigation (FPI) on NASA's Magnetospheric MultiScale (MMS) mission because a wide range of input fluxes are expected. To make use of the full available dynamic range, it is important to understand the MCP response behavior beyond the linear regime where the MCPs start to saturate. We have performed extensive studies of this during the characterization and calibration of the DES instruments and have identified several saturation effects of the detection system. The MCP itself exhibits saturation when the channels lack the ability to replenish charge sufficiently rapidly. It is found and will be shown that the ground system can significantly impact the correct measurement of this effect. As the MCP starts to saturate, the resulting pulse height distribution (PHD) changes shape and location (with less pulse height values), which leads to truncation of the PHD by the threshold set on the detection system discriminator. Finally, the detection system pulse amplifier exhibits saturation as the input flux drives pulse rates greater than its linear response speed. All of these effects effectively change the dead time of the overall detection system and as a result can affect the quality and interpretation of the flight data. We present results of detection system saturation effects and their interaction with special emphasis on the MCP related effects.

  6. Quantitative modelling of the electrostatic sheath around a photo-electron emitting spacecraft and of the possible influence on magnetospheric plasma instruments

    NASA Astrophysics Data System (ADS)

    Hilgers, A.; Thiebault, B.; Forest, J.; Escoubet, P.; Fehringer, M.; Laakso, H.

    2003-04-01

    It is well known that photo-electrons emitted from sunlit surfaces in space may affect plasma measurements by several processes, e.g., via the resulting (i) surface potential, (ii) space charge effects, or/and (iii) direct propagation to detectors [e.g. Szita et al., 2001; Pedersen et al., 1984]. We have used a fully kinetic particle-in-cell code, PicUp3D [Forest et al., 2001] which is now made available in public domain, for modelling in three dimensions the electrostatic sheath and photo-electron cloud around a conductive volume representative of a spacecraft like Cluster in a typical magnetospheric plasma environment. The model shows several features of key interest for the interpretation of the measurements and for optimizing the design of future instruments. It is found that photo-electrons fill a large volume around the spacecraft where they can dominate over the ambient environment and a significant part of photo-electrons propagates to the antisunward sector. The resulting space charge has been found to generate negative potential barriers under certain conditions. Also long wire booms which are generally used for mounting electrostatic sensors away from the influence of the spacecraft are found to induce significant transport of the spacecraft generated photo-electrons toward the boom mounted detectors. In this presentation the feature of the computer code and the results of the numerical model are reviewed and the implications for plasma instruments are discussed. Forest J., L. Eliasson, A. Hilgers, A New Spacecraft Plasma Simulation Software, PicUp3D/SPIS, ESA Special Publication, SP-476, ISBN No 92-9092-745-3, pp.515-520, ESA-ESTEC, Noordwijk, The Netherlands, 2001. Pedersen, A., C. A. Cattel, C.-G. Faelthammar, V. Formisano, P.-A. Lindqvist, F. Mozer, and R. Torbert, Quasistatic electric field measurements with spherical double probes on the GEOS and ISEE satellites, Space Sci. Rev., 37, pp 269-312, 1984. Szita, S., A. N. Fazakerley, P. J. Carter, A. M

  7. A magnetospheric energy principle extended to include neutral atmosphere

    SciTech Connect

    Miura, Akira

    2011-03-15

    The problem of ideal magnetohydrodynamic stability of plasmas in a magnetosphere-atmosphere system, in which the unperturbed magnetic field is assumed to be perpendicular to the plasma-atmosphere interface (ionospheric surface), is investigated by means of an extended magnetospheric energy principle. The derivation of the principle and conditions under which it applies to a real terrestrial magnetosphere is given. In the principle, the atmosphere is considered to be a very heavy and compressible gas with finite pressure. A thin ionospheric layer is taken into account as boundary conditions, but energetics within it are neglected. The solid-earth surface is assumed to be a perfectly conducting wall for perturbations. For a perturbation that satisfies either rigid or horizontally free boundary conditions at the plasma-atmosphere interface, the self-adjointness of the force operator is satisfied and an extended magnetospheric energy principle can be developed on the basis of the extended energy principle for fusion plasmas. These two boundary conditions are shown to be realized in the magnetosphere when the ionospheric conductivity is either very large or very small. Whereas in fusion plasmas the perturbed magnetic energy in the vacuum makes a stabilizing contribution to the potential energy, in the magnetosphere the perturbed magnetic energy in the atmosphere makes no such stabilizing contribution. This is due to the difference of the assumed field configurations of the magnetospheric and fusion plasmas. The ionospheric surface makes a destabilizing negative contribution to the potential energy owing to a horizontal plasma displacement on the spherical ionospheric surface. The method is applied to magnetospheric ballooning and interchange instabilities. The existence of a new type of magnetospheric interchange instability is shown and its structure in the magnetosphere-atmosphere system is clarified. Possible consequences of the instabilities and their relevance to

  8. Theory of the auroral magnetosphere

    NASA Technical Reports Server (NTRS)

    Schulz, M.; Chiu, Y. T.; Cornwall, J. M.

    1981-01-01

    The aurora has come to be understood as a manifestation of energy transfer and plasma transfer from the solar wind to the magnetosphere. The auroral oval seems to be a mapping of the boundary layer that lies just inside the magnetospheric surface, which consists of the magnetopause and neutral sheet. The auroral oval is consequently a region of reversal for the meridional (r,8) component of the magnetospheric convection electric field and thus a region of strong shear in the plasma drift velocity field. The velocity shear seems to account for the formation of eddies in the auroral "curtain". Moreover, the Kinematical impedance associated with hot auroral plasma perpendicular electric field across a narrow region of latitude to occur without the formation of a large parallel electric field. The signature of the parallel electric field is such as to produce upgoing ion beams and precipitating electron beams in the PM (afternoon-evening) sector of local time, and to account for the polarity of Region-1 currents as a function of local time.

  9. Saturn's Magnetospheric Cusp: Cassini Observations

    NASA Astrophysics Data System (ADS)

    Jasinski, J. M.; Arridge, C. S.; Sergis, N.; Coates, A. J.; Jones, G. H.

    2015-12-01

    The first in-situ analysis of the high-latitude magnetospheric cusp region at Saturn is presented using data from the Cassini spacecraft. The cusp is a funnel-shaped region where shocked solar wind plasma is able to enter the magnetosphere via the process of magnetic reconnection. The analysis is presented in three sections: Firstly, a high-latitude spacecraft trajectory is shown to cross the northern cusp where magnetosheath plasma is observed in-situ. The ion observations are shown to be a result of `bursty' reconnection occurring at the dayside magnetopause. A different interval is also presented where the southern cusp is observed to oscillate with a period the same as Saturn's rotational period. Secondly, the locations of all the cusp crossings are shown. The field-aligned distances (calculated from observed ion energy-pitch angle dispersions) from the reconnection site are presented. The cusp events are also compared to solar wind propagation models to investigate any correlations. Finally, the magnetic field observations of the cusps are analysed focusing on the diamagnetic depressions. The data are subtracted from a magnetic field model, and the calculated magnetic pressure deficits are compared to the particle pressures. A high plasma pressure layer in the magnetosphere adjacent to the cusp is discovered to also depress the magnetic field.

  10. A model of global convection in Jupiter's magnetosphere

    NASA Astrophysics Data System (ADS)

    Cheng, A. F.; Krimigis, S. M.

    1989-09-01

    Voyager observations of Jupiter's magnetosphere are compared with the planetary wind model in which corotation must break down outside some Alfven critical radius and a centrifugally driven wind outflow must develop. It is found that the model does not agree with the observations. A new global convection model for the Jovian magnetosphere is proposed, based on models of quasi-stationary plasma convection in the earth's magnetosphere. The model predicts a substantial dawn-dusk asymmetry in the structure, dynamics, and plasma composition of the magnetopause and magnetosheath. The model also predicts a region of cross-tail flow in the nightside plasma sheet containing a substantial admixture of solar wind plasma.

  11. Physics of magnetospheric boundary layers

    NASA Technical Reports Server (NTRS)

    Cairns, I. H.

    1993-01-01

    The central ideas of this grant are that the magnetospheric boundary layers link disparate regions of the magnetosphere together, and the global behavior of the magnetosphere can be understood only by understanding the linking mechanisms. Accordingly the present grant includes simultaneous research on the global, meso-, and micro-scale physics of the magnetosphere and its boundary layers. These boundary layers include the bow shock, magnetosheath, the plasma sheet boundary layer, and the ionosphere. Analytic, numerical and simulation projects have been performed on these subjects, as well as comparison of theoretical results with observational data. Very good progress has been made, with four papers published or in press and two additional papers submitted for publication during the six month period 1 June - 30 November 1993. At least two projects are currently being written up. In addition, members of the group have given papers at scientific meetings. The further structure of this report is as follows: section two contains brief accounts of research completed during the last six months, while section three describes the research projects intended for the grant's final period.

  12. Magnetospheric structures: Uranus and Neptune

    SciTech Connect

    Hill, T.W.

    1984-10-01

    Magnetospheric structures that might be encountered at Uranus and Neptune are described. Statistics indicate a sufficiently high probability to warrant consideration of their likely properties in advance of the Voyager encounters. Because the spin axis of Uranus lies nearly in the ecliptic and presently points approximately sunward, Voyager is likely to encounter the unique pole on configuration that has special theoretical significance. Corotation in the magnetospheres of Uranus and Neptune would probably exclude solar wind drive convection as an important driver of global magnetospheric dynamics, as it does at Jupiter and Saturn. The magnetospheres of Uranus and Neptune probably lack sufficient internal sources of plasma to produce significant levels of rotationally driven convection. The reported observation of auroral emission from Uranus has therefore motivated the development of an alternative model in which solar wind motion is coupled directly to the rotation of the ionosphere to establish a dynamo circuit which generates Birkeland currents and polar cap aurora. This model predicts the strength and configuration of the aurora as functions of the magnitude and polarity, respectively, of the planetary magnetic moment.

  13. What Controls the Structure and Dynamics of Earth's Magnetosphere?

    NASA Astrophysics Data System (ADS)

    Eastwood, J. P.; Hietala, H.; Toth, G.; Phan, T. D.; Fujimoto, M.

    2015-05-01

    Unlike most cosmic plasma structures, planetary magnetospheres can be extensively studied in situ. In particular, studies of the Earth's magnetosphere over the past few decades have resulted in a relatively good experimental understanding of both its basic structural properties and its response to changes in the impinging solar wind. In this article we provide a broad overview, designed for researchers unfamiliar with magnetospheric physics, of the main processes and parameters that control the structure and dynamics of planetary magnetospheres, especially the Earth's. In particular, we concentrate on the structure and dynamics of three important regions: the bow shock, the magnetopause and the magnetotail. In the final part of this review we describe the current status of global magnetospheric modelling, which is crucial to placing in situ observations in the proper context and providing a better understanding of magnetospheric structure and dynamics under all possible input conditions. Although the parameter regime experienced in the solar system is limited, the plasma physics that is learned by studying planetary magnetospheres can, in principle, be translated to more general studies of cosmic plasma structures. Conversely, studies of cosmic plasma under a wide range of conditions should be used to understand Earth's magnetosphere under extreme conditions. We conclude the review by discussing this and summarizing some general properties and principles that may be applied to studies of other cosmic plasma structures.

  14. Observations of large-scale plasma convection in the magnetosphere with respect to the geomagnetic activity level

    NASA Astrophysics Data System (ADS)

    Stepanov, A. E.; Khalipov, V. L.; Kotova, G. A.; Zabolotskii, M. S.; Golikov, I. A.

    2016-03-01

    The data of the ionospheric observations (the daily f plots) at the Yakutsk meridional chain of ionosondes (Yakutsk-Zhigansk-Batagai-Tixie Bay) with sharp decreases (breaks) in the critical frequency of the regular ionospheric F2 layer ( foF2) are considered. The data for 1968-1983 were analyzed, and the statistics of the foF2 break observations, which indicate that these breaks are mainly registered in equinoctial months and in afternoon and evening hours under moderately disturbed geomagnetic conditions, are presented. Calculations performed using the prognostic model of the high-latitude ionosphere indicate that the critical frequency break position coincides with the equatorial boundary of large-scale plasma convection in the dusk MLT sector.

  15. High Frequency Design Considerations for the Large Detector Number and Small Form Factor Dual Electron Spectrometer of the Fast Plasma Investigation on NASA's Magnetospheric Multiscale Mission

    NASA Technical Reports Server (NTRS)

    Kujawski, Joseph T.; Gliese, Ulrik B.; Cao, N. T.; Zeuch, M. A.; White, D.; Chornay, D. J; Lobell, J. V.; Avanov, L. A.; Barrie, A. C.; Mariano, A. J.; Tucker, C. J.; Piepgrass, B.; Auletti, C.; Weidner, S.; Jacques, A. D.; Pollock, C. J.

    2015-01-01

    Each half of the Dual Electron Spectrometer (DES) of the Fast Plasma Investigation (FPI) on NASA's Magnetospheric MultiScale (MMS) mission utilizes a microchannel plate Chevron stack feeding 16 separate detection channels each with a dedicated anode and amplifier/discriminator chip. The desire to detect events on a single channel with a temporal spacing of 100 ns and a fixed dead-time drove our decision to use an amplifier/discriminator with a very fast (GHz class) front end. Since the inherent frequency response of each pulse in the output of the DES microchannel plate system also has frequency components above a GHz, this produced a number of design constraints not normally expected in electronic systems operating at peak speeds of 10 MHz. Additional constraints are imposed by the geometry of the instrument requiring all 16 channels along with each anode and amplifier/discriminator to be packaged in a relatively small space. We developed an electrical model for board level interactions between the detector channels to allow us to design a board topology which gave us the best detection sensitivity and lowest channel to channel crosstalk. The amplifier/discriminator output was designed to prevent the outputs from one channel from producing triggers on the inputs of other channels. A number of Radio Frequency design techniques were then applied to prevent signals from other subsystems (e.g. the high voltage power supply, command and data handling board, and Ultraviolet stimulation for the MCP) from generating false events. These techniques enabled us to operate the board at its highest sensitivity when operated in isolation and at very high sensitivity when placed into the overall system.

  16. Electrostatic waves in the Jovian magnetosphere

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.; Barbosa, D. D.; Scarf, F. L.; Gurnett, D. A.

    1980-01-01

    Observations by the plasma wave receivers on Voyagers 1 and 2 show that a wide variety of electrostatic waves are present within the Jovian magnetosphere and that the Jovian electrostatic waves are for the most part very similar to those observed in the terrestrial magnetosphere. Bands of emission near the upper hybrid resonance frequency in the dayside outer magnetosphere are detected between higher harmonics of the electron gyrofrequency. Inside of about 23 Jupiter radii, electron cyclotron harmonic emissions appear to be durable features of the inner Jovian magnetosphere and are extremely well confined to the Jovian magnetic equator. The cyclotron emissions extend from just above the local electron gyrofrequency to the upper hybrid resonance frequency.

  17. Corotation Lag in Jupiter's Magnetosphere: Comparison of Observation and Theory.

    PubMed

    Hill, T W

    1980-01-18

    Voyager 1 plasma flow data are compared with a recent theory that predicted measurable departures from rigid corotation in Jupiter's magnetosphere as a consequence of rapid plasma production and weak atmosphere-magnetosphere coupling. The comparison indicates that the theory can account for the observed corotation lag, provided that the plasma mass production rate during the Voyager 1 encounter was rather larger than expected, namely approximately 10(30) atomic mass units per second.

  18. The magnetosphere of Neptune - Its response to daily rotation

    NASA Technical Reports Server (NTRS)

    Voigt, Gerd-Hannes; Ness, Norman F.

    1990-01-01

    The Neptunian magnetosphere periodically changes every eight hours between a pole-on magnetosphere with only one polar cusp and an earth-type magnetosphere with two polar cusps. In the pole-on configuration, the tail current sheet has an almost circular shape with plasma currents closing entirely within the magnetosphere. Eight hours later the tail current sheet assumes an almost flat shape with plasma currents touching the magnetotail boundary and closing over the tail magnetopause. Magnetic field and tail current sheet configurations have been calculated in a three-dimensional model, but the plasma- and thermodynamic conditions were investigated in a simplified two-dimensional MHD equilibrium magnetosphere. It was found that the free energy in the tail region of the two-dimensional model becomes independent of the dipole tilt angle. It is conjectured that the Neptunian magnetotail might assume quasi-static equilibrium states that make the free energy of the system independent of its daily rotation.

  19. Planet/magnetosphere/satellite couplings: Observations from the moon

    NASA Astrophysics Data System (ADS)

    Prange, Renee

    1994-06-01

    The general characteristics of planetary magnetospheres depend upon a few key parameters, such as the magnetic dipole strength, the planetary rotation rate, and the strength of the internal plasma sources (satellites, rings, ionosphere). The present knowledge of the acceleration and of the large scale circulation of plasma in these magnetospheres is still rather poor. Plasma and energetic particle losses occur largely through precipitation into the atmosphere along magnetic field lines, giving rise to the planetary aurorae. These losses can be initiated by various kinds of magnetospheric processes, and, if clearly understood, could give major insights into the physics of the global magnetospheric system. After a brief comparative review of the planetary magnetospheres, it will be shown how our understanding of their dynamics could benefit from increased instrumental performances in terms of remote sensing in the X rays, UV to IR, and radio wavelength range, and what breakthroughs could be expected from lunar based observations.

  20. High-latitude magnetospheric plasma convection and its dependence on solar wind parameters: Statistical analysis of Cluster EDI measurements

    NASA Astrophysics Data System (ADS)

    Förster, M.; Haaland, S. E.; Paschmann, G.; Quinn, J. M.; Torbert, R. B.; McIlwain, C. E.; Vaith, H.; Puhl-Quinn, P. A.; Kletzing, C. A.

    2006-12-01

    We have used vector measurements of the electron drift velocity by the Electron Drift Instrument (EDI) on Cluster between February 2001 and March 2006 to derive statistical maps of the high-latitude plasma convection. The EDI measurements, obtained at geocentric distances between ~4 and ~20RE over both hemispheres, are mapped into the polar ionosphere, and sorted according to the orientation of the interplanetary magnetic field (IMF), as measured at ACE and propagated to Earth, using best estimates of the orientation of the IMF variations. Only intervals of stable IMF are used, based on the magnitude of the so- called bias-vector constructed from 30-minute averages. Contour maps of the electric potential in the polar ionosphere are subsequently derived from the mapped and averaged ionospheric drift vectors. Comparison with published statistical results based on Super Dual Auroral Radar Network (SuperDARN) radar and low-altitude satellite measurements shows excellent agreement between the average convection patterns, particularly the lack of mirror-symmetry between the effects of positive and negative IMF B_y effects, the appearance of a duskward flow component for strongly southward IMF, and the general weakening of the flows and potentials for northerly IMF directions. This agreement lends credence to the validity of the assumption underlying the mapping of the EDI data, namely that magnetic field lines are equipotentials. For strongly northward IMF the mapped EDI data show the clear emergence of two counter-rotating lobe cells with a channel of sunward flow between them. The total potential drops across the polar caps obtained from the mapped EDI data are intermediate between the radar and the low-altitude satellite results. We have also sorted the data according to estimates of the reconnection electric field, solar wind dynamic pressure, and disturbance parameters such as DsT and ASYM-H. Finally, we have produced maps of the variances of the convection as a

  1. X-ray Probes of Magnetospheric Interactions with Jupiter's Auroral zones, the Galilean Satellites, and the Io Plasma Torus

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; Ramsey, B. D.; Waite, J. H., Jr.; Rehak, P.; Johnson, R. E.; Cooper, J. F.; Swartz, D. A.

    2004-01-01

    Remote observations with the Chandra X-ray Observatory and the XMM-Newton Observatory have shown that the Jovian system is a source of x-rays with a rich and complicated structure. The planet's polar auroral zones and its disk are powerful sources of x-ray emission. Chandra observations revealed x-ray emission from the Io Plasma Torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from these moons is certainly due to bombardment of their surfaces of highly energetic protons, oxygen and sulfur ions from the region near the Torus exciting atoms in their surfaces and leading to fluorescent x-ray emission lines. Although the x-ray emission from the Galilean moons is faint when observed fiom Earth orbit, an imaging x-ray spectrometer in orbit around these moons, operating at 200 eV and above with 150 eV energy resolution, would provide a detailed mapping (down to 40 m spatial resolution) of the elemental composition in their surfaces. Here we describe the physical processes leading to x-ray emission fiom the surfaces of Jupiter's moons and the instrumental properties, as well as energetic ion flux models or measurements, required to map the elemental composition of their surfaces. We discuss the proposed scenarios leading to possible surface compositions. For Europa, the two most extreme are (1) a patina produced by exogenic processes such as meteoroid bombardment and ion implantation, and (2) upwelling of material fiom the subsurface ocean. We also describe the characteristics of X - m , an imaging x-ray spectrometer under going a feasibility study for the JIM0 mission, with the ultimate goal of providing unprecedented x-ray studies of the elemental composition of the surfaces of Jupiter's icy moons and Io, as well as of Jupiter's auroral x-ray emission.

  2. A statistical study of plasmawaves and energetic particles in the outer magnetosphere

    NASA Astrophysics Data System (ADS)

    Min, Kyungguk

    The Earth magnetosphere contains energetic particles undergoing specific motions around Earth's magnetic field, and interacting with a variety of waves. The dynamics of energetic particles are often described in terms of three kinds of adiabatic invariants. Energetic electrons are often unstable to the whistler-mode chorus waves, and ions, to the electromagnetic ion cyclotron (EMIC) instability. These waves play an important role in the dynamics of the magnetosphere by energizing electrons to form a radiation belt, extracting energy from the hot, anisotropic ions and causing pitch angle scattering of energetic ions and relativistic electrons into the loss cone. EMIC waves correspond to the highest frequency waves in the ultra-low frequency (ULF) spectral regime, and field line resonances at the lower frequency may serve as diagnostics for the plasma distribution in the magnetosphere. This dissertation investigates (1) a rapid, efficient way of specifying particle's adiabatic motion in the magnetosphere, (2) source of the whistler-mode chorus waves, (3) physical properties and coherent spatial dimensions of the EMIC waves and (4) a diagnostic use of the toroidal mode Alfven waves on the plasma density distribution in the Earth magnetosphere. The studies presented in this dissertation have significantly been benefited from the comprehensive data obtained by several space missions, including the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft, Cluster mission, the Geostationary Operational Environment Satellites (GOES), Los Alamos National Laboratory (LANL) satellites, the Polar spacecraft and the Active Magnetospheric Particle Tracer Explorers (AMPTE)/Charge Composition Explorer (CCE), and from ground-based Automatic Geophysical Observatories (AGO). The main findings and achievements in this dissertation are as follows: (1) A method of rapidly and efficiently computing the magnetic drift invariant (L*) was developed. This new

  3. Solar wind and magnetosphere interactions

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Allen, J. H.; Cauffman, D. P.; Feynman, J.; Greenstadt, E. W.; Holzer, R. E.; Kaye, S. M.; Slavin, J. A.; Manka, R. H.; Rostoker, G.

    1979-01-01

    The relationship between the magnetosphere and the solar wind is addressed. It is noted that this interface determines how much of the solar plasma and field energy is transferred to the Earth's environment, and that this coupling not only varies in time, responding to major solar disturbances, but also to small changes in solar wind conditions and interplanetary field directions. It is recommended that the conditions of the solar wind and interplanetary medium be continuously monitored, as well as the state of the magnetosphere. Other recommendations include further study of the geomagnetic tail, tests of Pc 3,4 magnetic pulsations as diagnostics of the solar wind, and tests of kilometric radiation as a remote monitor of the auroral electrojet.

  4. Comprehensive Quantitative Model of Inner-Magnetosphere Dynamics

    NASA Technical Reports Server (NTRS)

    Wolf, Richard A.

    2002-01-01

    This report includes descriptions of papers, a thesis, and works still in progress which cover observations of space weather in the Earth's magnetosphere. The topics discussed include: 1) modelling of magnetosphere activity; 2) magnetic storms; 3) high energy electrons; and 4) plasmas.

  5. Comparison of spherical double probe electric field measurements with plasma bulk flows in plasmas having densities less than 1 cm-3. [magnetosphere parameters

    NASA Technical Reports Server (NTRS)

    Mozer, F. S.; Hones, E. W., Jr.; Birn, J.

    1983-01-01

    For a three-hour period in the magnetotail over which plasma density varied from less than 0.1 to about 1/cu cm, comparisons of ISEE-1 spherical double probe (dawn to dusk) electric field measurements and ISEE-2 plasma flows (converted to electric fields) show the zero lag cross correlation coefficient between 768 second averages of the two data sets to have been 0.93. A statistical relative uncertainty between pairs of points in the two data sets, estimated by only including counting statistics in the plasma measurement and time variations of the observed electric field over the measurement interval, is able to account for at least 75 percent of the deviations between the two data sets. In agreement with simple Langmuir probe theory, it has been found that the spacecraft potential measured over the three-hour interval by the double probe instrument varied as the log of the product of the plasma density and the square root of the electron temperature.

  6. Analysis and visualization of global magnetospheric processes

    SciTech Connect

    Winske, D.; Mozer, F.S.; Roth, I.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The purpose of this project is to develop new computational and visualization tools to analyze particle dynamics in the Earth`s magnetosphere. These tools allow the construction of a global picture of particle fluxes, which requires only a small number of in situ spacecraft measurements as input parameters. The methods developed in this project have led to a better understanding of particle dynamics in the Earth`s magnetotail in the presence of turbulent wave fields. They have also been used to demonstrate how large electromagnetic pulses in the solar wind can interact with the magnetosphere to increase the population of energetic particles and even form new radiation belts.

  7. Evidence for Corotating Convection in Saturn's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Kivelson, M. G.; Southwood, D. J.; Dougherty, M. K.

    2006-05-01

    Saturn's magnetic field exhibits a high degree of azimuthal symmetry, yet the field and plasma signatures of the magnetosphere are modulated at a period close to that of planetary rotation. How, then, is a clear periodicity imposed on the magnetic field and plasma of the planetary magnetosphere? In this talk, Cassini magnetometer data are used to develop a scenario for the dynamics of the Saturn magnetosphere. The proposal is that mass transport, accomplished in the inner magnetosphere by interchange motion, feeds into the outer magnetosphere where ballooning driven by centrifugal stress leads to outward transport, field reconnection and plasma loss in a favored local time sector; flux is transported inward in other regions. The model is closely related to the concept of corotating convection proposed by Dessler, Hill, and co-workers for Jupiter. The proposed mechanism can be consistent with aspects of the empirical camshaft model introduced by Espinosa et al., 2003 to explain Pioneer and Voyager magnetometer data. Anomalous transport here proposed could originate from a localized ionospheric conductivity anomaly. The resulting cyclic stress modulates the current in the current sheet and can account for its north-south excursions. The convection patterns proposed also imply that corotating, field-aligned currents would be a basic feature of the Saturn system.

  8. 3-D Force-balanced Magnetospheric Configurations

    SciTech Connect

    Sorin Zaharia; C.Z. Cheng; K. Maezawa

    2003-02-10

    The knowledge of plasma pressure is essential for many physics applications in the magnetosphere, such as computing magnetospheric currents and deriving magnetosphere-ionosphere coupling. A thorough knowledge of the 3-D pressure distribution has however eluded the community, as most in-situ pressure observations are either in the ionosphere or the equatorial region of the magnetosphere. With the assumption of pressure isotropy there have been attempts to obtain the pressure at different locations by either (a) mapping observed data (e.g., in the ionosphere) along the field lines of an empirical magnetospheric field model or (b) computing a pressure profile in the equatorial plane (in 2-D) or along the Sun-Earth axis (in 1-D) that is in force balance with the magnetic stresses of an empirical model. However, the pressure distributions obtained through these methods are not in force balance with the empirical magnetic field at all locations. In order to find a global 3-D plasma pressure distribution in force balance with the magnetospheric magnetic field, we have developed the MAG-3D code, that solves the 3-D force balance equation J x B = (upside-down delta) P computationally. Our calculation is performed in a flux coordinate system in which the magnetic field is expressed in terms of Euler potentials as B = (upside-down delta) psi x (upside-down delta) alpha. The pressure distribution, P = P(psi,alpha), is prescribed in the equatorial plane and is based on satellite measurements. In addition, computational boundary conditions for y surfaces are imposed using empirical field models. Our results provide 3-D distributions of magnetic field and plasma pressure as well as parallel and transverse currents for both quiet-time and disturbed magnetospheric conditions.

  9. Saturn's dynamic magnetotail: A comprehensive magnetic field and plasma survey of plasmoids and traveling compression regions and their role in global magnetospheric dynamics

    NASA Astrophysics Data System (ADS)

    Jackman, C. M.; Slavin, J. A.; Kivelson, M. G.; Southwood, D. J.; Achilleos, N.; Thomsen, M. F.; DiBraccio, G. A.; Eastwood, J. P.; Freeman, M. P.; Dougherty, M. K.; Vogt, M. F.

    2014-07-01

    We present a comprehensive study of the magnetic field and plasma signatures of reconnection events observed with the Cassini spacecraft during the tail orbits of 2006. We examine their "local" properties in terms of magnetic field reconfiguration and changing plasma flows. We also describe the "global" impact of reconnection in terms of the contribution to mass loss, flux closure, and large-scale tail structure. The signatures of 69 plasmoids, 17 traveling compression regions (TCRs), and 13 planetward moving structures have been found. The direction of motion is inferred from the sign of the change in the Bθ component of the magnetic field in the first instance and confirmed through plasma flow data where available. The plasmoids are interpreted as detached structures, observed by the spacecraft tailward of the reconnection site, and the TCRs are interpreted as the effects of the draping and compression of lobe magnetic field lines around passing plasmoids. We focus on the analysis and interpretation of the tailward moving (south-to-north field change) plasmoids and TCRs in this work, considering the planetward moving signatures only from the point of view of understanding the reconnection x-line position and recurrence rates. We discuss the location spread of the observations, showing that where spacecraft coverage is symmetric about midnight, reconnection signatures are observed more frequently on the dawn flank than on the dusk flank. We show an example of a chain of two plasmoids and two TCRs over 3 hours and suggest that such a scenario is associated with a single-reconnection event, ejecting multiple successive plasmoids. Plasma data reveal that one of these plasmoids contains H+ at lower energy and W+ at higher energy, consistent with an inner magnetospheric source, and the total flow speed inside the plasmoid is estimated with an upper limit of 170 km/s. We probe the interior structure of plasmoids and find that the vast majority of examples at Saturn

  10. Global MHD Simulation of Mesoscale Structures at the Magnetospheric Boundary

    NASA Technical Reports Server (NTRS)

    Berchem, Jean

    1998-01-01

    The research carried out for this protocol was focused on the study of mesoscales structures at the magnetospheric boundary. We investigated three areas: (1) the structure of the magnetospheric boundary for steady solar wind conditions; (2) the dynamics of the dayside magnetospheric boundary and (3) the dynamics of the distant tail magnetospheric boundary. Our approach was to use high resolution three-dimensional global magnetohydrodynamic (MHD) simulations of the interaction of the solar wind with the Earth's magnetosphere. We first considered simple variations of the interplanetary conditions to obtain generic cases that helped us in establishing the basic cause and effect relationships for steady solar wind conditions. Subsequently, we used actual solar wind plasma and magnetic field parameters measured by an upstream spacecraft as input to the simulations and compared the simulation results with sequences of events observed by another or several other spacecraft located downstream the bow shock. In particular we compared results with observations made when spacecraft crossed the magnetospheric boundary.

  11. Magnetospheric Multiscale (MMS) Orbit

    NASA Video Gallery

    This animation shows the orbits of Magnetospheric Multiscale (MMS) mission, a Solar-Terrestrial Probe mission comprising of four identically instrumented spacecraft that will study the Earth's magn...

  12. The Magnetospheric Multiscale Mission

    NASA Astrophysics Data System (ADS)

    Burch, James

    Magnetospheric Multiscale (MMS), a NASA four-spacecraft mission scheduled for launch in November 2014, will investigate magnetic reconnection in the boundary regions of the Earth’s magnetosphere, particularly along its dayside boundary with the solar wind and the neutral sheet in the magnetic tail. Among the important questions about reconnection that will be addressed are the following: Under what conditions can magnetic-field energy be converted to plasma energy by the annihilation of magnetic field through reconnection? How does reconnection vary with time, and what factors influence its temporal behavior? What microscale processes are responsible for reconnection? What determines the rate of reconnection?
In order to accomplish its goals the MMS spacecraft must probe both those regions in which the magnetic fields are very nearly antiparallel and regions where a significant guide field exists. From previous missions we know the approximate speeds with which reconnection layers move through space to be from tens to hundreds of km/s. For electron skin depths of 5 to 10 km, the full 3D electron population (10 eV to above 20 keV) has to be sampled at rates greater than 10/s. The MMS Fast-Plasma Instrument (FPI) will sample electrons at greater than 30/s. Because the ion skin depth is larger, FPI will make full ion measurements at rates of greater than 6/s. 3D E-field measurements will be made by MMS once every ms. MMS will use an Active Spacecraft Potential Control device (ASPOC), which emits indium ions to neutralize the photoelectron current and keep the spacecraft from charging to more than +4 V. Because ion dynamics in Hall reconnection depend sensitively on ion mass, MMS includes a new-generation Hot Plasma Composition Analyzer (HPCA) that corrects problems with high proton fluxes that have prevented accurate ion-composition measurements near the dayside magnetospheric boundary. Finally, Energetic Particle Detector (EPD) measurements of electrons and

  13. New Method for Accurate Calibration of Micro-Channel Plate based Detection Systems and its use in the Fast Plasma Investigation of NASA's Magnetospheric MultiScale Mission

    NASA Astrophysics Data System (ADS)

    Gliese, U.; Avanov, L. A.; Barrie, A.; Kujawski, J. T.; Mariano, A. J.; Tucker, C. J.; Chornay, D. J.; Cao, N. T.; Zeuch, M.; Pollock, C. J.; Jacques, A. D.

    2013-12-01

    The Fast Plasma Investigation (FPI) of the NASA Magnetospheric MultiScale (MMS) mission employs 16 Dual Electron Spectrometers (DESs) and 16 Dual Ion Spectrometers (DISs) with 4 of each type on each of 4 spacecraft to enable fast (30ms for electrons; 150ms for ions) and spatially differentiated measurements of full the 3D particle velocity distributions. This approach presents a new and challenging aspect to the calibration and operation of these instruments on ground and in flight. The response uniformity and reliability of their calibration and the approach to handling any temporal evolution of these calibrated characteristics all assume enhanced importance in this application, where we attempt to understand the meaning of particle distributions within the ion and electron diffusion regions. Traditionally, the micro-channel plate (MCP) based detection systems for electrostatic particle spectrometers have been calibrated by setting a fixed detection threshold and, subsequently, measuring a detection system count rate plateau curve to determine the MCP voltage that ensures the count rate has reached a constant value independent of further variation in the MCP voltage. This is achieved when most of the MCP pulse height distribution (PHD) is located at higher values (larger pulses) than the detection amplifier threshold. This method is adequate in single-channel detection systems and in multi-channel detection systems with very low crosstalk between channels. However, in dense multi-channel systems, it can be inadequate. Furthermore, it fails to fully and individually characterize each of the fundamental parameters of the detection system. We present a new detection system calibration method that enables accurate and repeatable measurement and calibration of MCP gain, MCP efficiency, signal loss due to variation in gain and efficiency, crosstalk from effects both above and below the MCP, noise margin, and stability margin in one single measurement. The fundamental

  14. Evidence for global electron transportation into the jovian inner magnetosphere.

    PubMed

    Yoshioka, K; Murakami, G; Yamazaki, A; Tsuchiya, F; Kimura, T; Kagitani, M; Sakanoi, T; Uemizu, K; Kasaba, Y; Yoshikawa, I; Fujimoto, M

    2014-09-26

    Jupiter's magnetosphere is a strong particle accelerator that contains ultrarelativistic electrons in its inner part. They are thought to be accelerated by whistler-mode waves excited by anisotropic hot electrons (>10 kiloelectron volts) injected from the outer magnetosphere. However, electron transportation in the inner magnetosphere is not well understood. By analyzing the extreme ultraviolet line emission from the inner magnetosphere, we show evidence for global inward transport of flux tubes containing hot plasma. High-spectral-resolution scanning observations of the Io plasma torus in the inner magnetosphere enable us to generate radial profiles of the hot electron fraction. It gradually decreases with decreasing radial distance, despite the short collisional time scale that should thermalize them rapidly. This indicates a fast and continuous resupply of hot electrons responsible for exciting the whistler-mode waves.

  15. Evidence for global electron transportation into the jovian inner magnetosphere.

    PubMed

    Yoshioka, K; Murakami, G; Yamazaki, A; Tsuchiya, F; Kimura, T; Kagitani, M; Sakanoi, T; Uemizu, K; Kasaba, Y; Yoshikawa, I; Fujimoto, M

    2014-09-26

    Jupiter's magnetosphere is a strong particle accelerator that contains ultrarelativistic electrons in its inner part. They are thought to be accelerated by whistler-mode waves excited by anisotropic hot electrons (>10 kiloelectron volts) injected from the outer magnetosphere. However, electron transportation in the inner magnetosphere is not well understood. By analyzing the extreme ultraviolet line emission from the inner magnetosphere, we show evidence for global inward transport of flux tubes containing hot plasma. High-spectral-resolution scanning observations of the Io plasma torus in the inner magnetosphere enable us to generate radial profiles of the hot electron fraction. It gradually decreases with decreasing radial distance, despite the short collisional time scale that should thermalize them rapidly. This indicates a fast and continuous resupply of hot electrons responsible for exciting the whistler-mode waves. PMID:25258073

  16. Evidence for global electron transportation into the jovian inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Yoshioka, K.; Murakami, G.; Yamazaki, A.; Tsuchiya, F.; Kimura, T.; Kagitani, M.; Sakanoi, T.; Uemizu, K.; Kasaba, Y.; Yoshikawa, I.; Fujimoto, M.

    2014-09-01

    Jupiter’s magnetosphere is a strong particle accelerator that contains ultrarelativistic electrons in its inner part. They are thought to be accelerated by whistler-mode waves excited by anisotropic hot electrons (>10 kiloelectron volts) injected from the outer magnetosphere. However, electron transportation in the inner magnetosphere is not well understood. By analyzing the extreme ultraviolet line emission from the inner magnetosphere, we show evidence for global inward transport of flux tubes containing hot plasma. High-spectral-resolution scanning observations of the Io plasma torus in the inner magnetosphere enable us to generate radial profiles of the hot electron fraction. It gradually decreases with decreasing radial distance, despite the short collisional time scale that should thermalize them rapidly. This indicates a fast and continuous resupply of hot electrons responsible for exciting the whistler-mode waves.

  17. Transport processes in space plasmas

    SciTech Connect

    Birn, J.; Elphic, R.C.; Feldman, W.C.

    1997-08-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project represents a comprehensive research effort to study plasma and field transport processes relevant for solar-terrestrial interaction, involving the solar wind and imbedded magnetic field and plasma structures, the bow shock of the Earth`s magnetosphere and associated waves, the Earth`s magnetopause with imbedded flux rope structures and their connection with the Earth, plasma flow in the Earth`s magnetotail, and ionospheric beam/wave interactions. The focus of the work was on the interaction between plasma and magnetic and electric fields in the regions where different plasma populations exist adjacent to or superposed on each other. These are the regions of particularly dynamic plasma behavior, important for plasma and energy transport and rapid energy releases. The research addressed questions about how this interaction takes place, what waves, instabilities, and particle/field interactions are involved, how the penetration of plasma and energy through characteristic boundaries takes place, and how the characteristic properties of the plasmas and fields of the different populations influence each other on different spatial and temporal scales. These topics were investigated through combining efforts in the analysis of plasma and field data obtained through space missions with theory and computer simulations of the plasma behavior.

  18. Magnetospheric equilibrium with anisotropic pressure

    SciTech Connect

    Cheng, C.Z.

    1991-07-01

    Self-consistent magnetospheric equilibrium with anisotropic pressure is obtained by employing an iterative metric method for solving the inverse equilibrium equation in an optimal flux coordinate system. A method of determining plasma parallel and perpendicular pressures from either analytic particle distribution or particle distribution measured along the satellite's path is presented. The numerical results of axisymmetric magnetospheric equilibrium including the effects of finite beta, pressure anisotropy, and boundary conditions are presented for a bi-Maxwellian particle distribution. For the isotropic pressure cases, the finite beta effect produces an outward expansion of the constant magnetic flux surfaces in relation to the dipole field lines, and along the magnetic field the toroidal ring current is maximum at the magnetic equator. The effect of pressure anisotropy is found to further expand the flux surfaces outward. Along the magnetic field lines the westward ring current can be peak away from the equator due to an eastward current contribution resulting from pressure anisotropy. As pressure anisotropy increases, the peak westward current can become more singular. The outer boundary flux surface has significant effect on the magnetospheric equilibrium. For the outer flux boundary resembling dayside compressed flux surface due to solar wind pressure, the deformation of the magnetic field can be quite different from that for the outer flux boundary resembling the tail-like surface. 23 refs., 17 figs.

  19. Space physics: A fast lane in the magnetosphere

    NASA Astrophysics Data System (ADS)

    Hudson, Mary K.

    2013-12-01

    A marriage between satellite observations and modelling has shown that acceleration of electrons in the magnetosphere can be explained by scattering of these particles by plasma oscillations known as chorus waves. See Letter p.411

  20. Exploring the earth's magnetosphere with four satellites

    NASA Astrophysics Data System (ADS)

    Lehn, Guenther; Nord, Roland; Best, Rainer

    The Cluster mission scheduled to be launched onboard four satellites by an Ariene 5 rocket in late 1995 is discussed. The major scientific goal of the mission is the quantification of the related transfer mass, momentum, and energy across the magnetopause, a boundary layer that separates the earth's magnetosphere from the plasma and the magnetic field of the solar wind.

  1. Electron sources in Saturn's magnetosphere

    NASA Astrophysics Data System (ADS)

    Rymer, A. M.; Mauk, B. H.; Hill, T. W.; Paranicas, C.; André, N.; Sittler, E. C.; Mitchell, D. G.; Smith, H. T.; Johnson, R. E.; Coates, A. J.; Young, D. T.; Bolton, S. J.; Thomsen, M. F.; Dougherty, M. K.

    2007-02-01

    We investigate the sources of two different electron components in Saturn's inner magnetosphere (5 < L < 12 Rs) by performing phase space density (f(v)) analyses of electron measurements made by the Cassini CAPS instrument (1 eV to 28 keV). Because pitch angle distributions indicate that the traditional single particle invariants of gyration and bounce are not appropriate, we use a formulation of the isotropic invariant derived by Wolf (1983) and Schulz (1998) and show that it is similar in functional form to the first adiabatic invariant. Our f(v) analyses confirm that the cooler electrons (<100 eV) have a source in the inner magnetosphere and are likely products of neutral ionization processes in Saturn's neutral cloud. The mystery is how the electrons are heated to energies comparable to the proton thermal energy (which is approximately equal to the proton pickup energy), a process that reveals itself as a source of electrons at given invariant values in our f(v) analyses. We show that Coulomb collisions provide a viable mechanism to achieve the near equipartition of ion and electron energies in the time available before particles are lost from the region. We find that the source of the hotter electron component (>100 eV) is Saturn's middle or outer magnetosphere, perhaps transported to the inner magnetosphere by radial diffusion regulated by interchange-like injections. Hot electrons undergo heavy losses inside L ~ 6 and the distance to which the hot electron component penetrates into the neutral cloud is energy-dependent, with the coolest fraction of the hot plasma penetrating to the lowest L-shells. This can arise through energy-dependent radial transport during the interchange process and/or loss through the planetary loss cone.

  2. Global dynamics of Saturn's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Krimigis, Stamatios

    The inclusion in the Cassini payload of the Ion and Neutral Camera (INCA) to perform energetic neutral atom (ENA) imaging, plus an instrument that could measure ion charge state (CHEMS) and, in addition, state-of-the-art electron and ion sensors (LEMMS) provided the tools for a plethora of new and unique observations. These include, but are not limited to: (1) explosive large-scale injections appearing beyond 12 RS in the post-midnight sector, propagate inward, are connected to auroral brightening and SKR emissions, and apparently local injections as far in as 6 RS in the pre-midnight through post-midnight sector with a recurrence period around 11h that appear to corotate past noon; (2) periodicities in energetic charged particles in Saturn’ s magnetosphere, including "dual" periodicities, their slow variations, periodic tilting of the plasma sheet, and the possible explanation of these periodicities by a "wavy" magnetodisk model and the existence of the solar wind "driver" periodicity at ~26 days; (3) dominance of water group (W+) and H+ with a healthy dose of H2+ ions in the energetic particle population throughout the middle magnetosphere,plus the minor species O2+ and 28M+ of known and unknown origins, both with Saturn seasonal and/or solar cycle varying relative abundances; (4) sudden increases in energetic ion intensity around Saturn, in the vicinity of the moons Dione and Tethys, each lasting for several weeks, in response to interplanetary events caused by solar eruptions.; (5) a uniform electric field of around 0.11-0.18 mV/m within 4.4-7.0 RS oriented roughly from noon to midnight, that explains the persistent radial offsets of satellite electron microsignatures from their expected positions; (6) determination that the ring current pressure in the outer magnetosphere is dominated by suprathermal ions heavier than protons; (7) detection of magnetic-field-aligned ion and electron beams (offset several moon radii downstream from Enceladus) with sufficient

  3. Electrostatic waves in the magnetosphere.

    NASA Technical Reports Server (NTRS)

    Scarf, F. L.; Fredricks, R. W.

    1972-01-01

    Electric dipole antennas on magnetospheric spacecraft measure E field components of many kinds of electromagnetic waves. In addition, lower hybrid resonance emissions are frequently observed well above the ionosphere. The Ogo 5 plasma wave experiment has also detected new forms of electrostatic emissions that appear to interact very strongly with the local plasma particles. Greatly enhanced wave amplitudes have been found during the expansion phases of substorms, and analysis indicates that these emissions produce strong pitch angle diffusion. Intense broadband electrostatic turbulence is also detected at current layers containing steep magnetic field gradients. This current-driven instability is operative at the bow shock and also at field null regions just within the magnetosheath, and at the magnetopause near the dayside polar cusp. The plasma turbulence appears to involve ion acoustic waves, and the wave particle scattering provides an important collisionless dissipation mechanism for field merging.

  4. Auroral magnetosphere-ionosphere coupling: A brief topical review

    NASA Technical Reports Server (NTRS)

    Chiu, Y. T.; Schulz, M.; Cornwall, J. M.

    1979-01-01

    Auroral arcs result from the acceleration and precipitation of magnetospheric plasma in narrow regions characterized by strong electric fields both perpendicular and parallel to the earth's magnetic field. The various mechanisms that were proposed for the origin of such strong electric fields are often complementary Such mechanisms include: (1) electrostatic double layers; (2) double reverse shock; (3) anomalous resistivity; (4) magnetic mirroring of hot plasma; and (5) mapping of the magnetospheric-convection electric field through an auroral discontinuity.

  5. The Nonlinear Magnetosphere: Expressions in MHD and in Kinetic Models

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Birn, Joachim

    2011-01-01

    Like most plasma systems, the magnetosphere of the Earth is governed by nonlinear dynamic evolution equations. The impact of nonlinearities ranges from large scales, where overall dynamics features are exhibiting nonlinear behavior, to small scale, kinetic, processes, where nonlinear behavior governs, among others, energy conversion and dissipation. In this talk we present a select set of examples of such behavior, with a specific emphasis on how nonlinear effects manifest themselves in MHD and in kinetic models of magnetospheric plasma dynamics.

  6. Magnetospheric vortex formation: self-organized confinement of charged particles.

    PubMed

    Yoshida, Z; Saitoh, H; Morikawa, J; Yano, Y; Watanabe, S; Ogawa, Y

    2010-06-11

    A magnetospheric configuration gives rise to various peculiar plasma phenomena that pose conundrums to astrophysical studies; at the same time, innovative technologies may draw on the rich physics of magnetospheric plasmas. We have created a "laboratory magnetosphere" with a levitating superconducting ring magnet. Here we show that charged particles (electrons) self-organize a stable vortex, in which particles diffuse inward to steepen the density gradient. The rotating electron cloud is sustained for more than 300 s. Because of its simple geometry and self-organization, this system will have wide applications in confining single- and multispecies charged particles. PMID:20867249

  7. Modeling of Inner Magnetosphere Coupling Processes

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.

    2011-01-01

    The Ring Current (RC) is the biggest energy player in the inner magnetosphere. It is the source of free energy for Electromagnetic Ion Cyclotron (EMIC) wave excitation provided by a temperature anisotropy of RC ions, which develops naturally during inward E B convection from the plasmasheet. The cold plasmasphere, which is under the strong influence of the magnetospheric electric field, strongly mediates the RC-EMIC wave-particle-coupling process and ultimately becomes part of the particle and energy interplay. On the other hand, there is a strong influence of the RC on the inner magnetospheric electric and magnetic field configurations and these configurations, in turn, are important to RC dynamics. Therefore, one of the biggest needs for inner magnetospheric research is the continued progression toward a coupled, interconnected system with the inclusion of nonlinear feedback mechanisms between the plasma populations, the electric and magnetic fields, and plasma waves. As we clearly demonstrated in our studies, EMIC waves strongly interact with electrons and ions of energies ranging from approx.1 eV to approx.10 MeV, and that these waves strongly affect the dynamics of resonant RC ions, thermal electrons and ions, and the outer RB relativistic electrons. As we found, the rate of ion and electron scattering/heating in the Earth's magnetosphere is not only controlled by the wave intensity-spatial-temporal distribution but also strongly depends on the spectral distribution of the wave power. The latter is also a function of the plasmaspheric heavy ion content, and the plasma density and temperature distributions along the magnetic field lines. The above discussion places RC-EMIC wave coupling dynamics in context with inner magnetospheric coupling processes and, ultimately, relates RC studies with plasmaspheric and Superthermal Electrons formation processes as well as with outer RB physics.

  8. How Enceladus Powers the Saturnian Magnetosphere

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Leisner, J. S.; Jia, Y. D.; Khurana, K. K.; Dougherty, M. K.

    2009-04-01

    The Enceladus plume is pumping about 1028 water group molecules into the saturnian magnetosphere per second, or about one-quarter of the rate of atmospheric loss of Io in the much larger jovian magnetosphere. In turn, about one-quarter of that material appears to be ionized in the inner magnetosphere. The seven Enceladus encounters to date (E0 - E6) show that the outgassing rate has been steady within a factor of two over the last three years. While it is clear that the addition of Enceladus-derived plasma to the magnetosphere must be the ultimate source of energy to drive magnetospheric processes, it is not clear how the magnetospheric phenomena are driven. A key concept that is not included in current numerical and phenomenological models is the balance between centripetal and centrifugal forces during the interaction of the plume with the corotating plasma. When the magnetospheric plasma approaches Enceladus, centrifugal force stretches the magnetic field line outward. This force is balanced by the inward centripetal force of the curvature in the stretched field. When the plasma reaches the plume, it exchanges charge with the plume and a stream of fast neutrals sprays the region around Enceladus with a disk of neutral atoms and molecules. The magnetic field line, released of its centrifugal force (but not its mass), is pulled inward and then slowly accelerated again. When it is accelerated to corotational speed, the flux tube returns to near its original location. This circulation pattern is powered by the rotation of the planet but is in quasi-harmonic resonance with the 1.37 day period of Enceladus. Thus, the wave so forced can build up to a significant amplitude and this may explain the circulation pattern proposed by Gurnett et al. to explain the observed density modulation. We note that the region of exact resonance with the SKR period lies just inside the orbit of Enceladus in the region expected to be the post-Enceladus-interaction reacceleration region

  9. MESSENGER: Exploring Mercury's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Slavin, James A.

    2008-01-01

    The MESSENGER mission to Mercury offers our first opportunity to explore this planet's miniature magnetosphere since Mariner 10's brief fly-bys in 1974-5. Mercury's magnetosphere is unique in many respects. The magnetosphere of Mercury is the smallest in the solar system with its magnetic field typically standing off the solar wind only - 1000 to 2000 km above the surface. For this reason there are no closed dri-fi paths for energetic particles and, hence, no radiation belts; the characteristic time scales for wave propagation and convective transport are short possibly coupling kinetic and fluid modes; magnetic reconnection at the dayside magnetopause may erode the subsolar magnetosphere allowing solar wind ions to directly impact the dayside regolith; inductive currents in Mercury's interior should act to modify the solar In addition, Mercury's magnetosphere is the only one with its defining magnetic flux tubes rooted in a planetary regolith as opposed to an atmosphere with a conductive ionosphere. This lack of an ionosphere is thought to be the underlying reason for the brevity of the very intense, but short lived, approx. 1-2 min, substorm-like energetic particle events observed by Mariner 10 in Mercury's magnetic tail. In this seminar, we review what we think we know about Mercury's magnetosphere and describe the MESSENGER science team's strategy for obtaining answers to the outstanding science questions surrounding the interaction of the solar wind with Mercury and its small, but dynamic magnetosphere.

  10. Can Titan generate tori in Saturn's magnetosphere?

    NASA Astrophysics Data System (ADS)

    Smith, H. T.; Johnson, R. E.; Rymer, A. M.; Mitchell, D. G.

    2011-12-01

    Prior to Cassini's arrival at Saturn, nitrogen ions were thought to dominate heavy plasma in Saturn's magnetosphere and that Titan's atmosphere was the source of this nitrogen. Therefore, the presence of a Titan nitrogen torus was anticipated. However, it is now known water-group ions dominate Saturn's heavy ion plasma. While nitrogen ions have been detected beyond the orbit of Rhea, they appear to be originating from the Enceladus plumes with little nitrogen plasma detected in the magnetosphere near Titan's orbit. These results appear inconsistent with the expectation that Titan's dense relatively unprotected atmosphere should provide a significant source of heavy particles to Saturn's magnetosphere. This inconsistency suggests that the plasma environment at Titan's orbit is much more complex than originally anticipated. In this talk, we expand on our previous research that categorizes the plasma environments near Titan to include all locations along Titan's orbit. Using these categories, we develop characteristic plasma spectra of each type of environment and use these results in a 3D Monte Carlo model to more accurately examine fate of nitrogen and methane escaping Titan's atmosphere. These results are compared to Cassini observations to determine if Titan is capable of generating tori.

  11. Magnetospheric Image Unfolding

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Grant was a three year grant funded under the Space Physics Supporting Research and Technology and Suborbital Program. Our objective was to develop automated techniques needed to unfold or "invert" global images of the magnetospheric ion populations obtained by the new magnetospheric imaging techniques (ENA, EUV) in anticipation of future missions such as the Magnetospheric Imager and, now, IMAGE. Our focus on the present three year grant is to determine the degree to which such images can quantitatively constrain the global electromagnetic properties of the magnetosphere. In a previous three year grant period we successfully automated a forward modeling inversion algorithm, demonstrated that these inversions are robust in the face of realistic instrumental considerations such as counting statistics and backgrounds, applied error analysis techniques to the extracted parameters using variational procedures, implemented very realistic magnetospheric test images to test the inversion algorithms using the Rice University Magnetospheric Specification Model, and began the process of generating parametric models with the flexibility to handle the realistic magnetospheric images (e.g. Roelof et al, 1992; 1993). Our plan for the present 3 year grant period was to complete the development of the inversion tools needed to handle realistic magnetospheric images, assess the degree to which global electrodynamics is quantitatively constrained by ENA images of the magnetosphere, and bring the inversion of EUV images up to the maturity that we will have achieved for the ENA imaging. Below the accomplishments of our three year effort are present followed by a list of our presentations and publications. The accomplishments of all three years are presented here, and thus some of these items appeared on interim progress reports.

  12. Kinetic Framework for the Magnetosphere-Ionosphere-Plasmasphere-Polar Wind System: A UnifiedApproach for Studying Hot and Cold Plasma Interactions

    NASA Astrophysics Data System (ADS)

    Karimabadi, H.; Omelchenko, Y.; Schunk, R. W.; Barakat, A. R.; Gardner, L. C.; Khazanov, G. V.; Glocer, A.; Kistler, L. M.

    2013-12-01

    The Magnetosphere-Ionosphere-Plasmasphere-Polar Wind System is complex; it varies on a wide range in spatial and temporal scales, exhibits relatively thin ion-scale boundaries (e.g., bow shock, magnetopause, magnetotail), contains hot and cold particle populations, and the particle distribution functions are typically non-Maxwellian. The existing space weather frameworks are based on global fluid models and therefore cannot address many important issues concerning particle, momentum, and energy coupling in the system. To remedy this situation, we have formed a multi-disciplinary team to create a new kinetic modeling framework. The new framework will include kinetic electron and ion formulations for the ionosphere, plasmasphere, and polar wind domains, and kinetic ions and fluid electrons for the magnetosphere. The proposed methodology is expected to lead to breakthroughs in studying numerous problems/issues, including the self-consistent formation of the ring current, the self-consistent formation of ion scale turbulence and waves, the calculation of appropriate reconnection rates, the effect that multiple species and ion outflows from the ionosphere have on the development and evolution of storms/substorms, among others. The presentation will focus on the current state and capabilities of the global kinetic models that form the framework for the Magnetosphere-Ionosphere-Plasmasphere-Polar Wind Model.

  13. A study of atmosphere-ionosphere-magnetosphere coupling

    NASA Technical Reports Server (NTRS)

    Raitt, W. J.; Paris, J. L.

    1982-01-01

    The properties of low energy plasma in the magnetosphere were predicted. The effects of wave particle interactions involving the concept of plasmons are studied, and quantum mechanical formulations are used for the processes occurring and bulk energization of the low energy plasma are investigated through the concept of the energy momentum tensor for the plasma and its electromagnetic environment.

  14. SMILE - New mission to image the magnetosphere

    NASA Astrophysics Data System (ADS)

    Escoubet, C.-Philippe; Wang, Chi; Branduardi-Raymont, Graziella; Sembay, Steve; Dai, Lei; Li, Lei; Donovan, Eric; Spanswick, Emma; Sibeck, David; Read, Andy; Rebuffat, Denis; Wielders, Arno; Zheng, Jianhua; Romstedt, Jens; Raab, Walfried; Lumb, David

    2016-04-01

    Solar wind Magnetosphere Ionosphere Link Explorer (SMILE) is a novel self-standing mission to be jointly developed between ESA and the Chinese Academy of Sciences (CAS). It will observe the solar wind-magnetosphere coupling via simultaneous in situ solar wind/magnetosheath plasma and magnetic field measurements, X-Ray images of the magnetosheath and polar cusps, and UV images of global auroral distributions. Remote sensing of the cusps with X-ray imaging is now possible thanks to the relatively recent discovery of solar wind charge exchange (SWCX) X-ray emission, first observed at comets, and subsequently found to occur in the vicinity of the Earth's magnetosphere. The SMILE science as well as the results of the on-going study undertaken jointly by ESA and CAS will be presented.

  15. Ion observations at Mercury's Magnetospheric Cusp

    NASA Astrophysics Data System (ADS)

    Jasinski, Jamie; Raines, Jim; Slavin, James

    2016-04-01

    The magnetospheric cusp is a region of direct entry for solar wind mass, energy and momentum into a planetary magnetosphere. Dayside magnetic reconnection between the interplanetary magnetic field and the planetary field allows shocked solar wind plasma to flow down open magnetospheric field lines. Whilst this is occurring these magnetic field lines convect poleward. For a spacecraft travelling through the high latitudes, this causes a velocity filter effect to be observed in the ion data, whereby higher energy ions are observed at lower latitudes. Here we present the ion observations from the MESSENGER spacecraft at Mercury's cusp, specifically focusing on ions latitudinally dispersed in energy. From these dispersions, the distance to the reconnection site is calculated and used to better understand the process of reconnection at Mercury's dayside magnetopause.

  16. Inner Magnetosphere Imager (IMI) instrument heritage

    NASA Technical Reports Server (NTRS)

    Wilson, G. R.

    1993-01-01

    This report documents the heritage of instrument concepts under consideration for the Inner Magnetosphere Imager (IMI) mission. The proposed IMI will obtain the first simultaneous images of the component regions of the inner magnetosphere and will enable scientists to relate these global images to internal and external influences as well as local observations. To obtain simultaneous images of component regions of the inner magnetosphere, measurements will be made of: (1) the ring current and inner plasma sheet using energetic neutral atoms; (2) the plasmasphere using extreme ultraviolet; (3) the electron and proton auroras using far ultraviolet and x rays; and (4) the geocorona using FUV. Instrument concepts that show heritage and traceability to those that will be required to meet the IMI measurement objectives are described.

  17. Inner Magnetosphere Imager (IMI) instrument heritage

    SciTech Connect

    Wilson, G.R.

    1993-03-01

    This report documents the heritage of instrument concepts under consideration for the Inner Magnetosphere Imager (IMI) mission. The proposed IMI will obtain the first simultaneous images of the component regions of the inner magnetosphere and will enable scientists to relate these global images to internal and external influences as well as local observations. To obtain simultaneous images of component regions of the inner magnetosphere, measurements will be made of: (1) the ring current and inner plasma sheet using energetic neutral atoms; (2) the plasmasphere using extreme ultraviolet; (3) the electron and proton auroras using far ultraviolet and x rays; and (4) the geocorona using FUV. Instrument concepts that show heritage and traceability to those that will be required to meet the IMI measurement objectives are described.

  18. AB INITIO PULSAR MAGNETOSPHERE: THREE-DIMENSIONAL PARTICLE-IN-CELL SIMULATIONS OF AXISYMMETRIC PULSARS

    SciTech Connect

    Philippov, Alexander A.; Spitkovsky, Anatoly

    2014-04-20

    We perform ''first-principles'' relativistic particle-in-cell simulations of aligned pulsar magnetosphere. We allow free escape of particles from the surface of a neutron star and continuously populate the magnetosphere with neutral pair plasma to imitate pair production. As pair plasma supply increases, we observe the transition from a charge-separated ''electrosphere'' solution with trapped plasma and no spin-down to a solution close to the ideal force-free magnetosphere with electromagnetically dominated pulsar wind. We calculate the magnetospheric structure, current distribution, and spin-down power of the neutron star. We also discuss particle acceleration in the equatorial current sheet.

  19. How the Saturnian Magnetosphere Conserves Magnetic Flux

    NASA Astrophysics Data System (ADS)

    Powell, R. L.; Wei, H.; Russell, C. T.; Arridge, C. S.; Dougherty, M. K.

    2012-12-01

    The magnetospheric dynamics at Saturn are driven by the centrifugal force of near co-rotating water group ions released at a rate of hundreds of kilograms per second by Saturn's moon Enceladus. The plasma is accelerated up to co-rotation speed by the magnetospheric magnetic field coupled to the Saturnian ionosphere. The plasma is lost ultimately through the process of magnetic reconnection in the tail. Conservation of magnetic flux requires that plasma-depleted, "empty" flux tubes return magnetic flux to the inner magnetosphere. After completion of the initial inrush of the reconnected and largely emptied flux tubes inward of the reconnection point, the flux tubes face the outflowing plasma and must move inward against the flow. Observations of such flux tubes have been identified in the eight years of Cassini magnetometer data. The occurrence of these tubes is observed at all local times indicating slow inward transport of the tubes relative to the co-rotation speed. Depleted flux tubes observed in the equatorial region appear as an enhancement in the magnitude of the magnetic field, whereas the same flux tubes observed at higher latitudes appear as decreased field strength. The difference in appearance of the low latitude and the high latitude tubes is due to the plasma environment just outside the tube. Warm low-density plasma fills the inside of the flux tube at all latitudes. This flux tube thus will expand in the less dense regions away from the magnetic equator and will be observed as a decrease in the magnitude of the magnetic field from the background. These flux tubes near the equator, where the plasma density outside of the flux tube is much greater, will be observed as an enhancement in the magnitude of the magnetic field. Cassini magnetometer and CAPS data are examined to understand the properties of these flux tubes and their radial and latitudinal evolution throughout the Saturnian magnetospheric environment.

  20. Energetics of the magnetosphere, revised

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1984-01-01

    The approximate magnitudes of power inputs and energies associated with the Earth's magnetosphere were derived. The nearest 40 R sub E of the plasma sheet current receive some 3.10 to the 11th power watt, and much of this goes to the Birkeland currents, which require 1-3 10 to the 11th power watt. Of that energy, about 30% appears as the energy of auroral particles and most of the rest as ionosphere joule heating. The ring current contains about 10 to the 15th power joule at quiet times, several times as much during magnetic storms, and the magnetic energy stored in the tail lobes is comparable. Substorm energy releases may range at 1.5 to 30 10 to the 11th power watt. Compared to these, the local energy release rate by magnetic merging in the magnetosphere is small. Merging is essential for the existence of open field lines, which make such inputs possible. Merging also seems to be implicated in substorms: most of the released energy only becomes evident far from the merging region, though some particles may gain appreciable energy in that region itself, if the plasma sheet is squeezed out completely and the high latitude lobes interact directly.

  1. Continuum radiation in planetary magnetospheres

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.

    1991-01-01

    With the completion of the Voyager tour of the outer planets, radio and plasma wave instruments have executed the first survey of the wave spectra of Earth, Jupiter, Saturn, Uranus, and Neptune. One of the most notable conclusions of this survey is that there is a great deal of qualitative similarity in both the plasma wave and radio wave spectra from one magnetosphere to the next. In particular, in spite of detailed differences, most of the radio emissions at each of the planets have been tentatively classified into two primary categories. First, the most intense emissions are generally associated with the cyclotron maser instability. Second, a class of weaker emissions can be found at each of the magnetospheres which appears to be the result of conversion from intense electrostatic emissions at the upper hybrid resonance frequency into (primarily) ordinary mode radio emission. It is this second category, often referred to as nonthermal continuum radiation, which we will discuss in this review. We review the characteristics of the continuum spectrum at each of the planets, discuss the source region and direct observations of the generation of the emissions where available, and briefly describe the theories for the generation of the emissions. Over the past few years evidence has increased that the linear mode conversion of electrostatic waves into the ordinary mode can account for at least some of the continuum radiation observed. There is no definitive evidence which precludes the possibility that a nonlinear mechanism may also be important.

  2. Titan Ion Composition at Magnetosphere-Ionosphere Transition Region

    NASA Technical Reports Server (NTRS)

    Sittler, Edward C.; Hartle, R. E.; Shappirio, M.; Simpson, D. J.; COoper, J. F.; Burger, M. H.; Johnson, R. E.; Bertucci, C.; Luhman, J. G.; Ledvina, S. A.; Szego, K.; Coates, A. J.; Young, D. T.

    2006-01-01

    Using Cassini Plasma Spectrometer (CAPS) Ion Mass Spectrometer (IMS) ion composition data, we will investigate the compositional changes at the transition region between Saturn's magnetospheric flow and Titan's upper ionosphere. It is this region where scavenging of Titan's upper ionosphere can occur, where it is then dragged away by the magnetospheric flow as cold plasma for Saturn's magnetosphere. This cold plasma may form plumes as originally proposed by (1) during the Voyager 1 epoch. This source of cold plasma may have a unique compositional signature such as methane group ions. Water group ions that are observed in Saturn's outer magnetosphere (2,3) are relatively hot and probably come from the inner magnetosphere where they are born from fast neutrals escaping Enceladus (4) and picked up in the outer magnetosphere as hot plasma (5). This scenario will be complicated by pickup methane ions within Titan's mass loading region, as originally predicted by (6) based on Voyager 1 data and observationally confirmed by (3,7) using CAPS IMS data. But, CH4(+) ions or their fragments can only be produced as pickup ions from Titan's exosphere which can extend beyond the transition region of concern here, while CH5(+) ions can be scavenged from Titan's ionosphere. We will investigate these possibilities.

  3. Longitudinal asymmetry of the Jovian magnetosphere and the periodic escape of energetic particles

    NASA Technical Reports Server (NTRS)

    Hill, T. W.; Dessler, A. J.

    1976-01-01

    An earlier model of the Jovian magnetosphere is utilized in which the centrifugal stress of corotating plasma distends the outer magnetosphere and opens the tail field. Because of a longitudinal asymmetry in the ionospheric plasma source strength, caused principally by the nonaxisymmetric surface field, the closed-field region in the tail expands and contracts with the rotation period, resulting in a 10-hour modulation of the flux of energetic particles escaping from the magnetosphere into interplanetary space.

  4. The Magnetosphere Imager Mission Concept Definition Study

    NASA Technical Reports Server (NTRS)

    Johnson, L.; Herrmann, M.; Alexander, Reggie; Beabout, Brent; Blevins, Harold; Bridge, Scott; Burruss, Glenda; Buzbee, Tom; Carrington, Connie; Chandler, Holly; Chu, Phillip; Chubb, Steve; Cushman, Paul; DeSanctis, Carmine; Edge, Ted; Freestone, Todd; French, Ray; Gallagher, Dennis; Hajos, Greg; Herr, Joel

    1997-01-01

    For three decades, magnetospheric field and plasma measurements have been made by diverse instruments flown on spacecraft in many different orbits, widely separated in space and time, and under various solar and magnetospheric conditions. Scientists have used this information to piece together an intricate, yet incomplete view of the magnetosphere. A simultaneous global view, using various light wavelengths and energetic neutral atoms, could reveal exciting new data and help explain complex magnetospheric processes, thus providing us with a clear picture of this region of space. The George C. Marshall Space Flight Center (MSFC) is responsible for defining the Magnetosphere Imager mission which will study this region of space. A core instrument complement of three imagers (with the potential addition of one or more mission enhancing instrument) will fly in an elliptical polar Earth orbit with an apogee of 44,600 kilometers and a perigee of 4,800 km. This report will address the mission objectives, spacecraft design concepts, and the results of the MSFC concept definition study.

  5. Magnetospheric polar cap

    NASA Astrophysics Data System (ADS)

    Akasofu, S. I.; Kan, J. R.

    Mount Denali (McKinley), the Alaska Range, and countless glaciers welcomed all 86 participants of the Chapman Conference on the Magnetospheric Polar Cap, which was held on the University of Alaska, Fairbanks campus (UAF), on August 6-9, 1984. The magnetospheric polar cap is the highest latitude region of the earth which is surrounded by the ring of auroras (the auroral oval). This particular region of the earth has become a focus of magnetospheric physicists during the last several years. This is because a number of upper atmospheric phenomena in the polar cap are found to be crucial in understanding the solar wind—magnetosphere interaction. The conference was opened by J. G. Roederer, who was followed by the UAF Chancellor, P. J. O'Rourke, who officially welcomed the participants.

  6. Solar and magnetospheric science

    NASA Technical Reports Server (NTRS)

    Timothy, A. F.; Schmerling, E. R.; Chapman, R. D.

    1976-01-01

    The current status of the Solar Physics Program and the Magnetospheric Physics Program is discussed. The scientific context for each of the programs is presented, then the current programs and future plans are outlined.

  7. Inner Magnetospheric Electric Fields Derived from IMAGE EUV

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Adrian, M. L.

    2007-01-01

    The local and global patterns of plasmaspheric plasma transport reflect the influence of electric fields imposed by all sources in the inner magnetosphere. Image sequences of thermal plasma G:istribution obtained from the IMAGE Mission Extreme Ultraviolet Imager can be used to derive plasma motions and, using a magnetic field model, the corresponding electric fields. These motions and fields directly reflect the dynamic coupling of injected plasmasheet plasma and the ionosphere, in addition to solar wind and atmospheric drivers. What is being learned about the morphology of inner magnetospheric electric fields during storm and quite conditions from this new empirical tool will be presented and discussed.

  8. Fifty-one years of Los Alamos Spacecraft

    SciTech Connect

    Fenimore, Edward E.

    2014-09-04

    From 1963 to 2014, the Los Alamos National Laboratory was involved in at least 233 spacecraft. There are probably only one or two institutions in the world that have been involved in so many spacecraft. Los Alamos space exploration started with the Vela satellites for nuclear test detection, but soon expanded to ionospheric research (mostly barium releases), radioisotope thermoelectric generators, solar physics, solar wind, magnetospheres, astrophysics, national security, planetary physics, earth resources, radio propagation in the ionosphere, and cubesats. Here, we present a list of the spacecraft, their purpose, and their launch dates for use during RocketFest

  9. Magnetohydrodynamic model of the interaction of the solar wind with the Jovian magnetosphere and a magnetohydrodynamic simulation of the interaction of the solar wind with the out flowing plasma from a comet. Final report

    SciTech Connect

    Walker, R.J.

    1987-01-01

    A three-dimensional code for a rapidly rotating magnetosphere in which the MHD equations and the Maxwell equations were solved by using the two step Lax Endroff scheme, was developed. Preliminary results were presented at the Fall AGU meeting in San Francisco. The basic simulation model to study the solar wind interactions was adapted to other bodies in addition to Jupiter. Because of the recent comet flybys, a comet was chosen as the first model. The aim was to model the formation of the contact surface and the plasma tail. Later, work was begun on a three-dimensional model which would include the effects of mass loading. This model was designed to study the weak cometary bow shocks observed by the probes to comets Halley and Giacobini-Zinner. The model was successful in reproducing the position and shape of the bow shock which was determined by using observations from the Suisei spacecraft.

  10. From discovery to prediction of magnetospheric processes

    NASA Astrophysics Data System (ADS)

    Kamide, Y.

    2000-11-01

    Over the last 50 years magnetospheric research has transferred its focus from geomagnetism to space physics, or from inferring the intensity of extraterrestrial currents, through discoveries of the main plasma regions in the magnetosphere, to predicting the processes occurring in the entire solar wind-magnetosphere-ionosphere system. Relating advances in magnetospheric physics to the framework of substorm research, this review paper demonstrates that the ``recent'' space age since 1960s consisted of /(1) an exploratory//discovery phase in which the magnetotail, the plasma sheet, and the acceleration region of auroral particles were identified, and /(2) a phase of comprehensive understanding in which we have attempted to comprehend the nature and significance of the near-Earth space environment. This progress in solar-terrestrial physics has coincided with a number of new discoveries of solar and interplanetary phenomena such as magnetic clouds, coronal mass ejections and coronal holes. Computer simulation techniques have been developed to the degree that satellite observations from a very limited number of points can be used to trace and reproduce the main energy processes. We are now entering a new phase in which we hope to be able to predict the dynamic processes that take place in the solar-terrestrial environment.

  11. Spacetime approach to force-free magnetospheres

    NASA Astrophysics Data System (ADS)

    Gralla, Samuel E.; Jacobson, Ted

    2014-12-01

    Force-free electrodynamics (FFE) describes magnetically dominated relativistic plasma via non-linear equations for the electromagnetic field alone. Such plasma is thought to play a key role in the physics of pulsars and active black holes. Despite its simple covariant formulation, FFE has primarily been studied in 3+1 frameworks, where spacetime is split into space and time. In this paper, we systematically develop the theory of force-free magnetospheres taking a spacetime perspective. Using a suite of spacetime tools and techniques (notably exterior calculus), we cover (1) the basics of the theory, (2) exact solutions that demonstrate the extraction and transport of the rotational energy of a compact object (in the case of a black hole, the Blandford-Znajek mechanism), (3) the behaviour of current sheets, (4) the general theory of stationary, axisymmetric magnetospheres, and (5) general properties of pulsar and black hole magnetospheres. We thereby synthesize, clarify, and generalize known aspects of the physics of force-free magnetospheres, while also introducing several new results.

  12. Multi-Scale Modeling of Magnetospheric Dynamics

    NASA Technical Reports Server (NTRS)

    Kuznetsova, M. M.; Hesse, M.; Toth, G.

    2012-01-01

    Magnetic reconnection is a key element in many phenomena in space plasma, e.g. Coronal mass Ejections, Magnetosphere substorms. One of the major challenges in modeling the dynamics of large-scale systems involving magnetic reconnection is to quantifY the interaction between global evolution of the magnetosphere and microphysical kinetic processes in diffusion regions near reconnection sites. Recent advances in small-scale kinetic modeling of magnetic reconnection significantly improved our understanding of physical mechanisms controlling the dissipation in the vicinity of the reconnection site in collisionless plasma. However the progress in studies of small-scale geometries was not very helpful for large scale simulations. Global magnetosphere simulations usually include non-ideal processes in terms of numerical dissipation and/or ad hoc anomalous resistivity. Comparative studies of magnetic reconnection in small scale geometries demonstrated that MHD simulations that included non-ideal processes in terms of a resistive term 11 J did not produce fast reconnection rates observed in kinetic simulations. In collisionless magnetospheric plasma, the primary mechanism controlling the dissipation in the vicinity of the reconnection site is nongyrotropic pressure effects with spatial scales comparable with the particle Larmor radius. We utilize the global MHD code BATSRUS and replace ad hoc parameters such as "critical current density" and "anomalous resistivity" with a physically motivated model of dissipation. The primary mechanism controlling the dissipation in the vicinity of the reconnection site in incorporated into MHD description in terms of non-gyrotropic corrections to the induction equation. We will demonstrate that kinetic nongyrotropic effects can significantly alter the global magnetosphere evolution. Our approach allowed for the first time to model loading/unloading cycle in response to steady southward IMF driving. The role of solar wind parameters and

  13. Nitrogen In Saturn's Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Smith, H. T.; Sittler, E. C.; Johnson, R. E.; McComas, D.; Reisenfeld, D.; Shappirio, M.; Michael, M.; Shematovich, V. I.; Baragiola, R. A.; Crary, F.; Young, D.

    2004-11-01

    We are analyzing CAPS instrument data on Cassini to look for nitrogen ions in Saturn's magnetosphere. Because Voyager could not separate oxygen and nitrogen, there has been considerable controversy on nitrogen's presence and relative importance. Two principal sources have been suggested: Titan's atmosphere and nitrogen species trapped in Saturn's icy satellite surfaces (Sittler et al 2004). The latter may be primordial nitrogen, likely as NH3 in ice (Stevenson 1982; Squyers et al. 1983) or nitrogen ions that have been implanted in the surface (Delitsky and Lane 2002). We will present the results of Saturnian nitrogen cloud modeling and relevant CAPS observations. We recently described the Titan source (Michael, et al. 2004; Shematovich et al. 2003; Smith et al. 2004; Sittler et al. 2004) in preparation for Cassini's Saturnian plasma measurements. Two components were identified: energetic nitrogen ions formed near Titan and energized as they diffused inward (Sittler et al. 2004) and neutrals in orbits with small perigee that became ionized in the inner magnetosphere (Smith et al 2004). The latter component would be a source of lower energy, co-rotating nitrogen ions to the inner magnetosphere. Such a component would have an energy spectrum similar to nitrogen species sputtered from the icy satellite surfaces (Johnson and Sittler 1990). However, the mass spectrum would differ, likely containing NHx and NOx species also, and, hence, may be separated from the Titan source. Our preliminary analysis for nitrogen species in the CAPS data will be compared to the models. Of interest will be the energy spectra, which can indicate whether any nitrogen present is formed locally or near Titan's orbit and diffused inward. This work is supported by the NASA Planetary Atmospheres, NASA Graduate Student Research, Virginia Space Grant Consortium Graduate Research Fellowship and the CAPS Cassini instrument team programs.

  14. Mercury's Dynamic Magnetosphere: What Have We Learned from MESSENGER?

    NASA Astrophysics Data System (ADS)

    Slavin, James A.

    2016-04-01

    Mercury's magnetosphere is created by the solar wind interaction with its dipolar, spin-axis aligned, northward offset intrinsic magnetic field. Structurally it resembles that of the Earth in many respects, but the magnetic field intensities and plasma densities are all higher at Mercury due to conditions in the inner solar system. Magnetospheric plasma at Mercury appears to be primarily of solar wind origin, i.e. H+ and He++, but with 10% Na+ derived from the exosphere. Solar wind sputtering and other processes promote neutrals from the regolith into the exosphere where they may be ionized and incorporated into the magnetospheric plasma population. At this point in time, about one year after MESSENGER's impact and one year prior to BepiColombo's launch, we review MESSENGER's observations of magnetospheric dynamics and structure. In doing so we will provide our best answers to the following six questions: Question #1: How do magnetosheath conditions at Mercury differ from what is found at the other planets? Question #2: How do conditions in Mercury's magnetosheath contribute to the dynamic nature of Mercury's magnetosphere? How does magnetopause reconnection at Mercury differ from what is seen at Earth? Are flux transfer events (FTEs) a major driver of magnetospheric convection at Mercury? Question #3: Does reconnection ever erode the dayside magnetosphere to the point where the subsolar region of the surface is exposed to direct solar wind impact? To what extent do induction currents driven in Mercury's interior limit the solar wind flux to the surface? Do FTEs contribute significantly to the solar wind flux reaching the surface? Question #4: What effects do heavy planetary ions have on Mercury's magnetosphere? Question #5: Does Mercury's magnetotail store and dissipate magnetic energy in a manner analogous to substorms at Earth? How is the process affected by the lack of an ionosphere and the expected high electrical resistivity of the crust? Question #6: How

  15. Ultra-low-frequency magnetic pulsations in the earth's magnetosphere

    NASA Technical Reports Server (NTRS)

    Anderson, Brian J.

    1990-01-01

    Spacecraft observations have shown that geomagnetic pulsations originating in magnetospheric processes, in spite of their small amplitude on the ground, have amplitudes in space relative to the local magnetic field of 5-10 percent and occasionally up to about 50 percent. It is noted that by studying geomagnetic pulsations, a detailed comparison can be made between plasma physics theory and observations that are not possible in laboratory experiments. Also geomagnetic pulsations play a role in magnetospheric dynamics and energy transport, and their study forms an integral part of enhancing the knowledge of the magnetosphere. The importance of spacecraft observations are discussed and attention is given to such topics as waves in the magnetosphere, field-line resonances, the quantitative analysis of a dipole field, plasma instabilities, and energy flow.

  16. Modeling Callisto's Interaction with the Jovian Magnetospheric Environment

    NASA Astrophysics Data System (ADS)

    Liuzzo, L.; Feyerabend, M.; Simon, S.; Motschmann, U. M.

    2015-12-01

    The interaction of the Jovian magnetospheric environment with an atmosphere and induced dipole at Callisto is investigated by applying a hybrid (kinetic ions, fluid electrons) simulation code. Callisto is unique among the Galilean satellites in its interaction with the ambient magnetospheric plasma as the gyroradii of the impinging plasma and pickup ions are large compared to the size of the moon. A kinetic representation of the ions is therefore mandatory to adequately describe the resulting asymmetries in the electromagnetic fields and the deflection of the plasma flow near Callisto. When Callisto is embedded in the magnetodisk lobes of Jupiter, a dipolar magnetic field is generated via induction in a subsurface ocean. This field creates an obstacle to the impinging magnetospheric plasma flow at the moon. However, when Callisto is located near the center of the Jovian current sheet, local magnetic perturbations due to the magnetosphere-ionosphere interaction are more than twice the strength of the background field and may therefore obscure any magnetic signal generated via induction in a subsurface ocean. Our simulations demonstrate that the deflection of the magnetospheric plasma into Callisto's wake cannot alone explain the plasma density enhancement of two orders of magnitude measured in the wake of the interaction region during Galileo flybys of the moon. However, through inclusion of an ionosphere around Callisto, modeled densities in the wake are consistent with in situ measurements.

  17. Magnetospheric convection during quiet or moderately disturbed times

    NASA Technical Reports Server (NTRS)

    Caudal, G.; Blanc, M.

    1988-01-01

    The processes which contribute to the large-scale plasma circulation in the earth's environment during quiet times, or during reasonable stable magnetic conditions are reviewed. The various sources of field-aligned current generation in the solar wind and the magnetosphere are presented. The generation of field-aligned currents on open field lines connected to either polar cap and the generation of closed field lines of the inner magnetosphere are examined. Consideration is given to the hypothesis of Caudal (1987) that loss processes of trapped particles are competing with adiabatic motions in the generation of field-aligned currents in the inner magnetosphere.

  18. MESSENGER: Exploring Mercury's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Slavin, James A.; Krimigis, Stamatios M.; Acuna, Mario H.; Anderson, Brian J.; Baker, Daniel N.; Koehn, Patrick L.; Korth, Haje; Levi, Stefano; Mauk, Barry H.; Solomon, Sean C.; Zurbuchen, Thomas H.

    2005-01-01

    The MESSENGER mission to Mercury offers our first opportunity to explore this planet s miniature magnetosphere since the brief flybys of Mariner 10. Mercury s magnetosphere is unique in many respects. The magnetosphere of Mercury is among the smallest in the solar system; its magnetic field typically stands off the solar wind only - 1000 to 2000 km above the surface. For this reason there are no closed drift paths for energetic particles and, hence, no radiation belts. The characteristic time scales for wave propagation and convective transport are short and kinetic and fluid modes may be coupled. Magnetic reconnection at the dayside magnetopause may erode the subsolar magnetosphere allowing solar wind ions to impact directly the regolith. Inductive currents in Mercury s interior may act to modify the solar wind interaction by resisting changes due to solar wind pressure variations. Indeed, observations of these induction effects may be an important source of information on the state of Mercury s interior. In addition, Mercury s magnetosphere is the only one with its defining magnetic flux tubes rooted in a planetary regolith as opposed to an atmosphere with a conductive ionospheric layer. This lack of an ionosphere is probably the underlying reason for the brevity of the very intense, but short-lived, - 1-2 min, substorm-like energetic particle events observed by Mariner 10 during its first traversal of Mercury s magnetic tail. Because of Mercury s proximity to the sun, 0.3 - 0.5 AU, this magnetosphere experiences the most extreme driving forces in the solar system. All of these factors are expected to produce complicated interactions involving the exchange and re-cycling of neutrals and ions between the solar wind, magnetosphere, and regolith. The electrodynamics of Mercury s magnetosphere are expected to be equally complex, with strong forcing by the solar wind, magnetic reconnection at the magnetopause and in the tail, and the pick-up of planetary ions all

  19. MESSENGER: Exploring Mercury's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Slavin, James A.; Krimigis, Stamatios M.; Acuña, Mario H.; Anderson, Brian J.; Baker, Daniel N.; Koehn, Patrick L.; Korth, Haje; Livi, Stefano; Mauk, Barry H.; Solomon, Sean C.; Zurbuchen, Thomas H.

    2007-08-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury offers our first opportunity to explore this planet’s miniature magnetosphere since the brief flybys of Mariner 10. Mercury’s magnetosphere is unique in many respects. The magnetosphere of Mercury is among the smallest in the solar system; its magnetic field typically stands off the solar wind only ˜1000 to 2000 km above the surface. For this reason there are no closed drift paths for energetic particles and, hence, no radiation belts. Magnetic reconnection at the dayside magnetopause may erode the subsolar magnetosphere, allowing solar wind ions to impact directly the regolith. Inductive currents in Mercury’s interior may act to modify the solar wind interaction by resisting changes due to solar wind pressure variations. Indeed, observations of these induction effects may be an important source of information on the state of Mercury’s interior. In addition, Mercury’s magnetosphere is the only one with its defining magnetic flux tubes rooted beneath the solid surface as opposed to an atmosphere with a conductive ionospheric layer. This lack of an ionosphere is probably the underlying reason for the brevity of the very intense, but short-lived, ˜1-2 min, substorm-like energetic particle events observed by Mariner 10 during its first traversal of Mercury’s magnetic tail. Because of Mercury’s proximity to the sun, 0.3-0.5 AU, this magnetosphere experiences the most extreme driving forces in the solar system. All of these factors are expected to produce complicated interactions involving the exchange and recycling of neutrals and ions among the solar wind, magnetosphere, and regolith. The electrodynamics of Mercury’s magnetosphere are expected to be equally complex, with strong forcing by the solar wind, magnetic reconnection, and pick-up of planetary ions all playing roles in the generation of field-aligned electric currents. However, these field

  20. Magnetospheric Sawtooth Oscillations Induced by Ionospheric Outflow

    NASA Astrophysics Data System (ADS)

    Brambles, O. J.; Lotko, W.; Zhang, B.; Lyon, J.; Wiltberger, M. J.

    2010-12-01

    This paper aims to address why sawtooth oscillations occur and what factors affect their periodicity. We use a multifluid version of the LFM global simulation model, driven by a steady solar wind to examine the effects of ion outflow on convection in the magnetosphere. In the simulation model, the properties of cusp and auroral region O+ outflow are causally regulated by electron precipitation and electromagnetic power flowing into the ionosphere. It is found that when ion outflow is included in the simulation, the solar wind-magnetosphere-ionosphere interaction can generate periodic substorms which appear as sawtooth-like oscillations in the geostationary magnetic field. The ion outflow enhances plasma pressure in the inner magnetosphere and the associated diamagnetic ring current stretches the field lines throughout the nightside, essentially from dawn to dusk. If the field lines are sufficiently stretched they reconnect and dipolarize, ejecting a plasmoid downtail. This cycle repeats forming multiple sawtooth oscillations. The periodicity of the sawtooth oscillation depends largely upon the strength of the outflow. The strength of outflow is varied in the simulation by changing both the driving conditions (which affects the power flowing into the ionosphere) and through direct modification of the constants in the empirical relationships. Higher outflow fluences produce oscillations with shorter periods. The period of the oscillation is found to vary in the simulations from approximately 2 hours to 6 hours depending upon the strength of the outflow. For a smaller solar wind electric field the outflow fluence is not large enough to stretch the nightside field lines enough for sawtooth oscillations to form and the magnetosphere goes into a steady magnetosphere convection (SMC) mode. As the solar wind electric field increases the outflow fluence becomes sufficiently large to affect the convection in the magnetosphere and generate sawtooth oscillations. The strength

  1. Geospace Magnetospheric Dynamics Mission

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Kluever, C.; Burch, J. L.; Fennell, J. F.; Hack, K.; Hillard, G. B.; Kurth, W. S.; Lopez, R. E.; Luhmann, J. G.; Martin, J. B.; Hanson, J. E.

    1998-01-01

    The Geospace Magnetospheric Dynamics (GMD) mission is designed to provide very closely spaced, multipoint measurements in the thin current sheets of the magnetosphere to determine the relation between small scale processes and the global dynamics of the magnetosphere. Its trajectory is specifically designed to optimize the time spent in the current layers and to minimize radiation damage to the spacecraft. Observations are concentrated in the region 8 to 40 R(sub E) The mission consists of three phases. After a launch into geostationary transfer orbit the orbits are circularized to probe the region between geostationary orbit and the magnetopause; next the orbit is elongated keeping perigee at the magnetopause while keeping the line of apsides down the tail. Finally, once apogee reaches 40 R(sub E) the inclination is changed so that the orbit will match the profile of the noon-midnight meridian of the magnetosphere. This mission consists of 4 solar electrically propelled vehicles, each with a single NSTAR thruster utilizing 100 kg of Xe to tour the magnetosphere in the course of a 4.4 year mission, the same thrusters that have been successfully tested on the Deep Space-1 mission.

  2. Magnetosphere of Saturn

    NASA Technical Reports Server (NTRS)

    Siscoe, G. L.

    1978-01-01

    Models of the Saturnian magnetosphere based on the application of magnetospheric scaling relations to a spin-aligned planetary magnetic dipole, that produces a surface equatorial field strength in the range 0.5 to 2 gauss, exhibit the following properties: (1) The orbit of Titan lies inside of the magnetosphere essentially all of the time, even when variations in the size of the magnetosphere resulting from solar wind pressure changes are taken into account; (2) the Brice-type planetary plasmasphere reaches a peak density of about 10 protons cm/3 at L approximately 7 (L = planetocentric distance in units of planetary radii); (3) Saturn's rings have a profound effect on the energetic particle population and the plasmaspheres derived from interstellar neutrals and Titan's torus; (4) the model calculation suggests that the Titan-derived plasmasphere may be self-amplifying with a feed-back factor greater than unity, which implies the possibility of a non-linearly saturated, highly inflated Saturnian magnetosphere; and (5) this same source can have important eroding effects on the outer edge of the rings determined by Brown-Lauzerotti sputtering rates.

  3. Hybrid simulations of mini-magnetospheres in the laboratory

    NASA Astrophysics Data System (ADS)

    Gargaté, L.; Bingham, R.; Fonseca, R. A.; Bamford, R.; Thornton, A.; Gibson, K.; Bradford, J.; Silva, L. O.

    2008-07-01

    Solar energetic ions are a known hazard to both spacecraft electronics and to manned space flights in interplanetary space missions that extend over a long period of time. A dipole-like magnetic field and a plasma source, forming a mini-magnetosphere, are being tested in the laboratory as means of protection against such hazards. We investigate, via particle-in-cell hybrid simulations, using kinetic ions and fluid electrons, the characteristics of the mini-magnetospheres. Our results, for parameters identical to the experimental conditions, reveal the formation of a mini-magnetosphere, whose features are scanned with respect to the plasma density, the plasma flow velocity and the intensity of the dipole field. Comparisons with a simplified theoretical model reveal a good qualitative agreement and excellent quantitative agreement for higher plasma dynamic pressures and lower B-fields.

  4. Magnetospheres of the outer planets

    NASA Technical Reports Server (NTRS)

    Vanallen, James A.

    1987-01-01

    The five qualitatively different types of magnetism that a planet body can exhibit are outlined. Potential sources of energetic particles in a planetary magnetosphere are discussed. The magnetosphere of Uranus and Neptune are then described using Pioneer 10 data.

  5. Proton Acceleration at Injection Fronts in the Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Ukhorskiy, A. Y.; Sitnov, M. I.; Gkioulidou, M.; Merkin, V. G.

    2015-12-01

    During geomagnetic storms a large volume of ions are transported from the magnetotail deep into the inner magnetosphere leading to ion acceleration to the energies of tens to hundreds keV. Energized ions become the dominant source of plasma pressure in the inner magnetosphere. Hot plasma pressure drives large electrical currents which determine global electrodynamics and coupling of the inner magnetosphere-ionosphere system. Recent analysis of ion measurements from the RBSPICE experiment of the Van Allen Probes mission showed that the buildup of plasma pressure in the inner magnetosphere largely occurs in the form of localized discrete injections similar to dipolarization fronts observed in the magnetotail. Previous studies proposed several mechanisms that can rapidly accelerate protons to ~100 keV at injection fronts in the magnetotail including betatron-line acceleration, reflection and the synchrotron effect. None of these mechanisms, however, can operate in the inner magnetosphere where the ambient magnetic field is much higher and the propagation speeds of injection fronts are much lower. In this paper we discuss a new mechanism of stable proton trapping and acceleration inherent to the inner magnetosphere that can rapidly energize particles to >200 keV.

  6. The aurora and the magnetosphere - The Chapman Memorial Lecture. [dynamo theory development, 1600-present

    NASA Technical Reports Server (NTRS)

    Akasofu, S.-I.

    1974-01-01

    Review of recent progress in magnetospheric physics, in particular, in understanding the magnetospheric substorm. It is shown that a number of magnetospheric phenomena can now be understood by viewing the solar wind-magnetosphere interaction as an MHD dynamo; auroral phenomena are powered by the dynamo. Also, magnetospheric responses to variations of the north-south and east-west components of the interplanetary magnetic field have been identified. The magnetospheric substorm is entirely different from the responses of the magnetosphere to the southward component of the interplanetary magnetic field. It may be associated with the formation of a neutral line within the plasma sheet and with an enhanced reconnection along the line. A number of substorm-associated phenomena can be understood by noting that the new neutral line formation is caused by a short-circuiting of a part of the magnetotail current.

  7. Modeling Saturn's Magnetospheric Field

    NASA Astrophysics Data System (ADS)

    Khurana, K. K.; Leinweber, H. K.; Russell, C. T.; Dougherty, M. K.

    2015-12-01

    The Cassini spacecraft has now provided an excellent coverage of radial distances, local times and latitudes in Saturn's magnetosphere. The magnetic field observations from Cassini continue to provide deep insights on the structure and dynamics of Saturn's magnetosphere. Two of the unexpected findings from Saturn's magnetosphere are that the current sheet of Saturn assumes a shallow saucer like shape from the forcing of the solar wind on the magnetosphere and that rotational diurnal periodicities are ubiquitous in a magnetosphere formed by an axisymmetric internal field from Saturn. We have used the comprehensive magnetic field data from Cassini to construct a versatile new model of Saturn's magnetospheric field for use in current and future data analysis. Our model consists of fully shielded modules that specify the internal spherical harmonic field of Saturn, the ring current and the magnetotail current systems and the interconnection magnetic field from the solar wind IMF. The tilt and hinging of the current sheet is introduced by using the general deformation technique [Tsyganenko, 1998]. In the new model, Saturn's current sheet field is based on Tsyganenko and Peredo [1994] formalism for disk-shaped current sheets. The shielding field from the magnetopause for the equatorial current sheet and the internal field is specified by Cartesian and cylindrical harmonics, respectively. To derive the shielding fields we use a model of the magnetopause constructed from magnetopause crossings observed by both Cassini and Voyager (Arridge et al. 2006). The model uses observations from Pioneer, Voyager and Cassini. A comparison of model field with the observations will be presented. Finally, we discuss both the applications of the new model and its further generalization using data from the proximal orbit phase of Cassini.

  8. Los Alamos Space Weather Summer School

    NASA Astrophysics Data System (ADS)

    Koller, J.

    2011-12-01

    Los Alamos National Lab recently initiated a new summer school specializing on space science, space weather, and instrumentation. The school is geared towards graduate level students and has been established to bring graduate students together with internationally recognized scientists at the Los Alamos National Lab. Students are receiving a prestigious Vela Fellowship to cover relocation expenses and cost of living for the duration of their stay in Los Alamos. For two months students have the opportunity to attend science lectures given by distinguished researchers at LANL. Topics are related to space weather research including plasma physics, radiation belts, numerical modeling, solar wind physics, spacecraft charging, and instrumentation. Students are also working closely with a Los Alamos mentor on exciting space weather science topics with access to Los Alamos GPS and geosynchronous data. The summer school concludes with project presentations by the students in a technical forum. The program is designed for graduate students currently enrolled at US Universities and open to all nationalities. We are presenting an overview of this exciting new program funded by IGPP (Institute of Geophysics and Planetary Physics), the Global Security Directorate, and the Directorate for Science, Technology and Engineering at Los Alamos National Lab.

  9. How Ionospheric Ions Populate the Magnetosphere during a Magnetic Storm

    NASA Technical Reports Server (NTRS)

    Fok, Mei-Ching; Moore, T. E.; Kistler, L. M.; Slinker, S. P.; Fedder, J. A.; Delcourt, D. C.

    2008-01-01

    Ionospheric oxygen ions have been observed throughout the magnetosphere, from the plasma sheet to the ring current region. I t has been found that the O+ /H+ density ratio in the magnetosphere increases with geomagnetic activity and varies with storm phases. During the magnetic storm in late September to earIy October 2002, Cluster was orbiting in the plasma sheet and ring current regions. At prestorm time, Cluster observed high H+ density and low O+ density in the plasma sheet and lobes. During the storm main phase, 0+ density has increased by 10 times over the pre-storm level. Strong field-aligned beams of O+ were observed in the lobes. O+ fluxes were significantly reduced in the central plasma sheet during the storm recovery. However, 0+ was still evident on the boundaries of the plasma sheet and in the lobes. In order to interpret the Cluster observations and to understand how O+ ions populate the magnetosphere during a magnetic storm, we model the storm in early October 2002 using our global ion kinetic simulation (GIK). We use the LFN global simulation model to produce electric and magnetic fields in the outer magnetosphere, the Strangeway outflow scaling with Delcourt ion trajectories to include ionospheric outflows, and the Fok inner magnetospheric model for the plasmaspheric and ring current response to all particle populations. We find that the observed composition features are qualitatively reproduced by the simulations, with some quantitative differences that point to future improvements in the models.

  10. Modelling of auroral electrodynamical processes: Magnetosphere to mesosphere. Final Report

    SciTech Connect

    Chiu, Y.T.; Gorney, D.J.

    1982-01-01

    Research conducted on auroral electrodynamic coupling between the magnetosphere and ionosphere-atmosphere in support of the development of a global scale kinetic plasma theory is reviewed. Topics covered include electric potential structure in the evening sector, morning and dayside auroras, auroral plasma formation, electrodynamic coupling with the thermosphere, and auroral electron interaction with the atmosphere.

  11. Modelling of auroral electrodynamical processes: Magnetosphere to mesosphere

    NASA Technical Reports Server (NTRS)

    Chiu, Y. T.; Gorney, D. J.; Kishi, A. M.; Newman, A. L.; Schulz, M.; Walterscheid, R. L.; CORNWALL; Prasad, S. S.

    1982-01-01

    Research conducted on auroral electrodynamic coupling between the magnetosphere and ionosphere-atmosphere in support of the development of a global scale kinetic plasma theory is reviewed. Topics covered include electric potential structure in the evening sector; morning and dayside auroras; auroral plasma formation; electrodynamic coupling with the thermosphere; and auroral electron interaction with the atmosphere.

  12. Pair-Starved Pulsar Magnetospheres

    NASA Technical Reports Server (NTRS)

    Muslimov, Alex G.; Harding, Alice K.

    2009-01-01

    We propose a simple analytic model for the innermost (within the light cylinder of canonical radius, approx. c/Omega) structure of open-magnetic-field lines of a rotating neutron star (NS) with relativistic outflow of charged particles (electrons/positrons) and arbitrary angle between the NS spin and magnetic axes. We present the self-consistent solution of Maxwell's equations for the magnetic field and electric current in the pair-starved regime where the density of electron-positron plasma generated above the pulsar polar cap is not sufficient to completely screen the accelerating electric field and thus establish thee E . B = 0 condition above the pair-formation front up to the very high altitudes within the light cylinder. The proposed mode1 may provide a theoretical framework for developing the refined model of the global pair-starved pulsar magnetosphere.

  13. Explosive Flux Compression: 50 Years of Los Alamos Activities

    SciTech Connect

    Fowler, C.M.; Thomson, D.B.; Garn, W.B.

    1998-10-18

    Los Alamos flux compression activities are surveyed, mainly through references in view of space limitations. However, two plasma physics programs done with Sandia National Laboratory are discussed in more detail.

  14. Statistical characteristics of transient flows in the magnetosphere revealed by the Virtual Magnetospheric Observatory

    NASA Astrophysics Data System (ADS)

    Merka, J.; Sibeck, D. G.; Narock, T. W.

    2010-12-01

    Fast transient plasma flows in the magnetosphere are usually associated with magnetic reconnection and/or rapid changes in the magnetospheric configuration. Using a common methodology to analyze data from the THEMIS satellites we map the statistical occurrence rate of transient flows in the magnetosphere. Such a task involves obtaining and processing of large amount of data (5 THEMIS satellites provide measurements since spring of 2007), then writing custom code and searching for intervals of interests. The existence of a Virtual Magnetospheric Observatory (VMO) offers, however, a less laborious alternative. We will discuss how the VMO made our research faster and easier and the inherent limitations of the VMO use. The VMO's goal is to help researches by creating a single point of uniform discovery, access, and use of magnetospheric data. Available data can be searched based on various criteria as, for example, spatial location, time of observation, measurement type, parameter values, etc. The results can then be saved, downloaded or displayed as, for example, spatial-temporal plots that quickly reveal where and how often was the searched-for phenomenon observed.

  15. Magnetospheric resonances at low and middle latitudes

    NASA Astrophysics Data System (ADS)

    Streltsov, A. V.; Huba, J. D.

    2015-09-01

    We present results from a numerical study of structure and dynamics of dispersive Alfvén waves in the near-Earth magnetosphere containing proton radiation belt (near L = 1.5 dipole magnetic shell). The interest in this problem is motivated by numerous observations of magnetic oscillations with frequencies in the range of 0.1-4.0 Hz detected on the ground at low and middle latitudes. In a number of studies these oscillations interpreted as shear Alfvén waves standing inside the so-called ionospheric Alfvén resonator. We present results from two-dimensional, time-dependent simulations of the reduced two-fluid MHD model performed in the dipole magnetic field geometry with the realistic parameters of the magnetospheric plasma. These simulations show that these pulsations can be produced by the fundamental mode of the global field line resonator, spanning the entire magnetic field line in the low or middle magnetosphere. Simulations also show that even the waves with the highest considered frequencies (2.44 Hz) are not trapped inside the ionospheric resonator. Therefore, if these waves will be generated by some ionospheric source, then they can reach the equatorial magnetosphere and interact with energetic protons in the proton radiation belt.

  16. Magnetospheric Resonances at Low and Middle Latitudes

    NASA Astrophysics Data System (ADS)

    Streltsov, A. V.; Huba, J. D.

    2015-12-01

    We present results from a numerical study of structure and dynamics of dispersive Alfven waves in the near-earth magnetosphere containing proton radiation belt (near L=1.5 dipole magnetic shell). The interest in this problem is motivated by numerous observations of magnetic oscillations with frequencies in the range of 0.1-4.0 Hz detected on the ground at low and middle latitudes. In a number of studies these oscillations interpreted as shear Alfven waves standing inside the so-called ionopspheric Alfven resonator (IAR). We present results from two-dimensional, time dependent simulations of the reduced two-fluid MHD model performed in the dipole magnetic field geometry with the realistic parameters of the magnetospheric plasma. These simulations show that these pulsations can be produced by the fundamental mode of the global field line resonator (FLR), spanning the entire magnetic field line in the low or middle magnetosphere. Simulations also show that even the waves with the highest considered frequencies (2.44 Hz) are not trapped inside the ionospheric resonator. Therefore, if these waves will be generated by some ionospheric source, then they can reach the equatorial magnetosphere and interact with energetic protons in the proton radiation belt.

  17. Magnetosphere of Mercury

    NASA Technical Reports Server (NTRS)

    Whang, Y. C.

    1975-01-01

    A model magnetosphere of Mercury using Mariner 10 data is presented. Diagrams of the bow shock wave and magnetopause are shown. The analysis of Mariner 10 data indicates that the magnetic field of the planet is intrinsic. The magnetic tail and secondary magnetic fields, and the influence of the solar wind are also discussed.

  18. Jupiter's Dynamic Magnetosphere

    NASA Astrophysics Data System (ADS)

    Vogt, M. F.; Bunce, E. J.; Kronberg, E. A.; Jackman, C. M.

    2014-12-01

    Jupiter's magnetosphere is a highly dynamic environment. Hundreds of reconnection events have been identified in Jupiter's magnetotail through analysis of magnetic field and particle measurements collected by the Galileo spacecraft. Quasi-periodic behavior, suggestive of reconnection, has been intermittently observed on a ~2-3 day time scale in several data sets, including magnetic field dipolarizations, flow bursts, auroral polar dawn spots, and the hectometric radio emission. In this paper we review the present state of knowledge of Jovian magnetospheric dynamics. Throughout the discussion, we highlight similarities and differences to Saturn's magnetosphere. For example, recent analysis of plasmoid signatures at both Jupiter and Saturn has established the role of tail reconnection in the overall mass and flux transport in the outer planet magnetospheres. The results for both Jupiter and Saturn suggest that the observed mass loss rate due to tail reconnection and plasmoid release is insufficient to account for the mass input rate from the moons Io and Enceladus, respectively. We also present new analysis in which we use the Michigan mSWiM propagated solar wind MHD model to estimate the solar wind conditions upstream of Jupiter. This information allows us to determine whether reconnection events occur preferentially during certain solar wind conditions, or whether there is evidence that the solar wind modulates the quasi-periodicity seen in the field dipolarizations and flow bursts.

  19. Solar wind influence on Jupiter's magnetosphere and aurora

    NASA Astrophysics Data System (ADS)

    Vogt, Marissa; Gyalay, Szilard; Withers, Paul

    2016-04-01

    Jupiter's magnetosphere is often said to be rotationally driven, with strong centrifugal stresses due to large spatial scales and a rapid planetary rotation period. For example, the main auroral emission at Jupiter is not due to the magnetosphere-solar wind interaction but is driven by a system of corotation enforcement currents that arises to speed up outflowing Iogenic plasma. Additionally, processes like tail reconnection are also thought to be driven, at least in part, by processes internal to the magnetosphere. While the solar wind is generally expected to have only a small influence on Jupiter's magnetosphere and aurora, there is considerable observational evidence that the solar wind does affect the magnetopause standoff distance, auroral radio emissions, and the position and brightness of the UV auroral emissions. We will report on the results of a comprehensive, quantitative study of the influence of the solar wind on various magnetospheric data sets measured by the Galileo mission from 1996 to 2003. Using the Michigan Solar Wind Model (mSWiM) to predict the solar wind conditions upstream of Jupiter, we have identified intervals of high and low solar wind dynamic pressure. We can use this information to quantify how a magnetospheric compression affects the magnetospheric field configuration, which in turn will affect the ionospheric mapping of the main auroral emission. We also consider whether there is evidence that reconnection events occur preferentially during certain solar wind conditions or that the solar wind modulates the quasi-periodicity seen in the magnetic field dipolarizations and flow bursts.

  20. Empirical modeling of the quiet time nightside magnetosphere

    NASA Technical Reports Server (NTRS)

    Lui, A. T. Y.; Spence, H. E.; Stern, D. P.

    1993-01-01

    Empirical modeling of plasma pressure and magnetic field for the quiet time nightside magnetosphere is investigated. Two models are constructed for this study. One model, referred to here as T89R, is basically the magnetic field model of Tsyganenko (1989) but is modified by the addition of an inner eastward ring current at a radial distance of approximately 3 RE as suggested by observation. The other is a combination of the T89R model and the long version of the magnetic field model of Tsyganenko (1987) such that the former dominates the magnetic field in the inner magnetosphere while the latter prevails in the distant tail. The distribution of plasma pressure which is required to balance the magnetic force for each of these two field models is computed along the tail axis in the midnight meridian. The occurrence of pressure anisotropy in the inner magnetospheric region is also taken into account by determining an empirical fit to the observed plasma pressure anisotropy. This represents the first effort to obtain the plasma pressure distribution in force equilibrium with magnetic stresses from an empirical field model with the inclusion of pressure anisotropy. The inclusion of pressure anisotropy alters the plasma pressure by as much as a factor of approximately 3 in the inner magnetosphere. The deduced plasma pressure profile along the tail axis is found to be in good agreement with the observed quiet time plasma pressure for geocentric distances between approximately 2 and approximately 35 RE.

  1. Multi-Scale Modeling of Magnetospheric Reconnection

    NASA Technical Reports Server (NTRS)

    Kuznetsova, M. M.; Hesse, M.; Rastatter, L.; Toth, G.; Dezeeuw, D.; Gomobosi, T.

    2007-01-01

    One of the major challenges in modeling the magnetospheric magnetic reconnection is to quantify the interaction between large-scale global magnetospheric dynamics and microphysical processes in diffusion regions near reconnection sites. There is still considerable debate as to what degree microphysical processes on kinetic scales affect the global evolution and how important it is to substitute numerical dissipation and/or ad hoc anomalous resistivity by a physically motivated model of dissipation. Comparative studies of magnetic reconnection in small scale geometries demonstrated that MHD simulations that included non-ideal processes in terms of a resistive term $\\eta J$ did not produce the fast reconnection rates observed in kinetic simulations. For a broad range of physical parameters in collisionless magnetospheric plasma, the primary mechanism controlling the dissipation in the vicinity of the reconnection site is non-gyrotropic effects with spatial scales comparable with the particle Larmor radius. We utilize the global MHD code BATSRUS and incorporate nongyrotropic effects in diffusion regions in terms of corrections to the induction equation. We developed an algorithm to search for magnetotail reconnection sites, specifically where the magnetic field components perpendicular to the local current direction approaches zero and form an X-type configuration. Spatial scales of the diffusion region and magnitude of the reconnection electric field are calculated selfconsistently using MHD plasma and field parameters in the vicinity of the reconnection site. The location of the reconnection sites is updated during the simulations. To clarify the role of nongyrotropic effects in diffusion region on the global magnetospheric dynamic we perform simulations with steady southward IMF driving of the magnetosphere. Ideal MHD simulations with magnetic reconnection supported by numerical resistivity produce steady configuration with almost stationary near-earth neutral

  2. Magnetic field characters of returning flux tubes in Saturn's magnetosphere

    NASA Astrophysics Data System (ADS)

    Lai, Hairong; Russell, Christopher; Jia, Yingdong; Wei, Hanying

    2016-04-01

    Deep in the Saturnian magnetosphere, water-group neutrals are ionized after being released from the plume of Enceladus at 4 RS. This forms a plasma disk from 2.5 to 8 RS around Saturn and the typical source rate is 12~250 kg/s. Such plasma addition must be shed to the solar wind ultimately to maintain the plasma density in the magnetosphere in long term average. In this plasma transfer process, the magnetic flux also convects outward. To conserve the total magnetic flux imposed on the magnetosphere by the planet's internal dynamo, the magnetic flux has to return to the inner magnetosphere. Flux tubes are found to be the major form of such return. Determining such flux tubes is essential in understanding the breathing of Saturn magnetosphere. We investigated 10 years of Cassini magnetometer data to identify over six hundred flux-returning events between 4 and 18 in L. Statistical properties are presented, to constrain the origin, transport and evolution of these flux tubes.

  3. Energy Deposition and Redistribution in the Magnetosphere-Ionosphere System

    NASA Astrophysics Data System (ADS)

    Fok, M. H.; Khazanov, G. V.; Glocer, A.; Buzulukova, N.; Chen, S.

    2013-12-01

    The closed magnetic field region of the magnetosphere is extremely complicated and dynamic. The constituent populations of this region comprise a tightly coupled and interconnected system that must be considered in concert rather than independently. The major plasma components in this coupled system are: plasmasphere, superthermal electrons, ring current, and radiation belts. These components are moreover tightly tied to the ionosphere both through electrodynamic coupling and particle coupling. Each of these populations has distinctive features and contributes in a different way to the dynamic and energetic processes in the magnetosphere-ionosphere system. Energy from the Sun is deposited in these plasmas directly or indirectly through energy coupling mechanisms with surrounding plasma and electromagnetic fields. Our paper will focus on simulating energy deposition and redistribution in the magnetosphere-ionosphere system. Extensive data analysis and data-model comparison will be carried out to reconcile theory with measurements.

  4. Vlasiator: Global Kinetic Magnetospheric Modeling Tool

    NASA Astrophysics Data System (ADS)

    Sandroos, A.; von Alfthan, S.; Hoilijoki, S.; Honkonen, I.; Kempf, Y.; Pokhotelov, D.; Palmroth, M.

    2015-10-01

    We present Vlasiator, a novel code based on Vlasov's equation, developed for modeling magnetospheric plasma on a global scale. We have parallelized the code to petascale supercomputers with a hybrid OpenMP-MPI approach to answer the high computational cost of propagating ion distribution functions in six dimensions. The accuracy of the numerical method is demonstrated by comparing simulated wave dispersion plots to analytical results. Simulations of Earth's bow shock region were able to reproduce many well-known plasma phenomena, such as compressional magnetosonic waves in the foreshock region, and mirror mode instability in the magnetosheath.

  5. Calibration of the Rice Magnetospheric Specification and Forecast Model for the Inner Magnetosphere.

    NASA Astrophysics Data System (ADS)

    Lambour, Richard Lee

    about the low-energy plasma environment in the inner magnetosphere, some inadequacies still exist in the MSFM loss algorithm which should be corrected when feasible to further improve its accuracy.

  6. Upstream Structures and their Effects on the Magnetosphere

    NASA Astrophysics Data System (ADS)

    Sibeck, D. G.

    2011-12-01

    Kinetic processes within the Earth's foreshock generate a profusion of plasma and magnetic field structures with sizes and durations ranging from the microscale (e.g. SLAMs, solitons, and density holes) to the mesoscale (e.g. foreshock cavities or boundaries, hot flow anomalies, and bubbles). Swept into the bow shock by the solar wind flow, the perturbations associated with these features batter the magnetosphere, driving a wide variety of magnetospheric effects, including large amplitude magnetopause motion, bursty reconnection and the generation of flux transfer events, enhanced pulsation activity within the magnetosphere, diffusion and energization of radiation belt particles, enhanced particle precipitation resulting in dayside aurora and riometer absorption, and the generation of field-aligned currents and magnetic impulse events in high-latitude ground magnetometers. This talk reviews the ever growing menagery of structures observed upstream from the bow shock, examines their possible interrelationships, and considers their magnetospheric consequences.

  7. A survey of electrostatic waves in Saturn's magnetosphere

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.; Gurnett, D. A.; Scarf, F. L.; Barbosa, D. D.

    1983-01-01

    The Voyager 1 and 2 plasma wave instruments have provided initial observations of electrostatic waves in Saturn's magnetosphere. In general, the emissions at Saturn are similar to those found at earth and Jupiter, although there are significant differences in some of the detailed characteristics. In this paper an overview is presented of the various types of electrostatic waves in the Saturnian magnetosphere, including Langmuir waves and electron cyclotron harmonic emissions. The temporal and spectral character, amplitude, and regions of occurrence for the various classes of emissions are summarized. These characteristics are compared with those of the terrestrial and Jovian counterparts with the goal of understanding how major differences in the magnetospheric configuration might contribute to the observed differences. Finally, the theory of electron cyclotron harmonic emissions is used to gain an insight into the electron distributions and possible wave-particle interactions in Saturn's magnetosphere.

  8. Upstream Structures and Their Effects on the Magnetosphere

    NASA Technical Reports Server (NTRS)

    Sibeck, D. G.

    2011-01-01

    Kinetic processes within the Earth's foreshock generate a profusion of plasma and magnetic field structures with sizes and durations ranging from the microscale (e.g. SLAMs, solitons, and density holes) to the mesoscale (e.g. foreshock cavities or boundaries, hot flow anomalies, and bubbles). Swept into the bow shock by the solar wind flow, the perturbations associated with these features batter the magnetosphere, driving a wide variety of magnetospheric effects, including large amplitude magnetopause motion, bursty reconnection and the generation of flux transfer events, enhanced pulsation activity within the magnetosphere, diffusion and energization of radiation belt particles, enhanced particle precipitation resulting in dayside aurora and riometer absorption, and the generation of field-aligned currents and magnetic impulse events in high-latitude ground magnetometers. This talk reviews the ever growing menagery of structures observed upstream from the bow shock, examines their possible interrelationships, and considers their magnetospheric consequences.

  9. Europa's Interaction with the Magnetosphere of Jupiter

    NASA Astrophysics Data System (ADS)

    Khurana, Krishan K.; Jia, Xianzhe; Paranicas, Chris; Cassidy, Timothy A.; Hansen, Kenneth C.

    2013-04-01

    Galileo's observations of magnetic field in the vicinity of Europa have shown that Europa does not possess an appreciable internal magnetic field. However, Europa strongly modifies its plasma and magnetic field environment by directly interacting with the magnetosphere of Jupiter. The plasma interactions cause the absorption of Jovian plasma by the moon, pick-up of newly formed ions from the exospheres of the moon, plasma diversion by electrodynamic (Alfvén wing) interaction and the formation of a long wake in the downstream region. In addition to the electrodynamic interactions, Europa also displays electromagnetic induction response to the rotating field of Jupiter presumably from the conducting presence of global salty liquid oceans inside the moon. Galileo successfully encountered Europa 10 times during its mission. We are developing quantitative 3-D MHD models of plasma interactions of Europa with Jupiter's magnetosphere. In these models we include the effects of plasma pick-up and plasma interaction with a realistic exosphere as well as the contribution of the electromagnetic induction. We will present results of these quantitative models and show that the plasma interaction is strongest when Europa is located at the center of Jupiter's current sheet. We find that plasma mass loading rates are extremely variable over time. We will investigate various mechanisms by which such variability in mass-loading could be produced including episodically enhanced sputtering from trapped gaseous molecules in ice and enhanced plasma interaction with a vent(s) generated dense exosphere. The new model will aid researchers in planning observations from future missions such as JUICE and Europa flagship mission.

  10. The Relation Between Magnetospheric State Parameters and the Occurrence of Plasma Depletion Events in the Night-Time Mid-Latitude F-Region

    NASA Technical Reports Server (NTRS)

    Seker, Ilgin; Fung, Shing F.; Mathews, John D.

    2010-01-01

    Studies using all-sky imagers have revealed the presence of various ionospheric irregularities in the night-time mid-latitude F-region. The most prevalent and well known of these are the Medium Scale Traveling Ionospheric Disturbances (MSTIDs) that usually occur when the geomagnetic activity is low, and mid-latitude spread-F plumes that are often observed when the geomagnetic activity is high. The inverse and direct relations between geomagnetic activity (particularly Kp) and the occurrence rate of MSTIDs and midlatitude plumes, respectively, have been observed by several studies using different instruments. In order to understand the underlying causes of these two relations, it is illuminating to better characterize the occurrence of MSTIDs and plumes using multiple magnetospheric state parameters. Here we statistically compare multiple geomagnetic driver and response parameters (such as Kp, AE, Dst, and solar wind parameters) with the occurrence rates of night-time MSTIDs and plumes observed using an all-sky imager at Arecibo Observatory (AO) between 2003 and 2008. The results not only allow us to better distinguish MSTIDs and plumes, but also shed further light on the generation mechanism and electrodynamics of these two different phenomena occurring at night-time in the mid-latitude F-region.

  11. Stockpile Stewardship: Los Alamos

    SciTech Connect

    McMillan, Charlie; Morgan, Nathanial; Goorley, Tom; Merrill, Frank; Funk, Dave; Korzekwa, Deniece; Laintz, Ken

    2012-01-26

    "Heritage of Science" is a short video that highlights the Stockpile Stewardship program at Los Alamos National Laboratory. Stockpile Stewardship was conceived in the early 1990s as a national science-based program that could assure the safety, security, and effectiveness of the U.S. nuclear deterrent without the need for full-scale underground nuclear testing. This video was produced by Los Alamos National Laboratory for screening at the Lab's Bradbury Science Museum in Los Alamos, NM and is narrated by science correspondent Miles O'Brien.

  12. Stockpile Stewardship: Los Alamos

    ScienceCinema

    McMillan, Charlie; Morgan, Nathanial; Goorley, Tom; Merrill, Frank; Funk, Dave; Korzekwa, Deniece; Laintz, Ken

    2016-07-12

    "Heritage of Science" is a short video that highlights the Stockpile Stewardship program at Los Alamos National Laboratory. Stockpile Stewardship was conceived in the early 1990s as a national science-based program that could assure the safety, security, and effectiveness of the U.S. nuclear deterrent without the need for full-scale underground nuclear testing. This video was produced by Los Alamos National Laboratory for screening at the Lab's Bradbury Science Museum in Los Alamos, NM and is narrated by science correspondent Miles O'Brien.

  13. The global precipitation of magnetospheric electrons into Titan's upper atmosphere

    NASA Astrophysics Data System (ADS)

    Snowden, D.; Yelle, R. V.

    2014-11-01

    We couple a two-stream electron transport model to a three-dimensional model of Titan's plasma interaction to calculate the global precipitation of magnetospheric electrons into Titan's atmosphere. We describe energy deposition rates from eleven simulations that vary the following parameters: relative orientation of the solar and magnetospheric ram directions, initial electron distribution, electron bounce times in Saturn's magnetosphere, and whether we account for magnetic mirroring. Most of the energy from auroral electrons is deposited on the magnetospheric wake-side of Titan's thermosphere, with peak rates between 25 and 35 eV cm-3 s-1, and the least amount of energy is deposited on the magnetospheric ram-side. We calculate globally averaged peak energy deposition rates of ∼13 eV cm-3 s-1 near 1200 km altitude, ∼1 eV cm-3 s-1 near 1200 km altitude, and ∼10 eV cm-3 s-1 near 1350 km altitude for electron distributions characteristic of Saturn's plasma sheet, lobe, and magnetosheath, respectively. Globally averaged energy deposition rates are decreased by ∼70% when we assume that the electron bounce times are a factor of 10 shorter because the thermalization of magnetospheric electrons in Titan's atmosphere erodes Saturn's flux tubes over time scales comparable to the time it takes for electrons to bounce in Saturn's magnetosphere. Magnetic mirroring further reduces the globally averaged energy deposition rates by ∼30% to 70%. The total power deposited in Titan's thermosphere by magnetospheric electrons varies between 0.13 and 1.5×108W for the eleven simulations analyzed, which is about an order of magnitude smaller than the power deposited by solar EUV (∼109W for λ <800Å ) during the 2007 to 2009 solar minimum.

  14. Mercury's Dynamic Magnetosphere: End member or simply unique? (Invited)

    NASA Astrophysics Data System (ADS)

    Slavin, J. A.

    2013-12-01

    Observations of Mercury's magnetosphere by Mariner 10 and MESSENGER have shown it to be remarkably dynamic. As the 'end member' planetary magnetosphere with respect to proximity to the Sun, slow rotation rate, weak internal plasma sources, and lack of an ionosphere, many aspects of its dynamic behavior had been or should have been anticipated. The intense magnetic fields in the inner Heliosphere result in high Alfven speeds (i.e., solar wind Alfven Mach numbers of only 3 - 5). At Mercury this produces well-developed plasma depletion layers to form at the magnetosheath - magnetosphere interface. In this environment magnetopause reconnection does not exhibit the 'half-wave rectifier' (i.e. reconnection with a strong dependence on magnetic shear angle) response found at Earth, and to a lesser extent at the outer planets. Instead magnetopause reconnection takes place for all magnetic shear angles with plasma beta as the primary parameter controlling the rate. Remarkably, it appears that unlike the Earth's magnetosphere, where flux transfer events (FTEs) do not contribute significantly to the Dungey circulation of plasma and magnetic flux, FTEs are major drivers of convection at Mercury due both to their large relative size and high frequency of occurrence. As might be expected, these extremely intense, frequent episodes of reconnection at the magnetopause results in intense, frequent reconnection in the magnetotail with dipolarization events, energetic electron acceleration, and plasmoid-type flux rope formation and ejection. However, the electrodynamic coupling of the magnetosphere to Mercury appears to be utterly unique, with the possible exception of Jupiter's satellite Ganymede. Mercury's highly resistive crust inhibits strong coupling by field aligned currents, but its large, highly conducting core supports strong 'inductive' coupling. These horizontal currents induced in the outermost layers of the core by changing magnetospheric magnetic fields are observed to

  15. AXISYMMETRIC, NONSTATIONARY BLACK HOLE MAGNETOSPHERES: REVISITED

    SciTech Connect

    Song, Yoo Geun; Park, Seok Jae E-mail: sjpark@kasi.re.kr

    2015-10-10

    An axisymmetric, stationary, general-relativistic, electrodynamic engine model of an active galactic nucleus was formulated by Macdonald and Thorne that consisted of a supermassive black hole surrounded by a plasma magnetosphere and a magnetized accretion disk. Based on this initial formulation, a nonstationary, force-free version of their model was constructed by Park and Vishniac (PV), with the simplifying assumption that the poloidal component of the magnetic field line velocity be confined along the radial direction in cylindrical polar coordinates. In this paper, we derive the new, nonstationary “Transfield Equation,” which was not specified in PV. If we can solve this “Transfield Equation” numerically, then we will understand the axisymmetric, nonstationary black hole magnetosphere in more rigorous ways.

  16. Global ENA Imaging of Earth's Dynamic Magnetosphere

    NASA Astrophysics Data System (ADS)

    Brandt, Pontus

    2015-04-01

    The interaction between singly charged ions of Earth's magnetosphere and its neutral exosphere and upper atmosphere gives rise to Energetic Neutral Atoms (ENAs). This has enabled several missions to remotely image the global injection dynamics of the ring current and plasma sheet, the outflow of ions from Earth's polar regions, and the location of the sub-solar magnetopause. In this presentation we review ENA observations by the Astrid, IMAGE, TWINS and IBEX missions. We focus on results from the IMAGE/HENA Camera including observations of proton and oxygen ion injections in to the ring current and their impact on the force-balance and ionospheric coupling in the inner magnetosphere. We report also on the status of inversion techniques for retrieving the ion spatial and pitch-angle distributions from ENA images. The presentation concludes with a discussion of future next steps in ENA instrumentation and analysis capabilities required to deliver the science as recommended by the Heliophysics Decadal Survey.

  17. Mercury's magnetosphere after MESSENGER's first flyby.

    PubMed

    Slavin, James A; Acuña, Mario H; Anderson, Brian J; Baker, Daniel N; Benna, Mehdi; Gloeckler, George; Gold, Robert E; Ho, George C; Killen, Rosemary M; Korth, Haje; Krimigis, Stamatios M; McNutt, Ralph L; Nittler, Larry R; Raines, Jim M; Schriver, David; Solomon, Sean C; Starr, Richard D; Trávnícek, Pavel; Zurbuchen, Thomas H

    2008-07-01

    Observations by MESSENGER show that Mercury's magnetosphere is immersed in a comet-like cloud of planetary ions. The most abundant, Na+, is broadly distributed but exhibits flux maxima in the magnetosheath, where the local plasma flow speed is high, and near the spacecraft's closest approach, where atmospheric density should peak. The magnetic field showed reconnection signatures in the form of flux transfer events, azimuthal rotations consistent with Kelvin-Helmholtz waves along the magnetopause, and extensive ultralow-frequency wave activity. Two outbound current sheet boundaries were observed, across which the magnetic field decreased in a manner suggestive of a double magnetopause. The separation of these current layers, comparable to the gyro-radius of a Na+ pickup ion entering the magnetosphere after being accelerated in the magnetosheath, may indicate a planetary ion boundary layer. PMID:18599776

  18. Axisymmetric, Nonstationary Black Hole Magnetospheres: Revisited

    NASA Astrophysics Data System (ADS)

    Song, Yoo Geun; Park, Seok Jae

    2015-10-01

    An axisymmetric, stationary, general-relativistic, electrodynamic engine model of an active galactic nucleus was formulated by Macdonald and Thorne that consisted of a supermassive black hole surrounded by a plasma magnetosphere and a magnetized accretion disk. Based on this initial formulation, a nonstationary, force-free version of their model was constructed by Park & Vishniac (PV), with the simplifying assumption that the poloidal component of the magnetic field line velocity be confined along the radial direction in cylindrical polar coordinates. In this paper, we derive the new, nonstationary “Transfield Equation,” which was not specified in PV. If we can solve this “Transfield Equation” numerically, then we will understand the axisymmetric, nonstationary black hole magnetosphere in more rigorous ways.

  19. Stability of force-free magnetospheres

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Zhang, Fan

    2014-11-01

    We analyze the dynamical evolution of a perturbed force-free magnetosphere of a rotating black hole, which is described by the Blandford-Znajek solution in the stationary limit. We find that the electromagnetic field perturbations can be classified into two categories: "trapped modes" and "traveling waves." The trapped modes are analogous to the vacuum (without plasma) electromagnetic quasinormal modes in rotating black hole spacetimes, but with different eigenfrequencies and wave functions, due to their coupling with the background electromagnetic field and current. The traveling waves propagate freely to infinity or the black hole horizon along specific null directions, and they are closely related to the no-scattering Poynting flux solutions discovered by Brennan, Gralla and Jacobson. Our results suggest that the Blandford-Znajek solution is mode stable, and more importantly we expect this study to illuminate the dynamical behavior of force-free magnetospheres as well as to shed light on the path to new exact solutions.

  20. Mercury's magnetosphere after MESSENGER's first flyby.

    PubMed

    Slavin, James A; Acuña, Mario H; Anderson, Brian J; Baker, Daniel N; Benna, Mehdi; Gloeckler, George; Gold, Robert E; Ho, George C; Killen, Rosemary M; Korth, Haje; Krimigis, Stamatios M; McNutt, Ralph L; Nittler, Larry R; Raines, Jim M; Schriver, David; Solomon, Sean C; Starr, Richard D; Trávnícek, Pavel; Zurbuchen, Thomas H

    2008-07-01

    Observations by MESSENGER show that Mercury's magnetosphere is immersed in a comet-like cloud of planetary ions. The most abundant, Na+, is broadly distributed but exhibits flux maxima in the magnetosheath, where the local plasma flow speed is high, and near the spacecraft's closest approach, where atmospheric density should peak. The magnetic field showed reconnection signatures in the form of flux transfer events, azimuthal rotations consistent with Kelvin-Helmholtz waves along the magnetopause, and extensive ultralow-frequency wave activity. Two outbound current sheet boundaries were observed, across which the magnetic field decreased in a manner suggestive of a double magnetopause. The separation of these current layers, comparable to the gyro-radius of a Na+ pickup ion entering the magnetosphere after being accelerated in the magnetosheath, may indicate a planetary ion boundary layer.

  1. Investigations of magnetosphere-ionosphere coupling relevant to operational systems. Final scientific report, 1984-1987

    SciTech Connect

    Meng, C.I.; Newell, P.T.

    1988-02-01

    Important advances were made in understanding the dynamics of the magnetosphere and its coupling to the ionosphere. Significant progress was made in the areas of polar cusp precipitation and dynamics; dayside auroral morphology and auroral boundary dynamics; polar rain; the quiescent polar cap; the physics of impulsive injection phenomena; and problems of global magnetospheric plasma transport.

  2. Modeling of the propagation of low-frequency electromagnetic radiation in the Earth’s magnetosphere

    SciTech Connect

    Lebedev, N. V. Rudenko, V. V.

    2015-06-15

    A numerical algorithm for solving the set of differential equations describing the propagation of low-frequency electromagnetic radiation in the magnetospheric plasma, including in the presence of geomagnetic waveguides in the form of large-scale plasma density inhomogeneities stretched along the Earth’s magnetic field, has been developed. Calculations of three-dimensional ray trajectories in the magnetosphere and geomagnetic waveguide with allowance for radiation polarization have revealed characteristic tendencies in the behavior of electromagnetic parameters along the ray trajectory. The results of calculations can be used for magnetospheric plasma diagnostics.

  3. Dynamics of Mars' magnetosphere

    NASA Astrophysics Data System (ADS)

    Kennel, C. F.; Coroniti, F. V.; Moses, S. L.; Zelenyi, L. M.

    1989-08-01

    If Mars has a small intrinsic magnetic moment, Mars' magnetosphere could vary on time scales of a few minutes due to reconnection with the solar wind magnetic field. The day-side magnetopause will be one or two reflected-ion Larmor radii from the bow shock. Substorms will have scale-times of about six minutes. Mars' high ionospheric conductance will virtually stop polar cap convection, and create a magnetic 'topological crisis' unless convecting magnetic flux finds a dissipative way to return to the day-side. The strong magnetic shear induced by magnetospheric convection above the ionosphere could be tearing unstable. The magnetic field might diffusively 'percolate' through the tearing layer. This shearing also draws field aligned currents from the ionosphere which could inject few KeV heavy ionospheric ions into the magnetotail.

  4. The response of Jupiter's magnetosphere to an outburst on Io.

    PubMed

    Brown, M E; Bouchez, A H

    1997-10-10

    A 6-month-long monitoring campaign of the Io plasma torus and neutral cloud was conducted to determine the characteristics of their interaction. During the observations, a large outburst of material from Io-inferred to be caused by the eruption of a volcanic plume on Io-caused a transient increase in the neutral cloud and plasma torus masses. The response of the plasma torus to this outburst shows that the interaction between Io and Jupiter's magnetosphere is stabilized by a feedback mechanism in which increases in the plasma torus mass cause a nonlinear increase in loss from the plasma torus, limiting plasma buildup.

  5. Magnetospheric Multiscale Overview and Science Objectives

    NASA Astrophysics Data System (ADS)

    Burch, J. L.; Moore, T. E.; Torbert, R. B.; Giles, B. L.

    2016-03-01

    Magnetospheric Multiscale (MMS), a NASA four-spacecraft constellation mission launched on March 12, 2015, will investigate magnetic reconnection in the boundary regions of the Earth's magnetosphere, particularly along its dayside boundary with the solar wind and the neutral sheet in the magnetic tail. The most important goal of MMS is to conduct a definitive experiment to determine what causes magnetic field lines to reconnect in a collisionless plasma. The significance of the MMS results will extend far beyond the Earth's magnetosphere because reconnection is known to occur in interplanetary space and in the solar corona where it is responsible for solar flares and the disconnection events known as coronal mass ejections. Active research is also being conducted on reconnection in the laboratory and specifically in magnetic-confinement fusion devices in which it is a limiting factor in achieving and maintaining electron temperatures high enough to initiate fusion. Finally, reconnection is proposed as the cause of numerous phenomena throughout the universe such as comet-tail disconnection events, magnetar flares, supernova ejections, and dynamics of neutron-star accretion disks. The MMS mission design is focused on answering specific questions about reconnection at the Earth's magnetosphere. The prime focus of the mission is on determining the kinetic processes occurring in the electron diffusion region that are responsible for reconnection and that determine how it is initiated; but the mission will also place that physics into the context of the broad spectrum of physical processes associated with reconnection. Connections to other disciplines such as solar physics, astrophysics, and laboratory plasma physics are expected to be made through theory and modeling as informed by the MMS results.

  6. Decametric modulation lanes as a probe for inner jovian magnetosphere

    NASA Astrophysics Data System (ADS)

    Arkhypov, Oleksiy V.; Rucker, Helmut O.

    2013-11-01

    We use the specific scintillations of jovian decametric radio sources (modulation lanes), which are produced by plasma inhomogeneities in the vicinity of that planet, to probe the inner magnetosphere of Jupiter. The positions and frequency drift of 1762 lanes have been measured on the DAM spectra from archives. A special 3D algorithm is used for space localization of field-aligned magnetospheric inhomogeneities by the frequency drift of modulation lanes. As a result, the main regions of the lane formation are found: the Io plasma torus; the magnetic shell of the Gossamer Ring at Thebe and Amalthea orbits; and the region above the magnetic anomaly in the northern magnetosphere. It is shown that modulation lanes reveal the depleted magnetic tubes in practically unvisited, innermost regions of the jovian magnetosphere. The local and probably temporal plasma enhancement is found at the magnetic shell of Thebe satellite. Hence, the modulation lanes are a valuable instrument for remote sensing of those parts of jovian magnetosphere, which are not studied yet in situ.

  7. Ion acceleration in the magnetosphere and ionosphere; Proceedings of the Chapman Conference on Ion Acceleration in the Magnetosphere, Wellesley College, MA, June 3-7, 1985

    NASA Astrophysics Data System (ADS)

    Chang, Thomas

    Theoretical, experimental, and observational investigations of magnetospheric ion-acceleration processes (IAPs) are presented in reviews and reports. Topics examined include high-latitude, plasma-sheet, boundary-layer, equatorial-region, active, laboratory, microscopic, and macroscopic IAPs. Consideration is given to observations of coherent transverse IAPs, transverse and parallel acceleration of terrestrial ions at high latitudes, interaction of H(+) and O(+) beams at 2 and 3 earth radii, eigenfunction methods in the theory of magnetospheric radial diffusion, wave-particle-interaction IAPs, IAPs in expanding ionospheric plasmas, and impulsive IAPs in the outer magnetosphere.

  8. Ion acceleration in the magnetosphere and ionosphere; Proceedings of the Chapman Conference on Ion Acceleration in the Magnetosphere, Wellesley College, MA, June 3-7, 1985

    SciTech Connect

    Chang, T.

    1986-01-01

    Theoretical, experimental, and observational investigations of magnetospheric ion-acceleration processes (IAPs) are presented in reviews and reports. Topics examined include high-latitude, plasma-sheet, boundary-layer, equatorial-region, active, laboratory, microscopic, and macroscopic IAPs. Consideration is given to observations of coherent transverse IAPs, transverse and parallel acceleration of terrestrial ions at high latitudes, interaction of H(+) and O(+) beams at 2 and 3 earth radii, eigenfunction methods in the theory of magnetospheric radial diffusion, wave-particle-interaction IAPs, IAPs in expanding ionospheric plasmas, and impulsive IAPs in the outer magnetosphere.

  9. RCM simulation of interchange transport in Saturn's inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Hill, T. W.; Liu, X.; Sazykin, S. Y.; Wolf, R.

    2013-12-01

    Numerical simulations with the Rice Convection Model have been used to study the radial transport of plasma in Saturn's inner magnetosphere (L < 12) where the magnetic field is dominated by the planetary dipole. This transport occurs through a time-variable pattern of wider outflow channels containing cool, dense plasma from interior sources, alternating with narrower inflow channels containing hot, tenuous plasma from the outer magnetosphere. The 'smoking gun' of this interchange transport process is the pervasive presence of V-shaped injection/dispersion signatures in linear energy-time spectrograms that are observed by the Cassini Plasma Spectrometer (CAPS) on every pass through the inner magnetosphere. Using observed hot plasma distributions at L~12 as input, we have now successfully simulated these V-shaped signatures. We will show these simulation results and compare them with observed signatures. We will also describe future improvements to the model including relaxing the dipole-field assumption, thus enabling us to simulate local-time asymmetries imposed by the outer magnetosphere and tail.

  10. Active experiments, magnetospheric modification, and a naturally occurring analogue

    NASA Technical Reports Server (NTRS)

    Kivelson, M. G.; Russell, C. T.

    1973-01-01

    Recently, a scheme has been proposed which would modify the magnetosphere by injecting plasma near the equator beyond the plasmapause and initiating wave-particle instabilities. The expected effects have been examined theoretically. Injection of plasma into this region is also a naturally occurring phenomenon produced by the cross-tail electric fields which are associated with geomagnetic activity. For further investigation of magnetospheric instabilities, the advantages of examining artificially injected plasma (control of time and location of injection and of the volume of plasma injected) contrast with the advantages of studying natural enhancements (no extra payload, frequent occurrence). Thus, the two types of experiments are complementary. In preliminary studies of natural plasma enhancements both ULF and ELF emissions have been observed. The ELF noise is consistent with generation by the electron cyclotron instability.

  11. Cassini Langmuir probe measurements in the inner magnetosphere of Saturn

    NASA Astrophysics Data System (ADS)

    Jacobsen, K. S.; Wahlund, J.-E.; Pedersen, A.

    2009-01-01

    In the inner magnetosphere of Saturn, the plasma density and drift velocity are high enough, and the photoelectron current low enough, for a Langmuir probe to produce useful data on ion parameters. Plasma density and velocity are found by analyzing the current due to collected ions and emitted photoelectrons for a negative probe potential. In order to correctly analyze the data, the current caused by photoelectrons emitted from the probe must be known. For a spherical probe at negative bias this should be a constant current, but for Cassini's probe it varies with attitude. A likely cause of this is a leakage current from the stub to the probe. The plasma drift velocities derived from Langmuir probe measurements did not agree with those found by the Cassini plasma spectrometer in the inner magnetosphere, but did so elsewhere. A possible solution to this is a two-component plasma where the components have different drift velocities.

  12. The Parameterization of Top-Hat Particle Sensors with Microchannel-Plate-Based Detection Systems and its Application to the Fast Plasma Investigation on NASA's Magnetospheric MultiScale Mission

    NASA Technical Reports Server (NTRS)

    Gershman, Daniel J.; Gliese, Ulrik; Dorelli, John C.; Avanov, Levon A.; Barrie, Alexander C.; Chornay, Dennis J.; MacDonald, Elizabeth A.; Holland, Matthew P.; Pollock, Craig J.

    2015-01-01

    The most common instrument for low energy plasmas consists of a top-hat electrostatic analyzer geometry coupled with a microchannel-plate (MCP)-based detection system. While the electrostatic optics for such sensors are readily simulated and parameterized during the laboratory calibration process, the detection system is often less well characterized. Furthermore, due to finite resources, for large sensor suites such as the Fast Plasma Investigation (FPI) on NASA's Magnetospheric Multiscale (MMS) mission, calibration data are increasingly sparse. Measurements must be interpolated and extrapolated to understand instrument behavior for untestable operating modes and yet sensor inter-calibration is critical to mission success. To characterize instruments from a minimal set of parameters we have developed the first comprehensive mathematical description of both sensor electrostatic optics and particle detection systems. We include effects of MCP efficiency, gain, scattering, capacitive crosstalk, and charge cloud spreading at the detector output. Our parameterization enables the interpolation and extrapolation of instrument response to all relevant particle energies, detector high voltage settings, and polar angles from a small set of calibration data. We apply this model to the 32 sensor heads in the Dual Electron Sensor (DES) and 32 sensor heads in the Dual Ion Sensor (DIS) instruments on the 4 MMS observatories and use least squares fitting of calibration data to extract all key instrument parameters. Parameters that will evolve in flight, namely MCP gain, will be determined daily through application of this model to specifically tailored in-flight calibration activities, providing a robust characterization of sensor suite performance throughout mission lifetime. Beyond FPI, our model provides a valuable framework for the simulation and evaluation of future detection system designs and can be used to maximize instrument understanding with minimal calibration

  13. Alfven Waves in the Solar Wind, Magnetosheath, and Outer Magnetosphere

    NASA Technical Reports Server (NTRS)

    Sibeck, D. G.

    2007-01-01

    Alfven waves Propagating outward from the Sun are ubiquitous in the solar wind and play a major role in the solar wind-magnetosphere interaction. The passage of the waves generally occurs in the form of a series of discrete steepened discontinuities, each of which results in an abrupt change in the interplanetary magnetic field direction. Some orientations of the magnetic field permit particles energized at the Earth's bow shock to gain access to the foreshock region immediately upstream from the Earth's bow shock. The thermal pressure associated with these particles can greatly perturb solar wind plasma and magnetic field parameters shortly prior to their interaction with the Earth's bow shock and magnetosphere. The corresponding dynamic pressure variations batter the magnetosphere, driving magnetopause motion and transient compressions of the magnetospheric magnetic field. Alfven waves transmit information concerning the dynamic pressure variations applied to the magnetosphere to the ionosphere, where they generate the traveling convection vortices (TCVs) seen in high-latitude ground magnetograms. Finally, the sense of Alfvenic perturbations transmitted into the magnetosheath reverses across local noon because magnetosheath magnetic field lines drape against the magnetopause. The corresponding change in velocity perturbations must apply a weak torque to the Earth's magnetosphere.

  14. Numerical simulation of an experimental analogue of a planetary magnetosphere

    NASA Astrophysics Data System (ADS)

    Liao, Andy Sha; Li, Shule; Hartigan, Patrick; Graham, Peter; Fiksel, Gennady; Frank, Adam; Foster, John; Kuranz, Carolyn

    2015-12-01

    Recent improvements to the Omega Laser Facility's magneto-inertial fusion electrical discharge system (MIFEDS) have made it possible to generate strong enough magnetic fields in the laboratory to begin to address the physics of magnetized astrophysical flows. Here, we adapt the MHD code AstroBEAR to create 2D numerical models of an experimental analogue of a planetary magnetosphere. We track the secular evolution of the magnetosphere analogue and we show that the magnetospheric components such as the magnetopause, magnetosheath, and bow shock, should all be observable in experimental optical band thermal bremsstrahlung emissivity maps, assuming equilibrium charge state distributions of the plasma. When the magnetosphere analogue nears the steady state, the mid-plane altitude of the magnetopause from the wire surface scales as the one-half power of the ratio of the magnetic pressure at the surface of the free wire to the ram pressure of an unobstructed wind; the mid-plane thickness of the magnetosheath is directly related to the radius of the magnetopause. This behavior conforms to Chapman and Ferraro's theory of planetary magnetospheres. Although the radial dependence of the magnetic field strength differs between the case of a current-carrying wire and a typical planetary object, the major morphological features that develop when a supersonic flow passes either system are identical. Hence, this experimental concept is an attractive one for studying the dynamics of planetary magnetospheres in a controlled environment.

  15. Does Solar Wind also Drive Convection in Jupiter's Magnetosphere?

    NASA Astrophysics Data System (ADS)

    Khurana, K. K.

    2001-05-01

    Using a simple model of magnetic field and plasma velocity, Brice and Ioannidis [1970] showed that the corotation electric field exceeds convection electric field throughout the Jovian magnetosphere. Since that time it has been tacitly assumed that Jupiter's magnetosphere is driven from within. If Brice and Ioannidis conjecture is correct then one would not expect major asymmetries in the field and plasma parameters in the middle magnetosphere of Jupiter. Yet, new field and plasma observations from Galileo and simultaneous auroral observations from HST show that there are large dawn/dusk and day/night asymmetries in many magnetospheric parameters. For example, the magnetic observations show that a partial ring current and an associated Region-2 type field-aligned current system exist in the magnetosphere of Jupiter. In the Earth's magnetosphere it is well known that the region-2 current system is created by the asymmetries imposed by a solar wind driven convection. Thus, we are getting first hints that the solar wind driven convection is important in Jupiter's magnetosphere as well. Other in-situ observations also point to dawn-dusk asymmetries imposed by the solar wind. For example, first order anisotropies in the Energetic Particle Detector show that the plasma is close to corotational on the dawn side but lags behind corotation in the dusk sector. Magnetic field data show that the current sheet is thin and highly organized on the dawn side but thick and disturbed on the dusk side. I will discuss the reasons why Brice and Ioannidis calculation may not be valid. I will show that both the magnetic field and plasma velocity estimates used by Brice and Ioannidis were rather excessive. Using more modern estimates of the field and velocity values I show that the solar wind convection can penetrate as deep as 40 RJ on the dawnside. I will present a new model of convection that invokes in addition to a distant neutral line spanning the whole magnetotail, a near

  16. AXIOM: Advanced X-Ray Imaging of the Magnetosphere

    NASA Technical Reports Server (NTRS)

    Branduardi-Raymont, G.; Sembay, S. F.; Eastwood, J. P.; Sibeck, D. G.; Abbey, A.; Brown, P.; Carter, J. A.; Carr, C. M.; Forsyth, C.; Kataria, D.; Kemble, S.; Milan, S. E.; Owen, C. J.; Peacocke, L.; Read, A. M.; Coates, A. J.; Collier, M. R.; Cowley, S. W. H.; Fazakerley, A. N.; Fraser, G. W.; Jones, G. H.; Lallement, R.; Lester, M.; Porter, F. S.; Yeoman, T. K.

    2011-01-01

    Planetary plasma and magnetic field environments can be studied in two complementary ways by in situ measurements, or by remote sensing. While the former provide precise information about plasma behaviour, instabilities and dynamics on local scales, the latter offers the global view necessary to understand the overall interaction of the magnetospheric plasma with the solar wind. Some parts of the Earth's magnetosphere have been remotely sensed, but the majority remains unexplored by this type of measurements. Here we propose a novel and more elegant approach employing remote X-ray imaging techniques, which are now possible thanks to the relatively recent discovery of solar wind charge exchange X-ray emissions in the vicinity of the Earth's magnetosphere. In this article we describe how an appropriately designed and located X-ray telescope, supported by simultaneous in situ measurements of the solar wind, can be used to image the dayside magnetosphere, magnetosheath and bow shock, with a temporal and spatial resolution sufficient to address several key outstanding questions concerning how the solar wind interacts with the Earth's magnetosphere on a global level. Global images of the dayside magnetospheric boundaries require vantage points well outside the magnetosphere. Our studies have led us to propose AXIOM: Advanced X-ray Imaging Of the Magnetosphere, a concept mission using a Vega launcher with a LISA Pathfinder-type Propulsion Module to place the spacecraft in a Lissajous orbit around the Earth Moon L1 point. The model payload consists of an X-ray Wide Field Imager, capable of both imaging and spectroscopy, and an in situ plasma and magnetic field measurement package. This package comprises a Proton-Alpha Sensor, designed to measure the bulk properties of the solar wind, an Ion Composition Analyser, to characterize the minor ion populations in the solar wind that cause charge exchange emission, and a Magnetometer, designed to measure the strength and direction

  17. AXIOM: Advanced X-ray Imaging of the Magnetosphere

    NASA Technical Reports Server (NTRS)

    Branduardi-Raymont, G.; Sembay, S. F.; Eastwood, J. P.; Sibeck, D. G.; Abbey, A.; Brown, P.; Carter, J. A.; Carr, C. M.; Forsyth, C.; Kataria, D.; Kemble, S.; Milan, S. E.; Owen, C. J.; Peacocke, L.; Read, A. M.; Coates, A. J.; Collier, M. R.; Cowley, S. W. H.; Fazakerley, A. N.; Fraser, G. W.; Jones, G. H.; Lallement, R.; Lester, M.; Porter, F. S.; Yeoman, T. K.

    2012-01-01

    Planetary plasma and magnetic field environments can be studied in two complementary ways - by in situ measurements, or by remote sensing. While the former provide precise information about plasma behaviour, instabilities and dynamics on local scales, the latter offers the global view necessary to understand the overall interaction of the magnetospheric plasma with the solar wind. Some parts of the Earth's magnetosphere have been remotely sensed, but the majority remains unexplored by this type of measurements. Here we propose a novel and more elegant approach employing remote X-ray imaging techniques. which are now possible thanks to the relatively recent discovery of solar wind charge exchange X-ray emissions in the vicinity of the Earth's magnetosphere. In this article we describe how an appropriately designed and located. X-ray telescope, supported by simultaneous in situ measurements of the solar wind, can be used to image the dayside magnetosphere, magnetosheath and bow shock. with a temporal and spatial resolution sufficient to address several key outstanding questions concerning how the solar wind interacts with the Earth's magnetosphere on a global level. Global images of the dayside magnetospheric boundaries require vantage points well outside the magnetosphere. Our studies have led us to propose 'AXIOM: Advanced X-ray Imaging Of the Magnetosphere', a concept mission using a Vega launcher with a LISA Pathfinder-type Propulsion Module to place the spacecraft in a Lissajous orbit around the Earth - Moon Ll point. The model payload consists of an X-ray Wide Field Imager, capable of both imaging and spectroscopy, and an in situ plasma and magnetic field measurement package. This package comprises a Proton-Alpha Sensor, designed to measure the bulk properties of the solar wind, an Ion Composition Analyser, to characterize the minor ion populations in the solar wind that cause charge exchange emission, and a Magnetometer, designed to measure the strength and

  18. AXIOM: advanced X-ray imaging of the magnetosphere

    NASA Astrophysics Data System (ADS)

    Branduardi-Raymont, Graziella; Sembay, Steve F.; Eastwood, Jonathan P.; Sibeck, David G.; Abbey, Tony A.; Brown, Patrick; Carter, Jenny A.; Carr, Chris M.; Forsyth, Colin; Kataria, Dhiren; Kemble, Steve; Milan, Steve E.; Owen, Chris J.; Peacocke, Lisa; Read, Andy M.; Coates, Andrew J.; Collier, Michael R.; Cowley, Stan W. H.; Fazakerley, Andrew N.; Fraser, George W.; Jones, Geraint H.; Lallement, Rosine; Lester, Mark; Porter, F. Scott; Yeoman, Tim K.

    2012-04-01

    Planetary plasma and magnetic field environments can be studied in two complementary ways—by in situ measurements, or by remote sensing. While the former provide precise information about plasma behaviour, instabilities and dynamics on local scales, the latter offers the global view necessary to understand the overall interaction of the magnetospheric plasma with the solar wind. Some parts of the Earth's magnetosphere have been remotely sensed, but the majority remains unexplored by this type of measurements. Here we propose a novel and more elegant approach employing remote X-ray imaging techniques, which are now possible thanks to the relatively recent discovery of solar wind charge exchange X-ray emissions in the vicinity of the Earth's magnetosphere. In this article we describe how an appropriately designed and located X-ray telescope, supported by simultaneous in situ measurements of the solar wind, can be used to image the dayside magnetosphere, magnetosheath and bow shock, with a temporal and spatial resolution sufficient to address several key outstanding questions concerning how the solar wind interacts with the Earth's magnetosphere on a global level. Global images of the dayside magnetospheric boundaries require vantage points well outside the magnetosphere. Our studies have led us to propose `AXIOM: Advanced X-ray Imaging of the Magnetosphere', a concept mission using a Vega launcher with a LISA Pathfinder-type Propulsion Module to place the spacecraft in a Lissajous orbit around the Earth-Moon L1 point. The model payload consists of an X-ray Wide Field Imager, capable of both imaging and spectroscopy, and an in situ plasma and magnetic field measurement package. This package comprises a Proton-Alpha Sensor, designed to measure the bulk properties of the solar wind, an Ion Composition Analyser, to characterise the minor ion populations in the solar wind that cause charge exchange emission, and a Magnetometer, designed to measure the strength and

  19. The solar wind-magnetosphere energy coupling and magnetospheric disturbances

    NASA Technical Reports Server (NTRS)

    Akasofu, S.-I.

    1980-01-01

    Energy coupling between the solar wind and the magnetosphere is examined and the influence of this coupling on magnetospheric disturbances is discussed. Following a review of the components of the total energy production rate of the magnetosphere and progress in the study of solar wind-magnetosphere correlations, the derivation of the solar wind-magnetosphere energy coupling function, which has been found to correlate well with the total magnetospheric energy production rate, is presented. Examination of the relations between the energy coupling function and the type of magnetic disturbance with which it is associated indicates that magnetic storms with a large sudden storm commencement and a weak main phase are associated with small energy coupling, while values of the coupling function greater than 5 x 10 to the 18th to 10 to the 19th erg/sec are required for the development of a major geomagnetic storm. The magnetospheric substorm is shown to be a direct result of increased solar wind-magnetosphere energy coupling rather than the sudden conversion of stored magnetic energy. Finally, it is indicated that at energy couplings greater than 10 to the 19th erg/sec, the positive feedback process responsible for substorms breaks down, resulting in the abnormal growth of the ring current.

  20. Magnetospheric state of sawtooth events

    NASA Astrophysics Data System (ADS)

    Fung, Shing F.; Tepper, Julia A.; Cai, Xia

    2016-08-01

    Magnetospheric sawtooth events, first identified in the early 1990s, are named for their characteristic appearance of multiple quasiperiodic intervals of slow decrease followed by sharp increase of proton differential energy fluxes in the geosynchronous region. The successive proton flux oscillations have been interpreted as recurrences of stretching and dipolarization of the nightside geomagnetic field. Due to their often extended intervals with 2-10 cycles, sawteeth occurrences are sometimes referred to as a magnetospheric mode. While studies of sawtooth events over the past two decades have yielded a wealth of information about such events, the magnetospheric state conditions for the occurrence of sawtooth events and how sawtooth oscillations may depend on the magnetospheric state conditions remain unclear. In this study, we investigate the characteristic magnetospheric state conditions (specified by Psw interplanetary magnetic field (IMF) Btot, IMF Bz Vsw, AE, Kp and Dst, all time shifted with respect to one another) associated with the intervals before, during, and after sawteeth occurrences. Applying a previously developed statistical technique, we have determined the most probable magnetospheric states propitious for the development and occurrence of sawtooth events, respectively. The statistically determined sawtooth magnetospheric state has also been validated by using out-of-sample events, confirming the notion that sawtooth intervals might represent a particular global state of the magnetosphere. We propose that the "sawtooth state" of the magnetosphere may be a state of marginal stability in which a slight enhancement in the loading rate of an otherwise continuous loading process can send the magnetosphere into the marginally unstable regime, causing it to shed limited amount of energy quickly and return to the marginally stable regime with the loading process continuing. Sawtooth oscillations result as the magnetosphere switches between the marginally

  1. Modeling ionospheric electron precipitation due to wave particle scattering in the magnetosphere and the feedback effect on the magnetospheric dynamics

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Jordanova, V.; Ridley, A. J.; Albert, J.; Horne, R. B.; Jeffery, C. A.

    2015-12-01

    Electron precipitation down to the atmosphere caused by wave-particle scattering in the magnetosphere contribute significantly to the enhancement of auroral ionospheric conductivity. Global MHD models that are incapable of capturing kinetic physics in the inner magnetosphere usually adopt MHD parameters to specify the precipitation flux to estimate auroral conductivity, hence losing self-consistency in the global circulation of the magnetosphere-ionosphere system. In this study we improve the coupling structure in global models by connecting the physics-based (wave-particle scattering) electron precipitation with the ionospheric electrodynamics and investigate the feedback effect on the magnetospheric dynamics. We use BATS-R-US coupled with a kinetic ring current model RAM-SCB that solves pitch angle dependent particle distributions to study the global circulation dynamics during the Jan 25-26, 2013 storm event. Following tail injections, we found enhanced precipitation number and energy fluxes of tens of keV electrons being scattered into loss cone due to interactions with enhanced chorus and hiss waves in the magnetosphere. This results in a more profound auroral conductance and larger electric field imposing on the plasma transport in the magnetosphere. We also compared our results with previous methods in specifying the auroral conductance, such as empirical relation used in Ridley et al. (2004). It is found that our physics-based method develops a larger convection electric field in the near-Earth region and therefore leads to a more intense ring current.

  2. Solar wind entry into the high-latitude terrestrial magnetosphere during geomagnetically quiet times.

    PubMed

    Shi, Q Q; Zong, Q-G; Fu, S Y; Dunlop, M W; Pu, Z Y; Parks, G K; Wei, Y; Li, W H; Zhang, H; Nowada, M; Wang, Y B; Sun, W J; Xiao, T; Reme, H; Carr, C; Fazakerley, A N; Lucek, E

    2013-01-01

    An understanding of the transport of solar wind plasma into and throughout the terrestrial magnetosphere is crucial to space science and space weather. For non-active periods, there is little agreement on where and how plasma entry into the magnetosphere might occur. Moreover, behaviour in the high-latitude region behind the magnetospheric cusps, for example, the lobes, is poorly understood, partly because of lack of coverage by previous space missions. Here, using Cluster multi-spacecraft data, we report an unexpected discovery of regions of solar wind entry into the Earth's high-latitude magnetosphere tailward of the cusps. From statistical observational facts and simulation analysis we suggest that these regions are most likely produced by magnetic reconnection at the high-latitude magnetopause, although other processes, such as impulsive penetration, may not be ruled out entirely. We find that the degree of entry can be significant for solar wind transport into the magnetosphere during such quiet times. PMID:23403567

  3. Solar wind entry into the high-latitude terrestrial magnetosphere during geomagnetically quiet times.

    PubMed

    Shi, Q Q; Zong, Q-G; Fu, S Y; Dunlop, M W; Pu, Z Y; Parks, G K; Wei, Y; Li, W H; Zhang, H; Nowada, M; Wang, Y B; Sun, W J; Xiao, T; Reme, H; Carr, C; Fazakerley, A N; Lucek, E

    2013-01-01

    An understanding of the transport of solar wind plasma into and throughout the terrestrial magnetosphere is crucial to space science and space weather. For non-active periods, there is little agreement on where and how plasma entry into the magnetosphere might occur. Moreover, behaviour in the high-latitude region behind the magnetospheric cusps, for example, the lobes, is poorly understood, partly because of lack of coverage by previous space missions. Here, using Cluster multi-spacecraft data, we report an unexpected discovery of regions of solar wind entry into the Earth's high-latitude magnetosphere tailward of the cusps. From statistical observational facts and simulation analysis we suggest that these regions are most likely produced by magnetic reconnection at the high-latitude magnetopause, although other processes, such as impulsive penetration, may not be ruled out entirely. We find that the degree of entry can be significant for solar wind transport into the magnetosphere during such quiet times.

  4. Magnetospheric Convection as a Global Force Phenomenon

    NASA Astrophysics Data System (ADS)

    Siscoe, G.

    2007-12-01

    Since 1959 when Thomas Gold showed that motions in the magnetosphere were possible despite plasma being frozen to the magnetic field, magnetospheric convection as a subject of study has gone through several stages (to be reviewed) leading to a recent one that integrates convection into a global system of balance of forces. This area of research has opened by focusing on the region 1 current system as a carrier of force between the solar wind and the ionosphere/thermosphere fluid. An important result to emerge from it is the realization that the force that the solar wind delivers to the magnetosphere in being transferred by the region 1 current system to the ionosphere/thermosphere fluid is amplified by about an order of magnitude. (Vasyliunas refers to this as "leveraging.") The apparent violation of Newton's Third Law results from the main participants in the force balance being not the solar wind force but the JxB force on the ionosphere/thermosphere fluid and the mu-dot-grad-B force on the Earth's dipole. This talk extends the study by considering the global force-balance problem separately for the Pedersen current (a completion of the region 1 problem), the Hall current (thus introducing the region 2 current system), and the Cowling current (bringing in the substorm current wedge). The approach is through representing the ionosphere/thermosphere fluid by the shallow water equations. Novelties that result include force balance by means of tidal bulges and tidal bores.

  5. Analysis of the Simple Inner Magnetosphere Model

    NASA Astrophysics Data System (ADS)

    Mabie, J. J.; Garner, T.; Kihn, E. A.

    2006-12-01

    The Simple Inner Magnetosphere Model (SIMM) is a particle trace model designed to specify magnetospheric particle fluxes for particles up to 100 keV at geosynchronous orbit. Based on the Magnetospheric Specification Model (MSM), SIMM is designed to take advantage of the improvements in empirical and data assimilative modeling since initial development of the MSM. In particular, SIMM uses electric potential patterns created by the Assimilative Mapping of Ionospheric Electrodynamics (AMIE) technique as the electric field driver for the semi-empirical plasma sheet model. The SIMM model output provides a valuable tool for evaluation of spacecraft exposures, calibration of particle measurement instrumentation, biological effects on organisms on- board spacecraft, and provides an advanced tool for space weather modeling. The model output is being archived at the National Geophysical Data Center, and is available for viewing through the Space Physics Interactive Data Resource (SPIDR). We will present the model verification results and compare them to output from the MSM and present the geomagnetic conditions under which using AMIE for the electrodynamics provides more reliable results than direct input from remote sensing data.

  6. Turbulent Fluctuations in the Magnetosheath and Magnetospheric Dynamics

    NASA Astrophysics Data System (ADS)

    Antonova, Elizaveta; Ovchinnikov, Ilya; Stepanova, Marina; Znatkova, Svetlana; Kirpichev, Igor; Pulinets, Maria

    2016-07-01

    One of the main problems of the magnetospheric dynamics is its rather limited predictability based on only solar wind and interplanetary magnetic field (IMF) parameters. This is connected as with the comparatively high level of the inner magnetospheric turbulence as with the great variability of the conditions at the magnetospheric boundary. The outer baundary conditions, which determine the magnetospheric dynamics, are formed in the magnetosheath near the magnetopause. The main property of the Earth's magnetosheath is a very high level of observed fluctuations of plasma and magnetic field parameters. These fluctuations are much larger than solar wind fluctuations. We argue that the comparatively low correlation of interplanetary magnetic field and magnetic field before the magnetopause can explane comparatively low correlation coefficients of geomagnetic indaxes with the solar wind and IMF parameters. One of the main difficulty of the analysis of magnetosheath properties is connected with using the frozen-in approximation. We analyze the applicability of such approximation taking into account the existence of high level of turbulence in the magnetosheath including electrostatic fluctuations. We show that the high level of turbulence creates the real difficulty for the suggestion of the validity of the frozen in condition. We analyze the condition of pressure balance at the magnetopause as the main condition determining the magnetosheath plasma penetration inside the magnetosphere and discuss its role in the formation of geomagnetic activity.

  7. Observations & modeling of solar-wind/magnetospheric interactions

    NASA Astrophysics Data System (ADS)

    Hoilijoki, Sanni; Von Alfthan, Sebastian; Pfau-Kempf, Yann; Palmroth, Minna; Ganse, Urs

    2016-07-01

    The majority of the global magnetospheric dynamics is driven by magnetic reconnection, indicating the need to understand and predict reconnection processes and their global consequences. So far, global magnetospheric dynamics has been simulated using mainly magnetohydrodynamic (MHD) models, which are approximate but fast enough to be executed in real time or near-real time. Due to their fast computation times, MHD models are currently the only possible frameworks for space weather predictions. However, in MHD models reconnection is not treated kinetically. In this presentation we will compare the results from global kinetic (hybrid-Vlasov) and global MHD simulations. Both simulations are compared with in-situ measurements. We will show that the kinetic processes at the bow shock, in the magnetosheath and at the magnetopause affect global dynamics even during steady solar wind conditions. Foreshock processes cause an asymmetry in the magnetosheath plasma, indicating that the plasma entering the magnetosphere is not symmetrical on different sides of the magnetosphere. Behind the bow shock in the magnetosheath kinetic wave modes appear. Some of these waves propagate to the magnetopause and have an effect on the magnetopause reconnection. Therefore we find that kinetic phenomena have a significant role in the interaction between the solar wind and the magnetosphere. While kinetic models cannot be executed in real time currently, they could be used to extract heuristics to be added in the faster MHD models.

  8. Some Studies of Structure and Dynamics of Jupiter's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Khurana, Krishan K.; Beebe, Reta (Technical Monitor)

    2002-01-01

    The purpose of this investigation was to establish the relative roles of solar wind and the internal plasma processes in shaping the structure and dynamics of Jupiter's magnetosphere. We carried out several investigations to establish these roles. Three new research papers have resulted from this work. In the following we provide brief summaries of the main findings.

  9. Electrostatic waves and the strong diffusion of magnetospheric electrons

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.; Ashour-Abdalla, M.

    1982-01-01

    A comprehensive review of electron pitch angle scattering in the magnetosphere and the plasma waves responsible for it is presented, emphasizing the strong diffusion of diffuse auroral electrons by electrostatic electron cyclotron harmonic waves. The weak diffusion of energetic radiation belt electrons within the plasmasphere is reviewed briefly. Several new suggestions concerning the quasilinear diffusion from and saturation of electrostatic waves are included.

  10. Los Alamos offers Fellowships

    NASA Astrophysics Data System (ADS)

    Los Alamos National Laboratory in New Mexico is calling for applications for postdoctoral appointments and research fellowships. The positions are available in geoscience as well as other scientific disciplines.The laboratory, which is operated by the University of California for the Department of Energy, awards J. Robert Oppenheimer Research Fellowships to scientists that either have or will soon complete doctoral degrees. The appointments are for two years, are renewable for a third year, and carry a stipend of $51,865 per year. Potential applicants should send a resume or employment application and a statement of research goals to Carol M. Rich, Div. 89, Human Resources Development Division, MS P290, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 by mid-November.

  11. Saturn's Magnetosphere, Rings, and Inner Satellites.

    PubMed

    VAN Allen, J A; Thomsen, M F; Randall, B A; Rairden, R L; Grosskreutz, C L

    1980-01-25

    Our 31 August to 5 September 1979 observations together with those of the other Pioneer 11 investigators provide the first credible discovery of the magnetosphere of Saturn and many detailed characteristics thereof. In physical dimensions and energetic charged particle population, Saturn's magnetosphere is intermediate between those of Earth and Jupiter. In terms of planetary radii, the scale of Saturn's magnetosphere more nearly resembles that of Earth and there is much less inflation by entrapped plasma than in the case at Jupiter. The orbit of Titan lies in the outer fringes of the magnetosphere. Particle angular distributions on the inbound leg of the trajectory (sunward side) have a complex pattern but are everywhere consistent with a dipolar magnetic field approximately perpendicular to the planet's equator. On the outbound leg (dawnside) there are marked departures from this situation outside of 7 Saturn radii (Rs), suggesting an equatorial current sheet having both longitudinal and radial components. The particulate rings and inner satellites have a profound effect on the distribution of energetic particles. We find (i) clear absorption signatures of Dione and Mimas; (ii) a broad absorption region encompassing the orbital radii of Tethys and Enceladus but probably attributable, at least in part, to plasma physical effects; (iii) no evidence for Janus (1966 S 1) (S 10) at or near 2.66 Rs; (iv) a satellite of diameter greater, similar 170 kilometers at 2.534 R(s) (1979 S 2), probably the same object as that detected optically by Pioneer 11 (1979 S 1) and previously by groundbased telescopes (1966 S 2) (S 11); (v) a satellite of comparable diameter at 2.343 Rs (1979 S 5); (vi) confirmation of the F ring between 2.336 and 2.371 Rs; (vii) confirmation of the Pioneer division between 2.292 and 2.336 Rs; (viii) a suspected satellite at 2.82 Rs (1979 S 3); (ix) no clear evidence for the E ring though its influence may be obscured by stronger effects; and (x) the

  12. Charged particle distributions in Jupiter's magnetosphere

    NASA Astrophysics Data System (ADS)

    Divine, N.; Garrett, H. B.

    1983-09-01

    In situ data from the Pioneer and Voyager spacecraft, supplemented by earth-based observations and theoretical considerations, are used as the basis for the present quantitative, compact model of the 1 eV-several MeV charged particle distribution in the Jovian magnetosphere. The thermal plasma parameters of convection speed, number density, and characteristic energy, are specified as functions of position for electrons and for the ion species H(+), O(+), O(2+), S(+), S(2+), S(3+), and Na(+). Major features of the magnetic field, thermal plasma, and trapped particle distributions, are modeled and results for each plasma region are compared with observed spectra. Comparisons show that the model represents the data to within a factor of 2 + or - 1, except where time variations are significant. Practical applications of the model to spacecraft near Jupiter are given.

  13. Equatorial magnetospheric particles and auroral precipitations

    NASA Astrophysics Data System (ADS)

    McIlwain, C. E.

    The injection boundary beyond which fresh hot plasma appears each magnetospheric substorm is generalized and extended to circle the Earth. The concept of an auroral shell representing the inner limit of active auroral processes is introduced. It is proposed that at low altitudes, this shell marks the equatorward edge of the auroral ovals, and that at high altitudes, it marks the injection boundary. The auroral ring is defined as the intersection of the auroral shell with the magnetic equator. A simple equation for computing the expected location of the auroral ring as a function of local time and magnetic disturbance level is obtained. Tests indicate that the model is valid and reasonably accurate.

  14. Unresolved Issues With Inner Magnetosphere-Ionosphere Coupling

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Khazanov, G.

    2004-01-01

    Dipolarization and the release of stored magnetic energy is strongly evident in the energized plasma sheet electrons and ions injected earthward from the magnetotail. While some of these plasma are presumed lost into the dayside magnetosheath, much of the energy is dissipated into the ionosphere through electric currents, through collisions into low energy plasma, and into plasma waves, which then go on to heat and energize plasma of the inner magnetosphere. Many mechanisms for the transfer of energy and the consequences to inner magnetospheric plasma populations have been proposed. The sophistication of theoretical models to represent the interdependencies between plasma populations is rapidly increasing. However without the restraint and reality imposed on theory by relevant measurements, the degree to which specific mechanisms participate in the exchange of energy as a function of location and time cannot be known. ORBITALS offers this capability. Some of the outstanding problems in inner magnetospheric physics and the opportunities presented by the ORBITAL concept to solve problems will be discussed.

  15. Force balance in the magnetospheres of Jupiter and Saturn

    SciTech Connect

    Mcnutt, R.L. Jr.

    1983-01-01

    Spacecraft measurements of the plasma populations and magnetic fields near Jupiter and Saturn have revealed that large magnetospheres surround both planets. Magnetic field measurements have indicated closed field line topologies in the dayside magnetospheres of both planets while plasma instruments have shown these regions to be populated by both hot and cold plasma components convected azimuthally in the sense of planetary rotation. By using published data from the Voyager Plasma Science (PLS), Low Energy Charged Particle (LECP), and Magnetometer (MAG) instruments, it is possible to investigate the validity of the time stationary MHD momentum equation in the middle magnetospheres of Jupiter and Saturn. At Saturn, the hot plasma population is negligible in the dynamic sense and the centrifugal force of the cold rotating plasma appears to balance the Lorentz force. At Jupiter, the centrifugal force balances about 25 percent of the Lorentz force. The remaining inward Lorentz force is balanced by pessure gradients in the hot, high-beta plasma of the Jovian magnetodisk.

  16. The magnetosphere of Saturn

    NASA Astrophysics Data System (ADS)

    Beard, D. B.; Gast, M. A.

    1987-06-01

    Pioneer 11 and Voyager 1 and 2 magnetic field measurements over the entire flyby of Saturn's magnetic field have been analyzed by fitting a magnetospheric dipole field (i.e., a dipole field plus the field due to currents in the magnetopause), higher moments of the internal field aligned with the dipole along the rotation axis, and the field due to an equatorial sheet current to the magnetic measurements. A dipole moment of 21,431 nT R(s) exp 3, a quadrupole moment of 2403 nT R(s) exp 4, an octopole moment of 2173 nT R(s) exp 5, and an equatorial sheet current of half thickness 2.0 R(s) from about 5 R(s) to the solar edge of the magnetopause, fit the measurements over the entire magnetosphere with an rms deviation of 3.2 nT where R(s) is the planet radius, 66,330 km. The primary feature of the present analysis is the explicit inclusion of the calculated magnetopause current field, which reduces the overall rms deviation over the entire flyby from sigma values of 4.7 and 5.9 nT, using previous models, to 3.2 nT using the present.

  17. Black hole magnetospheres

    SciTech Connect

    Nathanail, Antonios; Contopoulos, Ioannis

    2014-06-20

    We investigate the structure of the steady-state force-free magnetosphere around a Kerr black hole in various astrophysical settings. The solution Ψ(r, θ) depends on the distributions of the magnetic field line angular velocity ω(Ψ) and the poloidal electric current I(Ψ). These are obtained self-consistently as eigenfunctions that allow the solution to smoothly cross the two singular surfaces of the problem, the inner light surface inside the ergosphere, and the outer light surface, which is the generalization of the pulsar light cylinder. Magnetic field configurations that cross both singular surfaces (e.g., monopole, paraboloidal) are uniquely determined. Configurations that cross only one light surface (e.g., the artificial case of a rotating black hole embedded in a vertical magnetic field) are degenerate. We show that, similar to pulsars, black hole magnetospheres naturally develop an electric current sheet that potentially plays a very important role in the dissipation of black hole rotational energy and in the emission of high-energy radiation.

  18. The Inclination Angle and Evolution of the Braking Index of Pulsars with Plasma-filled Magnetosphere: Application to the High Braking Index of PSR J1640-4631

    NASA Astrophysics Data System (ADS)

    Ekşi, K. Y.; Andaç, I. C.; Çıkıntoğlu, S.; Gügercinoğlu, E.; Vahdat Motlagh, A.; Kızıltan, B.

    2016-05-01

    The recently discovered rotationally powered pulsar PSR J1640-4631 is the first to have a braking index measured, with high enough precision, that is greater than 3. An inclined magnetic rotator in vacuum or plasma would be subject not only to spin-down but also to an alignment torque. The vacuum model can address the braking index only for an almost orthogonal rotator, which is incompatible with the single-peaked pulse profile. The magnetic dipole model with the corotating plasma predicts braking indices between 3 and 3.25. We find that the braking index of 3.15 is consistent with two different inclination angles, 18.°5 ± 3° and 56° ± 4°. The smaller angle is preferred given that the pulse profile has a single peak and the radio output of the source is weak. We infer the change in the inclination angle to be at the rate -0.°23 per century, three times smaller in absolute value than the rate recently observed for the Crab pulsar.

  19. Statistical Mapping of Bursty Bulk Flows in the Magnetosphere Supported by the Virtual Magnetospheric Observatory

    NASA Astrophysics Data System (ADS)

    Merka, J.; Sibeck, D. G.; Narock, T. W.

    2011-12-01

    Fast transient plasma flows in the magnetosphere are usually associated with magnetic reconnection and/or rapid changes in the magnetospheric configuration. Using a common methodology to analyze data from the THEMIS satellites we map the statistical occurrence rate of bursty bulk flows (BBFs) in the magnetosphere. Such a task involves obtaining and processing of large amount of data (5 THEMIS satellites provide measurements since spring of 2007), then writing custom code and searching for intervals of interests. The existence of a Virtual Magnetospheric Observatory (VMO) offers, however, a less laborious alternative. We discuss how the VMO made our research faster and easier and also point out the inherent limitations of the VMO use. The VMO's goal is to help researches by creating a single point of uniform discovery, access, and use of magnetospheric data. Available data can be searched based on various criteria as, for example, spatial location, time of observation, measurement type, parameter values, etc. The results can then be saved, downloaded or displayed as, for example, spatial-temporal plots that quickly reveal where and how often was the searched-for phenomenon observed. Our analysis revealed that the BBFs were found more frequently with increasing distance from Earth and the peak occurrence rate of earthward BBFs was at Xgsm = 29 Re and Ygsm = -2 Re. The tailward BBFs were very rarely observed even between Xgsm = -20 and -30 Re but they occurred over a wide range of local times. The positions with highest BBF occurrence rates differ from previous reports that used IRM and ISEE2 data.

  20. Ion Acceleration at Injection Fronts in the Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Ukhorskiy, A. Y.; Sitnov, M. I.; Gkioulidou, M.; Merkin, V. G.; Artemyev, A.

    2014-12-01

    During geomagnetic storms a large volume of ions are transported from the magnetotail deep into the inner magnetosphere leading to ion acceleration to the energies of tens to hundreds keV. Energized ions become the dominant source of plasma pressure in the inner magnetosphere. Hot plasma pressure drives large electrical currents which determine global electrodynamics and coupling of the inner magnetosphere-ionosphere system. Recent analysis of ion measurements from the RBSPICE experiment of the Van Allen Probes mission showed that the buildup of plasma pressure in the inner magnetosphere largely occurs in the form of localized discrete injections similar to dipolarization fronts observed in the magnetotail. According to previous studies, in the magnetotail ions can be rapidly energized to ~100 keV in the process of nonlinear trapping enabled by magnetic field reconnection and/or an electrostatic field ahead of dipolarization fronts. It is not clear whether similar processes can operate in the inner magnetosphere where the ambient magnetic field is much higher and the propagation speeds of injection fronts are much lower. The goal of this paper is to investigate the mechanisms of ion energization at injection fronts in the inner magnetosphere with the use three-dimensional test-particle simulations and the comparison with ion measurements at RBSPICE. For this purpose we construct an analytical model of the electric and magnetic field perturbations associated with the injection fronts which are superimposed onto the ambient magnetic field. The model reproduces characteristic properties of injection fronts derived from spacecraft measurements and particle-in-cell kinetic simulations.

  1. Multipoint Observations of Magnetospheric Processes Relevant to the Substorm Events

    NASA Astrophysics Data System (ADS)

    Sibeck, D. G.; Gutynska, O.; Fok, M. C. H.

    2015-12-01

    We present several case studies of simultaneous multipoint observations of hot ion (~30-2200 keV) injections that occur during substorms in the day- and night-side of magnetosphere from THEMIS, RBSP and MMS probes. We complement them with observations of magnetic field signatures to estimate time delays of earthward plasma flows at multiple probes. We discuss the mechanisms that trigger substorm onset comparing the observations with inner plasma sheet simulations.

  2. Thermal structure of ions and electrons in Saturn's inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Barbosa, D. D.

    1993-06-01

    A theoretical model of thermal ion and electron temperatures in Saturn's inner magnetospheres is presented which is based on a fast model of radial diffusive plasma transport. It is shown that the ion and electron temperatures and the latitudinal behavior of temperatures are consistent with the fast diffusion hypothesis, assuming that O(+) is the dominant ion and that its source is the Dione-Tethys plasma torus. The present results reinforce the conclusions of Barbosa (1990).

  3. Compressional ULF waves in the outer magnetosphere. I - Statistical study

    NASA Technical Reports Server (NTRS)

    Zhu, Xiaoming; Kivelson, Margaret G.

    1991-01-01

    Statistical properties of the ULF waves of period 2-20 min in the outer magnetosphere were studied using 14 months of magnetic field and plasma data obtained by the ISEE 1 and 2 spacecraft. It was found that intense compressional waves with typical wave periods of 10 min are a persistent feature near the two flanks of the magnetosphere; they are mainly polarized in a meridian plane with comparable compressional and transverse amplitudes and have larger amplitudes at higher latitudes. Transverse waves polarized in the azimuthal direction are found to be mainly a nightside phenomenon, and they seem to be associated with substorm activity.

  4. The Los Alamos primer

    SciTech Connect

    Serber, R.

    1992-01-01

    This book contains the 1943 lecture notes of Robert Serber. Serber was a protege of J. Robert Oppenheimer and member of the team that built the first atomic bomb - reveal what the Los Alamos scientists knew, and did not know, about the terrifying weapon they were building.

  5. Transport of magnetic flux and mass in Saturn's inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Lai, H. R.; Russell, C. T.; Jia, Y. D.; Wei, H. Y.; Dougherty, M. K.

    2016-04-01

    It is well accepted that cold plasma sourced by Enceladus is ultimately lost to the solar wind, while the magnetic flux convecting outward with the plasma must return to the inner magnetosphere. However, whether the interchange or reconnection, or a combination of the two processes is the dominant mechanism in returning the magnetic flux is still under debate. Initial Cassini observations have shown that the magnetic flux returns in the form of flux tubes in the inner magnetosphere. Here we investigate those events with 10 year Cassini magnetometer data and confirm that their magnetic signatures are determined by the background plasma environments: inside (outside) the plasma disk, the returning magnetic field is enhanced (depressed) in strength. The distribution, temporal variation, shape, and transportation rate of the flux tubes are also characterized. The flux tubes break into smaller ones as they convect in. The shape of their cross section is closer to circular than fingerlike as produced in the simulations based on the interchange mechanism. In addition, no sudden changes in any flux tube properties can be found at the "boundary" which has been claimed to separate the reconnection and interchange-dominant regions. On the other hand, reasonable cold plasma loss rate and outflow velocity can be obtained if the transport rate of the magnetic flux matches the reconnection rate, which supports reconnection alone as the dominant mechanism in unloading the cold plasma from the inner magnetosphere and returning the magnetic flux from the tail.

  6. Speed of Compression of Magnetosphere by CME Clouds

    NASA Astrophysics Data System (ADS)

    Nanan, B.; Alleyne, H.; Walker, S.; Lucek, E.; Reme, H.; Fazakerley, A.

    2007-12-01

    The multi-point Cluster observations provide the opportunity to study the speed of compression of the magnetosphere at the impact of extreme solar events such as CMEs. The four-point Cluster FGM (high resolution), CIS and PEACE data during the passage of 17 CME clouds during 2001-2005, together with models of magnetosphere and magnetopause, are used to obtain the speed of compression of the dayside magnetosphere. The study shows that the speed of compression (within three seconds of impact) increases with the dynamic pressure of the CMEs, and that this speed exceeds the speed of the CMEs in some (five) cases (suggesting impulsive response) when the dynamic pressure of the CMEs exceed about 20 nPa. The magnetosphere is also found to undergo damped oscillations for about two minutes after the impact of some extreme CMEs (24 October 2003 and 29 October 2003) until the magnetic pressure outside and inside the magnetopause balances. The speed of compression is also found to increase with the negative IMF Bz of the CME suggesting that part of the compression is due to CME pressure and another part is due to magnetic reconnection. The plasma data (PEACE and CIS), though of low resolution (4 seconds), are being analysed to check if the magnetic field and plasma move together or do they undergo differential motion (important for magnetic field-plasma interactions at short time scales).

  7. Numerical simulation of injection/dispersion events in Saturn's inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Hill, T. W.; Liu, X.

    2013-05-01

    In Saturn's rotation-driven magnetosphere, radial transport of plasma occurs through a time-variable pattern of wider outflow channels containing cool, dense plasma from interior sources, alternating with narrower inflow channels containing hot, tenuous plasma from the outer magnetosphere. This pattern is evident in the results of numerical simulations using the Rice Convection Model, including a broadly distributed, continuously active source of cool plasma and the effects of the associated pick-up current, along with the centrifugal and Coriolis forces and the pressure-gradient force. We have recently incorporated a source of hot, tenuous plasma at the outer simulation boundary, and have successfully simulated the V-shaped injection/dispersion signatures in linear energy-time spectrograms that are observed by the Cassini Plasma Spectrometer (CAPS) on every pass through the inner magnetosphere. These drift dispersion signatures are the "smoking gun" of the centrifugally driven interchange transport process.

  8. The Los Alamos Space Science Outreach (LASSO) Program

    NASA Astrophysics Data System (ADS)

    Barker, P. L.; Skoug, R. M.; Alexander, R. J.; Thomsen, M. F.; Gary, S. P.

    2002-12-01

    The Los Alamos Space Science Outreach (LASSO) program features summer workshops in which K-14 teachers spend several weeks at LANL learning space science from Los Alamos scientists and developing methods and materials for teaching this science to their students. The program is designed to provide hands-on space science training to teachers as well as assistance in developing lesson plans for use in their classrooms. The program supports an instructional model based on education research and cognitive theory. Students and teachers engage in activities that encourage critical thinking and a constructivist approach to learning. LASSO is run through the Los Alamos Science Education Team (SET). SET personnel have many years of experience in teaching, education research, and science education programs. Their involvement ensures that the teacher workshop program is grounded in sound pedagogical methods and meets current educational standards. Lesson plans focus on current LANL satellite projects to study the solar wind and the Earth's magnetosphere. LASSO is an umbrella program for space science education activities at Los Alamos National Laboratory (LANL) that was created to enhance the science and math interests and skills of students from New Mexico and the nation. The LASSO umbrella allows maximum leveraging of EPO funding from a number of projects (and thus maximum educational benefits to both students and teachers), while providing a format for the expression of the unique science perspective of each project.

  9. The Extended Pulsar Magnetosphere

    NASA Technical Reports Server (NTRS)

    Constantinos, Kalapotharakos; Demosthenes, Kazanas; Ioannis, Contopoulos

    2012-01-01

    We present the structure of the 3D ideal MHD pulsar magnetosphere to a radius ten times that of the light cylinder, a distance about an order of magnitude larger than any previous such numerical treatment. Its overall structure exhibits a stable, smooth, well-defined undulating current sheet which approaches the kinematic split monopole solution of Bogovalov 1999 only after a careful introduction of diffusivity even in the highest resolution simulations. It also exhibits an intriguing spiral region at the crossing of two zero charge surfaces on the current sheet, which shows a destabilizing behavior more prominent in higher resolution simulations. We discuss the possibility that this region is physically (and not numerically) unstable. Finally, we present the spiral pulsar antenna radiation pattern.

  10. The Magnetospheric Multiscale Constellation

    NASA Astrophysics Data System (ADS)

    Tooley, C. R.; Black, R. K.; Robertson, B. P.; Stone, J. M.; Pope, S. E.; Davis, G. T.

    2016-03-01

    The Magnetospheric Multiscale (MMS) mission is the fourth mission of the Solar Terrestrial Probe (STP) program of the National Aeronautics and Space Administration (NASA). The MMS mission was launched on March 12, 2015. The MMS mission consists of four identically instrumented spin-stabilized observatories which are flown in formation to perform the first definitive study of magnetic reconnection in space. The MMS mission was presented with numerous technical challenges, including the simultaneous construction and launch of four identical large spacecraft with 100 instruments total, stringent electromagnetic cleanliness requirements, closed-loop precision maneuvering and pointing of spinning flexible spacecraft, on-board GPS based orbit determination far above the GPS constellation, and a flight dynamics design that enables formation flying with separation distances as small as 10 km. This paper describes the overall mission design and presents an overview of the design, testing, and early on-orbit operation of the spacecraft systems and instrument suite.

  11. Magnetosphere of Uranus

    SciTech Connect

    Ness, N.F.

    1986-12-01

    The magnetosphere and magnetic field of Uranus are analyzed using Voyager 2 data. It is observed that the magnetic axis of Uranus is tilted 60 deg from its rotation axis; the magnetic dipole center is displaced almost 7700 km from the center of the planet; the magnetic field intensity varies over its surface between 24,000-69,000 gammas; and the rotation rate of the planet is 17.24 hours. The dynamo generation of the planetary magnetic field is examined. Consideration is given to the auroral activity, magnetic tails, moons, and radiation belts of charged particles of Uranus. The significance of the large tilt and offset magnetic axis for the interior of Uranus is discussed.

  12. A pincer-shaped plasma sheet at Uranus

    NASA Astrophysics Data System (ADS)

    Hammond, C. Max; Walker, Raymond J.; Kivelson, Margaret G.

    1990-09-01

    An MHD simulation of the terrestrial magnetosphere, rescaled to represent the Uranian magnetotail, is carried out. The 3p immersion can be explained in terms of possible extreme departures from average plasma sheet shapes in the Uranian magnetosphere. The orientation of the Uranian dipole and rotation axes produce a dynamically curved plasma sheet which is an unusual feature of the Uranian magnetosphere.

  13. A pincer-shaped plasma sheet at Uranus

    NASA Technical Reports Server (NTRS)

    Hammond, C. Max; Walker, Raymond J.; Kivelson, Margaret G.

    1990-01-01

    An MHD simulation of the terrestrial magnetosphere, rescaled to represent the Uranian magnetotail, is carried out. The 3p immersion can be explained in terms of possible extreme departures from average plasma sheet shapes in the Uranian magnetosphere. The orientation of the Uranian dipole and rotation axes produce a dynamically curved plasma sheet which is an unusual feature of the Uranian magnetosphere.

  14. Views of Earth's magnetosphere with the image satellite.

    PubMed

    Burch, J L; Mende, S B; Mitchell, D G; Moore, T E; Pollock, C J; Reinisch, B W; Sandel, B R; Fuselier, S A; Gallagher, D L; Green, J L; Perez, J D; Reiff, P H

    2001-01-26

    The IMAGE spacecraft uses photon and neutral atom imaging and radio sounding techniques to provide global images of Earth's inner magnetosphere and upper atmosphere. Auroral imaging at ultraviolet wavelengths shows that the proton aurora is displaced equatorward with respect to the electron aurora and that discrete auroral forms at higher latitudes are caused almost completely by electrons. Energetic neutral atom imaging of ions injected into the inner magnetosphere during magnetospheric disturbances shows a strong energy-dependent drift that leads to the formation of the ring current by ions in the several tens of kiloelectron volts energy range. Ultraviolet imaging of the plasmasphere has revealed two unexpected features-a premidnight trough region and a dayside shoulder region-and has confirmed the 30-year-old theory of the formation of a plasma tail extending from the duskside plasmasphere toward the magnetopause.

  15. Multipoint measurements of energetic particles in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Baker, D. N.

    1988-01-01

    The benefits of energetic-particle measurements in the study of magnetospheric physics are reviewed, including the particles' relative ease of detection, their high rectilinear speed, their range of gyroradii, and their immunity to large-scale electric fields. With such particles, it is possible to observationally separate distinctive plasma regions, uniquely assess field-line topologies, examine connectivity from the magnetospheric equator to the ionosphere, and sense global changes in magnetospheric configuration. Multipoint measurements of energetic particles have contributed substantially to the understanding of the earth magnetopause, the leakage of particles into the upstream region, the effect of sudden storm compressions, the global nature of substorm dynamics, and the location and character of high-energy acceleration processes.

  16. Expected immersion of Saturn's magnetosphere in the jovian magnetic tail

    NASA Astrophysics Data System (ADS)

    Grzedzielski, S.; Macek, W.; Oberc, P.

    1981-08-01

    Voyager 2 approaches Saturn August 1981, after a possible encounter of the planet with the tail or wake of Jupiter. With the magnetic flux in the tail of phi being equal approximately to 2 x 10 to the 12th Wb, a simple model suggests that the tail is very long (7-15 AU) and wide enough (approximately 0.6 AU) to engulf Saturn. This could result in a sudden drop (by a factor of approximately 40) of the ram pressure on the magnetosphere of Saturn. The ensuing inflation of the magnetosphere may cause effects observable from Voyager 2 and/or earth-orbiting satellites, including a flare-up of kilometric radiation and enhancement of the Lyman-alpha limb brightening. Such events, if observed, could shed light on the magnetic and plasma nature of the jovian tail and on the electrodynamics of the Saturnian magnetosphere.

  17. Modeling Enceladus and its torus in Saturn's magnetosphere (Invited)

    NASA Astrophysics Data System (ADS)

    Jia, Y.; Russell, C. T.; Khurana, K. K.; Gombosi, T. I.

    2010-12-01

    The dynamics of the saturnian magnetosphere is controlled by the planetary spin at a rate of about 10.5 hours. The second icy moon of Saturn, Enceladus, orbits at 4 planetary radii deep in the inner magnetosphere. Enceladus creates neutrals at a rate of hundreds of kilograms per second. These neutrals are ionized and picked up by the ambient plasma and spun up to the corotational velocity to form a plasma disk. Consequently, the gas and plasma density peak close to the Enceladus orbit. In the gas torus, the majority of the gas particles travel at their keplerian speed of 14 km/s, while the bulk of the plasma rotates at 30-40 km/s as a response to the rigid spinning of the saturnian magnetic field. The corotating plasma torus feels a centrifugal force that is balanced by the magnetic tension force. To balance the centripetal force of this plasma disk, Saturn’s magnetic field is stretched in both radial and azimuthal directions. At Enceladus the massive pickup of new ions from its plume slows down the corotating flow and breaks this force balance to cause plasma flows in the radial direction of Saturn. Such radial flows in the inner magnetosphere of Saturn are supported by Cassini observations using various particle and field instruments. In this study we summarize the lessons learned from recent Cassini observations and our numerical simulation effort of the local interactions at Enceladus, and model the inner magnetosphere of Saturn to reproduce the force balance processes. The neutral torus is treated as a background in this axis-symmetric model.

  18. EMIC Waves in the Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Usanova, M.; Mann, I. R.; Drozdov, A.; Orlova, K.; Shprits, Y.; Darrouzet, F.; Ergun, R.

    2015-12-01

    Electromagnetic ion cyclotron (EMIC) wave excitation in the inner magnetosphere has been the focus of extensive study over the past few decades, not only because of the role played by EMIC waves in ring current dynamics but also because of their potential importance for scattering radiation belt electrons into the atmosphere. Theory predicts that regions of enhanced cold dense plasma density embedded in relatively low background magnetic field (such as the outer equatorial plasmasphere or plasmaspheric plumes) should aid EMIC wave growth. Also, enhanced plasma density lowers the energy threshold for the resonant pitch angle scattering of outer radiation belt electrons such that EMIC waves can interact with electrons with energies below 1 MeV and hence could be a potentially important radiation belt loss mechanism. EMIC wave normal angle and polarization are also important properties that control the efficiency of their interaction with energetic particles. We will review recent statistical and single-event studies and focus on new understanding of EMIC wave characteristics and generation mechanisms in the inner equatorial magnetosphere - information extremely important for understanding energetic particle dynamics and in particular, for radiation belt and ring current modeling.

  19. Magnetosphere, rings, and moons of Uranus

    SciTech Connect

    Cheng, A.F.

    1984-10-01

    The observation of an ultraviolet aurora on Uranus implies the existence of a magnetosphere. It is suggested that the magnetospheres of Uranus and Saturn may be very similar. Charged particle sputtering of water ice surfaces on the Uranian moons may maintain an oxygen ion plasma torus similar to the heavy ion plasma torus at Saturn. Atmospheric cosmic ray albedo neutron decay may sustain an inner radiation belt with omnidirectional proton fluxes. If the 100 keV ion fluxes near 7 RU are similar to Saturnian ion fluxes at such energies, the Uranian aurora may be maintained by ion precipitation from the radiation belts at nearly the strong diffusion rate. This mechanism predicts comparable aurorae over both magnetic poles of Uranus, in contrast with the Faraday disc dynamo mechanism, which powers an aurora only over the sunlit pole of uranus. If, however, the 100 kev ion fluxes at Uranus are comparable to those at Saturn, any exposed methane ice surfaces on the moons and rings of Uranus would be quickly transformed by ion impacts to a black, carbonaceous polymer.

  20. Simulations of double layers in the magnetosphere

    NASA Astrophysics Data System (ADS)

    Fu, X.; Cowee, M.; Gary, S. P.; Winske, D.

    2015-12-01

    A double layer (DL) is a nonlinear electrostatic structure consisting of two layers of opposite charge in the plasma, with a characteristic potential jump and unipolar electric field. Previous observations and simulations of DLs in the auroral region showed that those DLs are closely related to ion acoustic waves and typically propagate at ion sound speed. However, recent observation of DLs in the magnetosphere near the equator shows that some DLs propagate at a speed much greater than ion sound speed, inferring a different type of DL that may be associated with electron acoustic waves. In this study, we investigate the formation of DLs in two scenarios in the magnetosphere using particle-in-cell simulations. First, in a current-carrying uniform plasma, we artificially change the ion to electron mass ratio to study the transition from ion-acoustic DLs to electron-acoustic structures. Second, we study the formation of DLs at the boundary of two electron populations with different temperatures. These results may explain recent observations of different types of nonlinear electrostatic structures by Van Allen Probes.

  1. MHD simulations of the magnetospheres of Jupiter and Saturn: Application to the Cassini mission

    NASA Astrophysics Data System (ADS)

    Hansen, Kenneth Calvin

    2001-08-01

    We have developed global magnetohydrodynamic (MHD) models of the magnetospheres of Jupiter and Saturn motivated by the need to better understand the global structure and dynamics of the magnetospheres, their interaction with the solar wind and the plasma sources internal to them. The models are also used both as planning tools for the Cassini mission to Saturn and to give a global perspective to the measurements. Our model of Jupiter's magnetosphere is the first to include the Io mass loading region and to solve for the plasma flow in the inner magnetosphere. With the model we study the bow shock and magnetopause crossings made by Cassini and Galileo. In addition, we examine the field- aligned currents in Jupiter's inner magnetosphere with a height integrated ionospheric model coupled to the magnetosphere at the inner boundary. We find that the model describes the state of the magnetosphere at the time of Cassini quite well. The models of Saturn's magnetosphere that we present represent the first and only global models of the Kronian magnetosphere to date. With the models we study the effects of different source terms and different solar wind conditions on the configuration of the magnetosphere. Although simpler models are useful for understanding the relative roles of the icy satellite and Titan plasma sources and the configuration for different solar wind conditions, these models cannot fully account for the plasma in the inner magnetosphere of Saturn. The higher source rate gives good agreement with the mass densities measured by Voyager. For this case, we study the general structure of the magnetosphere as well as some applications of the model to the Cassini mission. We have examined the plasma environment at the satellites of Saturn, provided information about the plasma ram direction and extracted data from the model along the Cassini tour. We have carried out two simulations of the two-body, coupled Saturn-Titan system with Titan in super-fast magnetosonic

  2. Magnetic Fluctuations in the Jovian Magnetosphere

    NASA Technical Reports Server (NTRS)

    Russell, Christopher T.

    2002-01-01

    The engine that drives the jovian magnetosphere is the mass added to the Io ion torus, accelerated to corotational velocities by field-aligned currents that couple the Io torus to the jovian ionosphere. The mass of the torus builds up to an amount that the magnetic forces cannot contain and the plasma, first slowly and then more rapidly, drifts outward. Numerous authors have treated this problem based first on the observations of the Pioneer 10 and 11 flybys; then on Voyager 1 and 2, and Ulysses; and finally most recently the Galileo orbiter. The initial observations revealed the now familiar magnetodisk, in which the field above and below the magnetic equator became quite radial in orientation and much less dipolar. The Galileo observations show this transformation to occur on average at 24 R(sub J) and to often be quite abrupt. These observations are consistent with outward transport of magnetized plasma that moves ever faster radially until about 50 R(sub J) on the nightside where the field lines stretch to the breaking point, reconnection occurs, and plasma and field islands are transported down the tail ultimately removing the mass from the magnetosphere that Io had deposited deep in the inner torus. The reconnection process creates empty flux tubes connected to Jupiter that are buoyant and thought to float inward and replace the flux carried out with the torus plasma. As described above, the jovian magnetosphere could very well be in a state of steady laminar circulation, but indeed it is not. The process is very unsteady and the wave levels can be very intense. The existence of these waves in turn can lead to processes that compete with the radial circulation pattern in removing plasma from the system. These waves can scatter particles so that they precipitate into the ionosphere. This process should be important in the Io torus where the atmospheric loss cone is relatively large and becomes less important as the loss cone decreases in size with radial

  3. Anticipating Juno Observations of the Magnetosphere of Jupiter

    NASA Astrophysics Data System (ADS)

    Bunnell, E.; Fowler, C. M.; Bagenal, F.; Bonfond, B.

    2012-12-01

    The Juno spacecraft will arrive at Jupiter in 2016 and will go into polar orbit. Juno will make the first exploration of the polar regions of Jupiter's vast magnetosphere, combining in situ particles and fields measurements with remote sensing of auroral emissions in the UV, IR and radio. The primary science period comprises ~30 orbits with 11-day periods with a~1.06Rj perijove, allowing Juno to duck under the hazardous synchrotron radiation belts. Apojove is at ~38Rj. The oblateness of the planet causes the orbit to precess with the major axis moving progressively south at about 1 degree per orbit, eventually bringing the spacecraft into the radiation belts. This orbit allows unprecedented views of the aurora and exploration of the auroral acceleration regions. We present an overview of anticipated Juno observations based on models of the Jovian magnetosphere. On approach to Jupiter and over a capture orbit that extends to ~180Rj on the dawn flank, Juno will traverse the magnetosheath, magnetopause and boundary layer regions of the magnetosphere. Due to the high plasma pressures in the magnetospheric plasmasheet the magnetosphere of Jupiter is known to vary substantially with the changes in the solar wind dynamic pressure. We use Ulysses solar wind data obtained around 5 AU to predict the conditions that Juno will observe over the several months it will spend in these boundary regions.

  4. Warping of Saturn's magnetospheric and magnetotail current sheets

    NASA Astrophysics Data System (ADS)

    Arridge, C. S.; Khurana, K. K.; Russell, C. T.; Southwood, D. J.; Achilleos, N.; Dougherty, M. K.; Coates, A. J.; Leinweber, H. K.

    2008-08-01

    The magnetotails of Jupiter and Earth are known to be hinged so that their orientation is controlled by the magnetic field of the planet at small distances and asymptotically approach the direction of the flow of the solar wind at large distances. In this paper we present Cassini observations showing that Saturn's magnetosphere is also similarly hinged. Furthermore, we find that Saturn's magnetosphere is not only hinged in the tail but also on the dayside, in contrast to the Jovian and terrestrial magnetospheres. Over the midnight, dawn, and noon local time sectors we find that the current sheet is displaced above Saturn's rotational equator, and thus the current sheet adopts the shape of a bowl or basin. We present a model to describe the warped current sheet geometry and show that in order to properly describe the magnetic field in the magnetosphere, this hinging must be incorporated. We discuss the impact on plasma observations made in Saturn's equatorial plane, the influence on Titan's magnetospheric interaction, and the effect of periodicities on the mean current sheet structure.

  5. Effects of Saturn's magnetospheric dynamics on Titan's ionosphere

    NASA Astrophysics Data System (ADS)

    Edberg, N. J. T.; Andrews, D. J.; Bertucci, C.; Gurnett, D. A.; Holmberg, M. K. G.; Jackman, C. M.; Kurth, W. S.; Menietti, J. D.; Opgenoorth, H. J.; Shebanits, O.; Vigren, E.; Wahlund, J.-E.

    2015-10-01

    We use the Cassini Radio and Plasma Wave Science/Langmuir probe measurements of the electron density from the first 110 flybys of Titan to study how Saturn's magnetosphere influences Titan's ionosphere. The data is first corrected for biased sampling due to varying solar zenith angle and solar energy flux (solar cycle effects). We then present results showing that the electron density in Titan's ionosphere, in the altitude range 1600-2400 km, is increased by about a factor of 2.5 when Titan is located on the nightside of Saturn (Saturn local time (SLT) 21-03 h) compared to when on the dayside (SLT 09-15 h). For lower altitudes (1100-1600 km) the main dividing factor for the ionospheric density is the ambient magnetospheric conditions. When Titan is located in the magnetospheric current sheet, the electron density in Titan's ionosphere is about a factor of 1.4 higher compared to when Titan is located in the magnetospheric lobes. The factor of 1.4 increase in between sheet and lobe flybys is interpreted as an effect of increased particle impact ionization from ˜200 eV sheet electrons. The factor of 2.5 increase in electron density between flybys on Saturn's nightside and dayside is suggested to be an effect of the pressure balance between thermal plus magnetic pressure in Titan's ionosphere against the dynamic pressure and energetic particle pressure in Saturn's magnetosphere.

  6. Plasmoid formation in geotail in the disturbed magnetosphere

    NASA Astrophysics Data System (ADS)

    Nazarkov, Ilya; Runov, Andrei; Kalegaev, Vladimir; Angelopoulos, Vassilis

    2016-07-01

    Magnetospheric conditions, responsible for drastic changes of geotail magnetic field, have been studied from the theoretical and experimental viewpoint. It was found that closed magnetic field structures (magnetic islands, or plasmoids) in the inner tail plasma sheet can arise when the magnetic flux through the tail lobes exceeds the threshold value that depends on the spatial sizes of the magnetosphere. In terms of the Earth's magnetosphere model A2000 a simple estimation of critical magnetic flux has been obtained. It was shown that the extremely quiet geomagnetic conditions in 2009 were responsible for the expansion of the magnetosphere that was favorable for the formation of the magnetic field structures like magnetic island in the inner geomagnetic tail. Such magnetic field configuration has been detected by Themis satellites during magnetic storm on 14 February 2009. The magnetospheric key parameters describing the large-scale current systems were determined using both satellite observations and/or calculations and the evolution of the magnetic field during disturbance has been reproduced in terms of A2000 model. It was shown that the formation of magnetic islands converts the magnetic flux through the tail lobes and prevents extremely strong development of the geotail magnetic field.

  7. Magnetospheric ray tracing studies. [Jupiter's decametric radiation

    NASA Technical Reports Server (NTRS)

    Six, N. F.

    1982-01-01

    Using a model of Jupiter's magnetized plasma environment, radiation raypaths were calculated with a three-dimension ray tracing program. It is assumed that energetic particles produce the emission in the planet's auroral zone at frequencies just above the electron gyrofrequencies. This radiation is generated in narrow sheets defined by the angle of a ray with respect to the magnetic field line. By specifying the source position: latitude, longitude, and radial distance from the planet, signatures in the spectrum of frequency versus time seen by Voyager 1 and 2 were duplicated. The frequency range and the curvature of the decametric arcs in these dynamic spectra are the result of the geometry of the radiation sheets (imposed by the plasma and by the B-field) and illumination of Voyager 1 and 2 as the rotating magnetosphere mimics a pulsar.

  8. Turbulent electric fields in the nightside magnetosphere

    NASA Astrophysics Data System (ADS)

    Maynard, N. C.; Heppner, J. P.; Aggson, T. L.

    1982-03-01

    Electric field measurements from the long-wire double-probe instrument (baseline of 179 m) on ISEE 1 have shown the magnetospheric electric field on auroral L shells to be extremely turbulent during periods of magnetic activity. During intense activity these turbulent electric fields can penetrate to very low L values. The variational component of the electric field is typically larger than the DC value. Measurements are presented at frequencies up to 14 Hz. Magnitudes of over 40 m V/m (zero to peak) have been observed with spectral power levels in the 1-10 Hz range greater than m squareV/sq m Hz. The spectral shape of the most intense events was generally flatter than that predicted by two-dimensional hydromagnetic cascading of energy, which argues that the source of this turbulence must be driving the plasma near these frequencies. This in turn suggests that the instability is in the low-energy plasma.

  9. Resonance excitation of the magnetosphere by hydromagnetic waves incident from solar wind

    SciTech Connect

    Mazur, V. A.

    2010-11-15

    The eigenfrequencies and eigenmodes of an MHD cavity in the front part of the magnetosphere and its excitation by monochromatic hydromagnetic waves incident onto the magnetosphere from solar wind are studied theoretically in the model of a plane-stratified plasma. The eigenmodes are damped due to both their absorption at the Alfven resonance points and their emission into solar wind through the magnetopause, which is partially transparent for the excited waves. It is shown that, due to the influence of the magnetospheric cavity, the pumping of the magnetosphere by the incident waves is resonance in character. The waves penetrate into the magnetosphere only if their frequencies lie in narrow spectral ranges near the eigenfrequencies of the cavity, the width of these ranges being on the order of the damping rate of the eigenmodes. Waves with other frequencies are almost completely reflected from the magnetopause.

  10. Particle Energization During Magnetic Storms with Steady Magnetospheric Convection

    NASA Astrophysics Data System (ADS)

    Kissinger, J.; Kepko, L.; Baker, D. N.; Kanekal, S. G.; Li, W.; McPherron, R. L.; Angelopoulos, V.

    2013-12-01

    Relativistic electrons pose a space weather hazard to satellites in the radiation belts. Although about half of all geomagnetic storms result in relativistic electron flux enhancements, other storms decrease relativistic electron flux, even under similar solar wind drivers. Radiation belt fluxes depend on a complex balance between transport, loss, and acceleration. A critically important aspect of radiation belt enhancements is the role of the 'seed' population--plasma sheet particles heated and transported Earthward by magnetotail processes--which can become accelerated by wave-particle interactions with chorus waves. While the effect of substorms on seed electron injections has received considerable focus, in this study we explore how quasi-steady convection during steady magnetospheric convection (SMC) events affects the transport and energization of electrons. SMC events are long-duration intervals of enhanced convection without any substorm expansions, and are an important mechanism in coupling magnetotail plasma populations to the inner magnetosphere. We detail the behavior of the seed electron population for stormtime SMC events using the Van Allen Probes in the outer radiation belt and THEMIS in the plasma sheet and inner magnetosphere. Together, the two missions provide the ability to track particle transport and energization from the plasma sheet into the radiation belts. We present SMC events with Van Allen Probes/THEMIS conjunctions and compare plasma sheet fast flows/enhanced transport to radiation belt seed electron enhancements. Finally we utilize statistical analyses to quantify the relative importance of SMC events on radiation belt electron acceleration in comparison to isolated substorms.

  11. Modeling magnetospheric response to synthetic Alfvénic fluctuations in the solar wind: ULF wave fields in the magnetosphere

    NASA Astrophysics Data System (ADS)

    McGregor, S. L.; Hudson, M. K.; Hughes, W. J.

    2014-11-01

    Several observational studies suggest that small fluctuations in the solar wind can drive magnetospheric dynamics, notably ultralow frequency (ULF) waves, especially during high-speed streams (HSS). ULF fluctuations are believed to be a mechanism for controlling and accelerating radiation belt electrons, and are an important aspect to HSS storms. Previous simulation studies have begun to investigate generation of magnetospheric ULF waves by varying upstream solar wind conditions, such as dynamic pressure or velocity shear. Alfvénic fluctuations, however, which are prevalent within the solar wind, have yet to be incorporated into global MHD simulations of the magnetosphere. To investigate the relationship between Alfvénic fluctuations in the solar wind and magnetospheric ULF waves, we present results from the Lyon-Fedder-Mobarry global, three-dimensional magnetohydrodynamic (MHD) code. These simulations are driven with simulated solar wind plasma parameters from the Wang-Sheeley-Arge-Enlil model with and without Alfvén-like fluctuations added. We show that solar wind Alfvénic fluctuations enhance Kelvin-Helmholtz waves along the flanks and drive ULF waves in the dayside magnetosphere. The dayside ULF waves are an enhancement of the compressional component in field-aligned coordinates, due to the varying x component of the velocity (and therefore dynamic pressure) from the Alfvénic fluctuations.

  12. Representation of the Geosynchronous Plasma Environment in Spacecraft Charging Calculations

    NASA Technical Reports Server (NTRS)

    Davis, V. A.; Mandell, M. J.; Thomsen, M. F.

    2006-01-01

    Historically, our ability to predict and postdict spacecraft surface charging has been limited by the characterization of the plasma environment. One difficulty lies in the common practice of fitting the plasma data to a Maxwellian or Double Maxwellian distribution function, which may not represent the data well for charging purposes. We use electron and ion flux spectra measured by the Los Alamos National Laboratory (LANL) Magnetospheric Plasma Analyzer (MPA) to examine how the use of different spectral representations of the charged particle environment in computations of spacecraft potentials during magnetospheric substorms affects the accuracy of the results. We calculate the spacecraft potential using both the measured fluxes and several different fits to these fluxes. These measured fluxes have been corrected for the difference between the measured and calculated potential. The potential computed using the measured fluxes and the best available material properties of graphite carbon, with a secondary electron escape fraction of 81%, is within a factor of three of the measured potential for 87% of the data. Potentials calculated using a Kappa function fit to the incident electron flux distribution function and a Maxwellian function fit to the incident ion flux distribution function agree with measured potentials nearly as well as do potentials calculated using the measured fluxes. Alternative spectral representations gave less accurate estimates of potential. The use of all the components of the net flux, along with spacecraft specific average material properties, gives a better estimate of the spacecraft potential than the high energy flux alone.

  13. The influence of centrifugal forces on the B field structure of an axially symmetric equilibrium magnetosphere

    NASA Technical Reports Server (NTRS)

    Ye, Gang; Voigt, Gerd-Hannes

    1989-01-01

    A model is presented of an axially symmetric pole-on magnetosphere in MHD force balance, in which both plasma thermal pressure gradients and centrifugal force are taken into account. Assuming that planetary rotation leads to differentially rotating magnetotail field lines, the deformation of magnetotail field lines under the influence of both thermal plasma pressure and centrifugal forces was calculated. Analytic solutions to the Grad-Shafranov equation are presented, which include the centrifugal force term. It is shown that the nonrotational magnetosphere with hot thermal plasma leads to a field configuration without a toroidal B(phi) component and without field-aligned Birkeland currents. The other extreme, a rapidly rotating magnetosphere with cold plasma, leads to a configuration in which plasma must be confined within a thin disk in a plane where the radial magnetic field component B(r) vanishes locally.

  14. ON THE GLOBAL STRUCTURE OF PULSAR FORCE-FREE MAGNETOSPHERE

    SciTech Connect

    Petrova, S. A.

    2013-02-20

    The dipolar magnetic field structure of a neutron star is modified by the plasma originating in the pulsar magnetosphere. In the simplest case of a stationary axisymmetric force-free magnetosphere, a self-consistent description of the fields and currents is given by the well-known pulsar equation. Here we revise the commonly used boundary conditions of the problem in order to incorporate the plasma-producing gaps and to provide a framework for a truly self-consistent treatment of the pulsar magnetosphere. A generalized multipolar solution of the pulsar equation is found, which, as compared to the customary split monopole solution, is suggested to better represent the character of the dipolar force-free field at large distances. In particular, the outer gap location entirely inside the light cylinder implies that beyond the light cylinder the null and critical lines should be aligned and become parallel to the equator at a certain altitude. Our scheme of the pulsar force-free magnetosphere, which will hopefully be followed by extensive analytic and numerical studies, may have numerous implications for different fields of pulsar research.

  15. Modified disc model of Jupiter's magnetosphere

    NASA Astrophysics Data System (ADS)

    Liu, Z. X.

    1982-03-01

    This paper establishes a set of static magnetohydrodynamic equations in which a differential rotation of the magnetosphere and a wavy magnetodisc structure are considered. Solutions are obtained that include magnetic field, pressure, density, and temperature. By using the theoretical formulas of the magnetic field and pressure, the thickness of the plasma sheet is calculated. The main results are as follows: (1) the thickness of the plasma sheet is determined by the thermal energy and the rotational energy of the plasma, and it increases with increasing thermal energy, or temperature, and decreases with increasing rotational energy; (2) the thickness of the plasma sheet is different under adiabatic and isothermal conditions; (3) in the isothermal case, when the values of the initial ratio of rotational to thermal energy of the plasma are greater than 0.86, the thickness initially increases with increasing radial distance, reaches a maximum, and then decreases; for values smaller than 0.86 in the isothermal case and for all values in the adiabatic case, the thickness decreases monotonically with increasing radial distance.

  16. The Magnetospheric Multiscale Magnetometers

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Anderson, B. J.; Baumjohann, W.; Bromund, K. R.; Dearborn, D.; Fischer, D.; Le, G.; Leinweber, H. K.; Leneman, D.; Magnes, W.; Means, J. D.; Moldwin, M. B.; Nakamura, R.; Pierce, D.; Plaschke, F.; Rowe, K. M.; Slavin, J. A.; Strangeway, R. J.; Torbert, R.; Hagen, C.; Jernej, I.; Valavanoglou, A.; Richter, I.

    2016-03-01

    The success of the Magnetospheric Multiscale mission depends on the accurate measurement of the magnetic field on all four spacecraft. To ensure this success, two independently designed and built fluxgate magnetometers were developed, avoiding single-point failures. The magnetometers were dubbed the digital fluxgate (DFG), which uses an ASIC implementation and was supplied by the Space Research Institute of the Austrian Academy of Sciences and the analogue magnetometer (AFG) with a more traditional circuit board design supplied by the University of California, Los Angeles. A stringent magnetic cleanliness program was executed under the supervision of the Johns Hopkins University's Applied Physics Laboratory. To achieve mission objectives, the calibration determined on the ground will be refined in space to ensure all eight magnetometers are precisely inter-calibrated. Near real-time data plays a key role in the transmission of high-resolution observations stored on board so rapid processing of the low-resolution data is required. This article describes these instruments, the magnetic cleanliness program, and the instrument pre-launch calibrations, the planned in-flight calibration program, and the information flow that provides the data on the rapid time scale needed for mission success.

  17. Origins of magnetospheric physics

    SciTech Connect

    Van Allen, J.A.

    1983-01-01

    The history of the scientific investigation of the earth magnetosphere during the period 1946-1960 is reviewed, with a focus on satellite missions leading to the discovery of the inner and outer radiation belts. Chapters are devoted to ground-based studies of the earth magnetic field through the 1930s, the first U.S. rocket flights carrying scientific instruments, the rockoon flights from the polar regions (1952-1957), U.S. planning for scientific use of artificial satellites (1956), the launch of Sputnik I (1957), the discovery of the inner belt by Explorers I and III (1958), the Argus high-altitude atomic-explosion tests (1958), the confirmation of the inner belt and discovery of the outer belt by Explorer IV and Pioneers I-V, related studies by Sputniks II and III and Luniks I-III, and the observational and theoretical advances of 1959-1961. Photographs, drawings, diagrams, graphs, and copies of original notes and research proposals are provided. 227 references.

  18. Ionospheric and magnetospheric plasmapauses'

    NASA Technical Reports Server (NTRS)

    Grebowsky, J. M.; Hoffman, J. H.; Maynard, N. C.

    1977-01-01

    During August 1972, Explorer 45 orbiting near the equatorial plane with an apogee of about 5.2 R sub e traversed magnetic field lines in close proximity to those simultaneously traversed by the topside ionospheric satellite ISIS 2 near dusk in the L range 2-5.4. The locations of the Explorer 45 plasmapause crossings during this month were compared to the latitudinal decreases of the H(+) density observed on ISIS 2 near the same magnetic field lines. The equatorially determined plasmapause field lines typically passed through or poleward of the minimum of the ionospheric light ion trough, with coincident satellite passes occurring for which the L separation between the plasmapause and trough field lines was between 1 and 2. Vertical flows of the H(+) ions in the light ion trough as detected by the magnetic ion mass spectrometer on ISIS were directed upward with velocities between 1 and 2 kilometers/sec near dusk on these passes. These velocities decreased to lower values on the low latitude side of the H(+) trough but did not show any noticeable change across the field lines corresponding to the magnetospheric plasmapause.

  19. Global MHD simulations of Neptune's magnetosphere

    NASA Astrophysics Data System (ADS)

    Mejnertsen, L.; Eastwood, J. P.; Chittenden, J. P.; Masters, A.

    2016-08-01

    A global magnetohydrodynamic (MHD) simulation has been performed in order to investigate the outer boundaries of Neptune's magnetosphere at the time of Voyager 2's flyby in 1989 and to better understand the dynamics of magnetospheres formed by highly inclined planetary dipoles. Using the MHD code Gorgon, we have implemented a precessing dipole to mimic Neptune's tilted magnetic field and rotation axes. By using the solar wind parameters measured by Voyager 2, the simulation is verified by finding good agreement with Voyager 2 magnetometer observations. Overall, there is a large-scale reconfiguration of magnetic topology and plasma distribution. During the "pole-on" magnetospheric configuration, there only exists one tail current sheet, contained between a rarefied lobe region which extends outward from the dayside cusp, and a lobe region attached to the nightside cusp. It is found that the tail current always closes to the magnetopause current system, rather than closing in on itself, as suggested by other models. The bow shock position and shape is found to be dependent on Neptune's daily rotation, with maximum standoff being during the pole-on case. Reconnection is found on the magnetopause but is highly modulated by the interplanetary magnetic field (IMF) and time of day, turning "off" and "on" when the magnetic shear between the IMF and planetary fields is large enough. The simulation shows that the most likely location for reconnection to occur during Voyager 2's flyby was far from the spacecraft trajectory, which may explain the relative lack of associated signatures in the observations.

  20. Circulation and Dynamics in the Jovian Magnetosphere

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Kivelson, M. G.; Khurana, K. K.; Huddleston, D. E.

    Io continually adds mass to the Io torus and this density builds up until centrifugal force is sufficient to overcome the line tying of the jovian ionosphere. The magnetic flux is carried outward with this slow radial convection. Under the assumption that 1 ton per second is added to the torus at Io and that the Voyager observed densities and average ion mass are pertinent for the Pioneer and Galileo epochs, a consistent flow pattern arises. The outward flow near Io is a few meters per second. Near Europa the velocity, based on the observations of a Europa plume, rises to about 400 m/s. Beyond 24 Rj in the magnetodisk it is possible to again estimate the velocity. It is about 20 km/s at 25 RJ and about 50 km/sec at 40 Rj consistent with the Voyager LECP measurements. This outflow of magnetic flux is replenished by reconnection of magnetic flux in the near tail and the subsequent inward convection of empty flux tubes into the inner magnetosphere. These flux tubes are seen in the middle magnetosphere and the Io torus. Their scarcity as judged by the fact that they constitute only about 0.4% of the observing time indicates that they are moving inward at a much higher rate than the mass-loaded magnetospheric plasma moves outward. In the neighborhood of the magnetodisk the outflow appears not to be steady as the magnetic flux crossing the current sheet varies greatly from orbit to orbit. This unsteadiness may lead the occasional auroral storms seen in the ionosphere at the feet of these field lines.

  1. Dynamics of the Earth's Inner Magnetosphere and Its Connection to the Ionosphere: Current Understanding and Challenges

    NASA Technical Reports Server (NTRS)

    Zheng, Yihua

    2011-01-01

    The Earth's inner magnetosphere, a vast volume in space spanning from 1.5 Re (Earth radii) to 10 Re, is a host to a variety of plasma populations (with energy from 1 eV to few MeV) and physical processes where most of which involve plasma and field coupling. As a gigantic particle accelerator, the inner magnetosphere includes three overlapping regions: the plasmasphere, the ring current, and the Van Allen radiation belt. The complex structures and dynamics of these regions are externally driven by solar activities and internally modulated by intricate interactions and coupling. As a major constituent of Space Weather, the inner magnetosphere is both scientifically intriguing and practically important to our society. In this presentation, I will discuss our recent results from the Comprehensive Ring Current Model, in the context of our current understanding of the inner magnetosphere in general and challenges ahead in making further progresses.

  2. Dynamics of the Earth's Inner Magnetosphere and its Connection to the Ionosphere: Current Understanding and Challenges

    NASA Technical Reports Server (NTRS)

    Zheng, Yihua

    2010-01-01

    The Earth's inner magnetosphere, a vast volume in space spanning from 1.5 Re (Earth radii) to 10 Re, is a host to a variety of plasma populations (with energy from 1 eV to few MeV) and physical processes where most of which involve plasma and field coupling. As a gigantic particle accelerator, the inner magnetosphere includes three overlapping regions: the plasmasphere, the ring current, and the Van Allen radiation belt. The complex structures and dynamics of these regions are externally driven by solar activities and internally modulated by intricate interactions and coupling. As a major constituent of Space Weather, the inner magnetosphere is both scientifically intriguing and practically important to our society. In this presentation, I will discuss our recent results from the Comprehensive Ring Current Model, in the context of our current understanding of the inner magnetosphere in general and challenges ahead in making further progresses.

  3. Energetic ion and electron phase space densities in the magnetosphere of Uranus

    NASA Astrophysics Data System (ADS)

    Cheng, Andrew F.; Krimigis, S. M.; Mauk, B. H.; Keath, E. P.; Maclennan, C. G.

    1987-12-01

    Voyager 2 low-energy charged particle (LECP) data from the magnetosphere of Uranus have been analyzed to obtain proton and electron phase space density profiles. The Uranus proton profiles show an approximately exponential decline with decreasing radius for L ⪉ 9 in a relatively dense thermal plasma region with intense plasma wave activity. An analogy with the magnetospheres of Earth, Jupiter, and Saturn suggests a plasmasphere at Uranus. The ion flux tube content in the Uranian radiation belt is less than that in the other three cases. Proton and electron profiles are presented and discussed in detail. The magnetosphere of Uranus is the third planetary magnetosphere for which evidence of substorm activity has been adduced, after those of Earth and Mercury.

  4. Solar wind energy transfer through the magnetopause of an open magnetosphere

    NASA Technical Reports Server (NTRS)

    Lee, L. C.; Roederer, J. G.

    1982-01-01

    An expression is derived for the total power, transferred from the solar wind to an open magnetosphere, which consists of the electromagnetic energy rate and the particle kinetic energy rate. The total rate of energy transferred from the solar wind to an open magnetosphere mainly consists of kinetic energy, and the kinetic energy flux is carried by particles, penetrating from the solar wind into the magnetosphere, which may contribute to the observed flow in the plasma mantle and which will eventually be convected slowly toward the plasma sheet by the electric field as they flow down the tail. While the electromagnetic energy rate controls the near-earth magnetospheric activity, the kinetic energy rate should dominate the dynamics of the distant magnetotail.

  5. Wave-particle interactions in the magnetosphere of Uranus

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.; Gurnett, D. A.; Scarf, F. L.; Coroniti, F. V.

    1988-01-01

    The Voyager 2 encounter of Uranus has provided observations of plasma waves in and near the magnetosphere. These data, while the first from Uranus, will also be the only direct information on wave-particle interactions at this planet for many years to come. The observations include electrostatic waves upstream of the bow shock, turbulence in the shock, Bernstein emissions and whistler mode waves in the magnetosphere, broadband electrostatic noise in the magnetotail, and a number of the other types of plasma waves which have yet to be clearly identified. Each of these types of waves exist in a plasma environment which both supports the growth of the waves and is modified by interactions with the waves. Wave-particle interactions provide the channels through which the waves can accelerate, scatter, or thermalize the plasmas. The most spectacular example in the case of Uranus is the extremely intense whistler mode activity in the inner magnetosphere which is the source of strong pitch angle diffusion. The resulting electron precipitation is sufficient to produce the auroral emissions observed by Voyager. The strong diffusion, however, presents the problem of supplying electrons in the range of 5 to 40 keV in order to support the losses to the atmosphere.

  6. Dawn-Dusk Asymmetries in Rapidly Rotating Magnetospheres

    NASA Astrophysics Data System (ADS)

    Jia, X.; Kivelson, M.

    2015-12-01

    Spacecraft measurements reveal perplexing dawn-dusk asymmetries of field and plasma properties in the magnetospheres of Saturn and Jupiter. Here we describe a previously unrecognized source of dawn-dusk asymmetry in a rapidly rotating magnetosphere. As plasma rotates from dawn to noon on a dipolarizing flux tube, it flows away from the equator at close to the sound speed. As plasma rotates from noon to dusk on a stretching flux tube, it is accelerated back to the equator by centrifugal acceleration at flow speeds typically smaller than the sound speed. Correspondingly, the plasma sheet remains far thicker in the afternoon than in the morning. Using two magnetohydrodynamic simulations, we analyze the forces that account for flows along and across the field in Saturn's magnetosphere and point out analogous effects at Jupiter. Different radial force balance in the morning and afternoon sectors produces net dusk to dawn flow, or equivalently, a large-scale electric field oriented from post-noon to pre-midnight.

  7. Nonlinear electric field structures in the inner magnetosphere

    DOE PAGES

    Malaspina, D. M.; Andersson, L.; Ergun, R. E.; Wygant, J. R.; Bonnell, J. W.; Kletzing, C.; Reeves, G. D.; Skoug, R. M.; Larsen, B. A.

    2014-08-28

    Recent observations by the Van Allen Probes spacecraft have demonstrated that a variety of electric field structures and nonlinear waves frequently occur in the inner terrestrial magnetosphere, including phase space holes, kinetic field-line resonances, nonlinear whistler-mode waves, and several types of double layer. However, it is nuclear whether such structures and waves have a significant impact on the dynamics of the inner magnetosphere, including the radiation belts and ring current. To make progress toward quantifying their importance, this study statistically evaluates the correlation of such structures and waves with plasma boundaries. A strong correlation is found. These statistical results, combinedmore » with observations of electric field activity at propagating plasma boundaries, are consistent with the identification of these boundaries as the source of free energy responsible for generating the electric field structures and nonlinear waves of interest. Therefore, the ability of these structures and waves to influence plasma in the inner magnetosphere is governed by the spatial extent and dynamics of macroscopic plasma boundaries in that region.« less

  8. Wave-particle interactions in the magnetosphere of Uranus

    SciTech Connect

    Kurth, W.S.; Gurnett, D.A.; Scarf, F.L.; Coroniti, F.V.

    1988-07-01

    The Voyager 2 encounter of Uranus has provided observations of plasma waves in and near the magnetosphere. These data, while the first from Uranus, will also be the only direct information on wave-particle interactions at this planet for many years to come. The observations include electrostatic waves upstream of the bow shock, turbulence in the shock, Bernstein emissions and whistler mode waves in the magnetosphere, broadband electrostatic noise in the magnetotail, and a number of the other types of plasma waves which have yet to be clearly identified. Each of these types of waves exist in a plasma environment which both supports the growth of the waves and is modified by interactions with the waves. Wave-particle interactions provide the channels through which the waves can accelerate, scatter, or thermalize the plasmas. The most spectacular example in the case of Uranus is the extremely intense whistler mode activity in the inner magnetosphere which is the source of strong pitch angle diffusion. The resulting electron precipitation is sufficient to produce the auroral emissions observed by Voyager. The strong diffusion, however, presents the problem of supplying electrons in the range of 5 to 40 keV in order to support the losses to the atmosphere.

  9. Wave-particle interactions in the magnetosphere of Uranus

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.; Gurnett, D. A.; Coroniti, F. V.; Scarf, F. L.

    1991-01-01

    The Voyager 2 encounter of Uranus has provided observations of plasma waves in and near the magnetosphere. These data, while the first from Uranus, will also be the only direct information on wave-particle interactions at this planet for many years to come. The observations include electrostatic waves upstream of the bow shock, turbulence in the shock Bernstein emissions and whistler mode waves in the magnetosphere, broadband electrostatic noise in the magnetotail, and a number of the other types of plasma waves which have yet to be clearly identified. Each of these types of waves exist in a plasma environment which both supports the growth of the waves and is modified by interactions with the waves. Wave-particle interactions provide the channels through which the waves can accelerate, scatter, or thermalize the plasmas. The most spectacular example in the case of Uranus is the extremely intense whistler mode activity in the inner magnetosphere which is the source of strong pitch angle diffusion. The resulting electron precipitation is sufficient to produce the auroral emissions observed by Voyager. The strong diffusion, however, presents the problem of supplying electrons in the range of 5 to 40 keV in order to support the losses to the atmosphere.

  10. Nonlinear electric field structures in the inner magnetosphere

    SciTech Connect

    Malaspina, D. M.; Andersson, L.; Ergun, R. E.; Wygant, J. R.; Bonnell, J. W.; Kletzing, C.; Reeves, G. D.; Skoug, R. M.; Larsen, B. A.

    2014-08-28

    Recent observations by the Van Allen Probes spacecraft have demonstrated that a variety of electric field structures and nonlinear waves frequently occur in the inner terrestrial magnetosphere, including phase space holes, kinetic field-line resonances, nonlinear whistler-mode waves, and several types of double layer. However, it is nuclear whether such structures and waves have a significant impact on the dynamics of the inner magnetosphere, including the radiation belts and ring current. To make progress toward quantifying their importance, this study statistically evaluates the correlation of such structures and waves with plasma boundaries. A strong correlation is found. These statistical results, combined with observations of electric field activity at propagating plasma boundaries, are consistent with the identification of these boundaries as the source of free energy responsible for generating the electric field structures and nonlinear waves of interest. Therefore, the ability of these structures and waves to influence plasma in the inner magnetosphere is governed by the spatial extent and dynamics of macroscopic plasma boundaries in that region.

  11. A numerical code for a three-dimensional magnetospheric MHD equilibrium model

    NASA Technical Reports Server (NTRS)

    Voigt, G.-H.

    1992-01-01

    Two dimensional and three dimensional MHD equilibrium models were begun for Earth's magnetosphere. The original proposal was motivated by realizing that global, purely data based models of Earth's magnetosphere are inadequate for studying the underlying plasma physical principles according to which the magnetosphere evolves on the quasi-static convection time scale. Complex numerical grid generation schemes were established for a 3-D Poisson solver, and a robust Grad-Shafranov solver was coded for high beta MHD equilibria. Thus, the effects were calculated of both the magnetopause geometry and boundary conditions on the magnetotail current distribution.

  12. Magnetosheath influence on solar wind - magnetosphere coupling

    NASA Astrophysics Data System (ADS)

    Pulkkinen, Tuija; Kilpua, Emilia; Dimmock, Andrew; Myllys, Minna; Osmane, Adnane; Nykyri, Katariina; Lakka, Antti

    2016-07-01

    We have shown that the solar wind - magnetosphere - ionosphere coupling is different during due northward IMF from that during due southward IMF, and that the Poynting flux at the magnetopause is not a simple function of the upstream solar wind conditions upstream of the bow shock. These results are indicative of multiple transport processes taking place on various temporal and spatial scales, and therefore more detailed analysis is required to identify these mechanisms and quantify their contributions to solar wind - magnetosphere coupling. We combine the OMNI, IMAGE and THEMIS observations to statistically examine the properties incident at the magnetopause in the quasi-perpendicular and quasi-parallel shock sides separately. We use local and global MHD simulations to examine the energy and plasma transport properties across the bow shock, in the magnetosheath, and across the magnetopause. We focus especially on the anomalously quiet period during the deep solar minimum in 2008-2010, comparing the results with steady but stronger drivers during magnetic cloud events.

  13. MESSENGER Observations of Mercury's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Slavin, James A.

    2010-01-01

    During MESSENGER's second and third flybys of Mercury on October 6, 2008 and September 29, 2009, respectively, southward interplanetary magnetic field (IMF) produced intense reconnection signatures in the dayside and nightside magnetosphere and markedly different system-level responses. The IMF during the second flyby was continuously southward and the magnetosphere appeared very active, with large magnetic field components normal to the magnetopause and the generation of flux transfer events at the magnetopause and plasmoids in the tail current sheet every 30 to 90 s. However, the strength and direction of the tail magnetic field was stable. In contrast, the IMF during the third flyby varied from north to south on timescales of minutes. Although the MESSENGER measurements were limited during that encounter to the nightside magnetosphere, numerous examples of plasmoid release in the tail were detected, but they were not periodic. Instead, plasmoid release was highly correlated with four large enhancements of the tail magnetic field (i.e. by factors > 2) with durations of approx. 2 - 3 min. The increased flaring of the magnetic field during these intervals indicates that the enhancements were caused by loading of the tail with magnetic flux transferred from the dayside magnetosphere. New analyses of the second and third flyby observations of reconnection and its system-level effects provide a basis for comparison and contrast with what is known about the response of the Earth s magnetosphere to variable versus steady southward IMF.

  14. Active experiments using rocket-borne shaped charge barium releases. [solar-terrestrial magnetospheric physics

    NASA Technical Reports Server (NTRS)

    Wescott, E. M.; Davis, T. N.

    1980-01-01

    A reliable payload system and scaled down shaped charges were developed for carrying out experiments in solar-terrestrial magnetospheric physics. Four Nike-Tomahawk flights with apogees near 450 km were conducted to investigate magnetospheric electric fields, and two Taurus-Tomahawk rockets were flown in experiments on the auroral acceleration process in discrete auroras. In addition, a radial shaped charge was designed for plasma perturbation experiments.

  15. Improved Detection System Description and New Method for Accurate Calibration of Micro-Channel Plate Based Instruments and Its Use in the Fast Plasma Investigation on NASA's Magnetospheric MultiScale Mission

    NASA Technical Reports Server (NTRS)

    Gliese, U.; Avanov, L. A.; Barrie, A. C.; Kujawski, J. T.; Mariano, A. J.; Tucker, C. J.; Chornay, D. J.; Cao, N. T.; Gershman, D. J.; Dorelli, J. C.; Zeuch, M. A.; Pollock, C. J.; Jacques, A. D.

    2015-01-01

    The Fast Plasma Investigation (FPI) on NASAs Magnetospheric MultiScale (MMS) mission employs 16 Dual Electron Spectrometers (DESs) and 16 Dual Ion Spectrometers (DISs) with 4 of each type on each of 4 spacecraft to enable fast (30 ms for electrons; 150 ms for ions) and spatially differentiated measurements of the full 3D particle velocity distributions. This approach presents a new and challenging aspect to the calibration and operation of these instruments on ground and in flight. The response uniformity, the reliability of their calibration and the approach to handling any temporal evolution of these calibrated characteristics all assume enhanced importance in this application, where we attempt to understand the meaning of particle distributions within the ion and electron diffusion regions of magnetically reconnecting plasmas. Traditionally, the micro-channel plate (MCP) based detection systems for electrostatic particle spectrometers have been calibrated using the plateau curve technique. In this, a fixed detection threshold is set. The detection system count rate is then measured as a function of MCP voltage to determine the MCP voltage that ensures the count rate has reached a constant value independent of further variation in the MCP voltage. This is achieved when most of the MCP pulse height distribution (PHD) is located at higher values (larger pulses) than the detection system discrimination threshold. This method is adequate in single-channel detection systems and in multi-channel detection systems with very low crosstalk between channels. However, in dense multi-channel systems, it can be inadequate. Furthermore, it fails to fully describe the behavior of the detection system and individually characterize each of its fundamental parameters. To improve this situation, we have developed a detailed phenomenological description of the detection system, its behavior and its signal, crosstalk and noise sources. Based on this, we have devised a new detection

  16. Computer simulation of inner magnetospheric dynamics for the magnetic storm of July 29, 1977

    NASA Astrophysics Data System (ADS)

    Wolf, R. A.; Spiro, R. W.; Voigt, G.-H.; Reiff, P. H.; Chen, C.-K.; Harel, M.

    1982-08-01

    The Rice University convection model is applied to the early main phase of the July 29, 1977 magnetic storm through a computer implementation that self-consistently calculates electric fields, currents, and plasma distributions and velocities in the inner magnetosphere/ionosphere system. On the basis of solar wind parameters and AL index as inputs, the model predicts the injection of plasma sheet plasma to form a substantial storm time ring current whose total predicted strength agrees with the observed Dst index. The possibility that the magnetic field may be sufficiently inflated to make 60 deg field lines extend to the outer magnetosphere is examined. In the model, distortion of the plasma sheet inner edge by magnetospheric compression associated with the sudden commencement temporarily disrupts the normal Birkeland current pattern. Normal Birkeland currents and shielding reassert themselves in about an hour.

  17. On asymmetries of turbulent magnetic fluctuations in Jupiter's and Saturn's magnetospheres

    NASA Astrophysics Data System (ADS)

    Kaminker, V. M.; Neupane, B. R.; Delamere, P. A.; Ng, C. S.

    2015-12-01

    Net plasma transport in magnetodiscs around giant planets is outward. Observations of temperature of plasma have showed that expanding plasma is heating up non-adiabatically during this process. Turbulence has been suggested as a source of heating. However, the mechanism and configuration of turbulence in giant magnetospheres are poorly understood. In this study we attempt to build a physical picture of turbulent heating processes in Saturn and Jovian magnetospheres. We use Cassini and Galileo magnetometer data to observe fluctuations of the magnetic field. Power spectra based on weak or strong magnetohydrodynamic (MHD), or kinetic Alfven wave (KAW) turbulence are then used to study turbulent heating. Data sets from different orbits around planets are used to study global turbulent environment of magnetospheres. Here we present findings of asymmetrical configuration of turbulent heating mechanisms of plasma around Jupiter and Saturn.

  18. ICME effects on the induced magnetospheres of Venus and Mars

    NASA Astrophysics Data System (ADS)

    Opitz, Andrea; Vech, Daniel; Sanchez-Diaz, Eduardo; Witasse, Olivier; Szego, Karoly; Opgenoorth, Hermann

    2015-04-01

    We study in detail the effects of interplanetary coronal mass ejections on the induced magnetosphere of Venus and Mars. The results for the two planets will be compared in this paper, the similarities and the differences between the plasma processes at Venus and Mars will be discussed. These are unmagnetized planets with ionosphere that interacts directly with the solar wind. This interaction creates their induced magnetosphere that is highly dependent on the solar wind variations. We aim to differentiate the effects of the ICME shock front, its sheath and the magnetic cloud. The characteristics of the ICME structures are different at the two planets due to their different heliocentric radial distance, hence their effects on the planetary plasma environment are expected to be different as well.

  19. Detection of nonthermal continuum radiation in Saturn's magnetosphere

    SciTech Connect

    Kuth, W.S.; Scarf, F.L.; Sullivan, J.D.; Gurnett, D.A.

    1982-08-01

    A detailed analysis of high resolution wideband data from the Voyager 1 and 2 plasma wave receivers has revealed the presence of heretofore undiscovered nonthermal continuum radiation trapped within the Saturnian magnetosphere. The discovery of Saturnian trapped continuum radiation fills a disturbing void in the Saturnian radio spectrum. On the basis of observations at both the Earth and Jupiter it was expected that continuum radiation should be a pervasive signature of planetary magnetospheres in general. Special processing of the Voyager 1 plasma wave data at Saturn has now confirmed the existence of weak emissions that have a spectrum characteristic of trapped continuum radiation. Similar radiation was also detected by Voyager 2; however, in this case it is not certain that Saturn was the only source. Considerable evidence exists which suggests that Saturn may have been immersed in the Jovian tail during the Voyager 2 encounter, so that Jupiter may provide an additional source of the continuum radiation detected by Voyager 2.

  20. Advances in Inner Magnetosphere Passive and Active Wave Research

    NASA Technical Reports Server (NTRS)

    Green, James L.; Fung, Shing F.

    2004-01-01

    This review identifies a number of the principal research advancements that have occurred over the last five years in the study of electromagnetic (EM) waves in the Earth's inner magnetosphere. The observations used in this study are from the plasma wave instruments and radio sounders on Cluster, IMAGE, Geotail, Wind, Polar, Interball, and others. The data from passive plasma wave instruments have led to a number of advances such as: determining the origin and importance of whistler mode waves in the plasmasphere, discovery of the source of kilometric continuum radiation, mapping AKR source regions with "pinpoint" accuracy, and correlating the AKR source location with dipole tilt angle. Active magnetospheric wave experiments have shown that long range ducted and direct echoes can be used to obtain the density distribution of electrons in the polar cap and along plasmaspheric field lines, providing key information on plasmaspheric filling rates and polar cap outflows.