Science.gov

Sample records for alamos nuclear rocket

  1. A review of the Los Alamos effort in the development of nuclear rocket propulsion

    SciTech Connect

    Durham, F.P.; Kirk, W.L.; Bohl, R.J.

    1991-01-01

    This paper reviews the achievements of the Los Alamos nuclear rocket propulsion program and describes some specific reactor design and testing problems encountered during the development program along with the progress made in solving these problems. The relevance of these problems to a renewed nuclear thermal rocket development program for the Space Exploration Initiative (SEI) is discussed. 11 figs.

  2. Los Alamos studies of the Nevada test site facilities for the testing of nuclear rockets

    NASA Technical Reports Server (NTRS)

    Hynes, Michael V.

    1993-01-01

    The topics are presented in viewgraph form and include the following: Nevada test site geographic location; location of NRDA facilities, area 25; assessment program plan; program goal, scope, and process -- the New Nuclear Rocket Program; nuclear rocket engine test facilities; EMAD Facility; summary of final assessment results; ETS-1 Facility; and facilities cost summary.

  3. Los Alamos Novel Rocket Design Flight Tested

    ScienceCinema

    Tappan, Bryce

    2016-07-12

    Los Alamos National Laboratory scientists recently flight tested a new rocket design that includes a high-energy fuel and a motor design that also delivers a high degree of safety. Researchers will now work to scale-up the design, as well as explore miniaturization of the system, in order to exploit all potential applications that would require high-energy, high-velocity, and correspondingly high safety margins.

  4. Los Alamos Novel Rocket Design Flight Tested

    SciTech Connect

    Tappan, Bryce

    2014-10-23

    Los Alamos National Laboratory scientists recently flight tested a new rocket design that includes a high-energy fuel and a motor design that also delivers a high degree of safety. Researchers will now work to scale-up the design, as well as explore miniaturization of the system, in order to exploit all potential applications that would require high-energy, high-velocity, and correspondingly high safety margins.

  5. Nuclear Rocket Technology Conference

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The Lewis Research Center has a strong interest in nuclear rocket propulsion and provides active support of the graphite reactor program in such nonnuclear areas as cryogenics, two-phase flow, propellant heating, fluid systems, heat transfer, nozzle cooling, nozzle design, pumps, turbines, and startup and control problems. A parallel effort has also been expended to evaluate the engineering feasibility of a nuclear rocket reactor using tungsten-matrix fuel elements and water as the moderator. Both of these efforts have resulted in significant contributions to nuclear rocket technology. Many successful static firings of nuclear rockets have been made with graphite-core reactors. Sufficient information has also been accumulated to permit a reasonable Judgment as to the feasibility of the tungsten water-moderated reactor concept. We therefore consider that this technoIogy conference on the nuclear rocket work that has been sponsored by the Lewis Research Center is timely. The conference has been prepared by NASA personnel, but the information presented includes substantial contributions from both NASA and AEC contractors. The conference excludes from consideration the many possible mission requirements for nuclear rockets. Also excluded is the direct comparison of nuclear rocket types with each other or with other modes of propulsion. The graphite reactor support work presented on the first day of the conference was partly inspired through a close cooperative effort between the Cleveland extension of the Space Nuclear Propulsion Office (headed by Robert W. Schroeder) and the Lewis Research Center. Much of this effort was supervised by Mr. John C. Sanders, chairman for the first day of the conference, and by Mr. Hugh M. Henneberry. The tungsten water-moderated reactor concept was initiated at Lewis by Mr. Frank E. Rom and his coworkers. The supervision of the recent engineering studies has been shared by Mr. Samuel J. Kaufman, chairman for the second day of the

  6. Nuclear Forensics at Los Alamos National Laboratory

    SciTech Connect

    Podlesak, David W; Steiner, Robert E.; Burns, Carol J.; LaMont, Stephen P.; Tandon, Lav

    2012-08-09

    The overview of this presentation is: (1) Introduction to nonproliferation efforts; (2) Scope of activities at Los Alamos National Laboratory; (3) Facilities for radioanalytical work at LANL; (4) Radiochemical characterization capabilities; and (5) Bulk chemical and materials analysis capabilities. Some conclusions are: (1) Analytical chemistry measurements on plutonium and uranium matrices are critical to numerous defense and non-defense programs including safeguards accountancy verification measurements; (2) Los Alamos National Laboratory operates capable actinide analytical chemistry and material science laboratories suitable for nuclear material forensic characterization; (3) Actinide analytical chemistry uses numerous means to validate and independently verify that measurement data quality objectives are met; and (4) Numerous LANL nuclear facilities support the nuclear material handling, preparation, and analysis capabilities necessary to evaluate samples containing nearly any mass of an actinide (attogram to kilogram levels).

  7. Safe testing nuclear rockets economically

    SciTech Connect

    Howe, S. D.; Travis, B. J.; Zerkle, D. K.

    2002-01-01

    Several studies over the past few decades have recognized the need for advanced propulsion to explore the solar system. As early as the 1960s, Werner Von Braun and others recognized the need for a nuclear rocket for sending humans to Mars. The great distances, the intense radiation levels, and the physiological response to zero-gravity all supported the concept of using a nuclear rocket to decrease mission time. These same needs have been recognized in later studies, especially in the Space Exploration Initiative in 1989. One of the key questions that has arisen in later studies, however, is the ability to test a nuclear rocket engine in the current societal environment. Unlike the RoverMERVA programs in the 1960s, the rocket exhaust can no longer be vented to the open atmosphere. As a consequence, previous studies have examined the feasibility of building a large-scale version of the Nuclear Furnace Scrubber that was demonstrated in 1971. We have investigated an alternative that would deposit the rocket exhaust along with any entrained fission products directly into the ground. The Subsurface Active Filtering of Exhaust, or SAFE, concept would allow variable sized engines to be tested for long times at a modest expense. A system overview, results of preliminary calculations, and cost estimates of proof of concept demonstrations are presented. The results indicate that a nuclear rocket could be tested at the Nevada Test Site for under $20 M.

  8. Gas Core Nuclear Rocket Feasibility Project

    NASA Technical Reports Server (NTRS)

    Howe, S. D.; DeVolder, B.; Thode, L.; Zerkle, D.

    1997-01-01

    The next giant leap for mankind will be the human exploration of Mars. Almost certainly within the next thirty years, a human crew will brave the isolation, the radiation, and the lack of gravity to walk on and explore the Red planet. However, because the mission distances and duration will be hundreds of times greater than the lunar missions, a human crew will face much greater obstacles and a higher risk than those experienced during the Apollo program. A single solution to many of these obstacles is to dramatically decrease the mission duration by developing a high performance propulsion system. The gas core nuclear rocket (GCNR) has the potential to be such a system. The gas core concept relies on the use of fluid dynamic forces to create and maintain a vortex. The vortex is composed of a fissile material which will achieve criticality and produce high power levels. By radiatively coupling to the surrounding fluids, extremely high temperatures in the propellant and, thus, high specific impulses can be generated. The ship velocities enabled by such performance may allow a 9 month round trip, manned Mars mission to be considered. Alternatively, one might consider slightly longer missions in ships that are heavily shielded against the intense Galactic Cosmic Ray flux to further reduce the radiation dose to the crew. The current status of the research program at the Los Alamos National Laboratory into the gas core nuclear rocket feasibility will be discussed.

  9. Gas core nuclear rocket feasibility project

    SciTech Connect

    Howe, S.D.; DeVolder, B.; Thode, L.; Zerkle, D.

    1997-09-01

    The next giant leap for mankind will be the human exploration of Mars. Almost certainly within the next thirty years, a human crew will brave the isolation, the radiation, and the lack of gravity to walk on and explore the Red planet. However, because the mission distances and duration will be hundreds of times greater than the lunar missions, a human crew will face much greater obstacles and a higher risk than those experienced during the Apollo program. A single solution to many of these obstacles is to dramatically decrease the mission duration by developing a high performance propulsion system. The gas core nuclear rocket (GCNR) has the potential to be such a system. The gas core concept relies on the use of fluid dynamic forces to create and maintain a vortex. The vortex is composed of a fissile material which will achieve criticality and produce high power levels. By radiatively coupling to the surrounding fluids, extremely high temperatures in the propellant and, thus, high specific impulses can be generated. The ship velocities enabled by such performance may allow a 9 month round trip, manned Mars mission to be considered. Alternatively, one might consider slightly longer missions in ships that are heavily shielded against the intense Galactic Cosmic Ray flux to further reduce the radiation dose to the crew. The current status of the research program at the Los Alamos National Laboratory into the gas core nuclear rocket feasibility will be discussed.

  10. Plasma core nuclear rocket technology

    NASA Astrophysics Data System (ADS)

    Latham, Thomas S.; Roman, Ward C.; Johnson, Bruce V.

    1993-06-01

    The nuclear lightbulb (NLB) rocket propulsion concept furnishes specific impulse above 2000 sec in conjunction with the greater-than-50,000 lb thrust levels required for rapid transit-time round-trip Mars missions requiring low initial mass in earth orbit. The NLB transfers energy from the gaseous nuclear fuel region to a hydrogen propellant via thermal radiation, thereby precluding material temperature constraints. An evaluation is presently made of technology and test method readiness for implementation and validation of this propulsion system concept.

  11. Plasma core nuclear rocket technology

    SciTech Connect

    Latham, T.S.; Roman, W.C.; Johnson, B.V.

    1993-06-01

    The nuclear lightbulb (NLB) rocket propulsion concept furnishes specific impulse above 2000 sec in conjunction with the greater-than-50,000 lb thrust levels required for rapid transit-time round-trip Mars missions requiring low initial mass in earth orbit. The NLB transfers energy from the gaseous nuclear fuel region to a hydrogen propellant via thermal radiation, thereby precluding material temperature constraints. An evaluation is presently made of technology and test method readiness for implementation and validation of this propulsion system concept. 13 refs.

  12. Nuclear-Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Rom, Frank E.

    1968-01-01

    The three basic types of nuclear power-plants (solid, liquid, and gas core) are compared on the bases of performance potential and the status of current technology. The solid-core systems are expected to have impulses in the range of 850 seconds, any thrust level (as long as it is greater than 10,000 pounds (44,480 newtons)), and thrust-to-engine-weight ratios of 2 to 20 pounds per pound (19.7 to 197 newtons per kilogram). There is negligible or no fuel loss from the solid-core system. The solid-core system, of course, has had the most work done on it. Large-scale tests have been performed on a breadboard engine that has produced specific impulses greater than 700 seconds at thrust levels of about 50,000 pounds (222,000 newtons). The liquid-core reactor would be interesting in the specific impulse range of 1200 to 1500 seconds. Again, any thrust level can be obtained depending on how big or small the reactor is made. The thrust-to-engine weight ratio for these systems would be in the range of 1 to 10. The discouraging feature of the liquid-core system is the high fuel-loss ratio anticipated. Values of 0.01 to 0.1 pound (0.00454 to 0.0454 kilograms) or uranium loss per pound (0.454 kilograms) of hydrogen are expected, if impulses in the range of 1200 to 1500 seconds are desired. The gas-core reactor shows specific impulses in the range of 1500 to 2500 seconds. The thrust levels should be at least as high as the weight so that the thrust-to-weight ratio does not go below 1. Because the engine weight is not expected to be under 100,000 pounds (444,800 newtons), thrust levels higher than 100,000 pounds (448,000 newtons) are of interest. The thrust-to-engine weights, in that case, would run from 1 to 20 pounds per pound (9.8 to 19.7 kilograms). Gas-core reactors tend to be very large, and can have high thrust-to-weight ratios. As in the case of the liquid-core system, the fuel loss that will be attendant with gas cores as envisioned today will be rather high. The loss

  13. Nuclear Thermal Rocket - An Established Space Propulsion Technology

    NASA Astrophysics Data System (ADS)

    Klein, Milton

    2004-02-01

    From the late 1950s to the early 1970s a major program successfully developed the capability to conduct space exploration using the advanced technology of nuclear rocket propulsion. The program had two primary elements: pioneering and advanced technology work-Rover-at Los Alamos National Laboratory and its contractors provided the basic reactor design, fuel materials development, and reactor testing capability; and engine development-NERVA-by the industrial team of Aerojet and Westinghouse building on and extending the Los Alamos efforts to flight system development. This presentation describes the NERVA program, the engine system testing that demonstrated the space-practical operation capabilities of nuclear thermal rockets, and the mission studies that point the way to most effectively use the NTR capabilities. Together, the two programs established a technology base that includes proven NTR capabilities of (1) over twice the specific impulse of chemical propulsion systems, (2) thrust capabilities ranging from 44kN to 1112kN, and (3) practical thrust-to-weight ratios for future NASA space exploration missions, both manned payloads to Mars and unmanned payloads to the outer planets. The overall nuclear rocket program had a unique management structure that integrated the efforts of the two government agencies involved-NASA and the then-existing Atomic Energy Commission. The objective of this paper is to summarize and convey the technical and management lessons learned in this program as the nation considers the design of its future space exploration activities.

  14. Uranium droplet core nuclear rocket

    NASA Technical Reports Server (NTRS)

    Anghaie, Samim

    1991-01-01

    Uranium droplet nuclear rocket is conceptually designed to utilize the broad temperature range ofthe liquid phase of metallic uranium in droplet configuration which maximizes the energy transfer area per unit fuel volume. In a baseline system dissociated hydrogen at 100 bar is heated to 6000 K, providing 2000 second of Isp. Fission fragments and intense radian field enhance the dissociation of molecular hydrogen beyond the equilibrium thermodynamic level. Uranium droplets in the core are confined and separated by an axisymmetric vortex flow generated by high velocity tangential injection of hydrogen in the mid-core regions. Droplet uranium flow to the core is controlled and adjusted by a twin flow nozzle injection system.

  15. The Los Alamos nuclear safeguards and nonproliferation technology development program

    SciTech Connect

    Smith, H.A. Jr.; Menlove, H.O.; Reilly, T.D.; Bosler, G.E.; Hakkila, E.A.; Eccleston, G.W.

    1994-04-01

    For nearly three decades, Los Alamos National Laboratory has developed and implemented nuclear measurement technology and training in support of national and international nuclear safeguards. This paper outlines the major elements of those technologies and highlights some of the latest developments.

  16. Los Alamos Using Neutrons to Stop Nuclear Smugglers

    ScienceCinema

    Favalli, Andrea; Swinhoe, Martyn

    2016-07-12

    Los Alamos National Laboratory researchers have successfully demonstrated for the first time that laser-generated neutrons can be enlisted as a useful tool in the War on Terror. The international research team used the short-pulse laser at Los Alamos's TRIDENT facility to generate a neutron beam with novel characteristics that interrogated a closed container to confirm the presence and quantity of nuclear material inside. The successful experiment paves the way for creation of a table-top-sized or truck-mounted neutron generator that could be installed at strategic locations worldwide to thwart smugglers trafficking in nuclear materials.

  17. Los Alamos Using Neutrons to Stop Nuclear Smugglers

    SciTech Connect

    Favalli, Andrea; Swinhoe, Martyn

    2013-06-03

    Los Alamos National Laboratory researchers have successfully demonstrated for the first time that laser-generated neutrons can be enlisted as a useful tool in the War on Terror. The international research team used the short-pulse laser at Los Alamos's TRIDENT facility to generate a neutron beam with novel characteristics that interrogated a closed container to confirm the presence and quantity of nuclear material inside. The successful experiment paves the way for creation of a table-top-sized or truck-mounted neutron generator that could be installed at strategic locations worldwide to thwart smugglers trafficking in nuclear materials.

  18. Nuclear Forensics at Los Alamos National Laboratory

    SciTech Connect

    Kinman, William Scott; Steiner, Robert Ernest; Lamont, Stephen Philip

    2016-09-30

    Nuclear forensics assists in responding to any event where nuclear material is found outside of regulatory control; a response plan is presented and a nuclear forensics program is undergoing further development so that smugglers are sufficiently deterred.

  19. The Los Alamos National Laboratory Nuclear Vision Project

    SciTech Connect

    Arthur, E.D.; Wagner, R.L. Jr.

    1996-09-01

    Los Alamos National Laboratory has initiated a project to examine possible futures associated with the global nuclear enterprise over the course of the next 50 years. All major components are included in this study--weapons, nonproliferation, nuclear power, nuclear materials, and institutional and public factors. To examine key issues, the project has been organized around three main activity areas--workshops, research and analyses, and development of linkages with other synergistic world efforts. This paper describes the effort--its current and planned activities--as well as provides discussion of project perspectives on nuclear weapons, nonproliferation, nuclear energy, and nuclear materials focus areas.

  20. History of the Development of NERVA Nuclear Rocket Engine Technology

    SciTech Connect

    David L. Black

    2000-06-04

    During the 17 yr between 1955 and 1972, the Atomic Energy Commission (AEC), the U.S. Air Force (USAF), and the National Aeronautics and Space Administration (NASA) collaborated on an effort to develop a nuclear rocket engine. Based on studies conducted in 1946, the concept selected was a fully enriched uranium-filled, graphite-moderated, beryllium-reflected reactor, cooled by a monopropellant, hydrogen. The program, known as Rover, was centered at Los Alamos Scientific Laboratory (LASL), funded jointly by the AEC and the USAF, with the intent of designing a rocket engine for long-range ballistic missiles. Other nuclear rocket concepts were studied during these years, such as cermet and gas cores, but are not reviewed herein. Even thought the program went through the termination phase in a very short time, the technology may still be fully recoverable/retrievable to the state of its prior technological readiness in a reasonably short time. Documents; drawings; and technical, purchasing, manufacturing, and materials specifications were all stored for ease of retrieval. If the U.S. space program were to discover a need/mission for this engine, its 1972 'pencils down' status could be updated for the technology developments of the past 28 yr for flight demonstration in 8 or fewer years. Depending on today's performance requirements, temperatures and pressures could be increased and weight decreased considerably.

  1. Computational modeling of nuclear thermal rockets

    NASA Technical Reports Server (NTRS)

    Peery, Steven D.

    1993-01-01

    The topics are presented in viewgraph form and include the following: rocket engine transient simulation (ROCETS) system; ROCETS performance simulations composed of integrated component models; ROCETS system architecture significant features; ROCETS engineering nuclear thermal rocket (NTR) modules; ROCETS system easily adapts Fortran engineering modules; ROCETS NTR reactor module; ROCETS NTR turbomachinery module; detailed reactor analysis; predicted reactor power profiles; turbine bypass impact on system; and ROCETS NTR engine simulation summary.

  2. Program For Optimization Of Nuclear Rocket Engines

    NASA Technical Reports Server (NTRS)

    Plebuch, R. K.; Mcdougall, J. K.; Ridolphi, F.; Walton, James T.

    1994-01-01

    NOP is versatile digital-computer program devoloped for parametric analysis of beryllium-reflected, graphite-moderated nuclear rocket engines. Facilitates analysis of performance of engine with respect to such considerations as specific impulse, engine power, type of engine cycle, and engine-design constraints arising from complications of fuel loading and internal gradients of temperature. Predicts minimum weight for specified performance.

  3. Dual mode nuclear rocket system applications.

    NASA Technical Reports Server (NTRS)

    Boretz, J. E.; Bell, J. M.; Plebuch, R. K.; Priest, C. C.

    1972-01-01

    Mission areas where the dual-mode nuclear rocket system is superior to nondual-mode systems are demonstrated. It is shown that the dual-mode system is competitive with the nondual-mode system even for those specific missions and particular payload configurations where it does not have a clear-cut advantage.

  4. Nuclear thermal rockets using indigenous Martian propellants

    SciTech Connect

    Zubrin, R.M.

    1989-01-01

    This paper considers a novel concept for a Martian descent and ascent vehicle, called NIMF (for nuclear rocket using indigenous Martian fuel), the propulsion for which will be provided by a nuclear thermal reactor which will heat an indigenous Martian propellant gas to form a high-thrust rocket exhaust. The performance of each of the candidate Martian propellants, which include CO2, H2O, CH4, N2, CO, and Ar, is assessed, and the methods of propellant acquisition are examined. Attention is also given to the issues of chemical compatibility between candidate propellants and reactor fuel and cladding materials, and the potential of winged Mars supersonic aircraft driven by this type of engine. It is shown that, by utilizing the nuclear landing craft in combination with a hydrogen-fueled nuclear thermal interplanetary vehicle and a heavy lift booster, it is possible to achieve a manned Mars mission in one launch. 6 refs.

  5. Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    NASA Astrophysics Data System (ADS)

    Emrich, William J.

    2008-01-01

    To support a potential future development of a nuclear thermal rocket engine, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The test device simulates the environmental conditions (minus the radiation) to which nuclear rocket fuel components could be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner as to accurately reproduce the temperatures and heat fluxes normally expected to occur as a result of nuclear fission while at the same time being exposed to flowing hydrogen. This project is referred to as the Nuclear Thermal Rocket Element Environment Simulator or NTREES. The NTREES device is located at the Marshall Space flight Center in a laboratory which has been modified to accommodate the high powers required to heat the test articles to the required temperatures and to handle the gaseous hydrogen flow required for the tests. Other modifications to the laboratory include the installation of a nitrogen gas supply system and a cooling water supply system. During the design and construction of the facility, every effort was made to comply with all pertinent regulations to provide assurance that the facility could be operated in a safe and efficient manner. The NTREES system can currently supply up to 50 kW of inductive heating to the fuel test articles, although the facility has been sized to eventually allow test article heating levels of up to several megawatts.

  6. Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    SciTech Connect

    Emrich, William J. Jr.

    2008-01-21

    To support a potential future development of a nuclear thermal rocket engine, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The test device simulates the environmental conditions (minus the radiation) to which nuclear rocket fuel components could be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner as to accurately reproduce the temperatures and heat fluxes normally expected to occur as a result of nuclear fission while at the same time being exposed to flowing hydrogen. This project is referred to as the Nuclear Thermal Rocket Element Environment Simulator or NTREES. The NTREES device is located at the Marshall Space flight Center in a laboratory which has been modified to accommodate the high powers required to heat the test articles to the required temperatures and to handle the gaseous hydrogen flow required for the tests. Other modifications to the laboratory include the installation of a nitrogen gas supply system and a cooling water supply system. During the design and construction of the facility, every effort was made to comply with all pertinent regulations to provide assurance that the facility could be operated in a safe and efficient manner. The NTREES system can currently supply up to 50 kW of inductive heating to the fuel test articles, although the facility has been sized to eventually allow test article heating levels of up to several megawatts.

  7. The beginnings. [Of Nuclear Engine for Rocket Vehicles Application

    SciTech Connect

    Bohl, R.J.; Kirk, W.L.; Holman, R.R.; Westinghouse Electric Corp., Pittsburgh, PA )

    1989-06-01

    The development of the nuclear rocket engine called NERVA (Nuclear Engine for Rocket Vehicle Application) is described. The choice of fuel element, required rocket parameters, NERVA project objectives, division of responsibilities among different organizations, and NERVA design configuration are reviewed. Progress that has been made in the development of NERVA is addressed.

  8. The Los Alamos Scientific Laboratory - An Isolated Nuclear Research Establishment

    SciTech Connect

    Bradbury, Norris E.; Meade, Roger Allen

    2016-09-23

    Early in his twenty-five year career as the Director of the Los Alamos Scientific Laboratory, Norris Bradbury wrote at length about the atomic bomb and the many implications the bomb might have on the world. His themes were both technical and philosophical. In 1963, after nearly twenty years of leading the nation’s first nuclear weapons laboratory, Bradbury took the opportunity to broaden his writing. In a paper delivered to the International Atomic Energy Agency’s symposium on the “Criteria in the Selection of Sites for the Construction of Reactors and Nuclear Research Centers,” Bradbury took the opportunity to talk about the business of nuclear research and the human component of operating a scientific laboratory. This report is the transcript of his talk.

  9. Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.

    2008-01-01

    To support the eventual development of a nuclear thermal rocket engine, a state-of-the-art experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The test device simulates the environmental conditions (minus the radiation) to which nuclear rocket fuel components will be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner as to accurately reproduce the temperatures and heat fluxes normally expected to occur as a result of nuclear fission while at the same time being exposed to flowing hydrogen. This project is referred to as the Nuclear Thermal Rocket Element Environment Simulator or NTREES. The NTREES device is located at the Marshall Space flight Center in a laboratory which has been modified to accommodate the high powers required to heat the test articles to the required temperatures and to handle the gaseous hydrogen flow required for the tests. Other modifications to the laboratory include the installation of a nitrogen gas supply system and a cooling water supply system. During the design and construction of the facility, every effort was made to comply with all pertinent regulations to provide assurance that the facility could be operated in a safe and efficient manner. The NTREES system can currently supply up to 50 kW of inductive heating to the fuel test articles, although the facility has been sized to eventually allow test article heating levels of up to several megawatts.

  10. Design considerations in clustering nuclear rocket engines

    NASA Technical Reports Server (NTRS)

    Sager, Paul H.

    1992-01-01

    An initial investigation of the design considerations in clustering nuclear rocket engines for space transfer vehicles has been made. The clustering of both propulsion modules (which include start tanks) and nuclear rocket engines installed directly to a vehicle core tank appears to be feasible. Special provisions to shield opposite run tanks and the opposite side of a core tank - in the case of the boost pump concept - are required; the installation of a circumferential reactor side shield sector appears to provide an effective solution to this problem. While the time response to an engine-out event does not appear to be critical, the gimbal displacement required appears to be important. Since an installation of three engines offers a substantial reduction in gimbal requirements for engine-out and it may be possible to further enhance mission reliability with the greater number of engines, it is recommended that a cluster of four engines be considered.

  11. Nuclear rocket using indigenous Martian fuel NIMF

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert

    1991-01-01

    In the 1960's, Nuclear Thermal Rocket (NTR) engines were developed and ground tested capable of yielding isp of up to 900 s at thrusts up to 250 klb. Numerous trade studies have shown that such traditional hydrogen fueled NTR engines can reduce the inertial mass low earth orbit (IMLEO) of lunar missions by 35 percent and Mars missions by 50 to 65 percent. The same personnel and facilities used to revive the hydrogen NTR can also be used to develop NTR engines capable of using indigenous Martian volatiles as propellant. By putting this capacity of the NTR to work in a Mars descent/acent vehicle, the Nuclear rocket using Indigenous Martian Fuel (NIMF) can greatly reduce the IMLEO of a manned Mars mission, while giving the mission unlimited planetwide mobility.

  12. Los Alamos Neutron Science Center (LANSCE) Nuclear Science Facilities

    SciTech Connect

    Nelson, Ronald Owen; Wender, Steve

    2015-06-19

    The Los Alamos Neutron Science Center (LANSCE) facilities for Nuclear Science consist of a high-energy "white" neutron source (Target 4) with 6 flight paths, three low-energy nuclear science flight paths at the Lujan Center, and a proton reaction area. The neutron beams produced at the Target 4 complement those produced at the Lujan Center because they are of much higher energy and have shorter pulse widths. The neutron sources are driven by the 800-MeV proton beam of the LANSCE linear accelerator. With these facilities, LANSCE is able to deliver neutrons with energies ranging from a milli-electron volt to several hundreds of MeV, as well as proton beams with a wide range of energy, time and intensity characteristics. The facilities, instruments and research programs are described briefly.

  13. Steady Nuclear Combustion in Rockets

    NASA Technical Reports Server (NTRS)

    Saenger, E.

    1957-01-01

    The astrophysical theory of stationary nuclear reactions in stars is applied to the conditions that would be met in the practical engineering cases that would differ from the former, particularly with respect to the much lower combustion pressures, dimensions of the reacting volume, and burnup times. This application yields maximum rates of hear production per unit volume of reacting gas occurring at about 10(exp 8) K in the cases of reactions between the hydrogen isotopes, but yields higher rates for heavier atoms. For the former, with chamber pressures of the order of 100 atmospheres, the energy production for nuclear combustion reaches values of about 10(exp 4) kilocalories per cubic meter per second, which approaches the magnitude for the familiar chemical fuels. The values are substantially lower for heavier atoms, and increase with the square of the combustion pressure. The half-life of the burnup in the fastest reactions may drop to values as low as those for chemical fuels so that, despite the high temperature, the radiated energy can remain smaller than the energy produced, particularly if an inefficiently radiating (i.e., easily completely ionized reacting material like hydrogen), is used. On the other hand, the fraction of completely ionized particles in the gases undergoing nuclear combustion must not exceed a certain upper limit because the densities (approximately 10(exp -10) grams per cubic centimeter)) lie in the range of high vacua and only for the previously mentioned fraction of nonionized particles can mean free paths be retained small enough so that the chamber diameters of several dozen meters will suffice. Under these conditions it appears that continuously maintained stable nuclear reactions at practical pressures and dimensions are fundamentally possible and their application can be visualized as energy sources for power plants and propulsion units.

  14. Enrichment Zoning Options for the Small Nuclear Rocket Engine (SNRE)

    SciTech Connect

    Bruce G. Schnitzler; Stanley K. Borowski

    2010-07-01

    Advancement of U.S. scientific, security, and economic interests through a robust space exploration program requires high performance propulsion systems to support a variety of robotic and crewed missions beyond low Earth orbit. In NASA’s recent Mars Design Reference Architecture (DRA) 5.0 study (NASA-SP-2009-566, July 2009), nuclear thermal propulsion (NTP) was again selected over chemical propulsion as the preferred in-space transportation system option because of its high thrust and high specific impulse (-900 s) capability, increased tolerance to payload mass growth and architecture changes, and lower total initial mass in low Earth orbit. An extensive nuclear thermal rocket technology development effort was conducted from 1955-1973 under the Rover/NERVA Program. The Small Nuclear Rocket Engine (SNRE) was the last engine design studied by the Los Alamos National Laboratory during the program. At the time, this engine was a state-of-the-art design incorporating lessons learned from the very successful technology development program. Past activities at the NASA Glenn Research Center have included development of highly detailed MCNP Monte Carlo transport models of the SNRE and other small engine designs. Preliminary core configurations typically employ fuel elements with fixed fuel composition and fissile material enrichment. Uniform fuel loadings result in undesirable radial power and temperature profiles in the engines. Engine performance can be improved by some combination of propellant flow control at the fuel element level and by varying the fuel composition. Enrichment zoning at the fuel element level with lower enrichments in the higher power elements at the core center and on the core periphery is particularly effective. Power flattening by enrichment zoning typically results in more uniform propellant exit temperatures and improved engine performance. For the SNRE, element enrichment zoning provided very flat radial power profiles with 551 of the 564

  15. Droplet Core Nuclear Rocket (DCNR)

    NASA Technical Reports Server (NTRS)

    Anghaie, Samim

    1991-01-01

    The most basic design feature of the droplet core nuclear reactor is to spray liquid uranium into the core in the form of droplets on the order of five to ten microns in size, to bring the reactor to critical conditions. The liquid uranium fuel ejector is driven by hydrogen, and more hydrogen is injected from the side of the reactor to about one and a half meters from the top. High temperature hydrogen is expanded through a nozzle to produce thrust. The hydrogen pressure in the system can be somewhere between 50 and 500 atmospheres; the higher pressure is more desirable. In the lower core region, hydrogen is tangentially injected to serve two purposes: (1) to provide a swirling flow to protect the wall from impingement of hot uranium droplets: (2) to generate a vortex flow that can be used for fuel separation. The reactor is designed to maximize the energy generation in the upper region of the core. The system can result in and Isp of 2000 per second, and a thrust-to-weight ratio of 1.6 for the shielded reactor. The nuclear engine system can reduce the Mars mission duration to less than 200 days. It can reduce the hydrogen consumption by a factor of 2 to 3, which reduces the hydrogen load by about 130 to 150 metric tons.

  16. Radial flow nuclear thermal rocket (RFNTR)

    DOEpatents

    Leyse, Carl F.

    1995-01-01

    A radial flow nuclear thermal rocket fuel assembly includes a substantially conical fuel element having an inlet side and an outlet side. An annular channel is disposed in the element for receiving a nuclear propellant, and a second, conical, channel is disposed in the element for discharging the propellant. The first channel is located radially outward from the second channel, and separated from the second channel by an annular fuel bed volume. This fuel bed volume can include a packed bed of loose fuel beads confined by a cold porous inlet frit and a hot porous exit frit. The loose fuel beads include ZrC coated ZrC-UC beads. In this manner, nuclear propellant enters the fuel assembly axially into the first channel at the inlet side of the element, flows axially across the fuel bed volume, and is discharged from the assembly by flowing radially outward from the second channel at the outlet side of the element.

  17. Radial flow nuclear thermal rocket (RFNTR)

    DOEpatents

    Leyse, Carl F.

    1995-11-07

    A radial flow nuclear thermal rocket fuel assembly includes a substantially conical fuel element having an inlet side and an outlet side. An annular channel is disposed in the element for receiving a nuclear propellant, and a second, conical, channel is disposed in the element for discharging the propellant. The first channel is located radially outward from the second channel, and separated from the second channel by an annular fuel bed volume. This fuel bed volume can include a packed bed of loose fuel beads confined by a cold porous inlet frit and a hot porous exit frit. The loose fuel beads include ZrC coated ZrC-UC beads. In this manner, nuclear propellant enters the fuel assembly axially into the first channel at the inlet side of the element, flows axially across the fuel bed volume, and is discharged from the assembly by flowing radially outward from the second channel at the outlet side of the element.

  18. Nuclear Thermal Rocket Simulation in NPSS

    NASA Technical Reports Server (NTRS)

    Belair, Michael L.; Sarmiento, Charles J.; Lavelle, Thomas L.

    2013-01-01

    Four nuclear thermal rocket (NTR) models have been created in the Numerical Propulsion System Simulation (NPSS) framework. The models are divided into two categories. One set is based upon the ZrC-graphite composite fuel element and tie tube-style reactor developed during the Nuclear Engine for Rocket Vehicle Application (NERVA) project in the late 1960s and early 1970s. The other reactor set is based upon a W-UO2 ceramic- metallic (CERMET) fuel element. Within each category, a small and a large thrust engine are modeled. The small engine models utilize RL-10 turbomachinery performance maps and have a thrust of approximately 33.4 kN (7,500 lbf ). The large engine models utilize scaled RL-60 turbomachinery performance maps and have a thrust of approximately 111.2 kN (25,000 lbf ). Power deposition profiles for each reactor were obtained from a detailed Monte Carlo N-Particle (MCNP5) model of the reactor cores. Performance factors such as thermodynamic state points, thrust, specific impulse, reactor power level, and maximum fuel temperature are analyzed for each engine design.

  19. Nuclear Thermal Rocket Simulation in NPSS

    NASA Technical Reports Server (NTRS)

    Belair, Michael L.; Sarmiento, Charles J.; Lavelle, Thomas M.

    2013-01-01

    Four nuclear thermal rocket (NTR) models have been created in the Numerical Propulsion System Simulation (NPSS) framework. The models are divided into two categories. One set is based upon the ZrC-graphite composite fuel element and tie tube-style reactor developed during the Nuclear Engine for Rocket Vehicle Application (NERVA) project in the late 1960s and early 1970s. The other reactor set is based upon a W-UO2 ceramic-metallic (CERMET) fuel element. Within each category, a small and a large thrust engine are modeled. The small engine models utilize RL-10 turbomachinery performance maps and have a thrust of approximately 33.4 kN (7,500 lbf ). The large engine models utilize scaled RL-60 turbomachinery performance maps and have a thrust of approximately 111.2 kN (25,000 lbf ). Power deposition profiles for each reactor were obtained from a detailed Monte Carlo N-Particle (MCNP5) model of the reactor cores. Performance factors such as thermodynamic state points, thrust, specific impulse, reactor power level, and maximum fuel temperature are analyzed for each engine design.

  20. The AEC-NASA Nuclear Rocket Program

    NASA Astrophysics Data System (ADS)

    Finger, Harold B.

    2002-01-01

    The early days and years of the National Aeronautics and Space Administration (NASA), its assigned missions its organization and program development, provided major opportunities for still young technical people to participate in and contribute to making major technological advances and to broaden and grow their technical, management, and leadership capabilities for their and our country's and the world's benefit. Being one of those fortunate beneficiaries while I worked at NASA's predecessor, the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory in Cleveland and then when I was transferred to the NASA Headquarters on October 1, 1958, the day NASA was formally activated, this paper will describe some of my experiences and their significant results, including the personal benefits I derived from that fabulous period of our major national accomplishments. Although I had a broad range of responsibility in NASA which changed and grew over time, I concentrate my discussion in this paper on those activities conducted by NASA and the Atomic Energy Committee (AEC) in the development of the technology of nuclear rocket propulsion to enable the performance of deep space missions. There are two very related but distinct elements of this memoir. One relates to NASA's and the U.S. missions in those very early years and some of the technical and administrative elements as well as the political influences and interagency activities, including primarily the AEC and NASA, as well as diverse industrial and governmental capabilities and activities required to permit the new NASA to accomplish its assigned mission responsibilities. The other concerns the more specific technical and management assignments used to achieve the program's major technological successes. I will discuss first, how and why I was assigned to manage those nuclear rocket propulsion program activities and, then, how we achieved our very significant and successful program

  1. Nuclear thermal rockets using indigenous extraterrestrial propellants

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert M.

    1990-01-01

    A preliminary examination of a concept for a Mars and outer solar system exploratory vehicle is presented. Propulsion is provided by utilizing a nuclear thermal reactor to heat a propellant volatile indigenous to the destination world to form a high thrust rocket exhaust. Candidate propellants, whose performance, materials compatibility, and ease of acquisition are examined and include carbon dioxide, water, methane, nitrogen, carbon monoxide, and argon. Ballistics and winged supersonic configurations are discussed. It is shown that the use of this method of propulsion potentially offers high payoff to a manned Mars mission. This is accomplished by sharply reducing the initial mission mass required in low earth orbit, and by providing Mars explorers with greatly enhanced mobility in traveling about the planet through the use of a vehicle that can refuel itself each time it lands. Thus, the nuclear landing craft is utilized in combination with a hydrogen-fueled nuclear-thermal interplanetary launch. By utilizing such a system in the outer solar system, a low level aerial reconnaissance of Titan combined with a multiple sample return from nearly every satellite of Saturn can be accomplished in a single launch of a Titan 4 or the Space Transportation System (STS). Similarly a multiple sample return from Callisto, Ganymede, and Europa can also be accomplished in one launch of a Titan 4 or the STS.

  2. Rocketdyne/Westinghouse nuclear thermal rocket engine modeling

    NASA Technical Reports Server (NTRS)

    Glass, James F.

    1993-01-01

    The topics are presented in viewgraph form and include the following: systems approach needed for nuclear thermal rocket (NTR) design optimization; generic NTR engine power balance codes; rocketdyne nuclear thermal system code; software capabilities; steady state model; NTR engine optimizer code-logic; reactor power calculation logic; sample multi-component configuration; NTR design code output; generic NTR code at Rocketdyne; Rocketdyne NTR model; and nuclear thermal rocket modeling directions.

  3. Rocketdyne/Westinghouse nuclear thermal rocket engine modeling

    NASA Astrophysics Data System (ADS)

    Glass, James F.

    The topics are presented in viewgraph form and include the following: systems approach needed for nuclear thermal rocket (NTR) design optimization; generic NTR engine power balance codes; rocketdyne nuclear thermal system code; software capabilities; steady state model; NTR engine optimizer code-logic; reactor power calculation logic; sample multi-component configuration; NTR design code output; generic NTR code at Rocketdyne; Rocketdyne NTR model; and nuclear thermal rocket modeling directions.

  4. Estimates of the radiation environment for a nuclear rocket engine

    SciTech Connect

    Courtney, J.C.; Manohara, H.M.; Williams, M.L.

    1992-12-31

    Ambitious missions in deep space, such as manned expeditions to Mars, require nuclear propulsion if they are to be accomplished in a reasonable length of time. Current technology is adequate to support the use of nuclear fission as a source of energy for propulsion; however, problems associated with neutrons and gammas leaking from the rocket engine must be addressed. Before manned or unmanned space flights are attempted, an extensive ground test program on the rocket engine must be completed. This paper compares estimated radiation levels and nuclear heating rates in and around the rocket engine for both a ground test and space environments.

  5. Economical Mars Exploration Supported by a Nuclear Thermal Rocket

    NASA Astrophysics Data System (ADS)

    Howe, S. D.; O'Brien, R. C.

    2012-06-01

    A nuclear thermal rocket (NTR) developed for human Mars missions could act as a "mother ship" and carry multiple unmanned platforms to Mars for independent deployment. Use of the NTR could increase the science per dollar for each Earth launch.

  6. Nuclear Thermal Rocket (NTR) Development Risk Communication

    NASA Technical Reports Server (NTRS)

    Kim, Tony

    2014-01-01

    There are clear advantages of development of a Nuclear Thermal Rocket (NTR) for a crewed mission to Mars. NTR for in-space propulsion enables more ambitious space missions by providing high thrust at high specific impulse (approximately 900 sec) that is 2 times the best theoretical performance possible for chemical rockets. Missions can be optimized for maximum payload capability to take more payload with reduced total mass to orbit; saving cost on reduction of the number of launch vehicles needed. Or missions can be optimized to minimize trip time significantly to reduce the deep space radiation exposure to the crew. NTR propulsion technology is a game changer for space exploration. However, "NUCLEAR" is a word that is feared and vilified by some groups and the hostility towards development of any nuclear systems can meet great opposition by the public as well as from national leaders and people in authority. Communication of nuclear safety will be critical to the success of the development of the NTR. Why is there a fear of nuclear? A bomb that can level a city is a scary weapon. The first and only times the Nuclear Bomb was used in a war was on Hiroshima and Nagasaki during World War 2. The "Little Boy" atomic bomb was dropped on Hiroshima on August 6, 1945 and the "Fat Man" on Nagasaki 3 days later on August 9th. Within the first 4 months of bombings, 90- 166 thousand people died in Hiroshima and 60-80 thousand died in Nagasaki. It is important to note for comparison that over 500 thousand people died and 5 million made homeless due to strategic bombing (approximately 150 thousand tons) of Japanese cities and war assets with conventional non-nuclear weapons between 1942- 1945. A major bombing campaign of "firebombing" of Tokyo called "Operation Meetinghouse" on March 9 and 10 consisting of 334 B-29's dropped approximately1,700 tons of bombs around 16 square mile area and over 100 thousand people have been estimated to have died. The declaration of death is very

  7. Nuclear rocket propulsion technology - A joint NASA/DOE project

    NASA Technical Reports Server (NTRS)

    Clark, John S.

    1991-01-01

    NASA and the DOE have initiated critical technology development for nuclear rocket propulsion systems for SEI human and robotic missions to the moon and to Mars. The activities and project plan of the interagency project planning team in FY 1990 and 1991 are summarized. The project plan includes evolutionary technology development for both nuclear thermal and nuclear electric propulsion systems.

  8. Thrust Vector Control for Nuclear Thermal Rockets

    NASA Technical Reports Server (NTRS)

    Ensworth, Clinton B. F.

    2013-01-01

    Future space missions may use Nuclear Thermal Rocket (NTR) stages for human and cargo missions to Mars and other destinations. The vehicles are likely to require engine thrust vector control (TVC) to maintain desired flight trajectories. This paper explores requirements and concepts for TVC systems for representative NTR missions. Requirements for TVC systems were derived using 6 degree-of-freedom models of NTR vehicles. Various flight scenarios were evaluated to determine vehicle attitude control needs and to determine the applicability of TVC. Outputs from the models yielded key characteristics including engine gimbal angles, gimbal rates and gimbal actuator power. Additional factors such as engine thrust variability and engine thrust alignment errors were examined for impacts to gimbal requirements. Various technologies are surveyed for TVC systems for the NTR applications. A key factor in technology selection is the unique radiation environment present in NTR stages. Other considerations including mission duration and thermal environments influence the selection of optimal TVC technologies. Candidate technologies are compared to see which technologies, or combinations of technologies best fit the requirements for selected NTR missions. Representative TVC systems are proposed and key properties such as mass and power requirements are defined. The outputs from this effort can be used to refine NTR system sizing models, providing higher fidelity definition for TVC systems for future studies.

  9. Keeping the Momentum and Nuclear Forensics at Los Alamos National Laboratory

    SciTech Connect

    Steiner, Robert Ernest; Dion, Heather M.; Dry, Donald E.; Kinman, William Scott; LaMont, Stephen Philip; Podlesak, David; Tandon, Lav

    2016-07-22

    LANL has 70 years of experience in nuclear forensics and supports the community through a wide variety of efforts and leveraged capabilities: Expanding the understanding of nuclear forensics, providing training on nuclear forensics methods, and developing bilateral relationships to expand our understanding of nuclear forensic science. LANL remains highly supportive of several key organizations tasked with carrying forth the Nuclear Security Summit messages: IAEA, GICNT, and INTERPOL. Analytical chemistry measurements on plutonium and uranium matrices are critical to numerous programs including safeguards accountancy verification measurements. Los Alamos National Laboratory operates capable actinide analytical chemistry and material science laboratories suitable for nuclear material and environmental forensic characterization. Los Alamos National Laboratory uses numerous means to validate and independently verify that measurement data quality objectives are met. Numerous LANL nuclear facilities support the nuclear material handling, preparation, and analysis capabilities necessary to evaluate samples containing nearly any mass of an actinide (attogram to kilogram levels).

  10. Nuclear forensics of special nuclear material at Los Alamos: three recent studies

    SciTech Connect

    Tandon, Lav; Gallimore, David L; Garduon, Katherine; Keller, Russell C; Kuhn, Kevin J; Lujan, Elmer J; Martinez, Alexander; Myers, Steven C; Moore, Steve S; Porterfield, Donivan R; Schwartz, Daniel S; Spencer, Khalil J; Townsend, Lisa E; Xu, Ning

    2010-01-01

    Nuclear forensics of special nuclear materials is a highly specialized field because there are few analytical laboratories in the world that can safely handle nuclear materials, perform high accuracy and precision analysis using validated analytical methods. The goal of nuclear forensics is to establish an unambiguous link between illicitly trafficked nuclear material and its origin. The Los Alamos National Laboratory Nuclear Materials Signatures Program has implemented a graded 'conduct of operations' type approach for determining the unique nuclear, chemical, and physical signatures needed to identify the manufacturing process, intended use, and origin of interdicted nuclear material. In our approach an analysis flow path was developed for determining key signatures necessary for attributing unknown materials to a source. This analysis flow path included both destructive (i.e., alpha spectrometry, ICP-MS, ICP-AES, TIMS, particle size distribution, density and particle fractionation) and non-destructive (i.e., gamma-ray spectrometry, optical microscopy, SEM, XRD, and x-ray fluorescence) characterization techniques. Analytical techniques and results from three recent cases characterized by this analysis flow path along with an evaluation of the usefulness of this approach will be discussed in this paper.

  11. Los Alamos National Laboratory Human and Intellectual Capital for Sustaining Nuclear Deterrence

    SciTech Connect

    McAlpine, Bradley

    2015-04-01

    This paper provides an overview of the current human and intellectual capital at Los Alamos National Laboratory, through specific research into the statistics and demographics as well as numerous personal interviews at all levels of personnel. Based on this information, a series of recommendations are provided to assist Los Alamos National Laboratory in ensuring the future of the human and intellectual capital for the nuclear deterrence mission. While the current human and intellectual capital is strong it stands on the precipice and action must be taken to ensure Los Alamos National Laboratory maintains leadership in developing and sustaining national nuclear capabilities. These recommendations may be applicable to other areas of the nuclear enterprise, including the Air Force, after further research and study.

  12. CAC - NUCLEAR THERMAL ROCKET CORE ANALYSIS CODE

    NASA Technical Reports Server (NTRS)

    Clark, J. S.

    1994-01-01

    One of the most important factors in the development of nuclear rocket engine designs is to be able to accurately predict temperatures and pressures throughout a fission nuclear reactor core with axial hydrogen flow through circular coolant passages. CAC is an analytical prediction program to study the heat transfer and fluid flow characteristics of a circular coolant passage. CAC predicts as a function of time axial and radial fluid conditions, passage wall temperatures, flow rates in each coolant passage, and approximate maximum material temperatures. CAC incorporates the hydrogen properties model STATE to provide fluid-state relations, thermodynamic properties, and transport properties of molecular hydrogen in any fixed ortho-para combination. The program requires the general core geometry, the core material properties as a function of temperature, the core power profile, and the core inlet conditions as function of time. Although CAC was originally developed in FORTRAN IV for use on an IBM 7094, this version is written in ANSI standard FORTRAN 77 and is designed to be machine independent. It has been successfully compiled on IBM PC series and compatible computers running MS-DOS with Lahey F77L, a Sun4 series computer running SunOS 4.1.1, and a VAX series computer running VMS 5.4-3. CAC requires 300K of RAM under MS-DOS, 422K of RAM under SunOS, and 220K of RAM under VMS. No sample executable is provided on the distribution medium. Sample input and output data are included. The standard distribution medium for this program is a 5.25 inch 360K MS-DOS format diskette. CAC was developed in 1966, and this machine independent version was released in 1992. IBM-PC and IBM are registered trademarks of International Business Machines. Lahey F77L is a registered trademark of Lahey Computer Systems, Inc. SunOS is a trademark of Sun Microsystems, Inc. VMS is a trademark of Digital Equipment Corporation. MS-DOS is a registered trademark of Microsoft Corporation.

  13. The solid-core heat-exchanger nuclear rocket program

    SciTech Connect

    Malenfant, R.E.

    1994-12-31

    As measured by the results of its accomplishments, the nuclear rocket program was a success. Why, then, was it cancelled? In my opinion, the cancellation resulted from the success of the Apollo program. President Kennedy declared that putting a man on the moon by 1969 would be a national objective. Upon the Apollo program`s completion, space spectaculars lost their attraction, and the manned exploration of Mars, which could have been accomplished with nuclear rockets, was shelved. Perhaps another generation of physicists and engineers will experience the thrill and satisfaction of participating in a nuclear-propulsion-based program for space exploration in decades to come.

  14. NEW EMPLOYEES ON THE JOB - DONALD E HEGBERG OF THE NUCLEAR REACTOR DIVISION DISCUSSES NUCLEAR ROCKET

    NASA Technical Reports Server (NTRS)

    1963-01-01

    NEW EMPLOYEES ON THE JOB - DONALD E HEGBERG OF THE NUCLEAR REACTOR DIVISION DISCUSSES NUCLEAR ROCKET FUEL ELEMENT EXPERIMENT WITH CHARLES L YOUNGER - THE DISCUSSION IS PREPATORY TO CONDUCTING THE EXPERIMENT AT THE PLUM BROOK STATION REACTOR FACILITY

  15. Management of nuclear materials in an R D environment at the Los Alamos National Laboratory

    SciTech Connect

    Behrens, R.G.; Roth, S.B.; Jones, S.R.

    1991-01-01

    Los Alamos National Laboratory is a multidisciplinary R D organization and, as such, its nuclear materials inventory is diverse. Accordingly, major inventories of isotopes such as Pu-238, Pu-239, Pu-242, U-235, Th, tritium, and deuterium, and lesser amounts of isotopes of Am, Cm, Np and exotic isotopes such as berkelium must be managed in accordance with Department of Energy Orders and Laboratory policies. Los Alamos also acts as a national resource for many one-of-a-kind materials which are supplied to universities, industry, and other government agencies within the US and throughout the world. Management of these materials requires effective interaction and communication with many nuclear materials custodians residing in over forty technical groups as well as effective interaction with numerous outside organizations. This paper discusses the role, philosophy, and organizational structure of Nuclear Materials Management at Los Alamos and also briefly presents results of two special nuclear materials management projects: 1- Revision of Item Description Codes for use in the Los Alamos nuclear material data base and 2- The recommendation of new economic discard limits for Pu-239. 2 refs., 1 fig.

  16. Management of nuclear materials in a R and D environment at the Los Alamos National Laboratory

    SciTech Connect

    Behrens, R.G.; Roth, S.B.; Jones, S.R. )

    1991-01-01

    Los Alamos National Laboratory is a multidisciplinary R and D organization and, as such, its nuclear materials inventory is diverse. Accordingly, major inventories of isotopes such as Pu-238, Pu-239, Pu-242, U-235, Th, tritium, and deuterium, and lesser amounts of isotopes of Am, Cm, Np and exotic isotopes such as berkelium must be managed in accordance with Department of Energy Orders and Laboratory policies. Los Alamos also acts as a national resource for many one-of-a-kind materials which are supplied to universities, industry, and other government agencies within the U.S. and throughout the world. Management of these materials requires effective interaction and communication with many nuclear materials custodians residing in over forty technical groups as well as effective interaction with numerous outside organizations. This paper discusses the role, philosophy, and organizational structure of Nuclear Materials Management at Los Alamos and also briefly presents results of two special nuclear materials management projects: Revision of Item Description Codes for use in the Los Alamos nuclear material data base and The recommendation of new economic discard limits for Pu-239.

  17. Nuclear Thermal Rocket by 2000: a DOE Perspective

    NASA Technical Reports Server (NTRS)

    Howe, Steven D.; Stanley, Marland

    1992-01-01

    It is asserted that a Nuclear Propulsion Space Transportation System is required for the Manned Mars Mission. Additionally, it is felt that a Nuclear Propulsion Space Transportation System can support a wide variety of future space missions, including lunar base implementation and support. The Rover/NERVA program demonstrated that a safe, reliable Nuclear Thermal Rocket (NTR) can be developed and operated for sufficient run times, at desirable temperatures, and with multiple restarts. The discussion is presented in viewgraph form.

  18. Turbopump Design and Analysis Approach for Nuclear Thermal Rockets

    NASA Technical Reports Server (NTRS)

    Chen, Shu-cheng S.; Veres, Joseph P.; Fittje, James E.

    2006-01-01

    A rocket propulsion system, whether it is a chemical rocket or a nuclear thermal rocket, is fairly complex in detail but rather simple in principle. Among all the interacting parts, three components stand out: they are pumps and turbines (turbopumps), and the thrust chamber. To obtain an understanding of the overall rocket propulsion system characteristics, one starts from analyzing the interactions among these three components. It is therefore of utmost importance to be able to satisfactorily characterize the turbopump, level by level, at all phases of a vehicle design cycle. Here at NASA Glenn Research Center, as the starting phase of a rocket engine design, specifically a Nuclear Thermal Rocket Engine design, we adopted the approach of using a high level system cycle analysis code (NESS) to obtain an initial analysis of the operational characteristics of a turbopump required in the propulsion system. A set of turbopump design codes (PumpDes and TurbDes) were then executed to obtain sizing and performance characteristics of the turbopump that were consistent with the mission requirements. A set of turbopump analyses codes (PUMPA and TURBA) were applied to obtain the full performance map for each of the turbopump components; a two dimensional layout of the turbopump based on these mean line analyses was also generated. Adequacy of the turbopump conceptual design will later be determined by further analyses and evaluation. In this paper, descriptions and discussions of the aforementioned approach are provided and future outlooks are discussed.

  19. Turbopump Design and Analysis Approach for Nuclear Thermal Rockets

    SciTech Connect

    Chen, Shucheng S.; Veres, Joseph P.; Fittje, James E.

    2006-01-20

    A rocket propulsion system, whether it is a chemical rocket or a nuclear thermal rocket, is fairly complex in detail but rather simple in principle. Among all the interacting parts, three components stand out: they are pumps and turbines (turbopumps), and the thrust chamber. To obtain an understanding of the overall rocket propulsion system characteristics, one starts from analyzing the interactions among these three components. It is therefore of utmost importance to be able to satisfactorily characterize the turbopump, level by level, at all phases of a vehicle design cycle. Here at the NASA Glenn Research Center, as the starting phase of a rocket engine design, specifically a Nuclear Thermal Rocket Engine design, we adopted the approach of using a high level system cycle analysis code (NESS) to obtain an initial analysis of the operational characteristics of a turbopump required in the propulsion system. A set of turbopump design codes (PumpDes and TurbDes) were then executed to obtain sizing and performance parameters of the turbopump that were consistent with the mission requirements. A set of turbopump analyses codes (PUMPA and TURBA) were applied to obtain the full performance map for each of the turbopump components; a two dimensional layout of the turbopump based on these mean line analyses was also generated. Adequacy of the turbopump conceptual design will later be determined by further analyses and evaluation. In this paper, descriptions and discussions of the aforementioned approach are provided and future outlooks are discussed.

  20. Grooved Fuel Rings for Nuclear Thermal Rocket Engines

    NASA Technical Reports Server (NTRS)

    Emrich, William

    2009-01-01

    An alternative design concept for nuclear thermal rocket engines for interplanetary spacecraft calls for the use of grooved-ring fuel elements. Beyond spacecraft rocket engines, this concept also has potential for the design of terrestrial and spacecraft nuclear electric-power plants. The grooved ring fuel design attempts to retain the best features of the particle bed fuel element while eliminating most of its design deficiencies. In the grooved ring design, the hydrogen propellant enters the fuel element in a manner similar to that of the Particle Bed Reactor (PBR) fuel element.

  1. Nuclear thermal rocket nozzle testing and evaluation program

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth O.; Kacynski, Kenneth J.

    1993-01-01

    Performance characteristics of the Nuclear Thermal Rocket can be enhanced through the use of unconventional nozzles as part of the propulsion system. The Nuclear Thermal Rocket nozzle testing and evaluation program being conducted at the NASA Lewis is outlined and the advantages of a plug nozzle are described. A facility description, experimental designs and schematics are given. Results of pretest performance analyses show that high nozzle performance can be attained despite substantial nozzle length reduction through the use of plug nozzles as compared to a convergent-divergent nozzle. Pretest measurement uncertainty analyses indicate that specific impulse values are expected to be within + or - 1.17 pct.

  2. Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Upgrade Activities

    NASA Technical Reports Server (NTRS)

    Emrich, William J. Jr.; Moran, Robert P.; Pearson, J. Boise

    2012-01-01

    To support the on-going nuclear thermal propulsion effort, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The facility to perform this testing is referred to as the Nuclear Thermal Rocket Element Environment Simulator (NTREES). This device can simulate the environmental conditions (minus the radiation) to which nuclear rocket fuel components will be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner so as to accurately reproduce the temperatures and heat fluxes which would normally occur as a result of nuclear fission and would be exposed to flowing hydrogen. Initial testing of a somewhat prototypical fuel element has been successfully performed in NTREES and the facility has now been shutdown to allow for an extensive reconfiguration of the facility which will result in a significant upgrade in its capabilities

  3. RECENT ACTIVITIES AT THE CENTER FOR SPACE NUCLEAR RESEARCH FOR DEVELOPING NUCLEAR THERMAL ROCKETS

    SciTech Connect

    Robert C. O'Brien

    2001-09-01

    Nuclear power has been considered for space applications since the 1960s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors/ rocket-engines in the Rover/NERVA programs. However, changes in environmental laws may make the redevelopment of the nuclear rocket more difficult. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel form significantly different from NERVA may be needed to ensure public support. The Center for Space Nuclear Research (CSNR) is pursuing development of tungsten based fuels for use in a NTR, for a surface power reactor, and to encapsulate radioisotope power sources. The CSNR Summer Fellows program has investigated the feasibility of several missions enabled by the NTR. The potential mission benefits of a nuclear rocket, historical achievements of the previous programs, and recent investigations into alternatives in design and materials for future systems will be discussed.

  4. Selecting and using materials for a nuclear rocket engine reactor

    NASA Astrophysics Data System (ADS)

    Lanin, Anatolii G.; Fedik, Ivan I.

    2011-03-01

    This paper provides a historical account of how the nuclear rocket engine reactor was created and discusses the problem of selecting materials for a gas environment at a temperature of up to 3100 K and energy release of 30 MW per liter.

  5. U.S./CIS eye joint nuclear rocket venture

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Mcilwain, Melvin C.; Smetanikov, Vladimir; D'Yakov, Evgenij K.; Pavshuk, Vladimir A.

    1993-01-01

    An account is given of the significance for U.S. spacecraft development of a nuclear thermal rocket (NTR) reactor concept that has been developed in the (formerly Soviet) Commonwealth of Independent States (CIS). The CIS NTR reactor employs a hydrogen-cooled zirconium hydride moderator and ternary carbide fuels; the comparatively cool operating temperatures associated with this design promise overall robustness.

  6. Nuclear rocket propulsion. NASA plans and progress, FY 1991

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Miller, Thomas J.

    1991-01-01

    NASA has initiated planning for a technology development project for nuclear rocket propulsion systems for space explorer initiative (SEI) human and robotic missions to the moon and Mars. An interagency project is underway that includes the Department of Energy National Laboratories for nuclear technology development. The activities of the project planning team in FY 1990 and 1991 are summarized. The progress to date is discussed, and the project plan is reviewed. Critical technology issues were identified and include: (1) nuclear fuel temperature, life, and reliability; (2) nuclear system ground test; (3) safety; (4) autonomous system operation and health monitoring; and (5) minimum mass and high specific impulse.

  7. Nuclear rocket propulsion: NASA plans and progress - FY 1991

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Miller, Thomas J.

    1991-01-01

    NASA has initiated planning for a technology development project for nuclear rocket propulsion systems for space exploration initiative (SEI) human and robotic missions to the Moon and to Mars. An interagency project is underway that includes the Department of Energy National Laboratories for nuclear technology development. The activities of the project planning team in FY 1990 and 1991 are summarized. The progress to date is discussed, and the project plan is reviewed. Critical technology issues were identified and include: (1) nuclear fuel temperature, life, and reliability; (2) nuclear system ground test; (3) safety; (4) autonomous system operation and health monitoring; and (5) minimum mass and high specific impulse.

  8. Cycle Trades for Nuclear Thermal Rocket Propulsion Systems

    NASA Technical Reports Server (NTRS)

    White, C.; Guidos, M.; Greene, W.

    2003-01-01

    Nuclear fission has been used as a reliable source for utility power in the United States for decades. Even in the 1940's, long before the United States had a viable space program, the theoretical benefits of nuclear power as applied to space travel were being explored. These benefits include long-life operation and high performance, particularly in the form of vehicle power density, enabling longer-lasting space missions. The configurations for nuclear rocket systems and chemical rocket systems are similar except that a nuclear rocket utilizes a fission reactor as its heat source. This thermal energy can be utilized directly to heat propellants that are then accelerated through a nozzle to generate thrust or it can be used as part of an electricity generation system. The former approach is Nuclear Thermal Propulsion (NTP) and the latter is Nuclear Electric Propulsion (NEP), which is then used to power thruster technologies such as ion thrusters. This paper will explore a number of indirect-NTP engine cycle configurations using assumed performance constraints and requirements, discuss the advantages and disadvantages of each cycle configuration, and present preliminary performance and size results. This paper is intended to lay the groundwork for future efforts in the development of a practical NTP system or a combined NTP/NEP hybrid system.

  9. Computational fluid dynamics studies of nuclear rocket performance

    NASA Technical Reports Server (NTRS)

    Stubbs, Robert M.; Kim, Suk C.; Benson, Thomas J.

    1994-01-01

    A CFD analysis of a low pressure nuclear rocket concept is presented with the use of an advanced chemical kinetics, Navier-Stokes code. The computations describe the flow field in detail, including gas dynamic, thermodynamic and chemical properties, as well as global performance quantities such as specific impulse. Computational studies of several rocket nozzle shapes are conducted in an attempt to maximize hydrogen recombination. These Navier-Stokes calculations, which include real gas and viscous effects, predict lower performance values than have been reported heretofore.

  10. Pressure Fed Nuclear Thermal Rockets for space missions

    SciTech Connect

    Leyse, C.F. , Idaho Falls, ID ); Madsen, W.W.; Ramsthaler, J.H.; Schnitzler, B.G. )

    1989-08-01

    The National Space Policy includes a long range goal of expanding human presence and activity beyond Earth orbit into the solar system. This has renewed interest in the potential application of Nuclear Thermal Rockets (NTR) to space flight, particularly for human expeditions to the Moon and Mars. Recent NASA studies consider applications of the previously developed NERVA (Nuclear Engine for Rocket Vehicle Application) technology and the more advanced gas core reactors and show their potential advantages in reducing the initial mass in Earth orbit (IMEO) compared to advanced chemical rocket engines. Application of NERVA technology will require reestablishing the prior technological base or extending it to an advanced NERVA type engine, while the gas core NTR will require an extensive high risk research and development program. A technology intermediate between NERVA and the gas core NTR is a low pressure engine based on solid fuel, a Pressure Fed NTR (PFNTR). In addition to the simplicity of the gas pressurized engine cycle, the PFNTR takes advantage of the dissociation of hydrogen-the increases in specific impulse become significant as the chamber pressure decreases below 1.0 MPa (10 atmospheres) and the chamber temperature increases above 3000 K. The developmental status of technology applicable to a Pressure Fed Nuclear Thermal Rocket (PFNTR) lies between that of the NERVA engine and the gas core NTR (GCNTR). This document investigates PFNTR performance and provides typical mission analyses.

  11. Ground test facility for SEI nuclear rocket engines

    SciTech Connect

    Harmon, C.D.; Ottinger, C.A.; Sanchez, L.C.; Shipers, L.R.

    1992-08-01

    Nuclear Thermal Propulsion (NTP) has been identified as a critical technology in support of the NASA Space Exploration Initiative (SEI). In order to safely develop a reliable, reusable, long-lived flight engine, facilities are required that will support ground tests to qualify the nuclear rocket engine design. Initial nuclear fuel element testing will need to be performed in a facility that supports a realistic thermal and neutronic environment in which the fuel elements will operate at a fraction of the power of a flight weight reactor/engine. Ground testing of nuclear rocket engines is not new. New restrictions mandated by the National Environmental Protection Act of 1970, however, now require major changes to be made in the manner in which reactor engines are now tested. These new restrictions now preclude the types of nuclear rocket engine tests that were performed in the past from being done today. A major attribute of a safely operating ground test facility is its ability to prevent fission products from being released in appreciable amounts to the environment. Details of the intricacies and complications involved with the design of a fuel element ground test facility are presented in this report with a strong emphasis on safety and economy.

  12. Rover nuclear rocket engine program: Overview of rover engine tests

    NASA Technical Reports Server (NTRS)

    Finseth, J. L.

    1991-01-01

    The results of nuclear rocket development activities from the inception of the ROVER program in 1955 through the termination of activities on January 5, 1973 are summarized. This report discusses the nuclear reactor test configurations (non cold flow) along with the nuclear furnace demonstrated during this time frame. Included in the report are brief descriptions of the propulsion systems, test objectives, accomplishments, technical issues, and relevant test results for the various reactor tests. Additionally, this document is specifically aimed at reporting performance data and their relationship to fuel element development with little or no emphasis on other (important) items.

  13. Los Alamos National Laboratory standard nuclear material container

    SciTech Connect

    Stone, Timothy A

    2009-01-01

    The shut down of United States (U.S.) nuclear-weapons production activities in the early 1990s left large quantities of nuclear materials throughout the U.S. Department of Energy (DOE) complex in forms not intended for long-term storage. In May 1994, the Defense Nuclear Facilities Safety Board (DNFSB) issued Recommendation 94-1, which called for the stabilization and disposition of 'thousands of containers of plutonium-bearing liquids and solids' in the DOE complex, including LANL in the nuclear-weapons-manufacturing pipeline when manufacturing ended. This resulted in the development of the 3013 standard with container requirements for long term storage (up to 50 years). A follow on was the Criteria For Interim Storage of Plutonium Bearing Materials, Charles B. Curtis, in 1996 to address storage other than the 3013 standard for shorter time frames. In January 2000, the DNFSB issued Recommendation 2000-1, which stated the need for LANL to repackage 'about one ton of plutonium metal and oxide,' declared excess to Defense Program (DP) needs. The DNFSB recommended that LANL 'stabilize and seal within welded containers with an inert atmosphere the plutonium oxides ... which are not yet in states conforming to the long-term storage envisaged by DOE-STD-3013,' and that they '... enclose existing and newly-generated legacy plutonium metal in sealed containers with an inert atmosphere,' and 'remediate and/or safely store the various residues.' Recommendation 2000-1, while adding to the number of items needing remediation, also reiterated the need to address remaining items from 1994-1 in a timely fashion. Since timetables slipped, the DNFSB recommended that the Complex 'prioritize and schedule tasks according to the consideration of risks.' In March 2005, the DNFSB issued Recommendation 2005-1. This recommendation addresses the need for a consistent set of criteria across the DOE complex for the interim storage of nuclear material packaged outside an engineered barrier. The

  14. Hyperthermal Environments Simulator for Nuclear Rocket Engine Development

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Foote, John P.; Clifton, W. B.; Hickman, Robert R.; Wang, Ten-See; Dobson, Christopher C.

    2011-01-01

    An arc-heater driven hyperthermal convective environments simulator was recently developed and commissioned for long duration hot hydrogen exposure of nuclear thermal rocket materials. This newly established non-nuclear testing capability uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce hightemperature pressurized hydrogen flows representative of nuclear reactor core environments, excepting radiation effects, and is intended to serve as a low-cost facility for supporting non-nuclear developmental testing of hightemperature fissile fuels and structural materials. The resulting reactor environments simulator represents a valuable addition to the available inventory of non-nuclear test facilities and is uniquely capable of investigating and characterizing candidate fuel/structural materials, improving associated processing/fabrication techniques, and simulating reactor thermal hydraulics. This paper summarizes facility design and engineering development efforts and reports baseline operational characteristics as determined from a series of performance mapping and long duration capability demonstration tests. Potential follow-on developmental strategies are also suggested in view of the technical and policy challenges ahead. Keywords: Nuclear Rocket Engine, Reactor Environments, Non-Nuclear Testing, Fissile Fuel Development.

  15. Radiation enhanced dissociation of hydrogen in nuclear rockets

    NASA Technical Reports Server (NTRS)

    Watanabe, Yoichi

    1992-01-01

    The effect of radiation-induced dissociation of hydrogen gas in nuclear rockets is studied. The dissociation degree is obtained by solving rate equations, which include the fast-ion induced dissociation and ionization of atomic and molecular hydrogens. Analytical formulas are used to estimate a change in the viscosity and the specific impulse. It was found that the fast-ion induced dissociation plays an important role in enhancing the specific impulse for nuclear rocket concepts using hydrogen gas at low pressures (less than 0.1 MPa) and low temperatures (less than 3000 K). It is also shown that the specific impulse is enhanced by mixing helium-3, lithium-6, boron-10, or uranium-235 with hydrogen.

  16. NERVA-Derived Concept for a Bimodal Nuclear Thermal Rocket

    SciTech Connect

    Fusselman, Steven P.; Frye, Patrick E.; Gunn, Stanley V.; Morrison, Calvin Q.; Borowski, Stanley K.

    2005-02-06

    The Nuclear Thermal Rocket is an enabling technology for human exploration missions. The 'bimodal' NTR (BNTR) provides a novel approach to meeting both propulsion and power requirements of future manned and robotic missions. The purpose of this study was to evaluate tie-tube cooling configurations, NTR performance, Brayton cycle performance, and LOX-Augmented NTR (LANTR) feasibility to arrive at a point of departure BNTR configuration for subsequent system definition.

  17. Nuclear rockets: High-performance propulsion for Mars

    SciTech Connect

    Watson, C.W.

    1994-05-01

    A new impetus to manned Mars exploration was introduced by President Bush in his Space Exploration Initiative. This has led, in turn, to a renewed interest in high-thrust nuclear thermal rocket propulsion (NTP). The purpose of this report is to give a brief tutorial introduction to NTP and provide a basic understanding of some of the technical issues in the realization of an operational NTP engine. Fundamental physical principles are outlined from which a variety of qualitative advantages of NTP over chemical propulsion systems derive, and quantitative performance comparisons are presented for illustrative Mars missions. Key technologies are described for a representative solid-core heat-exchanger class of engine, based on the extensive development work in the Rover and NERVA nuclear rocket programs (1955 to 1973). The most driving technology, fuel development, is discussed in some detail for these systems. Essential highlights are presented for the 19 full-scale reactor and engine tests performed in these programs. On the basis of these tests, the practicality of graphite-based nuclear rocket engines was established. Finally, several higher-performance advanced concepts are discussed. These have received considerable attention, but have not, as yet, developed enough credibility to receive large-scale development.

  18. Research on fission induced plasmas and nuclear pumped lasers at the Los Alamos Scientific Laboratory

    NASA Technical Reports Server (NTRS)

    Helmick, H. H.

    1979-01-01

    A program of research on gaseous uranium and uranium plasmas is being conducted at The Los Alamos Scientific Laboratory under sponsorship of the National Aeronautics and Space Administration. The objective of this work is twofold: (1) to demonstrate the proof of principle of a gaseous uranium fueled reactor, and (2) pursue fundamental research on nuclear pumped lasers. The relevancy of the two parallel programs is embodied in the possibility of a high-performance uranium plasma reactor being used as the power supply for a nuclear pumped laser system. The accomplishments in the two above fields are summarized

  19. Open cycle gas core nuclear rockets

    NASA Technical Reports Server (NTRS)

    Ragsdale, Robert

    1991-01-01

    The open cycle gas core engine is a nuclear propulsion device. Propulsion is provided by hot hydrogen which is heated directly by thermal radiation from the nuclear fuel. Critical mass is sustained in the uranium plasma in the center. It has typically 30 to 50 kg of fuel. It is a thermal reactor in the sense that fissions are caused by absorption of thermal neutrons. The fast neutrons go out to an external moderator/reflector material and, by collision, slow down to thermal energy levels, and then come back in and cause fission. The hydrogen propellant is stored in a tank. The advantage of the concept is very high specific impulse because you can take the plasma to any temperature desired by increasing the fission level by withdrawing or turning control rods or control drums.

  20. Bimodal Nuclear Thermal Rocket Analysis Developments

    NASA Technical Reports Server (NTRS)

    Belair, Michael; Lavelle, Thomas; Saimento, Charles; Juhasz, Albert; Stewart, Mark

    2014-01-01

    Nuclear thermal propulsion has long been considered an enabling technology for human missions to Mars and beyond. One concept of operations for these missions utilizes the nuclear reactor to generate electrical power during coast phases, known as bimodal operation. This presentation focuses on the systems modeling and analysis efforts for a NERVA derived concept. The NERVA bimodal operation derives the thermal energy from the core tie tube elements. Recent analysis has shown potential temperature distributions in the tie tube elements that may limit the thermodynamic efficiency of the closed Brayton cycle used to generate electricity with the current design. The results of this analysis are discussed as well as the potential implications to a bimodal NERVA type reactor.

  1. Low Pressure Nuclear Thermal Rocket (LPNTR) concept

    NASA Technical Reports Server (NTRS)

    Ramsthaler, J. H.

    1991-01-01

    A background and a description of the low pressure nuclear thermal system are presented. Performance, mission analysis, development, critical issues, and some conclusions are discussed. The following subject areas are covered: LPNTR's inherent advantages in critical NTR requirement; reactor trade studies; reference LPNTR; internal configuration and flow of preliminary LPNTR; particle bed fuel assembly; preliminary LPNTR neutronic study results; multiple LPNTR engine concept; tank and engine configuration for mission analysis; LPNTR reliability potential; LPNTR development program; and LPNTR program costs.

  2. Nuclear thermal rocket workshop reference system Rover/NERVA

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.

    1991-01-01

    The Rover/NERVA engine system is to be used as a reference, against which each of the other concepts presented in the workshop will be compared. The following topics are reviewed: the operational characteristics of the nuclear thermal rocket (NTR); the accomplishments of the Rover/NERVA programs; and performance characteristics of the NERVA-type systems for both Mars and lunar mission applications. Also, the issues of ground testing, NTR safety, NASA's nuclear propulsion project plans, and NTR development cost estimates are briefly discussed.

  3. Experience at Los Alamos with use of the optical model for applied nuclear data calculations

    SciTech Connect

    Young, P.G.

    1994-10-01

    While many nuclear models are important in calculations of nuclear data, the optical model usually provides the basic underpinning of analyses directed at data for applications. An overview is given here of experience in the Nuclear Theory and Applications Group at Los Alamos National Laboratory in the use of the optical model for calculations of nuclear cross section data for applied purposes. We consider the direct utilization of total, elastic, and reaction cross sections for neutrons, protons, deuterons, tritons, {sup 3}He and alpha particles in files of evaluated nuclear data covering the energy range of 0 to 200 MeV, as well as transmission coefficients for reaction theory calculations and neutron and proton wave functions direct-reaction and Feshbach-Kerman-Koonin analyses. Optical model codes such as SCAT and ECIS and the reaction theory codes COMNUC, GNASH FKK-GNASH, and DWUCK have primarily been used in our analyses. A summary of optical model parameterizations from past analyses at Los Alamos will be given, including detailed tabulations of the parameters for a selection of nuclei.

  4. Advanced nuclear rocket engine mission analysis

    SciTech Connect

    Ramsthaler, J.; Farbman, G.; Sulmeisters, T.; Buden, D.; Harris, P.

    1987-12-01

    The use of a derivative of the NERVA engine developed from 1955 to 1973 was evluated for potential application to Air Force orbital transfer and maneuvering missions in the time period 1995 to 2020. The NERVA stge was found to have lower life cycle costs (LCC) than an advanced chemical stage for performing low earth orbit (LEO) to geosynchronous orbit (GEO0 missions at any level of activity greater than three missions per year. It had lower life cycle costs than a high performance nuclear electric engine at any level of LEO to GEO mission activity. An examination of all unmanned orbital transfer and maneuvering missions from the Space Transportation Architecture study (STAS 111-3) indicated a LCC advantage for the NERVA stage over the advanced chemical stage of fifteen million dollars. The cost advanced accured from both the orbital transfer and maneuvering missions. Parametric analyses showed that the specific impulse of the NERVA stage and the cost of delivering material to low earth orbit were the most significant factors in the LCC advantage over the chemical stage. Lower development costs and a higher thrust gave the NERVA engine an LCC advantage over the nuclear electric stage. An examination of technical data from the Rover/NERVA program indicated that development of the NERVA stage has a low technical risk, and the potential for high reliability and safe operation. The data indicated the NERVA engine had a great flexibility which would permit a single stage to perform all Air Force missions.

  5. Multiphysics Nuclear Thermal Rocket Thrust Chamber Analysis

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2005-01-01

    The objective of this effort is t o develop an efficient and accurate thermo-fluid computational methodology to predict environments for hypothetical thrust chamber design and analysis. The current task scope is to perform multidimensional, multiphysics analysis of thrust performance and heat transfer analysis for a hypothetical solid-core, nuclear thermal engine including thrust chamber and nozzle. The multiphysics aspects of the model include: real fluid dynamics, chemical reactivity, turbulent flow, and conjugate heat transfer. The model will be designed to identify thermal, fluid, and hydrogen environments in all flow paths and materials. This model would then be used to perform non- nuclear reproduction of the flow element failures demonstrated in the Rover/NERVA testing, investigate performance of specific configurations and assess potential issues and enhancements. A two-pronged approach will be employed in this effort: a detailed analysis of a multi-channel, flow-element, and global modeling of the entire thrust chamber assembly with a porosity modeling technique. It is expected that the detailed analysis of a single flow element would provide detailed fluid, thermal, and hydrogen environments for stress analysis, while the global thrust chamber assembly analysis would promote understanding of the effects of hydrogen dissociation and heat transfer on thrust performance. These modeling activities will be validated as much as possible by testing performed by other related efforts.

  6. Analysis of a Nuclear Enhanced Airbreathing Rocket for Earth to Orbit Applications

    NASA Technical Reports Server (NTRS)

    Adams, Robert B.; Landrum, D. Brian; Brown, Norman (Technical Monitor)

    2001-01-01

    The proposed engine concept is the Nuclear Enhanced Airbreathing Rocket (NEAR). The NEAR concept uses a fission reactor to thermally heat a propellant in a rocket plenum. The rocket is shrouded, thus the exhaust mixes with ingested air to provide additional thermal energy through combustion. The combusted flow is then expanded through a nozzle to provide thrust.

  7. Low Cost Nuclear Thermal Rocket Cermet Fuel Element Environment Testing

    NASA Technical Reports Server (NTRS)

    Bradley, D. E.; Mireles, O. R.; Hickman, R. R.

    2011-01-01

    Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames.1,2 Conventional storable propellants produce average specific impulse. Nuclear thermal rockets capable of producing high specific impulse are proposed. Nuclear thermal rockets employ heat produced by fission reaction to heat and therefore accelerate hydrogen, which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K), and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited.3 The primary concern is the mechanical failure of fuel elements that employ high-melting-point metals, ceramics, or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. The purpose of the testing is to obtain data to assess the properties of the non-nuclear support materials, as-fabricated, and determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures. The fission process of the planned fissile material and the resulting heating performance is well known and does not therefore require that active fissile material be integrated in this testing. A small-scale test bed designed to heat fuel element samples via non-contact radio frequency heating and expose samples to hydrogen is being developed to assist in optimal material and manufacturing process selection without employing fissile material. This paper details the test bed design and results of testing conducted to date.

  8. Long Duration Hot Hydrogen Exposure of Nuclear Thermal Rocket Materials

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Foote, John P.; Hickman, Robert; Dobson, Chris; Clifton, Scooter

    2007-01-01

    An arc-heater driven hyper-thermal convective environments simulator was recently developed and commissioned for long duration hot hydrogen exposure of nuclear thermal rocket materials. This newly established non-nuclear testing capability uses a high-power, multi-gas, wall-stabilized constricted arc-heater to .produce high-temperature pressurized hydrogen flows representative of nuclear reactor core environments, excepting radiation effects, and is intended to serve as a low cost test facility for the purpose of investigating and characterizing candidate fuel/structural materials and improving associated processing/fabrication techniques. Design and engineering development efforts are fully summarized, and facility operating characteristics are reported as determined from a series of baseline performance mapping runs and long duration capability demonstration tests.

  9. Analytical study of nozzle performance for nuclear thermal rockets

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth O.; Kacynski, Kenneth J.

    1991-01-01

    Nuclear propulsion has been identified as one of the key technologies needed for human exploration of the Moon and Mars. The Nuclear Thermal Rocket (NTR) uses a nuclear reactor to heat hydrogen to a high temperature followed by expansion through a conventional convergent-divergent nozzle. A parametric study of NTR nozzles was performed using the Rocket Engine Design Expert System (REDES) at the NASA Lewis Research Center. The REDES used the JANNAF standard rigorous methodology to determine nozzle performance over a range of chamber temperatures, chamber pressures, thrust levels, and different nozzle configurations. A design condition was set by fixing the propulsion system exit radius at five meters and throat radius was varied to achieve a target thrust level. An adiabatic wall was assumed for the nozzle, and its length was assumed to be 80 percent of a 15 degree cone. The results conclude that although the performance of the NTR, based on infinite reaction rates, looks promising at low chamber pressures, finite rate chemical reactions will cause the actual performance to be considerably lower. Parameters which have a major influence on the delivered specific impulse value include the chamber temperature and the chamber pressures in the high thrust domain. Other parameters, such as 2-D and boundary layer effects, kinetic rates, and number of nozzles, affect the deliverable performance of an NTR nozzle to a lesser degree. For a single nozzle, maximum performance of 930 seconds and 1030 seconds occur at chamber temperatures of 2700 and 3100 K, respectively.

  10. An americium-fueled gas core nuclear rocket

    SciTech Connect

    Kammash, T.; Galbraith, D.L.; Jan, T. )

    1993-01-10

    A gas core fission reactor that utilizes americium in place of uranium is examined for potential utilization as a nuclear rocket for space propulsion. The isomer [sup 242m]Am with a half life of 141 years is obtained from an (n, [gamma]) capture reaction with [sup 241]Am, and has the highest known thermal fission cross section. We consider a 7500 MW reactor, whose propulsion characteristics with [sup 235]U have already been established, and re-examine it using americium. We find that the same performance can be achieved at a comparable fuel density, and a radial size reduction (of both core and moderator/reflector) of about 70%.

  11. An Overview of the Los Alamos Program on Asteroid Mitigation by a Nuclear Explosion

    NASA Astrophysics Data System (ADS)

    Weaver, R.; Gisler, G. R.; Plesko, C. S.; Ferguson, J.

    2014-12-01

    Los Alamos National Laboratory is standing up a new program to address the mitigation of a potentially hazardous objects (PHO) by using nuclear explosives. A series of efforts at Los Alamos have been working this problem for the last few years in an informal fashion. We now have a funded program to dedicate time to this important mission. The goal of our project is to study the effectiveness of using a nuclear explosive to mitigate (alter orbit or destroy) an PHO on an Earth crossing path. We are also pursuing studies of impact hazards should the international leadership decide not to organize a mission for active mitigation of a PHO. Such impact hazards are characterized as local, regional or global. Impact hazards include: a direct hit in an urban area (potentially catastrophic but highly unlikely); the generation a significant tsunami from an ocean impact close to a coastline and regional and global effects from medium to large impactors. Previous studies at Los Alamos have looked at 2D and 3D simulations in the deep ocean from large bolides, as well as impacts that have global consequences. More recent work has included radiation-hydrodynamic simulations of momentum transfer (and enhancement) from a low energy (10 kt) stand-off source, as well as surface and subsurface high energy explosions (100 kt - 10 Mt) for example PHOs. The current program will carefully look at two main aspects of using a standoff nuclear source: 1) a computational study for the optimum height-of-burst (HOB) of a stand-off burst using our best energy coupling techniques for both neutrons and x-rays; and 2) as a function of the nuclear energy produced and the HOB what is the optimum energy field: neutrons or x-rays. This team is also working with NNSA and NASA Goddard to compare numerical results for these complicated simulations on a well defined series of test problems involving both kinetic impactors and stand-off nuclear energy sources. Results will be shown by the co-authors on

  12. Safety aspects of ground testing for large nuclear rockets

    SciTech Connect

    Goldman, M.I.

    1988-02-01

    Present nuclear rocket reactors under test in Nevada are operated at nominal power levels of 1000 Mw. It does not seem unreasonable in the future to anticipate reactors with power levels in the range up to 5,000 Mw for space applications. It has been shown that the normal testing of large nuclear rocket engines at NRDS could impose some restrictions on the fuel performance which would not otherwise be required by space flight operation. The only apparent alternative would require a capability for decontaminating effluent gases prior to release to the atmosphere. In addition to the source restrictions, tests will almost certainly be controlled by wind and atmospheric stability conditions, and the requirements for monitoring and control of off-site exposures will be much more stringent than those presently in force. An analysis of maximum accidents indicates that projections of present credible occurrences cannot be tolerated in larger engine tests. The apparent alternatives to a significant (order of magnitude or better) reduction in credible accident consequences, are the establishment of an underground test facility, a facility in an area equivalent to the Pacific weapons proving ground, or in space.

  13. Low Cost Nuclear Thermal Rocket Cermet Fuel Element Environment Testing

    NASA Technical Reports Server (NTRS)

    Bradley, David E.; Mireles, Omar R.; Hickman, Robert R.

    2011-01-01

    Deep space missions with large payloads require high specific impulse (Isp) and relatively high thrust in order to achieve mission goals in reasonable time frames. Conventional, storable propellants produce average Isp. Nuclear thermal rockets (NTR) capable of high Isp thrust have been proposed. NTR employs heat produced by fission reaction to heat and therefore accelerate hydrogen which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high temperature hydrogen exposure on fuel elements is limited. The primary concern is the mechanical failure of fuel elements which employ high-melting-point metals, ceramics or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. It is not necessary to include fissile material in test samples intended to explore high temperature hydrogen exposure of the structural support matrices. A small-scale test bed designed to heat fuel element samples via non-contact RF heating and expose samples to hydrogen is being developed to assist in optimal material and manufacturing process selection without employing fissile material. This paper details the test bed design and results of testing conducted to date.

  14. Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Upgrade Activities

    NASA Technical Reports Server (NTRS)

    Emrich, William

    2013-01-01

    A key technology element in Nuclear Thermal Propulsion is the development of fuel materials and components which can withstand extremely high temperatures while being exposed to flowing hydrogen. NTREES provides a cost effective method for rapidly screening of candidate fuel components with regard to their viability for use in NTR systems. The NTREES is designed to mimic the conditions (minus the radiation) to which nuclear rocket fuel elements and other components would be subjected to during reactor operation. The NTREES consists of a water cooled ASME code stamped pressure vessel and its associated control hardware and instrumentation coupled with inductive heaters to simulate the heat provided by the fission process. The NTREES has been designed to safely allow hydrogen gas to be injected into internal flow passages of an inductively heated test article mounted in the chamber.

  15. Synthesis of calculational methods for design and analysis of radiation shields for nuclear rocket systems

    NASA Technical Reports Server (NTRS)

    Capo, M. A.; Disney, R. K.; Jordan, T. A.; Soltesz, R. G.; Woodsum, H. C.

    1969-01-01

    Eight computer programs make up a nine volume synthesis containing two design methods for nuclear rocket radiation shields. The first design method is appropriate for parametric and preliminary studies, while the second accomplishes the verification of a final nuclear rocket reactor design.

  16. Hyperthermal Environments Simulator for Nuclear Rocket Engine Development

    NASA Astrophysics Data System (ADS)

    Litchford, R. J.; Foote, J. P.; Clifton, W. B.; Hickman, R. R.; Wang, T.-S.; Dobson, C. C.

    An arc-heater driven hyperthermal convective environments simulator was recently developed and commissioned for long duration hot hydrogen exposure of nuclear thermal rocket materials. This newly established non-nuclear testing capability uses a high-power, multi-gas, wall-stabilised constricted arc-heater to produce high-temperature pressurised hydrogen flows representative of nuclear reactor core environments, excepting radiation effects, and is intended to serve as a low-cost facility for supporting non-nuclear developmental testing of high-temperature fissile fuels and structural materials. The resulting reactor environments simulator represents a valuable addition to the available inventory of non-nuclear test facilities and is uniquely capable of investigating and characterising candidate fuel/structural materials, improving associated processing/ fabrication techniques, and simulating reactor thermal hydraulics. This paper summarizes facility design and engineering development efforts and reports baseline operational characteristics as determined from a series of performance mapping and long duration capability demonstration tests. Potential follow-on developmental strategies are also suggested in view of the technical and policy challenges ahead.

  17. Nuclear criticality safety staff training and qualifications at Los Alamos National Laboratory

    SciTech Connect

    Monahan, S.P.; McLaughlin, T.P.

    1997-05-01

    Operations involving significant quantities of fissile material have been conducted at Los Alamos National Laboratory continuously since 1943. Until the advent of the Laboratory`s Nuclear Criticality Safety Committee (NCSC) in 1957, line management had sole responsibility for controlling criticality risks. From 1957 until 1961, the NCSC was the Laboratory body which promulgated policy guidance as well as some technical guidance for specific operations. In 1961 the Laboratory created the position of Nuclear Criticality Safety Office (in addition to the NCSC). In 1980, Laboratory management moved the Criticality Safety Officer (and one other LACEF staff member who, by that time, was also working nearly full-time on criticality safety issues) into the Health Division office. Later that same year the Criticality Safety Group, H-6 (at that time) was created within H-Division, and staffed by these two individuals. The training and education of these individuals in the art of criticality safety was almost entirely self-regulated, depending heavily on technical interactions between each other, as well as NCSC, LACEF, operations, other facility, and broader criticality safety community personnel. Although the Los Alamos criticality safety group has grown both in size and formality of operations since 1980, the basic philosophy that a criticality specialist must be developed through mentoring and self motivation remains the same. Formally, this philosophy has been captured in an internal policy, document ``Conduct of Business in the Nuclear Criticality Safety Group.`` There are no short cuts or substitutes in the development of a criticality safety specialist. A person must have a self-motivated personality, excellent communications skills, a thorough understanding of the principals of neutron physics, a safety-conscious and helpful attitude, a good perspective of real risk, as well as a detailed understanding of process operations and credible upsets.

  18. The Story of the Nuclear Rocket: Back to the Future

    NASA Astrophysics Data System (ADS)

    Dewar, James A.

    2002-01-01

    The United States had a nuclear rocket development program from 1955-1973 called Project Rover/NERVA. Twenty reactor tests demonstrated conclusively the superiority, flexibility and reliability of nuclear rocket engines over their chemical counterparts. This paper surveys the technical accomplishments from that perspective, to help illustrate why many call for the program's reestablishment. Most focus on the large NERVA, but this review will consider the little known Small Nuclear Engine. KIWI-B1B was one of the first tests in which nuclear rockets demonstrated their superiority. It ejected its core as it rose to 1000MW (a megawatt equals 50 pounds of thrust). This seems contradictory, how can a `failure' demonstrate superiority? Precisely in this: the reactor remained controllable going to and from 1000MW, still ejecting its core, but still turning out power. That gave insurance to a mission. A solid or liquid chemical engine suffering similar damage would likely shutdown or blow up. KIWI-TNT and Phoebus-1A had planned and unplanned accidents. That verified the safety of nuclear engines in launch operations. NRX/EST and XE-Prime proved they could startup reliably under their own power in a simulated space environment and change power without loss of specific impulse or control, from 20MW to 1000MW and back. That gave flexibility for mid-course corrections, maneuvering between orbits or breaking into orbit. Pewee and the Nuclear Furnace tested fuels to achieve 10 hours of engine operation with 60 recycles (stops and starts). That meant an engine could perform multiple missions. Work started on fuels promising1000 seconds of specific impulse. That meant increased power and payload capacity and speed. This contrasts with the 450 seconds of LOX/LH2. The NERVA of 1971 would be 1500MW, with 10/60 capability and 825 seconds of a specific impulse. Later generation NERVAs would be in excess of 1000 seconds, 3000MW and 10/60. The Nixon Administration cancelled it in 1971

  19. Numerical study of nozzle wall cooling for nuclear thermal rockets

    NASA Technical Reports Server (NTRS)

    Kim, Suk C.; Stubbs, Robert M.

    1993-01-01

    The flowfields and performance of nuclear thermal rockets, which utilize radiation and film-cooling to cool the nozzle extension, are studied by solving the Navier-Stokes equations and species equations. The thrust level of the rocket for the present study is about 75,000 lb(f) for a chamber pressure of 68 atm(l,000 psi) and a chamber temperature of 2700 K. The throat radius of the nozzle is 0.0936 m and the area ratios of the nozzles are 300 and 500. It is assumed that the flow is chemically frozen and the turbulence is simulated by the modified Baldwin-Lomax turbulence model. The calculated results for various area ratios and film mass-flow rates are presented as Mach number contours, variations of nozzle wall temperature, exit profiles, and vacuum specific impulses. The present study shows that by selecting the flow rate of the film-cooling hydrogen and area ratio of the nozzle correctly, high area ratio nozzle extensions can be cooled effectively with radiation and film-cooling without significant penalty in performance.

  20. Numerical study of low pressure nuclear thermal rockets

    NASA Technical Reports Server (NTRS)

    Kim, Suk C.; Stubbs, Robert M.

    1992-01-01

    The flowfields and performance of low pressure nuclear thermal rockets, which use hydrogen as a propellant, are studied by solving the Navier-Stokes equations and the species equations. A finite-rate chemistry model is used in the species equations, and the turbulence is simulated by the Baldwin-Lomax turbulence model with a modified van Driest's damping constant. The calculated results for the chamber temperatures of 3200 K and 4000 K with a chamber pressure range of 0.1 atm to 6 atm are presented as contours, centerline variations, and exit profiles. The performance values from the present calculations, such as the vacuum specific impulse and thrust, are compared with those from the 1D, inviscid equilibrium and frozen flow code.

  1. XNR2000---A near term nuclear thermal rocket concept

    SciTech Connect

    Peery, S.D.; Parsley, R.C. ); Anghaie, S.; Feller, G.J. )

    1993-01-20

    A conceptual nuclear thermal rocket (NTR), the XNR2000, has been developed that is powered by a fast spectrum, cermet fueled reactor core. The baseline XNR2000 system delivers 25000 Ibf of thrust at a specific impulse of 900 seconds. The cermet fueled reactor heats hydrogen propellant to a maximum temperature of 2668K in a two-pass reactor flow configuration. Thermal hydraulic and neutronic analyses were performed to assess the basic design characteristics of the reactor core and engine system. Temperature, flow, and pressure distribution throughout the engine system at full power operating conditions were also determined. The two-pass reactor design and the utilization of cermet fuels allow for a compact and high power density 25000 Ibf thrust system with a thrust to weight ratio of larger than 5.3. This paper summarizes the XNR2000 conceptual design, the supporting thermal hydraulic and neutronic analyses, and the rational that lead to the baseline design.

  2. An Analysis of Nuclear-Rocket Nozzle Cooling

    NASA Technical Reports Server (NTRS)

    Robbins, William H.; Bachkin, Daniel; Medeiros, Arthur A.

    1960-01-01

    A nuclear-rocket regenerative-cooling analysis was conducted over a range of reactor power of 46 to 1600 megawatts and is summarized herein. Although the propellant (hydrogen) is characterized by a large heat-sink capacity, an analysis of the local heat-flux capability of the coolant at the nozzle throat indicated that, for conventional values of system pressure drop, the cooling capability was inadequate to maintain a selected wall temperature of 1440 R. Several techniques for improving the cooling capability were discussed, for example, high pressure drop, high wall temperature, refractory wall coatings, thin highly conductive walls, and film cooling. In any specific design a combination of methods will probably be utilized to achieve successful cooling.

  3. Nuclear thermal rockets - Key to moon-Mars exploration

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Clark, John S.; Mcilwain, Melvin C.; Pelaccio, Dennis G.

    1992-01-01

    The Space Exploration Initiative (SEI) calls for lunar and Martian exploration missions for which solid-core nuclear thermal rockets (NTRs), in virtue of their single-stage, fully-reusable nature, are ideally suited. NTRs promise double the specific impulse of chemical propulsion. A lunar mission employing a reusable NTR is currently being conducted by NASA. The NTR would be assembled in LEO in such a way that it remained 'radioactively cold' during earth-to-orbit deployment by a heavy-lift chemical booster, and therefore presented no radioactive hazard. Also under consideration is a particle-bed reactor in which the hydrogen propulsive fluid directly cools coated-particle fuel spheres.

  4. Reducing the risk to Mars: The gas core nuclear rocket

    SciTech Connect

    Howe, S. D.; DeVolder, B.; Thode, L.; Zerkle, D.

    1998-01-15

    The next giant leap for mankind will be the human exploration of Mars. Almost certainly within the next thirty years, a human crew will brave the isolation, the radiation, and the lack of gravity to walk on and explore the Red planet. However, because the mission distances and duration will be hundreds of times greater than the lunar missions, a human crew will face much greater obstacles and a higher risk than those experienced during the Apollo program. A single solution to many of these obstacles is to dramatically decrease the mission duration by developing a high performance propulsion system. The gas-core nuclear rocket (GCNR) has the potential to be such a system. We have completed a comparative study of the potential impact that a GCNR could have on a manned Mars mission. The total IMLEO, transit times, and accumulated radiation dose to the crew will be compared with the NASA Design Reference Missions.

  5. Reducing the risk to Mars: The gas core nuclear rocket

    NASA Technical Reports Server (NTRS)

    Howe, S. D.; DeVolder, B.; Thode, L.; Zerkle, D.

    1998-01-01

    The next giant leap for mankind will be the human exploration of Mars. Almost certainly within the next thirty years, a human crew will brave the isolation, the radiation, and the lack of gravity to walk on and explore the Red planet. However, because the mission distances and duration will be hundreds of times greater than the lunar missions, a human crew will face much greater obstacles and a higher risk than those experienced during the Apollo program. A single solution to many of these obstacles is to dramatically decrease the mission duration by developing a high performance propulsion system. The gas-core nuclear rocket (GCNR) has the potential to be such a system. The authors have completed a comparative study of the potential impact that a GCNR could have on a manned Mars mission. The total IMLEO, transit times, and accumulated radiation dose to the crew will be compared with the NASA Design Reference Missions.

  6. Reducing the risk to Mars: The gas core nuclear rocket

    SciTech Connect

    Howe, S.D.; DeVolder, B.; Thode, L.; Zerkle, D.

    1998-12-31

    The next giant leap for mankind will be the human exploration of Mars. Almost certainly within the next thirty years, a human crew will brave the isolation, the radiation, and the lack of gravity to walk on and explore the Red planet. However, because the mission distances and duration will be hundreds of times greater than the lunar missions, a human crew will face much greater obstacles and a higher risk than those experienced during the Apollo program. A single solution to many of these obstacles is to dramatically decrease the mission duration by developing a high performance propulsion system. The gas-core nuclear rocket (GCNR) has the potential to be such a system. The authors have completed a comparative study of the potential impact that a GCNR could have on a manned Mars mission. The total IMLEO, transit times, and accumulated radiation dose to the crew will be compared with the NASA Design Reference Missions.

  7. Exhaust gas treatment in testing nuclear rocket engines

    NASA Astrophysics Data System (ADS)

    Zweig, Herbert R.; Fischler, Stanley; Wagner, William R.

    1993-01-01

    With the exception of the last test series of the Rover program, Nuclear Furnace 1, test-reactor and rocket engine hydrogen gas exhaust generated during the Rover/NERVA program was released directly to the atmosphere, without removal of the associated fission products and other radioactive debris. Current rules for nuclear facilities (DOE Order 5480.6) are far more protective of the general environment; even with the remoteness of the Nevada Test Site, introduction of potentially hazardous quantities of radioactive waste into the atmosphere must be scrupulously avoided. The Rocketdyne treatment concept features a diffuser to provide altitude simulation and pressure recovery, a series of heat exchangers to gradually cool the exhaust gas stream to 100 K, and an activated charcoal bed for adsorption of inert gases. A hydrogen-gas fed ejector provides auxiliary pumping for startup and shutdown of the engine. Supplemental filtration to remove particulates and condensed phases may be added at appropriate locations in the system. The clean hydrogen may be exhausted to the atmosphere and flared, or the gas may be condensed and stored for reuse in testing. The latter approach totally isolates the working gas from the environment.

  8. Acoustic Analysis of Plutonium and Nuclear Weapon Components at Los Alamos National Laboratory

    NASA Astrophysics Data System (ADS)

    Saleh, T. A.; Reynolds, J. J.; Rowe, C. A.; Freibert, F. J.; Ten Cate, J. A.; Ulrich, T. J.; Farrow, A. M.

    2012-12-01

    One of the primary missions of Los Alamos National Laboratory is to use science based techniques to certify the nuclear weapons stockpile of the United States. As such we use numerous NDE techniques to monitor materials and systems properties in weapons. Two techniques will be discussed in this presentation, Acoustic Resonance Spectroscopy (ARS) and Acoustic Emission (AE). ARS is used to observe manufacturing variations or changes in the plutonium containing component (pit) of the weapon system. Both quantitative and qualitative comparisons can be used to determine variation in the pit components. Piezoelectric transducer driven acoustic resonance experiments will be described along with initial qualitative and more complex analysis and comparison techniques derived from earthquake analysis performed at LANL. Similarly, AE is used to measure the time of arrival of acoustic signals created by mechanical events that can occur in nuclear weapon components. Both traditional time of arrival techniques and more advanced techniques are used to pinpoint the location and type of acoustic emission event. Similar experiments on tensile tests of brittle phases of plutonium metal will be described.

  9. Material handling for the Los Alamos National Laboratory Nuclear Material Storage Facility

    SciTech Connect

    Pittman, P.; Roybal, J.; Durrer, R.; Gordon, D.

    1999-04-01

    This paper will present the design and application of material handling and automation systems currently being developed for the Los Alamos National Laboratory (LANL) Nuclear Material Storage Facility (NMSF) renovation project. The NMSF is a long-term storage facility for nuclear material in various forms. The material is stored within tubes in a rack called a basket. The material handling equipment range from simple lift assist devices to more sophisticated fully automated robots, and are split into three basic systems: a Vault Automation System, an NDA automation System, and a Drum handling System. The Vault Automation system provides a mechanism to handle a basket of material cans and to load/unload storage tubes within the material vault. In addition, another robot is provided to load/unload material cans within the baskets. The NDA Automation System provides a mechanism to move material within the small canister NDA laboratory and to load/unload the NDA instruments. The Drum Handling System consists of a series of off the shelf components used to assist in lifting heavy objects such as pallets of material or drums and barrels.

  10. Los Alamos neutron science center nuclear weapons stewardship and unique national scientific capabilities

    SciTech Connect

    Schoenberg, Kurt F

    2010-12-15

    This presentation gives an overview of the Los Alamos Neutron Science Center (LANSCE) and its contributions to science and the nuclear weapons program. LANSCE is made of multiple experimental facilities (the Lujan Center, the Weapons Neutron Research facility (WNR), the Ultra-Cold Neutron facility (UCN), the proton Radiography facility (pRad) and the Isotope Production Facility (IPF)) served by the its kilometer long linear accelerator. Several research areas are supported, including materials and bioscience, nuclear science, materials dynamics, irradiation response and medical isotope production. LANSCE is a national user facility that supports researchers worldwide. The LANSCE Risk Mitigation program is currently in progress to update critical accelerator equipment to help extend the lifetime of LANSCE as a key user facility. The Associate Directorate of Business Sciences (ADBS) plays an important role in the continued success of LANSCE. This includes key procurement support, human resource support, technical writing support, and training support. LANSCE is also the foundation of the future signature facility MARIE (Matter-Radiation Interactions in Extremes).

  11. Initial Operation of the Nuclear Thermal Rocket Element Environmental Simulator

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.; Pearson, J. Boise; Schoenfeld, Michael P.

    2015-01-01

    The Nuclear Thermal Rocket Element Environmental Simulator (NTREES) facility is designed to perform realistic non-nuclear testing of nuclear thermal rocket (NTR) fuel elements and fuel materials. Although the NTREES facility cannot mimic the neutron and gamma environment of an operating NTR, it can simulate the thermal hydraulic environment within an NTR fuel element to provide critical information on material performance and compatibility. The NTREES facility has recently been upgraded such that the power capabilities of the facility have been increased significantly. At its present 1.2 MW power level, more prototypical fuel element temperatures nay now be reached. The new 1.2 MW induction heater consists of three physical units consisting of a transformer, rectifier, and inverter. This multiunit arrangement facilitated increasing the flexibility of the induction heater by more easily allowing variable frequency operation. Frequency ranges between 20 and 60 kHz can accommodated in the new induction heater allowing more representative power distributions to be generated within the test elements. The water cooling system was also upgraded to so as to be capable of removing 100% of the heat generated during testing In this new higher power configuration, NTREES will be capable of testing fuel elements and fuel materials at near-prototypic power densities. As checkout testing progressed and as higher power levels were achieved, several design deficiencies were discovered and fixed. Most of these design deficiencies were related to stray RF energy causing various components to encounter unexpected heating. Copper shielding around these components largely eliminated these problems. Other problems encountered involved unexpected movement in the coil due to electromagnetic forces and electrical arcing between the coil and a dummy test article. The coil movement and arcing which were encountered during the checkout testing effectively destroyed the induction coil in use at

  12. The nuclear option

    SciTech Connect

    Herken, G.

    1992-03-01

    A development history and current status evaluation are presented for nuclear-thermal rocket propulsion systems applicable to interplanetary flight. While the most advanced current chemical rocket engines, such as the SSMEs of the Space Shuttle, produce specific impulses of the order of 450 secs, a nuclear-thermal rocket engine tested at Los Alamos in 1969 generated 845 secs; such specific impulse improvements could represent weeks or months of interplanetary travel time. Attention is given to the achievements of the historical Nuclear Engine for Rocket Vehicle Application, Helios, and Orion design programs, as well as to the current Vehicle for Interplanetary Space Transportation Applications, which is fusion-based.

  13. Integrated propulsion and power modeling for bimodal nuclear thermal rockets

    NASA Astrophysics Data System (ADS)

    Clough, Joshua

    Bimodal nuclear thermal rocket (BNTR) engines have been shown to reduce the weight of space vehicles to the Moon, Mars, and beyond by utilizing a common reactor for propulsion and power generation. These savings lead to reduced launch vehicle costs and/or increased mission safety and capability. Experimental work of the Rover/NERVA program demonstrated the feasibility of NTR systems for trajectories to Mars. Numerous recent studies have demonstrated the economic and performance benefits of BNTR operation. Relatively little, however, is known about the reactor-level operation of a BNTR engine. The objective of this dissertation is to develop a numerical BNTR engine model in order to study the feasibility and component-level impact of utilizing a NERVA-derived reactor as a heat source for both propulsion and power. The primary contribution is to provide the first-of-its-kind model and analysis of a NERVA-derived BNTR engine. Numerical component models have been modified and created for the NERVA reactor fuel elements and tie tubes, including 1-D coolant thermodynamics and radial thermal conduction with heat generation. A BNTR engine system model has been created in order to design and analyze an engine employing an expander-cycle nuclear rocket and Brayton cycle power generator using the same reactor. Design point results show that a 316 MWt reactor produces a thrust and specific impulse of 66.6 kN and 917 s, respectively. The same reactor can be run at 73.8 kWt to produce the necessary 16.7 kW electric power with a Brayton cycle generator. This demonstrates the feasibility of BNTR operation with a NERVA-derived reactor but also indicates that the reactor control system must be able to operate with precision across a wide power range, and that the transient analysis of reactor decay heat merits future investigation. Results also identify a significant reactor pressure-drop limitation during propulsion and power-generation operation that is caused by poor tie tube

  14. Nuclear thermal rocket plume interactions with spacecraft. Final report

    SciTech Connect

    Mauk, B.H.; Gatsonis, N.A.; Buzby, J.; Yin, X.

    1997-05-01

    This is the first study that has treated the Nuclear Thermal Rocket (NTR) effluent problem in its entirety, beginning with the reactor core, through the nozzle flow, to the plume backflow. The summary of major accomplishments is given below: (1) Determined the NTR effluents that include neutral, ionized and radioactive species, under typical NTR chamber conditions. Applied an NTR chamber chemistry model that includes conditions and used nozzle geometries and chamber conditions typical of NTR configurations. (2) Performed NTR nozzle flow simulations using a Navier-Stokes solver. We assumed frozen chemistry at the chamber conditions and used nozzle geometries and chamber conditions typical of NTR configurations. (3) Performed plume simulations using a Direct Simulation Monte Carlo (DSMC) code with chemistry. In order to account for radioactive trace species that may be important for contamination purposes we developed a multi-weighted DSMC methodology. The domain in our simulations included large regions downstream and upstream of the exit. Inputs were taken from the Navier-Stokes solutions.

  15. Assessment of the advantages and feasibility of a nuclear rocket

    SciTech Connect

    Howe, S.D.

    1985-01-01

    The feasibility of rebuilding and testing a nuclear thermal rocket (NTR) for the Mars mission has been investigated. Calculations indicate that an NTR would substantially reduce the earth-orbit assembled mass compared to LOX/LH/sub 2/ systems. The mass savings were 36% and 65% for the cases of total aerobraking and of total propulsive braking respectively. Consequently, the cost savings for a single mission of using an NTR, if aerobraking is feasible, are probably insufficient to warrant the NTR development. If multiple missions are planned or if propulsive braking is desired at Mars and/or at Earth, then the savings of about $7B will easily pay for the NTR development. Estimates of the cost of rebuilding a NTR were based on the previous NERVA program's budget plus additional costs to develop a flight ready engine. The total cost to build the engine would be between $4 to 5B. The concept of developing a full-power test stand at Johnston Atoll in the Pacific appears very feasible. The added expense of building facilities on the island should be less than $1.4B.

  16. Tie Tube Heat Transfer Modeling for Bimodal Nuclear Thermal Rockets

    SciTech Connect

    Clough, Joshua A.; Starkey, Ryan P.; Lewis, Mark J.; Lavelle, Thomas M.

    2007-01-30

    Bimodal nuclear thermal rocket systems have been shown to reduce the weight and cost of space vehicles to Mars and beyond by utilizing the reactor for power generation in the relatively long duration between burns in an interplanetary trajectory. No information, however, is available regarding engine and reactor-level operation of such bimodal systems. The purpose of this project is to generate engine and reactor models with sufficient fidelity and flexibility to accurately study the component-level effects of operating a propulsion-designed reactor at power generation levels. Previous development of a 1-D reactor and tie tube model found that ignoring heat generation inside of the tie tube leads to under-prediction of the temperature change and over-prediction of pressure change across the tie tube. This paper will present the development and results of a tie tube model that has been extended to account for heat generation, specifically in the moderator layer. This model is based on a 1-D distribution of power in the fuel elements and tie tubes, as a precursor to an eventual neutron-driven reactor model.

  17. Los Alamos National Laboratory new generation standard nuclear material storage container - the SAVY4000 design

    SciTech Connect

    Stone, Timothy Amos

    2010-01-01

    Incidents involving release of nuclear materials stored in containers of convenience such as food pack cans, slip lid taped cans, paint cans, etc. has resulted in defense board concerns over the lack of prescriptive performance requirements for interim storage of nuclear materials. Los Alamos National Laboratory (LANL) has shared in these incidents and in response proactively moved into developing a performance based standard involving storage of nuclear material (RD003). This RD003 requirements document has sense been updated to reflect requirements as identified with recently issued DOE M 441.1-1 'Nuclear Material Packaging Manual'. The new packaging manual was issued at the encouragement of the Defense Nuclear Facilities Safety Board with a clear directive for protecting the worker from exposure due to loss of containment of stored materials. The Manual specifies a detailed and all inclusive approach to achieve a high level of protection; from package design & performance requirements, design life determinations of limited life components, authorized contents evaluations, and surveillance/maintenance to ensure in use package integrity over time. Materials in scope involve those stored outside an approved engineered-contamination barrier that would result in a worker exposure of in excess of 5 rem Committed Effective Does Equivalent (CEDE). Key aspects of meeting the challenge as developed around the SAVY-3000 vented storage container design will be discussed. Design performance and acceptance criteria against the manual, bounding conditions as established that the user must ensure are met to authorize contents in the package (based upon the activity of heat-source plutonium (90% Pu-238) oxide, which bounds the requirements for weapons-grade plutonium oxide), interface as a safety class system within the facility under the LANL plutonium facility DSA, design life determinations for limited life components, and a sense of design specific surveillance program

  18. Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Upgrade Activities

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.

    2014-01-01

    Over the past year the Nuclear Thermal Rocket Element Environmental Simulator (NTREES) has been undergoing a significant upgrade beyond its initial configuration. The NTREES facility is designed to perform realistic non-nuclear testing of nuclear thermal rocket (NTR) fuel elements and fuel materials. Although the NTREES facility cannot mimic the neutron and gamma environment of an operating NTR, it can simulate the thermal hydraulic environment within an NTR fuel element to provide critical information on material performance and compatibility. The first phase of the upgrade activities which was completed in 2012 in part consisted of an extensive modification to the hydrogen system to permit computer controlled operations outside the building through the use of pneumatically operated variable position valves. This setup also allows the hydrogen flow rate to be increased to over 200 g/sec and reduced the operation complexity of the system. The second stage of modifications to NTREES which has just been completed expands the capabilities of the facility significantly. In particular, the previous 50 kW induction power supply has been replaced with a 1.2 MW unit which should allow more prototypical fuel element temperatures to be reached. The water cooling system was also upgraded to so as to be capable of removing 100% of the heat generated during. This new setup required that the NTREES vessel be raised onto a platform along with most of its associated gas and vent lines. In this arrangement, the induction heater and water systems are now located underneath the platform. In this new configuration, the 1.2 MW NTREES induction heater will be capable of testing fuel elements and fuel materials in flowing hydrogen at pressures up to 1000 psi at temperatures up to and beyond 3000 K and at near-prototypic reactor channel power densities. NTREES is also capable of testing potential fuel elements with a variety of propellants, including hydrogen with additives to inhibit

  19. Ablation study of tungsten-based nuclear thermal rocket fuel

    NASA Astrophysics Data System (ADS)

    Smith, Tabitha Elizabeth Rose

    The research described in this thesis has been performed in order to support the materials research and development efforts of NASA Marshall Space Flight Center (MSFC), of Tungsten-based Nuclear Thermal Rocket (NTR) fuel. The NTR was developed to a point of flight readiness nearly six decades ago and has been undergoing gradual modification and upgrading since then. Due to the simplicity in design of the NTR, and also in the modernization of the materials fabrication processes of nuclear fuel since the 1960's, the fuel of the NTR has been upgraded continuously. Tungsten-based fuel is of great interest to the NTR community, seeking to determine its advantages over the Carbide-based fuel of the previous NTR programs. The materials development and fabrication process contains failure testing, which is currently being conducted at MSFC in the form of heating the material externally and internally to replicate operation within the nuclear reactor of the NTR, such as with hot gas and RF coils. In order to expand on these efforts, experiments and computational studies of Tungsten and a Tungsten Zirconium Oxide sample provided by NASA have been conducted for this dissertation within a plasma arc-jet, meant to induce ablation on the material. Mathematical analysis was also conducted, for purposes of verifying experiments and making predictions. The computational method utilizes Anisimov's kinetic method of plasma ablation, including a thermal conduction parameter from the Chapman Enskog expansion of the Maxwell Boltzmann equations, and has been modified to include a tangential velocity component. Experimental data matches that of the computational data, in which plasma ablation at an angle shows nearly half the ablation of plasma ablation at no angle. Fuel failure analysis of two NASA samples post-testing was conducted, and suggestions have been made for future materials fabrication processes. These studies, including the computational kinetic model at an angle and the

  20. Fifty-one years of Los Alamos Spacecraft

    SciTech Connect

    Fenimore, Edward E.

    2014-09-04

    From 1963 to 2014, the Los Alamos National Laboratory was involved in at least 233 spacecraft. There are probably only one or two institutions in the world that have been involved in so many spacecraft. Los Alamos space exploration started with the Vela satellites for nuclear test detection, but soon expanded to ionospheric research (mostly barium releases), radioisotope thermoelectric generators, solar physics, solar wind, magnetospheres, astrophysics, national security, planetary physics, earth resources, radio propagation in the ionosphere, and cubesats. Here, we present a list of the spacecraft, their purpose, and their launch dates for use during RocketFest

  1. An historical perspective of the NERVA nuclear rocket engine technology program. Final Report

    SciTech Connect

    Robbins, W.H.; Finger, H.B.

    1991-07-01

    Nuclear rocket research and development was initiated in the United States in 1955 and is still being pursued to a limited extent. The major technology emphasis occurred in the decade of the 1960s and was primarily associated with the Rover/NERVA Program where the technology for a nuclear rocket engine system for space application was developed and demonstrated. The NERVA (Nuclear Engine for Rocket Vehicle Application) technology developed twenty years ago provides a comprehensive and viable propulsion technology base that can be applied and will prove to be valuable for application to the NASA Space Exploration Initiative (SEI). This paper, which is historical in scope, provides an overview of the conduct of the NERVA Engine Program, its organization and management, development philosophy, the engine configuration, and significant accomplishments.

  2. An Historical Perspective of the NERVA Nuclear Rocket Engine Technology Program

    NASA Technical Reports Server (NTRS)

    Robbins, W. H.; Finger, H. B.

    1991-01-01

    Nuclear rocket research and development was initiated in the United States in 1955 and is still being pursued to a limited extent. The major technology emphasis occurred in the decade of the 1960s and was primarily associated with the Rover/NERVA Program where the technology for a nuclear rocket engine system for space application was developed and demonstrated. The NERVA (Nuclear Engine for Rocket Vehicle Application) technology developed twenty years ago provides a comprehensive and viable propulsion technology base that can be applied and will prove to be valuable for application to the NASA Space Exploration Initiative (SEI). This paper, which is historical in scope, provides an overview of the conduct of the NERVA Engine Program, its organization and management, development philosophy, the engine configuration, and significant accomplishments.

  3. Heat transfer analysis of fuel assemblies in a heterogeneous gas core nuclear rocket

    NASA Technical Reports Server (NTRS)

    Watanabe, Yoichi; Appelbaum, Jacob; Diaz, Nils; Maya, Isaac

    1991-01-01

    Heat transfer problems of a heterogeneous gaseous core nuclear rocket were studied. The reactor core consists of 1.5-m long hexagonal fuel assemblies filled with pressurized uranium tetrafluoride (UF4) gas. The fuel gas temperature ranges from 3500 to 7000 K at a nominal operating condition of 40 atm. Each fuel assembly has seven coolant tubes, through which hydrogen propellant flows. The propellant temperature is not constrained by the fuel temperature but by the maximum temperature of the graphite coolant tube. For a core achieving a fission power density of 1000 MW/cu m, the propellant core exit temperature can be as high as 3200 K. The physical size of a 1250 MW gaseous core nuclear rocket is comparable with that of a NERVA-type solid core nuclear rocket. The engine can deliver a specific impulse of 1020 seconds and a thrust of 330 kN.

  4. High Performance Ultra-light Nuclear Rockets for NEO (Near Earth Objects) Interaction Missions

    SciTech Connect

    Powell, J.; Maise, G.; Ludewig, H.; Todosow, M.

    1996-12-31

    The performance capabilities and technology features of ultra compact nuclear thermal rockets based on very high power density ({approximately} 30 Megawatts per liter) fuel elements are described. Nuclear rockets appear particularly attractive for carrying out missions to investigate or intercept Near Earth Objects (NEOS) that potentially could impact on the Earth. Many of these NEO threats, whether asteroids or comets, have extremely high closing velocities, i.e., tens of kilometers per second relative to the Earth. Nuclear rockets using hydrogen propellant enable flight velocities 2 to 3 times those achievable with chemical rockets, allowing interaction with a potential NEO threat at a much shorter time, and at much greater range. Two versions of an ultra compact nuclear rocket based on very high heat transfer rates are described: the PBR (Particle Bed Reactor), which has undergone substantial hardware development effort, and MITEE (Miniature Reactor Engine) which is a design derivative of the PBR. Nominal performance capabilities for the PBR are: thermal power - 1000 MW thrust - 45,000 lbsf, and weight - 500 kg. For MITEE, nominal capabilities are: thermal power - 100 MW; thrust {approx} 4500 lbsf, and weight - 50 kg. Development of operational PBR/MITEE systems would enable spacecraft launched from LEO (Low Earth Orbit) to investigate intercept NEO`s at a range of {approximately} 100 million kilometers in times of {approximately} 30 days.

  5. The rationale/benefits of nuclear thermal rocket propulsion for NASA's lunar space transportation system

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.

    1991-01-01

    Two nuclear thermal rocket (NTR) technology options are examined - one derived from the graphite-moderated reactor concept developed by NASA and the AEC under the Rover/NERVA (Nuclear Engine for Rocket Vehicle Application) programs, and a second concept, the Particle Bed Reactor. The paper also summarizes NASA's lunar outpost scenario, compares relative performance provided by different lunar space transportation system concepts, and discusses important operational issues (e.g., reusability, engine 'end-of-life' disposal, etc.) associated with using this important propulsion technology.

  6. Calculated concentrations of any radionuclide deposited on the ground by release from underground nuclear detonations, tests of nuclear rockets, and tests of nuclear ramjet engines

    SciTech Connect

    Hicks, H.G.

    1981-11-01

    This report presents calculated gamma radiation exposure rates and ground deposition of related radionuclides resulting from three types of event that deposited detectable radioactivity outside the Nevada Test Site complex, namely, underground nuclear detonations, tests of nuclear rocket engines and tests of nuclear ramjet engines.

  7. Radiological effluents released from nuclear rocket and ramjet engine tests at the Nevada Test Site 1959 through 1969: Fact Book

    SciTech Connect

    Friesen, H.N.

    1995-06-01

    Nuclear rocket and ramjet engine tests were conducted on the Nevada Test Site (NTS) in Area 25 and Area 26, about 80 miles northwest of Las Vegas, Nevada, from July 1959 through September 1969. This document presents a brief history of the nuclear rocket engine tests, information on the off-site radiological monitoring, and descriptions of the tests.

  8. Initial Operation and Shakedown of the Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.

    2014-01-01

    To support the on-going nuclear thermal propulsion effort, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The facility to perform this testing is referred to as the Nuclear Thermal Rocket Element Environment Simulator (NTREES). This device can simulate the environmental conditions (minus the radiation) to which nuclear rocket fuel components will be subjected during reactor operation. Prototypical fuel elements mounted in the simulator are inductively heated in such a manner so as to accurately reproduce the temperatures and heat fluxes which would normally occur as a result of nuclear fission in addition to being exposed to flowing hydrogen. Recent upgrades to NTREES now allow power levels 24 times greater than those achievable in the previous facility configuration. This higher power operation will allow near prototypical power densities and flows to finally be achieved in most prototypical fuel elements.

  9. Stockpile Stewardship: Los Alamos

    ScienceCinema

    McMillan, Charlie; Morgan, Nathanial; Goorley, Tom; Merrill, Frank; Funk, Dave; Korzekwa, Deniece; Laintz, Ken

    2016-07-12

    "Heritage of Science" is a short video that highlights the Stockpile Stewardship program at Los Alamos National Laboratory. Stockpile Stewardship was conceived in the early 1990s as a national science-based program that could assure the safety, security, and effectiveness of the U.S. nuclear deterrent without the need for full-scale underground nuclear testing. This video was produced by Los Alamos National Laboratory for screening at the Lab's Bradbury Science Museum in Los Alamos, NM and is narrated by science correspondent Miles O'Brien.

  10. The NASA/DOE/DOD nuclear rocket propulsion project - FY 1991 status

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Miller, Thomas J.

    1991-01-01

    NASA has initiated planning and critical technology development for nuclear rocket propulsion systems for Space Exploration Initiative missions to the moon and to Mars. Interagency agreements are being negotiated between NASA, the Department of Energy, and the Department of Defense for joint technology development activities. This paper summarizes the activities of the NASA project planning team in FY 1990 that led to the draft Nuclear Propulsion Project Plan, outlines the FY 1991 Interagency activities, and describes the current status of the project plan.

  11. The open-cycle gas-core nuclear rocket engine - Some engineering considerations.

    NASA Technical Reports Server (NTRS)

    Taylor, M. F.; Whitmarsh, C. L., Jr.; Sirocky, P. J., Jr.; Iwanczyk, L. C.

    1971-01-01

    A preliminary design study of a conceptual 6000-MW open-cycle gas-core nuclear rocket engine system was made. The engine has a thrust of 44,200 lb and a specific impulse of 4400 sec. The nuclear fuel is uranium-235 and the propellant is hydrogen. Critical fuel mass was calculated for several reactor configurations. Major components of the reactor (reflector, pressure vessel) and the waste heat rejection system were considered conceptually and were sized.

  12. CFD analysis and experimental investigation associated with the design of the Los Alamos nuclear materials storage facility

    SciTech Connect

    Bernardin, J.D.; Hopkins, S.; Gregory, W.S.; Martin, R.A.

    1997-06-01

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory is being renovated for long-term storage of canisters designed to hold heat-generating nuclear materials, such as powders, ingots, and other components. The continual heat generation within the canisters necessitates a reliable cooling scheme of sufficient magnitude which maintains the stored material temperatures within acceptable limits. The primary goal of this study was to develop both an experimental facility and a computational fluid dynamics (CFD) model of a subsection of the NMSF which could be used to observe general performance trends of a proposed passive cooling scheme and serve as a design tool for canister holding fixtures. Comparisons of numerical temperature and velocity predictions with empirical data indicate that the CFD model provides an accurate representation of the NMSF experimental facility. Minor modifications in the model geometry and boundary conditions are needed to enhance its accuracy, however, the various fluid and thermal models correctly capture the basic physics.

  13. Modeling and Testing of Non-Nuclear, Highpower Simulated Nuclear Thermal Rocket Reactor Elements

    NASA Technical Reports Server (NTRS)

    Kirk, Daniel R.

    2005-01-01

    When the President offered his new vision for space exploration in January of 2004, he said, "Our third goal is to return to the moon by 2020, as the launching point for missions beyond," and, "With the experience and knowledge gained on the moon, we will then be ready to take the next steps of space exploration: human missions to Mars and to worlds beyond." A human mission to Mars implies the need to move large payloads as rapidly as possible, in an efficient and cost-effective manner. Furthermore, with the scientific advancements possible with Project Prometheus and its Jupiter Icy Moons Orbiter (JIMO), (these use electric propulsion), there is a renewed interest in deep space exploration propulsion systems. According to many mission analyses, nuclear thermal propulsion (NTP), with its relatively high thrust and high specific impulse, is a serious candidate for such missions. Nuclear rockets utilize fission energy to heat a reactor core to very high temperatures. Hydrogen gas flowing through the core then becomes superheated and exits the engine at very high exhaust velocities. The combination of temperature and low molecular weight results in an engine with specific impulses above 900 seconds. This is almost twice the performance of the LOX/LH2 space shuttle engines, and the impact of this performance would be to reduce the trip time of a manned Mars mission from the 2.5 years, possible with chemical engines, to about 12-14 months.

  14. Nuclear and Astrophysics Data from the T2 Group at Los Alamos National Laboratory (LANL)

    DOE Data Explorer

    The T-2 Nuclear Information Service provides access to a variety of nuclear data, including ENDF/B cross sections, radioactive decay data, astrophysics data, photoatomic data, charged particle data, thermal neutron data, and a Nuclear Data Viewer. The data are useful for both nuclear science and nuclear engineering. The codes area gives information on computer codes used in the T-2 Group's nuclear data work.

  15. Affordable Development and Demonstration of a Small Nuclear Thermal Rocket (NTR) Engine and Stage: How Small Is Big Enough?

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Sefcik, Robert J.; Fittje, James E.; McCurdy, David R.; Qualls, Arthur L.; Schnitzler, Bruce G.; Werner, James E.; Weitzberg, Abraham; Joyner, Claude R.

    2016-01-01

    The Nuclear Thermal Rocket (NTR) derives its energy from fission of uranium-235 atoms contained within fuel elements that comprise the engine's reactor core. It generates high thrust and has a specific impulse potential of approximately 900 specific impulse - a 100 percent increase over today's best chemical rockets. The Nuclear Thermal Propulsion (NTP) project, funded by NASA's Advanced Exploration Systems (AES) program, includes five key task activities: (1) Recapture, demonstration, and validation of heritage graphite composite (GC) fuel (selected as the Lead Fuel option); (2) Engine Conceptual Design; (3) Operating Requirements Definition; (4) Identification of Affordable Options for Ground Testing; and (5) Formulation of an Affordable Development Strategy. During fiscal year (FY) 2014, a preliminary Design Development Test and Evaluation (DDT&E) plan and schedule for NTP development was outlined by the NASA Glenn Research Center (GRC), Department of Energy (DOE) and industry that involved significant system-level demonstration projects that included Ground Technology Demonstration (GTD) tests at the Nevada National Security Site (NNSS), followed by a Flight Technology Demonstration (FTD) mission. To reduce cost for the GTD tests and FTD mission, small NTR engines, in either the 7.5 or 16.5 kilopound-force thrust class, were considered. Both engine options used GC fuel and a common fuel element (FE) design. The small approximately 7.5 kilopound-force criticality-limited engine produces approximately157 thermal megawatts and its core is configured with parallel rows of hexagonal-shaped FEs and tie tubes (TTs) with a FE to TT ratio of approximately 1:1. The larger approximately 16.5 kilopound-force Small Nuclear Rocket Engine (SNRE), developed by Los Alamos National Laboratory (LANL) at the end of the Rover program, produces approximately 367 thermal megawatts and has a FE to TT ratio of approximately 2:1. Although both engines use a common 35-inch (approximately

  16. Nuclear Propulsion through Direct Conversion of Fusion Energy: The Fusion Driven Rocket

    NASA Technical Reports Server (NTRS)

    Slough, John; Pancotti, Anthony; Kirtley, David; Pihl, Christopher; Pfaff, Michael

    2012-01-01

    The future of manned space exploration and development of space depends critically on the creation of a dramatically more proficient propulsion architecture for in-space transportation. A very persuasive reason for investigating the applicability of nuclear power in rockets is the vast energy density gain of nuclear fuel when compared to chemical combustion energy. Current nuclear fusion efforts have focused on the generation of electric grid power and are wholly inappropriate for space transportation as the application of a reactor based fusion-electric system creates a colossal mass and heat rejection problem for space application.

  17. TRANSFER OF EXCESS NUCLEAR MATERIAL FROM LOS ALAMOS TO SAVANNAH RIVER SITE FOR LONG-TERM DISPOSITION

    SciTech Connect

    C. W. HOTH; L. A. FOSTER; T. F YARBRO

    2001-06-01

    Los Alamos National Laboratory is preparing excess nuclear material for shipment to Savannah River Site (SRS) for final disposition. Prior to shipment the nuclear material will be stabilized and packaged to meet strict criteria. The criterion that must be met include: (1) the DOE stabilization, packaging and storage requirements for plutonium bearing materials, DOE-STD-3013, (2) shipping container packaging requirements, (3) SRS packaging and storage criteria, and (4) DOE Material Disposition criteria for either immobilization or MOX reactor fuel. Another issue in preparing for this transfer is the DOE certification of shipping containers and the availability of shipping containers. This transfer of the nuclear material is fully supported by the EM, DP and NN Sections of the DOE, as well as, by LANL and SRS, yet a strong collaboration is needed to meet all established requirements relating to stabilization, packaging, shipment, storage and final disposition. This paper will present the overall objectives, the issues and the planned strategy to accomplish this nuclear material transfer.

  18. How useful is neutron diffusion theory for nuclear rocket engine design

    SciTech Connect

    Hilsmeier, T.A.; Aithal, S.M.; Aldemir, T. )

    1992-01-01

    Correct modeling of neutron leakage and geometry effects is important in the design of a nuclear rocket engine because of the need for small reactor cores in space applications. In principle, there are generalized procedures that can account for these effects in a reliable manner (e.g., a three-dimensional, continuous-energy Monte Carlo calculation with all core components explicitly modeled). However, these generalized procedures are not usually suitable for parametric design studies because of the long computational times required, and the feasibility of using faster running, more approrimate neutronic modeling approaches needs to be investigated. Faster running neutronic models are also needed for simulator development to assess the engine performance during startup and power level changes. This paper investigates the potential of the few-group diffusion approach for nuclear rocket engine core design and optimization by comparing the k[sub eff] and power distributions obtained by the MCNP code against those obtained from the LEOPARD and 2DB codes for the particle bed reactor (PBR) concept described. The PBRs have been identified as one of the two near-term options for nuclear thermal propulsion by the joint National Aeronautics and Space Administration (NASA)/US Department of Energy/US Department of Defense program that was recently set up at the NASA Lewis Research Center to develop a flight-rated nuclear rocket engine by the 2020s.

  19. Thermal hydraulic design analysis of ternary carbide fueled square-lattice honeycomb nuclear rocket engine

    SciTech Connect

    Furman, Eric M.; Anghaie, Samim

    1999-01-22

    A computational analysis is conducted to determine the optimum thermal-hydraulic design parameters for a square-lattice honeycomb nuclear rocket engine core that will incorporate ternary carbide based uranium fuels. Recent studies at the Innovative Nuclear Space Power and Propulsion Institute (INSPI) have demonstrated the feasibility of processing solid solution, ternary carbide fuels such as (U, Zr, Nb)C, (U, Zr, Ta)C, (U, Zr, Hf)C and (U, Zr, W)C. The square-lattice honeycomb design provides high strength and is amenable to the processing complexities of these ultrahigh temperature fuels. A parametric analysis is conducted to examine how core geometry, fuel thickness and the propellant flow area effect the thermal performance of the nuclear rocket engine. The principal variables include core size (length and diameter) and fuel element dimensions. The optimum core configuration requires a balance between high specific impulse and thrust level performance, and maintaining the temperature and strength limits of the fuel. A nuclear rocket engine simulation code is developed and used to examine the system performance as well as the performance of the main reactor core components. The system simulation code was originally developed for analysis of NERVA-Derivative and Pratt and Whitney XNR-2000 nuclear thermal rockets. The code is modified and adopted to the square-lattice geometry of the new fuel design. Thrust levels ranging from 44,500 to 222,400 N (10,000 to 50,000 lbf) are considered. The average hydrogen exit temperature is kept at 2800 K, which is well below the melting point of these fuels. For a nozzle area ratio of 300 and a thrust chamber pressure of 4.8 Mpa (700 psi), the specific impulse is 930 s. Hydrogen temperature and pressure distributions in the core and the fuel maximum temperatures are calculated.

  20. Pursuing Community-Oriented Primary Care in a Russian Closed Nuclear City: The Sarov–Los Alamos Community Health Partnership

    PubMed Central

    Rhyne, Robert L.; Hertzman, Philip A.

    2002-01-01

    The Russian health care system historically has not relied on medical evidence to guide practice, uses centralized management, and is burdened by overspecialization. In 1999, a community health partnership was established between Sarov, Russia, and Los Alamos, NM, 2 cities linked by their nuclear weapons histories. Health problems addressed include asthma and diabetes, pediatric dental caries, low prevalence of breastfeeding, and adolescent drug abuse and sexually transmitted diseases. A community-oriented primary care approach was adopted that includes (1) implementing a “train the trainers” strategy to educate health professionals and lay people, (2) adapting established clinical practice guidelines based on local resources, (3) restricting use of expensive or limited resources, and (4) securing commitments from local government for expendable supplies and medications. PMID:12406797

  1. An improved heat transfer configuration for a solid-core nuclear thermal rocket engine

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Walton, James T.; Mcguire, Melissa L.

    1992-01-01

    Interrupted flow, impingement cooling, and axial power distribution are employed to enhance the heat-transfer configuration of a solid-core nuclear thermal rocket engine. Impingement cooling is introduced to increase the local heat-transfer coefficients between the reactor material and the coolants. Increased fuel loading is used at the inlet end of the reactor to enhance heat-transfer capability where the temperature differences are the greatest. A thermal-hydraulics computer program for an unfueled NERVA reactor core is employed to analyze the proposed configuration with attention given to uniform fuel loading, number of channels through the impingement wafers, fuel-element length, mass-flow rate, and wafer gap. The impingement wafer concept (IWC) is shown to have heat-transfer characteristics that are better than those of the NERVA-derived reactor at 2500 K. The IWC concept is argued to be an effective heat-transfer configuration for solid-core nuclear thermal rocket engines.

  2. Nuclear Rocket Test Facility Decommissioning Including Controlled Explosive Demolition of a Neutron-Activated Shield Wall

    SciTech Connect

    Michael Kruzic

    2007-09-01

    Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D&D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolition (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release.

  3. Orbital transfer of large space structures with nuclear electric rockets

    NASA Technical Reports Server (NTRS)

    Silva, T. H.; Byers, D. C.

    1980-01-01

    This paper discusses the potential application of electric propulsion for orbit transfer of a large spacecraft structure from low earth orbit to geosynchronous altitude in a deployed configuration. The electric power was provided by the spacecraft nuclear reactor space power system on a shared basis during transfer operations. Factors considered with respect to system effectiveness included nuclear power source sizing, electric propulsion thruster concept, spacecraft deployment constraints, and orbital operations and safety. It is shown that the favorable total impulse capability inherent in electric propulsion provides a potential economic advantage over chemical propulsion orbit transfer vehicles by reducing the number of Space Shuttle flights in ground-to-orbit transportation requirements.

  4. The nuclear thermal electric rocket: a proposed innovative propulsion concept for manned interplanetary missions

    NASA Astrophysics Data System (ADS)

    Dujarric, C.; Santovincenzo, A.; Summerer, L.

    2013-03-01

    Conventional propulsion technology (chemical and electric) currently limits the possibilities for human space exploration to the neighborhood of the Earth. If farther destinations (such as Mars) are to be reached with humans on board, a more capable interplanetary transfer engine featuring high thrust, high specific impulse is required. The source of energy which could in principle best meet these engine requirements is nuclear thermal. However, the nuclear thermal rocket technology is not yet ready for flight application. The development of new materials which is necessary for the nuclear core will require further testing on ground of full-scale nuclear rocket engines. Such testing is a powerful inhibitor to the nuclear rocket development, as the risks of nuclear contamination of the environment cannot be entirely avoided with current concepts. Alongside already further matured activities in the field of space nuclear power sources for generating on-board power, a low level investigation on nuclear propulsion has been running since long within ESA, and innovative concepts have already been proposed at an IAF conference in 1999 [1, 2]. Following a slow maturation process, a new concept was defined which was submitted to a concurrent design exercise in ESTEC in 2007. Great care was taken in the selection of the design parameters to ensure that this quite innovative concept would in all respects likely be feasible with margins. However, a thorough feasibility demonstration will require a more detailed design including the selection of appropriate materials and the verification that these can withstand the expected mechanical, thermal, and chemical environment. So far, the predefinition work made clear that, based on conservative technology assumptions, a specific impulse of 920 s could be obtained with a thrust of 110 kN. Despite the heavy engine dry mass, a preliminary mission analysis using conservative assumptions showed that the concept was reducing the required

  5. A fusion-driven gas core nuclear rocket

    NASA Astrophysics Data System (ADS)

    Kammash, T.; Godfroy, T.

    1998-01-01

    A magnetic confinement scheme is investigated as a potential propulsion device in which thrust is generated by a propellant heated by radiation emanating from a fusion plasma. The device in question is the gasdynamic mirror (GDM) machine in which a hot dense plasma is confined long enough to generate fusion energy while allowing a certain fraction of its charged particle population to go through one end to a direct converter. The energy of these particles is converted into electric power which is recirculated to sustain the steady state operation of the system. The injected power heats the plasma to thermonuclear temperatures where the resulting fusion energy appears a charged particle power, neutron power, and radiated power in the form of bremsstrahlung and synchrotron radiation. The neutron power can be converted through a thermal converter to electric power that can be combined with the direct converter power before being fed into the injector. The radiated power, on the other hand, can be used to heat a hydrogen propellant introduced into the system at a specified pressure and mass flow rate. This propellant can be pre-heated by regeneratively cooling the (mirror) nozzle or other components of the system if feasible, or by an electrothermal unit powered by portions of the recirculated power. Using a simple heat transfer model that ignores the heat flux to the wall, and assuming total absorption of radiation energy by the propellant it is shown that such a gas core rocket is capable of producing tens of kilonewtons of thrust and several thousands of seconds of specific impulse. It is also shown that the familiar Kelvin-Helmholtz instability which arises from the relative motion of the neutral hydrogen to the ionized fuel is not likely to occur in this system due to the presence of the confining magnetic field.

  6. Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Phase II Upgrade Activities

    NASA Technical Reports Server (NTRS)

    Emrich, William J.; Moran, Robert P.; Pearson, J. Bose

    2013-01-01

    To support the on-going nuclear thermal propulsion effort, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The facility to perform this testing is referred to as the Nuclear Thermal Rocket Element Environment Simulator (NTREES). This device can simulate the environmental conditions (minus the radiation) to which nuclear rocket fuel components will be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner so as to accurately reproduce the temperatures and heat fluxes which would normally occur as a result of nuclear fission and would be exposed to flowing hydrogen. Initial testing of a somewhat prototypical fuel element has been successfully performed in NTREES and the facility has now been shutdown to allow for an extensive reconfiguration of the facility which will result in a significant upgrade in its capabilities. Keywords: Nuclear Thermal Propulsion, Simulator

  7. Nuclear Thermal Rocket - Arc Jet Integrated System Model

    NASA Technical Reports Server (NTRS)

    Taylor, Brian D.; Emrich, William

    2016-01-01

    In the post-shuttle era, space exploration is moving into a new regime. Commercial space flight is in development and is planned to take on much of the low earth orbit space flight missions. With the development of a heavy lift launch vehicle, the Space Launch, System, NASA has become focused on deep space exploration. Exploration into deep space has traditionally been done with robotic probes. More ambitious missions such as manned missions to asteroids and Mars will require significant technology development. Propulsion system performance is tied to the achievability of these missions and the requirements of other developing technologies that will be required. Nuclear thermal propulsion offers a significant improvement over chemical propulsion while still achieving high levels of thrust. Opportunities exist; however, to build upon what would be considered a standard nuclear thermal engine to attain improved performance, thus further enabling deep space missions. This paper discuss the modeling of a nuclear thermal system integrated with an arc jet to further augment performance. The performance predictions and systems impacts are discussed.

  8. Review of coaxial flow gas core nuclear rocket fluid mechanics

    NASA Technical Reports Server (NTRS)

    Weinstein, H.

    1976-01-01

    Almost all of the fluid mechanics research associated with the coaxial flow gas core reactor ended abruptly with the interruption of NASA's space nuclear program because of policy and budgetary considerations in 1973. An overview of program accomplishments is presented through a review of the experiments conducted and the analyses performed. Areas are indicated where additional research is required for a fuller understanding of cavity flow and of the factors which influence cold and hot flow containment. A bibliography is included with graphic material.

  9. Design Considerations for the Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    NASA Technical Reports Server (NTRS)

    Emrich, Bill; Kirk, Daniel

    2006-01-01

    Nuclear Thermal Rockets or NTR's have been suggested as a propulsion system option for vehicles traveling to the moon or Mars. These engines are capable of providing high thrust at specific impulses at least twice that of today s best chemical engines. The performance constraints on these engines are mainly the result of temperature limitations on the fuel coupled with a limited ability to withstand chemical attack by the hot hydrogen propellant. To operate at maximum efficiency, fuel forms are desired which can withstand the extremely hot, hostile environment characteristic of NTR operation for at least several hours. The simulation of such an environment would require an experimental device which could simultaneously approximate the power, flow, and temperature conditions which a nuclear fuel element (or partial element) would encounter during NTR operation. Such a simulation would allow detailed studies of the fuel behavior and hydrogen flow characteristics under reactor like conditions to be performed. The goal of these simulations would be directed toward expanding the performance envelope of NTR engines over that which was demonstrated during the Rover and NERVA nuclear rocket programs of the 1970's. Currently, such a simulator is nearing completion at the Marshall Space Flight Center, and will shortly be used in the future to evaluate a wide variety of he1 element designs and the materials of which they are constructed. This present work addresses the initial experimental objectives of the Nuclear Thermal Rocket Element Environmental Simulator or NTREES and some of the design considerations which were considered prior to and during its construction.

  10. Nuclear Thermal Rocket (Ntr) Propulsion: A Proven Game-Changing Technology for Future Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2012-01-01

    The NTR represents the next evolutionary step in high performance rocket propulsion. It generates high thrust and has a specific impulse (Isp) of approx.900 seconds (s) or more V twice that of today s best chemical rockets. The technology is also proven. During the previous Rover and NERVA (Nuclear Engine for Rocket Vehicle Applications) nuclear rocket programs, 20 rocket reactors were designed, built and ground tested. These tests demonstrated: (1) a wide range of thrust; (2) high temperature carbide-based nuclear fuel; (3) sustained engine operation; (4) accumulated lifetime; and (5) restart capability V all the requirements needed for a human mission to Mars. Ceramic metal cermet fuel was also pursued, as a backup option. The NTR also has significant growth and evolution potential. Configured as a bimodal system, it can generate electrical power for the spacecraft. Adding an oxygen afterburner nozzle introduces a variable thrust and Isp capability and allows bipropellant operation. In NASA s recent Mars Design Reference Architecture (DRA) 5.0 study, the NTR was selected as the preferred propulsion option because of its proven technology, higher performance, lower launch mass, simple assembly and mission operations. In contrast to other advanced propulsion options, NTP requires no large technology scale-ups. In fact, the smallest engine tested during the Rover program V the 25,000 lbf (25 klbf) Pewee engine is sufficient for human Mars missions when used in a clustered engine arrangement. The Copernicus crewed spacecraft design developed in DRA 5.0 has significant capability and a human exploration strategy is outlined here that uses Copernicus and its key components for precursor near Earth asteroid (NEA) and Mars orbital missions prior to a Mars landing mission. Initially, the basic Copernicus vehicle can enable reusable 1-year round trip human missions to candidate NEAs like 1991 JW and Apophis in the late 2020 s to check out vehicle systems. Afterwards, the

  11. Inspection of alleged design and construction deficiencies in the Nuclear Materials Storage Facility at the Los Alamos National Laboratory

    SciTech Connect

    1997-01-16

    On June 8, 1994, the Office of Inspections, Office of Inspector General (OIG), Department of Energy (DOE), received a letter dated May 31, 1994, from a complainant concerning the Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory. The complainant alleged that the NMSF, completed in 1987, was so poorly designed and constructed that it was never usable and that DOE proposed to gut the entire facility and sandblast the walls. According to the complainant, ``these errors are so gross as to constitute professional malpractice in a commercial design setting.`` The complainant further stated that ``DOE proposes to renovate this facility to store large amounts of plutonium (as much as 30 metric tons, by some accounts), and it is imperative that the public receive some assurance that this waste will not recur and that the facility will be made safe.`` The purpose of our inspection was to determine if the allegations regarding the design and construction of the NMSF were accurate, and if so, to determine if the Government could recover damages from the Architect/Engineer and/or the construction contractor. We also reviewed the Department`s proposed actions to renovate the NMSF.

  12. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron Activated Shield Wall

    SciTech Connect

    Michael R. Kruzic

    2007-09-16

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility was used in the early to mid-1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles in the immediate area. Identified as Corrective Action Unit 115, the TCA facility was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the ''Federal Facility Agreement and Consent Order''. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously provided technical decisions are made by an experienced decision maker within the site conceptual site model, identified in the Data Quality Objective process. Facility closure involved a seven-step decommissioning strategy. Key lessons learned from the project included: (1) Targeted preliminary investigation activities provided a more solid technical approach, reduced surprises and scope creep, and made the working environment safer for the D&D worker. (2) Early identification of risks and uncertainties provided opportunities for risk management and mitigation planning to address challenges and unanticipated conditions. (3) Team reviews provided an excellent mechanism to consider all aspects of the task, integrated safety into activity performance, increase team unity and ''buy-in'' and promoted innovative and time saving ideas. (4) Development of CED protocols ensured safety and control. (5) The same proven D&D strategy is now being employed on the larger ''sister'' facility, Test Cell C.

  13. Arc-Heater Facility for Hot Hydrogen Exposure of Nuclear Thermal Rocket Materials

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Foote, John P.; Wang,Ten-See; Hickman, Robert; Panda, Binayak; Dobson, Chris; Osborne, Robin; Clifton, Scooter

    2006-01-01

    A hyper-thermal environment simulator is described for hot hydrogen exposure of nuclear thermal rocket material specimens and component development. This newly established testing capability uses a high-power, multi-gas, segmented arc-heater to produce high-temperature pressurized hydrogen flows representative of practical reactor core environments and is intended to serve. as a low cost test facility for the purpose of investigating and characterizing candidate fueUstructura1 materials and improving associated processing/fabrication techniques. Design and development efforts are thoroughly summarized, including thermal hydraulics analysis and simulation results, and facility operating characteristics are reported, as determined from a series of baseline performance mapping tests.

  14. A Programmatic and Engineering Approach to the Development of a Nuclear Thermal Rocket for Space Exploration

    NASA Technical Reports Server (NTRS)

    Bordelon, Wayne J., Jr.; Ballard, Rick O.; Gerrish, Harold P., Jr.

    2006-01-01

    With the announcement of the Vision for Space Exploration on January 14, 2004, there has been a renewed interest in nuclear thermal propulsion. Nuclear thermal propulsion is a leading candidate for in-space propulsion for human Mars missions; however, the cost to develop a nuclear thermal rocket engine system is uncertain. Key to determining the engine development cost will be the engine requirements, the technology used in the development and the development approach. The engine requirements and technology selection have not been defined and are awaiting definition of the Mars architecture and vehicle definitions. The paper discusses an engine development approach in light of top-level strategic questions and considerations for nuclear thermal propulsion and provides a suggested approach based on work conducted at the NASA Marshall Space Flight Center to support planning and requirements for the Prometheus Power and Propulsion Office. This work is intended to help support the development of a comprehensive strategy for nuclear thermal propulsion, to help reduce the uncertainty in the development cost estimate, and to help assess the potential value of and need for nuclear thermal propulsion for a human Mars mission.

  15. Documents and related materials associated with the contents and the origin of the Los Alamos technical series and the national nuclear energy series

    SciTech Connect

    Hammel, E.F.

    1996-04-01

    The rationale for preparing this document arose from the fact that the author (who worked in D-Building during WWII) was asked to contribute a short article on {open_quotes}Plutonium Metallurgy at Los Alamos During the War{close_quotes} for inclusion in the 50th anniversary book, {open_quotes}Behind Tall Fences,{close_quotes} published in 1993 by the J.R. Oppenheimer Memorial Committee. I agreed, believing that all of the source material needed was readily available in the Los Alamos Technical Series, a detailed account of all of the R&D carried out at Los Alamos from 1943 to 1945. The obvious place to start was the LANL Report Library. As will be seen by the perusing the following memoranda and reports (which were assembled one at a time by following up successive leads), it finally turned out that, of all six chapters of Vol. 10, {open_quotes}Metallurgy,{close_quotes} of which Cyril S. Smith was the general editor, the only one {open_quotes}not yet issued{close_quotes} was Chapter I on {open_quotes}Plutonium Metallurgy,{close_quotes} which had been assigned to Eric R. Jette, the wartime Group Leader of the Plutonium Metallurgy Group. Jette left Los Alamos at the end of August 1956 to join the Union Carbide Research Institute in Tarrytown, New York, where he was director until June 1962 when he retired to his valley home in Pojoaque. In February 1963, he was awarded the US Atomic Energy Commission citation for meritorious contributions to the Nuclear Energy Program; shortly thereafter he died. Before accepting the fact that Chapter I did not exist, the present author undertook to find out as much as possible about the Los Alamos Technical Series, including the circumstances relating to its preparation. The related memos, etc., once retrieved, seemed worth preserving in a single report-hence this document.

  16. The Rationale/Benefits of Nuclear Thermal Rocket Propulsion for NASA's Lunar Space Transportation System

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.

    1994-01-01

    The solid core nuclear thermal rocket (NTR) represents the next major evolutionary step in propulsion technology. With its attractive operating characteristics, which include high specific impulse (approximately 850-1000 s) and engine thrust-to-weight (approximately 4-20), the NTR can form the basis for an efficient lunar space transportation system (LTS) capable of supporting both piloted and cargo missions. Studies conducted at the NASA Lewis Research Center indicate that an NTR-based LTS could transport a fully-fueled, cargo-laden, lunar excursion vehicle to the Moon, and return it to low Earth orbit (LEO) after mission completion, for less initial mass in LEO than an aerobraked chemical system of the type studied by NASA during its '90-Day Study.' The all-propulsive NTR-powered LTS would also be 'fully reusable' and would have a 'return payload' mass fraction of approximately 23 percent--twice that of the 'partially reusable' aerobraked chemical system. Two NTR technology options are examined--one derived from the graphite-moderated reactor concept developed by NASA and the AEC under the Rover/NERVA (Nuclear Engine for Rocket Vehicle Application) programs, and a second concept, the Particle Bed Reactor (PBR). The paper also summarizes NASA's lunar outpost scenario, compares relative performance provided by different LTS concepts, and discusses important operational issues (e.g., reusability, engine 'end-of life' disposal, etc.) associated with using this important propulsion technology.

  17. Analysis of plume backflow around a nozzle lip in a nuclear rocket

    NASA Technical Reports Server (NTRS)

    Chung, Chan H.; Kim, Suk C.; Stubbs, Robert M.; De Witt, Kenneth J.

    1993-01-01

    The structure of the flow around a nuclear thermal rocket nozzle lip has been investigated using the direct simulation Monte Carlo method. Special attention has been paid to the behavior of a small amount of harmful particles that may be present in the rocket exhaust gas. The harmful fission product particles are modeled by four inert gases whose molecular weights are in a range of 4 131. Atomic hydrogen, which exists in the flow due to the extremely high nuclear fuel temperature in the reactor, is also included. It is shown that the plume backflow is primarily determined by the thin subsonic fluid layer adjacent to the surface of the nozzle lip, and that the inflow boundary in the plume region has negligible effect on the backflow. It is also shown that a relatively large amount of the lighter species is scattered into the backflow region while the amount of the heavier species becomes negligible in this region due to extreme separation between the species. Results indicate that the backscattered molecules are very energetic and are fast-moving along the surface in the backflow region near the nozzle lip.

  18. Zero Boil-Off System Design and Thermal Analysis of the Bimodal Thermal Nuclear Rocket

    NASA Astrophysics Data System (ADS)

    Christie, Robert J.; Plachta, David W.

    2006-01-01

    Mars exploration studies at NASA are evaluating vehicles that incorporate Bimodal Nuclear Thermal Rocket (BNTR) propulsion which use a high temperature nuclear fission reactor and hydrogen to produce thermal propulsion. The hydrogen propellant is to be stored in liquid state for periods up to 18 months. To prevent boil-off of the liquid hydrogen, a system of passive and active components are needed to prevent heat from entering the tanks and to remove any heat that does. This report describes the design of the system components used for the BNTR Crew Transfer Vehicle and the thermal analysis performed. The results show that Zero Boil-Off (ZBO) can be achieved with the electrical power allocated for the ZBO system.

  19. Zero Boil-Off System Design and Thermal Analysis of the Bimodal Thermal Nuclear Rocket

    SciTech Connect

    Christie, Robert J.; Plachta, David W.

    2006-01-20

    Mars exploration studies at NASA are evaluating vehicles that incorporate Bimodal Nuclear Thermal Rocket (BNTR) propulsion which use a high temperature nuclear fission reactor and hydrogen to produce thermal propulsion. The hydrogen propellant is to be stored in liquid state for periods up to 18 months. To prevent boil-off of the liquid hydrogen, a system of passive and active components are needed to prevent heat from entering the tanks and to remove any heat that does. This report describes the design of the system components used for the BNTR Crew Transfer Vehicle and the thermal analysis performed. The results show that Zero Boil-Off (ZBO) can be achieved with the electrical power allocated for the ZBO system.

  20. Design analysis and risk assessment for a single stage to orbit nuclear thermal rocket

    NASA Astrophysics Data System (ADS)

    Labib, Satira I.

    Recent advances in high power density fuel materials have renewed interest in nuclear thermal rockets (NTRs) as a viable propulsion technology for future space exploration. This thesis describes the design of three NTR reactor engines designed for the single stage to orbit launch of payloads from 1-15 metric tons. Thermal hydraulic and rocket engine analyses indicate that the proposed rocket engines are able to reach specific impulses in excess of 700 seconds. Neutronics analyses performed using MCNP5 demonstrate that the hot excess reactivity, shutdown margin, and submersion criticality requirements are satisfied for each NTR reactor. The reactors each consist of a 40 cm diameter core packed with hexagonal tungsten cermet fuel elements. The core is surrounded by radial and axial beryllium reflectors and eight boron carbide control drums. At the same power level, the 40 cm reactor results in the lowest radiation dose rate of the three reactors. Radiation dose rates decrease to background levels ~3.5 km from the launch site. After a one-year decay time, all of the activated materials produced by an NTR launch would be classified as Class A low-level waste. The activation of air produces significant amounts of argon-41 and nitrogen-16 within 100 m of the launch. The derived air concentration, DAC, from the activation products decays to less than unity within two days, with only argon-41 remaining. After 10 minutes of full power operation the 120 cm core corresponding to a 15 MT payload contains 2.5 x 1013, 1.4 x 1012, 1.5 x 1012, and 7.8 x 10 7 Bq of 131I, 137Cs, 90Sr, and 239Pu respectively. The decay heat after shutdown increases with increasing reactor power with a maximum decay heat of 108 kW immediately after shutdown for the 15 MT payload.

  1. Design of a Resistively Heated Thermal Hydraulic Simulator for Nuclear Rocket Reactor Cores

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Foote, John P.; Ramachandran, Narayanan; Wang, Ten-See; Anghaie, Samim

    2007-01-01

    A preliminary design study is presented for a non-nuclear test facility which uses ohmic heating to replicate the thermal hydraulic characteristics of solid core nuclear reactor fuel element passages. The basis for this testing capability is a recently commissioned nuclear thermal rocket environments simulator, which uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce high-temperature pressurized hydrogen flows representative of reactor core environments, excepting radiation effects. Initially, the baseline test fixture for this non-nuclear environments simulator was configured for long duration hot hydrogen exposure of small cylindrical material specimens as a low cost means of evaluating material compatibility. It became evident, however, that additional functionality enhancements were needed to permit a critical examination of thermal hydraulic effects in fuel element passages. Thus, a design configuration was conceived whereby a short tubular material specimen, representing a fuel element passage segment, is surrounded by a backside resistive tungsten heater element and mounted within a self-contained module that inserts directly into the baseline test fixture assembly. With this configuration, it becomes possible to create an inward directed radial thermal gradient within the tubular material specimen such that the wall-to-gas heat flux characteristics of a typical fuel element passage are effectively simulated. The results of a preliminary engineering study for this innovative concept are fully summarized, including high-fidelity multi-physics thermal hydraulic simulations and detailed design features.

  2. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron-Activated Shield Wall

    SciTech Connect

    Michael R. Kruzic

    2008-06-01

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility (Figure 1) was used in the early to mid-1960s for testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles. The TCA facility, known as Corrective Action Unit 115, was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the Federal Facility Agreement and Consent Order. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously, provided technical decisions are made by an experienced decision maker within the site conceptual site model. Facility closure involved a seven-step decommissioning strategy. First, preliminary investigation activities were performed, including review of process knowledge documentation, targeted facility radiological and hazardous material surveys, concrete core drilling and analysis, shield wall radiological characterization, and discrete sampling, which proved to be very useful and cost-effective in subsequent decommissioning planning and execution and worker safety. Second, site setup and mobilization of equipment and personnel were completed. Third, early removal of hazardous materials, including asbestos, lead, cadmium, and oil, was performed ensuring worker safety during more invasive demolition activities. Process piping was to be verified void of contents. Electrical systems were de-energized and other systems were rendered free of residual energy. Fourth, areas of high radiological contamination were decontaminated using multiple methods. Contamination levels varied across the facility. Fixed beta/gamma contamination levels ranged up to 2 million disintegrations per minute (dpm)/100

  3. Reactor moderator, pressure vessel, and heat rejection system of an open-cycle gas core nuclear rocket concept

    NASA Technical Reports Server (NTRS)

    Taylor, M. F.; Whitmarsh, C. L., Jr.; Sirocky, P. J., Jr.; Iwanczyke, L. C.

    1973-01-01

    A preliminary design study of a conceptual 6000-megawatt open-cycle gas-core nuclear rocket engine system was made. The engine has a thrust of 196,600 newtons (44,200 lb) and a specific impulse of 4400 seconds. The nuclear fuel is uranium-235 and the propellant is hydrogen. Critical fuel mass was calculated for several reactor configurations. Major components of the reactor (reflector, pressure vessel, and waste heat rejection system) were considered conceptually and were sized.

  4. Bleed cycle propellant pumping in a gas-core nuclear rocket engine system

    NASA Technical Reports Server (NTRS)

    Kascak, A. F.; Easley, A. J.

    1972-01-01

    The performance of ideal and real staged primary propellant pumps and bleed-powered turbines was calculated for gas-core nuclear rocket engines over a range of operating pressures from 500 to 5000 atm. This study showed that for a required engine operating pressure of 1000 atm the pump work was about 0.8 hp/(lb/sec), the specific impulse penalty resulting from the turbine propellant bleed flow as about 10 percent; and the heat required to preheat the propellant was about 7.8 MN/(lb/sec). For a specific impulse above 2400 sec, there is an excess of energy available in the moderator due to the gamma and neutron heating that occurs there. Possible alternative pumping cycles are the Rankine or Brayton cycles.

  5. Mars Sample Return and Flight Test of a Small Bimodal Nuclear Rocket and ISRU Plant

    NASA Technical Reports Server (NTRS)

    George, Jeffrey A.; Wolinsky, Jason J.; Bilyeu, Michael B.; Scott, John H.

    2014-01-01

    A combined Nuclear Thermal Rocket (NTR) flight test and Mars Sample Return mission (MSR) is explored as a means of "jump-starting" NTR development. Development of a small-scale engine with relevant fuel and performance could more affordably and quickly "pathfind" the way to larger scale engines. A flight test with subsequent inflight postirradiation evaluation may also be more affordable and expedient compared to ground testing and associated facilities and approvals. Mission trades and a reference scenario based upon a single expendable launch vehicle (ELV) are discussed. A novel "single stack" spacecraft/lander/ascent vehicle concept is described configured around a "top-mounted" downward firing NTR, reusable common tank, and "bottom-mount" bus, payload and landing gear. Requirements for a hypothetical NTR engine are described that would be capable of direct thermal propulsion with either hydrogen or methane propellant, and modest electrical power generation during cruise and Mars surface insitu resource utilization (ISRU) propellant production.

  6. Decay heat removal from a Particle Bed Reactor Nuclear Thermal Rocket engine

    NASA Astrophysics Data System (ADS)

    Gustafson, Eric

    1993-06-01

    Nuclear Thermal Rockets used in propulsion systems for planetary exploration will generate significant amounts of heat following normal engine shutdown due to the buildup of and decay of radioactive fission products. The amount of energy that is generated as decay heat is approximately 2-5 percent of the energy released during nominal operation. Various schemes are possible for removing this heat, including using primary coolant (hydrogen) to cool the reactor. Depending on the amount of coolant required, this may result in a large weight penalty for the mission. This paper quantifies the amount of decay heat that must be removed from the engine, shows the resulting impact on the vehicle design for particular missions, and examines possible approaches for reducing the amount of coolant required for decay heat removal. The costs and benefits of these schemes will be shown for several different missions. The missions that will be considered include both manned Mars missions and unmanned planetary exploration missions.

  7. Fuel/propellant mixing in an open-cycle gas core nuclear rocket engine

    NASA Astrophysics Data System (ADS)

    Guo, Xu; Wehrmeyer, Joseph A.

    1997-01-01

    A numerical investigation of the mixing of gaseous uranium and hydrogen inside an open-cycle gas core nuclear rocket engine (spherical geometry) is presented. The gaseous uranium fuel is injected near the centerline of the spherical engine cavity at a constant mass flow rate, and the hydrogen propellant is injected around the periphery of the engine at a five degree angle to the wall, at a constant mass flow rate. The main objective is to seek ways to minimize the mixing of uranium and hydrogen by choosing a suitable injector geometry for the mixing of light and heavy gas streams. Three different uranium inlet areas are presented, and also three different turbulent models (k-ɛ model, RNG k-V model, and RSM model) are investigated. The commercial CFD code, FLUENT, is used to model the flow field. Uranium mole fraction, axial mass flux, and radial mass flux contours are obtained.

  8. Instabilities in uranium plasma and the gas-core nuclear rocket engine

    NASA Technical Reports Server (NTRS)

    Tidman, D. A.

    1972-01-01

    The nonlinear evolution of unstable sound waves in a uranium plasma has been calculated using a multiple time-scale asymptotic expansion scheme. The fluid equations used include the fission power density, radiation diffusion, and the effects of the changing degree of ionization of the uranium atoms. The nonlinear growth of unstable waves is shown to be limited by mode coupling to shorter wavelength waves which are damped by radiation diffusion. This mechanism limits the wave pressure fluctuations to values of order delta P/P approximates 0.00001 in the plasma of a typical gas-core nuclear rocket engine. The instability is thus not expected to present a control problem for this engine.

  9. In-reactor tests of the nuclear light bulb rocket concept

    NASA Astrophysics Data System (ADS)

    Gauntt, R. O.; Slutz, S. A.; Latham, T. S.; Roman, W. C.; Rogers, R. J.

    1992-07-01

    An overview is given of the closed-cycle Gas Core Nuclear Rocket outlining scenarios for its use in short-duration Mars missions and results of Nuclear Light Bulb (NLB) tests. Isothermal and nonnuclear tests are described which confirmed the fundamental concepts behind the NLB. NLB reference-engine performance characteristics are given for hypothetical engines that could be used for manned Mars missions. Vehicle/propulsion sizing is based on a Mars mission with three trans-Mars impulse burns, capture and escape burns, and a total mission duration of 600 days. The engine would have a specific impulse of 1870 seconds, a 412-kN thrust, and a thrust/weight ratio of 1.3. Reactor tests including small-scale in-reactor tests are shown to be prerequisites for studying: (1) fluid mechanical confinement of the gaseous nuclear fuel; (2) buffer gas separation and circulation; and (3) the minimization of transparent wall-heat loading. The reactor tests are shown to be critical for establishing the feasibility of the NLB concept.

  10. Design, qualification and operation of nuclear rockets for safe Mars missions

    SciTech Connect

    Buden, D.; Madsen, W.W.; Olson, T.S. ); Redd, L.R. )

    1993-01-01

    Nuclear thermal propulsion modules planned for use on crew missions to Mars improve mission reliability and overall safety of the mission. This, as well as all other systems, are greatly enhanced if the system specifications take into account safety from design initiation, and operational considerations are well thought through and applied. For instance, the use of multiple engines in the propulsion module can lead to very high system safety and reliability. Operational safety enhancements may include: the use of multiple perigee burns, thus allowing time to ensure that all systems are functioning properly prior to departure from Earth orbit; the ability to perform all other parts of the mission in a degraded mode with little or no degradation of the mission; and the safe disposal of the nuclear propulsion module in a heliocentric orbit out of the ecliptic plane. The standards used to qualify nuclear rockets are one of the main cost drivers of the program. Concepts and systems that minimize cost and risk will rely on use of the element and component levels to demonstrate technology readiness and validation. Subsystem or systems testing then is only needed for verification of performance. Also, these will be the safest concepts because they will be more thoroughly understood and the safety margins will be well established and confirmed by tests.

  11. Design, qualification and operation of nuclear rockets for safe Mars missions

    SciTech Connect

    Buden, D.; Madsen, W.W.; Olson, T.S.; Redd, L.R.

    1993-04-01

    Nuclear thermal propulsion modules planned for use on crew missions to Mars improve mission reliability and overall safety of the mission. This, as well as all other systems, are greatly enhanced if the system specifications take into account safety from design initiation, and operational considerations are well thought through and applied. For instance, the use of multiple engines in the propulsion module can lead to very high system safety and reliability. Operational safety enhancements may include: the use of multiple perigee burns, thus allowing time to ensure that all systems are functioning properly prior to departure from Earth orbit; the ability to perform all other parts of the mission in a degraded mode with little or no degradation of the mission; and the safe disposal of the nuclear propulsion module in a heliocentric orbit out of the ecliptic plane. The standards used to qualify nuclear rockets are one of the main cost drivers of the program. Concepts and systems that minimize cost and risk will rely on use of the element and component levels to demonstrate technology readiness and validation. Subsystem or systems testing then is only needed for verification of performance. Also, these will be the safest concepts because they will be more thoroughly understood and the safety margins will be well established and confirmed by tests.

  12. Ground Testing a Nuclear Thermal Rocket: Design of a sub-scale demonstration experiment

    SciTech Connect

    David Bedsun; Debra Lee; Margaret Townsend; Clay A. Cooper; Jennifer Chapman; Ronald Samborsky; Mel Bulman; Daniel Brasuell; Stanley K. Borowski

    2012-07-01

    In 2008, the NASA Mars Architecture Team found that the Nuclear Thermal Rocket (NTR) was the preferred propulsion system out of all the combinations of chemical propulsion, solar electric, nuclear electric, aerobrake, and NTR studied. Recently, the National Research Council committee reviewing the NASA Technology Roadmaps recommended the NTR as one of the top 16 technologies that should be pursued by NASA. One of the main issues with developing a NTR for future missions is the ability to economically test the full system on the ground. In the late 1990s, the Sub-surface Active Filtering of Exhaust (SAFE) concept was first proposed by Howe as a method to test NTRs at full power and full duration. The concept relied on firing the NTR into one of the test holes at the Nevada Test Site which had been constructed to test nuclear weapons. In 2011, the cost of testing a NTR and the cost of performing a proof of concept experiment were evaluated.

  13. Nuclear Thermal Rocket/Vehicle Design Options for Future NASA Missions to the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Corban, Robert R.; Mcguire, Melissa L.; Beke, Erik G.

    1995-01-01

    The nuclear thermal rocket (NTR) provides a unique propulsion capability to planners/designers of future human exploration missions to the Moon and Mars. In addition to its high specific impulse (approximately 850-1000 s) and engine thrust-to-weight ratio (approximately 3-10), the NTR can also be configured as a 'dual mode' system capable of generating electrical power for spacecraft environmental systems, communications, and enhanced stage operations (e.g., refrigeration for long-term liquid hydrogen storage). At present the Nuclear Propulsion Office (NPO) is examining a variety of mission applications for the NTR ranging from an expendable, single-burn, trans-lunar injection (TLI) stage for NASA's First Lunar Outpost (FLO) mission to all propulsive, multiburn, NTR-powered spacecraft supporting a 'split cargo-piloted sprint' Mars mission architecture. Each application results in a particular set of requirements in areas such as the number of engines and their respective thrust levels, restart capability, fuel operating temperature and lifetime, cryofluid storage, and stage size. Two solid core NTR concepts are examined -- one based on NERVA (Nuclear Engine for Rocket Vehicle Application) derivative reactor (NDR) technology, and a second concept which utilizes a ternary carbide 'twisted ribbon' fuel form developed by the Commonwealth of Independent States (CIS). The NDR and CIS concepts have an established technology database involving significant nuclear testing at or near representative operating conditions. Integrated systems and mission studies indicate that clusters of two to four 15 to 25 klbf NDR or CIS engines are sufficient for most of the lunar and Mars mission scenarios currently under consideration. This paper provides descriptions and performance characteristics for the NDR and CIS concepts, summarizes NASA's First Lunar Outpost and Mars mission scenarios, and describes characteristics for representative cargo and piloted vehicles compatible with a

  14. A comparison of nuclear thermal rocket development cost and schedule for piloted missions to Mars

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Borowski, Stanley K.; Sefcik, Robert J.; Miller, Thomas J.

    1993-01-01

    In Fiscal Year 1992, NASA led a team, including DOE, universities, and industry, that evaluated various schedule and cost scenarios for development of nuclear thermal rocket propulsion systems for piloted Mars exploration. This paper summarizes the results of two of these studies: (1) a so-called 'Fast Track' approach, that would result in technology readiness level 6 (TRL-6-system ground testing complete) by the year 2000, and (2) a slower program that results in TRL-6 by 2006. Both scenarios included a concurrent engineering approach. Costs and schedules for the two scenarios are compared. In addition to the six-year schedule delay, the TRL-6 in 2006 scenario is estimated to increase the cost of the program from $4.7 billion to $5.8 billion (in real-year dollars). On the positive side, the technical program should be better, since nuclear testing of fuel elements may be possible prior to concept down-select, resulting in a more informed decision.

  15. Gas core nuclear thermal rocket engine research and development in the former USSR

    SciTech Connect

    Koehlinger, M.W.; Bennett, R.G.; Motloch, C.G.; Gurfink, M.M.

    1992-09-01

    Beginning in 1957 and continuing into the mid 1970s, the USSR conducted an extensive investigation into the use of both solid and gas core nuclear thermal rocket engines for space missions. During this time the scientific and engineering. problems associated with the development of a solid core engine were resolved. At the same time research was undertaken on a gas core engine, and some of the basic engineering problems associated with the concept were investigated. At the conclusion of the program, the basic principles of the solid core concept were established. However, a prototype solid core engine was not built because no established mission required such an engine. For the gas core concept, some of the basic physical processes involved were studied both theoretically and experimentally. However, no simple method of conducting proof-of-principle tests in a neutron flux was devised. This report focuses primarily on the development of the. gas core concept in the former USSR. A variety of gas core engine system parameters and designs are presented, along with a summary discussion of the basic physical principles and limitations involved in their design. The parallel development of the solid core concept is briefly described to provide an overall perspective of the magnitude of the nuclear thermal propulsion program and a technical comparison with the gas core concept.

  16. Conceptual Engine System Design for NERVA derived 66.7KN and 111.2KN Thrust Nuclear Thermal Rockets

    NASA Astrophysics Data System (ADS)

    Fittje, James E.; Buehrle, Robert J.

    2006-01-01

    The Nuclear Thermal Rocket concept is being evaluated as an advanced propulsion concept for missions to the moon and Mars. A tremendous effort was undertaken during the 1960's and 1970's to develop and test NERVA derived Nuclear Thermal Rockets in the 111.2 KN to 1112 KN pound thrust class. NASA GRC is leveraging this past NTR investment in their vehicle concepts and mission analysis studies, and has been evaluating NERVA derived engines in the 66.7 KN to the 111.2 KN thrust range. The liquid hydrogen propellant feed system, including the turbopumps, is an essential component of the overall operation of this system. The NASA GRC team is evaluating numerous propellant feed system designs with both single and twin turbopumps. The Nuclear Engine System Simulation code is being exercised to analyze thermodynamic cycle points for these selected concepts. This paper will present propellant feed system concepts and the corresponding thermodynamic cycle points for 66.7 KN and 111.2 KN thrust NTR engine systems. A pump out condition for a twin turbopump concept will also be evaluated, and the NESS code will be assessed against the Small Nuclear Rocket Engine preliminary thermodynamic data.

  17. Conceptual Engine System Design for NERVA derived 66.7KN and 111.2KN Thrust Nuclear Thermal Rockets

    SciTech Connect

    Fittje, James E.; Buehrle, Robert J.

    2006-01-20

    The Nuclear Thermal Rocket concept is being evaluated as an advanced propulsion concept for missions to the moon and Mars. A tremendous effort was undertaken during the 1960's and 1970's to develop and test NERVA derived Nuclear Thermal Rockets in the 111.2 KN to 1112 KN pound thrust class. NASA GRC is leveraging this past NTR investment in their vehicle concepts and mission analysis studies, and has been evaluating NERVA derived engines in the 66.7 KN to the 111.2 KN thrust range. The liquid hydrogen propellant feed system, including the turbopumps, is an essential component of the overall operation of this system. The NASA GRC team is evaluating numerous propellant feed system designs with both single and twin turbopumps. The Nuclear Engine System Simulation code is being exercised to analyze thermodynamic cycle points for these selected concepts. This paper will present propellant feed system concepts and the corresponding thermodynamic cycle points for 66.7 KN and 111.2 KN thrust NTR engine systems. A pump out condition for a twin turbopump concept will also be evaluated, and the NESS code will be assessed against the Small Nuclear Rocket Engine preliminary thermodynamic data.

  18. Overview of laser technology at Los Alamos National Laboratory

    NASA Astrophysics Data System (ADS)

    Lewis, G. K.; Cremers, D. A.

    Los Alamos National Laboratory has had a long history of involvement in laser sciences and has been recognized both for its large laser programs and smaller scale developments in laser technology and applications. The first significant program was with the Rover nuclear-based rocket propulsion system in 1968 to study laser initiated fusion. From here applications spread to programs in laser isotope separation and development of large lasers for fusion. These programs established the technological human resource base of highly trained laser physicists, engineers, and chemists that remain at the Laboratory today. Almost every technical division at Los Alamos now has some laser capability ranging from laser development, applications, studies on nonlinear processes, modeling and materials processing. During the past six years over eight R&D-100 Awards have been received by Los Alamos for development of laser-based techniques and instrumentation. Outstanding examples of technology developed include LIDAR applications to environmental monitoring, single molecule detection using fluorescence spectroscopy, a laser-based high kinetic energy source of oxygen atoms produced by a laser-sustained plasma, laser-induced breakdown spectroscopy (LIBS) for compositional, analysis, thin film high temperature superconductor deposition, multi-station laser welding, and direct metal deposition and build-up of components by fusing powder particles with a laser beam.

  19. Overview of laser technology at Los Alamos National Laboratory

    SciTech Connect

    Lewis, G.K.; Cremers, D.A.

    1994-09-01

    Los Alamos National Laboratory has had a long history of involvement in laser sciences and has been recognized both for its large laser programs and smaller scale developments in laser technology and applications. The first significant program was with the Rover nuclear-based rocket propulsion system in 1968 to study laser initiated fusion. From here applications spread to programs in laser isotope separation and development of large lasers for fusion. These programs established the technological human resource base of highly trained laser physicists, engineers, and chemists that remain at the Laboratory today. Almost every technical division at Los Alamos now has some laser capability ranging from laser development, applications, studies on nonlinear processes, modeling and materials processing. During the past six years over eight R&D-100 Awards have been received by Los Alamos for development of laser-based techniques and instrumentation. Outstanding examples of technology developed include LIDAR applications to environmental monitoring, single molecule detection using fluorescence spectroscopy, a laser-based high kinetic energy source of oxygen atoms produced by a laser-sustained plasma, laser-induced breakdown spectroscopy (LIBS) for compositional, analysis, thin film high temperature superconductor deposition, multi-station laser welding, and direct metal deposition and build-up of components by fusing powder particles with a laser beam.

  20. Program ELM: A tool for rapid thermal-hydraulic analysis of solid-core nuclear rocket fuel elements

    NASA Technical Reports Server (NTRS)

    Walton, James T.

    1992-01-01

    This report reviews the state of the art of thermal-hydraulic analysis codes and presents a new code, Program ELM, for analysis of fuel elements. ELM is a concise computational tool for modeling the steady-state thermal-hydraulics of propellant flow through fuel element coolant channels in a nuclear thermal rocket reactor with axial coolant passages. The program was developed as a tool to swiftly evaluate various heat transfer coefficient and friction factor correlations generated for turbulent pipe flow with heat addition which have been used in previous programs. Thus, a consistent comparison of these correlations was performed, as well as a comparison with data from the NRX reactor experiments from the Nuclear Engine for Rocket Vehicle Applications (NERVA) project. This report describes the ELM Program algorithm, input/output, and validation efforts and provides a listing of the code.

  1. Nuclear design analysis of square-lattice honeycomb space nuclear rocket engine

    NASA Astrophysics Data System (ADS)

    Widargo, Reza; Anghaie, Samim

    1999-01-01

    The square-lattice honeycomb reactor is designed based on a cylindrical core that is determined to have critical diameter and length of 0.50 m and 0.50 c, respectively. A 0.10-cm thick radial graphite reflector, in addition to a 0.20-m thick axial graphite reflector are used to reduce neutron leakage from the reactor. The core is fueled with solid solution of 93% enriched (U, Zr, Nb)C, which is one of several ternary uranium carbides that are considered for this concept. The fuel is to be fabricated as 2 mm grooved (U, Zr, Nb)C wafers. The fuel wafers are used to form square-lattice honeycomb fuel assemblies, 0.10 m in length with 30% cross-sectional flow area. Five fuel assemblies are stacked up axially to form the reactor core. Based on the 30% void fraction, the width of the square flow channel is about 1.3 mm. The hydrogen propellant is passed through these flow channels and removes the heat from the reactor core. To perform nuclear design analysis, a series of neutron transport and diffusion codes are used. The preliminary results are obtained using a simple four-group cross-section model. To optimize the nuclear design, the fuel densities are varied for each assembly. Tantalum, hafnium and tungsten are considered and used as a replacement for niobium in fuel material to provide water submersion sub-criticality for the reactor. Axial and radial neutron flux and power density distributions are calculated for the core. Results of the neutronic analysis indicate that the core has a relatively fast spectrum. From the results of the thermal hydraulic analyses, eight axial temperature zones are chosen for the calculation of group average cross-sections. An iterative process is conducted to couple the neutronic calculations with the thermal hydraulics calculations. Results of the nuclear design analysis indicate that a compact core can be designed based on ternary uranium carbide square-lattice honeycomb fuel. This design provides a relatively high thrust to weight

  2. Near Earth Asteroid Human Mission Possibilities Using Nuclear Thermal Rocket (NTR) Propulsion

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley; McCurdy, David R.; Packard, Thomas W.

    2012-01-01

    The NTR is a proven technology that generates high thrust and has a specific impulse (Isp (is) approximately 900 s) twice that of today's best chemical rockets. During the Rover and NERVA (Nuclear Engine for Rocket Vehicle Applications) programs, twenty rocket reactors were designed, built and ground tested. These tests demonstrated: (1) a wide range of thrust; (2) high temperature carbide-based nuclear fuel; (3) sustained engine operation; (4) accumulated lifetime; and (5) restart capability - all the requirements needed for a human mission to Mars. Ceramic metal fuel was also evaluated as a backup option. In NASA's recent Mars Design reference Architecture (DRA) 5.0 study, the NTR was selected as the preferred propulsion option because of its proven technology, higher performance, lower launch mass, versatile vehicle design, simple assembly, and growth potential. In contrast to other advanced propulsion options, NTP requires no large technology scale-ups. In fact, the smallest engine tested during the Rover program - the 25 klbf 'Pewee' engine is sufficient for a human Mars mission when used in a clustered engine configuration. The 'Copernicus crewed NTR Mars transfer vehicle design developed for DRA 5.0 has significant capability that can enable reusable '1-year' round trip human missions to candidate near Earth asteroids (NEAs) like 1991 JW in 2027, or 2000 SG344 and Apophis in 2028. A robotic precursor mission to 2000 SG344 in late 2023 could provide an attractive Flight Technology Demonstration of a small NTR engine that is scalable to the 25 klbf-class engine used for human missions 5 years later. In addition to the detailed scientific data gathered from on-site inspection, human NEA missions would also provide a valuable 'check out' function for key elements of the NTR transfer vehicle (its propulsion module, TransHab and life support systems, etc.) in a 'deep space' environment prior to undertaking the longer duration Mars orbital and landing missions that

  3. Nuclear Thermal Rocket (NTR) Propulsion and Power Systems for Outer Planetary Exploration Missions

    NASA Technical Reports Server (NTRS)

    Borowski, S. K.; Cataldo, R. L.

    2001-01-01

    The high specific impulse (I (sub sp)) and engine thrust generated using liquid hydrogen (LH2)-cooled Nuclear Thermal Rocket (NTR) propulsion makes them attractive for upper stage applications for difficult robotic science missions to the outer planets. Besides high (I (sub sp)) and thrust, NTR engines can also be designed for "bimodal" operation allowing substantial amounts of electrical power (10's of kWe ) to be generated for onboard spacecraft systems and high data rate communications with Earth during the course of the mission. Two possible options for using the NTR are examined here. A high performance injection stage utilizing a single 15 klbf thrust engine can inject large payloads to the outer planets using a 20 t-class launch vehicle when operated in an "expendable mode". A smaller bimodal NTR stage generating approx. 1 klbf of thrust and 20 to 40 kWe for electric propulsion can deliver approx. 100 kg using lower cost launch vehicles. Additional information is contained in the original extended abstract.

  4. The Conservation Equations for a Magnetically Confined Gas Core Nuclear Rocket

    NASA Astrophysics Data System (ADS)

    Kammash, Terry; Galbraith, David L.

    1994-07-01

    A very promising propulsion scheme that could meet the objectives of the Space Exploration Initiative (SEI) of sending manned missions to Mars in the early part of the next century is the open-cycle Gas Core (GCR) Nuclear Rocket. Preliminary assessments of the performance of such advice indicate that specific impulses of several thousand seconds, and thrusts of hundreds of kilonewtons are possible. These attractive propulsion parameters are obtained because the hydrogen propellant gets heated to very high temperatures by the energy radiated from a critical uranium core which is in the form of a plasma generated under very high pressure. Because of the relative motion between the propellant and the core, certain types of hydrodynamic instabilities can occur, and result in rapid escape of the fuel through the nozzle. One effective way of dealing with this instability is to place the system in an externally applied magnetic field. In this paper we formulate the appropriate conservation equations that describe the dynamics of GCR in the presence of magnetic fields, and indicate the role such fields play in the performance of the system.

  5. Assessment of the advantages and feasibility of a nuclear rocket for a manned Mars mission

    NASA Technical Reports Server (NTRS)

    Howe, Steven D.

    1986-01-01

    The feasibility of rebuilding and testing a nuclear thermal rocket (NTR) for the Mars mission was investigted. Calculations indicate that an NTR would substantially reduce the Earth-orbit assemble mass compared to LOX/LH2 systems. The mass savings were 36 and 65% for the cases of total aerobraking and of total propulsive braking respectively. Consequently, the cost savings for a single mission of using an NTR, if aerobraking is feasible, are probably insufficient to warrant the NTR development. If multiple missions are planned or if propulsive braking is desired at Mars and/or at Earth, then the savings of about $7 billion will easily pay for the NTR. Estimates of the cost of rebuilding a NTR were based on the previous NERVA program's budget plus additional costs to develop a flight ready engine. The total cost to build the engine would be between $4 to 5 billion. The concept of developing a full-power test stand at Johnston Atoll in the Pacific appears very feasible. The added expense of building facilities on the island should be less than $1.4 billion.

  6. Assessment of the advantages and feasibility of a nuclear rocket for a manned Mars mission

    NASA Astrophysics Data System (ADS)

    Howe, Steven D.

    1986-05-01

    The feasibility of rebuilding and testing a nuclear thermal rocket (NTR) for the Mars mission was investigted. Calculations indicate that an NTR would substantially reduce the Earth-orbit assemble mass compared to LOX/LH2 systems. The mass savings were 36 and 65% for the cases of total aerobraking and of total propulsive braking respectively. Consequently, the cost savings for a single mission of using an NTR, if aerobraking is feasible, are probably insufficient to warrant the NTR development. If multiple missions are planned or if propulsive braking is desired at Mars and/or at Earth, then the savings of about $7 billion will easily pay for the NTR. Estimates of the cost of rebuilding a NTR were based on the previous NERVA program's budget plus additional costs to develop a flight ready engine. The total cost to build the engine would be between $4 to 5 billion. The concept of developing a full-power test stand at Johnston Atoll in the Pacific appears very feasible. The added expense of building facilities on the island should be less than $1.4 billion.

  7. Conventional and Bimodal Nuclear Thermal Rocket (NTR) Artificial Gravity Mars Transfer Vehicle Concepts

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2016-01-01

    A variety of countermeasures have been developed to address the debilitating physiological effects of zero-gravity (0-g) experienced by cosmonauts and astronauts during their approximately 0.5 to 1.2 year long stays in low Earth orbit (LEO). Longer interplanetary flights, combined with possible prolonged stays in Mars orbit, could subject crewmembers to up to approximately 2.5 years of weightlessness. In view of known and recently diagnosed problems associated with 0-g, an artificial gravity (AG) spacecraft offers many advantages and may indeed be an enabling technology for human flights to Mars. A number of important human factors must be taken into account in selecting the rotation radius, rotation rate, and orientation of the habitation module or modules. These factors include the gravity gradient effect, radial and tangential Coriolis forces, along with cross-coupled acceleration effects. Artificial gravity Mars transfer vehicle (MTV) concepts are presented that utilize both conventional NTR, as well as, enhanced bimodal nuclear thermal rocket (BNTR) propulsion. The NTR is a proven technology that generates high thrust and has a specific impulse (Isp) capability of approximately 900 s-twice that of today's best chemical rockets. The AG/MTV concepts using conventional Nuclear Thermal Propulsion (NTP) carry twin cylindrical International Space Station (ISS)- type habitation modules with their long axes oriented either perpendicular or parallel to the longitudinal spin axis of the MTV and utilize photovoltaic arrays (PVAs) for spacecraft power. The twin habitat modules are connected to a central operations hub located at the front of the MTV via two pressurized tunnels that provide the rotation radius for the habitat modules. For the BNTR AG/MTV option, each engine has its own closed secondary helium(He)-xenon (Xe) gas loop and Brayton Rotating Unit (BRU) that can generate 10s of kilowatts (kWe) of spacecraft electrical power during the mission coast phase

  8. Internship at Los Alamos National Laboratory

    SciTech Connect

    Dunham, Ryan Q.

    2012-07-11

    Los Alamos National Laboratory (LANL) is located in Los Alamos, New Mexico. It provides support for our country's nuclear weapon stockpile as well as many other scientific research projects. I am an Undergraduate Student Intern in the Systems Design and Analysis group within the Nuclear Nonproliferation division of the Global Security directorate at LANL. I have been tasked with data analysis and modeling of particles in a fluidized bed system for the capture of carbon dioxide from power plant flue gas.

  9. Water supply for the Nuclear Rocket Development Station at the U.S. Atomic Energy Commission's Nevada Test Site

    USGS Publications Warehouse

    Young, Richard Arden

    1972-01-01

    The Nuclear Rocket Development Station, in Jackass Flats, occupies about 123 square miles in the southwestern part of the U.S. Atomic Energy Commission's Nevada Test Site. Jackass Flats, an intermontane valley bordered by highlands on all sides except for a drainage outlet in the southwestern corner, has an average annual rainfall of 4 inches. Jackass Flats is underlain by alluvium, colluvium, and volcanic rocks of Cenozoic age and, at greater depth, by sedimentary rocks of Paleozoic age. The alluvium and the colluvium lie above the saturated zone throughout nearly all of Jackass Flats. The Paleozoic sedimentary rocks contain limestone and dolomite units that are excellent water producers elsewhere ; however, these units are too deep in Jackass Flats to be economic sources of water. The only important water-producing unit known in the vicinity of the Nuclear Rocket Development Station is a welded-tuff aquifer, the Topopah Spring Member of the Paintbrush Tuff, which receives no significant recharge. This member contains about 500 feet of highly fractured rock underlying an area 11 miles long and 3 miles wide in western Jackass Flats. Permeability of the aquifer is derived mostly from joints and fractures; however, some permeability may be derived from gas bubbles in the upper part of the unit. Transmissivity, obtained from pumping tests, ranges from 68,000 to 488,000 gallons per day per foot. Volume of the saturated part of the aquifer is about 3.5 cubic miles, and the average specific yield probably ranges from 1 to 5 percent. The volume of ground water in storage is probably within the range of 37-187 billion gallons. This large amount of water should be sufficient to supply the needs of the Nuclear Rocket Development Station for many years. Water at the Nuclear Rocket Development Station is used for public supply, construction, test-cell coolant, exhaust cooling, and thermal shielding during nuclear reactor and engine testing, and washdown. Present (1967) average

  10. Conventional and Bimodal Nuclear Thermal Rocket (NTR) Artificial Gravity Mars Transfer Vehicle Concepts

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2014-01-01

    A variety of countermeasures have been developed to address the debilitating physiological effects of "zero-gravity" (0-g) experienced by cosmonauts and astronauts during their approximately 0.5-1.2 year long stays in LEO (Low Earth Orbit). Longer interplanetary flights, combined with possible prolonged stays in Mars orbit, could subject crewmembers to up to approximately 2.5 years of weightlessness. In view of known and recently diagnosed problems associated with 0-g, an artificial gravity spacecraft offers many advantages and may indeed be an enabling technology for human flights to Mars. A number of important human factors must be taken into account in selecting the rotation radius, rotation rate, and orientation of the habitation module or modules. These factors include the gravity gradient effect, radial and tangential Coriolis forces, along with cross-coupled acceleration effects. Artificial gravity (AG) Mars transfer vehicle (MTV) concepts are presented that utilize both conventional NTR, as well as, enhanced "bimodal" nuclear thermal rocket (BNTR) propulsion. The NTR is a proven technology that generates high thrust and has a specific impulse (I (sub sp)) capability of approximately 900 s - twice that of today's best chemical rockets. The AG/MTV concepts using conventional NTP carry twin cylindrical "ISS-type" habitation modules with their long axes oriented either perpendicular or parallel to the longitudinal spin axis of the MTV and utilize photovoltaic arrays (PVAs) for spacecraft power. The twin habitat modules are connected to a central operations hub located at the front of the MTV via two pressurized tunnels that provide the rotation radius for the habitat modules. For the BNTR AG/MTV option, each engine has its own "closed" secondary helium-xenon gas loop and Brayton rotating unit that can generate tens of kilowatts (kW (sub e)) of spacecraft electrical power during the mission coast phase eliminating the need for large PVAs. A single inflatable

  11. Assessment of the facilities on Jackass Flats and other Nevada Test Site facilities for the new nuclear rocket program

    SciTech Connect

    Chandler, G.; Collins, D.; Dye, K.; Eberhart, C.; Hynes, M.; Kovach, R.; Ortiz, R.; Perea, J.; Sherman, D.

    1992-12-01

    Recent NASA/DOE studies for the Space Exploration Initiative have demonstrated a critical need for the ground-based testing of nuclear rocket engines. Experience in the ROVER/NERVA Program, experience in the Nuclear Weapons Testing Program, and involvement in the new nuclear rocket program has motivated our detailed assessment of the facilities used for the ROVER/NERVA Program and other facilities located at the Nevada Test Site (NTS). The ROVER/NERVA facilities are located in the Nevada Research L, Development Area (NRDA) on Jackass Flats at NTS, approximately 85 miles northwest of Las Vegas. To guide our assessment of facilities for an engine testing program we have defined a program goal, scope, and process. To execute this program scope and process will require ten facilities. We considered the use of all relevant facilities at NTS including existing and new tunnels as well as the facilities at NRDA. Aside from the facilities located at remote sites and the inter-site transportation system, all of the required facilities are available at NRDA. In particular we have studied the refurbishment of E-MAD, ETS-1, R-MAD, and the interconnecting railroad. The total cost for such a refurbishment we estimate to be about $253M which includes additional contractor fees related to indirect, construction management, profit, contingency, and management reserves. This figure also includes the cost of the required NEPA, safety, and security documentation.

  12. Effect of buoyancy on fuel containment in an open-cycle gas-core nuclear rocket engine.

    NASA Technical Reports Server (NTRS)

    Putre, H. A.

    1971-01-01

    Analysis aimed at determining the scaling laws for the buoyancy effect on fuel containment in an open-cycle gas-core nuclear rocket engine, so conducted that experimental conditions can be related to engine conditions. The fuel volume fraction in a short coaxial flow cavity is calculated with a programmed numerical solution of the steady Navier-Stokes equations for isothermal, variable density fluid mixing. A dimensionless parameter B, called the Buoyancy number, was found to correlate the fuel volume fraction for large accelerations and various density ratios. This parameter has the value B = 0 for zero acceleration, and B = 350 for typical engine conditions.

  13. Quantitative x-ray diffraction analyses of samples used for sorption studies by the Isotope and Nuclear Chemistry Division, Los Alamos National Laboratory

    SciTech Connect

    Chipera, S.J.; Bish, D.L.

    1989-09-01

    Yucca Mountain, Nevada, is currently being investigated to determine its suitability to host our nation`s first geologic high-level nuclear waste repository. As part of an effort to determine how radionuclides will interact with rocks at Yucca Mountain, the Isotope and Nuclear Chemistry (INC) Division of Los Alamos National Laboratory has conducted numerous batch sorption experiments using core samples from Yucca Mountain. In order to understand better the interaction between the rocks and radionuclides, we have analyzed the samples used by INC with quantitative x-ray diffraction methods. Our analytical methods accurately determine the presence or absence of major phases, but we have not identified phases present below {approximately}1 wt %. These results should aid in understanding and predicting the potential interactions between radionuclides and the rocks at Yucca Mountain, although the mineralogic complexity of the samples and the lack of information on trace phases suggest that pure mineral studies may be necessary for a more complete understanding. 12 refs., 1 fig., 1 tab.

  14. Crew radiation dose from the plume of a high impulse gas-core nuclear rocket during a Mars mission.

    NASA Technical Reports Server (NTRS)

    Masser, C. C.

    1971-01-01

    Analytical calculations are performed to determine the radiation dose rate and total dose to the crew of a gas-core nuclear rocket from the fission fragments located throughout the plume volume. The radiation dose from the plume fission fragments to two crew locations of 100 and 200 meters from the nozzle exit are calculated. It is found that, in the case of the most probable fission fragment retention time of 100 seconds, the crew must be protected from the radiation dose. Five centimeters of lead shielding would reduce the radiation dose by two orders of magnitude thereby protecting the crew. The increase in vehicle weight would be insignificant (7150 kg to a vehicle gross weight of 0.94 million kg).

  15. REIMR - A Process for Utilizing Liquid Rocket Propulsion-Oriented 'Lessons Learned' to Mitigate Development Risk in Nuclear Thermal Propulsion

    SciTech Connect

    Ballard, Richard O.

    2006-01-20

    This paper is a summary overview of a study conducted at the NASA Marshall Space Flight Center (NASA-MSFC) during the initial phases of the Space Launch Initiative (SLI) program to evaluate a large number of technical problems associated with the design, development, test, evaluation and operation of several major liquid propellant rocket engine systems (i.e., SSME, Fastrac, J-2, F-1). One of the primary results of this study was the identification of the 'Fundamental Root Causes' that enabled the technical problems to manifest, and practices that can be implemented to prevent them from recurring in future propulsion system development efforts, such as that which is currently envisioned in the field of nuclear thermal propulsion (NTP). This paper will discus the Fundamental Root Causes, cite some examples of how the technical problems arose from them, and provide a discussion of how they can be mitigated or avoided in the development of an NTP system.

  16. REIMR - A Process for Utilizing Liquid Rocket Propulsion-Oriented 'Lessons Learned' to Mitigate Development Risk in Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Ballard, RIchard O.

    2006-01-01

    This paper is a summary overview of a study conducted at the NASA Marshall Space Flight Center (NASA MSFC) during the initial phases of the Space Launch Initiative (SLI) program to evaluate a large number of technical problems associated with the design, development, test, evaluation and operation of several major liquid propellant rocket engine systems (i.e., SSME, Fastrac, J-2, F-1). One of the primary results of this study was the identification of the Fundamental Root Causes that enabled the technical problems to manifest, and practices that can be implemented to prevent them from recurring in future propulsion system development efforts, such as that which is currently envisioned in the field of nuclear thermal propulsion (NTF). This paper will discuss the Fundamental Root Causes, cite some examples of how the technical problems arose from them, and provide a discussion of how they can be mitigated or avoided in the development of an NTP system

  17. Los Alamos National Laboratory.

    ERIC Educational Resources Information Center

    Hammel, Edward F., Jr.

    1982-01-01

    Current and post World War II scientific research at the Los Alamos National Laboratory (New Mexico) is discussed. The operation of the laboratory, the Los Alamos consultant program, and continuation education, and continuing education activities at the laboratory are also discussed. (JN)

  18. ENDF-related Nuclear Data from the T-2 Group (T-2 Nuclear Information Service) at Los Alamos National Laboratory (LANL)

    DOE Data Explorer

    The T-2 Nuclear Information Service provides access to a variety of nuclear data, including ENDF/B cross sections, radioactive decay data, astrophysics data, photoatomic data, charged particle data, thermal neutron data, a Map to the Nuclides, and a Nuclear Data Viewer. The T-2 Group is a participating member of the U.S. Nuclear Data Program. ENDF/B-VII information presented here includes: • ENDF/B-VII Neutron Data • ENDF/BVII Thermal Scattering Data • ENDF/B-VII Proton Data • ENDF/B-VII Photonuclear Data Each of these sections of the website is an index to the contents of the specifically named ENDF/B-VII library of data. Links in each index provide access to more information about the individual materials, including raw and interpreted views of the ENDF file, and PDF plots of the cross sections and distributions. Also provided is a section of information and graphs related to the Energy Balance of ENDF/B-VII and table of neutron Kerma data. [Information taken from http://t2.lanl.gov/data/data.html

  19. Los Alamos personnel and area criticality dosimeter systems

    SciTech Connect

    Vasilik, D.G.; Martin, R.W.

    1981-06-01

    Fissionable materials are handled and processed at the Los Alamos National Laboratory. Although the probability of a nuclear criticality accident is very remote, it must be considered. Los Alamos maintains a broad spectrum of dose assessment capabilities. This report describes the methods employed for personnel neutron, area neutron, and photon dose evaluations with passive dosimetry systems.

  20. Fuel containment and stability in the gas core nuclear rocket. Final report, April 15, 1993--April 14, 1994

    SciTech Connect

    Kammash, T.

    1996-02-01

    One of the most promising approaches to advanced propulsion that could meet the objectives of the Space Exploration Initiative (SEI) is the open cycle gas core nuclear rocket (GCR). The energy in this device is generated by a fissioning uranium plasma which heats, through radiation, a propellant that flows around the core and exits through a nozzle, thereby converting thermal energy into thrust. Although such a scheme can produce very attractive propulsion parameters in the form of high specific impulse and high thrust, it does suffer from serious physics and engineering problems that must be addressed if it is to become a viable propulsion system. Among the major problems that must be solved are the confinement of the uranium plasma, potential instabilities and control problems associated with the dynamics of the uranium core, and the question of startup and fueling of such a reactor. In this paper, the authors focus their attention on the problems of equilibria and stability of the uranium care, and examine the potential use of an externally applied magnetic field for these purposes. They find that steady state operation of the reactor is possible only for certain care profiles that may not be compatible with the radiative aspect of the system. The authors also find that the system is susceptible to hydrodynamic and acoustic instabilities that could deplete the uranium fuel in a short time if not properly suppressed.

  1. ELM - A SIMPLE TOOL FOR THERMAL-HYDRAULIC ANALYSIS OF SOLID-CORE NUCLEAR ROCKET FUEL ELEMENTS

    NASA Technical Reports Server (NTRS)

    Walton, J. T.

    1994-01-01

    ELM is a simple computational tool for modeling the steady-state thermal-hydraulics of propellant flow through fuel element coolant channels in nuclear thermal rockets. Written for the nuclear propulsion project of the Space Exploration Initiative, ELM evaluates the various heat transfer coefficient and friction factor correlations available for turbulent pipe flow with heat addition. In the past, these correlations were found in different reactor analysis codes, but now comparisons are possible within one program. The logic of ELM is based on the one-dimensional conservation of energy in combination with Newton's Law of Cooling to determine the bulk flow temperature and the wall temperature across a control volume. Since the control volume is an incremental length of tube, the corresponding pressure drop is determined by application of the Law of Conservation of Momentum. The size, speed, and accuracy of ELM make it a simple tool for use in fuel element parametric studies. ELM is a machine independent program written in FORTRAN 77. It has been successfully compiled on an IBM PC compatible running MS-DOS using Lahey FORTRAN 77, a DEC VAX series computer running VMS, and a Sun4 series computer running SunOS UNIX. ELM requires 565K of RAM under SunOS 4.1, 360K of RAM under VMS 5.4, and 406K of RAM under MS-DOS. Because this program is machine independent, no executable is provided on the distribution media. The standard distribution medium for ELM is one 5.25 inch 360K MS-DOS format diskette. ELM was developed in 1991. DEC, VAX, and VMS are trademarks of Digital Equipment Corporation. Sun4 and SunOS are trademarks of Sun Microsystems, Inc. IBM PC is a registered trademark of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation.

  2. An investigation of dual-mode operation of a nuclear-thermal rocket engine

    SciTech Connect

    Kirk, W.L.; Hedstrom, J.C.; Moore, S.W.; McFarland, R.D.; Merrigan, M.A.; Buksa, J.J.; Cappiello, M.W.; Hanson, D.L.; Woloshun, K.A.

    1991-06-01

    A preliminary assessment of the technical feasibility and mass competitiveness of a dual-mode nuclear propulsion and power system based on Rover-type reactors has been completed. Earlier studies have indicated that dual-mode systems appear attractive for electrical power levels of a few kilowatts. However, at the megawatt electrical power level considered in this study, it appears that extensive modifications to the nuclear-thermal engines would be required, the feasibility of which is unclear. Mass competitiveness at high electrical power levels is also uncertain. Further study of reactor and shield design in conjuction with mission and vehicle studies is necessary in order to determine a useful dual-mode power range. 9 refs., 20 figs., 4 tabs.

  3. Los Alamos Neutron Science Center

    SciTech Connect

    Kippen, Karen Elizabeth

    2016-11-08

    For more than 30 years the Los Alamos Neutron Science Center (LANSCE) has provided the scientific underpinnings in nuclear physics and material science needed to ensure the safety and surety of the nuclear stockpile into the future. In addition to national security research, the LANSCE User Facility has a vibrant research program in fundamental science, providing the scientific community with intense sources of neutrons and protons to perform experiments supporting civilian research and the production of medical and research isotopes. Five major experimental facilities operate simultaneously. These facilities contribute to the stockpile stewardship program, produce radionuclides for medical testing, and provide a venue for industrial users to irradiate and test electronics. In addition, they perform fundamental research in nuclear physics, nuclear astrophysics, materials science, and many other areas. The LANSCE User Program plays a key role in training the next generation of top scientists and in attracting the best graduate students, postdoctoral researchers, and early-career scientists. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) —the principal sponsor of LANSCE—works with the Office of Science and the Office of Nuclear Energy, which have synergistic long-term needs for the linear accelerator and the neutron science that is the heart of LANSCE.

  4. Congreve Rockets

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The British fired Congreve rockets against the United States in the War of 1812. As a result Francis Scott Key coined the phrase the 'rocket's red glare.' Congreve had used a 16-foot guide stick to help stabilize his rocket. William Hale, another British inventor, invented the stickless rocket in 1846. The U.S. Army used the Hale rocket more than 100 years ago in the war with Mexico. Rockets were also used to a limited extent by both sides in the American Civil War.

  5. ``Bimodal'' Nuclear Thermal Rocket (BNTR) Propulsion for an Artificial Gravity HOPE Mission to Callisto

    NASA Astrophysics Data System (ADS)

    Borowski, Stanley K.; McGuire, Melissa L.; Mason, Lee M.; Gilland, James H.; Packard, Thomas W.

    2003-01-01

    This paper summarizes the results of a year long, multi-center NASA study which examined the viability of nuclear fission propulsion systems for Human Outer Planet Exploration (HOPE). The HOPE mission assumes a crew of six is sent to Callisto. Jupiter's outermost large moon, to establish a surface base and propellant production facility. The Asgard asteroid formation, a region potentially rich in water-ice, is selected as the landing site. High thrust BNTR propulsion is used to transport the crew from the Earth-Moon L1 staging node to Callisto then back to Earth in less than 5 years. Cargo and LH2 ``return'' propellant for the piloted Callisto transfer vehicle (PCTV) is pre-deployed at the moon (before the crew's departure) using low thrust, high power, nuclear electric propulsion (NEP) cargo and tanker vehicles powered by hydrogen magnetoplasmadynamic (MPD) thrusters. The PCTV is powered by three 25 klbf BNTR engines which also produce 50 kWe of power for crew life support and spacecraft operational needs. To counter the debilitating effects of long duration space flight (~855 days out and ~836 days back) under ``0-gE'' conditions, the PCTV generates an artificial gravity environment of ``1-gE'' via rotation of the vehicle about its center-of-mass at a rate of ~4 rpm. After ~123 days at Callisto, the ``refueled'' PCTV leaves orbit for the trip home. Direct capsule re-entry of the crew at mission end is assumed. Dynamic Brayton power conversion and high temperature uranium dioxide (UO2) in tungsten metal ``cermet'' fuel is used in both the BNTR and NEP vehicles to maximize hardware commonality. Technology performance levels and vehicle characteristics are presented, and requirements for PCTV reusability are also discussed.

  6. Torpedo Rockets

    NASA Technical Reports Server (NTRS)

    2004-01-01

    All through the 13th to the 15th Centuries there were reports of many rocket experiments. For example, Joanes de Fontana of Italy designed a surface-rurning, rocket-powered torpedo for setting enemy ships on fire

  7. Rocket Flight.

    ERIC Educational Resources Information Center

    Van Evera, Bill; Sterling, Donna R.

    2002-01-01

    Describes an activity for designing, building, and launching rockets that provides students with an intrinsically motivating and real-life application of what could have been classroom-only concepts. Includes rocket design guidelines and a sample grading rubric. (KHR)

  8. Bimodal Nuclear Thermal Rocket Sizing and Trade Matrix for Lunar, Near Earth Asteroid and Mars Missions

    NASA Astrophysics Data System (ADS)

    McCurdy, David R.; Krivanek, Thomas M.; Roche, Joseph M.; Zinolabedini, Reza

    2006-01-01

    The concept of a human rated transport vehicle for various near earth missions is evaluated using a liquid hydrogen fueled Bimodal Nuclear Thermal Propulsion (BNTP) approach. In an effort to determine the preliminary sizing and optimal propulsion system configuration, as well as the key operating design points, an initial investigation into the main system level parameters was conducted. This assessment considered not only the performance variables but also the more subjective reliability, operability, and maintainability attributes. The SIZER preliminary sizing tool was used to facilitate rapid modeling of the trade studies, which included tank materials, propulsive versus an aero-capture trajectory, use of artificial gravity, reactor chamber operating pressure and temperature, fuel element scaling, engine thrust rating, engine thrust augmentation by adding oxygen to the flow in the nozzle for supersonic combustion, and the baseline turbopump configuration to address mission redundancy and safety requirements. A high level system perspective was maintained to avoid focusing solely on individual component optimization at the expense of system level performance, operability, and development cost.

  9. Los Alamos offers Fellowships

    NASA Astrophysics Data System (ADS)

    Los Alamos National Laboratory in New Mexico is calling for applications for postdoctoral appointments and research fellowships. The positions are available in geoscience as well as other scientific disciplines.The laboratory, which is operated by the University of California for the Department of Energy, awards J. Robert Oppenheimer Research Fellowships to scientists that either have or will soon complete doctoral degrees. The appointments are for two years, are renewable for a third year, and carry a stipend of $51,865 per year. Potential applicants should send a resume or employment application and a statement of research goals to Carol M. Rich, Div. 89, Human Resources Development Division, MS P290, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 by mid-November.

  10. The Los Alamos primer

    SciTech Connect

    Serber, R.

    1992-01-01

    This book contains the 1943 lecture notes of Robert Serber. Serber was a protege of J. Robert Oppenheimer and member of the team that built the first atomic bomb - reveal what the Los Alamos scientists knew, and did not know, about the terrifying weapon they were building.

  11. Space transfer concepts and analysis for exploration missions. Implementation plan and element description document (draft final). Volume 3: Nuclear thermal rocket vehicle

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This document presents the nuclear thermal rocket (NTR) concept design developed in support of the Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) study. The evolution of the NTR concept is described along with the requirements, guidelines and assumptions for the design. Operating modes and options are defined and a systems description of the vehicle is presented. Artificial gravity configuration options and space and ground support systems are discussed. Finally, an implementation plan is presented which addresses technology needs, schedules, facilities and costs.

  12. Nuclear Thermal Rocket/Vehicle Characteristics And Sensitivity Trades For NASA's Mars Design Reference Architecture (DRA) 5.0 Study

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2009-01-01

    This paper summarizes Phase I and II analysis results from NASA's recent Mars DRA 5.0 study which re-examined mission, payload and transportation system requirements for a human Mars landing mission in the post-2030 timeframe. Nuclear thermal rocket (NTR) propulsion was again identified as the preferred in-space transportation system over chemical/aerobrake because of its higher specific impulse (I(sub sp)) capability, increased tolerance to payload mass growth and architecture changes, and lower total initial mass in low Earth orbit (IMLEO) which is important for reducing the number of Ares-V heavy lift launches and overall mission cost. DRA 5.0 features a long surface stay (approximately 500 days) split mission using separate cargo and crewed Mars transfer vehicles (MTVs). All vehicles utilize a common core propulsion stage with three 25 klbf composite fuel NERVA-derived NTR engines (T(sub ex) approximately 2650 - 2700 K, p(sub ch) approximately 1000 psia, epsilon approximately 300:1, I(sub sp) approximately 900 - 910 s, engine thrust-toweight ratio approximately 3.43) to perform all primary mission maneuvers. Two cargo flights, utilizing 1-way minimum energy trajectories, pre-deploy a cargo lander to the surface and a habitat lander into a 24-hour elliptical Mars parking orbit where it remains until the arrival of the crewed MTV during the next mission opportunity (approximately 26 months later). The cargo payload elements aerocapture (AC) into Mars orbit and are enclosed within a large triconicshaped aeroshell which functions as payload shroud during launch, then as an aerobrake and thermal protection system during Mars orbit capture and subsequent entry, descent and landing (EDL) on Mars. The all propulsive crewed MTV is a 0-gE vehicle design that utilizes a fast conjunction trajectory that allows approximately 6-7 month 1-way transit times to and from Mars. Four 12.5 kW(sub e) per 125 square meter rectangular photovoltaic arrays provide the crewed MTV with

  13. Los Alamos Team Demonstrates Bottle Scanner Technology

    SciTech Connect

    Espy, Michelle; Schultz, Larry

    2014-05-06

    Los Alamos scientists are demonstrating a Nuclear Magnetic Resonance Imaging (NMR) technology that may provide a breakthrough for screening liquids at airport security. By adding low-power X-ray data to the NMR mix, scientists believe they have unlocked a new detection technology. Funded in part by the Department of Homeland Security's Science and Technology Directorate, the new technology is called MagRay.

  14. Los Alamos Team Demonstrates Bottle Scanner Technology

    ScienceCinema

    Espy, Michelle; Schultz, Larry

    2016-07-12

    Los Alamos scientists are demonstrating a Nuclear Magnetic Resonance Imaging (NMR) technology that may provide a breakthrough for screening liquids at airport security. By adding low-power X-ray data to the NMR mix, scientists believe they have unlocked a new detection technology. Funded in part by the Department of Homeland Security's Science and Technology Directorate, the new technology is called MagRay.

  15. Large Payload Nuclear Rockets

    DTIC Science & Technology

    1964-06-01

    sec-in . These results are for a chopped sine power distribution where the local heat flux is of the form: dqd& = A1 sin [CQ1 (1 - and COI is equal...consequently these properties were used for all further runs. Along with the above results for the heat flux and temper- ature distributions the specification...a neutron absorbing material it might be possible to obtain an ideal power distribution that would cause the core ma- terial to be either wall

  16. Analytical Investigation of the Effect of Turbopump Design on Gross-Weight Characteristics of a Hydrogen-Propelled Nuclear Rocket

    NASA Technical Reports Server (NTRS)

    Rohlik, Harold E.; Crouse, James E.

    1959-01-01

    The effect of turbopump design on rocket gross weight was investigated for a high-pressure bleed-type hydrogen-reactor long-range rocket with a fixed mission. Axial-flow, mixed-flow, and centrifugal pumps driven by single and twin turbines were considered. With an efficiency of 0.7 assumed for all pumps, the lowest rocket gross weights were obtained with an axial-flow or a mixed-flow pump driven by a single turbine of at least eight stages. All turbopump combinations could be used, however, with gross weight varying less than 8 percent for a given payload. Turbopump efficiencies have a significant effect on the ratio of gross weight to payload with the magnitude of the effect determined by the ratio of rocket structural weight to total propellant weight. One point in pump efficiency is worth 0.2 percent in gross weight for a given payload with a structural weight parameter of 0.1 and 0.6 percent with a structural weight parameter of 0.2. Turbine and pump weights are much less significant in terms of gross-to-pay weight ratio than the efficiencies of these components. One point in pump efficiency is equivalent to approximately 13 percent in pump weight, while 1 point in turbine efficiency is equivalent to about 7 percent in turbine weight.

  17. Los Alamos Programming Models

    SciTech Connect

    Bergen, Benjamin Karl

    2016-07-07

    This is the PDF of a powerpoint presentation from a teleconference on Los Alamos programming models. It starts by listing their assumptions for the programming models and then details a hierarchical programming model at the System Level and Node Level. Then it details how to map this to their internal nomenclature. Finally, a list is given of what they are currently doing in this regard.

  18. Review of liquid metal heat pipe work at Los Alamos

    SciTech Connect

    Reid, R.S.; Merrigan, M.A.; Sena, J.T.

    1990-01-01

    A survey of space-power related liquid metal heat pipe work at Los Alamos National Laboratory is presented. Heat pipe development at Los Alamos has been on-going since 1963. Heat pipes were initially developed for thermionic nuclear-electrical power production in space. Since then Los Alamos has developed liquid metal heat pipes for numerous applications related to high temperature systems in both the space and terrestrial environments. Some of these applications include thermionic electrical generators, thermoelectric energy conversion (both in-core and direct radiation), thermal energy storage, hypersonic vehicle leading edge cooling, and heat pipe vapor laser cells. Some of the work performed at Los Alamos has been documented in internal reports that are often little-known. A representative description and summary of progress in space-related liquid metal heat pipe technology is provided followed by a reference section citing sources where these works may be found. 53 refs.

  19. Review of liquid metal heat pipe work at Los Alamos

    SciTech Connect

    Reid, R.S.; Merrigan, M.A.; Sena, J.T. )

    1991-01-10

    A survey of space-power related liquid metal heat pipe work at Los Alamos National Laboratory is presented. Heat pipe development at Los Alamos has been on-going since 1963. Heat pipes were initially developed for thermionic nuclear-electrical power production in space. Since then Los Alamos has developed liquid metal heat pipes for numerous applications related to high temperature systems in both the space and terrestrial environments. Some of these applications include thermionic electrical generators, thermoelectric energy conversion (both in-core and direct radiation), thermal energy storage, hypersonic vehicle leading edge cooling, and heat pipe vapor laser cells. Some of the work performed at Los Alamos has been documented in internal reports that are often little-known. A representative description and summary of progress in space-related liquid metal heat pipe technology is provided followed by a reference section citing sources where these works may be found.

  20. The development of the atomic bomb, Los Alamos

    SciTech Connect

    Seidel, R.W.

    1993-11-01

    The historical presentation begins with details of the selection of Los Alamos as the site of the Army installation. Wartime efforts of the Army Corps of Engineers, and scientists to include the leader of Los Alamos, Robert Oppenheimer are presented. The layout and construction of the facilities are discussed. The monumental design requirements of the bombs are discussed, including but not limited to the utilization of the second choice implosion method of detonation, and the production of bomb-grade nuclear explosives. The paper ends with a philosophical discussion on the use of nuclear weapons.

  1. Hot-gas-side heat transfer with and without film cooling on a simulated nuclear rocket thrust chamber using H2-O2

    NASA Technical Reports Server (NTRS)

    Quentmeyer, R. J.; Schacht, R. L.; Jones, W. L.

    1972-01-01

    Heat-transfer coefficients were obtained on a thrust chamber which simulated the geometry of the NERVA nuclear rocket. The tests were performed with and without peripheral film cooling over a chamber pressure range of 1.05 million to 5.84 million newtons per square meter (153 to 847 psia). With no film cooling, the overall axial variation in the value of the correlation coefficient C of the equation (Stanton)* (Prandtl)* to the 0.7ths power = C(Reynolds)* to the -0.2ths power, where * indicates the reference enthalpy condition, was reduced 66 percent when the local diameter in the Reynolds number was replaced by the axial distance from the injector face. The average peak values of C were reduced 25 percent with 2 and 3.75 percent cooling and 50 percent with 7.5 percent cooling.

  2. Rockets Away!

    ERIC Educational Resources Information Center

    Kaahaaina, Nancy

    1997-01-01

    Describes a project that involved a rocket-design competition where students played the roles of McDonnell Douglas employees competing for NASA contracts. Provides a real world experience involving deadlines, design and performance specifications, and budgets. (JRH)

  3. Critical partnerships: Los Alamos, universities, and industry

    SciTech Connect

    Berger, C.L.

    1997-04-01

    Los Alamos National Laboratory, situated 35 miles northwest of Santa Fe, NM, is one of the Department of Energy`s three Defense Programs laboratories. It encompasses 43 square miles, employees approximately 10,000 people, and has a budget of approximately $1.1B in FY97. Los Alamos has a strong post-cold war mission, that of reducing the nuclear danger. But even with that key role in maintaining the nation`s security, Los Alamos views partnerships with universities and industry as critical to its future well being. Why is that? As the federal budget for R&D comes under continued scrutiny and certain reduction, we believe that the triad of science and technology contributors to the national system of R&D must rely on and leverage each others capabilities. For us this means that we will rely on these partners to help us in 5 key ways: We expect that partnerships will help us maintain and enhance our core competencies. In doing so, we will be able to attract the best scientists and engineers. To keep on the cutting edge of research and development, we have found that partnerships maintain the excellence of staff through new and exciting challenges. Additionally, we find that from our university and corporate partners we often learn and incorporate {open_quotes}best practices{close_quotes} in organizational management and operations. Finally, we believe that a strong national system of R&D will ensure and enhance our ability to generate revenues.

  4. Los Alamos National Laboratory

    SciTech Connect

    Dogliani, Harold O

    2011-01-19

    The purpose of the briefing is to describe general laboratory technical capabilities to be used for various groups such as military cadets or university faculty/students and post docs to recruit into a variety of Los Alamos programs. Discussed are: (1) development and application of high leverage science to enable effeictive, predictable and reliability outcomes; (2) deter, detect, characterize, reverse and prevent the proliferation of weapons of mass destruction and their use by adversaries and terrorists; (3) modeling and simulation to define complex processes, predict outcomes, and develop effective prevention, response, and remediation strategies; (4) energetic materials and hydrodynamic testing to develop materials for precise delivery of focused energy; (5) materials cience focused on fundamental understanding of materials behaviors, their quantum-molecular properties, and their dynamic responses, and (6) bio-science to rapidly detect and characterize pathogens, to develop vaccines and prophylactic remedies, and to develop attribution forensics.

  5. Bulk processing of radionuclide generator parents at the Los Alamos Hot Cell Facility

    SciTech Connect

    Fassbender, M. E.; Nortier, F. M.; Phillips, Dennis R.; Peterson, E. J.

    2004-01-01

    Bulk radionuclide processing at Los Alamos includes isotopes with short-lived radioactive daughter nuclides ('generator parents') for medical applications. The generator radionuclide parents {sup 68}Ge, {sup 82}Sr, {sup 88}Zr and {sup 109}Cd are regularly processed at the Los Alamos Hot Cell Facility. Nuclear chemical aspects related to the production and processing of these generator parents are briefly outlined.

  6. Advanced nuclear thermal propulsion concepts

    NASA Technical Reports Server (NTRS)

    Howe, Steven D.

    1993-01-01

    In 1989, a Presidential directive created the Space Exploration Initiative (SEI) which had a goal of placing mankind on Mars in the early 21st century. The SEI was effectively terminated in 1992 with the election of a new administration. Although the initiative did not exist long enough to allow substantial technology development, it did provide a venue, for the first time in 20 years, to comprehensively evaluate advanced propulsion concepts which could enable fast, manned transits to Mars. As part of the SEI based investigations, scientists from NASA, DoE National Laboratories, universities, and industry met regularly and proceeded to examine a variety of innovative ideas. Most of the effort was directed toward developing a solid-core, nuclear thermal rocket and examining a high-power nuclear electric propulsion system. In addition, however, an Innovative Concepts committee was formed and charged with evaluating concepts that offered a much higher performance but were less technologically mature. The committee considered several concepts and eventually recommended that further work be performed in the areas of gas core fission rockets, inertial confinement fusion systems, antimatter based rockets, and gas core fission electric systems. Following the committee's recommendations, some computational modeling work has been performed at Los Alamos in certain of these areas and critical issues have been identified.

  7. Air-Powered Rockets.

    ERIC Educational Resources Information Center

    Rodriguez, Charley; Raynovic, Jim

    This document describes methods for designing and building two types of rockets--rockets from paper and rockets from bottles. Devices used for measuring the heights that the rockets obtain are also discussed. (KHR)

  8. Environmental Programs at Los Alamos National Laboratory

    SciTech Connect

    Jones, Patricia

    2012-07-11

    Summary of this project is: (1) Teamwork, partnering to meet goals - (a) Building on cleanup successes, (b) Solving legacy waste problems, (c) Protecting the area's environment; (2) Strong performance over the past three years - (a) Credibility from four successful Recovery Act Projects, (b) Met all Consent Order milestones, (c) Successful ramp-up of TRU program; (3) Partnership between the National Nuclear Security Administration's Los Alamos Site Office, DOE Carlsbad Field Office, New Mexico Environment Department, and contractor staff enables unprecedented cleanup progress; (4) Continued focus on protecting water resources; and (5) All consent order commitments delivered on time or ahead of schedule.

  9. Summary of environmental surveillance at Los Alamos during 1995

    SciTech Connect

    1996-10-01

    Linking the Rio Grande Valley and the Jemez Mountains, New Mexico`s Pajarito Plateau is home to a world-class scientific institution. Los Alamos National Laboratory (or the Laboratory), managed by the Regents of the University of California, is a government-owned, Department of Energy-supervised complex investigating all areas of modern science for the purposes of national defense, health, conservation, and ecology. The Laboratory was founded in 1943 as part of the Manhattan Project, whose members assembled to create the first nuclear weapon. Occupying the campus of the Los Alamos Ranch School, American and British scientists gathered on the isolated mesa tops to harness recently discovered nuclear power with the hope of ending World War II. In July 1945, the initial objective of the Laboratory, a nuclear device, was achieved in Los Alamos and tested in White Sands, New Mexico. Today the Laboratory continues its role in defense, particularly in nuclear weapons, including developing methods for safely handling weapons and managing waste. For the past twenty years, the Laboratory has published an annual environmental report. This pamphlet offers a synopsis that briefly explains important concepts, such as radiation and provides a summary of the monitoring results and regulatory compliance status that are explained at length in the document entitled Environmental Surveillance at Los Alamos during 1995.

  10. A physicists guide to The Los Alamos Primer

    NASA Astrophysics Data System (ADS)

    Reed, B. Cameron

    2016-11-01

    In April 1943, a group of scientists at the newly established Los Alamos Laboratory were given a series of lectures by Robert Serber on what was then known of the physics and engineering issues involved in developing fission bombs. Serber’s lectures were recorded in a 24 page report titled The Los Alamos Primer, which was subsequently declassified and published in book form. This paper describes the background to the Primer and analyzes the physics contained in its 22 sections. The motivation for this paper is to provide a firm foundation of the background and contents of the Primer for physicists interested in the Manhattan Project and nuclear weapons.

  11. Thermal Hydraulics Design and Analysis Methodology for a Solid-Core Nuclear Thermal Rocket Engine Thrust Chamber

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Canabal, Francisco; Chen, Yen-Sen; Cheng, Gary; Ito, Yasushi

    2013-01-01

    Nuclear thermal propulsion is a leading candidate for in-space propulsion for human Mars missions. This chapter describes a thermal hydraulics design and analysis methodology developed at the NASA Marshall Space Flight Center, in support of the nuclear thermal propulsion development effort. The objective of this campaign is to bridge the design methods in the Rover/NERVA era, with a modern computational fluid dynamics and heat transfer methodology, to predict thermal, fluid, and hydrogen environments of a hypothetical solid-core, nuclear thermal engine the Small Engine, designed in the 1960s. The computational methodology is based on an unstructured-grid, pressure-based, all speeds, chemically reacting, computational fluid dynamics and heat transfer platform, while formulations of flow and heat transfer through porous and solid media were implemented to describe those of hydrogen flow channels inside the solid24 core. Design analyses of a single flow element and the entire solid-core thrust chamber of the Small Engine were performed and the results are presented herein

  12. Measurements at Los Alamos National Laboratory Plutonium Facility in Support of Global Security Mission Space

    SciTech Connect

    Stange, Sy; Mayo, Douglas R.; Herrera, Gary D.; McLaughlin, Anastasia D.; Montoya, Charles M.; Quihuis, Becky A.; Trujillo, Julio B.; Van Pelt, Craig E.; Wenz, Tracy R.

    2012-07-13

    The Los Alamos National Laboratory Plutonium Facility at Technical Area (TA) 55 is one of a few nuclear facilities in the United States where Research & Development measurements can be performed on Safeguards Category-I (CAT-I) quantities of nuclear material. This capability allows us to incorporate measurements of CAT-IV through CAT-I materials as a component of detector characterization campaigns and training courses conducted at Los Alamos. A wider range of measurements can be supported. We will present an overview of recent measurements conducted in support of nuclear emergency response, nuclear counterterrorism, and international and domestic safeguards. This work was supported by the NNSA Office of Counterterrorism.

  13. Penetrating radiation: applications at Los Alamos National Laboratory

    NASA Astrophysics Data System (ADS)

    Watson, Scott; Hunter, James; Morris, Christopher

    2013-09-01

    Los Alamos has used penetrating radiography extensively throughout its history dating back to the Manhattan Project where imaging dense, imploding objects was the subject of intense interest. This interest continues today as major facilities like DARHT1 have become the mainstay of the US Stockpile Stewardship Program2 and the cornerstone of nuclear weapons certification. Meanwhile, emerging threats to national security from cargo containers and improvised explosive devices (IEDs) have invigorated inspection efforts using muon tomography, and compact x-ray radiography. Additionally, unusual environmental threats, like those from underwater oil spills and nuclear power plant accidents, have caused renewed interest in fielding radiography in severe operating conditions. We review the history of penetrating radiography at Los Alamos and survey technologies as presently applied to these important problems.

  14. Hypothetical Dark Matter/axion Rockets:. Dark Matter in Terms of Space Physics Propulsion

    NASA Astrophysics Data System (ADS)

    Beckwith, A.

    2010-12-01

    Current proposed photon rocket designs include the Nuclear Photonic Rocket and the Antimatter Photonic Rocket (proposed by Eugen Sanger in the 1950s, as reported by Ref. 1). This paper examines the feasibility of improving the thrust of photon-driven ramjet propulsion by using DM rocket propulsion. The open question is: would a heavy WIMP, if converted to photons, upgrade the power (thrust) of a photon rocket drive, to make interstellar travel a feasible proposition?

  15. Satellites monitor Los Alamos fires

    NASA Astrophysics Data System (ADS)

    Kalluri, Satya; White, Benjamin

    A man-made fire that was intended to be a “controlled burn” for clearing brush and wilderness at the Bandelier National Monument, New Mexico, became an inferno that devastated significant portions of Los Alamos during the first week of May 2000. Now known as the Cerro Grande fire, it was not confined to Los Alamos alone. The fire spread to 15% of the Santa Clara Indian Reservation and a substantial area of the surrounding national parks and U.S. forests.The National Weather Service estimates that more than 100,000 fires occur in the natural environment each year within the United States alone, of which about 90% are manmade. Remote sensing images from satellites could be used to detect and monitor these active fires and biomass burning. Forest fires have a significant environmental and economic impact, and timely information about their location and magnitude is essential to contain them.

  16. Liquid rocket combustor computer code development

    NASA Technical Reports Server (NTRS)

    Liang, P. Y.

    1985-01-01

    The Advanced Rocket Injector/Combustor Code (ARICC) that has been developed to model the complete chemical/fluid/thermal processes occurring inside rocket combustion chambers are highlighted. The code, derived from the CONCHAS-SPRAY code originally developed at Los Alamos National Laboratory incorporates powerful features such as the ability to model complex injector combustion chamber geometries, Lagrangian tracking of droplets, full chemical equilibrium and kinetic reactions for multiple species, a fractional volume of fluid (VOF) description of liquid jet injection in addition to the gaseous phase fluid dynamics, and turbulent mass, energy, and momentum transport. Atomization and droplet dynamic models from earlier generation codes are transplated into the present code. Currently, ARICC is specialized for liquid oxygen/hydrogen propellants, although other fuel/oxidizer pairs can be easily substituted.

  17. Performance potential of gas-core and fusion rockets - A mission applications survey.

    NASA Technical Reports Server (NTRS)

    Fishbach, L. H.; Willis, E. A., Jr.

    1971-01-01

    This paper reports an evaluation of the performance potential of five nuclear rocket engines for four mission classes. These engines are: the regeneratively cooled gas-core nuclear rocket; the light bulb gas-core nuclear rocket; the space-radiator cooled gas-core nuclear rocket; the fusion rocket; and an advanced solid-core nuclear rocket which is included for comparison. The missions considered are: earth-to-orbit launch; near-earth space missions; close interplanetary missions; and distant interplanetary missions. For each of these missions, the capabilities of each rocket engine type are compared in terms of payload ratio for the earth launch mission or by the initial vehicle mass in earth orbit for space missions (a measure of initial cost). Other factors which might determine the engine choice are discussed. It is shown that a 60 day manned round trip to Mars is conceivable.-

  18. Historic Manhattan Project Sites at Los Alamos

    ScienceCinema

    McGehee, Ellen

    2016-07-12

    The Manhattan Project laboratory constructed at Los Alamos, New Mexico, beginning in 1943, was intended from the start to be temporary and to go up with amazing speed. Because most of those WWII-era facilities were built with minimal materials and so quickly, much of the original infrastructure was torn down in the late '40s and early '50s and replaced by more permanent facilities. However, a few key facilities remained, and are being preserved and maintained for historic significance. Four such sites are visited briefly in this video, taking viewers to V-Site, the buildings where the first nuclear explosive device was pre-assembled in preparation for the Trinity Test in Southern New Mexico. Included is another WWII area, Gun Site. So named because it was the area where scientists and engineers tested the so-called "gun method" of assembling nuclear materials -- the fundamental design of the Little Boy weapon that was eventually dropped on Hiroshima. The video also goes to Pajarito Site, home of the "Slotin Building" and "Pond Cabin." The Slotin Building is the place where scientist Louis Slotin conducted a criticality experiment that went awry in early 1946, leading to his unfortunate death, and the Pond Cabin served the team of eminent scientist Emilio Segre who did early chemistry work on plutonium that ultimately led to the Fat Man weapon.

  19. Historic Manhattan Project Sites at Los Alamos

    SciTech Connect

    McGehee, Ellen

    2014-05-22

    The Manhattan Project laboratory constructed at Los Alamos, New Mexico, beginning in 1943, was intended from the start to be temporary and to go up with amazing speed. Because most of those WWII-era facilities were built with minimal materials and so quickly, much of the original infrastructure was torn down in the late '40s and early '50s and replaced by more permanent facilities. However, a few key facilities remained, and are being preserved and maintained for historic significance. Four such sites are visited briefly in this video, taking viewers to V-Site, the buildings where the first nuclear explosive device was pre-assembled in preparation for the Trinity Test in Southern New Mexico. Included is another WWII area, Gun Site. So named because it was the area where scientists and engineers tested the so-called "gun method" of assembling nuclear materials -- the fundamental design of the Little Boy weapon that was eventually dropped on Hiroshima. The video also goes to Pajarito Site, home of the "Slotin Building" and "Pond Cabin." The Slotin Building is the place where scientist Louis Slotin conducted a criticality experiment that went awry in early 1946, leading to his unfortunate death, and the Pond Cabin served the team of eminent scientist Emilio Segre who did early chemistry work on plutonium that ultimately led to the Fat Man weapon.

  20. Los Alamos Science: Number 16

    SciTech Connect

    Cooper, N.G.

    1988-01-01

    It was an unusually stimulating day and a half at Los Alamos when two Nobel Laureates in physiology, a leading paleontologist, and a leading bio-astrophysicist came together to discuss ''Unsolved Problems in the Science of Life,'' the topic of the second in a series of special meetings sponsored by the Fellows of the Laboratory. Just like the first one on ''Creativity in Science,'' this colloquium took us into a broader arena of ideas and viewpoints than is our usual daily fare. To contemplate the evolution and mysteries of intelligent life from the speakers' diverse points of view at one time, in one place was indeed a rare experience.

  1. Adventures in scientific nuclear diplomacy

    NASA Astrophysics Data System (ADS)

    Hecker, Siegfried S.

    2014-05-01

    A former director of Los Alamos National Laboratory offers a first-person perspective on the important contributions scientists can make toward improving the safety and security of nuclear materials and reducing the global nuclear dangers in an evolving world.

  2. Adventures in scientific nuclear diplomacy

    SciTech Connect

    Hecker, Siegfried S.

    2014-05-09

    A former director of Los Alamos National Laboratory offers a first-person perspective on the important contributions scientists can make toward improving the safety and security of nuclear materials and reducing the global nuclear dangers in an evolving world.

  3. Solar Thermal Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Sercel, J. C.

    1986-01-01

    Paper analyzes potential of solar thermal rockets as means of propulsion for planetary spacecraft. Solar thermal rocket uses concentrated Sunlight to heat working fluid expelled through nozzle to produce thrust.

  4. American Rocket Society

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In addition to Dr. Robert Goddard's pioneering work, American experimentation in rocketry prior to World War II grew, primarily in technical societies. This is an early rocket motor designed and developed by the American Rocket Society in 1932.

  5. The unclosed circle: Los Alamos and the human and environmental legacy of the atom, 1943--1963

    NASA Astrophysics Data System (ADS)

    Hughes, Scott Daniel

    2000-12-01

    This dissertation examines the application of nuclear technology at Los Alamos Scientific Laboratory and the legacy this technology wrought on humans and the environment during the period from 1943 to 1963. Through a focus directed primarily on the Health Division, the study considers various dimensions of the Los Alamos Laboratory including radioactive waste management, human subject experimentation, and nuclear weapons testing. Since its inception in 1943, Los Alamos has held a central role in the research and development of nuclear weapons for the United States. In relation to this central mission, the Laboratory produced various types of radioactive wastes, conducted human subject experiments, and participated in hundreds of nuclear weapons tests. All of these functions resulted in a myriad legacy of human and environmental effects whose consequences have not yet been fully assessed. This investigation, using primary, secondary, and recently declassified documents, discusses the development of nuclear physics and radiological health practices in the half-century prior to World War Two and the American reactions in the realms of science and politics to the news concerning nuclear fission. It then moves to a discussion of the emergence of Los Alamos and analyzes how personnel addressed the attendant hazards of nuclear technology and some of the implications of these past practices. Furthermore, the dissertation discusses human subject experimentation conducted at Los Alamos. The final part of the study investigates the multiple roles played by Los Alamos personnel in the testing of nuclear weapons, the attempts to understand and minimize the hazards of such testing, and the Ra-La sub-critical detonations conducted within the geographical boundaries at the Laboratory between 1943-1963. By focusing on a long-neglected part of the American West. Cold War Los Alamos, this dissertation will contribute to the study of the effects that both World War Two and the Cold

  6. Los Alamos Explosives Performance Key to Stockpile Stewardship

    ScienceCinema

    Dattelbaum, Dana

    2016-07-12

    As the U.S. Nuclear Deterrent ages, one essential factor in making sure that the weapons will continue to perform as designed is understanding the fundamental properties of the high explosives that are part of a nuclear weapons system. As nuclear weapons go through life extension programs, some changes may be advantageous, particularly through the addition of what are known as "insensitive" high explosives that are much less likely to accidentally detonate than the already very safe "conventional" high explosives that are used in most weapons. At Los Alamos National Laboratory explosives research includes a wide variety of both large- and small-scale experiments that include small contained detonations, gas and powder gun firings, larger outdoor detonations, large-scale hydrodynamic tests, and at the Nevada Nuclear Security Site, underground sub-critical experiments.

  7. Los Alamos Explosives Performance Key to Stockpile Stewardship

    SciTech Connect

    Dattelbaum, Dana

    2014-11-03

    As the U.S. Nuclear Deterrent ages, one essential factor in making sure that the weapons will continue to perform as designed is understanding the fundamental properties of the high explosives that are part of a nuclear weapons system. As nuclear weapons go through life extension programs, some changes may be advantageous, particularly through the addition of what are known as "insensitive" high explosives that are much less likely to accidentally detonate than the already very safe "conventional" high explosives that are used in most weapons. At Los Alamos National Laboratory explosives research includes a wide variety of both large- and small-scale experiments that include small contained detonations, gas and powder gun firings, larger outdoor detonations, large-scale hydrodynamic tests, and at the Nevada Nuclear Security Site, underground sub-critical experiments.

  8. Energy production using fission fragment rockets

    SciTech Connect

    Chapline, G.; Matsuda, Y.

    1991-08-01

    Fission fragment rockets are nuclear reactors with a core consisting of thin fibers in a vacuum, and which use magnetic fields to extract the fission fragments from the reactor core. As an alternative to ordinary nuclear reactors, fission fragment rockets would have the following advantages: Approximately twice as efficient if one can directly convert the fission fragment energy into electricity; by reducing the buildup of a fission fragment inventory in the reactor one could avoid a Chernobyl type disaster; and collecting the fission fragments outside the reactor could simplify the waste disposal problem. 6 refs., 4 figs., 2 tabs.

  9. Kauai Test Facility two experiment rocket campaign. [Kauai Test Facility; Two Experiment Rocket Campaign

    SciTech Connect

    Not Available

    1991-01-01

    The Kauai Test Facility (KTF) is a Department of Energy (DOE) owned facility located at Barking Sands, on the west coast of the island of Kauai, Hawaii. The KTF has a rocket preparation and launching capability for both rail-launched and vertical-launched capability for both rail-launched and vertical-launched rockets. Launches primarily support high altitude scientific research and re-entry vehicle systems and carry experimental non-nuclear payloads. This environmental assessment (EA) has been prepared for the Two Experiment Rocket Campaign, during which the STRYPI/LACE (STRYPI is not an acronym -- its the name of the rocket; LACE is the acronym for Low Altitude Compensation Experiment) and the RAP-501 (Rocket Accelerated Penetration) will be flown in conjunction from the KTF in February 1991 to reduce costs. There have been numerous rocket campaigns at the KTF in prior years that have used the same motors to be used in the current two experiment rocket campaign. The main difference noted in this environmental documentation is that the two rockets have not previously been flown in conjunction. Previous National Environmental Policy Act (NEPA) approvals of launches using these motors were limited to different and separate campaigns with diverse sources of funding. 2 figs., 5 tabs.

  10. Nuclear Thermal Propulsion: A Joint NASA/DOE/DOD Workshop

    NASA Technical Reports Server (NTRS)

    Clark, John S. (Editor)

    1991-01-01

    Papers presented at the joint NASA/DOE/DOD workshop on nuclear thermal propulsion are compiled. The following subject areas are covered: nuclear thermal propulsion programs; Rover/NERVA and NERVA systems; Low Pressure Nuclear Thermal Rocket (LPNTR); particle bed reactor nuclear rocket; hybrid propulsion systems; wire core reactor; pellet bed reactor; foil reactor; Droplet Core Nuclear Rocket (DCNR); open cycle gas core nuclear rockets; vapor core propulsion reactors; nuclear light bulb; Nuclear rocket using Indigenous Martian Fuel (NIMF); mission analysis; propulsion and reactor technology; development plans; and safety issues.

  11. Rockets for spin recovery

    NASA Technical Reports Server (NTRS)

    Whipple, R. D.

    1980-01-01

    The potential effectiveness of rockets as an auxiliary means for an aircraft to effect recovery from spins was investigated. The advances in rocket technology produced by the space effort suggested that currently available systems might obviate many of the problems encountered in earlier rocket systems. A modern fighter configuration known to exhibit a flat spin mode was selected. An analytical study was made of the thrust requirements for a rocket spin recovery system for the subject configuration. These results were then applied to a preliminary systems study of rocket components appropriate to the problem. Subsequent spin tunnel tests were run to evaluate the analytical results.

  12. Introductory materials for committee members: 1) instructions for the Los Alamos National Laboratory fiscal year 2010 capability reviews 2) NPAC strategic capability planning 3) Summary self-assessment for the nuclear and particle physics, astrophysics an

    SciTech Connect

    Redondo, Antonio

    2010-01-01

    Los Alamos National Laboratory (LANL) uses external peer review to measure and continuously improve the quality of its science, technology and engineering (STE). LANL uses capability reviews to assess the STE quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. STE capabilities are define to cut across directorates providing a more holistic view of the STE quality, integration to achieve mission requirements, and mission relevance. The scope of these capabilities necessitate that there will be significant overlap in technical areas covered by capability reviews (e.g., materials research and weapons science and engineering). In addition, LANL staff may be reviewed in different capability reviews because of their varied assignments and expertise. LANL plans to perform a complete review of the Laboratory's STE capabilities (hence staff) in a three-year cycle. The principal product of an external review is a report that includes the review committee's assessments, commendations, and recommendations for STE. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). This report will be used by Laboratory Management for STE assessment and planning. The report is also provided to the Department of Energy (DOE) as part of LANL's Annual Performance Plan and to the Los Alamos National Security (LANS) LLC's Science and Technology Committee (STC) as part of its responsibilities to the LANS Board of Governors.

  13. Los Alamos, Toshiba probing Fukushima with cosmic rays

    SciTech Connect

    Morris, Christopher

    2014-06-16

    Los Alamos National Laboratory has announced an impending partnership with Toshiba Corporation to use a Los Alamos technique called muon tomography to safely peer inside the cores of the Fukushima Daiichi reactors and create high-resolution images of the damaged nuclear material inside without ever breaching the cores themselves. The initiative could reduce the time required to clean up the disabled complex by at least a decade and greatly reduce radiation exposure to personnel working at the plant. Muon radiography (also called cosmic-ray radiography) uses secondary particles generated when cosmic rays collide with upper regions of Earth's atmosphere to create images of the objects that the particles, called muons, penetrate. The process is analogous to an X-ray image, except muons are produced naturally and do not damage the materials they contact. Muon radiography has been used before in imaginative applications such as mapping the interior of the Great Pyramid at Giza, but Los Alamos's muon tomography technique represents a vast improvement over earlier technology.

  14. Los Alamos, Toshiba probing Fukushima with cosmic rays

    ScienceCinema

    Morris, Christopher

    2016-07-12

    Los Alamos National Laboratory has announced an impending partnership with Toshiba Corporation to use a Los Alamos technique called muon tomography to safely peer inside the cores of the Fukushima Daiichi reactors and create high-resolution images of the damaged nuclear material inside without ever breaching the cores themselves. The initiative could reduce the time required to clean up the disabled complex by at least a decade and greatly reduce radiation exposure to personnel working at the plant. Muon radiography (also called cosmic-ray radiography) uses secondary particles generated when cosmic rays collide with upper regions of Earth's atmosphere to create images of the objects that the particles, called muons, penetrate. The process is analogous to an X-ray image, except muons are produced naturally and do not damage the materials they contact. Muon radiography has been used before in imaginative applications such as mapping the interior of the Great Pyramid at Giza, but Los Alamos's muon tomography technique represents a vast improvement over earlier technology.

  15. Los Alamos PC estimating system

    SciTech Connect

    Stutz, R.A.; Lemon, G.D.

    1987-01-01

    The Los Alamos Cost Estimating System (QUEST) is being converted to run on IBM personal computers. This very extensive estimating system is capable of supporting cost estimators from many different and varied fields. QUEST does not dictate any fixed method for estimating. QUEST supports many styles and levels of detail estimating. QUEST can be used with or without data bases. This system allows the estimator to provide reports based on levels of detail defined by combining work breakdown structures. QUEST provides a set of tools for doing any type of estimate without forcing the estimator to use any given method. The level of detail in the estimate can be mixed based on the amount of information known about different parts of the project. The system can support many different data bases simultaneously. Estimators can modify any cost in any data base.

  16. Relativistic rocket: Dream and reality

    NASA Astrophysics Data System (ADS)

    Semyonov, Oleg G.

    2014-06-01

    The dream of interstellar flights persists since the first pioneers in astronautics and has never died. Many concepts of thruster capable to propel a rocket to the stars have been proposed and the most suitable among them are thought to be photon propulsion and propulsion by the products of proton-antiproton annihilation in magnetic nozzle. This article addresses both concepts allowing for cross-section of annihilation among other issues in order to show their vulnerability and to indicate the problems. The concept of relativistic matter propulsion is substantiated and discussed. The latter is argued to be the most straightforward way to build-up a relativistic rocket firstly because it is based on the existing technology of ion generators and accelerators and secondly because it can be stepped up in efflux power starting from interplanetary spacecrafts powered by nuclear reactors to interstellar starships powered by annihilation reactors. The problems imposed by thermodynamics and heat disposal are accentuated.

  17. Tiger Team Assessment of the Los Alamos National Laboratory

    SciTech Connect

    Not Available

    1991-11-01

    The purpose of the safety and health assessment was to determine the effectiveness of representative safety and health programs at the Los Alamos National Laboratory (LANL). Within the safety and health programs at LANL, performance was assessed in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Explosives Safety, Natural Phenomena, and Medical Services.

  18. Los Alamos safeguards program overview and NDA in safeguards

    SciTech Connect

    Keepin, G.R.

    1988-01-01

    Over the years the Los Alamos safeguards program has developed, tested, and implemented a broad range of passive and active nondestructive analysis (NDA) instruments (based on gamma and x-ray detection and neutron counting) that are now widely employed in safeguarding nuclear materials of all forms. Here very briefly, the major categories of gamma ray and neutron based NDA techniques, give some representative examples of NDA instruments currently in use, and cite a few notable instances of state-of-the-art NDA technique development. Historical aspects and a broad overview of the safeguards program are also presented.

  19. Nuclear Thermal Propulsion (NTP)

    NASA Video Gallery

    NASA's history with nuclear thermal propulsion (NTP) technology goes back to the earliest days of the Agency. The Manned Lunar Rover Vehicle and the Nuclear Engine for Rocket Vehicle Applications p...

  20. Los Alamos contribution to target diagnostics on the National Ignition Facility

    SciTech Connect

    Mack, J.M.; Baker, D.A.; Caldwell, S.E.

    1994-07-01

    The National Ignition Facility (NIF) will have a large suite of sophisticated target diagnostics. This will allow thoroughly diagnosed experiments to be performed both at the ignition and pre-ignition levels. As part of the national effort Los Alamos National Laboratory will design, construct and implement a number of diagnostics for the NIF. This paper describes Los Alamos contributions to the ``phase I diagnostics.`` Phase I represents the most fundamental and basic measurement systems that will form the core for most work on the NIF. The Los Alamos effort falls into four categories: moderate to hard X-ray (time resolved imaging neutron spectroscopy- primarily with neutron time of flight devices; burn diagnostics utilizing gamma ray measurements; testing measurement concepts on the TRIDENT laser system at Los Alamos. Because of the high blast, debris and radiation environment, the design of high resolution X-ray imaging systems present significant challenges. Systems with close target proximity require special protection and methods for such protection is described. The system design specifications based on expected target performance parameters is also described. Diagnosis of nuclear yield and burn will be crucial to the NIF operation. Nuclear reaction diagnosis utilizing both neutron and gamma ray detection is discussed. The Los Alamos TRIDENT laser system will be used extensively for the development of new measurement concepts and diagnostic instrumentation. Some its potential roles in the development of diagnostics for NIF are given.

  1. Potential applicability of the Los Alamos Antiproton Research Program to advanced propulsion

    SciTech Connect

    Howe, S.D.; Hynes, M.V.; Prael, R.E.; Stewart, J.D.

    1986-01-01

    The Los Alamos National Laboratory currently has a research program in antimatter interactions. The immediate objective of the program is to develop the low energy antiproton production capabilities at LEAR and the technology to store antiprotons. The initial experimental goal is to measure the gravitational mass of antiprotons. The technology required for the experiment, however, may allow high-density storage concepts to be experimentally investigated. Analysis of antiproton production over the last 30 years indicates that milligram quantities of antiprotons could conceivably be produced early in the next century. Thus, antiproton propulsion concepts may begin to be feasible. Some results of preliminary calculations pertinent to antiproton powered rocket engines will be presented.

  2. Los Alamos Scientific Laboratory waste management technology development activities. Summary progress report, 1979

    SciTech Connect

    Johnson, L.J.

    1980-10-01

    Summary reports on the Department of Energy's Nuclear Energy-sponsored waste management technology development projects at the Los Alamos Scientific Laboratory describe progress for calendar year 1979. Activities in airborne, low-level, and transuranic waste management areas are discussed. Work progress on waste assay, treatment, disposal, and environmental monitoring is reviewed.

  3. Using TLDs to monitor Los Alamos drillbacks at the Nevada test site

    SciTech Connect

    Cucchiara, A.L.; Martin, A.

    1985-01-01

    Los Alamos National Laboratory uses LiF TLDs to measure the quantity of radiation in the environment during drilling, sampling and hole cementing operations following underground nuclear testing. The procedures for preparing the TLDs, placing the TLDs in the field and their subsequent analysis and dose evaluation are presented. 5 references, 4 figures, 1 table.

  4. Los Alamos National Laboratory Training Capabilities (Possible Applications in the Global Initiatives for Proliferation Prevention Program)

    SciTech Connect

    Martin, Olga

    2012-06-04

    The briefing provides an overview of the training capabilities at Los Alamos National Laboratory that can be applied to nonproliferation/responsible science education at nuclear institutes in the Former Soviet Union, as part of the programmatic effort under the Global Initiatives for Proliferation Prevention program (GIPP).

  5. 77 FR 3257 - Transfer of Land Tracts Located at Los Alamos National Laboratory, New Mexico

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ... Doc No: 2012-1208] DEPARTMENT OF ENERGY Transfer of Land Tracts Located at Los Alamos National Laboratory, New Mexico AGENCY: National Nuclear Security Administration, U.S. Department of Energy. ACTION... for the Conveyance and Transfer of Certain Land Tracts Administered by the Department of Energy...

  6. Sunset at the ALaMO

    NASA Video Gallery

    A new color all-sky camera has opened its eyes at the ALaMO, or Automated Lunar and Meteor Observatory, at NASA's Marshall Space Flight Center in Huntsville, Ala. Watch its inaugural video below, s...

  7. Publications of Los Alamos research 1988

    SciTech Connect

    Varjabedian, K.; Dussart, S.A.; McClary, W.J.; Rich, J.A.

    1989-12-01

    This bibliography lists unclassified publications of work done at the Los Alamos National Laboratory for 1988. The entries, which are subdivided by broad subject categories, are cross-referenced with an author index and a numeric index.

  8. Environmental surveillance at Los Alamos during 1994

    SciTech Connect

    1996-07-01

    This report describes environmental monitoring activities at Los Alamos National Laboratory for 1994. Data were collected to assess external penetrating radiation, airborne emissions, liquid effluents, radioactivity of environmental materials and food stuffs, and environmental compliance.

  9. New Rad Lab for Los Alamos

    ScienceCinema

    None

    2016-07-12

    The topping out ceremony for a key construction stage in the Los Alamos National Laboratory's newest facility, the Radiological Laboratory Utility & Office Building. This is part of the National Nu...  

  10. New Rad Lab for Los Alamos

    SciTech Connect

    2008-08-06

    The topping out ceremony for a key construction stage in the Los Alamos National Laboratory's newest facility, the Radiological Laboratory Utility & Office Building. This is part of the National Nu...  

  11. JPRS report: Nuclear developments, [October 6, 1989

    SciTech Connect

    1989-10-06

    Partial contents of this report include: Nuclear Weapons; Nuclear Development; Nuclear Power Plant; Uranium; Missiles; Space Firm Protested; Satellite; Rocket Launching; Nuclear Submarine; Environmental; Radioactivity; Radiation Accident; and Tritium Sparks.

  12. Liquid Rocket Engine Testing

    DTIC Science & Technology

    2016-10-21

    Briefing Charts 3. DATES COVERED (From - To) 17 October 2016 – 26 October 2016 4. TITLE AND SUBTITLE Liquid Rocket Engine Testing 5a. CONTRACT NUMBER...298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 Liquid Rocket Engine Testing SFTE Symposium 21 October 2016 Jake Robertson, Capt USAF AFRL...Distribution Unlimited. PA Clearance 16493 Liquid Rocket Engine Testing • Engines and their components are extensively static- tested in development • This

  13. Edward Teller Returns to LOS Alamos

    NASA Astrophysics Data System (ADS)

    Hecker, Siegfried S.

    2010-01-01

    I was asked to share some reflections of Edward Teller's return to Los Alamos during my directorship. I met Teller late in his life. My comments focus on that time and they will be mostly in the form of stories of my interactions and those of my colleagues with Teller. Although the focus of this symposium is on Teller's contributions to science, at Los Alamos it was never possible to separate Teller's science from policy and controversy ...

  14. Nuclear safety

    NASA Technical Reports Server (NTRS)

    Buden, D.

    1991-01-01

    Topics dealing with nuclear safety are addressed which include the following: general safety requirements; safety design requirements; terrestrial safety; SP-100 Flight System key safety requirements; potential mission accidents and hazards; key safety features; ground operations; launch operations; flight operations; disposal; safety concerns; licensing; the nuclear engine for rocket vehicle application (NERVA) design philosophy; the NERVA flight safety program; and the NERVA safety plan.

  15. Los Alamos Laser Eye Investigation.

    SciTech Connect

    Odom, C. R.

    2005-01-01

    A student working in a laser laboratory at Los Alamos National Laboratory sustained a serious retinal injury to her left eye when she attempted to view suspended particles in a partially evacuated target chamber. The principle investigator was using the white light from the flash lamp of a Class 4 Nd:YAG laser to illuminate the particles. Since the Q-switch was thought to be disabled at the time of the accident, the principal investigator assumed it would be safe to view the particles without wearing laser eye protection. The Laboratory Director appointed a team to investigate the accident and to report back to him the events and conditions leading up to the accident, equipment malfunctions, safety management causal factors, supervisory and management action/inaction, adequacy of institutional processes and procedures, emergency and notification response, effectiveness of corrective actions and lessons learned from previous similar events, and recommendations for human and institutional safety improvements. The team interviewed personnel, reviewed documents, and characterized systems and conditions in the laser laboratory during an intense six week investigation. The team determined that the direct and primary failures leading to this accident were, respectively, the principle investigator's unsafe work practices and the institution's inadequate monitoring of worker performance. This paper describes the details of the investigation, the human and institutional failures, and the recommendations for improving the laser safety program.

  16. Total Quality Management and nuclear weapons: A historian`s perspective

    SciTech Connect

    Meade, R.A.

    1993-11-01

    Total Quality Management (TQM) has become a significant management theme at Los Alamos National Laboratory. This paper discusses the historical roots of TQM at Los Alamos and how TQM has been used in the development of nuclear weapons.

  17. Rocket astronomy - an overview

    NASA Astrophysics Data System (ADS)

    Friedman, H.

    The history of rocket astronomy is retold, with emphasis on solar investigations. The use of captured V-2 rockets after World War II was followed by the Aerobee, which exceeded the V-2's altitude and was more reliable. The V-2 has made first-generation investigations in X-ray and UV photometry, which was followed by studies of the solar cycle X-ray variablity, the X-ray corona, and solar flares. Nike rockets played an important role in these investigations. The role of rockets in galactic X-ray astronomy is briefly described.

  18. Post-Cold War Science and Technology at Los Alamos

    NASA Astrophysics Data System (ADS)

    Browne, John C.

    2002-04-01

    Los Alamos National Laboratory serves the nation through the development and application of leading-edge science and technology in support of national security. Our mission supports national security by: ensuring the safety, security, and reliability of the U.S. nuclear stockpile; reducing the threat of weapons of mass destruction in support of counter terrorism and homeland defense; and solving national energy, environment, infrastructure, and health security problems. We require crosscutting fundamental and advanced science and technology research to accomplish our mission. The Stockpile Stewardship Program develops and applies, advanced experimental science, computational simulation, and technology to ensure the safety and reliability of U.S. nuclear weapons in the absence of nuclear testing. This effort in itself is a grand challenge. However, the terrorist attack of September 11, 2001, reminded us of the importance of robust and vibrant research and development capabilities to meet new and evolving threats to our national security. Today through rapid prototyping we are applying new, innovative, science and technology for homeland defense, to address the threats of nuclear, chemical, and biological weapons globally. Synergistically, with the capabilities that we require for our core mission, we contribute in many other areas of scientific endeavor. For example, our Laboratory has been part of the NASA effort on mapping water on the moon and NSF/DOE projects studying high-energy astrophysical phenomena, understanding fundamental scaling phenomena of life, exploring high-temperature superconductors, investigating quantum information systems, applying neutrons to condensed-matter and nuclear physics research, developing large-scale modeling and simulations to understand complex phenomena, and exploring nanoscience that bridges the atomic to macroscopic scales. In this presentation, I will highlight some of these post-cold war science and technology advances

  19. Los Alamos DP West Plutonium Facility decontamination project, 1978-1981

    SciTech Connect

    Garde, R.; Cox, E.J.; Valentine, A.M.

    1982-09-01

    The DP West Plutonium Facility operated by the Los Alamos National Laboratory, Los Alamos, New Mexico was decontaminated between April 1978 and April 1981. The facility was constructed in 1944 to 1945 to produce plutonium metal and fabricate parts for nuclear weapons. It was continually used as a plutonium processing and research facility until mid-1978. Decontamination operations included dismantling and removing gloveboxes and conveyor tunnels; removing process systems, utilities, and exhaust ducts; and decontaminating all remaining surfaces. This report describes glovebox and conveyor tunnel separations, decontamination techniques, health and safety considerations, waste management procedures, and costs of the operation.

  20. Nuclear Propulsion for Space, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Corliss, William R.; Schwenk, Francis C.

    The operation of nuclear rockets with respect both to rocket theory and to various fuels is described. The development of nuclear reactors for use in nuclear rocket systems is provided, with the Kiwi and NERVA programs highlighted. The theory of fuel element and reactor construction and operation is explained with particular reference to rocket…

  1. Fabrication of Cerium Oxide and Uranium Oxide Microspheres for Space Nuclear Power Applications

    SciTech Connect

    Jeffrey A. Katalenich; Michael R. Hartman; Robert C. O'Brien

    2013-02-01

    Cerium oxide and uranium oxide microspheres are being produced via an internal gelation sol-gel method to investigate alternative fabrication routes for space nuclear fuels. Depleted uranium and non-radioactive cerium are being utilized as surrogates for plutonium-238 (Pu-238) used in radioisotope thermoelectric generators and for enriched uranium required by nuclear thermal rockets. While current methods used to produce Pu-238 fuels at Los Alamos National Laboratory (LANL) involve the generation of fine powders that pose a respiratory hazard and have a propensity to contaminate glove boxes, the sol-gel route allows for the generation of oxide microsphere fuels through an aqueous route. The sol-gel method does not generate fine powders and may require fewer processing steps than the LANL method with less operator handling. High-quality cerium dioxide microspheres have been fabricated in the desired size range and equipment is being prepared to establish a uranium dioxide microsphere production capability.

  2. Audit Report, "Fire Protection Deficiencies at Los Alamos National Laboratory"

    SciTech Connect

    2009-06-01

    The Department of Energy's Los Alamos National Laboratory (Los Alamos) maintains some of the Nation's most important national security assets, including nuclear materials. Many of Los Alamos' facilities are located in close proximity to one another, are occupied by large numbers of contract and Federal employees, and support activities ranging from nuclear weapons design to science-related activities. Safeguarding against fires, regardless of origin, is essential to protecting employees, surrounding communities, and national security assets. On June 1, 2006, Los Alamos National Security, LLC (LANS), became the managing and operating contractor for Los Alamos, under contract with the Department's National Nuclear Security Administration (NNSA). In preparation for assuming its management responsibilities at Los Alamos, LANS conducted walk-downs of the Laboratory's facilities to identify pre-existing deficiencies that could give rise to liability, obligation, loss or damage. The walk-downs, which identified 812 pre-existing fire protection deficiencies, were conducted by subject matter professionals, including fire protection experts. While the Los Alamos Site Office has overall responsibility for the effectiveness of the fire protection program, LANS, as the Laboratory's operating contractor, has a major, day-to-day role in minimizing fire-related risks. The issue of fire protection at Los Alamos is more than theoretical. In May 2000, the 'Cerro Grande' fire burned about 43,000 acres, including 7,700 acres of Laboratory property. Due to the risk posed by fire to the Laboratory's facilities, workforce, and surrounding communities, we initiated this audit to determine whether pre-existing fire protection deficiencies had been addressed. Our review disclosed that LANS had not resolved many of the fire protection deficiencies that had been identified in early 2006: (1) Of the 296 pre-existing deficiencies we selected for audit, 174 (59 percent) had not been corrected

  3. Model Rockets and Microchips.

    ERIC Educational Resources Information Center

    Fitzsimmons, Charles P.

    1986-01-01

    Points out the instructional applications and program possibilities of a unit on model rocketry. Describes the ways that microcomputers can assist in model rocket design and in problem calculations. Provides a descriptive listing of model rocket software for the Apple II microcomputer. (ML)

  4. Life Saving Rockets

    NASA Technical Reports Server (NTRS)

    2004-01-01

    By 1870, American and British inventors had found other ways to use rockets. For example, the Congreve rocket was capable of carrying a line over 1,000 feet to a stranded ship. In 1914, an estimated 1,000 lives were saved by this technique.

  5. Rockets -- Part II.

    ERIC Educational Resources Information Center

    Leitner, Alfred

    1982-01-01

    If two rockets are identical except that one engine burns in one-tenth the time of the other (total impulse and initial fuel mass of the two engines being the same), which rocket will rise higher? Why? The answer to this question (part 1 response in v20 n6, p410, Sep 1982) is provided. (Author/JN)

  6. Measuring Model Rocket Acceleration.

    ERIC Educational Resources Information Center

    Jenkins, Randy A.

    1993-01-01

    Presents an experiment that measures the acceleration and velocity of a model rocket. Lift-off information is transmitted to a computer that creates a graph of the velocity. Discusses the analysis of the computer-generated data and differences between calculated and experimental velocity and acceleration of several rocket types. (MDH)

  7. HELIOS: applications at the Los Alamos National Laboratory

    SciTech Connect

    Perry, R.T.; Mosteller, R.D.; Chodak, Paul III; Charlton, W.; Adams, B.T.

    1997-10-01

    The Los Alamos National Laboratory (LANL) is involved in the analysis of many different types of nuclear systems. The nuclear systems that we have analyzed have included subcritical accelerator driven systems for the transmutation of waste, fusion systems, critical experiment systems, and space propulsion and power systems. We have also analyzed special purpose reactors such as the LANL Omega West reactor, production reactors, and conventional commercial light- and heavy-water reactors. Thus the systems that we analyze and the type of results desired, often vary considerably from those of a power company normally analyzing their PWR or BWR for fissile fuel burnup and production. The reactor geometries that we model are often quite complicated such as those of an RBMK or Savannah River Production Reactor. Rather than fissile fuel production and burnup, the goal of a calculation could be the production rate of some obscure isotope which has medical applications.

  8. Thermal rocketing and the Laser Geodynamic Satellite (LAGEOS-1)

    SciTech Connect

    Miller, W.A.

    1997-08-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory. LAGEOS is the most accurately tracked satellite in orbit. It is a totally passive, dense spherical satellite covered with 426 cube corner reflectors. Besides its great utility in measuring the Earth`s length of day and polar wobble, this satellite can be used to measure, for the first time, the general relativistic frame-dragging effect. Of the five dominant error sources in such an experiment, the largest one involves surface interaction of thermal forces (thermal rocketing) and its influence on the orbital nodal precession. The project objective was to enhance an already available theoretical model (computer code) developed at Los Alamos based on new optical-spin data obtained at the University of Maryland. The project objective was met and the enhanced code will serve as the new spin-dynamics model for future LAGEOS satellite missions.

  9. RCRA facility investigation for the townsite of Los Alamos, New Mexico

    SciTech Connect

    Dorries, A.M.; Conrad, R.C.; Nonno, L.M.

    1992-01-01

    During World War II, Los Alamos, New Mexico was established as an ideal location for the secrecy and safety needed for the research and development required to design a nuclear fission bomb. Experiments carried out in the 1940s generated both radioactive and hazardous waste constituents on what is presently part of the Los Alamos townsite. Under the RCRA permit issued to Los alamos national Laboratory in 1990, the Laboratory is scheduled for investigation of its solid waste management units (SWMUs). The existing information on levels of radioactivity on the townsite is principally data from soil samples taken during the last site decontamination in 1976, little information on the presence of hazardous constituents exists today. This paper addresses pathway analysis and a preliminary risk assessment for current residents of the Los Alamos townsite. The estimated dose levels, in mrem per year, show that the previously decontaminated SWMU areas on the Los Alamos townsite will not contribute a radiation dose of any concern to the current residents.

  10. Another Look at Rocket Thrust

    ERIC Educational Resources Information Center

    Hester, Brooke; Burris, Jennifer

    2012-01-01

    Rocket propulsion is often introduced as an example of Newton's third law. The rocket exerts a force on the exhaust gas being ejected; the gas exerts an equal and opposite force--the thrust--on the rocket. Equivalently, in the absence of a net external force, the total momentum of the system, rocket plus ejected gas, remains constant. The law of…

  11. Indians Repulse British With Rocket

    NASA Technical Reports Server (NTRS)

    2004-01-01

    During the early introduction of rockets to Europe, they were used only as weapons. Enemy troops in India repulsed the British with rockets. Later, in Britain, Sir William Congreve developed a rocket that could fire to about 9,000 feet. The British fired Congreve rockets against the United States in the War of 1812.

  12. Status of Monte Carlo at Los Alamos

    SciTech Connect

    Thompson, W.L.; Cashwell, E.D.

    1980-01-01

    At Los Alamos the early work of Fermi, von Neumann, and Ulam has been developed and supplemented by many followers, notably Cashwell and Everett, and the main product today is the continuous-energy, general-purpose, generalized-geometry, time-dependent, coupled neutron-photon transport code called MCNP. The Los Alamos Monte Carlo research and development effort is concentrated in Group X-6. MCNP treats an arbitrary three-dimensional configuration of arbitrary materials in geometric cells bounded by first- and second-degree surfaces and some fourth-degree surfaces (elliptical tori). Monte Carlo has evolved into perhaps the main method for radiation transport calculations at Los Alamos. MCNP is used in every technical division at the Laboratory by over 130 users about 600 times a month accounting for nearly 200 hours of CDC-7600 time.

  13. Publications of Los Alamos research 1980

    SciTech Connect

    Salazar, C.A.; Willis, J.K.

    1981-09-01

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos National Laboratory for 1980. Papers published in 1980 are included regardless of when they were actually written. Publications received too late for inclusion in earlier compilations have also been listed. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted-even those papers, themselves unclassified, which were published only as part of a classified document. If a paper was pubished more than once, all places of publication are included. The bibliography includes Los Alamos National Laboratory reports, papers released as non-laboratory reports, journal articles, books, chapters of books, conference papers published either separately or as part of conference proceedings issued as books or reports, papers published in congressional hearings, theses, and US patents. Publications by Los Alamos authors that are not records of Laboratory-sponsored work are included when the Library becomes aware of them.

  14. Publications of Los Alamos Research, 1983

    SciTech Connect

    Sheridan, C.J.; McClary, W.J.; Rich, J.A.; Rodriguez, L.L.

    1984-10-01

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos National Laboratory for 1983. Papers published in 1982 are included regardless of when they were actually written. Publications received too late for inclusion in earlier compilations have also been listed. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted - even those papers, themselves unclassified, which were published only as part of a classified document. If a paper was published more than once, all places of publication are included. The bibliography includes Los Alamos National Laboratory reports, papers released as non-Laboratory reports, journal articles, books, chapters of books, conference papers either published separately or as part of conference proceedings issued as books or reports, papers publishd in congressional hearings, theses, and US patents. Publications by Los Alamos authors that are not records of Laboratory-sponsored work are included when the Library becomes aware of them.

  15. Water supply at Los Alamos during 1992

    SciTech Connect

    Purtymun, W.D.; McLin, S.G.; Stoker, A.K.; Maes, M.N.

    1995-09-01

    Municipal potable water supply during 1992 was 1,516 {times} 10{sup 6} gallons from wells in the Guaje and Pajarito well fields. About 13 {times} 10{sup 6} gallons were pumped from the Los Alamos Well Field and used in the construction of State Road 501 adjacent to the Field. The last year the Las Alamos Field was used for municipal supply was 1991. The nonpotable water supply used for steam plant support was about 0.12 {times} 10{sup 6} gallons from the spring gallery in Water Canyon. No nonpotable water was used for irrigation from Guaje and Los Alamos Reservoirs. Thus, the total water usage in 1992 was about 1,529 {times} 10{sup 6} gallons. Neither of the two new wells in the Otowi Well Field were operational in 1992.

  16. Baking Soda and Vinegar Rockets

    NASA Astrophysics Data System (ADS)

    Claycomb, James R.; Zachary, Christopher; Tran, Quoc

    2009-02-01

    Rocket experiments demonstrating conservation of momentum will never fail to generate enthusiasm in undergraduate physics laboratories. In this paper, we describe tests on rockets from two vendors1,2 that combine baking soda and vinegar for propulsion. The experiment compared two analytical approximations for the maximum rocket height to the experimentally measured rocket height. Baking soda and vinegar rockets present fewer safety concerns and require a smaller launch area than rapid combustion chemical rockets. Both kits were of nearly identical design, costing ˜20. The rockets required roughly 30 minutes of assembly time consisting of mostly taping the soft plastic fuselage to the Styrofoam nose cone.

  17. ASTRID rocket flight test

    SciTech Connect

    Whitehead, J.C.; Pittenger, L.C.; Colella, N.J.

    1994-07-01

    On February 4, 1994, we successfully flight tested the ASTRID rocket from Vandenberg Air Force Base. The technology for this rocket originated in the Brilliant Pebbles program and represents a five-year development effort. This rocket demonstrated how our new pumped-propulsion technology-which reduced the total effective engine mass by more than one half and cut the tank mass to one fifth previous requirements-would perform in atmospheric flight. This demonstration paves the way for potential cost-effective uses of the new propulsion system in commercial aerospace vehicles, exploration of the planets, and defense applications.

  18. GPS Sounding Rocket Developments

    NASA Technical Reports Server (NTRS)

    Bull, Barton

    1999-01-01

    Sounding rockets are suborbital launch vehicles capable of carrying scientific payloads several hundred miles in altitude. These missions return a variety of scientific data including; chemical makeup and physical processes taking place in the atmosphere, natural radiation surrounding the Earth, data on the Sun, stars, galaxies and many other phenomena. In addition, sounding rockets provide a reasonably economical means of conducting engineering tests for instruments and devices used on satellites and other spacecraft prior to their use in more expensive activities. This paper addresses the NASA Wallops Island history of GPS Sounding Rocket experience since 1994 and the development of highly accurate and useful system.

  19. Liquid propellant rockets.

    NASA Technical Reports Server (NTRS)

    Dipprey, D. F.

    1972-01-01

    A brief overview of the state of knowledge in liquid rocket technology is presented and examples are provided of instances where some fundamental principles of chemistry, fluid mechanics, and mathematics can be applied. A liquid propellant rocket classification is discussed together with rocket system performance, applications for liquid propellants, the effective exhaust velocity, aspects of simplified nozzle expansion, questions about theoretical propellant performance, the effect of chamber pressure on equilibrium performance, and the kinetic recombination in nozzles. Details of propellant combustion are examined, giving attention to propellant injection, evaporation-controlled combustion, combustion instability, and monopropellant decomposition.

  20. Investigation of excess thyroid cancer incidence in Los Alamos County

    SciTech Connect

    Athas, W.F.

    1996-04-01

    Los Alamos County (LAC) is home to the Los Alamos National Laboratory, a U.S. Department of Energy (DOE) nuclear research and design facility. In 1991, the DOE funded the New Mexico Department of Health to conduct a review of cancer incidence rates in LAC in response to citizen concerns over what was perceived as a large excess of brain tumors and a possible relationship to radiological contaminants from the Laboratory. The study found no unusual or alarming pattern in the incidence of brain cancer, however, a fourfold excess of thyroid cancer was observed during the late-1980`s. A rapid review of the medical records for cases diagnosed between 1986 and 1990 failed to demonstrate that the thyroid cancer excess had resulted from enhanced detection. Surveillance activities subsequently undertaken to monitor the trend revealed that the excess persisted into 1993. A feasibility assessment of further studies was made, and ultimately, an investigation was conducted to document the epidemiologic characteristics of the excess in detail and to explore possible causes through a case-series records review. Findings from the investigation are the subject of this report.

  1. The History of Rockets.

    ERIC Educational Resources Information Center

    Newby, J. C.

    1988-01-01

    Discusses the origins and development of rockets mainly from the perspective of warfare. Includes some early enthusiasts, such as Congreve, Tsiolkovosky, Goddard, and Oberth. Describes developments from World War II, and during satellite development. (YP)

  2. Rocket engine numerical simulation

    NASA Technical Reports Server (NTRS)

    Davidian, Ken

    1993-01-01

    The topics are presented in view graph form and include the following: a definition of the rocket engine numerical simulator (RENS); objectives; justification; approach; potential applications; potential users; RENS work flowchart; RENS prototype; and conclusions.

  3. Rocket engine numerical simulator

    NASA Technical Reports Server (NTRS)

    Davidian, Ken

    1993-01-01

    The topics are presented in viewgraph form and include the following: a rocket engine numerical simulator (RENS) definition; objectives; justification; approach; potential applications; potential users; RENS work flowchart; RENS prototype; and conclusion.

  4. Rocket University at KSC

    NASA Technical Reports Server (NTRS)

    Sullivan, Steven J.

    2014-01-01

    "Rocket University" is an exciting new initiative at Kennedy Space Center led by NASA's Engineering and Technology Directorate. This hands-on experience has been established to develop, refine & maintain targeted flight engineering skills to enable the Agency and KSC strategic goals. Through "RocketU", KSC is developing a nimble, rapid flight engineering life cycle systems knowledge base. Ongoing activities in RocketU develop and test new technologies and potential customer systems through small scale vehicles, build and maintain flight experience through balloon and small-scale rocket missions, and enable a revolving fresh perspective of engineers with hands on expertise back into the large scale NASA programs, providing a more experienced multi-disciplined set of systems engineers. This overview will define the Program, highlight aspects of the training curriculum, and identify recent accomplishments and activities.

  5. Rocketing into Adaptive Inquiry.

    ERIC Educational Resources Information Center

    Farenga, Stephen J.; Joyce, Beverly A.; Dowling, Thomas W.

    2002-01-01

    Defines adaptive inquiry and argues for employing this method which allows lessons to be shaped in response to student needs. Illustrates this idea by detailing an activity in which teams of students build rockets. (DDR)

  6. Antares Rocket Lifts Off!

    NASA Video Gallery

    NASA commercial space partner Orbital Sciences Corp. of Dulles, Va., launched its Cygnus cargo spacecraft aboard its Antares rocket at 10:58 a.m. EDT Wednesday from the Mid-Atlantic Regional Spacep...

  7. Robust Rocket Engine Concept

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.

    1995-01-01

    The potential for a revolutionary step in the durability of reusable rocket engines is made possible by the combination of several emerging technologies. The recent creation and analytical demonstration of life extending (or damage mitigating) control technology enables rapid rocket engine transients with minimum fatigue and creep damage. This technology has been further enhanced by the formulation of very simple but conservative continuum damage models. These new ideas when combined with recent advances in multidisciplinary optimization provide the potential for a large (revolutionary) step in reusable rocket engine durability. This concept has been named the robust rocket engine concept (RREC) and is the basic contribution of this paper. The concept also includes consideration of design innovations to minimize critical point damage.

  8. Problems of the mathematical description of rocket engines as plants

    NASA Astrophysics Data System (ADS)

    Kiforenko, B. N.

    2012-09-01

    Mathematical models of liquid-propellant, nuclear, and electric rocket engines are presented that more fully describe thrust generation than the classical models do. The optimal control of engine thrust is analyzed within the framework of Mayer's general variational problem. It is shown that the control of a rocket engine satisfying the necessary optimality conditions belongs to the boundary arc of the feasible control set between the point of maximum thrust and the point of maximum exhaust velocity

  9. Rocket Motor Microphone Investigation

    NASA Technical Reports Server (NTRS)

    Pilkey, Debbie; Herrera, Eric; Gee, Kent L.; Giraud, Jerom H.; Young, Devin J.

    2010-01-01

    At ATK's facility in Utah, large full-scale solid rocket motors are tested. The largest is a five-segment version of the reusable solid rocket motor, which is for use on the Ares I launch vehicle. As a continuous improvement project, ATK and BYU investigated the use of microphones on these static tests, the vibration and temperature to which the instruments are subjected, and in particular the use of vent tubes and the effects these vents have at low frequencies.

  10. Nuclear thermal propulsion program overview

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.

    1991-01-01

    Nuclear thermal propulsion program is described. The following subject areas are covered: lunar and Mars missions; national space policy; international cooperation in space exploration; propulsion technology; nuclear rocket program; and budgeting.

  11. GPS Sounding Rocket Developments

    NASA Technical Reports Server (NTRS)

    Bull, Barton

    1999-01-01

    Sounding rockets are suborbital launch vehicles capable of carrying scientific payloads several hundred miles in altitude. These missions return a variety of scientific data including; chemical makeup and physical processes taking place In the atmosphere, natural radiation surrounding the Earth, data on the Sun, stars, galaxies and many other phenomena. In addition, sounding rockets provide a reasonably economical means of conducting engineering tests for instruments and devices used on satellites and other spacecraft prior to their use in more expensive activities. The NASA Sounding Rocket Program is managed by personnel from Goddard Space Flight Center Wallops Flight Facility (GSFC/WFF) in Virginia. Typically around thirty of these rockets are launched each year, either from established ranges at Wallops Island, Virginia, Poker Flat Research Range, Alaska; White Sands Missile Range, New Mexico or from Canada, Norway and Sweden. Many times launches are conducted from temporary launch ranges in remote parts of the world requi6ng considerable expense to transport and operate tracking radars. An inverse differential GPS system has been developed for Sounding Rocket. This paper addresses the NASA Wallops Island history of GPS Sounding Rocket experience since 1994 and the development of a high accurate and useful system.

  12. Rocket Engine Oscillation Diagnostics

    NASA Technical Reports Server (NTRS)

    Nesman, Tom; Turner, James E. (Technical Monitor)

    2002-01-01

    Rocket engine oscillating data can reveal many physical phenomena ranging from unsteady flow and acoustics to rotordynamics and structural dynamics. Because of this, engine diagnostics based on oscillation data should employ both signal analysis and physical modeling. This paper describes an approach to rocket engine oscillation diagnostics, types of problems encountered, and example problems solved. Determination of design guidelines and environments (or loads) from oscillating phenomena is required during initial stages of rocket engine design, while the additional tasks of health monitoring, incipient failure detection, and anomaly diagnostics occur during engine development and operation. Oscillations in rocket engines are typically related to flow driven acoustics, flow excited structures, or rotational forces. Additional sources of oscillatory energy are combustion and cavitation. Included in the example problems is a sampling of signal analysis tools employed in diagnostics. The rocket engine hardware includes combustion devices, valves, turbopumps, and ducts. Simple models of an oscillating fluid system or structure can be constructed to estimate pertinent dynamic parameters governing the unsteady behavior of engine systems or components. In the example problems it is shown that simple physical modeling when combined with signal analysis can be successfully employed to diagnose complex rocket engine oscillatory phenomena.

  13. Induction inserts at the Los Alamos PSR

    SciTech Connect

    King-Yuen Ng

    2002-09-30

    Ferrite-loaded induction tuners installed in the Los Alamos Proton Storage Ring have been successful in compensating space-charge effects. However, the resistive part of the ferrite introduces unacceptable microwave instability and severe bunch lengthening. An effective cure was found by heating the ferrite cores up to {approx} 130 C. An understanding of the instability and cure is presented.

  14. A Sailor in the Los Alamos Navy

    SciTech Connect

    Judd, D. L.

    2016-12-20

    As part of the War Department’s Manhattan Engineer District (MED), Los Alamos was an Army installation during World War II, complete with a base commander and a brace of MPs. But it was a unique Army installation, having more civilian then military personnel. Even more unique was the work performed by the civilian population, work that required highly educated scientists and engineers. As the breadth, scope, and complexity of the Laboratory’s work increased, more and more technically educated and trained personnel were needed. But, the manpower needs of the nation’s war economy had created a shortage of such people. To meet its manpower needs, the MED scoured the ranks of the Army for anyone who had technical training and reassigned these men to its laboratories, including Los Alamos, as part of its Special Engineer Detachment (SED). Among the SEDs assigned to Los Alamos was Val Fitch, who was awarded the Nobel Prize in Physics in 1980. Another was Al Van Vessem, who helped stack the TNT for the 100 ton test, bolted together the Trinity device, and rode shotgun with the bomb has it was driven from Los Alamos to ground zero.

  15. Nuclear Propulsion in Space (1968)

    SciTech Connect

    2012-06-23

    Project NERVA was an acronym for Nuclear Engine for Rocket Vehicle Application, a joint program of the U.S. Atomic Energy Commission and NASA managed by the Space Nuclear Propulsion Office (SNPO) at the Nuclear Rocket Development Station in Jackass Flats, Nevada U.S.A. Between 1959 and 1972, the Space Nuclear Propulsion Office oversaw 23 reactor tests, both the program and the office ended at the end of 1972.

  16. Nuclear Propulsion in Space (1968)

    ScienceCinema

    None

    2016-07-12

    Project NERVA was an acronym for Nuclear Engine for Rocket Vehicle Application, a joint program of the U.S. Atomic Energy Commission and NASA managed by the Space Nuclear Propulsion Office (SNPO) at the Nuclear Rocket Development Station in Jackass Flats, Nevada U.S.A. Between 1959 and 1972, the Space Nuclear Propulsion Office oversaw 23 reactor tests, both the program and the office ended at the end of 1972.

  17. 75 FR 67711 - Extension of Scoping Period for the Supplemental Environmental Impact Statement for the Nuclear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-03

    ... Portion of the Chemistry and Metallurgy Research Building Replacement Project at Los Alamos National... Chemistry and Metallurgy Research Building Replacement Project at Los Alamos National Laboratory, Los Alamos... construction and operation of the nuclear facility portion of the Chemistry and Metallurgy Research...

  18. Los Alamos National Laboratory capability reviews - FY 2011 status

    SciTech Connect

    Springer, Everett P

    2011-01-12

    Capability reviews are the Los Alamos National Laboratory approach to assess the quality of its science, technology, and engineering (STE), and its integration across the Laboratory. There are seven capability reviews in FY 2011 reviews. The Weapons Science and Engineering review will be replaced by the National Nuclear Security Administration's Predictive Science Panel for 2011 . Beginning in 2011, third-year LORD projects will be reviewed by capability review committees rather than the first-year LORD projects that have been performed for the last three years. This change addresses concerns from committees about reviewing a project before it had made any substantive progress. The current schedule, and chairs for the 2011 capability reviews is presented. The three-year cycle (2011-2013) for capability reviews are presented for planning purposes.

  19. Los Alamos National Laboratory support to IAEA environmental safeguards

    SciTech Connect

    Steiner, Robert E; Dry, Don E; Roensch, Fred R; Kinman, Will S; Roach, Jeff L; La Mont, Stephen P

    2010-12-01

    The nuclear and radiochemistry group provides sample preparation and analysis support to the International Atomic Energy Agency (IAEA) Network of Analytical Laboratories (NWAL). These analyses include both non-destructive (alpha and gamma-ray spectrometry) and destructive (thermal ionization mass spectrometry and inductively coupled plasma mass spectrometry) methods. On a bi-annual basis the NWAL laboratories are invited to meet to discuss program evolution and issues. During this meeting each participating laboratory summarizes their efforts over the previous two years. This presentation will present Los Alamos National Laboratories efforts in support of this program. Data showing results from sample and blank analysis will be presented along with capability enhancement and issues that arose over the previous two years.

  20. Game Imaging Meets Nuclear Reality

    ScienceCinema

    Michel, Kelly; Watkins, Adam

    2016-07-12

    At Los Alamos National Laboratory, a team of artists and animators, nuclear engineers and computer scientists is teaming to provide 3-D models of nuclear facilities to train IAEA safeguards inspectors and others who need fast familiarity with specific nuclear sites.

  1. Game Imaging Meets Nuclear Reality

    SciTech Connect

    Michel, Kelly; Watkins, Adam

    2011-03-21

    At Los Alamos National Laboratory, a team of artists and animators, nuclear engineers and computer scientists is teaming to provide 3-D models of nuclear facilities to train IAEA safeguards inspectors and others who need fast familiarity with specific nuclear sites.

  2. Rocket noise - A review

    NASA Astrophysics Data System (ADS)

    McInerny, S. A.

    1990-10-01

    This paper reviews what is known about far-field rocket noise from the controlled studies of the late 1950s and 1960s and from launch data. The peak dimensionless frequency, the dependence of overall sound power on exhaust parameters, and the directivity of the overall sound power of rockets are compared to those of subsonic jets and turbo-jets. The location of the dominant sound source in the rocket exhaust plume and the mean flow velocity in this region are discussed and shown to provide a qualitative explanation for the low peak Strouhal number, fD(e)/V(e), and large angle of maximum directivity. Lastly, two empirical prediction methods are compared with data from launches of a Titan family vehicle (two, solid rocket motors of 5.7 x 10 to the 6th N thrust each) and the Saturn V (five, liquid oxygen/rocket propellant engines of 6.7 x 10 to the 6th N thrust, each). The agreement is favorable. In contrast, these methods appear to overpredict the far-field sound pressure levels generated by the Space Shuttle.

  3. ROCKET PORT CLOSURE

    DOEpatents

    Mattingly, J.T.

    1963-02-12

    This invention provides a simple pressure-actuated closure whereby windowless observation ports are opened to the atmosphere at preselected altitudes. The closure comprises a disk which seals a windowless observation port in rocket hull. An evacuated instrument compartment is affixed to the rocket hull adjacent the inner surface of the disk, while the outer disk surface is exposed to the atmosphere through which the rocket is traveling. The pressure differential between the evacuated instrument compartment and the relatively high pressure external atmosphere forces the disk against the edge of the observation port, thereby effecting a tight seai. The instrument compartment is evacuated to a pressure equal to the atmospheric pressure existing at the altitude at which it is desiretl that the closure should open. When the rocket reaches this preselected altitude, the inwardly directed atmospheric force on the disk is just equaled by the residual air pressure force within the instrument compartment. Consequently, the closure disk falls away and uncovers the open observation port. The separation of the disk from the rocket hull actuates a switch which energizes the mechanism of a detecting instrument disposed within the instrument compartment. (AE C)

  4. Los Alamos National Security, LLC Request for Information from industrial entities that desire to commercialize Laboratory-developed Extremely Low Resource Optical Identifier (ELROI) tech

    SciTech Connect

    Erickson, Michael Charles

    2015-11-10

    Los Alamos National Security, LLC (LANS) is the manager and operator of the Los Alamos National Laboratory for the U.S. Department of Energy National Nuclear Security Administration under contract DE-AC52-06NA25396. LANS is a mission-centric Federally Funded Research and Development Center focused on solving the most critical national security challenges through science and engineering for both government and private customers.

  5. General view of the Solid Rocket Booster's (SRB) Solid Rocket ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the Solid Rocket Booster's (SRB) Solid Rocket Motor Segments in the Surge Building of the Rotation Processing and Surge Facility at Kennedy Space Center awaiting transfer to the Vehicle Assembly Building and subsequent mounting and assembly on the Mobile Launch Platform. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  6. Rockets in World War I

    NASA Technical Reports Server (NTRS)

    2004-01-01

    World War I enlisted rockets once again for military purposes. French pilots rigged rockets to the wing struts of their airplanes and aimed them at enemy observation balloons filled with highly inflammable hydrogen.

  7. Recent Infrasound Calibration Activity at Los Alamos

    NASA Astrophysics Data System (ADS)

    Whitaker, R. W.; Marcillo, O. E.

    2014-12-01

    Absolute infrasound sensor calibration is necessary for estimating source sizes from measured waveforms. This can be an important function in treaty monitoring. The Los Alamos infrasound calibration chamber is capable of absolute calibration. Early in 2014 the Los Alamos infrasound calibration chamber resumed operations in its new location after an unplanned move two years earlier. The chamber has two sources of calibration signals. The first is the original mechanical piston, and the second is a CLD Dynamics Model 316 electro-mechanical unit that can be digitally controlled and provide a richer set of calibration options. During 2008-2010 a number of upgrades were incorporated for improved operation and recording. In this poster we give an overview of recent chamber work on sensor calibrations, calibration with the CLD unit, some measurements with different porous hoses and work with impulse sources.

  8. Water Supply at Los Alamos during 1997

    SciTech Connect

    M. N. Maes; S. G. McLin; W. D. Purtymun

    1998-12-01

    Production of potable municipal water supplies during 1997 totaled about 1,285.9 million gallons from wells in the Guaje, Pajarito, and Otowi well fields. There was no water used from the spring gallery in Water Canyon or from Guaje Reservoir during 1997. About 2.4 million gallons of water from Los Alamos Reservoir was used to irrigate public parks and recreational lands. The total water usage in 1997 was about 1,288.3 million gallons, or about 135 gallons per day per person living in Los Alamos County. Groundwater pumpage was down about 82.2 million gallons in 1997 compared with the pumpage in 1996. Four new replacement wells were drilled and cased in Guaje Canyon between October 1997 and March 1998. These wells are currently being developed and aquifer tests are being performed. A special report summarizing the geological, geophysical, and well construction logs will be issued in the near future for these new wells.

  9. Risk management at Los Alamos National Laboratory

    SciTech Connect

    Brooks, D.G.; Stack, D.W.

    1993-11-01

    Los Alamos National Laboratory has risk management programs at a number of administrative levels. Each line organization has responsibility for risk management for routine operations. The Facility Risk Management group (HS-3) is the Los Alamos organization with the primary responsibility for risk management including providing input and expertise to facilities and line managers in the management and documentation of ES&H hazards and risks associated with existing and new activities. One of the major contributions this group has made to laboratory risk management program is to develop and implement a hazard identification and classification methodology that is readily adaptable to continuously changing classification guidelines such as DOE-STD-1027. The increased emphasis on safety at Los Alamos has led to the formation of additional safety oversight organization such as the Integration and Coordination Office (ICO), which is responsible for prioritization of risk management activities. In the fall of 1991, nearly 170 DOE inspectors spent 6 weeks analyzing the environmental, safety, and health activities at Los Alamos. The result of this audit was a list of over 1000 findings, each indicating some deficiency in current Laboratory operations relative to DOE and other government regulation. The audit team`s findings were consolidated and ``action plans`` were developed to address the findings. This resulted in over 200 action plans with a total estimated cost of almost $1 billion. The Laboratory adopted a risk-based prioritization process to attempt to achieve as much risk reduction as possible with the available resources. This paper describes the risk based prioritization model that was developed.

  10. Los Alamos National Laboratory Facility Review

    SciTech Connect

    Nelson, Ronald Owen

    2015-06-05

    This series of slides depicts the Los Alamos Neutron Science Center (LANSCE). The Center's 800-MeV linac produces H+ and H- beams as well as beams of moderated (cold to 1 MeV) and unmoderated (0.1 to 600 MeV) neutrons. Experimental facilities and their capabilities and characteristics are outlined. Among these are LENZ, SPIDER, and DANCE.

  11. Amphibians and Reptiles of Los Alamos County

    SciTech Connect

    Teralene S. Foxx; Timothy K. Haarmann; David C. Keller

    1999-10-01

    Recent studies have shown that amphibians and reptiles are good indicators of environmental health. They live in terrestrial and aquatic environments and are often the first animals to be affected by environmental change. This publication provides baseline information about amphibians and reptiles that are present on the Pajarito Plateau. Ten years of data collection and observations by researchers at Los Alamos National Laboratory, the University of New Mexico, the New Mexico Department of Game and Fish, and hobbyists are represented.

  12. MK 66 Rocket Signature Reduction

    DTIC Science & Technology

    1982-04-01

    Indian Head, Maryland. ’The objec- tive of the study was to reduce the visible signature of the rocket motor. The rocket motor used for demonstration tests...15 6. Actual Emmiissions . . . . . . ........... . 16 7. Human Eye Adjusted Emmissions ..................... .. 16 8. Cross...altered. Additives are commonly used in gun propellants for elimination of muzzle flash. Their use in tactical rockets has been very limited, and

  13. Baking Soda and Vinegar Rockets

    ERIC Educational Resources Information Center

    Claycomb, James R.; Zachary, Christopher; Tran, Quoc

    2009-01-01

    Rocket experiments demonstrating conservation of momentum will never fail to generate enthusiasm in undergraduate physics laboratories. In this paper, we describe tests on rockets from two vendors that combine baking soda and vinegar for propulsion. The experiment compared two analytical approximations for the maximum rocket height to the…

  14. Hermes A-1 Test Rockets

    NASA Technical Reports Server (NTRS)

    1950-01-01

    The first Hermes A-1 test rocket was fired at White Sand Proving Ground (WSPG). Hermes was a modified V-2 German rocket, utilizing the German aerodynamic configuration; however, internally it was a completely new design. Although it did not result in an operational vehicle, the information that was gathered in the process contributed directly to the development of the Redstone rocket.

  15. Overview of rocket engine control

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Musgrave, Jeffrey L.

    1991-01-01

    The issues of Chemical Rocket Engine Control are broadly covered. The basic feedback information and control variables used in expendable and reusable rocket engines, such as Space Shuttle Main Engine, are discussed. The deficiencies of current approaches are considered and a brief introduction to Intelligent Control Systems for rocket engines (and vehicles) is presented.

  16. Rocket center Peenemuende - Personal memories

    NASA Technical Reports Server (NTRS)

    Dannenberg, Konrad; Stuhlinger, Ernst

    1993-01-01

    A brief history of Peenemuende, the rocket center where Von Braun and his team developed the A-4 (V-2) rocket under German Army auspices, and the Air Force developed the V-1 (buzz bomb), wire-guided bombs, and rocket planes, is presented. Emphasis is placed on the expansion of operations beginning in 1942.

  17. A Journey From Sandia To Los Alamos - 12465

    SciTech Connect

    Goyal, K.K.; Humphrey, B.J.; Krause, T.J.; Gluth, J.W.; Kiefer, M.L.; Haynes, S.

    2012-07-01

    The U.S. Department of Energy (DOE) relies on laboratory experiments and computer-based models to verify the reliability of the nation's nuclear stockpile. Sandia National Laboratories/New Mexico (SNL/NM) tests various materials in extreme environments designed to mimic those of nuclear explosions using the Z machine. The Z machine is a key tool in the National Nuclear Security Administration's (NNSA) stockpile stewardship mission and is used to study the dynamic properties of nuclear weapon materials. In 2006, SNL/NM and Los Alamos National Laboratory (LANL) signed a Memorandum of Understanding (MOU) defining experiments to be conducted in the Z machine involving plutonium (Pu) provided by LANL. Five Pu experiments have been completed with as many as 20 more planned through 2016. The experimental containment vessel used for the experiment and containing the Pu residues, becomes transuranic (TRU) waste after the experiment and termination of safeguards and is considered a LANL waste stream. Each containment vessel is placed in a 55-gallon Type A drum or standard waste box (SWB) for shipment back to LANL for final certification and eventual disposal at the Waste Isolation Pilot Plant (WIPP). The experimental containment vessels are greater than 99% metallic materials (ferrous and non-ferrous metals). In addition to the Pu targets, detonators with high explosives (HE) are used in the experiments to isolate the containment vessel from the Z machine as energy is delivered to the Pu samples. The characterization requirements, transportation issues, required documentation, and the approvals needed before shipments were challenging and required close coordination between SNL/NM, Sandia Site Office, LANL, Los Alamos Site Office, Washington TRU Solutions, Inc., the Central Characterization Project, and the Carlsbad Field Office. Between 2006 and 2010, representatives from SNL/NM and LANL worked to develop an approved path forward to meet the requirements of all stakeholders

  18. Solid Rocket Booster Recovery

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The towing ship, Liberty, towed a recovered solid rocket booster (SRB) for the STS-5 mission to Port Canaveral, Florida. The recovered SRB would be inspected and refurbished for reuse. The Shuttle's SRB's and solid rocket motors (SRM's) are the largest ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds. The requirement for reusability dictated durable materials and construction to preclude corrosion of the hardware exposed to the harsh seawater environment. The SRB contains a complete recovery subsystem that includes parachutes, beacons, lights, and tow fixture.

  19. Solid Rocket Booster Recovery

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The towing ship, Liberty, towed a recovered solid rocket booster (SRB) for the STS-3 mission to Port Canaveral, Florida. The recovered SRB would be inspected and refurbished for reuse. The Shuttle's SRB's and solid rocket motors (SRM's) are the largest ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds. The requirement for reusability dictated durable materials and construction to preclude corrosion of the hardware exposed to the harsh seawater environment. The SRB contains a complete recovery subsystem that includes parachutes, beacons, lights, and tow fixture.

  20. Rocket plume burn hazard.

    PubMed

    Stoll, A M; Piergallini, J R; Chianta, M A

    1980-05-01

    By use of miniature rocket engines, the burn hazard posed by exposure to ejection seat rocket plume flames was determined in the anaesthetized rat. A reference chart is provided for predicting equivalent effects in human skin based on extrapolation of earlier direct measurements of heat input for rat and human burns. The chart is intended to be used in conjunction with thermocouple temperature measurements of the plume environment for design and modification of escape seat system to avoid thermal injury on ejection from multiplace aircraft.

  1. Jupiter Rocket Engine

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Engine for the Jupiter rocket. The Jupiter vehicle was a direct derivative of the Redstone. The Army Ballistic Missile Agency (ABMA) at Redstone Arsenal, Alabama, continued Jupiter development into a successful intermediate ballistic missile, even though the Department of Defense directed its operational development to the Air Force. ABMA maintained a role in Jupiter RD, including high-altitude launches that added to ABMA's understanding of rocket vehicle operations in the near-Earth space environment. It was knowledge that paid handsome dividends later.

  2. Advanced liquid rockets

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.

    1992-01-01

    A program to substitute iridium coated rhenium for silicide coated niobium in thrust chamber fabrications is reviewed. The life limiting phenomena in each of these material systems is also reviewed. Coating cracking and spalling is not a problem with iridium-coated rhenium as in silicide-coated niobium. Use of the new material system enables an 800 K increase in thruster operating temperature from around 1700 K for niobium to 2500 K for rhenium. Specific impulse iridium-coated rhenium rockets is nominally 20 seconds higher than comparable niobium rockets in the 22 N class and nominally 10 seconds higher in the 440 N class.

  3. Los Alamos National Laboratory Building Cost Index

    SciTech Connect

    Orr, H.D.; Lemon, G.D.

    1983-01-01

    The Los Alamos National Laboratory Building Cost Index indicates that actual escalation since 1970 is near 10% per year. Therefore, the Laboratory will continue using a 10% per year escalation rate for construction estimates through 1985 and a slightly lower rate of 8% per year from 1986 through 1990. The computerized program compares the different elements involved in the cost of a typical construction project, which for our purposes, is a complex of office buildings and experimental laboratores. The input data used in the program consist primarily of labor costs and material and equipment costs. The labor costs are the contractural rates of the crafts workers in the Los Alamos area. For the analysis, 12 field-labor draft categories are used; each is weighted corresponding to the labor craft distribution associated with the typical construction project. The materials costs are current Los Alamos prices. Additional information sources include material and equipment quotes obtained through conversations with vendors and from trade publications. The material and equipment items separate into 17 categories for the analysis and are weighted corresponding to the material and equipment distribution associated with the typical construction project. The building cost index is compared to other national building cost indexes.

  4. Los Alamos National Laboratory building cost index

    SciTech Connect

    Orr, H.D.; Lemon, G.D.

    1982-10-01

    The Los Alamos National Laboratory Building Cost Index indicates that actual escalation since 1970 is near 10% per year. Therefore, the Laboratory will continue using a 10% per year escalation rate for construction estimates through 1985 and a slightly lower rate of 8% per year from 1986 through 1990. The computerized program compares the different elements involved in the cost of a typical construction project, which for our purposes, is a complex of office buildings and experimental laboratories. The input data used in the program consist primarily of labor costs and material and equipment costs. The labor costs are the contractual rates of the crafts workers in the Los Alamos area. For the analysis, 12 field-labor craft categories are used; each is weighted corresponding to the labor craft distribution associated with the typical construction project. The materials costs are current Los Alamos prices. Additional information sources include material and equipment quotes obtained through conversations with vendors and from trade publications. The material and equipment items separate into 17 categories for the analysis and are weighted corresponding to the material and equipment distribution associated with the typical construction project. The building cost index is compared to other national building cost indexes.

  5. Highlights of 50 years of Aerojet, a pioneering American rocket company, 1942-1992

    NASA Astrophysics Data System (ADS)

    Winter, Frank H.; James, George S.

    1995-05-01

    The "pre-history" of Aerojet is recalled, followed by a survey of Aerojet's solid-fuel and liquid-fuel JATOs (Jet-Assisted Take-Off) to aircraft prime powerplants, missile sustainer motors, boosters, sounding rocket engines and, finally, nuclear powered rocket engines (NERVA).

  6. Nuclear Physics Made Very, Very Easy

    NASA Technical Reports Server (NTRS)

    Hanlen, D. F.; Morse, W. J.

    1968-01-01

    The fundamental approach to nuclear physics was prepared to introduce basic reactor principles to various groups of non-nuclear technical personnel associated with NERVA Test Operations. NERVA Test Operations functions as the field test group for the Nuclear Rocket Engine Program. Nuclear Engine for Rocket Vehicle Application (NERVA) program is the combined efforts of Aerojet-General Corporation as prime contractor, and Westinghouse Astronuclear Laboratory as the major subcontractor, for the assembly and testing of nuclear rocket engines. Development of the NERVA Program is under the direction of the Space Nuclear Propulsion Office, a joint agency of the U.S. Atomic Energy Commission and the National Aeronautics and Space Administration.

  7. 2016 Los Alamos National Laboratory Hazardous Waste Minimization Report

    SciTech Connect

    Salzman, Sonja L.; English, Charles Joe

    2016-12-02

    Waste minimization and pollution prevention are goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE), inclusive of the National Nuclear Security Administration (NNSA) and the Office of Environmental Management, and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program, which is a component of the overall Pollution Prevention (P2) Program, administered by the Environmental Stewardship Group (EPC-ES). This report also supports the waste minimization and P2 goals of the Associate Directorate of Environmental Management (ADEM) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. This report includes data for all waste shipped offsite from LANL during fiscal year (FY) 2016 (October 1, 2015 – September 30, 2016). LANS was active during FY2016 in waste minimization and P2 efforts. Multiple projects were funded that specifically related to reduction of hazardous waste. In FY2016, there was no hazardous, mixed-transuranic (MTRU), or mixed low-level (MLLW) remediation waste shipped offsite from the Laboratory. More non-remediation hazardous waste and MLLW was shipped offsite from the Laboratory in FY2016 compared to FY2015. Non-remediation MTRU waste was not shipped offsite during FY2016. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.

  8. 2013 Los Alamos National Laboratory Hazardous Waste Minimization Report

    SciTech Connect

    Salzman, Sonja L.; English, Charles J.

    2015-08-24

    Waste minimization and pollution prevention are inherent goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE) and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program (a component of the overall Waste Minimization/Pollution Prevention [WMin/PP] Program) administered by the Environmental Stewardship Group (ENV-ES). This report also supports the waste minimization and pollution prevention goals of the Environmental Programs Directorate (EP) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. LANS was very successful in fiscal year (FY) 2013 (October 1-September 30) in WMin/PP efforts. Staff funded four projects specifically related to reduction of waste with hazardous constituents, and LANS won four national awards for pollution prevention efforts from the National Nuclear Security Administration (NNSA). In FY13, there was no hazardous, mixedtransuranic (MTRU), or mixed low-level (MLLW) remediation waste generated at the Laboratory. More hazardous waste, MTRU waste, and MLLW was generated in FY13 than in FY12, and the majority of the increase was related to MTRU processing or lab cleanouts. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.

  9. This "Is" Rocket Science!

    ERIC Educational Resources Information Center

    Keith, Wayne; Martin, Cynthia; Veltkamp, Pamela

    2013-01-01

    Using model rockets to teach physics can be an effective way to engage students in learning. In this paper, we present a curriculum developed in response to an expressed need for helping high school students review physics equations in preparation for a state-mandated exam. This required a mode of teaching that was more advanced and analytical…

  10. Dr. Goddard Transports Rocket

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Dr. Robert H. Goddard tows his rocket to the launching tower behind a Model A Ford truck, 15 miles northwest of Roswell, New Mexico. 1930- 1932. Dr. Goddard has been recognized as the 'Father of American Rocketry' and as one of three pioneers in the theoretical exploration of space. Robert Hutchings Goddard was born in Worcester, Massachusetts, on October 15, 1882. He was a theoretical scientist as well as a practical engineer. His dream was the conquest of the upper atmosphere and ultimately space through the use of rocket propulsion. Dr. Goddard, who died in 1945, was probably as responsible for the dawning of the Space Age as the Wright Brothers were for the begining of the Air Age. Yet his work attracted little serious attention during his lifetime. When the United States began to prepare for the conquest of space in the 1950's, American rocket scientists began to recognize the debt owed to the New England professor. They discovered that it was virtually impossible to construct a rocket or launch a satellite without acknowledging the work of Dr. Goddard. This great legacy was covered by more than 200 patents, many of which were issued after his death.

  11. This Is Rocket Science!

    NASA Astrophysics Data System (ADS)

    Keith, Wayne; Martin, Cynthia; Veltkamp, Pamela

    2013-09-01

    Using model rockets to teach physics can be an effective way to engage students in learning. In this paper, we present a curriculum developed in response to an expressed need for helping high school students review physics equations in preparation for a state-mandated exam. This required a mode of teaching that was more advanced and analytical than that offered by Estes Industries, but more basic than the analysis of Nelson et al. In particular, drag is neglected until the very end of the exercise, which allows the concept of conservation of energy to be shown when predicting the rocket's flight. Also, the variable mass of the rocket motor is assumed to decrease linearly during the flight (while the propulsion charge and recovery delay charge are burning) and handled simplistically by using an average mass value. These changes greatly simplify the equations needed to predict the times and heights at various stages of flight, making it more useful as a review of basic physics. Details about model rocket motors, range safety, and other supplemental information may be found online at Apogee Components4 and the National Association of Rocketry.5

  12. Rocket Auroral Correlator Experiment

    NASA Technical Reports Server (NTRS)

    LaBelle, James

    2003-01-01

    Dartmouth College provided a multi-channel high- and low- frequency wave receivers, including active sensors on deployable booms, to the Rocket Auroral Correlator Experiment launched from Poker Flat, Alaska, in January 2002. College also performed preliminary analysis of the data. Details are outlined in chronological order.

  13. Liquid rocket engine turbines

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Criteria for the design and development of turbines for rocket engines to meet specific performance, and installation requirements are summarized. The total design problem, and design elements are identified, and the current technology pertaining to these elements is described. Recommended practices for achieving a successful design are included.

  14. Liquid Rocket Engine Testing

    NASA Technical Reports Server (NTRS)

    Rahman, Shamim

    2005-01-01

    Comprehensive Liquid Rocket Engine testing is essential to risk reduction for Space Flight. Test capability represents significant national investments in expertise and infrastructure. Historical experience underpins current test capabilities. Test facilities continually seek proactive alignment with national space development goals and objectives including government and commercial sectors.

  15. Liquid rocket valve components

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A monograph on valves for use with liquid rocket propellant engines is presented. The configurations of the various types of valves are described and illustrated. Design criteria and recommended practices for the various valves are explained. Tables of data are included to show the chief features of valve components in use on operational vehicles.

  16. Liquid rocket valve assemblies

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The design and operating characteristics of valve assemblies used in liquid propellant rocket engines are discussed. The subjects considered are as follows: (1) valve selection parameters, (2) major design aspects, (3) design integration of valve subassemblies, and (4) assembly of components and functional tests. Information is provided on engine, stage, and spacecraft checkout procedures.

  17. The Relativistic Rocket

    ERIC Educational Resources Information Center

    Antippa, Adel F.

    2009-01-01

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…

  18. Thiokol Solid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Graves, S. R.

    2000-01-01

    This paper presents viewgraphs on thiokol solid rocket motors. The topics include: 1) Communications; 2) Military and government intelligence; 3) Positioning satellites; 4) Remote sensing; 5) Space burial; 6) Science; 7) Space manufacturing; 8) Advertising; 9) Space rescue space debris management; 10) Space tourism; 11) Space settlements; 12) Hazardous waste disposal; 13) Extraterrestrial resources; 14) Fast package delivery; and 15) Space utilities.

  19. Water Rocket Workout.

    ERIC Educational Resources Information Center

    Esler, William K.; Sanford, Daniel

    1989-01-01

    Water rockets are used to present Newton's three laws of motion to high school physics students. Described is an outdoor activity which uses four students per group. Provides a launch data sheet to record height, angle of elevation, amount of water used, and launch number. (MVL)

  20. Modelling surface motion and spall at the Nevada Test Site. Los Alamos Source Region Project

    SciTech Connect

    App, F.N.; Brunish, W.M.

    1992-01-01

    Spallation of the ground surface accompanies all underground nuclear explosions of significant yield. This report discusses computer modelling used to investigate the physical processes that govern spallation and the amplitude and wavelength of motion at the free surface under a variety of conditions. Four events are selected: MERLIN which was conducted in desert alluvium; HEARTS which was conducted in tuff beneath the water table in Yucca Flat; TOWANDA which was conducted beneath the water table on Pahute Mesa; and HOUSTON which was conducted above the water table in very dense rock and Pahute Mesa. These span the range of test environments for Los Alamos underground nuclear tests.

  1. Analytical and Radiochemistry for Nuclear Forensics

    SciTech Connect

    Steiner, Robert Ernest; Dry, Donald E.; Kinman, William Scott; Podlesak, David; Tandon, Lav

    2015-05-26

    Information about nonproliferation nuclear forensics, activities in forensics at Los Alamos National Laboratory, radio analytical work at LANL, radiochemical characterization capabilities, bulk chemical and materials analysis capabilities, and future interests in forensics interactions.

  2. Radionuclide concentrations in pinto beans, sweet corn, and zucchini squash grown in Los Alamos Canyon at Los Alamos National Laboratory

    SciTech Connect

    Fresquez, P.R.; Mullen, M.A.; Naranjo, L. Jr.; Armstrong, D.R.

    1997-05-01

    Pinto beans, sweet corn, and zucchini squash (Cucurbita pepo var. black beauty) were grown in a randomized complete-block field/pot experiment at a site that contained the highest observed levels of surface gross gamma radioactivity within Los Alamos Canyon (LAC) at Los Alamos National Laboratory. Soils as well as washed edible and nonedible crop tissues were analyzed for various radionuclides and heavy metals . Most radionuclides, with the exception of {sup 3}H and {sup tot}U, in soil from LAC were detected in significantly higher concentrations (p <0.01) than in soil collected from regional background (RBG) locations. Similarly, most radionuclides in edible crop portions of beans, squash, and corn were detected in significantly higher (p <0.01 and 0.05) concentrations than RBG. Most soil-to-plant concentration ratios for radionuclides in edible and nonedible crop tissues from LAC were within the default values given by the Nuclear Regulatory Commission and Environmental Protection Agency. All heavy metals in soils, as well as edible and nonedible crop tissues grown in soils from LAC, were within RBG concentrations. Overall, the total maximum net positive committed effective dose equivalent (CEDE)--the CEDE plus two sigma for each radioisotope minus background and then all positive doses summed--to a hypothetical 50-year resident that ingested 160 kg of beans, corn, and squash in equal proportions, was 74 mrem y{sup -1}. This dose was below the International Commission on Radiological Protection permissible dose limit (PDL) of 100 mrem y{sup -1} from all pathways; however, the addition of other internal and external exposure route factors may increase the overall dose over the PDL. Also, the risk of an excess cancer fatality, based on 74 mrem y{sup -1}, was 3.7 x 10{sup -5} (37 in a million), which is above the Environmental Protection Agency`s (acceptable) guideline of one in a million. 31 refs., 15 tabs.

  3. Integrating Safety with Science,Technology and Innovation at Los Alamos National Laboratory

    SciTech Connect

    Rich, Bethany M

    2012-04-02

    The mission of Los Alamos National Laboratory (LANL) is to develop and apply science, technology and engineering solutions to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve emerging national security challenges. The most important responsibility is to direct and conduct efforts to meet the mission with an emphasis on safety, security, and quality. In this article, LANL Environmental, Safety, and Health (ESH) trainers discuss how their application and use of a kinetic learning module (learn by doing) with a unique fall arrest system is helping to address one the most common industrial safety challenges: slips and falls. A unique integration of Human Performance Improvement (HPI), Behavior Based Safety (BBS) and elements of the Voluntary Protection Program (VPP) combined with an interactive simulator experience is being used to address slip and fall events at Los Alamos.

  4. Refinements in the Los Alamos model of the prompt fission neutron spectrum

    NASA Astrophysics Data System (ADS)

    Madland, D. G.; Kahler, A. C.

    2017-01-01

    This paper presents a number of refinements to the original Los Alamos model of the prompt fission neutron spectrum and average prompt neutron multiplicity as derived in 1982. The four refinements are due to new measurements of the spectrum and related fission observables many of which were not available in 1982. They are also due to a number of detailed studies and comparisons of the model with previous and present experimental results including not only the differential spectrum, but also integral cross sections measured in the field of the differential spectrum. The four refinements are (a) separate neutron contributions in binary fission, (b) departure from statistical equilibrium at scission, (c) fission-fragment nuclear level-density models, and (d) center-of-mass anisotropy. With these refinements, for the first time, good agreement has been obtained for both differential and integral measurements using the same Los Alamos model spectrum.

  5. Customer service model for waste tracking at Los Alamos National Laboratory

    SciTech Connect

    Dorries, Alison M; Montoya, Andrew J; Ashbaugh, Andrew E

    2010-11-10

    The deployment of any new software system in a production facility will always face multiple hurtles in reaching a successful acceptance. However, a new waste tracking system was required at the plutonium processing facility at Los Alamos National Laboratory (LANL) where waste processing must be integrated to handle Special Nuclear Materials tracking requirements. Waste tracking systems can enhance the processing of waste in production facilities when the system is developed with a focus on customer service throughout the project life cycle. In March 2010 Los Alamos National Laboratory Waste Technical Services (WTS) replaced the aging systems and infrastructure that were being used to support the plutonium processing facility. The Waste Technical Services (WTS) Waste Compliance and Tracking System (WCATS) Project Team, using the following customer service model, succeeded in its goal to meet all operational and regulatory requirements, making waste processing in the facility more efficient while partnering with the customer.

  6. Improved recovery and purification of plutonium at Los Alamos using macroporous anion exchange resin

    SciTech Connect

    Marsh, S.F.; Mann, M.J.

    1987-05-01

    For almost 30 years, Los Alamos National Laboratory has used anion exchange in nitric acid as the major aqueous process or the recovery and purification of plutonium. One of the few disadvantages of this system is the particularly slow rate at which the anionic nitrato complex of Pu(IV) equilibrates with the resin. The Nuclear Materials Process Technology Group at Los Alamos recently completed an ion exchange development program that focused on improving the slow sorption kinetics that limits this process. A comprehensive investigation of modern anion exchange resins identified porosity and bead size as the properties that most influence plutonium sorption kinetics. Our study found that small beads of macroporous resin produced a dramatic increase in plutonium process efficiency. The Rocky Flats Plant has already adopted this improved ion exchange technology, and it currently is being evaluated for use in other DOE plutonium-processing facilities.

  7. Beginnings of rocket development in the czech lands (Czechoslovakia)

    NASA Astrophysics Data System (ADS)

    Plavec, Michal

    2011-11-01

    Although the first references are from the 15th Century when both Hussites and crusaders are said to have used rockets during the Hussite Wars (also known as the Bohemian Wars) there is no strong evidence that rockets were actually used at that time. It is worth noting that Konrad Kyeser, who described several rockets in his Bellifortis manuscript written 1402-1405, served as advisor to Bohemian King Wenceslas IV. Rockets were in fact used as fireworks from the 16th century in noble circles. Some of these were built by Vavřinec Křička z Bitý\\vsky, who also published a book on fireworks, in which he described how to build rockets for firework displays. Czech soldiers were also involved in the creation of a rocket regiment in the Austrian (Austro-Hungarian) army in the first half of the 19th century. The pioneering era of modern rocket development began in the Czech lands during the 1920s. The first rockets were succesfully launched by Ludvík Očenášek in 1930 with one of them possibly reaching an altitude of 2000 metres. Vladimír Mandl, lawyer and author of the first book on the subject of space law, patented his project for a stage rocket (vysokostoupající raketa) in 1932, but this project never came to fruition. There were several factories during the so-called Protectorate of Bohemia and Moravia in 1939-1945, when the Czech lands were occupied by Nazi Germany, where parts for German Mark A-4/V-2 rockets were produced, but none of the Czech technicians or constructors were able to build an entire rocket. The main goal of the Czech aircraft industry after WW2 was to revive the stagnant aircraft industry. There was no place to create a rocket industry. Concerns about a rocket industry appeared at the end of the 1950s. The Political Board of the Central Committee of the Czechoslovak Communist Party started to study the possibilities of creating a rocket industry after the first flight into space and particularly after US nuclear weapons were based in Italy

  8. Los Alamos National Laboratory computer benchmarking 1982

    SciTech Connect

    Martin, J.L.

    1983-06-01

    Evaluating the performance of computing machinery is a continual effort of the Computer Research and Applications Group of the Los Alamos National Laboratory. This report summarizes the results of the group's benchmarking activities performed between October 1981 and September 1982, presenting compilation and execution times as well as megaflop rates for a set of benchmark codes. Tests were performed on the following computers: Cray Research, Inc. (CRI) Cray-1S; Control Data Corporation (CDC) 7600, 6600, Cyber 73, Cyber 825, Cyber 835, Cyber 855, and Cyber 205; Digital Equipment Corporation (DEC) VAX 11/780 and VAX 11/782; and Apollo Computer, Inc., Apollo.

  9. Los Alamos National Laboratory strategic directions

    SciTech Connect

    Hecker, S.

    1995-10-01

    It is my pleasure to welcome you to Los Alamos. I like the idea of bringing together all aspects of the research community-defense, basic science, and industrial. It is particularly important in today`s times of constrained budgets and in fields such as neutron research because I am convinced that the best science and the best applications will come from their interplay. If we do the science well, then we will do good applications. Keeping our eye focused on interesting applications will spawn new areas of science. This interplay is especially critical, and it is good to have these communities represented here today.

  10. Biological assessment for the effluent reduction program, Los Alamos National Laboratory, Los Alamos, New Mexico

    SciTech Connect

    Cross, S.P.

    1996-08-01

    This report describes the biological assessment for the effluent recution program proposed to occur within the boundaries of Los Alamos National Laboratory. Potential effects on wetland plants and on threatened and endangered species are discussed, along with a detailed description of the individual outfalls resulting from the effluent reduction program.

  11. LAMPF II workshop, Los Alamos National Laboratory, Los Alamos, New Mexico, February 1-4, 1982

    SciTech Connect

    Thiessen, H.A.

    1982-01-01

    This report contains the proceedings of the first LAMPF II Workshop held at Los Alamos February 1 to 4, 1982. Included are the talks that were available in written form. The conclusion of the participants was that there are many exciting areas of physics that will be addressed by such a machine.

  12. The Los Alamos Science Pillars The Science of Signatures

    SciTech Connect

    Smith, Joshua E.; Peterson, Eugene J.

    2012-09-13

    As a national security science laboratory, Los Alamos is often asked to detect and measure the characteristics of complex systems and to use the resulting information to quantify the system's behavior. The Science of Signatures (SoS) pillar is the broad suite of technical expertise and capability that we use to accomplish this task. With it, we discover new signatures, develop new methods for detecting or measuring signatures, and deploy new detection technologies. The breadth of work at Los Alamos National Laboratory (LANL) in SoS is impressive and spans from the initial understanding of nuclear weapon performance during the Manhattan Project, to unraveling the human genome, to deploying laser spectroscopy instrumentation on Mars. Clearly, SoS is a primary science area for the Laboratory and we foresee that as it matures, new regimes of signatures will be discovered and new ways of extracting information from existing data streams will be developed. These advances will in turn drive the development of sensing instrumentation and sensor deployment. The Science of Signatures is one of three science pillars championed by the Laboratory and vital to supporting our status as a leading national security science laboratory. As with the other two pillars, Materials for the Future and Information Science and Technology for Predictive Science (IS&T), SoS relies on the integration of technical disciplines and the multidisciplinary science and engineering that is our hallmark to tackle the most difficult national security challenges. Over nine months in 2011 and 2012, a team of science leaders from across the Laboratory has worked to develop a SoS strategy that positions us for the future. The crafting of this strategy has been championed by the Chemistry, Life, and Earth Sciences Directorate, but as you will see from this document, SoS is truly an Institution-wide effort and it has engagement from every organization at the Laboratory. This process tapped the insight and

  13. Two-Dimensional Motions of Rockets

    ERIC Educational Resources Information Center

    Kang, Yoonhwan; Bae, Saebyok

    2007-01-01

    We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the…

  14. Engine for Redstone Rocket

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This photograph is of the engine for the Redstone rocket. The Redstone ballistic missile was a high-accuracy, liquid-propelled, surface-to-surface missile developed by the Army Ballistic Missile Agency, Redstone Arsenal, in Huntsville, Alabama, under the direction of Dr. von Braun. The Redstone engine was a modified and improved version of the Air Force's Navaho cruise missile engine of the late forties. The A-series, as this would be known, utilized a cylindrical combustion chamber as compared with the bulky, spherical V-2 chamber. By 1951, the Army was moving rapidly toward the design of the Redstone missile, and the production was begun in 1952. Redstone rockets became the 'reliable workhorse' for America's early space program. As an example of its versatility, the Redstone was utilized in the booster for Explorer 1, the first American satellite, with no major changes to the engine or missile.

  15. Laser rocket system analysis

    NASA Technical Reports Server (NTRS)

    Jones, W. S.; Forsyth, J. B.; Skratt, J. P.

    1979-01-01

    The laser rocket systems investigated in this study were for orbital transportation using space-based, ground-based and airborne laser transmitters. The propulsion unit of these systems utilizes a continuous wave (CW) laser beam focused into a thrust chamber which initiates a plasma in the hydrogen propellant, thus heating the propellant and providing thrust through a suitably designed nozzle and expansion skirt. The specific impulse is limited only by the ability to adequately cool the thruster and the amount of laser energy entering the engine. The results of the study showed that, with advanced technology, laser rocket systems with either a space- or ground-based laser transmitter could reduce the national budget allocated to space transportation by 10 to 345 billion dollars over a 10-year life cycle when compared to advanced chemical propulsion systems (LO2-LH2) of equal capability. The variation in savings depends upon the projected mission model.

  16. ISRO's solid rocket motors

    NASA Astrophysics Data System (ADS)

    Nagappa, R.; Kurup, M. R.; Muthunayagam, A. E.

    1989-08-01

    Solid rocket motors have been the mainstay of ISRO's sounding rockets and the first generation satellite launch vehicles. For the new launch vehicle under development also, the solid rocket motors contribute significantly to the vehicle's total propulsive power. The rocket motors in use and under development have been developed for a variety of applications and range in size from 30 mm dia employing 450 g of solid propellant—employed for providing a spin to the apogee motors—to the giant 2.8 m dia motor employing nearly 130 tonnes of solid propellant. The initial development, undertaken in 1967 was of small calibre motor of 75 mm dia using a double base charge. The development was essentially to understand the technological elements. Extruded aluminium tubes were used as a rocket motor casing. The fore and aft closures were machined from aluminium rods. The grain was a seven-pointed star with an enlargement of the port at the aft end and was charged into the chamber using a polyester resin system. The nozzle was a metallic heat sink type with graphite throat insert. The motor was ignited with a black powder charge and fired for 2.0 s. Subsequent to this, further developmental activities were undertaken using PVC plastisol based propellants. A class of sounding rockets ranging from 125 to 560 mm calibre were realized. These rocket motors employed improved designs and had delivered lsp ranging from 2060 to 2256 Ns/kg. Case bonding could not be adopted due to the higher cure temperatures of the plastisol propellants but improvements were made in the grain charging techniques and in the design of the igniters and the nozzle. Ablative nozzles based on asbestos phenolic and silica phenolic with graphite inserts were used. For the larger calibre rocket motors, the lsp could be improved by metallic additives. In the early 1970s designs were evolved for larger and more efficient motors. A series of 4 motors for the country's first satellite launch vehicle SLV-3 were

  17. Advanced rocket propulsion

    NASA Technical Reports Server (NTRS)

    Obrien, Charles J.

    1993-01-01

    Existing NASA research contracts are supporting development of advanced reinforced polymer and metal matrix composites for use in liquid rocket engines of the future. Advanced rocket propulsion concepts, such as modular platelet engines, dual-fuel dual-expander engines, and variable mixture ratio engines, require advanced materials and structures to reduce overall vehicle weight as well as address specific propulsion system problems related to elevated operating temperatures, new engine components, and unique operating processes. High performance propulsion systems with improved manufacturability and maintainability are needed for single stage to orbit vehicles and other high performance mission applications. One way to satisfy these needs is to develop a small engine which can be clustered in modules to provide required levels of total thrust. This approach should reduce development schedule and cost requirements by lowering hardware lead times and permitting the use of existing test facilities. Modular engines should also reduce operational costs associated with maintenance and parts inventories.

  18. The Aries sounding rocket

    NASA Astrophysics Data System (ADS)

    Dooling, D.

    1980-02-01

    A family of sounding rockets called Aries, using the motors from obsolete Minuteman ICBMs, is described. Payloads for Aries range from 1,500 to 3,500 lb (with a payload diameter of 44 in.) and include various instruments (magnetospheric tracers, X-ray and extreme ultraviolet astronomy and a large X-ray telescope). Prospects for future launching of a two and even three-stage Aries are discussed.

  19. EPDM rocket motor insulation

    NASA Technical Reports Server (NTRS)

    Guillot, David G. (Inventor); Harvey, Albert R. (Inventor)

    2004-01-01

    A novel and improved EPDM formulation for a solid propellant rocket motor is described wherein hexadiene EPDM monomer components are replaced by alkylidene norbornene components, and, with appropriate adjustment of curing and other additives, functionally required rheological and physical characteristics are achieved with the desired compatibility with any one of a plurality of solid filler materials, e.g., powder silica, carbon fibers or aramid fibers, and with appropriate adhesion and extended storage or shelf-life characteristics.

  20. EPDM rocket motor insulation

    NASA Technical Reports Server (NTRS)

    Guillot, David G. (Inventor); Harvey, Albert R. (Inventor)

    2008-01-01

    A novel and improved EPDM formulation for a solid propellant rocket motor is described wherein hexadiene EPDM monomer components are replaced by alkylidene norbornene components, and, with appropriate adjustment of curing and other additives, functionally required rheological and physical characteristics are achieved with the desired compatibility with any one of a plurality of solid filler materials, e.g., powder silica, carbon fibers or aramid fibers, and with appropriate adhesion and extended storage or shelf-life characteristics.

  1. Small rocket tornado probe

    SciTech Connect

    Colgate, S.A.

    1982-01-01

    A (less than 1 lb.) paper rock tornado probe was developed and deployed in an attempt to measure the pressure, temperature, ionization, and electric field variations along a trajectory penetrating a tornado funnel. The requirements of weight and materials were set by federal regulations and a one-meter resolution at a penetration velocity of close to Mach 1 was desired. These requirements were achieved by telemetering a strain gage transducer for pressure, micro size thermister and electric field, and ionization sensors via a pulse time telemetry to a receiver on board an aircraft that digitizes a signal and presents it to a Z80 microcomputer for recording on mini-floppy disk. Recording rate was 2 ms for 8 channels of information that also includes telemetry rf field strength, magnetic field for orientation on the rocket, zero reference voltage for the sensor op amps as well as the previously mentioned items also. The absolute pressure was recorded. Tactically, over 120 h were flown in a Cessna 210 in April and May 1981, and one tornado was encountered. Four rockets were fired at this tornado, missed, and there were many equipment problems. The equipment needs to be hardened and engineered to a significant degree, but it is believed that the feasibility of the probe, tactics, and launch platform for future tornado work has been proven. The logistics of thunderstorm chasing from a remote base in New Mexico is a major difficulty and reliability of the equipment another. Over 50 dummy rockets have been fired to prove trajectories, stability, and photographic capability. Over 25 electronically equipped rockets have been fired to prove sensors transmission, breakaway connections, etc. The pressure recovery factor was calibrated in the Air Force Academy blow-down tunnel. There is a need for more refined engineering and more logistic support.

  2. Microfabricated Liquid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Epstein, Alan H.; Joppin, C.; Kerrebrock, J. L.; Schneider, Steven J. (Technical Monitor)

    2003-01-01

    Under NASA Glenn Research Center sponsorship, MIT has developed the concept of micromachined, bipropellant, liquid rocket engines. This is potentially a breakthrough technology changing the cost-performance tradeoffs for small propulsion systems, enabling new applications, and redefining the meaning of the term low-cost-access-to-space. With this NASA support, a liquid-cooled, gaseous propellant version of the thrust chamber and nozzle was designed, built, and tested as a first step. DARPA is currently funding MIT to demonstrate turbopumps and controls. The work performed herein was the second year of a proposed three-year effort to develop the technology and demonstrate very high power density, regeneratively cooled, liquid bipropellant rocket engine thrust chamber and nozzles. When combined with the DARPA turbopumps and controls, this work would enable the design and demonstration of a complete rocket propulsion system. The original MIT-NASA concept used liquid oxygen-ethanol propellants. The military applications important to DARPA imply that storable liquid propellants are needed. Thus, MIT examined various storable propellant combinations including N2O4 and hydrazine, and H2O2 and various hydrocarbons. The latter are preferred since they do not have the toxicity of N2O4 and hydrazine. In reflection of the newfound interest in H2O2, it is once again in production and available commercially. A critical issue for the microrocket engine concept is cooling of the walls in a regenerative design. This is even more important at microscale than for large engines due to cube-square scaling considerations. Furthermore, the coolant behavior of rocket propellants has not been characterized at microscale. Therefore, MIT designed and constructed an apparatus expressly for this purpose. The report details measurements of two candidate microrocket fuels, JP-7 and JP-10.

  3. EPDM rocket motor insulation

    NASA Technical Reports Server (NTRS)

    Guillot, David G. (Inventor); Harvey, Albert R. (Inventor)

    2003-01-01

    A novel and improved EPDM formulation for a solid propellant rocket motor is described wherein hexadiene EPDM monomer components are replaced by alkylidene norbornene components and with appropriate adjustment of curing and other additives functionally-required rheological and physical characteristics are achieved with the desired compatibility with any one of a plurality of solid filler materials, e.g. powder silica, carbon fibers or aramid fibers, and with appropriate adhesion and extended storage or shelf life characteristics.

  4. Acoustic/infrasonic rocket engine signatures

    NASA Astrophysics Data System (ADS)

    Tenney, Stephen M.; Noble, John M.; Whitaker, Rodney W.; ReVelle, Douglas O.

    2003-09-01

    Infrasonics offers the potential of long-range acoustic detection of explosions, missiles and even sounds created by manufacturing plants. The atmosphere attenuates acoustic energy above 20 Hz quite rapidly, but signals below 10 Hz can propagate to long ranges. Space shuttle launches have been detected infrasonically from over 1000 km away and the Concorde airliner from over 400 km. This technology is based on microphones designed to respond to frequencies from .1 to 300 Hz that can be operated outdoors for extended periods of time with out degrading their performance. The US Army Research Laboratory and Los Alamos National Laboratory have collected acoustic and infrasonic signatures of static engine testing of two missiles. Signatures were collected of a SCUD missile engine at Huntsville, AL and a Minuteman engine at Edwards AFB. The engines were fixed vertically in a test stand during the burn. We will show the typical time waveform signals of these static tests and spectrograms for each type. High resolution, 24-bit data were collected at 512 Hz and 16-bit acoustic data at 10 kHz. Edwards data were recorded at 250 Hz and 50 Hz using a Geotech Instruments 24 bit digitizer. Ranges from the test stand varied from 1 km to 5 km. Low level and upper level meteorological data was collected to provide full details of atmospheric propagation during the engine test. Infrasonic measurements were made with the Chaparral Physics Model 2 microphone with porous garden hose attached for wind noise suppression. A B&K microphone was used for high frequency acoustic measurements. Results show primarily a broadband signal with distinct initiation and completion points. There appear to be features present in the signals that would allow identification of missile type. At 5 km the acoustic/infrasonic signal was clearly present. Detection ranges for the types of missile signatures measured will be predicted based on atmospheric modeling. As part of an experiment conducted by ARL

  5. Los Alamos National Laboratory Waste Management Program

    SciTech Connect

    Lopez-Escobedo, G.M.; Hargis, K.M.; Douglass, C.R.

    2007-07-01

    Los Alamos National Laboratory's (LANL) waste management program is responsible for disposition of waste generated by many of the LANL programs and operations. LANL generates liquid and solid waste that can include radioactive, hazardous, and other constituents. Where practical, LANL hazardous and mixed wastes are disposed through commercial vendors; low-level radioactive waste (LLW) and radioactive asbestos-contaminated waste are disposed on site at LANL's Area G disposal cells, transuranic (TRU) waste is disposed at the Waste Isolation Pilot Plant (WIPP), and high-activity mixed wastes are disposed at the Nevada Test Site (NTS) after treatment by commercial vendors. An on-site radioactive liquid waste treatment facility (RLWTF) removes the radioactive constituents from liquid wastes and treated water is released through an NPDES permitted outfall. LANL has a very successful waste minimization program. Routine hazardous waste generation has been reduced over 90% since 1993. LANL has a DOE Order 450.1-compliant environmental management system (EMS) that is ISO 14001 certified; waste minimization is integral to setting annual EMS improvement objectives. Looking forward, under the new LANL management and operating contractor, Los Alamos National Security (LANS) LLC, a Zero Liquid Discharge initiative is being planned that should eliminate flow to the RLWTF NPDES-permitted outfall. The new contractor is also taking action to reduce the number of permitted waste storage areas, to charge generating programs directly for the cost to disposition waste, and to simplify/streamline the waste system. (authors)

  6. DOE Los Alamos National Laboratory – PV Feasibility Assessment, 2015 Update, NREL Final Report

    SciTech Connect

    Dean, Jesse; Witt, Monica Rene

    2016-04-06

    This report summarizes solar and wind potential for Los Alamos National Laboratory (LANL). This report is part of the “Los Alamos National Laboratory and Los Alamos County Renewable Generation” study.

  7. Liquid Rocket Engine Testing Overview

    NASA Technical Reports Server (NTRS)

    Rahman, Shamim

    2005-01-01

    Contents include the following: Objectives and motivation for testing. Technology, Research and Development Test and Evaluation (RDT&E), evolutionary. Representative Liquid Rocket Engine (LRE) test compaigns. Apollo, shuttle, Expandable Launch Vehicles (ELV) propulsion. Overview of test facilities for liquid rocket engines. Boost, upper stage (sea-level and altitude). Statistics (historical) of Liquid Rocket Engine Testing. LOX/LH, LOX/RP, other development. Test project enablers: engineering tools, operations, processes, infrastructure.

  8. The economic impact of Los Alamos National Laboratory on North-Central New Mexico and the state of New Mexico. Fiscal Year 1995

    SciTech Connect

    Lansford, R.R.; Adcock, L.D.; Gentry, L.M.; Ben-David, S.

    1996-08-01

    Los Alamos National Laboratory is a multidisciplinary, multiprogram laboratory with a mission to enhance national military and economic security through science and technology. Its mission is to reduce the nuclear danger through stewardship of the nation`s nuclear stockpile and through its nonproliferation and verification activities. An important secondary mission is to promote U.S. industrial competitiveness by working with U.S. companies in technology transfer and technology development partnerships. Los Alamos has provided technical assistance to over 70 small New Mexico businesses enabling economic development activities in the region and state.

  9. Electric rockets get a boost

    SciTech Connect

    Ashley, S.

    1995-12-01

    This article reports that xenon-ion thrusters are expected to replace conventional chemical rockets in many nonlaunch propulsion tasks, such as controlling satellite orbits and sending space probes on long exploratory missions. The space age dawned some four decades ago with the arrival of powerful chemical rockets that could propel vehicles fast enough to escape the grasp of earth`s gravity. Today, chemical rocket engines still provide the only means to boost payloads into orbit and beyond. The less glamorous but equally important job of moving vessels around in space, however, may soon be assumed by a fundamentally different rocket engine technology that has been long in development--electric propulsion.

  10. ISS Update: VASIMR Plasma Rocket

    NASA Video Gallery

    NASA Public Affairs Officer Dan Huot interviews Ken Bollweg, VASIMR Project Manager, about VASIMR (Variable Specific Impulse Magnetoplasma Rocket), recent testing progress and future applications. ...

  11. The Climate at Los Alamos; Are we measurement changes?

    SciTech Connect

    Dewart, Jean Marie

    2015-04-16

    A new report shows new graphic displays of the weather trends in Los Alamos, New Mexico, and at the Los Alamos National Laboratory (LANL). The graphs show trends of average, minimum average, and maximum average temperature for summer and winter months going back decades. Records of summer and winter precipitation are also included in the report.

  12. Audit of personal property management at Los Alamos National Laboratory

    SciTech Connect

    Not Available

    1993-12-07

    The Department of Energy`s (Department) Albuquerque Operations Office (Albuquerque) and the Los Alamos National Laboratory (Los Alamos) are responsible for ensuring that Los Alamos maintains an efficient and effective personal property management system that protects, identifies, and controls Government-owned personal property in accordance with applicable regulations. Albuquerque is responsible for reviewing and approving Los Alamos` personal property management system. Los Alamos is responsible for ensuring that personal property is properly protected, identified, and controlled. The audit disclosed that Los Alamos did not have an efficient and effective personal property management system to ensure that personal property was adequately protected, identified, and controlled. In addition, Albuquerque did not approve or disapprove Los Alamos` personal property management system consistent with Federal and Department regulations. Specifically, the audit showed that Los Alamos did not account for $11.6 million of personal property. In addition, $22.2 million of personal property was not properly recorded in the database, $61.7 million of personal property could not be inventoried, and loans to employees and other entities were not adequately justified. As a result, from a total personal property inventory of approximately $1 billion, it is estimated that $100 million of personal property may not be accounted for, and $207 million may not be correctly recorded in the database. Moreover, substantial amounts of personal property on loan to employees and other entities were at risk of unauthorized use. Albuquerque concurred with the finding and agreed to implement the corrective actions recommended in the report.

  13. If Only Newton Had a Rocket.

    ERIC Educational Resources Information Center

    Hammock, Frank M.

    1988-01-01

    Shows how model rocketry can be included in physics curricula. Describes rocket construction, a rocket guide sheet, calculations and launch teams. Discusses the relationships of basic mechanics with rockets. (CW)

  14. Micro-Rockets for the Classroom.

    ERIC Educational Resources Information Center

    Huebner, Jay S.; Fletcher, Alice S.; Cato, Julia A.; Barrett, Jennifer A.

    1999-01-01

    Compares micro-rockets to commercial models and water rockets. Finds that micro-rockets are more advantageous because they are constructed with inexpensive and readily available materials and can be safely launched indoors. (CCM)

  15. Analyzing Flows In Rocket Nuclear Reactors

    NASA Technical Reports Server (NTRS)

    Clark, J. S.; Walton, J. T.; Mcguire, M.

    1994-01-01

    CAC is analytical prediction program to study heat-transfer and fluid-flow characteristics of circular coolant passage. Predicts, as function of time, axial and radial fluid conditions, temperatures of passage walls, rates of flow in each coolant passage, and approximate maximum material temperatures. Written in ANSI standard FORTRAN 77.

  16. United States Nuclear Rocket Company (USNRC)

    NASA Technical Reports Server (NTRS)

    Hardin, L. A.

    2014-01-01

    Historically, the development of advanced space technology has been accomplished by the federal government providing funding to commercial companies through the standard contracting process. Although recently, commercial space ventures, such as Space X, have begun to develop enhanced commercial space launch capabilities, and many companies provide space related services - including satellite development and operations, advanced technology development still requires (and should require) participation by the federal agency assigned this role - the National Aeronautics and Space Administration (NASA). However, this standard funding model may not be the most efficient and stable means of developing the advanced technology systems. And while the federal government does not need to be involved in areas where private industry can reasonably operate, it should remain the leader in supporting the development of new and advanced space technologies to further increase our national capability. And as these technologies mature, then private industry can begin the commercialization process, freeing up resources and funds for NASA to develop the next generations of advanced space technology. In fact, simply examining the last decades of space technology development shows that there is room for improvement. Part of the problem is that there are realistically two space frontiers. There is the commercialization frontier (the realm of Space X and others) and the exploratory frontier (the realm of NASA.). Often technologies that can support the exploratory frontier can also immediately support the commercialization frontier. Yet, these technologies are still developed under the standard model of federal funding and contracting. Is that really the best way to proceed? In this paper, the argument is put forward that a new process is required, a new paradigm. A consortium of federal agencies as well as commercial companies is needed - in a collaborative rather than a contractual relationship.

  17. Operation Argus. Sounding rocket measurements - Project Jason

    SciTech Connect

    Beavers, J.L.; Allen, L.; Dennis, J.L.; Welch, J.A.; Walton, R.B.

    1984-08-31

    The general objective was to measure the distribution of beta particles originating from the Argus shots and subsequently trapped in the earth's magnetic field. This was accomplished with the aid of high-altitude sounding rockets containing radiation counters. The flux of high-energy electrons was measured as a function of: (1) magnetic latitude from 23 to 39 degrees; (2) altitude from sea level to 900 km; (3) electron energy; (4) time after the nuclear explosion; and (5) angular distribution with respect to magnetic field.

  18. Portable MRI developed at Los Alamos

    SciTech Connect

    Espy, Michelle

    2015-04-22

    Scientists at Los Alamos National Laboratory are developing an ultra-low-field Magnetic Resonance Imaging (MRI) system that could be low-power and lightweight enough for forward deployment on the battlefield and to field hospitals in the World's poorest regions. "MRI technology is a powerful medical diagnostic tool," said Michelle Espy, the Battlefield MRI (bMRI) project leader, "ideally suited for imaging soft-tissue injury, particularly to the brain." But hospital-based MRI devices are big and expensive, and require considerable infrastructure, such as large quantities of cryogens like liquid nitrogen and helium, and they typically use a large amount of energy. "Standard MRI machines just can't go everywhere," said Espy. "Soldiers wounded in battle usually have to be flown to a large hospital and people in emerging nations just don't have access to MRI at all. We've been in contact with doctors who routinely work in the Third World and report that MRI would be extremely valuable in treating pediatric encephalopathy, and other serious diseases in children." So the Los Alamos team started thinking about a way to make an MRI device that could be relatively easy to transport, set up, and use in an unconventional setting. Conventional MRI machines use very large magnetic fields that align the protons in water molecules to then create magnetic resonance signals, which are detected by the machine and turned into images. The large magnetic fields create exceptionally detailed images, but they are difficult and expensive to make. Espy and her team wanted to see if images of sufficient quality could be made with ultra-low-magnetic fields, similar in strength to the Earth's magnetic field. To achieve images at such low fields they use exquisitely sensitive detectors called Superconducting Quantum Interference Devices, or SQUIDs. SQUIDs are among the most sensitive magnetic field detectors available, so interference with the signal is the primary stumbling block. "SQUIDs are

  19. Portable MRI developed at Los Alamos

    ScienceCinema

    Espy, Michelle

    2016-07-12

    Scientists at Los Alamos National Laboratory are developing an ultra-low-field Magnetic Resonance Imaging (MRI) system that could be low-power and lightweight enough for forward deployment on the battlefield and to field hospitals in the World's poorest regions. "MRI technology is a powerful medical diagnostic tool," said Michelle Espy, the Battlefield MRI (bMRI) project leader, "ideally suited for imaging soft-tissue injury, particularly to the brain." But hospital-based MRI devices are big and expensive, and require considerable infrastructure, such as large quantities of cryogens like liquid nitrogen and helium, and they typically use a large amount of energy. "Standard MRI machines just can't go everywhere," said Espy. "Soldiers wounded in battle usually have to be flown to a large hospital and people in emerging nations just don't have access to MRI at all. We've been in contact with doctors who routinely work in the Third World and report that MRI would be extremely valuable in treating pediatric encephalopathy, and other serious diseases in children." So the Los Alamos team started thinking about a way to make an MRI device that could be relatively easy to transport, set up, and use in an unconventional setting. Conventional MRI machines use very large magnetic fields that align the protons in water molecules to then create magnetic resonance signals, which are detected by the machine and turned into images. The large magnetic fields create exceptionally detailed images, but they are difficult and expensive to make. Espy and her team wanted to see if images of sufficient quality could be made with ultra-low-magnetic fields, similar in strength to the Earth's magnetic field. To achieve images at such low fields they use exquisitely sensitive detectors called Superconducting Quantum Interference Devices, or SQUIDs. SQUIDs are among the most sensitive magnetic field detectors available, so interference with the signal is the primary stumbling block. "SQUIDs are

  20. Igniting the Light Elements: The Los Alamos Thermonuclear Weapon Project, 1942-1952

    SciTech Connect

    Fitzpatrick, Anne C.

    1999-07-01

    The American system of nuclear weapons research and development was conceived and developed not as a result of technological determinism, but by a number of individual architects who promoted the growth of this large technologically-based complex. While some of the technological artifacts of this system, such as the fission weapons used in World War II, have been the subject of many historical studies, their technical successors--fusion (or hydrogen) devices--are representative of the largely unstudied highly secret realms of nuclear weapons science and engineering. In the postwar period a small number of Los Alamos Scientific Laboratory's staff and affiliates were responsible for theoretical work on fusion weapons, yet the program was subject to both the provisions and constraints of the US Atomic Energy Commission, of which Los Alamos was a part. The Commission leadership's struggle to establish a mission for its network of laboratories, least of all to keep them operating, affected Los Alamos's leaders' decisions as to the course of weapons design and development projects. Adapting Thomas P. Hughes's ''large technological systems'' thesis, I focus on the technical, social, political, and human problems that nuclear weapons scientists faced while pursuing the thermonuclear project, demonstrating why the early American thermonuclear bomb project was an immensely complicated scientific and technological undertaking. I concentrate mainly on Los Alamos Scientific Laboratory's Theoretical, or T, Division, and its members' attempts to complete an accurate mathematical treatment of the ''Super''--the most difficult problem in physics in the postwar period--and other fusion weapon theories. Although tackling a theoretical problem, theoreticians had to address technical and engineering issues as well. I demonstrate the relative value and importance of H-bomb research over time in the postwar era to scientific, politician, and military participants in this project. I

  1. NASA Now: Rocket Engineering

    NASA Video Gallery

    What’s the difference between fission and fusion? What are the applications & benefits of nuclear power & propulsion at NASA? How can NASA gain nuclear energy’s benefits for space exploration? ...

  2. Chemical decontamination technical resources at Los Alamos National Laboratory (2008)

    SciTech Connect

    Moore, Murray E

    2008-01-01

    This document supplies information resources for a person seeking to create planning or pre-planning documents for chemical decontamination operations. A building decontamination plan can be separated into four different sections: Pre-planning, Characterization, Decontamination (Initial response and also complete cleanup), and Clearance. Of the identified Los Alamos resources, they can be matched with these four sections: Pre-planning -- Dave Seidel, EO-EPP, Emergency Planning and Preparedness; David DeCroix and Bruce Letellier, D-3, Computational fluids modeling of structures; Murray E. Moore, RP-2, Aerosol sampling and ventilation engineering. Characterization (this can include development projects) -- Beth Perry, IAT-3, Nuclear Counterterrorism Response (SNIPER database); Fernando Garzon, MPA-11, Sensors and Electrochemical Devices (development); George Havrilla, C-CDE, Chemical Diagnostics and Engineering; Kristen McCabe, B-7, Biosecurity and Public Health. Decontamination -- Adam Stively, EO-ER, Emergency Response; Dina Matz, IHS-IP, Industrial hygiene; Don Hickmott, EES-6, Chemical cleanup. Clearance (validation) -- Larry Ticknor, CCS-6, Statistical Sciences.

  3. Carbon stripper foils used in the Los Alamos PSR

    SciTech Connect

    Borden, M.J.; Plum, M.A.; Sugai, I.

    1997-12-01

    Carbon stripper foils produced by the modified controlled ACDC arc discharge method (mCADAD) at the Institute for Nuclear Study have been tested and used for high current 800-MeV beam production in the Proton Storage Ring (PSR) since 1993. Two foils approximately 110 {mu}g/cm{sup 2} each are sandwiched together to produce an equivalent 220 {mu}g/cm{sup 2} foil. The foil sandwitch is supported by 4-5 {mu}m diameter carbon filters attached to an aluminum frame. These foils have survived as long as five months during PSR normal beam production of near 70 {mu}A average current on target. Typical life-times of other foils vary from seven to fourteen days with lower on-target average current. Beam loss data also indicate that these foils have slower shrinkage rates than standard foils. Equipment has been assembled and used to produce foils by the mCADAD method at Los Alamos. These foils will be tested during 1997 operation.

  4. Los Alamos high-current proton storage ring

    NASA Astrophysics Data System (ADS)

    Lawrence, G. P.; Hardekopf, R. A.; Jason, A. J.; Clout, P. N.; Sawyer, G. A.

    1985-05-01

    The Proton Storage Ring (PSR), whose installation was recently completed at Los Alamos, is a fast-cycling high-current accumulator designed to produce intense 800 MeV proton pulses for driving a spallation neutron source. The ring converts long beam pulses from the LAMPF linear accelerator into short bunches well matched to requirements of a high-resolution neutron-scattering materials science program. The initial performance goal for this program is to provide 100-(MU)A average current at the neutron production target within a 12-Hz pulse rate. Operation at 20 (MU)A is scheduled for September 1985, with full intensity within the next year. The storage ring was originally designed to function in a second mode in which six 1-ns bunches are accumulated and separately extracted every LAMPF macropulse. Implementation of this mode, which would serve a fast-neutron nuclear-physics program, was deferred in favor of initial concentration on the neutron-scattering program. The PSR design and status is summarized. Unique machine features include high peak current, two-step charge-stripping injection, a low-impedance buncher amplifier to counter beam-loading, and a high-repetition-rate strip-line extraction kicker.

  5. Explorer at Los Alamos: A library for the future

    SciTech Connect

    Waters, M.; McDonald, J.

    1998-03-01

    Since 1993, Los Alamos National Laboratory, has been developing World Wide Web (WWW) applications to facilitate access to vast quantities of information critical to the successful operation of a nuclear weapons facility Explorer is a web-based tool that integrates full-text search and retrieval technology, custom user in interface faces, user-friendly navigation tools, extremely large document collections, and data collection and workflow applications. Explorer`s first major thrust was to enable quick access to regulatory and policy information used by Department of Energy facilities throughout the country. Today, Explorer users can easily search document collections containing, millions of pages of information scattered across Web sites around the country. Over fifteen large applications containing multiple collections are searchable through Explorer, and the subject areas range from DOE regulations to quality management-related resources to technology transfer opportunities. Explorer has succeeded because it provides quick and easy access to stored data across the Web; it saves time and reduces costs in comparison with traditional information distribution, access, and retrieval methods.

  6. Results from the Argonne, Los Alamos, JAERI collaboration

    SciTech Connect

    Meadows, J.; Smith, D.; Greenwood, L.; Haight, R.; Ikeda, Y.; Konno, C.

    1993-07-01

    Four sample packets containing elemental Ti, Fe, Ni, Cu, Nb, Ag, Eu, Tb and Hf have been irradiated in three distinct accelerator neutron fields, at Argonne National Laboratory and Los Alamos National Laboratory, USA, and Japan Atomic Energy Research Institute, Tokai, Japan. The acquired experimental data include differential cross sections and integral cross sections for the continuum neutron spectrum produced by 7-MeV deuterons incident on thick Be-metal target. The U-238(n,f) cross section was also measured at 10.3 MeV as a consistency check on the experimental technique. This the third progress report on a project which has been carried out under the auspices of an IAEA Coordinated Research Program entitled ``Activation Cross Sections for the Generation Of Long-lived Radionuclides of Importance in Fusion Reactor Technology``. The present report provides the latest results from this work. Comparison is made between the 14.7-MeV cross-section values obtained from the separate investigations at Argonne and JAERI. Generally, good agreement observed within the experimental errors when consistent sample parameters, radioactivity decay data and reference cross values are employed. A comparison is also made between the experimental results and those derived from calculations using a nuclear model. Experimental neutron information on the Be(d,n) neutron spectrum was incorporated in the comparisons for the integral results. The agreement is satisfactory considering the various uncertainties that are involved.

  7. Installation of passive-active shufflers at Los Alamos plant environments

    SciTech Connect

    Hurd, J.R.; Hsue, F.; Rinard, P.M.; Wachter, J.R.; Davidson, C.

    1994-08-01

    Two Canberra-built passive-active {sup 252}Cf shufflers of Los Alamos hardware and software design have been installed and are presently undergoing calibration and certification at Los Alamos National Laboratory. These instruments fulfill important safeguards and accountability measurement requirements for special nuclear material in matrices too dense or otherwise not appropriate for typical gamma-ray techniques. The ability of the shuffler to obtain precise assays under conditions of intense passive emissions of neutrons and gamma rays is a valuable asset in plant environments. This paper reports on the procurement process and the various steps involved in the installation of two shufflers at Los Alamos, one at the Chemical Metallurgical Research (CMR) Building Waste Assay Facility at TA-3 and the other at the PF4 Plutonium Facility at TA-55. Details are given on the certification procedure including the development of standards, various expected matrices, and calibration. Some safety issues are addressed, and some preliminary performance characteristics are presented based on measured background rates in the plant environments.

  8. Catalytic Microtube Rocket Igniter

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Deans, Matthew C.

    2011-01-01

    Devices that generate both high energy and high temperature are required to ignite reliably the propellant mixtures in combustion chambers like those present in rockets and other combustion systems. This catalytic microtube rocket igniter generates these conditions with a small, catalysis-based torch. While traditional spark plug systems can require anywhere from 50 W to multiple kW of power in different applications, this system has demonstrated ignition at less than 25 W. Reactants are fed to the igniter from the same tanks that feed the reactants to the rest of the rocket or combustion system. While this specific igniter was originally designed for liquid methane and liquid oxygen rockets, it can be easily operated with gaseous propellants or modified for hydrogen use in commercial combustion devices. For the present cryogenic propellant rocket case, the main propellant tanks liquid oxygen and liquid methane, respectively are regulated and split into different systems for the individual stages of the rocket and igniter. As the catalyst requires a gas phase for reaction, either the stored boil-off of the tanks can be used directly or one stream each of fuel and oxidizer can go through a heat exchanger/vaporizer that turns the liquid propellants into a gaseous form. For commercial applications, where the reactants are stored as gases, the system is simplified. The resulting gas-phase streams of fuel and oxidizer are then further divided for the individual components of the igniter. One stream each of the fuel and oxidizer is introduced to a mixing bottle/apparatus where they are mixed to a fuel-rich composition with an O/F mass-based mixture ratio of under 1.0. This premixed flow then feeds into the catalytic microtube device. The total flow is on the order of 0.01 g/s. The microtube device is composed of a pair of sub-millimeter diameter platinum tubes connected only at the outlet so that the two outlet flows are parallel to each other. The tubes are each

  9. Los Alamos National Laboratory transuranic database analysis

    SciTech Connect

    Christensen, D.V.; Rogers, P.S.Z.; Kosiewicz, S.T.; LeBrun, D.B.

    1997-02-01

    This paper represents an overview of analyses conducted on the TRU database maintained by the Los Alamos National Laboratory (LANL). This evaluation was conducted to support the ``TRU Waste Workoff Strategies`` document and provides an estimation of the waste volume that potentially could be certified and ready for shipment to (WIPP) in April of 1998. Criteria defined in the WIPP WAC, including container type, weight limits, plutonium fissile gram equivalents and decay heat, were used to evaluated the waste for compliance. LANL evaluated the containers by facility and by waste stream to determining the most efficient plan for characterization and certification of the waste. Evaluation of the waste presently in storage suggested that 40- 60% potentially meets the WIPP WAC Rev. 5 criteria.

  10. Los Alamos Advanced Free-Electron Laser

    SciTech Connect

    Chan, K.C.D.; Kraus, R.H.; Ledford, J.; Meier, K.L.; Meyer, R.E.; Nguyen, D.; Sheffield, R.L.; Sigler, F.L.; Young, L.M.; Wang, T.S.; Wilson, W.L.; Wood, R.L.

    1991-01-01

    At Los Alamos, we are building a free-electron laser (FEL) for industrial, medical, and research applications. This FEL, which will incorporate many of the new technologies developed over the last decade, will be compact in size, robust, and user-friendly. Electrons produced by a photocathode will be accelerated to 20 MeV by a high-brightness accelerator and transported using permanent-magnet quadrupoles and dipoles. They will form an electron beam with an excellent instantaneous beam quality of 10 {pi} mm mrad in transverse emittance and 0.3% in energy spread at a peak current up to 300 A. Including operation at higher harmonics, the laser wavelength extends form 3.7 {mu}m to 0.4 {mu}m. In this paper, we will describe the project and the programs to date. 10 refs., 10 figs., 1 tab.

  11. Environmental surveillance at Los Alamos during 1979

    SciTech Connect

    Not Available

    1980-04-01

    This report documents the environmental surveillance program conducted by the Los Alamos Scientific Laboratory (LASL) in 1979. Routine monitoring for radiation and radioactive or chemical substances was conducted on the Laboratory site and in the surrounding region to determine compliance with appropriate standards and permit early identification of possible undesirable trends. Results and interpretation of the data for 1979 on penetrating radiation, chemical and radiochemical quality of ambient air, surface and ground water, municipal water supply, soils and sediments, food, and airborne and liquid effluents are included. Comparisons with appropriate standards and regulations or with background levels from natural or other non-LASL sources provide a basis for concluding that environmental effects attributable to LASL operations are minor and cannot be considered likely to result in any hazard to the population of the area. Results of several special studies provide documentation of some unique environmental conditions in the LASL environs.

  12. Environmental surveillance at Los Alamos during 1987

    SciTech Connect

    Not Available

    1988-05-01

    This report describes the environmental surveillance program conducted by Los Alamos National Laboratory during 1987. Routine monitoring for radiation and radioactive or chemical materials is conducted on the Laboratory site as well as in the surrounding region. Monitoring results are used to determine compliance with appropriate standards and to permit early identification of potentially undesirable trends. Results and interpretation of data for 1987 cover: external penetrating radiation; quantities of airborne emissions and liquid effluents; concentrations of chemicals and radionuclides in ambient air, surface and ground waters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Comparisons with appropriate standards, regulations, and background levels provide the basis for concluding that environmental effects from Laboratory operations are insignificant and do not pose a threat to the public, Laboratory employees, or the environment. 113 refs., 33 figs., 120 tabs.

  13. Environmental surveillance at Los Alamos during 1989

    SciTech Connect

    Not Available

    1990-12-01

    This report describes the environmental surveillance program conducted by Los Alamos National Laboratory during 1989. Routine monitoring for radiation and radioactive or chemical materials is conducted on the Laboratory site as well as in the surrounding region. Monitoring results are used to determine compliance with appropriate standards and to permit early identification of potentially undesirable trends. Results and interpretation of data for 1989 cover external penetrating radiation; quantities of airborne emissions and effluents; concentrations of chemicals and radionuclides in ambient air, surface and ground waters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Comparisons with appropriate standards, regulations, and background levels provide the basis for concluding that environmental effects from Laboratory operations are small and do not pose a threat to the public, Laboratory employees, or the environment. 58 refs., 31 figs., 39 tabs.

  14. Information about Practicums at Los Alamos

    SciTech Connect

    Bradley, Paul A.

    2012-07-24

    The Los Alamos Neutron Science Center is the premier facility for neutron science experiments ranging from cross section measurements, neutron scattering experiments, proton radiography, cold neutrons, actinide neutronic properties, and many other exciting topics. The National High Magnetic Field Laboratory is home to several powerful magnets, including the one that created the first non-destructive 100 Tesla field in March 2012. They probe the electronic structure of superconductors, magnetic properties of materials (including magneto-quantum effects). Research is also conducted in correlated materials, thermoacoustics, and magnetic properties of actinides. The Trident Laser has a unique niche with very high power, short pulse experiments, with a peak power of 10{sup 20} W in short pulse mode. Discoveries range from production of monoenergetic MeV ion beam, nonlinear kinetic plasma waves, the transition between kinetic and fluid nonlinear behavior and other laser-plasma interaction processes.

  15. Environmental surveillance at Los Alamos during 1995

    SciTech Connect

    1996-10-01

    This report describes the environmental surveillance program at Los Alamos National Laboratory (LANL or the Laboratory) during 1995. The Laboratory routinely monitors for radiation and for radioactive and nonradioactive materials at (or on) Laboratory sites as well as in the surrounding region. LANL uses the monitoring result to determine compliance with appropriate standards and to identify potentially undesirable trends. Data were collected in 1995 to assess external penetrating radiation; quantities of airborne emissions and liquid effluents; concentrations of chemicals and radionuclides in ambient air, surface waters and groundwaters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Using comparisons with standards, regulations, and background levels, this report concludes that environmental effects from Laboratory operations are small and do not pose a demonstrable threat to the public, Laboratory employees, or the environment.

  16. Environmental surveillance at Los Alamos during 1992

    SciTech Connect

    Kohen, K.; Stoker, A.; Stone, G.

    1994-07-01

    This report describes the environmental surveillance program at Los Alamos National Laboratory during 1992. The Laboratory routinely monitors for radiation and for radioactive and nonradioactive materials at (or on) Laboratory sites as well as in the surrounding region. LANL uses the monitoring results to determine compliance with appropriate standards and to identify potentially undesirable trends. Data were collected in 1992 to assess external penetrating radiation; quantities of airborne emissions and liquid effluents; concentrations of chemicals and radionuclides in ambient air, surface waters and groundwaters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Using comparisons with standards, regulations, and background levels, this report concludes that environmental effects from Laboratory operations are small and do not pose a demonstrable threat to the public, laboratory employees, or the environment.

  17. Hot Dry Rock Overview at Los Alamos

    SciTech Connect

    Berger, Michael; Hendron, Robert H.

    1989-03-21

    The Hot Dry Rock (HDR) geothermal energy program is a renewable energy program that can contribute significantly to the nation's balanced and diversified energy mix. Having extracted energy from the first Fenton Hill HDR reservoir for about 400 days, and from the second reservoir for 30 days in a preliminary test, Los Alamos is focusing on the Long Term Flow Test and reservoir studies. Current budget limitations have slowed preparations thus delaying the start date of that test. The test is planned to gather data for more definitive reservoir modeling with energy availability or reservoir lifetime of primary interest. Other salient information will address geochemistry and tracer studies, microseismic response, water requirements and flow impedance which relates directly to pumping power requirements. During this year of ''preparation'' we have made progress in modeling studies, in chemically reactive tracer techniques, in improvements in acoustic or microseismic event analysis.

  18. Keeping Nuclear Materials Secure

    SciTech Connect

    2016-10-19

    For 50 years, Los Alamos National Laboratory has been helping to keep nuclear materials secure. We do this by developing instruments and training inspectors that are deployed to other countries to make sure materials such as uranium are being used for peaceful purposes and not diverted for use in weapons. These measures are called “nuclear safeguards,” and they help make the world a safer place.

  19. Rocket + Science = Dialogue

    NASA Technical Reports Server (NTRS)

    Morris,Bruce; Sullivan, Greg; Burkey, Martin

    2010-01-01

    It's a cliche that rocket engineers and space scientists don t see eye-to-eye. That goes double for rocket engineers working on human spaceflight and scientists working on space telescopes and planetary probes. They work fundamentally different problems but often feel that they are competing for the same pot of money. Put the two groups together for a weekend, and the results could be unscientific or perhaps combustible. Fortunately, that wasn't the case when NASA put heavy lift launch vehicle designers together with astronomers and planetary scientists for two weekend workshops in 2008. The goal was to bring the top people from both groups together to see how the mass and volume capabilities of NASA's Ares V heavy lift launch vehicle could benefit the science community. Ares V is part of NASA's Constellation Program for resuming human exploration beyond low Earth orbit, starting with missions to the Moon. In the current mission scenario, Ares V launches a lunar lander into Earth orbit. A smaller Ares I rocket launches the Orion crew vehicle with up to four astronauts. Orion docks with the lander, attached to the Ares V Earth departure stage. The stage fires its engine to send the mated spacecraft to the Moon. Standing 360 feet high and weighing 7.4 million pounds, NASA's new heavy lifter will be bigger than the 1960s-era Saturn V. It can launch almost 60 percent more payload to translunar insertion together with the Ares I and 35 percent more mass to low Earth orbit than the Saturn V. This super-sized capability is, in short, designed to send more people to more places to do more things than the six Apollo missions.

  20. Environmental surveillance at Los Alamos during 2008

    SciTech Connect

    Fuehne, David; Gallagher, Pat; Hjeresen, Denny; Isaacson, John; Johson, Scot; Morgan, Terry; Paulson, David; Rogers, David

    2009-09-30

    Environmental Surveillance at Los Alamos reports are prepared annually by the Los Alamos National Laboratory (the Laboratory) Environmental Programs Directorate, as required by US Department of Energy Order 450.1, General Environmental Protection Program, and US Department of Energy Order 231.1A, Environment, Safety, and Health Reporting. These annual reports summarize environmental data that are used to determine compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and departmental policies. Additional data, beyond the minimum required, are also gathered and reported as part of the Laboratory’s efforts to ensure public safety and to monitor environmental quality at and near the Laboratory. Chapter 1 provides an overview of the Laboratory’s major environmental programs and explains the risks and the actions taken to reduce risks at the Laboratory from environmental legacies and waste management operations. Chapter 2 reports the Laboratory’s compliance status for 2007. Chapter 3 provides a summary of the maximum radiological dose the public and biota populations could have potentially received from Laboratory operations and discusses chemical exposures. The environmental surveillance and monitoring data are organized by environmental media (Chapter 4, air; Chapters 5 and 6, water and sediments; Chapter 7, soils; and Chapter 8, foodstuffs and biota) in a format to meet the needs of a general and scientific audience. Chapter 9 provides a summary of the status of environmental restoration work around LANL. A glossary and a list of acronyms and abbreviations are in the back of the report. Appendix A explains the standards for environmental contaminants, Appendix B explains the units of measurements used in this report, Appendix C describes the Laboratory’s technical areas and their associated programs, and Appendix D provides web links to more information.

  1. Environmental surveillance at Los Alamos during 2009

    SciTech Connect

    Fuehne, David; Poff, Ben; Hjeresen, Denny; Isaacson, John; Johnson, Scot; Morgan, Terry; Paulson, David; Salzman, Sonja; Rogers, David

    2010-09-30

    Environmental Surveillance at Los Alamos reports are prepared annually by the Los Alamos National Laboratory (the Laboratory) environmental organization, as required by US Department of Energy Order 5400.1, General Environmental Protection Program, and US Department of Energy Order 231.1A, Environment, Safety, and Health Reporting. These annual reports summarize environmental data that are used to determine compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and departmental policies. Additional data, beyond the minimum required, are also gathered and reported as part of the Laboratory’s efforts to ensure public safety and to monitor environmental quality at and near the Laboratory. Chapter 1 provides an overview of the Laboratory’s major environmental programs and explains the risks and the actions taken to reduce risks at the Laboratory from environmental legacies and waste management operations. Chapter 2 reports the Laboratory’s compliance status for 2009. Chapter 3 provides a summary of the maximum radiological dose the public and biota populations could have potentially received from Laboratory operations and discusses chemical exposures. The environmental surveillance and monitoring data are organized by environmental media (air in Chapter 4; water and sediments in Chapters 5 and 6; soils in Chapter 7; and foodstuffs and biota in Chapter 8) in a format to meet the needs of a general and scientific audience. Chapter 9 provides a summary of the status of environmental restoration work around LANL. The new Chapter 10 describes the Laboratory’s environmental stewardship efforts and provides an overview of the health of the Rio Grande. A glossary and a list of acronyms and abbreviations are in the back of the report. Appendix A explains the standards for environmental contaminants, Appendix B explains the units of measurements used in this report, Appendix C describes the Laboratory’s technical

  2. Environmental surveillance at Los Alamos during 2005

    SciTech Connect

    2006-09-30

    Environmental Surveillance at Los Alamos reports are prepared annually by the Los Alamos National Laboratory (LANL or the Laboratory) environmental organization, as required by US Department of Energy Order 5400.1, General Environmental Protection Program, and US Department of Energy Order 231.IA, Environment, Safety, and Health Reporting. These annual reports summarize environmental data that are used to determine compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and departmental policies. Additional data, beyond the minimum required, are also gathered and reported as part of the Laboratory's efforts to ensure public safety and to monitor environmental quality at and near the Laboratory. Chapter 1 provides an overview of the Laboratory's major environmental programs. Chapter 2 reports the Laboratory's compliance status for 2005. Chapter 3 provides a summary of the maximum radiological dose the public and biota populations could have potentially received from Laboratory operations. The environmental surveillance and monitoring data are organized by environmental media (Chapter 4, Air; Chapters 5 and 6, Water and Sediments; Chapter 7, Soils; and Chapter 8, Foodstuffs and Biota) in a format to meet the needs of a general and scientific audience. Chapter 9, new for this year, provides a summary of the status of environmental restoration work around LANL. A glossary and a list ofacronyms and abbreviations are in the back of the report. Appendix A explains the standards for environmental contaminants, Appendix B explains the units of measurements used in this report, Appendix C describes the Laboratory's technical areas and their associated programs, and Appendix D provides web links to more information.

  3. The Los Alamos beacon receiver array

    SciTech Connect

    Carlos, R.C.; Massey, R.S. )

    1994-07-01

    The authors are interested in studying both the natural background of acoustic and acoustic-gravity waves, for which the sources are not generally known, as well as waves produced by known sources such as large explosions and launches of large rockets. The authors describe radio receivers that monitor transmissions from beacons on geosynchronous satellites. The receivers can detect perturbations of a 300--3,000 s period in the electron density integrated from beacon to receiver, for amplitudes as low as (1--2) [times] 10[sup 13] m[sup [minus]2]. Data are used in studies of atmospheric acoustic and acoustic-gravity waves.

  4. Rocket Noise Prediction Program

    NASA Technical Reports Server (NTRS)

    Margasahayam, Ravi; Caimi, Raoul

    1999-01-01

    A comprehensive, automated, and user-friendly software program was developed to predict the noise and ignition over-pressure environment generated during the launch of a rocket. The software allows for interactive modification of various parameters affecting the generated noise environment. Predictions can be made for different launch scenarios and a variety of vehicle and launch mount configurations. Moreover, predictions can be made for both near-field and far-field locations on the ground and any position on the vehicle. Multiple engine and fuel combinations can be addressed, and duct geometry can be incorporated efficiently. Applications in structural design are addressed.

  5. ION ROCKET ENGINE

    DOEpatents

    Ehlers, K.W.; Voelker, F. III

    1961-12-19

    A thrust generating engine utilizing cesium vapor as the propellant fuel is designed. The cesium is vaporized by heat and is passed through a heated porous tungsten electrode whereby each cesium atom is fonized. Upon emergfng from the tungsten electrode, the ions are accelerated rearwardly from the rocket through an electric field between the tungsten electrode and an adjacent accelerating electrode grid structure. To avoid creating a large negative charge on the space craft as a result of the expulsion of the positive ions, a source of electrons is disposed adjacent the ion stream to neutralize the cesium atoms following acceleration thereof. (AEC)

  6. Guided Rocket Weapon,

    DTIC Science & Technology

    1982-06-11

    AD-Ai49 861 GUIDED ROCKET hEAPON(U) FOREIGN TECHNOLOGY DIV 1/2 RIfGT-PRTTERSON RFB OH P V MOROZOV ii JUN 82 FID- ID( RS) T-8527-82 UNCLASSIFIED F/ 16...1963 A 4° 4i !° 2. ..7 7C - - .7- - - - - ,a’ ~ .Vr- ’ r lt In’ K" F7 - ID (RS)Y,-0527-82 FOREIGN TECHNOLOGY DIVISION P IN CA * I ’ " swoo n.T t-b I...engineering,* I electronics, automation, chemistry, metallurgy and rocketry. * " The missile industry - new branch of technology , although the history of

  7. Environmental analysis of Lower Pueblo/Lower Los Alamos Canyon, Los Alamos, New Mexico

    SciTech Connect

    Ferenbaugh, R.W.; Buhl, T.E.; Stoker, A.K.; Becker, N.M.; Rodgers, J.C.; Hansen, W.R.

    1994-12-01

    The radiological survey of the former radioactive waste treatment plant site (TA-45), Acid Canyon, Pueblo Canyon, and Los Alamos Canyon found residual contamination at the site itself and in the channel and banks of Acid, Pueblo, and lower Los Alamos Canyons all the way to the Rio Grande. The largest reservoir of residual radioactivity is in lower Pueblo Canyon, which is on DOE property. However, residual radioactivity does not exceed proposed cleanup criteria in either lower Pueblo or lower Los Alamos Canyons. The three alternatives proposed are (1) to take no action, (2) to construct a sediment trap in lower Pueblo Canyon to prevent further transport of residual radioactivity onto San Ildefonso Indian Pueblo land, and (3) to clean the residual radioactivity from the canyon system. Alternative 2, to cleanup the canyon system, is rejected as a viable alternative. Thousands of truckloads of sediment would have to be removed and disposed of, and this effort is unwarranted by the low levels of contamination present. Residual radioactivity levels, under either present conditions or projected future conditions, will not result in significant radiation doses to persons exposed. Modeling efforts show that future transport activity will not result in any residual radioactivity concentrations higher than those already existing. Thus, although construction of a sediment trap in lower Pueblo Canyon is a viable alternative, this effort also is unwarranted, and the no-action alternative is the preferred alternative.

  8. Otrag rocket experiments in Africa

    NASA Technical Reports Server (NTRS)

    1978-01-01

    West German rocket manufacturers are testing their products in Zaire. Hundreds of pipes (12 m x 80 cm) are bundled together inside the test missiles, which are fired into Zaire's prairie. The reactions of neighboring nations, as well as leading countries of the world, are presented concerning the rocket tests.

  9. Air-Breathing Rocket Engines

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This photograph depicts an air-breathing rocket engine prototype in the test bay at the General Applied Science Lab facility in Ronkonkoma, New York. Air-breathing engines, known as rocket based, combined-cycle engines, get their initial take-off power from specially designed rockets, called air-augmented rockets, that boost performance about 15 percent over conventional rockets. When the vehicle's velocity reaches twice the speed of sound, the rockets are turned off and the engine relies totally on oxygen in the atmosphere to burn hydrogen fuel, as opposed to a rocket that must carry its own oxygen, thus reducing weight and flight costs. Once the vehicle has accelerated to about 10 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's Advanced Space Transportation Program at Marshall Space Flight Center, along with several industry partners and collegiate forces, is developing this technology to make space transportation affordable for everyone from business travelers to tourists. The goal is to reduce launch costs from today's price tag of $10,000 per pound to only hundreds of dollars per pound. NASA's series of hypersonic flight demonstrators currently include three air-breathing vehicles: the X-43A, X-43B and X-43C.

  10. Soda-Bottle Water Rockets.

    ERIC Educational Resources Information Center

    Kagan, David; And Others

    1995-01-01

    Provides instructions for the construction and launch of a two-liter plastic soda-bottle rocket and presents the author's theory of their motion during launch. Modeled predictions are compared with actual experimental data. Explains theory behind the motion of a water rocket during launch. (LZ)

  11. Rocket launchers as passive controllers

    NASA Astrophysics Data System (ADS)

    Cochran, J. E., Jr.; Gunnels, R. T.; McCutchen, R. K., Jr.

    1981-12-01

    A concept is advanced for using the motion of launchers of a free-flight launcher/rocket system which is caused by random imperfections of the rockets launched from it to reduce the total error caused by the imperfections. This concept is called 'passive launcher control' because no feedback is generated by an active energy source after an error is sensed; only the feedback inherent in the launcher/rocket interaction is used. Relatively simple launcher models with two degrees of freedom, pitch and yaw, were used in conjunction with a more detailed, variable-mass model in a digital simulation code to obtain rocket trajectories with and without thrust misalignment and dynamic imbalance. Angular deviations of rocket velocities and linear deviations of the positions of rocket centers of mass at burnout were computed for cases in which the launcher was allowed to move ('flexible' launcher) and was constrained so that it did not rotate ('rigid' launcher) and ratios of flexible to rigid deviations were determined. Curves of these error ratios versus launcher frequency are presented. These show that a launcher which has a transverse moment of inertia about its pivot point of the same magnitude as that of the centroidal transverse moments of inertia of the rockets launched from it can be tuned to passively reduce the errors caused by rocket imperfections.

  12. Coal-Fired Rocket Engine

    NASA Technical Reports Server (NTRS)

    Anderson, Floyd A.

    1987-01-01

    Brief report describes concept for coal-burning hybrid rocket engine. Proposed engine carries larger payload, burns more cleanly, and safer to manufacture and handle than conventional solid-propellant rockets. Thrust changeable in flight, and stops and starts on demand.

  13. Los Alamos National Laboratory scientific interactions with the Former Soviet Union

    SciTech Connect

    White, P.C.

    1995-12-31

    The Los Alamos National Laboratory has a wide-ranging set of scientific interactions with technical institutes in the Former Soviet Union (FSU). Many of these collaborations, especially those in pure science, began long before the end of the Cold War and the breakup of the Soviet Union. This overview will, however, focus for the most part on those activities that were initiated in the last few years. This review may also serve both to indicate the broad spectrum of US government interests that are served, at least in part, through these laboratory initiatives, and to suggest ways in which additional collaborations with the FSU may be developed to serve similar mutual interests of the countries involved. While most of the examples represent programs carried out by Los Alamos, they are also indicative of similar efforts by Lawrence Livermore National Laboratory and Sandia National Laboratories. There are indeed other Department of Energy (DOE) laboratories, and many of them have active collaborative programs with FSU institutes. However, the laboratories specifically identified above are those with special nuclear weapons responsibilities, and thus have unique technical capabilities to address certain issues of some importance to the continuing interests of the United States and the states of the Former Soviet Union. Building on pre-collapse scientific collaborations and contacts, Los Alamos has used the shared language of science to build institutional and personal relationships and to pursue common interests. It is important to understand that Los Alamos, and the other DOE weapons laboratories are federal institutions, working with federal funds, and thus every undertaking has a definite relationship to some national objective. The fertile areas for collaboration are obviously those where US and Russian interests coincide.

  14. Environmental assessment for the proposed CMR Building upgrades at the Los Alamos National Laboratory, Los Alamos, New Mexico. Final document

    SciTech Connect

    1997-02-04

    In order to maintain its ability to continue to conduct uninterrupted radioactive and metallurgical research in a safe, secure, and environmentally sound manner, the US Department of Energy (DOE) proposes to upgrade the Los Alamos National Laboratory (LANL) Chemistry and Metallurgy Research (CMR) Building. The building was built in the early 1950s to provide a research and experimental facility for analytical chemistry, plutonium and uranium chemistry, and metallurgy. Today, research and development activities are performed involving nuclear materials. A variety of radioactive and chemical hazards are present. The CMR Building is nearing the end of its original design life and does not meet many of today`s design codes and standards. The Proposed Action for this Environmental Assessment (EA) includes structural modifications to some portions of the CMR Building which do not meet current seismic criteria for a Hazard Category 2 Facility. Also included are upgrades and improvements in building ventilation, communications, monitoring, and fire protection systems. This EA analyzes the environmental effects of construction of the proposed upgrades. The Proposed Action will have no adverse effects upon agricultural and cultural resources, wetlands and floodplains, endangered and threatened species, recreational resources, or water resources. The Proposed Action would have negligible effects on human health and transportation, and would not pose a disproportionate adverse health or environmental impact on minority or low-income populations within an 80 kilometer (50 mile) radius of the CMR Building.

  15. Rhenium Rocket Manufacturing Technology

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NASA Lewis Research Center's On-Board Propulsion Branch has a research and technology program to develop high-temperature (2200 C), iridium-coated rhenium rocket chamber materials for radiation-cooled rockets in satellite propulsion systems. Although successful material demonstrations have gained much industry interest, acceptance of the technology has been hindered by a lack of demonstrated joining technologies and a sparse materials property data base. To alleviate these concerns, we fabricated rhenium to C-103 alloy joints by three methods: explosive bonding, diffusion bonding, and brazing. The joints were tested by simulating their incorporation into a structure by welding and by simulating high-temperature operation. Test results show that the shear strength of the joints degrades with welding and elevated temperature operation but that it is adequate for the application. Rhenium is known to form brittle intermetallics with a number of elements, and this phenomena is suspected to cause the strength degradation. Further bonding tests with a tantalum diffusion barrier between the rhenium and C-103 is planned to prevent the formation of brittle intermetallics.

  16. Mars Rocket Propulsion System

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert; Harber, Dan; Nabors, Sammy

    2008-01-01

    A report discusses the methane and carbon monoxide/LOX (McLOx) rocket for ascent from Mars as well as other critical space propulsion tasks. The system offers a specific impulse over 370 s roughly 50 s higher than existing space-storable bio-propellants. Current Mars in-situ propellant production (ISPP) technologies produce impure methane and carbon monoxide in various combinations. While separation and purification of methane fuel is possible, it adds complexity to the propellant production process and discards an otherwise useful fuel product. The McLOx makes such complex and wasteful processes unnecessary by burning the methane/CO mixtures produced by the Mars ISPP systems without the need for further refinement. Despite the decrease in rocket-specific impulse caused by the CO admixture, the improvement offered by concomitant increased propellant density can provide a net improvement in stage performance. One advantage is the increase of the total amount of propellant produced, but with a decrease in mass and complexity of the required ISPP plant. Methane/CO fuel mixtures also may be produced by reprocessing the organic wastes of a Moon base or a space station, making McLOx engines key for a human Lunar initiative or the International Space Station (ISS) program. Because McLOx propellant components store at a common temperature, very lightweight and compact common bulkhead tanks can be employed, improving overall stage performance further.

  17. New Developments in Proton Radiography at the Los Alamos Neutron Science Center (LANSCE)

    SciTech Connect

    Morris, C. L.; Brown, E. N.; Agee, C.; Bernert, T.; Bourke, M. A. M.; Burkett, M. W.; Buttler, W. T.; Byler, D. D.; Chen, C. F.; Clarke, A. J.; Cooley, J. C.; Gibbs, P. J.; Imhoff, S. D.; Jones, R.; Kwiatkowski, K.; Mariam, F. G.; Merrill, F. E.; Murray, M. M.; Olinger, C. T.; Oro, D. M.; Nedrow, P.; Saunders, A.; Terrones, G.; Trouw, F.; Tupa, D.; Vogan, W.; Winkler, B.; Wang, Z.; Zellner, M. B.

    2015-12-30

    An application of nuclear physics, a facility for using protons for flash radiography, was developed at the Los Alamos Neutron Science Center (LANSCE). Protons have proven far superior to high energy x-rays for flash radiography because of their long mean free path, good position resolution, and low scatter background. Although this facility is primarily used for studying very fast phenomena such as high explosive driven experiments, it is finding increasing application to other fields, such as tomography of static objects, phase changes in materials and the dynamics of chemical reactions. The advantages of protons are discussed, data from some recent experiments will be reviewed and concepts for new techniques are introduced.

  18. Addressing the Highest Risk: Environmental Programs at Los Alamos National Laboratory

    SciTech Connect

    Forbes, Elaine E

    2012-06-08

    Report topics: Current status of cleanup; Shift in priorities to address highest risk; Removal of above-ground waste; and Continued focus on protecting water resources. Partnership between the National Nuclear Security Administration's Los Alamos Site Office, DOE Carlsbad Field Office, New Mexico Environment Department, and contractor staff has enabled unprecedented cleanup progress. Progress on TRU campaign is well ahead of plan. To date, have completed 130 shipments vs. 104 planned; shipped 483 cubic meters of above-ground waste (vs. 277 planned); and removed 11,249 PE Ci of material at risk (vs. 9,411 planned).

  19. On fundamentally new sources of energy for rockets in the early works of the pioneers of astronautics

    NASA Technical Reports Server (NTRS)

    Melkumov, T. M.

    1977-01-01

    The research for more efficient methods of propelling a spacecraft, than can be achieved with chemical energy, was studied. During a time when rockets for space flight had not actually been built pioneers in rocket technology were already concerned with this problem. Alternative sources proposed at that time, were nuclear and solar energy. Basic engineering problems of each source were investigated.

  20. Los Alamos National Laboratory DOE M441.1-1 implementation

    SciTech Connect

    Worl, Laura A; Veirs, D Kirk; Smith, Paul H; Yarbro, Tresa F; Stone, Timothy A

    2010-01-01

    Loss of containment of nuclear material stored in containers such as food-pack cans, paint cans, or taped slip lid cans has generated concern about packaging requirements for interim storage of nuclear materials in working facilities such as the plutonium facility at Los Alamos National Laboratory (LANL). The Department of Energy (DOE) issued DOE M 441.1-1, Nuclear Materials Packaging Manual on March 7, 2008 in response to the Defense Nuclear Facilities Safety Board Recommendation 2005-1. The Manual directs DOE facilities to follow detailed packaging requirements to protect workers from exposure to nuclear materials stored outside of approved engineered-contamination barriers. Los Alamos National Laboratory has identified the activities that will be performed to bring LANL into compliance with DOE M 441.1-1. These include design, qualification and procurement of new containers, repackaging based on a risk-ranking methodology, surveillance and maintenance of containers, and database requirements. The primary purpose is to replace the out-dated nuclear material storage containers with more robust containers that meet present day safety and quality standards. The repackaging campaign is supported by an integrated risk reduction methodology to prioritize the limited resources to the highest risk containers. This methodology is systematically revised and updated based on the collection of package integrity data. A set of seven nested packages with built-in filters have been designed. These range in size from 1 qt. to 10 gallon. Progress of the testing to meet Manual requirements will be given. Due to the number of packages at LANL, repackaging to achieve full compliance will take five to seven years.

  1. British used Congreve Rockets to Attack Napoleon

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Sir William Congreve developed a rocket with a range of about 9,000 feet. The incendiary rocket used black powder, an iron case, and a 16-foot guide stick. In 1806, British used Congreve rockets to attack Napoleon's headquarters in France. In 1807, Congreve directed a rocket attack against Copenhagen.

  2. Environmental Surveillance at Los Alamos during 2007

    SciTech Connect

    2008-09-30

    Environmental Surveillance at Los Alamos reports are prepared annually by the Los Alamos National Laboratory (the Laboratory) Environmental Directorate, as required by US Department of Energy Order 450.1, General Environmental Protection Program, and US Department of Energy Order 231.1A, Environment, Safety, and Health Reporting. These annual reports summarize environmental data that are used to determine compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and departmental policies. Additional data, beyond the minimum required, are also gathered and reported as part of the Laboratory’s efforts to ensure public safety and to monitor environmental quality at and near the Laboratory. Chapter 1 provides an overview of the Laboratory’s major environmental programs and explains the risks and the actions taken to reduce risks at the Laboratory from environmental legacies and waste management operations. Chapter 2 reports the Laboratory’s compliance status for 2007. Chapter 3 provides a summary of the maximum radiological dose the public and biota populations could have potentially received from Laboratory operations and discusses chemical exposures. The environmental surveillance and monitoring data are organized by environmental media (Chapter 4, air; Chapters 5 and 6, water and sediments; Chapter 7, soils; and Chapter 8, foodstuffs and biota) in a format to meet the needs of a general and scientific audience. Chapter 9 provides a summary of the status of environmental restoration work around LANL. A glossary and a list of acronyms and abbreviations are in the back of the report. Appendix A explains the standards for environmental contaminants, Appendix B explains the units of measurements used in this report, Appendix C describes the laboratory’s technical areas and their associated programs, and Appendix D provides web links to more information. In printed copies of this report or Executive Summary, we have

  3. Los Alamos National Laboratory Prepares for Fire Season

    SciTech Connect

    L’Esperance, Manny

    2016-07-18

    Through the establishment of a Wildland Fire Program Office, and the Interagency Fire Base located on Laboratory property, Los Alamos National Laboratory is continuing and improving a program to prepare for wildland fire.

  4. Explosive Flux Compression: 50 Years of Los Alamos Activities

    SciTech Connect

    Fowler, C.M.; Thomson, D.B.; Garn, W.B.

    1998-10-18

    Los Alamos flux compression activities are surveyed, mainly through references in view of space limitations. However, two plasma physics programs done with Sandia National Laboratory are discussed in more detail.

  5. Los Alamos National Laboratory Prepares for Fire Season

    ScienceCinema

    L’Esperance, Manny

    2016-08-10

    Through the establishment of a Wildland Fire Program Office, and the Interagency Fire Base located on Laboratory property, Los Alamos National Laboratory is continuing and improving a program to prepare for wildland fire.

  6. Explosive Flux Compression:. 50 Years of LOS Alamos Activities

    NASA Astrophysics Data System (ADS)

    Fowler, C.; Thomson, D.; Garn, W.

    2004-11-01

    Los Alamos flux compression activities are surveyed, mainly through references in view of space limitations. However, two plasma physics programs done with Sandia National Laboratory are discussed in more detail.

  7. Rocket/launcher structural dynamics

    NASA Technical Reports Server (NTRS)

    Ferragut, N. J.

    1976-01-01

    The equations of motion describing the interactions between a rocket and a launcher were derived using Lagrange's Equation. A rocket launching was simulated. The motions of both the rocket and the launcher can be considered in detail. The model contains flexible elements and rigid elements. The rigid elements (masses) were judiciously utilized to simplify the derivation of the equations. The advantages of simultaneous shoe release were illustrated. Also, the loading history of the interstage structure of a boosted configuration was determined. The equations shown in this analysis could be used as a design tool during the modification of old launchers and the design of new launchers.

  8. Exergy Analysis of Rocket Systems

    NASA Technical Reports Server (NTRS)

    Gilbert, Andrew; Mesmer, Bryan; Watson, Michael D.

    2015-01-01

    Exergy is defined as the useful work available from a system in a specified environment. Exergy analysis allows for comparison between different system designs, and allows for comparison of subsystem efficiencies within system designs. The proposed paper explores the relationship between the fundamental rocket equation and an exergy balance equation. A previously derived exergy equation related to rocket systems is investigated, and a higher fidelity analysis will be derived. The exergy assessments will enable informed, value-based decision making when comparing alternative rocket system designs, and will allow the most efficient configuration among candidate configurations to be determined.

  9. Atomic hydrogen rocket engine

    NASA Technical Reports Server (NTRS)

    Etters, R. D.; Flurchick, K.

    1981-01-01

    A rocket using atomic hydrogen propellant is discussed. An essential feature of the proposed engine is that the atomic hydrogen fuel is used as it is produced, thus eliminating the necessity of storage. The atomic hydrogen flows into a combustion chamber and recombines, producing high velocity molecular hydrogen which flows out an exhaust port. Standard thermodynamics, kinetic theory and wall recombination cross-sections are used to predict a thrust of approximately 1.4 N for a RF hydrogen flow rate of 4 x 10 to the 22nd/sec. Specific impulses are nominally from 1000 to 2000 sec. It is predicted that thrusts on the order of one Newton and specific impulses of up to 2200 sec are attainable with nominal RF discharge fluxes on the order of 10 to the 22nd atoms/sec; further refinements will probably not alter these predictions by more than a factor of two.

  10. Dr. Robert H. Goddard and His Rocket

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Goddard rocket with four rocket motors. This rocket attained an altitude of 200 feet in a flight, November 1936, at Roswell, New Mexico. From 1930 to 1941, Dr. Goddard made substantial progress in the development of progressively larger rockets which attained altitudes of 2400 meters, and refined his equipment for guidance and control, his techniques of welding, and his insulation, pumps, and other associated equipment. In many respects, Dr. Goddard laid the essential foundations of practical rocket technology

  11. Strategic defense initiatives at Los Alamos National Laboratory

    SciTech Connect

    Rockwood, S.D.

    1985-01-01

    This presentation reviews the Strategic Defense Initiative (SDI) programs at Los Alamos National Laboratory, noting especially the needs for and applications of optics and optical technologies. Table I lists the various activities at Los Alamos contributing to SDI programs. The principal, nonnuclear SDI programs are: (1) the free-electron laser, and (2) neutral particle beams. Both should be considered as potential long-range-kill systems, but still in the futuristic category.

  12. Los Alamos upgrade in metallographic capabilities

    SciTech Connect

    Ledbetter, J.M.; Dowler, K.E.; Cook, J.H.

    1985-01-01

    The Los Alamos Wing 9 Hot Cell Facility is in the process of upgrading their metallographic sample preparation and examination capability. The present capability to grind, polish and etch samples from reactor fuels and materials has been in operation for 18 years. Macro photography and alpha and beta-gamma autoradiography are an important part of this capability. Some of the fast breeder reactor experiments have contained sodium as a coolant. Therefore, the capability to distill sodium from some samples scheduled for microstructural examinations is a requirement. Since the reactor fuel samples are highly radioactive and contain plutonium, either as fabricated or as a result of breeding during reactor service, these samples must be handled in shielded hot cells containing alpha boxes to isolate the plutonium and hazardous fission products from personnel and the environment. The present equipment that was designed and built into those alpha boxes has functioned very well for the past 18 years. During that time the technicians have thought of ways to improve the equipment to do the work faster and safer. These ideas and ideas that have been developed during the design of new alpha boxes and new equipment for microstructural sample preparation have provided the concepts for the capability to perform the work faster and maintain the equipment in a safer manner.

  13. Saving Water at Los Alamos National Laboratory

    ScienceCinema

    Erickson, Andy

    2016-07-12

    Los Alamos National Laboratory decreased its water usage by 26 percent in 2014, with about one-third of the reduction attributable to using reclaimed water to cool a supercomputing center. The Laboratory's goal during 2014 was to use only re-purposed water to support the mission at the Strategic Computing Complex. Using reclaimed water from the Sanitary Effluent Reclamation Facility, or SERF, substantially decreased water usage and supported the overall mission. SERF collects industrial wastewater and treats it for reuse. The reclamation facility contributed more than 27 million gallons of re-purposed water to the Laboratory's computing center, a secured supercomputing facility that supports the Laboratory’s national security mission and is one of the institution’s larger water users. In addition to the strategic water reuse program at SERF, the Laboratory reduced water use in 2014 by focusing conservation efforts on areas that use the most water, upgrading to water-conserving fixtures, and repairing leaks identified in a biennial survey.

  14. Oxidative lime pretreatment of Alamo switchgrass.

    PubMed

    Falls, Matthew; Holtzapple, Mark T

    2011-09-01

    Previous studies have shown that oxidative lime pretreatment is an effective delignification method that improves the enzymatic digestibility of many biomass feedstocks. The purpose of this work is to determine the recommended oxidative lime pretreatment conditions (reaction temperature, time, pressure, and lime loading) for Alamo switchgrass (Panicum virgatum). Enzymatic hydrolysis of glucan and xylan was used to determine the performance of the 52 studied pretreatment conditions. The recommended condition (110°C, 6.89 bar O(2), 240 min, 0.248 g Ca(OH)(2)/g biomass) achieved glucan and xylan overall yields (grams of sugar hydrolyzed/100 g sugar in raw biomass, 15 filter paper units (FPU)/g raw glucan) of 85.9 and 52.2, respectively. In addition, some glucan oligomers (2.6 g glucan recovered/100 g glucan in raw biomass) and significant levels of xylan oligomers (26.0 g xylan recovered/100 g xylan in raw biomass) were recovered from the pretreatment liquor. Combining a decrystallization technique (ball milling) with oxidative lime pretreatment further improved the overall glucan yield to 90.0 (7 FPU/g raw glucan).

  15. Saving Water at Los Alamos National Laboratory

    SciTech Connect

    Erickson, Andy

    2015-03-16

    Los Alamos National Laboratory decreased its water usage by 26 percent in 2014, with about one-third of the reduction attributable to using reclaimed water to cool a supercomputing center. The Laboratory's goal during 2014 was to use only re-purposed water to support the mission at the Strategic Computing Complex. Using reclaimed water from the Sanitary Effluent Reclamation Facility, or SERF, substantially decreased water usage and supported the overall mission. SERF collects industrial wastewater and treats it for reuse. The reclamation facility contributed more than 27 million gallons of re-purposed water to the Laboratory's computing center, a secured supercomputing facility that supports the Laboratory’s national security mission and is one of the institution’s larger water users. In addition to the strategic water reuse program at SERF, the Laboratory reduced water use in 2014 by focusing conservation efforts on areas that use the most water, upgrading to water-conserving fixtures, and repairing leaks identified in a biennial survey.

  16. Audit of consultant agreements at Los Alamos National Laboratory

    SciTech Connect

    1996-02-23

    The Department of Energy`s (Department) Albuquerque Operations Office (Albuquerque) and Los Alamos National Laboratory (Los Alamos) are responsible for acquiring consulting services in a manner most advantageous to the Government by ensuring adequate competition. Although the Department prefers competitively awarding subcontracts, including consultant agreements, to ensure the lowest possible cost, it allows sole sourcing a subcontract if the sole source is fully justified. The objective of the audit was to determine whether Los Alamos` consultant agreements contained adequate sole source justifications. The audit showed that Los Alamos may not have acquired some of its consultant agreements at the lowest possible cost because it did not prepare adequate sole source justifications for 17 sole source consultant agreements valued at $842,900. This condition existed because: (1) requesters did not follow policies and procedures when preparing sole source justifications, (2) Los Alamos did not have an internal mechanism to reject consultant agreements that were not adequately justified, and (3) the Department did not review consultant agreements to evaluate the adequacy of sole source justifications. Without adequate justifications, the Department cannot be assured that consultant services were obtained at the lowest possible cost. We therefore recommended that the Manager, Albuquerque Operations Office require Los Alamos to ensure proper sole source justifications and enhance internal controls over consultant agreements. Management agreed to implement the recommendations.

  17. Los Alamos low-level waste performance assessment status

    SciTech Connect

    Wenzel, W.J.; Purtymun, W.D.; Dewart, J.M.; Rodgers, J.E.

    1986-06-01

    This report reviews the documented Los Alamos studies done to assess the containment of buried hazardous wastes. Five sections logically present the environmental studies, operational source terms, transport pathways, environmental dosimetry, and computer model development and use. This review gives a general picture of the Los Alamos solid waste disposal and liquid effluent sites and is intended for technical readers with waste management and environmental science backgrounds but without a detailed familiarization with Los Alamos. The review begins with a wide perspective on environmental studies at Los Alamos. Hydrology, geology, and meteorology are described for the site and region. The ongoing Laboratory-wide environmental surveillance and waste management environmental studies are presented. The next section describes the waste disposal sites and summarizes the current source terms for these sites. Hazardous chemical wastes and liquid effluents are also addressed by describing the sites and canyons that are impacted. The review then focuses on the transport pathways addressed mainly in reports by Healy and Formerly Utilized Sites Remedial Action Program. Once the source terms and potential transport pathways are described, the dose assessment methods are addressed. Three major studies, the waste alternatives, Hansen and Rogers, and the Pantex Environmental Impact Statement, contributed to the current Los Alamos dose assessment methodology. Finally, the current Los Alamos groundwater, surface water, and environmental assessment models for these mesa top and canyon sites are described.

  18. World Data Center A (rockets and satellites) catalogue of data. Volume 1, part A: Sounding rockets

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A cumulative listing of all scientifically successful rockets that have been identified from various sources is presented. The listing starts with the V-2 rocket launched on 7 March 1947 and contains all rockets identified up to 31 December 1971.

  19. Small Solid Rocket Motor Test

    NASA Video Gallery

    It was three-two-one to brilliant fire as NASA's Marshall Space Flight Center tested a small solid rocket motor designed to mimic NASA's Space Launch System booster. The Mar. 14 test provides a qui...

  20. Sounding rockets explore the ionosphere

    SciTech Connect

    Mendillo, M. )

    1990-08-01

    It is suggested that small, expendable, solid-fuel rockets used to explore ionospheric plasma can offer insight into all the processes and complexities common to space plasma. NASA's sounding rocket program for ionospheric research focuses on the flight of instruments to measure parameters governing the natural state of the ionosphere. Parameters include input functions, such as photons, particles, and composition of the neutral atmosphere; resultant structures, such as electron and ion densities, temperatures and drifts; and emerging signals such as photons and electric and magnetic fields. Systematic study of the aurora is also conducted by these rockets, allowing sampling at relatively high spatial and temporal rates as well as investigation of parameters, such as energetic particle fluxes, not accessible to ground based systems. Recent active experiments in the ionosphere are discussed, and future sounding rocket missions are cited.

  1. Rocket-Booster Towing Simulation

    NASA Technical Reports Server (NTRS)

    Trovillion, T. A.

    1985-01-01

    Report describes computer simulation of motion of solid-rocket ship. Listing of simulation program in FORTRAN. Mathematical techniques useful in such other maritime applications as buoy or ship design.

  2. Navigating the Rockets Educator Guide

    NASA Video Gallery

    In this brief video overview, learn how to navigate the Rockets Educator Guide. Get a glimpse of the resources available in the guide, including a pictorial history, an overview of the physics cont...

  3. Solid rocket motor internal insulation

    NASA Technical Reports Server (NTRS)

    Twichell, S. E. (Editor); Keller, R. B., Jr.

    1976-01-01

    Internal insulation in a solid rocket motor is defined as a layer of heat barrier material placed between the internal surface of the case propellant. The primary purpose is to prevent the case from reaching temperatures that endanger its structural integrity. Secondary functions of the insulation are listed and guidelines for avoiding critical problems in the development of internal insulation for rocket motors are presented.

  4. Solid Rocket Motor Acoustic Testing

    SciTech Connect

    Rogers, J.D.

    1999-03-31

    Acoustic data are often required for the determination of launch and powered flight loads for rocket systems and payloads. Such data are usually acquired during test firings of the solid rocket motors. In the current work, these data were obtained for two tests at a remote test facility where we were visitors. This paper describes the data acquisition and the requirements for working at a remote site, interfacing with the test hosts.

  5. Easier Analysis With Rocket Science

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Analyzing rocket engines is one of Marshall Space Flight Center's specialties. When Marshall engineers lacked a software program flexible enough to meet their needs for analyzing rocket engine fluid flow, they overcame the challenge by inventing the Generalized Fluid System Simulation Program (GFSSP), which was named the co-winner of the NASA Software of the Year award in 2001. This paper describes the GFSSP in a wide variety of applications

  6. Small rocket flowfield diagnostic chambers

    NASA Technical Reports Server (NTRS)

    Morren, Sybil; Reed, Brian

    1993-01-01

    Instrumented and optically-accessible rocket chambers are being developed to be used for diagnostics of small rocket (less than 440 N thrust level) flowfields. These chambers are being tested to gather local fluid dynamic and thermodynamic flowfield data over a range of test conditions. This flowfield database is being used to better understand mixing and heat transfer phenomena in small rockets, influence the numerical modeling of small rocket flowfields, and characterize small rocket components. The diagnostic chamber designs include: a chamber design for gathering wall temperature profiles to be used as boundary conditions in a finite element heat flux model; a chamber design for gathering inner wall temperature and static pressure profiles; and optically-accessible chamber designs, to be used with a suite of laser-based diagnostics for gathering local species concentration, temperature, density, and velocity profiles. These chambers were run with gaseous hydrogen/gaseous oxygen (GH2/GO2) propellants, while subsequent versions will be run on liquid oxygen/hydrocarbon (LOX/HC) propellants. The purpose, design, and initial test results of these small rocket flowfield diagnostic chambers are summarized.

  7. Stockpile Stewardship at Los Alamos(U)

    SciTech Connect

    Webster, Robert B.

    2012-06-29

    Stockpile stewardship is the retention of nuclear weapons in the stockpile beyond their original design life. These older weapons have potential changes inconsistent with the original design intent and military specifications. The Stockpile Stewardship Program requires us to develop high-fidelity, physics-based capabilities to predict, assess, certify and design nuclear weapons without conducting a nuclear test. Each year, the Lab Directors are required to provide an assessment of the safety, security, and reliability our stockpile to the President of the United States. This includes assessing whether a need to return to testing exists. This is a talk to provide an overview of Stockpile Stewardship's scientific requirements and how stewardship has changed in the absence of nuclear testing. The talk is adapted from an HQ talk to the War college, and historical unclassified talks on weapon's physics.

  8. Recent UCN source developments at Los Alamos

    SciTech Connect

    Seestrom, S.J.; Anaya, J.M.; Bowles, T.J.

    1998-12-01

    The most intense sources of ultra cold neutrons (UCN) have bee built at reactors where the high average thermal neutron flux can overcome the low UCN production rate to achieve usable densities of UCN. At spallation neutron sources the average flux available is much lower than at a reactor, though the peak flux can be comparable or higher. The authors have built a UCN source that attempts to take advantage of the high peak flux available at the short pulse spallation neutron source at the Los Alamos Neutron Science Center (LANSCE) to generate a useful number of UCN. In the source UCN are produced by Doppler-shifted Bragg scattering of neutrons to convert 400-m/s neutrons down into the UCN regime. This source was initially tested in 1996 and various improvements were made based on the results of the 1996 running. These improvements were implemented and tested in 1997. In sections 2 and 3 they discuss the improvements that have been made and the resulting source performance. Recently an even more interesting concept was put forward by Serebrov et al. This involves combining a solid Deuterium UCN source, previously studied by Serebrov et al., with a pulsed spallation source to achieve world record UCN densities. They have initiated a program of calculations and measurements aimed at verifying the solid Deuterium UCN source concept. The approach has been to develop an analytical capability, combine with Monte Carlo calculations of neutron production, and perform benchmark experiments to verify the validity of the calculations. Based on the calculations and measurements they plan to test a modified version of the Serebrov UCN factory. They estimate that they could produce over 1,000 UCN/cc in a 15 liter volume, using 1 {micro}amp of 800 MeV protons for two seconds every 500 seconds. They will discuss the result UCN production measurements in section 4.

  9. Simulations of flow interactions near Los Alamos

    SciTech Connect

    Costigan, K. R.; Winterkamp, Judy; Bossert, J. E.; Langley, D. L.

    2002-01-01

    The Pajarito Plateau is located on the eastern flank of the Jemez Mountains and the west side of the Rio Grande Valley, in north-central New Mexico, where the river runs roughly north to south. On the Pajarito Plateau, a network of surface meteorological stations has been routinely maintained by Los Alamos National Laboratory. This network includes five instrumented towers, within an approximately 10 km by 15 km area. The towers stand from 23 m to 92 m tall, with multiple wind measurement heights. Investigation of the station records indicates that the wind fields can be quite complicated and may be the result of interactions of thermally and/or dynamically driven flows of many scales. Slope flows are often found on the plateau during the morning and evening transition times, but it is not unusual to find wind directions that are inconsistent with slope flows at some or all of the stations. It has been speculated that valley circulations, as well as synoptically driven winds, interact with the slope flows, but the mesonet measurements alone, with no measurements in the remainder of the valley, were not sufficient to investigate this hypothesis. Thus, during October of 1995, supplemental meteorological instrumentation was placed in the Rio Grande basin to study the complex interaction of flows in the area. A sodar was added near the 92 m tower and a radar wind profiler was placed in the Rio Grande Valley, just east of the plateau and near the river. Measurements were also added at the top of Pajarito Mountain, just west of the plateau, and across the valley, to the east, on top of Tesuque Peak (in the Sangre de Cristo Mountains). Two surface stations were also added to the north-facing slopes of Pajarito Mountain. This paper will present observations from October 1995 and results of simulations of this area that are used in the study of the complex interaction of dynamically and thermally driven flows on multiple scales.

  10. Harriet Hardy and the workers of Los Alamos: a campus-community historical investigation.

    PubMed

    Silver, Ken; Bird, Rick; Smith, Alex; Valerio, Daniel; Romero, Hilario

    2014-11-01

    Harriet Hardy, protégé of Alice Hamilton, spent 1948 in the Health Division of Los Alamos Scientific Laboratory. The contemporary campaign for federal legislation to compensate nuclear workers brought to the fore living retirees in whose cases of occupational illness Hardy had a role in diagnosis or case management. A third case is documented in archival records. Methods of participatory action research were used to better document the cases and strategize in light of the evidence, thereby assisting the workers with compensation claims. Medical and neuropsychological exams of the mercury case were conducted. Hardy's diary entries and memoirs were interpreted in light of medicolegal documentation and workers' recollections. Through these participatory research activities, Harriet Hardy's role and influence both inside and outside the atomic weapons complex have been elucidated. An important lesson learned is the ongoing need for a system of protective medical evaluations for nuclear workers with complex chemical exposures.

  11. EUVS Sounding Rocket Payload

    NASA Technical Reports Server (NTRS)

    Stern, Alan S.

    1996-01-01

    During the first half of this year (CY 1996), the EUVS project began preparations of the EUVS payload for the upcoming NASA sounding rocket flight 36.148CL, slated for launch on July 26, 1996 to observe and record a high-resolution (approx. 2 A FWHM) EUV spectrum of the planet Venus. These preparations were designed to improve the spectral resolution and sensitivity performance of the EUVS payload as well as prepare the payload for this upcoming mission. The following is a list of the EUVS project activities that have taken place since the beginning of this CY: (1) Applied a fresh, new SiC optical coating to our existing 2400 groove/mm grating to boost its reflectivity; (2) modified the Ranicon science detector to boost its detective quantum efficiency with the addition of a repeller grid; (3) constructed a new entrance slit plane to achieve 2 A FWHM spectral resolution; (4) prepared and held the Payload Initiation Conference (PIC) with the assigned NASA support team from Wallops Island for the upcoming 36.148CL flight (PIC held on March 8, 1996; see Attachment A); (5) began wavelength calibration activities of EUVS in the laboratory; (6) made arrangements for travel to WSMR to begin integration activities in preparation for the July 1996 launch; (7) paper detailing our previous EUVS Venus mission (NASA flight 36.117CL) published in Icarus (see Attachment B); and (8) continued data analysis of the previous EUVS mission 36.137CL (Spica occultation flight).

  12. Liquid rocket engine nozzles

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The nozzle is a major component of a rocket engine, having a significant influence on the overall engine performance and representing a large fraction of the engine structure. The design of the nozzle consists of solving simultaneously two different problems: the definition of the shape of the wall that forms the expansion surface, and the delineation of the nozzle structure and hydraulic system. This monography addresses both of these problems. The shape of the wall is considered from immediately upstream of the throat to the nozzle exit for both bell and annular (or plug) nozzles. Important aspects of the methods used to generate nozzle wall shapes are covered for maximum-performance shapes and for nozzle contours based on criteria other than performance. The discussion of structure and hydraulics covers problem areas of regeneratively cooled tube-wall nozzles and extensions; it treats also nozzle extensions cooled by turbine exhaust gas, ablation-cooled extensions, and radiation-cooled extensions. The techniques that best enable the designer to develop the nozzle structure with as little difficulty as possible and at the lowest cost consistent with minimum weight and specified performance are described.

  13. Improved hybrid rocket fuel

    NASA Technical Reports Server (NTRS)

    Dean, David L.

    1995-01-01

    McDonnell Douglas Aerospace, as part of its Independent R&D, has initiated development of a clean burning, high performance hybrid fuel for consideration as an alternative to the solid rocket thrust augmentation currently utilized by American space launch systems including Atlas, Delta, Pegasus, Space Shuttle, and Titan. It could also be used in single stage to orbit or as the only propulsion system in a new launch vehicle. Compared to solid propellants based on aluminum and ammonium perchlorate, this fuel is more environmentally benign in that it totally eliminates hydrogen chloride and aluminum oxide by products, producing only water, hydrogen, nitrogen, carbon oxides, and trace amounts of nitrogen oxides. Compared to other hybrid fuel formulations under development, this fuel is cheaper, denser, and faster burning. The specific impulse of this fuel is comparable to other hybrid fuels and is between that of solids and liquids. The fuel also requires less oxygen than similar hybrid fuels to produce maximum specific impulse, thus reducing oxygen delivery system requirements.

  14. Rocket Science 101 Interactive Educational Program

    NASA Technical Reports Server (NTRS)

    Armstrong, Dennis; Funkhouse, Deborah; DiMarzio, Donald

    2007-01-01

    To better educate the public on the basic design of NASA s current mission rockets, Rocket Science 101 software has been developed as an interactive program designed to retain a user s attention and to teach about basic rocket parts. This program also has helped to expand NASA's presence on the Web regarding educating the public about the Agency s goals and accomplishments. The software was designed using Macromedia s Flash 8. It allows the user to select which type of rocket they want to learn about, interact with the basic parts, assemble the parts to create the whole rocket, and then review the basic flight profile of the rocket they have built.

  15. Los Alamos Scientific Laboratory energy-related history, research, managerial reorganization proposals, actions taken, and results. History report, 1945--1979

    SciTech Connect

    Hammel, E.F.

    1997-03-01

    This report documents the development of major energy-related programs at the Los Alamos Scientific Laboratory between 1945 and 1979. Although the Laboratory`s primary mission during that era was the design and development of nuclear weapons and most of the Laboratory`s funding came from a single source, a number of factors were at work that led to the development of these other programs. Some of those factors were affected by the Laboratory`s internal management structure and organization; others were the result of increasing environmental awareness within the general population and the political consequences of that awareness; still others were related to the increasing demand for energy and the increasing turmoil in the energy-rich Middle East. This report also describes the various activities in Los Alamos, in Washington, and in other areas of the world that contributed to the development of major energy-related programs at Los Alamos. The author has a unique historical perspective because of his involvement as a scientist and manager at the Los Alamos Scientific Laboratory during the time period described within the report. In addition, in numerous footnotes and references, he cites a large body of documents that include the opinions and perspectives of many others who were involved at one time or another in these programs. Finally the report includes a detailed chronology of geopolitical events that led to the development of energy-related programs at Los Alamos.

  16. 1993 Northern goshawk inventory on portions of Los Alamos National Laboratory, Los Alamos, NM. Final report

    SciTech Connect

    Sinton, D.T.; Kennedy, P.L.

    1994-06-01

    Northern goshawks (Accipiter gentilis) (hereafter referred to as goshawk) is a large forest dwelling hawk. Goshawks may be declining in population and reproduction in the southwestern United States. Reasons for the possible decline in goshawk populations include timber harvesting resulting in the loss of nesting habitat, toxic chemicals, and the effects of drought, fire, and disease. Thus, there is a need to determine their population status and assess impacts of management activities in potential goshawk habitat. Inventory for the goshawk was conducted on 2,254 ha of Los Alamos National Laboratory (LANL) to determine the presence of nesting goshawks on LANL lands. This information can be incorporated into LANL`s environmental management program. The inventory was conducted by Colorado State University personnel from May 12 to July 30, 1993. This report summarizes the results of this inventory.

  17. Marshall Team Recreates Goddard Rocket

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In honor of the Centernial of Flight celebration and commissioned by the American Institute of Aeronautics and Astronautics (AIAA), a team of engineers from Marshall Space Flight Center (MSFC) built a replica of the first liquid-fueled rocket. The original rocket, designed and built by rocket engineering pioneer Robert H. Goddard in 1926, opened the door to modern rocketry. Goddard's rocket reached an altitude of 41 feet while its flight lasted only 2.5 seconds. The Marshall design team's plan was to stay as close as possible to an authentic reconstruction of Goddard's rocket. The same propellants were used - liquid oxygen and gasoline - as available during Goddard's initial testing and firing. The team also tried to construct the replica using the original materials and design to the greatest extent possible. By purposely using less advanced techniques and materials than many that are available today, the team encountered numerous technical challenges in testing the functional hardware. There were no original blueprints or drawings, only photographs and notes. However, this faithful adherence to historical accuracy has also allowed the team to experience many of the same challenges Goddard faced 77 years ago, and more fully appreciate the genius of this extraordinary man. The replica will undergo ground tests at MSFC this summer.

  18. Waste processing cost recovery at Los Alamos National Laboratory--analysis and recommendations

    SciTech Connect

    Booth, Steven Richard

    2008-01-01

    Los Alamos National Laboratory is implementing full cost recovery for waste processing in fiscal year 2009 (FY2009), after a transition year in FY2008. Waste processing cost recovery has been implemented in various forms across the nuclear weapons complex and in corporate America. The fundamental reasoning of sending accurate price signals to waste generators is economically sound, and leads to waste minimization and reduced waste expense over time. However, Los Alamos faces significant implementation challenges because of its status as a government-owned, contractor-operated national scientific institution with a diverse suite of experimental and environmental cleanup activities, and the fact that this represents a fundamental change in how waste processing is viewed by the institution. This paper describes the issues involved during the transition to cost recovery and the ultimate selection of the business model. Of the six alternative cost recovery models evaluated, the business model chosen to be implemented in FY2009 is Recharge Plus Generators Pay Distributed Direct. Under this model, all generators who produce waste must pay a distributed direct share associated with their specific waste type to use a waste processing capability. This cost share is calculated using the distributed direct method on the fixed cost only, i.e., the fixed cost share is based on each program's forecast proportion of the total Los Alamos volume forecast of each waste type. (Fixed activities are those required to establish the waste processing capability, i.e., to make the process ready, permitted, certified, and prepared to handle the first unit ofwaste. Therefore, the fixed cost ends at the point just before waste begins 'to be processed. The activities to actually process the waste are considered variable.) The volume of waste actually sent for processing is charged a unit cost based solely on the variable cost of disposing of that waste. The total cost recovered each year is the

  19. Occurrences at Los Alamos National Laboratory: What can they tell us?

    SciTech Connect

    Richard A. Reichelt; A. Jeffery Eichorst; Marc E. Clay; Rita J. Henins; Judith D. DeHaven; Richard J. Brake

    2000-03-01

    The authors analyzed the evolution of institutional and facility response to groups of abnormal incidents at Los Alamos National Laboratory (LANL). The analysis is divided into three stages: (1) the LANL response to severe accidents from 1994 to 1996, (2) the LANL response to facility-specific clusters of low-consequence incidents from 1997 to 1999, and (3) the ongoing development of and response to a Laboratory-wide trending and analysis program. The first stage is characterized by five severe accidents at LANL--a shooting fatality, a forklift accident, two electrical shock incidents, and an explosion in a nuclear facility. Each accident caused LANL and the Department of Energy (DOE) to launch in-depth investigations. A recurrent theme of the investigations was the failure of LANL and DOE to identify and act on precursor or low-consequence events that preceded the severe accidents. The second stage is characterized by LANL response to precursor or low-consequence incidents over a two-year period. In this stage, the Chemistry and Metallurgy Research Facility, the Los Alamos Critical Experiments Facility, and the Los Alamos Neutron Science Center responded to an increase in low-consequence events by standing down their facilities. During the restart process, each facility collectively analyzed the low-consequence events and developed systemic corrective actions. The third stage is characterized by the development of a Laboratory-wide trending and analysis program, which involves proactive division-level analysis of incidents and development of systemic actions. The authors conclude that, while the stages show an encouraging evolution, the facility standdowns and restarts are overly costly and that the institutional trending and analysis program is underutilized. The authors therefore recommend the implementation of an institutional, mentored program of trending and analysis that identifies clusters of related low-consequence events, analyzes those events, and

  20. Optimum rocket propulsion for energy-limited transfer

    NASA Technical Reports Server (NTRS)

    Zuppero, Anthony; Landis, Geoffrey A.

    1991-01-01

    In order to effect large-scale return of extraterrestrial resources to Earth orbit, it is desirable to optimize the propulsion system to maximize the mass of payload returned per unit energy expended. This optimization problem is different from the conventional rocket propulsion optimization. A rocket propulsion system consists of an energy source plus reaction mass. In a conventional chemical rocket, the energy source and the reaction mass are the same. For the transportation system required, however, the best system performance is achieved if the reaction mass used is from a locally available source. In general, the energy source and the reaction mass will be separate. One such rocket system is the nuclear thermal rocket, in which the energy source is a reactor and the reaction mass a fluid which is heated by the reactor and exhausted. Another energy-limited rocket system is the hydrogen/oxygen rocket where H2/O2 fuel is produced by electrolysis of water using a solar array or a nuclear reactor. The problem is to choose the optimum specific impulse (or equivalently exhaust velocity) to minimize the amount of energy required to produce a given mission delta-v in the payload. The somewhat surprising result is that the optimum specific impulse is not the maximum possible value, but is proportional to the mission delta-v. In general terms, at the beginning of the mission it is optimum to use a very low specific impulse and expend a lot of reaction mass, since this is the most energy efficient way to transfer momentum. However, as the mission progresses, it becomes important to minimize the amount of reaction mass expelled, since energy is wasted moving the reaction mass. Thus, the optimum specific impulse will increase with the mission delta-v. Optimum I(sub sp) is derived for maximum payload return per energy expended for both the case of fixed and variable I(sub sp) engines. Sample missions analyzed include return of water payloads from the moons of Mars and of

  1. Radiation/convection coupling in rocket motors and plumes

    NASA Technical Reports Server (NTRS)

    Farmer, R. C.; Saladino, A. J.

    1993-01-01

    The three commonly used propellant systems - H2/O2, RP-1/O2, and solid propellants - primarily radiate as molecular emitters, non-scattering small particles, and scattering larger particles, respectively. Present technology has accepted the uncoupling of the radiation analysis from that of the flowfield. This approximation becomes increasingly inaccurate as one considers plumes, interior rocket chambers, and nuclear rocket propulsion devices. This study will develop a hierarchy of methods which will address radiation/convection coupling in all of the aforementioned propulsion systems. The nature of the radiation/convection coupled problem is that the divergence of the radiative heat flux must be included in the energy equation and that the local, volume-averaged intensity of the radiation must be determined by a solution of the radiative transfer equation (RTE). The intensity is approximated by solving the RTE along several lines of sight (LOS) for each point in the flowfield. Such a procedure is extremely costly; therefore, further approximations are needed. Modified differential approximations are being developed for this purpose. It is not obvious which order of approximations are required for a given rocket motor analysis. Therefore, LOS calculations have been made for typical rocket motor operating conditions in order to select the type approximations required. The results of these radiation calculations, and the interpretation of these intensity predictions are presented herein.

  2. Small-Scale Rocket Motor Test

    NASA Video Gallery

    Engineers at NASA's Marshall Space Flight Center in Huntsville, Ala. successfully tested a sub-scale solid rocket motor on May 27. Testing a sub-scale version of a rocket motor is a cost-effective ...

  3. A progress report on UNICOS misuse detection at Los Alamos

    SciTech Connect

    Thompson, J.L.; Jackson, K.A.; Stallings, C.A.; Simmonds, D.D.; Siciliano, C.L.B.; Pedicini, G.A.

    1995-10-01

    An effective method for detecting computer misuse is the automatic monitoring and analysis of on-line user activity. During the past year, Los Alamos enhanced its Network Anomaly Detection and Intrusion Reporter (NADIR) to include analysis of user activity on Los Alamos` UNICOS Crays. In near real-time, NADIR compares user activity to historical profiles and tests activity against expert rules. The expert rules express Los Alamos` security policy and define improper or suspicious behavior. NADIR reports suspicious behavior to security auditors and provides tools to aid in follow-up investigations. This paper describes the implementation to date of the UNICOS component of NADIR, along with the operational experiences and future plans for the system.

  4. Publications of Los Alamos research, 1977-1981

    SciTech Connect

    Sheridan, C.J.; Garcia, C.A.

    1983-03-01

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos National Laboratory for 1977-1981. Papers published in those years are included regardless of when they were actually written. Publications received too late for inclusion in earlier compilations have also been listed. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted - even those papers, themselves unclassified, which were published only as part of a classified document. If a paper was published more than once, all places of publication are included. The bibliography includes Los Alamos National Laboratory reports, papers released as non-Laboratory reports, journal articles, books, chapters of books, conference papers either published separately or as part of conference proceedings issued as books or reports, papers published in congressional hearings, theses, and US patents. Publications by Los Alamos authors that are not records of Laboratory-sponsored work are included when the Library becomes aware of them.

  5. Water Supply at Los Alamos 1998-2001

    SciTech Connect

    Richard J. Koch; David B. Rogers

    2003-03-01

    For the period 1998 through 2001, the total water used at Los Alamos from all sources ranged from 1325 million gallons (Mg) in 1999 to 1515 Mg in 2000. Groundwater production ranged from 1323 Mg in 1999 to 1506 Mg in 2000 from the Guaje, Pajarito, and Otowi fields. Nonpotable surface water used from Los Alamos reservoir ranged from zero gallons in 2001 to 9.3 Mg in 2000. For years 1998 through 2001, over 99% of all water used at Los Alamos was groundwater. Water use by Los Alamos National Laboratory (LANL) between 1998 and 2001 ranged from 379 Mg in 2000 to 461 Mg in 1998. The LANL water use in 2001 was 393 Mg or 27% of the total water use at Los Alamos. Water use by Los Alamos County ranged from 872 Mg in 1999 to 1137 Mg in 2000, and averaged 1006 Mg/yr. Four new replacement wells in the Guaje field (G-2A, G-3A, G-4A, and G-5A) were drilled in 1998 and began production in 1999; with existing well G-1A, the Guaje field currently has five producing wells. Five of the old Guaje wells (G-1, G-2, G-4, G-5, and G-6) were plugged and abandoned in 1999, and one well (G-3) was abandoned but remains as an observation well for the Guaje field. The long-term water level observations in production and observation (test) wells at Los Alamos are consistent with the formation of a cone of depression in response to water production. The water level decline is gradual and at most has been about 0.7 to 2 ft per year for production wells and from 0.4 to 0.9 ft/yr for observation (test) wells. The largest water level declines have been in the Guaje field where nonpumping water levels were about 91 ft lower in 2001 than in 1951. The initial water levels of the Guaje replacement wells were 32 to 57 ft lower than the initial water levels of adjacent original Guaje wells. When production wells are taken off-line for pump replacement or repair, water levels have returned to within about 25 ft of initial static levels within 6 to 12 months. Thus, the water-level trends suggest no adverse

  6. Nuclear thermal propulsion

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.

    1991-01-01

    This document is presented in viewgraph form, and the topics covered include the following: (1) the direct fission-thermal propulsion process; (2) mission applications of direct fission-thermal propulsion; (3) nuclear engines for rocket vehicles; (4) manned mars landers; and (5) particle bed reactor design.

  7. Environmental Assessment for Proposed Access Control and Traffic Improvements at Los Alamos National Laboratory, Los Alamos, New Mexico

    SciTech Connect

    N /A

    2002-08-23

    The National Nuclear Security Administration (NNSA) has assigned a continuing role to Los Alamos National Laboratory (LANL) in carrying out NNSA's national security mission. It is imperative that LANL continue this enduring responsibility and that NNSA adequately safeguard LANL capabilities. NNSA has identified the need to restrict vehicular access to certain areas within LANL for the purpose of permanently enhancing the physical security environment at LANL. It has also identified the need to change certain traffic flow patterns for the purpose of enhancing physical safety at LANL. The Proposed Action would include the construction of eastern and western bypass roads around the LANL Technical Area (TA) 3 area and the installation of vehicle access controls and related improvements to enhance security along Pajarito Road and in the LANL core area. This Proposed Action would modify the current roadway network and traffic patterns. It would also result in traversing Areas of Environmental Interest identified in the LANL Habitat Management Plan, demolition of part of an historic structure at Building 3-40, and traversing several potential release sites and part of the Los Alamos County landfill. The No Action Alternative was also considered. Under this alternative NNSA would not construct the eastern or western bypass roads, any access-control stations, or related improvements. Diamond Drive would continue to serve as the primary conduit for most vehicle traffic within the LANL core area regardless of actual trip destinations. The No Action Alternative does not meet NNSA's purpose and need for action. The proposed bypass road corridors traverse both developed and undeveloped areas. Several potential release sites are present. These would either be sampled and remediated in accordance with New Mexico Environment Department requirements before construction or avoided to allow for future remediation. In some cases, contaminant levels may fall below remediation thresholds

  8. Emergency egress fixed rocket package

    NASA Technical Reports Server (NTRS)

    Allen, Margaret A. (Inventor)

    1989-01-01

    A method of effecting the in-flight departure of an astronaut from a shuttle craft, and apparatus is presented. A plurality of removeable compartment covers are provided, behind which rocket assemblies are stowed. To actuate the system, the astronaut pulls off a tab from one of the compartments which exposes a cannister having a lanyard with a hook. The lanyard extends around a spring biased sleeve with a safety lever preventing rocket ignition until the hook is moved by the astronaut. Upward movement of the hook allows the trigger mechanism to actuate the system resulting in the rods projecting out of the hatch. When the lanyard becomes taut, a lanyard elongation detector transmits a signal to the firing mechanisms to fire the rocket.

  9. Low-thrust rocket trajectories

    SciTech Connect

    Keaton, P.W.

    1986-01-01

    The development of low-thrust propulsion systems to complement chemical propulsion systems will greatly enhance the evolution of future space programs. Two advantages of low-thrust rockets are stressed: first, in a strong gravitational field, such as occurs near the Earth, freighter missions with low-thrust engines require one-tenth as much propellant as do chemical engines. Second, in a weak gravitational field, such as occurs in the region between Venus and Mars, low-thrust rockets are faster than chemical rockets with comparable propellant mass. The purpose here is to address the physics of low-thrust trajectories and to interpret the results with two simple models. Analytic analyses are used where possible - otherwise, the results of numerical calculations are presented in graphs. The author has attempted to make this a self-contained report. 57 refs., 10 figs.

  10. Low-thrust rocket trajectories

    SciTech Connect

    Keaton, P.W.

    1987-03-01

    The development of low-thrust propulsion systems to complement chemical propulsion systems will greatly enhance the evolution of future space programs. Two advantages of low-thrust rockets are stressed: first, in a strong gravitational field, such as occurs near the Earth, freighter missions with low-thrust engines require one-tenth as much propellant as do chemical engines. Second, in a weak gravitational field, such as occurs in the region between Venus and Mars, low-thrust rockets are faster than chemical rockets with comparable propellant mass. The purpose here is to address the physics of low-thrust trajectories and to interpret the results with two simple models. Analytic analyses are used where possible - otherwise, the results of numerical calculations are presented in graphs. The author has attempted to make this a self-contained report.

  11. Rocket Science at the Nanoscale.

    PubMed

    Li, Jinxing; Rozen, Isaac; Wang, Joseph

    2016-06-28

    Autonomous propulsion at the nanoscale represents one of the most challenging and demanding goals in nanotechnology. Over the past decade, numerous important advances in nanotechnology and material science have contributed to the creation of powerful self-propelled micro/nanomotors. In particular, micro- and nanoscale rockets (MNRs) offer impressive capabilities, including remarkable speeds, large cargo-towing forces, precise motion controls, and dynamic self-assembly, which have paved the way for designing multifunctional and intelligent nanoscale machines. These multipurpose nanoscale shuttles can propel and function in complex real-life media, actively transporting and releasing therapeutic payloads and remediation agents for diverse biomedical and environmental applications. This review discusses the challenges of designing efficient MNRs and presents an overview of their propulsion behavior, fabrication methods, potential rocket fuels, navigation strategies, practical applications, and the future prospects of rocket science and technology at the nanoscale.

  12. Automated Rocket Propulsion Test Management

    NASA Technical Reports Server (NTRS)

    Walters, Ian; Nelson, Cheryl; Jones, Helene

    2007-01-01

    The Rocket Propulsion Test-Automated Management System provides a central location for managing activities associated with Rocket Propulsion Test Management Board, National Rocket Propulsion Test Alliance, and the Senior Steering Group business management activities. A set of authorized users, both on-site and off-site with regard to Stennis Space Center (SSC), can access the system through a Web interface. Web-based forms are used for user input with generation and electronic distribution of reports easily accessible. Major functions managed by this software include meeting agenda management, meeting minutes, action requests, action items, directives, and recommendations. Additional functions include electronic review, approval, and signatures. A repository/library of documents is available for users, and all items are tracked in the system by unique identification numbers and status (open, closed, percent complete, etc.). The system also provides queries and version control for input of all items.

  13. Saving Lives With Rocket Power

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Thiokol Propulsion uses NASA's surplus rocket fuel to produce a flare that can safely destroy land mines. Through a Memorandum of Agreement between Thiokol and Marshall Space Flight Center, Thiokol uses the scrap Reusable Solid Rocket Motor (RSRM) propellant. The resulting Demining Device was developed by Thiokol with the help of DE Technologies. The Demining Device neutralizes land mines in the field without setting them off. The Demining Device flare is placed next to an uncovered land mine. Using a battery-triggered electric match, the flare is then ignited. Using the excess and now solidified rocket fuel, the flare burns a hole in the mine's case and ignites the explosive contents. Once the explosive material is burned away, the mine is disarmed and no longer dangerous.

  14. Water supply at Los Alamos during 1993. Progress report

    SciTech Connect

    Purtymun, W.D.; Stoker, A.K.; McLin, S.G.; Maes, M.N.; Glasco, T.A.

    1995-10-01

    This report summarizes production and aquifer conditions for water wells in the Guaje, Pajarito, and Otowi Well Fields. These wells supplied all of the potable water used for municipal and some industrial purposes in Los Alamos County and the Los Alamos National Laboratory during 1993. The wells in the Los Alamos Well Field were transferred to San Ildefonso Pueblo in 1992. Four of the wells in the Los Alamos Well Field were plugged in 1993. One of the two new wells in the Otowi Well Field became operational in 1993. The spring gallery in Water Canyon supplied nonpotable water for industrial use, while surface water from the Los Alamos Reservoir was diverted for irrigation. In 1993 no water was used from the Guaje Reservoir. Due to the maintenance and operating cost of diverting water from the reservoirs, it is not economically feasible to continue their use for irrigation. This report fulfills some of the requirements of the Los Alamos Groundwater Protection Management Program by documenting use of the groundwater for water supply and providing information hydrologic characteristics of the main aquifer. This report is a joint effort between the Laboratory Water Quality and Hydrology Group and the Utilities Department of Johnson Controls World Services Inc. (JCI). The purpose of this report is to ensure a continuing historical record and to provide guidance for management of water resources in long-range planning for the water supply system. We have issued one summary report for the period of 1947 to 1971 and 22 annual reports that contain the results of our studies of these water supplies. An additional report summarized the hydrology of the main aquifer with reference to future development of groundwater supplies. A report was issued in 1988 that examined the status of wells and future water supply.

  15. 14 CFR 101.25 - Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Power Rockets and Class 3-Advanced High Power Rockets. 101.25 Section 101.25 Aeronautics and Space... OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS Amateur Rockets § 101.25 Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets. When...

  16. 14 CFR 101.25 - Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Power Rockets and Class 3-Advanced High Power Rockets. 101.25 Section 101.25 Aeronautics and Space... OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS Amateur Rockets § 101.25 Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets. When...

  17. 14 CFR 101.25 - Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Power Rockets and Class 3-Advanced High Power Rockets. 101.25 Section 101.25 Aeronautics and Space... OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS Amateur Rockets § 101.25 Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets. When...

  18. 14 CFR 101.25 - Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Power Rockets and Class 3-Advanced High Power Rockets. 101.25 Section 101.25 Aeronautics and Space... OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS Amateur Rockets § 101.25 Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets. When...

  19. 14 CFR 101.25 - Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Power Rockets and Class 3-Advanced High Power Rockets. 101.25 Section 101.25 Aeronautics and Space... OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS Amateur Rockets § 101.25 Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets. When...

  20. Small rocket research and technology

    NASA Technical Reports Server (NTRS)

    Schneider, Steven; Biaglow, James

    1993-01-01

    Small chemical rockets are used on nearly all space missions. The small rocket program provides propulsion technology for civil and government space systems. Small rocket concepts are developed for systems which encompass reaction control for launch and orbit transfer systems, as well as on-board propulsion for large space systems and earth orbit and planetary spacecraft. Major roles for on-board propulsion include apogee kick, delta-V, de-orbit, drag makeup, final insertions, north-south stationkeeping, orbit change/trim, perigee kick, and reboost. The program encompasses efforts on earth-storable, space storable, and cryogenic propellants. The earth-storable propellants include nitrogen tetroxide (NTO) as an oxidizer with monomethylhydrazine (MMH) or anhydrous hydrazine (AH) as fuels. The space storable propellants include liquid oxygen (LOX) as an oxidizer with hydrazine or hydrocarbons such as liquid methane, ethane, and ethanol as fuels. Cryogenic propellants are LOX or gaseous oxygen (GOX) as oxidizers and liquid or gaseous hydrogen as fuels. Improved performance and lifetime for small chemical rockets are sought through the development of new predictive tools to understand the combustion and flow physics, the introduction of high temperature materials to eliminate fuel film cooling and its associated combustion inefficiency, and improved component designs to optimize performance. Improved predictive technology is sought through the comparison of both local and global predictions with experimental data. Results indicate that modeling of the injector and combustion process in small rockets needs improvement. High temperature materials require the development of fabrication processes, a durability data base in both laboratory and rocket environments, and basic engineering property data such as strength, creep, fatigue, and work hardening properties at both room and elevated temperature. Promising materials under development include iridium-coated rhenium and a