Science.gov

Sample records for alamos nuclear science

  1. Los Alamos Neutron Science Center (LANSCE) Nuclear Science Facilities

    SciTech Connect

    Nelson, Ronald Owen; Wender, Steve

    2015-06-19

    The Los Alamos Neutron Science Center (LANSCE) facilities for Nuclear Science consist of a high-energy "white" neutron source (Target 4) with 6 flight paths, three low-energy nuclear science flight paths at the Lujan Center, and a proton reaction area. The neutron beams produced at the Target 4 complement those produced at the Lujan Center because they are of much higher energy and have shorter pulse widths. The neutron sources are driven by the 800-MeV proton beam of the LANSCE linear accelerator. With these facilities, LANSCE is able to deliver neutrons with energies ranging from a milli-electron volt to several hundreds of MeV, as well as proton beams with a wide range of energy, time and intensity characteristics. The facilities, instruments and research programs are described briefly.

  2. Los Alamos neutron science center nuclear weapons stewardship and unique national scientific capabilities

    SciTech Connect

    Schoenberg, Kurt F

    2010-12-15

    This presentation gives an overview of the Los Alamos Neutron Science Center (LANSCE) and its contributions to science and the nuclear weapons program. LANSCE is made of multiple experimental facilities (the Lujan Center, the Weapons Neutron Research facility (WNR), the Ultra-Cold Neutron facility (UCN), the proton Radiography facility (pRad) and the Isotope Production Facility (IPF)) served by the its kilometer long linear accelerator. Several research areas are supported, including materials and bioscience, nuclear science, materials dynamics, irradiation response and medical isotope production. LANSCE is a national user facility that supports researchers worldwide. The LANSCE Risk Mitigation program is currently in progress to update critical accelerator equipment to help extend the lifetime of LANSCE as a key user facility. The Associate Directorate of Business Sciences (ADBS) plays an important role in the continued success of LANSCE. This includes key procurement support, human resource support, technical writing support, and training support. LANSCE is also the foundation of the future signature facility MARIE (Matter-Radiation Interactions in Extremes).

  3. Nuclear Forensics at Los Alamos National Laboratory

    SciTech Connect

    Podlesak, David W; Steiner, Robert E.; Burns, Carol J.; LaMont, Stephen P.; Tandon, Lav

    2012-08-09

    The overview of this presentation is: (1) Introduction to nonproliferation efforts; (2) Scope of activities at Los Alamos National Laboratory; (3) Facilities for radioanalytical work at LANL; (4) Radiochemical characterization capabilities; and (5) Bulk chemical and materials analysis capabilities. Some conclusions are: (1) Analytical chemistry measurements on plutonium and uranium matrices are critical to numerous defense and non-defense programs including safeguards accountancy verification measurements; (2) Los Alamos National Laboratory operates capable actinide analytical chemistry and material science laboratories suitable for nuclear material forensic characterization; (3) Actinide analytical chemistry uses numerous means to validate and independently verify that measurement data quality objectives are met; and (4) Numerous LANL nuclear facilities support the nuclear material handling, preparation, and analysis capabilities necessary to evaluate samples containing nearly any mass of an actinide (attogram to kilogram levels).

  4. Los Alamos Science: Number 16

    SciTech Connect

    Cooper, N.G.

    1988-01-01

    It was an unusually stimulating day and a half at Los Alamos when two Nobel Laureates in physiology, a leading paleontologist, and a leading bio-astrophysicist came together to discuss ''Unsolved Problems in the Science of Life,'' the topic of the second in a series of special meetings sponsored by the Fellows of the Laboratory. Just like the first one on ''Creativity in Science,'' this colloquium took us into a broader arena of ideas and viewpoints than is our usual daily fare. To contemplate the evolution and mysteries of intelligent life from the speakers' diverse points of view at one time, in one place was indeed a rare experience.

  5. The Los Alamos Science Pillars The Science of Signatures

    SciTech Connect

    Smith, Joshua E.; Peterson, Eugene J.

    2012-09-13

    As a national security science laboratory, Los Alamos is often asked to detect and measure the characteristics of complex systems and to use the resulting information to quantify the system's behavior. The Science of Signatures (SoS) pillar is the broad suite of technical expertise and capability that we use to accomplish this task. With it, we discover new signatures, develop new methods for detecting or measuring signatures, and deploy new detection technologies. The breadth of work at Los Alamos National Laboratory (LANL) in SoS is impressive and spans from the initial understanding of nuclear weapon performance during the Manhattan Project, to unraveling the human genome, to deploying laser spectroscopy instrumentation on Mars. Clearly, SoS is a primary science area for the Laboratory and we foresee that as it matures, new regimes of signatures will be discovered and new ways of extracting information from existing data streams will be developed. These advances will in turn drive the development of sensing instrumentation and sensor deployment. The Science of Signatures is one of three science pillars championed by the Laboratory and vital to supporting our status as a leading national security science laboratory. As with the other two pillars, Materials for the Future and Information Science and Technology for Predictive Science (IS&T), SoS relies on the integration of technical disciplines and the multidisciplinary science and engineering that is our hallmark to tackle the most difficult national security challenges. Over nine months in 2011 and 2012, a team of science leaders from across the Laboratory has worked to develop a SoS strategy that positions us for the future. The crafting of this strategy has been championed by the Chemistry, Life, and Earth Sciences Directorate, but as you will see from this document, SoS is truly an Institution-wide effort and it has engagement from every organization at the Laboratory. This process tapped the insight and

  6. Post-Cold War Science and Technology at Los Alamos

    NASA Astrophysics Data System (ADS)

    Browne, John C.

    2002-04-01

    Los Alamos National Laboratory serves the nation through the development and application of leading-edge science and technology in support of national security. Our mission supports national security by: ensuring the safety, security, and reliability of the U.S. nuclear stockpile; reducing the threat of weapons of mass destruction in support of counter terrorism and homeland defense; and solving national energy, environment, infrastructure, and health security problems. We require crosscutting fundamental and advanced science and technology research to accomplish our mission. The Stockpile Stewardship Program develops and applies, advanced experimental science, computational simulation, and technology to ensure the safety and reliability of U.S. nuclear weapons in the absence of nuclear testing. This effort in itself is a grand challenge. However, the terrorist attack of September 11, 2001, reminded us of the importance of robust and vibrant research and development capabilities to meet new and evolving threats to our national security. Today through rapid prototyping we are applying new, innovative, science and technology for homeland defense, to address the threats of nuclear, chemical, and biological weapons globally. Synergistically, with the capabilities that we require for our core mission, we contribute in many other areas of scientific endeavor. For example, our Laboratory has been part of the NASA effort on mapping water on the moon and NSF/DOE projects studying high-energy astrophysical phenomena, understanding fundamental scaling phenomena of life, exploring high-temperature superconductors, investigating quantum information systems, applying neutrons to condensed-matter and nuclear physics research, developing large-scale modeling and simulations to understand complex phenomena, and exploring nanoscience that bridges the atomic to macroscopic scales. In this presentation, I will highlight some of these post-cold war science and technology advances

  7. Nuclear Science.

    ERIC Educational Resources Information Center

    Pennsylvania State Dept. of Education, Harrisburg. Bureau of Curriculum Services.

    This document is a report on a course in nuclear science for the high school curriculum. The course is designed to provide a basic but comprehensive understanding of the atom in the light of modern knowledge, and to show how people attempt to harness the tremendous energy liberated through fission and fusion reactions. The course crosses what are…

  8. The Los Alamos Space Science Outreach (LASSO) Program

    NASA Astrophysics Data System (ADS)

    Barker, P. L.; Skoug, R. M.; Alexander, R. J.; Thomsen, M. F.; Gary, S. P.

    2002-12-01

    The Los Alamos Space Science Outreach (LASSO) program features summer workshops in which K-14 teachers spend several weeks at LANL learning space science from Los Alamos scientists and developing methods and materials for teaching this science to their students. The program is designed to provide hands-on space science training to teachers as well as assistance in developing lesson plans for use in their classrooms. The program supports an instructional model based on education research and cognitive theory. Students and teachers engage in activities that encourage critical thinking and a constructivist approach to learning. LASSO is run through the Los Alamos Science Education Team (SET). SET personnel have many years of experience in teaching, education research, and science education programs. Their involvement ensures that the teacher workshop program is grounded in sound pedagogical methods and meets current educational standards. Lesson plans focus on current LANL satellite projects to study the solar wind and the Earth's magnetosphere. LASSO is an umbrella program for space science education activities at Los Alamos National Laboratory (LANL) that was created to enhance the science and math interests and skills of students from New Mexico and the nation. The LASSO umbrella allows maximum leveraging of EPO funding from a number of projects (and thus maximum educational benefits to both students and teachers), while providing a format for the expression of the unique science perspective of each project.

  9. Los Alamos Using Neutrons to Stop Nuclear Smugglers

    ScienceCinema

    Favalli, Andrea; Swinhoe, Martyn

    2016-07-12

    Los Alamos National Laboratory researchers have successfully demonstrated for the first time that laser-generated neutrons can be enlisted as a useful tool in the War on Terror. The international research team used the short-pulse laser at Los Alamos's TRIDENT facility to generate a neutron beam with novel characteristics that interrogated a closed container to confirm the presence and quantity of nuclear material inside. The successful experiment paves the way for creation of a table-top-sized or truck-mounted neutron generator that could be installed at strategic locations worldwide to thwart smugglers trafficking in nuclear materials.

  10. Los Alamos Using Neutrons to Stop Nuclear Smugglers

    SciTech Connect

    Favalli, Andrea; Swinhoe, Martyn

    2013-06-03

    Los Alamos National Laboratory researchers have successfully demonstrated for the first time that laser-generated neutrons can be enlisted as a useful tool in the War on Terror. The international research team used the short-pulse laser at Los Alamos's TRIDENT facility to generate a neutron beam with novel characteristics that interrogated a closed container to confirm the presence and quantity of nuclear material inside. The successful experiment paves the way for creation of a table-top-sized or truck-mounted neutron generator that could be installed at strategic locations worldwide to thwart smugglers trafficking in nuclear materials.

  11. The Los Alamos National Laboratory Nuclear Vision Project

    SciTech Connect

    Arthur, E.D.; Wagner, R.L. Jr.

    1996-09-01

    Los Alamos National Laboratory has initiated a project to examine possible futures associated with the global nuclear enterprise over the course of the next 50 years. All major components are included in this study--weapons, nonproliferation, nuclear power, nuclear materials, and institutional and public factors. To examine key issues, the project has been organized around three main activity areas--workshops, research and analyses, and development of linkages with other synergistic world efforts. This paper describes the effort--its current and planned activities--as well as provides discussion of project perspectives on nuclear weapons, nonproliferation, nuclear energy, and nuclear materials focus areas.

  12. Stockpile Stewardship: Los Alamos

    SciTech Connect

    McMillan, Charlie; Morgan, Nathanial; Goorley, Tom; Merrill, Frank; Funk, Dave; Korzekwa, Deniece; Laintz, Ken

    2012-01-26

    "Heritage of Science" is a short video that highlights the Stockpile Stewardship program at Los Alamos National Laboratory. Stockpile Stewardship was conceived in the early 1990s as a national science-based program that could assure the safety, security, and effectiveness of the U.S. nuclear deterrent without the need for full-scale underground nuclear testing. This video was produced by Los Alamos National Laboratory for screening at the Lab's Bradbury Science Museum in Los Alamos, NM and is narrated by science correspondent Miles O'Brien.

  13. Stockpile Stewardship: Los Alamos

    ScienceCinema

    McMillan, Charlie; Morgan, Nathanial; Goorley, Tom; Merrill, Frank; Funk, Dave; Korzekwa, Deniece; Laintz, Ken

    2016-07-12

    "Heritage of Science" is a short video that highlights the Stockpile Stewardship program at Los Alamos National Laboratory. Stockpile Stewardship was conceived in the early 1990s as a national science-based program that could assure the safety, security, and effectiveness of the U.S. nuclear deterrent without the need for full-scale underground nuclear testing. This video was produced by Los Alamos National Laboratory for screening at the Lab's Bradbury Science Museum in Los Alamos, NM and is narrated by science correspondent Miles O'Brien.

  14. Los Alamos National Laboratory A National Science Laboratory

    SciTech Connect

    Chadwick, Mark B.

    2012-07-20

    Our mission as a DOE national security science laboratory is to develop and apply science, technology, and engineering solutions that: (1) Ensure the safety, security, and reliability of the US nuclear deterrent; (2) Protect against the nuclear threat; and (3) Solve Energy Security and other emerging national security challenges.

  15. Integrating Safety with Science,Technology and Innovation at Los Alamos National Laboratory

    SciTech Connect

    Rich, Bethany M

    2012-04-02

    The mission of Los Alamos National Laboratory (LANL) is to develop and apply science, technology and engineering solutions to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve emerging national security challenges. The most important responsibility is to direct and conduct efforts to meet the mission with an emphasis on safety, security, and quality. In this article, LANL Environmental, Safety, and Health (ESH) trainers discuss how their application and use of a kinetic learning module (learn by doing) with a unique fall arrest system is helping to address one the most common industrial safety challenges: slips and falls. A unique integration of Human Performance Improvement (HPI), Behavior Based Safety (BBS) and elements of the Voluntary Protection Program (VPP) combined with an interactive simulator experience is being used to address slip and fall events at Los Alamos.

  16. New Developments in Proton Radiography at the Los Alamos Neutron Science Center (LANSCE)

    SciTech Connect

    Morris, C. L.; Brown, E. N.; Agee, C.; Bernert, T.; Bourke, M. A. M.; Burkett, M. W.; Buttler, W. T.; Byler, D. D.; Chen, C. F.; Clarke, A. J.; Cooley, J. C.; Gibbs, P. J.; Imhoff, S. D.; Jones, R.; Kwiatkowski, K.; Mariam, F. G.; Merrill, F. E.; Murray, M. M.; Olinger, C. T.; Oro, D. M.; Nedrow, P.; Saunders, A.; Terrones, G.; Trouw, F.; Tupa, D.; Vogan, W.; Winkler, B.; Wang, Z.; Zellner, M. B.

    2015-12-30

    An application of nuclear physics, a facility for using protons for flash radiography, was developed at the Los Alamos Neutron Science Center (LANSCE). Protons have proven far superior to high energy x-rays for flash radiography because of their long mean free path, good position resolution, and low scatter background. Although this facility is primarily used for studying very fast phenomena such as high explosive driven experiments, it is finding increasing application to other fields, such as tomography of static objects, phase changes in materials and the dynamics of chemical reactions. The advantages of protons are discussed, data from some recent experiments will be reviewed and concepts for new techniques are introduced.

  17. Operational status of the Los Alamos neutron science center (LANSCE)

    SciTech Connect

    Jones, Kevin W; Erickson, John L; Schoenberg, Kurt F

    2010-01-01

    The Los Alamos Neutron Science Center (LANSCE) accelerator and beam delivery complex generates the proton beams that serve three neutron production sources; the thermal and cold source for the Manuel Lujan Jr. Neutron Scattering Center, the Weapons Neutron Research (WNR) high-energy neutron source, and a pulsed Ultra-Cold Neutron Source. These three sources are the foundation of strong and productive multi-disciplinary research programs that serve a diverse and robust user community. The facility also provides multiplexed beams for the production of medical radioisotopes and proton radiography of dynamic events. The recent operating history of these sources will be reviewed and plans for performance improvement will be discussed, together with the underlying drivers for the proposed LANSCE Refurbishment project. The details of this latter project are presented in a separate contribution.

  18. The Los ALamos Neutron Science Center Hydrogen Moderator System

    NASA Astrophysics Data System (ADS)

    Jarmer, J. J.; Knudson, J. N.

    2006-04-01

    At the Los Alamos Neutron Science Center (LANSCE), spallation neutrons are produced by an 800-MeV proton beam interacting with tungsten targets. Gun-barrel-type penetrations through the heavy concrete and steel shielding that surround the targets collimate neutrons to form neutron beams used for scattering experiments. Two liquid hydrogen moderators of one-liter volume each are positioned adjacent to the neutron-production targets. Some of the neutrons that pass through a moderator interact with or scatter from protons in the hydrogen. The neutron-proton interaction reduces the energy or moderates neutrons to lower energies. Lower energy "moderated" neutrons are the most useful for some neutron scattering experiments. We provide a description of the LANSCE hydrogen-moderator system and its cryogenic performance with proton beams of up to 125 micro-amp average current.

  19. Priorities and strategies, Los Alamos computer science institute.

    SciTech Connect

    Oldehoeft, R. R.

    2004-01-01

    On March 18-19, 2002 the Los Alamos Computer Science Institute (LACSI) Executive Committee and Principal Investigators met to discuss methods of addressing issues raised in the 2001 LACSI Contract Review. The body was tasked to develop priorities and strategies to meet future programmatic and LANL computer science needs. A framework was developed to address long-term strategic thrust areas. Specific objectives were called out as near-term priorities. The objectives were folded into the framework to form a coherent planning view. On both April 8-9, 2003 and February 19-20, 2004, the LACSI Executive Committee and Principal Investigators met with senior LANL personnel to revise the framework, priorities, and strategies established at the planning meeting in 2002. The current framework outlines five strategic thrust areas: Components, Systems, Computational Science, Application and System Performance, and Computer Science Community Interaction. This document presents the research vision and implementation strategy in each of these areas. The goal of the component architectures effort is to make application development easier through the use of modular codes that integrate powerful components at a high level of abstraction. Through modularization and the existence of well-defined component boundaries (specified by programming interfaces), components allow scientists and software developers to focus on a their own areas of expertise. For example, components and modern scripting languages enable physicists to program at a high level of abstraction (by composing off-the-shelf components into an application), leaving the development of components to expert programmers. In addition, because components foster a higher level of code reuse, components provide an increased economy of scale, making it possible for resources to be shifted to areas such as performance, testing, and platform dependencies, thus improving software quality, portability, and application performance. A

  20. Nuclear accident dosimetry studies at Los Alamos National Laboratory

    SciTech Connect

    Casson, W.H.; Buhl, T.E.; Upp, D.L.

    1995-12-01

    Two critical assemblies have been characterized at the Los Alamos Critical Experiments Facility (LACEF) for use in testing nuclear accident dosimeters and related devices. These device, Godiva IV and SHEBA II, have very different characteristics in both operation and emitted neutron energy spectra. The Godiva assembly is a bare metal fast burst device with a hard spectrum. This spectrum can be modified by use of several shields including steel, concrete, and plexiglas. The modified spectra vary in both average neutron energy and in the specific distribution of the neutron energies in the intermediate energy range. This makes for a very favorable test arrangement as the response ratios between different activation foils used in accident dosimeters are significantly altered such as the ratio between gold, copper, and sulfur elements. The SHEBA device is a solution assembly which has both a slow ramp and decay period and a much softer spectrum. The uncertainly introduced in the response of fast decay foils such as indium can therefore be evaluated into the test results. The neutron energy spectrum for each configuration was measured during low power operations with a multisphere system. These measurements were extended to high dose pulsed operation by use of TLDs moderated TLDs, and special activation techniques. The assemblies were used in the testing of several accident dosimetry devices in studies modeled after the Nuclear Accident Dosimetry Studies that were conducted at Oak Ridge National Laboratory for about 25 years using the Health Physics Research Reactor. It is our intention to conduct these studies approximately annually for the evaluation of the nuclear accident dosimeter systems currently in use within the DOE, alternative systems used internationally, and new dosimeter designs being developed or considered for field application. Participation in selected studies will be open to all participants.

  1. Defense, basic, and industrial research at the Los Alamos Neutron Science Center: Proceedings

    SciTech Connect

    Longshore, A.; Salgado, K.

    1995-10-01

    The Workshop on Defense, Basic, and Industrial Research at the Los Alamos Neutron Science Center gathered scientists from Department of Energy national laboratories, other federal institutions, universities, and industry to discuss the use of neutrons in science-based stockpile stewardship, The workshop began with presentations by government officials, senior representatives from the three weapons laboratories, and scientific opinion leaders. Workshop participants then met in breakout sessions on the following topics: materials science and engineering; polymers, complex fluids, and biomaterials; fundamental neutron physics; applied nuclear physics; condensed matter physics and chemistry; and nuclear weapons research. They concluded that neutrons can play an essential role in science-based stockpile stewardship and that there is overlap and synergy between defense and other uses of neutrons in basic, applied, and industrial research from which defense and civilian research can benefit. This proceedings is a collection of talks and papers from the plenary, technical, and breakout session presentations. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  2. Western Nuclear Science Alliance

    SciTech Connect

    Steve Reese; George Miller; Stephen Frantz; Denis Beller; Denis Beller; Ed Morse; Melinda Krahenbuhl; Bob Flocchini; Jim Elliston

    2010-12-07

    The primary objective of the INIE program is to strengthen nuclear science and engineering programs at the member institutions and to address the long term goal of the University Reactor Infrastructure and Education Assistance Program.

  3. Los Alamos National Laboratory Science Education Programs. Quarterly progress report, April 1--June 30, 1995

    SciTech Connect

    Gill, D.

    1995-09-01

    This report is quarterly progress report on the Los Alamos National Laboratory Science Education Programs. Included in the report are dicussions on teacher and faculty enhancement, curriculum improvement, student support, educational technology, and institutional improvement.

  4. Los Alamos Neutron Science Center (LANSCE) accelerator timing system upgrade

    SciTech Connect

    Rybarcyk, L.J.; Shelley, F.E. Jr.

    1997-10-01

    The Los Alamos Neutron Science Center (LANSCE) 800 MeV proton linear accelerator (linac) operates at a maximum repetition rate of twice the AC power line frequency, i.e. 120 Hz. The start of each machine cycle occurs a fixed delay after each zero-crossing of the AC line voltage. Fluctuations in the AC line frequency and phase are therefore present on all linac timing signals. Proper beam acceleration along the linac requires that the timing signals remain well synchronized to the AC line. For neutron chopper spectrometers, e.g., PHAROS at the Manuel Lujan Jr. Neutron Scattering Center, accurate neutron energy selection requires that precise synchronization be maintained between the beam-on-target arrival time and the neutron chopper rotor position. This is most easily accomplished when the chopper is synchronized to a stable, fixed frequency signal. A new zero-crossing circuit which employs a Phase-Locked Loop (PLL) has been developed to increase the phase and frequency stability of the linac timing signals and thereby improve neutron chopper performance while simultaneously maintaining proper linac operation. Results of timing signal data analysis and modeling and a description of the PLL circuit are presented.

  5. Nuclear Science References Database

    SciTech Connect

    Pritychenko, B.; Běták, E.; Singh, B.; Totans, J.

    2014-06-15

    The Nuclear Science References (NSR) database together with its associated Web interface, is the world's only comprehensive source of easily accessible low- and intermediate-energy nuclear physics bibliographic information for more than 210,000 articles since the beginning of nuclear science. The weekly-updated NSR database provides essential support for nuclear data evaluation, compilation and research activities. The principles of the database and Web application development and maintenance are described. Examples of nuclear structure, reaction and decay applications are specifically included. The complete NSR database is freely available at the websites of the National Nuclear Data Center (http://www.nndc.bnl.gov/nsr) and the International Atomic Energy Agency (http://www-nds.iaea.org/nsr)

  6. Science-based stockpile stewardship at Los Alamos National Laboratory

    SciTech Connect

    Immele, J.

    1995-10-01

    I would like to start by working from Vic Reis`s total quality management diagram in which he began with the strategy and then worked through the customer requirements-what the Department of Defense (DoD) is hoping for from the science-based stockpile stewardship program. Maybe our customer`s requirements will help guide some of the issues that we should be working on. ONe quick answer to {open_quotes}why have we adopted a science-based strategy{close_quotes} is that nuclear weapons are a 50-year responsibility, not just a 5-year responsibility, and stewardship without testing is a grand challenge. While we can do engineering maintenance and turn over and remake a few things on the short time scale, without nuclear testing, without new weapons development, and without much of the manufacturing base that we had in the past, we need to learn better just how these weapons are actually working.

  7. New Developments in Proton Radiography at the Los Alamos Neutron Science Center (LANSCE)

    DOE PAGES

    Morris, C. L.; Brown, E. N.; Agee, C.; Bernert, T.; Bourke, M. A. M.; Burkett, M. W.; Buttler, W. T.; Byler, D. D.; Chen, C. F.; Clarke, A. J.; et al

    2015-12-30

    An application of nuclear physics, a facility for using protons for flash radiography, was developed at the Los Alamos Neutron Science Center (LANSCE). Protons have proven far superior to high energy x-rays for flash radiography because of their long mean free path, good position resolution, and low scatter background. Although this facility is primarily used for studying very fast phenomena such as high explosive driven experiments, it is finding increasing application to other fields, such as tomography of static objects, phase changes in materials and the dynamics of chemical reactions. The advantages of protons are discussed, data from some recentmore » experiments will be reviewed and concepts for new techniques are introduced.« less

  8. Nuclear forensics of special nuclear material at Los Alamos: three recent studies

    SciTech Connect

    Tandon, Lav; Gallimore, David L; Garduon, Katherine; Keller, Russell C; Kuhn, Kevin J; Lujan, Elmer J; Martinez, Alexander; Myers, Steven C; Moore, Steve S; Porterfield, Donivan R; Schwartz, Daniel S; Spencer, Khalil J; Townsend, Lisa E; Xu, Ning

    2010-01-01

    Nuclear forensics of special nuclear materials is a highly specialized field because there are few analytical laboratories in the world that can safely handle nuclear materials, perform high accuracy and precision analysis using validated analytical methods. The goal of nuclear forensics is to establish an unambiguous link between illicitly trafficked nuclear material and its origin. The Los Alamos National Laboratory Nuclear Materials Signatures Program has implemented a graded 'conduct of operations' type approach for determining the unique nuclear, chemical, and physical signatures needed to identify the manufacturing process, intended use, and origin of interdicted nuclear material. In our approach an analysis flow path was developed for determining key signatures necessary for attributing unknown materials to a source. This analysis flow path included both destructive (i.e., alpha spectrometry, ICP-MS, ICP-AES, TIMS, particle size distribution, density and particle fractionation) and non-destructive (i.e., gamma-ray spectrometry, optical microscopy, SEM, XRD, and x-ray fluorescence) characterization techniques. Analytical techniques and results from three recent cases characterized by this analysis flow path along with an evaluation of the usefulness of this approach will be discussed in this paper.

  9. A review of the Los Alamos effort in the development of nuclear rocket propulsion

    SciTech Connect

    Durham, F.P.; Kirk, W.L.; Bohl, R.J.

    1991-01-01

    This paper reviews the achievements of the Los Alamos nuclear rocket propulsion program and describes some specific reactor design and testing problems encountered during the development program along with the progress made in solving these problems. The relevance of these problems to a renewed nuclear thermal rocket development program for the Space Exploration Initiative (SEI) is discussed. 11 figs.

  10. Los Alamos National Laboratory Human and Intellectual Capital for Sustaining Nuclear Deterrence

    SciTech Connect

    McAlpine, Bradley

    2015-04-01

    This paper provides an overview of the current human and intellectual capital at Los Alamos National Laboratory, through specific research into the statistics and demographics as well as numerous personal interviews at all levels of personnel. Based on this information, a series of recommendations are provided to assist Los Alamos National Laboratory in ensuring the future of the human and intellectual capital for the nuclear deterrence mission. While the current human and intellectual capital is strong it stands on the precipice and action must be taken to ensure Los Alamos National Laboratory maintains leadership in developing and sustaining national nuclear capabilities. These recommendations may be applicable to other areas of the nuclear enterprise, including the Air Force, after further research and study.

  11. Nuclear War and Science Teaching.

    ERIC Educational Resources Information Center

    Hobson, Art

    1983-01-01

    Suggests that science-related material on nuclear war be included in introductory courses. Lists nuclear war topics for physics, psychology, sociology, biology/ecology, chemistry, geography, geology/meteorology, mathematics, and medical science. Also lists 11 lectures on nuclear physics which include nuclear war topics. (JN)

  12. Los Alamos Science: The Human Genome Project. Number 20, 1992

    DOE R&D Accomplishments Database

    Cooper, N. G.; Shea, N. eds.

    1992-01-01

    This document provides a broad overview of the Human Genome Project, with particular emphasis on work being done at Los Alamos. It tries to emphasize the scientific aspects of the project, compared to the more speculative information presented in the popular press. There is a brief introduction to modern genetics, including a review of classic work. There is a broad overview of the Genome Project, describing what the project is, what are some of its major five-year goals, what are major technological challenges ahead of the project, and what can the field of biology, as well as society expect to see as benefits from this project. Specific results on the efforts directed at mapping chromosomes 16 and 5 are discussed. A brief introduction to DNA libraries is presented, bearing in mind that Los Alamos has housed such libraries for many years prior to the Genome Project. Information on efforts to do applied computational work related to the project are discussed, as well as experimental efforts to do rapid DNA sequencing by means of single-molecule detection using applied spectroscopic methods. The article introduces the Los Alamos staff which are working on the Genome Project, and concludes with brief discussions on ethical, legal, and social implications of this work; a brief glimpse of genetics as it may be practiced in the next century; and a glossary of relevant terms.

  13. Los Alamos Science: The Human Genome Project. Number 20, 1992

    SciTech Connect

    Cooper, N G; Shea, N

    1992-01-01

    This article provides a broad overview of the Human Genome Project, with particular emphasis on work being done at Los Alamos. It tries to emphasize the scientific aspects of the project, compared to the more speculative information presented in the popular press. There is a brief introduction to modern genetics, including a review of classic work. There is a broad overview of the Genome Project, describing what the project is, what are some of its major five-year goals, what are major technological challenges ahead of the project, and what can the field of biology, as well as society expect to see as benefits from this project. Specific results on the efforts directed at mapping chromosomes 16 and 5 are discussed. A brief introduction to DNA libraries is presented, bearing in mind that Los Alamos has housed such libraries for many years prior to the Genome Project. Information on efforts to do applied computational work related to the project are discussed, as well as experimental efforts to do rapid DNA sequencing by means of single-molecule detection using applied spectroscopic methods. The article introduces the Los Alamos staff which are working on the Genome Project, and concludes with brief discussions on ethical, legal, and social implications of this work; a brief glimpse of genetics as it may be practiced in the next century; and a glossary of relevant terms.

  14. Acoustic Analysis of Plutonium and Nuclear Weapon Components at Los Alamos National Laboratory

    NASA Astrophysics Data System (ADS)

    Saleh, T. A.; Reynolds, J. J.; Rowe, C. A.; Freibert, F. J.; Ten Cate, J. A.; Ulrich, T. J.; Farrow, A. M.

    2012-12-01

    One of the primary missions of Los Alamos National Laboratory is to use science based techniques to certify the nuclear weapons stockpile of the United States. As such we use numerous NDE techniques to monitor materials and systems properties in weapons. Two techniques will be discussed in this presentation, Acoustic Resonance Spectroscopy (ARS) and Acoustic Emission (AE). ARS is used to observe manufacturing variations or changes in the plutonium containing component (pit) of the weapon system. Both quantitative and qualitative comparisons can be used to determine variation in the pit components. Piezoelectric transducer driven acoustic resonance experiments will be described along with initial qualitative and more complex analysis and comparison techniques derived from earthquake analysis performed at LANL. Similarly, AE is used to measure the time of arrival of acoustic signals created by mechanical events that can occur in nuclear weapon components. Both traditional time of arrival techniques and more advanced techniques are used to pinpoint the location and type of acoustic emission event. Similar experiments on tensile tests of brittle phases of plutonium metal will be described.

  15. Applications of Nuclear Science for Stewardship Science

    NASA Astrophysics Data System (ADS)

    Cizewski, Jolie A.

    2013-03-01

    Stewardship science is research important to national security interests that include stockpile stewardship science, homeland security, nuclear forensics, and non-proliferation. To help address challenges in stewardship science and workforce development, the Stewardship Science Academic Alliances (SSAA) was inaugurated ten years ago by the National Nuclear Security Administration of the U. S. Department of Energy. The goal was to enhance connections between NNSA laboratories and the activities of university scientists and their students in research areas important to NNSA, including low-energy nuclear science. This paper presents an overview of recent research in low-energy nuclear science supported by the Stewardship Science Academic Alliances and the applications of this research to stewardship science.

  16. The Los Alamos, Sandia, and Livermore Laboratories: Integration and collaboration solving science and technology problems for the nation

    SciTech Connect

    1994-12-01

    More than 40 years ago, three laboratories were established to take on scientific responsibility for the nation`s nuclear weapons - Los Alamos, Sandia, and Livermore. This triad of laboratories has provided the state-of-the-art science and technology to create America`s nuclear deterrent and to ensure that the weapons are safe, secure, and to ensure that the weapons are safe, secure, and reliable. These national security laboratories carried out their responsibilities through intense efforts involving almost every field of science, engineering, and technology. Today, they are recognized as three of the world`s premier research and development laboratories. This report sketches the history of the laboratories and their evolution to an integrated three-laboratory system. The characteristics that make them unique are described and some of the major contributions they have made over the years are highlighted.

  17. Frequency Estimates for Aircraft Crashes into Nuclear Facilities at Los Alamos National Laboratory (LANL)

    SciTech Connect

    George D. Heindel

    1998-09-01

    In October 1996, the Department of Energy (DOE) issued a new standard for evaluating accidental aircraft crashes into hazardous facilities. This document uses the method prescribed in the new standard to evaluate the likelihood of this type of accident occurring at Los Alamos National Laboratory's nuclear facilities.

  18. Los Alamos Science, Number 25 -- 1997: Celebrating the neutrino

    SciTech Connect

    Cooper, N.G.

    1997-12-31

    This issue is devoted to the neutrino and its remaining mysteries. It is divided into the following areas: (1) The Reines-Cowan experiment -- detecting the poltergeist; (2) The oscillating neutrino -- an introduction to neutrino masses and mixing; (3) A brief history of neutrino experiments at LAMPF; (4) A thousand eyes -- the story of LSND (Los Alamos neutrino oscillation experiment); (5) The evidence for oscillations; (6) The nature of neutrinos in muon decay and physics beyond the Standard Model; (7) Exorcising ghosts -- in pursuit of the missing solar neutrinos; (8) MSW -- a possible solution to the solar neutrino problem; (8) Neutrinos and supernovae; and (9) Dark matter and massive neutrinos.

  19. Los Alamos neutron science user facility - control system risk mitigation & updates

    SciTech Connect

    Pieck, Martin

    2011-01-05

    LANSCE User Facility is seeing continuing support and investments. The investment will sustain reliable facility operations well into the next decade. As a result, the LANSCE User Facility will continue to be a premier Neutron Science Facility at the Los Alamos National Laboratory.

  20. Comprehensive Glossary of Nuclear Science

    NASA Astrophysics Data System (ADS)

    Langlands, Tracy; Stone, Craig; Meyer, Richard

    2001-10-01

    We have developed a comprehensive glossary of terms covering the broad fields of nuclear and related areas of science. The glossary has been constructed with two sections. A primary section consists of over 6,000 terms covering the fields of nuclear and high energy physics, nuclear chemistry, radiochemistry, health physics, astrophysics, materials science, analytical science, environmental science, nuclear medicine, nuclear engineering, nuclear instrumentation, nuclear weapons, and nuclear safeguards. Approximately 1,500 terms of specific focus on military and nuclear weapons testing define the second section. The glossary is currently larger than many published glossaries and dictionaries covering the entire field of physics. Glossary terms have been defined using an extensive collection of current and historical publications. Historical texts extend back into the 1800's, the early days of atomic physics. The glossary has been developed both as a software application and as a hard copy document.

  1. Center for Materials Science, Los Alamos National Laboratory. Status report, October 1, 1990--September 30, 1991

    SciTech Connect

    Parkin, D.M.; Boring, A.M.

    1991-10-01

    This report summarizes the progress of the Center for Materials Science (CMS) from October 1, 1990 to September 30, 1991, and is the nineth such annual report. It has been a year of remarkable progress in building the programs of the Center. The extent of this progress is described in detail. The CMS was established to enhance the contribution of materials science and technology to the Laboratory`s defense, energy and scientific missions, and the Laboratory. In carrying out these responsibilities it has accepted four demanding missions: (1) Build a core group of highly rated, established materials scientists and solid state physicists. (2) Promote and support top quality, interdisciplinary materials research programs at Los Alamos. (3) Strengthen the interactions of materials science and Los Alamos with the external materials science community. and (4) Establish and maintain modern materials research facilities in a readily accessible, central location.

  2. Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Biberian, Jean-Paul

    2006-02-01

    into characteristics of X-ray emission laser beams from solidstate cathode medium of high-current glow discharge / A. B. Karabut. Charged particles from Ti and Pd foils / L. Kowalski ... [et al.]. Cr-39 track detectors in cold fusion experiments: review and perspectives / A. S. Roussetski. Energetic particle shower in the vapor from electrolysis / R. A. Oriani and J. C. Fisher. Nuclear reactions produced in an operating electrolysis cell / R. A. Oriani and J. C. Fisher. Evidence of microscopic ball lightning in cold fusion experiments / E. H. Lewis. Neutron emission from D[symbol] gas in magnetic fields under low temperature / T. Mizuno ... [et al.]. Energetic charged particle emission from hydrogen-loaded Pd and Ti cathodes and its enhancement by He-4 implantation / A. G. Lipson ... [et al.]. H-D permeation. Observation of nuclear transmutation reactions induced by D[symbol] gas permeation through Pd complexes / Y. Iwamura ... [et al.]. Deuterium (hydrogen) flux permeating through palladium and condensed matter nuclear science / Q. M. Wei ... [et al.]. Triggering. Precursors and the fusion reactions in polarized Pd/D-D[symbol]O system: effect of an external electric field / S. Szpak, P. A. Mosier-Boss, and F. E. Gordon. Calorimetric and neutron diagnostics of liquids during laser irradiation / Yu. N. Bazhutov ... [et al.]. Anomalous neutron capture and plastic deformation of Cu and Pd cathodes during electrolysis in a weak thermalized neutron field: evidence of nuclei-lattice exchange / A. G. Lipson and G. H. Miley. H-D loading. An overview of experimental studies on H/Pd over-loading with thin Pd wires and different electrolytic solutions / A. Spallone ... [et al.] -- 3. Transmutations. Photon and particle emission, heat production, and surface transformation in Ni-H system / E. Campari ... [et al.]. Surface analysis of hydrogen-loaded nickel alloys / E. Campari ... [et al.]. Low-energy nuclear reactions and the leptonic monopole / G. Lochak and L. Urutskoev. Results

  3. Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Takahashi, Akito; Ota, Ken-Ichiro; Iwamura, Yashuhiro

    Preface -- 1. General. Progress in condensed matter nuclear science / A. Takahashi. Summary of ICCF-12 / X. Z. Li. Overview of light water/hydrogen-based low-energy nuclear reactions / G. H. Miley and P. J. Shrestha -- 2. Excess heat and He detection. Development of "DS-reactor" as the practical reactor of "cold fusion" based on the "DS-cell" with "DS-cathode" / Y. Arata and Y.-C. Zhang. Progress in excess of power experiments with electrochemical loading of deuterium in palladium / V. Violante ... [et al.]. Anomalous energy generation during conventional electrolysis / T. Mizuno and Y. Toriyabe. "Excess heat" induced by deuterium flux in palladium film / B. Liu ... [et al.]. Abnormal excess heat observed during Mizuno-type experiments / J.-F. Fauvarque, P. P. Clauzon and G. J.-M. Lallevé. Seebeck envelope calorimetry with a Pd|D[symbol]O + H[symbol]SO[symbol] electrolytic cell / W.-S. Zhang, J. Dash and Q. Wang. Observation and investigation of nuclear fusion and self-induced electric discharges in liquids / A. I. Koldamasov ... [et al.]. Description of a sensitive seebeck calorimeter used for cold fusion studies / E. Storms. Some recent results at ENEA / M. Apicella ... [et al.]. Heat measurement during plasma electrolysis / K. Iizumi ... [et al.]. Effect of an additive on thermal output during electrolysis of heavy water with a palladium cathode / Q. Wang and J. Dash. Thermal analysis of calorimetric systems / L. D'Aulerio ... [et al.]. Surface plasmons and low-energy nuclear reactions triggering / E. Castagna ... [et al.]. Production method for violent TCB jet plasma from cavity / F. Amini. New results and an ongoing excess heat controversy / L. Kowalski ... [et al.] -- 3. Transmutation. Observation of surface distribution of products by X-ray fluorescence spectrometry during D[symbol] gas permeation through Pd Complexes / Y. Iwamura ... [et al.]. Discharge experiment using Pd/CaO/Pd multi-layered cathode / S. Narita ... [et al.]. Producing transmutation

  4. Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Takahashi, Akito; Ota, Ken-Ichiro; Iwamura, Yashuhiro

    Preface -- 1. General. Progress in condensed matter nuclear science / A. Takahashi. Summary of ICCF-12 / X. Z. Li. Overview of light water/hydrogen-based low-energy nuclear reactions / G. H. Miley and P. J. Shrestha -- 2. Excess heat and He detection. Development of "DS-reactor" as the practical reactor of "cold fusion" based on the "DS-cell" with "DS-cathode" / Y. Arata and Y.-C. Zhang. Progress in excess of power experiments with electrochemical loading of deuterium in palladium / V. Violante ... [et al.]. Anomalous energy generation during conventional electrolysis / T. Mizuno and Y. Toriyabe. "Excess heat" induced by deuterium flux in palladium film / B. Liu ... [et al.]. Abnormal excess heat observed during Mizuno-type experiments / J.-F. Fauvarque, P. P. Clauzon and G. J.-M. Lallevé. Seebeck envelope calorimetry with a Pd|D[symbol]O + H[symbol]SO[symbol] electrolytic cell / W.-S. Zhang, J. Dash and Q. Wang. Observation and investigation of nuclear fusion and self-induced electric discharges in liquids / A. I. Koldamasov ... [et al.]. Description of a sensitive seebeck calorimeter used for cold fusion studies / E. Storms. Some recent results at ENEA / M. Apicella ... [et al.]. Heat measurement during plasma electrolysis / K. Iizumi ... [et al.]. Effect of an additive on thermal output during electrolysis of heavy water with a palladium cathode / Q. Wang and J. Dash. Thermal analysis of calorimetric systems / L. D'Aulerio ... [et al.]. Surface plasmons and low-energy nuclear reactions triggering / E. Castagna ... [et al.]. Production method for violent TCB jet plasma from cavity / F. Amini. New results and an ongoing excess heat controversy / L. Kowalski ... [et al.] -- 3. Transmutation. Observation of surface distribution of products by X-ray fluorescence spectrometry during D[symbol] gas permeation through Pd Complexes / Y. Iwamura ... [et al.]. Discharge experiment using Pd/CaO/Pd multi-layered cathode / S. Narita ... [et al.]. Producing transmutation

  5. LANSCE nuclear science facilities and activities

    SciTech Connect

    Nelson, Ronald O

    2010-01-01

    Nuclear science activities at the Los Alamos Neutron Science Center (LANSCE) encompass measurements spanning the neutron energy range from thermal to 600 MeV. The neutron sources use spallation of the LANSCE 800 MeV pulsed proton beam with the time-of-flight technique to measure properties of neutron-induced reactions as a function of energy over this large energy range. Current experiments are conducted at the Lujan Center moderated neutron source, the unmoderated WNR target, and with a lead-slowing-down spectrometer. Instruments in use include the DANCE array of BaF{sub 2} scintillators for neutron capture studies, the FIGARO array of liquid scintillator neutron detectors, the GEANIE array of high-resolution HPGe x-ray and gamma-ray detectors, and a number of fission chambers, and other detectors. The LANL capabilities for production and handling of radioactive materials coupled with the neutron sources and detectors at LANSCE are enabling new and challenging measurements for a variety of applications including nuclear energy and nuclear astrophysics. An overview of recent research and examples of results is presented.

  6. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1981. [Leading abstract

    SciTech Connect

    Holland, L.M.; Stafford, C.G.

    1982-10-01

    This report summarizes research and development activities of the Los Alamos Life Sciences Division's Biomedical and Environmental Research program for the calendar year 1981. Individual reports describing the current status of projects have been entered individually into the data base.

  7. Los Alamos National Laboratory standard nuclear material container

    SciTech Connect

    Stone, Timothy A

    2009-01-01

    The shut down of United States (U.S.) nuclear-weapons production activities in the early 1990s left large quantities of nuclear materials throughout the U.S. Department of Energy (DOE) complex in forms not intended for long-term storage. In May 1994, the Defense Nuclear Facilities Safety Board (DNFSB) issued Recommendation 94-1, which called for the stabilization and disposition of 'thousands of containers of plutonium-bearing liquids and solids' in the DOE complex, including LANL in the nuclear-weapons-manufacturing pipeline when manufacturing ended. This resulted in the development of the 3013 standard with container requirements for long term storage (up to 50 years). A follow on was the Criteria For Interim Storage of Plutonium Bearing Materials, Charles B. Curtis, in 1996 to address storage other than the 3013 standard for shorter time frames. In January 2000, the DNFSB issued Recommendation 2000-1, which stated the need for LANL to repackage 'about one ton of plutonium metal and oxide,' declared excess to Defense Program (DP) needs. The DNFSB recommended that LANL 'stabilize and seal within welded containers with an inert atmosphere the plutonium oxides ... which are not yet in states conforming to the long-term storage envisaged by DOE-STD-3013,' and that they '... enclose existing and newly-generated legacy plutonium metal in sealed containers with an inert atmosphere,' and 'remediate and/or safely store the various residues.' Recommendation 2000-1, while adding to the number of items needing remediation, also reiterated the need to address remaining items from 1994-1 in a timely fashion. Since timetables slipped, the DNFSB recommended that the Complex 'prioritize and schedule tasks according to the consideration of risks.' In March 2005, the DNFSB issued Recommendation 2005-1. This recommendation addresses the need for a consistent set of criteria across the DOE complex for the interim storage of nuclear material packaged outside an engineered barrier. The

  8. Operational status and life extension plans for the Los Alamos Neutron Science Center (LANSCE)

    SciTech Connect

    Garnett, Robert W; Gulley, Mark S; Jones, Kevin W; Erickson, John L

    2010-01-01

    The Los Alamos Neutron Science Center (LANSCE) accelerator and beam delivery complex generates the proton beams that serve three neutron production sources, a proton radiography facility and a medical and research isotope production facility. The recent operating history of the facility, including both achievements and challenges, will be reviewed. Plans for performance improvement will be discussed, together with the underlying drivers for the ongoing LANSCE Risk Mitigation project. The details of this latter project will also be discussed.

  9. Research on fission induced plasmas and nuclear pumped lasers at the Los Alamos Scientific Laboratory

    NASA Technical Reports Server (NTRS)

    Helmick, H. H.

    1979-01-01

    A program of research on gaseous uranium and uranium plasmas is being conducted at The Los Alamos Scientific Laboratory under sponsorship of the National Aeronautics and Space Administration. The objective of this work is twofold: (1) to demonstrate the proof of principle of a gaseous uranium fueled reactor, and (2) pursue fundamental research on nuclear pumped lasers. The relevancy of the two parallel programs is embodied in the possibility of a high-performance uranium plasma reactor being used as the power supply for a nuclear pumped laser system. The accomplishments in the two above fields are summarized

  10. Los Alamos Science. Number 11, Summer/Fall 1984

    SciTech Connect

    Cooper, N.G.

    1984-01-01

    This volume on particle physics contains the following articles: scale and dimension, from animals to quarks; particle physics and the standard model; lecture notes, from simple field theories to the standard model; toward a unified theory, an essay on the role of supergravity in the search for unification; symmetry at 100 GeV; the family problem; experiments to test unification schemes; the march toward higher energies; and science underground, the search for rare events. (GHT)

  11. Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Biberian, Jean-Paul

    2006-02-01

    into characteristics of X-ray emission laser beams from solidstate cathode medium of high-current glow discharge / A. B. Karabut. Charged particles from Ti and Pd foils / L. Kowalski ... [et al.]. Cr-39 track detectors in cold fusion experiments: review and perspectives / A. S. Roussetski. Energetic particle shower in the vapor from electrolysis / R. A. Oriani and J. C. Fisher. Nuclear reactions produced in an operating electrolysis cell / R. A. Oriani and J. C. Fisher. Evidence of microscopic ball lightning in cold fusion experiments / E. H. Lewis. Neutron emission from D[symbol] gas in magnetic fields under low temperature / T. Mizuno ... [et al.]. Energetic charged particle emission from hydrogen-loaded Pd and Ti cathodes and its enhancement by He-4 implantation / A. G. Lipson ... [et al.]. H-D permeation. Observation of nuclear transmutation reactions induced by D[symbol] gas permeation through Pd complexes / Y. Iwamura ... [et al.]. Deuterium (hydrogen) flux permeating through palladium and condensed matter nuclear science / Q. M. Wei ... [et al.]. Triggering. Precursors and the fusion reactions in polarized Pd/D-D[symbol]O system: effect of an external electric field / S. Szpak, P. A. Mosier-Boss, and F. E. Gordon. Calorimetric and neutron diagnostics of liquids during laser irradiation / Yu. N. Bazhutov ... [et al.]. Anomalous neutron capture and plastic deformation of Cu and Pd cathodes during electrolysis in a weak thermalized neutron field: evidence of nuclei-lattice exchange / A. G. Lipson and G. H. Miley. H-D loading. An overview of experimental studies on H/Pd over-loading with thin Pd wires and different electrolytic solutions / A. Spallone ... [et al.] -- 3. Transmutations. Photon and particle emission, heat production, and surface transformation in Ni-H system / E. Campari ... [et al.]. Surface analysis of hydrogen-loaded nickel alloys / E. Campari ... [et al.]. Low-energy nuclear reactions and the leptonic monopole / G. Lochak and L. Urutskoev. Results

  12. Nuclear and Astrophysics Data from the T2 Group at Los Alamos National Laboratory (LANL)

    DOE Data Explorer

    The T-2 Nuclear Information Service provides access to a variety of nuclear data, including ENDF/B cross sections, radioactive decay data, astrophysics data, photoatomic data, charged particle data, thermal neutron data, and a Nuclear Data Viewer. The data are useful for both nuclear science and nuclear engineering. The codes area gives information on computer codes used in the T-2 Group's nuclear data work.

  13. Instrumentation and control developments in the Los Alamos nuclear test program

    SciTech Connect

    Perea, J.A.

    1988-01-01

    The United States Department of Energy contracts the Los Alamos National Laboratory to carry out a Nuclear Weapons Test Program in support of the national defense. The program is one of ongoing research to design, build, and test prototype nuclear devices. The goal is to determine what should ultimately be incorporated into the nation's nuclear defense stockpile. All nuclear tests are conducted underground at the Nevada Test Site (NTS). This paper describes the instrumentation and control techniques used by Los Alamos to carry out the tests. Specifically, the contrast between historical methods and new, computer-based technology are discussed. Previous techniques required large numbers of expensive, heavy hardwire cables extending from the surface to the diagnostics rack at the bottom of the vertical shaft. These cables, which provided singular control/monitor functions, have been replaced by a few optical fibers and power cables. This significant savings has been enabled through the adaptation of industrial process control technology using programmable computer control and distributed input/output. Finally, an ongoing process of developing and applying the most suitable instrumentation and control technology to the unique requirements of the Test Program is discussed. 2 refs.

  14. Nuclear Weapons and Science Education.

    ERIC Educational Resources Information Center

    Wellington, J. J.

    1984-01-01

    Provides suggestions on how science teachers can, and should, deal with the nuclear weapons debate in a balanced and critical way. Includes a table outlining points for and against deterrence and disarmament. (JN)

  15. Los Alamos National Laboratory Science Education Program. Annual progress report, October 1, 1995--September 30, 1996

    SciTech Connect

    Gill, D.H.

    1997-01-01

    The National Teacher Enhancement program (NTEP) is a three-year, multi-laboratory effort funded by the National Science Foundation and the Department of Energy to improve elementary school science programs. The Los Alamos National Laboratory targets teachers in northern New Mexico. FY96, the third year of the program, involved 11 teams of elementary school teachers (grades 4-6) in a three-week summer session, four two-day workshops during the school year and an on-going planning and implementation process. The teams included twenty-one teachers from 11 schools. Participants earned a possible six semester hours of graduate credit for the summer institute and two hours for the academic year workshops from the University of New Mexico. The Laboratory expertise in the earth and environmental science provided the tie between the Laboratory initiatives and program content, and allowed for the design of real world problems.

  16. LOS ALAMOS NEUTRON SCIENCE CENTER CONTRIBUTIONS TO THE DEVELOPMENT OF FUTURE POWER REACTORS

    SciTech Connect

    GAVRON, VICTOR I.; HILL, TONY S.; PITCHER, ERIC J.; TOVESSON, FREDERIK K.

    2007-01-09

    The Los Alamos Neutron Science Center (LANSCE) is a large spallation neutron complex centered around an 800 MeV high-currently proton accelerator. Existing facilities include a highly-moderated neutron facility (Lujan Center) where neutrons between thermal and keV energies are produced, and the Weapons Neutron Research Center (WNR), where a bare spallation target produces neutrons between 0.1 and several hundred MeV.The LANSCE facility offers a unique capability to provide high precision nuclear data over a large energy region, including that for fast reactor systems. In an ongoing experimental program the fission and capture cross sections are being measured for a number of minor actinides relevant for Generation-IV reactors and transmutation technology. Fission experiments makes use of both the highly moderated spallation neutron spectrum at the Lujan Center, and the unmoderated high energy spectrum at WNR. By combininb measurements at these two facilities the differential fission cross section is measured relative to the {sup 235}U(n,f) standard from subthermal energies up to about 200 MeV. An elaborate data acquisition system is designed to deal with all the different types of background present when spanning 10 energy decades. The first isotope to be measured was {sup 237}Np, and the results were used to improve the current ENDF/B-VII evaluation. Partial results have also been obtained for {sup 240}Pu and {sup 242}Pu, and the final results are expected shortly. Capture cross sections are measured at LANSCE using the Detector for Advanced Neutron Capture Experiments (DANCE). This unique instrument is highly efficient in detecting radiative capture events, and can thus handle radioactive samples of half-lives as low as 100 years. A number of capture cross sections important to fast reaction applications have been measured with DANCE. The first measurement was on {sup 237}Np(n,{gamma}), and the results have been submitted for publication. Other capture

  17. Nuclear science research at the WNR and LANSCE neutron sources

    SciTech Connect

    Lisowski, P.W.

    1994-06-01

    The Weapons Neutron Research (WNR) Facility and the Los Alamos Neutron Scattering Center (LANSCE) use 800 MeV proton beam from the Los Alamos Meson Physics Facility (LAMPF) to generate intense bursts of neutrons. Experiments using time-of-flight (TOF) energy determination can cover an energy range from thermal to about 2 MeV at LANSCE and 0.1 to 800 MeV at WNR. At present, three flight paths at LANSCE and six flight paths at WNR are used in basic and applied nuclear science research. In this paper we present a status report on WNR and LANSCE, discuss plans for the future, and describe three experiments recently completed or underway that use the unique features of these sources.

  18. Nuclear criticality safety staff training and qualifications at Los Alamos National Laboratory

    SciTech Connect

    Monahan, S.P.; McLaughlin, T.P.

    1997-05-01

    Operations involving significant quantities of fissile material have been conducted at Los Alamos National Laboratory continuously since 1943. Until the advent of the Laboratory`s Nuclear Criticality Safety Committee (NCSC) in 1957, line management had sole responsibility for controlling criticality risks. From 1957 until 1961, the NCSC was the Laboratory body which promulgated policy guidance as well as some technical guidance for specific operations. In 1961 the Laboratory created the position of Nuclear Criticality Safety Office (in addition to the NCSC). In 1980, Laboratory management moved the Criticality Safety Officer (and one other LACEF staff member who, by that time, was also working nearly full-time on criticality safety issues) into the Health Division office. Later that same year the Criticality Safety Group, H-6 (at that time) was created within H-Division, and staffed by these two individuals. The training and education of these individuals in the art of criticality safety was almost entirely self-regulated, depending heavily on technical interactions between each other, as well as NCSC, LACEF, operations, other facility, and broader criticality safety community personnel. Although the Los Alamos criticality safety group has grown both in size and formality of operations since 1980, the basic philosophy that a criticality specialist must be developed through mentoring and self motivation remains the same. Formally, this philosophy has been captured in an internal policy, document ``Conduct of Business in the Nuclear Criticality Safety Group.`` There are no short cuts or substitutes in the development of a criticality safety specialist. A person must have a self-motivated personality, excellent communications skills, a thorough understanding of the principals of neutron physics, a safety-conscious and helpful attitude, a good perspective of real risk, as well as a detailed understanding of process operations and credible upsets.

  19. NUCLEAR SCIENCE, AN INTRODUCTORY COURSE.

    ERIC Educational Resources Information Center

    SULCOSKI, JOHN W.

    THIS CURRICULUM GUIDE DESCRIBES A TWELFTH-GRADE INTERDISCIPLINARY, INTRODUCTORY NUCLEAR SCIENCE COURSE. IT IS BELIEVED TO FILL THE NEED FOR AN ADVANCED COURSE THAT IS TIMELY, CHALLENGING, AND APPROPRIATE AS A SEQUENTIAL ADDITION TO THE BIOLOGY-CHEMISTRY-PHYSICS SEQUENCE. PRELIMINARY INFORMATION COVERS SUCH MATTERS AS (1) RADIOISOTOPE WORK AREAS,…

  20. Welcome to Los Alamos National Laboratory: A premier national security science laboratory

    SciTech Connect

    Wallace, Terry

    2012-06-25

    Dr Wallace presents visitors with an overview of LANL's national security science mission: stockpile stewardship, protecting against the nuclear threat, and energy security & emerging threats, which are underpinned by excellence in science/technology/engineering capabilities. He shows visitors a general Lab overview of budget, staff, and facilities before providing a more in-depth look at recent Global Security accomplishments and current programs.

  1. Material handling for the Los Alamos National Laboratory Nuclear Material Storage Facility

    SciTech Connect

    Pittman, P.; Roybal, J.; Durrer, R.; Gordon, D.

    1999-04-01

    This paper will present the design and application of material handling and automation systems currently being developed for the Los Alamos National Laboratory (LANL) Nuclear Material Storage Facility (NMSF) renovation project. The NMSF is a long-term storage facility for nuclear material in various forms. The material is stored within tubes in a rack called a basket. The material handling equipment range from simple lift assist devices to more sophisticated fully automated robots, and are split into three basic systems: a Vault Automation System, an NDA automation System, and a Drum handling System. The Vault Automation system provides a mechanism to handle a basket of material cans and to load/unload storage tubes within the material vault. In addition, another robot is provided to load/unload material cans within the baskets. The NDA Automation System provides a mechanism to move material within the small canister NDA laboratory and to load/unload the NDA instruments. The Drum Handling System consists of a series of off the shelf components used to assist in lifting heavy objects such as pallets of material or drums and barrels.

  2. Pioneer women in nuclear science

    NASA Astrophysics Data System (ADS)

    Rayner-Canham, M. F.; Rayner-Canham, G. W.

    1990-11-01

    It is a commonly accepted myth that Marie Curie and Lise Meitner were the only women working in the field of nuclear science during the early part of this century. In fact, there were at least 14 others who published work in this field between 1900 and 1915. This paper provides biographical notes on these women and explores the role of the supervisors. Part of the reason for the significant number of women researchers could have been the supportive attitude of Ernest Rutherford toward female physics graduates. In addition, we argue that several of these women provide better role models for potential women physicists than Marie Curie.

  3. Los Alamos National Laboratory new generation standard nuclear material storage container - the SAVY4000 design

    SciTech Connect

    Stone, Timothy Amos

    2010-01-01

    Incidents involving release of nuclear materials stored in containers of convenience such as food pack cans, slip lid taped cans, paint cans, etc. has resulted in defense board concerns over the lack of prescriptive performance requirements for interim storage of nuclear materials. Los Alamos National Laboratory (LANL) has shared in these incidents and in response proactively moved into developing a performance based standard involving storage of nuclear material (RD003). This RD003 requirements document has sense been updated to reflect requirements as identified with recently issued DOE M 441.1-1 'Nuclear Material Packaging Manual'. The new packaging manual was issued at the encouragement of the Defense Nuclear Facilities Safety Board with a clear directive for protecting the worker from exposure due to loss of containment of stored materials. The Manual specifies a detailed and all inclusive approach to achieve a high level of protection; from package design & performance requirements, design life determinations of limited life components, authorized contents evaluations, and surveillance/maintenance to ensure in use package integrity over time. Materials in scope involve those stored outside an approved engineered-contamination barrier that would result in a worker exposure of in excess of 5 rem Committed Effective Does Equivalent (CEDE). Key aspects of meeting the challenge as developed around the SAVY-3000 vented storage container design will be discussed. Design performance and acceptance criteria against the manual, bounding conditions as established that the user must ensure are met to authorize contents in the package (based upon the activity of heat-source plutonium (90% Pu-238) oxide, which bounds the requirements for weapons-grade plutonium oxide), interface as a safety class system within the facility under the LANL plutonium facility DSA, design life determinations for limited life components, and a sense of design specific surveillance program

  4. NUCLEAR SCIENCE REFERENCES CODING MANUAL

    SciTech Connect

    WINCHELL,D.F.

    2007-04-01

    This manual is intended as a guide for Nuclear Science References (NSR) compilers. The basic conventions followed at the National Nuclear Data Center (NNDC), which are compatible with the maintenance and updating of and retrieval from the Nuclear Science References (NSR) file, are outlined. The NSR database originated at the Nuclear Data Project (NDP) at Oak Ridge National Laboratory as part of a project for systematic evaluation of nuclear structure data.1 Each entry in this computer file corresponds to a bibliographic reference that is uniquely identified by a Keynumber and is describable by a Topic and Keywords. It has been used since 1969 to produce bibliographic citations for evaluations published in Nuclear Data Sheets. Periodic additions to the file were published as the ''Recent References'' issues of Nuclear Data Sheets prior to 2005. In October 1980, the maintenance and updating of the NSR file became the responsibility of the NNDC at Brookhaven National Laboratory. The basic structure and contents of the NSR file remained unchanged during the transfer. In Chapter 2, the elements of the NSR file such as the valid record identifiers, record contents, and text fields are enumerated. Relevant comments regarding a new entry into the NSR file and assignment of a keynumber are also given in Chapter 2. In Chapter 3, the format for keyword abstracts is given followed by specific examples; for each TOPIC, the criteria for inclusion of an article as an entry into the NSR file as well as coding procedures are described. Authors preparing Keyword abstracts either to be published in a Journal (e.g., Nucl. Phys. A) or to be sent directly to NNDC (e.g., Phys. Rev. C) should follow the illustrations in Chapter 3. The scope of 1See W.B.Ewbank, ORNL-5397 (1978). the literature covered at the NNDC, the categorization into Primary and Secondary sources, etc., is discussed in Chapter 4. Useful information regarding permitted character sets, recommended abbreviations, etc., is

  5. Nuclear Science Division: 1993 Annual report

    SciTech Connect

    Myers, W.D.

    1994-06-01

    This report describes the activities of the Nuclear Science Division for the 1993 calendar year. This was another significant year in the history of the Division with many interesting and important accomplishments. Activities for the following programs are covered here: (1) nuclear structure and reactions program; (2) the Institute for Nuclear and Particle Astrophysics; (3) relativistic nuclear collisions program; (4) nuclear theory program; (5) nuclear data evaluation program, isotope project; and (6) 88-inch cyclotron operations.

  6. Klystron Modulator Design for the Los Alamos Neutron Science Center Accelerator

    SciTech Connect

    Reass, William A.; Baca, David M.; Partridge, Edward R.; Rees, Daniel E.

    2012-06-22

    This paper will describe the design of the 44 modulator systems that will be installed to upgrade the Los Alamos Neutron Science Center (LANSCE) accelerator RF system. The klystrons can operate up to 86 kV with a nominal 32 Amp beam current with a 120 Hz repetition rate and 15% duty cycle. The klystrons are a mod-anode design. The modulator is designed with analog feedback control to ensure the klystron beam current is flat-top regulated. To achieve fast switching while maintaining linear feedback control, a grid-clamp, totem-pole modulator configuration is used with an 'on' deck and an 'off' deck. The on and off deck modulators are of identical design and utilize a cascode connected planar triode, cathode driven with a high speed MOSFET. The derived feedback is connected to the planar triode grid to enable the flat-top control. Although modern design approaches suggest solid state designs may be considered, the planar triode (Eimac Y-847B) is very cost effective, is easy to integrate with the existing hardware, and provides a simplified linear feedback control mechanism. The design is very compact and fault tolerant. This paper will review the complete electrical design, operational performance, and system characterization as applied to the LANSCE installation.

  7. Upgrades to the ultracold neutron source at the Los Alamos Neutron Science Center

    NASA Astrophysics Data System (ADS)

    Pattie, Robert; LANL-nEDM Collaboration

    2015-10-01

    The spallation-driven solid deutrium-based ultracold neutron (UCN) source at the Los Alamos Neutron Science Center (LANSCE) has provided a facility for precision measurements of fundamental symmetries via the decay observables from neutron beta decay for nearly a decade. In preparation for a new room temperature neutron electric dipole moment (nEDM) experiment and to increase the statistical sensitivity of all experiments using the source an effort to increase the UCN output is underway. The ultimate goal is to provide a density of 100 UCN/cc or greater in the nEDM storage cell. This upgrade includes redesign of the cold neutron moderator and UCN converter geometries, improved coupling and coating of the UCN transport system through the biological shielding, optimization of beam timing structure, and increase of the proton beam current. We will present the results of the MCNP and UCN transport simulations that led to the new design, which will be installed spring 2016, and UCN guide tests performed at LANSCE and the Institut Laue-Langevin to study the UCN transport properties of a new nickel-based guide coating.

  8. Nuclear Science Teaching Aids and Activities.

    ERIC Educational Resources Information Center

    Woodburn, John H.

    This publication is a sourcebook for science teachers. It provides guides for basic laboratory work in nuclear energy, suggesting various teacher and student demonstrations. Ideas for science clubs, science fairs, and project research seminars are presented. Problem-solving activities for both science and mathematics classes are included, as well…

  9. Nuclear science and engineering workshop for secondary science teachers

    SciTech Connect

    Miller, W.H.; Neumeyer, G.M.; Langhorst, S.M. )

    1992-01-01

    A 2-week workshop has been held for the past 10 yr at the University of Missouri-Columbia for secondary science teachers to increase their knowledge of nuclear science and its applications. It is sponsored jointly by Union Electric Company (St. Louis, Missouri), the University of Missouri-Columbia, the American Nuclear Society (ANS) student branch at the University of Missouri-Columbia, and the Central/Eastern Section of the ANS. The workshop focuses on two principal educational areas: basic nuclear science and its applications and nuclear energy systems. The philosophy of the workshop is to provide factual information without emphasis on the political issues of the use of nuclear without emphasis on the political issues of the use of nuclear science in the modern society, allowing the participants to form their own perceptions of the risks and benefits of nuclear technology. The paper describes the workshop organization, curriculum, and evaluation.

  10. Nuclear Science Centre, New Delhi

    SciTech Connect

    Mehta, G.; Potukuchi, P.; Roy, A.

    1995-08-01

    Argonne is collaborating with the Nuclear Science Centre (NSC), New Delhi, to develop a new type of superconducting accelerating structure for low-velocity heavy ions. A copper model has been evaluated and tests on the niobium prototype are currently in progress. Some technical details of this project are described in the Superconducting Linac Development section of this report. All funding for the prototype has come from the NSC, and they have also stationed two staff members at ATLAS for the past two years to gain experience and work on this project. Additional NSC personnel visited ATLAS for extended periods during 1994 for electronics and cryogenics experience and training. Two NSC staff members are scheduled to spend several months at ANL during 1995 to continue tests and developments of the prototype resonators and to initiate fabrication of the production models for their linac project.

  11. Solid State Power Amplifier for 805 MegaHertz at the Los Alamos Neutron Science Center

    SciTech Connect

    Davis, J.L.; Lyles, J.T.M.

    1998-10-19

    Particle accelerators for protons, electrons, and other ion species often use high-power vacuum tubes for RF amplification, due to the high RF power requirements to accelerate these particles with high beam currents. The final power amplifier stages driving large accelerators are unable to be converted to solid-state devices with the present technology. In some instances, radiation levels preclude the use of transistors near beamlines. Work is being done worldwide to replace the RF power stages under about ten kilowatts CW with transistor amplifiers, due to the lower maintenance costs and obsolescence of power tubes in these ranges. This is especially practical where the stages drive fifty Ohm impedance and are not located in high radiation zones. The authors are doing this at the Los Alamos Neutron Science Center (LANSCE) proton linear accelerator (linac) in New Mexico. They replaced a physically-large air-cooled UHF power amplifier using a tetrode electron tube with a compact water-cooled unit based on modular amplifier pallets developed at LANSCE. Each module uses eight push-pull bipolar power transistor pairs operated in class AB. Four pallets can easily provide up to 2,800 watts of continuous RF at 805 MHz. A radial splitter and combiner parallels the modules. This amplifier has proven to be completely reliable after over 10,000 hours of operation without failure. A second unit was constructed and installed for redundancy, and the old tetrode system was removed in 1998. The compact packaging for cooling, DC power, impedance matching, RF interconnection, and power combining met the electrical and mechanical requirements. CRT display of individual collector currents and RF levels is made possible with built-in samplers and a VXI data acquisition unit.

  12. Global Security, Medical Isotopes, and Nuclear Science

    SciTech Connect

    Ahle, Larry

    2007-10-26

    Over the past century basic nuclear science research has led to the use of radioactive isotopes into a wide variety of applications that touch our lives everyday. Some are obvious, such as isotopes for medical diagnostics and treatment. Others are less so, such as National/Global security issues. And some we take for granted, like the small amount of 241 Am that is in every smoke detector. At the beginning of this century, we are in a position where the prevalence and importance of some applications of nuclear science are pushing the basic nuclear science community for improved models and nuclear data. Yet, at the same time, the push by the basic nuclear science community to study nuclei that are farther and farther away from stability also offer new opportunities for many applications. This talk will look at several global security applications of nuclear science, summarizing current R and D and need for improved nuclear data It will also look at how applications of nuclear science, such as to medicine, will benefit from the push for more and more powerful radioactive ion beam facilities.

  13. Global Security, Medical Isotopes, and Nuclear Science

    SciTech Connect

    Ahle, L E

    2007-09-17

    Over the past century basic nuclear science research has led to the use of radioactive isotopes into a wide variety of applications that touch our lives everyday. Some are obvious, such as isotopes for medical diagnostics and treatment. Others are less so, such as National/Global security issues. And some we take for granted, like the small amount of 241Am that is in every smoke detector. At the beginning of this century, we are in a position where the prevalence and importance of some applications of nuclear science are pushing the basic nuclear science community for improved models and nuclear data. Yet, at the same time, the push by the basic nuclear science community to study nuclei that are farther and farther away from stability also offer new opportunities for many applications. This talk will look at several global security applications of nuclear science, summarizing current R&D and need for improved nuclear data It will also look at how applications of nuclear science, such as to medicine, will benefit from the push for more and more powerful radioactive ion beam facilities.

  14. 77 FR 9219 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-16

    ... National Science Foundation's Nuclear Physics Office's Presentation of Plans for a Charge for Nuclear Science Community Planning Report on the Fundamental Physics at the Intensity Frontier Workshop Status...

  15. Fusion Nuclear Science Pathways Assessment

    SciTech Connect

    C.E. Kessel, et. al.

    2012-02-23

    With the strong commitment of the US to the success of the ITER burning plasma mission, and the project overall, it is prudent to consider how to take the most advantage of this investment. The production of energy from fusion has been a long sought goal, and the subject of several programmatic investigations and time line proposals [1]. The nuclear aspects of fusion research have largely been avoided experimentally for practical reasons, resulting in a strong emphasis on plasma science. Meanwhile, ITER has brought into focus how the interface between the plasma and engineering/technology, presents the most challenging problems for design. In fact, this situation is becoming the rule and no longer the exception. ITER will demonstrate the deposition of 0.5 GW of neutron heating to the blanket, deliver a heat load of 10-20 MW/m2 or more on the divertor, inject 50-100 MW of heating power to the plasma, all at the expected size scale of a power plant. However, in spite of this, and a number of other technologies relevant power plant, ITER will provide a low neutron exposure compared to the levels expected to a fusion power plant, and will purchase its tritium entirely from world reserves accumulated from decades of CANDU reactor operations. Such a decision for ITER is technically well founded, allowing the use of conventional materials and water coolant, avoiding the thick tritium breeding blankets required for tritium self-sufficiency, and allowing the concentration on burning plasma and plasma-engineering interface issues. The neutron fluence experienced in ITER over its entire lifetime will be ~ 0.3 MW-yr/m2, while a fusion power plant is expected to experience 120-180 MW-yr/m2 over its lifetime. ITER utilizes shielding blanket modules, with no tritium breeding, except in test blanket modules (TBM) located in 3 ports on the midplane [2], which will provide early tests of the fusion nuclear environment with very low tritium production (a few g per year).

  16. Nuclear Forensics for High School Science

    NASA Astrophysics Data System (ADS)

    Mader, Catherine; Doss, Heide; Plisch, Monica; Isola, Drew; Mirakovitz, Kathy

    2011-04-01

    We developed an education module on nuclear forensics, designed for high school science classrooms. The lessons include a mix of hands-on activities, computer simulations, and written exercises. Students are presented with realistic scenarios designed to develop their knowledge of nuclear science and its application to nuclear forensics. A two-day teacher workshop offered at Hope College attracted 20 teachers. They were loaned kits to implement activities with their students, and each teacher spent 3--7 days on the lessons. All who reported back said they would do it again and would share the lessons with colleagues. Many said that access to equipment and ready-made lessons enabled them to expand what they taught about nuclear science and introduce nuclear forensics. A few teachers invited guest speakers to their classroom, which provided an excellent opportunity to share career information with students. We acknowledge generous support from the Department of Homeland Security and the AIP Meggars Award.

  17. The Science of Low Energy Nuclear Reactions

    NASA Astrophysics Data System (ADS)

    Storms, Edmund

    2007-03-01

    The large literature describing the anomalous behavior attributed to cold fusion or low energy nuclear reactions has been critically described in a recently published book. Over 950 publications are evaluated allowing the phenomenon to be understood. A new class of nuclear reactions has been discovered that are able to generate practical energy without significant radiation or radioactivity. Edmund K Storms, The Science of Low Energy Nuclear Reactions, in press (2006). Also see: http://www.lenr-canr.org/StudentsGuide.htm .

  18. 76 FR 31945 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-02

    ... Nuclear Science Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory Committee (NSAC... Science Foundation on scientific priorities within the field of basic nuclear science research....

  19. Nuclear Science in the Undergraduate Curriculum: The New Nuclear Science Facility at San Jose State University.

    ERIC Educational Resources Information Center

    Ling, A. Campbell

    1979-01-01

    The following aspects of the radiochemistry program at San Jose State University in California are described: the undergraduate program in radiation chemistry, the new nuclear science facility, and academic programs in nuclear science for students not attending San Jose State University. (BT)

  20. TRANSFER OF EXCESS NUCLEAR MATERIAL FROM LOS ALAMOS TO SAVANNAH RIVER SITE FOR LONG-TERM DISPOSITION

    SciTech Connect

    C. W. HOTH; L. A. FOSTER; T. F YARBRO

    2001-06-01

    Los Alamos National Laboratory is preparing excess nuclear material for shipment to Savannah River Site (SRS) for final disposition. Prior to shipment the nuclear material will be stabilized and packaged to meet strict criteria. The criterion that must be met include: (1) the DOE stabilization, packaging and storage requirements for plutonium bearing materials, DOE-STD-3013, (2) shipping container packaging requirements, (3) SRS packaging and storage criteria, and (4) DOE Material Disposition criteria for either immobilization or MOX reactor fuel. Another issue in preparing for this transfer is the DOE certification of shipping containers and the availability of shipping containers. This transfer of the nuclear material is fully supported by the EM, DP and NN Sections of the DOE, as well as, by LANL and SRS, yet a strong collaboration is needed to meet all established requirements relating to stabilization, packaging, shipment, storage and final disposition. This paper will present the overall objectives, the issues and the planned strategy to accomplish this nuclear material transfer.

  1. Los Alamos Team Demonstrates Bottle Scanner Technology

    ScienceCinema

    Espy, Michelle; Schultz, Larry

    2016-07-12

    Los Alamos scientists are demonstrating a Nuclear Magnetic Resonance Imaging (NMR) technology that may provide a breakthrough for screening liquids at airport security. By adding low-power X-ray data to the NMR mix, scientists believe they have unlocked a new detection technology. Funded in part by the Department of Homeland Security's Science and Technology Directorate, the new technology is called MagRay.

  2. Los Alamos Team Demonstrates Bottle Scanner Technology

    SciTech Connect

    Espy, Michelle; Schultz, Larry

    2014-05-06

    Los Alamos scientists are demonstrating a Nuclear Magnetic Resonance Imaging (NMR) technology that may provide a breakthrough for screening liquids at airport security. By adding low-power X-ray data to the NMR mix, scientists believe they have unlocked a new detection technology. Funded in part by the Department of Homeland Security's Science and Technology Directorate, the new technology is called MagRay.

  3. Learning Nuclear Science with Marbles

    ERIC Educational Resources Information Center

    Constan, Zach

    2010-01-01

    Nuclei are "small": if an atom was the size of a football field, the nucleus would be an apple sitting on the 50-yd line. At the same time, nuclei are "dense": the Earth, compressed to nuclear density, could fit inside four Sears Towers. The subatomic level is strange and exotic. For that reason, it's not hard to get young minds excited about…

  4. RAON experimental facilities for nuclear science

    SciTech Connect

    Kwon, Y. K.; Kim, Y. K.; Komatsubara, T.; Moon, J. Y.; Park, J. S.; Shin, T. S.; Kim, Y. J.

    2014-05-02

    The Rare Isotope Science Project (RISP) was established in December 2011 and has put quite an effort to carry out the design and construction of the accelerator complex facility named “RAON”. RAON is a rare isotope (RI) beam facility that aims to provide various RI beams of proton-and neutron-rich nuclei as well as variety of stable ion beams of wide ranges of energies up to a few hundreds MeV/nucleon for the researches in basic science and application. Proposed research programs for nuclear physics and nuclear astrophysics at RAON include studies of the properties of exotic nuclei, the equation of state of nuclear matter, the origin of the universe, process of nucleosynthesis, super heavy elements, etc. Various high performance magnetic spectrometers for nuclear science have been designed, which are KOBRA (KOrea Broad acceptance Recoil spectrometer and Apparatus), LAMPS (Large Acceptance Multi-Purpose Spectrometer), and ZDS (Zero Degree Spectrometer). The status of those spectrometers for nuclear science will be presented with a brief report on the RAON.

  5. Los Alamos National Laboratory Science Education Programs. Progress report, October 1, 1994--December 31, 1994

    SciTech Connect

    Gill, D.H.

    1995-02-01

    During the 1994 summer institute NTEP teachers worked in coordination with LANL and the Los Alamos Middle School and Mountain Elementary School to gain experience in communicating on-line, to gain further information from the Internet and in using electronic Bulletin Board Systems (BBSs) to exchange ideas with other teachers. To build on their telecommunications skills, NTEP teachers participated in the International Telecommunications In Education Conference (Tel*ED `94) at the Albuquerque Convention Center on November 11 & 12, 1994. They attended the multimedia keynote address, various workshops highlighting many aspects of educational telecommunications skills, and the Telecomm Rodeo sponsored by Los Alamos National Laboratory. The Rodeo featured many presentations by Laboratory personnel and educational institutions on ways in which telecommunications technologies can be use din the classroom. Many were of the `hands-on` type, so that teachers were able to try out methods and equipment and evaluate their usefulness in their own schools and classrooms. Some of the presentations featured were the Geonet educational BBS system, the Supercomputing Challenge, and the Sunrise Project, all sponsored by LANL; the `CU-seeMe` live video software, various simulation software packages, networking help, and many other interesting and useful exhibits.

  6. NUCLEAR SCIENCE CURRICULUM PROJECT, PROJECT I, INSTRUCTIONAL SPECIFICATIONS.

    ERIC Educational Resources Information Center

    CAMAREN, JAMES

    ON THE PREMISE THAT A KNOWLEDGE OF NUCLEAR SCIENCE IS ESSENTIAL FOR INTELLIGENT DECISION-MAKING REGARDING ITS USES, THE NUCLEAR SCIENCE CURRICULUM PROJECT WAS DEVELOPED. ITS OBJECTIVE IS TO PROVIDE A PROGRAM THAT CAN BE EFFECTIVELY USED IN SCIENCE CLASSES TO PROVIDE AN UNDERSTANDING OF NUCLEAR SCIENCE AND ITS IMPACT ON SOCIETY. THOUGH TEACHER…

  7. 78 FR 12044 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ... Nuclear Science Advisory Committee AGENCY: Office of Science, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory Committee (NSAC... on scientific priorities within the field of basic nuclear science research. Tentative Agenda:...

  8. 75 FR 71425 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-23

    .../NSF Nuclear Science Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory... nuclear science research. Tentative Agenda: Agenda will include discussions of the following:...

  9. 75 FR 6651 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-10

    ... Nuclear Science Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory Committee (NSAC... the National Science Foundation on scientific priorities within the field of basic nuclear...

  10. 78 FR 56870 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-16

    ... Nuclear Science Advisory Committee AGENCY: Office of Science, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory. Committee (NSAC... and the National Science Foundation on scientific priorities within the field of basic nuclear...

  11. 76 FR 8359 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-14

    ... Nuclear Science Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory Committee (NSAC... scientific priorities within the field of basic nuclear science research. Tentative Agenda: Agenda...

  12. 78 FR 69658 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-20

    .../NSF Nuclear Science Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory... within the field of basic nuclear science research. Tentative Agenda: Agenda will include discussions...

  13. Materials Science for Nuclear Detection

    SciTech Connect

    Peurrung, Anthony J.

    2008-03-01

    In response to the elevated importance of nuclear detection technology, a variety of research efforts have sought to accelerate the discovery and development of useful new radiation detection materials These efforts have goals such as improving our understanding of how these materials perform, supporting the development of formalized discovery tools, or enabling rapid and effective performance characterization. This article provides an overview of these efforts along with an introduction to the history, physics, and taxonomy of these materials.

  14. Nuclear Science Curriculum and Curriculum para la Ciencia Nuclear.

    ERIC Educational Resources Information Center

    American Nuclear Society, La Grange Park, IL.

    This document presents a course in the science of nuclear energy, units of which may be included in high school physics, chemistry, and biology classes. It is intended for the use of teachers whose students have already completed algebra and chemistry or physics. Included in this paper are the objectives of this course, a course outline, a…

  15. PEOPLE IN PHYSICS: Women in nuclear science

    NASA Astrophysics Data System (ADS)

    Stuart, B. H.

    1996-03-01

    The field of nuclear science has seen an unusually large number of discoveries by women this century. This article focuses on the acclaimed work of Marie Curie, her daughter Irène Joliot-Curie, Lise Meitner and Maria Goeppert-Mayer.

  16. The Mysterious Box: Nuclear Science and Art.

    ERIC Educational Resources Information Center

    Keisch, Bernard

    In this booklet intended for junior high school science students a short story format is used to provide examples of the use of nuclear chemistry and physics in the analysis of paints and pigments for authentication of paintings. The techniques discussed include the measurement of the relative amounts of lead-210 and radium-226 in white-lead…

  17. Midwest Nuclear Science and Engineering Consortium

    SciTech Connect

    Dr. Wynn Volkert; Dr. Arvind Kumar; Dr. Bryan Becker; Dr. Victor Schwinke; Dr. Angel Gonzalez; Dr. DOuglas McGregor

    2010-12-08

    The objective of the Midwest Nuclear Science and Engineering Consortium (MNSEC) is to enhance the scope, quality and integration of educational and research capabilities of nuclear sciences and engineering (NS/E) programs at partner schools in support of the U.S. nuclear industry (including DOE laboratories). With INIE support, MNSEC had a productive seven years and made impressive progress in achieving these goals. Since the past three years have been no-cost-extension periods, limited -- but notable -- progress has been made in FY10. Existing programs continue to be strengthened and broadened at Consortium partner institutions. The enthusiasm generated by the academic, state, federal, and industrial communities for the MNSEC activities is reflected in the significant leveraging that has occurred for our programs.

  18. Los Alamos studies of the Nevada test site facilities for the testing of nuclear rockets

    NASA Technical Reports Server (NTRS)

    Hynes, Michael V.

    1993-01-01

    The topics are presented in viewgraph form and include the following: Nevada test site geographic location; location of NRDA facilities, area 25; assessment program plan; program goal, scope, and process -- the New Nuclear Rocket Program; nuclear rocket engine test facilities; EMAD Facility; summary of final assessment results; ETS-1 Facility; and facilities cost summary.

  19. Los Alamos studies of the Nevada test site facilities for the testing of nuclear rockets

    NASA Astrophysics Data System (ADS)

    Hynes, Michael V.

    The topics are presented in viewgraph form and include the following: Nevada test site geographic location; location of NRDA facilities, area 25; assessment program plan; program goal, scope, and process -- the New Nuclear Rocket Program; nuclear rocket engine test facilities; EMAD Facility; summary of final assessment results; ETS-1 Facility; and facilities cost summary.

  20. Molecular forensic science analysis of nuclear materials

    NASA Astrophysics Data System (ADS)

    Reilly, Dallas David

    Concerns over the proliferation and instances of nuclear material in the environment have increased interest in the expansion of nuclear forensics analysis and attribution programs. A new related field, molecular forensic science (MFS) has helped meet this expansion by applying common scientific analyses to nuclear forensics scenarios. In this work, MFS was applied to three scenarios related to nuclear forensics analysis. In the first, uranium dioxide was synthesized and aged at four sets of static environmental conditions and studied for changes in chemical speciation. The second highlighted the importance of bulk versus particle characterizations by analyzing a heterogeneous industrially prepared sample with similar techniques. In the third, mixed uranium/plutonium hot particles were collected from the McGuire Air Force Base BOMARC Site and analyzed for chemical speciation and elemental surface composition. This work has identified new signatures and has indicated unexpected chemical behavior under various conditions. These findings have lead to an expansion of basic actinide understanding, proof of MFS as a tool for nuclear forensic science, and new areas for expansion in these fields.

  1. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1980

    SciTech Connect

    Holland, L.M.; Stafford, C.G.; Bolen, S.K.

    1981-09-01

    Highlights of research progress accomplished in the Life Sciences Division during the year ending December 1980 are summarized. Reports from the following groups are included: Toxicology, Biophysics, Genetics; Environmental Pathology, Organic Chemistry, and Environmental Sciences. Individual abstracts have been prepared for 46 items for inclusion in the Energy Data Base. (RJC)

  2. Science, Technology and the Nuclear Arms Race

    NASA Astrophysics Data System (ADS)

    Schroeer, Dietrich

    1984-09-01

    A comprehensive survey of the nuclear arms race from a technological point of view, which will appeal to the scientist and non-scientist alike. Provides information for the layman on this current topic and is designed for undergraduate courses in political science, history, international studies, as well as physics courses on the subject. Explores the motivation behind the development of various nuclear arms technologies and their deployment and examines the effects these technologies have on military, political and social strategies. Discusses the nature of deterrence and alternatives to it, arms control, and disarmament.

  3. 78 FR 716 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-04

    .../NSF Nuclear Science Advisory Committee AGENCY: Office of Science, DOE. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory Committee (NSAC). DATES... advice and guidance on a continuing basis to the Department of Energy and the National Science...

  4. 77 FR 51791 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-27

    ... Nuclear Science Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory Committee (NSAC... Energy and the National Science Foundation on scientific priorities within the field of basic...

  5. Documents and related materials associated with the contents and the origin of the Los Alamos technical series and the national nuclear energy series

    SciTech Connect

    Hammel, E.F.

    1996-04-01

    The rationale for preparing this document arose from the fact that the author (who worked in D-Building during WWII) was asked to contribute a short article on {open_quotes}Plutonium Metallurgy at Los Alamos During the War{close_quotes} for inclusion in the 50th anniversary book, {open_quotes}Behind Tall Fences,{close_quotes} published in 1993 by the J.R. Oppenheimer Memorial Committee. I agreed, believing that all of the source material needed was readily available in the Los Alamos Technical Series, a detailed account of all of the R&D carried out at Los Alamos from 1943 to 1945. The obvious place to start was the LANL Report Library. As will be seen by the perusing the following memoranda and reports (which were assembled one at a time by following up successive leads), it finally turned out that, of all six chapters of Vol. 10, {open_quotes}Metallurgy,{close_quotes} of which Cyril S. Smith was the general editor, the only one {open_quotes}not yet issued{close_quotes} was Chapter I on {open_quotes}Plutonium Metallurgy,{close_quotes} which had been assigned to Eric R. Jette, the wartime Group Leader of the Plutonium Metallurgy Group. Jette left Los Alamos at the end of August 1956 to join the Union Carbide Research Institute in Tarrytown, New York, where he was director until June 1962 when he retired to his valley home in Pojoaque. In February 1963, he was awarded the US Atomic Energy Commission citation for meritorious contributions to the Nuclear Energy Program; shortly thereafter he died. Before accepting the fact that Chapter I did not exist, the present author undertook to find out as much as possible about the Los Alamos Technical Series, including the circumstances relating to its preparation. The related memos, etc., once retrieved, seemed worth preserving in a single report-hence this document.

  6. Los Alamos National Laboratory Overview

    SciTech Connect

    Neu, Mary

    2010-06-02

    Mary Neu, Associate Director for Chemistry, Life and Earth Sciences at Los Alamos National Laboratory, delivers opening remarks at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM

  7. Nuclear science outreach program for high school girls

    SciTech Connect

    Foster, D.E.; Stone, C.A.

    1996-12-31

    The authors have developed a 2-week summer school on nuclear science for high school girls. This summer school is an outgrowth of a recent American Nuclear Society high school teachers workshop held at San Jose State University. Young scientists are introduced to concepts in nuclear science through a combination of lectures, laboratory experiments, literature research, and visits to local national laboratories and nuclear facilities. Lectures cover a range of topics, including radioactivity and radioactive decay, statistics, fission and fusion, nuclear medicine, and food irradiation. A variety of applications of nuclear science concepts are also presented.

  8. Design and use of SNM transportation systems at the Los Alamos National Laboratory. [Special Nuclear Materials (SNM)

    SciTech Connect

    Tellier, L.L.

    1991-01-01

    The Plutonium Processing Facility at the Los Alamos National Laboratory is located in a building containing approximately 63,000 square feet of laboratory space with an additional 63,000 feet of basement area that is used for heating, ventilation, filtering, storage, and other house'' systems. The building's upper floor is set up in four separate wings with different types of processing occurring both within each wing and between the wings. Because of the diversity of these various processes, material must be moved within and across the various wings. Special Nuclear Material, hereafter referred to as SNM, must always be handled in an enclosed container in order to protect the environment and the workers who are using the material. In order to avoid making repeated transfers of material by an external means, LANL has designed a system whereby most of the wings and rooms in the Plutonium Facility are interconnected by a series of tunnels through which a transportation system or trolley'' operates. This tunnel serves a dual purpose in that it also supplies dry air to the gloveboxes. The tunnels extend the entire length of the building in each wing making a total of four tunnels with an additional tunnel installed such that it connects all four wing tunnels to each other. It can readily be seen that this also creates a problem in that a chimney'' now exists which can cause a fire to spread rapidly from one line or area to another. LANL has designed a series of air and mechanically operated fire doors that are located throughout the tunnel system to prevent this occurrence from happening. Double dropboxes are located at the end of each wing tunnel where the cross tunnel connects. Here, material can be off loaded from a wing trolley and on loaded to the cross trolley for further movement to any other area where it may be needed.

  9. 75 FR 37783 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-30

    ... Department of Energy and National Science Foundation's Nuclear Physics Office. Technical Talk on Deep... available on the U.S. Department of Energy's Office of Nuclear Physics Web site for viewing. Rachel...

  10. 76 FR 69252 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... of Energy and National Science Foundation's Nuclear Physics Office's Update on the Neutron Charge... Office of Nuclear Physics Web site for viewing. Issued in Washington, DC on November 1, 2011. Carol...

  11. Summary of environmental surveillance at Los Alamos during 1995

    SciTech Connect

    1996-10-01

    Linking the Rio Grande Valley and the Jemez Mountains, New Mexico`s Pajarito Plateau is home to a world-class scientific institution. Los Alamos National Laboratory (or the Laboratory), managed by the Regents of the University of California, is a government-owned, Department of Energy-supervised complex investigating all areas of modern science for the purposes of national defense, health, conservation, and ecology. The Laboratory was founded in 1943 as part of the Manhattan Project, whose members assembled to create the first nuclear weapon. Occupying the campus of the Los Alamos Ranch School, American and British scientists gathered on the isolated mesa tops to harness recently discovered nuclear power with the hope of ending World War II. In July 1945, the initial objective of the Laboratory, a nuclear device, was achieved in Los Alamos and tested in White Sands, New Mexico. Today the Laboratory continues its role in defense, particularly in nuclear weapons, including developing methods for safely handling weapons and managing waste. For the past twenty years, the Laboratory has published an annual environmental report. This pamphlet offers a synopsis that briefly explains important concepts, such as radiation and provides a summary of the monitoring results and regulatory compliance status that are explained at length in the document entitled Environmental Surveillance at Los Alamos during 1995.

  12. Molecular forensic science of nuclear materials

    SciTech Connect

    Wilkerson, Marianne Perry

    2010-01-01

    We are interested in applying our understanding of actinide chemical structure and bonding to broaden the suite of analytical tools available for nuclear forensic analyses. Uranium- and plutonium-oxide systems form under a variety of conditions, and these chemical species exhibit some of the most complex behavior of metal oxide systems known. No less intriguing is the ability of AnO{sub 2} (An: U, Pu) to form non-stoichiometric species described as AnO{sub 2+x}. Environmental studies have shown the value of utilizing the chemical signatures of these actinide oxides materials to understand transport following release into the environment. Chemical speciation of actinide-oxide samples may also provide clues as to the age, source, process history, or transport of the material. The scientific challenge is to identify, measure and understand those aspects of speciation of actinide analytes that carry information about material origin and history most relevant to forensics. Here, we will describe our efforts in material synthesis and analytical methods development that we will use to provide the fundamental science required to characterize actinide oxide molecular structures for forensics science. Structural properties and initial results to measure structural variability of uranium oxide samples using synchrotron-based X-ray Absorption Fine Structure will be discussed.

  13. 78 FR 62609 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... consultation with the Committee Management Secretariat, General Services Administration, notice is hereby given... within the field of basic nuclear science research. Additionally, the renewal of the DOE/NSF Nuclear Science Advisory Committee has been determined to be essential to conduct business of the Department...

  14. Nuclear science. Annual report, July 1, 1980-June 30, 1981

    SciTech Connect

    Friedlander, E.M.

    1982-06-01

    This annual report describes the scientific research carried out within the Nuclear Science Division between July 1, 1980 and June 30, 1981. The principal activity of the division continues to be the experimental and theoretical investigation of the interaction of heavy ions with target nuclei. Complementary research programs in light-ion nuclear science, in nuclear data evaluations, and in the development of advanced instrumentation are also carried out.

  15. Teaching on Science, Technology and the Nuclear Arms Race.

    ERIC Educational Resources Information Center

    Schroeer, Dietrich

    1983-01-01

    Describes a course focusing on science, technology, and the nuclear arms race. Two sample homework exercises and course topics are provided. Topics, with lists of questions that might be addressed, focus on nuclear weapons, alternatives to deterrence, and arms control. Approaches to teaching about the nuclear arms race are also provided. (JN)

  16. Los Alamos National Laboratory Training Capabilities (Possible Applications in the Global Initiatives for Proliferation Prevention Program)

    SciTech Connect

    Martin, Olga

    2012-06-04

    The briefing provides an overview of the training capabilities at Los Alamos National Laboratory that can be applied to nonproliferation/responsible science education at nuclear institutes in the Former Soviet Union, as part of the programmatic effort under the Global Initiatives for Proliferation Prevention program (GIPP).

  17. Nuclear Science Division annual report for 1991

    SciTech Connect

    Myers, W.D.

    1992-04-01

    This paper discusses research being conducted under the following programs: Low energy research program; bevalac research program; ultrarelativistic research program; nuclear theory program; nuclear theory program; nuclear data evaluation program; and 88-inch cyclotron operations.

  18. Critical partnerships: Los Alamos, universities, and industry

    SciTech Connect

    Berger, C.L.

    1997-04-01

    Los Alamos National Laboratory, situated 35 miles northwest of Santa Fe, NM, is one of the Department of Energy`s three Defense Programs laboratories. It encompasses 43 square miles, employees approximately 10,000 people, and has a budget of approximately $1.1B in FY97. Los Alamos has a strong post-cold war mission, that of reducing the nuclear danger. But even with that key role in maintaining the nation`s security, Los Alamos views partnerships with universities and industry as critical to its future well being. Why is that? As the federal budget for R&D comes under continued scrutiny and certain reduction, we believe that the triad of science and technology contributors to the national system of R&D must rely on and leverage each others capabilities. For us this means that we will rely on these partners to help us in 5 key ways: We expect that partnerships will help us maintain and enhance our core competencies. In doing so, we will be able to attract the best scientists and engineers. To keep on the cutting edge of research and development, we have found that partnerships maintain the excellence of staff through new and exciting challenges. Additionally, we find that from our university and corporate partners we often learn and incorporate {open_quotes}best practices{close_quotes} in organizational management and operations. Finally, we believe that a strong national system of R&D will ensure and enhance our ability to generate revenues.

  19. Pilot Project on Women and Science. A report on women scientists at the University of New Mexico and Los Alamos National Laboratory

    SciTech Connect

    Salvaggio, R.

    1993-08-01

    In the fall of 1991, through the coordinating efforts of the University of New Mexico and Los Alamos National Laboratory, the Pilot Project on Women and Science was initiated as a year-long study of women scientists at both the university and the laboratory. Its purpose was to gather information directly from women scientists in an attempt to analyze and make recommendations concerning the professional and cultural environment for women in the sciences. This report is an initial attempt to understand the ways in which women scientists view themselves, their profession, and the scientific culture they inhabit. By recording what these women say about their backgrounds and educational experiences, their current positions, the difficult negotiations many have made between their personal and professional lives, and their relative positions inside and outside the scientific community, the report calls attention both to the individual perspectives offered by these women and to the common concerns they share.

  20. The unclosed circle: Los Alamos and the human and environmental legacy of the atom, 1943--1963

    NASA Astrophysics Data System (ADS)

    Hughes, Scott Daniel

    2000-12-01

    This dissertation examines the application of nuclear technology at Los Alamos Scientific Laboratory and the legacy this technology wrought on humans and the environment during the period from 1943 to 1963. Through a focus directed primarily on the Health Division, the study considers various dimensions of the Los Alamos Laboratory including radioactive waste management, human subject experimentation, and nuclear weapons testing. Since its inception in 1943, Los Alamos has held a central role in the research and development of nuclear weapons for the United States. In relation to this central mission, the Laboratory produced various types of radioactive wastes, conducted human subject experiments, and participated in hundreds of nuclear weapons tests. All of these functions resulted in a myriad legacy of human and environmental effects whose consequences have not yet been fully assessed. This investigation, using primary, secondary, and recently declassified documents, discusses the development of nuclear physics and radiological health practices in the half-century prior to World War Two and the American reactions in the realms of science and politics to the news concerning nuclear fission. It then moves to a discussion of the emergence of Los Alamos and analyzes how personnel addressed the attendant hazards of nuclear technology and some of the implications of these past practices. Furthermore, the dissertation discusses human subject experimentation conducted at Los Alamos. The final part of the study investigates the multiple roles played by Los Alamos personnel in the testing of nuclear weapons, the attempts to understand and minimize the hazards of such testing, and the Ra-La sub-critical detonations conducted within the geographical boundaries at the Laboratory between 1943-1963. By focusing on a long-neglected part of the American West. Cold War Los Alamos, this dissertation will contribute to the study of the effects that both World War Two and the Cold

  1. Nuclear Science Division 1994 annual report

    SciTech Connect

    Myers, W.D.

    1995-06-01

    This report describes the activities of the Nuclear Science Division for the period of January 1, 1994, to December 31, 1994. This was a time of significant accomplishment for all of the programs in the Division. Assembly of the solar neutrino detector at the Sudbury Neutrino Observatory is well under way. All of the components fabricated by LBL were shipped to Sudbury early in the year and our efforts are now divided between assisting the assembly of the detector and preparing software for data analysis once the detector is operational in 1996. Much of the activity at the 88-Inch Cyclotron centered on Gammasphere. The {open_quotes}early implementation{close_quotes} phase of the detector ended in September. This phase was extremely successful, involving over 60 experiments with nearly 200 users from 37 institutions worldwide. The mechanical structure was installed and the final electronic system is expected to operate in March 1995. The Division concurrently hosted a conference on physics for large {gamma}-ray detector arrays at the Clark Kerr Campus at UC Berkeley in August. This was a very successful meeting, reflecting the enthusiasm for this field worldwide. Also at the Cyclotron, the progress toward weak interaction experiments using ultra-thin sources passed a major milestone with the trapping of radioactive {sup 21}Na atoms. We are now engaged in a major upgrade of the experimental area and the outlook is very promising for these novel experiments. Another highlight of research at the Cyclotron was the confirmation of element 106. This development allowed the original LLNL/LBL discovery team to move forward with their proposal to name this element seaborgium.

  2. Progress report on nuclear propulsion for space exploration and science

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.; Miller, Thomas J.

    1993-01-01

    NASA is continuing its work in cooperation with the Department of Energy (DOE) on nuclear propulsion - both nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP). The focus of the NTP studies remains on piloted and cargo missions to Mars (with precursor missions to the moon) although studies are under way to examine the potential uses of NTP for science missions. The focus of the NEP studies has shifted to space science missions with consideration of combining a science mission with an earlier demonstration of NEP using the SP-100 space nuclear reactor power system. Both NTP and NEP efforts are continuing in 1993 to provide a good foundation for science and exploration planners. Both NTP and NEP provide a very important transportation resource and in a number of cases enable missions that could not otherwise be accomplished.

  3. RIKEN Radio Isotope Beam Factory: Japanese Flagship for Nuclear Science

    NASA Astrophysics Data System (ADS)

    En'yo, Hideto

    2015-11-01

    Recent activities at the RIKEN Radio Isotope Beam Factory (RIBF) are reported together with its history and future prospects. RIBF is the Japanese flagship for nuclear science, and at this moment is the world flagship machine.

  4. NUCLEAR SCIENCE REFERENCES AS A TOOL FOR DATA EVALUATION.

    SciTech Connect

    WINCHELL,D.F.

    2004-09-26

    For several decades, the Nuclear Science References database has been maintained as a tool for data evaluators and for the wider pure and applied research community. This contribution will describe the database and recent developments in web-based access.

  5. Expanding Science Knowledge: Enabled by Nuclear Power

    NASA Technical Reports Server (NTRS)

    Clark, Karla B.

    2011-01-01

    The availability of Radioisotope Power Sources (RPSs) power opens up new and exciting mission concepts (1) New trajectories available (2) Power for long term science and operations Astonishing science value associated with these previously non-viable missions

  6. What Opinions Do High School Students Hold About Nuclear Science?

    ERIC Educational Resources Information Center

    Crater, Harold L.

    1977-01-01

    In 1975, selected high ability secondary students attended a program in Nuclear and Environmental Science. Likert-like pre- and posttests concerning aspects of nuclear technology were given to the students. Results indicated no favorable or unfavorable changes in student attitudes towards the ideas sampled. Sample questions included. (MA)

  7. UNESCO Chemistry Teaching Project in Asia: Experiments on Nuclear Science.

    ERIC Educational Resources Information Center

    Dhabanandana, Salag

    This teacher's guide on nuclear science is divided into two parts. The first part is a discussion of some of the concepts in nuclear chemistry including radioactivity, types of disintegration, radioactive decay and growth, and tracer techniques. The relevant experiments involving the use of radioisotopes are presented in the second part. The…

  8. Middle School Students, Science Textbooks, Television and Nuclear War Issues.

    ERIC Educational Resources Information Center

    Hamm, Mary

    The extent to which the issue of nuclear war technology is treated in middle-school science texts, and how students learn about nuclear war and war technology were studied. Five raters compared the most widely used textbooks for grades 6 and 7 to determine the amount of content on: (1) population growth; (2) world hunger; (3) war technology; (4)…

  9. 76 FR 62050 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    ... consultation with the Committee Management Secretariat, General Services Administration, notice is hereby given... (National Science Foundation), on scientific priorities within the field of basic nuclear science research. Additionally, the renewal of the NSAC has been determined to be essential to conduct business of the...

  10. Los Alamos National Security, LLC Request for Information from industrial entities that desire to commercialize Laboratory-developed Extremely Low Resource Optical Identifier (ELROI) tech

    SciTech Connect

    Erickson, Michael Charles

    2015-11-10

    Los Alamos National Security, LLC (LANS) is the manager and operator of the Los Alamos National Laboratory for the U.S. Department of Energy National Nuclear Security Administration under contract DE-AC52-06NA25396. LANS is a mission-centric Federally Funded Research and Development Center focused on solving the most critical national security challenges through science and engineering for both government and private customers.

  11. The Nuclear Education and Staffing Challenge: Rebuilding Critical Skills in Nuclear Science and Technology.

    SciTech Connect

    Wogman, Ned A.; Bond, Leonard J.; Waltar, Alan E.; Leber, R. E.

    2005-01-01

    The United States, the Department of Energy (DOE) and its National Laboratories, including the Pacific Northwest National Laboratory (PNNL), are facing a serious attrition of nuclear scientists and engineers and their capabilities through the effects of aging staff. Within the DOE laboratories, 75% of nuclear personnel will be eligible to retire by 2010. It is expected that there will be a significant loss of senior nuclear science and technology staff at PNNL within five years. PNNL's nuclear legacy is firmly rooted in the DOE Hanford site, the World War II Manhattan Project, and subsequent programs. Historically, PNNL was a laboratory where 70% of its activities were nuclear/radiological, and now just under 50% of its current business science and technology are nuclear and radiologically oriented. Programs in the areas of Nuclear Legacies, Global Security, Nonproliferation, Homeland Security and National Defense, Radiobiology and Nuclear Energy still involve more than 1,000 of the 3,800 current laboratory staff, and these include more than 420 staff who are certified as nuclear/radiological scientists and engineers. This paper presents the current challenges faced by PNNL that require an emerging strategy to solve the nuclear staffing issues through the maintenance and replenishment of the human nuclear capital needed to support PNNL nuclear science and technology programs.

  12. The Nuclear Education and Staffing Challenge: Rebuilding Critical Skills in Nuclear Science and Technology

    SciTech Connect

    Wogman, Ned A.; Bond, Leonard J.; Waltar, Alan E.; Leber, R E.

    2005-01-01

    The United States, the Department of Energy (DOE) and its National Laboratories, including the Pacific Northwest National Laboratory (PNNL), are facing a serious attrition of nuclear scientists and engineers and their capabilities through the effects of aging staff. Within the DOE laboratories, 75% of nuclear personnel will be eligible to retire by 2010. It is expected that there will be a significant loss of senior nuclear science and technology staff at PNNL within five years. PNNL's nuclear legacy is firmly rooted in the DOE Hanford site, the World War II Manhattan Project, and subsequent programs. Historically, PNNL was a laboratory were 70% of its activities were nuclear/radiological, and now just under 50% of its current business science and technology are nuclear and radiologically oriented. Programs in the areas of Nuclear Legacies, Global Security, Nonproliferation, Homeland Security and National Defense, Radiobiology and Nuclear Energy still involve more than 1,000 of the 3,800 current laboratory staff, and these include more than 420 staff who are certified as nuclear/radiological scientists and engineers. This paper presents the current challenges faced by PNNL that require an emerging strategy to solve the nuclear staffing issues through the maintenance and replenishment of the human nuclear capital needed to support PNNL nuclear science and technology programs.

  13. Opportunities in Research in Nuclear Science at MSI

    NASA Astrophysics Data System (ADS)

    van Bibber, Karl

    2013-04-01

    Nuclear science and engineering, once thought to be a field in decline, is experiencing a remarkable renaissance, with all the major nuclear science and engineering programs in the US having doubled in the past ten years, a growth which continues unabated. Students view the vast potential of nuclear power and radiation as transformative for energy, industry and medicine, but also see the associated challenges of nonproliferation and environmental stewardship as important societal goals worthy of their future careers. In order to replenish the pipeline of critical nuclear skills into the DOE national labs for the national security mission, the NNSA Office of Nuclear Nonproliferation in 2011 launched a major education and pipeline initiative called the Nuclear Science and Security Consortium (NSSC), comprised of seven research universities and four national labs. Against the backdrop of the projected dearth of scientists and engineers in the 21st century who could hold security clearances, the NNSA augmented this program with a MSI component to engage traditionally underrepresented minority institutions and students, and thus reach out to previously untapped pools of talent. This talk will review the NSSC MSI program after one year, including the Summer Fellowship Program and the Research Grant Program, along with the experience of two NSSC universities with long-standing research relationships with MSI partners in nuclear science and engineering. The perspective from the DOE labs will be discussed as well, who are the intended beneficiaries of the transition from students to career scientists.

  14. Nuclear Test-Experimental Science: Annual report, fiscal year 1988

    SciTech Connect

    Struble, G.L.; Donohue, M.L.; Bucciarelli, G.; Hymer, J.D.; Kirvel, R.D.; Middleton, C.; Prono, J.; Reid, S.; Strack, B.

    1988-01-01

    Fiscal year 1988 has been a significant, rewarding, and exciting period for Lawrence Livermore National Laboratory's nuclear testing program. It was significant in that the Laboratory's new director chose to focus strongly on the program's activities and to commit to a revitalized emphasis on testing and the experimental science that underlies it. It was rewarding in that revolutionary new measurement techniques were fielded on recent important and highly complicated underground nuclear tests with truly incredible results. And it was exciting in that the sophisticated and fundamental problems of weapons science that are now being addressed experimentally are yielding new challenges and understanding in ways that stimulate and reward the brightest and best of scientists. During FY88 the program was reorganized to emphasize our commitment to experimental science. The name of the program was changed to reflect this commitment, becoming the Nuclear Test-Experimental Science (NTES) Program.

  15. Impact of contributions of Glenn T. Seaborg on nuclear science

    SciTech Connect

    Hoffman, Darleane C.

    2000-12-26

    Glenn Theodore Seaborg (1912-199) was a world-renowned nuclear chemist, a Nobel Laureate in chemistry in 1951, co-discoverer of plutonium and nine other transuranium elements, Chairman of the U.S. Atomic Energy Commission from 1961-71, scientific advisor to ten U.S. presidents, active in national and international professional societies, an advocate for nuclear power as well as for a comprehensive nuclear test ban treaty, a prolific writer, an avid hiker, environmentalist, and sports enthusiast. He was known and esteemed not only by chemists and other scientists throughout the world, but also by lay people, politicians, statesmen, and students of all ages. This memorial includes a brief glimpse of Glenn Seaborg's early life and education, describes some of his major contributions to nuclear science over his long and fruitful career, and highlights the profound impact of his contributions on nuclear science, both in the U.S. and in the international community.

  16. Nuclear Forensic Science: Analysis of Nuclear Material Out of Regulatory Control

    NASA Astrophysics Data System (ADS)

    Kristo, Michael J.; Gaffney, Amy M.; Marks, Naomi; Knight, Kim; Cassata, William S.; Hutcheon, Ian D.

    2016-06-01

    Nuclear forensic science seeks to identify the origin of nuclear materials found outside regulatory control. It is increasingly recognized as an integral part of a robust nuclear security program. This review highlights areas of active, evolving research in nuclear forensics, with a focus on analytical techniques commonly employed in Earth and planetary sciences. Applications of nuclear forensics to uranium ore concentrates (UOCs) are discussed first. UOCs have become an attractive target for nuclear forensic researchers because of the richness in impurities compared to materials produced later in the fuel cycle. The development of chronometric methods for age dating nuclear materials is then discussed, with an emphasis on improvements in accuracy that have been gained from measurements of multiple radioisotopic systems. Finally, papers that report on casework are reviewed, to provide a window into current scientific practice.

  17. Internship at Los Alamos National Laboratory

    SciTech Connect

    Dunham, Ryan Q.

    2012-07-11

    Los Alamos National Laboratory (LANL) is located in Los Alamos, New Mexico. It provides support for our country's nuclear weapon stockpile as well as many other scientific research projects. I am an Undergraduate Student Intern in the Systems Design and Analysis group within the Nuclear Nonproliferation division of the Global Security directorate at LANL. I have been tasked with data analysis and modeling of particles in a fluidized bed system for the capture of carbon dioxide from power plant flue gas.

  18. Teaching nuclear science: A cosmological approach

    SciTech Connect

    Viola, V.E. )

    1994-10-01

    Theories of the origin of the chemical elements can be used effectively to provide a unifying theme in teaching nuclear phenomena to chemistry students. By tracing the element-producing steps that are thought to characterize the chemical evolution of the universe, one can introduce the basic principles of nuclear nomenclature, structure, reactions, energetics, and decay kinetics in a self-consistent context. This approach has the additional advantage of giving the student a feeling for the origin of the elements and their relative abundances in the solar system. Further, one can logically introduce all of the basic forces and particles of nature, as well as the many analogies between nuclear and atomic systems. The subjects of heavy-element synthesis, dating, and the practical applications of nuclear phenomena fit naturally in this scheme. Within the nucleosynthesis framework it is possible to modify the presentation of nuclear behavior to suit the audience--ranging from an emphasis on description for the beginning student to a quantitative theoretical approach for graduate students. The subject matter is flexible in that the basic principles can be condensed into a few lecture as part of a more general course of expanded into an entire course. The following sections describe this approach, with primary emphasis on teaching at the elementary level.

  19. Type A Accident Investigation Board report on the January 17, 1996, electrical accident with injury in Technical Area 21 Tritium Science and Fabrication Facility Los Alamos National Laboratory. Final report

    SciTech Connect

    1996-04-01

    An electrical accident was investigated in which a crafts person received serious injuries as a result of coming into contact with a 13.2 kilovolt (kV) electrical cable in the basement of Building 209 in Technical Area 21 (TA-21-209) in the Tritium Science and Fabrication Facility (TSFF) at Los Alamos National Laboratory (LANL). In conducting its investigation, the Accident Investigation Board used various analytical techniques, including events and causal factor analysis, barrier analysis, change analysis, fault tree analysis, materials analysis, and root cause analysis. The board inspected the accident site, reviewed events surrounding the accident, conducted extensive interviews and document reviews, and performed causation analyses to determine the factors that contributed to the accident, including any management system deficiencies. Relevant management systems and factors that could have contributed to the accident were evaluated in accordance with the guiding principles of safety management identified by the Secretary of Energy in an October 1994 letter to the Defense Nuclear Facilities Safety Board and subsequently to Congress.

  20. Quantitative x-ray diffraction analyses of samples used for sorption studies by the Isotope and Nuclear Chemistry Division, Los Alamos National Laboratory

    SciTech Connect

    Chipera, S.J.; Bish, D.L.

    1989-09-01

    Yucca Mountain, Nevada, is currently being investigated to determine its suitability to host our nation`s first geologic high-level nuclear waste repository. As part of an effort to determine how radionuclides will interact with rocks at Yucca Mountain, the Isotope and Nuclear Chemistry (INC) Division of Los Alamos National Laboratory has conducted numerous batch sorption experiments using core samples from Yucca Mountain. In order to understand better the interaction between the rocks and radionuclides, we have analyzed the samples used by INC with quantitative x-ray diffraction methods. Our analytical methods accurately determine the presence or absence of major phases, but we have not identified phases present below {approximately}1 wt %. These results should aid in understanding and predicting the potential interactions between radionuclides and the rocks at Yucca Mountain, although the mineralogic complexity of the samples and the lack of information on trace phases suggest that pure mineral studies may be necessary for a more complete understanding. 12 refs., 1 fig., 1 tab.

  1. Edward Teller Returns to LOS Alamos

    NASA Astrophysics Data System (ADS)

    Hecker, Siegfried S.

    2010-01-01

    I was asked to share some reflections of Edward Teller's return to Los Alamos during my directorship. I met Teller late in his life. My comments focus on that time and they will be mostly in the form of stories of my interactions and those of my colleagues with Teller. Although the focus of this symposium is on Teller's contributions to science, at Los Alamos it was never possible to separate Teller's science from policy and controversy ...

  2. Science, Society, and America's Nuclear Waste: Nuclear Waste, Unit 1. Teacher Guide. Second Edition.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 1 of the four-part series Science, Society, and America's Nuclear Waste produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to help students establish the relevance of the topic of nuclear waste to their everyday lives and activities. Particular attention is…

  3. Studies in Low-Energy Nuclear Science

    SciTech Connect

    Carl R. Brune; Steven M. Grimes

    2010-01-13

    This report presents a summary of research projects in the area of low energy nuclear reactions and structure, carried out between March 1, 2006 and October 31, 2009 which were supported by U.S. DOE grant number DE-FG52-06NA26187.

  4. Nuclear Chemistry, Science (Experimental): 5316.62.

    ERIC Educational Resources Information Center

    Williams, Russell R.

    This nuclear chemistry module includes topics on atomic structure, instability of the nucleus, detection strengths and the uses of radioactive particles. Laboratory work stresses proper use of equipment and safe handling of radioactive materials. Students with a strong mathematics background may consider this course as advanced work in chemistry.…

  5. Nuclear fission: the interplay of science and technology.

    PubMed

    Stoneham, A M

    2010-07-28

    When the UK's Calder Hall nuclear power station was connected to the grid in 1956, the programmes that made this possible involved a powerful combination of basic and applied research. Both the science and the engineering were novel, addressing new and challenging problems. That the last Calder Hall reactor was shut down only in 2003 attests to the success of the work. The strengths of bringing basic science to bear on applications continued to be recognized until the 1980s, when government and management fashions changed. This paper identifies a few of the technology challenges, and shows how novel basic science emerged from them and proved essential in their resolution. Today, as the threat of climate change becomes accepted, it has become clear that there is no credible solution without nuclear energy. The design and construction of new fission reactors will need continuing innovation, with the interplay between the science and technology being a crucial component. PMID:20566512

  6. Nuclear fission: the interplay of science and technology.

    PubMed

    Stoneham, A M

    2010-07-28

    When the UK's Calder Hall nuclear power station was connected to the grid in 1956, the programmes that made this possible involved a powerful combination of basic and applied research. Both the science and the engineering were novel, addressing new and challenging problems. That the last Calder Hall reactor was shut down only in 2003 attests to the success of the work. The strengths of bringing basic science to bear on applications continued to be recognized until the 1980s, when government and management fashions changed. This paper identifies a few of the technology challenges, and shows how novel basic science emerged from them and proved essential in their resolution. Today, as the threat of climate change becomes accepted, it has become clear that there is no credible solution without nuclear energy. The design and construction of new fission reactors will need continuing innovation, with the interplay between the science and technology being a crucial component.

  7. Los Alamos National Laboratory

    SciTech Connect

    Dogliani, Harold O

    2011-01-19

    The purpose of the briefing is to describe general laboratory technical capabilities to be used for various groups such as military cadets or university faculty/students and post docs to recruit into a variety of Los Alamos programs. Discussed are: (1) development and application of high leverage science to enable effeictive, predictable and reliability outcomes; (2) deter, detect, characterize, reverse and prevent the proliferation of weapons of mass destruction and their use by adversaries and terrorists; (3) modeling and simulation to define complex processes, predict outcomes, and develop effective prevention, response, and remediation strategies; (4) energetic materials and hydrodynamic testing to develop materials for precise delivery of focused energy; (5) materials cience focused on fundamental understanding of materials behaviors, their quantum-molecular properties, and their dynamic responses, and (6) bio-science to rapidly detect and characterize pathogens, to develop vaccines and prophylactic remedies, and to develop attribution forensics.

  8. Studies in Low-Energy Nuclear Science

    SciTech Connect

    Brune, Carl R; Grimes, Steven M

    2006-03-30

    This report presents a summary of research projects in the area of low energy nuclear reactions and structure, carried out between 1 January 2003 and 31 December 2005 and supported by U.S. DOE grant number DE-FG03-03NA00074. Cross sections measured with high resolution have been subjected to an Ericson theory analysis to infer information about the nuclear level density. Other measurements were made of the spectral shape of particles produced in evaporation processes; these also yield level density information. A major project was the development of a new Hauser-Feshbach code for analyzing such spectra. Other measurements produced information on the spectra of gamma rays emitted in reactions on heavy nuclei and gave a means of refining our understanding of gamma-ray strength functions. Finally,reactions on light nuclei were studied and subjected to an R-matrix analysis. Cross sections fora network of nuclear reactions proceedingthrough a given compound nucleus shouldgreatly constrain the family of allowed parameters. Modifications to the formalism andcomputer code are also discussed.

  9. Oklo reactors and implications for nuclear science

    NASA Astrophysics Data System (ADS)

    Davis, E. D.; Gould, C. R.; Sharapov, E. I.

    2014-04-01

    We summarize the nuclear physics interests in the Oklo natural nuclear reactors, focusing particularly on developments over the past two decades. Modeling of the reactors has become increasingly sophisticated, employing Monte Carlo simulations with realistic geometries and materials that can generate both the thermal and epithermal fractions. The water content and the temperatures of the reactors have been uncertain parameters. We discuss recent work pointing to lower temperatures than earlier assumed. Nuclear cross-sections are input to all Oklo modeling and we discuss a parameter, the 175Lu ground state cross-section for thermal neutron capture leading to the isomer 176mLu, that warrants further investigation. Studies of the time dependence of dimensionless fundamental constants have been a driver for much of the recent work on Oklo. We critically review neutron resonance energy shifts and their dependence on the fine structure constant α and the ratio Xq = mq/Λ (where mq is the average of the u and d current quark masses and Λ is the mass scale of quantum chromodynamics (QCD)). We suggest a formula for the combined sensitivity to α and Xq that exhibits the dependence on proton number Z and mass number A, potentially allowing quantum electrodynamic (QED) and QCD effects to be disentangled if a broader range of isotopic abundance data becomes available.

  10. Materials Science of High-Level Nuclear Waste Immobilization

    SciTech Connect

    Weber, William J.; Navrotsky, Alexandra; Stefanovsky, S. V.; Vance, E. R.; Vernaz, Etienne Y.

    2009-01-09

    With the increasing demand for the development of more nuclear power comes the responsibility to address the technical challenges of immobilizing high-level nuclear wastes in stable solid forms for interim storage or disposition in geologic repositories. The immobilization of high-level nuclear wastes has been an active area of research and development for over 50 years. Borosilicate glasses and complex ceramic composites have been developed to meet many technical challenges and current needs, although regulatory issues, which vary widely from country to country, have yet to be resolved. Cooperative international programs to develop advanced proliferation-resistant nuclear technologies to close the nuclear fuel cycle and increase the efficiency of nuclear energy production might create new separation waste streams that could demand new concepts and materials for nuclear waste immobilization. This article reviews the current state-of-the-art understanding regarding the materials science of glasses and ceramics for the immobilization of high-level nuclear waste and excess nuclear materials and discusses approaches to address new waste streams.

  11. Nuclear Science Division, 1995--1996 annual report

    SciTech Connect

    Poskanzer, A.M.

    1997-02-01

    This report describes the activities of the Nuclear Science Division (NSD) for the two-year period, January 1, 1995 to January 1, 1997. This was a time of major accomplishments for all research programs in the Division-many of which are highlighted in the reports of this document.

  12. NNS computing facility manual P-17 Neutron and Nuclear Science

    SciTech Connect

    Hoeberling, M.; Nelson, R.O.

    1993-11-01

    This document describes basic policies and provides information and examples on using the computing resources provided by P-17, the Neutron and Nuclear Science (NNS) group. Information on user accounts, getting help, network access, electronic mail, disk drives, tape drives, printers, batch processing software, XSYS hints, PC networking hints, and Mac networking hints is given.

  13. Navigating nuclear science: Enhancing analysis through visualization

    SciTech Connect

    Irwin, N.H.; Berkel, J. van; Johnson, D.K.; Wylie, B.N.

    1997-09-01

    Data visualization is an emerging technology with high potential for addressing the information overload problem. This project extends the data visualization work of the Navigating Science project by coupling it with more traditional information retrieval methods. A citation-derived landscape was augmented with documents using a text-based similarity measure to show viability of extension into datasets where citation lists do not exist. Landscapes, showing hills where clusters of similar documents occur, can be navigated, manipulated and queried in this environment. The capabilities of this tool provide users with an intuitive explore-by-navigation method not currently available in today`s retrieval systems.

  14. Building Science and Technology Solutions for National Problems

    SciTech Connect

    Bishop, Alan R.

    2012-06-05

    The nation's investment in Los Alamos has fostered scientific capabilities for national security missions. As the premier national security science laboratory, Los Alamos tackles: (1) Multidisciplinary science, technology, and engineering challenges; (2) Problems demanding unique experimental and computational facilities; and (3) Highly complex national security issues requiring fundamental breakthroughs. Our mission as a DOE national security science laboratory is to develop and apply science, technology, and engineering solutions that: (1) ensure the safety, security, and reliability of the US nuclear deterrent; (2) protect against the nuclear threat; and (3) solve national security challenges.

  15. Nuclear science. Annual report, July 1, 1979-June 30, 1980

    SciTech Connect

    Myers, W.D.; Friedlander, E.M.; Nitschke, J.M.; Stokstad, R.G.

    1981-03-01

    This annual report describes the scientific research carried out within the Nuclear Science Division (NSD) during the period between July 1, 1979 and June 30, 1980. The principal objective of the division continues to be the experimental and theoretical investigation of the interactions of heavy ions with target nuclei, complemented with programs in light ion nuclear science, in nuclear data compilations, and in advanced instrumentation development. The division continues to operate the 88 Inch Cyclotron as a major research facility that also supports a strong outside user program. Both the SuperHILAC and Bevalac accelerators, operated as national facilities by LBL's Accelerator and Fusion Research Division, are also important to NSD experimentalists. (WHK)

  16. Los Alamos Space Weather Summer School

    NASA Astrophysics Data System (ADS)

    Koller, J.

    2011-12-01

    Los Alamos National Lab recently initiated a new summer school specializing on space science, space weather, and instrumentation. The school is geared towards graduate level students and has been established to bring graduate students together with internationally recognized scientists at the Los Alamos National Lab. Students are receiving a prestigious Vela Fellowship to cover relocation expenses and cost of living for the duration of their stay in Los Alamos. For two months students have the opportunity to attend science lectures given by distinguished researchers at LANL. Topics are related to space weather research including plasma physics, radiation belts, numerical modeling, solar wind physics, spacecraft charging, and instrumentation. Students are also working closely with a Los Alamos mentor on exciting space weather science topics with access to Los Alamos GPS and geosynchronous data. The summer school concludes with project presentations by the students in a technical forum. The program is designed for graduate students currently enrolled at US Universities and open to all nationalities. We are presenting an overview of this exciting new program funded by IGPP (Institute of Geophysics and Planetary Physics), the Global Security Directorate, and the Directorate for Science, Technology and Engineering at Los Alamos National Lab.

  17. The Maryland nuclear science baccalaureate degree program: The utility perspective

    SciTech Connect

    Mueller, J.R.

    1989-01-01

    In the early 1980s, Wisconsin Public Service Corporation (WPSC) made a firm commitment to pursue development and subsequent delivery of an appropriate, academically accredited program leading to a baccalaureate degree in nuclear science for its nuclear operations personnel. Recognizing the formidable tasks to be accomplished, WPSC worked closely with the University of Maryland University College (UMUC) in curriculum definition, specific courseware development for delivery by computer-aided instruction, individual student evaluation, and overall program implementation. Instruction began on our nuclear plant site in the fall of 1984. The university anticipates conferring the first degrees from this program at WPSC in the fall of 1989. There are several notable results that WPSC achieved from this degree program. First and most importantly, an increase in the level of education of our employees. It should be stated that this program has been well received by WPSC operator personnel. These employees, now armed with plant experience, a formal degree in nuclear science, and professional education in management are real candidates for advancement in our nuclear organization.

  18. Cyclotron-based nuclear science. Progress report, April 1, 1979-March 31, 1980

    SciTech Connect

    Not Available

    1980-06-01

    Research at the cyclotron institute is summarized. These major areas are covered: nuclear structure; nuclear reactions and scattering; polarization studies; interdisciplinary nuclear science; instrumentation and systems development; and publications. (GHT)

  19. The economic impact of Los Alamos National Laboratory on North-Central New Mexico and the state of New Mexico. Fiscal Year 1995

    SciTech Connect

    Lansford, R.R.; Adcock, L.D.; Gentry, L.M.; Ben-David, S.

    1996-08-01

    Los Alamos National Laboratory is a multidisciplinary, multiprogram laboratory with a mission to enhance national military and economic security through science and technology. Its mission is to reduce the nuclear danger through stewardship of the nation`s nuclear stockpile and through its nonproliferation and verification activities. An important secondary mission is to promote U.S. industrial competitiveness by working with U.S. companies in technology transfer and technology development partnerships. Los Alamos has provided technical assistance to over 70 small New Mexico businesses enabling economic development activities in the region and state.

  20. Recent Developments in Cold Fusion / Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Krivit, Steven B.

    2006-03-01

    Krivit is recognized internationally as an expert on the subject matter of cold fusion / condensed matter nuclear science. He is the editor of New Energy Times, the leading source of information for the field of cold fusion. He is the author of the 2005 book, The Rebirth of Cold Fusion and founder of New Energy Institute, an independent nonprofit public benefit corporation dedicated to accelerating the progress of new, sustainable and environmentally friendly energy sources.

  1. Los Alamos National Laboratory capability reviews - FY 2011 status

    SciTech Connect

    Springer, Everett P

    2011-01-12

    Capability reviews are the Los Alamos National Laboratory approach to assess the quality of its science, technology, and engineering (STE), and its integration across the Laboratory. There are seven capability reviews in FY 2011 reviews. The Weapons Science and Engineering review will be replaced by the National Nuclear Security Administration's Predictive Science Panel for 2011 . Beginning in 2011, third-year LORD projects will be reviewed by capability review committees rather than the first-year LORD projects that have been performed for the last three years. This change addresses concerns from committees about reviewing a project before it had made any substantive progress. The current schedule, and chairs for the 2011 capability reviews is presented. The three-year cycle (2011-2013) for capability reviews are presented for planning purposes.

  2. Nuclear Science User Facilities (NSUF) Monthly Report March 2015

    SciTech Connect

    Soelberg, Renae

    2015-03-01

    Nuclear Science User Facilities (NSUF) Formerly: Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report February 2015 Highlights; Jim Cole attended the OECD NEA Expert Group on Innovative Structural Materials meeting in Paris, France; Jim Lane and Doug Copsey of Writers Ink visited PNNL to prepare an article for the NSUF annual report; Brenden Heidrich briefed the Nuclear Energy Advisory Committee-Facilities Subcommittee on the Nuclear Energy Infrastructure Database project and provided them with custom reports for their upcoming visits to Argonne National Laboratory, Idaho National Laboratory, Oak Ridge National Laboratory and the Massachusetts Institute of Technology; and University of California-Berkeley Principal Investigator Mehdi Balooch visited PNNL to observe measurements and help finalize plans for completing the desired suite of analyses. His visit was coordinated to coincide with the visit of Jim Lane and Doug Copsey.

  3. Overview of laser technology at Los Alamos National Laboratory

    SciTech Connect

    Lewis, G.K.; Cremers, D.A.

    1994-09-01

    Los Alamos National Laboratory has had a long history of involvement in laser sciences and has been recognized both for its large laser programs and smaller scale developments in laser technology and applications. The first significant program was with the Rover nuclear-based rocket propulsion system in 1968 to study laser initiated fusion. From here applications spread to programs in laser isotope separation and development of large lasers for fusion. These programs established the technological human resource base of highly trained laser physicists, engineers, and chemists that remain at the Laboratory today. Almost every technical division at Los Alamos now has some laser capability ranging from laser development, applications, studies on nonlinear processes, modeling and materials processing. During the past six years over eight R&D-100 Awards have been received by Los Alamos for development of laser-based techniques and instrumentation. Outstanding examples of technology developed include LIDAR applications to environmental monitoring, single molecule detection using fluorescence spectroscopy, a laser-based high kinetic energy source of oxygen atoms produced by a laser-sustained plasma, laser-induced breakdown spectroscopy (LIBS) for compositional, analysis, thin film high temperature superconductor deposition, multi-station laser welding, and direct metal deposition and build-up of components by fusing powder particles with a laser beam.

  4. Helicon plasma generator-assisted surface conversion ion source for the production of H- ion beams at the Los Alamos Neutron Science Centera)

    NASA Astrophysics Data System (ADS)

    Tarvainen, O.; Rouleau, G.; Keller, R.; Geros, E.; Stelzer, J.; Ferris, J.

    2008-02-01

    The converter-type negative ion source currently employed at the Los Alamos Neutron Science Center (LANSCE) is based on cesium enhanced surface production of H- ion beams in a filament-driven discharge. In this kind of an ion source the extracted H- beam current is limited by the achievable plasma density which depends primarily on the electron emission current from the filaments. The emission current can be increased by increasing the filament temperature but, unfortunately, this leads not only to shorter filament lifetime but also to an increase in metal evaporation from the filament, which deposits on the H- converter surface and degrades its performance. Therefore, we have started an ion source development project focused on replacing these thermionic cathodes (filaments) of the converter source by a helicon plasma generator capable of producing high-density hydrogen plasmas with low electron energy. In our studies which have so far shown that the plasma density of the surface conversion source can be increased significantly by exciting a helicon wave in the plasma, and we expect to improve the performance of the surface converter H- ion source in terms of beam brightness and time between services. The design of this new source and preliminary results are presented, along with a discussion of physical processes relevant for H- ion beam production with this novel design. Ultimately, we perceive this approach as an interim step towards our long-term goal, combining a helicon plasma generator with an SNS-type main discharge chamber, which will allow us to individually optimize the plasma properties of the plasma cathode (helicon) and H- production (main discharge) in order to further improve the brightness of extracted H- ion beams.

  5. Helicon plasma generator-assisted surface conversion ion source for the production of H(-) ion beams at the Los Alamos Neutron Science Center.

    PubMed

    Tarvainen, O; Rouleau, G; Keller, R; Geros, E; Stelzer, J; Ferris, J

    2008-02-01

    The converter-type negative ion source currently employed at the Los Alamos Neutron Science Center (LANSCE) is based on cesium enhanced surface production of H(-) ion beams in a filament-driven discharge. In this kind of an ion source the extracted H(-) beam current is limited by the achievable plasma density which depends primarily on the electron emission current from the filaments. The emission current can be increased by increasing the filament temperature but, unfortunately, this leads not only to shorter filament lifetime but also to an increase in metal evaporation from the filament, which deposits on the H(-) converter surface and degrades its performance. Therefore, we have started an ion source development project focused on replacing these thermionic cathodes (filaments) of the converter source by a helicon plasma generator capable of producing high-density hydrogen plasmas with low electron energy. In our studies which have so far shown that the plasma density of the surface conversion source can be increased significantly by exciting a helicon wave in the plasma, and we expect to improve the performance of the surface converter H(-) ion source in terms of beam brightness and time between services. The design of this new source and preliminary results are presented, along with a discussion of physical processes relevant for H(-) ion beam production with this novel design. Ultimately, we perceive this approach as an interim step towards our long-term goal, combining a helicon plasma generator with an SNS-type main discharge chamber, which will allow us to individually optimize the plasma properties of the plasma cathode (helicon) and H(-) production (main discharge) in order to further improve the brightness of extracted H(-) ion beams.

  6. IBA-Europhysics Prize in Applied Nuclear Science and Nuclear Methods in Medicine

    NASA Astrophysics Data System (ADS)

    MacGregor, I. J. Douglas

    2014-03-01

    The Nuclear Physics Board of the European Physical Society is pleased to announce that the 2013 IBA-Europhysics Prize in Applied Nuclear Science and Nuclear Methods in Medicine is awarded to Prof. Marco Durante, Director of the Biophysics Department at GSI Helmholtz Center (Darmstadt, Germany); Professor at the Technical University of Darmstadt (Germany) and Adjunct Professor at the Temple University, Philadelphia, USA. The prize was presented in the closing Session of the INPC 2013 conference by Mr. Thomas Servais, R&D Manager for Accelerator Development at the IBA group, who sponsor the IBA Europhysics Prize. The Prize Diploma was presented by Dr. I J Douglas MacGregor, Chair-elect of the EPS Nuclear Physics Division and Chair of the IBA Prize committee.

  7. ENDF-related Nuclear Data from the T-2 Group (T-2 Nuclear Information Service) at Los Alamos National Laboratory (LANL)

    DOE Data Explorer

    The T-2 Nuclear Information Service provides access to a variety of nuclear data, including ENDF/B cross sections, radioactive decay data, astrophysics data, photoatomic data, charged particle data, thermal neutron data, a Map to the Nuclides, and a Nuclear Data Viewer. The T-2 Group is a participating member of the U.S. Nuclear Data Program. ENDF/B-VII information presented here includes: • ENDF/B-VII Neutron Data • ENDF/BVII Thermal Scattering Data • ENDF/B-VII Proton Data • ENDF/B-VII Photonuclear Data Each of these sections of the website is an index to the contents of the specifically named ENDF/B-VII library of data. Links in each index provide access to more information about the individual materials, including raw and interpreted views of the ENDF file, and PDF plots of the cross sections and distributions. Also provided is a section of information and graphs related to the Energy Balance of ENDF/B-VII and table of neutron Kerma data. [Information taken from http://t2.lanl.gov/data/data.html

  8. Scientific Opportunities to Reduce Risk in Nuclear Process Science

    SciTech Connect

    Bredt, Paul R.; Felmy, Andrew R.; Gauglitz, Phillip A.; Hobbs, David T.; Krahn, Steve; Machara, N.; Mcilwain, Michael; Moyer, Bruce A.; Poloski, Adam P.; Subramanian, K.; Vienna, John D.; Wilmarth, B.

    2008-07-18

    Cleaning up the nation’s nuclear weapons complex remains as one of the most technologically challenging and financially costly problems facing the U.S. Department of Energy (DOE). Safety, cost, and technological challenges have often delayed progress in retrieval, processing, and final disposition of high-level waste, spent nuclear fuel, and challenging materials. Some of the issues result from the difficulty and complexity of the technological issues; others have programmatic bases, such as contracting strategies that may provide undue focus on near-term, specific clean-up goals or difficulty in developing and maintaining stakeholder confidence in the proposed solutions. We propose that independent basic fundamental science research focused on the full cleanup life-cycle offers an opportunity to help address these challenges by providing 1) scientific insight into the fundamental mechanisms involved in currently selected processing and disposal options, 2) a rational path to the development of alternative technologies should the primary options fail, 3) confidence that models that predict long-term performance of different disposal options are based upon the best available science, 4) fundamental science discovery that enables transformational solutions to revolutionize the current baseline processes.

  9. Glenn T. Seaborg and heavy ion nuclear science

    SciTech Connect

    Loveland, W. . Dept. of Chemistry Lawrence Berkeley Lab., CA )

    1992-04-01

    Radiochemistry has played a limited but important role in the study of nucleus-nucleus collisions. Many of the important radiochemical studies have taken place in Seaborg's laboratory or in the laboratories of others who have spent time in Berkeley working with Glenn T. Seaborg. I will discuss studies of low energy deep inelastic reactions with special emphasis on charge equilibration, studies of the properties of heavy residues in intermediate energy nuclear collisions and studies of target fragmentation in relativistic and ultrarelativistic reactions. The emphasis will be on the unique information afforded by radiochemistry and the physical insight derived from radiochemical studies. Future roles of radiochemistry in heavy ion nuclear science also will be discussed.

  10. Glenn T. Seaborg and heavy ion nuclear science

    SciTech Connect

    Loveland, W. |

    1992-04-01

    Radiochemistry has played a limited but important role in the study of nucleus-nucleus collisions. Many of the important radiochemical studies have taken place in Seaborg`s laboratory or in the laboratories of others who have spent time in Berkeley working with Glenn T. Seaborg. I will discuss studies of low energy deep inelastic reactions with special emphasis on charge equilibration, studies of the properties of heavy residues in intermediate energy nuclear collisions and studies of target fragmentation in relativistic and ultrarelativistic reactions. The emphasis will be on the unique information afforded by radiochemistry and the physical insight derived from radiochemical studies. Future roles of radiochemistry in heavy ion nuclear science also will be discussed.

  11. Glenn T. Seaborg and heavy ion nuclear science

    NASA Astrophysics Data System (ADS)

    Loveland, W.

    1992-04-01

    Radiochemistry has played a limited but important role in the study of nucleus-nucleus collisions. Many of the important radiochemical studies have taken place in Seaborg's laboratory or in the laboratories of others who have spent time in Berkeley working with Glenn T. Seaborg. Studies of low energy deep inelastic reactions are discussed, and special emphasis is placed on charge equilibration. Additionally, studies of the properties of heavy residues in intermediate energy nuclear collisions and studies of target fragmentation in relativistic and ultrarelativistic reactions are reported. The emphasis will be on the unique information afforded by radiochemistry and the physical insight derived from radiochemical studies. Future roles of radiochemistry in heavy ion nuclear science also will be discussed.

  12. Scientific Opportunities to Reduce Risk in Nuclear Process Science - 9279

    SciTech Connect

    Bredt, Paul R.; Felmy, Andrew R.; Gauglitz, Phillip A.; Poloski, Adam P.; Vienna, John D.; Moyer, Bruce A.; Hobbs, David; Wilmarth, B.; Mcilwain, Michael; Subramanian, K.; Krahn, Steve; Machara, N.

    2009-03-01

    In this document, we propose that scientific investments for the disposal of nuclear and hazardous wastes should not be focused solely on what may be viewed as current Department of Energy needs, but also upon longer-term investments in specific areas of science that underpin technologies presently in use. In the latter regard, we propose four science theme areas: 1) the structure and dynamics of materials and interfaces, 2) coupled chemical and physical processes, 3) complex solution phase phenomena, and 4) chemical recognition phenomena. The proposed scientific focus for each of these theme areas and the scientific opportunities are identified, along with links to major risks within the initiative areas identified in EM’s Engineering and Technology Roadmap.

  13. Nuclear electric propulsion for future NASA space science missions

    SciTech Connect

    Yen, Chen-wan L.

    1993-07-20

    This study has been made to assess the needs, potential benefits and the applicability of early (circa year 2000) Nuclear Electric Propulsion (NEP) technology in conducting NASA science missions. The study goals are: to obtain the performance characteristics of near term NEP technologies; to measure the performance potential of NEP for important OSSA missions; to compare NEP performance with that of conventional chemical propulsion; to identify key NEP system requirements; to clarify and depict the degree of importance NEP might have in advancing NASA space science goals; and to disseminate the results in a format useful to both NEP users and technology developers. This is a mission performance study and precludes investigations of multitudes of new mission operation and systems design issues attendant in a NEP flight.

  14. A Kinesthetic Learning Approach to Earth Science for 3rd and 4th Grade Students on the Pajarito Plateau, Los Alamos, NM

    NASA Astrophysics Data System (ADS)

    Wershow, H. N.; Green, M.; Stocker, A.; Staires, D.

    2010-12-01

    Current efforts towards Earth Science literacy in New Mexico are guided by the New Mexico Science Benchmarks [1]. We are geoscience professionals in Los Alamos, NM who believe there is an important role for non-traditional educators utilizing innovative teaching methods. We propose to further Earth Science literacy for local 3rd and 4th grade students using a kinesthetic learning approach, with the goal of fostering an interactive relationship between the students and their geologic environment. We will be working in partnership with the Pajarito Environmental Education Center (PEEC), which teaches the natural heritage of the Pajarito Plateau to 3rd and 4th grade students from the surrounding area, as well as the Family YMCA’s Adventure Programs Director. The Pajarito Plateau provides a remarkable geologic classroom because minimal structural features complicate the stratigraphy and dramatic volcanic and erosional processes are plainly on display and easily accessible. Our methodology consists of two approaches. First, we will build an interpretive display of the local geology at PEEC that will highlight prominent rock formations and geologic processes seen on a daily basis. It will include a simplified stratigraphic section with field specimens and a map linked to each specimen’s location to encourage further exploration. Second, we will develop and implement a kinesthetic curriculum for an exploratory field class. Active engagement with geologic phenomena will take place in many forms, such as a scavenger hunt for precipitated crystals in the vesicles of basalt flows and a search for progressively smaller rhyodacite clasts scattered along an actively eroding canyon. We believe students will be more receptive to origin explanations when they possess a piece of the story. Students will be provided with field books to make drawings of geologic features. This will encourage independent assessment of phenomena and introduce the skill of scientific observation. We

  15. Science, Society, and America's Nuclear Waste: The Nuclear Waste Policy Act, Unit 3. Teacher Guide. Second Edition.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 3 of the four-part series, Science, Society, and America's Nuclear Waste, produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to identify the key elements of the United States' nuclear waste dilemma and introduce the Nuclear Waste Policy Act and the role of the…

  16. Nuclear Physics Science Network Requirements Workshop, May 2008 - Final Report

    SciTech Connect

    Tierney, Ed., Brian L; Dart, Ed., Eli; Carlson, Rich; Dattoria, Vince; Ernest, Michael; Hitchcock, Daniel; Johnston, William; Kowalski, Andy; Lauret, Jerome; Maguire, Charles; Olson, Douglas; Purschke, Martin; Rai, Gulshan; Watson, Chip; Vale, Carla

    2008-11-10

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States of America. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In May 2008, ESnet and the Nuclear Physics (NP) Program Office of the DOE Office of Science organized a workshop to characterize the networking requirements of the science programs funded by the NP Program Office. Most of the key DOE sites for NP related work will require significant increases in network bandwidth in the 5 year time frame. This includes roughly 40 Gbps for BNL, and 20 Gbps for NERSC. Total transatlantic requirements are on the order of 40 Gbps, and transpacific requirements are on the order of 30 Gbps. Other key sites are Vanderbilt University and MIT, which will need on the order of 20 Gbps bandwidth to support data transfers for the CMS Heavy Ion program. In addition to bandwidth requirements, the workshop emphasized several points in regard to science process and collaboration. One key point is the heavy reliance on Grid tools and infrastructure (both PKI and tools such as GridFTP) by the NP community. The reliance on Grid software is expected to increase in the future. Therefore, continued development and support of Grid software is very important to the NP science community. Another key finding is that scientific productivity is greatly enhanced by easy researcher-local access to instrument data. This is driving the creation of distributed repositories for instrument data at collaborating institutions, along with a corresponding increase in demand for network-based data transfers and the tools

  17. Nuclear Science References (NSR) from the National Nuclear Data Center (NNDC)

    DOE Data Explorer

    The Nuclear Science References (NSR) database is an indexed bibiliography of primary and secondary references in nuclear physics research. About 80 journals are regularly scanned for articles. Recent references are added on a weekly basis. Approximately 4300 entries are added to the database annually. In general, articles are included in NSR if they include measured, calculated, or deduced quantitative nuclear structure or reaction data. Papers that apply previously known data are generally not included. Examples of this include neutron activation analysis using known cross sections or radiological dating using known half-lives. The database can be searched like a normal bibliographic database but can also be searched by the data that distinguishes it, data such as the nuclide, target/parent/daughter, reaction, incident particles, and outgoing particles. (Specialized Interface) [Taken from the NSR Help pages at http://www.nndc.bnl.gov/nsr/nsr_help.jsp

  18. Los Alamos science, Number 14

    SciTech Connect

    Not Available

    1986-01-01

    Nine authored articles are included covering: natural heat engine, photoconductivity, the Caribbean Basin, energy in Central America, peat, geothermal energy, and the MANIAC computer. Separate abstracts were prepared for the articles. (DLC)

  19. Magnet design considerations for Fusion Nuclear Science Facility

    DOE PAGES

    Zhai, Yuhu; Kessel, Chuck; El-guebaly, Laila; Titus, Peter

    2016-02-25

    The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility to provide a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between ITER and the demonstration power plant (DEMO). Compared to ITER, the FNSF is smaller in size but generates much higher magnetic field, 30 times higher neutron fluence with 3 orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5 T at the plasma center withmore » plasma major radius of 4.8 m and minor radius of 1.2 m, and a peak field of 15.5 T on the TF coils for FNSF. Both low temperature superconductor (LTS) and high temperature superconductor (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high performance ternary Restack Rod Process (RRP) Nb3Sn strands for toroidal field (TF) magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high aspect ratio rectangular CICC design are evaluated for FNSF magnets but low activation jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. As a result, the material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.« less

  20. The Stewardship Science Academic Alliance: A Model of Education for Fundamental and Applied Low-energy Nuclear Science

    SciTech Connect

    Cizewski, J.A.

    2014-06-15

    The Stewardship Science Academic Alliances (SSAA) were inaugurated in 2002 by the National Nuclear Security Administration of the U. S. Department of Energy. The purpose is to enhance connections between NNSA laboratories and the activities of university scientists and their students in research areas important to NNSA, including low-energy nuclear science. This paper highlights some of the ways that the SSAA fosters education and training of graduate students and postdoctoral scholars in low-energy nuclear science, preparing them for careers in fundamental and applied research and development.

  1. NUCLEAR DATA NEEDS FOR ADVANCED REACTOR SYSTEMS. A NEA NUCLEAR SCIENCE COMMITTEE INITIATIVE.

    SciTech Connect

    SALVATORES,J.M.; ALIBERTI, G.; PALMIOTTI, G.; ROCHMAN, D.; OBLOZINSKY, P.; HERMANN, M.; TALOU, P.; KAWANO, T.; LEAL, L.; KONING, A.; KODELI, I.

    2007-04-22

    The Working Party on Evaluation Cooperation (WPEC) of the OECD Nuclear Energy Agency Nuclear Science Committee has established an International Subgroup to perform an activity in order to develop a systematic approach to define data needs for Gen-IV and, in general, for advanced reactor systems. A methodology, based on sensitivity analysis has been agreed and representative core configurations for Sodium, Gas and Lead cooled Fast Reactors (SFR, GFR, LFR) have been defined as well as a high burn-up VHTR and a high burn-up PWR. In the case of SFRs, both a TRU burner (called in fact SFR) and a core configuration with homogeneous recycling of not separated TRU (called EFR) have been considered.

  2. Introductory materials for committee members: 1) instructions for the Los Alamos National Laboratory fiscal year 2010 capability reviews 2) NPAC strategic capability planning 3) Summary self-assessment for the nuclear and particle physics, astrophysics an

    SciTech Connect

    Redondo, Antonio

    2010-01-01

    Los Alamos National Laboratory (LANL) uses external peer review to measure and continuously improve the quality of its science, technology and engineering (STE). LANL uses capability reviews to assess the STE quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. STE capabilities are define to cut across directorates providing a more holistic view of the STE quality, integration to achieve mission requirements, and mission relevance. The scope of these capabilities necessitate that there will be significant overlap in technical areas covered by capability reviews (e.g., materials research and weapons science and engineering). In addition, LANL staff may be reviewed in different capability reviews because of their varied assignments and expertise. LANL plans to perform a complete review of the Laboratory's STE capabilities (hence staff) in a three-year cycle. The principal product of an external review is a report that includes the review committee's assessments, commendations, and recommendations for STE. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). This report will be used by Laboratory Management for STE assessment and planning. The report is also provided to the Department of Energy (DOE) as part of LANL's Annual Performance Plan and to the Los Alamos National Security (LANS) LLC's Science and Technology Committee (STC) as part of its responsibilities to the LANS Board of Governors.

  3. Laboratory for Nuclear Science. High Energy Physics Program

    SciTech Connect

    Milner, Richard

    2014-07-30

    High energy and nuclear physics research at MIT is conducted within the Laboratory for Nuclear Science (LNS). Almost half of the faculty in the MIT Physics Department carry out research in LNS at the theoretical and experimental frontiers of subatomic physics. Since 2004, the U.S. Department of Energy has funded the high energy physics research program through grant DE-FG02-05ER41360 (other grants and cooperative agreements provided decades of support prior to 2004). The Director of LNS serves as PI. The grant supports the research of four groups within LNS as “tasks” within the umbrella grant. Brief descriptions of each group are given here. A more detailed report from each task follows in later sections. Although grant DE-FG02-05ER41360 has ended, DOE continues to fund LNS high energy physics research through five separate grants (a research grant for each of the four groups, as well as a grant for AMS Operations). We are pleased to continue this longstanding partnership.

  4. Tritium Plasma Experiment Upgrade for Fusion Tritium and Nuclear Sciences

    NASA Astrophysics Data System (ADS)

    Shimada, Masashi; Taylor, Chase N.; Kolasinski, Robert D.; Buchenauer, Dean A.

    2015-11-01

    The Tritium Plasma Experiment (TPE) is a unique high-flux linear plasma device that can handle beryllium, tritium, and neutron-irradiated plasma facing materials, and is the only existing device dedicated to directly study tritium retention and permeation in neutron-irradiated materials [M. Shimada et.al., Rev. Sci. Instru. 82 (2011) 083503 and and M. Shimada, et.al., Nucl. Fusion 55 (2015) 013008]. Recently the TPE has undergone major upgrades in its electrical and control systems. New DC power supplies and a new control center enable remote plasma operations from outside of the contamination area for tritium, minimizing the possible exposure risk with tritium and beryllium. We discuss the electrical upgrade, enhanced operational safety, improved plasma performance, and development of tritium plasma-driven permeation and optical spectrometer system. This upgrade not only improves operational safety of the worker, but also enhances plasma performance to better simulate extreme plasma-material conditions expected in ITER, Fusion Nuclear Science Facility (FNSF), and Demonstration reactor (DEMO). This work was prepared for the U.S. Department of Energy, Office of Fusion Energy Sciences, under the DOE Idaho Field Office contract number DE-AC07-05ID14517.

  5. 75 FR 34439 - Defense Science Board Task Force on Nuclear Treaty Monitoring and Verification

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ... of the Secretary Defense Science Board Task Force on Nuclear Treaty Monitoring and Verification... Science Board Task Force on Nuclear Treaty Monitoring and Verification will meet in closed session on July... might be implemented. The task force's findings and recommendations, pursuant to 41 CFR...

  6. New Generation of Los Alamos Opacity Tables

    NASA Astrophysics Data System (ADS)

    Colgan, James; Kilcrease, D. P.; Magee, N. H.; Sherrill, M. E.; Abdallah, J.; Hakel, P.; Fontes, C. J.; Guzik, J. A.; Mussack, K. A.

    2016-05-01

    We present a new generation of Los Alamos OPLIB opacity tables that have been computed using the ATOMIC code. Our tables have been calculated for all 30 elements from hydrogen through zinc and are publicly available through our website. In this poster we discuss the details of the calculations that underpin the new opacity tables. We also show several recent applications of the use of our opacity tables to solar modeling and other astrophysical applications. In particular, we demonstrate that use of the new opacities improves the agreement between solar models and helioseismology, but does not fully resolve the long-standing `solar abundance' problem. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC5206NA25396.

  7. ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology

    SciTech Connect

    Chadwick, M B; Oblozinsky, P; Herman, M; Greene, N M; McKnight, R D; Smith, D L; Young, P G; MacFarlane, R E; Hale, G M; Haight, R C; Frankle, S; Kahler, A C; Kawano, T; Little, R C; Madland, D G; Moller, P; Mosteller, R; Page, P; Talou, P; Trellue, H; White, M; Wilson, W B; Arcilla, R; Dunford, C L; Mughabghab, S F; Pritychenko, B; Rochman, D; Sonzogni, A A; Lubitz, C; Trumbull, T H; Weinman, J; Brown, D; Cullen, D E; Heinrichs, D; McNabb, D; Derrien, H; Dunn, M; Larson, N M; Leal, L C; Carlson, A D; Block, R C; Briggs, B; Cheng, E; Huria, H; Kozier, K; Courcelle, A; Pronyaev, V; der Marck, S

    2006-10-02

    We describe the next generation general purpose Evaluated Nuclear Data File, ENDF/B-VII.0, of recommended nuclear data for advanced nuclear science and technology applications. The library, released by the U.S. Cross Section Evaluation Working Group (CSEWG) in December 2006, contains data primarily for reactions with incident neutrons, protons, and photons on almost 400 isotopes. The new evaluations are based on both experimental data and nuclear reaction theory predictions. The principal advances over the previous ENDF/B-VI library are the following: (1) New cross sections for U, Pu, Th, Np and Am actinide isotopes, with improved performance in integral validation criticality and neutron transmission benchmark tests; (2) More precise standard cross sections for neutron reactions on H, {sup 6}Li, {sup 10}B, Au and for {sup 235,238}U fission, developed by a collaboration with the IAEA and the OECD/NEA Working Party on Evaluation Cooperation (WPEC); (3) Improved thermal neutron scattering; (4) An extensive set of neutron cross sections on fission products developed through a WPEC collaboration; (5) A large suite of photonuclear reactions; (6) Extension of many neutron- and proton-induced reactions up to an energy of 150 MeV; (7) Many new light nucleus neutron and proton reactions; (8) Post-fission beta-delayed photon decay spectra; (9) New radioactive decay data; and (10) New methods developed to provide uncertainties and covariances, together with covariance evaluations for some sample cases. The paper provides an overview of this library, consisting of 14 sublibraries in the same, ENDF-6 format, as the earlier ENDF/B-VI library. We describe each of the 14 sublibraries, focusing on neutron reactions. Extensive validation, using radiation transport codes to simulate measured critical assemblies, show major improvements: (a) The long-standing underprediction of low enriched U thermal assemblies is removed; (b) The {sup 238}U, {sup 208}Pb, and {sup 9}Be reflector

  8. REACTOR DOSIMETRY STUDY OF THE RHODE ISLAND NUCLEAR SCIENCE CENTER.

    SciTech Connect

    HOLDEN, N.E.,; RECINIELLO, R.N.; HU, J.-P.

    2005-05-08

    The Rhode Island Nuclear Science Center (RINSC), located on the Narragansett Bay Campus of the University of Rhode Island, is a state-owned and US NRC-licensed nuclear facility constructed for educational and industrial applications. The main building of RINSC houses a two-megawatt (2 MW) thermal power critical reactor immersed in demineralized water within a shielded tank. As its original design in 1958 by the Rhode Island Atomic Energy Commission focused on the teaching and research use of the facility, only a minimum of 3.85 kg fissile uranium-235 was maintained in the fuel elements to allow the reactor to reach a critical state. In 1986 when RINSC was temporarily shutdown to start US DOE-directed core conversion project for national security reasons, all the U-Al based Highly-Enriched Uranium (HEU, 93% uranium-235 in the total uranium) fuel elements were replaced by the newly developed U{sub 3}Si{sub 2}-Al based Low Enriched Uranium (LEU, {le}20% uranium-235 in the total uranium) elements. The reactor first went critical after the core conversion was achieved in 1993, and feasibility study on the core upgrade to accommodate Boron Neutron-Captured Therapy (BNCT) was completed in 2000 [3]. The 2-MW critical reactor at RINSC which includes six beam tubes, a thermal column, a gamma-ray experimental station and two pneumatic tubes has been extensive utilized as neutron-and-photon dual source for nuclear-specific research in areas of material science, fundamental physics, biochemistry, and radiation therapy. After the core conversion along with several major system upgrade (e.g. a new 3-MW cooling tower, a large secondary piping system, a set of digitized power-level instrument), the reactor has become more compact and thus more effective to generate high beam flux in both the in-core and ex-core regions for advance research. If not limited by the manpower and operating budget in recent years, the RINSC built ''in concrete'' structure and control systems should have

  9. Science Flight Program of the Nuclear Compton Telescope

    NASA Astrophysics Data System (ADS)

    Boggs, Steven

    This is the lead proposal for this program. We are proposing a 5-year program to perform the scientific flight program of the Nuclear Compton Telescope (NCT), consisting of a series of three (3) scientific balloon flights. NCT is a balloon-borne, wide-field telescope designed to survey the gamma-ray sky (0.2-5 MeV), performing high-resolution spectroscopy, wide-field imaging, and polarization measurements. NCT has been rebuilt as a ULDB payload under the current 2-year APRA grant. (In that proposal we stated our goal was to return at this point to propose the scientific flight program.) The NCT rebuild/upgrade is on budget and schedule to achieve flight-ready status in Fall 2013. Science: NCT will map the Galactic positron annihilation emission, shedding more light on the mysterious concentration of this emission uncovered by INTEGRAL. NCT will survey Galactic nucleosynthesis and the role of supernova and other stellar populations in the creation and evolution of the elements. NCT will map 26-Al and positron annihilation with unprecedented sensitivity and uniform exposure, perform the first mapping of 60-Fe, search for young, hidden supernova remnants through 44-Ti emission, and enable a host of other nuclear astrophysics studies. NCT will also study compact objects (in our Galaxy and AGN) and GRBs, providing novel measurements of polarization as well as detailed spectra and light curves. Design: NCT is an array of germanium gamma-ray detectors configured in a compact, wide-field Compton telescope configuration. The array is shielded on the sides and bottom by an active anticoincidence shield but is open to the 25% of the sky above for imaging, spectroscopy, and polarization measurements. The instrument is mounted on a zenith-pointed gondola, sweeping out ~50% of the sky each day. This instrument builds off the Compton telescope technique pioneered by COMPTEL on the Compton Gamma Ray Observatory. However, by utilizing modern germanium semiconductor strip detectors

  10. Possibilities for Nuclear Photo-Science with Intense Lasers

    SciTech Connect

    Barty, C J; Hartemann, F V; McNabb, D P; Messerly, M; Siders, C; Anderson, S; Barnes, P; Betts, S; Gibson, D; Hagmann, C; Hernandez, J; Johnson, M; Jovanovic, I; Norman, R; Pruet, J; Rosenswieg, J; Shverdin, M; Tremaine, A

    2006-06-26

    The interaction of intense laser light with relativistic electrons can produce unique sources of high-energy x rays and gamma rays via Thomson scattering. ''Thomson-Radiated Extreme X-ray'' (T-REX) sources with peak photon brightness (photons per unit time per unit bandwidth per unit solid angle per unit area) that exceed that available from world's largest synchrotrons by more than 15 orders of magnitude are possible from optimally designed systems. Such sources offer the potential for development of ''nuclear photo-science'' applications in which the primary photon-atom interaction is with the nucleons and not the valence electrons. Applications include isotope-specific detection and imaging of materials, inverse density radiography, transmutation of nuclear waste and fundamental studies of nuclear structure. Because Thomson scattering cross sections are small, < 1 barn, the output from a T-REX source is optimized when the laser spot size and the electron spot size are minimized and when the electron and laser pulse durations are similar and short compared to the transit time through the focal region. The principle limitation to increased x-ray or gamma-ray brightness is ability to focus the electron beam. The effects of space charge on electron beam focus decrease approximately linearly with electron beam energy. For this reason, T-REX brightness increases rapidly as a function of the electron beam energy. As illustrated in Figure 1, above 100 keV these sources are unique in their ability to produce bright, narrow-beam, tunable, narrow-band gamma rays. New, intense, short-pulse, laser technologies for advanced T-REX sources are currently being developed at LLNL. The construction of a {approx}1 MeV-class machine with this technology is underway and will be used to excite nuclear resonance fluorescence in variety of materials. Nuclear resonance fluorescent spectra are unique signatures of each isotope and provide an ideal mechanism for identification of nuclear

  11. ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology

    NASA Astrophysics Data System (ADS)

    Chadwick, M. B.; Obložinský, P.; Herman, M.; Greene, N. M.; McKnight, R. D.; Smith, D. L.; Young, P. G.; MacFarlane, R. E.; Hale, G. M.; Frankle, S. C.; Kahler, A. C.; Kawano, T.; Little, R. C.; Madland, D. G.; Moller, P.; Mosteller, R. D.; Page, P. R.; Talou, P.; Trellue, H.; White, M. C.; Wilson, W. B.; Arcilla, R.; Dunford, C. L.; Mughabghab, S. F.; Pritychenko, B.; Rochman, D.; Sonzogni, A. A.; Lubitz, C. R.; Trumbull, T. H.; Weinman, J. P.; Brown, D. A.; Cullen, D. E.; Heinrichs, D. P.; McNabb, D. P.; Derrien, H.; Dunn, M. E.; Larson, N. M.; Leal, L. C.; Carlson, A. D.; Block, R. C.; Briggs, J. B.; Cheng, E. T.; Huria, H. C.; Zerkle, M. L.; Kozier, K. S.; Courcelle, A.; Pronyaev, V.; van der Marck, S. C.

    2006-12-01

    We describe the next generation general purpose Evaluated Nuclear Data File, ENDF/B-VII.0, of recommended nuclear data for advanced nuclear science and technology applications. The library, released by the U.S. Cross Section Evaluation Working Group (CSEWG) in December 2006, contains data primarily for reactions with incident neutrons, protons, and photons on almost 400 isotopes, based on experimental data and theory predictions. The principal advances over the previous ENDF/B-VI library are the following: (1) New cross sections for U, Pu, Th, Np and Am actinide isotopes, with improved performance in integral validation criticality and neutron transmission benchmark tests; (2) More precise standard cross sections for neutron reactions on H, 6Li, 10B, Au and for 235,238U fission, developed by a collaboration with the IAEA and the OECD/NEA Working Party on Evaluation Cooperation (WPEC); (3) Improved thermal neutron scattering; (4) An extensive set of neutron cross sections on fission products developed through a WPEC collaboration; (5) A large suite of photonuclear reactions; (6) Extension of many neutron- and proton-induced evaluations up to 150 MeV; (7) Many new light nucleus neutron and proton reactions; (8) Post-fission beta-delayed photon decay spectra; (9) New radioactive decay data; (10) New methods for uncertainties and covariances, together with covariance evaluations for some sample cases; and (11) New actinide fission energy deposition. The paper provides an overview of this library, consisting of 14 sublibraries in the same ENDF-6 format as the earlier ENDF/B-VI library. We describe each of the 14 sublibraries, focusing on neutron reactions. Extensive validation, using radiation transport codes to simulate measured critical assemblies, show major improvements: (a) The long-standing underprediction of low enriched uranium thermal assemblies is removed; (b) The 238U and 208Pb reflector biases in fast systems are largely removed; (c) ENDF/B-VI.8 good

  12. Los Alamos National Laboratory strategic directions

    SciTech Connect

    Hecker, S.

    1995-10-01

    It is my pleasure to welcome you to Los Alamos. I like the idea of bringing together all aspects of the research community-defense, basic science, and industrial. It is particularly important in today`s times of constrained budgets and in fields such as neutron research because I am convinced that the best science and the best applications will come from their interplay. If we do the science well, then we will do good applications. Keeping our eye focused on interesting applications will spawn new areas of science. This interplay is especially critical, and it is good to have these communities represented here today.

  13. Audit Report, "Fire Protection Deficiencies at Los Alamos National Laboratory"

    SciTech Connect

    2009-06-01

    The Department of Energy's Los Alamos National Laboratory (Los Alamos) maintains some of the Nation's most important national security assets, including nuclear materials. Many of Los Alamos' facilities are located in close proximity to one another, are occupied by large numbers of contract and Federal employees, and support activities ranging from nuclear weapons design to science-related activities. Safeguarding against fires, regardless of origin, is essential to protecting employees, surrounding communities, and national security assets. On June 1, 2006, Los Alamos National Security, LLC (LANS), became the managing and operating contractor for Los Alamos, under contract with the Department's National Nuclear Security Administration (NNSA). In preparation for assuming its management responsibilities at Los Alamos, LANS conducted walk-downs of the Laboratory's facilities to identify pre-existing deficiencies that could give rise to liability, obligation, loss or damage. The walk-downs, which identified 812 pre-existing fire protection deficiencies, were conducted by subject matter professionals, including fire protection experts. While the Los Alamos Site Office has overall responsibility for the effectiveness of the fire protection program, LANS, as the Laboratory's operating contractor, has a major, day-to-day role in minimizing fire-related risks. The issue of fire protection at Los Alamos is more than theoretical. In May 2000, the 'Cerro Grande' fire burned about 43,000 acres, including 7,700 acres of Laboratory property. Due to the risk posed by fire to the Laboratory's facilities, workforce, and surrounding communities, we initiated this audit to determine whether pre-existing fire protection deficiencies had been addressed. Our review disclosed that LANS had not resolved many of the fire protection deficiencies that had been identified in early 2006: (1) Of the 296 pre-existing deficiencies we selected for audit, 174 (59 percent) had not been corrected

  14. Seismic vulnerability study Los Alamos Meson Physics Facility (LAMPF)

    SciTech Connect

    Salmon, M.; Goen, L.K.

    1995-12-01

    The Los Alamos Meson Physics Facility (LAMPF), located at TA-53 of Los Alamos National Laboratory (LANL), features an 800 MeV proton accelerator used for nuclear physics and materials science research. As part of the implementation of DOE Order 5480.25 and in preparation for DOE Order 5480.28, a seismic vulnerability study of the structures, systems, and components (SSCs) supporting the beam line from the accelerator building through to the ends of die various beam stops at LAMPF has been performed. The study was accomplished using the SQUG GIP methodology to assess the capability of the various SSCs to resist an evaluation basis earthquake. The evaluation basis earthquake was selected from site specific seismic hazard studies. The goals for the study were as follows: (1) identify SSCs which are vulnerable to seismic loads; and (2) ensure that those SSCs screened during die evaluation met the performance goals required for DOE Order 5480.28. The first goal was obtained by applying the SQUG GIP methodology to those SSCS represented in the experience data base. For those SSCs not represented in the data base, information was gathered and a significant amount of engineering judgment applied to determine whether to screen the SSC or to classify it as an outlier. To assure the performance goals required by DOE Order 5480.28 are met, modifications to the SQUG GIP methodology proposed by Salmon and Kennedy were used. The results of this study ire presented in this paper.

  15. Energy, information science, and systems science

    SciTech Connect

    Wallace, Terry C; Mercer - Smith, Janet A

    2011-02-01

    This presentation will discuss global trends in population, energy consumption, temperature changes, carbon dioxide emissions, and energy security programs at Los Alamos National Laboratory. LANL's capabilities support vital national security missions and plans for the future. LANL science supports the energy security focus areas of impacts of Energy Demand Growth, Sustainable Nuclear Energy, and Concepts and Materials for Clean Energy. The innovation pipeline at LANL spans discovery research through technology maturation and deployment. The Lab's climate science capabilities address major issues. Examples of modeling and simulation for the Coupled Ocean and Sea Ice Model (COSIM) and interactions of turbine wind blades and turbulence will be given.

  16. Topics in nuclear and radiochemistry for college curricula and high school science programs

    SciTech Connect

    Not Available

    1990-01-01

    The concern with the current status and trends of nuclear chemistry and radiochemistry education in academic institutions was addressed in a recent workshop. The 1988 workshop considered the important contributions that scientist with nuclear and radiochemistry backgrounds have made and are continuing to make to other sciences and to various applied fields. Among the areas discussed were environmental studies, life sciences, materials science, separation technology, hot atom chemistry, cosmochemistry, and the rapidly growing field of nuclear medicine. It is intent of the organizer and participants of this symposium entitled Topics in Nuclear and Radiochemistry for College Curricula and High School Science Program'' to provide lecture material on topics related to nuclear and radiochemistry to educators. It is our hope that teachers, who may or may not be familiar with the field, will find this collections of articles useful and incorporate some of them into their lectures.

  17. Los Alamos offers Fellowships

    NASA Astrophysics Data System (ADS)

    Los Alamos National Laboratory in New Mexico is calling for applications for postdoctoral appointments and research fellowships. The positions are available in geoscience as well as other scientific disciplines.The laboratory, which is operated by the University of California for the Department of Energy, awards J. Robert Oppenheimer Research Fellowships to scientists that either have or will soon complete doctoral degrees. The appointments are for two years, are renewable for a third year, and carry a stipend of $51,865 per year. Potential applicants should send a resume or employment application and a statement of research goals to Carol M. Rich, Div. 89, Human Resources Development Division, MS P290, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 by mid-November.

  18. Nuclear science abstracts (NSA) database 1948--1974 (on the Internet)

    SciTech Connect

    1999-02-01

    Nuclear Science Abstracts (NSA) is a comprehensive abstract and index collection of the International Nuclear Science and Technology literature for the period 1948 through 1976. Included are scientific and technical reports of the US Atomic Energy Commission, US Energy Research and Development Administration and its contractors, other agencies, universities, and industrial and research organizations. Coverage of the literature since 1976 is provided by Energy Science and Technology Database. Approximately 25% of the records in the file contain abstracts. These are from the following volumes of the print Nuclear Science Abstracts: Volumes 12--18, Volume 29, and Volume 33. The database contains over 900,000 bibliographic records. All aspects of nuclear science and technology are covered, including: Biomedical Sciences; Metals, Ceramics, and Other Materials; Chemistry; Nuclear Materials and Waste Management; Environmental and Earth Sciences; Particle Accelerators; Engineering; Physics; Fusion Energy; Radiation Effects; Instrumentation; Reactor Technology; Isotope and Radiation Source Technology. The database includes all records contained in Volume 1 (1948) through Volume 33 (1976) of the printed version of Nuclear Science Abstracts (NSA). This worldwide coverage includes books, conference proceedings, papers, patents, dissertations, engineering drawings, and journal literature. This database is now available for searching through the GOV. Research Center (GRC) service. GRC is a single online web-based search service to well known Government databases. Featuring powerful search and retrieval software, GRC is an important research tool. The GRC web site is at http://grc.ntis.gov.

  19. Energy supply and environmental issues: The Los Alamos National Laboratory experience in regional and international programs

    SciTech Connect

    Goff, S.J.

    1995-12-31

    The Los Alamos National Laboratory, operated by the University of California, encompasses more than forty-three square miles of mesas and canyons in northern New Mexico. A Department of Energy national laboratory, Los Alamos is one of the largest multidisciplinary, multiprogram laboratories in the world. Our mission, to apply science and engineering capabilities to problems of national security, has expanded to include a broad array of programs. We conduct extensive research in energy, nuclear safeguards and security, biomedical science, computational science, environmental protection and cleanup, materials science, and other basic sciences. The Energy Technology Programs Office is responsible for overseeing and developing programs in three strategic areas: energy systems and the environment, transportation and infrastructure, and integrated chemicals and materials processing. Our programs focus on developing reliable, economic and environmentally sound technologies that can help ensure an adequate supply of energy for the nation. To meet these needs, we are involved in programs that range from new and enhanced oil recovery technologies and tapping renewable energy sources, through efforts in industrial processes, electric power systems, clean coal technologies, civilian radioactive waste, high temperature superconductivity, to studying the environmental effects of energy use.

  20. A,B,C`s of nuclear science

    SciTech Connect

    Noto, V.A.; Norman, E.B.; Chan, Yuen-Dat; Dairiki, J.; Matis, H.S.; McMahan, M.A.; Otto, R.

    1995-08-07

    This introductory level presentation contains information on nuclear structure, radioactivity, alpha decay, beta decay, gamma decay, half-life, nuclear reactions, fusion, fission, cosmic rays, and radiation protection. Nine experiments with procedures and test questions are included.

  1. Undergraduate and Graduate Opportunities in Nuclear Science at Simon Fraser University

    NASA Astrophysics Data System (ADS)

    Andreoiu, Corina; Brodovitch, J.-C.; D'Auria, J. M.; Starosta, K.

    2012-10-01

    The Departments of Chemistry and Physics at Simon Fraser University offer a Nuclear Science Minor at undergraduate level. The program, which is unique in Canada, attracts students from all departments of the Faculty of Science, and, occasionally, from other departments such as engineering and business. Students graduating with this minor have the opportunity to get employment in academia and a variety of industries ranging from nuclear power to nuclear medicine, safety, accelerators, etc. At the graduate level, the Nuclear Science group in the Department of Chemistry attracts students to its in-house program and also in collaboration with TRIUMF, Canada's Laboratory for Nuclear and Particle Physics. The graduate program offer a rich plethora of topics in experimental nuclear science ranging from understanding the matter at subatomic level and its role in astrochemistry to applications of nuclear science in radiation measurements and monitoring, nuclear instrumentation, etc. The academic components of the program, its goals and future developments are presented in this paper along with enrolment statistics for the last ten years.

  2. The Los Alamos primer

    SciTech Connect

    Serber, R.

    1992-01-01

    This book contains the 1943 lecture notes of Robert Serber. Serber was a protege of J. Robert Oppenheimer and member of the team that built the first atomic bomb - reveal what the Los Alamos scientists knew, and did not know, about the terrifying weapon they were building.

  3. An Analysis of the Universal Decimal Classification as a Term System for Nuclear Science and Technology

    ERIC Educational Resources Information Center

    Stueart, Robert D.

    1971-01-01

    The possibilities of merging the terminology of the Universal Decimal Classification System with that of a term system - Engineers Joint Council's Thesaurus - for nuclear science and technology are explored. (12 references) (Author/NH)

  4. Los Alamos National Laboratory Facility Review

    SciTech Connect

    Nelson, Ronald Owen

    2015-06-05

    This series of slides depicts the Los Alamos Neutron Science Center (LANSCE). The Center's 800-MeV linac produces H+ and H- beams as well as beams of moderated (cold to 1 MeV) and unmoderated (0.1 to 600 MeV) neutrons. Experimental facilities and their capabilities and characteristics are outlined. Among these are LENZ, SPIDER, and DANCE.

  5. Los Alamos National Laboratory scientific interactions with the Former Soviet Union

    SciTech Connect

    White, P.C.

    1995-12-31

    The Los Alamos National Laboratory has a wide-ranging set of scientific interactions with technical institutes in the Former Soviet Union (FSU). Many of these collaborations, especially those in pure science, began long before the end of the Cold War and the breakup of the Soviet Union. This overview will, however, focus for the most part on those activities that were initiated in the last few years. This review may also serve both to indicate the broad spectrum of US government interests that are served, at least in part, through these laboratory initiatives, and to suggest ways in which additional collaborations with the FSU may be developed to serve similar mutual interests of the countries involved. While most of the examples represent programs carried out by Los Alamos, they are also indicative of similar efforts by Lawrence Livermore National Laboratory and Sandia National Laboratories. There are indeed other Department of Energy (DOE) laboratories, and many of them have active collaborative programs with FSU institutes. However, the laboratories specifically identified above are those with special nuclear weapons responsibilities, and thus have unique technical capabilities to address certain issues of some importance to the continuing interests of the United States and the states of the Former Soviet Union. Building on pre-collapse scientific collaborations and contacts, Los Alamos has used the shared language of science to build institutional and personal relationships and to pursue common interests. It is important to understand that Los Alamos, and the other DOE weapons laboratories are federal institutions, working with federal funds, and thus every undertaking has a definite relationship to some national objective. The fertile areas for collaboration are obviously those where US and Russian interests coincide.

  6. Igniting the Light Elements: The Los Alamos Thermonuclear Weapon Project, 1942-1952

    SciTech Connect

    Anne C. Fitzpatrick

    1999-07-01

    The American system of nuclear weapons research and development was conceived and developed not as a result of technological determinism, but by a number of individual architects who promoted the growth of this large technologically-based complex. While some of the technological artifacts of this system, such as the fission weapons used in World War II, have been the subject of many historical studies, their technical successors--fusion (or hydrogen) devices--are representative of the largely unstudied highly secret realms of nuclear weapons science and engineering. In the postwar period a small number of Los Alamos Scientific Laboratory's staff and affiliates were responsible for theoretical work on fusion weapons, yet the program was subject to both the provisions and constraints of the US Atomic Energy Commission, of which Los Alamos was a part. The Commission leadership's struggle to establish a mission for its network of laboratories, least of all to keep them operating, affected Los Alamos's leaders' decisions as to the course of weapons design and development projects. Adapting Thomas P. Hughes's ''large technological systems'' thesis, I focus on the technical, social, political, and human problems that nuclear weapons scientists faced while pursuing the thermonuclear project, demonstrating why the early American thermonuclear bomb project was an immensely complicated scientific and technological undertaking. I concentrate mainly on Los Alamos Scientific Laboratory's Theoretical, or T, Division, and its members' attempts to complete an accurate mathematical treatment of the ''Super''--the most difficult problem in physics in the postwar period--and other fusion weapon theories. Although tackling a theoretical problem, theoreticians had to address technical and engineering issues as well. I demonstrate the relative value and importance of H-bomb research over time in the postwar era to scientific, politician, and military participants in this project. I

  7. Crossroads: Quality of Life in a Nuclear World. A High School Science Curriculum.

    ERIC Educational Resources Information Center

    French, Dan; Phillips, Connie

    One of a set of high school curricula on nuclear issues, this 10-day science unit helps students understand the interrelationship between the economy, the arms race, military spending, and the threat of nuclear war. Through activities such as role playing, discussion, brainstorming, and problem solving, students develop their ability to evaluate…

  8. 1986 Nuclear Science Symposium, 33rd, and 1986 Symposium on Nuclear Power Systems, 18th, Washington, DC, Oct. 29-31, 1986, Proceedings

    NASA Technical Reports Server (NTRS)

    Stubblefield, F. W. (Editor)

    1987-01-01

    Papers are presented on space, low-energy physics, and general nuclear science instrumentations. Topics discussed include data acquisition systems and circuits, nuclear medicine imaging and tomography, and nuclear radiation detectors. Consideration is given to high-energy physics instrumentation, reactor systems and safeguards, health physics instrumentation, and nuclear power systems.

  9. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    SciTech Connect

    Todd R. Allen

    2011-12-01

    This is a document required by Basic Energy Sciences as part of a mid-term review, in the third year of the five-year award period and is intended to provide a critical assessment of the Center for Materials Science of Nuclear Fuels (strategic vision, scientific plans and progress, and technical accomplishments).

  10. Nuclear Power in the Classroom: A Union of Science and Social Studies Education.

    ERIC Educational Resources Information Center

    Shillenn, James K.; Vincenti, John R.

    This paper examines issues that K-12 science and social studies teachers need to keep in mind when teaching about nuclear power. The information needs to be presented in as objective a manner as possible. Science needs to become more social oriented. Team teaching should be encouraged. Elementary and secondary inservice teacher education is…

  11. Materials accounting at Los Alamos National Laboratory

    SciTech Connect

    Roberts, N.J.; Erkkila, B.H.; Kelso, H.F.

    1985-07-20

    The materials accounting system at Los Alamos has evolved from an ''80-column'' card system to a very sophisticated near-real-time computerized nuclear material accountability and safeguards system (MASS). The present hardware was designed and acquired in the late 70's and is scheduled for a major upgrade in fiscal year 1986. The history of the system from 1950 through the DYMAC of the late 70's up to the present will be discussed. The philosophy of the system along with the details of the system will be covered. This system has addressed the integrated problems of management, control, and accounting of nuclear material successfully. 8 refs., 3 figs., 1 tab.

  12. NUCLEAR SCIENCE: DOE Drops Plan to Restart Reactor.

    PubMed

    Service, R F

    2000-12-01

    The U.S. Department of Energy (DOE) has abandoned the idea of restarting a controversial nuclear reactor at the Hanford Nuclear Reservation in Washington state. Some biomedical researchers are applauding the decision to pull the plug on the Fast Flux Test Facility, which they feared would drain scarce resources from other DOE research programs.

  13. Investigation of an online, problem-based introduction to nuclear sciences: A case study

    SciTech Connect

    Schmidt, M.; Easter, M.; Jiazhen, W.; Jonassen, D.

    2006-07-01

    An online, grant-funded course on nuclear engineering in society was developed at a large Midwestern university with the goal of providing non-majors a meaningful introduction to the many applications of nuclear science in a modern society and to stimulate learner interest in academic studies and/or professional involvement in nuclear science. Using a within-site case study approach, the current study focused on the efficacy of the online learning environment's support of learners' acquisition of knowledge and the impact of the environment on learners' interest in and beliefs about nuclear sciences in society. Findings suggest the environment successfully promoted learning and had a positive impact on learners' interests and beliefs. (authors)

  14. Review of liquid metal heat pipe work at Los Alamos

    NASA Astrophysics Data System (ADS)

    Reid, Robert S.; Merrigan, Michael A.; Sena, J. Tom

    A survey of space-power related liquid metal heat pipe work at Los Alamos National Laboratory is presented. Heat pipe development at Los Alamos has been on-going since 1963. Heat pipes were initially developed for thermionic nuclear-electrical power production in space. Since then Los Alamos has developed liquid metal heat pipes for numerous applications related to high temperature systems in both the space and terrestrial environments. Some of these applications include thermionic electrical generators, thermoelectric energy conversion (both in-core and direct radiation), thermal energy storage, hypersonic vehicle leading edge cooling, and heat pipe vapor laser cells. Some of the work performed at Los Alamos has been documented in internal reports that are often little-known. A representative description and summary of progress in space-related liquid metal heat pipe technology is provided followed by a reference section citing sources where these works may be found.

  15. Review of liquid metal heat pipe work at Los Alamos

    SciTech Connect

    Reid, R.S.; Merrigan, M.A.; Sena, J.T. )

    1991-01-10

    A survey of space-power related liquid metal heat pipe work at Los Alamos National Laboratory is presented. Heat pipe development at Los Alamos has been on-going since 1963. Heat pipes were initially developed for thermionic nuclear-electrical power production in space. Since then Los Alamos has developed liquid metal heat pipes for numerous applications related to high temperature systems in both the space and terrestrial environments. Some of these applications include thermionic electrical generators, thermoelectric energy conversion (both in-core and direct radiation), thermal energy storage, hypersonic vehicle leading edge cooling, and heat pipe vapor laser cells. Some of the work performed at Los Alamos has been documented in internal reports that are often little-known. A representative description and summary of progress in space-related liquid metal heat pipe technology is provided followed by a reference section citing sources where these works may be found.

  16. Review of liquid metal heat pipe work at Los Alamos

    NASA Astrophysics Data System (ADS)

    Reid, Robert S.; Merrigan, Michael A.; Sena, J. Tom

    1991-01-01

    A survey of space-power related liquid metal heat pipe work at Los Alamos National Laboratory is presented. Heat pipe development at Los Alamos has been on-going since 1963. Heat pipes were initially developed for thermionic nuclear-electrical power production in space. Since then Los Alamos has developed liquid metal heat pipes for numerous applications related to high temperature systems in both the space and terrestrial environments. Some of these applications include thermionic electrical generators, thermoelectric energy conversion (both in-core and direct radiation), thermal energy storage, hypersonic vehicle leading edge cooling, and heat pipe vapor laser cells. Some of the work performed at Los Alamos has been documented in internal reports that are often little-known. A representative description and summary of progress in space-related liquid metal heat pipe technology is provided followed by a reference section citing sources where these works may be found.

  17. Review of liquid metal heat pipe work at Los Alamos

    NASA Astrophysics Data System (ADS)

    Reid, Robert S.; Merrigan, Michael A.; Sena, J. T.

    A survey of space-power related liquid metal heat pipe work at Los Alamos National Laboratory is presented. Heat pipe development at Los Alamos has been on-going since 1963. Heat pipes were initially developed for thermionic nuclear-electrical power production in space. Since then Los Alamos has developed liquid metal heat pipes for numerous applications related to high temperature systems in both the space and terrestrial environments. Some of these applications include thermionic electrical generators, thermoelectric energy conversion (both in-core and direct radiation), thermal energy storage, hypersonic vehicle leading edge cooling, and heat pipe vapor laser cells. Some of the work performed at Los Alamos has been documented in internal reports that are often little-known. A representative description and summary of progress in space-related liquid metal heat pipe technology is provided followed by reference section citing sources where these works may be found.

  18. Review of liquid metal heat pipe work at Los Alamos

    SciTech Connect

    Reid, R.S.; Merrigan, M.A.; Sena, J.T.

    1990-01-01

    A survey of space-power related liquid metal heat pipe work at Los Alamos National Laboratory is presented. Heat pipe development at Los Alamos has been on-going since 1963. Heat pipes were initially developed for thermionic nuclear-electrical power production in space. Since then Los Alamos has developed liquid metal heat pipes for numerous applications related to high temperature systems in both the space and terrestrial environments. Some of these applications include thermionic electrical generators, thermoelectric energy conversion (both in-core and direct radiation), thermal energy storage, hypersonic vehicle leading edge cooling, and heat pipe vapor laser cells. Some of the work performed at Los Alamos has been documented in internal reports that are often little-known. A representative description and summary of progress in space-related liquid metal heat pipe technology is provided followed by a reference section citing sources where these works may be found. 53 refs.

  19. 1st International Nuclear Science and Technology Conference 2014 (INST2014)

    NASA Astrophysics Data System (ADS)

    2015-04-01

    Nuclear technology has played an important role in many aspects of our lives, including agriculture, energy, materials, medicine, environment, forensics, healthcare, and frontier research. The International Nuclear Science and Technology Conference (INST) aims to bring together scientists, engineers, academics, and students to share knowledge and experiences about all aspects of nuclear sciences. INST has evolved from a series of national conferences in Thailand called Nuclear Science and Technology (NST) Conference, which has been held for 11 times, the first being in 1986. INST2014 was held in August 2014 and hosted by Thailand Institute of Nuclear Technology (TINT). The theme was "Driving the future with nuclear technology". The conference working language was English. The proceedings were peer reviewed and considered for publication. The topics covered in the conference were: • Agricultural and food applications [AGR] • Environmental applications [ENV] • Radiation processing and industrial applications [IND] • Medical and nutritional applications [MED] • Nuclear physics and engineering [PHY] • Nuclear and radiation safety [SAF] • Other related topics [OTH] • Device and instrument presentation [DEV] Awards for outstanding oral and poster presentations will be given to qualified students who present their work during the conference.

  20. Computational templates for introductory nuclear science using mathcad

    NASA Astrophysics Data System (ADS)

    Sarantites, D. G.; Sobotka, L. G.

    2013-01-01

    Computational templates used to teach an introductory course in nuclear chemistry and physics at Washington University in St. Louis are presented in brief. The templates cover both basic and applied topics.

  1. Using the World Wide WEB to promote science education in nuclear energy and RWM

    SciTech Connect

    Robinson, M.

    1996-12-31

    A priority of government and business in the United States and other first tier industrial countries continues to be the improvement of science, mathematics and technology (SMT) instruction in pre university level education. The U.S. federal government has made SMT instruction an educational priority and set goals for improving it in the belief that science, math and technology education are tied to our economic well being and standard of living. The new national standards in mathematics education, science education and the proposed standards in technology education are all aimed at improving knowledge and skills in the essential areas that the federal government considers important for protecting our technological advantage in the world economy. This paper will discuss a pilot project for establishing graphical Web capability in a limited number of rural Nevada schools (six) with support from the US Department of Energy (DOE) and the state of Nevada. The general goals of the pilot project are as follows: (1) to give rural teachers and students access to up to date science information on the Web; (2) to determine whether Web access can improve science teaching and student attitudes toward science in rural Nevada schools; and (3) to identify science content on the Web that supports the National Science Standards and Benchmarks. A specific objective that this paper will address is stated as the following question: What potential do nuclear energy information office web sites offer for changing student attitudes about nuclear energy and creating greater nuclear literacy.

  2. The development of the atomic bomb, Los Alamos

    SciTech Connect

    Seidel, R.W.

    1993-11-01

    The historical presentation begins with details of the selection of Los Alamos as the site of the Army installation. Wartime efforts of the Army Corps of Engineers, and scientists to include the leader of Los Alamos, Robert Oppenheimer are presented. The layout and construction of the facilities are discussed. The monumental design requirements of the bombs are discussed, including but not limited to the utilization of the second choice implosion method of detonation, and the production of bomb-grade nuclear explosives. The paper ends with a philosophical discussion on the use of nuclear weapons.

  3. Nuclear Technology, Global Warming, and the Politicization of Science

    NASA Astrophysics Data System (ADS)

    Weart, Spencer

    2016-03-01

    Since the mid 20th century physical scientists have engaged in two fierce public debates on issues that posed existential risks to modern society: nuclear weapons and global warming. The two overlapped with a third major debate over the deployment of nuclear power reactors. Each controversy included technical disagreements raised by a minority among the scientists themselves. Despite efforts to deal with the issues objectively, the scientists became entangled in left vs. right political polarization. All these debates, but particularly the one over climate change, resulted in a deterioration of public faith in the objectivity and integrity of scientists.

  4. In-service training in nuclear science for classroom teachers in the Oak Ridge area

    SciTech Connect

    Cain, L.; King, P.

    1998-09-01

    Since the early 1980s US elementary and secondary school students have been encouraged to take tougher courses in order to become more science and math literate, and results show some improvements in math and science knowledge and skills. However, the eighth-grade results of the 41-nation Third International Math and Science Study show that the US is below average in math and just slightly above the international average in science. This is just not acceptable in this science-and-technology-driven information era. The first step in raising achievement is setting high standards for what students should know and be able to do. The primary responsibility for achieving high standards rests not only with students, teachers, and parents but also with school systems, federal programs, research, organizations, and human resources from science-and-technology-oriented businesses. Professional development for educators is one of the key issues and critical to positively affecting science education reform. Therefore, the Oak Ridge-Knoxville Section of the American Nuclear Society, Oak Ridge National Laboratory, local businesses and industries, and Tennessee schools established a partnership to present quality professional development programs to middle school and high school educators. Goals of these programs include the following: (1) to help educators understand the basic concepts of radiation; (2) to increase awareness of nuclear energy and related environmental issues; (3) to present information about careers in science and engineering as they relate to nuclear energy; and (4) to demonstrate nuclear science-related activities that can be replicated in the classroom.

  5. The Need for a Strong Science and Technology Program in the Nuclear Weapons Complex for the 21st Century

    SciTech Connect

    Garaizar, Xabier

    2009-07-02

    In this paper I argue for the need for a strong Science and Technology program in the Nuclear Weapons Complex as the basis for maintaining a credible deterrence capability. The current Nuclear Posture Review establishes a New Triad as the basis for the United States deterrence strategy in a changing security environment. A predictive science capability is at the core of a credible National Nuclear Weapons program in the 21st Century. In absence of nuclear testing, the certification of our current Nuclear Weapons relies on predictive simulations and quantification of the associated simulation uncertainties. In addition, a robust nuclear infrastructure needs an active research and development program that considers all the required nuclear scenarios, including new configurations for which there is no nuclear test data. This paper also considers alternative positions to the need for a Science and Technology program in the Nuclear Weapons complex.

  6. The Politics of Science and Technology: Nuclear and Solar Alternatives.

    ERIC Educational Resources Information Center

    Etzkowitz, Henry

    Historical data reveal that U.S. government policy and military and corporate interests have been instrumental in the development of nuclear energy and the underdevelopment of solar energy. It was not until 1972 that solar energy was funded by the Energy Research and Development Agency (ERDA) and in 1974 solar energy received $12.2 million as…

  7. Science Is Important, but Politics Drives the Siting of Nuclear Waste Repositories

    NASA Astrophysics Data System (ADS)

    Shaw, George H.

    2014-02-01

    In 1982, I worked on the Nuclear Waste Policy Act as an AGU Congressional Science Fellow tasked with assisting a member of the House Energy and Commerce Committee. When I recently read the suggestion that clay-rich strata (shales) could be a viable medium for high-level nuclear waste (HLW) disposal [Neuzil, 2013], I could not help but remember the insights I gained more than 30 years ago from my time on the Hill.

  8. Los Alamos low-level waste performance assessment status

    SciTech Connect

    Wenzel, W.J.; Purtymun, W.D.; Dewart, J.M.; Rodgers, J.E.

    1986-06-01

    This report reviews the documented Los Alamos studies done to assess the containment of buried hazardous wastes. Five sections logically present the environmental studies, operational source terms, transport pathways, environmental dosimetry, and computer model development and use. This review gives a general picture of the Los Alamos solid waste disposal and liquid effluent sites and is intended for technical readers with waste management and environmental science backgrounds but without a detailed familiarization with Los Alamos. The review begins with a wide perspective on environmental studies at Los Alamos. Hydrology, geology, and meteorology are described for the site and region. The ongoing Laboratory-wide environmental surveillance and waste management environmental studies are presented. The next section describes the waste disposal sites and summarizes the current source terms for these sites. Hazardous chemical wastes and liquid effluents are also addressed by describing the sites and canyons that are impacted. The review then focuses on the transport pathways addressed mainly in reports by Healy and Formerly Utilized Sites Remedial Action Program. Once the source terms and potential transport pathways are described, the dose assessment methods are addressed. Three major studies, the waste alternatives, Hansen and Rogers, and the Pantex Environmental Impact Statement, contributed to the current Los Alamos dose assessment methodology. Finally, the current Los Alamos groundwater, surface water, and environmental assessment models for these mesa top and canyon sites are described.

  9. Future directions for separation science in nuclear and radiochemistry

    SciTech Connect

    Pruett, D.J.

    1986-01-01

    Solvent extraction and ion exchange have been the most widely used separation techniques in nuclear and radiochemistry since their development in the 1940s. Many successful separations processes based on these techniques have been used for decades in research laboratories, analytical laboratories, and industrial plants. Thus, it is easy to conclude that most of the fundamental and applied research that is needed in these areas has been done, and that further work in these ''mature'' fields is unlikely to be fruitful. A more careful review, however, reveals that significant problems remain to be solved, and that there is a demand for the development of new reagents, methods, and systems to solve the increasingly complex separations problems in the nuclear field. Specifically, new separation techniques based on developments in membrane technology and biotechnology that have occurred over the last 20 years should find extensive applications in radiochemical separations. Considerable research is needed in such areas as interfacial chemistry, the design and control of highly selective separation agents, critically evaluated data bases and mathematical models, and the fundamental chemistry of dilute solutions if these problems are to be solved and new techniques developed in a systematic way. Nonaqueous separation methods, such as pyrochemical and fluoride volatility processes, have traditionally played a more limited role in nuclear and radiochemistry, but recent developments in the chemistry and engineering of these processes promises to open up new areas of research and application in the future.

  10. Nuclear electric propulsion for planetary science missions: NASA technology program planning

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    1993-01-01

    This paper presents the status of technology program planning to develop those Nuclear Electric Propulsion technologies needed to meet the advanced propulsion system requirements for planetary science missions in the next century. The technology program planning is based upon technologies with significant development heritage: ion electric propulsion and the SP-100 space nuclear power technologies. Detailed plans are presented for the required ion electric propulsion technology development and demonstration. Closer coordination between space nuclear power and space electric propulsion technology programs is a necessity as technology plans are being further refined in light of NEP concept definition and possible early NEP flight activities.

  11. Environmental Programs at Los Alamos National Laboratory

    SciTech Connect

    Jones, Patricia

    2012-07-11

    Summary of this project is: (1) Teamwork, partnering to meet goals - (a) Building on cleanup successes, (b) Solving legacy waste problems, (c) Protecting the area's environment; (2) Strong performance over the past three years - (a) Credibility from four successful Recovery Act Projects, (b) Met all Consent Order milestones, (c) Successful ramp-up of TRU program; (3) Partnership between the National Nuclear Security Administration's Los Alamos Site Office, DOE Carlsbad Field Office, New Mexico Environment Department, and contractor staff enables unprecedented cleanup progress; (4) Continued focus on protecting water resources; and (5) All consent order commitments delivered on time or ahead of schedule.

  12. Nuclear theory and science of the facility for rare isotope beams

    NASA Astrophysics Data System (ADS)

    Balantekin, A. B.; Carlson, J.; Dean, D. J.; Fuller, G. M.; Furnstahl, R. J.; Hjorth-Jensen, M.; Janssens, R. V. F.; Li, Bao-An; Nazarewicz, W.; Nunes, F. M.; Ormand, W. E.; Reddy, S.; Sherrill, B. M.

    2014-03-01

    The Facility for Rare Isotope Beams (FRIB) will be a world-leading laboratory for the study of nuclear structure, reactions and astrophysics. Experiments with intense beams of rare isotopes produced at FRIB will guide us toward a comprehensive description of nuclei, elucidate the origin of the elements in the cosmos, help provide an understanding of matter in neutron stars and establish the scientific foundation for innovative applications of nuclear science to society. FRIB will be essential for gaining access to key regions of the nuclear chart, where the measured nuclear properties will challenge established concepts, and highlight shortcomings and needed modifications to current theory. Conversely, nuclear theory will play a critical role in providing the intellectual framework for the science at FRIB, and will provide invaluable guidance to FRIB's experimental programs. This review overviews the broad scope of the FRIB theory effort, which reaches beyond the traditional fields of nuclear structure and reactions, and nuclear astrophysics, to explore exciting interdisciplinary boundaries with other areas.

  13. Scientific Grand Challenges: Forefront Questions in Nuclear Science and the Role of High Performance Computing

    SciTech Connect

    Khaleel, Mohammad A.

    2009-10-01

    This report is an account of the deliberations and conclusions of the workshop on "Forefront Questions in Nuclear Science and the Role of High Performance Computing" held January 26-28, 2009, co-sponsored by the U.S. Department of Energy (DOE) Office of Nuclear Physics (ONP) and the DOE Office of Advanced Scientific Computing (ASCR). Representatives from the national and international nuclear physics communities, as well as from the high performance computing community, participated. The purpose of this workshop was to 1) identify forefront scientific challenges in nuclear physics and then determine which-if any-of these could be aided by high performance computing at the extreme scale; 2) establish how and why new high performance computing capabilities could address issues at the frontiers of nuclear science; 3) provide nuclear physicists the opportunity to influence the development of high performance computing; and 4) provide the nuclear physics community with plans for development of future high performance computing capability by DOE ASCR.

  14. The Debrecen Scanning Nuclear Microprobe and its Applications in Biology and Environmental Science

    SciTech Connect

    Kertesz, Zsofia

    2007-11-26

    Nuclear microscopy is one of the most powerful tools which are able to determine quantitative trace element distributions in complex samples on a microscopic scale. The advantage of nuclear microprobes are that different ion beam analytical techniques, like PIXE, RBS, STIM and NRA can be applied at the same time allowing the determination of the sample structure, major, minor and trace element distribution simultaneously.In this paper a nuclear microprobe setup developed for the microanalysis of thin complex samples of organic matrix at the Debrecen Scanning Nuclear Microprobe Facility is presented. The application of nuclear microscopy in life sciences is shown through an example, the study of penetration of TiO{sub 2} nanoparticles of bodycare cosmetics in skin layers.

  15. Nuclear Science Symposium, 4th, and Nuclear Power Systems Symposium, 9th, San Francisco, Calif., October 19-21, 1977, Proceedings

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Consideration is given to the following types of high energy physics instrumentation: drift chambers, multiwire proportional chambers, calorimeters, optical detectors, ionization and scintillation detectors, solid state detectors, and electronic and digital subsystems. Attention is also paid to reactor instrumentation, nuclear medicine instrumentation, data acquisition systems for nuclear instrumentation, microprocessor applications in nuclear science, environmental instrumentation, control and instrumentation of nuclear power generating stations, and radiation monitoring. Papers are also presented on instrumentation for the High Energy Astronomy Observatory.

  16. Nuclear Deterrence in the 21st Century: The Role of Science and Engineering

    SciTech Connect

    Martz, Joseph C; Ventura, Jonathan S

    2008-01-01

    Twenty-first century security challenges are multi-polar and asymmetric. A few nations have substantial nuclear arsenals and active nuclear weapons programs that still threaten vital US national security directly or by supporting proliferation. Maintaining a credible US nuclear deterrent and containing further proliferation will continue to be critical to US national security. Overlaid against this security backdrop, the rising worldwide population and its effects on global climate, food, and energy resources are greatly complicating the degree and number of security challenges before policy makers.This new paradigm requires new ways to assure allies that the United States remains a trusted security partner and to deter potential adversaries from aggressive actions that threaten global stability. Every U.S. President since Truman has affirmed the role of nuclear weapons as a supreme deterrent and protector of last resort of U.S. national security interests. Recently, President Bush called for a nuclear deterrent consistent with the 'lowest number of nuclear weapons' that still protects U.S. interests. How can this be achieved? And how can we continue on a path of nuclear reductions while retaining the security benefits of nuclear deterrence? Science and engineering have a key role to play in a potential new paradigm for nuclear deterrence, a concept known as 'capability-based deterrence.'

  17. Science based integrated approach to advanced nuclear fuel development - vision, approach, and overview

    SciTech Connect

    Unal, Cetin; Pasamehmetoglu, Kemal; Carmack, Jon

    2010-01-01

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Rcactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems is critical. In order to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. The purpose of this paper is to identify the modeling and simulation approach in order to deliver predictive tools for advanced fuels development. The coordination between experimental nuclear fuel design, development technical experts, and computational fuel modeling and simulation technical experts is a critical aspect of the approach and naturally leads to an integrated, goal-oriented science-based R & D approach and strengthens both the experimental and computational efforts. The Advanced Fuels Campaign (AFC) and Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Integrated Performance and Safety Code (IPSC) are working together to determine experimental data and modeling needs. The primary objective of the NEAMS fuels IPSC project is to deliver a coupled, three-dimensional, predictive computational platform for modeling the fabrication and both normal and abnormal operation of nuclear fuel pins and assemblies, applicable to both existing and future reactor fuel designs. The science based program is pursuing the development of an integrated multi-scale and multi-physics modeling and simulation platform for nuclear fuels. This overview paper discusses the vision, goals and approaches how to develop and implement the new approach.

  18. Real world experiences with nuclear science in the classroom: What an individual can do

    SciTech Connect

    Fox, M.R.

    1991-06-01

    Contributing factors to science illiteracy are discussed. Also, the educational institutions as a factor, and specific activities which have been achieved to help mitigate a small part of the problem are described. The activities undertaken with the grades K--12 in education communities related to energy education and to nuclear energy education are included.

  19. An Analysis of World-Wide Contributions to "Nuclear Science Abstracts," Volume 22 (1968).

    ERIC Educational Resources Information Center

    Vaden, William M.

    Beginning with volume 20, "Nuclear Science Abstracts" (NSA) citations, exclusive of abstracts, have been recorded on magnetic tape. The articles have been categorized by 34 elements of the citations such as title, author, source, journal, report number, etc. At the time of this report more than 130,000 citations had been stored for purposes of…

  20. Science, Society, and America's Nuclear Waste: The Waste Management System, Unit 4. Teacher Guide. Second Edition.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 4 of the four-part series, Science, Society, and America's Nuclear Waste, produced by the U.S. Department of Energy's Office Civilian Radioactive Waste Management. The goal of this unit is to explain how transportation, a geologic repository, and the multi-purpose canister will work together to provide short-term and long-term…

  1. Science, Society, and America's Nuclear Waste: Ionizing Radiation, Unit 2. Teacher Guide. Second Edition.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 2 of the four-part series, Science, Society, and America's Nuclear Waste, produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to convey factual information relevant to radioactivity and radiation and relate that information both to the personal lives of students…

  2. Searching the "Nuclear Science Abstracts" Data Base by Use of the Berkeley Mass Storage System

    ERIC Educational Resources Information Center

    Herr, J. Joanne; Smith, Gloria L.

    1972-01-01

    Advantages of the Berkeley Mass Storage System (MSS) for information retrieval other than its size are: high serial-read rate, archival data storage; and random-access capability. By use of this device, the search cost in an SDI system based on the Nuclear Science Abstracts" data base was reduced by 20 percent. (6 references) (Author/NH)

  3. Nuclear science and engineering and health physics fellowships: 1984 description. Research areas for the practicum

    SciTech Connect

    Not Available

    1984-01-01

    This booklet describes available research areas at participating centers where a practicum may be held under the Nuclear Science and Engineering and Health Physics Fellowship program. After a year of graduate study each fellow is expected to arrange for a practicum period at one of the participating centers.

  4. Science, society, and America's nuclear waste. [Contains glossary

    SciTech Connect

    Not Available

    1992-01-01

    High-energy, ionizing radiation is called ionizing because it can knock electrons out of atoms and molecules, creating electrically charged particles called ions. Material that ionizing radiation passes through absorbs energy from the radiation mainly through this process of ionization. Ionizing radiation can be used for many beneficial purposes, but it also can cause serious, negative health effects. That is why it is one of the most thoroughly studied subjects in modern science. Most of our attention in this publication is focused on ionizing radiation -- what it is, where it comes from, and some of its properties.

  5. Nuclear medicine and imaging research (quantitative studies in radiopharmaceutical science)

    SciTech Connect

    Cooper, M.D.; Beck, R.N.

    1990-09-01

    This is a report of progress in Year Two (January 1, 1990--December 31, 1990) of Grant FG02-86ER60438, Quantitative Studies in Radiopharmaceutical Science,'' awarded for the three-year period January 1, 1989--December 31, 1991 as a competitive renewal following site visit in the fall of 1988. This program addresses the problems involving the basic science and technology underlying the physical and conceptual tools of radioactive tracer methodology as they relate to the measurement of structural and functional parameters of physiologic importance in health and disease. The principal tool is quantitative radionuclide imaging. The overall objective of this program is to further the development and transfer of radiotracer methodology from basic theory to routine clinical practice in order that individual patients and society as a whole will receive the maximum net benefit from the new knowledge gained. The focus of the research is on the development of new instruments and radiopharmaceuticals, and the evaluation of these through the phase of clinical feasibility. 25 refs., 13 figs., 1 tab.

  6. Technical manpower needs and resources at Los Alamos National Laboratory

    SciTech Connect

    Freese, K.B.

    1984-01-01

    The Los Alamos National Laboratory has begun a program to share its scientific and technological expertise with students and teachers in the surrounding area. The goal of the Laboratory's Educational Outreach Program is to stimulate an awareness of professional opportunities in the sciences and engineering.

  7. Nuclear Science Division annual report, July 1, 1981-September 30, 1982

    SciTech Connect

    Mahoney, J.

    1983-06-01

    This report summarizes the scientific research carried out within the Nuclear Science Division between July 1, 1981, and September 30, 1982. Heavy-ion investigations continue to dominate the experimental and theoretical research efforts. Complementary programs in light-ion nuclear science, in nuclear data evaluation, and in the development of advanced instrumentation are also carried out. Results from Bevalac experiments employing a wide variety of heavy ion beams, along with new or upgraded detector facilities (HISS, the Plastic Ball, and the streamer chamber) are contained in this report. These relativistic experiments have shed important light on the degree of equilibration for central collisions, the time evolution of a nuclear collision, the nuclear density and compressional energy of these collisions, and strange particle production. Reaction mechanism work dominates the heavy-ion research at the 88-Inch Cyclotron and the SuperHILAC. Recent experiments have contributed to our understanding of the nature of light-particle emission in deep-inelastic collisions, of peripheral reactions, incomplete fusion, fission, and evaporation. Nuclear structure investigations at these accelerators continue to be directed toward the understanding of the behavior of nuclei at high angular momentum. Research in the area of exotic nuclei has led to the observation at the 88-Inch Cyclotron of the ..beta..-delayed proton decay of odd-odd T/sub z/ = -2 nuclides; ..beta..-delayed proton emitters in the rare earth region are being investigated at the SuperHILAC.

  8. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    SciTech Connect

    Todd R. Allen, Director

    2011-04-01

    The Office of Science, Basic Energy Sciences, has funded the INL as one of the Energy Frontier Research Centers in the area of material science of nuclear fuels. This document is the required annual report to the Office of Science that outlines the accomplishments for the period of May 2010 through April 2011. The aim of the Center for Material Science of Nuclear Fuels (CMSNF) is to establish the foundation for predictive understanding of the effects of irradiation-induced defects on thermal transport in oxide nuclear fuels. The science driver of the center’s investigation is to understand how complex defect and microstructures affect phonon mediated thermal transport in UO2, and achieve this understanding for the particular case of irradiation-induced defects and microstructures. The center’s research thus includes modeling and measurement of thermal transport in oxide fuels with different levels of impurities, lattice disorder and irradiation-induced microstructure, as well as theoretical and experimental investigation of the evolution of disorder, stoichiometry and microstructure in nuclear fuel under irradiation. With the premise that thermal transport in irradiated UO2 is a phonon-mediated energy transport process in a crystalline material with defects and microstructure, a step-by-step approach will be utilized to understand the effects of types of defects and microstructures on the collective phonon dynamics in irradiated UO2. Our efforts under the thermal transport thrust involved both measurement of diffusive phonon transport (an approach that integrates over the entire phonon spectrum) and spectroscopic measurements of phonon attenuation/lifetime and phonon dispersion. Our distinct experimental efforts dovetail with our modeling effort involving atomistic simulation of phonon transport and prediction of lattice thermal conductivity using the Boltzmann transport framework.

  9. Cross section and γ-ray spectra for U238(n,γ) measured with the DANCE detector array at the Los Alamos Neutron Science Center

    NASA Astrophysics Data System (ADS)

    Ullmann, J. L.; Kawano, T.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Chyzh, A.; Wu, C. Y.; Baramsai, B.; Mitchell, G. E.; Krtička, M.

    2014-03-01

    Background: Accurate knowledge of the U238(n,γ) cross section is important for developing theoretical nuclear reaction models and for applications. However, capture cross sections are difficult to calculate accurately and often must be measured. Purpose: We seek to confirm previous measurements and test cross-section calculations with an emphasis on the unresolved resonance region from 1 to 500 keV. Method: Cross sections were measured from 10 eV to 500 keV using the DANCE detector array at the LANSCE spallation neutron source. The measurements used a thin target, 48 mg/cm2 of depleted uranium. Gamma cascade spectra were also measured to provide an additional constraint on calculations. The data are compared to cross-section calculations using the code CoH3 and cascade spectra calculations made using the code dicebox. Results: This new cross-section measurement confirms the previous data. The measured gamma-ray spectra suggest the need for additional low-lying dipole strength in the radiative strength function. New Hauser-Feshbach calculations including this strength accurately predict the capture cross section without renormalization. Conclusions: The present cross-section data confirm previous measurements. Including additional low-lying dipole strength in the radiative strength function may lead to more accurate cross-section calculations in nuclei where <Γγ> has not been measured.

  10. Health consequences of Chernobyl: the New York Academy of Sciences publishes an antidote to the nuclear establishment's pseudo-science.

    PubMed

    Katz, Alison Rosamund

    2010-01-01

    In February 2010, the New York Academy of Sciences published the most complete and up-to-date collection of evidence, from independent, scientific sources all over the world, on the health and environmental consequences of the Chernobyl accident. For 24 years, through a high-level, internationally coordinated cover-up of the world's most serious industrial accident, the nuclear lobby has deprived the world of a unique and critically important source of scientific information. The International Atomic Energy Agency (IAEA), mouthpiece of the nuclear establishment, has coordinated the cover-up through the dissemination and imposition of crude pseudo-science. Regrettably, the World Health Organization, a U.N. agency on which the world's people rely for guidance, is subordinate to the IAEA in matters of radiation and health, has participated in the cover-up, and stands accused of non-assistance to populations in danger. The new book on Chernobyl makes available huge amounts of evidence from independent studies undertaken in the affected countries, unique and valuable data that have been ignored by the international health establishment. This comprehensive account of the full dimensions of the catastrophe reveals the shameful inadequacy of current international assistance to the affected populations. It also demonstrates, once more, that future energy options cannot include nuclear power. PMID:21058538

  11. Fifty-one years of Los Alamos Spacecraft

    SciTech Connect

    Fenimore, Edward E.

    2014-09-04

    From 1963 to 2014, the Los Alamos National Laboratory was involved in at least 233 spacecraft. There are probably only one or two institutions in the world that have been involved in so many spacecraft. Los Alamos space exploration started with the Vela satellites for nuclear test detection, but soon expanded to ionospheric research (mostly barium releases), radioisotope thermoelectric generators, solar physics, solar wind, magnetospheres, astrophysics, national security, planetary physics, earth resources, radio propagation in the ionosphere, and cubesats. Here, we present a list of the spacecraft, their purpose, and their launch dates for use during RocketFest

  12. A physicists guide to The Los Alamos Primer

    NASA Astrophysics Data System (ADS)

    Reed, B. Cameron

    2016-11-01

    In April 1943, a group of scientists at the newly established Los Alamos Laboratory were given a series of lectures by Robert Serber on what was then known of the physics and engineering issues involved in developing fission bombs. Serber’s lectures were recorded in a 24 page report titled The Los Alamos Primer, which was subsequently declassified and published in book form. This paper describes the background to the Primer and analyzes the physics contained in its 22 sections. The motivation for this paper is to provide a firm foundation of the background and contents of the Primer for physicists interested in the Manhattan Project and nuclear weapons.

  13. ASC platforms at Los Alamos.

    SciTech Connect

    Shaw, S. R.

    2004-01-01

    This talk describes the history, current state, and future plans for ASC computational and data storage service at Los Alamos. The of the systems and services described is limited to those installed in and managed by Group CCN-7.

  14. 2010 IEEE Nuclear Science Symposium, Medical Imaging Conference, and Room Temperature Semiconductor Detectors Workshop

    NASA Astrophysics Data System (ADS)

    The Nuclear Science Symposium (NSS) offers an outstanding opportunity for scientists and engineers interested or actively working in the fields of nuclear science, radiation instrumentation, software and their applications, to meet and discuss with colleagues from around the world. The program emphasizes the latest developments in technology and instrumentation and their implementation in experiments for space sciences, accelerators, other radiation environments, and homeland security. The Medical Imaging Conference (MIC) is the foremost international scientific meeting on the physics, engineering and mathematical aspects of nuclear medicine based imaging. As the field develops, multi-modality approaches are becoming more and more important. The content of the MIC reflects this, with a growing emphasis on the methodologies of X-ray, optical and MR imaging as they relate to nuclear imaging techniques. In addition, specialized topics will be addressed in the Short Courses and Workshops programs. The Workshop on Room-Temperature Semiconductor Detectors (RTSD) represents the largest forum of scientists and engineers developing new semiconductor radiation detectors and imaging arrays. Room-temperature solid-state radiation detectors for X-ray, gamma-ray, and neutron radiation are finding increasing applications in such diverse fields as medicine, homeland security, astrophysics and environmental remediation. The objective of this workshop is to provide a forum for discussion of the state of the art of material development for semiconductor, scintillator, and organic materials for detection, materials characterization, device fabrication and technology, electronics and applications.

  15. Los Alamos National Laboratory: 21st century solutions to urgent national challenges

    SciTech Connect

    Mcbranch, Duncan

    2008-01-01

    Los Alamos National Laboratory has been called upon to meet urgent national challenges for more than 65 years. The people, tools, and technologies at Los Alamos are a world class resource that has proved decisive through our history, and are needed in the future. We offer expertise in nearly every science, technology, and engineering discipline, a unique integrated capability for large-scale computing and experimentation, and the proven ability to deliver solutions involving the most complex and difficult technical systems. This white paper outlines some emerging challenges and why the nation needs Los Alamos, the premier National Security Science Laboratory, to meet these challenges.

  16. Science in Flux: NASA's Nuclear Program at Plum Brook Station 1955-2005

    NASA Technical Reports Server (NTRS)

    Bowles, Mark D.

    2006-01-01

    Science in Flux traces the history of one of the most powerful nuclear test reactors in the United States and the only nuclear facility ever built by NASA. In the late 1950's NASA constructed Plum Brook Station on a vast tract of undeveloped land near Sandusky, Ohio. Once fully operational in 1963, it supported basic research for NASA's nuclear rocket program (NERVA). Plum Brook represents a significant, if largely forgotten, story of nuclear research, political change, and the professional culture of the scientists and engineers who devoted their lives to construct and operate the facility. In 1973, after only a decade of research, the government shut Plum Brook down before many of its experiments could be completed. Even the valiant attempt to redefine the reactor as an environmental analysis tool failed, and the facility went silent. The reactors lay in costly, but quiet standby for nearly a quarter-century before the Nuclear Regulatory Commission decided to decommission the reactors and clean up the site. The history of Plum Brook reveals the perils and potentials of that nuclear technology. As NASA, Congress, and space enthusiasts all begin looking once again at the nuclear option for sending humans to Mars, the echoes of Plum Brook's past will resonate with current policy and space initiatives.

  17. Fundamental Science-Based Simulation of Nuclear Waste Forms

    SciTech Connect

    Devanathan, Ramaswami; Gao, Fei; Sun, Xin; Khaleel, Mohammad A.

    2010-10-04

    This report presents a hierarchical multiscale modeling scheme based on two-way information exchange. To account for all essential phenomena in waste forms over geological time scales, the models have to span length scales from nanometer to kilometer and time scales from picoseconds to millenia. A single model cannot cover this wide range and a multi-scale approach that integrates a number of different at-scale models is called for. The approach outlined here involves integration of quantum mechanical calculations, classical molecular dynamics simulations, kinetic Monte Carlo and phase field methods at the mesoscale, and continuum models. The ultimate aim is to provide science-based input in the form of constitutive equations to integrated codes. The atomistic component of this scheme is demonstrated in the promising waste form xenotime. Density functional theory calculations have yielded valuable information about defect formation energies. This data can be used to develop interatomic potentials for molecular dynamics simulations of radiation damage. Potentials developed in the present work show a good match for the equilibrium lattice constants, elastic constants and thermal expansion of xenotime. In novel waste forms, such as xenotime, a considerable amount of data needed to validate the models is not available. Integration of multiscale modeling with experimental work is essential to generate missing data needed to validate the modeling scheme and the individual models. Density functional theory can also be used to fill knowledge gaps. Key challenges lie in the areas of uncertainty quantification, verification and validation, which must be performed at each level of the multiscale model and across scales. The approach used to exchange information between different levels must also be rigorously validated. The outlook for multiscale modeling of wasteforms is quite promising.

  18. Chemical decontamination technical resources at Los Alamos National Laboratory (2008)

    SciTech Connect

    Moore, Murray E

    2008-01-01

    This document supplies information resources for a person seeking to create planning or pre-planning documents for chemical decontamination operations. A building decontamination plan can be separated into four different sections: Pre-planning, Characterization, Decontamination (Initial response and also complete cleanup), and Clearance. Of the identified Los Alamos resources, they can be matched with these four sections: Pre-planning -- Dave Seidel, EO-EPP, Emergency Planning and Preparedness; David DeCroix and Bruce Letellier, D-3, Computational fluids modeling of structures; Murray E. Moore, RP-2, Aerosol sampling and ventilation engineering. Characterization (this can include development projects) -- Beth Perry, IAT-3, Nuclear Counterterrorism Response (SNIPER database); Fernando Garzon, MPA-11, Sensors and Electrochemical Devices (development); George Havrilla, C-CDE, Chemical Diagnostics and Engineering; Kristen McCabe, B-7, Biosecurity and Public Health. Decontamination -- Adam Stively, EO-ER, Emergency Response; Dina Matz, IHS-IP, Industrial hygiene; Don Hickmott, EES-6, Chemical cleanup. Clearance (validation) -- Larry Ticknor, CCS-6, Statistical Sciences.

  19. Information about Practicums at Los Alamos

    SciTech Connect

    Bradley, Paul A.

    2012-07-24

    The Los Alamos Neutron Science Center is the premier facility for neutron science experiments ranging from cross section measurements, neutron scattering experiments, proton radiography, cold neutrons, actinide neutronic properties, and many other exciting topics. The National High Magnetic Field Laboratory is home to several powerful magnets, including the one that created the first non-destructive 100 Tesla field in March 2012. They probe the electronic structure of superconductors, magnetic properties of materials (including magneto-quantum effects). Research is also conducted in correlated materials, thermoacoustics, and magnetic properties of actinides. The Trident Laser has a unique niche with very high power, short pulse experiments, with a peak power of 10{sup 20} W in short pulse mode. Discoveries range from production of monoenergetic MeV ion beam, nonlinear kinetic plasma waves, the transition between kinetic and fluid nonlinear behavior and other laser-plasma interaction processes.

  20. Nuclear Medical Science Officers: Army Health Physicists Serving and Defending Their Country Around the Globe

    NASA Astrophysics Data System (ADS)

    Melanson, Mark; Bosley, William; Santiago, Jodi; Hamilton, Daniel

    2010-02-01

    Tracing their distinguished history back to the Manhattan Project that developed the world's first atomic bomb, the Nuclear Medical Science Officers are the Army's experts on radiation and its health effects. Serving around the globe, these commissioned Army officers serve as military health physicists that ensure the protection of Soldiers and those they defend against all sources of radiation, military and civilian. This poster will highlight the various roles and responsibilities that Nuclear Medical Science Officers fill in defense of the Nation. Areas where these officers serve include medical health physics, deployment health physics, homeland defense, emergency response, radiation dosimetry, radiation research and training, along with support to the Army's corporate radiation safety program and international collaborations. The poster will also share some of the unique military sources of radiation such as depleted uranium, which is used as an anti-armor munition and in armor plating because of its unique metallurgic properties. )

  1. Neutron Transfer Reactions: Surrogates for Neutron Capture for Basic and Applied Nuclear Science

    NASA Astrophysics Data System (ADS)

    Cizewski, J. A.; Jones, K. L.; Kozub, R. L.; Pain, S. D.; Peters, W. A.; Adekola, A.; Allen, J.; Bardayan, D. W.; Becker, J. A.; Blackmon, J. C.; Chae, K. Y.; Chipps, K. A.; Erikson, L.; Gaddis, A.; Harlin, C.; Hatarik, R.; Howard, J.; Jandel, M.; Johnson, M. S.; Kapler, R.; Krolas, W.; Liang, F.; Livesay, R. J.; Ma, Z.; Matei, C.; Matthews, C.; Moazen, B.; Nesaraja, C. D.; O'Malley, P.; Patterson, N.; Paulauskas, S. V.; Pelham, T.; Pittman, S. T.; Radford, D.; Rogers, J.; Schmitt, K.; Shapira, D.; Shriner, J. F.; Sissom, D. J.; Smith, M. S.; Swan, T.; Thomas, J. S.; Vieira, D. J.; Wilhelmy, J. B.; Wilson, G. L.

    2009-03-01

    Neutron capture reactions on unstable nuclei are important for both basic and applied nuclear science. A program has been developed at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory to study single-neutron transfer (d,p) reactions with rare isotope beams to provide information on neutron-induced reactions on unstable nuclei. Results from (d,p) studies on 130,132Sn, 134Te and 75As are discussed.

  2. University Reactor Conversion Lessons Learned Workshop for Texas A&M University Nuclear Science Center Reactor

    SciTech Connect

    Eric C. Woolstenhulme; Dana M. Meyer

    2007-04-01

    The objectives of this meeting were to capture the observations, insights, issues, concerns, and ideas of those involved in the Texas A&M University Nuclear Science Center (TAMU NSC) TRIGA Reactor Conversion so that future efforts can be conducted with greater effectiveness, efficiency, and with fewer challenges. This workshop was held in conjunction with a similar workshop for the University of Florida Reactor Conversion. Some of the generic lessons from that workshop are included in this report for completeness.

  3. Neutron transfer reactions: Surrogates for neutron capture for basic and applied nuclear science

    SciTech Connect

    Cizewski, J. A.; Jones, K. L.; Kozub, R. L.; Pain, Steven D; Peters, W. A.; Adekola, Aderemi S; Allen, J.; Bardayan, Daniel W; Becker, J.; Blackmon, Jeff C; Chae, K. Y.; Chipps, K.; Erikson, Luke; Gaddis, A. L.; Harlin, Christopher W; Hatarik, Robert; Howard, Joshua A; Jandel, M.; Johnson, Micah; Kapler, R.; Krolas, W.; Liang, J Felix; Livesay, Jake; Ma, Zhanwen; Matei, Catalin; Matthews, C.; Moazen, Brian; Nesaraja, Caroline D; O'Malley, Patrick; Patterson, N. P.; Paulauskas, Stanley; Pelham, T.; Pittman, S. T.; Radford, David C; Rogers, J.; Schmitt, Kyle; Shapira, Dan; ShrinerJr., J. F.; Sissom, D. J.; Smith, Michael Scott; Swan, T. P.; Thomas, J. S.; Vieira, D. J.; Wilhelmy, J. B.; Wilson, Gemma L

    2009-04-01

    Neutron capture reactions on unstable nuclei are important for both basic and applied nuclear science. A program has been developed at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory to study single-neutron transfer (d,p) reactions with rare isotope beams to provide information on neutron-induced reactions on unstable nuclei. Results from (d,p) studies on {sup 130,132}Sn, {sup 134}Te and {sup 75}As are discussed.

  4. Measurements at Los Alamos National Laboratory Plutonium Facility in Support of Global Security Mission Space

    SciTech Connect

    Stange, Sy; Mayo, Douglas R.; Herrera, Gary D.; McLaughlin, Anastasia D.; Montoya, Charles M.; Quihuis, Becky A.; Trujillo, Julio B.; Van Pelt, Craig E.; Wenz, Tracy R.

    2012-07-13

    The Los Alamos National Laboratory Plutonium Facility at Technical Area (TA) 55 is one of a few nuclear facilities in the United States where Research & Development measurements can be performed on Safeguards Category-I (CAT-I) quantities of nuclear material. This capability allows us to incorporate measurements of CAT-IV through CAT-I materials as a component of detector characterization campaigns and training courses conducted at Los Alamos. A wider range of measurements can be supported. We will present an overview of recent measurements conducted in support of nuclear emergency response, nuclear counterterrorism, and international and domestic safeguards. This work was supported by the NNSA Office of Counterterrorism.

  5. Induction of Micronuclei in Human Fibroblasts from the Los Alamos High Energy Neutron Beam

    NASA Technical Reports Server (NTRS)

    Cox, Bradley

    2009-01-01

    The space radiation field includes a broad spectrum of high energy neutrons. Interactions between these neutrons and a spacecraft, or other material, significantly contribute to the dose equivalent for astronauts. The 15 degree beam line in the Weapons Neutron Research beam at Los Alamos Nuclear Science Center generates a neutron spectrum relatively similar to that seen in space. Human foreskin fibroblast (AG1522) samples were irradiated behind 0 to 20 cm of water equivalent shielding. The cells were exposed to either a 0.05 or 0.2 Gy entrance dose. Following irradiation, micronuclei were counted to see how the water shield affects the beam and its damage to cell nuclei. Micronuclei induction was then compared with dose equivalent data provided from a tissue equivalent proportional counter.

  6. From Crisis to Transition: The State of Russian Science Based on Focus Groups with Nuclear Physicists

    SciTech Connect

    Gerber, T P; Ball, D Y

    2001-12-09

    The collapse of the Soviet system led to a sharp contraction of state funding for science. Formerly privileged scientists suddenly confronted miserly salaries (often paid late), plummeting social prestige, deteriorating research facilities and equipment, and few prospects for improvement. Many departed the field of science for more lucrative opportunities, both within Russia and abroad. The number of inventions, patent applications, and publications by Russian scientists declined. Reports of desperate nuclear physicists seeking work as tram operators and conducting hunger strikes dramatized the rapid collapse of one of the contemporary world's most successful scientific establishments. Even more alarming was the 1996 suicide of Vladimir Nechai, director of the second largest nuclear research center in Russia (Chelyabinsk-70, now known as Snezhinsk). Nechai, a respected theoretical physicist who spent almost 40 years working on Soviet and Russian nuclear programs, killed himself because he could no longer endure his inability to rectify a situation in which his employees had not been paid for more than 5 months and were ''close to starvation.'' The travails of Russia's scientists sparked interest in the West primarily because of the security threat posed by their situation. The seemingly relentless crisis in science raised fears that disgruntled scientists might sell their nuclear weapons expertise to countries or organizations that harbor hostile intentions toward the United States. Such concerns are particularly pressing in the wake of the September 2001 terrorist attacks in the US. At the same time, we should not overlook other critical implications that the state of Russian science has for Russia's long-term economic and political development. It is in the West's interest to see Russia develop a thriving market economy and stable democracy. A successful scientific community can help on both counts. Science and technology can attract foreign investment and fuel

  7. NSCL and FRIB at Michigan State University: Nuclear science at the limits of stability

    NASA Astrophysics Data System (ADS)

    Gade, A.; Sherrill, B. M.

    2016-05-01

    The National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University (MSU) is a scientific user facility that offers beams of rare isotopes at a wide range of energies. This article describes the facility, its capabilities, and some of the experimental devices used to conduct research with rare isotopes. The versatile nuclear science program carried out by researchers at NSCL continues to address the broad challenges of the field, employing sensitive experimental techniques that have been developed and optimized for measurements with rare isotopes produced by in-flight separation. Selected examples showcase the broad program, capabilities, and the relevance for forefront science questions in nuclear physics, addressing, for example, the limits of nuclear existence; the nature of the nuclear force; the origin of the elements in the cosmos; the processes that fuel explosive scenarios in the Universe; and tests for physics beyond the standard model of particle physics. NSCL will cease operations in approximately 2021. The future program will be carried out at the Facility for Rare Isotope Beams, FRIB, presently under construction on the MSU campus adjacent to NSCL. FRIB will provide fast, stopped, and reaccelerated beams of rare isotopes at intensities exceeding NSCL’s capabilities by three orders of magnitude. An outlook will be provided on the enormous opportunities that will arise upon completion of FRIB in the early 2020s.

  8. Occurrences at Los Alamos National Laboratory: What can they tell us?

    SciTech Connect

    Richard A. Reichelt; A. Jeffery Eichorst; Marc E. Clay; Rita J. Henins; Judith D. DeHaven; Richard J. Brake

    2000-03-01

    The authors analyzed the evolution of institutional and facility response to groups of abnormal incidents at Los Alamos National Laboratory (LANL). The analysis is divided into three stages: (1) the LANL response to severe accidents from 1994 to 1996, (2) the LANL response to facility-specific clusters of low-consequence incidents from 1997 to 1999, and (3) the ongoing development of and response to a Laboratory-wide trending and analysis program. The first stage is characterized by five severe accidents at LANL--a shooting fatality, a forklift accident, two electrical shock incidents, and an explosion in a nuclear facility. Each accident caused LANL and the Department of Energy (DOE) to launch in-depth investigations. A recurrent theme of the investigations was the failure of LANL and DOE to identify and act on precursor or low-consequence events that preceded the severe accidents. The second stage is characterized by LANL response to precursor or low-consequence incidents over a two-year period. In this stage, the Chemistry and Metallurgy Research Facility, the Los Alamos Critical Experiments Facility, and the Los Alamos Neutron Science Center responded to an increase in low-consequence events by standing down their facilities. During the restart process, each facility collectively analyzed the low-consequence events and developed systemic corrective actions. The third stage is characterized by the development of a Laboratory-wide trending and analysis program, which involves proactive division-level analysis of incidents and development of systemic actions. The authors conclude that, while the stages show an encouraging evolution, the facility standdowns and restarts are overly costly and that the institutional trending and analysis program is underutilized. The authors therefore recommend the implementation of an institutional, mentored program of trending and analysis that identifies clusters of related low-consequence events, analyzes those events, and

  9. Scientometric mapping of vacuum research in nuclear science & technology: a global perspective

    NASA Astrophysics Data System (ADS)

    Kademani, B. S.; Sagar, A.; Kumar, A.; Kumar, V.

    2008-05-01

    This paper attempts to analyse the growth and development of Vacuum research in Nuclear Science and Technology, as reflected in publication output covered by International Nuclear Information System (INIS) database during 2002-2006. A total of 12027 papers were published in the field of vacuum science. United States topped the list with 1936 (16.10%) publications followed by Japan with 1770 (14.70%) publications, The highest number of publications (3276) were published in 2004. The average number of publications published per year were 2405.4. The highest number of publications were in 'Physics of Elementary Particles and Fields' with 2644 (21.98%) publications. The authorship and collaboration trend is towards multi-authored papers. The highly productive institutions were: Japan Atomic Energy Research Institute (Japan) with 366 publications, University of Tokyo (Japan) with 274 publications, Hiroshima University (Japan) with 245 publications, Osaka University Japan (Japan) with 224 publications and Chinese Academy of Science (P-R-China) with 223 publications. The most preferred journals for publication were: Journal of Vacuum Science and Technology-A with 857 papers, Physical Review -D with 765 papers, Journal of High Energy Physics with 500 papers, Thin Solid Films with 311 papers, Journal of Electron Spectroscopy and Related Phenomena with 309 papers, and AIP Conference Proceedings with 308 papers.

  10. Los Alamos Science, Fall 1983 No. 9

    SciTech Connect

    Cooper, N G

    1983-10-01

    Topics covered in this issue include: cellular automata, gene expression, gen-bank and its promise for molecular genetics, and frontiers of supercomputing. Abstracts have been prepared for the individual items. (GHT)

  11. Process Modeling and Analysis for Radioactive Solid Waste Management at Los Alamos

    SciTech Connect

    Kornreich, D.E.; Parker, R.Y.; Gonzales-Lujan, J.M.

    2006-07-01

    Los Alamos National Laboratory has created a discrete-event simulation model of the nuclear waste drum characterization operations the 'processing/inspection - Los Alamos model of drums equivalent' ({pi} a la mode). This model takes drum inventory data, process-related information, and planned processing priorities related to the solid-waste management operations at Los Alamos to assess the resulting characterization process and resulting schedule for drum shipments to the Waste Isolation Pilot Plant. The model tracks the drum inventory, material inventory, and equipment as a function of time. Data from the model and some sample results are presented in this paper. (authors)

  12. Pre-Service Science Teachers' Views about Nuclear Energy with Respect to Gender and University Providing Instruction

    ERIC Educational Resources Information Center

    Ates, H.; Saracoglu, M.

    2016-01-01

    The purpose of this research was to investigate pre-service science teachers' (PST) views about nuclear energy and to examine what effects, if any, of gender and the university of instruction had on their views. Data were collected through the Risks and Benefits about Nuclear Energy Scale (Iseri, 2012). The sample consisted of 214 PSTs who…

  13. Penetrating radiation: applications at Los Alamos National Laboratory

    NASA Astrophysics Data System (ADS)

    Watson, Scott; Hunter, James; Morris, Christopher

    2013-09-01

    Los Alamos has used penetrating radiography extensively throughout its history dating back to the Manhattan Project where imaging dense, imploding objects was the subject of intense interest. This interest continues today as major facilities like DARHT1 have become the mainstay of the US Stockpile Stewardship Program2 and the cornerstone of nuclear weapons certification. Meanwhile, emerging threats to national security from cargo containers and improvised explosive devices (IEDs) have invigorated inspection efforts using muon tomography, and compact x-ray radiography. Additionally, unusual environmental threats, like those from underwater oil spills and nuclear power plant accidents, have caused renewed interest in fielding radiography in severe operating conditions. We review the history of penetrating radiography at Los Alamos and survey technologies as presently applied to these important problems.

  14. Nuclear Science Symposium, 23rd, Scintillation and Semiconductor Counter Symposium, 15th, and Nuclear Power Systems Symposium, 8th, New Orleans, La., October 20-22, 1976, Proceedings

    NASA Technical Reports Server (NTRS)

    Wagner, L. J.

    1977-01-01

    The volume includes papers on semiconductor radiation detectors of various types, components of radiation detection and dosimetric systems, digital and microprocessor equipment in nuclear industry and science, and a wide variety of applications of nuclear radiation detectors. Semiconductor detectors of X-rays, gamma radiation, heavy ions, neutrons, and other nuclear particles, plastic scintillator arrays, drift chambers, spark wire chambers, and radiation dosimeter systems are reported on. Digital and analog conversion systems, digital data and control systems, microprocessors, and their uses in scientific research and nuclear power plants are discussed. Large-area imaging and biomedical nucleonic instrumentation, nuclear power plant safeguards, reactor instrumentation, nuclear power plant instrumentation, space instrumentation, and environmental instrumentation are dealt with. Individual items are announced in this issue.

  15. Progress and challenges of nuclear science development in Vietnam - an outlook on the occassion of the 10-th anniversary of the Dalat Nuclear Research Reactor

    SciTech Connect

    Hien, P.D.

    1994-12-31

    Over ten years since the commissioning of the Dalat nuclear research reactor a number of nuclear techniques have been developed and applied in Vietnam Manufacturing of radioisotopes and nuclear instruments, development of isotope tracer and nuclear analytical techniques for environmental studies, exploitation of filtered neutron beams, ... have been major activities of reactor utilizations. Efforts made during ten years of reactor operation have resulted also in establishing and sustaining the applications of nuclear techniques in medicine, industry, agriculture, etc. The successes achieved and lessons teamed over the past ten years are discussed illustrating the approaches taken for developing the nuclear science in the conditions of a country having a very low national income and experiencing a transition from a centrally planned to a market-oriented economic system.

  16. Adventures in scientific nuclear diplomacy

    SciTech Connect

    Hecker, Siegfried S.

    2014-05-09

    A former director of Los Alamos National Laboratory offers a first-person perspective on the important contributions scientists can make toward improving the safety and security of nuclear materials and reducing the global nuclear dangers in an evolving world.

  17. Adventures in scientific nuclear diplomacy

    NASA Astrophysics Data System (ADS)

    Hecker, Siegfried S.

    2014-05-01

    A former director of Los Alamos National Laboratory offers a first-person perspective on the important contributions scientists can make toward improving the safety and security of nuclear materials and reducing the global nuclear dangers in an evolving world.

  18. Forty years of the Institute for Nuclear Research (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 22 December 2010)

    NASA Astrophysics Data System (ADS)

    2011-09-01

    On 22 December 2010, the scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), devoted to the 40th anniversary of the Institute for Nuclear Research, RAS, was held at the Institute for Nuclear Research, RAS in Troitsk. The agenda of the session announced on the website www.gpad.ac.ru of the RAS Physical Sciences Division listed the following reports: (1) Matveev V A (Institute for Nuclear Research, RAS, Moscow) "Introductory word"; (2) Gavrin V N (Institute for Nuclear Research, RAS, Moscow) "Contribution of the SAGE results to the understanding of solar physics and neutrino physics"; (3) Domogatsky G V (Institute for Nuclear Research, RAS, Moscow) "Baikal neutrino experiment"; (4) Tkachev I I (Institute for Nuclear Research, RAS, Moscow) "Observation of the Greisen - Zatsepin - Kuz'min effect at the Telescope Array Observatory"; (5) Kudenko Yu G (Institute for Nuclear Research, RAS, Moscow) "Neutrino T2K experiment: the first results"; (6) Sadykov R A (Institute for Nuclear Research, RAS, Moscow) "Fields of study of condensed media at the neutron facility at the INR, RAS"; (7) Zhuikov B L (Institute for Nuclear Research, RAS, Moscow) "Production of isotopes at the INR, RAS: reality and prospects".The papers written on the base of reports 1-5 and 7 are published below. In addition, the paper "High-power diode-pumped alkali lasers" by A M Shalagin is published. The paper is based on the report presented at the scientific session of the General Assembly of the Physical Sciences Division, RAS (13 December 2010) devoted to the 50th anniversary of the laser, the main materials of the session having been published in Usp. Fiz. Nauk 181 (8) 867 (2011) [Phys. Usp. 54 837 (2011)]. • Institute for Nuclear Research of the Russian Academy of Sciences turns 40, V A Matveev Physics-Uspekhi, 2011, Volume 54, Number 9, Pages 939-940 • The Russian-American gallium experiment SAGE, V N Gavrin Physics-Uspekhi, 2011, Volume 54, Number 9

  19. The integration of science and politics to clean up 50 years in the nuclear sandbox

    SciTech Connect

    Lyons, C.E.; Holeman, T.

    1999-07-01

    The Cold War was fought between world superpowers for approximately 40 years from the end of the second World War until the end of the 1980s. During that time, the US government devoted billions of dollars to the development and production of nuclear weapons. Now the Cold War is over and the US is left with numerous nuclear weapons factories, stockpiles of nuclear materials, and mountains of waste to decontaminate and decommission. In the heat of the Cold War, little or no thought was given to how the facilities building bombs would be dismantled. Far too little attention was paid to the potential human health and environmental impact of the weapons production. Now, dozens of communities across the country face the problems this negligence created. In many cases, the location, extent, and characteristics of the waste and contamination are unknown, due to negligence or due to intentional hiding of waste and associated problems. Water supplies are contaminated and threatened; air quality is degraded and threatened; workers and residents risk contamination and health impacts; entire communities risk disaster from potential nuclear catastrophe. The US government, in the form of the US Department of Energy (DOE), now accepts responsibility for creating and cleaning up the mess. But it is the local communities, the home towns of the bomb factories and laboratories, that carry a significant share of the burden of inventing the science and politics required to clean up 50 years in the nuclear sandbox. The purpose of this paper is to evaluate the role of the local community in addressing the cleanup of the US nuclear weapons complex. Local governments do not own nor are responsible for the environmental aftermath, but remain the perpetual neighbor to the facility, the hometown of workers, and long-term caretaker of the off-site impacts of the on-site contamination and health risks.

  20. The Australian Institute of Nuclear Science & Engineering - a model for University-National Laboratory collaboration

    SciTech Connect

    Gammon, R.B.

    1994-12-31

    This paper describes the aims and activities of the Australian Institute of Nuclear Science and Engineering (AINSE), from its foundation in 1958 through to 1993. The philosophy, structure and funding of the Institute are briefly reviewed, followed by an account of the development of national research facilities at the Lucas Heights Research Laboratories, with particular emphasis on nuclear techniques of analysis using neutron scattering instruments and particle accelerators. AINSE`s program of Grants, Fellowships and Studentships are explained with many examples given of projects having significance in the context of Australia`s national goals. Conference and training programs are also included. The achievements during these years demonstrate that AINSE has been an efficient and cost- effective model for collaboration between universities and a major national laboratory. In recent years, industry, government organisations and the tertiary education system have undergone major re-structuring and rationalization. A new operational structure for AINSE has evolved in response to these changes and is described.

  1. Nuclear Science Division annual report, October 1, 1984-September 30, 1985

    SciTech Connect

    Mahoney, J.

    1986-09-01

    This report summarizes the activities of the Nuclear Science Division during the period October 1, 1984 to September 30, 1985. As in previous years, experimental research has for the most part been carried out using three local accelerators, the Bevalac, the SuperHILAC and the 88-Inch Cyclotron. However, during this time, preparations began for a new generation of relativistic heavy-ion experiments at CERN. The Nuclear Science Division is involved in three major experiments at CERN and several smaller ones. The report is divided into 5 sections. Part I describes the research programs and operations, and Part II contains condensations of experimental papers arranged roughly according to program and in order of increasing energy, without any further subdivisions. Part III contains condensations of theoretical papers, again ordered according to program but in order of decreasing energy. Improvements and innovations in instrumentation and in experimental or analytical techniques are presented in Part IV. Part V consists of appendices, the first listing publications by author for this period, in which the LBL report number only is given for papers that have not yet appeared in journals; the second contains abstracts of PhD theses awarded during this period; and the third gives the titles and speakers of the NSD Monday seminars, the Bevatron Research Meetings and the theory seminars that were given during the report period. The last appendix is an author index for this report.

  2. Maximizing the science return of interplanetary missions using nuclear electric power

    SciTech Connect

    Zubrin, R.M.

    1995-01-20

    The multi-kilowatt power sources on the spaecraft also enables active sensing, including radar, which could be used to do topographic and subsurface studies of clouded bodies such as Titan, ground pentrating sounding of Pluto, the major planet`s moons, and planetoids, and topside sounding of the electrically conductive atmospheres of Jupiter, Saturn, Uranus and Neptune to produce profiles of fluid density, conductivity, and horizontal and vertical velocity as a function of depth and global location. Radio science investigations of planetary atmospheres and ring systems would be greatly enhanced by increased transmitter power. The scientific benefits of utilizing such techniques are discussed, and a comparison is made with the quantity and quality of science that a low-powered spacecraft employing RTGs could return. It is concluded that the non-propulsive benefits of nuclear power for spacecraft exploring the outer solar system are enormous, and taken together with the well documented mission enhancements enabled by electric propulsion fully justify the expanditures needed to bring a space qualified nuclear electric power source into being. {copyright} 1995 {ital American} {ital Institute} {ital of} {ital Physics}

  3. Challenges in Uncertainty and the Science of Nuclear Waste Disposal (Invited)

    NASA Astrophysics Data System (ADS)

    Alley, W. M.; Alley, R.

    2013-12-01

    Disposal of high-level nuclear waste is a first-of-a-kind endeavor, further saddled by the ambitious goal to achieve containment over periods well beyond human experience. In the United States, as well as other countries, the time period for performance assessment to provide a safety case for deep geologic repositories has gone from 10,000 years in the 1990s to one million years today. Even when the standard was established for 10,000 years, the National Academy of Sciences Board on Radioactive Waste Management warned of the 'scientific trap' set by encouraging the public to expect certainty about repository safety well beyond what science can provide. Paradoxically, the emphasis on predicting repository behavior thousands of centuries into the future stands in stark contrast to a lack of risk assessment of indefinite aboveground storage for the next several generations. We review the uncertainties and technical basis for a geologic repository at Yucca Mountain compared to extended onsite and interim storage. In order to make progress with geologic disposal of nuclear waste, it is important to evaluate any option in the context of the relative merits and limitations of alternative geologic settings, interim storage, and the status quo of extended onsite storage.

  4. Los Alamos Critical Assemblies Facility

    SciTech Connect

    Malenfant, R.E.

    1981-06-01

    The Critical Assemblies Facility of the Los Alamos National Laboratory has been in existence for thirty-five years. In that period, many thousands of measurements have been made on assemblies of /sup 235/U, /sup 233/U, and /sup 239/Pu in various configurations, including the nitrate, sulfate, fluoride, carbide, and oxide chemical compositions and the solid, liquid, and gaseous states. The present complex of eleven operating machines is described, and typical applications are presented.

  5. Like a bridge over troubled water--Opening pathways for integrating social sciences and humanities into nuclear research.

    PubMed

    Turcanu, Catrinel; Schröder, Jantine; Meskens, Gaston; Perko, Tanja; Rossignol, Nicolas; Carlé, Benny; Hardeman, Frank

    2016-03-01

    Research on nuclear technologies has been largely driven by a detachment of the 'technical content' from the 'social context'. However, social studies of science and technology--also for the nuclear domain--emphasize that 'the social' and 'the technical' dimensions of technology development are inter-related and co-produced. In an effort to create links between nuclear research and innovation and society in mutually beneficial ways, the Belgian Nuclear Research Centre started fifteen years ago a 'Programme of Integration of Social Aspects into nuclear research' (PISA). In line with broader science-policy agendas (responsible research and innovation and technology assessment), this paper argues that the importance of such programmes is threefold. First, their multi-disciplinary basis and participatory character contribute to a better understanding of the interactions between science, technology and society, in general, and the complexity of nuclear technology assessment in particular. Second, their functioning as (self -)critical policy supportive research with outreach to society is an essential prerequisite for policies aiming at generating societal trust in the context of controversial issues related to nuclear technologies and exposure to ionising radiation. Third, such programmes create an enriching dynamic in the organisation itself, stimulating collective learning and transdisciplinarity. The paper illustrates with concrete examples these claims and concludes by discussing some key challenges that researchers face while engaging in work of this kind. PMID:26736182

  6. Like a bridge over troubled water--Opening pathways for integrating social sciences and humanities into nuclear research.

    PubMed

    Turcanu, Catrinel; Schröder, Jantine; Meskens, Gaston; Perko, Tanja; Rossignol, Nicolas; Carlé, Benny; Hardeman, Frank

    2016-03-01

    Research on nuclear technologies has been largely driven by a detachment of the 'technical content' from the 'social context'. However, social studies of science and technology--also for the nuclear domain--emphasize that 'the social' and 'the technical' dimensions of technology development are inter-related and co-produced. In an effort to create links between nuclear research and innovation and society in mutually beneficial ways, the Belgian Nuclear Research Centre started fifteen years ago a 'Programme of Integration of Social Aspects into nuclear research' (PISA). In line with broader science-policy agendas (responsible research and innovation and technology assessment), this paper argues that the importance of such programmes is threefold. First, their multi-disciplinary basis and participatory character contribute to a better understanding of the interactions between science, technology and society, in general, and the complexity of nuclear technology assessment in particular. Second, their functioning as (self -)critical policy supportive research with outreach to society is an essential prerequisite for policies aiming at generating societal trust in the context of controversial issues related to nuclear technologies and exposure to ionising radiation. Third, such programmes create an enriching dynamic in the organisation itself, stimulating collective learning and transdisciplinarity. The paper illustrates with concrete examples these claims and concludes by discussing some key challenges that researchers face while engaging in work of this kind.

  7. 1988 Nuclear Science Symposium, Orlando, FL, Nov. 9-11, 1988, Proceedings

    NASA Astrophysics Data System (ADS)

    Pordes, Ruth

    1989-02-01

    Papers on nuclear science are presented, covering topics such as performance of a lead radiator, a gas tube calorimeter, various types of detectors, multiwire proportional counters, the DELPHI time projection chamber, scintillator research, bolometeric detectors, liquid xenon detectors for gamma-ray astronomy, calorimetry, trigger processors, front end electronics, advanced custom circuits, data aquisition systems, and radiation damage on ICs, detectors, and CCDs. Topics related to space physics and astronomy include high amplitude events in microchannel plates, large format microchannel plate detectors, HGI2 X-ray detectors, Ga solar neutrino detectors, semiconductor thermistors at low temperatures, blocked impurity band hybrid IR focal plane arrays, a three-dimensional position sensitive scintillation detector, proportional counters, X-ray imaging telescopes, a daytime star sensor for a stabilized balloon platform, multiphase CCD operation, EUV microchannel plate detectors, EUV remote sensing, digital optical spark chambers, detector arrays, microcomputer control of IR detector arrays, array speckle interferometry, and design of a space IR telescope facility. Other subjects include medical detectors, medical imaging, health physics, nuclear well logging, and nuclear power systems.

  8. Present and Future Applications of Digital Electronics in Nuclear Science - a Commercial Prospective

    NASA Astrophysics Data System (ADS)

    Tan, Hui

    2011-10-01

    Digital readout electronics instrumenting radiation detectors have experienced significant advancements in the last decade or so. This on one hand can be attributed to the steady improvements in commercial digital processing components such as analog-to-digital converters (ADCs), digital-to-analog converters (DACs), field-programmable-gate-arrays (FPGAs), and digital-signal-processors (DSPs), and on the other hand can also be attributed to the increasing needs for improved time, position, and energy resolution in nuclear physics experiments, which have spurred the rapid development of commercial off-the-shelf high speed, high resolution digitizers or spectrometers. Absent from conventional analog electronics, the capability to record fast decaying pulses from radiation detectors in digital readout electronics has profoundly benefited nuclear physics researchers since they now can perform detailed pulse processing for applications such as gamma-ray tracking and decay-event selection and reconstruction. In this talk, present state-of-the-art digital readout electronics and its applications in a variety of nuclear science fields will be discussed, and future directions in hardware development for digital electronics will also be outlined, all from the prospective of a commercial manufacturer of digital electronics.

  9. Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006

    SciTech Connect

    Roberto, J.; Diaz de la Rubia, T.; Gibala, R.; Zinkle, S.; Miller, J.R.; Pimblott, S.; Burns, C.; Raymond, K.; Grimes, R.; Pasamehmetoglu, K.; Clark, S.; Ewing, R.; Wagner, A.; Yip, S.; Buchanan, M.; Crabtree, G.; Hemminger, J.; Poate, J.; Miller, J.C.; Edelstein, N.; Fitzsimmons, T.; Gruzalski, G.; Michaels, G.; Morss, L.; Peters, M.; Talamini, K.

    2006-10-01

    The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 new nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X

  10. Historic Manhattan Project Sites at Los Alamos

    SciTech Connect

    McGehee, Ellen

    2014-05-22

    The Manhattan Project laboratory constructed at Los Alamos, New Mexico, beginning in 1943, was intended from the start to be temporary and to go up with amazing speed. Because most of those WWII-era facilities were built with minimal materials and so quickly, much of the original infrastructure was torn down in the late '40s and early '50s and replaced by more permanent facilities. However, a few key facilities remained, and are being preserved and maintained for historic significance. Four such sites are visited briefly in this video, taking viewers to V-Site, the buildings where the first nuclear explosive device was pre-assembled in preparation for the Trinity Test in Southern New Mexico. Included is another WWII area, Gun Site. So named because it was the area where scientists and engineers tested the so-called "gun method" of assembling nuclear materials -- the fundamental design of the Little Boy weapon that was eventually dropped on Hiroshima. The video also goes to Pajarito Site, home of the "Slotin Building" and "Pond Cabin." The Slotin Building is the place where scientist Louis Slotin conducted a criticality experiment that went awry in early 1946, leading to his unfortunate death, and the Pond Cabin served the team of eminent scientist Emilio Segre who did early chemistry work on plutonium that ultimately led to the Fat Man weapon.

  11. Historic Manhattan Project Sites at Los Alamos

    ScienceCinema

    McGehee, Ellen

    2016-07-12

    The Manhattan Project laboratory constructed at Los Alamos, New Mexico, beginning in 1943, was intended from the start to be temporary and to go up with amazing speed. Because most of those WWII-era facilities were built with minimal materials and so quickly, much of the original infrastructure was torn down in the late '40s and early '50s and replaced by more permanent facilities. However, a few key facilities remained, and are being preserved and maintained for historic significance. Four such sites are visited briefly in this video, taking viewers to V-Site, the buildings where the first nuclear explosive device was pre-assembled in preparation for the Trinity Test in Southern New Mexico. Included is another WWII area, Gun Site. So named because it was the area where scientists and engineers tested the so-called "gun method" of assembling nuclear materials -- the fundamental design of the Little Boy weapon that was eventually dropped on Hiroshima. The video also goes to Pajarito Site, home of the "Slotin Building" and "Pond Cabin." The Slotin Building is the place where scientist Louis Slotin conducted a criticality experiment that went awry in early 1946, leading to his unfortunate death, and the Pond Cabin served the team of eminent scientist Emilio Segre who did early chemistry work on plutonium that ultimately led to the Fat Man weapon.

  12. Nuclear Science Division annual report, October 1, 1986--September 30, 1987

    SciTech Connect

    Mahoney, J.

    1988-09-01

    This report summarizes the activities of the Nuclear Science Division during the period October 1, 1986 to September 30, 1987. A highlight of the experimental program during this time was the completion of the first round of heavy-ion running at CERN with ultrarelativistic oxygen and sulfur beams. Very rapid progress is being made in the analysis of these important experiments and preliminary results are presented in this report. During this period, the Bevalac also continued to produce significant new physics results, while demand for beam time remained high. An important new community of users has arrived on the scene, eager to exploit the unique low-energy heavy-beam capabilities of the Bevalac. Another major highlight of the program has been the performance of the Dilepton Spectrometer which has entered into production running. Dileptons have been observed in the p + Be and Ca + Ca reactions at several bombarding energies. New data on pion production with heavy beams measured in the streamer chamber to shed light on the question of nuclear compressibility, while posing some new questions concerning the role of Coulomb forces on the observed pion spectra. In another quite different area, the pioneering research with radioactive beams is continuing and is proving to be one of the fastest growing programs at the Bevalac. Exotic secondary beams (e.g., 8He, 11Li, and 14Be) have been produced for fundamental nuclear physics studies. In order to further enhance the scientific research program and ensure the continued vitality of the facility, the Laboratory has proposed an upgrade of the existing Bevalac. Specifically, the Upgrade would replace the Bevatron with a modern, strong-focusing synchrotron to provide higher intensity and higher quality beams to continue the forefront research program. Other papers on nuclear physics research are included in this report.

  13. Nuclear safeguards research and development. Program status report, October 1980-January 1981

    SciTech Connect

    Henry, C.N.

    1981-11-01

    This report presents the status of the Nuclear Safeguards Research and Development Program pursued by the Energy, Chemistry-Materials Science, and Operational Security/Safeguards Divisions of the Los Alamos National Laboratory. Topics include nondestructive assay technology development and applications, international safeguards systems. Also discussed are training courses, technology transfer, analytical chemistry methods for fissionable materials safeguards, the Department of Energy Computer Security Technical Center, and operational security.

  14. Los Alamos Explosives Performance Key to Stockpile Stewardship

    SciTech Connect

    Dattelbaum, Dana

    2014-11-03

    As the U.S. Nuclear Deterrent ages, one essential factor in making sure that the weapons will continue to perform as designed is understanding the fundamental properties of the high explosives that are part of a nuclear weapons system. As nuclear weapons go through life extension programs, some changes may be advantageous, particularly through the addition of what are known as "insensitive" high explosives that are much less likely to accidentally detonate than the already very safe "conventional" high explosives that are used in most weapons. At Los Alamos National Laboratory explosives research includes a wide variety of both large- and small-scale experiments that include small contained detonations, gas and powder gun firings, larger outdoor detonations, large-scale hydrodynamic tests, and at the Nevada Nuclear Security Site, underground sub-critical experiments.

  15. Los Alamos Explosives Performance Key to Stockpile Stewardship

    ScienceCinema

    Dattelbaum, Dana

    2016-07-12

    As the U.S. Nuclear Deterrent ages, one essential factor in making sure that the weapons will continue to perform as designed is understanding the fundamental properties of the high explosives that are part of a nuclear weapons system. As nuclear weapons go through life extension programs, some changes may be advantageous, particularly through the addition of what are known as "insensitive" high explosives that are much less likely to accidentally detonate than the already very safe "conventional" high explosives that are used in most weapons. At Los Alamos National Laboratory explosives research includes a wide variety of both large- and small-scale experiments that include small contained detonations, gas and powder gun firings, larger outdoor detonations, large-scale hydrodynamic tests, and at the Nevada Nuclear Security Site, underground sub-critical experiments.

  16. Development of Students' Metacognitive Strategies In Science Learning Regarding Nuclear Energy

    NASA Astrophysics Data System (ADS)

    Siriuthen, Warawun; Yuenyong, Chokchai

    2010-07-01

    This research aimed to develop 48 Grade 10 students' learning process and metacognitive strategies in the `Nuclear Energy' topic through the Science, Technology and Society (STS) approach. The STS teaching approach consists of five stages: identification of social issues, identification of potential solutions, need for knowledge, decision-making, and socialization. he data were analyzed through rubric score of learning process and metacognitive strategies, which consists of five strategies: Recalling, Planning, Monitoring and Maintaining, Evaluating, and Relating. The findings revealed that most students used learning process in a high level. They performed a very low level in almost all of the metacognitive strategies. The factors potentially impeded their development of awareness about learning process and metacognitive strategies were characteristics of content and students, learning processes, and student habit.

  17. The Rhode Island Nuclear Science Center conversion from HEU to LEU fuel

    SciTech Connect

    Tehan, Terry

    2000-09-27

    The 2-MW Rhode Island Nuclear Science Center (RINSC) open pool reactor was converted from 93% UAL-High Enriched Uranium (HEU) fuel to 20% enrichment U3Si2-AL Low Enriched Uranium (LEU) fuel. The conversion included redesign of the core to a more compact size and the addition of beryllium reflectors and a beryllium flux trap. A significant increase in thermal flux level was achieved due to greater neutron leakage in the new compact core configuration. Following the conversion, a second cooling loop and an emergency core cooling system were installed to permit operation at 5 MW. After re-licensing at 2 MW, a power upgrade request will be submitted to the NRC.

  18. Network Science for Deterrence: Sheathing the Sword of the Terrorism/Nuclear Horseman

    NASA Astrophysics Data System (ADS)

    Carley, Kathleen

    2010-03-01

    After 9/11, network analysis became popular as a way to connect and disconnect the dots. It was heralded as the new science with intrinsic value for understanding and breaking up terrorist groups, insurgencies and hostile foreign governments. The limit of the initially forwarded approach was that it focused on only the social network -- who talked to whom. However ,the networks of war, terror or nuclear or cyber, are complex networks composed of people, organizations, resources, and capabilities connected in a geo-temporal web that constrains and enables activities that are ``hidden'' in the web of everyday life. Identifying these networks requires extraction and fusion of information from cyber-mediated realms resulting in a network map of the hostile groups and their relations to the populations in which they are embedded. These data are at best a sample, albeit a very large sample, replete with missing and incomplete data. Geo-temporal considerations in addition to information loss and error called into question the value of traditional network approaches. In this talk, a new approaches and associated technologies that integrate scientific advances in machine learning, network statistics, and the social and organizational science with traditional graph theoretic approaches to social networks are presented. Then, examples, of how these technologies can be used as part of a deterrence strategy are described. Examples related to terrorism and groups such as al-Qaida and Hamas, cyber and nuclear deterrence are described. By taking this meta-network approach, embracing the complexity and simultaneously examining not just one network, but the connections among networks, it is possible to identify emergent leaders, locate changes in activities, and forecast the potential impact of various interventions. Key challenges, such as data-streaming and deception, that need to be addressed scientifically are referenced.

  19. Students' Knowledge of Nuclear Science and Its Connection with Civic Scientific Literacy in Two European Contexts: The Case of Newspaper Articles

    ERIC Educational Resources Information Center

    Tsaparlis, Georgios; Hartzavalos, Sotiris; Nakiboglu, Canan

    2013-01-01

    Nuclear science has uses and applications that are relevant and crucial for world peace and sustainable development, so knowledge of its basic concepts and topics should constitute an integral part of civic scientific literacy. We have used two newspaper articles that deal with uses of nuclear science that are directly relevant to life, society,…

  20. Total Quality Management and nuclear weapons: A historian`s perspective

    SciTech Connect

    Meade, R.A.

    1993-11-01

    Total Quality Management (TQM) has become a significant management theme at Los Alamos National Laboratory. This paper discusses the historical roots of TQM at Los Alamos and how TQM has been used in the development of nuclear weapons.

  1. Discourse, Power, and Knowledge in the Management of "Big Science": The Production of Consensus in a Nuclear Fusion Research Laboratory.

    ERIC Educational Resources Information Center

    Kinsella, William J.

    1999-01-01

    Extends a Foucauldian view of power/knowledge to the archetypical knowledge-intensive organization, the scientific research laboratory. Describes the discursive production of power/knowledge at the "big science" laboratory conducting nuclear fusion research and illuminates a critical incident in which the fusion research "discipline" imposes…

  2. Nuclear Science Symposium, 19th, and Nuclear Power Systems Symposium, 4th, Miami, Fla., December 6-8, 1972, Proceedings.

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Major topics covered include radiation monitoring instrumentation, nuclear circuits and systems, biomedical applications of nuclear radiation in diagnosis and therapy, plasma research for fusion power, reactor control and instrumentation, nuclear power standards, and applications of digital computers in nuclear power plants. Systems and devices for space applications are described, including the Apollo alpha spectrometer, a position sensitive detection system for UV and X-ray photons, a 4500-volt electron multiplier bias supply for satellite use, spark chamber systems, proportional counters, and other devices. Individual items are announced in this issue.

  3. Los Alamos, Toshiba probing Fukushima with cosmic rays

    ScienceCinema

    Morris, Christopher

    2016-07-12

    Los Alamos National Laboratory has announced an impending partnership with Toshiba Corporation to use a Los Alamos technique called muon tomography to safely peer inside the cores of the Fukushima Daiichi reactors and create high-resolution images of the damaged nuclear material inside without ever breaching the cores themselves. The initiative could reduce the time required to clean up the disabled complex by at least a decade and greatly reduce radiation exposure to personnel working at the plant. Muon radiography (also called cosmic-ray radiography) uses secondary particles generated when cosmic rays collide with upper regions of Earth's atmosphere to create images of the objects that the particles, called muons, penetrate. The process is analogous to an X-ray image, except muons are produced naturally and do not damage the materials they contact. Muon radiography has been used before in imaginative applications such as mapping the interior of the Great Pyramid at Giza, but Los Alamos's muon tomography technique represents a vast improvement over earlier technology.

  4. Los Alamos, Toshiba probing Fukushima with cosmic rays

    SciTech Connect

    Morris, Christopher

    2014-06-16

    Los Alamos National Laboratory has announced an impending partnership with Toshiba Corporation to use a Los Alamos technique called muon tomography to safely peer inside the cores of the Fukushima Daiichi reactors and create high-resolution images of the damaged nuclear material inside without ever breaching the cores themselves. The initiative could reduce the time required to clean up the disabled complex by at least a decade and greatly reduce radiation exposure to personnel working at the plant. Muon radiography (also called cosmic-ray radiography) uses secondary particles generated when cosmic rays collide with upper regions of Earth's atmosphere to create images of the objects that the particles, called muons, penetrate. The process is analogous to an X-ray image, except muons are produced naturally and do not damage the materials they contact. Muon radiography has been used before in imaginative applications such as mapping the interior of the Great Pyramid at Giza, but Los Alamos's muon tomography technique represents a vast improvement over earlier technology.

  5. Fusion Nuclear Science Facility (FNSF) before Upgrade to Component Test Facility (CTF)

    SciTech Connect

    Peng, Yueng Kay Martin

    2010-01-01

    The compact (R0~1.2-1.3m) Fusion Nuclear Science Facility (FNSF) is aimed at providing a fully integrated, continuously driven fusion nuclear environment of copious fusion neutrons. This facility would be used to test, discover, understand, and innovate scientific and technical solutions for the challenges facing DEMO, by addressing the multi-scale synergistic interactions involving fusion plasma material interactions, tritium fuel cycle, power extraction, and the nuclear effects on materials. Such a facility properly designed would provide, initially at the JET-level plasma pressure (~30%T2) and conditions (e.g., Hot-Ion H-Mode), an outboard fusion neutron flux of 0.25 MW/m2 while requiring a fusion power of 19 MW. If and when this research operation is successful, its performance can be extended to 1 MW/m2 and 76 MW by reaching for twice the JET plasma pressure and Q. High-safety factor q and moderate- plasmas would minimize plasma-induced disruptions, helping to deliver reliably a neutron fluence of 1 MW-yr/m2 and a duty factor of 10% presently anticipated for the FNS research. Success of this research will depend on achieving time-efficient installation and replacement of all components using extensive remote handling (RH). This in turn requires modular designs for all internal components, including the single-turn toroidal field coil center-post with RH-compatible bi-directional sliding joints. Such device goals would further dictate placement of support structures and vacuum seal welds behind the internal and shielding components. If these further goals could be achieved, the FNSF would provide a ready upgrade path to the Component Test Facility (CTF), which would aim to test, at higher neutron fluence and duty cycle, the demanding fusion nuclear engineering and technologies for DEMO. This FNSF-CTF strategy would be complementary to the ITER and the Broader Approach programs, and thereby help mitigate the risks of an aggressive world fusion DEMO R&D Program

  6. A proposal for a long-pulse spallation source at Los Alamos National Laboratory

    SciTech Connect

    Pynn, R.; Weinacht, D.

    1995-12-01

    Los Alamos National Laboratory is proposing a new spallation neutron source that will provide the US with an internationally competitive facility for neutron science and technology that can be built in approximately three years for less than $100 million. The establishment of a 1-MW, long-pulse spallation source (LPSS) at the Los Alamos Neutron Science Center (LANSCE) will meet many of the present needs of scientists in the neutron scattering community and provide a significant boost to neutron research in the US. The new facility will support the development of a future, more intense spallation neutron source, that is planned by DOE`s Office of Energy Research. Together with the existing short pulse spallation source (SPSS) at the Manual Lujan, Jr. Neutron Scattering Center (MLNSC) at Los Alamos, the new LPSS will provide US scientists with a complementary pair of high-performance neutron sources to rival the world`s leading facilities in Europe.

  7. Los Alamos safeguards program overview and NDA in safeguards

    SciTech Connect

    Keepin, G.R.

    1988-01-01

    Over the years the Los Alamos safeguards program has developed, tested, and implemented a broad range of passive and active nondestructive analysis (NDA) instruments (based on gamma and x-ray detection and neutron counting) that are now widely employed in safeguarding nuclear materials of all forms. Here very briefly, the major categories of gamma ray and neutron based NDA techniques, give some representative examples of NDA instruments currently in use, and cite a few notable instances of state-of-the-art NDA technique development. Historical aspects and a broad overview of the safeguards program are also presented.

  8. Tiger Team Assessment of the Los Alamos National Laboratory

    SciTech Connect

    Not Available

    1991-11-01

    The purpose of the safety and health assessment was to determine the effectiveness of representative safety and health programs at the Los Alamos National Laboratory (LANL). Within the safety and health programs at LANL, performance was assessed in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Explosives Safety, Natural Phenomena, and Medical Services.

  9. The Los Alamos primer: The first lectures on how to build an atomic bomb

    SciTech Connect

    Serber, R.; Rhodes, R.

    1992-01-01

    When the work on the atomic bomb was started in Los Alamos, a series of 5 lectures by Robert Serber, presented what was then known about the physics of nuclear explosions. Some supplemental material has been added to the basic lectures. The book is not for the non-physicist, remaining mathamatical and using many basic concepts of physics.

  10. Los Alamos Scientific Laboratory waste management technology development activities. Summary progress report, 1979

    SciTech Connect

    Johnson, L.J.

    1980-10-01

    Summary reports on the Department of Energy's Nuclear Energy-sponsored waste management technology development projects at the Los Alamos Scientific Laboratory describe progress for calendar year 1979. Activities in airborne, low-level, and transuranic waste management areas are discussed. Work progress on waste assay, treatment, disposal, and environmental monitoring is reviewed.

  11. Los Alamos opacity web page

    SciTech Connect

    Magee, N.H. Jr.; Clark, R.E.H.

    1998-02-01

    The Los Alamos opacity data base is now available on the World Wide Web at http://t4.lanl.gov. The data base contains both the original Astrophysical Opacity Library distributed worldwide in the 1980`s (for historical reference) and the new improved opacities from the Light Element Detailed Configuration OPacity (LEDCOP) code. Users can access the opacity data using the multigroup opacity code TOPS to obtain Rosseland and Planck gray opacities, group mean opacities over selected energy ranges, the monochromatic absorption coefficients and the average ionization over a wide range of temperatures and densities. As described in this paper, these quantities are available for all of the elements presently on the data base and TOPS will provide the same quantities for any arbitrary mixture of these elements.

  12. Los Alamos PC estimating system

    SciTech Connect

    Stutz, R.A.; Lemon, G.D.

    1987-01-01

    The Los Alamos Cost Estimating System (QUEST) is being converted to run on IBM personal computers. This very extensive estimating system is capable of supporting cost estimators from many different and varied fields. QUEST does not dictate any fixed method for estimating. QUEST supports many styles and levels of detail estimating. QUEST can be used with or without data bases. This system allows the estimator to provide reports based on levels of detail defined by combining work breakdown structures. QUEST provides a set of tools for doing any type of estimate without forcing the estimator to use any given method. The level of detail in the estimate can be mixed based on the amount of information known about different parts of the project. The system can support many different data bases simultaneously. Estimators can modify any cost in any data base.

  13. Characterization of a nuclear accident dosimeter

    SciTech Connect

    Burrows, R.A.

    1995-12-01

    The 23rd nuclear accident dosimetry intercomparison was held during the week of June 12--16, 1995 at Los Alamos National Laboratory. This report presents the results of this event, referred to as NAD 23, as related to the performance of Sandia National Laboratories (SNL) personal nuclear accident dosimeter (PNAD). Two separate critical assemblies, SHEBA and Godiva, were used to generate seven separate neutron spectra for use in dose comparisons. SNL`s PNAD measured absorbed doses that were within +16 to +26% of the reference doses. In addition, a preliminary investigation was undertaken to determine the feasibility of using the data obtained from an irradiated PNAD to correct for body orientation. This portion of the experiment was performed with a TRIGA reactor at the Nuclear Science Center at Texas A and M University.

  14. European MSc Programs in Nuclear Sciences - To meet the Need of Stakeholders

    SciTech Connect

    Salbu, Brit; Skipperud, Lindis; Priest, Nick; Garelick, Hemda; Tamponnet, Christian; Mitchell, Peter

    2009-08-19

    A stakeholder needs assessment, carried out under the EU-EURAC and EU-ENEN II projects, clearly showed that, at the European level, there are a significant and constant need for post-graduates with skills in radiochemistry, radioecology, radiation dosimetry and environmental modelling and a smaller, but still important, demand for radiobiologists and bio-modellers. Most of these needs are from government organizations. If only the nuclear industry is considered, then the largest demand is for radiochemists and radiation protection dosimetrists. Given this spectrum of need and existing capacity in the areas of radiobiology it was concluded that the needs identified would be most efficiently met by three new degree programs: European MSc Radiation Protection European MSc Analytical Radiochemistry European MSc Radioecology. All three master programs would be developed using the framework provided by the Bologna Convention and the lecturing could be shared among specialist Scientists within a network of collaborating universities. Therefore, educational plans have been developed for the above MSc degrees. These plans envisage each degree comprising three modules that are common to all the degrees (3x10 ECTS credits), three specialist modules (3x10 ECTS credits) and a research project (1x60 ECTS credits). The courses should be aimed, not only to fill the identified European postgraduate education gap in radiological sciences, but also to provide a modular structure that is easily accessed by stakeholders for CPD training. It is anticipated that the European Masters will meet the academic training requirements of qualified 'experts', as defined by the European Commission and the IAEA. At the Norwegian University of Life Sciences (UMB) a pilot MSc in Radioecology has successfully been initiated in collaboration with UK and France.

  15. The economic impact of Los Alamos National Laboratory on north-central New Mexico and the state of New Mexico fiscal year 1998

    SciTech Connect

    Lansford, R.R.; Adcock, L.D.; Gentry, L.M.; Ben-David, S.; Temple, J.

    1999-08-05

    Los Alamos National Laboratory (LANL) is a multidisciplinary, multiprogram laboratory with a mission to enhance national military and economic security through science and technology. Its mission is to reduce the nuclear danger through stewardship of the nation`s nuclear stockpile and through its nonproliferation and verification activities. An important secondary mission is to promote US industrial competitiveness by working with US companies in technology transfer and technology development partnerships. Los Alamos is involved in partnerships and collaborations with other federal agencies, with industry (including New Mexico businesses), and with universities worldwide. For this report, the reference period is FY 1998 (October 1, 1997, through September 30, 1998). It includes two major impact analysis: the impact of LANL activities on north-central New Mexico and the economic impacts of LANL on the state of New Mexico. Total impact represents both direct and indirect responding by business, including induced effects (responding by households). The standard multipliers used in determining impacts result from the inter-industry, input-output models developed for the three-county region and the state of New Mexico.

  16. The economic impact of Los Alamos National Laboratory on north-central New Mexico and the state of New Mexico fiscal year 1997

    SciTech Connect

    Lansford, R.R.; Nielsen, T.G.; Schultz, J.; Adcock, L.D.; Gentry, L.M.; Ben-David, S.; Temple, J.

    1998-05-29

    Los Alamos National Laboratory (LANL) is a multidisciplinary, multiprogram laboratory with a mission to enhance national military and economic security through science and technology. Its mission is to reduce the nuclear danger through stewardship of the nation`s nuclear stockpile and through its nonproliferation and verification activities. An important secondary mission is to promote US industrial competitiveness by working with US companies in technology transfer and technology development partnerships. Los Alamos is involved in partnerships and collaborations with other federal agencies, with industry (including New Mexico businesses), and with universities worldwide. For this report, the reference period is FY 1997 (October 1, 1996, through September 30, 1997) and includes two major impact analysis: the impact of LANL activities on north-central New Mexico and the economic impacts of LANL on the state of New Mexico. Total impact represents both direct and indirect respending by business, including induced effects (respending by households). The standard multipliers used in determining impacts result from the inter-industry, input-output models developed for the three-county region and the state of New Mexico. 5 figs., 12 tabs.

  17. Go Nuclear? What We Make. Science and Technology Education in Philippine Society.

    ERIC Educational Resources Information Center

    Philippines Univ., Quezon City. Inst. for Science and Mathematics Education Development.

    The dialogue in this module (about a nuclear power plant in Morong, Bataan) is designed to help students answer these questions: (1) When did the construction of the plant begin? What delayed the construction? (2) How does a nuclear power plant produce electricity? What are the nuclear reactions involved? (3) How does a nuclear power plant control…

  18. 1989 IEEE Nuclear Science Symposium, San Francisco, CA, Jan. 17-19, 1990, Proceedings

    NASA Astrophysics Data System (ADS)

    Derenzo, Stephen E.

    1990-04-01

    Recent advances in nuclear technology are discussed in reviews and reports. Sections are devoted to tracking and imaging detectors, radiation detector development and applications, calorimetry detectors, trigger processing, data-acquisition and analysis systems, analog and digital nuclear electronics circuits, radiation damage in detectors, and astronomy and space instrumentation. Consideration is given to nuclear medicine instrumentation and imaging, environmental and health-physics instrumentation and applications, nuclear well logging, nuclear power systems, and reactor instrumentation and control.

  19. ARC: A compact, high-field, disassemblable fusion nuclear science facility and demonstration power plant

    NASA Astrophysics Data System (ADS)

    Sorbom, Brandon; Ball, Justin; Palmer, Timothy; Mangiarotti, Franco; Sierchio, Jennifer; Bonoli, Paul; Kasten, Cale; Sutherland, Derek; Barnard, Harold; Haakonsen, Christian; Goh, Jon; Sung, Choongki; Whyte, Dennis

    2014-10-01

    The Affordable, Robust, Compact (ARC) reactor conceptual design aims to reduce the size, cost, and complexity of a combined Fusion Nuclear Science Facility (FNSF) and demonstration fusion pilot power plant. ARC is a 270 MWe tokamak reactor with a major radius of 3.3 m, a minor radius of 1.1 m, and an on-axis magnetic field of 9.2 T. ARC has Rare Earth Barium Copper Oxide (REBCO) superconducting toroidal field coils with joints to allow disassembly, allowing for removal and replacement of the vacuum vessel as a single component. Inboard-launched current drive of 25 MW LHRF power and 13.6 MW ICRF power is used to provide a robust, steady state core plasma far from disruptive limits. ARC uses an all-liquid blanket, consisting of low pressure, slowly flowing Fluorine Lithium Beryllium (FLiBe) molten salt. The liquid blanket acts as a working fluid, coolant, and tritium breeder, and minimizes the solid material that can become activated. The large temperature range over which FLiBe is liquid permits blanket operation at 800-900 K with single phase fluid cooling and allows use of a high-efficiency Brayton cycle for electricity production in the secondary coolant loop.

  20. Filtered fast neutron irradiation system using Texas A&M University Nuclear Science Center Reactor

    NASA Astrophysics Data System (ADS)

    Jang, S. Y.; Kim, C. H.; Reece, W. D.; Braby, L. A.

    2004-09-01

    A heavily filtered fast neutron irradiation system (FNIS) was developed for a variety of applications, including the study of long-term health effects of fast neutrons by evaluating the biological mechanisms of damage in cultured cells and living animals such as rats or mice. This irradiation system includes an exposure cave made with a lead-bismuth alloy, a cave positioning system, a gamma and neutron monitoring system, a sample transfer system, and interchangeable filters. This system was installed in the irradiation cell of the Texas A&M University Nuclear Science Center Reactor (NSCR). For a realistic modeling of the NSCR, the irradiation cell, and the FNIS, this study used the Monte Carlo N-Particle (MCNP) code and a set of high-temperature ENDF/B-VI continuous neutron cross-section data. Sensitivity analysis was performed to find the characteristics of the FNIS as a function of the thickness of the lead-bismuth alloy. A paired ion chamber system was constructed with a tissue-equivalent plastic (A-150) and propane gas for total dose monitoring and with graphite and argon for gamma dose monitoring. This study, in addition, tested the Monte Carlo modeling of the FNIS system, as well as the performance of the system by comparing the calculated results with experimental measurements using activation foils and paired ion chambers.

  1. Sunset at the ALaMO

    NASA Video Gallery

    A new color all-sky camera has opened its eyes at the ALaMO, or Automated Lunar and Meteor Observatory, at NASA's Marshall Space Flight Center in Huntsville, Ala. Watch its inaugural video below, s...

  2. Publications of Los Alamos research 1988

    SciTech Connect

    Varjabedian, K.; Dussart, S.A.; McClary, W.J.; Rich, J.A.

    1989-12-01

    This bibliography lists unclassified publications of work done at the Los Alamos National Laboratory for 1988. The entries, which are subdivided by broad subject categories, are cross-referenced with an author index and a numeric index.

  3. New Rad Lab for Los Alamos

    SciTech Connect

    2008-08-06

    The topping out ceremony for a key construction stage in the Los Alamos National Laboratory's newest facility, the Radiological Laboratory Utility & Office Building. This is part of the National Nu...  

  4. Environmental surveillance at Los Alamos during 1994

    SciTech Connect

    1996-07-01

    This report describes environmental monitoring activities at Los Alamos National Laboratory for 1994. Data were collected to assess external penetrating radiation, airborne emissions, liquid effluents, radioactivity of environmental materials and food stuffs, and environmental compliance.

  5. New Rad Lab for Los Alamos

    ScienceCinema

    None

    2016-07-12

    The topping out ceremony for a key construction stage in the Los Alamos National Laboratory's newest facility, the Radiological Laboratory Utility & Office Building. This is part of the National Nu...  

  6. Nuclear Science Division, Annual report, October 1, 1988--December 31, 1990

    SciTech Connect

    Poskanzer, A.M.; Deleplanque, M.A.; Firestone, R.B.; Lofdahl, J.B.

    1991-04-01

    This report contains short papers of research conducted in the following areas: Low energy research program; bevalac research program; ultrarelativistic research program; nuclear theory program; nuclear data evaluation; and, 88-inch cyclotron operations.

  7. Fusion nuclear science facilities and pilot plants based on the spherical tokamak

    NASA Astrophysics Data System (ADS)

    Menard, J. E.; Brown, T.; El-Guebaly, L.; Boyer, M.; Canik, J.; Colling, B.; Raman, R.; Wang, Z.; Zhai, Y.; Buxton, P.; Covele, B.; D'Angelo, C.; Davis, A.; Gerhardt, S.; Gryaznevich, M.; Harb, M.; Hender, T. C.; Kaye, S.; Kingham, D.; Kotschenreuther, M.; Mahajan, S.; Maingi, R.; Marriott, E.; Meier, E. T.; Mynsberge, L.; Neumeyer, C.; Ono, M.; Park, J.-K.; Sabbagh, S. A.; Soukhanovskii, V.; Valanju, P.; Woolley, R.

    2016-10-01

    A fusion nuclear science facility (FNSF) could play an important role in the development of fusion energy by providing the nuclear environment needed to develop fusion materials and components. The spherical torus/tokamak (ST) is a leading candidate for an FNSF due to its potentially high neutron wall loading and modular configuration. A key consideration for the choice of FNSF configuration is the range of achievable missions as a function of device size. Possible missions include: providing high neutron wall loading and fluence, demonstrating tritium self-sufficiency, and demonstrating electrical self-sufficiency. All of these missions must also be compatible with a viable divertor, first-wall, and blanket solution. ST-FNSF configurations have been developed simultaneously incorporating for the first time: (1) a blanket system capable of tritium breeding ratio TBR  ≈  1, (2) a poloidal field coil set supporting high elongation and triangularity for a range of internal inductance and normalized beta values consistent with NSTX/NSTX-U previous/planned operation, (3) a long-legged divertor analogous to the MAST-U divertor which substantially reduces projected peak divertor heat-flux and has all outboard poloidal field coils outside the vacuum chamber and superconducting to reduce power consumption, and (4) a vertical maintenance scheme in which blanket structures and the centerstack can be removed independently. Progress in these ST-FNSF missions versus configuration studies including dependence on plasma major radius R 0 for a range 1 m-2.2 m are described. In particular, it is found the threshold major radius for TBR  =  1 is {{R}0}≥slant 1.7 m, and a smaller R 0  =  1 m ST device has TBR  ≈  0.9 which is below unity but substantially reduces T consumption relative to not breeding. Calculations of neutral beam heating and current drive for non-inductive ramp-up and sustainment are described. An A  =  2, R 0

  8. Nuclear safety analyses and core design calculations to convert the Texas A & M University Nuclear Science Center reactor to low enrichment uranium fuel. Final report

    SciTech Connect

    Parish, T.A.

    1995-03-02

    This project involved performing the nuclear design and safety analyses needed to modify the license issued by the Nuclear Regulatory Commission to allow operation of the Texas A& M University Nuclear Science Center Reactor (NSCR) with a core containing low enrichment uranium (LEU) fuel. The specific type of LEU fuel to be considered was the TRIGA 20-20 fuel produced by General Atomic. Computer codes for the neutronic analyses were provided by Argonne National Laboratory (ANL) and the assistance of William Woodruff of ANL in helping the NSCR staff to learn the proper use of the codes is gratefully acknowledged. The codes applied in the LEU analyses were WIMSd4/m, DIF3D, NCTRIGA and PARET. These codes allowed full three dimensional, temperature and burnup dependent calculations modelling the NSCR core to be performed for the first time. In addition, temperature coefficients of reactivity and pulsing calculations were carried out in-house, whereas in the past this modelling had been performed at General Atomic. In order to benchmark the newly acquired codes, modelling of the current NSCR core with highly enriched uranium fuel was also carried out. Calculated results were compared to both earlier licensing calculations and experimental data and the new methods were found to achieve excellent agreement with both. Therefore, even if an LEU core is never loaded at the NSCR, this project has resulted in a significant improvement in the nuclear safety analysis capabilities established and maintained at the NSCR.

  9. The Science of Nuclear Materials: A Modular, Laboratory-based Curriculum

    SciTech Connect

    Cahill, C.L.; Feldman, G.; Briscoe, W.J.

    2014-06-15

    The development of a curriculum for nuclear materials courses targeting students pursuing Master of Arts degrees at The George Washington University is described. The courses include basic concepts such as radiation and radioactivity as well as more complex topics such the nuclear fuel cycle, nuclear weapons, radiation detection and technological aspects of non-proliferation.

  10. Nuclear Power: Pros and Cons. What We Make. Science and Technology Education in Philippine Society.

    ERIC Educational Resources Information Center

    Philippines Univ., Quezon City. Inst. for Science and Mathematics Education Development.

    This module brings together in a panel discussion opposing views and supporting data on the first Philippine nuclear power plant in Morong, Bataan. It extends the discussion of issues and ideas about nuclear power in the dialogue "Go Nuclear" (which should be read before starting this panel discussion). The module deals with the environmental,…

  11. The Science of Nuclear Materials: A Modular, Laboratory-based Curriculum

    NASA Astrophysics Data System (ADS)

    Cahill, C. L.; Feldman, G.; Briscoe, W. J.

    2014-06-01

    The development of a curriculum for nuclear materials courses targeting students pursuing Master of Arts degrees at The George Washington University is described. The courses include basic concepts such as radiation and radioactivity as well as more complex topics such the nuclear fuel cycle, nuclear weapons, radiation detection and technological aspects of non-proliferation.

  12. Los Alamos Laser Eye Investigation.

    SciTech Connect

    Odom, C. R.

    2005-01-01

    A student working in a laser laboratory at Los Alamos National Laboratory sustained a serious retinal injury to her left eye when she attempted to view suspended particles in a partially evacuated target chamber. The principle investigator was using the white light from the flash lamp of a Class 4 Nd:YAG laser to illuminate the particles. Since the Q-switch was thought to be disabled at the time of the accident, the principal investigator assumed it would be safe to view the particles without wearing laser eye protection. The Laboratory Director appointed a team to investigate the accident and to report back to him the events and conditions leading up to the accident, equipment malfunctions, safety management causal factors, supervisory and management action/inaction, adequacy of institutional processes and procedures, emergency and notification response, effectiveness of corrective actions and lessons learned from previous similar events, and recommendations for human and institutional safety improvements. The team interviewed personnel, reviewed documents, and characterized systems and conditions in the laser laboratory during an intense six week investigation. The team determined that the direct and primary failures leading to this accident were, respectively, the principle investigator's unsafe work practices and the institution's inadequate monitoring of worker performance. This paper describes the details of the investigation, the human and institutional failures, and the recommendations for improving the laser safety program.

  13. Nuclear Methods for Transmutation of Nuclear Waste: Problems, Perspextives, Cooperative Research - Proceedings of the International Workshop

    NASA Astrophysics Data System (ADS)

    Khankhasayev, Zhanat B.; Kurmanov, Hans; Plendl, Mikhail Kh.

    1996-12-01

    The Table of Contents for the full book PDF is as follows: * Preface * I. Review of Current Status of Nuclear Transmutation Projects * Accelerator-Driven Systems — Survey of the Research Programs in the World * The Los Alamos Accelerator-Driven Transmutation of Nuclear Waste Concept * Nuclear Waste Transmutation Program in the Czech Republic * Tentative Results of the ISTC Supported Study of the ADTT Plutonium Disposition * Recent Neutron Physics Investigations for the Back End of the Nuclear Fuel Cycle * Optimisation of Accelerator Systems for Transmutation of Nuclear Waste * Proton Linac of the Moscow Meson Factory for the ADTT Experiments * II. Computer Modeling of Nuclear Waste Transmutation Methods and Systems * Transmutation of Minor Actinides in Different Nuclear Facilities * Monte Carlo Modeling of Electro-nuclear Processes with Nonlinear Effects * Simulation of Hybrid Systems with a GEANT Based Program * Computer Study of 90Sr and 137Cs Transmutation by Proton Beam * Methods and Computer Codes for Burn-Up and Fast Transients Calculations in Subcritical Systems with External Sources * New Model of Calculation of Fission Product Yields for the ADTT Problem * Monte Carlo Simulation of Accelerator-Reactor Systems * III. Data Basis for Transmutation of Actinides and Fission Products * Nuclear Data in the Accelerator Driven Transmutation Problem * Nuclear Data to Study Radiation Damage, Activation, and Transmutation of Materials Irradiated by Particles of Intermediate and High Energies * Radium Institute Investigations on the Intermediate Energy Nuclear Data on Hybrid Nuclear Technologies * Nuclear Data Requirements in Intermediate Energy Range for Improvement of Calculations of ADTT Target Processes * IV. Experimental Studies and Projects * ADTT Experiments at the Los Alamos Neutron Science Center * Neutron Multiplicity Distributions for GeV Proton Induced Spallation Reactions on Thin and Thick Targets of Pb and U * Solid State Nuclear Track Detector and

  14. Evaluation of CFETR as a Fusion Nuclear Science Facility using multiple system codes

    NASA Astrophysics Data System (ADS)

    Chan, V. S.; Costley, A. E.; Wan, B. N.; Garofalo, A. M.; Leuer, J. A.

    2015-02-01

    This paper presents the results of a multi-system codes benchmarking study of the recently published China Fusion Engineering Test Reactor (CFETR) pre-conceptual design (Wan et al 2014 IEEE Trans. Plasma Sci. 42 495). Two system codes, General Atomics System Code (GASC) and Tokamak Energy System Code (TESC), using different methodologies to arrive at CFETR performance parameters under the same CFETR constraints show that the correlation between the physics performance and the fusion performance is consistent, and the computed parameters are in good agreement. Optimization of the first wall surface for tritium breeding and the minimization of the machine size are highly compatible. Variations of the plasma currents and profiles lead to changes in the required normalized physics performance, however, they do not significantly affect the optimized size of the machine. GASC and TESC have also been used to explore a lower aspect ratio, larger volume plasma taking advantage of the engineering flexibility in the CFETR design. Assuming the ITER steady-state scenario physics, the larger plasma together with a moderately higher BT and Ip can result in a high gain Qfus ˜ 12, Pfus ˜ 1 GW machine approaching DEMO-like performance. It is concluded that the CFETR baseline mode can meet the minimum goal of the Fusion Nuclear Science Facility (FNSF) mission and advanced physics will enable it to address comprehensively the outstanding critical technology gaps on the path to a demonstration reactor (DEMO). Before proceeding with CFETR construction steady-state operation has to be demonstrated, further development is needed to solve the divertor heat load issue, and blankets have to be designed with tritium breeding ratio (TBR) >1 as a target.

  15. Strengthening the fission reactor nuclear science and engineering program at UCLA. Final technical report

    SciTech Connect

    Okrent, D.

    1997-06-23

    This is the final report on DOE Award No. DE-FG03-92ER75838 A000, a three year matching grant program with Pacific Gas and Electric Company (PG and E) to support strengthening of the fission reactor nuclear science and engineering program at UCLA. The program began on September 30, 1992. The program has enabled UCLA to use its strong existing background to train students in technological problems which simultaneously are of interest to the industry and of specific interest to PG and E. The program included undergraduate scholarships, graduate traineeships and distinguished lecturers. Four topics were selected for research the first year, with the benefit of active collaboration with personnel from PG and E. These topics remained the same during the second year of this program. During the third year, two topics ended with the departure o the students involved (reflux cooling in a PWR during a shutdown and erosion/corrosion of carbon steel piping). Two new topics (long-term risk and fuel relocation within the reactor vessel) were added; hence, the topics during the third year award were the following: reflux condensation and the effect of non-condensable gases; erosion/corrosion of carbon steel piping; use of artificial intelligence in severe accident diagnosis for PWRs (diagnosis of plant status during a PWR station blackout scenario); the influence on risk of organization and management quality; considerations of long term risk from the disposal of hazardous wastes; and a probabilistic treatment of fuel motion and fuel relocation within the reactor vessel during a severe core damage accident.

  16. RCRA facility investigation for the townsite of Los Alamos, New Mexico

    SciTech Connect

    Dorries, A.M.; Conrad, R.C.; Nonno, L.M.

    1992-01-01

    During World War II, Los Alamos, New Mexico was established as an ideal location for the secrecy and safety needed for the research and development required to design a nuclear fission bomb. Experiments carried out in the 1940s generated both radioactive and hazardous waste constituents on what is presently part of the Los Alamos townsite. Under the RCRA permit issued to Los alamos national Laboratory in 1990, the Laboratory is scheduled for investigation of its solid waste management units (SWMUs). The existing information on levels of radioactivity on the townsite is principally data from soil samples taken during the last site decontamination in 1976, little information on the presence of hazardous constituents exists today. This paper addresses pathway analysis and a preliminary risk assessment for current residents of the Los Alamos townsite. The estimated dose levels, in mrem per year, show that the previously decontaminated SWMU areas on the Los Alamos townsite will not contribute a radiation dose of any concern to the current residents.

  17. RCRA facility investigation for the townsite of Los Alamos, New Mexico

    SciTech Connect

    Dorries, A.M.; Conrad, R.C.; Nonno, L.M.

    1992-02-01

    During World War II, Los Alamos, New Mexico was established as an ideal location for the secrecy and safety needed for the research and development required to design a nuclear fission bomb. Experiments carried out in the 1940s generated both radioactive and hazardous waste constituents on what is presently part of the Los Alamos townsite. Under the RCRA permit issued to Los alamos national Laboratory in 1990, the Laboratory is scheduled for investigation of its solid waste management units (SWMUs). The existing information on levels of radioactivity on the townsite is principally data from soil samples taken during the last site decontamination in 1976, little information on the presence of hazardous constituents exists today. This paper addresses pathway analysis and a preliminary risk assessment for current residents of the Los Alamos townsite. The estimated dose levels, in mrem per year, show that the previously decontaminated SWMU areas on the Los Alamos townsite will not contribute a radiation dose of any concern to the current residents.

  18. Recent UCN source developments at Los Alamos

    SciTech Connect

    Seestrom, S.J.; Anaya, J.M.; Bowles, T.J.

    1998-12-01

    The most intense sources of ultra cold neutrons (UCN) have bee built at reactors where the high average thermal neutron flux can overcome the low UCN production rate to achieve usable densities of UCN. At spallation neutron sources the average flux available is much lower than at a reactor, though the peak flux can be comparable or higher. The authors have built a UCN source that attempts to take advantage of the high peak flux available at the short pulse spallation neutron source at the Los Alamos Neutron Science Center (LANSCE) to generate a useful number of UCN. In the source UCN are produced by Doppler-shifted Bragg scattering of neutrons to convert 400-m/s neutrons down into the UCN regime. This source was initially tested in 1996 and various improvements were made based on the results of the 1996 running. These improvements were implemented and tested in 1997. In sections 2 and 3 they discuss the improvements that have been made and the resulting source performance. Recently an even more interesting concept was put forward by Serebrov et al. This involves combining a solid Deuterium UCN source, previously studied by Serebrov et al., with a pulsed spallation source to achieve world record UCN densities. They have initiated a program of calculations and measurements aimed at verifying the solid Deuterium UCN source concept. The approach has been to develop an analytical capability, combine with Monte Carlo calculations of neutron production, and perform benchmark experiments to verify the validity of the calculations. Based on the calculations and measurements they plan to test a modified version of the Serebrov UCN factory. They estimate that they could produce over 1,000 UCN/cc in a 15 liter volume, using 1 {micro}amp of 800 MeV protons for two seconds every 500 seconds. They will discuss the result UCN production measurements in section 4.

  19. Science policy in changing times

    SciTech Connect

    Greenwood, M.R.C.

    1995-10-01

    Like many scientists who were born right after World War II and who have learned a lot about physics, physical sciences, and biology from some of the incredible discoveries that were made in the defense laboratories, I have always been fascinated with Los Alamos. One of the marvelous opportunities that my job in Washington presented was to get to know a good deal more about the physical science world and the Department of Energy (DOE) laboratories, particularly Los Alamos since the Manhattan Project.

  20. Micronuclei induction in human fibroblasts exposed in vitro to Los Alamos high-energy neutrons

    NASA Astrophysics Data System (ADS)

    Gersey, Brad; Sodolak, John; Hada, Megumi; Saganti, Prem; Wilkins, Richard; Cucinotta, Francis; Wu, Honglu

    High-energy secondary neutrons, produced by the interaction of galactic cosmic rays with the atmosphere, spacecraft structure and planetary surfaces, contribute to a significant fraction to the dose equivalent in crew members and passengers during commercial aviation travel, and astronauts in space missions. The Los Alamos Nuclear Science Center (LANSCE) neutron facility's ICE House 30L beamline is known to generate neutrons that simulate the secondary neutron spectra of earth's atmosphere. The neutron spectrum is also similar to that measured onboard spacecraft like the MIR and International Space Station (ISS). To evaluate the biological damage, we exposed human fibroblasts in vitro to the LANSCE neutron beams without degrader at an entrance dose rate of 25 mGy/h and analyzed the micronuclei (MN) induction. The cells were also placed behind a 9.9 cm water column to study the effect of shielding in the protection of neutron induced damages. It was found that the dose response in the MN frequency was linear for the samples with and without shielding and the slope of the MN yield behind the shielding was reduced by a factor of 3.5. Compared to the MN induction in human fibroblasts exposed to a γ source at a similar low dose rate, the RBE was found to be 16.7 and 10.0 for the neutrons without and with the 9.9 cm water shielding, respectively.

  1. Micronuclei Induction in Human Fibroblasts Exposed In Vitro to Los Alamos High-Energy Neutrons

    NASA Technical Reports Server (NTRS)

    Gersey, Brad; Sodolak, John; Hada, Megumi; Saganti, Prem; Wilkins, Richard; Cucinotta, Francis; Wu, Honglu

    2006-01-01

    High-energy secondary neutrons, produced by the interaction of galactic cosmic rays with the atmosphere, spacecraft structure and planetary surfaces, contribute to a significant fraction to the dose equivalent in crew members and passengers during commercial aviation travel, and astronauts in space missions. The Los Alamos Nuclear Science Center (LANSCE) neutron facility#s ICE House 30L beamline is known to generate neutrons that simulate the secondary neutron spectra of earth#s atmosphere. The neutron spectrum is also similar to that measured onboard spacecraft like the MIR and International Space Station (ISS). To evaluate the biological damage, we exposed human fibroblasts in vitro to the LANSCE neutron beams without degrader at an entrance dose rate of 25 mGy/hr and analyzed the micronuclei (MN) induction. The cells were also placed behind a 9.9 cm water column to study effect of shielding in the protection of neutron induced damages. It was found that the dose response in the MN frequency was linear for the samples with and without shielding and the slope of the MN yield behind the shielding was reduced by a factor of 3.5. Compared to the MN induction in human fibroblasts exposed to a gamma source at a low dose rate, the RBE was found to be 16.7 and 10.0 for the neutrons without and with 9.9 cm water shielding, respectively.

  2. Game Imaging Meets Nuclear Reality

    SciTech Connect

    Michel, Kelly; Watkins, Adam

    2011-03-21

    At Los Alamos National Laboratory, a team of artists and animators, nuclear engineers and computer scientists is teaming to provide 3-D models of nuclear facilities to train IAEA safeguards inspectors and others who need fast familiarity with specific nuclear sites.

  3. Game Imaging Meets Nuclear Reality

    ScienceCinema

    Michel, Kelly; Watkins, Adam

    2016-07-12

    At Los Alamos National Laboratory, a team of artists and animators, nuclear engineers and computer scientists is teaming to provide 3-D models of nuclear facilities to train IAEA safeguards inspectors and others who need fast familiarity with specific nuclear sites.

  4. 75 FR 67711 - Extension of Scoping Period for the Supplemental Environmental Impact Statement for the Nuclear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-03

    ... Portion of the Chemistry and Metallurgy Research Building Replacement Project at Los Alamos National... Chemistry and Metallurgy Research Building Replacement Project at Los Alamos National Laboratory, Los Alamos... construction and operation of the nuclear facility portion of the Chemistry and Metallurgy Research...

  5. ChemCam Rock Laser for the Mars Science Laboratory

    SciTech Connect

    LANL

    2008-03-24

    Los Alamos has a long history of space-related instr... Los Alamos has a long history of space-related instruments, tied primarily to its role in defense-related treaty verification. Space-based detectors have helped determine the differences between signals from lightning bolts and potential nuclear explosions. LANL-developed gamma-ray detection instruments first revealed the existence of what we now know as gamma-ray bursts, an exciting area of astrophysical research. And the use of LANL instruments on varied space missions continues with such products as the ChemCam rock laser for NASA, shown here. The Engineering Model of the ChemCam Mars Science Laboratory rover instrument arrived at NASA's Jet Propulsion Laboratory on February 6, 2008. ChemCam will use imaging and laser-induced breakdown spectroscopy (LIBS) to determine rock and soil compositions on Mars, up to 9 meters from the rover. The engineering model is being integrated into the rover test bed for the development and testing of the rover software. The actual flight model components are concurrently being assembled at Los Alamos and in Toulouse, France, and will be delivered to JPL in July. The Mars Science Laboratory is scheduled to launch in 2009. Animations courtesy of JPL/NASA.

  6. ChemCam Rock Laser for the Mars Science Laboratory

    ScienceCinema

    LANL

    2016-07-12

    Los Alamos has a long history of space-related instr... Los Alamos has a long history of space-related instruments, tied primarily to its role in defense-related treaty verification. Space-based detectors have helped determine the differences between signals from lightning bolts and potential nuclear explosions. LANL-developed gamma-ray detection instruments first revealed the existence of what we now know as gamma-ray bursts, an exciting area of astrophysical research. And the use of LANL instruments on varied space missions continues with such products as the ChemCam rock laser for NASA, shown here. The Engineering Model of the ChemCam Mars Science Laboratory rover instrument arrived at NASA's Jet Propulsion Laboratory on February 6, 2008. ChemCam will use imaging and laser-induced breakdown spectroscopy (LIBS) to determine rock and soil compositions on Mars, up to 9 meters from the rover. The engineering model is being integrated into the rover test bed for the development and testing of the rover software. The actual flight model components are concurrently being assembled at Los Alamos and in Toulouse, France, and will be delivered to JPL in July. The Mars Science Laboratory is scheduled to launch in 2009. Animations courtesy of JPL/NASA.

  7. Nuclear Science and Physics Data from the Isotopes Project, Lawrence Berkeley National Laboratory (LBNL)

    DOE Data Explorer

    The Isotopes Project pages at Lawrence Berkeley National Laboratory have been a source of nuclear data and reference information since the mid-nineties. Almost all of the data, the results of analyses, the specialized charts and interfaces, and the extensive bibiographic references are fed to the National Nuclear Data Center (NNDC) at Brookhaven National Laboratory and maintained there. The Isotope Project pages at LBNL provide a glimpse of early versions for many of the nuclear data resources.

  8. Materials capability review Los Alamos National Laboratory, May 3-6, 2010

    SciTech Connect

    Taylor, Antoinette

    2010-01-01

    The 2010 'Capability Review' process at LANL significantly differs from the Division reviews of prior years. The Capabilities being reviewed (some 4-8 per year) are deliberately chosen to be crosscutting over the Laboratory, and therefore will include not only several experimental, theoretical and simulation disciplines, but also contributions from multiple line organizations. This approach is consistent with the new Laboratory organizational structure, focusing on agile and integrated capabilities applied to present national security missions, and also nurtured to be available for rapid application to future missions. The overall intent is that the Committee assess the quality of the science, engineering, and technology identified in the agenda, and advise the LANS Board of Governors and Laboratory management. Specifically, the Committees will: (1) Assess the quality of science, technology and engineering within the Capability in the areas defined in the agenda. Identify issues to develop or enhance the core competencies within this capability. (2) Evaluate the integration of this capability across the Laboratory organizations that are listed in the agenda in terms of joint programs, projects, proposals, and/or publications. Describe the integration of this capability in the wider scientific community using the recognition as a leader within the community, ability to set research agendas, and attraction and retention of staff. (3) Assess the quality and relevance of this capability's science, technology and engineering contributions to current and emerging Laboratory programs, including Nuclear Weapons, Threat Reduction/Homeland Security, and Energy Security. (4) Advise the Laboratory Director/Principal Associate Director for Science, Technology and Engineering on the health of the Capability including the current and future (5 year) science, technology and engineering staff needs, mix of research and development activities, program opportunities, environment for

  9. Who Is Afraid of Volume 1181 of the New York Academy of Sciences? Under Threat, the Nuclear Establishment Plays Dirty.

    PubMed

    Katz, Alison Rosamund

    2015-01-01

    Following decades of an internationally coordinated cover-up, critical information about the health consequences of the Chernobyl accident, worldwide but particularly in Western and Eastern Europe, was made available through Volume 1181 of the Annals of the New York Academy of Sciences. The book also contains unique, valuable data from the 3 most affected counties, and it suggests that consequences of the Chernobyl accident are far more serious than has been acknowledged. Many health problems are worsening, including those resulting from irreversible genetic damage. Given the threat that such information represents to the nuclear establishment, it was predictable that Volume 1181, of far higher scientific quality than the United Nations' flagship report The Chernobyl Forum, would meet with violent criticism. Since its publication in 2009, it has been misrepresented and discredited by the nuclear establishment and international health establishment - to the extent of making the absurd and false claim that the New York Academy of Sciences has in some way disowned its own publication. The New York Academy of Sciences defends publication of Volume 1181 on the grounds of its commitment to open discussion of scientific material and publication of material of scientific value.

  10. Who Is Afraid of Volume 1181 of the New York Academy of Sciences? Under Threat, the Nuclear Establishment Plays Dirty.

    PubMed

    Katz, Alison Rosamund

    2015-01-01

    Following decades of an internationally coordinated cover-up, critical information about the health consequences of the Chernobyl accident, worldwide but particularly in Western and Eastern Europe, was made available through Volume 1181 of the Annals of the New York Academy of Sciences. The book also contains unique, valuable data from the 3 most affected counties, and it suggests that consequences of the Chernobyl accident are far more serious than has been acknowledged. Many health problems are worsening, including those resulting from irreversible genetic damage. Given the threat that such information represents to the nuclear establishment, it was predictable that Volume 1181, of far higher scientific quality than the United Nations' flagship report The Chernobyl Forum, would meet with violent criticism. Since its publication in 2009, it has been misrepresented and discredited by the nuclear establishment and international health establishment - to the extent of making the absurd and false claim that the New York Academy of Sciences has in some way disowned its own publication. The New York Academy of Sciences defends publication of Volume 1181 on the grounds of its commitment to open discussion of scientific material and publication of material of scientific value. PMID:26077859

  11. Advanced neutron irradiation system using Texas A&M University Nuclear Science Center Reactor

    NASA Astrophysics Data System (ADS)

    Jang, Si Young

    A heavily filtered fast neutron irradiation system (FNIS) was developed for a variety of applications, including the study of long-term health effects of fast neutrons by evaluating the biological mechanisms of damage in cultured cells and living animals such as rats or mice. This irradiation system includes an exposure cave made with a lead-bismuth alloy, a cave positioning system, a gamma and neutron monitoring system, a sample transfer system, and interchangeable filters. This system was installed in the irradiation cell of the Texas A&M University Nuclear Science Center Reactor (NSCR). By increasing the thickness of the lead-bismuth alloy, the neutron spectra were shifted into lower energies by the scattering interactions of fast neutrons with the alloy. It is possible, therefore, by changing the alloy thickness, to produce distinctly different dose weighted neutron spectra inside the exposure cave of the FNIS. The calculated neutron spectra showed close agreement with the results of activation foil measurements, unfolded by SAND-II close to the cell window. However, there was a considerable less agreement for locations far away from the cell window. Even though the magnitude of values such as neutron flux and tissue kerma rates in air differed, the weighted average neutron energies showed close agreement between the MCNP and SAND-II since the normalized neutron spectra were in a good agreement each other. A paired ion chamber system was constructed, one with a tissue equivalent plastic (A-150) and propane gas for total dose monitoring, and another with graphite and argon for photon dose monitoring. Using the pair of detectors, the neutron to gamma ratio can be inferred. With the 20 cm-thick FNIS, the absorbed dose rates of neutrons measured with the paired ion chamber method and calculated with the SAND-II results were 13.7 +/- 0.02 Gy/min and 15.5 Gy/min, respectively. The absorbed dose rate of photons and the gamma contribution to total dose were 6.7 x 10

  12. What's There to Debate about Nuclear Energy? Promoting Multidimensional Science Literacy by Implementing STS Strategies

    ERIC Educational Resources Information Center

    Bartley, Elise; Brown, Patrick L.; Concannon, James P.; Stumpe, Laura

    2013-01-01

    In this lesson, the teacher begins by reviewing some key energy topics with the students. Next, students are asked to focus closely on nuclear energy as a viable resource by closely reading, highlighting, and annotating an article regarding the future of nuclear energy. The culminating activity and evaluation of students understanding of energy…

  13. Investigation of excess thyroid cancer incidence in Los Alamos County

    SciTech Connect

    Athas, W.F.

    1996-04-01

    Los Alamos County (LAC) is home to the Los Alamos National Laboratory, a U.S. Department of Energy (DOE) nuclear research and design facility. In 1991, the DOE funded the New Mexico Department of Health to conduct a review of cancer incidence rates in LAC in response to citizen concerns over what was perceived as a large excess of brain tumors and a possible relationship to radiological contaminants from the Laboratory. The study found no unusual or alarming pattern in the incidence of brain cancer, however, a fourfold excess of thyroid cancer was observed during the late-1980`s. A rapid review of the medical records for cases diagnosed between 1986 and 1990 failed to demonstrate that the thyroid cancer excess had resulted from enhanced detection. Surveillance activities subsequently undertaken to monitor the trend revealed that the excess persisted into 1993. A feasibility assessment of further studies was made, and ultimately, an investigation was conducted to document the epidemiologic characteristics of the excess in detail and to explore possible causes through a case-series records review. Findings from the investigation are the subject of this report.

  14. Status of Monte Carlo at Los Alamos

    SciTech Connect

    Thompson, W.L.; Cashwell, E.D.

    1980-01-01

    At Los Alamos the early work of Fermi, von Neumann, and Ulam has been developed and supplemented by many followers, notably Cashwell and Everett, and the main product today is the continuous-energy, general-purpose, generalized-geometry, time-dependent, coupled neutron-photon transport code called MCNP. The Los Alamos Monte Carlo research and development effort is concentrated in Group X-6. MCNP treats an arbitrary three-dimensional configuration of arbitrary materials in geometric cells bounded by first- and second-degree surfaces and some fourth-degree surfaces (elliptical tori). Monte Carlo has evolved into perhaps the main method for radiation transport calculations at Los Alamos. MCNP is used in every technical division at the Laboratory by over 130 users about 600 times a month accounting for nearly 200 hours of CDC-7600 time.

  15. Publications of Los Alamos Research, 1983

    SciTech Connect

    Sheridan, C.J.; McClary, W.J.; Rich, J.A.; Rodriguez, L.L.

    1984-10-01

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos National Laboratory for 1983. Papers published in 1982 are included regardless of when they were actually written. Publications received too late for inclusion in earlier compilations have also been listed. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted - even those papers, themselves unclassified, which were published only as part of a classified document. If a paper was published more than once, all places of publication are included. The bibliography includes Los Alamos National Laboratory reports, papers released as non-Laboratory reports, journal articles, books, chapters of books, conference papers either published separately or as part of conference proceedings issued as books or reports, papers publishd in congressional hearings, theses, and US patents. Publications by Los Alamos authors that are not records of Laboratory-sponsored work are included when the Library becomes aware of them.

  16. Publications of Los Alamos research 1980

    SciTech Connect

    Salazar, C.A.; Willis, J.K.

    1981-09-01

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos National Laboratory for 1980. Papers published in 1980 are included regardless of when they were actually written. Publications received too late for inclusion in earlier compilations have also been listed. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted-even those papers, themselves unclassified, which were published only as part of a classified document. If a paper was pubished more than once, all places of publication are included. The bibliography includes Los Alamos National Laboratory reports, papers released as non-laboratory reports, journal articles, books, chapters of books, conference papers published either separately or as part of conference proceedings issued as books or reports, papers published in congressional hearings, theses, and US patents. Publications by Los Alamos authors that are not records of Laboratory-sponsored work are included when the Library becomes aware of them.

  17. MCNPX characterization of the secondary neutron flux at the Los Alamos Isotope Production Facility

    NASA Astrophysics Data System (ADS)

    Engle, Jonathan W.; James, Michael R.; Mashnik, Stepan G.; Kelsey, Charles T.; Wolfsberg, Laura E.; Reass, David A.; Connors, Michael A.; Bach, Hong T.; Fassbender, Michael E.; John, Kevin D.; Birnbaum, Eva R.; Nortier, Francois M.

    2014-08-01

    The spallation neutron flux produced from proton irradiation of rubidium chloride and gallium targets at the Los Alamos National Laboratory (LANL) Isotope Production Facility (IPF) was investigated using the activation foil technique and computational simulation. Routine irradiations have been found to produce fluxes as high as 1012 n cm-2 s-1, with approximately 50% of the total flux having energy in excess of 1 MeV. Measurements of activation foils are compared with the predicted radionuclide yield using nuclear excitation functions from MCNPX event generators, evaluated nuclear data, and the TALYS nuclear code. Practical application of the secondary neutron flux in the realm of radioisotope production is considered.

  18. SEDs at Los Alamos: A Personal Memoir

    NASA Astrophysics Data System (ADS)

    Bederson, Benjamin

    2001-03-01

    I have written this personal memoir approximately 55 years after the events I describe. It is based almost exclusively on memory, since apart from the diary I kept while on Tinian, I have few documents concerning it. It covers my service in the U.S. Army's Special Engineering Detachment (SED) in Oak Ridge and Los Alamos in 1944-45, on Tinian island, the launching pad for the bombing raids on Japan, in the summer and fall of 1945, and my return to Los Alamos until my discharge in January 1946.

  19. Preparing Los Alamos National Laboratory's Waste Management Program for the Future - 12175

    SciTech Connect

    Jones, Scotty W.; Dorries, Alison M.; Singledecker, Steven; Henckel, George

    2012-07-01

    The waste management program at Los Alamos National Laboratory (LANL) is undergoing significant transition to establish a lean highly functioning waste management program that will succeed the large environmental cleanup waste management program. In the coming years, the environmental cleanup activities will be mostly completed and the effort will change to long-term stewardship. What will remain in waste management is a smaller program focused on direct off-site shipping to cost-effectively enable the enduring mission of the laboratory in support of the national nuclear weapons program and fundamental science and research. It is essential that LANL implement a highly functioning efficient waste management program in support of the core missions of the national weapons program and fundamental science and research - and LANL is well on the way to that goal. As LANL continues the transition process, the following concepts have been validated: - Business drivers including the loss of onsite disposal access and completion of major environmental cleanup activities will drive large changes in waste management strategies and program. - A well conceived organizational structure; formal management systems; a customer service attitude; and enthusiastic managers are core to a successful waste management program. - During times of organizational transition, a project management approach to managing change in a complex work place with numerous complex deliverables is successful strategy. - Early and effective engagement with waste generators, especially Project Managers, is critical to successful waste planning. - A well-trained flexible waste management work force is vital. Training plans should include continuous training as a strategy. - A shared fate approach to managing institutional waste decisions, such as the LANL Waste Management Recharge Board is effective. - An efficient WM program benefits greatly from modern technology and innovation in managing waste data and

  20. Conference on Nuclear Energy and Science for the 21st Century: Atoms for Peace Plus Fifty - Washington, D.C., October 2003

    SciTech Connect

    Pfaltzgraff, Robert L

    2006-10-22

    This conference's focus was the peaceful uses of the atom and their implications for nuclear science, energy security, nuclear medicine and national security. The conference also provided the setting for the presentation of the prestigious Enrico Fermi Prize, a Presidential Award which recognizes the contributions of distinguished members of the scientific community for a lifetime of exceptional achievement in the science and technology of nuclear, atomic, molecular, and particle interactions and effects. An impressive group of distinguished speakers addressed various issues that included: the impact and legacy of the Eisenhower Administration’s “Atoms for Peace” concept, the current and future role of nuclear power as an energy source, the challenges of controlling and accounting for existing fissile material, and the horizons of discovery for particle or high-energy physics. The basic goal of the conference was to examine what has been accomplished over the past fifty years as well as to peer into the future to gain insights into what may occur in the fields of nuclear energy, nuclear science, nuclear medicine, and the control of nuclear materials.

  1. Detection of Shielded Nuclear Material in a Cargo Container

    SciTech Connect

    J. L. Jones; D. R. Norman; K. J. Haskell; J. W. Sterbentz; W. Y. Yoon; S. M. Watson; J. T. Johnson; J. M. Zabriskie; B. D. Bennett; R. W. Watson; J. F. Hamon

    2005-06-01

    The Idaho National Laboratory, along with Los Alamos National Laboratory and the Idaho State University’s Idaho Accelerator Center, are developing electron accelerator-based, photonuclear inspection technologies for the detection of shielded nuclear material within air-, rail-, and especially, maritime-cargo transportation containers. This paper describes a developing prototypical cargo container inspection system utilizing the Pulsed Photonuclear Assessment (PPA) technology, incorporates interchangeable, well-defined, contraband shielding structures (i.e., "calibration" pallets) providing realistic detection data for induced radiation signatures from smuggled nuclear material, and provides various shielded nuclear material detection results. Using a 4.8-kg quantity of depleted uranium, neutron and gamma-ray detection responses are presented for well-defined shielded and unshielded configurations evaluated in a selected cargo container inspection configuration. © 2001 Elsevier Science. All rights reserved

  2. Texas A and M University student/professional nuclear science and engineering conference

    SciTech Connect

    Not Available

    1984-03-12

    Abstracts of papers presented at the meeting are included. Topics discussed include: reactor engineering; space nuclear power systems; health physics and dosimetry; fusion engineering and physics; and reactor physics and theory.

  3. Science.

    ERIC Educational Resources Information Center

    Roach, Linda E., Ed.

    This document contains the following papers on science instruction and technology: "A 3-D Journey in Space: A New Visual Cognitive Adventure" (Yoav Yair, Rachel Mintz, and Shai Litvak); "Using Collaborative Inquiry and Interactive Technologies in an Environmental Science Project for Middle School Teachers: A Description and Analysis" (Patricia…

  4. Interaction of science and diplomacy: Latin American, the United States and nuclear energy, 1945-1955

    SciTech Connect

    Cabral, R.

    1986-01-01

    Nuclear programs in Argentina and Brazil can be traced to August 1945 when their scientific communities articulated responses to the atomic bombings of Japan. They culminated in attempts to develop independent nuclear programs, sharply opposed by the United States, during the nationalist governments of Juan Peron and Getulio Vargas. This dissertation, based on primary sources from the three nations, analyzes these programs and the American responses. Latin America entered the nuclear age attempting to control natural resources, to improve scientific establishments, and to appraise Latin American-United States relations. Despite some clear warnings about nuclear dangers, the new form of energy was seen as the solution to industrial problems, poverty, and outside political interference. International opposition, which may have included nuclear threats from the United States, blocked Argentina's first attempt in 1947. After 1948, Peron wanted a nuclear program for cheap energy and prestige. The qualifications of the Brazilian scientists gave more substance to their program. The program originated in August, 1945, but assumed national proportion with the government of Vargas in 1951. Lack of American cooperation forced Vargas to establish a secret program with Germany. American troops intervened taking over the German equipment already completed. The final collapse came about with Vargas' suicide in August, 1954.

  5. Photonuclear Reaction Studies at HIγS: Developing the Science of Remote Detection of Nuclear Materials

    NASA Astrophysics Data System (ADS)

    Howell, C. R.

    2015-10-01

    Development of gamma-ray beam interrogation technologies for remote detection of special nuclear materials and isotope analysis requires comprehensive databases of nuclear structure information and gamma-ray induced nuclear reaction observables. Relevant nuclear structure details include the energy, spin and parity of excited states that have significant probability for electromagnetic transition from the ground state, i.e, the angular momentum transferred in the reaction is Δl ≤ 2. This talk will report recent Nuclear Resonance Fluorescence (NRF) measurements to identify and characterize new low-spin states in actinide nuclei at energies from 1 to 4 MeV, which is the energy range most important for remote analysis methods. These measurements are carried out using the nearly mono-energetic linearly polarized gamma-ray beam at the High Intensity Gamma-ray Source (HIγS) at the Triangle Universities Nuclear Laboratory. Also, studies of the (γ, n) reaction on a variety of nuclei with linearly polarized beams at HIγS indicate that this reaction might be used to discern between fissile and non-fissile materials. This work will be described. In addition, an overview will be given of a concept for a next generation laser Compton-backing scattering gamma-ray source to be implemented as an upgrade to increase the beam intensity at HIγS by more than an order of magnitude.

  6. Los Alamos National Laboratory support to IAEA environmental safeguards

    SciTech Connect

    Steiner, Robert E; Dry, Don E; Roensch, Fred R; Kinman, Will S; Roach, Jeff L; La Mont, Stephen P

    2010-12-01

    The nuclear and radiochemistry group provides sample preparation and analysis support to the International Atomic Energy Agency (IAEA) Network of Analytical Laboratories (NWAL). These analyses include both non-destructive (alpha and gamma-ray spectrometry) and destructive (thermal ionization mass spectrometry and inductively coupled plasma mass spectrometry) methods. On a bi-annual basis the NWAL laboratories are invited to meet to discuss program evolution and issues. During this meeting each participating laboratory summarizes their efforts over the previous two years. This presentation will present Los Alamos National Laboratories efforts in support of this program. Data showing results from sample and blank analysis will be presented along with capability enhancement and issues that arose over the previous two years.

  7. Analytical and Radiochemistry for Nuclear Forensics

    SciTech Connect

    Steiner, Robert Ernest; Dry, Donald E.; Kinman, William Scott; Podlesak, David; Tandon, Lav

    2015-05-26

    Information about nonproliferation nuclear forensics, activities in forensics at Los Alamos National Laboratory, radio analytical work at LANL, radiochemical characterization capabilities, bulk chemical and materials analysis capabilities, and future interests in forensics interactions.

  8. Induction inserts at the Los Alamos PSR

    SciTech Connect

    King-Yuen Ng

    2002-09-30

    Ferrite-loaded induction tuners installed in the Los Alamos Proton Storage Ring have been successful in compensating space-charge effects. However, the resistive part of the ferrite introduces unacceptable microwave instability and severe bunch lengthening. An effective cure was found by heating the ferrite cores up to {approx} 130 C. An understanding of the instability and cure is presented.

  9. Los Alamos waste drum shufflers users manual

    SciTech Connect

    Rinard, P.M.; Adams, E.L.; Painter, J.

    1993-08-24

    This user manual describes the Los Alamos waste drum shufflers. The primary purpose of the instruments is to assay the mass of {sup 235}U (or other fissile materials) in drums of assorted waste. It can perform passive assays for isotopes that spontaneously emit neutrons or active assays using the shuffler technique as described on this manual.

  10. Proceedings of the Los Alamos neutrino workshop

    SciTech Connect

    Boehm, F.; Stephenson, G.J. Jr.

    1982-08-01

    A workshop on neutrino physics was held at Los Alamos from June 8 to 12, 1981. The material presented has been provided in part by the organizers, in part by the chairmen of the working sessions. Closing date for contributions was October 1981.

  11. Los Alamos Fires From Landsat 7

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On May 9, 2000, the Landsat 7 satellite acquired an image of the area around Los Alamos, New Mexico. The Landsat 7 satellite acquired this image from 427 miles in space through its sensor called the Enhanced Thematic Mapper Plus (ETM+). Evident within the imagery is a view of the ongoing Cerro Grande fire near the town of Los Alamos and the Los Alamos National Laboratory. Combining the high-resolution (30 meters per pixel in this scene) imaging capacity of ETM+ with its multi-spectral capabilities allows scientists to penetrate the smoke plume and see the structure of the fire on the surface. Notice the high-level of detail in the infrared image (bottom), in which burn scars are clearly distinguished from the hotter smoldering and flaming parts of the fire. Within this image pair several features are clearly visible, including the Cerro Grande fire and smoke plume, the town of Los Alamos, the Los Alamos National Laboratory and associated property, and Cerro Grande peak. Combining ETM+ channels 7, 4, and 2 (one visible and two infrared channels) results in a false color image where vegetation appears as bright to dark green (bottom image). Forested areas are generally dark green while herbaceous vegetation is light green. Rangeland or more open areas appear pink to light purple. Areas with extensive pavement or urban development appear light blue or white to purple. Less densely-developed residential areas appear light green and golf courses are very bright green. The areas recently burned appear black. Dark red to bright red patches, or linear features within the burned area, are the hottest and possibly actively burning areas of the fire. The fire is spreading downslope and the front of the fire is readily detectable about 2 kilometers to the west and south of Los Alamos. Combining ETM+ channels 3, 2, and 1 provides a true-color image of the greater Los Alamos region (top image). Vegetation is generally dark to medium green. Forested areas are very dark green

  12. Neutron Capture Experiments Using the DANCE Array at Los Alamos

    NASA Astrophysics Data System (ADS)

    Dashdorj, D.; Mitchell, G. E.; Baramsai, B.; Chyzh, A.; Walker, C.; Agvaanluvsan, U.; Becker, J. A.; Parker, W.; Sleaford, B.; Wu, C. Y.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wouters, J. M.; Krtička, M.; Bečvář, F.

    2009-03-01

    The Detector for Advanced Neutron Capture Experiments (DANCE) is designed for neutron capture measurements on very small and/or radioactive targets. The DANCE array of 160 BaF2 scintillation detectors is located at the Lujan Center at the Los Alamos Neutron Science Center (LANSCE). Accurate measurements of neutron capture data are important for many current applications as well as for basic understanding of neutron capture. The gamma rays following neutron capture reactions have been studied by the time-of-flight technique using the DANCE array. The high granularity of the array allows measurements of the gamma-ray multiplicity. The gamma-ray multiplicities and energy spectra for different multiplicities can be measured and analyzed for spin and parity determination of the resolved resonances.

  13. Los Alamos Discovers Super Efficient Solar Using Perovskite Crystals

    SciTech Connect

    Mohite, Aditya; Nie, Wanyi

    2015-01-29

    State-of-the-art photovoltaics using high-purity, large-area, wafer-scale single-crystalline semiconductors grown by sophisticated, high temperature crystal-growth processes offer promising routes for developing low-cost, solar-based clean global energy solutions for the future. Solar cells composed of the recently discovered material organic-inorganic perovskites offer the efficiency of silicon, yet suffer from a variety of deficiencies limiting the commercial viability of perovskite photovoltaic technology. In research to appear in Science, Los Alamos National Laboratory researchers reveal a new solution-based hot-casting technique that eliminates these limitations, one that allows for the growth of high-quality, large-area, millimeter-scale perovskite crystals and demonstrates that highly efficient and reproducible solar cells with reduced trap assisted recombination can be realized.

  14. Neutron Capture Experiments Using the DANCE Array at Los Alamos

    SciTech Connect

    Dashdorj, D.; Mitchell, G. E.; Baramsai, B.; Chyzh, A.; Walker, C.; Agvaanluvsan, U.; Becker, J. A.; Parker, W.; Sleaford, B.; Wu, C. Y.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wouters, J. M.; Krticka, M.; Becvar, F.

    2009-03-31

    The Detector for Advanced Neutron Capture Experiments (DANCE) is designed for neutron capture measurements on very small and/or radioactive targets. The DANCE array of 160 BaF{sub 2} scintillation detectors is located at the Lujan Center at the Los Alamos Neutron Science Center (LANSCE). Accurate measurements of neutron capture data are important for many current applications as well as for basic understanding of neutron capture. The gamma rays following neutron capture reactions have been studied by the time-of-flight technique using the DANCE array. The high granularity of the array allows measurements of the gamma-ray multiplicity. The gamma-ray multiplicities and energy spectra for different multiplicities can be measured and analyzed for spin and parity determination of the resolved resonances.

  15. MITEE-B: A Compact Ultra Lightweight Bi-Modal Nuclear Propulsion Engine for Robotic Planetary Science Missions

    NASA Astrophysics Data System (ADS)

    Powell, James; Maise, George; Paniagua, John; Borowski, Stanley

    2003-01-01

    Nuclear thermal propulsion (NTP) enables unique new robotic planetary science missions that are impossible with chemical or nuclear electric propulsion systems. A compact and ultra lightweight bi-modal nuclear engine, termed MITEE-B (MInature ReacTor EnginE - Bi-Modal) can deliver 1000's of kilograms of propulsive thrust when it operates in the NTP mode, and many kilowatts of continuous electric power when it operates in the electric generation mode. The high propulsive thrust NTP mode enables spacecraft to land and takeoff from the surface of a planet or moon, to hop to multiple widely separated sites on the surface, and virtually unlimited flight in planetary atmospheres. The continuous electric generation mode enables a spacecraft to replenish its propellant by processing in-situ resources, provide power for controls, instruments, and communications while in space and on the surface, and operate electric propulsion units. Six examples of unique and important missions enabled by the MITEE-B engine are described, including: (1) Pluto lander and sample return; (2) Europa lander and ocean explorer; (3) Mars Hopper; (4) Jupiter atmospheric flyer; (5) SunBurn hypervelocity spacecraft; and (6) He3 mining from Uranus. Many additional important missions are enabled by MITEE-B. A strong technology base for MITEE-B already exists. With a vigorous development program, it could be ready for initial robotic science and exploration missions by 2010 AD. Potential mission benefits include much shorter in-space times, reduced IMLEO requirements, and replenishment of supplies from in-situ resources.

  16. The politics of atmospheric sciences: "nuclear winter" and global climate change.

    PubMed

    Dörries, Matthias

    2011-01-01

    This article, by exploring the individual and collective trajectories that led to the "nuclear winter" debate, examines what originally drew scientists on both sides of the controversy to this research. Stepping back from the day-to-day action and looking at the larger cultural and political context of nuclear winter reveals sometimes surprising commonalities among actors who found themselves on opposing sides, as well as differences within the apparently coherent TTAPS group (the theory's originators: Richard P. Turco, Owen Brian Toon, Thomas P. Ackerman, James B. Pollack, and Carl Sagan). This story foreshadows that of recent research on anthropogenic climate change, which was substantially shaped during this--apparently tangential--cold war debate of the 1980s about research on the global effects of nuclear weapons.

  17. The politics of atmospheric sciences: "nuclear winter" and global climate change.

    PubMed

    Dörries, Matthias

    2011-01-01

    This article, by exploring the individual and collective trajectories that led to the "nuclear winter" debate, examines what originally drew scientists on both sides of the controversy to this research. Stepping back from the day-to-day action and looking at the larger cultural and political context of nuclear winter reveals sometimes surprising commonalities among actors who found themselves on opposing sides, as well as differences within the apparently coherent TTAPS group (the theory's originators: Richard P. Turco, Owen Brian Toon, Thomas P. Ackerman, James B. Pollack, and Carl Sagan). This story foreshadows that of recent research on anthropogenic climate change, which was substantially shaped during this--apparently tangential--cold war debate of the 1980s about research on the global effects of nuclear weapons. PMID:21936194

  18. Applied nuclear physics in support of SBSS

    SciTech Connect

    Strottman, D.

    1995-10-01

    Since the advent of the 800-MeV proton linear accelerator over 3 decades ago, the facilities on the Clinton P. Anderson Meson Physics Facility (LAMPF) mesa have pioneered many developments that provide unique capabilities within the Department of Energy (DOE) complex and in the world. New technologies based on the use of the world`s most intense, medium-energy linac, LAMPF, are being developed. They include destruction of long-lived components of nuclear waste, plutonium burning, energy production, production of tritium, and experiments for the science-based stockpile stewardship (SBSS) program. The design, assessment, and safety analysis of potential facilities involve the understanding of complex combinations of nuclear processes, which in turn establish new requirements on nuclear data that transcend the traditional needs of the fission and fusion reactor communities. Other areas of technology such as neutron and proton therapy applications are also placing new requirements on nuclear data. The proposed Los Alamos Neutron Science Center (LANSCE) now under discussion combined with the appropriate instrumentation will have unique features and capabilities of which there were previously only aspirations.

  19. Integrating the digital library puzzle: The library without walls at Los Alamos

    SciTech Connect

    Luce, R. E.

    1998-01-01

    Current efforts at the Research Library, Los Alamos National Laboratory (LANL), to develop digital library services are described. A key principle of LANL`s approach to delivering library information is the integration of products into a common interface and the use of the Web as the medium of service provision. Products described include science databases such as the SciSearch at LANL and electronic journals. Project developments described have significant ramifications for delivering library services over the Internet.

  20. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data

    SciTech Connect

    Chadwick, M.B.; Herman, M.; Author : Chadwick,M.B.; Herman,M.; Oblozinsky,P.; Dunn,M.E.; Danon,Y.; Kahler,A.C.; Smith,D.L.; Pritychenko,B.; Arbanas,G.; Arcilla,R.; Brewer,R.; Brown,D.A.; Capote,R.; Carlson,A.D.; Cho,Y.S.; Derrien,H.; Guber,K.; Hale,G.M.; Hoblit,S.; Holloway,S.: Johnson,T.D.; Kawano,T.; Kiedrowski,B.C.; Kim,H.; Kunieda,S.; Larson,N.M.; Leal,L.; Lestone,J.P.; Little,R.C.; McCutchan,E.A.; MacFarlane,R.E.; MacInnes,M.; Mattoon,C.M.; McKnight,R.D.; Mughabghab,S.F.; Nobre,G.P.A.; Palmiotti,G.; Palumbo,A.; Pigni,M.T.; Pronyaev,V.G.; Sayer,R.O.; Sonzogni,A.A.; Summers,N.C.; Talou,P.; Thompson,I.J.; Trkov,A.; Vogt,R.L.; van der Marck,S.C.; Wallner,A.; White,M.C.; Wiarda,D.; Young,P.G.

    2011-12-01

    The ENDF/B-VII.1 library is our latest recommended evaluated nuclear data file for use in nuclear science and technology applications, and incorporates advances made in the five years since the release of ENDF/B-VII.0. These advances focus on neutron cross sections, covariances, fission product yields and decay data, and represent work by the US Cross Section Evaluation Working Group (CSEWG) in nuclear data evaluation that utilizes developments in nuclear theory, modeling, simulation, and experiment. The principal advances in the new library are: (1) An increase in the breadth of neutron reaction cross section coverage, extending from 393 nuclides to 423 nuclides; (2) Covariance uncertainty data for 190 of the most important nuclides, as documented in companion papers in this edition; (3) R-matrix analyses of neutron reactions on light nuclei, including isotopes of He, Li, and Be; (4) Resonance parameter analyses at lower energies and statistical high energy reactions for isotopes of Cl, K, Ti, V, Mn, Cr, Ni, Zr and W; (5) Modifications to thermal neutron reactions on fission products (isotopes of Mo, Tc, Rh, Ag, Cs, Nd, Sm, Eu) and neutron absorber materials (Cd, Gd); (6) Improved minor actinide evaluations for isotopes of U, Np, Pu, and Am (we are not making changes to the major actinides {sup 235,238}U and {sup 239}Pu at this point, except for delayed neutron data and covariances, and instead we intend to update them after a further period of research in experiment and theory), and our adoption of JENDL-4.0 evaluations for isotopes of Cm, Bk, Cf, Es, Fm, and some other minor actinides; (7) Fission energy release evaluations; (8) Fission product yield advances for fission-spectrum neutrons and 14 MeV neutrons incident on {sup 239}Pu; and (9) A new decay data sublibrary. Integral validation testing of the ENDF/B-VII.1 library is provided for a variety of quantities: For nuclear criticality, the VII.1 library maintains the generally-good performance seen for VII.0

  1. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data

    NASA Astrophysics Data System (ADS)

    Chadwick, M. B.; Herman, M.; Obložinský, P.; Dunn, M. E.; Danon, Y.; Kahler, A. C.; Smith, D. L.; Pritychenko, B.; Arbanas, G.; Arcilla, R.; Brewer, R.; Brown, D. A.; Capote, R.; Carlson, A. D.; Cho, Y. S.; Derrien, H.; Guber, K.; Hale, G. M.; Hoblit, S.; Holloway, S.; Johnson, T. D.; Kawano, T.; Kiedrowski, B. C.; Kim, H.; Kunieda, S.; Larson, N. M.; Leal, L.; Lestone, J. P.; Little, R. C.; McCutchan, E. A.; MacFarlane, R. E.; MacInnes, M.; Mattoon, C. M.; McKnight, R. D.; Mughabghab, S. F.; Nobre, G. P. A.; Palmiotti, G.; Palumbo, A.; Pigni, M. T.; Pronyaev, V. G.; Sayer, R. O.; Sonzogni, A. A.; Summers, N. C.; Talou, P.; Thompson, I. J.; Trkov, A.; Vogt, R. L.; van der Marck, S. C.; Wallner, A.; White, M. C.; Wiarda, D.; Young, P. G.

    2011-12-01

    The ENDF/B-VII.1 library is our latest recommended evaluated nuclear data file for use in nuclear science and technology applications, and incorporates advances made in the five years since the release of ENDF/B-VII.0. These advances focus on neutron cross sections, covariances, fission product yields and decay data, and represent work by the US Cross Section Evaluation Working Group (CSEWG) in nuclear data evaluation that utilizes developments in nuclear theory, modeling, simulation, and experiment. The principal advances in the new library are: (1) An increase in the breadth of neutron reaction cross section coverage, extending from 393 nuclides to 423 nuclides; (2) Covariance uncertainty data for 190 of the most important nuclides, as documented in companion papers in this edition; (3) R-matrix analyses of neutron reactions on light nuclei, including isotopes of He, Li, and Be; (4) Resonance parameter analyses at lower energies and statistical high energy reactions for isotopes of Cl, K, Ti, V, Mn, Cr, Ni, Zr and W; (5) Modifications to thermal neutron reactions on fission products (isotopes of Mo, Tc, Rh, Ag, Cs, Nd, Sm, Eu) and neutron absorber materials (Cd, Gd); (6) Improved minor actinide evaluations for isotopes of U, Np, Pu, and Am (we are not making changes to the major actinides 235,238U and 239Pu at this point, except for delayed neutron data and covariances, and instead we intend to update them after a further period of research in experiment and theory), and our adoption of JENDL-4.0 evaluations for isotopes of Cm, Bk, Cf, Es, Fm, and some other minor actinides; (7) Fission energy release evaluations; (8) Fission product yield advances for fission-spectrum neutrons and 14 MeV neutrons incident on 239Pu; and (9) A new decay data sublibrary. Integral validation testing of the ENDF/B-VII.1 library is provided for a variety of quantities: For nuclear criticality, the VII.1 library maintains the generally-good performance seen for VII.0 for a wide range

  2. Educational Programs and Facilities in Nuclear Science and Engineering. Fifth Edition.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    This publication contains detailed descriptions of nuclear programs and facilities of 182 four-year educational institutions. Instead of chapters, the contents are presented in five tables. Table I presents the degrees, graduate appointments, special facilities and programs of the institutions. The institutions are arranged in alphabetical order…

  3. A Journey From Sandia To Los Alamos - 12465

    SciTech Connect

    Goyal, K.K.; Humphrey, B.J.; Krause, T.J.; Gluth, J.W.; Kiefer, M.L.; Haynes, S.

    2012-07-01

    The U.S. Department of Energy (DOE) relies on laboratory experiments and computer-based models to verify the reliability of the nation's nuclear stockpile. Sandia National Laboratories/New Mexico (SNL/NM) tests various materials in extreme environments designed to mimic those of nuclear explosions using the Z machine. The Z machine is a key tool in the National Nuclear Security Administration's (NNSA) stockpile stewardship mission and is used to study the dynamic properties of nuclear weapon materials. In 2006, SNL/NM and Los Alamos National Laboratory (LANL) signed a Memorandum of Understanding (MOU) defining experiments to be conducted in the Z machine involving plutonium (Pu) provided by LANL. Five Pu experiments have been completed with as many as 20 more planned through 2016. The experimental containment vessel used for the experiment and containing the Pu residues, becomes transuranic (TRU) waste after the experiment and termination of safeguards and is considered a LANL waste stream. Each containment vessel is placed in a 55-gallon Type A drum or standard waste box (SWB) for shipment back to LANL for final certification and eventual disposal at the Waste Isolation Pilot Plant (WIPP). The experimental containment vessels are greater than 99% metallic materials (ferrous and non-ferrous metals). In addition to the Pu targets, detonators with high explosives (HE) are used in the experiments to isolate the containment vessel from the Z machine as energy is delivered to the Pu samples. The characterization requirements, transportation issues, required documentation, and the approvals needed before shipments were challenging and required close coordination between SNL/NM, Sandia Site Office, LANL, Los Alamos Site Office, Washington TRU Solutions, Inc., the Central Characterization Project, and the Carlsbad Field Office. Between 2006 and 2010, representatives from SNL/NM and LANL worked to develop an approved path forward to meet the requirements of all stakeholders

  4. Nuclear choices

    SciTech Connect

    Wolfson, R.

    1991-01-01

    This book contains part of the series New Liberal Arts, which is intended to make science and technology more accessible to students of the liberal arts. Volume in hand provides a comprehensive, multifaceted examination of nuclear energy, in nontechnical terms. Wolfson explains the basics of nuclear energy and radiation, nuclear power..., and nuclear weapons..., and he invites readers to make their own judgments on controversial nuclear issues. Illustrated with photos and diagrams. Each chapter contains suggestions for additional reading and a glossary. For policy, science, and general collections in all libraries. (ES) Topics contained include Atoms and nuclei. Effects and uses of radiation. Energy and People. Reactor safety. Nuclear strategy. Defense in the nuclear age. Nuclear power, nuclear weapons, and nuclear futures.

  5. Report of the defense science board task force on defense nuclear agency. Final report

    SciTech Connect

    Not Available

    1993-04-01

    The Task Force recommends that: (1) DNA continue to be the DoD focal point for nuclear expertise; (2) The DNA charter be modified to provide focus for non-nuclear activities of critical importance to the DoD. It gives DNA authority to conduct technology base development for advanced conventional munitions, and become a focal point for technologies related to non- and counter-proliteration of weapon systems of mass destruction and their infrastructure (WMD); and (3) Anticipating cessation of UGETs, DNA should aggressively pursue technology development for AGT, AGT/UGT correlation and advanced computations, with emphasis on new theater scenarios, but with the ability to reconstitute for UGT resumption or AGT for large strategic threats within a year or two.

  6. Nuclear science research with dynamic high energy density plasmas at NIF

    NASA Astrophysics Data System (ADS)

    Shaughnessy, D. A.; Gharibyan, N.; Moody, K. J.; Despotopulos, J. D.; Grant, P. M.; Yeamans, C. B.; Berzak Hopkins, L.; Cerjan, C. J.; Schneider, D. H. G.; Faye, S.

    2016-05-01

    Nuclear reaction measurements are performed at the National Ignition Facility in a high energy density plasma environment by adding target materials to the outside of the hohlraum thermo-mechanical package on an indirect-drive exploding pusher shot. Materials are activated with 14.1-MeV neutrons and the post-shot debris is collected via the Solid Radiochemistry diagnostic, which consists of metal discs fielded 50 cm from target chamber center. The discs are removed post-shot and analyzed via radiation counting and mass spectrometry. Results from a shot using Nd and Tm foils as targets are presented, which indicate enhanced collection of the debris in the line of sight of a given collector. The capsule performance was not diminished due to the extra material. This provides a platform for future measurements of nuclear reaction data through the use of experimental packages mounted external to the hohlraum.

  7. 20 Years of Success: Science, Technology, and the Nuclear Weapons Stockpile

    SciTech Connect

    None, None

    2015-10-22

    On Oct. 22, 2015, NNSA celebrated the proven success of the Stockpile Stewardship Program at a half-day public event featuring remarks by Secretary of Energy Ernest Moniz, Secretary of State John Kerry, and Under Secretary for Nuclear Security and NNSA Administrator Lt. Gen. (retired) Frank G. Klotz. The event also featured remarks by Deputy Secretary of Energy Elizabeth Sherwood-Randall and NNSA Principal Deputy Administrator Madelyn Creedon.

  8. The science case for 37Ar as a monitor for underground nuclear explosions

    SciTech Connect

    Haas, Derek A.; Orrell, John L.; Bowyer, Ted W.; McIntyre, Justin I.; Miley, Harry S.; Aalseth, Craig E.; Hayes, James C.

    2010-06-04

    A new calculation of the production of 37Ar from nuclear explosion neutron interactions on 40Ca in a suite of common sub-surface materials (rock, etc) is presented. Even in mineral structures that are relatively low in Ca, the resulting 37Ar signature is large enough for detection in cases of venting or gaseous diffusion driven by barometric pumping. Field and laboratory detection strategies and projected sensitivities are presented.

  9. [Cyclotron based nuclear science]. Progress in research, April 1, 1992--March 31, 1993

    SciTech Connect

    Not Available

    1993-07-01

    The period 1 April 1992--31 March 1993 saw the initial runs of three new spectrometers, which constitute a major portion of the new detection capabilities developed for this facility. These devices are the Proton Spectrometer (PSP) (data from which are shown on the cover of this document), the Mass Achroniat Recoil Mass Spectrometer (MARS), and the Multipole Dipole Multipole (MDM) Particle Spectrometer. The ECR-K500 cyclotron combination operated 5,849 hours. The beam was on target 39% of this time. Studies of nuclear dynamics and nuclear thermodynamics using the neutron ball have come to fruition. A critical re-evaluation of the available data on the giant monopole resonance indicated that the incompressibility is not specified to a range smaller than 200--350 MeV by those data. New systematic experiments using the MDM spectrometer are now underway. The MEGA collaboration obtained the first data on the {mu} {yields} e{gamma} decay rate and determination of the Michel parameter in normal {mu} decay. Experiments appear to confirm the existence of monoenergetic pair peaks even for relatively low Z{sub projectile} -- Z{sub target} combinations. Studies of the ({alpha},2{alpha}) knockout reaction indicate that this reaction may prove to be a valuable tool for determination of reaction rates of astrophysical interest. Theoretical work reported in this document ranges from nuclear structure calculations using the IBM-2 model to calculations of kaon production and the in-medium properties of the rho and phi mesons. Nuclear dynamics and exotic shapes and fragmentation modes of hot nuclei are also addressed. New measurements of x-ray emission from highly ionized ions, of molecular dissociation and of surface interactions are reported. The research is presented in nearly 50 brief summaries usually including data and references.

  10. Nuclear Science Division annual report for the period October 1, 1987--September 30, 1988

    SciTech Connect

    Mahoney, J.

    1989-10-01

    Highlights of the low energy research program included the identification of new super-deformed bands in gadolinium and palladium isotopes using the HERA array. Other work at the 88-Inch Cyclotron involved studies of the fragmentation of light nuclei; the spectroscopy of nuclear far from stability and interesting new experiments on the properties of the heaviest elements. Two other programs deserve special mention, the new program in Nuclear Astrophysics and the spectroscopic studies being carried out at OASIS. This isotope separator is now in full operation at the SuperHILAC after many yeas of development. At the Bevalac, important new results were obtained on the properties of hot dense nuclear matter produced in central collisions of heavy ions. First measurements were made using the di-lepton spectrometer which provide the most direct access to the conditions at the earliest stage of the reaction. New results on pion interferometry have been obtained using the Janus spectrometer and surprises continue to be found in careful analysis of data from the Plastic Ball detector, most recently the identification of a new component of hydrodynamic flow. Also at the Bevalac the intermediate energy program continued to grow, studying the evolution of the reaction mechanism from incomplete fusion to the fireball regime, as did the spectroscopic studies using secondary radioactive beams. The third major component of the experimental program is the study of ultra-relativistic nuclear collisions using the CERN SPS. This year saw the completing of analysis of the first round of experiments with important results being obtained on general particle production, the space-time evolution of the system and strangeness production.

  11. Measurement of the 19F(α,n)22Na Cross Section for Nuclear Safeguards Science

    NASA Astrophysics Data System (ADS)

    Lowe, Marcus; Smith, M. S.; Pain, S.; Febbraro, M.; Pittman, S.; Chipps, K. A.; Thompson, S. J.; Grinder, M.; Grzywacz, R.; Smith, K.; Thornsberry, C.; Thompson, P.; Peters, W. A.; Waddell, D.; Blanchard, R.; Carls, A.; Shadrick, S.; Engelhardt, A.; Hertz-Kintish, D.; Allen, N.; Sims, H.

    2015-10-01

    Enriched uranium is commonly stored in fluoride matrices such as UF6. Alpha decays of uranium in UF6 will create neutrons via the 19F(α,n)22Na reaction. An improved cross section for this reaction will enable improved nondestructive assays of uranium content in storage cylinders at material enrichment facilities. To determine this reaction cross section, we have performed experiments using both forward and inverse kinematic techniques at the University of Notre Dame (forward) and Oak Ridge National Laboratory (inverse). Both experiments utilized the Versatile Array of Neutron Detectors at Low Energy (VANDLE) for neutron detection. The ORNL experiment also used a new ionization chamber for 22Na particle identification. Gating on the 22Na nuclei detected drastically reduced the background counts in the neutron time-of-flight spectra. The latest analysis and results will be presented for 19F beam energies ranging from 20-37 MeV. This work is funded in part by the DOE Office of Nuclear Physics, the National Nuclear Security Administration's Office of Defense Nuclear Nonproliferation R&D, and the NSF.

  12. Water Supply at Los Alamos during 1997

    SciTech Connect

    M. N. Maes; S. G. McLin; W. D. Purtymun

    1998-12-01

    Production of potable municipal water supplies during 1997 totaled about 1,285.9 million gallons from wells in the Guaje, Pajarito, and Otowi well fields. There was no water used from the spring gallery in Water Canyon or from Guaje Reservoir during 1997. About 2.4 million gallons of water from Los Alamos Reservoir was used to irrigate public parks and recreational lands. The total water usage in 1997 was about 1,288.3 million gallons, or about 135 gallons per day per person living in Los Alamos County. Groundwater pumpage was down about 82.2 million gallons in 1997 compared with the pumpage in 1996. Four new replacement wells were drilled and cased in Guaje Canyon between October 1997 and March 1998. These wells are currently being developed and aquifer tests are being performed. A special report summarizing the geological, geophysical, and well construction logs will be issued in the near future for these new wells.

  13. Modelling surface motion and spall at the Nevada Test Site. Los Alamos Source Region Project

    SciTech Connect

    App, F.N.; Brunish, W.M.

    1992-01-01

    Spallation of the ground surface accompanies all underground nuclear explosions of significant yield. This report discusses computer modelling used to investigate the physical processes that govern spallation and the amplitude and wavelength of motion at the free surface under a variety of conditions. Four events are selected: MERLIN which was conducted in desert alluvium; HEARTS which was conducted in tuff beneath the water table in Yucca Flat; TOWANDA which was conducted beneath the water table on Pahute Mesa; and HOUSTON which was conducted above the water table in very dense rock and Pahute Mesa. These span the range of test environments for Los Alamos underground nuclear tests.

  14. Status of the Los Alamos Anger camera

    SciTech Connect

    Seeger, P.A.; Nutter, M.J.

    1985-01-01

    Results of preliminary tests of the neutron Anger camera being developed at Los Alamos are presented. This detector uses a unique encoding scheme involving parellel processing of multiple receptive fields. Design goals have not yet been met, but the results are very encouraging and improvements in the test procedures are expected to show that the detector will be ready for use on a small-angle scattering instrument next year. 3 refs., 4 figs.

  15. Los Alamos synchronous orbit data set

    SciTech Connect

    Baker, D.N.; Higbie, P.R.; Belian, R.D.; Hones, E.W.; Klebesadel, R.W.

    1981-01-01

    Energetic electron (30-15000 keV) and proton 145 keV to 150 MeV) measurements made by Los Alamos National Laboratory sensors at geostationary orbit (6.6 R/sub E/) are summarized. The instrumentation employed and the satellite positions are described. The spacecraft have been variously located, but in their present configuration the Los Alamos satellites designated 1976-059, 1977-007, and 1979-053 are located, respectively, at approx. 70/sup 0/W, approx. 70/sup 0/E, and approx. 135/sup 0/W longitude. Several examples of the high temporal and full three-dimensional spatial measurement capabilities of these instruments are illustrated by examples from the published literature. Discussion is also given for the Los Alamos Synoptic Data Set (SDS) which gives a broad overview of the Los Alamos geostationary orbit measurements. The SDS data are plotted in terms of daily average spectra, 3-hour local time averages, and in a variety of statistical formats. The data summarize conditions from mid-1976 through 1978 (S/C 1976-059) and from early 1977 through 1978 (S/C 1977-007). The SDS compilations presented correspond to measurements at 35/sup 0/W, 70/sup 0/W, and 135/sup 0/W geographic longitude and thus are indicative of conditions at 9/sup 0/, 11/sup 0/, and 4.8/sup 0/ geomagnetic latitude, respectively. The bulk of the SDS report presents data plots which are organized according to Carrington solar rotations and, as such, the data are readily comparable to solar rotation-dependent interplanetary conditions. Potential applications of the Synoptic Data Set (available to all interested users in June 1981) are discussed.

  16. Amphibians and Reptiles of Los Alamos County

    SciTech Connect

    Teralene S. Foxx; Timothy K. Haarmann; David C. Keller

    1999-10-01

    Recent studies have shown that amphibians and reptiles are good indicators of environmental health. They live in terrestrial and aquatic environments and are often the first animals to be affected by environmental change. This publication provides baseline information about amphibians and reptiles that are present on the Pajarito Plateau. Ten years of data collection and observations by researchers at Los Alamos National Laboratory, the University of New Mexico, the New Mexico Department of Game and Fish, and hobbyists are represented.

  17. The Los Alamos accelerator code group

    SciTech Connect

    Krawczyk, F.L.; Billen, J.H.; Ryne, R.D.; Takeda, Harunori; Young, L.M.

    1995-05-01

    The Los Alamos Accelerator Code Group (LAACG) is a national resource for members of the accelerator community who use and/or develop software for the design and analysis of particle accelerators, beam transport systems, light sources, storage rings, and components of these systems. Below the authors describe the LAACG`s activities in high performance computing, maintenance and enhancement of POISSON/SUPERFISH and related codes and the dissemination of information on the INTERNET.

  18. Los Alamos Novel Rocket Design Flight Tested

    SciTech Connect

    Tappan, Bryce

    2014-10-23

    Los Alamos National Laboratory scientists recently flight tested a new rocket design that includes a high-energy fuel and a motor design that also delivers a high degree of safety. Researchers will now work to scale-up the design, as well as explore miniaturization of the system, in order to exploit all potential applications that would require high-energy, high-velocity, and correspondingly high safety margins.

  19. Los Alamos Novel Rocket Design Flight Tested

    ScienceCinema

    Tappan, Bryce

    2016-07-12

    Los Alamos National Laboratory scientists recently flight tested a new rocket design that includes a high-energy fuel and a motor design that also delivers a high degree of safety. Researchers will now work to scale-up the design, as well as explore miniaturization of the system, in order to exploit all potential applications that would require high-energy, high-velocity, and correspondingly high safety margins.

  20. Exploration geochemistry: The Los Alamos experience

    SciTech Connect

    Maassen, L.W.; Bolivar, S.L.

    1989-01-01

    Los Alamos National Laboratory became actively involved in geochemical exploration in 1975 by conducting a reconnaissance-scale exploration program for uranium as part of the National Uranium Resource Evaluation program. Initially, only uranium and thorium were analyzed. By 1979 Los Alamos was analyzing a multielement suite. The data were presented in histograms and as black and white concentration plots for uranium and thorium only. Data for the remaining elements were presented as hard copy data listings in an appendix to the report. In 1983 Los Alamos began using exploration geochemistry for the purpose of finding economic mineral deposits to help stimulate the economies of underdeveloped countries. Stream-sediment samples were collected on the Caribbean island of St. Lucia and a geochemical atlas of that island was produced. The data were statistically smoothed and presented as computer-generated color plots of each element of the multielement suite. Studies for the US Bureau of Land Management in 1984 consisted of development of techniques for the integration of several large data sets, which could then be used for computer-assisted mineral resource assessments. A supervised classification technique was developed which compares the attributes of grid cells containing mines or mineral occurrences with attributes of unclassified cells not known to contain mines or occurrences. Color maps indicate how closely unclassified cells match in attributes the cells with mines or occurrences. 20 refs., 1 fig., 1 tab.

  1. Los Alamos National Laboratory building cost index

    SciTech Connect

    Orr, H.D.; Lemon, G.D.

    1982-10-01

    The Los Alamos National Laboratory Building Cost Index indicates that actual escalation since 1970 is near 10% per year. Therefore, the Laboratory will continue using a 10% per year escalation rate for construction estimates through 1985 and a slightly lower rate of 8% per year from 1986 through 1990. The computerized program compares the different elements involved in the cost of a typical construction project, which for our purposes, is a complex of office buildings and experimental laboratories. The input data used in the program consist primarily of labor costs and material and equipment costs. The labor costs are the contractual rates of the crafts workers in the Los Alamos area. For the analysis, 12 field-labor craft categories are used; each is weighted corresponding to the labor craft distribution associated with the typical construction project. The materials costs are current Los Alamos prices. Additional information sources include material and equipment quotes obtained through conversations with vendors and from trade publications. The material and equipment items separate into 17 categories for the analysis and are weighted corresponding to the material and equipment distribution associated with the typical construction project. The building cost index is compared to other national building cost indexes.

  2. Los Alamos National Laboratory Building Cost Index

    SciTech Connect

    Orr, H.D.; Lemon, G.D.

    1983-01-01

    The Los Alamos National Laboratory Building Cost Index indicates that actual escalation since 1970 is near 10% per year. Therefore, the Laboratory will continue using a 10% per year escalation rate for construction estimates through 1985 and a slightly lower rate of 8% per year from 1986 through 1990. The computerized program compares the different elements involved in the cost of a typical construction project, which for our purposes, is a complex of office buildings and experimental laboratores. The input data used in the program consist primarily of labor costs and material and equipment costs. The labor costs are the contractural rates of the crafts workers in the Los Alamos area. For the analysis, 12 field-labor draft categories are used; each is weighted corresponding to the labor craft distribution associated with the typical construction project. The materials costs are current Los Alamos prices. Additional information sources include material and equipment quotes obtained through conversations with vendors and from trade publications. The material and equipment items separate into 17 categories for the analysis and are weighted corresponding to the material and equipment distribution associated with the typical construction project. The building cost index is compared to other national building cost indexes.

  3. 2013 Los Alamos National Laboratory Hazardous Waste Minimization Report

    SciTech Connect

    Salzman, Sonja L.; English, Charles J.

    2015-08-24

    Waste minimization and pollution prevention are inherent goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE) and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program (a component of the overall Waste Minimization/Pollution Prevention [WMin/PP] Program) administered by the Environmental Stewardship Group (ENV-ES). This report also supports the waste minimization and pollution prevention goals of the Environmental Programs Directorate (EP) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. LANS was very successful in fiscal year (FY) 2013 (October 1-September 30) in WMin/PP efforts. Staff funded four projects specifically related to reduction of waste with hazardous constituents, and LANS won four national awards for pollution prevention efforts from the National Nuclear Security Administration (NNSA). In FY13, there was no hazardous, mixedtransuranic (MTRU), or mixed low-level (MLLW) remediation waste generated at the Laboratory. More hazardous waste, MTRU waste, and MLLW was generated in FY13 than in FY12, and the majority of the increase was related to MTRU processing or lab cleanouts. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.

  4. Large-scale demonstration and deployment project at Los Alamos National Laboratory

    SciTech Connect

    Brown, S.; McFee, J.; Broom, C.; Dugger, H.; Stallings, E.

    1999-04-01

    Established by the US Department of Energy (DOE) Environmental Management program through its Office of Science and Technology, the Deactivation and Decommissioning Focus Area is developing answers to the technological problems that hinder Environmental Management`s extensive cleanup efforts. The optimized application of technologies to ongoing nuclear facility decontamination and dismantlement is critical in meeting the challenge of decommissioning approximately 9,000 buildings and structures within the DOE complex. The significant technical and economic concerns in this area underscore a national imperative for the qualification and timely delivery of cost-reduction technologies and management approaches to meet federal and private needs. At Los Alamos National Laboratory (LANL), a Large-Scale Demonstration and Deployment Project (LSDDP) has been established to facilitate demonstration and deployment of technologies for the characterization, decontamination, and volume reduction of oversized metallic waste, mostly in the form of gloveboxes contaminated with transuranic radionuclides. The LANL LSDDP is being managed by an integrated contractor team (ICT) consisting of IT Corporation, ICF Incorporated, and Florida International University and includes representation from LANL`s Environmental Management Program Office. The ICT published in the Commerce Business Daily a solicitation for interest for innovative technologies capable of improving cost and performance of the baseline process. Each expression of interest response was evaluated and demonstration contract negotiations are under way for those technologies expected to be capable of meeting the project objectives. This paper discusses management organization and approach, the results of the technology search, the technology selection methodology, the results of the selection process, and future plans for the program.

  5. Science Explorers Translation Project.

    ERIC Educational Resources Information Center

    Jacobs, Dolores

    This paper describes a pilot project of Los Alamos National Laboratory (New Mexico) to translate a science education curriculum for junior and senior high school students into Navajo. The project consisted of translating a video, a teacher's guide, and an interactive multimedia product on the 1993 hantavirus outbreak in the Four Corners area…

  6. AUDACIOUS - An Experiment with an On-Line, Interactive Reference Retrieval ment with an On-Line, Interactive Reference Retrieval System Using the Universal Decimal Classification as the Index Language in the Field of Nuclear Science.

    ERIC Educational Resources Information Center

    Freeman, Robert R.; Atherton, Pauline

    This report describes an experimental system for remote direct access to files of computer-stored information which has been indexed by the Universal Decimal Classification (UDC). The data base for the experiment consisted of references from a single issue of Nuclear Science Abstracts. The Special Subject Edition of UDC for Nuclear Science and…

  7. Evaluation of an S.D.I. System Based on "Nuclear Science Abstracts" and the Performance of Matching by Words in Titles Compared With Indexing Terms.

    ERIC Educational Resources Information Center

    Olive, G.; And Others

    A selective dissemination of information service based on computer scanning of Nuclear Science Abstracts tapes has operated at the Atomic Energy Research Establishment, Harwell, England since October, 1968. The performance of the mechanized SDI service has been compared with that of the pre-existing current awareness service which is based on…

  8. Radionuclide concentrations in pinto beans, sweet corn, and zucchini squash grown in Los Alamos Canyon at Los Alamos National Laboratory

    SciTech Connect

    Fresquez, P.R.; Mullen, M.A.; Naranjo, L. Jr.; Armstrong, D.R.

    1997-05-01

    Pinto beans, sweet corn, and zucchini squash (Cucurbita pepo var. black beauty) were grown in a randomized complete-block field/pot experiment at a site that contained the highest observed levels of surface gross gamma radioactivity within Los Alamos Canyon (LAC) at Los Alamos National Laboratory. Soils as well as washed edible and nonedible crop tissues were analyzed for various radionuclides and heavy metals . Most radionuclides, with the exception of {sup 3}H and {sup tot}U, in soil from LAC were detected in significantly higher concentrations (p <0.01) than in soil collected from regional background (RBG) locations. Similarly, most radionuclides in edible crop portions of beans, squash, and corn were detected in significantly higher (p <0.01 and 0.05) concentrations than RBG. Most soil-to-plant concentration ratios for radionuclides in edible and nonedible crop tissues from LAC were within the default values given by the Nuclear Regulatory Commission and Environmental Protection Agency. All heavy metals in soils, as well as edible and nonedible crop tissues grown in soils from LAC, were within RBG concentrations. Overall, the total maximum net positive committed effective dose equivalent (CEDE)--the CEDE plus two sigma for each radioisotope minus background and then all positive doses summed--to a hypothetical 50-year resident that ingested 160 kg of beans, corn, and squash in equal proportions, was 74 mrem y{sup -1}. This dose was below the International Commission on Radiological Protection permissible dose limit (PDL) of 100 mrem y{sup -1} from all pathways; however, the addition of other internal and external exposure route factors may increase the overall dose over the PDL. Also, the risk of an excess cancer fatality, based on 74 mrem y{sup -1}, was 3.7 x 10{sup -5} (37 in a million), which is above the Environmental Protection Agency`s (acceptable) guideline of one in a million. 31 refs., 15 tabs.

  9. Improved recovery and purification of plutonium at Los Alamos using macroporous anion exchange resin

    SciTech Connect

    Marsh, S.F.; Mann, M.J.

    1987-05-01

    For almost 30 years, Los Alamos National Laboratory has used anion exchange in nitric acid as the major aqueous process or the recovery and purification of plutonium. One of the few disadvantages of this system is the particularly slow rate at which the anionic nitrato complex of Pu(IV) equilibrates with the resin. The Nuclear Materials Process Technology Group at Los Alamos recently completed an ion exchange development program that focused on improving the slow sorption kinetics that limits this process. A comprehensive investigation of modern anion exchange resins identified porosity and bead size as the properties that most influence plutonium sorption kinetics. Our study found that small beads of macroporous resin produced a dramatic increase in plutonium process efficiency. The Rocky Flats Plant has already adopted this improved ion exchange technology, and it currently is being evaluated for use in other DOE plutonium-processing facilities.

  10. In-plant experience with passive-active shufflers at Los Alamos

    SciTech Connect

    Hurd, J.R.; Hsue, F.; Rinard, P.M.

    1995-09-01

    Two Canberra-built passive-active {sup 252}Cf shufflers of Los Alamos hardware and software design have been installed at Los Alamos National Laboratory, one at the Chemistry and Metallurgy Research (CMR) Facility at TA-3 and the other at the Plutonium Facility (PF-4) at TA-55. These instruments fulfill important safeguards and accountability measurement requirements for special nuclear material (SNM) in matrices too dense or otherwise not appropriate for typical gamma-ray or other neutron counting techniques. They support many programmatic requirements including measurements of transuranic (TRU) waste and inventory verification. This paper describes the instrument performance under plant conditions with various background radiations on well-characterized standards to determine long-term stability and establish a calibration. Results are also reported on verification measurements of previously unmeasured inventory items in various matrices and geometric distributions. Preliminary investigative measurements are presented on standards of mixed uranium and plutonium oxide (MOX).

  11. DETERMINISTIC TRANSPORT METHODS AND CODES AT LOS ALAMOS

    SciTech Connect

    J. E. MOREL

    1999-06-01

    The purposes of this paper are to: Present a brief history of deterministic transport methods development at Los Alamos National Laboratory from the 1950's to the present; Discuss the current status and capabilities of deterministic transport codes at Los Alamos; and Discuss future transport needs and possible future research directions. Our discussion of methods research necessarily includes only a small fraction of the total research actually done. The works that have been included represent a very subjective choice on the part of the author that was strongly influenced by his personal knowledge and experience. The remainder of this paper is organized in four sections: the first relates to deterministic methods research performed at Los Alamos, the second relates to production codes developed at Los Alamos, the third relates to the current status of transport codes at Los Alamos, and the fourth relates to future research directions at Los Alamos.

  12. Progress at LAMPF (Los Alamos Meson Physics Facility), January--December 1989

    SciTech Connect

    Poelakker, K.

    1990-12-01

    This report contains brief papers on research conducted at the lampf facility in the following areas: nuclear and particle physics; astrophysics; atomic and molecular physics; materials science; nuclear chemistry; radiation effects and radioisotope production.

  13. A nuclear cross section data handbook

    SciTech Connect

    Fisher, H.O.M.

    1989-12-01

    Isotopic information, reaction data, data availability, heating numbers, and evaluation information are given for 129 neutron cross-section evaluations, which are the source of the default cross sections for the Monte Carlo code MCNP. Additionally, pie diagrams for each nuclide displaying the percent contribution of a given reaction to the total cross section are given at 14 MeV, 1 MeV, and thermal energy. Other information about the evaluations and their availability in continuous-energy, discrete-reaction, and multigroup forms is provided. The evaluations come from ENDF/B-V, ENDL85, and the Los Alamos Applied Nuclear Science Group T-2. Graphs of all neutron and photon production cross-section reactions for these nuclides have been categorized and plotted. 21 refs., 5 tabs.

  14. Nuclear Science and Applications with the Next Generation of High-Power Lasers and Brilliant Low-Energy Gamma Beams at ELI-NP

    NASA Astrophysics Data System (ADS)

    Gales, S.; ELI-NP Team

    2015-10-01

    The development of high power lasers and the combination of such novel devices with accelerator technology has enlarged the science reach of many research fields, in particular High Energy, Nuclear and Astrophysics as well as societal applications in Material Science, Nuclear Energy and Medicine. The European Strategic Forum for Research Infrastructures (ESFRI) has selected a proposal based on these new premises called "ELI" for Extreme Light Infrastructure. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for Nuclear Physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10 PW class lasers and a Back Compton Scattering High Brilliance and Intense Low Energy Gamma Beam, a marriage of Laser and Accelerator technology at the frontier of knowledge. In the present paper, the technical and scientific status of the project as well as the applications of the gamma source will be discussed.

  15. Future challenges for nuclear power plant development research, and for radiological protection sciences.

    PubMed

    Lazo, Edward

    2007-11-01

    The promise of the future shines brightly for nuclear energy technology and production, yet also holds many challenges. Focus on new reactor designs is currently aiming at what is termed the fourth generation of reactors, which will come into operation after 2030. The 10 countries participating in the Generation-IV International Forum to develop the new generation of reactors have designated six reactor designs that will be studied. This paper will briefly discuss some of these challenges in new reactor designs in general. In addition to the challenges posed by new reactor designs, radiation protection is also faced with a series of challenges for the future. These are borne from experience with the implementation of the current system of radiological protection, from the evolution of radiation biological research, and from changes in society in the area of radiological risk assessment and management. This paper will address all of these emerging challenges, and point towards approaches to resolve them in the future.

  16. Nuclear Science Division: Annual report for the period October 1, 1985-September 30, 1986

    SciTech Connect

    Mahoney, J.

    1987-07-01

    Research has for the most part been carried out using three local accelerators, the Bevalac, the SuperHILAC and the 88-Inch Cyclotron. However, at CERN, oxygen-16 beams were accelerated to 3.2 TeV using the LBL-GSI heavy ion injector into the CERN SPS. First results obtained during the beam test period are presented in this report. Bevalac research has probed new regions of the nuclear matter equation of state. Studies of collisions between the most massive nuclei have revealed rich new phenomena such as collective flow, where the pressures generated force the emerging particles away from the beam direction. Experiments on dileptons e/sup +/e/sup -/ pairs) utilizing the newly completed Dilepton Spectrometer (DLS) are being carried out to glean new insights into the hot, high-density stage of the collision. Major new results on the nuclear structure of exotic, very neutron-rich light nuclei are being obtained by exploiting the projectile fragmentation process to produce secondary radioactive beams. The Laboratory has proposed the Bevalac Upgrade Project to replace the Bevalac's weak-focusing synchrotron with a modern, strong-focusing synchrotron to provide higher intensity and higher quality beams. The significant enhancement of the heavy ion capability at the 88-Inch Cyclotron as a result of the recent development of the ECR source has led to a renaissance of the cyclotron as indicated by the increased demand for beam time. A variety of other scientific activities were also carried out during this period. The Isotopes Project published the first edition of a new radioactivity reference book for applied users-The Table of Radioactive Isotopes and division members organized several major scientific meetings.

  17. Real-world experiences of nuclear science in the classroom - What an individual can do

    SciTech Connect

    Fox, M.R. )

    1991-01-01

    Experience is showing that the public has yet to learn about the natural world, radiation, risk analysis, and energy, as well as other issues. This has occurred during a time in which the quality of education has declined in the US. As a former college professor who is married to a schoolteacher, the author realized that the two observations are linked. A communications gap has developed between science and the schools. Scientists perceive that once scientific advancements have taken place, new curriculum materials for schools automatically adapt to include these advancements. Teachers' schedules are typically so filled during and after school that new curriculum material is slowed in being introduced in the classroom. Thus, the question becomes, how do we bridge the gulf between scientists and the classroom Scientists can be helpful to teachers in many ways. This paper is a summary of some of the activities and lessons learned in strengthening teacher-scientist relationships.

  18. Los Alamos Before and After the Fire

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On May 4, 2000, a prescribed fire was set at Bandelier National Monument, New Mexico, to clear brush and dead and dying undergrowth to prevent a larger, subsequent wildfire. Unfortunately, due to high winds and extremely dry conditions in the surrounding area, the prescribed fire quickly raged out of control and, by May 10, the blaze had spread into the nearby town of Los Alamos. In all, more than 20,000 people were evacuated from their homes and more than 200 houses were destroyed as the flames consumed about 48,000 acres in and around the Los Alamos area. The pair of images above were acquired by the Enhanced Thematic Mapper Plus (ETM+) sensor, flying aboard NASA's Landsat 7 satellite, shortly before the Los Alamos fire (top image, acquired April 14) and shortly after the fire was extinguished (lower image, June 17). The images reveal the extent of the damage caused by the fire. Combining ETM+ channels 7, 4, and 2 (one visible and two infrared channels) results in a false-color image where vegetation appears as bright to dark green. Forested areas are generally dark green while herbaceous vegetation is light green. Rangeland or more open areas appear pink to light purple. Areas with extensive pavement or urban development appear light blue or white to purple. Less densely-developed residential areas appear light green and golf courses are very bright green. In the lower image, the areas recently burned appear bright red. Landsat 7 data courtesy United States Geological Survey EROS DataCenter. Images by Robert Simmon, NASA GSFC.

  19. Biological assessment for the effluent reduction program, Los Alamos National Laboratory, Los Alamos, New Mexico

    SciTech Connect

    Cross, S.P.

    1996-08-01

    This report describes the biological assessment for the effluent recution program proposed to occur within the boundaries of Los Alamos National Laboratory. Potential effects on wetland plants and on threatened and endangered species are discussed, along with a detailed description of the individual outfalls resulting from the effluent reduction program.

  20. LAMPF II workshop, Los Alamos National Laboratory, Los Alamos, New Mexico, February 1-4, 1982

    SciTech Connect

    Thiessen, H.A.

    1982-01-01

    This report contains the proceedings of the first LAMPF II Workshop held at Los Alamos February 1 to 4, 1982. Included are the talks that were available in written form. The conclusion of the participants was that there are many exciting areas of physics that will be addressed by such a machine.

  1. Experience with confirmation measurement at Los Alamos

    SciTech Connect

    Marshall, R.S.; Wagner, R.P.; Hsue, F.

    1985-01-01

    Confirmation measurements are used at Los Alamos in support of incoming and outgoing shipment accountibility and for support of both at /sup 235/U and Pu inventories. Statistical data are presented to show the consistency of measurements on items of identical composition and on items measured at two facilitis using similar instruments. A description of confirmation measurement techniques used in support of /sup 235/U and Pu inventories and a discussion on the ability of the measurements to identify items with misstated SNM are given.

  2. Los Alamos National Laboratory computer benchmarking 1982

    SciTech Connect

    Martin, J.L.

    1983-06-01

    Evaluating the performance of computing machinery is a continual effort of the Computer Research and Applications Group of the Los Alamos National Laboratory. This report summarizes the results of the group's benchmarking activities performed between October 1981 and September 1982, presenting compilation and execution times as well as megaflop rates for a set of benchmark codes. Tests were performed on the following computers: Cray Research, Inc. (CRI) Cray-1S; Control Data Corporation (CDC) 7600, 6600, Cyber 73, Cyber 825, Cyber 835, Cyber 855, and Cyber 205; Digital Equipment Corporation (DEC) VAX 11/780 and VAX 11/782; and Apollo Computer, Inc., Apollo.

  3. The Atomic Bomb Fragment: An Experience in Explaining Nuclear Science to the Popular Media

    NASA Astrophysics Data System (ADS)

    Jokisch, Derek

    2005-11-01

    On March 11, 1958 a B-47 strategic bomber on a training mission accidentally dropped a Mark 6 nuclear bomb over rural South Carolina. The bomb, which did not contain the fissionable core, detonated on a lot in Mars Bluff, SC, less than a mile from the current campus of Francis Marion University (FMU). Though the accounts of this event have been written several times, the most extensive account was recently published in the May 2005 issue of Esquire magazine. The author of the Esquire article contacted health physics faculty at FMU in February of 2005 after finding a local resident that claimed to have a fragment of the bomb. In attempting to authenticate the fragment, the author was surprised to measure radioactivity with a Geiger counter. He asked if FMU had the equipment necessary to determine the source of the activity. We spent one afternoon with the author while acquiring a gamma-ray spectrum from the fragment. In addition to presenting the brief scientific analysis, this talk will describe the communication with the author of the article and the subsequent interpretation presented in the publication.

  4. Elementary! A Nuclear Forensics Workshop Teaches Vital Skills to International Practitioners

    SciTech Connect

    Brim, Cornelia P.; Minnema, Lindsay T.

    2014-04-01

    The article describes the Nuclear Forensics Workshop sponsored by the International Atomic Energy Agency (IAEA), the Office of Nonproliferation and International Security (NIS) and hosted by Pacific Northwest National Laboratory October 28-November 8, 2013 in Richland,Washington. Twenty-six participants from 10 countries attended the workshop. Experts from from Los Alamos, Lawrence Livermore, and Pacific Northwest national laboratories collaborated with an internationally recognized cadre of experts from the U.S. Department of Homeland Security and other U.S. agencies, IAEA, the Australian Nuclear Science and Technology Organisation, the United Kingdom Atomic Weapons Establishment (AWE), and the European Union Joint Research Center Institute for Transuranium Elements, to train practitioners in basic methodologies of nuclear forensic examinations.

  5. CONFERENCES AND SYMPOSIA: Nuclear physics, lasers, and medicine(Scientific session of the General Meeting of the Physical Sciences Division of the Russian Academy of Sciences, 14 December 2009)

    NASA Astrophysics Data System (ADS)

    2010-09-01

    The scientific session of the General Meeting of the Physical Sciences Division of the Russian Academy of Sciences (RAS) was held in the Conference Hall of the Lebedev Physical Institute, RAS, on 14 December 2009. The following reports were put on the session agenda posted on the web site www.gpad.ac.ru of the Physical Sciences Division, RAS: (1) Kotov Yu D (National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Institute of Astrophysics, Moscow) "High-energy solar flare processes and their investigation onboard Russian satellite missions CORONAS"; (2) Pakhlov P N (Russian Federation State Scientific Center 'Alikhanov Institute for Theoretical and Experimental Physics,' Moscow) "Exotic charmonium"; (3) Shcherbakov I A (Prokhorov General Physics Institute, RAS, Moscow) "Laser and plasma technologies in medicine"; (4) Balakin V E (Center for Physics and Technology, Lebedev Physical Institute, RAS, Protvino, Moscow region) "New-generation equipment and technologies for the ray therapy of oncological diseases using a proton beam"; (5) Kravchuk L V (Institute for Nuclear Research, RAS, Moscow) "Development of nuclear physics medicine at the Institute for Nuclear Research, RAS." Papers based on reports 1, 3, and 5 are published below. The expanded content of the report by Pakhlov is presented in review form in Physics-Uspekhi 53 219 (2010). • High-energy solar flare processes and their investigation onboard Russian satellite missions CORONAS, Yu D Kotov Physics-Uspekhi, 2010, Volume 53, Number 6, Pages 619-631 • Laser physics in medicine, I A Shcherbakov Physics-Uspekhi, 2010, Volume 53, Number 6, Pages 631-635 • Development of nuclear physics medicine at the Institute for Nuclear Research, RAS, L V Kravchuk Physics-Uspekhi, 2010, Volume 53, Number 6, Pages 635-639

  6. The Climate at Los Alamos; Are we measurement changes?

    SciTech Connect

    Dewart, Jean Marie

    2015-04-16

    A new report shows new graphic displays of the weather trends in Los Alamos, New Mexico, and at the Los Alamos National Laboratory (LANL). The graphs show trends of average, minimum average, and maximum average temperature for summer and winter months going back decades. Records of summer and winter precipitation are also included in the report.

  7. Wafer and bulk high-purity silicon trace element analysis at the Texas A and M University Nuclear Science Center

    SciTech Connect

    Van Dalsem, Daniel James

    1998-11-24

    A trace element analysis program for wafer and bulk high-purity silicon (Si) samples has been operating at the Texas A and M University Nuclear Science Center (TAMU NSC) since 1996. Samples are irradiated in the NSC's 1-MW TRIGA research reactor at a thermal neutron fluence rate of 10{sup 13} n/cm{sup 2}/s for 14 hours. After an appropriate decay length, bulk samples are chemically etched to remove surface contamination while wafer surfaces are first rinsed with acid to determine surface contamination and then etched to obtain epitaxial layer contamination information. All samples, along with the appropriate etching solutions are analyzed using gamma-ray spectroscopy to quantitatively determine the various radioisotopes created during irradiation. Elements typically determined are antimony (Sb), arsenic (As), bromine (Br), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), gallium (Ga), gold (Au), iron (Fe), molybdenum (Mo), potassium (K), silver (Ag), sodium (Na) tungsten (W) and zinc (Zn). The potential exists to also determine cesium (Cs), iridium (Ir), lanthanum (La), mercury (Hg), rubidium (Rb), scandium (Sc), and zirconium (Zr). Detection limits range from 10{sup 14} down to 10{sup 7} atoms/cm{sup 2} in surface analysis and 10{sup 13} down to 10{sup 8} atoms/cm{sup 3} in bulk Si.

  8. Center for Nuclear Medicine Research in Alzheimer`s Disease Health Sciences Center, West Virginia University. Environmental Assessment

    SciTech Connect

    Not Available

    1994-04-01

    The Environmental Assessment (EA) of the Center for Nuclear Medicine Research in Alzheimer`s Disease (CNMR) at the Health Sciences Center, at West Virginia University in Morgantown, West Virginia for the construction and operation was prepared by DOE. The EA documents analysis of the environmental and socioeconomic impacts that might occur as a result of these actions, and characterizes potential impacts on the environment. In the EA, DOE presents its evaluation of potential impacts of construction and operation of the CNMR on health and safety of both workers and the public, as well as on the external environment. Construction impacts include the effects of erosion, waste disposal, air emissions, noise, and construction traffic and parking. Operational impacts include the effects of waste generation (domestic, sanitary, hazardous, medical/biological, radioactive and mixed wastes), radiation exposures, air emissions (radioactive, criteria, and air toxics), noise, and new workers. No sensitive resources (wetlands, special sources of groundwater, protected species) exist in the area of project effect.

  9. Institute of Electrical and Electronics Engineers, Nuclear Science Symposium, 18th, and Nuclear Power Systems Symposium, 3rd, San Francisco, Calif., November 3-5, 1971, Proceedings.

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Potential advantages of fusion power reactors are discussed together with the protection of the public from radioactivity produced in nuclear power reactors, and the significance of tritium releases to the environment. Other subjects considered are biomedical instrumentation, radiation damage problems, low level environmental radionuclide analysis systems, nuclear techniques in environmental research, nuclear instrumentation, and space and plasma instrumentation. Individual items are abstracted in this issue.

  10. Nuclear Science Symposium, 20th, and Nuclear Power Systems Symposium, 5th, San Francisco, Calif., November 14-16, 1973, Proceedings

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Subjects considered are in the areas of position sensitive detectors, semiconductor detector materials, semiconductor detector technology, biomedical instrumentation, reactor instrumentation, nuclear instrumentation, and data acquisition and processing. Topics related to photon detection are discussed together with methods for environmental radiation measurement, aspects of environmental gamma-ray analysis, and nuclear techniques for elemental analysis. Attention is also given to operation and design experience with systems at nuclear power plants. Individual items are announced in this issue.

  11. ChemCam rock laser for Mars Science Laboratory "Curiosity"

    ScienceCinema

    Wiens, Roger

    2016-07-12

    Los Alamos has a long history of space-related instruments, tied primarily to its role in defense-related treaty verification. Space-based detectors have helped determine the differences between signals from lightning bolts and potential nuclear explosions. LANL-developed gamma-ray detection instruments first revealed the existence of what we now know as gamma-ray bursts, an exciting area of astrophysical research. And the use of LANL instruments on varied space missions continues with such products as the ChemCam rock laser for NASA, shown here. The Engineering Model of the ChemCam Mars Science Laboratory rover instrument arrived at NASA's Jet Propulsion Laboratory on February 6, 2008. The Flight Model was shipped in August, 2010 for installation on the rover at JPL. ChemCam will use imaging and laser-induced breakdown spectroscopy (LIBS) to determine rock and soil compositions on Mars, up to 9 meters from the rover. The engineering model is being integrated into the rover test bed for the development and testing of the rover software. The actual flight model components were concurrently assembled at Los Alamos and in Toulouse, France. The Mars Science Laboratory is scheduled to launch in 2011. Animations courtesy of JPL/NASA.

  12. ChemCam rock laser for Mars Science Laboratory "Curiosity"

    SciTech Connect

    Wiens, Roger

    2010-09-03

    Los Alamos has a long history of space-related instruments, tied primarily to its role in defense-related treaty verification. Space-based detectors have helped determine the differences between signals from lightning bolts and potential nuclear explosions. LANL-developed gamma-ray detection instruments first revealed the existence of what we now know as gamma-ray bursts, an exciting area of astrophysical research. And the use of LANL instruments on varied space missions continues with such products as the ChemCam rock laser for NASA, shown here. The Engineering Model of the ChemCam Mars Science Laboratory rover instrument arrived at NASA's Jet Propulsion Laboratory on February 6, 2008. The Flight Model was shipped in August, 2010 for installation on the rover at JPL. ChemCam will use imaging and laser-induced breakdown spectroscopy (LIBS) to determine rock and soil compositions on Mars, up to 9 meters from the rover. The engineering model is being integrated into the rover test bed for the development and testing of the rover software. The actual flight model components were concurrently assembled at Los Alamos and in Toulouse, France. The Mars Science Laboratory is scheduled to launch in 2011. Animations courtesy of JPL/NASA.

  13. Energy Frontier Research Center Center for Materials Science of Nuclear Fuels

    SciTech Connect

    Todd Allen

    2014-04-01

    Scientific Successes • The first phonon density of states (PDOS) measurements for UO2 to include anharmonicity were obtained using time-of-flight inelastic neutron scattering at the Spallation Neutron Source (SNS), and an innovative, experimental-based anharmonic smoothing technique has enabled quantitative benchmarking of ab initio PDOS simulations. • Direct comparison between anharmonicity-smoothed ab initio PDOS simulations for UO2 and experimental measurements has demonstrated the need for improved understanding of UO2 at the level of phonon dispersion, and, further, that advanced lattice dynamics simulations including finite temperatures approaches will be required for handling this strongly correlated nuclear fuel. • PDOS measurements performed on polycrystalline samples have identified the phonon branches and energy ranges most highly impacted by fission-product and hyper-stoichiometry lattice defects in UO2. These measurements have revealed the broad-spectrum impact of oxygen hyper-stoichiometry on thermal transport. The reduction in thermal conductivity caused by hyper-stoichiometry is many times stronger than that caused by substitutional fission-product impurities. • Laser-based thermo-reflectance measurements on UO2 samples irradiated with light (i.e. He) ions to introduce point defects have been coupled with MD simulations and lattice parameter measurements to determine the role of uranium and oxygen point defects in reducing thermal conductivity. • A rigorous perturbation theory treatment of phonon lifetimes in UO2 based on a 3D discretization of the Brillouin zone coupled with experimentally measured phonon dispersion has been implemented that produces improved predictions of the temperature dependent thermal conductivity. • Atom probe investigations of the influence of grain boundary structure on the segregation behavior of Kr in UO2 have shown that smaller amounts of Kr are present at low angle grain boundaries than at large angle grain

  14. Carbon stripper foils used in the Los Alamos PSR

    SciTech Connect

    Borden, M.J.; Plum, M.A.; Sugai, I.

    1997-12-01

    Carbon stripper foils produced by the modified controlled ACDC arc discharge method (mCADAD) at the Institute for Nuclear Study have been tested and used for high current 800-MeV beam production in the Proton Storage Ring (PSR) since 1993. Two foils approximately 110 {mu}g/cm{sup 2} each are sandwiched together to produce an equivalent 220 {mu}g/cm{sup 2} foil. The foil sandwitch is supported by 4-5 {mu}m diameter carbon filters attached to an aluminum frame. These foils have survived as long as five months during PSR normal beam production of near 70 {mu}A average current on target. Typical life-times of other foils vary from seven to fourteen days with lower on-target average current. Beam loss data also indicate that these foils have slower shrinkage rates than standard foils. Equipment has been assembled and used to produce foils by the mCADAD method at Los Alamos. These foils will be tested during 1997 operation.

  15. Explorer at Los Alamos: A library for the future

    SciTech Connect

    Waters, M.; McDonald, J.

    1998-03-01

    Since 1993, Los Alamos National Laboratory, has been developing World Wide Web (WWW) applications to facilitate access to vast quantities of information critical to the successful operation of a nuclear weapons facility Explorer is a web-based tool that integrates full-text search and retrieval technology, custom user in interface faces, user-friendly navigation tools, extremely large document collections, and data collection and workflow applications. Explorer`s first major thrust was to enable quick access to regulatory and policy information used by Department of Energy facilities throughout the country. Today, Explorer users can easily search document collections containing, millions of pages of information scattered across Web sites around the country. Over fifteen large applications containing multiple collections are searchable through Explorer, and the subject areas range from DOE regulations to quality management-related resources to technology transfer opportunities. Explorer has succeeded because it provides quick and easy access to stored data across the Web; it saves time and reduces costs in comparison with traditional information distribution, access, and retrieval methods.

  16. Portable MRI developed at Los Alamos

    SciTech Connect

    Espy, Michelle

    2015-04-22

    Scientists at Los Alamos National Laboratory are developing an ultra-low-field Magnetic Resonance Imaging (MRI) system that could be low-power and lightweight enough for forward deployment on the battlefield and to field hospitals in the World's poorest regions. "MRI technology is a powerful medical diagnostic tool," said Michelle Espy, the Battlefield MRI (bMRI) project leader, "ideally suited for imaging soft-tissue injury, particularly to the brain." But hospital-based MRI devices are big and expensive, and require considerable infrastructure, such as large quantities of cryogens like liquid nitrogen and helium, and they typically use a large amount of energy. "Standard MRI machines just can't go everywhere," said Espy. "Soldiers wounded in battle usually have to be flown to a large hospital and people in emerging nations just don't have access to MRI at all. We've been in contact with doctors who routinely work in the Third World and report that MRI would be extremely valuable in treating pediatric encephalopathy, and other serious diseases in children." So the Los Alamos team started thinking about a way to make an MRI device that could be relatively easy to transport, set up, and use in an unconventional setting. Conventional MRI machines use very large magnetic fields that align the protons in water molecules to then create magnetic resonance signals, which are detected by the machine and turned into images. The large magnetic fields create exceptionally detailed images, but they are difficult and expensive to make. Espy and her team wanted to see if images of sufficient quality could be made with ultra-low-magnetic fields, similar in strength to the Earth's magnetic field. To achieve images at such low fields they use exquisitely sensitive detectors called Superconducting Quantum Interference Devices, or SQUIDs. SQUIDs are among the most sensitive magnetic field detectors available, so interference with the signal is the primary stumbling block. "SQUIDs are

  17. Chemistry technology base and fuel cycle of the Los Alamos accelerator-driven transmutation system

    SciTech Connect

    Williamson, M.A.

    1997-12-01

    This paper provides a brief overview of the Los Alamos accelerator-driven transmutation system, a description of the pyrochemistry technology base and the fuel cycle for the system. The pyrochemistry technology base consists of four processes: direct oxide reduction, reductive extraction, electrorefining, and electrowinning. Each process and its utility is described. The fuel cycle is described for a liquid metal-based system with the focus being the conversion of commercial spent nuclear fuel to fuel for the transmutation system. Fission product separation and actinide recycle processes are also described.

  18. Addressing the Highest Risk: Environmental Programs at Los Alamos National Laboratory

    SciTech Connect

    Forbes, Elaine E

    2012-06-08

    Report topics: Current status of cleanup; Shift in priorities to address highest risk; Removal of above-ground waste; and Continued focus on protecting water resources. Partnership between the National Nuclear Security Administration's Los Alamos Site Office, DOE Carlsbad Field Office, New Mexico Environment Department, and contractor staff has enabled unprecedented cleanup progress. Progress on TRU campaign is well ahead of plan. To date, have completed 130 shipments vs. 104 planned; shipped 483 cubic meters of above-ground waste (vs. 277 planned); and removed 11,249 PE Ci of material at risk (vs. 9,411 planned).

  19. Los Alamos Critical Experiments Facility. Quarterly progress report, January 1--March 31, 1993

    SciTech Connect

    Anderson, R.E.; Paternoster, R.R.; Robba, A.A.; Sanchez, R.G.; Butterfield, K.B.; Partain, B.Q.; Malenfant, R.E.

    1993-12-31

    The Los Alamos Critical Experiments Facility (LACEF) is now operating after a lengthy period of shutdown that lasted from November 1989 until June 1991. Since June 1991, the efforts of the staff have concentrated on bringing the assemblies back to operational status. The facility is fully operational and performing experiments. This progress report nominally covers the second quarter of FY93 (first quarter of calendar year 1993). It has sections on nuclear criticality safety classes, SHEBA II Project, Godiva IV activities, Skua activities, basic neutron physics measurements, etc.

  20. Los Alamos Shows Airport Security Technology at Work

    SciTech Connect

    Espy, Michelle; Schultz, Larry; Hunter, James

    2013-11-25

    Los Alamos scientists have advanced a Magnetic Resonance Imaging (MRI) technology that may provide a breakthrough for screening liquids at airport security. They've added low-power X-ray data to the mix, and as a result have unlocked a new detection technology. Funded in part by the Department of Homeland Security's Science and Technology Directorate, the new system is named MagRay. The goal is to quickly and accurately distinguish between liquids that visually appear identical. For example, what appears to be a bottle of white wine could potentially be nitromethane, a liquid that could be used to make an explosive. Both are clear liquids, one would be perfectly safe on a commercial aircraft, the other would be strictly prohibited. How to tell them apart quickly without error at an airport security area is the focus of Michelle Espy, Larry Schultz and their team. In this video, Espy and the MagRay team explain how the new technology works, how they've developed an easy operator interface, and what the next steps might be in transitioning this technology to the private sector.

  1. Los Alamos Shows Airport Security Technology at Work

    ScienceCinema

    Espy, Michelle; Schultz, Larry; Hunter, James

    2016-07-12

    Los Alamos scientists have advanced a Magnetic Resonance Imaging (MRI) technology that may provide a breakthrough for screening liquids at airport security. They've added low-power X-ray data to the mix, and as a result have unlocked a new detection technology. Funded in part by the Department of Homeland Security's Science and Technology Directorate, the new system is named MagRay. The goal is to quickly and accurately distinguish between liquids that visually appear identical. For example, what appears to be a bottle of white wine could potentially be nitromethane, a liquid that could be used to make an explosive. Both are clear liquids, one would be perfectly safe on a commercial aircraft, the other would be strictly prohibited. How to tell them apart quickly without error at an airport security area is the focus of Michelle Espy, Larry Schultz and their team. In this video, Espy and the MagRay team explain how the new technology works, how they've developed an easy operator interface, and what the next steps might be in transitioning this technology to the private sector.

  2. Cross section measurements at LANSCE for defense, science and applications

    DOE PAGES

    Nelson, Ronald O.; Schwengner, R.; Zuber, K.

    2015-05-28

    The Los Alamos Neutron Science Center (LANSCE) has three neutron sources that are used for nuclear science measurements. These sources are driven by an 800 MeV proton linear accelerator and cover an energy range from sub-thermal to hundreds of MeV. Research at the facilities is performed under the auspices of a US DOE user program under which research proposals are rated for merit by a program advisory committee and are scheduled based on merit and availability of beam time. A wide variety of instruments is operated at the neutron flight paths at LANSCE including neutron detector arrays, gamma-ray detector arrays,more » fission fragment detectors, and charged particle detectors. These instruments provide nuclear data for multiple uses that range from increasing knowledge in fundamental science to satisfying data needs for diverse applications such as nuclear energy, global security, and industrial applications. In addition, highlights of recent research related to cross sections measurements are presented, and future research initiatives are discussed.« less

  3. Cross section measurements at LANSCE for defense, science and applications

    SciTech Connect

    Nelson, Ronald O.; Schwengner, R.; Zuber, K.

    2015-05-28

    The Los Alamos Neutron Science Center (LANSCE) has three neutron sources that are used for nuclear science measurements. These sources are driven by an 800 MeV proton linear accelerator and cover an energy range from sub-thermal to hundreds of MeV. Research at the facilities is performed under the auspices of a US DOE user program under which research proposals are rated for merit by a program advisory committee and are scheduled based on merit and availability of beam time. A wide variety of instruments is operated at the neutron flight paths at LANSCE including neutron detector arrays, gamma-ray detector arrays, fission fragment detectors, and charged particle detectors. These instruments provide nuclear data for multiple uses that range from increasing knowledge in fundamental science to satisfying data needs for diverse applications such as nuclear energy, global security, and industrial applications. In addition, highlights of recent research related to cross sections measurements are presented, and future research initiatives are discussed.

  4. Cross Section Measurements at LANSCE for Defense, Science and Applications

    NASA Astrophysics Data System (ADS)

    Nelson, Ronald O.

    2015-05-01

    The Los Alamos Neutron Science Center (LANSCE) has three neutron sources that are used for nuclear science measurements. These sources are driven by an 800 MeV proton linear accelerator and cover an energy range from sub-thermal to hundreds of MeV. Research at the facilities is performed under the auspices of a US DOE user program under which research proposals are rated for merit by a program advisory committee and are scheduled based on merit and availability of beam time. A wide variety of instruments is operated at the neutron flight paths at LANSCE including neutron detector arrays, gamma-ray detector arrays, fission fragment detectors, and charged particle detectors. These instruments provide nuclear data for multiple uses that range from increasing knowledge in fundamental science to satisfying data needs for diverse applications such as nuclear energy, global security, and industrial applications. Highlights of recent research related to cross sections measurements are presented, and future research initiatives are discussed.

  5. Transportation of pyrochemical salts from Rocky Flats to Los Alamos

    SciTech Connect

    Schreiber, S.B.

    1997-02-01

    Radioactive legacy wastes or residues are currently being stored on numerous Sites around the former Department of Energy`s (DOE) Nuclear Weapons Complex. Since most of the operating facilities were shut down and have not operated since before the declared end to the Cold War in 1993, the historical method for treating these residues no longer exists. The risk associated with continued storage of these residues will dramatically increase with time. Thus, the DOE was directed by the Defense Nuclear Facility Safety Board in its Recommendation 94-1 to address and stabilize these residues and established an eight year time frame for doing so. There are only two options available to respond to this requirement: (1) restart existing facilities to treat and package the residues for disposal or (2) transport the residues to another operating facility within the Complex where they can be treated and packaged for disposal. This paper focuses on one such residue type, pyrochemical salts, produced at one Complex site, the Rocky Flats Plant located northwest of Denver, Colorado. One option for treating the salts is their shipment to Los Alamos, New Mexico, for handling at the Plutonium Facility. The safe transportation of these salts can be accomplished at present with several shipping containers including a DOT 6M, a DOE 9968, Type A or Type B quantity 55-gallon drum overpacks, or even the TRUPACT II. The tradeoffs between each container is examined with the conclusion that none of the available shipping containers is fully satisfactory. Thus, the advantageous aspects of each container must be utilized in an integrated and efficient way to effectively manage the risk involved. 1 fig.

  6. Environmental assessment for the proposed CMR Building upgrades at the Los Alamos National Laboratory, Los Alamos, New Mexico. Final document

    SciTech Connect

    1997-02-04

    In order to maintain its ability to continue to conduct uninterrupted radioactive and metallurgical research in a safe, secure, and environmentally sound manner, the US Department of Energy (DOE) proposes to upgrade the Los Alamos National Laboratory (LANL) Chemistry and Metallurgy Research (CMR) Building. The building was built in the early 1950s to provide a research and experimental facility for analytical chemistry, plutonium and uranium chemistry, and metallurgy. Today, research and development activities are performed involving nuclear materials. A variety of radioactive and chemical hazards are present. The CMR Building is nearing the end of its original design life and does not meet many of today`s design codes and standards. The Proposed Action for this Environmental Assessment (EA) includes structural modifications to some portions of the CMR Building which do not meet current seismic criteria for a Hazard Category 2 Facility. Also included are upgrades and improvements in building ventilation, communications, monitoring, and fire protection systems. This EA analyzes the environmental effects of construction of the proposed upgrades. The Proposed Action will have no adverse effects upon agricultural and cultural resources, wetlands and floodplains, endangered and threatened species, recreational resources, or water resources. The Proposed Action would have negligible effects on human health and transportation, and would not pose a disproportionate adverse health or environmental impact on minority or low-income populations within an 80 kilometer (50 mile) radius of the CMR Building.

  7. Los Alamos National Laboratory DOE M441.1-1 implementation

    SciTech Connect

    Worl, Laura A; Veirs, D Kirk; Smith, Paul H; Yarbro, Tresa F; Stone, Timothy A

    2010-01-01

    Loss of containment of nuclear material stored in containers such as food-pack cans, paint cans, or taped slip lid cans has generated concern about packaging requirements for interim storage of nuclear materials in working facilities such as the plutonium facility at Los Alamos National Laboratory (LANL). The Department of Energy (DOE) issued DOE M 441.1-1, Nuclear Materials Packaging Manual on March 7, 2008 in response to the Defense Nuclear Facilities Safety Board Recommendation 2005-1. The Manual directs DOE facilities to follow detailed packaging requirements to protect workers from exposure to nuclear materials stored outside of approved engineered-contamination barriers. Los Alamos National Laboratory has identified the activities that will be performed to bring LANL into compliance with DOE M 441.1-1. These include design, qualification and procurement of new containers, repackaging based on a risk-ranking methodology, surveillance and maintenance of containers, and database requirements. The primary purpose is to replace the out-dated nuclear material storage containers with more robust containers that meet present day safety and quality standards. The repackaging campaign is supported by an integrated risk reduction methodology to prioritize the limited resources to the highest risk containers. This methodology is systematically revised and updated based on the collection of package integrity data. A set of seven nested packages with built-in filters have been designed. These range in size from 1 qt. to 10 gallon. Progress of the testing to meet Manual requirements will be given. Due to the number of packages at LANL, repackaging to achieve full compliance will take five to seven years.

  8. Experiments in progress: The geography of science in the Atomic Energy Commission's peaceful uses of nuclear explosives program, 1956-1973

    NASA Astrophysics Data System (ADS)

    Kirsch, Scott Lawrence

    From 1957 to 1973, the United States Atomic Energy Commission (AEC) actively pursued the "peaceful uses of nuclear explosives" through Project Plowshare. Nuclear excavation, the detonation of shallowly buried hydrogen bombs for massive earthmoving projects like harbors and canals, was considered the most promising of the Plowshare applications, and for a time, the most economically and technically "feasible." With a basis in and contributing to theory in critical human geography and science studies, the purpose of this dissertation is to examine the collisions of science, ideology, and politics which kept Plowshare designs alive--but only as "experiments in progress." That is, this research asks how the experimental program persisted in places like the national weapons laboratory in Livermore, California, and how its ideas were tested at the nuclear test site in Nevada, yet Plowshare was kept out of those spaces beyond AEC control. Primary research focuses on AEC-related archival materials collected from the Department of Energy Coordination and Information Center, Las Vegas, Nevada, and from the Lawrence Livermore National Laboratory, as well as the public discourse through which support for and opposition to Plowshare projects was voiced. Through critical analysis of Plowshare's grandiose "geographical engineering" schemes, I thus examine the complex relations between the social construction of science and technology, on one hand, and the social production of space, on the other.

  9. Nuclear Science and Applications with the Next Generation of High-Power Lasers and Brilliant Low-Energy Gamma Beams at ELI-NP

    NASA Astrophysics Data System (ADS)

    Gales, S.

    The development of high power lasers and the combination of such novel devices with accelerator technology has enlarged the science reach of many research fields, in particular Particle and Nuclear Physics, Astrophysics as well as societal applications in Material Science, Nuclear Energy and Medicine. The European Strategic Forum for Research Infrastructures (ESFRI) has selected a proposal based on these new premises called "ELI" for Extreme Light Infrastructure. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for Nuclear Physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10 PW lasers and a Compton back-scattering high-brilliance and intense low-energy gamma beam, a marriage of laser and accelerator technology at the frontier of knowledge. In the present paper, the technical description of the facility, the present status of the project as well as the science, applications and future perspectives will be discussed.

  10. Nuclear Science and Applications with the Next Generation of High-Power Lasers and Brilliant Low-Energy Gamma Beams at ELI-NP

    NASA Astrophysics Data System (ADS)

    Gales, S.

    2015-11-01

    The development of high-power lasers and the combination of such novel devices with accelerator technology has enlarged the science reach of many research fields, in particular high-energy nuclear physics and astrophysics, as well as societal applications in material science, nuclear energy and medicine. The European Strategic Forum for Research Infrastructures (ESFRI) has selected a proposal based on these new premises called "ELI" for Extreme Light Infrastructure. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for nuclear physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10-PW lasers and a Compton back-scattering high-brilliance and intense low-energy gamma beam, a marriage of laser and accelerator technology at the frontier of knowledge. In the present paper, the technical description of the facility, the present status of the project as well as the science, applications and future perspectives will be discussed.

  11. Environmental surveillance at Los Alamos during 1987

    SciTech Connect

    Not Available

    1988-05-01

    This report describes the environmental surveillance program conducted by Los Alamos National Laboratory during 1987. Routine monitoring for radiation and radioactive or chemical materials is conducted on the Laboratory site as well as in the surrounding region. Monitoring results are used to determine compliance with appropriate standards and to permit early identification of potentially undesirable trends. Results and interpretation of data for 1987 cover: external penetrating radiation; quantities of airborne emissions and liquid effluents; concentrations of chemicals and radionuclides in ambient air, surface and ground waters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Comparisons with appropriate standards, regulations, and background levels provide the basis for concluding that environmental effects from Laboratory operations are insignificant and do not pose a threat to the public, Laboratory employees, or the environment. 113 refs., 33 figs., 120 tabs.

  12. Environmental surveillance at Los Alamos during 1995

    SciTech Connect

    1996-10-01

    This report describes the environmental surveillance program at Los Alamos National Laboratory (LANL or the Laboratory) during 1995. The Laboratory routinely monitors for radiation and for radioactive and nonradioactive materials at (or on) Laboratory sites as well as in the surrounding region. LANL uses the monitoring result to determine compliance with appropriate standards and to identify potentially undesirable trends. Data were collected in 1995 to assess external penetrating radiation; quantities of airborne emissions and liquid effluents; concentrations of chemicals and radionuclides in ambient air, surface waters and groundwaters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Using comparisons with standards, regulations, and background levels, this report concludes that environmental effects from Laboratory operations are small and do not pose a demonstrable threat to the public, Laboratory employees, or the environment.

  13. Environmental surveillance at Los Alamos during 1979

    SciTech Connect

    Not Available

    1980-04-01

    This report documents the environmental surveillance program conducted by the Los Alamos Scientific Laboratory (LASL) in 1979. Routine monitoring for radiation and radioactive or chemical substances was conducted on the Laboratory site and in the surrounding region to determine compliance with appropriate standards and permit early identification of possible undesirable trends. Results and interpretation of the data for 1979 on penetrating radiation, chemical and radiochemical quality of ambient air, surface and ground water, municipal water supply, soils and sediments, food, and airborne and liquid effluents are included. Comparisons with appropriate standards and regulations or with background levels from natural or other non-LASL sources provide a basis for concluding that environmental effects attributable to LASL operations are minor and cannot be considered likely to result in any hazard to the population of the area. Results of several special studies provide documentation of some unique environmental conditions in the LASL environs.

  14. Environmental surveillance at Los Alamos during 1989

    SciTech Connect

    Not Available

    1990-12-01

    This report describes the environmental surveillance program conducted by Los Alamos National Laboratory during 1989. Routine monitoring for radiation and radioactive or chemical materials is conducted on the Laboratory site as well as in the surrounding region. Monitoring results are used to determine compliance with appropriate standards and to permit early identification of potentially undesirable trends. Results and interpretation of data for 1989 cover external penetrating radiation; quantities of airborne emissions and effluents; concentrations of chemicals and radionuclides in ambient air, surface and ground waters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Comparisons with appropriate standards, regulations, and background levels provide the basis for concluding that environmental effects from Laboratory operations are small and do not pose a threat to the public, Laboratory employees, or the environment. 58 refs., 31 figs., 39 tabs.

  15. Environmental surveillance at Los Alamos during 1992

    SciTech Connect

    Kohen, K.; Stoker, A.; Stone, G.

    1994-07-01

    This report describes the environmental surveillance program at Los Alamos National Laboratory during 1992. The Laboratory routinely monitors for radiation and for radioactive and nonradioactive materials at (or on) Laboratory sites as well as in the surrounding region. LANL uses the monitoring results to determine compliance with appropriate standards and to identify potentially undesirable trends. Data were collected in 1992 to assess external penetrating radiation; quantities of airborne emissions and liquid effluents; concentrations of chemicals and radionuclides in ambient air, surface waters and groundwaters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Using comparisons with standards, regulations, and background levels, this report concludes that environmental effects from Laboratory operations are small and do not pose a demonstrable threat to the public, laboratory employees, or the environment.

  16. The Los Alamos Intense Neutron Source

    SciTech Connect

    Nebel, R.A.; Barnes, D.C.; Bollman, R.; Eden, G.; Morrison, L.; Pickrell, M.M.; Reass, W.

    1997-10-01

    The Intense Neutron Source (INS) is an Inertial Electrostatic Confinement (IEC) fusion device presently under construction at Los Alamos National Laboratory. It is designed to produce 10{sup 11} neutrons per second steady-state using D-T fuel. Phase 1 operation of this device will be as a standard three grid IEC ion focus device. Expected performance has been predicted by scaling from a previous IEC device. Phase 2 operation of this device will utilize a new operating scheme, the Periodically Oscillating Plasma Sphere (POPS). This scheme is related to both the Spherical Reflect Diode and the Oscillating Penning Trap. With this type of operation the authors hope to improve plasma neutron production to about 10{sup 13} neutrons/second.

  17. Environmental analysis of Lower Pueblo/Lower Los Alamos Canyon, Los Alamos, New Mexico

    SciTech Connect

    Ferenbaugh, R.W.; Buhl, T.E.; Stoker, A.K.; Becker, N.M.; Rodgers, J.C.; Hansen, W.R.

    1994-12-01

    The radiological survey of the former radioactive waste treatment plant site (TA-45), Acid Canyon, Pueblo Canyon, and Los Alamos Canyon found residual contamination at the site itself and in the channel and banks of Acid, Pueblo, and lower Los Alamos Canyons all the way to the Rio Grande. The largest reservoir of residual radioactivity is in lower Pueblo Canyon, which is on DOE property. However, residual radioactivity does not exceed proposed cleanup criteria in either lower Pueblo or lower Los Alamos Canyons. The three alternatives proposed are (1) to take no action, (2) to construct a sediment trap in lower Pueblo Canyon to prevent further transport of residual radioactivity onto San Ildefonso Indian Pueblo land, and (3) to clean the residual radioactivity from the canyon system. Alternative 2, to cleanup the canyon system, is rejected as a viable alternative. Thousands of truckloads of sediment would have to be removed and disposed of, and this effort is unwarranted by the low levels of contamination present. Residual radioactivity levels, under either present conditions or projected future conditions, will not result in significant radiation doses to persons exposed. Modeling efforts show that future transport activity will not result in any residual radioactivity concentrations higher than those already existing. Thus, although construction of a sediment trap in lower Pueblo Canyon is a viable alternative, this effort also is unwarranted, and the no-action alternative is the preferred alternative.

  18. Environmental surveillance at Los Alamos during 2009

    SciTech Connect

    Fuehne, David; Poff, Ben; Hjeresen, Denny; Isaacson, John; Johnson, Scot; Morgan, Terry; Paulson, David; Salzman, Sonja; Rogers, David

    2010-09-30

    Environmental Surveillance at Los Alamos reports are prepared annually by the Los Alamos National Laboratory (the Laboratory) environmental organization, as required by US Department of Energy Order 5400.1, General Environmental Protection Program, and US Department of Energy Order 231.1A, Environment, Safety, and Health Reporting. These annual reports summarize environmental data that are used to determine compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and departmental policies. Additional data, beyond the minimum required, are also gathered and reported as part of the Laboratory’s efforts to ensure public safety and to monitor environmental quality at and near the Laboratory. Chapter 1 provides an overview of the Laboratory’s major environmental programs and explains the risks and the actions taken to reduce risks at the Laboratory from environmental legacies and waste management operations. Chapter 2 reports the Laboratory’s compliance status for 2009. Chapter 3 provides a summary of the maximum radiological dose the public and biota populations could have potentially received from Laboratory operations and discusses chemical exposures. The environmental surveillance and monitoring data are organized by environmental media (air in Chapter 4; water and sediments in Chapters 5 and 6; soils in Chapter 7; and foodstuffs and biota in Chapter 8) in a format to meet the needs of a general and scientific audience. Chapter 9 provides a summary of the status of environmental restoration work around LANL. The new Chapter 10 describes the Laboratory’s environmental stewardship efforts and provides an overview of the health of the Rio Grande. A glossary and a list of acronyms and abbreviations are in the back of the report. Appendix A explains the standards for environmental contaminants, Appendix B explains the units of measurements used in this report, Appendix C describes the Laboratory’s technical

  19. Environmental surveillance at Los Alamos during 2008

    SciTech Connect

    Fuehne, David; Gallagher, Pat; Hjeresen, Denny; Isaacson, John; Johson, Scot; Morgan, Terry; Paulson, David; Rogers, David

    2009-09-30

    Environmental Surveillance at Los Alamos reports are prepared annually by the Los Alamos National Laboratory (the Laboratory) Environmental Programs Directorate, as required by US Department of Energy Order 450.1, General Environmental Protection Program, and US Department of Energy Order 231.1A, Environment, Safety, and Health Reporting. These annual reports summarize environmental data that are used to determine compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and departmental policies. Additional data, beyond the minimum required, are also gathered and reported as part of the Laboratory’s efforts to ensure public safety and to monitor environmental quality at and near the Laboratory. Chapter 1 provides an overview of the Laboratory’s major environmental programs and explains the risks and the actions taken to reduce risks at the Laboratory from environmental legacies and waste management operations. Chapter 2 reports the Laboratory’s compliance status for 2007. Chapter 3 provides a summary of the maximum radiological dose the public and biota populations could have potentially received from Laboratory operations and discusses chemical exposures. The environmental surveillance and monitoring data are organized by environmental media (Chapter 4, air; Chapters 5 and 6, water and sediments; Chapter 7, soils; and Chapter 8, foodstuffs and biota) in a format to meet the needs of a general and scientific audience. Chapter 9 provides a summary of the status of environmental restoration work around LANL. A glossary and a list of acronyms and abbreviations are in the back of the report. Appendix A explains the standards for environmental contaminants, Appendix B explains the units of measurements used in this report, Appendix C describes the Laboratory’s technical areas and their associated programs, and Appendix D provides web links to more information.

  20. Environmental surveillance at Los Alamos during 2005

    SciTech Connect

    2006-09-30

    Environmental Surveillance at Los Alamos reports are prepared annually by the Los Alamos National Laboratory (LANL or the Laboratory) environmental organization, as required by US Department of Energy Order 5400.1, General Environmental Protection Program, and US Department of Energy Order 231.IA, Environment, Safety, and Health Reporting. These annual reports summarize environmental data that are used to determine compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and departmental policies. Additional data, beyond the minimum required, are also gathered and reported as part of the Laboratory's efforts to ensure public safety and to monitor environmental quality at and near the Laboratory. Chapter 1 provides an overview of the Laboratory's major environmental programs. Chapter 2 reports the Laboratory's compliance status for 2005. Chapter 3 provides a summary of the maximum radiological dose the public and biota populations could have potentially received from Laboratory operations. The environmental surveillance and monitoring data are organized by environmental media (Chapter 4, Air; Chapters 5 and 6, Water and Sediments; Chapter 7, Soils; and Chapter 8, Foodstuffs and Biota) in a format to meet the needs of a general and scientific audience. Chapter 9, new for this year, provides a summary of the status of environmental restoration work around LANL. A glossary and a list ofacronyms and abbreviations are in the back of the report. Appendix A explains the standards for environmental contaminants, Appendix B explains the units of measurements used in this report, Appendix C describes the Laboratory's technical areas and their associated programs, and Appendix D provides web links to more information.

  1. 2015 Los Alamos Space Weather Summer School Research Reports

    SciTech Connect

    Cowee, Misa; Chen, Yuxi; Desai, Ravindra; Hassan, Ehab; Kalmoni, Nadine; Lin, Dong; Depascuale, Sebastian; Hughes, Randall Scott; Zhou, Hong

    2015-11-24

    The fifth Los Alamos Space Weather Summer School was held June 1st - July 24th, 2015, at Los Alamos National Laboratory (LANL). With renewed support from the Institute of Geophysics, Planetary Physics, and Signatures (IGPPS) and additional support from the National Aeronautics and Space Administration (NASA) and the Department of Energy (DOE) Office of Science, we hosted a new class of five students from various U.S. and foreign research institutions. The summer school curriculum includes a series of structured lectures as well as mentored research and practicum opportunities. Lecture topics including general and specialized topics in the field of space weather were given by a number of researchers affiliated with LANL. Students were given the opportunity to engage in research projects through a mentored practicum experience. Each student works with one or more LANL-affiliated mentors to execute a collaborative research project, typically linked with a larger ongoing research effort at LANL and/or the student’s PhD thesis research. This model provides a valuable learning experience for the student while developing the opportunity for future collaboration. This report includes a summary of the research efforts fostered and facilitated by the Space Weather Summer School. These reports should be viewed as work-in-progress as the short session typically only offers sufficient time for preliminary results. At the close of the summer school session, students present a summary of their research efforts. Titles of the papers included in this report are as follows: Full particle-in-cell (PIC) simulation of whistler wave generation, Hybrid simulations of the right-hand ion cyclotron anisotropy instability in a sub-Alfvénic plasma flow, A statistical ensemble for solar wind measurements, Observations and models of substorm injection dispersion patterns, Heavy ion effects on Kelvin-Helmholtz instability: hybrid study, Simulating plasmaspheric electron densities with a two

  2. Comparison of beam transport simulations to measurements at the Los Alamos Proton Storage Ring

    SciTech Connect

    Wilkinson, C.; Neri, F.; Fitzgerald, D.H.; Blind, B.; Macek, R.; Plum, M.; Sander, O.; Thiessen, H.A.

    1997-10-01

    The ability to model and simulate beam behavior in the Proton Storage Ring (PSR) of the Los Alamos Neutron Science Center (LANSCE) is an important diagnostic and predictive tool. This paper gives the results of an effort to model the ring apertures and lattice and use beam simulation programs to track the beam. The results are then compared to measured activation levels from beam loss in the ring. The success of the method determines its usefulness in evaluating the effects of planned upgrades to the Proton Storage Ring.

  3. 1985 Nuclear Science Symposium, 32nd, and 1985 Symposium on Nuclear Power Systems, 17th, San Francisco, CA, October 23-25, 1985, Proceedings

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The present conference ranges over topics in high energy physics instrumentation, detectors, nuclear medical applications, health physics and environmental monitoring, reactor instrumentation, nuclear spacecraft instrumentation, the 'Fastbus' data acquisition system, circuits and systems for nuclear research facilities, and the development status of nuclear power systems. Specific attention is given to CCD high precision detectors, a drift chamber preamplifier, a Cerenkov ring imaging detector, novel scintillation glasses and scintillating fibers, a modular multidrift vertex detector, radial wire drift chambers, liquid argon polarimeters, a multianode photomultiplier, the reliability of planar silicon detectors, the design and manufacture of wedge and strip anodes, ultrafast triode photodetectors, photomultiplier tubes, a barium fluoride plastic scintillator, a fine grained neutron hodoscope, the stability of low leakage silicon photodiodes for crystal calorimeters, and X-ray proportional counters. Also considered are positron emission tomography, single photon emission computed tomography, nuclear magnetic resonance imaging, Geiger-Muller detectors, nuclear plant safeguards, a 32-bit Fastbus computer, an advanced light water reactor, and nuclear plant maintenance.

  4. Final Environmental Impact Statement for the Conveyance and Transfer of Certain Land Tracts Administered by the U.S. Department of Energy and Located at Los Alamos National Laboratory, Los Alamos and Santa Fe Counties, New Mexico

    SciTech Connect

    N /A

    2000-02-04

    Los Alamos National Laboratory (LANL) is one of several national laboratories that supports the U.S. Department of Energy's (DOE's) responsibilities for national security, energy resources, environmental quality, and science. LANL is located in north-central New Mexico, within Los Alamos County and Santa Fe County, about 60 miles (97 kilometers) north-northeast of Albuquerque and about 25 miles (40 kilometers) northwest of Santa Fe. The small communities of Los Alamos townsite, White Rock, Pajarito Acres, the Royal Crest Mobile Home Park, and San Ildefonso Pueblo are located in the immediate vicinity of LANL. On November 26, 1997, Congress passed Public Law (PL) 105-119, the ''Departments of Commerce, Justice, and State, the Judiciary, and Related Agencies Appropriations Act'', 1998 (Section 632, 42 United States Code [U.S.C.] Section 2391; ''the Act''), which directs the DOE to convey or transfer parcels of DOE land in the vicinity of LANL to the Incorporated County of Los Alamos, New Mexico, and the Secretary of the Interior, in trust for the Pueblo of San Ildefonso. Such parcels, or tracts, of land must not be required to meet the national security mission of the DOE and must also meet other criteria established by the Act.

  5. Nuclear analytical chemistry

    SciTech Connect

    Brune, D.; Forkman, B.; Persson, B.

    1984-01-01

    This book covers the general theories and techniques of nuclear chemical analysis, directed at applications in analytical chemistry, nuclear medicine, radiophysics, agriculture, environmental sciences, geological exploration, industrial process control, etc. The main principles of nuclear physics and nuclear detection on which the analysis is based are briefly outlined. An attempt is made to emphasise the fundamentals of activation analysis, detection and activation methods, as well as their applications. The book provides guidance in analytical chemistry, agriculture, environmental and biomedical sciences, etc. The contents include: the nuclear periodic system; nuclear decay; nuclear reactions; nuclear radiation sources; interaction of radiation with matter; principles of radiation detectors; nuclear electronics; statistical methods and spectral analysis; methods of radiation detection; neutron activation analysis; charged particle activation analysis; photon activation analysis; sample preparation and chemical separation; nuclear chemical analysis in biological and medical research; the use of nuclear chemical analysis in the field of criminology; nuclear chemical analysis in environmental sciences, geology and mineral exploration; and radiation protection.

  6. Materials Science and Technology (MST) Division, Nuclear Materials Process Technology Group (MST-12), chemical process research and development report

    SciTech Connect

    Clifton, D.G.

    1984-04-01

    A process for the recovery of plutonium and americium from molten salt extraction (MSE) salt residues has been demonstrated. It is based upon a new chloride anion-exchange process at low acidity that eliminates corrosive HCl fumes. The Los Alamos americium oxide production line has been improved to give more product with a concurrent lowering of personnel radiation exposure. A cost study has been made for the disposal of americium-contaminated calcium metal buttons that were obtained by pyrochemical recovery of plutonium from MSE salts. The waste form used in the study conforms to WIPP-Facility standards and current state-of-the-art radioactive waste disposal. The cost estimate is approx. $300/g /sup 241/Am. Plutonium decontamination factors of approx. 300 have been obtained from lead-platinum alloy dissolution experiments carried out in alumina crucibles using lead oxide slag to getter the plutonium.

  7. New Opportunity for Improved Nuclear Forensics, Radiochemical Diagnostics, and Nuclear Astrophysics: Need for a Total-Cross-Section Apparatus at the LANSCE

    SciTech Connect

    Koehler, Paul E.; Hayes-Sterbenz, Anna C.; Bredeweg, Todd Allen; Couture, Aaron J.; Engle, Jonathan; Keksis, August L.; Nortier, Francois M.; Ullmann, John L.

    2014-03-12

    Total-cross-section measurements are feasible on a much wider range of radioactive samples than (n,γ) cross-section measurements, and information extracted from the former can be used to set tight constraints on the latter. There are many (n,γ) cross sections of great interest to radiochemical diagnostics, nuclear forensics, and nuclear astrophysics which are beyond the reach of current direct measurement, that could be obtained in this way. Our simulations indicate that measurements can be made at the Manuel Lujan Jr. Neutron Scattering Center at the Los Alamos Neutron Science Center for samples as small as 10μg. There are at least 40 high-interest nuclides which should be measurable, including 88Y,167,168,170,171Tm, 173,174Lu, and189,190,192Ir.

  8. Nuclear test experimental science

    SciTech Connect

    Struble, G.L.; Middleton, C.; Bucciarelli, G.; Carter, J.; Cherniak, J.; Donohue, M.L.; Kirvel, R.D.; MacGregor, P.; Reid, S.

    1989-01-01

    This report discusses research being conducted at Lawrence Livermore Laboratory under the following topics: prompt diagnostics; experimental modeling, design, and analysis; detector development; streak-camera data systems; weapons supporting research.

  9. Explosive Flux Compression: 50 Years of Los Alamos Activities

    SciTech Connect

    Fowler, C.M.; Thomson, D.B.; Garn, W.B.

    1998-10-18

    Los Alamos flux compression activities are surveyed, mainly through references in view of space limitations. However, two plasma physics programs done with Sandia National Laboratory are discussed in more detail.

  10. Risk communication at the science-policy interface: Reflections on the effectiveness of the geosciences community in communicating with policymakers on disposition of nuclear waste (Invited)

    NASA Astrophysics Data System (ADS)

    Knopman, D.

    2010-12-01

    The geosciences are at the center of societal debates on climate change and nuclear waste management. These debates have yet to yield affirmative decisions on paths forward, but rather have been marked by political gridlock, and to varying degrees, skepticism about the underlying science. This talk will focus on the dynamics of the debate on nuclear waste management and the insights that can be drawn from the experiences of the scientific community thus far in informing the decisionmaking process through such bodies as the U.S. Nuclear Waste Technical Review Board, the Nuclear Regulatory Commission’s Advisory Committee on Nuclear Waste, and the National Research Council’s Board on Radioactive Waste Management. Scientists involved directly with the Yucca Mountain program as well as those participating in review panels were challenged to explain difficult scientific concepts to lay audiences, characterize risks of different kinds on timescales of thousands of years, and communicate high levels of uncertainty. Even more challenging, scientists were then asked to bring these ideas into policymaking processes, with participants whose understanding of scientific concepts varied widely, and where risks and benefits are measured in a few years and uncertainties are downplayed. The disconnect between these different conceptual frames is one of several factors that contributed to the present stalemate. Research could help in establishing whether emerging insights about comprehension of scientific concepts and notions of uncertainty, drawn from the behavioral science literature, could improve the explanatory and decision analytic approaches employed by the geosciences community. An hypothesis is that geoscientists could be more effective in their communications if they understood more about the conceptual starting point of decisionmakers and stakeholders and their framing of policy decisions.

  11. Environmental Surveillance at Los Alamos during 2007

    SciTech Connect

    2008-09-30

    Environmental Surveillance at Los Alamos reports are prepared annually by the Los Alamos National Laboratory (the Laboratory) Environmental Directorate, as required by US Department of Energy Order 450.1, General Environmental Protection Program, and US Department of Energy Order 231.1A, Environment, Safety, and Health Reporting. These annual reports summarize environmental data that are used to determine compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and departmental policies. Additional data, beyond the minimum required, are also gathered and reported as part of the Laboratory’s efforts to ensure public safety and to monitor environmental quality at and near the Laboratory. Chapter 1 provides an overview of the Laboratory’s major environmental programs and explains the risks and the actions taken to reduce risks at the Laboratory from environmental legacies and waste management operations. Chapter 2 reports the Laboratory’s compliance status for 2007. Chapter 3 provides a summary of the maximum radiological dose the public and biota populations could have potentially received from Laboratory operations and discusses chemical exposures. The environmental surveillance and monitoring data are organized by environmental media (Chapter 4, air; Chapters 5 and 6, water and sediments; Chapter 7, soils; and Chapter 8, foodstuffs and biota) in a format to meet the needs of a general and scientific audience. Chapter 9 provides a summary of the status of environmental restoration work around LANL. A glossary and a list of acronyms and abbreviations are in the back of the report. Appendix A explains the standards for environmental contaminants, Appendix B explains the units of measurements used in this report, Appendix C describes the laboratory’s technical areas and their associated programs, and Appendix D provides web links to more information. In printed copies of this report or Executive Summary, we have

  12. Critical assembly: A technical history of Los Alamos during the Oppenheimer years, 1943--1945

    SciTech Connect

    Hoddeson, L.; Henriksen, P.W.; Meade, R.A.; Westfall, C.

    1993-11-01

    This volume treats the technical research that led to the first atomic bombs. The authors explore how the ``critical assembly`` of scientists, engineers, and military Personnel at Los Alamos collaborated during World War II, blending their traditions to create a new approach to large-scale research. The research was characterized by strong mission orientation, multidisciplinary teamwork, expansion of the scientists` traditional methodology with engineering techniques, and a trail-and-error methodology responding to wartime deadlines. The book opens with an introduction laying out major themes. After a synopsis of the prehistory of the bomb project, from the discovery of nuclear fission to the start of the Manhattan Engineer District, and an overview of the early materials program, the book examines the establishment of the Los Alamos Laboratory, the implosion and gun assembly programs, nuclear physics research, chemistry and metallurgy, explosives, uranium and plutonium development, confirmation of spontaneous fission in pile-produced plutonium, the thermonuclear bomb, critical assemblies, the Trinity test, and delivery of the combat weapons.

  13. Strategic defense initiatives at Los Alamos National Laboratory

    SciTech Connect

    Rockwood, S.D.

    1985-01-01

    This presentation reviews the Strategic Defense Initiative (SDI) programs at Los Alamos National Laboratory, noting especially the needs for and applications of optics and optical technologies. Table I lists the various activities at Los Alamos contributing to SDI programs. The principal, nonnuclear SDI programs are: (1) the free-electron laser, and (2) neutral particle beams. Both should be considered as potential long-range-kill systems, but still in the futuristic category.

  14. Radonuclide concentrations in bees and honey in the vicinity of Los Alamos National Laboratory

    SciTech Connect

    Fresquez, P.R.; Armstrong, D.R.

    1996-06-01

    Honeybees are effective monitors of environmental pollution; they forage for P len and nectar over a large area ({congruent}7 km{sup 2}), accumulate contaminants from air, water, plants, and soil, and return to a fixed location (the hive) for sampling. Los Alamos National Laboratory (LANL), in fact, has maintained a network of honeybee colonies within and around LANL for 16 years (1979 to 1994); the objectives for maintaining this honeybee network were to (1) determine the bioavailability of radionuclides in the environment, and (2) the committed effective dose equivalent (CEDE) to people who may consume honey from these beehives (Los Alamos and White Rock/Pajarito Acres lownsites). Of all the radionuclides studied over the years, tritium (314) was consistently picked up by the bees and was most readily transferred to the honey. Tritium in honey collected from hives located within LANL, for example, ranged in concentration from 0.07 Bq mL{sup -1} (1.9 pCi mL{sup -1}) to 27.75 Bq mL{sup -1} (749.9 pCi mL{sup -1}) (LANL Neutron Science Center); the average concentration of {sup 3}H in honey Collected from hives located around the LANL area (perimeter) ranged in concentration from 0.34 Bq mL{sup -1} (9.3 pCi mL{sup -1}) (White Rock/Pajarito Acres townsite) to 3.67 Bq mL{sup -1} (99.3 pCi mL{sup -1}) (Los Alamos townsite). Overall, the CEDE-based on the average concentration of all radionuclides measured over the years-from consuming 5 kg (11 lbs) of honey collected from hives located within the townsites of Los Alamos and White Rock/Pajarito Acres, after regional (background) as been subtracted, was 0.074 {mu}Sv y{sup -1} (0.0074 mrem y{sup -1}) and 0.024 pSv y{sup -1} (0.0024 mrem y{sup -1}), respectively. The highest CEDE, based on the mean + 2 standard deviations (95% confidence level), was 0.334 fiSv y{sup -1} (0.0334 mrem y{sup -1}) (Los Alamos townsitc).

  15. Nuclear Science Symposium, 31st and Symposium on Nuclear Power Systems, 16th, Orlando, FL, October 31-November 2, 1984, Proceedings

    NASA Technical Reports Server (NTRS)

    Biggerstaff, J. A. (Editor)

    1985-01-01

    Topics related to physics instrumentation are discussed, taking into account cryostat and electronic development associated with multidetector spectrometer systems, the influence of materials and counting-rate effects on He-3 neutron spectrometry, a data acquisition system for time-resolved muscle experiments, and a sensitive null detector for precise measurements of integral linearity. Other subjects explored are concerned with space instrumentation, computer applications, detectors, instrumentation for high energy physics, instrumentation for nuclear medicine, environmental monitoring and health physics instrumentation, nuclear safeguards and reactor instrumentation, and a 1984 symposium on nuclear power systems. Attention is given to the application of multiprocessors to scientific problems, a large-scale computer facility for computational aerodynamics, a single-board 32-bit computer for the Fastbus, the integration of detector arrays and readout electronics on a single chip, and three-dimensional Monte Carlo simulation of the electron avalanche in a proportional counter.

  16. Nuclear data needs for accelerator-driven transmutation systems

    SciTech Connect

    Arthur, E.D.; Wilson, W.B.; Young, P.G.

    1994-07-01

    The possibilities of several new technologies based on use of intense, medium-energy proton accelerators are being investigated at Los Alamos National Laboratory. The potential new areas include destruction of long-lived components of nuclear waste, plutonium burning, energy production, and production of tritium. The design, assessment, and safety analysis of potential facilities involves the understanding of complex combinations of nuclear processes, which in turn places new requirements on nuclear data that transcend the traditional needs of the fission and fusion reactor communities. In this paper an assessment of the nuclear data needs for systems currently being considered in the Los Alamos Accelerator-Driven Transmutation Technologies program is given.

  17. Nuclear Science Symposium, 25th, and Symposium on Nuclear Power Systems, 10th, Washington, D.C., October 18-20, 1978, Proceedings

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Detectors of various types are discussed, taking into account drift chambers, calorimetry, multiwire proportional chambers, signal processing, the use of semiconductors, and photo/optical applications. Circuits are considered along with instrumentation for space, nuclear medicine instrumentation, data acquisition and systems, environmental instrumentation, reactor instrumentation, and nuclear power systems. Attention is given to a new approach to high accuracy gaseous detectors, the current status of electron mobility and free-ion yield in high mobility liquids, a digital drift chamber digitizer system, the stability of oxides in high purity germanium, the quadrant photomultiplier, and the theory of imaging with a very limited number of projections.

  18. Students' Knowledge of Nuclear Science and Its Connection with Civic Scientific Literacy in Two European Contexts: The Case of Newspaper Articles

    NASA Astrophysics Data System (ADS)

    Tsaparlis, Georgios; Hartzavalos, Sotiris; Nakiboğlu, Canan

    2013-08-01

    Nuclear science has uses and applications that are relevant and crucial for world peace and sustainable development, so knowledge of its basic concepts and topics should constitute an integral part of civic scientific literacy. We have used two newspaper articles that deal with uses of nuclear science that are directly relevant to life, society, economy, and international politics. One article discusses a new thermonuclear reactor, and the second one is about depleted uranium and its danger for health. 189 first-year undergraduate physics and primary education Greek students were given one of the two articles each, and asked to answer a number of accompanying questions dealing with knowledge that is part of the Greek high school curriculum. The study was repeated with 272 first-year undergraduate physics, physics education, science education, and primary education Turkish students. Acceptable or partially acceptable answers were provided on average by around 20 % of Greek and 11 % of Turkish students, while a large proportion (on the average, around 50 % of Greek and 27 % of Turkish students) abstained from answering the questions. These findings are disappointing, but should be seen in the light of the limited or no coverage of the relevant learning material in the Greek and the Turkish high-school programs. Student conceptual difficulties, misconceptions and implications for research and high school curricula are discussed.

  19. The Los Alamos high-brightness photoinjector

    SciTech Connect

    O'Shea, P.G.

    1991-01-01

    For a number of years Los Alamos National Laboratory has been developing photocathode RF guns for high-brightness electron beam applications such as free-electron lasers (FELs). Previously thermionic high-voltage guns have been the source of choice for the electron accelerators used to drive FELs. The performance of such FELs is severely limited by the emittance growth produced by the subharmonic bunching process and also by the low peak current of the source. In a photoinjector, a laser driven photocathode is placed directly in a high-gradient RF accelerating cavity. A photocathode allows unsurpassed control over the current, and the spatial and temporal profile of the beam. In addition the electrodeless emission'' avoids many of the difficulties associated with multi-electrode guns, i.e. the electrons are accelerated very rapidly to relativistic energies, and there are no electrodes to distort the accelerating fields. For the past two years we have been integrating a photocathode into our existing FEL facility by replacing our thermionic gun and subharmonic bunchers with a high-gradient 1.3 GHz photoinjector. The photoinjector, which is approximately 0.6 m in length, produces 6 MeV, 300 A, 15 ps linac, and accelerated to a final energy of 40 MeV. We have recently begun lasing at wavelengths near 3 {mu}m. 16 refs., 2 figs., 5 tabs.

  20. NIST--Los Alamos racetrack microtron status

    SciTech Connect

    Wilson, M.A.; Ayres, R.L.; Cutler, R.I.; Debenham, P.H.; Lindstrom, E.R.; Mohr, D.L.; Penner, S.; Rose, J.E.; Young, L.M.

    1988-01-01

    The NIST-Los Alamos Racetrack Microtron (RTM) is designed to deliver a low-emittance electron beam of up to 0.5 mA cw over an energy range of 17 MeV to 185 MeV. Fed by a 5 MeV injector, the RTM contains two 180/degree/ end magnets that recirculate the beam up to 15 times through a 12 MeV RF linac. The linac, which operates in a standing-wave mode at 2380 MHz, has been tested to nearly full RF power. At present, the injector has undergone beam tests, and the beam transport system is complete through the 12 MeV linac. A temporary beam line has been installed at the exit of one end magnet to measure the beam energy, energy spread, and emittance after one pass through the accelerator. Preliminary results indicate that the accelerated beam energy spread and emittance are within design goals. 4 refs., 7 figs.

  1. Expanded recycling at Los Alamos National Laboratory

    SciTech Connect

    Betschart, J.F.; Malinauskas, L.; Burns, M.

    1996-07-01

    The Pollution Prevention Program Office has increased recycling activities, reuse, and options to reduce the solid waste streams through streamlining efforts that applied best management practices. The program has prioritized efforts based on volume and economic considerations and has greatly increased Los Alamos National Laboratory`s (LANL`s) recycle volumes. The Pollution Prevention Program established and chairs a Solid Waste Management Solutions Group to specifically address and solve problems in nonradioactive, Resource Conservation and Recovery Act (RCRA), state-regulated, and sanitary and industrial waste streams (henceforth referred to as sanitary waste in this paper). By identifying materials with recycling potential, identifying best management practices and pathways to return materials for reuse, and introducing the concept and practice of {open_quotes}asset management,{open_quotes} the Group will divert much of the current waste stream from disposal. This Group is developing procedures, agreements, and contracts to stage, collect, sort, segregate, transport and process materials, and is also garnering support for the program through the involvement of upper management, facility managers, and generators.

  2. Saving Water at Los Alamos National Laboratory

    SciTech Connect

    Erickson, Andy

    2015-03-16

    Los Alamos National Laboratory decreased its water usage by 26 percent in 2014, with about one-third of the reduction attributable to using reclaimed water to cool a supercomputing center. The Laboratory's goal during 2014 was to use only re-purposed water to support the mission at the Strategic Computing Complex. Using reclaimed water from the Sanitary Effluent Reclamation Facility, or SERF, substantially decreased water usage and supported the overall mission. SERF collects industrial wastewater and treats it for reuse. The reclamation facility contributed more than 27 million gallons of re-purposed water to the Laboratory's computing center, a secured supercomputing facility that supports the Laboratory’s national security mission and is one of the institution’s larger water users. In addition to the strategic water reuse program at SERF, the Laboratory reduced water use in 2014 by focusing conservation efforts on areas that use the most water, upgrading to water-conserving fixtures, and repairing leaks identified in a biennial survey.

  3. Harriet Hardy and the workers of Los Alamos: a campus-community historical investigation.

    PubMed

    Silver, Ken; Bird, Rick; Smith, Alex; Valerio, Daniel; Romero, Hilario

    2014-11-01

    Harriet Hardy, protégé of Alice Hamilton, spent 1948 in the Health Division of Los Alamos Scientific Laboratory. The contemporary campaign for federal legislation to compensate nuclear workers brought to the fore living retirees in whose cases of occupational illness Hardy had a role in diagnosis or case management. A third case is documented in archival records. Methods of participatory action research were used to better document the cases and strategize in light of the evidence, thereby assisting the workers with compensation claims. Medical and neuropsychological exams of the mercury case were conducted. Hardy's diary entries and memoirs were interpreted in light of medicolegal documentation and workers' recollections. Through these participatory research activities, Harriet Hardy's role and influence both inside and outside the atomic weapons complex have been elucidated. An important lesson learned is the ongoing need for a system of protective medical evaluations for nuclear workers with complex chemical exposures. PMID:25261024

  4. Harriet Hardy and the workers of Los Alamos: a campus-community historical investigation.

    PubMed

    Silver, Ken; Bird, Rick; Smith, Alex; Valerio, Daniel; Romero, Hilario

    2014-11-01

    Harriet Hardy, protégé of Alice Hamilton, spent 1948 in the Health Division of Los Alamos Scientific Laboratory. The contemporary campaign for federal legislation to compensate nuclear workers brought to the fore living retirees in whose cases of occupational illness Hardy had a role in diagnosis or case management. A third case is documented in archival records. Methods of participatory action research were used to better document the cases and strategize in light of the evidence, thereby assisting the workers with compensation claims. Medical and neuropsychological exams of the mercury case were conducted. Hardy's diary entries and memoirs were interpreted in light of medicolegal documentation and workers' recollections. Through these participatory research activities, Harriet Hardy's role and influence both inside and outside the atomic weapons complex have been elucidated. An important lesson learned is the ongoing need for a system of protective medical evaluations for nuclear workers with complex chemical exposures.

  5. Los Alamos Scientific Laboratory energy-related history, research, managerial reorganization proposals, actions taken, and results. History report, 1945--1979

    SciTech Connect

    Hammel, E.F.

    1997-03-01

    This report documents the development of major energy-related programs at the Los Alamos Scientific Laboratory between 1945 and 1979. Although the Laboratory`s primary mission during that era was the design and development of nuclear weapons and most of the Laboratory`s funding came from a single source, a number of factors were at work that led to the development of these other programs. Some of those factors were affected by the Laboratory`s internal management structure and organization; others were the result of increasing environmental awareness within the general population and the political consequences of that awareness; still others were related to the increasing demand for energy and the increasing turmoil in the energy-rich Middle East. This report also describes the various activities in Los Alamos, in Washington, and in other areas of the world that contributed to the development of major energy-related programs at Los Alamos. The author has a unique historical perspective because of his involvement as a scientist and manager at the Los Alamos Scientific Laboratory during the time period described within the report. In addition, in numerous footnotes and references, he cites a large body of documents that include the opinions and perspectives of many others who were involved at one time or another in these programs. Finally the report includes a detailed chronology of geopolitical events that led to the development of energy-related programs at Los Alamos.

  6. Los Alamos National Laboratory W76 Pit Tube Lifetime Study

    SciTech Connect

    Abeln, Terri G.

    2012-04-25

    A metallurgical study was requested as part of the Los Alamos National Laboratory (LANL) W76-1 life-extension program (LEP) involving a lifetime analysis of type 304 stainless steel pit tubes subject to repeat bending loads during assembly and disassembly operations at BWXT/Pantex. This initial test phase was completed during the calendar years of 2004-2006 and the report not issued until additional recommended tests could be performed. These tests have not been funded to this date and therefore this report is considered final. Tubes were reportedly fabricated according to Rocky Flats specification P14548 - Seamless Type 304 VIM/VAR Stainless Steel Tubing. Tube diameter was specified as 0.125 inches and wall thickness as 0.028 inches. A heat treat condition is not specified and the hardness range specification can be characteristic of both 1/8 and 1/4 hard conditions. Properties of all tubes tested were within specification. Metallographic analysis could not conclusively determine a specified limit to number of bends allowable. A statistical analysis suggests a range of 5-7 bends with a 99.95% confidence limit. See the 'Statistical Analysis' section of this report. The initial phase of this study involved two separate sets of test specimens. The first group was part of an investigation originating in the ESA-GTS [now Gas Transfer Systems (W-7) Group]. After the bend cycle test parameters were chosen (all three required bends subjected to the same amount of bend cycles) and the tubes bent, the investigation was transferred to Terri Abeln (Metallurgical Science and Engineering) for analysis. Subsequently, another limited quantity of tubes became available for testing and were cycled with the same bending fixture, but with different test parameters determined by T. Abeln.

  7. Stockpile Stewardship at Los Alamos(U)

    SciTech Connect

    Webster, Robert B.

    2012-06-29

    Stockpile stewardship is the retention of nuclear weapons in the stockpile beyond their original design life. These older weapons have potential changes inconsistent with the original design intent and military specifications. The Stockpile Stewardship Program requires us to develop high-fidelity, physics-based capabilities to predict, assess, certify and design nuclear weapons without conducting a nuclear test. Each year, the Lab Directors are required to provide an assessment of the safety, security, and reliability our stockpile to the President of the United States. This includes assessing whether a need to return to testing exists. This is a talk to provide an overview of Stockpile Stewardship's scientific requirements and how stewardship has changed in the absence of nuclear testing. The talk is adapted from an HQ talk to the War college, and historical unclassified talks on weapon's physics.

  8. Nuclear Plant Data Bank

    SciTech Connect

    Booker, C.P.; Turner, M.R.; Spore, J.W.

    1986-01-01

    The Nuclear Plant Data Bank (NPDB) is being developed at the Los Alamos National Laboratory to assist analysts in the rapid and accurate creation of input decks for reactor transient analysis. The NPDB will reduce the time and cost of the creation or modification of a typical input deck. This data bank will be an invaluable tool in the timely investigation of recent and ongoing nuclear reactor safety analysis. This paper discusses the status and plans for the NPDB development and describes its anticipated structure and capabilities.

  9. Materials Capability Review Los Alamos National Laboratory April 29-May 2, 2012

    SciTech Connect

    Taylor, Antoinette J

    2012-04-20

    Los Alamos National Laboratory (LANL) uses Capability Reviews to assess the quality and institutional integration of science, technology and engineering (STE) and to advise Laboratory Management on the current and future health of LANL STE. The capabilities are deliberately chosen to be crosscutting over the Laboratory and therefore will include experimental, theoretical and simulation disciplines from multiple line organizations. Capability Reviews are designed to provide a more holistic view of the STE quality, integration to achieve mission requirements, and mission relevance. The scope of these capabilities necessitate that there will be significant overlap in technical areas covered by capability reviews (e.g., materials research and weapons science and engineering). In addition, LANL staff may be reviewed in different capability reviews because of their varied assignments and expertise. The principal product of the Capability Review is the report that includes the review committee's assessments, recommendations, and recommendations for STE.

  10. Space nuclear power and man's extraterrestrial civilization

    SciTech Connect

    Angelo, J.J.; Buden, D.

    1983-01-01

    This paper examines leading space nuclear power technology candidates. Particular emphasis is given the heat-pipe reactor technology currently under development at the Los Alamos National Laboratory. This program is aimed at developing a 10-100 kWe, 7-year lifetime space nuclear power plant. As the demand for space-based power reaches megawatt levels, other nuclear reactor designs including: solid core, fluidized bed, and gaseous core, are considered.

  11. Background radioactivity in sediments near Los Alamos, New Mexico.

    PubMed

    McLin, Stephen G

    2004-07-26

    River and reservoir sediments have been collected annually by Los Alamos National Laboratory since 1974 and 1979, respectively. These background samples are collected from five river stations and four reservoirs located throughout northern New Mexico and southern Colorado. Analyses include 3H, 90Sr, 137Cs, total U, 238Pu, 239,240Pu, 241Am, gross alpha, gross beta, and gross gamma radioactivity. Surprisingly, there are no federal or state regulatory standards in the USA that specify how to compute background radioactivity values on sediments. Hence, the sample median (or 0.50 quantile) is proposed for this background because it reflects central data tendency and is distribution-free. Estimates for the upper limit of background radioactivity on river and reservoir sediments are made for sampled analytes using the 0.95 quantile (two-tail). These analyses also show that seven of ten analytes from reservoir sediments are normally distributed, or are normally distributed after a logarithmic or square root transformation. However, only three of ten analytes from river sediments are similarly distributed. In addition, isotope ratios for 137Cs/238Pu, 137Cs/239,240Pu, and 239,240Pu/238Pu from reservoir sediments are independent of clay content, total organic carbon/specific surface area (TOC/SSA) and cation exchange capacity/specific surface area (CEC/SSA) ratios. These TOC/SSA and CEC/SSA ratios reflect sediment organic carbon and surface charge densities that are associated with radionuclide absorption, adsorption, and ion exchange reactions on clay mineral structures. These latter ratio values greatly exceed the availability of background radionuclides in the environment, and insure that measured background levels are a maximum. Since finer-grained reservoir sediments contain larger clay-sized fractions compared to coarser river sediments, they show higher background levels for most analytes. Furthermore, radioactivity values on reservoir sediments have remained

  12. Materials Capability Review Los Alamos National Laboratory May 4-7, 2009

    SciTech Connect

    Taylor, Antoniette J

    2009-01-01

    Los Alamos National Laboratory (LANL) uses external peer review to measure and continuously improve the quality of its science, technology and engineering (STE). LANL uses capability reviews to assess the STE quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. STE capabilities are define to cut across directorates providing a more holistic view of the STE quality, integration to achieve mission requirements, and mission relevance. The scope of these capabilities necessitate that there will be significant overlap in technical areas covered by capability reviews (e.g ., materials research and weapons science and engineering). In addition, LANL staff may be reviewed in different capability reviews because of their varied assignments and expertise. LANL plans to perform a complete review of the Laboratory's STE capabilities (hence staff) in a three-year cycle. The principal product of an external review is a report that includes the review committee's assessments, commendations, and recommendations for STE. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). This report will be used by Laboratory Management for STE assessment and planning. The report is also provided to the Department of Energy (DOE) as part of LANL's Annual Performance Plan and to the Los Alamos National Security (LANS) LLC's Science and Technology Committee (STC) as part of its responsibilities to the LANS Board of Governors. LANL has defined fourteen STE capabilities. Table 1

  13. Waste characterization at Los Alamos National Laboratory

    SciTech Connect

    Corpion, J.C.; Grieggs, A.R.

    1991-01-01

    Most industries generate limited types of solid wastes of a result of their manufacturing processes. The Los Alamos National Laboratory (LANL), a research and development facility, generates a large variety of solid wastes, some exotic. Over 50,000 distinct waste streams are currently generated in the 43 square mile area defining LANL. These wastes include refuse, medical, infectious, hazardous, radioactive, and mixed wastes. LANL is subject to federal and State oversight on matters concerning management of solid wastes. In order to assure regulatory agencies such as the New Mexico Environment Department (NMED) and the US Environmental Protection Agency (EPA) that the Laboratory is properly managing and disposing all solid wastes. LANL has undertaken an extensive waste characterization program to identify sources and ultimate disposition of all solid wastes. Given the number of solid waste streams expected, LANL has taken a two-pronged approach to characterizing wastes: (a) physical identification of all sources of solid wastes including interviews with waste generators; and (b) characterization of wastes from the point of generation. The former approach consists of canvassing all structures within the LANL complex, interviewing waste generators, and identifying sources of waste generation. Data gathered by these interviews are compiled in a database in order to identify the types and rates of waste generation and correct mismanagement of wastes identified during the interviews. The latter approach consists of characterizing all solid wastes which are controlled administratively or subject to stricter controls than municipal solid wastes (i.e., infectious, hazardous, radioactive, and mixed wastes). This characterization forms the basis by which LANL will manage solid waste in accordance to NMED/EPA regulations and US Department of Energy Orders. 8 refs., 3 figs.

  14. Nuclear rapprochement in Argentina and Brazil: Workshop summary

    SciTech Connect

    James E. Doyle

    1999-10-01

    On October 21 and 22, 1998, the Center for International Security Affairs at Los Alamos National Laboratory and the Center for Global Security and Cooperation at Science Applications International Corporation hosted the first of a series of work-shops on states that have chosen to roll back their pursuit of nuclear arms. The objective of the workshop series is to conduct a systematic evaluation of the roles played by U.S. nonproliferation policy in cases of nuclear rollback or restraint and to provide recommendations for future nonproliferation efforts based on lessons learned. Key attendees at the workshop included officials and former officials from the foreign ministries of Argentina and Brazil, and current and former officials from the U.S. Department of State, the Arms Control and Disarmament Agency (ACDA), and the Department of Energy (DOE). Scholars and independent researchers who have examined nuclear policy in Argentina and Brazil also participated. This workshop report includes important background information that helps set the stage for assessing nuclear policies in Argentina and Brazil. It describes national perspectives and areas of consensus and debate among the participants, particularly on the questions of lessons learned and their salience to proliferation challenges in other states. It also summarizes key questions and propositions regarding the roles played in these cases by U.S. nonproliferation policy.

  15. Waste processing cost recovery at Los Alamos National Laboratory--analysis and recommendations

    SciTech Connect

    Booth, Steven Richard

    2008-01-01

    Los Alamos National Laboratory is implementing full cost recovery for waste processing in fiscal year 2009 (FY2009), after a transition year in FY2008. Waste processing cost recovery has been implemented in various forms across the nuclear weapons complex and in corporate America. The fundamental reasoning of sending accurate price signals to waste generators is economically sound, and leads to waste minimization and reduced waste expense over time. However, Los Alamos faces significant implementation challenges because of its status as a government-owned, contractor-operated national scientific institution with a diverse suite of experimental and environmental cleanup activities, and the fact that this represents a fundamental change in how waste processing is viewed by the institution. This paper describes the issues involved during the transition to cost recovery and the ultimate selection of the business model. Of the six alternative cost recovery models evaluated, the business model chosen to be implemented in FY2009 is Recharge Plus Generators Pay Distributed Direct. Under this model, all generators who produce waste must pay a distributed direct share associated with their specific waste type to use a waste processing capability. This cost share is calculated using the distributed direct method on the fixed cost only, i.e., the fixed cost share is based on each program's forecast proportion of the total Los Alamos volume forecast of each waste type. (Fixed activities are those required to establish the waste processing capability, i.e., to make the process ready, permitted, certified, and prepared to handle the first unit ofwaste. Therefore, the fixed cost ends at the point just before waste begins 'to be processed. The activities to actually process the waste are considered variable.) The volume of waste actually sent for processing is charged a unit cost based solely on the variable cost of disposing of that waste. The total cost recovered each year is the

  16. Final Progress Report to the Department of Energy's Office of Science on the Committee on Nuclear Physics

    SciTech Connect

    Board on Physics and Astronomy

    2001-01-01

    The Committee on Nuclear Physics (CNP), under the National Research Council's Board on Physics and Astronomy (BPA), conducted an assessment of the field as part of the BPA's survey of physics in the last decade, titled ''Physics in a New Era.'' The CNP report was published by the National Academy Press in early 1999 under the title ''Nuclear Physics: The Core of Matter, The Fuel of Stars.''

  17. Laser driven nuclear science and applications: The need of high efficiency, high power and high repetition rate Laser beams

    NASA Astrophysics Data System (ADS)

    Gales, S.

    2015-10-01

    Extreme Light Infrastructure (ELI) is a pan European research initiative selected on the European Strategy Forum on Research Infrastructures Roadmap that aims to close the gap between the existing laboratory-based laser driven research and international facility-grade research centre. The ELI-NP facility, one of the three ELI pillars under construction, placed in Romania and to be operational in 2018, has as core elements a couple of new generation 10 PW laser systems and a narrow bandwidth Compton backscattering gamma source with photon energies up to 19 MeV. ELI-NP will address nuclear photonics, nuclear astrophysics and quantum electrodynamics involving extreme photon fields. Prospective applications of high power laser in nuclear astrophysics, accelerator physics, in particular towards future Accelerator Driven System, as well as in nuclear photonics, for detection and characterization of nuclear material, and for nuclear medicine, will be discussed. Key issues in these research areas will be at reach with significant increase of the repetition rates and of the efficiency at the plug of the high power laser systems as proposed by the ICAN collaboration.

  18. Nuclear fear revisited

    NASA Astrophysics Data System (ADS)

    Crease, Robert P.

    2010-10-01

    In 1988 the science historian Spencer Weart published a groundbreaking book called Nuclear Fear: A History of Images, which examined visions of radiation damage and nuclear disaster in newspapers, television, film, literature, advertisements and popular culture.

  19. Race horses vs work horses: Competition between the nuclear weapons labs in the 1950s

    SciTech Connect

    Francis, S.

    1992-06-01

    This document provides a discussion of the missions and research programs of Los Alamos National Laboratory and Lawrence Livermore National Laboratory and details the competition between the two nuclear weapons laboratories in the 1950`s. (FI)

  20. Race horses vs work horses: Competition between the nuclear weapons labs in the 1950s

    SciTech Connect

    Francis, S.

    1992-01-01

    This document provides a discussion of the missions and research programs of Los Alamos National Laboratory and Lawrence Livermore National Laboratory and details the competition between the two nuclear weapons laboratories in the 1950's. (FI)