Science.gov

Sample records for alan dyson helen

  1. Is Dyson Right?

    ERIC Educational Resources Information Center

    Roach, Ronald

    2005-01-01

    Since the 1990s, Dr. Michael Eric Dyson has emerged as one of the most visible and widely read scholars on topics relating to African-American life and society. The Avalon Foundation Professor in the Humanities at the University of Pennsylvania, Dyson counts himself as one of many African-Americans who found comedian Bill Cosby's May 17, 2004,…

  2. TECHNOS Interview: Esther Dyson.

    ERIC Educational Resources Information Center

    Raney, Mardell

    1997-01-01

    This interview with Esther Dyson, who is president and owner of EDventure Holdings which focuses on emerging information technology worldwide, discusses personal responsibility for technology; government's role; content ownership and intellectual property; Internet development; education and computers; parents' role in education; teacher…

  3. Commemorating John Dyson

    NASA Astrophysics Data System (ADS)

    Pittard, Julian M.

    2015-03-01

    John Dyson was born on the 7th January 1941 in Meltham Mills, West Yorkshire, England, and later grew up in Harrogate and Leeds. The proudest moment of John's early life was meeting Freddie Trueman, who became one of the greatest fast bowlers of English cricket. John used a state scholarship to study at Kings College London, after hearing a radio lecture by D. M. McKay. He received a first class BSc Special Honours Degree in Physics in 1962, and began a Ph.D. at the University of Manchester Department of Astronomy after being attracted to astronomy by an article of Zdenek Kopal in the semi-popular journal New Scientist. John soon started work with Franz Kahn, and studied the possibility that the broad emission lines seen from the Orion Nebula were due to flows driven by the photoevaporation of neutral globules embedded in a HII region. John's thesis was entitled ``The Age and Dynamics of the Orion Nebula`` and he passed his oral examination on 28th February 1966.

  4. Helen Keller: A Remembrance.

    ERIC Educational Resources Information Center

    Lowenfeld, Berthold

    1980-01-01

    A well-known educator and author in the field of work with the blind recalls times he spent with Helen Keller, including her visit to the California School for the Blind, where he was superintendent, for the consecration of the Helen Keller Building. (Author/SBH)

  5. Once a physicist: Alan Pierson

    NASA Astrophysics Data System (ADS)

    2016-08-01

    Alan Pierson is artistic director and conductor of the New York-based contemporary-music ensemble Alarm Will Sound, and a professor of conducting at Northwestern University's Bienen School of Music in Illinois

  6. First-order Dyson coordinates and geometry.

    PubMed

    Hermes, Matthew R; Hirata, So

    2013-08-15

    The mathematical constructs of the Dyson coordinates and geometry are introduced. The former are a unitary transformation of the normal coordinates and the anharmonic vibrational counterpart of the Dyson orbitals in electronic structure theory. The first-order Dyson coordinates bring the sums of the harmonic force constants and their first-order diagrammatic perturbation corrections (the first-order Dyson self-energy) to a diagonal form. The first-order Dyson geometry has no counterpart in electronic structure theory. It is the point on the potential energy surface at which the sums of the energy gradients and their first-order diagrammatic perturbation corrections vanish. It agrees with the vibrationally averaged geometry of vibrational self-consistent field (VSCF) theory in the bulk limit. These constructs provide a unified view of the relationship of VSCF and its diagrammatically size-consistent modifications as well as the self-consistent phonon method widely used in solid-state physics.

  7. Mt. St. Helens Memories.

    ERIC Educational Resources Information Center

    Sharp, Len

    1992-01-01

    Provides a personal account of one science teacher's participation in a teacher workshop in which teachers learned about volcanic development, types of eruption, geomorphology, plate tectonics, volcano monitoring, and hazards created by volcanoes by examining Mt. St. Helens. Provides a graphic identifying volcanoes active since 1975. (MDH)

  8. The Helen of Geometry

    ERIC Educational Resources Information Center

    Martin, John

    2010-01-01

    The cycloid has been called the Helen of Geometry, not only because of its beautiful properties but also because of the quarrels it provoked between famous mathematicians of the 17th century. This article surveys the history of the cycloid and its importance in the development of the calculus.

  9. Who's Helen Keller?

    ERIC Educational Resources Information Center

    Hubbard, Ruth Shagoury

    2003-01-01

    Helen Keller was someone who worked throughout her long life to achieve social change; she was an integral part of many important social movements in the 20th century. Her life story could serve as a fascinating example for children, but most picture books about Keller are silent about her life's work. In this article, the author examines the…

  10. Mount St. Helens Flyover

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image of Mt. St. Helens volcano in Washington State was acquired on August 8, 2000 and covers an area of 37 by 51 km. Mount Saint Helens, a volcano in the Cascade Range of southwestern Washington that had been dormant since 1857, began to show signs of renewed activity in early 1980. On 18 May 1980, it erupted with such violence that the top of the mountain was blown off, spewing a cloud of ash and gases that rose to an altitude of 19 kilometers. The blast killed about 60 people and destroyed all life in an area of some 180 square kilometers (some 70 square miles), while a much larger area was covered with ash and debris. It continues to spit forth ash and steam intermittently. As a result of the eruption, the mountain's elevation decreased from 2,950 meters to 2,549 meters. The simulated fly-over was produced by draping ASTER visible and near infrared image data over a digital topography model, created from ASTER's 3-D stereo bands. The color was computer enhanced to create a 'natural' color image, where the vegetation appears green. The topography has been exaggerated 2 times to enhance the appearance of the relief. Landsat7 aquired an image of Mt. St. Helens on August 22, 1999. Image and animation courtesy NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team.

  11. Mount St. Helens Rebirth

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The catastrophic eruption of Mt. St. Helens 20 years ago today (on May 18, 1980), ranks among the most important natural events of the twentieth century in the United States. Because Mt. St. Helens is in a remote area of the Cascades Mountains, only a few people were killed by the eruption, but property damage and destruction totaled in the billions of dollars. Mount St. Helens is an example of a composite or stratovolcano. These are explosive volcanoes that are generally steep-sided, symmetrical cones built up by the accumulation of debris from previous eruptions and consist of alternating layers of lava flows, volcanic ash and cinder. Some of the most photographed mountains in the world are stratovolcanoes, including Mount Fuji in Japan, Mount Cotopaxi in Ecuador, Mount Hood in Oregon, and Mount Rainier in Washington. The recently erupting Mount Usu on the island of Hokkaido in Japan is also a stratovolcano. Stratovolcanoes are characterized by having plumbing systems that move magma from a chamber deep within the Earth's crust to vents at the surface. The height of Mt. St. Helens was reduced from about 2950 m (9677 ft) to about 2550 m (8364 ft) as a result of the explosive eruption on the morning of May 18. The eruption sent a column of dust and ash upwards more than 25 km into the atmosphere, and shock waves from the blast knocked down almost every tree within 10 km of the central crater. Massive avalanches and mudflows, generated by the near-instantaneous melting of deep snowpacks on the flanks of the mountain, devastated an area more than 20 km to the north and east of the former summit, and rivers choked with all sorts of debris were flooded more than 100 km away. The area of almost total destruction was about 600 sq. km. Ash from the eruption cloud was rapidly blown to the northeast and east producing lightning which started many small forest fires. An erie darkness caused by the cloud enveloped the landscape more than 200 km from the blast area, and ash

  12. `Dear Professor Dyson': Twenty years of correspondence between Freeman Dyson and undergraduate students

    NASA Astrophysics Data System (ADS)

    Neuenschwander, Dwight E.

    2014-03-01

    For twenty years the students in my "Science, Technology, and Society" course, where we use Disturbing the Universe as a textbook, have corresponded with Professor Dyson. That someone of Professor Dyson's standing consistently makes a priority of promptly answering the letters of undergraduate students from all academic majors, and does so with grace and kindness, insight and wisdom, offers a personal glimpse into his character and integrity. On behalf of my students, and as a way of publicly thanking Professor Dyson for participating in our course conversations, I am honored to share samples of our correspondence with him over the years, including student reflections on his involvement in their education.

  13. `DEAR Professor DYSON:' Twenty Years of Correspondence Between Freeman Dyson and Undergraduate Students

    NASA Astrophysics Data System (ADS)

    Neuenschwander, Dwight E.

    2014-04-01

    For twenty years the students in my "Science, Technology, and Society" course, where we use Disturbing the Universe as a textbook, have corresponded with Professor Dyson. That someone of Professor Dyson's standing consistently makes a priority of promptly answering the letters of undergraduate students from all academic majors, and does so with grace and kindness, insight and wisdom, offers a personal glimpse into his character and integrity. On behalf of my students, and as a way of publicly thanking Professor Dyson for participating in our course conversations, I am honored to share samples of our correspondence with him over the years, including student reflections on his involvement in their education.

  14. Mt. St. Helens

    NASA Technical Reports Server (NTRS)

    2001-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1 Movie

    This 3-D anaglyph image of Mt. St. Helens volcano combines the nadir-looking and back-looking band 3 images of ASTER. To view the image in stereo, you will need blue-red glasses. Make sure to look through the red lens with your left eye. Figure 1: This ASTER image of Mt. St. Helens volcano in Washington was acquired on August 8, 2000 and covers an area of 37 by 51 km. Mount Saint Helens, a volcano in the Cascade Range of southwestern Washington that had been dormant since 1857, began to show signs of renewed activity in early 1980. On 18 May 1980, it erupted with such violence that the top of the mountain was blown off, spewing a cloud of ash and gases that rose to an altitude of 19 kilometers. The blast killed about 60 people and destroyed all life in an area of some 180 square kilometers (some 70 square miles), while a much larger area was covered with ash and debris. It continues to spit forth ash and steam intermittently. As a result of the eruption, the mountain's elevation decreased from 2,950 meters to 2,549 meters. The image is centered at 46.2 degrees north latitude, 122.2 degrees west longitude.

    Movie: The simulated fly-over was produced by draping ASTER visible and near infrared image data over a digital topography model, created from ASTER's 3-D stereo bands. The color was computer enhanced to create a natural color image, where the vegetation appears green. The topography has been exaggerated 2 times to enhance the appearance of the relief.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  15. Rebuilding Mount St. Helens

    USGS Publications Warehouse

    Schilling, Steve P.; Ramsey, David W.; Messerich, James A.; Thompson, Ren A.

    2006-01-01

    On May 18, 1980, Mount St. Helens, Washington exploded in a spectacular and devastating eruption that shocked the world. The eruption, one of the most powerful in the history of the United States, removed 2.7 cubic kilometers of rock from the volcano's edifice, the bulk of which had been constructed by nearly 4,000 years of lava-dome-building eruptions. In seconds, the mountain's summit elevation was lowered from 2,950 meters to 2,549 meters, leaving a north-facing, horseshoe-shaped crater over 2 kilometers wide. Following the 1980 eruption, Mount St. Helens remained active. A large lava dome began episodically extruding in the center of the volcano's empty crater. This dome-building eruption lasted until 1986 and added about 80 million cubic meters of rock to the volcano. During the two decades following the May 18, 1980 eruption, Crater Glacier formed tongues of ice around the east and west sides of the lava dome in the deeply shaded niche between the lava dome and the south crater wall. Long the most active volcano in the Cascade Range with a complex 300,000-year history, Mount St. Helens erupted again in the fall of 2004 as a new period of dome building began within the 1980 crater. Between October 2004 and February 2006, about 80 million cubic meters of dacite lava erupted immediately south of the 1980-86 lava dome. The erupting lava separated the glacier into two parts, first squeezing the east arm of the glacier against the east crater wall and then causing equally spectacular crevassing and broad uplift of the glacier's west arm. Vertical aerial photographs document dome growth and glacier deformation. These photographs enabled photogrammetric construction of a series of high-resolution digital elevation models (DEMs) showing changes from October 4, 2004 to February 9, 2006. From the DEMs, Geographic Information Systems (GIS) applications were used to estimate extruded volumes and growth rates of the new lava dome. The DEMs were also used to quantify dome

  16. Esther Dyson's Vision of the Future.

    ERIC Educational Resources Information Center

    Runyan, Andy

    1999-01-01

    Discusses a vision of the future based on Esther Dyson's views of the proliferation of the Internet. Topics include the Internet as a communication medium; electronic commerce; the role of education, including the role of teachers; intellectual property rights; and friction freedom in a new digital economy relating to pricing. (LRW)

  17. Long-Wave Infrared Dyson Spectrometer

    NASA Technical Reports Server (NTRS)

    Johnson, William R.; Hook, Simon J.; Mouroulis, Pantazis Z.; Wilson, Daniel W.; Gunapala, Sarath D.; Hill, Cory J.; Mumolo, Jason M.; Eng, Bjorn T.

    2008-01-01

    Preliminary results are presented for an ultra compact long-wave infrared slit spectrometer based on the dyson concentric design. The dyson spectrometer has been integrated in a dewar environment with a quantum well infrared photodetecor (QWIP), concave electron beam fabricated diffraction grating and ultra precision slit. The entire system is cooled to cryogenic temperatures to maximize signal to noise ratio performance, hence eliminating thermal signal from transmissive elements and internal stray light. All of this is done while maintaining QWIP thermal control. A general description is given of the spectrometer, alignment technique and predicated performance. The spectrometer has been designed for optimal performance with respect to smile and keystone distortion. A spectral calibration is performed with NIST traceable targets. A 2-point non-uniformity correction is performed with a precision blackbody source to provide radiometric accuracy. Preliminary laboratory results show excellent agreement with modeled noise equivalent delta temperature and detector linearity over a broad temperature range.

  18. Growth estimates for Dyson-Schwinger equations

    NASA Astrophysics Data System (ADS)

    Yeats, Karen Amanda

    Dyson-Schwinger equations are integral equations in quantum field theory that describe the Green functions of a theory and mirror the recursive decomposition of Feynman diagrams into subdiagrams. Taken as recursive equations, the Dyson-Schwinger equations describe perturbative quantum field theory. However, they also contain non-perturbative information. Using the Hopf algebra of Feynman graphs we will follow a sequence of reductions to convert the Dyson-Schwinger equations to the following system of differential equations, gr1x =Prx- sign srg r1x2 +j∈R sjg j1x x6xgr 1x where r∈R,R is the set of amplitudes of the theory which need renormalization, gr1 is the anomalous dimension associated to r, Pr( x) is a modified version of the function for the primitive skeletons contributing to r, and x is the coupling constant. Next, we approach the new system of differential equations as a system of recursive equations by expanding gr1x =Sn≥1gr1,nx n . We obtain the radius of convergence of Sgr1,nxn/n! in terms of that of SPrnx n/n! . In particular we show that a Lipatov bound for the growth of the primitives leads to a Lipatov bound for the whole theory. Finally, we make a few observations on the new system considered as differential equations.

  19. Freeman Dyson and Gravitational Spin Precession

    NASA Astrophysics Data System (ADS)

    Hari Dass, N. D.

    2014-04-01

    In 1974 Hulse and Taylor1 discovered the binary pulsar. At that time Prof. Dyson was visiting the Max Planck Institute for Physics at Munich, where I was also working. He initiated a number of discussions on this object. During them it occurred to me that this system could be used to test Geodetic Precession in Einsteins theory, which, even after years of work by the Stanford gyroscope expt,2 had remained a challenge. I showed some preliminary calculations to Prof Dyson and he encouraged me to do a more refined job. To be applicable to the binary pulsar, one needed to generalise the general relativistic calculations to beyond the so called test particle assumption. Barker and O'Connell3 had obtained such a result from analysing the gravitational interactions of spin-1/2 Dirac fermions in linearized spin-2 theories of gravitation. With C. F. Cho I produced a purely classical calculation, using Schwingers Source theory.4 Börner, Ehlers and Rudolf confirmed this result with their general relativistic calculations shortly after.5 With V. Radhakrishnan, I gave a detailed model for the pulse width and polarization sweep as a means of observing this effect.6-9 All throughout Prof. Dyson was supportive with reading the manuscripts and his critical comments. In 2005, coincidentally the centennial of the Annus Mirabilis (1905), Hotan, Bailes and Ord observed this in the binary pulsar J1141-6545.10

  20. Portrait of Astronaut Alan L. Bean

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Portrait of Astronaut Alan L. Bean, Prime Crew Lunar Module Pilot of the Apollo 12 Lunar Landing Mission, in his space suit minus the helmet. He is standing outside beside a mock-up of the Lunar Lander.

  1. Alanes formation on the Al(111) surface

    NASA Astrophysics Data System (ADS)

    Rangan, Sylvie; Veyan, Jean-Francois; Chabal, Yves J.; Chaudhuri, Santanu; Muckerman, James T.

    2008-03-01

    Alane clusters (AlxHy) are believed to be the ubiquitous intermediates in hydrogen storage reactions for a wide variety of alanates (LiAlH4, NaAlH4) currently considered for hydrogen storage. The formation and behavior of alanes at surfaces appear to control and limit the efficiency of hydrogen storage. In particular, hydrogen adsorption on the Al(111) surface leads to the coexistence of several adsorbed species, the concentration of which is affected by the step density, the surface coverage and the temperature. We combine density functional theory (DFT) and surface infra-red (IR) absorption spectroscopy to uncover the mechanisms for alane formation on Al(111) surfaces. At low coverage, DFT predicts a two-fold bridge site adsorption for atomic hydrogen, consistent with previous Electron Energy Loss Spectroscopy measurements. At higher coverage, the formation of small chemisorbed AlH3 occurs at the step edges. With increasing coverage AlH3 is extracted from the step edge and becomes highly mobile on the terraces in a weakly bound state. This mobility is the key factor leading to the growth of larger alanes through AlH3 oligomerization. For these large alanes, previous Thermal Programmed Desorption studies are discussed and compared to the thermal stability observed in IR.

  2. Helene: A Plastic Model

    NASA Astrophysics Data System (ADS)

    Umurhan, O. M.; Moore, J. M.; Howard, A. D.; Schenk, P.; White, O. L.

    2014-12-01

    Helene, the Saturnian L4 Trojan satellite co-orbiting Dionne and sitting within the E-ring, possesses an unusual morphology characteristic of broad km-scale basins and depressions and a generally smooth surface patterned with streaks and grooves which are indicative of non-typical mass transport. Elevation angles do not appear to exceed 10o at most. The nature and origin of the surface materials forming these grooved patterns is unknown. Given the low surface gravity (<5mm/s2), it hard to imagine how such transport features can come about with such low grades and surface gravities. Preliminary examinations of classical linear and nonlinear mass wasting mechanisms do not appear to reproduce these curious features. A suite of hypothesis that we examine is the possibility that the fine grain material on the surface has been either (i) accreted or (ii) generated as refractory detritus resulting from sublimation of the icy bedrock, and that these materials subsequently mass-waste like a non-Newtonian highly non-linear creeping flow. Modifying the landform evolution model MARSSIM to handle two new mass-wasting mechanism, the first due to glacial-like flow via Glen's Law and the second due to plastic-like flow like a Bingham fluid, we setup and test a number of likely scenarios to explain the observations. The numerical results qualitatively indicate that treating the mass-wasting materials as a Bingham material reproduces many of the qualitative features observed. We also find that in those simulations in which accretion is concomitant with Bingham mass-wasting, the long time-evolution of the surface flow shows intermittency in the total surface activity (defined as total surface integral of the absolute magnitude of the mass-flux). Detailed analyses identify the locations where this activity is most pronounced and we will discuss these and its implications in further detail.

  3. Mount St. Helens

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image of Mount St. Helens was captured one week after the March 8, 2005, ash and steam eruption, the latest activity since the volcano's reawakening in September 2004. The new lava dome in the southeast part of the crater is clearly visible, highlighted by red areas where ASTER's infrared channels detected hot spots from incandescent lava. The new lava dome is 155 meters (500 feet) higher than the old lava dome, and still growing.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 21.9 by 24.4 kilometers (13.6 by 15.1 miles) Location: 46.2 degrees North latitude, 122.2 degrees West longitude Orientation: North at top Image Data: ASTER bands 8, 3, and 1 Original Data Resolution

  4. Mount Saint Helens aerosol evolution

    NASA Technical Reports Server (NTRS)

    Oberbeck, V. R.; Farlow, N. H.; Snetsinger, K. G.; Ferry, G. V.; Fong, W.; Hayes, D. M.

    1982-01-01

    Stratospheric aerosol samples were collected using a wire impactor during the year following the eruption of Mt. St. Helens. Analysis of samples shows that aerosol volume increased for 6 months due to gas-to-particle conversion and then decreased to background levels in the following 6 months.

  5. Mount St. Helens aerosol evolution

    SciTech Connect

    Oberbeck, V.R.; Farlow, N.H.

    1982-08-01

    Stratospheric aerosol samples were collected using a wire impactor during the year following the eruption of Mount St. Helens. Analysis of samples shows that aerosol volume increased for 6 months due to gas-to-particle conversion and then decreased to background levels in the following 6 months.

  6. Mount St. Helens aerosol evolution

    SciTech Connect

    Oberbeck, V.R.; Farlow, N.H.; Fong, W.; Snetsinger, K.G.; Ferry, G.V.; Hayes, D.M.

    1982-09-01

    Stratospheric aerosol samples were collected using a wire impactor during the year following the eruption of Mt. St. Helens. Analysis of samples show that aerosol volume increased for 6 months due to gas-to-particle conversion and then decreased to background levels in the following 6 months.

  7. Astronaut Alan Bean shaves while aboard Skylab

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Alan L. Bean, Skylab 3 commander, uses battery powered shaver while in the crew quarters of the Skylab space station's Orbital Workshop (OWS) crew quarters. This photograph was taken with a 35mm Nikon camera held by one of Bean's fellow crewmen during the 56.5 day second manned Skylab mission in Earth orbit.

  8. Automotive storage of hydrogen in alane.

    SciTech Connect

    Ahluwalia, R. K.; Hua, T. Q.; Peng, J.-K.; Nuclear Engineering Division

    2009-09-01

    Although alane (AlH{sub 3}) has many interesting properties as a hydrogen storage material, it cannot be regenerated on-board a vehicle. One way of overcoming this limitation is to formulate an alane slurry that can be easily loaded into a fuel tank and removed for off-board regeneration. In this paper, we analyze the performance of an on-board hydrogen storage system that uses alane slurry as the hydrogen carrier. A model for the on-board storage system was developed to analyze the AlH{sub 3} decomposition kinetics, heat transfer requirements, stability, startup energy and time, H{sub 2} buffer requirements, storage efficiency, and hydrogen storage capacities. The results from the model indicate that reactor temperatures higher than 200 C are needed to decompose alane at reasonable liquid hourly space velocities, i.e., > 60 h{sup -1}. At the system level, a gravimetric capacity of 4.2 wt% usable hydrogen and a volumetric capacity of 50 g H{sub 2}/L may be achievable with a 70% solids slurry. Under optimum conditions, {approx}80% of the H{sub 2} stored in the slurry may be available for the fuel cell engine. The model indicates that H{sub 2} loss is limited by the decomposition kinetics rather than by the rate of heat transfer from the ambient to the slurry tank.

  9. Alan Bullock: Historian, Social Democrat and Chairman

    ERIC Educational Resources Information Center

    Caston, Geoffrey

    2006-01-01

    This study considers the influence on British education (particularly schools) of Alan Bullock, Vice-Chancellor of Oxford University from 1969 to 1973 and distinguished contemporary historian. It quotes extensively from Bullock's own writings, including his developing personal views on education, and reflections on his own experiences. Following a…

  10. Time-dependent Dyson orbital theory.

    PubMed

    Gritsenko, O V; Baerends, E J

    2016-08-21

    Although time-dependent density functional theory (TDDFT) has become the tool of choice for real-time propagation of the electron density ρ(N)(t) of N-electron systems, it also encounters problems in this application. The first problem is the neglect of memory effects stemming from the, in TDDFT virtually unavoidable, adiabatic approximation, the second problem is the reliable evaluation of the probabilities P(n)(t) of multiple photoinduced ionization, while the third problem (which TDDFT shares with other approaches) is the reliable description of continuum states of the electrons ejected in the process of ionization. In this paper time-dependent Dyson orbital theory (TDDOT) is proposed. Exact TDDOT equations of motion (EOMs) for time-dependent Dyson orbitals are derived, which are linear differential equations with just static, feasible potentials of the electron-electron interaction. No adiabatic approximation is used, which formally resolves the first TDDFT problem. TDDOT offers formally exact expressions for the complete evolution in time of the wavefunction of the outgoing electron. This leads to the correlated probability of single ionization P(1)(t) as well as the probabilities of no ionization (P(0)(t)) and multiple ionization of n electrons, P(n)(t), which formally solves the second problem of TDDFT. For two-electron systems a proper description of the required continuum states appears to be rather straightforward, and both P(1)(t) and P(2)(t) can be calculated. Because of the exact formulation, TDDOT is expected to reproduce a notorious memory effect, the "knee structure" of the non-sequential double ionization of the He atom.

  11. Combinatorial Dyson-Schwinger equations and inductive data types

    NASA Astrophysics Data System (ADS)

    Kock, Joachim

    2016-06-01

    The goal of this contribution is to explain the analogy between combinatorial Dyson-Schwinger equations and inductive data types to a readership of mathematical physicists. The connection relies on an interpretation of combinatorial Dyson-Schwinger equations as fixpoint equations for polynomial functors (established elsewhere by the author, and summarised here), combined with the now-classical fact that polynomial functors provide semantics for inductive types. The paper is expository, and comprises also a brief introduction to type theory.

  12. Schwinger-Dyson functional in Chern-Simons theory

    NASA Astrophysics Data System (ADS)

    Guadagnini, E.

    2016-11-01

    In perturbative SU (N) Chern-Simons gauge theory, it is shown that the Schwinger-Dyson equations assume a quite simplified form. The generating functional of the correlation functions of the curvature is considered; it is demonstrated that the renormalized Schwinger-Dyson functional is related with the generating functional of the correlation functions of the gauge connections by some kind of duality transformation.

  13. Coulomb gauge ghost Dyson-Schwinger equation

    NASA Astrophysics Data System (ADS)

    Watson, P.; Reinhardt, H.

    2010-12-01

    A numerical study of the ghost Dyson-Schwinger equation in Coulomb gauge is performed and solutions for the ghost propagator found. As input, lattice results for the spatial gluon propagator are used. It is shown that in order to solve completely, the equation must be supplemented by a nonperturbative boundary condition (the value of the inverse ghost propagator dressing function at zero momentum), which determines if the solution is critical (zero value for the boundary condition) or subcritical (finite value). The various solutions exhibit a characteristic behavior where all curves follow the same (critical) solution when going from high to low momenta until forced to freeze out in the infrared to the value of the boundary condition. The renormalization is shown to be largely independent of the boundary condition. The boundary condition and the pattern of the solutions can be interpreted in terms of the Gribov gauge-fixing ambiguity. The connection to the temporal gluon propagator and the infrared slavery picture of confinement is explored.

  14. Obituary: Alan D. Fiala (1942-2010)

    NASA Astrophysics Data System (ADS)

    Kaplan, George

    2011-12-01

    Dr. Alan Dale Fiala, astronomer and expert on solar eclipses, died on May 26, 2010 in Arlington, Virginia, of respiratory failure after a brief illness. He was 67. Fiala had been a staff astronomer at the U.S. Naval Observatory in Washington, D.C., for his entire professional career, where he rose from a position as a summer intern to become the Chief of the Nautical Almanac Office, responsible for annual publications for astronomy and navigation that are used the world over. He retired from the observatory in 2000. Although a childhood case of polio affected his mobility for the rest of his life, he seldom let his physical constraints limit his activities, which were many and varied. Alan Fiala was born in Beatrice, Nebraska on November 9, 1942, the middle son of Emil A. ("John") and Lora Marie Fiala. Fiala's father was a postal clerk and Civil Service examiner. Fiala expressed interest in astronomy at a very young age. He contracted polio when he was 9. He graduated from Beatrice High School in 1960 with a straight-A average and went on to study at Carleton College. He received his B.A. summa cum laude after three years, in 1963, with a major in astronomy and minors in physics and mathematics. He was elected to Phi Beta Kappa, Sigma Xi, and Pi Mu Epsilon (mathematics). In 1962, Alan Fiala obtained a job as a summer intern at the Naval Observatory in Washington, working in the Nautical Almanac Office (NAO). He entered the graduate program at Yale University and continued to work summers at the observatory. He received his Ph.D. in 1968, under Gerald Clemence. His dissertation was titled "Determination of the Mass of Jupiter from a Study of the Motion of 57 Mnemosyne." After receiving his doctorate, Fiala became a permanent member of the Naval Observatory staff. Computers were just being introduced there and he participated in the automation of many procedures used to prepare the annual publications of the Nautical Almanac Office. One of his first assignments was

  15. Resurgent transseries & Dyson-Schwinger equations

    NASA Astrophysics Data System (ADS)

    Klaczynski, Lutz

    2016-09-01

    We employ resurgent transseries as algebraic tools to investigate two self-consistent Dyson-Schwinger equations, one in Yukawa theory and one in quantum electrodynamics. After a brief but pedagogical review, we derive fixed point equations for the associated anomalous dimensions and insert a moderately generic log-free transseries ansatz to study the possible strictures imposed. While proceeding in various stages, we develop an algebraic method to keep track of the transseries' coefficients. We explore what conditions must be violated in order to stay clear of fixed point theorems to eschew a unique solution, if so desired, as we explain. An interesting finding is that the flow of data between the different sectors of the transseries shows a pattern typical of resurgence, i.e. the phenomenon that the perturbative sector of the transseries talks to the nonperturbative ones in a one-way fashion. However, our ansatz is not exotic enough as it leads to trivial solutions with vanishing nonperturbative sectors, even when logarithmic monomials are included. We see our result as a harbinger of what future work might reveal about the transseries representations of observables in fully renormalised four-dimensional quantum field theories and adduce a tentative yet to our mind weighty argument as to why one should not expect otherwise. This paper is considerably self-contained. Readers with little prior knowledge are let in on the basic reasons why perturbative series in quantum field theory eventually require an upgrade to transseries. Furthermore, in order to acquaint the reader with the language utilised extensively in this work, we also provide a concise mathematical introduction to grid-based transseries.

  16. A Primer on Functional Methods and the Schwinger-Dyson Equations

    SciTech Connect

    Swanson, Eric S.

    2010-11-12

    An elementary introduction to functional methods and the Schwinger-Dyson equations is presented. Emphasis is placed on practical topics not normally covered in textbooks, such as a diagrammatic method for generating equations at high order, different forms of Schwinger-Dyson equations, renormalisation, and methods for solving Schwinger-Dyson equations.

  17. Mount St. Helens: the aftermath

    SciTech Connect

    Flaherty, D.C.

    1983-01-01

    During the May 18, 1980 eruption of Mount St. Helens, ash fell over a 100,000 sq mile area to the east. The Idaho studies showed that, although the ashfall altered the food chains of some forest streams, within a year they fully recovered. The effects of ashfall on lake benthic organisms are still being assessed by sediment sampling. The Montana studies reported on snow avalanche models adapted to mudflows, trophic impact of ash deposits on Montana lakes, and the volcanic ash as nutrient subsidy to sub-alpine lakes. The Oregon studies reported herring and smelt egg and larvae damage due to suspended ash. The drainage patterns in eruption debris were studied along with the filling of Columbia River berths with ash.

  18. Remembering James Alan Bassham (1922-2012).

    PubMed

    Govindjee; Bassham, Helen; Bassham, Susan

    2016-04-01

    James Alan Bassham, known to many as Al, was born on November 26, 1922, in Sacramento, California (CA), USA. He died on November 19, 2012, in El Cerrito, CA. To celebrate his life at his 3rd death anniversary, we present here a brief biography, comments on his discoveries, but most importantly, remembrances from family and friends; we remember this wonderful and modest person who had played a major pivotal role in the discoveries that led to what he would like to call the P(hotosynthetic) C(arbon) R(eduction) cycle, known to many as the Calvin Cycle, the Calvin-Benson Cycle, or the Calvin-Benson-Bassham Cycle. Based on a personal request by Bassham himself to one of us (Govindjee), we refrain from including his name in the cycle-in recognition of his many students and associates he would have liked to honor.

  19. Spontaneous magnetization of an ideal ferromagnet: Beyond Dyson's analysis

    SciTech Connect

    Hofmann, Christoph P.

    2011-08-01

    Using the low-energy effective field theory for magnons, we systematically evaluate the partition function of the O(3) ferromagnet up to three loops. Dyson, in his pioneering microscopic analysis of the Heisenberg model, showed that the spin-wave interaction starts manifesting itself in the low-temperature expansion of the spontaneous magnetization of an ideal ferromagnet only at order T{sup 4}. Although several authors tried to go beyond Dyson's result, to the best of our knowledge, a fully systematic and rigorous investigation of higher-order terms induced by the spin-wave interaction has never been achieved. As we demonstrate in the present paper, it is straightforward to evaluate the partition function of an ideal ferromagnet beyond Dyson's analysis, using effective Lagrangian techniques. In particular, we show that the next-to-leading contribution to the spontaneous magnetization resulting from the spin-wave interaction already sets in at order T{sup 9/2}--in contrast to all claims that have appeared before in the literature. Remarkably, the corresponding coefficient is completely determined by the leading-order effective Lagrangian and is thus independent of the anisotropies of the cubic lattice. We also consider even higher-order corrections and thereby solve--once and for all--the question of how the spin-wave interaction in an ideal ferromagnet manifests itself in the spontaneous magnetization beyond the Dyson term.

  20. Non-perturbative QED Analysis with Schwinger-Dyson Equations

    SciTech Connect

    Kizilersue, Ayse; Sizer, Tom; Williams, Anthony G.

    2011-05-24

    We give a brief account of unquenched QED studies in four dimensions using Schwinger-Dyson Equations. In these numerical studies of fermion and boson propagators, we employ a recent realistic unquenched fermion-boson vertex, comparing it against commonly used vertices in previous quenched studies.

  1. Astronaut Alan Shepard receives MASA Distinguished Service award

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Astronaut Alan B. Shepard recieves the NASA Distinguished Service Award from President John F. Kennedy in May 1961, days after his history making MR-3 flight (31387); Alan Shepard and his wife wave to the crowd after Shepard received the NASA Distinguished Service Award from President John F. Kennedy (31388).

  2. Methods for synthesizing alane without the formation of adducts and free of halides

    DOEpatents

    Zidan, Ragaiy; Knight, Douglas A; Dinh, Long V

    2013-02-19

    A process is provided to synthesize an alane without the formation of alane adducts as a precursor. The resulting product is a crystallized .alpha.-alane and is a highly stable product and is free of halides.

  3. Mount St. Helens Volcano, WA, USA

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Mount St. Helens Volcano (46.0N, 122.0W) and its blast zone can be seen in this northeast looking infrared view. Mt. Rainier and Mt. Adams can also be seen in the near area. The Columbia River can be seen at the bottom of the view. When Mt. St. Helens erupted on 18 May 80, the top 1300 ft. disappeared within minutes. The blast area covered an area of more than 150 sq. miles and sent thousands of tons of ash into the upper atmosphere.

  4. Jost-Lehmann-Dyson representation in higher dimensional field theories

    NASA Astrophysics Data System (ADS)

    Maharana, Jnanadeva

    2017-01-01

    The Jost-Lehmann-Dyson representation is derived for massive scalar field theories in higher spacetime dimensions, D > 4, for the four point scattering amplitude. The representation is very crucial to investigate the analyticity properties of the amplitude. The axiomatic approach of Lehmann-Symanzik-Zimmermann is adopted to show the existence of such a representation. Consequently, a host of interesting results will follow from derivation of JLD representation such as proof of analyticity properties and asymptotic behavior of the amplitude.

  5. Dyson-Schwinger equations and their application to hadronic physics

    SciTech Connect

    Roberts, C.D.; Williams, A.G.

    1995-08-01

    At the invitation of the editor of {open_quotes}Progress in Particle and Nuclear Physics{close_quotes} a review article which describes the present status of the application of Dyson-Schwinger equations to nonperturbative studies of quantum electrodynamics in three and four dimensions, quantum chromodynamics and hadronic physics was written. This article was written with the aim of making this increasingly useful and efficacious nonperturbative approach accessible to a larger group of physicists and to encourage its broader application.

  6. Schwinger-Dyson Equations and Dynamical gluon mass generation

    SciTech Connect

    Aguilar, A.C.; Natale, A.A.

    2004-12-02

    We obtain a solution for the gluon propagador in Landau gauge within two distinct approximations for the Schwinger-Dyson equations (SDE). The first, named Mandelstam's approximation, consist in neglecting all contributions that come from fermions and ghosts fields while in the second, the ghosts fields are taken into account leading to a coupled system of integral equations. In both cases we show that a dynamical mass for the gluon propagator can arise as a solution.

  7. Gauge-invariant masses through Schwinger-Dyson equations

    SciTech Connect

    Bashir, A.; Raya, A.

    2007-02-27

    Schwinger-Dyson equations (SDEs) are an ideal framework to study non-perturbative phenomena such as dynamical chiral symmetry breaking (DCSB). A reliable truncation of these equations leading to gauge invariant results is a challenging problem. Constraints imposed by Landau-Khalatnikov-Fradkin transformations (LKFT) can play an important role in the hunt for physically acceptable truncations. We present these constrains in the context of dynamical mass generation in QED in 2 + 1-dimensions.

  8. Galileon hairs of Dyson spheres, Vainshtein's coiffure and hirsute bubbles

    NASA Astrophysics Data System (ADS)

    Kaloper, Nemanja; Padilla, Antonio; Tanahashi, Norihiro

    2011-10-01

    We study the fields of spherically symmetric thin shell sources, a.k.a. Dyson spheres, in a fully nonlinear covariant theory of gravity with the simplest galileon field. We integrate exactly all the field equations once, reducing them to first order nonlinear equations. For the simplest galileon, static solutions come on six distinct branches. On one, a Dyson sphere surrounds itself with a galileon hair, which far away looks like a hair of any Brans-Dicke field. The hair changes below the Vainshtein scale, where the extra galileon terms dominate the minimal gradients of the field. Their hair looks more like a fuzz, because the galileon terms are suppressed by the derivative of the volume determinant. It shuts off the `hair bunching' over the `angular' 2-sphere. Hence the fuzz remains dilute even close to the source. This is really why the Vainshtein's suppression of the modifications of gravity works close to the source. On the other five branches, the static solutions are all singular far from the source, and shuttered off from asymptotic infinity. One of them, however, is really the self-accelerating branch, and the singularity is removed by turning on time dependence. We give examples of regulated solutions, where the Dyson sphere explodes outward, and its self-accelerating side is nonsingular. These constructions may open channels for nonperturbative transitions between branches, which need to be addressed further to determine phenomenological viability of multi-branch gravities.

  9. Point-defect-mediated dehydrogenation of alane

    NASA Astrophysics Data System (ADS)

    Ismer, Lars

    2011-03-01

    For the engineering of better hydrogen storage materials a systematic understanding of their hydrogen sorption kinetics is crucial. Theoretical studies on metal hydrides have indicated that in many cases point defects control mass transport and hence hydrogen uptake and release. Manipulating point-defect concentrations thus allows control over hydrogen sorption kinetics, opening up new engineering strategies. However, in some cases the relevance of kinetic limitations due to point defects is still under debate; kinetic inhibition of hydrogen sorption has also been attributed to surface effects, e.g. oxide layers or low recombination rates. We present a systematic analysis of the dehydrogenation kinetics of alane (AlH3), one of the prime candidate materials for hydrogen storage. Using hybrid-density functional calculations we determine the concentrations and mobilities of point defects and their complexes. Kinetic Monte Carlo simulations are used to describe the full dehydrogenation reaction. We show that under dehydrogenation conditions charged hydrogen vacancy defects form in the crystal, which have a strong tendency towards clustering. The vacancy clusters denote local nuclei of Al phase, and the growth of these nuclei eventually drives the AlH3/Al transformation. However, the low concentration of vacancy defects limits the transport of hydrogen across the bulk, and hence acts as the rate-limiting part of the process. The dehydrogenation is therefore essentially inactive at room temperature, explaining why AlH3 is metastable for years, even though it is thermodynamically unstable. Our derived activation energy and dehydrogenation curves are in excellent agreement with the experimental data, providing evidence for the relevance of bulk point-defect kinetics. Work performed in collaboration with A. Janotti and C. G. Van de Walle, and supported by DOE.

  10. Mount St. Helens Classroom Activities: Secondary.

    ERIC Educational Resources Information Center

    Washington State Educational Service District 112, Vancouver.

    This teacher's guide is designed to provide secondary teachers with an assortment of classroom activities dealing with the Mt. St. Helens eruption of May 18, 1980, in the areas of science, social studies, math, language arts and school newspaper activities. Copy masters and teacher versions of all activities are contained within this guide,…

  11. Mount St. Helens Classroom Activities: Elementary.

    ERIC Educational Resources Information Center

    Washington State Educational Service District 112, Vancouver.

    This teacher's guide is designed to provide elementary teachers with an assortment of classroom activities dealing with the Mt. St. Helens eruption of May 18, 1980, in the areas of science, social studies, math, language arts, and school newspaper activities. Copy masters and teacher versions of all activities are contained with this guide,…

  12. Astronaut Alan Bean works on Modular Equipment Stowage Assembly

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, lunar module pilot for the Apollo 12 lunar landing mission, works at the Modular Equipment Stowage Assembly (MESA) on the Apollo 12 Lunar Module during the mission's first extravehicular activity, EVA-1, on November 19, 1969.

  13. Astronaut Alan Bean participates in lunar surface simulation

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, lunar module pilot of the Apollo 12 lunar landing mission, participates in lunar surface simulation training in bldg 29 at the Manned Spacecraft Center. Bean is strapped to a one-sixth gravity simulator.

  14. Alan Shepard Hits A Golf Ball on the Moon

    NASA Video Gallery

    Apollo 14 Commander and original Mercury astronaut Alan Shepard, the first American to fly in space, tees off on the lunar surface during his 1971 mission, with crewmate Edgar Mitchell watching and...

  15. Alan Shepard in the Rendezvous Docking Simulator

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Astronaut Alan Shepard (right) was one of 14 astronauts, 8 NASA test pilots, and 2 McDonnell test pilots who took part in simulator studies. Shepard flew the simulator on November 14, 1963. A.W. Vogeley wrote: 'Many of the astronauts have flown this simulator in support of the Gemini studies and they, without exception, appreciated the realism of the visual scene. The simulator has also been used in the development of pilot techniques to handle certain jet malfunctions in order that aborts could be avoided. In these situations large attitude changes are sometimes necessary and the false motion cues that were generated due to earth gravity were somewhat objectionable; however, the pilots were readily able to overlook these false motion cues in favor of the visual realism.' Roy F. Brissenden noted that: 'The basic Gemini control studies developed the necessary techniques and demonstrated the ability of human pilots to perform final space docking with the specified Gemini-Agena systems using only visual references. ... Results... showed that trained astronauts can effect the docking with direct acceleration control and even with jet malfunctions as long as good visual conditions exist.... Probably more important than data results was the early confidence that the astronauts themselves gained in their ability to perform the maneuver in the ultimate flight mission.' Shepard commented: 'I had the feeling tonight - a couple of times - that I was actually doing the space mission instead of the simulation. As I said before, I think it is a very good simulation.' Shepard also commented on piloting techniques. Most astronauts arrived at this same preferred technique: Shepard: 'I believe I have developed the preferred technique for these conditions and the technique appeared to me to be best was to come in slightly above the target so that I was able to use the longitudinal marks on the body of the target as a reference, particularly for a lateral translation and, of course, I

  16. Mount St. Helens and Kilauea volcanoes

    SciTech Connect

    Barrat, J. )

    1989-01-01

    Mount St. Helens' eruption has taught geologists invaluable lessons about how volcanoes work. Such information will be crucial in saving lives and property when other dormant volcanoes in the northwestern United States--and around the world--reawaken, as geologists predict they someday will. Since 1912, scientists at the U.S. Geological Survey's Hawaiian Volcano Observatory have pioneered the study of volcanoes through work on Mauna Loa and Kilauea volcanoes on the island of Hawaii. In Vancouver, Wash., scientists at the Survey's Cascades Volcano Observatory are studying the after-effects of Mount St. Helens' catalysmic eruption as well as monitoring a number of other now-dormant volcanoes in the western United States. This paper briefly reviews the similarities and differences between the Hawaiian and Washington volcanoes and what these volcanoes are teaching the volcanologists.

  17. IRAS-based whole-sky upper limit on Dyson Spheres

    SciTech Connect

    Carrigan, Richard A., Jr.; /Fermilab

    2008-09-01

    A Dyson Sphere is a hypothetical construct of a star purposely cloaked by a thick swarm of broken-up planetary material to better utilize all of the stellar energy. A clean Dyson Sphere identification would give a significant signature for intelligence at work. A search for Dyson Spheres has been carried out using the 250,000 source database of the IRAS infrared satellite which covered 96% of the sky. The search has used the Calgary data collection of the IRAS Low Resolution Spectrometer (LRS) to look for fits to blackbody spectra. Searches have been conducted for both pure (fully cloaked) and partial Dyson Spheres in the blackbody temperature region 100 {le} T {le} 600 K. Other stellar signatures that resemble a Dyson Sphere are reviewed. When these signatures are used to eliminate sources that mimic Dyson Spheres very few candidates remain and even these are ambiguous. Upper limits are presented for both pure and partial Dyson Spheres. The sensitivity of the LRS was enough to find solar-sized Dyson Spheres out to 300 pc, a reach that encompasses a million solar-type stars.

  18. Pion transition form factor through Dyson-Schwinger equations

    NASA Astrophysics Data System (ADS)

    Raya, Khépani

    2016-10-01

    In the framework of Dyson-Schwinger equations (DSE), we compute the γ*γ→π0 transition form factor, G(Q2). For the first time, in a continuum approach to quantun chromodynamics (QCD), it was possible to compute G(Q2) on the whole domain of space-like momenta. Our result agrees with CELLO, CLEO and Belle collaborations and, with the well- known asymptotic QCD limit, 2ƒπ. Our analysis unifies this prediction with that of the pion's valence-quark parton distribution amplitude (PDA) and elastic electromagnetic form factor.

  19. Random functions via Dyson Brownian Motion: progress and problems

    NASA Astrophysics Data System (ADS)

    Wang, Gaoyuan; Battefeld, Thorsten

    2016-09-01

    We develope a computationally efficient extension of the Dyson Brownian Motion (DBM) algorithm to generate random function in C2 locally. We further explain that random functions generated via DBM show an unstable growth as the traversed distance increases. This feature restricts the use of such functions considerably if they are to be used to model globally defined ones. The latter is the case if one uses random functions to model landscapes in string theory. We provide a concrete example, based on a simple axionic potential often used in cosmology, to highlight this problem and also offer an ad hoc modification of DBM that suppresses this growth to some degree.

  20. Random functions via Dyson Brownian Motion: progress and problems

    SciTech Connect

    Wang, Gaoyuan; Battefeld, Thorsten

    2016-09-05

    We develope a computationally efficient extension of the Dyson Brownian Motion (DBM) algorithm to generate random function in C{sup 2} locally. We further explain that random functions generated via DBM show an unstable growth as the traversed distance increases. This feature restricts the use of such functions considerably if they are to be used to model globally defined ones. The latter is the case if one uses random functions to model landscapes in string theory. We provide a concrete example, based on a simple axionic potential often used in cosmology, to highlight this problem and also offer an ad hoc modification of DBM that suppresses this growth to some degree.

  1. Mount St. Helens and Kilauea volcanoes

    USGS Publications Warehouse

    Barrat, J.

    1989-01-01

    From the south, snow-covered Mount St. Helens looms proudly under a fleecy halo of clouds, rivaling the majestic beauty of neighboring Mount Rainer, Mount Hood, and Mount Adams. Salmon fishermen dot the shores of lakes and streams in the mountain's shadow, trucks loaded with fresh-cut timber barrel down backroads, and deer peer out from stands of tall fir trees. 

  2. Dyson-Schwinger equations : density, temperature and continuum strong QCD.

    SciTech Connect

    Roberts, C. D.; Schmidt, S. M.; Physics

    2000-01-01

    Continuum strong QCD is the application of models and continuum quantum field theory to the study of phenomena in hadronic physics, which includes; e.g., the spectrum of QCD bound states and their interactions; and the transition to, and properties of, a quark gluon plasma. We provide a contemporary perspective, couched primarily in terms of the Dyson-Schwinger equations but also making comparisons with other approaches and models. Our discourse provides a practitioners' guide to features of the Dyson-Schwinger equations [such as confinement and dynamical chiral symmetry breaking] and canvasses phenomenological applications to light meson and baryon properties in cold, sparse QCD. These provide the foundation for an extension to hot, dense QCD, which is probed via the introduction of the intensive thermodynamic variables: chemical potential and temperature. We describe order parameters whose evolution signals deconfinement and chiral symmetry restoration, and chronicle their use in demarcating the quark gluon plasma phase boundary and characterizing the plasma's properties. Hadron traits change in an equilibrated plasma. We exemplify this and discuss putative signals of the effects. Finally, since plasma formation is not an equilibrium process, we discuss recent developments in kinetic theory and its application to describing the evolution from a relativistic heavy ion collision to an equilibrated quark gluon plasma.

  3. 30 Cool Facts about Mount St. Helens

    USGS Publications Warehouse

    Driedger, Carolyn; Liz, Westby; Faust, Lisa; Frenzen, Peter; Bennett, Jeanne; Clynne, Michael

    2010-01-01

    Commemorating the 30th anniversary of the 1980 eruptions of Mount St. Helens 1-During the past 4,000 years, Mount St. Helens has erupted more frequently than any other volcano in the Cascade Range. 2-Most of Mount St. Helens is younger than 3,000 years old (younger than the pyramids of Egypt). 3-Some Native American names that refer to smoke at the volcano include- Lawala Clough, Low-We- Lat-Klah, Low-We-Not- Thlat, Loowit, Loo-wit, Loo-wit Lat-kla, and Louwala-Clough. 4-3,600 years ago-Native Americans abandoned hunting grounds devastated by an enormous eruption four times larger than the May 18, 1980 eruption. 5-1792-Captain George Vancouver named the volcano for Britain's ambassador to Spain, Alleyne Fitzherbert, also known as Baron St. Helens. 6-1975-U.S. Geological Survey geologists forecasted that Mount St. Helens would erupt again, 'possibly before the end of the century.' 7-March 20, 1980-A magnitude 4.2 earthquake signaled the reawakening of the volcano after 123 years. 8-Spring 1980-Rising magma pushed the volcano's north flank outward 5 feet per day. 9-Morning of May 18, 1980- The largest terrestrial landslide in recorded history reduced the summit by 1,300 feet and triggered a lateral blast. 10-Within 3 minutes, the lateral blast, traveling at more than 300 miles per hour, blew down and scorched 230 square miles of forest. 11-Within 15 minutes, a vertical plume of volcanic ash rose over 80,000 feet. 12-Afternoon of May 18, 1980-The dense ash cloud turned daylight into darkness in eastern Washington, causing streetlights to turn on in Yakima and Ritzville. 13-The volcanic ash cloud drifted east across the United States in 3 days and encircled Earth in 15 days. 14-Lahars (volcanic mudflows) filled rivers with rocks, sand, and mud, damaging 27 bridges and 200 homes and forcing 31 ships to remain in ports upstream. 15-The May 18, 1980 eruption was the most economically destructive volcanic event in U.S. history. 16-Small plants and trees beneath winter snow

  4. Crossing the Divide: Helen Keller and Yvonne Pitrois Dialogue on Diversity

    ERIC Educational Resources Information Center

    Hartig, Rachel

    2007-01-01

    How do those who are living with a difference most effectively cross the cultural divide and explain themselves to mainstream society? This is a central question raised by Yvonne Pitrois in her biography of Helen Keller, titled "Une nuit rayonnante: Helen Keller" [A Shining Night: Helen Keller]. Helen Keller responded to Pitrois' book in a…

  5. 40 Years in Applied Linguistics: An Interview with Alan Davies

    ERIC Educational Resources Information Center

    Kunnan, Antony John

    2005-01-01

    This article presents an interview with Professor Alan Davies who was born in Wales, studied at Oxford University and Birmingham University, and taught in Scotland at the University of Edinburgh, completing 40 years this year. Professor Davies has travelled widely to give invited talks and seminars, participate in applied linguistics conferences,…

  6. Astronaut Alan Bean deploys Lunar Surface Magnetometer on lunar surface

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, lunar module pilot, deploys the Lunar Surface Magnetometer (LSM) during the first Apollo 12 extravehicular activity on the Moon. The LSM is a component of the Apollo Lunar Surface Experiments Package (ALSEP). The Lunar Module can be seen in the left background.

  7. Astronaut Alan Bean doing acrobatics in OWS dome area

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Alan L. Bean, Skylab 3 commander, doing acrobatics in the dome area of the Orbital Workshop (OWS) on the space station cluster in Earth orbit. The dome area is about 22 feet in diameter and 19 feet from top to bottom.

  8. Astronaut Alan Bean with subpackages of the ALSEP during EVA

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, lunar module pilot, traverses with the two subpackages of the Apollo Lunar Surface Experiments Package (ALSEP) during the first Apollo 12 extravehicular activity (EVA). Bean deployed the ALSEP components 300 feet from the Lunar Module (LM). The LM and deployed erectable S-band antenna can be seen in the background.

  9. Astronaut Alan Bean holds Special Environmental Sample Container

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, lunar module pilot for the Apollo 12 lunar landing mission, holds a Special Environmental Sample Container filled with lunar soil collected during the extravehicular activity (EVA) in which Astronauts Charles Conrad Jr., commander, and Bean participated. Connrad, who took this picture, is reflected in the helmet visor of the lunar module pilot.

  10. Astronaut Owen Garriott trims hair of Astronaut Alan Bean

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Scientist-Astronaut Owen K. Garriott, Skylab 3 science pilot, trims the hair of Astronaut Alan L. Bean, commander, in this on-board photograph from the Skylab Orbital Workshop (OWS). Bean holds a vacuum hose to gather in loose hair.

  11. Critique as Homiletics: A Response to Alan Block

    ERIC Educational Resources Information Center

    Mayes, Clifford; Mayes, Pamela Blackwell; Williams, Ellen

    2004-01-01

    Alan Block's (2004) major criticism of the authors' study revolves around the notion that they have attempted to quantify their students' sense of calling in an existentially inauthentic, spiritually delimiting way. For, as he puts it, "identifications of presence are impossible." The authors cannot accept this pronouncement if only for the simple…

  12. Understanding the Scientific Enterprise: A Conversation with Alan Leshner

    ERIC Educational Resources Information Center

    Perkins-Gough, Deborah

    2007-01-01

    Understanding the nature of science is even more important than mastering its details, says Alan Leshner, Chief Executive Officer of the American Association for the Advancement of Science, in an interview with Educational Leadership. In this article, Leshner discusses the controversy about teaching evolution, and he asserts that demands to…

  13. Carbon humanism: Freeman Dyson and the looming battle between environmentalists and humanists

    NASA Astrophysics Data System (ADS)

    Schewe, Phillip F.

    2014-07-01

    Freeman Dyson has had a distinguished career as a scientist, but perhaps this notable body of work might be eclipsed in importance by his many writings about society, especially those dealing with the dilemma of how improved living standards can be brought about without despoiling the land. Dyson is one of the few prominent commentators who directly addresses what might shape up as a culture war between two viewpoints — environmentalism and humanism — that otherwise have many aims in common. The first part of this essay looks at the broad outline of Dyson's career while the second part looks more particularly at his contributions to the humanist debate.

  14. Carbon Humanism: Freeman Dyson and the Looming Battle Between Environmentalists and Humanists

    NASA Astrophysics Data System (ADS)

    Schewe, Phillip F.

    2014-04-01

    Freeman Dyson has had a distinguished career as a scientist, but perhaps this notable body of work might be eclipsed in importance by his many writings about society, especially those dealing with the dilemma of how improved living standards can be brought about without despoiling the land. Dyson is one of the few prominent commentators who directly addresses what might shape up as a culture war between two viewpoints -- environmentalism and humanism -- that otherwise have many aims in common. The first part of this essay looks at the broad outline of Dyson's career while the second part looks more particularly at his contributions to the humanist debate.

  15. Electrical impact of Mt. St. Helens

    SciTech Connect

    Stemler, G.E.; Batiste, A.R.

    1981-08-01

    Ash fallout from the Mount Saint Helens eruptions affected high-voltage transmission in a four-state area as volatile gases caused conductivity changes and corrosion. The Bonneville Power Authority (BPA) found that it was possible to maintain electric service except for a few short, localized outages. Cleaning ash from transformers and substations was the first priority. Tests were underway within 48 hours to determine ash characteristics and cleaning procedures. A summary to what happened and what was learned is presented in two lists. (DCK)

  16. Quantifying Correlations via the Wigner-Yanase-Dyson Skew Information

    NASA Astrophysics Data System (ADS)

    Fan, Yajing; Cao, Huaixin

    2016-09-01

    In this paper, based on a discussion about the Wigner-Yanase-Dyson (WYD) skew information, the measure F a, α ( ρ a b ) for correlations in terms of the WYD skew information is introduced and discussed. The following conclusions are obtained. For a classical-quantum state ρ a b , F a, α ( ρ a b )=0 if and only if ρ a b is a product state; F a, α ( ρ a b ) is locally unitary invariant and convex on the set of states with the fixed marginal ρ a ; F a, α ( ρ a b ) decreases under local random unitary operation on H b ; For a quantum-classical state ρ a b , F a, α ( ρ a b ) decreases under local operation on H b ; Lastly, F a, α ( ρ a b ) is computed for the pure states and the Bell-diagonal states, respectively.

  17. Dyson-Schwinger Approach to Strongly Coupled Theories

    NASA Astrophysics Data System (ADS)

    Popovici, Carina

    2013-03-01

    Although non-perturbative functional methods are often associated with low energy Quantum Chromodynamics, contemporary studies indicate that they provide reliable tools to characterize a much wider spectrum of strongly interacting many-body systems. In this paper, we aim to provide a modest overview on a few notable applications of Dyson-Schwinger equations to QCD and condensed matter physics. After a short introduction, we lay out some formal considerations and proceed by addressing the confinement problem. We discuss in some detail the heavy quark limit of Coulomb gauge QCD, in particular the simple connection between the non-perturbative Green's functions of Yang-Mills theory and the confinement potential. Landau gauge results on the infrared Yang-Mills propagators are also briefly reviewed. We then focus on less common applications, in graphene and high-temperature superconductivity. We discuss recent developments, and present theoretical predictions that are supported by experimental findings.

  18. The exact Laplacian spectrum for the Dyson hierarchical network

    PubMed Central

    Agliari, Elena; Tavani, Flavia

    2017-01-01

    We consider the Dyson hierarchical graph , that is a weighted fully-connected graph, where the pattern of weights is ruled by the parameter σ ∈ (1/2, 1]. Exploiting the deterministic recursivity through which is built, we are able to derive explicitly the whole set of the eigenvalues and the eigenvectors for its Laplacian matrix. Given that the Laplacian operator is intrinsically implied in the analysis of dynamic processes (e.g., random walks) occurring on the graph, as well as in the investigation of the dynamical properties of connected structures themselves (e.g., vibrational structures and relaxation modes), this result allows addressing analytically a large class of problems. In particular, as examples of applications, we study the random walk and the continuous-time quantum walk embedded in , the relaxation times of a polymer whose structure is described by , and the community structure of in terms of modularity measures. PMID:28067261

  19. Dyson-Schwinger equations : a tool for hadron physics.

    SciTech Connect

    Maris, P.; Roberts, C. D.; Physics; North Carolina State Univ.

    2003-06-01

    Dyson-Schwinger equations furnish a Poincare covariant framework within which to study hadrons. A particular feature is the existence of a nonperturbative, symmetry preserving truncation that enables the proof of exact results. The gap equation reveals that dynamical chiral symmetry breaking is tied to the long-range behavior of the strong interaction, which is thereby constrained by observables, and the pion is precisely understood, and seen to exist simultaneously as a Goldstone mode and a bound state of strongly dressed quarks. The systematic error associated with the simplest truncation has been quantified, and it underpins a one-parameter model efficacious in describing an extensive body of mesonic phenomena. Incipient applications to baryons have brought successes and encountered challenges familiar from early studies of mesons, and promise a covariant field theory upon which to base an understanding of contemporary large momentum transfer data.

  20. The exact Laplacian spectrum for the Dyson hierarchical network

    NASA Astrophysics Data System (ADS)

    Agliari, Elena; Tavani, Flavia

    2017-01-01

    We consider the Dyson hierarchical graph , that is a weighted fully-connected graph, where the pattern of weights is ruled by the parameter σ ∈ (1/2, 1]. Exploiting the deterministic recursivity through which is built, we are able to derive explicitly the whole set of the eigenvalues and the eigenvectors for its Laplacian matrix. Given that the Laplacian operator is intrinsically implied in the analysis of dynamic processes (e.g., random walks) occurring on the graph, as well as in the investigation of the dynamical properties of connected structures themselves (e.g., vibrational structures and relaxation modes), this result allows addressing analytically a large class of problems. In particular, as examples of applications, we study the random walk and the continuous-time quantum walk embedded in , the relaxation times of a polymer whose structure is described by , and the community structure of in terms of modularity measures.

  1. Vertex Sensitivity in the Schwinger-Dyson Equations of QCD

    SciTech Connect

    David J. Wilson, Michael R. Pennington

    2012-01-01

    The nonperturbative gluon and ghost propagators in Landau gauge QCD are obtained using the Schwinger-Dyson equation approach. The propagator equations are solved in Euclidean space using Landau gauge with a range of vertex inputs. Initially we solve for the ghost alone, using a model gluon input, which leads us to favour a finite ghost dressing in the nonperturbative region. In order to then solve the gluon and ghost equations simultaneously, we find that non-trivial vertices are required, particularly for the gluon propagator in the small momentum limit. We focus on the properties of a number vertices and how these differences influence the final solutions. The self-consistent solutions we obtain are all qualitatively similar and contain a mass-like term in the gluon propagator dressing in agreement with related studies, supporting the long-held proposal of Cornwall.

  2. Dyson Dots & Geoengineering: The Killer App Ad Astra

    NASA Astrophysics Data System (ADS)

    Kennedy, R. G.; Hughes, Eric; Roy, Kenneth I.; Fields, David E.

    No study of coping with climate change is complete without considering geoengineering. A "Dyson Dot" is one or more large (area ~700 K km2, >200 megatonne) lightsail(s) in a radiation-levitated non-Keplerian orbit(s) just sunward of the Sun-Earth Lagrange-1 point. The purpose of this syncretic concept is twofold: (I) As a parasol, it would reduce insolation on Earth by at least one-quarter of a percent (-3.4 W m-2), same as what caused 1.5°C drop during the "Little Ice Age" (~1550-1850) and same as the IPCC Third Report's mid-range value for global warming by 2050. The parasol transforms the "solar constant" to a controlled solar variable. (II) Hosting a ~50K km2 photovoltaic power station on its sunny side and relaying beamed power via maser to rectennas on a circumpolar Dymaxion grid, the system could displace over 300 EJ/a (~100 trillion kWh/yr) of fossil-fired power (total global demand for electricity forecast by 2050), while providing USD trillions in revenue from cheap clean energy sales (@1-3¢/kWh) to amortize the scheme. Total system efficiency compares favorably to automobiles; total system power density is comparable to nuclear power. This approach -- self-funding, "pay-as-you-go", minimally intrusive, scalable, complementary with a portfolio of other measures and above all reversible is not precluded by international treaty. Indeed geoengineering may be the best "killer app" to bootstrap orbital industry and humanity ad astra, because the terawattscale product is comparable to the power required for interstellar travel. If Tellurian spacefaring civilization bootstraps its exponential growth with multi-terawatt maser beams from such lightsails, there might eventually be enough of them to have a detectable effect on Sol's apparent luminosity at certain wavelengths, as seen from far away, similar to the eponymous Dyson Sphere, hence the moniker.

  3. 77 FR 74518 - Alan T. Waterman Award Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-14

    ... Alan T. Waterman Award Committee; Notice of Meeting In accordance with the Federal Advisory Committee...: Name: Alan T. Waterman Award Committee, 1172. Date and Time: January 11, 2013, 8:30a.m.-1:30 p.m. Place... Alan T. Waterman Award recipient. Agenda: To review and evaluate nominations as part of the...

  4. [A review of Dyson optical system in the measure of infrared imaging spectrum].

    PubMed

    Liu, Yu-juan; Tang, Yu-guo; Bayanheshig; Cui, Ji-cheng; Qi, Xiang-dong

    2012-02-01

    It is difficult for the traditional infrared imaging spectrometers to satisfy the requirement of high signal to noise ratio (SNR) and small size simultaneously. The new infrared remote sensing imaging spectrometers based on Dyson concentric optical configuration have the advantages of high aperture, high SNR, simpleness small volume and low weight. The Dyson imaging spectrometers can achieve high SNR, which is difficult for the traditional imaging spectrometers for infrared imaging spectrum. The present review introduces the beginning, the development and the present research of the Dyson imaging spectrometers, especially illustrates the principle of Dyson concentric spectrometer, difficulty during its manufacture and the application in the high-performance infrared remote sensing imaging spectrometers, providing a reference for the high-performance research of infrared remote sensing imaging spectrometers.

  5. Obituary: Helen Dodson Prince, 1905-2002

    NASA Astrophysics Data System (ADS)

    Lindner, Rudi Paul

    2009-01-01

    Helen Dodson Prince, a pioneer in the observation of solar flares, a pioneer in women's rise in the profession of astronomy, and a respected and revered educator of future astronomers, died on 4 February 2002 in Arlington, Virginia. Helen Dodson was born in Baltimore, Maryland, on 31 December 1905. Her parents were Helen Walter and Henry Clay Dodson. Helen went to Goucher College in nearby Towson with a full scholarship in mathematics. She turned to astronomy under the influence of a legendary teacher, Professor Florence P. Lewis, and she graduated in 1927. Funded by grants and private charity, she earned the Ph.D. in astronomy at the University of Michigan under the direction of Heber Doust Curtis in 1933. Dodson taught at Wellesley College from 1933 until 1943, when she went on leave to spend the last three years of World War II at the MIT Radiation Laboratory. She returned to Goucher after the war as professor of astronomy and mathematics, and in 1947 she came back to Michigan both as professor of astronomy and staff member of the McMath-Hulbert Observatory, of which she became associate director. In 1976 she retired from Michigan and spent her later years in Alexandria, Virginia. In 1932 Dodson held the Dean Van Meter fellowship from Goucher; in 1954 she received the Annie Jump Cannon Prize from the AAS; and in 1974 The University of Michigan honored her with its Faculty Distinguished Achievement Award. She published over 130 articles, mostly on her research specialty, solar flares. Dodson's interest in the Sun began at Michigan, although her dissertation was, like so many Michigan dissertations of the era, on stellar spectroscopy, "A Study of the Spectrum of 25 Orionis." She came to Michigan during the establishment and growth of the solar observatory at Lake Angelus, the creation of three gifted and industrious amateurs. Heber Curtis fostered the growth of the McMath-Hulbert enterprise and brought it into the University. Dodson's solar activity grew as a

  6. Alan E. Kazdin: Award for Distinguished Scientific Applications of Psychology.

    PubMed

    2011-11-01

    Presents Alan E. Kazdin, the 2011 winner of the American Psychological Association Award for Distinguished Scientific Applications of Psychology. "For outstanding and pathbreaking contributions to the understanding of the development, assessment, and treatment of psychopathology. Alan E. Kazdin's theoretically innovative, methodologically rigorous, and scientifically informed research has significantly advanced knowledge of child and adolescent psychopathologies such as depression and conduct problems. His writings on research strategies and methods have set a high standard for rigor in the field. His work and his ideas have had an enormous impact on the science, practice, and teaching of psychology, and his research has strengthened assessment and treatment of children and adolescents in scientific and clinical settings. His passion, energy, wisdom, and wit have inspired countless colleagues and students over the years, and his work will no doubt continue to do so for many generations to come." (PsycINFO Database Record (c) 2011 APA, all rights reserved).

  7. Characterizing metastable states beyond energies and lifetimes: Dyson orbitals and transition dipole moments.

    PubMed

    Jagau, Thomas-C; Krylov, Anna I

    2016-02-07

    The theoretical description of electronic resonances is extended beyond calculations of energies and lifetimes. We present the formalism for calculating Dyson orbitals and transition dipole moments within the equation-of-motion coupled-cluster singles and doubles method for electron-attached states augmented by a complex absorbing potential (CAP-EOM-EA-CCSD). The capabilities of the new methodology are illustrated by calculations of Dyson orbitals of various transient anions. We also present calculations of transition dipole moments between transient and stable anionic states as well as between different transient states. Dyson orbitals characterize the differences between the initial neutral and final electron-attached states without invoking the mean-field approximation. By extending the molecular-orbital description to correlated many-electron wave functions, they deliver qualitative insights into the character of resonance states. Dyson orbitals and transition moments are also needed for calculating experimental observables such as spectra and cross sections. Physically meaningful results for those quantities are obtained only in the framework of non-Hermitian quantum mechanics, e.g., in the presence of a complex absorbing potential (CAP), when studying resonances. We investigate the dependence of Dyson orbitals and transition moments on the CAP strength and illustrate how Dyson orbitals help understand the properties of metastable species and how they are affected by replacing the usual scalar product by the so-called c-product.

  8. Characterizing metastable states beyond energies and lifetimes: Dyson orbitals and transition dipole moments

    SciTech Connect

    Jagau, Thomas-C.; Krylov, Anna I.

    2016-02-07

    The theoretical description of electronic resonances is extended beyond calculations of energies and lifetimes. We present the formalism for calculating Dyson orbitals and transition dipole moments within the equation-of-motion coupled-cluster singles and doubles method for electron-attached states augmented by a complex absorbing potential (CAP-EOM-EA-CCSD). The capabilities of the new methodology are illustrated by calculations of Dyson orbitals of various transient anions. We also present calculations of transition dipole moments between transient and stable anionic states as well as between different transient states. Dyson orbitals characterize the differences between the initial neutral and final electron-attached states without invoking the mean-field approximation. By extending the molecular-orbital description to correlated many-electron wave functions, they deliver qualitative insights into the character of resonance states. Dyson orbitals and transition moments are also needed for calculating experimental observables such as spectra and cross sections. Physically meaningful results for those quantities are obtained only in the framework of non-Hermitian quantum mechanics, e.g., in the presence of a complex absorbing potential (CAP), when studying resonances. We investigate the dependence of Dyson orbitals and transition moments on the CAP strength and illustrate how Dyson orbitals help understand the properties of metastable species and how they are affected by replacing the usual scalar product by the so-called c-product.

  9. Astronaut Alan Bean assisted with egressing command module after landing

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, lunar module pilot, is assisted with egressing the Apollo 12 Command Module by a U.S. Navy underwater demolition team swimmer during recovery operations in the Pacific Ocean. Already in the life raft are Astronauts Charles Conrad Jr., commander; and Richard F. Gordon Jr., command module pilot. The Apollo 12 splashdown occured at 2:58 p.m., November 24, 1969 near American Samoa.

  10. Astronaut Alan Bean flies the Astronaut Maneuvering Equipment

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Alan L. Bean, Skylab 3 commander, flies the M509 Astronaut Maneuvering Equipment in the foreward dome area of the Orbital Workshop (OWS) on the space station cluster in Earth orbit. Bean is strapped in to the back-mounted, hand-controlled Automatically Stabilized Maneuvering Unit (ASMU). This ASMU exerperiment is being done in shirt sleeves. The dome area where the experiment is conducted is about 22 feet in diameter and 19 feet from top to bottom.

  11. Astronaut Alan Bean flies the Astronaut Maneuvering Equipment

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Alan L. Bean, Skylab 3 commander, flies the M509 Astronaut Maneuvering Equipment in the forward dome area of the Orbital Workshop (OWS) on the space station cluster in Earth orbit. Bean is strapped in to the back-mounted, hand-controlled Automatically Stabilized Maneuvering Unit (ASMU). This ASMU exerperiment is being done in shirt sleeves. The dome area where the experiment is conducted is about 22 feet in diameter and 19 feet from top to bottom.

  12. Editors' overview for the Alan Turner Memorial volume

    NASA Astrophysics Data System (ADS)

    O'Regan, Hannah J.; Elton, Sarah; Schreve, Danielle

    2014-07-01

    The papers presented here, in this special volume dedicated to the memory of Alan Turner (1947-2012), provide a glimpse of the multi-faceted ways in which the mammalian fossil record can be investigated. The authors of contributions in this Special Issue are by no means an exhaustive list of his international collaborators and colleagues, and indeed, many are not represented here, but the contents cover many of the topics and issues that were of central archaeological and wider Quaternary mammalian interest to Alan. Although the papers are not intended to provide a comprehensive overview of all techniques that can be applied, the set nevertheless reveals a snapshot of the state-of-the-art and of some of the methods that have the potential to bring much more of the past to life. Alan always sought to move beyond the 'stamp-collecting' approach of simply listing which taxa were present at a site, attempting to elucidate what the presence of those animals might mean in terms of palaeoecology. In particular, the span of Alan's career has seen major advances in our understanding of Quaternary mammalian biostratigraphy and palaeobiogeography, the widespread application of novel techniques such as ancient DNA, the development of high-precision geochronology and the discovery of new hominin species. The papers presented here reflect those developments and highlight interdisciplinary approaches, from examination of sediments to careful measurements of the fossils themselves, from modelling the presence of taxa at particular points in the Quaternary to examination of the similarities and differences in fauna within and between sites.

  13. Helen Keller Centers for Deaf-Blind Youth and Adults.

    ERIC Educational Resources Information Center

    American Annals of the Deaf, 2003

    2003-01-01

    This listing provides directory information for the national Helen Keller Center and its 10 regional offices. The centers provide extensive evaluative and rehabilitation services to people who are deaf and blind. (CR)

  14. Mount St. Helens' volcanic ash: hemolytic activity.

    PubMed

    Vallyathan, V; Mentnech, M S; Stettler, L E; Dollberg, D D; Green, F H

    1983-04-01

    Volcanic ash samples from four Mount St. Helens' volcanic eruptions were subjected to mineralogical, analytical, and hemolytic studies in order to evaluate their potential for cytotoxicity and fibrogenicity. Plagioclase minerals constituted the major component of the ash with free crystalline silica concentrations ranging from 1.5 to 7.2%. The in vitro hemolytic activity of the volcanic ash was compared to similar concentrations of cytotoxic and inert minerals. The ash was markedly hemolytic, exhibiting an activity similar to chrysotile asbestos, a known fibrogenic agent. The hemolysis of the different ash samples varied with particle size but not with crystalline silica concentration. The results of these studies taken in conjunction with the results of our animal studies indicate a fibrogenic potential of volcanic ash in heavily exposed humans.

  15. A visit to Mount St. Helens

    SciTech Connect

    Meadows, D.G.

    1994-04-01

    The May 18, 1980, eruption displaced roughly 2.6 km[sup 3] of rock and devastated more than 500 km[sup 2] of forest, mostly to the north of the mountain. Trees within 10--15 km of the mountain peak were burned and uprooted. Beyond that, high winds and flying debris created a blowdown zone. Up to 150 m of rock and ice covered some areas. Accumulations of ash were measured as much as 330 km from the volcano. Mud flows choked nearby rivers and streams. Two years later, the US Congress established the 44,000-hectare Mount St. Helens National Volcanic Monument. The Act essentially directed the USDA Forest Service to allow the area to recover naturally. The paper reviews what changes the ecosystem has been going through since the eruption and the lessons learned that suggest some new resource management techniques.

  16. In the wake of Mount St Helens.

    PubMed

    Nania, J; Bruya, T E

    1982-04-01

    On May 18, 1980, Mount St Helens, Washington State's most active volcano, erupted violently. Volcanic eruptions in recent geologic history have demonstrated tremendous environmental impact and caused significant loss of human life. Volcanic ash expelled during the eruption was deposited on much of eastern Washington and had a profound effect on local air quality. Although ash is relatively inert, analysis revealed a small but significant amount of free crystalline silica, the causative agent of silicosis. The fine particles of ash were of respirable size, and there was a remarkable increase in the volume of respiratory cases seen in emergency departments during the period of high airborne particulate levels. Numerous cases of injury indirectly related to the fall of ash were also seen. The long-term effect of exposure to this volcanic ash is unknown. A prompt, coordinated community medical response is necessary to protect the general population from the potential hazard of exposure to volcanic ash.

  17. In the wake of Mount St Helens

    SciTech Connect

    Nania, J.; Bruya, T.E.

    1982-04-01

    On May 18, 1980, Mount St Helens, Washington State's most active volcano, erupted violently. Volcanic eruptions in recent geologic history have demonstrated tremendous environmental impact and caused significant loss of human life. Volcanic ash expelled during the eruption was deposited on much of eastern Washington and had a profound effect on local air quality. Although ash is relatively inert, analysis revealed a small but significant amount of free crystalline silica, the causative agent of silicosis. The fine particles of ash were of respirable size, and there was a remarkable increase in the volume of respiratory cases seen in emergency departments during the period of high airborne particulate levels. Numerous cases of injury indirectly related to the fall of ash were also seen. The long-term effect of exposure to this volcanic ash is unknown. A prompt, coordinated community medical response is necessary to protect the general population from the potential hazard of exposure to volcanic ash.

  18. γ v NN^{*} Electrocouplings in Dyson-Schwinger Equations

    NASA Astrophysics Data System (ADS)

    Segovia, Jorge

    2016-11-01

    A symmetry preserving framework for the study of continuum Quantum Chromodynamics (QCD) is obtained from a truncated solution of the QCD equations of motion or QCD's Dyson-Schwinger equations (DSEs). A nonperturbative solution of the DSEs enables the study of, e.g., hadrons as composites of dressed-quarks and dressed-gluons, the phenomena of confinement and dynamical chiral symmetry breaking (DCSB), and therefrom an articulation of any connection between them. It is within this context that we present a unified study of Nucleon, Delta and Roper elastic and transition electromagnetic form factors, and compare predictions made using a framework built upon a Faddeev equation kernel and interaction vertices that possess QCD-like momentum dependence with results obtained using a symmetry-preserving treatment of a vector ⊗ vector contact-interaction. The comparison emphasises that experiment is sensitive to the momentum dependence of the running coupling and masses in QCD and highlights that the key to describing hadron properties is a veracious expression of DCSB in the bound-state problem.

  19. Retrieval Capabilities of Hierarchical Networks: From Dyson to Hopfield

    NASA Astrophysics Data System (ADS)

    Agliari, Elena; Barra, Adriano; Galluzzi, Andrea; Guerra, Francesco; Tantari, Daniele; Tavani, Flavia

    2015-01-01

    We consider statistical-mechanics models for spin systems built on hierarchical structures, which provide a simple example of non-mean-field framework. We show that the coupling decay with spin distance can give rise to peculiar features and phase diagrams much richer than their mean-field counterpart. In particular, we consider the Dyson model, mimicking ferromagnetism in lattices, and we prove the existence of a number of metastabilities, beyond the ordered state, which become stable in the thermodynamic limit. Such a feature is retained when the hierarchical structure is coupled with the Hebb rule for learning, hence mimicking the modular architecture of neurons, and gives rise to an associative network able to perform single pattern retrieval as well as multiple-pattern retrieval, depending crucially on the external stimuli and on the rate of interaction decay with distance; however, those emergent multitasking features reduce the network capacity with respect to the mean-field counterpart. The analysis is accomplished through statistical mechanics, Markov chain theory, signal-to-noise ratio technique, and numerical simulations in full consistency. Our results shed light on the biological complexity shown by real networks, and suggest future directions for understanding more realistic models.

  20. Propositions of Schroedinger and Dyson: Implications for program development in secondary school biology

    NASA Astrophysics Data System (ADS)

    Kaiser-Antonowich, Roxanne

    The purpose of this study is to ascertain whether there is a linkage between the special case of New Jersey Core Curriculum Content Standards for Science as they represent biology, and the propositions of Schrodinger and Dyson. The aim of the study is to derive implications for program development in secondary school biology. Critical review reveals that the New Jersey Core Curriculum Content Standards for Science do not provide linkage to biology and the propositions of Erwin Schrodinger and Freeman Dyson. If life is characterized by replication and metabolism, then Schrodinger and Dyson present a plausible argument toward describing life as reciprocal forms and functions that characterize a living system. Examination revealed that Schrodinger, in stating that life can be characterized by the processes of replication and metabolism, emphasized replication and virtually ignored metabolism. Dyson also acknowledges the relationship of metabolism to replication. Examination of Dyson revealed that rather than describing metabolism as a characterization of life, he advances the origin of metabolism and its connection to the origin of life. If metabolism and replication characterize life and if the origin of life is within the domain of biology, then Schrodinger's and Dyson's propositions are central to the characterization of biology. If program development for secondary school biology requires accurate description of its domain, then it is necessary to acknowledge the complexity of life forms. There is as yet no universally accepted general description of life and no reasonable consensus for something to be termed living. If the conditions for something to be termed living are the capacity to reproduce self as maintained by Schrodinger, and the capacity for self-organization preserved through natural selection as proposed by Dyson, then these conditions form the basis for program development.

  1. Astronaut Alan Bean flies the Astronaut Maneuvering Equipment

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Alan L. Bean, Skylab 3 commander, flies the M509 Astronaut Maneuvering Equipment in the foreward dome area of the Orbital Workshop (OWS) on the space station cluster in Earth orbit. Bean is strapped in to the back-mounted, hand-controlled Automatically Stabilized Maneuvering Unit (ASMU). He is wearing a pressure suit for this run of the M509 experiment, but other ASMU tests are done in shirt sleeves. The dome area where the experiment is conducted is about 22 feet in diameter and 19 feet from top to bottom.

  2. Effect of Titanium Doping of Al(111) Surfaces on Alane Formation Mobility, and Desorption

    SciTech Connect

    Chopra I. S.; Graetz J.; Chaudhuri, S.; Veyan, J.-F.; Chabal, Y. J.

    2011-07-05

    Alanes are critical intermediates in hydrogen storage reactions for mass transport during the formation of complex metal hydrides. Titanium has been shown to promote hydrogen desorption and hydrogenation, but its role as a catalyst is not clear. Combining surface infrared (IR) spectroscopy and density functional theory (DFT), the role of Ti is explored during the interaction of atomic hydrogen with Ti-doped Al(111) surfaces. Titanium is found to reduce the formation of large alanes, due to a decrease of hydrogen mobility and to trapping of small alanes on Ti sites, thus hindering oligomerization. For high doping levels ({approx}0.27 ML Ti) on Al(111), only chemisorbed AlH{sub 3} is observed on Ti sites, with no evidence for large alanes. Titanium also dramatically lowers the desorption temperature of large alanes from 290 to 190 K, due to a more restricted translational motion of these alanes.

  3. Quark scalar, axial and tensor charges in the Schwinger-Dyson formalism

    SciTech Connect

    Yamanaka, Nodoka

    2016-01-22

    The quark scalar, axial and tensor charges of nucleon are calculated in the Schwinger-Dyson formalism. We first calculate these charges in the rainbow-ladder truncation using the IR cut quark-gluon vertex, and show that the result is in agreement with the known data. We then perform the same calculation with the phenomenological IR singular quark-gluon vertex. In this case, the Schwinger-Dyson equation does not converge. We show that this result suggests the requirement of additional corrections to the rainbow-ladder truncation, due to the interaction between quark and gluons in the deep IR region.

  4. Solving the Dyson-Schwinger equation around its first singularities in the Borel plane

    NASA Astrophysics Data System (ADS)

    Clavier, Pierre J.; Bellon, Marc P.

    2016-12-01

    The Dyson-Schwinger equation of the massless Wess-Zumino model is written as an equation over the anomalous dimension of the theory. Its asymptotic behavior is derived and the procedure to compute the perturbations of this asymptotic behavior is detailed. This procedure uses ill-defined objects. To solve this, the Dyson-Schwinger equation is rewritten for the Borel plane. It is shown that the illdefined procedure in the physical plane can be applied in the Borel plane. Other results obtained in the Borel plane are stated and the proof for one result is described.

  5. Towards a model of pion generalized parton distributions from Dyson-Schwinger equations

    SciTech Connect

    Moutarde, H.

    2015-04-10

    We compute the pion quark Generalized Parton Distribution H{sup q} and Double Distributions F{sup q} and G{sup q} in a coupled Bethe-Salpeter and Dyson-Schwinger approach. We use simple algebraic expressions inspired by the numerical resolution of Dyson-Schwinger and Bethe-Salpeter equations. We explicitly check the support and polynomiality properties, and the behavior under charge conjugation or time invariance of our model. We derive analytic expressions for the pion Double Distributions and Generalized Parton Distribution at vanishing pion momentum transfer at a low scale. Our model compares very well to experimental pion form factor or parton distribution function data.

  6. Alan Frederick Williams 25 May 1945 - 9 April 1992.

    PubMed

    Crumpton, Michael J

    2004-01-01

    Alan WIlliams is noted for his seminal contributions to the field of leucocyte membrane glycoproteins (that is, differentiation antigens). He played a leading role in the development of approaches to the purification and structural analysis of cell surface antigens. His comprehensive characterization of the structure of the rat Thy-1 antigen, as well as the application of monoclonal antibodies to the designation and subsequent isolation of multiple new leucocyte antigens, were exemplary. His discovery that Thy-1 is structurally related to immunoglobulin led directly to the concept of the immunoglobulin (Ig) superfamily, which embraced a spectrum of cell surface molecules involved in a variety of cell recognition systems. He was a very strong advocate in support of the rat as a model animal in the study of immunological phenomena. He was energetic and courageous, as well as radiating enthusiasm for immunological research, inspiring others, critically analysing accepted dogmas and setting high standards. In short, he was a brilliant research scientist.

  7. Psychiatric reactions to disaster: the Mount St. Helens experience.

    PubMed

    Shore, J H; Tatum, E L; Vollmer, W M

    1986-05-01

    Following the 1980 Mount St. Helens volcanic eruption, psychiatric reactions were studied in the disaster area and in a control community. Using the new criterion-based diagnostic method for psychiatric epidemiologic research, the Diagnostic Interview Schedule, the authors found a significant prevalence of disaster-related psychiatric disorders. These Mount St. Helens disorders included depression, generalized anxiety, and posttraumatic stress reaction. There was a progressive "dose-response" relationship in the comparison of control, low-exposure, and high-exposure groups. The dose-response pattern occurred among both the bereaved and the property-loss victims.

  8. Mineral dust transport toward Hurricane Helene (2006)

    NASA Astrophysics Data System (ADS)

    Schwendike, Juliane; Jones, Sarah C.; Vogel, Bernhard; Vogel, Heike

    2016-05-01

    This study investigates the transport of mineral dust from its source regions in West Africa toward the developing tropical cyclone Helene (2006) and diagnoses the resulting properties of the air influencing the tropical cyclonegenesis. The model system COSMO-ART (Consortium for Small-Scale Modelling-Aerosols and Reactive Trace gases) in which the emission and transport of mineral dust as well as the radiation feedback are taken into account, was used. The emission of mineral dust between 9 and 14 September 2006 occurred in association with the relatively strong monsoon flow and northeasterly trade winds, with gust fronts of convective systems over land, and with the Atlantic inflow. Additionally, increased surface wind speed was linked to orographical effects at the Algerian Mountains, Atlas Mountains, and the Hoggar. The dust, as part of the Saharan air layer, is transported at low levels by the monsoon flow, the Harmattan, the northeasterly trade winds, and the monsoon trough, and is transported upward in the convergence zone between Harmattan and monsoon flow, in the baroclinic zone along the West African coastline, and by convection. At around 700 hPa the dust is transported by the African easterly jet. Dry and dust-free air is found to the north-northwest of the developing tropical depression due to descent in an anticyclone. Based on the model data, it was possible to distinguish between dry (from the anticyclone), dry and dusty (from the Harmattan and northeasterly trade winds), and dusty and moist air (from the monsoon flow and in the tropical depression due to convection).

  9. Foreword: R. Alan Plumb—A brief biographical sketch and personal tribute

    NASA Astrophysics Data System (ADS)

    Sobel, Adam H.

    Raymond Alan Plumb was born on 30 March 1948 in Ripon, Yorkshire, United Kingdom. He is not known for talking about his childhood, but we do know that he liked to sing and was part of a group called the Avocets. Alan did his undergraduate degree in Manchester, obtaining his BS Physics with I Honors in 1969. He was offered a fellowship to do his PhD at Cambridge, but he had a negative reaction to a visit there and decided to stay at Manchester, where he pursued his studies in Astronomy, completing his PhD in 1972. With a highly disengaged thesis advisor, Alan was largely self-taught as a graduate student. He studied planetary atmospheres. Toward the end of his studies, Alan participated in a summer school organized by Steve Thorpe in Bangor,Wales, where he came into contact with the broader international community in geophysical fluid dynamics. Raymond Hide became particularly influential and became Alan's mentor at the UK Meteorological Office (UKMO), where Alan worked for 4 years after receiving his PhD. Another key early influence whom Alan met then was Michael McIntyre. McIntyre's interest and encouragement were very important to Alan at that early time and would continue to be so in later years, including after his move to Australia.

  10. Michael Eric Dyson: A Scholar and a Hip-Hop Preacher.

    ERIC Educational Resources Information Center

    Fletcher, Michael A.

    2000-01-01

    Introduces Michael Eric Dyson, an African American man who grew up in the ghetto and eventually received a PhD from Princeton University. Today, he is a professor at DePaul University, the author of a radically revisionist new biography of Martin Luther King, Jr., a lecturer and talk show guest, a Baptist preacher, and a self-styled hip-hop…

  11. Learning from Mount St. Helens: Catastrophic Events as Educational Opportunities.

    ERIC Educational Resources Information Center

    Anderson, Jeremy

    1987-01-01

    Maintains that the study of catastrophic events should be given temporary precedence over the normal curriculum in order to help students understand the causes, consequences, and recovery alternatives, deal with trauma, and allay fear of recurrence and feelings of helplessness. Uses the May 1980 eruption of Mount St. Helens to demonstrate how…

  12. Boise Inc. St. Helens Paper Mill Achieves Significant Fuel Savings

    SciTech Connect

    Not Available

    2008-05-01

    This case study describes how the Boise Inc. paper mill in St. Helens, Oregon, achieved annual savings of approximately 154,000 MMBtu and more than $1 million after receiving a DOE Save Energy Now energy assessment and implementing recommendations to improve the efficiency of its steam system.

  13. Boise Inc. St. Helens Paper Mill Achieves Significant Fuel Savings

    SciTech Connect

    2008-05-01

    This case study describes how the Boise Inc. paper mill in St. Helens, Oregon, achieved annual savings of approximately 154,000 MMBtu and more than $1 million. This was accomplished after receiving a DOE Save Energy Now energy assessment and implementing recommendations to improve the efficiency of its steam system.

  14. Blind Rage: An Open Letter to Helen Keller

    ERIC Educational Resources Information Center

    Kleege, Georgina

    2007-01-01

    In a letter addressed to Helen Keller, the author discusses the frustrations of being blind in the modern-day world. She reflects on the seeming pettiness of her complaints next to the difficulties Keller would have faced, especially given all of the new technologies and accommodations available to the blind. She wonders how Keller dealt with her…

  15. Mount St. Helens related aerosol properties from solar extinction measurements

    SciTech Connect

    Michalsky, J.J.; Kleckner, E.W.; Stokes, G.M.

    1980-11-01

    The optical extinction due to the introduction of aerosols and aerosol-precursors into the troposphere and stratosphere during the major eruptive phase of Mount St. Helens, Washington, is quantified. The concentration is on the two-week period centered on the major eruption of 22 July 1980. (ACR)

  16. Mount st. Helens volcano: recent and future behavior.

    PubMed

    Crandell, D R; Mullineaux, D R; Rubin, M

    1975-02-07

    Mount St. Helens volcano in southern Washington has erupted many times during the last 4000 years, usually after brief dormant periods. This behavior pattern. suggests that the volcano, last active in 1857, will erupt again-perhaps within the next few decades. Potential volcanic hazards of several kinds should be considered in planning for land use near the volcano.

  17. Pulmonary toxicity of Mount St. Helens volcanic ash

    SciTech Connect

    Sanders, C.L.; Gelman, A.; Conklin, A.; Adee, R.R.

    1980-01-01

    The distribution, clearance, translocation and pathobiology of intratracheally instilled (IT) Mount St. Helens volcanic ash samples are discussed and compared with NIOSH quartz and Ritzville sandy loam samples as positive controls and saline as a negative control. Comparisons are also made with similar studies in rats using chrysotile asbestos, beryllium oxide and cadmium oxide.

  18. Mt. St. Helens Seen Close Up on May 18.

    ERIC Educational Resources Information Center

    Stoffel, Dorothy B.; Stoffel, Keith L.

    1980-01-01

    Describes eruption steps in Mt. St. Helens' top surface deformation: constant shaking of earthquakes, minor steaming from vents, and sudden catastrophic eruption. Explosions caused black projectile-laden ash clouds, vertical white steam clouds, and vertical gray ash-laden clouds. (SK)

  19. Sir Alan Sterling Parkes: 10 September 1900 - 17 July 1990.

    PubMed

    Polge, Christopher

    2006-01-01

    Alan Parkes was one of the most influential figures in the field of reproductive biology in the twentieth century. He had a huge impact on its growth and development during that time, and the legacy of his work still remains.His research was highly innovative and original because of his imaginative and inquiring mind, which, coupled with an entrepreneurial bent, led him into several very different fields and into unchartered waters. He played a leading role in the spectacular rise of reproductive endocrinology in Britain in the 1920s and 1930s when the nature and activity of many of the reproductive processes in animals and humans and was an essential factor in the development of methods for their control. Even more pioneering was his research in low-temperature biology in the years after World War II. This was sparked off by the discovery that glycerol had a remarkable property of protecting spermatozoa against damage during freezing and storage at very low temperatures. Far-reaching applications arose from this discovery, especially in the preservation of bull semen, which led to a worldwide revolution in artificial insemination in cattle. Later, many other cells and tissues were also successfully frozen, including red blood cells, ovarian tissue and bone marrow, and a new branch of biological science, which became known as 'cryobiology', was born, Effects of deep hypothermia, including freezing, on whole animals were also investigated at that time. Having successfully launched a new area of science, it was characteristic of Alan Parkes to switch to new fields. First he became interested in the influence of pheromones on mammalian reproduction. Then, resuming a long-standing interest in comparative aspects of reproductive physiology in British wild mammals, he became involved in the work of the Nuffield Unit of Tropical Animal Ecology in Uganda, where similar studies were carried out on African animals. Even after retirement from the academic field, he was for

  20. Astronauts Alan Bean and Charles Conrad on Lunar Surface

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn Five launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what's known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Their lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. In this photograph, one of the astronauts on the Moon's surface is holding a container of lunar soil. The other astronaut is seen reflected in his helmet. Apollo 12 safely returned to Earth on November 24, 1969.

  1. Stereo Pair, Mount St Helens, Washington State

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On May 18, 1980, Mount St. Helens catastrophically erupted, causing the worst volcanic disaster in the recorded history of the United States. An earthquake shook loose the northern flank of the volcano, and about 2.8 cubic kilometers (0.67 cubic miles) of rock slid downslope in the world's largest recorded landslide. The avalanche released pressure on the volcano and unleashed a huge explosion, which was directed generally northward. The mountain ultimately lost 227 meters (1314 feet) of its height and devastated about 600 square kilometers (230 square miles) of forest.

    This stereoscopic view combines a Landsat satellite image with a Shuttle Radar Topography Mission elevation model to show the volcanic crater and most of the zone of devastation. Areas now relatively devoid of vegetation appear bright. Note the landslide debris clogging the northern drainages and forming natural dams (or enlarging previously existing ones). Also note the volcanic dome built up within the crater, and the extensive floating debris still present on Spirit Lake (northeast of the crater) 12 years after the eruption.

    This stereoscopic image was generated by draping a Landsat satellite image over a Shuttle Radar Topography Mission digital elevation model. Two differing perspectives were then calculated, one for each eye. They can be seen in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing or by downloading and printing the image pair and viewing them with a stereoscope. When stereoscopically merged, the result is a vertically exaggerated view of Earth's surface in its full three dimensions.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).

    Elevation data used in this image was

  2. Anaglyph, Mount St Helens, Washington State

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On May 18, 1980, Mount St. Helens catastrophically erupted, causing the worst volcanic disaster in the recorded history of the United States. An earthquake shook loose the northern flank of the volcano, and about 2.8 cubic kilometers (0.67 cubic miles) of rock slid downslope in the world's largest recorded landslide. The avalanche released pressure on the volcano and unleashed a huge explosion, which was directed generally northward. The mountain ultimately lost 227 meters (1314 feet) of its height and devastated about 600 square kilometers (230 square miles) of forest.

    This anaglyph combines a Landsat satellite image with a Shuttle Radar Topography Mission elevation model to show the volcanic crater and most of the zone of devastation. Areas now relatively devoid of vegetation appear bright. Note the landslide debris clogging the northern drainages and forming natural dams (or enlarging previously existing ones). Also note the volcanic dome built up within the crater, and the extensive floating debris still present on Spirit Lake (northeast of the crater) 12 years after the eruption.

    The stereoscopic effect of this anaglyph was created by first draping a Landsat satellite image over a digital elevation data from the Shuttle Radar Topography Mission (SRTM), and then generating two differing perspectives, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot)resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space

  3. Mount St. Helens Project. Cowlitz River Levee Systems, 2009 Level of Flood Protection Update Summary

    DTIC Science & Technology

    2010-02-04

    mountainous region between Mount St. Helens and Mt. Rainier to the Columbia River at Longview, WA. The upstream-most levee is at Castle Rock where a... Mount St. Helens Project Cowlitz River Levee Systems 2009 Level of Flood Protection Update Summary Cowlitz River at Longview... Mount St. Helens Project. Cowlitz River Levee Systems, 2009 Level of Flood Protection Update Summary 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  4. Generalized average local ionization energy and its representations in terms of Dyson and energy orbitals.

    PubMed

    Kohut, Sviataslau V; Cuevas-Saavedra, Rogelio; Staroverov, Viktor N

    2016-08-21

    Ryabinkin and Staroverov [J. Chem. Phys. 141, 084107 (2014)] extended the concept of average local ionization energy (ALIE) to correlated wavefunctions by defining the generalized ALIE as Ī(r)=-∑jλj|fj(r)|(2)/ρ(r), where λj are the eigenvalues of the generalized Fock operator and fj(r) are the corresponding eigenfunctions (energy orbitals). Here we show that one can equivalently express the generalized ALIE as Ī(r)=∑kIk|dk(r)|(2)/ρ(r), where Ik are single-electron removal energies and dk(r) are the corresponding Dyson orbitals. The two expressions for Ī(r) emphasize different physical interpretations of this quantity; their equivalence enables one to calculate the ALIE at any level of ab initio theory without generating the computationally expensive Dyson orbitals.

  5. Interface effect in QCD phase transitions via Dyson-Schwinger equation approach

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Liu, Yu-xin

    2016-11-01

    With the chiral susceptibility criterion, we obtain the phase diagram of strong-interaction matter in terms of temperature and chemical potential in the framework of Dyson-Schwinger equations of QCD. After calculating the pressure and some other thermodynamic properties of the matter in the Dyson-Schwinger method, we get the phase diagram in terms of temperature and baryon number density. We also obtain the interface tension and the interface entropy density to describe the inhomogeneity of the two phases in the coexistence region of the first-order phase transition. After including the interface effect, we find that the total entropy density of the system increases in both the deconfinement (dynamical chiral symmetry restoration) and the hadronization (dynamical chiral symmetry breaking) processes of the first-order phase transitions and thus solve the entropy puzzle in the hadronization process.

  6. PREFACE: International Conference on Dynamics of Systems on the Nanoscale (DySoN 2012)

    NASA Astrophysics Data System (ADS)

    Solov'yov, Andrey V.

    2013-06-01

    Conference logo The Second International Conference 'Dynamics of Systems on the Nanoscale' (DySoN 2012) took place in Saint Petersburg, Russia between 30 September and 4 October 2012. The venue was the Courtyard by Marriott St Petersburg Vasilievsky Hotel, 2nd line of Vasilievsky Island 61/30A, 199178. The conference was organized by the Frankfurt Institute for Advanced Studies - Goethe University, A F Ioffe Physical-Technical Institute and Saint Petersburg State Polytechnic University. This DySoN conference has been built upon a series of International Symposia 'Atomic Cluster Collisions: structure and dynamics from the nuclear to the biological scale' (ISACC 2003, ISACC 2007, ISACC 2008, ISACC 2009 and ISACC 2011). During these meetings it has become clear that there is a need for an interdisciplinary conference covering a broader range of topics than just atomic cluster collisions, related to the Dynamics of Systems on a Nanoscale. Therefore, in 2010 it was decided to launch a new conference series under the title 'Dynamics of Systems on the Nanoscale'. The first DySoN conference took place at the National Research Council, Rome, Italy in 2010. The DySoN 2012 is the second conference in this series. The DySoN 2012 Conference promoted the growth and exchange of interdisciplinary scientific information on the structure, formation and dynamics of animate and inanimate matter on the nanometer scale. There are many examples of complex many-body systems of micro- and nanometer scale size exhibiting unique features, properties and functions. These systems may have very different nature and origin, e.g. atomic and molecular clusters, nanoobjects, ensembles of nanoparticles, nanostructures, biomolecules, biomolecular and mesoscopic systems. A detailed understanding of the structure and dynamics of these systems on the nanometer scale is an important fundamental task, the solution of which is necessary in numerous applications of nano- and biotechnology, material science

  7. Astronaut Alan B. Shepard has his blood pressure and temperature checked

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Astronaut Alan B. Shepard has his blood pressure and temperate checked prior to his Mercury-Redstone 3 (MR-3) mission, the first American manned space flight. The attending physician is Dr. William K. Douglas.

  8. Watching the dehydrogenation of alane (AlH3) in a TEM

    NASA Astrophysics Data System (ADS)

    Beattie, Shane; Humphries, Terry; Weaver, Louise; McGrady, Sean

    2008-03-01

    Alane (AlH3) is a promising candidate for on-board hydrogen storage applications. Its theoretical gravimetric capacity is 10.1 percent and decomposition is achieved with modest heating (60-200 deg C). We studied the dehydrogenation of alane, insitu, in a TEM. Alane powder was loaded into the TEM and heated at 80 deg C. We were able to `watch' the dehydrogenation of the alane to aluminum. Electron diffraction and dark fiend images are used to show how and where the aluminum crystallites grow. Although crystalline aluminum phases were successfully identified, some of the sample remained amorphous. We will discuss the nature of the amorphous material and present images clearly identifying the nature of the aluminum crystallites.

  9. Towards the solution of Schwinger-Dyson equations in Minkowski space

    NASA Astrophysics Data System (ADS)

    Sauli, V.

    2001-08-01

    This is an abstract of authors PhD thesis which is devoted to studies of quantum field models with strong coupling. The Schwinger-Dyson equations (SDEs) in momentum representation are solved in Minkowski space. The original version of the paper hep-ph/0108160 is included in. The full text of author's PhD thesis can be found at this WWW: 'http://gemma.ujf.cas.cz/~sauli/papers.html'

  10. Uncertainty relation of mixed states by means of Wigner-Yanase-Dyson information

    SciTech Connect

    Li, D.; Li, X.; Wang, F.; Huang, H.; Li, X.; Kwek, L. C.

    2009-05-15

    The variance of an observable in a quantum state is usually used to describe Heisenberg uncertainty relation. For mixed states, the variance includes quantum and classical uncertainties. By means of the skew information and the decomposition of the variance, a stronger uncertainty relation was presented by Luo [ Phys. Rev. A 72, 042110 (2005)]. In this paper, by using Wigner-Yanase-Dyson information which is a generalization of the skew information, we propose a general uncertainty relation of mixed states.

  11. Imaging the Mount St. Helens Magmatic Systems using Magnetotellurics

    NASA Astrophysics Data System (ADS)

    Hill, G. J.; Caldwell, T. G.; Heise, W.; Bibby, H. M.; Chertkoff, D. G.; Burgess, M. K.; Cull, J. P.; Cas, R. A.

    2009-05-01

    A detailed magnetotelluric survey of Mount St. Helens shows that a conduit like zone of high electrical conductivity beneath the volcano is connected to a larger zone of high conductivity at 15 km depth that extends eastward to Mount Adams. We interpret this zone to be a region of connected melt that acts as the reservoir for the silicic magma being extruded at the time of the magnetotelluric survey. This interpretation is consistent with a mid-crustal origin for the silicic component of the Mount St. Helens' magmas and provides an elegant explanation for a previously unexplained feature of the seismicity observed at the time of the catastrophic eruption in 1980. This zone of high mid-crustal conductivity extends northwards to near Mount Rainier suggesting a single region of connected melt comparable in size to the largest silicic volcanic systems known.

  12. Effects of volcanism on the glaciers of Mount St. Helens

    USGS Publications Warehouse

    Brugman, Melinda M.; Post, Austin

    1981-01-01

    The cataclysmic eruption of Mount St. Helens May 18, 1980, removed 2.9 km2 (about 0.13 km3) of glacier snow and ice including a large part of Shoestring, Forsyth, Wishbone, Ape, Nelson, and all of Loowit and Leschi Glaciers. Minor eruptions and bulging of the volcano from March 27 to May 17 shattered glaciers which were on the deforming rock and deposited ash on other glaciers. Thick ash layers persisted after the May 18 eruption through the summer on most of the remaining snow and ice, and protected winter snow from melting on Swift and Dryer Glaciers. Melting and recrystalization of snow and ice surviving on Mount St. Helens could cause and lubricate mudflows and generate outburst floods. Study of glaciers that remain on this active volcano may assist in recognizing potential hazards on other volcanoes and lead to new contributions to knowledge of the transient response of glaciers to changes in mass balance or geometry.

  13. Effects of volcanism on the glaciers of Mount St. Helens

    NASA Astrophysics Data System (ADS)

    Brugman, M. M.; Post, A.

    The cataclysmic eruption of Mount St. Helens May 18, 1980, removed 2.9 sq/km of glacier snow and ice including a large part of Shoestring Forsyth, Wishbone, Ape, Nelson, and all of Loowit and Leschi Glaciers. Minor eruptions and bulging of the volcano from March 27 to May 17 shattered glaciers which were on the deforming rock and deposited ash on other glaciers. Thick ash layers persisted after the May 18 eruption through the summer on most of the remaining snow and ice, and protected winter snow from melting on Swift and Dryer Glaciers. Melting and recrystallization of snow and ice surviving on Mount St. Helens could cause and lubricate mud flows and generate outburst floods.

  14. CrasyDSE: A framework for solving Dyson-Schwinger equations.

    PubMed

    Huber, Markus Q; Mitter, Mario

    2012-11-01

    Dyson-Schwinger equations are important tools for non-perturbative analyses of quantum field theories. For example, they are very useful for investigations in quantum chromodynamics and related theories. However, sometimes progress is impeded by the complexity of the equations. Thus automating parts of the calculations will certainly be helpful in future investigations. In this article we present a framework for such an automation based on a C++ code that can deal with a large number of Green functions. Since also the creation of the expressions for the integrals of the Dyson-Schwinger equations needs to be automated, we defer this task to a Mathematica notebook. We illustrate the complete workflow with an example from Yang-Mills theory coupled to a fundamental scalar field that has been investigated recently. As a second example we calculate the propagators of pure Yang-Mills theory. Our code can serve as a basis for many further investigations where the equations are too complicated to tackle by hand. It also can easily be combined with DoFun, a program for the derivation of Dyson-Schwinger equations.

  15. Second-order many-body perturbation expansions of vibrational Dyson self-energies.

    PubMed

    Hermes, Matthew R; Hirata, So

    2013-07-21

    Second-order many-body perturbation theories for anharmonic vibrational frequencies and zero-point energies of molecules are formulated, implemented, and tested. They solve the vibrational Dyson equation self-consistently by taking into account the frequency dependence of the Dyson self-energy in the diagonal approximation, which is expanded in a diagrammatic perturbation series up to second order. Three reference wave functions, all of which are diagrammatically size consistent, are considered: the harmonic approximation and diagrammatic vibrational self-consistent field (XVSCF) methods with and without the first-order Dyson geometry correction, i.e., XVSCF[n] and XVSCF(n), where n refers to the truncation rank of the Taylor-series potential energy surface. The corresponding second-order perturbation theories, XVH2(n), XVMP2[n], and XVMP2(n), are shown to be rigorously diagrammatically size consistent for both total energies and transition frequencies, yield accurate results (typically within a few cm(-1) at n = 4 for water and formaldehyde) for both quantities even in the presence of Fermi resonance, and have access to fundamentals, overtones, and combinations as well as their relative intensities as residues of the vibrational Green's functions. They are implemented into simple algorithms that require only force constants and frequencies of the reference methods (with no basis sets, quadrature, or matrix diagonalization at any stage of the calculation). The rules for enumerating and algebraically interpreting energy and self-energy diagrams are elucidated in detail.

  16. [Study and design on Dyson imaging spectrometer in spectral broadband with high resolution].

    PubMed

    Yan, Ling-Wei

    2014-04-01

    The paper designs and improves a telecentric imaging spectrometer, the Dyson imaging spectrometer. The optical structure of the imaging spectrometer is simple and compact, which is only composed of a hemispherical lens and a concave grating. Based on the Rowland circle and refraction theory, the broadband anastigmatic imaging condition of Dyson imaging spectrometer which is the ratio of the grating radius and hemispherical lens radius has been analyzed. By imposing this condition for two different wavelengths, the parameters of the optical system presenting low aberrations and excellent imaging quality are obtained. To make the design spectrometer more suitable for the engineering application, the paper studies the method making the detector not to attach the surface of the hemispherical lens. A design example using optimal conditions was designed to prove our theory. The Dyson imaging spectrometer of which the imaging RMS radii are less than 2.5 microm and the advanced spectrometer of which the imaging RMS radii are less than 8 microm, with NA 0.33, waveband 0.38-1.7 microm and the slit length 15 mm, have been obtained. The design method and results are more feasible and predominant, and can be applied in the areas of the industry and remote sensing.

  17. Lead 210 and polonium 210 in Mount St. Helens ash

    NASA Astrophysics Data System (ADS)

    Nevissi, A. E.

    1984-07-01

    During the Mount St. Helens eruptions, lead 210 and polonium 210 were measured in volcanic ash samples. Polonium 210 was consistently higher than lead 210 in all samples, with the 210Po/210Pb ratios ranging from 2 to 12. The overequilibrium of the ratios is due to the enrichment of polonium compounds in the volcanic gases from hot magma relative to less volatile lead compounds.

  18. Deformation monitoring at mount st. Helens in 1981 and 1982.

    PubMed

    Chadwick, W W; Swanson, D A; Iwatsubo, E Y; Heliker, C C; Leighley, T A

    1983-09-30

    For several weeks before each eruption of Mount St. Helens in 1981 and 1982, viscous magma rising in the feeder conduit inflated the lava dome and shoved the crater floor laterally against the immobile crater walls, producing ground cracks and thrust faults. The rates of deformation accelerated before eruptions, and thus it was possible to predict eruptions 3 to 19 days in advance. Lack of deformation outside the crater showed that intrusion of magma during 1981 and 1982 was not voluminous.

  19. Deformation monitoring at Mount St. Helens in 1981 and 1982

    USGS Publications Warehouse

    Chadwick, W.W.; Swanson, D.A.; Iwatsubo, E.Y.; Heliker, C.C.; Leighley, T.A.

    1983-01-01

    For several weeks before each eruption of Mount St. Helens in 1981 and 1982, viscous magma rising in the feeder conduit inflated the lava dome and shoved the crater floor laterally against the immobile crater walls, producing ground cracks and thrust faults. The rates of deformation accelerated before eruptions, and thus it was possible to predict eruptions 3 to 19 days in advance. Lack of deformation outside the crater showed that intrusion of magma during 1981 and 1982 was not voluminous.

  20. Application of Q-type aspheric surface in the design of Wynne-Dyson projection lens

    NASA Astrophysics Data System (ADS)

    Ho, Cheng-Fang; Peng, Wei-Jei; Hsu, Wei-Yao

    2016-10-01

    ITRC dedicates in high precision optics for more than 40 years and focuses in lithography optics for projection system recently. The first project of the lithography optics in ITRC is an i-line Wynne-Dyson projection lens for 3D-ICs applications. The Wynne-Dyson projection lens is a classical design for unity magnification projection system. We take the advantages of the established benefits of Wynne-Dyson lens and modify it. ITRC`s Wynne-Dyson lens is a 0.16 NA system with unity magnification, which is designed in double telecentricity and long working distance. The projection lens comprises three lenses and one concave mirror. Two aspheric surfaces are deployed in lens 1 and concave mirror. A lens with aspheric surfaces can correct for aberration and deliver a higher performance with fewer lens elements; therefore it has advantages of compact and light. However, aspheres are more difficult to fabricate and higher cost than spherical surface. In order to control the testability and manufacturability of the aspheric surface, the Q-type aspheric surfaces are applied in our design phase and manufacture process. We optimize for both performance and manufacturability by Q-type aspheric surfaces. Not only a testable and manufacturable asphere can be approached but also an additional benefits of less sensitive and cost-effective to manufacture to the required specification. In this paper, the Q-type aspheric surfaces and slope constraint are applied to a Wynne-Dyson projection lens, the testability of Q-type aspheric surfaces by the departure from best-fit-sphere and fringe density of interferometry are estimated. Furthermore, subaperture stitching interferometer system (ASI, from QED technologies) is also applied for testability comparison. The tolerance and sensitivity are also discussed. Finally, the results show a diffraction limit approached lens with testable aspheric surface is designed using Q-type aspheric surface. One of the asphere is 150 m departure from best

  1. LEDs/ALAN-Working To Be Good Neighbors

    NASA Astrophysics Data System (ADS)

    Adams, Robert

    2015-08-01

    ALAN (Artificial Light At Night) and LEDs have recently become major discussion topics in the areas of astronomy, light pollution, endangered species and human health to mention but a few. In years past, MH, LPS and HPS dominated night lighting with LPS and its associated narrow spectrum as the preferred source around observatories and shorelines. LEDs offer the ability to modify the spectrum, realize substantial energy savings and other associated benefits while meeting the requirements of the astronomy community.The primary concern of the different groups relates to blue light content of the LED. For astronomers, the molecular (Raleigh) scattering related to the blue light interferes with certain portions of the spectrum used for deep space studies. The ecologists studying various endangered species find blue and green light can be related to declining leatherback turtle population in certain areas of the world. Other animals ranging from bats to moths and other insects are now being studied to determine the effect of the blue light spectrum on their behavior. The impact of blue light on the human circadian rhythm and vision, especially in the older population, is being extensively studied today.This presentation will discuss the spectral power distribution (SPD) of various light sources, the performance of new LED solutions and how the SPD of these new LED’s can be adapted to address some of the issues raised by various constituencies. A discussion describing why some of the metrics used to describe standard lighting are not adequate for specifying the new LED solutions with the modified spectra will be included.Today, lighting plans and implementation are all too often based on opinions and limited data. The ensuing problems and repercussions make it imperative to collect accurate and thorough information. Data collection is now ongoing using a variety of techniques analyzing the “before” and “after” lighting results from the C of HI LED streetlight

  2. Preparation of polyaniline/sodium alanate hybrid using a spray-drying process

    NASA Astrophysics Data System (ADS)

    Moreira, B. R.; Passador, F. R.; Pessan, L. A.

    2014-05-01

    Nowadays, hydrogen is highly interesting as an energy source, in particular in the automotive field. In fact, hydrogen is attractive as a fuel because it prevents air pollution and greenhouse emissions. One of the main problems with the utilization of hydrogen as a fuel is its on-board storage. The purpouse of this work was to develop a new hybrid material consisting of a polyaniline matrix with sodium alanate (NaAlH4) using a spray-drying process. The polyaniline used for this experiment was synthesized by following a well-established method for the synthesis of the emeraldine base form of polyaniline using dodecylbenzenesulfonic acid as dopant. Micro particles of polyaniline/sodium alanate hybrids with 30 and 50 wt% of sodium alanate were prepared by using a spray-drying technique. Dilute solutions of polyaniline/sodium alanate were first prepared, 10g of the solid materials were mixed with 350 ml of toluene under stirring at room temperature for 24h and the solutions were dried using spray-dryer (Büchi, Switzerland) with 115°C of an inlet temperature. The hybrids were analyzed by differential scanning calorimetry, FT-IR and scanning electron microscopy (SEM). The addition of sodium alanate decreased the glass transition temperature of the hybrids when compared to neat polyaniline. FT-IR spectrum analysis was performed to identify the bonding environment of the synthesized material and was observed that simply physically mixture occurred between polyaniline and sodium alanate. The SEM images of the hybrids showed the formation of microspheres with sodium alanate dispersed in the polymer matrix.

  3. Preparation of polyaniline/sodium alanate hybrid using a spray-drying process

    SciTech Connect

    Moreira, B. R. E-mail: fabiopassador@gmail.com Passador, F. R. E-mail: fabiopassador@gmail.com Pessan, L. A. E-mail: fabiopassador@gmail.com

    2014-05-15

    Nowadays, hydrogen is highly interesting as an energy source, in particular in the automotive field. In fact, hydrogen is attractive as a fuel because it prevents air pollution and greenhouse emissions. One of the main problems with the utilization of hydrogen as a fuel is its on-board storage. The purpouse of this work was to develop a new hybrid material consisting of a polyaniline matrix with sodium alanate (NaAlH{sub 4}) using a spray-drying process. The polyaniline used for this experiment was synthesized by following a well-established method for the synthesis of the emeraldine base form of polyaniline using dodecylbenzenesulfonic acid as dopant. Micro particles of polyaniline/sodium alanate hybrids with 30 and 50 wt% of sodium alanate were prepared by using a spray-drying technique. Dilute solutions of polyaniline/sodium alanate were first prepared, 10g of the solid materials were mixed with 350 ml of toluene under stirring at room temperature for 24h and the solutions were dried using spray-dryer (Büchi, Switzerland) with 115°C of an inlet temperature. The hybrids were analyzed by differential scanning calorimetry, FT-IR and scanning electron microscopy (SEM). The addition of sodium alanate decreased the glass transition temperature of the hybrids when compared to neat polyaniline. FT-IR spectrum analysis was performed to identify the bonding environment of the synthesized material and was observed that simply physically mixture occurred between polyaniline and sodium alanate. The SEM images of the hybrids showed the formation of microspheres with sodium alanate dispersed in the polymer matrix.

  4. Friendly Letters on the Correspondence of Helen Keller, Anne Sullivan, and Alexander Graham Bell.

    ERIC Educational Resources Information Center

    Blatt, Burton

    1985-01-01

    Excerpts from the letters between Alexander Graham Bell and Anne Sullivan and Helen Keller are given to illustrate the educational and personal growth of Helen Keller as well as the educational philosophy of Bell regarding the education of the deaf blind. (DB)

  5. Isolation and Analysis of Bacteria in Recreational Waters of the Chattahoochee River, Helen, GA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Helen is a tourism destination in the Appalachian Mountains. A popular activity during warm weather is tubing in the Chattahoochee River. This study was to determine the variety of bacteria in the Chattahoochee River in Helen, GA. Eight samples were collected during a 5km tubing trip down the Chatta...

  6. The Challenge of Advocacy: The Different Voices of Helen Keller and Burton Blatt.

    ERIC Educational Resources Information Center

    Smith, J. David

    1997-01-01

    Comparison of the different advocacy roles of Helen Keller and Burton Blatt finds that Helen Keller's role supports the belief in miracles resulting from unconditional and sustained commitments, whereas Burton Blatt's role illustrates the value of a commitment to human rights and human dignity regardless of any expectation of productivity or…

  7. Towards direct synthesis of alane: A predicted defect-mediated pathway confirmed experimentally

    SciTech Connect

    Wang, Lin -Lin; Herwadkar, Aditi; Reich, Jason M.; Johnson, Duane D.; House, Stephen D.; Pena-Martin, Pamela; Rockett, Angus A.; Robertson, Ian M.; Gupta, Shalabh; Pecharsky, Vitalij K.

    2016-08-18

    Here, alane (AlH3) is a unique energetic material that has not found a broad practical use for over 70 years because it is difficult to synthesize directly from its elements. Using density functional theory, we examine the defect-mediated formation of alane monomers on Al(111) in a two-step process: (1) dissociative adsorption of H2 and (2) alane formation, which are both endothermic on a clean surface. Only with Ti dopant to facilitate H2 dissociation and vacancies to provide Al adatoms, both processes become exothermic. In agreement, in situ scanning tunneling microscopy showed that during H2 exposure, alane monomers and clusters form primarily in the vicinity of Al vacancies and Ti atoms. Moreover, ball milling of the Al samples with Ti (providing necessary defects) showed a 10 % conversion of Al into AlH3 or closely related species at 344 bar H2, indicating that the predicted pathway may lead to the direct synthesis of alane from elements at pressures much lower than the 104 bar expected from bulk thermodynamics.

  8. Towards direct synthesis of alane: A predicted defect-mediated pathway confirmed experimentally

    DOE PAGES

    Wang, Lin -Lin; Herwadkar, Aditi; Reich, Jason M.; ...

    2016-08-18

    Here, alane (AlH3) is a unique energetic material that has not found a broad practical use for over 70 years because it is difficult to synthesize directly from its elements. Using density functional theory, we examine the defect-mediated formation of alane monomers on Al(111) in a two-step process: (1) dissociative adsorption of H2 and (2) alane formation, which are both endothermic on a clean surface. Only with Ti dopant to facilitate H2 dissociation and vacancies to provide Al adatoms, both processes become exothermic. In agreement, in situ scanning tunneling microscopy showed that during H2 exposure, alane monomers and clusters formmore » primarily in the vicinity of Al vacancies and Ti atoms. Moreover, ball milling of the Al samples with Ti (providing necessary defects) showed a 10 % conversion of Al into AlH3 or closely related species at 344 bar H2, indicating that the predicted pathway may lead to the direct synthesis of alane from elements at pressures much lower than the 104 bar expected from bulk thermodynamics.« less

  9. Helene: The Face that Launched a Thousand Slips

    NASA Astrophysics Data System (ADS)

    Moore, J. M.; Howard, A. D.; Schenk, P.; Thomas, P. C.

    2013-12-01

    Helene, (~17.6 km mean radius) is a L4 Trojan co-orbital of Saturn's moon Dione. Its hemisphere features an unusual morphology consisting of broad depressions and a generally smooth surface patterned with streaks and grooves. The streaks appear to be oriented down-gradient, as are the grooves. This pattern suggests intensive mass-wasting as a dominant process on the leading hemisphere. Kilometer-scale impact craters are very sparse on the leading hemisphere other than the degraded km-scale basins defining the overall satellite shape, and many small craters have a diffuse appearance suggesting ongoing mass wasting. Thus mass wasting must dominate surface-modifying processes at present. In fact, the mass wasting appears to have been sufficient in magnitude to narrow the divides between adjacent basins to narrow septa, similar, but in lower relief, to the honeycomb pattern of Hyperion. The prominent groves occur primarily near topographic divides and appear have cut into a broad, slightly lower albedo surface largely conforming to the present topography but elevated a few meters above the smooth surfaces undergoing mass wasting flow. Low ridges and albedo markings on the surface suggest surface flow of materials traveling up to several kilometers. Diffusive mass wasting produces smooth surfaces - such a pattern characterizes most of the low-lying surfaces. The grooves, however, imply that the transport process is advective at those locations where they occur, that is, erosion tends to concentrate along linear pathways separated by divides. In fact, in many places grooves have a fairly regular spacing of 125-160 m, defining a characteristic erosional scale. Several questions are prompted by the unusual morphology of Helene: 1) What is the nature of the surface materials? 2) Are the transport processes gradual or catastrophic motion from one or a few events? 3) What mechanisms drive mass wasting and groove development? 4) Have the formative processes been active in the

  10. Observations of volcanic tremor at Mount St. Helens volcano

    SciTech Connect

    Fehler, M.

    1983-04-10

    Digital recordings of ground motion during tremor episodes accompanying eruptions at Mount St. Helens Volcano in the state of Washington on August 7 and October 16-18, 1980, are studied. The spectra of the vertical component waveforms contain at least two dominant peaks at 1.0 and 1.3 Hz for all events recorded during both eruptions that were studied. Spectra of horizontal ground motion show peaks at 0.9 and 1.1 Hz. The relative amplitude of the two peaks changes between tremor episodes and during single tremor episodes and shows no consistent relation to amplitude of ground motion. Spectra of long-period earthquakes are very similar to those of tremor events, suggesting that tremor is composed of many long-period earthquakes that occur over a period of time. The unique waveform of tremor events observed at Mount St. Helens must be due to a source effect, since the relative amplitude of the two dominant peaks changes during tremor episodes. The path effect on tremor waveforms is small since there are no peaks in the spectra of waveforms recorded during tectonic earthquakes occurring in the vicinity of Mount S. Helens. The consistency of the location of the spectral peaks for the wide range of tremor amplitudes means that there must be a physical length at the source that is constant, independent of the amplitude of motion at the source. Amplitude of ground motion varies between 0.11 and 4.7 ..mu..m. Seismic moment rates during the two eruptions are found to vary between 6 x 10/sup 18/ and 1 x 10/sup 20/ dynes cm/s. Study of tremor amplitudes recorded at Corvallis, Oregon, leads to the conclusion that tremor accompanying the cataclysmic May 18, 1980, eruption was at least one order of magnitude larger in amplitude than tremor during August and October.

  11. Strange quark matter and quark stars with the Dyson-Schwinger quark model

    NASA Astrophysics Data System (ADS)

    Chen, H.; Wei, J.-B.; Schulze, H.-J.

    2016-09-01

    We calculate the equation of state of strange quark matter and the interior structure of strange quark stars in a Dyson-Schwinger quark model within rainbow or Ball-Chiu vertex approximation. We emphasize constraints on the parameter space of the model due to stability conditions of ordinary nuclear matter. Respecting these constraints, we find that the maximum mass of strange quark stars is about 1.9 solar masses, and typical radii are 9-11km. We obtain an energy release as large as 3.6 × 10^{53} erg from conversion of neutron stars into strange quark stars.

  12. Delta and Omega electromagnetic form factors in a Dyson-Schwinger/Bethe-Salpeter approach

    SciTech Connect

    Diana Nicmorus, Gernot Eichmann, Reinhard Alkofer

    2010-12-01

    We investigate the electromagnetic form factors of the Delta and the Omega baryons within the Poincare-covariant framework of Dyson-Schwinger and Bethe-Salpeter equations. The three-quark core contributions of the form factors are evaluated by employing a quark-diquark approximation. We use a consistent setup for the quark-gluon dressing, the quark-quark bound-state kernel and the quark-photon interaction. Our predictions for the multipole form factors are compatible with available experimental data and quark-model estimates. The current-quark mass evolution of the static electromagnetic properties agrees with results provided by lattice calculations.

  13. CrasyDSE: A framework for solving Dyson-Schwinger equations

    NASA Astrophysics Data System (ADS)

    Huber, Markus Q.; Mitter, Mario

    2012-11-01

    Dyson-Schwinger equations are important tools for non-perturbative analyses of quantum field theories. For example, they are very useful for investigations in quantum chromodynamics and related theories. However, sometimes progress is impeded by the complexity of the equations. Thus automating parts of the calculations will certainly be helpful in future investigations. In this article we present a framework for such an automation based on a C++ code that can deal with a large number of Green functions. Since also the creation of the expressions for the integrals of the Dyson-Schwinger equations needs to be automated, we defer this task to a Mathematica notebook. We illustrate the complete workflow with an example from Yang-Mills theory coupled to a fundamental scalar field that has been investigated recently. As a second example we calculate the propagators of pure Yang-Mills theory. Our code can serve as a basis for many further investigations where the equations are too complicated to tackle by hand. It also can easily be combined with DoFun, a program for the derivation of Dyson-Schwinger equations.Dyson-Schwinger equations numerically. Solution method: Create C++ functions in Mathematica to be used for the numeric code in C

  14. The muon g-2: Dyson-Schwinger status on hadronic light-by-light scattering

    SciTech Connect

    Eichmann, Gernot; Fischer, Christian S.; Heupel, Walter; Williams, Richard

    2016-01-22

    We give a status report on the hadronic light-by-light scattering contribution to the muon’s anomalous magnetic moment from the Dyson-Schwinger approach. We discuss novel, model-independent properties of the light-by-light amplitude: we give its covariant decomposition in view of electromagnetic gauge invariance and Bose symmetry, and we identify the relevant kinematic regions that are probed under the integral. The decomposition of the amplitude at the quark level and the importance of its various diagrams are discussed and related to model approaches.

  15. The IR sector of QCD: lattice versus Schwinger-Dyson equations

    NASA Astrophysics Data System (ADS)

    Binosi, Daniele

    2010-12-01

    Important information about the infrared dynamics of QCD is encoded in the behavior of its (of-shell) Green's functions, most notably the gluon and the ghost propagators. Due to recent improvements in the quality of lattice data and the truncation schemes employed for the Schwinger-Dyson equations we have now reached a point where the interplay between these two non-perturbative tools can be most fruitful. In this talk several of the above points will be reviewed, with particular emphasis on the implications for the ghost sector, the non-perturbative effective charge of QCD, and the Kugo-Ojima function.

  16. Air pressure waves from Mount St. Helens eruptions

    NASA Astrophysics Data System (ADS)

    Reed, Jack W.

    1987-10-01

    Infrasonic recordings of the pressure wave from the Mount St. Helens (MSH) eruption on May 18, 1980, together with the weather station barograph records were used to estimate an equivalent explosion airblast yield for this eruption. Pressure wave amplitudes versus distance patterns were found to be comparable with patterns found for a small-scale nuclear explosion, the Krakatoa eruption, and the Tunguska comet impact, indicating that the MSH wave came from an explosion equivalent of about 5 megatons of TNT. The peculiar audibility pattern reported, with the blast being heard only at ranges beyond about 100 km, is explained by consideration of finite-amplitude shock propagation developments.

  17. Regenerating the blast zone of Mount St. Helens

    SciTech Connect

    Winjum, J.K.; Keatley, J.E.; Stevens, R.G.; Gutzwiler, J.R.

    1986-05-01

    On May 18, 1980 an earthquake beneath the north side of Mt. St. Helens triggered the eruption of this volcano. This eruption caused damage to 160,000 acres of forests, meadows, lakes and streams. This paper discussed the reforestation of approximately 68,000 acres of commercial forest lands owned by Weyerhaeuser Company. This five year operation was the result of the cooperation of a team of research and operations foresters. The progress was reassuring but some areas will require more time before regeneration will be complete.

  18. Long-wave stratospheric transmission of Mount St. Helens ejecta

    SciTech Connect

    Kuhn, P.M.; Haughney, L.C.; Innis, R.C.

    1981-01-01

    The NASA/Ames Research C-141 aircraft underflew the Mount St. Helens ejecta plume in Utah three days after the eruption. Upward-looking 20--40-..mu..m on-board radiometry provided data resulting in a calculated long-wave transmission of 0.93. From this value, an optical depth of 0.073 is inferred. This value is compared with an accepted background, stratospheric infrared optical depth of 0.06. Assumptions on particle size, shortwave albedo, and thermal warming imply little surface temperature change caused by the ejecta on the third day immediately following the eruption.

  19. Long-wave stratospheric transmission of Mount St. Helens ejecta.

    PubMed

    Kuhn, P M; Haughney, L C; Innis, R C

    1981-01-01

    The NASA/Ames Research C-141 aircraft underflew the Mount St. Helens ejecta plume in Utah three days after the eruption. Upward-looking 20-40-microm on-board radiometry provided data resulting in a calculated long-wave transmission of 0.93. From this value, an optical depth of 0.073 is inferred. This value is compared with an accepted background, stratospheric infrared optical depth of 0.06. Assumptions on particle size, shortwave albedo, and thermal warming imply little surface temperature change caused by the ejecta on the third day immediately following the eruption.

  20. Ocular effects following the volcanic eruptions of Mount St Helens.

    PubMed

    Fraunfelder, F T; Kalina, R E; Buist, A S; Bernstein, R S; Johnson, D S

    1983-03-01

    Three hundred thirty-two ophthalmologists examined 1,523 patients with immediate ocular complaints following the 1980 eruptions of Mount St Helens. Loggers working up to 18 months in environments with high concentrations of volcanic ash were compared with a control group of loggers without volcanic ash contact. Although the ash particles acted as ocular foreign bodies, the small particles were apparently well tolerated for the most part, except for acute irritation. Patients with contact lenses or sicca syndrome had the most frequent ocular complaints. To date, no long-term ocular effects have been noted secondary to volcanic ash exposure.

  1. Geochemical precursors to volcanic activity at Mount St. Helens, USA.

    PubMed

    Berlo, Kim; Blundy, Jon; Turner, Simon; Cashman, Kathy; Hawkesworth, Chris; Black, Stuart

    2004-11-12

    The importance of the interplay between degassing and crystallization before and after the eruption of Mount St. Helens (Washington, USA) in 1980 is well established. Here, we show that degassing occurred over a period of decades to days before eruptions and that the manner of degassing, as deduced from geochemical signatures within the magma, was characteristic of the eruptive style. Trace element (lithium) and short-lived radioactive isotope (lead-210 and radium-226) data show that ascending magma stalled within the conduit, leading to the accumulation of volatiles and the formation of lead-210 excesses, which signals the presence of degassing magma at depth.

  2. Thermochemistry of Alane Complexes for Hydrogen Storage: A Theoretical and Experimental Investigation

    SciTech Connect

    Wong, B.M.; Graetz, J.; Lacina, D.; Nielsen, I.M.B.; Allendorf, M.D.

    2011-03-30

    Knowledge of the relative stabilities of alane (AlH{sub 3}) complexes with electron donors is essential for identifying hydrogen storage materials for vehicular applications that can be regenerated by off-board methods; however, almost no thermodynamic data are available to make this assessment. To fill this gap, we employed the G4(MP2) method to determine heats of formation, entropies, and Gibbs free energies of formation for 38 alane complexes with NH{sub 3-n}R{sub n} (R = Me, Et; n = 0-3), pyridine, pyrazine, triethylenediamine (TEDA), quinuclidine, OH{sub 2-n}R{sub n} (R = Me, Et; n = 0-2), dioxane, and tetrahydrofuran (THF). Monomer, bis, and selected dimer complex geometries were considered. Using these data, we computed the thermodynamics of the key formation and dehydrogenation reactions that would occur during hydrogen delivery and alane regeneration, from which trends in complex stability were identified. These predictions were tested by synthesizing six amine-alane complexes involving trimethylamine, triethylamine, dimethylethylamine, TEDA, quinuclidine, and hexamine and obtaining upper limits of {Delta}G{sup o} for their formation from metallic aluminum. Combining these computational and experimental results, we establish a criterion for complex stability relevant to hydrogen storage that can be used to assess potential ligands prior to attempting synthesis of the alane complex. On the basis of this, we conclude that only a subset of the tertiary amine complexes considered and none of the ether complexes can be successfully formed by direct reaction with aluminum and regenerated in an alane-based hydrogen storage system.

  3. Thermochemistry of Alane Complexes for Hydrogen Storage: A Theoretical and Experimental Investigation

    PubMed Central

    2011-01-01

    Knowledge of the relative stabilities of alane (AlH3) complexes with electron donors is essential for identifying hydrogen storage materials for vehicular applications that can be regenerated by off-board methods; however, almost no thermodynamic data are available to make this assessment. To fill this gap, we employed the G4(MP2) method to determine heats of formation, entropies, and Gibbs free energies of formation for 38 alane complexes with NH3−nRn (R = Me, Et; n = 0−3), pyridine, pyrazine, triethylenediamine (TEDA), quinuclidine, OH2−nRn (R = Me, Et; n = 0−2), dioxane, and tetrahydrofuran (THF). Monomer, bis, and selected dimer complex geometries were considered. Using these data, we computed the thermodynamics of the key formation and dehydrogenation reactions that would occur during hydrogen delivery and alane regeneration, from which trends in complex stability were identified. These predictions were tested by synthesizing six amine−alane complexes involving trimethylamine, triethylamine, dimethylethylamine, TEDA, quinuclidine, and hexamine and obtaining upper limits of ΔG° for their formation from metallic aluminum. Combining these computational and experimental results, we establish a criterion for complex stability relevant to hydrogen storage that can be used to assess potential ligands prior to attempting synthesis of the alane complex. On the basis of this, we conclude that only a subset of the tertiary amine complexes considered and none of the ether complexes can be successfully formed by direct reaction with aluminum and regenerated in an alane-based hydrogen storage system. PMID:22962624

  4. Thermochemistry of Alane Complexes for Hydrogen Storage: A Theoretical and Experimental Investigation.

    PubMed

    Wong, Bryan M; Lacina, David; Nielsen, Ida M B; Graetz, Jason; Allendorf, Mark D

    2011-04-21

    Knowledge of the relative stabilities of alane (AlH(3)) complexes with electron donors is essential for identifying hydrogen storage materials for vehicular applications that can be regenerated by off-board methods; however, almost no thermodynamic data are available to make this assessment. To fill this gap, we employed the G4(MP2) method to determine heats of formation, entropies, and Gibbs free energies of formation for 38 alane complexes with NH(3-n)R(n) (R = Me, Et; n = 0-3), pyridine, pyrazine, triethylenediamine (TEDA), quinuclidine, OH(2-n)R(n) (R = Me, Et; n = 0-2), dioxane, and tetrahydrofuran (THF). Monomer, bis, and selected dimer complex geometries were considered. Using these data, we computed the thermodynamics of the key formation and dehydrogenation reactions that would occur during hydrogen delivery and alane regeneration, from which trends in complex stability were identified. These predictions were tested by synthesizing six amine-alane complexes involving trimethylamine, triethylamine, dimethylethylamine, TEDA, quinuclidine, and hexamine and obtaining upper limits of ΔG° for their formation from metallic aluminum. Combining these computational and experimental results, we establish a criterion for complex stability relevant to hydrogen storage that can be used to assess potential ligands prior to attempting synthesis of the alane complex. On the basis of this, we conclude that only a subset of the tertiary amine complexes considered and none of the ether complexes can be successfully formed by direct reaction with aluminum and regenerated in an alane-based hydrogen storage system.

  5. Fluvial sedimentation following Quaternary eruptions of Mount St. Helens, Washington

    SciTech Connect

    Janda, R.J.; Meyer, D.F

    1985-01-01

    Depositional records of convulsive volcanic events at Mount St. Helens are in many places obscured by rapid fluvial erosion and deposition close to the volcano. Some major eruptions are recorded primarily by lahars and alluvium deposited tens of kilometers away. About 35 percent of the distinctive hummocky topography of the 1980 North Fork Toutle debris avalanche deposit now resembles an alluvial fan or a braided glacial outwash plain covered with 10 m or more of alluvium. Deposits of small (20 x 10/sup 6/m/sup 3/) but damaging lahars, such as those generated in the afternoon of 18 May 1980 and on 19 March 1982, have been largely eroded away. Rivers draining rapidly eroding areas surrounding Mount St. Helens presently have sediment yields that are among the highest in the world for nonglaciated streams of comparable size. These sediment loads are capable of causing aggradation-induced flooding in populated areas along the lower Toutle and Cowlitz Rivers. Sediment retention structures and dredging have prevented such flooding. Immediately following prehistoric eruptions, however, coarse-grained volcanic alluvium was deposited in the Cowlitz River to levels more than 1 m above the 1980 mud flow inundation level. Post-1980 rapid landscape modifications and high sediment yields are noteworthy because the eruption-impact area has not yet had a major regional storm and potentially catastrophic breachings of avalanche-impounded lakes have been prevented through engineering measures.

  6. Morphologic Evolution of the Mount St. Helens Crater Area, Washington

    NASA Technical Reports Server (NTRS)

    Beach, G. L.

    1985-01-01

    The large rockslide-avalanche that preceded the eruption of Mount St. Helens on 18 May 1980 removed approximately 2.8 cubic km of material from the summit and north flank of the volcano, forming a horseshoe-shaped crater 2.0 km wide and 3.9 km long. A variety of erosional and depositional processes, notably mass wasting and gully development, acted to modify the topographic configuration of the crater area. To document this morphologic evolution, a series of annual large-scale topographic maps is being produced as a base for comparitive geomorphic analysis. Four topographic maps of the Mount St. Helens crater area at a scale of 1:4000 were produced by the National Mapping Division of the U. S. Geological Survey. Stereo aerial photography for the maps was obtained on 23 October 1980, 10 September 1981, 1 September 1982, and 17 August 1983. To quantify topographic changes in the study area, each topographic map is being digitized and corresponding X, Y, and Z values from successive maps are being computer-compared.

  7. Elliptic Bessel processes and elliptic Dyson models realized as temporally inhomogeneous processes

    NASA Astrophysics Data System (ADS)

    Katori, Makoto

    2016-10-01

    The Bessel process with parameter D > 1 and the Dyson model of interacting Brownian motions with coupling constant β > 0 are extended to the processes in which the drift term and the interaction terms are given by the logarithmic derivatives of Jacobi's theta functions. They are called the elliptic Bessel process, eBES(D), and the elliptic Dyson model, eDYS(β), respectively. Both are realized on the circumference of a circle [0, 2πr) with radius r > 0 as temporally inhomogeneous processes defined in a finite time interval [0, t∗), t∗ < ∞. Transformations of them to Schrödinger-type equations with time-dependent potentials lead us to proving that eBES(D) and eDYS(β) can be constructed as the time-dependent Girsanov transformations of Brownian motions. In the special cases where D = 3 and β = 2, observables of the processes are defined and the processes are represented for them using the Brownian paths winding round a circle and pinned at time t∗. We show that eDYS(2) has the determinantal martingale representation for any observable. Then it is proved that eDYS(2) is determinantal for all observables for any finite initial configuration without multiple points. Determinantal processes are stochastic integrable systems in the sense that all spatio-temporal correlation functions are given by determinants controlled by a single continuous function called the spatio-temporal correlation kernel.

  8. Bödeker’s effective theory: From Langevin dynamics to Dyson-Schwinger equations

    NASA Astrophysics Data System (ADS)

    Zahlten, Claus; Hernandez, Andres; Schmidt, Michael G.

    2009-10-01

    The dynamics of weakly coupled, non-abelian gauge fields at high temperature is non-perturbative if the characteristic momentum scale is of order |k|˜g2T. Such a situation is typical for the processes of electroweak baryon number violation in the early Universe. Bödeker has derived an effective theory that describes the dynamics of the soft field modes by means of a Langevin equation. This effective theory has been used for lattice calculations so far [G.D. Moore, Nucl. Phys. B568 (2000) 367. Available from: ; G.D. Moore, Phys. Rev. D62 (2000) 085011. Available from: ]. In this work we provide a complementary, more analytic approach based on Dyson-Schwinger equations. Using methods known from stochastic quantitation, we recast Bödeker's Langevin equation in the form of a field theoretic path integral. We introduce gauge ghosts in order to help control possible gauge artefacts that might appear after truncation, and which leads to a BRST symmetric formulation and to corresponding Ward identities. A second set of Ward identities, reflecting the origin of the theory in a stochastic differential equation, is also obtained. Finally, Dyson-Schwinger equations are derived.

  9. Boedeker's effective theory: From Langevin dynamics to Dyson-Schwinger equations

    SciTech Connect

    Zahlten, Claus Hernandez, Andres Schmidt, Michael G.

    2009-10-15

    The dynamics of weakly coupled, non-abelian gauge fields at high temperature is non-perturbative if the characteristic momentum scale is of order |k|{approx}g{sup 2}T. Such a situation is typical for the processes of electroweak baryon number violation in the early Universe. Boedeker has derived an effective theory that describes the dynamics of the soft field modes by means of a Langevin equation. This effective theory has been used for lattice calculations so far [G.D. Moore, Nucl. Phys. B568 (2000) 367. Available from: (); G.D. Moore, Phys. Rev. D62 (2000) 085011. Available from: ()]. In this work we provide a complementary, more analytic approach based on Dyson-Schwinger equations. Using methods known from stochastic quantitation, we recast Boedeker's Langevin equation in the form of a field theoretic path integral. We introduce gauge ghosts in order to help control possible gauge artefacts that might appear after truncation, and which leads to a BRST symmetric formulation and to corresponding Ward identities. A second set of Ward identities, reflecting the origin of the theory in a stochastic differential equation, is also obtained. Finally, Dyson-Schwinger equations are derived.

  10. MA-9 ASTRONAUT GORDON COOPER EXPLAINS CAMERA TO BACKUP PILOT ALAN SHEPARD

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Astronaut L. Gordon Cooper explains the 16MM handheld spacecraft camera to his back-up pilot Astronaut Alan Shepard. The camera designed by J. R. Hereford, McDonnell Aircraft Corp., will be used by Cooper during the MA-9 mission.

  11. Astronaut Alan Bean deploys ALSEP during first Apollo 12 EVA on moon

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, Apollo 12 lunar module pilot, deploys components of the Apollo Lunar Surface Experiments Package (ALSEP) during the first Apollo 12 extravehicular activity (EVA) on the moon. The photo was made by Astronaut Charles Conrad Jr., Apollo 12 commander, using a 70mm handheld Haselblad camera modified for lunar surface usage.

  12. Astronaut Alan Bean steps from ladder of Lunar Module for EVA

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, lunar module pilot for the Apollo 12 lunar landing mission, steps from the ladder of the Lunar Module to join Astronaut Charles Conrad Jr., commander, in extravehicular activity on November 19, 1969. Astronaut Ricard F. Gordon Jr., command module pilot, remained with the Command/Service Modules in lunar orbit.

  13. Astronaut Alan Bean looks over data acquisition camera on Skylab trainer

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut Alan L. Bean, commander for Skylab 3, the second manned Skylab mission, looks over the data acquisition camera mounted on the water tank in the upper level of the Orbital Workshop (OWS) one-G trainer at the Manned Spacecraft Center (MSC).

  14. Astronaut Alan B. Shepard has his blood pressure and temperature checked

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Astronaut Alan B. Shepard has a thermometer in his mouth to check his temperature checked prior to his Mercury-Redstone 3 (MR-3) mission, the first American manned suborbital space flight (02739); Shepard has his heart rate checked. The attending physician is Dr. William K. Douglas (02740).

  15. Presidents' Panel: A Conversation with I. King Jordan, Robert Davila, and T. Alan Hurwitz

    ERIC Educational Resources Information Center

    Greenwald, Brian H.; Jordan, I. King; Davila, Robert; Hurwitz, T. Alan

    2014-01-01

    Former Gallaudet presidents: I. King Jordan and Robert Davila join current president T. Alan Hurwitz on a panel moderated by Brian H. Greenwald as they share their experience leading this institution of higher education and offer insight into the transformative changes brought about by the "Deaf President Now" movement.

  16. The Great Tunes of the Hough: Music and Song in Alan Garner's "The Stone Book Quartet "

    ERIC Educational Resources Information Center

    Godek, Sarah

    2004-01-01

    Although song and music are often elements in children's books, little critical attention has gone into examining their literary uses. Alan Garner's "The Stone Book Quartet" is an example of four texts for children in which music plays a vital role. The several snatches of traditional songs found throughout the quartet bring to life the culture of…

  17. Challenging the Status Quo: Alan Pifer and Higher Education Reform in Colonial Nigeria

    ERIC Educational Resources Information Center

    Anyanwu, Ogechi E.

    2013-01-01

    The historiography of higher education in Nigeria has not fully accounted for Alan Pifer's crucial contributions in reforming the elitist British higher education tradition in colonial Nigeria. Through qualitative analysis of mostly primary sources acquired from the Rare Book and Manuscript Library in Columbia University, this article argues that…

  18. Probing Electronic Wave Functions of Sodium-Doped Clusters: Dyson Orbitals, Anisotropy Parameters, and Ionization Cross-Sections.

    PubMed

    Gunina, Anastasia O; Krylov, Anna I

    2016-12-15

    We apply high-level ab initio methods to describe the electronic structure of small clusters of ammonia and dimethyl ether (DME) doped with sodium, which provide a model for solvated electrons. We investigate the effect of the solvent and cluster size on the electronic states. We consider both energies and properties, with a focus on the shape of the electronic wave function and the related experimental observables such as photoelectron angular distributions. The central quantity in modeling photoionization experiments is the Dyson orbital, which describes the difference between the initial N-electron and final (N-1)-electron states of a system. Dyson orbitals enter the expression of the photoelectron matrix element, which determines total and partial photoionization cross-sections. We compute Dyson orbitals for the Na(NH3)n and Na(DME)m clusters using correlated wave functions (obtained with equation-of-motion coupled-cluster model for electron attachment with single and double substitutions) and compare them with more approximate Hartree-Fock and Kohn-Sham orbitals. We also analyze the effect of correlation and basis sets on the shapes of Dyson orbitals and the experimental observables.

  19. Probing electronic wave functions of sodium-doped clusters: Dyson orbitals, anisotropy parameters, and ionization cross-sections

    SciTech Connect

    Gunina, Anastasia O.; Krylov, Anna I.

    2016-11-14

    We apply high-level ab initio methods to describe the electronic structure of small clusters of ammonia and dimethylether (DME) doped with sodium, which provide a model for solvated electrons. We investigate the effect of the solvent and cluster size on the electronic states. We consider both energies and properties, with a focus on the shape of the electronic wave function and the related experimental observables such as photoelectron angular distributions. The central quantity in modeling photoionization experiments is the Dyson orbital, which describes the difference between the initial N-electron and final (N-1)-electron states of a system. Dyson orbitals enter the expression of the photoelectron matrix element, which determines total and partial photoionization cross-sections. We compute Dyson orbitals for the Na(NH3)n and Na(DME)m clusters using correlated wave functions (obtained with equation-of-motion coupled-cluster model for electron attachment with single and double substitutions) and compare them with more approximate Hartree-Fock and Kohn-Sham orbitals. As a result, we also analyze the effect of correlation and basis sets on the shapes of Dyson orbitals and the experimental observables.

  20. Probing electronic wave functions of sodium-doped clusters: Dyson orbitals, anisotropy parameters, and ionization cross-sections

    DOE PAGES

    Gunina, Anastasia O.; Krylov, Anna I.

    2016-11-14

    We apply high-level ab initio methods to describe the electronic structure of small clusters of ammonia and dimethylether (DME) doped with sodium, which provide a model for solvated electrons. We investigate the effect of the solvent and cluster size on the electronic states. We consider both energies and properties, with a focus on the shape of the electronic wave function and the related experimental observables such as photoelectron angular distributions. The central quantity in modeling photoionization experiments is the Dyson orbital, which describes the difference between the initial N-electron and final (N-1)-electron states of a system. Dyson orbitals enter themore » expression of the photoelectron matrix element, which determines total and partial photoionization cross-sections. We compute Dyson orbitals for the Na(NH3)n and Na(DME)m clusters using correlated wave functions (obtained with equation-of-motion coupled-cluster model for electron attachment with single and double substitutions) and compare them with more approximate Hartree-Fock and Kohn-Sham orbitals. As a result, we also analyze the effect of correlation and basis sets on the shapes of Dyson orbitals and the experimental observables.« less

  1. Deep long-period earthquakes (DLPs) beneath Mount St. Helens

    NASA Astrophysics Data System (ADS)

    Han, J.; Vidale, J. E.; Schmidt, D. A.; Creager, K. C.; Houston, H.

    2015-12-01

    The volcanic deep long-period earthquakes (DLPs) have been observed for a long time but remain poorly understood. Hypotheses associated with magmatic process have been proposed for the mechanisms of these DLPs, including dehydration embrittlement, flow of magma and/or magmatic fluid and cooling of magma. DLPs are commonly characterized by weak signal on the waveforms, deficiency in high-frequency energy, long-duration coda and their rare occurrence. They are located at 10-35 km depth, which are the mid- to lower-crust and/or uppermost mantle. The imaging Magma Under St Helens (iMUSH) experiment began in late June 2014, and since then the broadband seismometers have recorded six DLPs, two of which are also captured by dense array of Nodal stations. We use the iMUSH data and seismic data from nearby network stations to study the DLPs beneath St. Helens. Catalog DLPs are taken as templates to search for repeating events that might be too small to be detected otherwise. So far, we have searched for cross-station correlation detections for four template DLPs for the period 2007 to 2015. Three of the four seems to be isolated one-offs, while the fourth has at least 56 repetitions, three times more than were already in the catalog, and hints of many more. Many of the DLPs have several bursts within tens of seconds or several minutes. Overall the DLPs show an episodic activity with a period of roughly sixteen months. Several, but not all, episodes are temporally correlated with the subduction zone tremor activity west of St. Helens (Figure 1), which we are still investigating. We are locating these detections, and preliminary results suggest concentrated loci within a distance of one or two kilometers. We will conduct correlations between all detections, search farther back in time, and search with other templates as well, to better characterize their timeline and fine-scale geometry and analyze the waveforms to understand their physical mechanisms and the complicated

  2. [Helen of Troy and medicine, a picture of the "Salle des Actes"].

    PubMed

    Lafont, Olivier

    2012-05-01

    The picture of the 17th century, placed upon the great chimney in the "Salle des Actes", is attributed to the painter Simon Vouet or to his co-workers. It depicts a scene extracted from Odyssey by Homer. During their way-back to Greece, after the fall and the fire of Troia, Helen and Menelaus received in Egypt the famous nepenthes from the hands of Polydamna. An inventory of the possessions of the College of Pharmacy mentioned also helenium and moly. Nepenthes was really cited by Homer as a medicine used by Helen, but helenium was only related to Helen by euphony and moly referred to a totally different part of Odyssey and was not linked at all to Helen. This study points out the importance of mythology so far as origins of Pharmacy are concerned.

  3. Road guide to volcanic deposits of Mount St. Helens and vicinity, Washington

    SciTech Connect

    Doukas, M.P.

    1990-01-01

    Mount St. Helens, the most recently active and most intensively studied Cascade volcano, is located in southwestern Washington. The volcano is a superb outdoor laboratory for studying volcanic processes, deposits of observed events, and deposits whose origins are inferred by classic geologic techniques, including analogy to Recent deposits. This road log is a guide to Mount St. Helens Volcano, with emphasis on effects and deposits of the 1980 eruption.

  4. Mount St. Helens Long-Term Sediment Management Plan for Flood Risk Reduction

    DTIC Science & Technology

    2010-06-01

    includes three major lakes : Castle, Coldwater, and Spirit (see Figure 1). The area affected by potential flooding varies from bottomland along the...the Mount St. Helens project are described below. a. Spirit Lake Outlet Tunnel . Spirit Lake is located about 5 miles north of Mount St. Helens...see Figure 1). By 1982, water in Spirit Lake was rising dangerously high behind a debris dam left by the eruption. A sudden break in the debris

  5. Volatiles of Mount St. Helens and their origins

    USGS Publications Warehouse

    Barnes, I.

    1984-01-01

    Analyses have been made of gases in clouds apparently emanating from Mount St. Helens. Despite appearances, most of the water in these clouds does not issue from the volcano. Even directly above a large fumarole ??D and ?? 18O data indicate that only half the water can come from the volcano. Isotopic and chemical evidence also shows the steam in the volcano (-33.0 per mol ??D) from which a condensate of 0.2 N HCI was obtained is not a major cause of the explosions. The steam in the volcano is derived from a metamorphic brine in the underlying Tertiary meta andesite. The gas that caused the explosive eruptions is carbon dioxide. ?? 1984.

  6. Evaluation of mental effects of disaster, Mount St. Helens eruption.

    PubMed Central

    Shore, J H; Tatum, E L; Vollmer, W M

    1986-01-01

    This psychiatric epidemiology study following the Mount St. Helens volcanic disaster revealed a significant morbidity for psychiatric disorders. The increased prevalence showed a dose response pattern in three population groups. The findings are reported as relative and attributable risk for the two exposed populations as compared to a control group. Patterns of significant risk are presented for sex, age, and for victims with pre-existing physical illness. The research utilized a new criteria-based interview schedule for the identification of psychiatric disorders. The methodology is reviewed in the context of the controversies and assumptions within the field of behavioral response to disaster stress. There are important implications for public health planning and intervention. PMID:3946730

  7. Pyroclastic flow injury. Mount St. Helens, May 18, 1980

    SciTech Connect

    Parshley, P.F.; Kiessling, P.J.; Antonius, J.A.; Connell, R.S.; Miller, S.H.; Green, F.H.

    1982-05-01

    Three patients who were on the periphery of the pyroclastic flow of the Mount St. Helens eruption on May 18, 1980 were treated for severe thermal and inhalation injuries. Although exposed in identical manner, two patients arrived with heavily colonized burn wounds and developed adult respiratory distress syndrome leading directly to their death, whereas the third patient, with a noncolonized burn wound and little evidence of adult respiratory distress syndrome, survived. Evidence of inhaled ash complicating various stages of adult respiratory distress syndrome was confirmed by energy dispersive roentgenographic analysis. In the Pacific Northwest, Alaska, and the Aleutian Islands, potential for further injuries of this type in even larger numbers exists. Should these occur, those who treat the victims should be aware of the potential for severe inhalation problems in addition to the obvious burns.

  8. Trajectories of the mount st. Helens eruption plume.

    PubMed

    Danielsen, E F

    1981-02-20

    The plume of the major eruption of Mount St. Helens on 18 May 1980 penetrated 10 to 11 kilometers into the stratosphere, attaining heights of 22 to 23 kilometers. Wind shears rapidly converted the plume from an expanding vertical cone to a thin, slightly inclined lamina. The lamina was extruded zonally in the stratosphere as the lower part moved eastward at jet stream velocities, while the upper part slowly moved westward in the region of nonsteady transition from the westerlies to the summer stratospheric easterlies. Trajectories computed to position the NASA U-2 aircraft for sampling in the plume are described. Plume volume after 8 hours of strong volcanic emission is estimated at 2 x 10(6) cubic kilometers. Only about 1 percent of this volume is attributed to the volcano; the rest was entrained from the environment.

  9. Evaluation of mental effects of disaster, Mount St. Helens eruption.

    PubMed

    Shore, J H; Tatum, E L; Vollmer, W M

    1986-03-01

    This psychiatric epidemiology study following the Mount St. Helens volcanic disaster revealed a significant morbidity for psychiatric disorders. The increased prevalence showed a dose response pattern in three population groups. The findings are reported as relative and attributable risk for the two exposed populations as compared to a control group. Patterns of significant risk are presented for sex, age, and for victims with pre-existing physical illness. The research utilized a new criteria-based interview schedule for the identification of psychiatric disorders. The methodology is reviewed in the context of the controversies and assumptions within the field of behavioral response to disaster stress. There are important implications for public health planning and intervention.

  10. Trajectories of the Mount St. Helens eruption plume

    SciTech Connect

    Danielsen, E.F.

    1981-01-01

    The plume of the major eruption of Mount St. Helens on 18 May 1980 penetrated 10 to 11 kilometers into the stratosphere, attaining heights of 22 to 23 kilometers. Wind shears rapidly converted the plume from expanding vertical cone to a thin, slightly inclined lamina. The lamina was extruded zonally in the stratosphere as the lower part moved eastward at jet stream velocities, while the upper part slowly moved westward in the region of nonsteady transition from the westerlies to the summer stratospheric easterlies. Trajectories computed to position the NASA U-2 aircraft for sampling in the plume are described. Plume volume after 8 hours of strong volcanic emission is estimated at 2 x 10/sup +6/ cubic kilometers. Only about 1 percent of this volume is attributed to the volcano; the rest was entrained from the environment.

  11. Characterization of aerosols from eruptions of Mount St. Helens

    SciTech Connect

    Chuan, R.L.; Woods, D.C.; McCormick, M.P.

    1981-01-01

    Measurements of mass concentration and size distribution of aerosols from eruptions of Mount St. Helens as well as morphological and elemental analyses were obtained between 7 April and 7 August 1980. In situ measurements were made in early phreatic and later, minor phreatomagmatic eruption clouds near the vent of the volcano and in plumes injected into the stratosphere from the major eruptions of 18 and 25 May. The phreatic aerosol was characterized by an essentially monomodal size distribution dominated by silicate particles larger than 10 micrometers in diameter. The phreatomagmatic eruption cloud was multimodal; the large size mode consisted of silicate particles and the small size modes were made up of mixtures of sulfuric acid and silicate particles. The stratospheric aerosol from the main eruption exhibited a characteristic narrow single mode with particles less than 1 micrometer in diameter and nearly all of the mass made up of sulfuric acid droplets.

  12. Pyroclastic flow injury. Mount St. Helens, May 18, 1980.

    PubMed

    Parshley, P F; Kiessling, P J; Antonius, J A; Connell, R S; Miller, S H; Green, F H

    1982-05-01

    Three patients who were on the periphery of the pyroclastic flow of the Mount St. Helens eruption on May 18, 1980 were treated for severe thermal and inhalation injuries. Although exposed in identical manner, two patients arrived with heavily colonized burn wounds and developed adult respiratory distress syndrome leading directly to their death, whereas the third patient, with a noncolonized burn wound and little evidence of adult respiratory distress syndrome, survived. Evidence of inhaled ash complicating various stages of adult respiratory distress syndrome was confirmed by energy dispersive roentgenographic analysis. In the Pacific Northwest, Alaska, and the Aleutian Islands, potential for further injuries of this type in even larger numbers exists. Should these occur, those who treat the victims should be aware of the potential for severe inhalation problems in addition to the obvious burns.

  13. Characterization of aerosols from eruptions of mount st. Helens.

    PubMed

    Chuan, R L; Woods, D C; McCormick, M P

    1981-02-20

    Measurements of mass concentration and size distribution of aerosols from eruptions of Mount St. Helens as well as morphological and elemental analyses were obtained between 7 April and 7 August 1980. In situ measurements were made in early phreatic and later, minor phreatomagmatic eruption clouds near the vent of the volcano and in plumes injected into the stratosphere from the major eruptions of 18 and 25 May. The phreatic aerosol was characterized by an essentially monomodal size distribution dominated by silicate particles larger than 10 micrometers in diameter. The phreatomagmatic eruption cloud was multimodal; the large size mode consisted of silicate particles and the small size modes were made up of mixtures of sulfuric acid and silicate particles. The stratospheric aerosol from the main eruption exhibited a characteristic narrow single mode with particles less than 1 micrometer in diameter and nearly all of the mass made up of sulfuric acid droplets.

  14. Mount St. Helens: A 30-year legacy of volcanism

    USGS Publications Warehouse

    Vallance, James W.; Gardner, Cynthia A.; Scott, William E.; Iverson, Richard M.; Pierson, Thomas C.

    2010-01-01

    The spectacular eruption of Mount St. Helens on 18 May 1980 electrified scientists and the public. Photodocumentation of the colossal landslide, directed blast, and ensuing eruption column—which reached as high as 25 kilometers in altitude and lasted for nearly 9 hours—made news worldwide. Reconnaissance of the devastation spurred efforts to understand the power and awe of those moments (Figure 1). The eruption remains a seminal historical event—studying it and its aftermath revolutionized the way scientists approach the field of volcanology. Not only was the eruption spectacular, but also it occurred in daytime, at an accessible volcano, in a country with the resources to transform disaster into scientific opportunity, amid a transformation in digital technology. Lives lost and the impact of the eruption on people and infrastructure downstream and downwind made it imperative for scientists to investigate events and work with communities to lessen losses from future eruptions.

  15. LANDSLIDE DAMMED LAKES AT MOUNT ST. HELENS, WASHINGTON.

    USGS Publications Warehouse

    Meyer, William; Sabol, Martha A.; Schuster, Robert; ,

    1986-01-01

    The collapse of the north face of Mount St. Helens on May 18, 1980, and the debris avalanche that resulted blocked outflow from Spirit Lake and Coldwater and South Fork Castle Creeks. Spirit Lake began to increase in size and lakes began to form in the canyons of Coldwater and South Fork Castle Creeks. Coldwater and Castle Lakes would have overtopped their respective blockages in late 1981 or early 1982. Catastrophic flooding would have occurred from the breakout of Coldwater Lake while serious flooding probably would have resulted from the breakout of Castle Lake. As a result, the level of both lakes was stabilized with spillways in 1981. The three blockages are stable against liquefaction and gravitationally induced slope failure. The existence of groundwater in the blockages was observed in piezometers installed between 1981 and 1983. Groundwater mounds with water levels above lake level exist under the crest of all of the blockages.

  16. The isotopic and chemical evolution of Mount St. Helens

    USGS Publications Warehouse

    Halliday, A.N.; Fallick, A.E.; Dickin, A.P.; Mackenzie, A.B.; Stephens, W.E.; Hildreth, W.

    1983-01-01

    Isotopic and major and trace element analysis of nine samples of eruptive products spanning the history of the Mt. St. Helens volcano suggest three different episodes; (1) 40,000-2500 years ago: eruptions of dacite with ??{lunate}Nd = +5, ??{lunate}Sr = -10, variable ??18O, 206Pb/204Pb ??? 18.76, Ca/Sr ??? 60, Rb/Ba ??? 0.1, La/Yb ??? 18, (2) 2500-1000 years ago: eruptions of basalt, andesite and dacite with ??{lunate}Nd = +4 to +8, ??{lunate}Sr = -7 to -22, variable ??18O (thought to represent melting of differing mantle-crust reservoirs), 206Pb/204Pb = 18.81-18.87, variable Ca/Sr, Rb/Ba, La/Yb and high Zr, (3) 1000 years ago to present day: eruptions of andesite and dacite with ??{lunate}Nd = +6, ??{lunate}Sr = -13, ??18O ???6???, variable 206Pb/204Pb, Ca/Sr ??? 77, Rb/Ba = 0.1, La/Yb ??? 11. None of the products exhibit Eu anomalies and all are LREE enriched. There is a strong correlation between 87Sr/86Sr and differentiation indices. These data are interpreted in terms of a mantle heat source melting young crust bearing zircon and garnet, but not feldspar, followed by intrusion of this crustal reservoir by mantle-derived magma which caused further crustal melting and contaminated the crustal magma system with mafic components. Since 1000 years ago all the eruptions have been from the same reservoir which has displayed a much more gradual re-equilibration of Pb isotopic compositions than other components suggesting that Pb is being transported via a fluid phase. The Nd and Sr isotopic compositions lie along the mantle array and suggest that the mantle underneath Mt. St. Helens is not as depleted as MORB sources. There is no indication of seawater involvement in the source region. ?? 1983.

  17. Observations of volcanic tremor at Mt. St. Helens volcano

    SciTech Connect

    Fehler, M.

    1982-06-25

    Digital recordings of ground motion during tremor episodes accompanying eruptions at Mt. St. Helens Volcano in the state of Washington on August 7 and October 16-18, 1980 are studied. The spectra of the vertical component waveforms contain at least two dominant peaks at 1.0 and 1.3 Hz for all events recorded during both eruptions that were studied. Spectra of horizontal ground motion show peaks at .9 and 1.1 Hz. the relative amplitudes of the two peaks changes between tremor episodes and during single tremor episodes and show no consistent relation to amplitude of ground motion. Spectra of long period earthquakes are very similar to those of tremor events suggesting that tremor is composed of many long period earthquakes that occur over a period of time. The path effect of tremor waveforms is small since there are no peaks in the spectra of waveforms recorded during tectonic earthquakes occurring in the vicinity of Mt. St. Helens. Amplitudes of ground motion varies between .11 ..mu..m and 4.7 ..mu..m. Seismic moment rates during the two eruptions are calculated using the model of Aki et al. (1977) and found to vary between 6 x 10/sup 18/ and 1 x 10/sup 20/ dynes cm sec/sup -1/ which are larger than values found by Aki et al. (1977) who studied amplitudes of shallow tremor events recorded during the October, 1963 eruption of Kilauea volcano in Hawaii. Study of tremor amplitudes recorded at Corvallis, Oregon leads to the conclusion that tremor accompanying the cataclysmic May 18, 1980 eruption was at least one order of magnitude larger in amplitude than tremor during August and October.

  18. Linking community and ecosystem development on Mount St. Helens.

    PubMed

    Gill, Richard A; Boie, Jennifer A; Bishop, John G; Larsen, Lindsay; Apple, Jennifer L; Evans, R David

    2006-06-01

    In the two decades following the 1980 eruption of Mount St. Helens in Washington State, the N2-fixing colonizer Lupinus lepidus is associated with striking heterogeneity in plant community and soil development. We report on differences in nutrient availability and plant tissue chemistry between older, dense patches (core) of L. lepidus and more recently established low density patches (edge). In addition, we conducted a factorial nitrogen and phosphorus fertilization experiment in core patches to examine the degree of N and P limitation in early primary succession. We found that there were no significant differences in N or P availability between core and edge L. lepidus patches during the dry summer months, although nutrient availability is very low across the landscape. In the high density patches we found lower tissue N content and higher fiber content in L. lepidus tissue than in the younger edge patches. The addition of nutrients substantially altered plant community composition, with N addition causing an increase in other forb biomass and a corresponding competition-induced decline in L. lepidus biomass. The majority of the positive biomass response came from Hypochaeris radicata. In the second year of the fertilization experiment, the addition of N significantly increased total community biomass while L. lepidus biomass declined by more than 50%. The response of every species other than L. lepidus to N additions suggests that N may be the macronutrient most limiting plant production on Mount St. Helens but that the gains in productivity were somewhat offset by a decline of the dominant species. By the third year of the experiment, L. lepidus began to increase in abundance with P addition. This result suggests co-limitation of the community by N and P.

  19. Dynamical mass generation in unquenched QED using the Dyson-Schwinger equations

    SciTech Connect

    Kızılersü, Ayse; Sizer, Tom; Pennington, Michael R.; Williams, Anthony G.; Williams, Richard

    2015-03-13

    We present a comprehensive numerical study of dynamical mass generation for unquenched QED in four dimensions, in the absence of four-fermion interactions, using the Dyson-Schwinger approach. We begin with an overview of previous investigations of criticality in the quenched approximation. To this we add an analysis using a new fermion-antifermion-boson interaction ansatz, the Kizilersu-Pennington (KP) vertex, developed for an unquenched treatment. After surveying criticality in previous unquenched studies, we investigate the performance of the KP vertex in dynamical mass generation using a renormalized fully unquenched system of equations. This we compare with the results for two hybrid vertices incorporating the Curtis-Pennington vertex in the fermion equation. We conclude that the KP vertex is as yet incomplete, and its relative gauge-variance is due to its lack of massive transverse components in its design.

  20. A New Comment on Dyson's Exposition of Feynman's Proof of Maxwell Equations

    SciTech Connect

    Pombo, Claudia

    2009-03-10

    A paper by Dyson, published nearly two decades ago, describing Feynman's proof of Maxwell equations, has generated many comments, analysis, discussions and generalizations of the proof. Feynman's derivation is assumed to be based on two main sets of equations. One is supposed to be the second law of Newton and the other a set of basic commutation relations from quantum physics.Here we present a new comment on this paper, focusing mainly on the initial arguments and applying a new method of analysis and interpretation of physics, named observational realism. The present discussion does not alter the technical steps of Feynman, but do clarify their basis. We show that Newton's physics is not a starting point in Feynman's derivation, neither is quantum physics involved in it, but the foundations of relativity only.

  1. Dynamical mass generation in unquenched QED using the Dyson-Schwinger equations

    DOE PAGES

    Kızılersü, Ayse; Sizer, Tom; Pennington, Michael R.; ...

    2015-03-13

    We present a comprehensive numerical study of dynamical mass generation for unquenched QED in four dimensions, in the absence of four-fermion interactions, using the Dyson-Schwinger approach. We begin with an overview of previous investigations of criticality in the quenched approximation. To this we add an analysis using a new fermion-antifermion-boson interaction ansatz, the Kizilersu-Pennington (KP) vertex, developed for an unquenched treatment. After surveying criticality in previous unquenched studies, we investigate the performance of the KP vertex in dynamical mass generation using a renormalized fully unquenched system of equations. This we compare with the results for two hybrid vertices incorporating themore » Curtis-Pennington vertex in the fermion equation. We conclude that the KP vertex is as yet incomplete, and its relative gauge-variance is due to its lack of massive transverse components in its design.« less

  2. Dynamical mass generation in unquenched QED using the Dyson-Schwinger equations

    NASA Astrophysics Data System (ADS)

    Kızılersü, Ayşe; Sizer, Tom; Pennington, Michael R.; Williams, Anthony G.; Williams, Richard

    2015-03-01

    We present a comprehensive numerical study of dynamical mass generation for unquenched QED in four dimensions, in the absence of four-fermion interactions, using the Dyson-Schwinger approach. We begin with an overview of previous investigations of criticality in the quenched approximation. To this we add an analysis using a new fermion-antifermion-boson interaction ansatz, the Kızılersü-Pennington (KP) vertex, developed for an unquenched treatment. After surveying criticality in previous unquenched studies, we investigate the performance of the KP vertex in dynamical mass generation using a renormalized fully unquenched system of equations. This we compare with the results for two hybrid vertices incorporating the Curtis-Pennington vertex in the fermion equation. We conclude that the KP vertex is as yet incomplete, and its relative gauge variance is due to its lack of massive transverse components in its design.

  3. Quark Propagator with electroweak interactions in the Dyson-Schwinger approach

    NASA Astrophysics Data System (ADS)

    Mian, Walid Ahmed; Maas, Axel

    2017-03-01

    Motivated by the non-negligible dynamical backcoupling of the electroweak interactions with the strong interaction during neutron star mergers, we study the effects of the explicit breaking of C, P and flavor symmetry on the strong sector. The quark propagator is the simplest object which encodes the consequences of these breakings. To asses the impact, we study the influence of especially parity violation on the propagator for various masses. For this purpose the functional methods in form of Dyson-Schwinger-Equations are employed. We find that explicit isospin breaking leads to a qualitative change of behavior even for a slight explicit breaking, which is in contrast to the expectations from perturbation theory. Our results thus suggest that non-perturbative backcoupling effects could be larger than expected.

  4. Statistical Thermodynamics of Phase Transformations in Lithium Alanates with Release of Hydrogen

    NASA Astrophysics Data System (ADS)

    Zaginaichenko, S. Yu.; Matysina, Z. A.; Shchur, D. V.; Pomytkin, A. P.; Gabdullin, M. T.; Zaritskii, D. A.

    2017-02-01

    Based on the molecular and kinetic concepts, the paper presents the theory of phase transformations in lithium alanates with the release of hydrogen. The calculations are given for free energies of phases and their dependences on pressure, temperature, hydrogen concentration, and energy parameters are determined. The equations are derived for the thermodynamically-equilibrium states which determine the Pressure-Temperature-Concentration diagram and estimate the energy parameters with the use of experimental results taken from the literature. The investigation of the detected temperature/concentration dependence in crystals shows the impossibility of a complete hydrogen release from alanates. The paper contains isotherm and isopleth plots. A possibility is established for the hysteresis effect. A comparison is given to the theoretical and experimental results.

  5. Astronaut Alan Bean reads data from book while holding teleprinter tape

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Alan L. Bean, Skylab 3 commander, reads data from book in his right hand while holding teleprinter tape in his left hand, in the ward room of the Skylab space station's Orbital Workshop (OWS) crew quarters. This photograph was taken with a 35mm Nikon camera held by one of Bean's fellow crewmen during the 56.5 day second manned Skylab mission in Earth orbit.

  6. Hydrogen release properties of lithium alanate for application to fuel cell propulsion systems

    NASA Astrophysics Data System (ADS)

    Corbo, P.; Migliardini, F.; Veneri, O.

    In this paper the results of an experimental study on LiAlH 4 (lithium alanate) as hydrogen source for fuel cell propulsion systems are reported. The compound examined in this work was selected as reference material for light metal hydrides, because of its high hydrogen content (10.5 wt.%) and interesting desorption kinetic properties at moderate temperatures. Thermal dynamic and kinetic of hydrogen release from this hydride were investigated using a fixed bed reactor to evaluate the effect of heating procedure, carrier gas flow rate and sample form. The aim of this study was to characterize the lithium alanate decomposition through the reaction steps leading to the formation of Li 3AlH 6 and LiH. A hydrogen tank was designed and realized to contain pellets of lithium alanate as feeding for a fuel cell propulsion system based on a 2-kW Polymeric Electrolyte Fuel Cell (PEFC) stack. The fuel cell system was integrated into the power train comprising DC-DC converter, energy storage systems and electric drive for moped applications (3 kW). The experiments on the power train were conducted on a test bench able to simulate the vehicle behaviour and road characteristics on specific driving cycles. In particular the efficiencies of individual components and overall power train were analyzed evidencing the energy requirements of the hydrogen storage material.

  7. Dyson orbitals for ionization from the ground and electronically excited states within equation-of-motion coupled-cluster formalism: theory, implementation, and examples.

    PubMed

    Oana, C Melania; Krylov, Anna I

    2007-12-21

    Implementation of Dyson orbitals for coupled-cluster and equation-of-motion coupled-cluster wave functions with single and double substitutions is described and demonstrated by examples. Both ionizations from the ground and electronically excited states are considered. Dyson orbitals are necessary for calculating electronic factors of angular distributions of photoelectrons, Compton profiles, electron momentum spectra, etc, and can be interpreted as states of the leaving electron. Formally, Dyson orbitals represent the overlap between an initial N-electron wave function and the N-1 electron wave function of the corresponding ionized system. For the ground state ionization, Dyson orbitals are often similar to the corresponding Hartree-Fock molecular orbitals (MOs); however, for ionization from electronically excited states Dyson orbitals include contributions from several MOs and their shapes are more complex. The theory is applied to calculating the Dyson orbitals for ionization of formaldehyde from the ground and electronically excited states. Partial-wave analysis is employed to compute the probabilities to find the ejected electron in different angular momentum states using the freestanding and Coulomb wave representations of the ionized electron. Rydberg states are shown to yield higher angular momentum electrons, as compared to valence states of the same symmetry. Likewise, faster photoelectrons are most likely to have higher angular momentum.

  8. Multiscale modelling of Interaction of Alane Clusters on Al(111) surface: A Reactive Force Field and Infrared Absorption Spectroscopy Approach

    NASA Astrophysics Data System (ADS)

    Ojwang, Julius; van Duin, Adri; Goddard, William, III; van Santen, Rutger

    2010-10-01

    Alanes are believed to be the ubiquitous facilitators of mass transport of aluminum atoms during the thermal decomposition of NaAlH4. Alanes also take part on decomposition of AlH3, another important material for hydrogen storage. We have used interplay of theoretical simulations (reactive force field and density functional theory) and experiments (IR reflection absorption spectroscopy) to address the issue of the role of alanes as facilitators of mass transport of aluminum atoms. We have obtained valuable details on the mechanism of formation and agglomeration of alanes on Al(111) surface. Our simulations show that, on the Al(111) surface, alanes oligomerize into larger alanes. The identification of these string like intermediates as a precursor to the bulk hydride phase allows us to explain the loss of resolution in surface IR experiments with increasing hydrogen coverage on single crystal Al(111) surface. This is in excellent agreement with the experimental works of Go et al. (E. Go, K. Thuermer, J.E. Reutt-Robey, Surf. Sci.,437:377(1999)).

  9. Improved Dyson series expansion for steady-state quantum transport beyond the weak coupling limit: divergences and resolution.

    PubMed

    Thingna, Juzar; Zhou, Hangbo; Wang, Jian-Sheng

    2014-11-21

    We present a general theory to calculate the steady-state heat and electronic currents for nonlinear systems using a perturbative expansion in the system-bath coupling. We explicitly demonstrate that using the truncated Dyson-series leads to divergences in the steady-state limit, thus making it impossible to be used for actual applications. In order to resolve the divergences, we propose a unique choice of initial condition for the reduced density matrix, which removes the divergences at each order. Our approach not only allows us to use the truncated Dyson-series, with a reasonable choice of initial condition, but also gives the expected result that the steady-state solutions should be independent of initial preparations. Using our improved Dyson series we evaluate the heat and electronic currents up to fourth-order in system-bath coupling, a considerable improvement over the standard quantum master equation techniques. We then numerically corroborate our theory for archetypal settings of linear systems using the exact nonequilibrium Green's function approach. Finally, to demonstrate the advantage of our approach, we deal with the nonlinear spin-boson model to evaluate heat current up to fourth-order and find signatures of cotunnelling process.

  10. Improved Dyson series expansion for steady-state quantum transport beyond the weak coupling limit: Divergences and resolution

    SciTech Connect

    Thingna, Juzar; Zhou, Hangbo; Wang, Jian-Sheng

    2014-11-21

    We present a general theory to calculate the steady-state heat and electronic currents for nonlinear systems using a perturbative expansion in the system-bath coupling. We explicitly demonstrate that using the truncated Dyson-series leads to divergences in the steady-state limit, thus making it impossible to be used for actual applications. In order to resolve the divergences, we propose a unique choice of initial condition for the reduced density matrix, which removes the divergences at each order. Our approach not only allows us to use the truncated Dyson-series, with a reasonable choice of initial condition, but also gives the expected result that the steady-state solutions should be independent of initial preparations. Using our improved Dyson series we evaluate the heat and electronic currents up to fourth-order in system-bath coupling, a considerable improvement over the standard quantum master equation techniques. We then numerically corroborate our theory for archetypal settings of linear systems using the exact nonequilibrium Green's function approach. Finally, to demonstrate the advantage of our approach, we deal with the nonlinear spin-boson model to evaluate heat current up to fourth-order and find signatures of cotunnelling process.

  11. Schwinger-Dyson operators as invariant vector fields on a matrix model analog of the group of loops

    NASA Astrophysics Data System (ADS)

    Krishnaswami, Govind S.

    2008-06-01

    For a class of large-N multimatrix models, we identify a group G that plays the same role as the group of loops on space-time does for Yang-Mills theory. G is the spectrum of a commutative shuffle-deconcatenation Hopf algebra that we associate with correlations. G is the exponential of the free Lie algebra. The generating series of correlations is a function on G and satisfies quadratic equations in convolution. These factorized Schwinger-Dyson or loop equations involve a collection of Schwinger-Dyson operators, which are shown to be right-invariant vector fields on G, one for each linearly independent primitive of the Hopf algebra. A large class of formal matrix models satisfying these properties are identified, including as special cases, the zero momentum limits of the Gaussian, Chern-Simons, and Yang-Mills field theories. Moreover, the Schwinger-Dyson operators of the continuum Yang-Mills action are shown to be right-invariant derivations of the shuffle-deconcatenation Hopf algebra generated by sources labeled by position and polarization.

  12. Surtsey and Mount St. Helens: a comparison of early succession rates

    NASA Astrophysics Data System (ADS)

    del Moral, R.; Magnússon, B.

    2013-12-01

    Surtsey and Mount St. Helens are celebrated, but very different volcanoes. Permanent plots allow comparisons that reveal mechanisms that control succession and its rate and suggest general principles. We estimated rates from structure development, species composition using detrended correspondence analysis (DCA), changes in Euclidean distance (ED) of DCA vectors and by principal components analysis (PCA) of DCA. On Surtsey, rates determined from DCA trajectory analyses decreased as follows: gull colony on lava with sand > gull colony on lava, no sand ≫ lava with sand > sand spit > block lava > tephra. On Mount St. Helens, plots on lahar deposits near woodlands were best developed. The succession rates of open meadows declined as follows: Lupinus-dominated pumice > protected ridge with Lupinus > other pumice and blasted sites > isolated lahar meadows > barren plain. Despite the prominent contrasts between the volcanoes, common themes were revealed. Isolation restricted the number of colonists on Surtsey and to a lesser degree on Mount St. Helens. Nutrient input from outside the system was crucial. On Surtsey, seabirds fashioned very fertile substrates, while on Mount St. Helens wind brought a sparse nutrient rain, then Lupinus enhanced fertility to promote succession. Environmental stress limits succession in both cases. On Surtsey, bare lava, compacted tephra and infertile sands restrict development. On Mount St. Helens, exposure to wind and infertility slow succession.

  13. Surtsey and Mount St. Helens: a comparison of early succession rates

    NASA Astrophysics Data System (ADS)

    del Moral, R.; Magnússon, B.

    2014-04-01

    Surtsey and Mount St. Helens are celebrated but very different volcanoes. Permanent plots allow for comparisons that reveal mechanisms that control succession and its rate and suggest general principles. We estimated rates from structure development, species composition using detrended correspondence analysis (DCA), changes in Euclidean distance (ED) of DCA vectors, and by principal components analysis (PCA) of DCA. On Surtsey, rates determined from DCA trajectory analyses decreased as follows: gull colony on lava with sand > gull colony on lava, no sand ≫ lava with sand > sand spit > block lava > tephra. On Mount St. Helens, plots on lahar deposits near woodlands were best developed. The succession rates of open meadows declined as follows: Lupinus-dominated pumice > protected ridge with Lupinus > other pumice and blasted sites > isolated lahar meadows > barren plain. Despite the prominent contrasts between the volcanoes, we found several common themes. Isolation restricted the number of colonists on Surtsey and to a lesser degree on Mount St. Helens. Nutrient input from outside the system was crucial. On Surtsey, seabirds fashioned very fertile substrates, while on Mount St. Helens wind brought a sparse nutrient rain, then Lupinus enhanced fertility to promote succession. Environmental stress limits succession in both cases. On Surtsey, bare lava, compacted tephra and infertile sands restrict development. On Mount St. Helens, exposure to wind and infertility slow succession.

  14. Inclusions in Mount St. Helens dacite erupted from 1980 through 1983

    USGS Publications Warehouse

    Heliker, C.

    1995-01-01

    Inclusions of plutonic, metavolcanic and volcanic rocks are abundant in dacite pumice and lava from the 1980-1986 eruption sequence at Mount St. Helens. Point counts of inclusions exposed in talus blocks from the dome from 1980 through 1983 show that inclusions form approximately 3.5 vol.% of the lava. Eighty-five percent of the inclusions are medium-grained gabbros. The gabbroic inclusions are of four distinct type. The most abundant type is laminated gabbronorite. Various types of gabbroic inclusions, including the laminated gabbronorite, are common in Mount St. Helens lavas of approximately the last 3000 years. This coincides with the interval in which Mount St. Helens first erupted basalt and basaltic andesite lavas. These observations, together with the fact that the gabbroic inclusions are compositionally unlike any of the Tertiary intrusive rocks in the Mount St. Helens area, strongly suggest that the inclusions are related to the introduction of basalt to the Mount St. Helens magmatic system. -from Author

  15. Pulmonary toxicity of Mount St. Helens volcanic ash

    SciTech Connect

    Sanders, C.L.; Conklin, A.W.; Gelman, R.A.; Adee, R.R.; Rhoads, K.

    1982-02-01

    The effects of Mount St. Helens volcanic ash, a sandy loam soil, and quartz particles on the lung and mediastinal lymph nodes of Fischer rats were studied at time intervals of up to 109 days after in tratracheal instillation of 40 mg ash, soil, or quartz in a single dose or after multiple doses of ash instilled in seven consecutive weekly doses for a total deposition of 77 mg. Quartz caused early granuloma formation, later fibrosis was also seen in lymph nodes. Volcanic ash caused an ill-defined inflammatory reaction with a few rats showing granuloma formulation, a very limited linear fibrosis, and a moderate lipoproteinosis, and lymph nodes were enlarged with numerous microgranulomas but without reticulin and collagen formation. Pulmonary reactions to soil particles were less intense but similar to those in ash- exposed animals; lymph nodes were not enlarged. No significant clearance of ash was found at 3 months after instillation. Volcanic ash produced a simple pneumoconiosis similar to what has been described for animals and humans living for prolonged periods of time in dusty desert areas of the United States.

  16. Geologic Map of the Helen Planitia Quadrangle (V-52), Venus

    USGS Publications Warehouse

    Lopez, Ivan; Hansen, Vicki L.

    2008-01-01

    The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the Venusian atmosphere on October 12, 1994. Magellan Mission objectives included (1) improving the knowledge of the geological processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving the knowledge of the geophysics of Venus by analysis of Venusian gravity. The Helen Planitia quadrangle (V-52), located in the southern hemisphere of Venus between lat 25 deg S. and 50 deg S. and between long 240 deg E. and 270 deg E., covers approximately 8,000,000 km2. Regionally, the map area is located at the southern limit of an area of enhanced tectonomagmatic activity and extensional deformation, marked by a triangle that has highland apexes at Beta, Atla, and Themis Regiones (BAT anomaly) and is connected by the large extensional belts of Devana, Hecate, and Parga Chasmata. The BAT anomaly covers approximately 20 percent of the Venusian surface.

  17. Reestablishment of endogonaceae on Mount St. Helens: survival of residuals

    SciTech Connect

    Allen, M.F.; MacMahon, J.A.; Andersen, D.C.

    1984-01-01

    The 18 May 1980 eruption of Mount St. Helens resulted in the burial of relatively well developed soils under variable depths of sterile tephra and ash. During summer 1982, we examined a series of sites and estimated the numbers of spores of Endogonaceae that had been transported from the buried soil to the new ground surface by either abiotic or biotic vectors. There was no difference between spore counts of Endogone spp. or Glomus spp. in the buried soils of forests and clear-cuts; spores were rare in the tephra at any site. In areas featuring less than or equal to 50 cm of tephra, spores were transported to the surface by gophers (in previous clear-cut areas) and by ants (in previous forest and clear-cut habitats). In the Pumice Plain, an area devoid of gophers and ants, erosion exposed spores to the surface. We found no evidence to suggest that endogonaceous fungi grow back up root systems from buried horizons. We hypothesize that small-scale perturbations (erosion, gopher and ant mounds) following the major volcanic disturbance may drive succession by exposing buried mycorrhizal and decomposer fungi. 26 references, 2 figures, 3 tables.

  18. Early succession on lahars spawned by Mount St. Helens.

    PubMed

    Del Moral, R

    1998-06-01

    The effects of isolation on primary succession are poorly documented. I monitored vegetation recovery on two Mount St. Helens lahars (mud flows) with different degrees of isolation using contiguous plots. Seventeen years after the eruption, species richness was stable, but cover continued to increase. That isolation affects community structure was confirmed in several ways. The dominance hierarchies of the lahars differed sharply. Detrended correspondence analysis on Lahar I showed a trend related to distance from an adjacent woodland, whereas vegetation on Lahar II was relatively homogeneous. Spectra of growth forms and dispersal types also differed. Lahar I was dominated by species with modest dispersal ability, while Lahar II was dominated by species with better dispersal. Variation between plots should decline through time, a prediction confirmed on Lahar II. Lahar I remained heterogeneous despite having developed significantly higher cover. Here, the increasing distance from the forest has prevented plots from becoming more homogeneous. At this stage of early primary succession, neither lahar is converging towards the species composition of adjacent vegetation. This study shows that isolation and differential dispersal ability combine to determine initial vegetation structure. Stochastic effects resulting from dispersal limitations may resist the more deterministic effects of competition that could lead to floristic convergence.

  19. Measurements of SO2 in the Mount St. Helens debris

    NASA Technical Reports Server (NTRS)

    Kerr, J. B.; Evans, F. J.; Mateer, C. L.

    1982-01-01

    Routine measurements of ozone and SO2 are made with the Dobson and Brewer spectrophotometers at the Atmospheric Environment Service in Downsview Ontario. On May 20 and 21, 1980, large values of column SO2 were observed with both spectrophotometers at the time of passage of the Mount St. Helens debris. Enhanced SO2 values were first observed at 1800Z on May 20. The maximum column amount of SO2 measured was 0.06 cm at 2200 Z. On May 21, SO2 values slowly decreased from 0.03 cm at 1100 Z cm to 0.01 cm at 2000Z. Typical SO2 amounts due to pollution at the Downsview site are approximately 0.003 to 0.005 cm. At the same time of maximum SO2 enhancement, both Dobson and Brewer spectrophotometers measured a 0.040 cm decrease of total ozone. It is not clear whether the decrease of total ozone was caused by the volcanic cloud or natural ozone variability. Air mass trajectories indicate that the altitude of the debris cloud, which passed over Downsview at the time, was between 10 km and 12 km.

  20. Ice Nucleus Characteristics of Mount St. Helens Effluents

    SciTech Connect

    Schnell, R.C.; Pueschel, R.F.; Wellman, D.L.

    1982-12-20

    Aerosols were studied in situ and captured on membrane filters from an aircraft flown around Mount St. Helens during its phreatic period in April 1980. Bulk samples of volcanic ash were collected at ground level 120 km downwind on May 19, 1980 and reaerosolized in a laboratory in ash cloud simulation studies. The aerosol and/or ash samples were tested for ice nucleus (IN) activity using four different IN measurement systems (NCAR acoustical counter, bulk drop freezing, NCAR dynamic thermal diffusion chamber, and filter drop freezing). Although threshold IN activity was observed at -8/sup 0/C in bulk ash, in aerosols there were few IN active at temperatures warmer than -12/sup 0/C. At -12/sup 0/C, IN concentrations were less than 0.4 l/sup -1/ (400 m/sup -3/) even when the aerosol concentrations were as high as 3000 ..mu..g m/sup -3/. At aerosol concentrations of 500 ..mu..g m/sup -3/ and less, the IN content of the ash was below background threshold temperatures of -18/sup 0/C.

  1. Airborne radiological sampling of Mount St. Helens plumes

    SciTech Connect

    Andrews, V.E.

    1981-04-01

    Particulate and gaseous samples for radiologial analyses were collected from the plumes created by eruptions of Mount St. Helens. The sampling aircraft and equipment used are routinely employed in aerial radiological surveillance at the Nevada Test Site by the Environmental Protection Agency's Environmental Monitoring Systems Laboratory in Las Vegas, Nevada. An initial sample set was collected on April 4, 1980, during the period of recurring minor eruptions. Samples were collected again on May 19 and 20 following the major eruption of May 18. The Environmental Protection Agency's Office of Radiation Programs analyzed the samples for uranium and thorium isotopes, radium-226, lead-210, polonium-210, and radon-222. Other laboratories analyzed samples to determine particle size distribution and elemental composition. The only samples containing radioactivity above normal ambient levels were collected on May 20. Polonium-210 concentrations in the plume, determined from a sample collected between 5 and 30 km from the crater, were approximately an order of magnitude above background. Radon-222 concentrations in samples collected from the plume centerline at a distance of 15 km averaged approximately four times the average surface concentrations. The small increases in radioactivity would cause no observable adverse health effects.

  2. Impact on agriculture of the mount st. Helens eruptions.

    PubMed

    Cook, R J; Barron, J C; Papendick, R I; Williams, G J

    1981-01-02

    Ash from Mount St. Helens has fallen over a diverse agricultural area, with deposits of up to 30 kilograms per square meter. Crop losses in eastern Washington are estimated at about $100 million in 1980-about 7 percent of the normal crop value in the affected area and less than was expected initially. Production of wheat, potatoes, and apples will be normal or above normal because the favorable conditions for growth of these crops since the ashfall helped offset the losses. Alfalfa hay was severely lodged under the weight of the ash, but ash-contaminated hay is apparently nontoxic when eaten by livestock. The ash as an abrasive is lethal to certain insects, such as bees and grasshoppers, but populations are recovering. The ash has increased crop production costs by necessitating machinery repairs and increased tillage. On soil, the ash reduces water infiltration, increases surface albedo, and may continue to affect water runoff, erosion, evaporation, and soil temperature even when tilled into the soil. Ash on plant leaves reduced photosynthesis by up to 90 percent. Most plants have tended to shed the ash. With the possible exception of sulfur, the elements in the ash are either unavailable or present in very low concentrations; and no significant contribution to the nutrient status of soils is expected.

  3. Pulmonary response to Mount St. Helens' volcanic ash.

    PubMed

    Vallyathan, V; Mentnech, M S; Tucker, J H; Green, F H

    1983-04-01

    The pulmonary response to a sedimented sample of Mount St. Helens' volcanic ash from the first eruption was studied at 1, 7, 28, 90, and 180 days postintratracheal administration of 1 or 10 mg of ash in specific-pathogen-free rats. One day administration of volcanic ash all animals exhibited a marked inflammatory cell response centered on respiratory bronchioles in which polymorphonuclear leukocytes predominated. At 7 days the reaction was characterized by mononuclear cellular infiltrates. The macrophages within the respiratory bronchioles and alveoli contained intracytoplasmic ash particles. At 28 days the intraalveolar aggregates of mononuclear cells had condensed to form granulomas. Most of the granulomas contained foreign body-type giant cells and some showed central necrosis. The granulomas enlarged in size from 28 days until the termination of the experiment at 180 days with progressive increase in the amount of collagenous tissue. The results of these studies suggest that the volcanic ash may pose a risk for pneumoconiosis in heavily exposed human populations.

  4. Pressure wave generated by the Mount St. Helens eruption

    SciTech Connect

    Banister, J.B.

    1984-06-20

    Histories of the air pressure wave radiated from the eruption of Mount St. Helens on May 18, 1980, were calculated for two models of the eruption cloud expansion. The first considered the wave radiated from an accelerated plane surface, while the second examined the wave radiated from an expanding hemisphere. Two histories of eruption cloud motion based on photographs were used. Peak positive overpressures were about the same for these cloud motion histories of expansion into a hemisphere was assumed. If an accelerated planar source model was used, the peak positive pressures have again about the same value in east and west direction, but values are about half in the north and south direction. Observed peak overpressures at microbarograph stations are somewhat higher than the calculated with the most marked departures at the greater surface ranges. These observed overpressures may have been about half the correct values, however. Microbarograph records show a weaker rarefaction than calculated histories or none at all. This can be explained, in part, by a lack of a real motion coherence in the slowing eruption cloud. If it is also possible the net ash cloud volume increased considerably after its vertical growth ceased and weakened the negative phase as well as lengthening the positive phase.

  5. Volcanic Plume Above Mount St. Helens Detected with GPS

    NASA Astrophysics Data System (ADS)

    Houlié, N.; Briole, P.; Nercessian, A.; Murakami, M.

    2005-07-01

    Eruptions can produce not only flows of incandescent material along the slopes of a volcano but also ash plumes in the troposphere [Sparks et al., 1997] that can threaten aircraft flying in the vicinity [Fisher et al., 1997]. To protect aircraft, passengers, and crews, the International Civil Aviation Organization and the World Meteorological Organization created eight Volcanic Ash Advisory Centers (VAAC, http://www.ssd.noaa.gov/VAAC/vaac.html) around the globe with the goal of tracking volcanic plumes and releasing eruption alerts to airports, pilots, and companies. Currently, the VAAC monitoring system is based mostly on the monitoring systems of any local volcano observatories and on real-time monitoring of data acquired by meteorological satellites. In the case of the 18 August 2000 eruption of the Miyakejima volcano in Japan, Houlié et al. [2005] showed that the Global Positioning System(GPS) might be used as an additional tool for monitoring volcanic plumes. The present article indicates that the 9 March 2005 eruption of Mount St. Helens, Washington, also produced detectable anomalies in GPS data.>

  6. Analysis of Mount St. Helens ash from optical photoelectric photometry

    NASA Technical Reports Server (NTRS)

    Cardelli, J. A.; Ackerman, T. P.

    1983-01-01

    The optical properties of suspended dust particles from the eruption of Mt. St. Helens on July 23, 1980 are investigated using photoelectric observations of standard stars obtained on the 0.76-m telescope at the University of Washington 48 hours after the eruption. Measurements were made with five broad-band filters centered at 3910, 5085, 5480, 6330, and 8050 A on stars of varying color and over a wide range of air masses. Anomalous extinction effects due to the volcanic ash were detected, and a significant change in the wavelength-dependent extinction parameter during the course of the observations was established by statistical analysis. Mean particle size (a) and column density (N) are estimated using the Mie theory, assuming a log-normal particle-size distribution: a = 0.18 micron throughout; N = 1.02 x 10 to the 9th/sq cm before 7:00 UT and 2.33 x 10 to the 9th/sq cm after 8:30 UT on July 25, 1980. The extinction is attributed to low-level, slowly migrating ash, possibly combined with products of gas-to-particle conversion and coagulation.

  7. η and η' in a coupled Schwinger-Dyson and Bethe-Salpeter approach

    NASA Astrophysics Data System (ADS)

    Klabučar, Dubravko; Kekez, Dalibor

    1998-11-01

    Extending our earlier treatments of π0,ηc, and ηb, we study the η-η' system and its γγ decays using a model which is a leading version of the consistently coupled Schwinger-Dyson (SD) and Bethe-Salpeter (BS) approaches. The electromagnetic interactions are incorporated through a (generalized) impulse approximation consistent with this bound-state approach, so that the Ward-Takahashi identities of QED are preserved when quarks are dynamically dressed. To overcome some of the limitations due to the ladder approximation, we introduce a minimal extension to the bound-state approach employed, so that the UA(1) problem is avoided. Pointing out which of our predictions hold in the coupled SD-BS approach in general, and which are the consequences of the specific, chosen model, we present the results for the axial-current decay constants of η8, η0, and of their physical combinations η and η', the results for the γγ-decay constants of η0 and η8, for the two-photon decay widths of η and η', and for the mixing-independent R ratio constructed from them.

  8. Schwinger-Dyson equations in large-N quantum field theories and nonlinear random processes

    SciTech Connect

    Buividovich, P. V.

    2011-02-15

    We propose a stochastic method for solving Schwinger-Dyson equations in large-N quantum field theories. Expectation values of single-trace operators are sampled by stationary probability distributions of the so-called nonlinear random processes. The set of all the histories of such processes corresponds to the set of all planar diagrams in the perturbative expansions of the expectation values of singlet operators. We illustrate the method on examples of the matrix-valued scalar field theory and the Weingarten model of random planar surfaces on the lattice. For theories with compact field variables, such as sigma models or non-Abelian lattice gauge theories, the method does not converge in the physically most interesting weak-coupling limit. In this case one can absorb the divergences into a self-consistent redefinition of expansion parameters. A stochastic solution of the self-consistency conditions can be implemented as a 'memory' of the random process, so that some parameters of the process are estimated from its previous history. We illustrate this idea on the two-dimensional O(N) sigma model. The extension to non-Abelian lattice gauge theories is discussed.

  9. QCD phase transitions via a refined truncation of Dyson-Schwinger equations

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Liu, Yu-xin

    2016-10-01

    We investigate both the chiral and deconfinement phase transitions of QCD matter in a refined scheme of Dyson-Schwinger equations, which have been shown to be successful in giving the meson mass spectrum and matching the interaction with the results from ab initio computation. We verify the equivalence of the chiral susceptibility criterion with different definitions for the susceptibility and confirm that the chiral susceptibility criterion is efficient to fix not only the chiral phase boundary but also the critical end point (CEP), especially when one could not have the effective thermodynamical potential. We propose a generalized Schwinger function criterion for the confinement. We give the phase diagram of both phase transitions and show that in the refined scheme the position of the CEP shifts to lower chemical potential and higher temperature. Based on our calculation and previous results of the chemical freeze-out conditions, we propose that the CEP is located in the states of the matter generated by the Au-Au collisions with √{sN N }=9 - 15 GeV .

  10. Infrared analysis of Dyson-Schwinger equations taking into account the Gribov horizon in Landau gauge

    SciTech Connect

    Huber, M. Q.; Alkofer, R.; Sorella, S. P.

    2010-03-15

    The low momentum behavior of the Landau gauge Gribov-Zwanziger action is investigated using the respective Dyson-Schwinger equations. Because of the mixing of the gluon and the auxiliary fields four scenarios can be distinguished for the infrared behavior. Two of them lead to inconsistencies and can be discarded. Another one corresponds to the case where the auxiliary fields behave exactly like the Faddeev-Popov ghosts and the same scaling relation as in standard Landau gauge, {kappa}{sub A}+2{kappa}{sub c}=0, is valid. Even the parameter {kappa} is found to be the same, 0.595. The mixed propagators, which appear, are suppressed in all loops, and their anomalous infrared exponent can also be determined. A fourth case provides an even stricter scaling relation that includes also the mixed propagators, but possesses the same qualitative feature, i.e. the propagators of the Faddeev-Popov ghost and the auxiliary fields are infrared enhanced and the mixed and the gluon propagators are infrared suppressed. In this case the system of equations to obtain the parameter {kappa} is nonlinear in all variables.

  11. Road guide to volcanic deposits of Mount St. Helens and vicinity, Washington

    USGS Publications Warehouse

    Doukas, Michael P.

    1990-01-01

    Mount St. Helens, the most recently active and most intensively studied Cascades volcano, is in southwestern Washington. The volcano is a superb outdoor laboratory for studying volcanic processes, deposits of observed events, and deposits whose origins are inferred by classic geologic techniques, including analogy to recent deposits. During the past 4,500 years, Mount St. Helens has been more active and more explosive than any other volcano in the conterminous United States. Mount St. Helens became active in mid-March 1980, and eruptive activity began on March 27. Since the climactic eruption of May 18, 1980, the volcano has continued to be active at least until 1988. The 1890 activity of Mount St. Helens is summarized in U.S. Geological Survey Professional Papers 1249 and 1250. This road guide is a tour of Mount St. Helens volcano and vicinity, with emphasis on the effects and deposits of the 1980 eruption. The road log starts from the U.S. Geological Survey's David A. Johnston Cascades Volcano Observatory, Vancouver, Washington. The guide is organized around two primary routes. LEG I is on paved and gravel roads from Vancouver to areas east of Mount St. Helens, including Windy Ridge Overlook near Spirit Lake. This is possibly the most scenic route described in the guide, including a transect of the devastated zone of May 18, 1980, Spirit Lake, and numerous vistas of the volcano. LEG II leads to areas west of the volcano from Vancouver via U.S. Interstate Highway 5, then on a paved ... road along the Toutle River. Highlights include the spectacular effects of mudflows and a view of the huge debris-avalanche deposit that was formed on May 18, 1980.

  12. Astronaut Alan Bean flies the Astronaut Maneuvering Equipment in the OWS

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Alan L. Bean, Skylab 3 commander, flies the M509 Astronaut Maneuvering Equipment, as seen in this photographic reproduction taken from a television transmission made by a color television camera in the Orbital Workshop (OWS) of the Skylab space station in Earth orbit. Bean is strapped into the back-mounted, hand-controlled Automatically stabilized Maneuvering Unit (ASMU). The M509 exercise was in the forward dome area of the OWS. THe dome area is about 22 feet in diameter and 19 feet form top to bottom.

  13. Counting, accounting, and accountability: Helen Verran's relational empiricism.

    PubMed

    Kenney, Martha

    2015-10-01

    Helen Verran uses the term 'relational empiricism' to describe situated empirical inquiry that is attentive to the relations that constitute its objects of study, including the investigator's own practices. Relational empiricism draws on and reconfigures Science and Technology Studies' traditional concerns with reflexivity and relationality, casting empirical inquiry as an important and non-innocent world-making practice. Through a reading of Verran's postcolonial projects in Nigeria and Australia, this article develops a concept of empirical and political 'accountability' to complement her relational empiricism. In Science and an African Logic, Verran provides accounts of the relations that materialize her empirical objects. These accounts work to decompose her original objects, generating new objects that are more promising for the specific postcolonial contexts of her work. The process of decomposition is part of remaining accountable for her research methods and accountable to the worlds she is working in and writing about. This is a practice of narrating relations and learning to tell better technoscientific stories. What counts as better, however, is not given, but is always contextual and at stake. In this way, Verran acts not as participant-observer, but as participant-storyteller, telling stories to facilitate epistemic flourishing within and as part of a historically located community of practice. The understanding of accountability that emerges from this discussion is designed as a contribution, both practical and evocative, to the theoretical toolkit of Science and Technology Studies scholars who are interested in thinking concretely about how we can be more accountable to the worlds we study.

  14. Air pressure waves from Mount St. Helens eruptions

    SciTech Connect

    Reed, J.W.

    1987-10-20

    Weather station barograph records as well as infrasonic recordings of the pressure wave from the Mount St. Helens eruption of May 18, 1980, have been used to estimate an equivalent explosion airblast yield for this event. Pressure amplitude versus distance patterns in various directions compared with patterns from other large explosions, such as atmospheric nuclear tests, the Krakatoa eruption, and the Tunguska comet impact, indicate that the wave came from an explosion equivalent of a few megatons of TNT. The extent of tree blowdown is considerably greater than could be expected from such an explosion, and the observed forest damage is attributed to outflow of volcanic material. The pressure-time signature obtained at Toledo, Washington, showed a long, 13-min duration negative phase as well as a second, hour-long compression phase, both probably caused by ejacta dynamics rather than standard explosion wave phenomenology. The peculiar audibility pattern, with the blast being heard only at ranges beyond about 100 km, is explicable by finite amplitude propagation effects. Near the source, compression was slow, taking more than a second but probably less than 5 s, so that it went unnoticed by human ears and susceptible buildings were not damaged. There was no damage as Toledo (54 km), where the recorded amplitude would have broken windows with a fast compression. An explanation is that wave emissions at high elevation angles traveled to the upper stratosphere, where low ambient air pressures caused this energetic pressure oscillation to form a shock wave with rapid, nearly instantaneous compression. Atmospheric refraction then returned part of this wave to ground level at long ranges, where the fast compressions were clearly audible. copyright American Geophysical Union 1987

  15. Source parameters of microearthquakes at Mount St Helens (USA)

    USGS Publications Warehouse

    Tusa, Giuseppina; Brancato, Alfonso; Gresta, Stefano; Malone, Stephen D.

    2006-01-01

    We estimate the source parameters for a selection of microearthquakes that occurred at Mount St Helens in the period 1995–1998. Excluding the activity of 2004 September, this time period includes the most intense episode of earthquake activity since the last dome-building eruption in 1986 October. 200 seismograms were processed to obtain seismic moments, source radii, stress drops and average fault slip. The source parameters were determined from the spectral analysis of P waves, after correction for attenuation and site effects. In particular, P-wave quality (Qp) and site (S) factors have been previously calculated in the frequency ranges 2–7 Hz and 18–30 Hz. Because it was impossible to perform corrections for Qp and S over the whole spectrum we applied a new approach, based on the notion of ‘holed spectrum’, to estimate spectral parameters. The term ‘holed spectrum’ indicates a spectrum lacking corrected spectral amplitude values at certain frequencies. We carried out a statistical study to verify that dealing with the ‘holed spectrum’ does not lead to significant differences in the estimates of spectral parameters. We also investigated the dependence of spectral parameters (low-frequency level, corner frequency and high-frequency decay) on the bandwidth of spectral hole, and defined the threshold values for three different spectral models. Displacement ‘holed spectra’, corrected by attenuation and site response, are then used to determine spectral parameters in order to calculate seismic source parameters. Seismic moments range from 1017 to 1019 dyne-cm, source dimensions from 100 to 350 m, and average fault slip from 0.003 to 0.1 cm. Self-similarity seems to break down in that stress drops are very low (0.1–1 bars). We postulate that seismicity is associated with a brittle shear failure mechanism occurring in a highly heterogeneous material under a relatively low stress regime.

  16. Physical and chemical characteristics of Mt. St. Helens airborne debris

    SciTech Connect

    Sedlacek, W.A.; Heiken, G.H.; Mroz, E.J.; Gladney, E.S.; Perrin, D.R.; Leifer, R.; Fisenne, I.; Hinchliffe, L.; Chuan, R.L.

    1980-01-01

    Tephra and aerosols from the May 18, 1980 eruption of Mt. St. Helens, Washington were sampled in the lower stratosphere with a WB-57F aircraft. The main body of the plume was intercepted over western Kansas on May 20, 48 hours after the eruption, at an altitude of 15.2 km. Concentrations on filter samples were 26 ng of SO/sub 4//g of air and 579 ng of ash/g of air. Angular glass pyroclasts ranged in size from 0.5 to 10 ..mu..m, with a mean grain size of 2 ..mu..m. Samples collected at altitudes of 16.7 and 12.5 km had only traces of SO/sub 4/ and ash. A second flight was flown, 72 hours after the eruption, on May 21. From north Texas to central Wyoming, at an altitude of 15.2 km, < 0.5 to 38 ng of ash/g of air and 1.0 to 2.2 ng of SO/sub 4//g of air were sampled. At an altitude of 18.3 km, from central Wyoming to NW New Mexico, the plume density and character were variable. Glassy pyroclasts similar to those sampled on the first flight range in size from 0.5 to 4 ..mu..m dia. Trace element analysis revealed some volatile element enrichment, but far less than previously observed in the plume from St. Augustine Volcano, 1976. Values of /sup 210/Po//sup 210/Pb were 0.7 to 1.32 comparable to the secular equilibrium value of 1.0 and far less than ratios previously reported by Lambert.

  17. Formation and bonding of alane clusters on Al(111) surfaces studied by infrared absorption spectroscopy and theoretical modeling.

    PubMed

    Chaudhuri, Santanu; Rangan, Sylvie; Veyan, Jean-Francois; Muckerman, James T; Chabal, Yves J

    2008-08-13

    Alanes are believed to be the mass transport intermediate in many hydrogen storage reactions and thus important for understanding rehydrogenation kinetics for alanates and AlH3. Combining density functional theory (DFT) and surface infrared (IR) spectroscopy, we provide atomistic details about the formation of alanes on the Al(111) surface, a model environment for the rehydrogenation reactions. At low coverage, DFT predicts a 2-fold bridge site adsorption for atomic hydrogen at 1150 cm(-1), which is too weak to be detected by IR but was previously observed in electron energy loss spectroscopy. At higher coverage, steps are the most favorable adsorption sites for atomic H adsorption, and it is likely that the AlH3 molecules form (initially strongly bound to steps) at saturation. With increasing exposures AlH3 is extracted from the step edge and becomes highly mobile on the terraces in a weakly bound state, accounting for step etching observed in previous STM studies. The mobility of these weakly bound AlH3 molecules is the key factor leading to the growth of larger alanes through AlH3 oligomerization. The subsequent decomposition and desorption of alanes is also investigated and compared to previous temperature programmed desorption studies.

  18. pardInvestigation of the Direct Hydrogenation of Aluminum to Alane in Supercritical Fluids

    NASA Astrophysics Data System (ADS)

    Jensen, Craig; McGrady, Sean; Ayabe, Reyna; Reddy, Ben

    2007-03-01

    Alane, AlH3 has many of the properties that are requisite for materials to be considered viable for onboard hydrogen storage applications. Most notibly, it contains 10.1 wt% hydrogen and undergoes dehydrogenation at appreciable rates at temperatures below 100^oC. However, the very low, >= 6 kJ/mol, enthalpy of dehydrogenation of AlH3 prohibits subsequent re-hydrogenation through standard gas-solid techniques except at very high pressures or very low temperatures. The extremely low solubility of gaseous H2 in conventional organic solvents also vitiates a solution-based approach. Re-hydrogenation of Al using a supercritical fluid potentially offers a workable approach since the fluid can act as a solvent, at the same time remaining completely miscible with permanent gases like hydrogen. Recently, it has been found that mixtures of NaH and Al can be hydrogenated to sodium alanate, NaAlH4 under modest pressures and temperatures in supercritical fluids. We have now extended these studies to the hydrogenation of Al to AlH3. The results of these studies and experimental details will be reported.

  19. Study of the photoelectron and electron momentum spectra of cyclopentene using benchmark Dyson orbital theories.

    PubMed

    Huang, Yan R; Ning, Chuan G; Deng, Jing K; Deleuze, Michael S

    2008-05-07

    A complete study of the valence electronic structure and related electronic excitation properties of cyclopentene in its C(s) ground state geometry is presented. Ionization spectra obtained from this compound by means of photoelectron spectroscopy (He I and He II) and electron momentum spectroscopy have been analyzed in details up to electron binding energies of 30 eV using one-particle Green's function (1p-GF) theory along with the outer-valence (OVGF) and the third-order algebraic diagrammatic construction [ADC(3)] schemes. The employed geometries derive from DFT/B3LYP calculations in conjunction with the aug-cc-pVTZ basis set, and closely approach the structures inferred from experiments employing microwave spectroscopy or electron diffraction in the gas phase. The 1p-GF/ADC(3) calculations indicate that the orbital picture of ionization breaks down at electron binding energies larger than approximately 17 eV in the inner-valence region, and that the outer-valence 7a' orbital is also subject to a significant dispersion of the ionization intensity over shake-up states. This study confirms further the rule that OVGF pole strengths smaller than 0.85 foretell a breakdown of the orbital picture of ionization at the ADC(3) level. Spherically averaged (e, 2e) electron momentum distributions at an electron impact energy of 1200 eV that were experimentally inferred from an angular analysis of EMS intensities have been interpreted by comparison with accurate simulations employing ADC(3) Dyson orbitals. Very significant discrepancies were observed with momentum distributions obtained from several outer-valence ionization bands using standard Kohn-Sham orbitals.

  20. Evolution of Crater Glacier, Mount St. Helens, Washington, September 2006-November 2009

    USGS Publications Warehouse

    Walder, Joseph S.; Schilling, Steven P.; Sherrod, David R.; Vallance, James W.

    2010-01-01

    Lava-dome emplacement through a glacier was observed for the first time during the 2004-08 eruption of Mount St. Helens and documented using photography, photogrammetry, and geodetic measurements. Previously published reports present such documentation through September 2006; this report extends that documentation until November 2009.

  1. Atmospheric Effects and Potential Climatic Impact of the 1980 Eruptions of Mount St. Helens

    NASA Technical Reports Server (NTRS)

    Deepak, A. (Editor)

    1982-01-01

    Measurements and studies of the 1980 Mount St. Helens volcanic eruptions and their atmospheric effects and climatic impact are addressed. Specific areas discussed include: (1) nature and impact of volcanic eruptions; (2) in situ measurements of effluents; (3) remote sensing measurements; (4) transport and dispersion of volcanic effluents; (5) chemistry of volcanic effluents; and (6) weather and potential climate impact.

  2. Seismic evidence for a cold serpentinized mantle wedge beneath Mount St Helens

    PubMed Central

    Hansen, S. M.; Schmandt, B.; Levander, A.; Kiser, E.; Vidale, J. E.; Abers, G. A.; Creager, K. C.

    2016-01-01

    Mount St Helens is the most active volcano within the Cascade arc; however, its location is unusual because it lies 50 km west of the main axis of arc volcanism. Subduction zone thermal models indicate that the down-going slab is decoupled from the overriding mantle wedge beneath the forearc, resulting in a cold mantle wedge that is unlikely to generate melt. Consequently, the forearc location of Mount St Helens raises questions regarding the extent of the cold mantle wedge and the source region of melts that are responsible for volcanism. Here using, high-resolution active-source seismic data, we show that Mount St Helens sits atop a sharp lateral boundary in Moho reflectivity. Weak-to-absent PmP reflections to the west are attributed to serpentinite in the mantle-wedge, which requires a cold hydrated mantle wedge beneath Mount St Helens (<∼700 °C). These results suggest that the melt source region lies east towards Mount Adams. PMID:27802263

  3. Could Separate Be Equal? Helene Lange and Women's Education in Imperial Germany.

    ERIC Educational Resources Information Center

    Albisetti, James C.

    1982-01-01

    Helene Lange worked to obtain equal educational opportunities for women in Germany at the end of the nineteenth century. She tried to improve teacher training for women, enhance the curriculum in girls' high schools, and increase professional training opportunities for women. (AM)

  4. Mt. St. Helens ash in lakes in the Lower Grand Coulee, Washington State

    SciTech Connect

    Edmondson, W.T.; Litt, A.H.

    1983-01-01

    In 1979, an experiment to assess the effects of an introduced predator, cutthroat trout (Salmo clarki henshawi), on the biota of two alkaline lakes, Soap Lake and Lake Lenore, in Washington was initiated. This report discusses the effects of the Mt. St. Helens eruption and associated ash fall on the experiment. (ACR)

  5. I Do and I Understand (Glen Helen Workshop: April 29-May 1, 1971).

    ERIC Educational Resources Information Center

    Pinson, Rosie Barajas; And Others

    During the teacher workshop conducted at the Glen Helen Outdoor Education Center at Yellow Springs, Ohio, oral language techniques, Mexican American culture, and outdoor education were given high priority in training teachers to serve migrant children effectively. Four of the workshop presentations have been adapted for this publication. One of…

  6. The Larry Jarret House Program at the Helen Beebe Speech and Hearing Center.

    ERIC Educational Resources Information Center

    Goldberg, Donald M.; Talbot, Pamela J.

    1993-01-01

    The Larry Jarret House is a one-week in-residence program of the Helen Beebe Speech and Hearing Center in Easton, Pennsylvania, for parents of children with hearing impairments. The program is designed to help parents maximize their child's use of residual hearing in daily life situations to develop spoken language. (JDD)

  7. An Interview: Helen B. Landgarten, MA, MFCC, A.T.R.-BC, HLM.

    ERIC Educational Resources Information Center

    Warren, Linda A.

    1995-01-01

    An interview with Helen B. Landgarten, a pioneer in art psychotherapy, addresses how she came to work in this field, her training, her experience with Jungian therapy, current approaches to training art therapists, her own painting, and the role of the American Art Therapy Association today. (DB)

  8. Novel peach flower types in a segregating population from ‘Helen Borchers’

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several new peach (Prunus persica) flower types were discovered in an F2 segregating population from an open-pollinated, non-showy-flowered F1 seedling of ‘Helen Borchers’, a double-flowered ornamental cultivar. The novel flower types were white and red single-flowered, non-showy blooms, as well as ...

  9. Mount st. Helens eruption of 18 may 1980: air waves and explosive yield.

    PubMed

    Donn, W L; Balachandran, N K

    1981-07-31

    Strong atmospheric acoustic-gravity waves were recorded by sensitive microbarographs and seismographs at large distances from the Mount St. Helens eruption of 18 May 1980. Wave signatures were similar to those of waves from large nuclear explosions. Independent theoretical and empirical analyses indicate that the explosive yield of the eruption was approximately 35 megatons.

  10. Geothermal exploration philosophy for Mount St. Helens (and other cascade volcanoes)

    SciTech Connect

    Schuster, J.E.; Ruscetta, C.A.; Foley, D.

    1981-05-01

    Factors which hampered geothermal exploration of Cascade stratovolcanoes are listed. What was known about geothermal energy in the Mount Saint Helen's area prior to 1980 and what has been learned as a result of the 1980 eruptions are reviewed. An exploration philosophy is presented. (MHR)

  11. Deposits of large volcanic debris avalanches at Mount St. Helens and Mount Shasta volcanoes

    SciTech Connect

    Glicken, H.

    1985-01-01

    Large volcanic debris avalanches are among the world's largest mass movements. The rockslide-debris avalanche of the May 18, 1980, eruption of Mount St. Helens produced a 2.8 km/sup 3/ deposit and is the largest historic mass movement. A Pleistocene debris avalanche at Mount Shasta produced a 26 km/sup 3/ deposit that may be the largest Quaternary mass movement. The hummocky deposits at both volcanoes consist of rubble divided into (1) block facies that comprises unconsolidated pieces of the old edifice transported relatively intact, and (2) matrix facies that comprises a mixture of rocks from the old mountain and material picked up from the surrounding terrain. At Mount St. Helens, the juvenile dacite is found in the matrix facies, indicating that matrix facies formed from explosions of the erupting magma as well as from disaggregation and mixing of blocks. The block facies forms both hummocks and interhummock areas in the proximal part of the St. Helens avalanche deposit. At Mount St. Helens, the density of the old cone is 21% greater than the density of the avalanche deposit. Block size decreases with distance. Clast size, measured in the field and by sieving, coverages about a mean with distance, which suggests that blocks disaggregated and mixed together during transport.

  12. Seismic evidence for a cold serpentinized mantle wedge beneath Mount St Helens.

    PubMed

    Hansen, S M; Schmandt, B; Levander, A; Kiser, E; Vidale, J E; Abers, G A; Creager, K C

    2016-11-01

    Mount St Helens is the most active volcano within the Cascade arc; however, its location is unusual because it lies 50 km west of the main axis of arc volcanism. Subduction zone thermal models indicate that the down-going slab is decoupled from the overriding mantle wedge beneath the forearc, resulting in a cold mantle wedge that is unlikely to generate melt. Consequently, the forearc location of Mount St Helens raises questions regarding the extent of the cold mantle wedge and the source region of melts that are responsible for volcanism. Here using, high-resolution active-source seismic data, we show that Mount St Helens sits atop a sharp lateral boundary in Moho reflectivity. Weak-to-absent PmP reflections to the west are attributed to serpentinite in the mantle-wedge, which requires a cold hydrated mantle wedge beneath Mount St Helens (<∼700 °C). These results suggest that the melt source region lies east towards Mount Adams.

  13. Effects on the Mount St. Helens volcanic cloud on turbidity at Ann Arbor, Michigan

    SciTech Connect

    Ryznar, E.; Weber, M.R.; Hallaron, T.S.

    1981-11-01

    Measurements of turbidity were made at the University of Michigan irradiance and metorlogical measurement facility just prior to, during and after the passage of the volcanic cloud from the 18 May 1980 eruption of Mount St. Helens. They were made with a Volz sunphotometer at wavelengths of 500 and 880 nm.

  14. Contingency Planning for Natural Disasters: The Mount St. Helens Experience. AIR Forum 1981 Paper.

    ERIC Educational Resources Information Center

    Burns, James A.; Concordia, Louis R.

    The effectiveness of existing contingency planning efforts at five community colleges, three colleges, and five universities during the Mount St. Helens eruptions in 1980 in Washington state was assessed. Planning efforts in the areas of institutional policy, academic policy, business office, physical plant, residence halls, financial aid, and…

  15. Seismic evidence for a cold serpentinized mantle wedge beneath Mount St Helens

    NASA Astrophysics Data System (ADS)

    Hansen, S. M.; Schmandt, B.; Levander, A.; Kiser, E.; Vidale, J. E.; Abers, G. A.; Creager, K. C.

    2016-11-01

    Mount St Helens is the most active volcano within the Cascade arc; however, its location is unusual because it lies 50 km west of the main axis of arc volcanism. Subduction zone thermal models indicate that the down-going slab is decoupled from the overriding mantle wedge beneath the forearc, resulting in a cold mantle wedge that is unlikely to generate melt. Consequently, the forearc location of Mount St Helens raises questions regarding the extent of the cold mantle wedge and the source region of melts that are responsible for volcanism. Here using, high-resolution active-source seismic data, we show that Mount St Helens sits atop a sharp lateral boundary in Moho reflectivity. Weak-to-absent PmP reflections to the west are attributed to serpentinite in the mantle-wedge, which requires a cold hydrated mantle wedge beneath Mount St Helens (<~700 °C). These results suggest that the melt source region lies east towards Mount Adams.

  16. Sediment-discharge characteristics of the Toutle River following the Mount St. Helens eruption

    USGS Publications Warehouse

    Culbertson, J.K.; Dinehart, R.L.

    1982-01-01

    Dinehart, R.L., Culbertson, J.K., 1982, Sediment-discharge characteristics of the Toutle River following the Mount St. Helens eruption, [abs.]: in Proceedings from the Conference on Mount St. Helens— Effects on water resources: State of Washington Water Research Center, p. 149.

  17. Meet Helen J. Post-Brown, Director: Sunbeam Child Care Center, Fairmont, West Virginia

    ERIC Educational Resources Information Center

    Exchange: The Early Childhood Leaders' Magazine Since 1978, 2005

    2005-01-01

    This article profiles Helen J. Post-Brown, director of Sunbeam Child Care Center in Fairmont and president of West Virginia Childcare Centers United, and explains how Post-Brown faced the obstacles when managing a child care business. In the fall of 1980, Post-Brown started Sunbeam as a small preschool with 12 children. Over the years, Sunbeam has…

  18. The structure, dynamics, and chemical composition of noneruptive plumes from Mount St. Helens, 1980-1988

    USGS Publications Warehouse

    McGee, K.A.

    1992-01-01

    From May 1980 to September 1988, more than 1000 fixed-wing aircraft flights were made with a correlation spectrometer to measure the sulfur dioxide flux from Mount St. Helens volcano. These flights also provided valuable data on the structure and dynamics of noneruptive plumes emanating from Mount St. Helens. During 1980 and part of 1981, an infrared spectrometer was also used to measure carbon dioxide emission rates. At distances up to 25 km from Mount St. Helens, plume widths can range up to 20 km or more, with width/thickness ratios from 3 to about 30. Maximum sulfur dioxide concentrations in these plumes depend on wind speed and are typically under 5 ppm and usually 1 ppm or less. Close examination of the plume data reveals that the characteristics of quiescent plumes from Mount St. Helens are strongly affected by certain meteorological conditions such as thermal and wind stratification in the troposphere, as well as by the topography of the volcano. ?? 1992.

  19. EPA Brownfields Grant Will Aid City of St. Helens with Plans to Revitalize Waterfront Area

    EPA Pesticide Factsheets

    (Seattle - March 17, 2015) The City of St. Helens, Oregon has been selected to receive a $200,000 Brownfields Area-Wide Planning (AWP) grant from EPA to help move towards the goal of revitalizing a former industrial property along the Columbia River waterf

  20. Professor Alan Turner (1947-2012). Specialist in Miocene-Pleistocene Carnivora, particularly Felidae and Hyaenidae and their palaeoecology

    NASA Astrophysics Data System (ADS)

    O'Regan, Hannah; Turner, Adam; Antón, Mauricio

    2014-07-01

    Alan first trained as a telecom engineer, working for the GPO (General Post Office) which later became British Telecom. He never forgot this early training and was fascinated by how things worked - always happy to take something apart and fix it (although his attempt to close a large plate glass window with a geological hammer was not one of his successes). Following a few years as an engineer, he went to Sheffield University to study archaeology as a mature student in 1973. At this time Sheffield was a hotbed of prehistory with Graeme Barker, Robin Dennell and many others contributing to a truly research-led degree (with tutorials in the pub (well, it was the 1970s)) (Fig. 1). Alan's interest in bones developed at this time, and having graduated in 1976 he went on to take a PhD, supervised by Robin Dennell, on "Aspects of the palaeoecology of large predators, including man, during the British Upper Pleistocene, with particular emphasis on predator-prey relationships" which resulted in a life-long interest in the Carnivora and particularly hyaenas. Following his PhD, Alan moved to the Environmental Archaeology Unit at York to undertake a Science Research Council project on the morphometrics of domestic cattle and pigs from Coppergate and other major urban excavations in the city. Faced with a lot of measurements and statistics, Alan retained his interest in the animals themselves. The project also confirmed to Alan that prehistory was his metier, rather than the historic periods. Former York colleagues still fondly recall Alan's dry wit, and the day that he successfully put the irritating lab telephone beyond use with no externally visible trace of damage.

  1. Lateral blasts at Mount St. Helens and hazard zonation

    USGS Publications Warehouse

    Crandell, D.R.; Hoblitt, R.P.

    1986-01-01

    Lateral blasts at andesitic and dacitic volcanoes can produce a variety of direct hazards, including ballistic projectiles which can be thrown to distances of at least 10 km and pyroclastic density flows which can travel at high speed to distances of more than 30 km. Indirect effect that may accompany such explosions include wind-borne ash, pyroclastic flows formed by the remobilization of rock debris thrown onto sloping ground, and lahars. Two lateral blasts occurred at a lava dome on the north flank of Mount St. Helens about 1200 years ago; the more energetic of these threw rock debris northeastward across a sector of about 30?? to a distance of at least 10 km. The ballistic debris fell onto an area estimated to be 50 km2, and wind-transported ash and lapilli derived from the lateral-blast cloud fell on an additional lobate area of at least 200 km2. In contrast, the vastly larger lateral blast of May 18, 1980, created a devastating pyroclastic density flow that covered a sector of as much as 180??, reached a maximum distance of 28 km, and within a few minutes directly affected an area of about 550 km2. The May 18 lateral blast resulted from the sudden, landslide-induced depressurization of a dacite cryptodome and the hydrothermal system that surrounded it within the volcano. We propose that lateral-blast hazard assessments for lava domes include an adjoining hazard zone with a radius of at least 10 km. Although a lateral blast can occur on any side of a dome, the sector directly affected by any one blast probably will be less than 180??. Nevertheless, a circular hazard zone centered on the dome is suggested because of the difficulty of predicting the direction of a lateral blast. For the purpose of long-term land-use planning, a hazard assessment for lateral blasts caused by explosions of magma bodies or pressurized hydrothermal systems within a symmetrical volcano could designate a circular potential hazard area with a radius of 35 km centered on the volcano

  2. Blast dynamics at Mount St Helens on 18 May 1980

    USGS Publications Warehouse

    Kieffer, S.W.

    1981-01-01

    At 8.32 a.m. on 18 May 1980, failure of the upper part of the north slope of Mount St Helens triggered a lateral eruption ('the blast') that devastated the conifer forests in a sector covering ???500 km2 north of the volcano. I present here a steady flow model for the blast dynamics and propose that through much of the devastated area the blast was a supersonic flow of a complex multiphase (solid, liquid, vapour) mixture. The shape of the blast zone; pressure, temperature, velocity (Mach number) and density distributions within the flow; positions of weak and strong internal shocks; and mass flux, energy flux, and total energy are calculated. The shape of blast zone was determined by the initial areal expansion from the reservoir, by internal expansion and compression waves (including shocks), and by the density of the expanding mixture. The pressure within the flow dropped rapidly away from the source of the blast until, at a distance of ???11 km, the flow became underpressured relative to the surrounding atmosphere. Weak shocks within the flow subparallel to the east and west margins coalesced at about this distance into a strong Mach disk shock, across which the flow velocities would have dropped from supersonic to subsonic as the pressure rose back towards ambient. The positions of the shocks may be reflected in differences in the patterns of felled trees. At the limits of the devastated area, the temperature had dropped only 20% from the reservoir temperature because the entrained solids thermally buffered the flow (the dynamic and thermodynamic effects of the admixture of the surrounding atmosphere and the uprooted forest and soils into the flow are not considered). The density of the flow decreased with distance until, at the limits of the blast zone, 20-25 km from the volcano, the density became comparable with that of the surrounding (dirty) atmosphere and the flow became buoyant and ramped up into the atmosphere. According to the model, the mass flux per

  3. Large-N Nodal Seismic Deployment at Mount St Helens

    NASA Astrophysics Data System (ADS)

    Hansen, S. M.; Schmandt, B.; Vidale, J. E.; Creager, K. C.; Levander, A.; Kiser, E.; Barklage, M.; Hollis, D.

    2014-12-01

    In late July of 2014 over 900 autonomous short period seismometers were deployed within 12 km of the summit crater at Mount St Helens. In concert with the larger iMUSH experiment, these data constitute the largest seismic interrogation of an active volcano ever conducted. The array was deployed along the road and trail system of the national volcanic monument and adjacent regions with an average station spacing of 250 meters and included several station clusters with increased sampling density. The 10 Hz phones recorded the vertical component wavefield continuously at 250 Hz sampling rate over a period of approximately two weeks. During the recording time, the Pacific Northwest Seismic Network detected ~65 earthquakes within the array footprint ranging in magnitude from -0.9 to 1.1, the majority of which were located beneath the crater at less than 10 km depth. In addition to the natural seismicity, 23 explosion sources from the iMUSH active source experiment were recorded, several of which exceeded magnitude 2. Preliminary results for this project will include an expanded event catalog as the array should significantly reduce the detection threshold. The sheer number of instruments allows for stacking of station clusters producing high signal-to-noise beam traces which can be used for event triggering and for creating waveform templates to measure relative travel-times across the array via cross-correlation. The ability of the array to estimate focal mechanisms from event radiation patterns and delineate complex path effects will also be investigated. The density and azimuthal coverage provide by this array offers an excellent opportunity to investigate short-wavelength variations of the seismic wavefield in a complex geologic environment. Previous seismic tomography results suggest the presence of a shallow magma chamber at 1-3 km depth near the region of shallow seismicity as evidenced by a P wave low-velocity anomaly of at least -5.5% [Waite and Moran, 2009

  4. Double-Difference Earthquake Locations Using imaging Magma Under St. Helens (iMUSH) Data

    NASA Astrophysics Data System (ADS)

    Williams, M. C. B.; Ulberg, C. W.; Creager, K. C.

    2015-12-01

    The imaging Magma Under St. Helens (iMUSH) project deployed a magnetotelluric survey, high-resolution active-source experiment, two-year passive-source experiment, and gathered geochemical-petrological data to better understand the magmatic architecture of Mount St. Helens. A primary goal of the passive source experiment is to create 3-D P-wave and S-wave velocity models under the volcano from the surface to the slab. We use hypoDD, a double-difference algorithm, to gain high-precision relative earthquake locations for several hundred events within tens of kilometers of the Mount St. Helens crater. We use data from the first half (2014 June- 2015 July) of the two-year passive-source component of the iMUSH array recording six hundred useable earthquakes with a high-event density near the volcanic crater. The array includes seventy evenly-spaced broadband seismometers continuously sampling at 50 Hz within a 50 km radius of Mount St. Helens, and is augmented by dozens of permanent network stations. Precise relative earthquake locations are determined for spatially clustered hypocenters using a combination of hand picked P-wave arrivals and high-precision relative times determined by cross correlation of waveforms recorded at a common station for event pairs using a 1-D velocity structure. These high-quality relative times will be used to help constrain seismic tomography models as well. We will interrupt earthquake clusters in the context of emerging 3-D wave-speed models from the active-source and passive-source observations. We are examining the relationship between hypocentral locations and regions of partial melt, as well as the relationship between hypocentral locations and the NNW-SSE trending Saint Helens seismic Zone.

  5. Aspects of self-consistency in the Dyson-Schwinger approach to QED and {lambda}({phi}*{phi}){sup 2} theories

    SciTech Connect

    Casalbuoni, Roberto; Ladisa, Massimo; Olevano, Valerio

    2010-11-01

    We investigate some aspects of the self-consistency in the Dyson-Schwinger approach to both the QED and the self-interacting scalar field theories. We prove that the set of the Dyson-Schwinger equations, together with the Green-Ward-Takahashi identity, is equivalent to the analogous set of integral equations studied in condensed matter, namely, many-body perturbation theory, where it is solved self-consistently and iteratively. In this framework, we compute the nonperturbative solution of the gap equation for the self-interacting scalar field theory.

  6. Reducing the Harms of College Student Drinking: How Alan Marlatt Changed Approaches, Outcomes, and the Field

    PubMed Central

    Kilmer, Jason R.; Palmer, Rebekka S.; Cronce, Jessica M.; Logan, Diane E.

    2015-01-01

    In this article, we discuss Alan Marlatt’s contributions to the prevention and reduction of alcohol-related harms among college students. We consider Alan’s early research that later led to the development and evaluation of college student drinking programs, and examine Alan’s impact, both directly and indirectly through those he mentored and trained, as a scientist-practitioner. We review the recognition of the efficacy of Alan’s programs, including the Alcohol Skills Training Program (ASTP) and Brief Alcohol Screening and Intervention for College Students (BASICS), in addition to extensions of these interventions in more recent studies. Finally, we discuss how Alan’s work influences interventions with college student drinkers today, and how future directions will continue to be informed by his vision and values. PMID:25774117

  7. Moral absolutism and abortion: Alan Donagan on the hysterectomy and craniotomy cases.

    PubMed

    Reynolds, Terrence

    1985-07-01

    Reynolds argues that the nonconsequentialist moral theory proposed by Alan Donagan in his book The Theory of Morality (University of Chicago Press; 1977) does not resolve the cases in which craniotomy or removal of a cancerous uterus appears necessary to save the life of a pregnant woman. Donagan's absolute prohibition against the murder of the innocent and his rejection of the principle of double effect have led him to view the fetus as a pursuer or assailant or to assert the theory of proleptic agreement--that in risk taking ventures the parties may agree that killing one person to save the lives of the others will be accepted. Reynolds holds these arguments to be inapplicable in therapeutic abortions involving craniotomy or hysterectomy and concludes that Donagan's absolutist theory must be reexamined.

  8. Anisotropic storage medium development in a full-scale, sodium alanate-based, hydrogen storage system

    SciTech Connect

    Jorgensen, Scott W.; Johnson, Terry A.; Payzant, E. Andrew; Bilheux, Hassina Z.

    2016-06-11

    Deuterium desorption in an automotive-scale hydrogen storage tube was studied in-situ using neutron diffraction. Gradients in the concentration of the various alanate phases were observed along the length of the tube but no significant radial anisotropy was present. In addition, neutron radiography and computed tomography showed large scale cracks and density fluctuations, confirming the presence of these structures in an undisturbed storage system. These results demonstrate that large scale storage structures are not uniform even after many absorption/desorption cycles and that movement of gaseous hydrogen cannot be properly modeled by a simple porous bed model. In addition, the evidence indicates that there is slow transformation of species at one end of the tube indicating loss of catalyst functionality. These observations explain the unusually fast movement of hydrogen in a full scale system and shows that loss of capacity is not occurring uniformly in this type of hydrogen-storage system.

  9. Anisotropic storage medium development in a full-scale, sodium alanate-based, hydrogen storage system

    DOE PAGES

    Jorgensen, Scott W.; Johnson, Terry A.; Payzant, E. Andrew; ...

    2016-06-11

    Deuterium desorption in an automotive-scale hydrogen storage tube was studied in-situ using neutron diffraction. Gradients in the concentration of the various alanate phases were observed along the length of the tube but no significant radial anisotropy was present. In addition, neutron radiography and computed tomography showed large scale cracks and density fluctuations, confirming the presence of these structures in an undisturbed storage system. These results demonstrate that large scale storage structures are not uniform even after many absorption/desorption cycles and that movement of gaseous hydrogen cannot be properly modeled by a simple porous bed model. In addition, the evidence indicatesmore » that there is slow transformation of species at one end of the tube indicating loss of catalyst functionality. These observations explain the unusually fast movement of hydrogen in a full scale system and shows that loss of capacity is not occurring uniformly in this type of hydrogen-storage system.« less

  10. A Gentle Frost: Poet Helen Frost Talks about the Healing Power of Poetry and Her Latest Novel

    ERIC Educational Resources Information Center

    Margolis, Rick

    2006-01-01

    This article presents an interview with poet Helen Frost. Frost talked about how poetry can help at-risk children. She also related the challenges she faced when she wrote her latest book titled "The Braid."

  11. Black and Conservative: Finding a Place. A Symposium on Alan L. Keyes'"Masters of the Dream".

    ERIC Educational Resources Information Center

    Ervin, Clark Kent; And Others

    1995-01-01

    Presents commentaries from Clark Kent Ervin, A. J. Williams-Meyers, and Paul T. Murray on Alan L. Keyes'"Masters of the Dream: The Strength and Betrayal of Black America" (1995). They respond to Keyes' controversial assertions, among which is that the Great Society movement and liberalism have undermined black progress that today's…

  12. An Interview with Alan J. Hovestadt: AAMFT Past President and Long-Time Marriage and Family Counselor Educator

    ERIC Educational Resources Information Center

    Juhnke, Gerald A.; Sunich, Michael F.; Coll, Kenneth M.; Lebron-Striker, Maritza

    2009-01-01

    Alan J. Hovestadt, EdD, is the immediate past president of the 24,000 member American Association for Marriage and Family Therapy (AAMFT) and a long-time IAMFC member who served as an IAMFC founding board member when American Counseling Association (ACA) first granted International Association of Marriage and Family Counselors (IAMFC) divisional…

  13. Geologic Map of Mount St. Helens, Washington Prior to the 1980 Eruption

    USGS Publications Warehouse

    Hopson, Clifford A.

    2008-01-01

    It is rare that a geologic map exists for a volcano prior to such a catastrophic modification as that produced by the eruption of Mount St. Helens in 1980. As such, this map provides an important historical record of the volcano prior to that eruption. The map has not been reviewed or checked for conformity to USGS editorial standards or stratigraphic nomenclature, and it has not been digitized. This version of the map is unchanged from that submitted to the USGS for publication shortly after the 1980 eruption of Mount St. Helens and includes unresolved inconsistencies with the subsequently published work of Crandell (1987) and Mullineaux (1996). Nevertheless, it is the most accurate available depiction of the pre-1980 edifice and is published here for comparison with more recent geologic mapping and historical perspectives.

  14. Processing and interpretation of microbarograph signals generated by the explosion of Mount St. Helens

    SciTech Connect

    Delclos, C.; Blanc, E. ); Broche, P. ); Glangeaud, F.; Lacoume, J.L. )

    1990-04-20

    Following the eruption of the Mount St. Helens volcano on May 18, 1980, atmospheric waves were recorded by a network of micrographs located over 7,000 km from the source. Analysis of these data requires the use of complex processing techniques based on a high-resolution method to extract the signals produced by the St. Helens source from spurious waves or noise in each record. This facilitates interpretation of the wave trains in terms of propagation modes. It is thus shown that Lamb mode L{sub 0} is present in the low-frequency part of all signals, whereas acoustic modes (more probably A{prime}{sub 2}) are needed to explain all the properties of the high-frequency part, which is clearly observed for a westward and a southward propagation.

  15. Monitoring vegetation recovery patterns on Mount St. Helens using thermal infrared multispectral data

    NASA Technical Reports Server (NTRS)

    Langran, Kenneth J.

    1986-01-01

    The Mount St. Helens 1980 eruption offers an opportunity to study vegetation recovery rates and patterns in a perturbed ecosystem. The eruptions of Mount St. Helens created new surfaces by stripping and implacing large volumes of eroded material and depositing tephra in the blast area and on the flanks of the mountain. Areas of major disturbance are those in the blast zone that were subject to debris avalanche, pyroclastic flows, mudflows, and blowdown and scorched timber; and those outside the blast zone that received extensive tephra deposits. It was observed that during maximum daytime solar heating, surface temperatures of vegetated areas are cooler than surrounding nonvegetated areas, and that surface temperature varies with percent vegetation cover. A method of measuring the relationship between effective radiant temperature (ERT) and percent vegetation cover in the thermal infrared (8 to 12 microns) region of the electromagnetic spectrum was investigated.

  16. Radio interferometric detection of a traveling ionospheric disturbance excited by the explosion of Mount St. Helens

    NASA Technical Reports Server (NTRS)

    Roberts, D. H.; Rogers, A. E. E.; Allen, B. R.; Bennett, C. L.; Burke, B. F.; Greenfield, P. E.; Lawrence, C. R.; Clark, T. A.

    1982-01-01

    A large-amplitude traveling ionospheric disturbance (TID) was detected over Owens Valley, California, on May 18, 1980, by a highly sensitive very long baseline interferometry (VLBI) radio astronomy experiment. This TID is interpreted as the response of the ionosphere to a gravity wave excited in the neutral atmosphere by the explosion of Mount St. Helens that took place at 1532 UT on that day. A model, invoking the point-excitation of internal gravity waves in an isothermal atmosphere, which fits observations of the TID at several other stations, leads to identification of the features observed in the VLBI data. Small-amplitude higher-frequency changes in the ionosphere were detected for several hours after the passage of the large-amplitude Mount St. Helens TID, but it is not clear whether these were excited by the passage of the gravity wave or were background fluctuations.

  17. Radio interferometric detection of a traveling ionospheric disturbance excited by the explosion of Mount St. Helens

    SciTech Connect

    Roberts, D.H.; Rogers, A.E.E.; Allen, B.R.; Bennett, C.L.; Burke, B.F.; Greenfield, P.; Lawrence, C.R.; Clark, T.A.

    1982-08-01

    A large-amplitude traveling ionospheric disturbance (TID) was detected over Owens Valley, California, on May 18, 1980, by a highly sensitive very long baseline interferometry (VLBI) radio astronomy experiment. This TID is interpreted as the response of the ionosphere to a gravity wave excited in the neutral atmosphere by the explosion of Mount St. Helens that took place at 1532 UT on that day. A model, invoking the point-excitation of internal gravity waves in an isothermal atmosphere, which fits observations of the TID at several other stations, leads to identification of the features observed in the VLBI data. Small-amplitude higher-frequency changes in the ionosphere were detected for several hours after the passage of the large-amplitude Mount St. Helens TID, but it is not clear whether these were excited by the passage of the gravity wave or were background fluctuations.

  18. Mount St. Helens erupts again: activity from September 2004 through March 2005

    USGS Publications Warehouse

    Major, Jon J.; Scott, William E.; Driedger, Carolyn; Dzurisin, Dan

    2005-01-01

    Eruptive activity at Mount St. Helens captured the world’s attention in 1980 when the largest historical landslide on Earth and a powerful explosion reshaped the volcano, created its distinctive crater, and dramatically modified the surrounding landscape. Over the next 6 years, episodic extrusions of lava built a large dome in the crater. From 1987 to 2004, Mount St. Helens returned to a period of relative quiet, interrupted by occasional, short-lived seismic swarms that lasted minutes to days, by months-to-yearslong increases in background seismicity that probably reflected replenishment of magma deep underground, and by minor steam explosions as late as 1991. During this period a new glacier grew in the crater and wrapped around and partly buried the lava dome. Although the volcano was relatively quiet, scientists with the U.S. Geological Survey and University of Washington’s Pacific Northwest Seismograph Network continued to closely monitor it for signs of renewed activity.

  19. The Society of Brains: How Alan Turing and Marvin Minsky Were Both Right

    NASA Astrophysics Data System (ADS)

    Struzik, Zbigniew R.

    2015-04-01

    In his well-known prediction, Alan Turing stated that computer intelligence would surpass human intelligence by the year 2000. Although the Turing Test, as it became known, was devised to be played by one human against one computer, this is not a fair setup. Every human is a part of a social network, and a fairer comparison would be a contest between one human at the console and a network of computers behind the console. Around the year 2000, the number of web pages on the WWW overtook the number of neurons in the human brain. But these websites would be of little use without the ability to search for knowledge. By the year 2000 Google Inc. had become the search engine of choice, and the WWW became an intelligent entity. This was not without good reason. The basis for the search engine was the analysis of the ’network of knowledge’. The PageRank algorithm, linking information on the web according to the hierarchy of ‘link popularity’, continues to provide the basis for all of Google's web search tools. While PageRank was developed by Larry Page and Sergey Brin in 1996 as part of a research project about a new kind of search engine, PageRank is in its essence the key to representing and using static knowledge in an emergent intelligent system. Here I argue that Alan Turing was right, as hybrid human-computer internet machines have already surpassed our individual intelligence - this was done around the year 2000 by the Internet - the socially-minded, human-computer hybrid Homo computabilis-socialis. Ironically, the Internet's intelligence also emerged to a large extent from ‘exploiting’ humans - the key to the emergence of machine intelligence has been discussed by Marvin Minsky in his work on the foundations of intelligence through interacting agents’ knowledge. As a consequence, a decade and a half decade into the 21st century, we appear to be much better equipped to tackle the problem of the social origins of humanity - in particular thanks to the

  20. Preliminary Shear Velocity Tomography of Mt St Helens, Washington from iMUSH Array

    NASA Astrophysics Data System (ADS)

    Crosbie, K.; Abers, G. A.; Creager, K. C.; Moran, S. C.; Denlinger, R. P.; Ulberg, C. W.

    2015-12-01

    The imaging Magma Under Mount St Helens (iMUSH) experiment will illuminate the crust beneath Mt St Helens volcano. The ambient noise tomography (ANT) component of this experiment measures shear velocity structure, which is more sensitive than P velocity to the presence of melt and other pore fluids. Seventy passive-source broadband seismometers for iMUSH were deployed in the summer of 2014 in a dense array of 100 Km diameter with a 10 km station spacing. We cross correlated ambient noise in 120 s windows and summed the result over many months for pairs of stations. Then frequency-domain methods on these cross correlations are employed to measure the phase velocities (Ekström et al. Geophys Rev Lett, 2009). Unlike velocities attained by group velocity methods, velocities for path lengths as small as one wavelength can be measured, enabling analysis of higher frequency signals and increasing spatial resolution. The minimum station spacing from which signals can be recovered ranges from 12 km at 0.18 Hz, a frequency that dominantly samples the upper crust to 20 km, to 37 km at 0.04 Hz, a frequency sensitive to structure through the crust and uppermost mantle, with lower spacing at higher frequencies. These phase velocities are tomographically inverted to obtain shear velocity maps for each frequency, assuming ray theory. Initial shear velocity maps for frequencies between 0.04-0.18 Hz reveal low-velocity sediments in the Puget Lowland west of Mount St Helens at 0.16-0.18 Hz, and a low velocity zone near 0.10 Hz between Mt Rainier and Mt Adams, east of Mount St Helens. The latter may reflect large-scale crustal plumbing of the arc between volcanic centers. In subsequent analyses these ANT results will be jointly inverted with receiver functions in order to further resolve crustal and upper mantle structure.

  1. VLF electromagnetic investigations of the crater and central dome of Mount St. Helens, Washington

    USGS Publications Warehouse

    Towle, J.N.

    1983-01-01

    A very low frequency (VLF) electromagnetic induction survey in the crater of Mount St. Helens has identified several electrically conductive structures that appear to be associated with thermal anomalies and ground water within the crater. The most interesting of these conductive structures lies beneath the central dome. It is probably a partial melt of dacite similar to that comprising the June 1981 lobe of the central dome. ?? 1983.

  2. Mount St. Helens, Washington Feasibility Report & Environmental Impact Statement. Volume 1: Main Report

    DTIC Science & Technology

    1984-12-01

    reduces summer water temperature to tolerable levels. Tree growth rate data for Mount St. Helens mudflows soils indicate 5-6 years would be required for...huckleberry, salal, and Oregon 8 grape be planted on Corps lands outside the sediment inundation zone to replace forage lost to sediment coverage...red clover mix continue throughout the life of the projec.t. 9. Elk forage such as ninebark, Oregon grape be planted on sediment inundation zone to

  3. Hydrologic consequences of hot-rock/snowpack interactions at Mount St. Helens Volcano, Washington

    USGS Publications Warehouse

    Pierson, Thomas C.

    1999-01-01

    Emplacement of hot volcanic debris onto a thick snowpack can trigger hazardous rapid flows of sediment (including ice grains) and water, which can travel far beyond the flanks of a volcano. Five papers in this volume document aspects of rapid-snowmelt events that occurred in Mount St. Helens between 1982 and 1984; one paper offers a theoretical explanation of features present at depositional contacts between hot rock and snow.

  4. Multi-scale roughness spectra of Mount St. Helens debris flows

    NASA Technical Reports Server (NTRS)

    Austin, Richard T.; England, Anthony W.

    1993-01-01

    A roughness spectrum allows surface structure to be interpreted as a sum of sinusoidal components with differing wavelengths. Knowledge of the roughness spectrum gives insight into the mechanisms responsible for electromagnetic scattering at a given wavelength. Measured spectra from 10-year-old primary debris flow surfaces at Mount St. Helens conform to a power-law spectral model, suggesting that these surfaces are scaling over the measured range of spatial frequencies. Measured spectra from water-deposited surfaces deviate from this model.

  5. Impact of Mount St. Helens eruption on hydrology and water quality

    NASA Technical Reports Server (NTRS)

    Bonelli, J. E.; Taylor, H. E.; Klein, J. M.

    1982-01-01

    The 1980 eruptions of Mount St. Helens in southeast Washington resulted in a pronounced effect on the surface and ground water resources of the state. In response to the volcanic activity, the U.S. Geological Survey intensified statewide surface and ground water sampling programs to determine the nature and magnitude of the volcanic-induced variations. Streams to the east of Mount St. Helens received the major ash fallout. Chemical effects were best noted in smaller streams sampled 60 to 70 miles northeast of Mount St. Helens. The chemical variations observed were pronounced but short lived. Sulfate and chloride increases in anionic composition were prevalent immediately following the eruption; however, the original bicarbonate predominance was again attained within several days. Suspended iron and aluminum concentrations were similarly elevated during the period of greatest ash deposition (highest turbidity); however, the dissolved concentrations remained relatively constant. Depressions of pH were minor and short lived. Streams draining to the south, tributaries to the Columbia river, showed little observable changes in water chemistry. Streams draining to the west (Toutle river and its tributaries) were compositionally affected by the various volcanic activities. Chloride and sulfate anion percentage exceeded the bicarbonate percentage up to one month following the eruption period. Streams and lakes sampled in the immediate vicinity of Mount St. Helens, in addition to trace metals, contained organic compounds derived from decomposing wood buried in the debris deposits. This organic material may constitute a significant source of organic compounds to surface and ground water for some time to come.

  6. The Evolution and Role of the Saharan Air Layer During Hurricane Helene (2006)

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Sippel, Jason A.; Shie, Chung-Lin; Boller, Ryan A.

    2013-01-01

    The Saharan air layer (SAL) has received considerable attention in recent years as a potential negative influence on the formation and development of Atlantic tropical cyclones. Observations of substantial Saharan dust in the near environment of Hurricane Helene (2006) during the National Aeronautics and Space Administration (NASA) African Monsoon Multidisciplinary Activities (AMMA) Experiment (NAMMA) field campaign led to suggestions about the suppressing influence of the SAL in this case. In this study, a suite of satellite remote sensing data, global meteorological analyses, and airborne data are used to characterize the evolution of the SAL in the environment of Helene and assess its possible impact on the intensity of the storm. The influence of the SAL on Helene appears to be limited to the earliest stages of development, although the magnitude of that impact is difficult to determine observationally. Saharan dust was observed on the periphery of the storm during the first two days of development after genesis when intensification was slow. Much of the dust was observed to move well westward of the storm thereafter, with little SAL air present during the remainder of the storm's lifetime and with the storm gradually becoming a category-3 strength storm four days later. Dry air observed to wrap around the periphery of Helene was diagnosed to be primarily non-Saharan in origin (the result of subsidence) and appeared to have little impact on storm intensity. The eventual weakening of the storm is suggested to result from an eyewall replacement cycle and substantial reduction of the sea surface temperatures beneath the hurricane as its forward motion decreased.

  7. Carbonyl sulfide and carbon disulfide from the eruptions of mount st. Helens.

    PubMed

    Rasmussen, R A; Khalil, M A; Dalluge, R W; Penkett, S A; Jones, B

    1982-02-05

    Ash from the massive 18 May 1980 eruption of Mount St. Helens readily gave off large amounts of carbonyl sulfide and carbon disulfide gases at room temperature. These findings suggest that the sulfur that enhances the Junge sulfate layer in the stratosphere after volcanic eruptions could be carried directly to the upper atmosphere as carbonyl sulfide and carbon disulfide adsorbed on ash particles from major volcanic eruptions.

  8. Filter measurements of stratospheric sulfate and chloride in the eruption plume of Mount St. Helens

    SciTech Connect

    Gandrud, B.W.; Lazrus, A.L.

    1981-01-01

    Five flights of the U-2 aircraft with a filter sampler aboard were flown in the Mount St. Helens debris from 19 May to 17 June 1980. Sulfate concentrations as large as 216 times the expected background were observed. The enhancements of acid chloride vapor were considerably smaller, suggesting an insignificant increase of background values of hydrogen chloride once the plume is well mixed throughout the lower stratosphere.

  9. Atmospheric Effects and Potential Climatic Impact of the 1980 Eruptions of Mount St. Helens

    SciTech Connect

    Deepak, A.

    1982-10-01

    Measurements and studies of the 1980 Mount St. Helens volcanic eruptions and their atmospheric effects and climatic impact are addressed. Specific areas discussed include: (1) nature and impact of volcanic eruptions, (2) in situ measurements of effluents, (3) remote sensing measurements, (4) transport and dispersion of volcanic effluents, (5) chemistry of volcanic effluents, and (6) weather and potential climate impact. For individual titles, see N83-11535 through N83-11562.

  10. Temporal change in coda wave attenuation observed during an eruption of Mount St. Helens

    SciTech Connect

    Fehler, M.; Roberts, P.; Fairbanks, T.

    1988-05-10

    During the past few years there have been numerous reports of changes in coda wave attenuation occurring before major earthquakes. These observations are important because they may provide insight into stress-related structural changes taking place in the focal region prior to the occurrence of large earthquakes. The results of these studies led us to suspect that temporal changes in coda wave attenuation might also accompany volcanic eruptions. By measuring power decay envelopes for earthquakes at Mount St. Helens recorded before, during, and after an eruption that took place during September 3--6, 1981, we found that coda Q/sup -1/ for frequencies between 6 and 30 Hz was 20--30% higher before the eruption than after. The change is attributed to an increase in the density of open microcracks in the rock associated with inflation of the volcano prior to the eruption. Q/sup -1/ was found to be only weakly dependent on frequency and displayed a slight peak near 10 Hz. The weak frequency dependence is attributed to the dominance of intrinsic attenuation over scattering attenuation, since it is generally accepted that intrinsic attenuation is constant with frequency, whereas scattering attenuation decreases strongly at higher frequencies. The weak frequency dependence of Q/sup -1/ at Mount St. Helens contrasts with results reported for studies in nonvolcanic regions. The peak in Q/sup -1/ near 10 Hz at Mount St. Helens is attributed to the scale length of heterogeneity responsible for generating backscattered waves. Results for nonvolcanic regions have shown this peak to occur near 0.5 Hz. Thus a smaller scale length of heterogeneity is required to explain the 10-Hz peak at Mount St. Helens. copyright American Geophysical Union 1988

  11. Impact of Mount St. Helens eruption on hydrology and water quality

    SciTech Connect

    Bonelli, J.E.; Taylor, H.E.; Klein, J.M.

    1982-10-01

    The 1980 eruptions of Mount St. Helens in southeast Washington resulted in a pronounced effect on the surface and ground water resources of the state. In response to the volcanic activity, the U.S. Geological Survey intensified statewide surface and ground water sampling programs to determine the nature and magnitude of the volcanic-induced variations. Streams to the east of Mount St. Helens received the major ash fallout. Chemical effects were best noted in smaller streams sampled 60 to 70 miles northeast of Mount St. Helens. The chemical variations observed were pronounced but short lived. Sulfate and chloride increases in anionic composition were prevalent immediately following the eruption however, the original bicarbonate predominance was again attained within several days. Suspended iron and aluminum concentrations were similarly elevated during the period of greatest ash deposition (highest turbidity) however, the dissolved concentrations remained relatively constant. Depressions of pH were minor and short lived. Streams draining to the south, tributaries to the Columbia river, showed little observable changes in water chemistry. Streams draining to the west (Toutle river and its tributaries) were compositionally affected by the various volcanic activities. Chloride and sulfate anion percentage exceeded the bicarbonate percentage up to one month following the eruption period. Streams and lakes sampled in the immediate vicinity of Mount St. Helens, in addition to trace metals, contained organic compounds derived from decomposing wood buried in the debris deposits. This organic material may constitute a significant source of organic compounds to surface and ground water for some time to come.

  12. Measurements of cloud condensation nuclei in the stratosphere around the plume of Mount St. Helens

    SciTech Connect

    Rogers, C.F.; Hudson, J.G.; Kocmond, W.C.

    1981-01-01

    Measurements of cloud condensation nuclei were made from small samples of stratospheric air taken from a U-2 aircraft at altitudes ranging from 13 to 19 kilometers. The measured concentrations of nuclei both in and outside the plume from the May and June 1980 eruptions of Mount St. Helens were higher than expected, ranging from about 100 to about 1000 per cubic centimeter active at 1 percent supersaturation.

  13. Size distributions and mineralogy of ash particles in the stratosphere from eruptions of Mount St. Helens

    SciTech Connect

    Farlow, N.H.; Oberbeck, V.R.; Snetsinger, K.G.; Ferry, G.V.; Polkowski, G.; Hayes, D.M.

    1981-01-01

    Samples from the stratosphere obtained by U-2 aircraft after the first three major eruptions of Mount St. Helens contained large globules of liquid acid and ash. Because of their large size, these globules had disappeared from the lower stratosphere by late June 1980, leaving behind only smaller acid droplets. Particle-size distributions and mineralogy of the stratospheric ash grains demonstrate inhomogeneity in the eruption clouds.

  14. The mount st. Helens volcanic eruption of 18 may 1980: minimal climatic effect.

    PubMed

    Robock, A

    1981-06-19

    An energy-balance numerical climate model was used to simulate the effects of the Mount St. Helens volcanic eruption of 18 May 1980. The resulting surface temperature depression is a maximum of 0.1 degrees C in the winter in the polar region, but is an order of magnitude smaller than the observed natural variability from other effects and will therefore be undetectable.

  15. Measurements of cloud condensation nuclei in the stratosphere around the plume of mount st. Helens.

    PubMed

    Rogers, C F; Hudson, J G; Kocmond, W C

    1981-02-20

    Measurements of cloud condensation nuclei were made from small samples of stratospheric air taken from a U-2 aircraft at altitudes ranging from 13 to 19 kilometers. The measured concentrations of nuclei both in and outside the plume from the May and June 1980 eruptions of Mount St. Helens were higher than expected, ranging from about 100 to about 1000 per cubic centimeter active at 1 percent supersaturation.

  16. Mount St. Helens, Washington, 1980 volcanic eruption: magmatic gas component during the first 16 days

    SciTech Connect

    Stoiber, R.E.; Williams, S.N.; Malinconico, L.L.

    1980-01-01

    Eruption plumes of Mount St. Helens, Washington, showed low rates of sulfur dioxide emission, and ash leachates had low ratios of sulfur to chlorine. These data and the nonvesicularity of ash fragments are indicative of only a small eruptive magmatic component. The low amounts of soluble fluorine on the ashes pose no health problems. Violent magmatic activity is possible, and thus continued geochemical monitoring is advised.

  17. Initial effects of ashfall from mount st. Helens on vegetation in eastern washington and adjacent idaho.

    PubMed

    Mack, R N

    1981-07-31

    Extensive plant damage from the 18 May 1980 eruption of Mount St. Helens was largely restricted to acaulescent andprostrate dicot species in the ashfall area east of the Cascade Range (more than 150 kilometersfrom the vent). Veratrum californicum, a large monocot, displayed widespread stem death through mechanical overloading of the plant's clasping leaves. The ash surface in this area presents new opportunities for both seeds and seed predators.

  18. Mercury content of equisetum plants around mount st. Helens one year after the major eruption.

    PubMed

    Siegel, B Z; Siegel, S M

    1982-04-16

    The mercury content of young Equisetum plants collected around Mount St. Helens was higher in the direction of Yakima and Toppenish, Washington (northeast to east-northeast), than at any other compass heading and was about 20 times that measured around Portland, Oregon. The increase in substratum mercury was not as pronounced as that in plants but was also higher toward the northeast, the direction taken by the May 1980 volcanic plume.

  19. Mount st. Helens, washington, 1980 volcanic eruption: magmatic gas component during the first 16 days.

    PubMed

    Stoiber, R E; Williams, S N; Malinconico, L L

    1980-06-13

    Eruption plumes of Mount St. Helens, Washington, showed low rates of sulfur dioxide emission, and ash leachates had low ratios of sulfur to chlorine. These data and the nonvesicularity of ash fragments are indicative of only a small eruptive magmatic component. The low amounts of soluble fluorine on the ashes pose no health problems. Violent magmatic activity is possible, and thus continued geochemical monitoring is advised.

  20. A gravity current model for the May 18, 1980 Mount St. Helens plume

    NASA Technical Reports Server (NTRS)

    Bursik, M. I.; Carey, S. N.; Sparks, R. S. J.

    1992-01-01

    Observations of the stratospheric plume from the May 18, 1980 Mount St. Helens eruption suggest that it spread in the crosswind direction as an intrusive gravity current, as it was transported downwind. Grain size analyses of the plinian tephra are consistent with this model, suggesting that to distances of many hundreds of kilometers, turbulent atmospheric diffusion played a secondary role in plume spreading and tephra dispersal.

  1. Filter measurements of stratospheric sulfate and chloride in the eruption plume of mount st. Helens.

    PubMed

    Gandrud, B W; Lazrus, A L

    1981-02-20

    Five flights of the U-2 aircraft with a filter sampler aboard were flown in the Mount St. Helens debris from 19 May to 17 June 1980. Sulfate concentrations as large as 216 times the expected background were observed. The enhancements of acid chloride vapor were considerably smaller, suggesting an insignificant increase of background values of hydrogen chloride once the plume is well mixed throughout the lower stratosphere.

  2. Rayleigh wave tomography of Mount St. Helens, Washington from ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Lin, F. C.; Farrell, J.; Schmandt, B.

    2015-12-01

    Mount St. Helens is the most active volcano of the Cascade range in the Western U.S. Given its recent eruptions in 1980 and 2005, it is clear that magma transport has recently occurred in the shallow crust beneath the volcanic edifice. A dense seismic array was deployed around Mount St. Helens for two weeks in summer 2014. The array was composed of 904 vertical-component 10-Hz geophones distributed within 20 km of the caldera. We cross-correlated all the seismic ambient noise data from this array to measure Rayleigh wave travel times and invert for the seismic shear velocity structure beneath the volcano. Clear Rayleigh waves are observed between 2 to 5 sec period in most directions and the signal is particularly strong in the Southwest-Northeast direction likely caused by ocean waves off the west coast of Washington State. We applied frequency-time analysis to measure phase velocity dispersions for all available station pairs, and we applied surface wave tomography for each period to determine 2-D Rayleigh wave phase velocity maps between 2 to 5 second period. Finally, we inverted these maps for a preliminary 3D velocity model from surface to 5 km depth. The model shows a low-velocity anomaly beneath the center of the caldera. This anomaly could be related to shallow magma storage beneath Mount St. Helens as well as the highly fractured rock of the volcanic edifice. Further analysis of short period surface wave propagation will improve understanding of upper crustal structure beneath Mount St. Helens and how it is linked to supply of silicate melts and volatiles from greater depths.

  3. Carbonyl sulfide and carbon disulfide from the eruptions of Mount St. Helens

    SciTech Connect

    Rasmussen, R.A.; Khalil, M.A.K.; Dalluge, R.W.; Penkett, S.A.; Jones, B.

    1982-01-01

    Ash from the massive 18 May 1980 eruption of Mount St. Helens readily gave off large amounts of carbonyl sulfide and carbon disulfide gases at room temperature. These findings suggest that the sulfur that enhances the Junge sulfate layer in the stratosphere after volcanic eruptions could be carried directly to the upper atmosphere as carbonyl sulfide and carbon disulfide adsorbed on ash particles from major volcanic eruptions.

  4. Absorption of visible radiation by aerosols in the volcanic plume of mount st. Helens.

    PubMed

    Ogren, J A; Charlson, R J; Radke, L F; Domonkos, S K

    1981-02-20

    Samples of particles from Mount St. Helens were collected in both the stratosphere and troposphere for measurement of the light absorption coefficient. Results indicate that the stratospheric dust had a small but finite absorption coefficient ranging up to 2 x 10(-7) per meter at a wavelength of 0.55 micrometer, which is estimated to yield an albedo for single scatter of 0.98 or greater. Tropospheric results showed similar high values of an albedo for single scatter.

  5. Trace element composition of the mount st. Helens plume: stratospheric samples from the 18 may eruption.

    PubMed

    Vossler, T; Anderson, D L; Aras, N K; Phelan, J M; Zoller, W H

    1981-02-20

    Atmospheric particulate material collected from the stratosphere in the plume of the 18 May 1980 eruption of the Mount St. Helens volcano was quite similar in composition to that of ash that fell to the ground in western Washington. However, there were small but significant differences in concentrations of some elements with altitude, indicating that the stratospheric material was primarily produced from fresh magma, not fragments of the mountain.

  6. Absorption of visible radiation by aerosols in the volcanic plume of Mount St. Helens

    SciTech Connect

    Ogren, J.A.; Charlson, R.J.; Radke, L.F.; Domonkos, S.K.

    1981-01-01

    Samples of particles from Mount St. Helens were collected in both the stratosphere and troposhere for measurement of the light absorption coefficient. Results indicate that the stratospheric dust had a small but finite absorption coefficient ranging up to 2 x 10-7 per meter at a wavelength of 0.55 micrometer, which is estimated to yield an albedo for single scatter of 0.98 or greater. Tropospheric results showed similar high values of an albedo for single scatter.

  7. Histopathological reaction of the lung to Mount St. Helens volcanic ash

    SciTech Connect

    Sanders, C.L.

    1987-06-01

    The pulmonary toxicity of respirable particle size (count median diameter, 0.5 to 1.6 ..mu..m) Mount St. Helens volcanic ash was studied. Total particulate doses of 22 to 77 mg suspended in sterile 0.9% sodium chloride solution were given in 1 to 7 consecutive weekly intratracheal instillations. The lungs and mediastinal lymph nodes were histologically examined at intervals up to 400 days after instillation.

  8. Sequence of pumiceous tephra layers and the late quaternary environmental record near mount st. Helens.

    PubMed

    Heusser, C J; Heusser, L E

    1980-11-28

    Tephra in lake beds within 40 kilometers of Mount St. Helens was deposited an average of once every 2,700 years over the past 35,000 years, for a total of 13 layers. Times of deposition span the period of the Fraser Glaciation and intervals before and after it, and include the series of climates prevailing when vegetation west of the Cascade Range shifted between a park-tundra type and the modern western hemlock forest.

  9. Trace element composition of the Mount St. Helens plume: stratospheric samples from the 18 May eruption

    SciTech Connect

    Vossler, T.; Anderson, D.L.; Aras, N.K.; Phelan, J.M.; Zoller, W.H.

    1981-01-01

    Atmospheric particulate material collected from the stratosphere in plume of the 18 May 1980 eruption of the Mount St. Helens volcano was quite similar in composition to that of ash that fell to the ground in western Washington. However, there were small but significant differences in concentrations of some elements with altitude, indicating that the statospheric material was primarily produced from fresh magma, but fragments of the mountain.

  10. Size distributions and mineralogy of ash particles in the stratosphere from eruptions of mount st. Helens.

    PubMed

    Farlow, N H; Oberbeck, V R; Snetsinger, K G; Ferry, G V; Polkowski, G; Hayes, D M

    1981-02-20

    Samples from the stratosphere obtained by U-2 aircraft after the first three major eruptions of Mount St. Helens contained large globules of liquid acid and ash. Because of their large size, these globules had disappeared from the lower stratosphere by late June 1980, leaving behind only smaller acid droplets. Particle-size distributions and mineralogy of the stratospheric ash grains demonstrate in-homogeneity in the eruption clouds.

  11. Eruption-triggered avalanche, flood, and lahar at mount st. Helens--effects of winter snowpack.

    PubMed

    Waitt, R B; Pierson, T C; Macleod, N S; Janda, R J; Voight, B; Holcomb, R T

    1983-09-30

    An explosive eruption of Mount St. Helens on 19 March 1982 had substantial impact beyond the vent because hot eruption products interacted with a thick snowpack. A blast of hot pumice, dome rocks, and gas dislodged crater-wall snow that avalanched through the crater and down the north flank. Snow in the crater swiftly melted to form a transient lake, from which a destructive flood and lahar swept down the north flank and the North Fork Toutle River.

  12. Eruption-triggered avalanche, flood, and lahar at Mount St. Helens - Effects of winter snowpack

    USGS Publications Warehouse

    Waitt, R.B.; Pierson, T.C.; MacLeod, N.S.; Janda, R.J.; Voight, B.; Holcomb, R.T.

    1983-01-01

    An explosive eruption of Mount St. Helens on 19 March 1982 had substantial impact beyond the vent because hot eruption products interacted with a thick snowpack. A blast of hot pumice, dome rocks, and gas dislodged crater-wall snow that avalanched through the crater and down the north flank. Snow in the crater swiftly melted to form a transient lake, from which a destructive flood and lahar swept down the north flank and the North Fork Toutle River.

  13. Distribution of melt beneath Mount St Helens and Mount Adams inferred from magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Hill, Graham J.; Caldwell, T. Grant; Heise, Wiebke; Chertkoff, Darren G.; Bibby, Hugh M.; Burgess, Matt K.; Cull, James P.; Cas, Ray A. F.

    2009-11-01

    Three prominent volcanoes that form part of the Cascade mountain range in Washington State (USA)-Mounts St Helens, Adams and Rainier-are located on the margins of a mid-crustal zone of high electrical conductivity. Interconnected melt can increase the bulk conductivity of the region containing the melt, which leads us to propose that the anomalous conductivity in this region is due to partial melt associated with the volcanism. Here we test this hypothesis by using magnetotelluric data recorded at a network of 85 locations in the area of the high-conductivity anomaly. Our data reveal that a localized zone of high conductivity beneath this volcano extends downwards to join the mid-crustal conductor. As our measurements were made during the recent period of lava extrusion at Mount St Helens, we infer that the conductivity anomaly associated with the localized zone, and by extension with the mid-crustal conductor, is caused by the presence of partial melt. Our interpretation is consistent with the crustal origin of silicic magmas erupting from Mount St Helens, and explains the distribution of seismicity observed at the time of the catastrophic eruption in 1980 (refs 9, 10).

  14. Forecasts and predictions of eruptive activity at Mount St. Helens, USA: 1975-1984

    USGS Publications Warehouse

    Swanson, D.A.; Casadevall, T.J.; Dzurisin, D.; Holcomb, R.T.; Newhall, C.G.; Malone, S.D.; Weaver, C.S.

    1985-01-01

    Public statements about volcanic activity at Mount St. Helens include factual statements, forecasts, and predictions. A factual statement describes current conditions but does not anticipate future events. A forecast is a comparatively imprecise statement of the time, place, and nature of expected activity. A prediction is a comparatively precise statement of the time, place, and ideally, the nature and size of impending activity. A prediction usually covers a shorter time period than a forecast and is generally based dominantly on interpretations and measurements of ongoing processes and secondarily on a projection of past history. The three types of statements grade from one to another, and distinctions are sometimes arbitrary. Forecasts and predictions at Mount St. Helens became increasingly precise from 1975 to 1982. Stratigraphic studies led to a long-range forecast in 1975 of renewed eruptive activity at Mount St. Helens, possibly before the end of the century. On the basis of seismic, geodetic and geologic data, general forecasts for a landslide and eruption were issued in April 1980, before the catastrophic blast and landslide on 18 May 1980. All extrusions except two from June 1980 to the end of 1984 were predicted on the basis of integrated geophysical, geochemical, and geologic monitoring. The two extrusions that were not predicted were preceded by explosions that removed a substantial part of the dome, reducing confining pressure and essentially short-circuiting the normal precursors. ?? 1985.

  15. Proximal ecological effects of the 1980 eruptions of Mount St. Helens

    NASA Technical Reports Server (NTRS)

    Swanson, F. J.

    1988-01-01

    The diversity of ecosystems and volcanic processes involved in the 1980 eruptions of Mount St. Helens, southwest Washington, provide an excellent setting for examining effects of volcanic events on ecosystems. These eruptions included a lateral blast, debris avalanche, mudflows, pyroclastic flows, and airfall tephra. Affected ecosystems within 30 km of the vent were lakes, streams, upland and riparian forest, and meadows. Ecological disturbances imposed by the Mount St. Helens events were predominantly physical, rather than climatic or chemical which are the dominant classes of disturbances considered in analysis of global catastrophes. Analysis of ecosystem response to disturbance should be based on consideration of composition and structure of the predisturbance system in terms that represent potential survivability of organisms, mechanisms in the primary disturbance, initial survivors, secondary disturbances arising from the primary disturbance and the biological responses to secondary disturbances, invasion of the site by new propagules, interactions among secondary disturbance processes and surviving and invading organisms. Predicting ecosystem response to disturbance is enchanced by considering the mechanisms of disturbance rather than type of disturbance. In the 1980 Mount St. Helens events, the disturbance types, involved primarily the mechanisms of sedimentation, heating, and shear stress. Each disturbance type involved one or more mechanisms. Ecosystem response varied greatly across the landscape. Analysis of ecosystem response to disturbance, regardless of type, should include detailed consideration of the properties of individual species, primary and secondary disturbance mechanisms, and their distributions across landscapes.

  16. Deposition and dose from the 18 May 1980 eruption of Mount St. Helens

    NASA Technical Reports Server (NTRS)

    Peterson, K. R.

    1982-01-01

    The downwind deposition and radiation doses was calculated for the tropospheric part of the ash cloud from the May 18, 1980 eruption of Mount St. Helens, by using a large cloud diffusion model. The naturally occurring radionnuclides of radium and thorium, whose radon daughters normally seep very slowly from the rocks and soil, were violently released to the atmosphere. The largest dose to an individual from these nuclides is small, but the population dose to those affected by the radioactivity in the ash is about 100 person rem. This population dose from Mount St. Helens is much greater than the annual person rem routinely released by a typical large nuclear power plant. It is estimated that subsequent eruptions of Mount St. Helens have doubled or tripled the person rem calculated from the initial large eruption. The long range global ash deposition of the May 18 eruption is estimated through 1984, by use of a global deposition model. The maximum deposition is nearly 1000 kg square km and occurs in the spring of 1981 over middle latitudes of the Northern Hemisphere.

  17. Distribution of melt beneath Mount St Helens and Mount Adams inferred from magnetotelluric data

    USGS Publications Warehouse

    Hill, G.J.; Caldwell, T.G.; Heise, W.; Chertkoff, D.G.; Bibby, H.M.; Burgess, M.K.; Cull, J.P.; Cas, Ray A.F.

    2009-01-01

    Three prominent volcanoes that form part of the Cascade mountain range in Washington State (USA)Mounts StHelens, Adams and Rainierare located on the margins of a mid-crustal zone of high electrical conductivity1,5. Interconnected melt can increase the bulk conductivity of the region containing the melt6,7, which leads us to propose that the anomalous conductivity in this region is due to partial melt associated with the volcanism. Here we test this hypothesis by using magnetotelluric data recorded at a network of 85 locations in the area of the high-conductivity anomaly. Our data reveal that a localized zone of high conductivity beneath thisvolcano extends downwards to join the mid-crustal conductor. As our measurements were made during the recent period of lava extrusion at Mount St Helens, we infer that the conductivity anomaly associated with the localized zone, and by extension with the mid-crustal conductor, is caused by the presence of partial melt. Our interpretation is consistent with the crustal origin of silicic magmas erupting from Mount St Helens8, and explains the distribution of seismicity observed at the time of the catastrophic eruption in 1980 (refs9, 10). ?? 2009 Macmillan Publishers Limited. All rights reserved.

  18. Deposition and dose from the May 18, 1980 eruption of Mount St. Helens

    SciTech Connect

    Peterson, K.R.

    1980-11-01

    The downwind deposition and radiation dose have been calculated for the tropospheric part of the ash cloud from the May 18, 1980 eruption of Mount St. Helens, using a large-cloud diffusion model. At that time the naturally occurring radionuclides of radium and thorium, whose radon daughters normally seep very slowly from the rocks and soil, were violently released to the atmosphere. The largest dose to an individual from these nuclides is small (in the microrem range), but the population dose to those affected by the radioactivity in the ash is about 100 person-rem. This population dose from Mount St. Helens is much greater than the annual person-rem routinely released by a typical large nuclear power plant. It is estimated that subsequent eruptions of Mount St. Helens have doubled or tripled the person-rem calculated for the initial large eruption; this total population dose is about the same as the lower-bound estimate of the population dose from the 1979 accident at the Three Mile Island nuclear power plant. The long-range global ash deposition of the May 18 eruption has been estimated through 1984, using a global deposition model. The maximum deposition is nearly 1000 kg/km/sup 2/ and occurs in the spring of 1981 over middle latitudes of the Northern Hemisphere.

  19. Holocene geomagnetic secular variation recorded by volcanic deposits at Mount St. Helens, Washington

    USGS Publications Warehouse

    Hagstrum, J.T.; Hoblitt, R.P.; Gardner, C.A.; Gray, T.E.

    2002-01-01

    A compilation of paleomagnetic data from volcanic deposits of Mount St. Helens is presented in this report. The database is used to determine signature paleomagnetic directions of products from its Holocene eruptive events, to assign sampled units to their proper eruptive period, and to begin the assembly of a much larger database of paleomagnetic directions from Holocene volcanic rocks in western North America. The paleomagnetic results from Mount St. Helens are mostly of high quality, and generally agree with the division of its volcanic deposits into eruptive episodes based on previous geologic mapping and radiocarbon dates. The Muddy River andesite's paleomagnetic direction, however, indicates that it is more likely part of the Pine Creek eruptive period rather than the Castle Creek period. In addition, the Two-Fingers andesite flow is more likely part of the Middle Kalama eruptive period and not part of the Goat Rocks period. The paleomagnetic data from Mount St. Helens and Mount Hood document variation in the geomagnetic field's pole position over the last ~2,500 years. A distinct feature of the new paleosecular variation (PSV) record, similar to the Fish Lake record (Oregon), indicates a sudden change from rapid clockwise movement of the pole about the Earth's spin axis to relatively slow counterclockwise movement at ???800 to 900 years B.P.

  20. A new tree-ring date for the "floating island" lava flow, Mount St. Helens, Washington

    USGS Publications Warehouse

    Yamaguchi, D.K.; Hoblitt, R.P.; Lawrence, D.B.

    1990-01-01

    Anomalously narrow and missing rings in trees 12 m from Mount St. Helens' "floating island" lava flow, and synchronous growth increases in trees farther from the flow margin, are evidence that this andesitic flow was extruded between late summer 1799 and spring 1800 a.d., within a few months after the eruption of Mount St. Helens' dacitic layer T tephra. For ease of reference, we assign here an 1800 a.d. date to this flow. The new date shows that the start of Mount St. Helens' Goat Rocks eruptive period (1800-1857 a.d.) resembled the recent (1980-1986) activity in both petrochemical trends and timing. In both cases, an initial explosive eruption of dacite was quickly succeeded by the eruption of more mafic lavas; dacite lavas then reappeared during an extended concluding phase of activity. This behavior is consistent with a recently proposed fluid-dynamic model of magma withdrawal from a compositionally zoned magma chamber. ?? 1990 Springer-Verlag.

  1. The dust environment surrounding the E-ring moons Dione, Helene and Polydeuce

    NASA Astrophysics Data System (ADS)

    Moldenhawer, T.; Hoffmann, H.; Seiß, M.; Sachse, M.; Spahn, F.

    2015-10-01

    Compared to the dust clouds around three of the Galilean satellites of Jupiter, no clear Saturnian pendants have been found yet by the CDA detector aboardthe Cassini spacecraft. However, three dust tori and arcs have been detected along the orbits of Pallene, Methone and Anthe in ISS images [1] and the Pallene dust torus was confirmed by in situ CDA measurements [4]. These observations have sparked interest whether the small co-orbital companions to E-ring moons like Dione or Thetys are efficient dust sources. We simulate the motion of dust particles, which originate from hypervelocity impacts of micrometeoroids onto Dione, Helene and Polydeuce [2]. Gravity, Lorentz force, solar radiation pressure and plasma drag are considered for the dynamic evolution of small dust particles. Assuming a steady state distribution, we scale the phase space data with dust production rates based on recent IDP measurements at Saturn [3]. We will present dust particle number densities along the orbits of Dione, Helene and Polydeuce and we will make predictions for the Cassini flybys of Helene and Polydeuce, which take place in the summer and fall this year.

  2. Mount St. Helens, 1980 to now—what’s going on?

    USGS Publications Warehouse

    Dzurisin, Daniel; Driedger, Carolyn L.; Faust, Lisa M.

    2013-01-01

    Mount St. Helens seized the world’s attention in 1980 when the largest historical landslide on Earth and a powerful explosive eruption reshaped the volcano, created its distinctive crater, and dramatically modified the surrounding landscape. An enormous lava dome grew episodically in the crater until 1986, when the volcano became relatively quiet. A new glacier grew in the crater, wrapping around and partly burying the lava dome. From 1987 to 2003, sporadic earthquake swarms and small steam explosions indicated that magma (molten rock) was being replenished deep underground. In 2004, steam-and-ash explosions heralded the start of another eruption. A quieter phase of continuous lava extrusion followed and lasted until 2008, building a new dome and doubling the volume of lava on the crater floor. Scientists with the U.S. Geological Survey and University of Washington’s Pacific Northwest Seismograph Network maintain constant watch for signs of renewed activity at Mount St. Helens and other Cascade volcanoes. Now is an ideal time for both actual and virtual visitors to Mount St. Helens to learn more about dramatic changes taking place on and beneath this active volcano.

  3. Eruptive activity at Mount St Helens, Washington, USA, 1984-1988: a gas geochemistry perspective

    USGS Publications Warehouse

    McGee, K.A.; Sutton, A.J.

    1994-01-01

    The results from two different types of gas measurement, telemetered in situ monitoring of reducing gases on the dome and airborne measurements of sulfur dioxide emission rates in the plume by correlation spectrometry, suggest that the combination of these two methods is particularly effective in detecting periods of enhanced degassing that intermittently punctuate the normal background leakage of gaseous effluent from Mount St Helens to the atmosphere. Gas events were recorded before lava extrusion for each of the four dome-building episodes at Mount St Helens since mid-1984. For two of the episodes, precursory reducing gas peaks were detected, whereas during three of the episodes, COSPEC measurements recorded precursory degassing of sulfur dioxide. During one episode (October 1986), both reducing gas monitoring and SO2 emission rate measurements simultaneously detected a large gas release several hours before lava extrusion. Had both types of gas measurements been operational during each of the dome-building episodes, it is thought that both would have recorded precursory signals for all four episodes. Evidence from the data presented herein suggests that increased degassing at Mount St Helens becomes detectable when fresh upward-moving magma is between 2 km and a few hundred meters below the base of the dome and between about 60 and 12 hours before the surface extrusion of lava. ?? 1994 Springer-Verlag.

  4. Developmental and Environmental Influences on Physiology and Behavior – 2014 Alan N. Epstein Research Award

    PubMed Central

    Tamashiro, Kellie L. K.

    2015-01-01

    Environmental factors acting during development of an individual may influence future health and disease susceptibility. Stressors, including altered diet, psychosocial stress, immune challenge, during gestation can have negative consequences on the intrauterine environment and increase disease susceptibility of the developing fetus. The long-term effects on offspring have been observed in humans and include greater susceptibility to psychiatric disease, such as depression and anxiety disorders, and adverse metabolic conditions including obesity, diabetes and cardiovascular disease. Studies in my laboratory use rodent models and incorporate a multilevel approach to determine the behavioral, physiological, and neurobiological correlates of disease development as a consequence of early life stressors. The road I took in developing this research program was a rather circuitous one and navigating that path would not have been possible without the many mentors, colleagues, fellows and students who provided critical support. Although my name appears on the plaque of the Alan N. Epstein Research Award, I share this with all those I had the privilege of working with along that road, as briefly summarized in this article. PMID:26291266

  5. Developmental and environmental influences on physiology and behavior--2014 Alan N. Epstein Research Award.

    PubMed

    Tamashiro, Kellie L K

    2015-12-01

    Environmental factors acting during development of an individual may influence future health and disease susceptibility. Stressors, including altered diet, psychosocial stress, and immune challenge, during gestation can have negative consequences on the intrauterine environment and increase disease susceptibility of the developing fetus. The long-term effects on offspring have been observed in humans and include greater susceptibility to psychiatric disease, such as depression and anxiety disorders, and adverse metabolic conditions including obesity, diabetes and cardiovascular disease. Studies in my laboratory use rodent models and incorporate a multilevel approach to determine the behavioral, physiological, and neurobiological correlates of disease development as a consequence of early life stressors. The road I took in developing this research program was a rather circuitous one and navigating that path would not have been possible without the many mentors, colleagues, fellows and students who provided critical support. Although my name appears on the plaque of the Alan N. Epstein Research Award, I share this with all those I had the privilege of working with along that road, as briefly summarized in this article.

  6. Functional anion concept: effect of fluorine anion on hydrogen storage of sodium alanate.

    PubMed

    Yin, Li-Chang; Wang, Ping; Kang, Xiang-Dong; Sun, Cheng-Hua; Cheng, Hui-Ming

    2007-03-28

    Doping NaAlH(4) with Ti-catalyst has produced a promising hydrogen storage system that can be reversibly operated at moderate temperature conditions. Of the various dopant precursors, TiCl(3) was well recognized due to its pronounced catalytic effect on the reversible dehydrogenation processes of sodium aluminium hydrides. Quite recently we experimentally found that TiF(3) was even better than TiCl(3) in terms of the critical hydrogen storage properties of the doped hydrides, in particular the dehydriding performance at Na(3)AlH(6)/NaH + Al step at moderate temperature. We present here the DFT calculation results of the TiF(3) or TiCl(3) doped Na(3)AlH(6). Our computational studies have demonstrated that F(-) and Cl(-) anions differ substantially from each other with regard to the state and function in the doped sodium aluminium hydride. In great contrast to the case of chloride doping where Cl(-) anion constitutes the "dead weight" NaCl, the fluoride doping results in a substitution of H(-) by F(-) anion in the hydride lattice and accordingly, a favorable thermodynamics adjustment. These results well explain the observed dehydriding performance associated with TiF(3)/TiCl(3)-doping. More significantly, the coupled computational and experimental efforts allow us to put forward a "functional anion" concept. This renews the current mechanism understanding in the catalytically enhanced sodium alanate.

  7. CaH Rydberg series, oscillator strengths and photoionization cross sections from Molecular Quantum Defect and Dyson Orbital theories

    NASA Astrophysics Data System (ADS)

    Velasco, A. M.; Lavín, C.; Díaz-Tinoco, Manuel; Ortiz, J. V.

    2017-01-01

    In this work, electron-propagator methods are applied to the calculation of the ionization potential and vertical excitation energies for several Rydberg series of the CaH molecule. The present calculations cover more highly excited states than those previously reported. In particular, excitation energies for ns (n>5), np (n>5), nd (n>4) and nf Rydberg states are given. Oscillator strengths for electronic transitions involving Rydberg states of CaH, as well as photoionization cross sections for Rydberg channels, also have been determined by using the Molecular Quantum Defect Orbital approach. Good agreement has been found with the scarce comparative data that are available for oscillator strengths. To our knowledge, predictions of photoionization cross sections from the outermost orbital of CaH are made here for the first time. A Cooper minimum and mixed atomic orbital character in some of the Dyson orbitals are among the novel features of these present calculations.

  8. Catalog of Mount St. Helens 2004 - 2005 Tephra Samples with Major- and Trace-Element Geochemistry

    USGS Publications Warehouse

    Rowe, Michael C.; Thornber, Carl R.; Gooding, Daniel J.; Pallister, John S.

    2008-01-01

    This open-file report presents a catalog of information about 135 ash samples along with geochemical analyses of bulk ash, glass and individual mineral grains from tephra deposited as a result of volcanic activity at Mount St. Helens, Washington, from October 1, 2004 until August 15, 2005. This data, in conjunction with that in a companion report on 2004?2007 Mount St. Helens dome samples by Thornber and others (2008a) are presented in support of the contents of the U.S. Geological Survey Professional Paper 1750 (Sherrod and others, ed., 2008). Readers are referred to appropriate chapters in USGS Professional Paper 1750 for detailed narratives of eruptive activity during this time period and for interpretations of sample characteristics and geochemical data presented here. All ash samples reported herein are currently archived at the David A. Johnston Cascades Volcano Observatory in Vancouver, Washington. The Mount St. Helens 2004?2005 Tephra Sample Catalogue along with bulk, glass and mineral geochemistry are tabulated in 6 worksheets of the accompanying Microsoft Excel file, of2008-1131.xls. Samples in all tables are organized by collection date. Table 1 is a detailed catalog of sample information for tephra deposited downwind of Mount St. Helens between October 1, 2004 and August 18, 2005. Table 2 provides major- and trace-element analyses of 8 bulk tephra samples collected throughout that interval. Major-element compositions of 82 groundmass glass fragments, 420 feldspar grains, and 213 mafic (clinopyroxene, amphibole, hypersthene, and olivine) mineral grains from 12 ash samples collected between October 1, 2004 and March 8, 2005 are presented in tables 3 through 5. In addition, trace-element abundances of 198 feldspars from 11 ash samples (same samples as major-element analyses) are provided in table 6. Additional mineral and bulk ash analyses from 2004 and 2005 ash samples are published in chapters 30 (oxide thermometry; Pallister and others, 2008), 32

  9. Elusive silane-alane complex [Si-H⋅⋅⋅Al]: isolation, characterization, and multifaceted frustrated Lewis pair type catalysis.

    PubMed

    Chen, Jiawei; Chen, Eugene Y-X

    2015-06-01

    The super acidity of the unsolvated Al(C6F5)3 enabled isolation of the elusive silane-alane complex [Si-H⋅⋅⋅Al], which was structurally characterized by spectroscopic and X-ray diffraction methods. The Janus-like nature of this adduct, coupled with strong silane activation, effects multifaceted frustrated-Lewis-pair-type catalysis. When compared with the silane-borane system, the silane-alane system offers unique features or clear advantages in the four types of catalytic transformations examined in this study, including: ligand redistribution of tertiary silanes into secondary and quaternary silanes, polymerization of conjugated polar alkenes, hydrosilylation of unactivated alkenes, and hydrodefluorination of fluoroalkanes.

  10. From Mercury to Apollo: astronaut Alan Shepard reflects on life support and other space issues [interview by Winston Huff].

    PubMed

    Shepard, A

    1995-01-01

    Alan Shepard was one of the original Mercury astronauts. He became the first American in space on May 5, 1961, in the Freedom 7 capsule, during a 15 minute suborbital trip reaching 115 miles altitude and 302 miles down the Atlantic tracking range. Grounded by an inner ear problem, he served as Chief of the Astronaut Office for several years. After an operation to correct the problem, he commanded the Apollo 14 moon mission in 1971. He retired as a Rear Admiral in 1974. Here, Alan Shepard offers his views on life support comedies and tragedies, going back to the moon, future drivers of the manned space flight program, the benefits of the space program, joint NASA and Russia missions, how his NASA experience affected his personal life, and the profitability of working with NASA.

  11. Effects of the 1980 eruption of Mount St Helens on the limnological characteristics of selected lakes in western Washington

    USGS Publications Warehouse

    Embrey, S.S.; Dion, N.P.

    1988-01-01

    The 1980 eruption of Mount St. Helens provided the opportunity to study its effect on the physical, chemical, and biological characteristics of lakes near the volcano, and to describe two newly created lakes. Concentrations of dissolved solids and organic carbon, measured in June 1980, had increased from 2 to 30 times those observed in the 1970 's in Spirit, St. Helens, and Venus Lakes. Water in the lakes was altered from preeruption calcium-bicarbonate types to calcium-sulfate, calcium sulfate-chloride, or lake surface, as in St. Helens Lake; transparency in Venus Lake had improved to a depth of 24 ft by 1982. Spirit Lake was anoxic into fall 1980, but had reaerated to 5.2 mg/L of dissolved oxygen by May 1981. Phytoplankton communities in existing lakes in the blast zone in 1980 were primarily green and bluegreen algae; diatoms were sparse until summer 1982. Small numbers of zooplankton in Spirit, St. Helens, and Venus Lakes, compared to numbers in Walupt and Fawn Lakes, may indicate some post-eruption mortality. Rotifers were absent from lakes in the blast zone, but by 1981 were observed in all the lakes. The recovery of the physical, chemical, and biological characteristics of the lakes will depend on stabilization of the surrounding environment and biological processes within each lake. Excluding Spirit Lake, it is estimated that St. Helens Lake would be the slowest to recover and Venus Lake the fastest. (USGS)

  12. Frictional properties of the Mount St. Helens gouge: Chapter 20 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Moore, Peter L.; Iverson, Neal R.; Iverson, Richard M.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    Rate-weakening friction is a requirement for stick-slip behavior that is satisfied by the Mount St. Helens gouge. Indeed, regular stick-slip oscillations were observed in two experiments performed at the highest normal stress and lowest rates of shear. The conditions under which this stick-slip motion occurred indicate that the gouge also satisfies a second criterion for stick-slip behavior of materials exhibiting rateand-state dependent friction-gouge stiffness exceeds that of the ascending magma that drives upward motion of the plug. The presence of highly compliant magma as a driving element may be crucial for generating stick-slip instabilities at the shallow earthquake focal depths observed during the eruption.

  13. Large-amplitude traveling ionospheric distrubance produced by the May 18, 1980, explosion of Mount St. Helens

    SciTech Connect

    Roberts, D.H.; Klobuchar, J.A.; Fougere, P.F.; Hendrickson, D.H.

    1982-08-01

    A remarkable long-lived, large-scale traveling ionospheric disturbance (TID), excited by the May 18, 1980, explosion of Mount St. Helens, has been detected in total electron content monitor data. Oscillatory perturbations in the electron column density of the ionosphere with amplitudes about 10% of the nominal daytime content were detected at three stations whose ionospheric penetration points lie between 1610 and 1890 km from Mount St. Helens. Smaller perturbations were detected at five of six additional stations between 3760 and 4950 km away. The period of the TID increased linearly with great-circle distance from Mount St. Helens, ranging from roughly-equal37 min at the nearest station to roughly-equal116 min at the most distant one. The TID persisted for at least four cycles at the three close stations and three cycles at the more distant stations and was qualitatively similar to TID's produced by the low-altitude thermonuclear detonations of the 1960's. The disturbance front of this TID accelerated from an average velocity of roughly-equal350 m/s between Mt. St. Helens and the close stations to an average velocity of roughly-equal550 m/s to the more distant ones.A model based on the free wave response of an isothermal atmosphere to a point disturbance provides a good fit to the data at the three closest stations, but no such model can account for all of the data. Modeling of the long-distance behavior of the Mount St. Helens TID in terms of upper-atmosphere guided gravity waves is complicated by the requirement of exciting them by a ground-level explosion. There was no evidence for a strong supersonic shock wave in the ionosphere. As a result, the Mount St. Helens disturbance may prove to be a cleaner test of detailed theories of the point excitation and propagation of gravity waves in a realistic atmosphere than were TID's excited by thermonuclear weapons.

  14. VP Structure of Mount St. Helens, Washington, USA, imaged with local earthquake tomography

    USGS Publications Warehouse

    Waite, G.P.; Moran, S.C.

    2009-01-01

    We present a new P-wave velocity model for Mount St. Helens using local earthquake data recorded by the Pacific Northwest Seismograph Stations and Cascades Volcano Observatory since the 18 May 1980 eruption. These data were augmented with records from a dense array of 19 temporary stations deployed during the second half of 2005. Because the distribution of earthquakes in the study area is concentrated beneath the volcano and within two nearly linear trends, we used a graded inversion scheme to compute a coarse-grid model that focused on the regional structure, followed by a fine-grid inversion to improve spatial resolution directly beneath the volcanic edifice. The coarse-grid model results are largely consistent with earlier geophysical studies of the area; we find high-velocity anomalies NW and NE of the edifice that correspond with igneous intrusions and a prominent low-velocity zone NNW of the edifice that corresponds with the linear zone of high seismicity known as the St. Helens Seismic Zone. This low-velocity zone may continue past Mount St. Helens to the south at depths below 5??km. Directly beneath the edifice, the fine-grid model images a low-velocity zone between about 2 and 3.5??km below sea level that may correspond to a shallow magma storage zone. And although the model resolution is poor below about 6??km, we found low velocities that correspond with the aseismic zone between about 5.5 and 8??km that has previously been modeled as the location of a large magma storage volume. ?? 2009 Elsevier B.V.

  15. Measurements of the stratospheric plume from the Mount St. Helens eruption - Radioactivity and chemical composition

    NASA Astrophysics Data System (ADS)

    Leifer, R.; Hinchliffe, L.; Fisenne, I.; Franklin, H.; Knutson, E.; Olden, M.; Sedlacek, W.; Mroz, E.; Cahill, T.

    1981-11-01

    Gas measurements made in the stratospheric plume from the eruption of Mount St. Helens on 18 May 1980 were not consistent with a reported large injection of radon-222 into the atmosphere. No enrichment in the volatile element polonium was found in filter samples, and the ratio of polonium-210 to lead-210 was not different from background values. Data obtained with an experimental impactor, flown shortly after the eruption, showed an increase of 10 to the 3rd in the stratospheric number concentration of submicrometer sulfate particles compared to concentrations before the eruption.

  16. Characterization of organic contaminants in environmental samples associated with mount St. Helens 1980 volcanic eruption

    USGS Publications Warehouse

    Pereira, W.E.

    1982-01-01

    Volcanic ash, surface-water, and bottom-material samples obtained in the vicinity of Mount St. Helens after the May 18, 1980, eruption were analyzed for organic contaminants by using capillary gas chromatography-mass spectrometry-computer techniques. Classes of compounds identified include n-alkanes, fatty acids, dicarboxylic acids, aromatic acids and aldehydes, phenols, resin acids, terpenes, and insect juvenile hormones. The most probable source of these compounds is from pyrolysis of plant and soil organic matter during and after the eruption. The toxicity of selected compounds and their environmental significance are discussed.

  17. Direct temperature measurements of deposits, Mount St. Helens, Washington, 1980-1981

    USGS Publications Warehouse

    Banks, N.G.; Hoblitt, R.P.

    1996-01-01

    A program of temperature studies of the eruptive products of Mount St. Helens was established May 20, 1980, just 2 days after the catastrophic eruption of May 18. In general, the more recent deposits were emplaced at higher temperatures than the earlier ones. Emplacement temperatures of deposits of the debris avalanche of May 18 ranged from about 70 to 100 deg C, of the directed blast of May 18 from about 100 to 325 deg C (depending on azimuth from the vent), and of the subsequent pumiceous pyroclastic flows from about 300 to 850 deg C. Temperatures of the summit domes were as high as 897 deg C.

  18. Revised tephra volumes for Mount St. Helens and Glacier Peak volcanoes

    NASA Astrophysics Data System (ADS)

    Nathenson, M.

    2015-12-01

    Isopach maps from 8 tephra eruptions from Mount St. Helens were reported in Carey et al. (1995) and for 3 eruptions from Glacier Peak in Gardner et al. (1998). These isopach data only define single slopes on a thickness versus square root of area plot (Fierstein and Nathenson, 1992) whereas one expects a second slope in the medial to distal region for larger eruptions. A model was proposed by Carey et al. (1995) for estimating the second slope to calculate volumes. A more recent study by Sulpizio (2005) for estimating the second slope involves a systematic analysis of many eruptions to provide correlation equations. The purpose of this study is to recalculate the volumes of Mount St. Helens and Glacier Peak eruptions and compare results from the two methods for estimating second slopes. In order to gain some perspective on the methods for estimating the second slope, we use data for thickness versus distance beyond the last isopach that is available for some of the eruptions. The thickness versus square root of area method is extended to thickness versus distance by developing an approximate relation between the two, assuming elliptical isopachs. Thickness versus distance data tend to support the Sulpizio method. The volumes derived using the Sulpizio method are 20 % or less of the values for the Mount St. Helens layers given in Carey et al. (1995) and about 50 % of the values for the Glacier Peak layers given in Gardner et al (1998). For example, for Mount St. Helens layer Wn, the volume calculated from the isopachs is 0.55 km3, using the Carey et al. (1995) method it is 7.7 km3, and using the Sulpizio (2005) method it is 1.4 km3. Carey, S., Gardner, J., and Sigurdsson, H., 1995, J. Volc. and Geoth. Res. 66, 185-202. Fierstein, J., and Nathenson, M., 1992, Bull. Volc. 54, 156-167. Gardner, J.E., Carey, S., and Sigurdsson, H., 1998, Geol. Soc. of Am. Bull. 110, 173-187. Sulpizio, R., 2005, J. Volc. Geoth. Res. 145, 315-336.

  19. Helen Flanders Dunbar, John Dewey, and clinical pragmatism: reflections on method in psychosomatic medicine and bioethics.

    PubMed

    Hart, Curtis W

    2002-01-01

    This article outlines the method utilized by physicians and major figures in the founding of Clinical Pastoral Education, Helen Flanders Dunbar, in her work of 1943, Psychosomatic Diagnosis, and relates it to the currently evolving approach in bioethics known as clinical pragmatism. It assesses Dewey's influence on both Dunbar in psychosomatic medicine and clinical pragmatism in bioethics, and illustrates the breadth of influence of the school of philosophical thought known as pragmatism with which Dewey's name and those of William James and Charles Sanders Pierce are most often identified.

  20. Measurements of the stratospheric plume from the Mount St. Helens eruption: radioactivity and chemical composition

    SciTech Connect

    Leifer, R.; Hinchliffe, L.; Fisenne, I.; Franklin, H.; Knutson, E.; Olden, M.; Sedlacek, W.; Mroz, E.; Cahill, T.

    1981-11-20

    Gas measurements made in the stratospheric plume from the eruption of Mount St. Helens on 18 May 1980 were not consistent with a reported large injection of radon-222 into the atmosphere. No enrichment in the volatile element polonium was found in filter samples, and the ratio of polonium-210 to lead-210 was not different from background values. Data obtained with an experimental impactor, flown shortly after the eruption, showed an increase of 10/sup 3/ in the stratospheric number concentration of submicrometer sulfate particles compared to concentrations before the eruption.

  1. Changes in stratospheric water vapor associated with the Mount St. Helens eruption

    SciTech Connect

    Murcray, D.G.; Murcray, F.J.; Barker, D.B.; Mastenbrook, H.J.

    1981-01-01

    A frost point hygrometer designed for aircraft operation was included in the complement of instruments assembled for the NASA U-2 flights through the plume of Mount St. Helens. Measurements made on the 22 May flight showed the water vapor to be closely associated with the aerosol plume. The water vapor mixing ratio by mass in the plume was as high as 40 x 10/sup -6/. This compares with values of 2 x 10/sup -6/ to 3 x 10/sup -6/ outside of the plume.

  2. Measurements of the stratospheric plume from the mount st. Helens eruption: radioactivity and chemical composition.

    PubMed

    Leifer, R; Hinchliffe, L; Fisenne, I; Franklin, H; Knutson, E; Olden, M; Sedlacek, W; Mroz, E; Cahill, T

    1981-11-20

    Gas measurements made in the stratospheric plume from the eruption of Mount St. Helens on 18 May 1980 were not consistent with a reported large injection of radon-222 into the atmosphere. No enrichment in the volatile element polonium was found in filter samples, and the ratio of polonium-210 to lead-210 was not different from background values. Data obtained with an experimental impactor, flown shortly after the eruption, showed an increase of 10(3) in the stratospheric number concentration of submicrometer sulfate particles compared to concentrations before the eruption.

  3. Changes in stratospheric water vapor associated with the mount st. Helens eruption.

    PubMed

    Murcray, D G; Murcray, F J; Barker, D B; Mastenbrook, H J

    1981-02-20

    A frost point hygrometer designed for aircraft operation was included in the complement of instruments assembled for the NASA U-2 flights through the plume of Mount St. Helens. Measurements made on the 22 May flight showed the water vapor to be closely associated with the aerosol plume. The water vapor mixing ratio by mass in the plume was as high as 40 x 10(-6). This compares with values of 2 x 10(-6) to 3 x 10(-6) outside of the plume.

  4. Airborne studies of the emissions from the volcanic eruptions of mount st. Helens.

    PubMed

    Hobbs, P V; Radke, L F; Eltgroth, M W; Hegg, D A

    1981-02-20

    The concentrations of particles less than 10 micrometers in diameter in the ash emissions from Mount St. Helens have been more than 1000 times greater than those in the ambient air. Mass loadings of particles less than 2 micrometers in diameter were generally several hundred micrograms per cubic meter. In the ash clouds, produced by the large eruption on 18 May 1980, the concentrations of several trace gases generally were low. In other emissions, significant, but variable, concentrations of sulfur gases were measured. The 18 May eruption produced nuées ardentes, lightning flashes, and volcanic hail.

  5. Predicting eruptions at mount st. Helens, june 1980 through december 1982.

    PubMed

    Swanson, D A; Casadevall, T J; Dzurisin, D; Malone, S D; Newhall, C G; Weaver, C S

    1983-09-30

    Thirteen eruptions of Mount St. Helens between June 1980 and December 1982 were predicted tens of minutes to, more generally, a few hours in advance. The last seven of these eruptions, starting with that of mid-April 1981, were predicted between 3 days and 3 weeks in advance. Precursory seismicity, deformation of the crater floor and the lava dome, and, to a lesser extent, gas emissions provided telltale evidence of forthcoming eruptions. The newly developed capability for prediction reduced risk to life and property and influenced land-use decisions.

  6. Remanent magnetization of ash from the 18 May 1980 eruption of Mount St. Helens

    SciTech Connect

    Steele, W.K.

    1981-03-01

    Ash from the May 1980 eruption of Mount St. Helens deposited from air faithfully records the direction of the local geomagnetic field in eastern Washington, whereas ash settled from suspension in water in fluvial environments exhibits significant inclination and current-rotation errors in magnetic direction similar to those reported in other subaqueously deposited sediments. The current-rotation errors are associated with partial alignment of the major axes of magnetic susceptibility in the direction of water currents. Subaerial deposition produces strong stable remanent magnetization in ash with or without postdepositional wetting by rain.

  7. Rheological properties of mudflows associated with the spring 1980 eruptions of Mount St. Helens volcano, Washington

    SciTech Connect

    Fink, J.H.; Malin, M.C.; D'Alli, R.E.; Greeley, R.

    1981-01-01

    Rhelogoical properties of three recent mudflows at Mount St. Helens were estimated using technique developed for deterimining the properties of debris flows based on the geometry of their deposits. Calculated yield strengths of 1100, 1000, and 400 Pa, maximum flow velocities of 10 to 31 m/s, volumetric flow rates of 300 to 3400 m/sup 3//s, and plastic viscosities of 20 to 320 Ps-s all compare favorably with measured and estimated values cited in the literature. A method for determining likely sites of future mudflow initiation based on these data is outlined.

  8. Evaluation of radon progeny from Mount St. Helens eruptions. Final report

    SciTech Connect

    Lepel, E.A.; Olsen, K.B.; Thomas, V.W.; Eichner, F.N.

    1982-09-01

    A network of twelve monitoring sites around Mount St. Helens was established to evaluate possible short-lived radioactivity in the fallen ash. Seven sites were located near major population centers of Washington and Oregon, and five sites were located within 80 km of the volcano. Each site monitored the radioactivity present by the use of thermoluminescent dosimeters which recorded the total exposure to radioactivity over the exposure period. Eruptions occurring on July 22, August 7, and October 16 to 18, 1980 were monitored. No statistically significant quantities of measurable radon daughters were observed.

  9. Airborne studies of the emissions from the volcanic eruptions of Mount St. Helens

    SciTech Connect

    Hobbs, P.V.; Radke, L.F.; Eltgroth, M.W.; Hegg, D.A.

    1981-01-01

    The concentrations of particles less than 10 micrometers in diameter in the ash emissions from Mount St. Helens have been more than 1000 times greater than those in the ambient air. Mass loadings of particles less than 2 micrometers in diameter were generally several hundred micrograms per cubic meter. In the ash clouds, produced by the large eruption on 18 May 1980, the concentrations of several trace gases generally were low. In other emissions, significant, but variable, concentrations of sulfur gases were measured. The 18 May eruption produced nuees ardentes, lightning flashes, and volcanic hail.

  10. Chemical changes of lakes within the Mount St. Helens blast zone

    SciTech Connect

    Wissmar, R.C.; Devol, A.H.; Nevissi, A.E.; Sedell, J.R.

    1982-01-01

    Differences in the dissolved chemistry of lakes devastated by the 18 May 1980 eruption of Mount St. Helens are attributable to location relative to the lateral blast trajectory of the eruption and to the emplacement of mineral deposits. Elemental enrichment ratios of pre- and posteruption measurements for Spirit Lake and comparisons of the chemical concentrations and elemental ratios for lakes inside and outside the blast zone reflect the influences of the dissolution of magmatic and lithic deposits. The pH changes were minor because of buffering by carbonic acid and reactions involving mineral alteration, dissolved organics, and biological processes.

  11. Biological responses of lakes in the mount st. Helens blast zone.

    PubMed

    Wissmar, R C; Devol, A H; Staley, J T; Sedell, J R

    1982-04-09

    Loadings of dissolved organics and suspended particulates from destroyed forests and volcanic debris produced by the 18 May 1980 eruption of Mount St. Helens altered the trophic structure of many blast zone lakes to the extent that anoxic conditions and chemoorganotrophic and chemolithotrophic microorganisms prevailed. High bacterial counts and high adenosine triphosphate concentrations were directly related to enhanced concentrations of dissolved organic carbon, and plankton chlorophyll a was inversely related to light extinction. The recovery of these lakes to the preeruption state appears dependent upon the oxidation of organics and the stabilization of watersheds.

  12. Eruption prediction aided by electronic tiltmeter data at mount st. Helens.

    PubMed

    Dzurisin, D; Westphal, J A; Johnson, D J

    1983-09-30

    Telemetry from electronic tiltmeters in the crater at Mount St. Helens contributed to accurate predictions of all six effusive eruptions from June 1981 to August 1982. Tilting of the crater floor began several weeks before each eruption, accelerated sharply for several days, and then abruptly changed direction a few minutes to days before extrusion began. Each episode of uplift was caused by the intrusion of magma into the lava dome from a shallow source, causing the dome to inflate and eventually rupture. Release of magma pressure and increased surface loading by magma added to the dome combined to cause subsidence just prior to extrusion.

  13. Chemical changes of lakes within the mount st. Helens blast zone.

    PubMed

    Wissmar, R C; Devol, A H; Nevissi, A E; Sedell, J R

    1982-04-09

    Differences in the dissolved chemistry of lakes devastated by the 18 May 1980 eruption of Mount St. Helens are attributable to location relative to the lateral blast trajectory of the eruption and to the emplacement of mineral deposits. Elemental enrichment ratios of pre- and posteruption measurements for Spirit Lake and comparisons of the chemical concentrations and elemental ratios for lakes inside and outside the blast zone reflect the influences of the dissolution of magmatic and lithic deposits. The pH changes were minor because of buffering by carbonic acid and reactions involving mineral alteration, dissolved organics, and biological processes.

  14. The Stars Belong to Everyone: Astronomer and Science Writer Helen Sawyer Hogg (1905-1993)

    NASA Astrophysics Data System (ADS)

    Cahill, Maria J.

    2012-06-01

    As a scientist and science educator, Helen Sawyer Hogg served astronomy, and especially variable star astronomy, in diverse ways while raising a family. Her long interest in and support of the AAVSO over many years took place in the context of not only that busy scientific and writing career, but also one of personal struggle to achieve parity as a female in a largely male profession. This biographical sketch demonstrates that her path to eventual status as “the Canadian face of astronomy” was both difficult and filled with uncertainty.

  15. The Stars Belong to Everyone: Astronomer and Science Writer Dr. Helen Sawyer Hogg (1905-1993)

    NASA Astrophysics Data System (ADS)

    Cahill, Maria J.

    2011-05-01

    University of Toronto astronomer and science writer Helen Sawyer Hogg (President of the AAVSO 1939-41) served her field through research, teaching, and administrative leadership. Additionally, she reached out to students and the public through her Toronto Star newspaper column entitled "With the Stars" for thirty years; she wrote The Stars Belong to Everyone, a book that speaks to a lay audience; she hosted a successful television series entitled Ideas; and she delivered numerous speeches at scientific conferences, professional women's associations, school programs, libraries, and other venues. This paper will illumine her life and the personal and professional forces that influenced her work.

  16. Correlation between atmospheric precipitation and recent explosions at Mount St. Helens, Washington

    USGS Publications Warehouse

    Mastin, L.

    1992-01-01

    Scientists attribute the recent small explosion-like seismic signals at Mount St. Helens to either the geyser-like flashing of superheated groundwater to steam or the release of magmatic gas from the cooling magma system, or both. The contribution of magmaic gas in these events is not currently known. If meteoric water from rain or melting snow is the source, however, we might expect these events to occur most frequently during the rainy season, perhaps even during or immediately following individual storms. 

  17. Level repulsion exponent β for many-body localization transitions and for Anderson localization transitions via Dyson Brownian motion

    NASA Astrophysics Data System (ADS)

    Monthus, Cécile

    2016-03-01

    The generalization of the Dyson Brownian motion approach of random matrices to Anderson localization (AL) models (Chalker et al 1996 Phys. Rev. Lett. 77 554) and to many-body localization (MBL) Hamiltonians (Serbyn and Moore 2015 arXiv:1508.07293) is revisited to extract the level repulsion exponent β, where β =1 in the delocalized phase governed by the Wigner-Dyson statistics, β =0 , in the localized phase governed by the Poisson statistics, and 0<{βc}<1 at the critical point. The idea is that the Gaussian disorder variables h i are promoted to Gaussian stationary processes h i (t) in order to sample the disorder stationary distribution with some time correlation τ. The statistics of energy levels can then be studied via Langevin and Fokker-Planck equations. For the MBL quantum spin Hamiltonian with random fields h i , we obtain β =2qn,n+1\\text{EA}(N)/qn,n\\text{EA}(N) in terms of the Edwards-Anderson matrix qnm\\text{EA}(N)\\equiv \\frac{1}{N}{\\sum}i=1N|< {φn}|σ iz|{φm}> {{|}2} for the same eigenstate m  =  n and for consecutive eigenstates m  =  n  +  1. For the Anderson localization tight-binding Hamiltonian with random on-site energies h i , we find β =2{{Y}n,n+1}(N)/≤ft({{Y}n,n}(N)-{{Y}n,n+1}(N)\\right) in terms of the density correlation matrix {{Y}nm}(N)\\equiv {\\sum}i=1N|< {φn}|i> {{|}2}|< i|{φm}> {{|}2} for consecutive eigenstates m  =  n  +  1, while the diagonal element m  =  n corresponds to the inverse participation ratio {{Y}nn}(N)\\equiv {\\sum}i=1N|< {φn}|i> {{|}4} of the eigenstate |{φn}> .

  18. A fresh look at the photoelectron spectrum of bromobenzene: A third-order non-Dyson electron propagator study

    SciTech Connect

    Schneider, M.; Wormit, M.; Dreuw, A.; Soshnikov, D. Yu.; Trofimov, A. B.; Holland, D. M. P.; Powis, I.; Antonsson, E.; Patanen, M.; Nicolas, C.; Miron, C.

    2015-10-14

    The valence-shell ionization spectrum of bromobenzene, as a representative halogen substituted aromatic, was studied using the non-Dyson third-order algebraic-diagrammatic construction [nD-ADC(3)] approximation for the electron propagator. This method, also referred to as IP-ADC(3), was implemented as a part of the Q-Chem program and enables large-scale calculations of the ionization spectra, where the computational effort scales as n{sup 5} with respect to the number of molecular orbitals n. The IP-ADC(3) scheme is ideally suited for investigating low-lying ionization transitions, so fresh insight could be gained into the cationic state manifold of bromobenzene. In particular, the present IP-ADC(3) calculations with the cc-pVTZ basis reveal a whole class of low-lying low-intensity two-hole-one-particle (2h-1p) doublet and quartet states, which are relevant to various photoionization processes. The good qualitative agreement between the theoretical spectral profile for the valence-shell ionization transitions generated with the smaller cc-pVDZ basis set and the experimental photoelectron spectrum measured at a photon energy of 80 eV on the PLÉIADES beamline at the Soleil synchrotron radiation source allowed all the main features to be assigned. Some theoretical aspects of the ionization energy calculations concerning the use of various approximation schemes and basis sets are discussed.

  19. Quark number fluctuations at finite temperature and finite chemical potential via the Dyson-Schwinger equation approach

    NASA Astrophysics Data System (ADS)

    Xin, Xian-yin; Qin, Si-xue; Liu, Yu-xin

    2014-10-01

    We investigate the quark number fluctuations up to the fourth order in the matter composed of two light flavor quarks with isospin symmetry and at finite temperature and finite chemical potential using the Dyson-Schwinger equation approach of QCD. In order to solve the quark gap equation, we approximate the dressed quark-gluon vertex with the bare one and adopt both the Maris-Tandy model and the infrared constant (Qin-Chang) model for the dressed gluon propagator. Our results indicate that the second, third, and fourth order fluctuations of net quark number all diverge at the critical endpoint (CEP). Around the CEP, the second order fluctuation possesses obvious pump while the third and fourth order ones exhibit distinct wiggles between positive and negative. For the Maris-Tandy model and the Qin-Chang model, we give the pseudocritical temperature at zero quark chemical potential as Tc=146 MeV and 150 MeV, and locate the CEP at (μEq,TE)=(120,124) MeV and (124,129) MeV, respectively. In addition, our results manifest that the fluctuations are insensitive to the details of the model, but the location of the CEP shifts to low chemical potential and high temperature as the confinement length scale increases.

  20. A fresh look at the photoelectron spectrum of bromobenzene: A third-order non-Dyson electron propagator study.

    PubMed

    Schneider, M; Soshnikov, D Yu; Holland, D M P; Powis, I; Antonsson, E; Patanen, M; Nicolas, C; Miron, C; Wormit, M; Dreuw, A; Trofimov, A B

    2015-10-14

    The valence-shell ionization spectrum of bromobenzene, as a representative halogen substituted aromatic, was studied using the non-Dyson third-order algebraic-diagrammatic construction [nD-ADC(3)] approximation for the electron propagator. This method, also referred to as IP-ADC(3), was implemented as a part of the Q-Chem program and enables large-scale calculations of the ionization spectra, where the computational effort scales as n(5) with respect to the number of molecular orbitals n. The IP-ADC(3) scheme is ideally suited for investigating low-lying ionization transitions, so fresh insight could be gained into the cationic state manifold of bromobenzene. In particular, the present IP-ADC(3) calculations with the cc-pVTZ basis reveal a whole class of low-lying low-intensity two-hole-one-particle (2h-1p) doublet and quartet states, which are relevant to various photoionization processes. The good qualitative agreement between the theoretical spectral profile for the valence-shell ionization transitions generated with the smaller cc-pVDZ basis set and the experimental photoelectron spectrum measured at a photon energy of 80 eV on the PLÉIADES beamline at the Soleil synchrotron radiation source allowed all the main features to be assigned. Some theoretical aspects of the ionization energy calculations concerning the use of various approximation schemes and basis sets are discussed.

  1. Dyson orbitals of N2O: electron momentum spectroscopy and symmetry adapted cluster-configuration interaction calculations.

    PubMed

    Miao, Y R; Ning, C G; Liu, K; Deng, J K

    2011-05-28

    Electron momentum spectroscopy and symmetry adapted cluster-configuration interaction (SAC-CI) theory were combined to study electron correlation effects in nitrous oxide molecule (N(2)O). The SAC-CI General-R method accurately reproduced the experimental ionization spectrum. This bench-marked method was also introduced for calculating the momentum distributions of N(2)O Dyson orbitals. Several calculated momentum distributions with different theoretical methods were compared with the high resolution experimental results. In the outer-valence region, Hartree-Fock (HF), density functional theory (DFT), and SAC-CI theory can well describe the experimental momentum distributions. SAC-CI presented a best performance among them. In the inner-valence region, HF and DFT cannot work well due to the severe breaking of the molecular orbital picture, while SAC-CI still produced an excellent description of experimental momentum profiles because it can accurately take into account electron correlations. Moreover, the thermally averaged calculation showed that the geometrical changes induced by the vibration at room temperature have no noticeable effects on momentum distribution of valence orbitals of N(2)O.

  2. The mechanisms of fine particle generation and electrification during Mount St. Helens volcanic eruption

    NASA Technical Reports Server (NTRS)

    Cheng, R. J.

    1982-01-01

    Microscopical investigation of volcanic ash collected from ground stations during Mount St. Helens eruptions reveal a distinctive bimodel size distribution with high concentrations of particle ranges at (1) 200-100 microns and (2) 20-0.1 microns. Close examination of individual particles shows that most larger ones are solidified magma particles of porous pumice with numerous gas bubbles in the interior and the smaller ones are all glassy fragments without any detectable gas bubbles. Elemental analysis demonstrates that the fine fragments all have a composition similar to that of the larger pumice particles. Laboratory experiments suggest that the formation of the fine fragments is by bursting of glassy bubbles from a partially solidified surface of a crystallizing molten magma particle. The production of gas bubbles is due to the release of absorbed gases in molten magma particles when solubility decreases during phase transition. Diffusion cloud chamber experiments strongly indicate that sub-micron volcanic fragments are highly hygroscopic and extremely active as cloud condensation nuclei. Ice crystals also are evidently formed on those fragments in a supercooled (-20 C) cloud chamber. It has been reported that charge generation from ocean volcanic eruptions is due to contact of molten lava with sea water. This seems to be insufficient to explain the observed rapid and intense lightning activities over Mount St. Helens eruptions. Therefore, a hypothesis is presented here that highly electrically charged fine solid fragments are ejected by bursting of gas bubbles from the surface of a crystallizing molten magma particles.

  3. Water fact sheet; evolution of sediment yield from Mount St. Helens, Washington, 1980-1993

    USGS Publications Warehouse

    Costa, John E.

    1994-01-01

    The most enduring geological consequence of the eruption of Mount St. Helens, Washington, on May 18, 1980, and the most costly single element in the recovery effort, has been the persistent downstream sedimentation caused by erosion of the approximately 3 cubic kilometers (km3) of sediment deposited on the landscape surrounding the volcano. Most of the sediment was associated with the emplacement of a 2.8 km3 debris avalanche in the upper part of the watershed of the North Fork Toutle River, and debris flows in the channels of the South Fork Toutle River, Pine Creek, Swift Creek, and Muddy River. An additional 0.2-0.3 km3 of volcanic material was emplaced by pyroclastic flows, blasts, and ash fall. Part of this vast quantity of volcaniclastic sediment has been subsequently eroded by runoff and streamflow. This brief report summarizes the changes in sediment yield at five locations around Mount St. Helens in the first 13 years following the May 18, 1980 eruption.

  4. Particle geochemistry of volcanic plumes of Etna and Mount St. Helens

    NASA Astrophysics Data System (ADS)

    Varekamp, Johan C.; Thomas, Ellen; Germani, Mark; Buseck, Peter R.

    1986-11-01

    Particles in volcanic plumes include vapor condensates and reaction products of ash with vapors or condensed liquids, in addition to abundant silicate particles. In the 1980 Mount St. Helens plume we detected abundant (Na, K) Cl crystals as well as Ca sulfates, the latter commonly as overgrowths on ash or anthropogenic particles. Many of the chloride particles contained zinc and cadmium. High-temperature fumarolic incrustations showed strong enrichments of arsenic, zinc, alkalis, and iron. At Etna we did not detect chloride crystals but found abundant Al, Fe, and Ca sulfates. Sulfuric acid droplets were ubiquitous in both plumes. Bulk analyses of fumarole incrustations at Etna showed an enrichment in the rare earth elements (REE). The chemical and textural data of the plume particles indicate that chloride particles form relatively early and react later with sulfuric acid droplets to form sulfates. At Etna, aluminum as well as some REE are probably transported as volatile fluorine compounds. The differences in plume chemistry between Etna and Mount St. Helens are most likely related to differences in F/Cl ratios of the vapors. Based on the abundance of particulate chlorine in plumes, we suggest that only a small fraction of the total chlorine released during an eruption might reach the stratosphere in the vapor phase.

  5. Sediment data for streams near Mount St. Helens, Washington; Volume 1, 1980 water year

    USGS Publications Warehouse

    Dinehart, Randal L.; Ritter, John R.; Knott, J.M.

    1981-01-01

    This report presents fluvial sediment data collected primarily in response to the eruption of Mount St. Helens. To monitor the sediment transported by streams in the Mount St. Helens area and the particle-size distributions of the sediment, the Water Resources Division of the U.S. Geological Survey initially established 18 fluvial sediment stations. In this report, concentrations and discharges of suspended sediment are given for 16 fluvial-sediment stations (5 are in the Toutle River basin) and for 11 miscellaneous sampling sites. Also included are particle-size distributions of suspended sediment and bed material, water discharge, and water temperature for many of the sediment samples. Daily sediment discharges for the period May 18 to September 30 were calculated for Toutle River at Highway 99 near Castle Rock and Cowlitz River at Castel Rock. Over 150 million tons of sediment are estimated to have passed the Toutle River at Highway 99 station on May 18-19, 1980. High concentrations of suspended sediment persisted at several stations throughout the spring and summer of 1980. (USGS)

  6. Recovery of lakes in the 1980 blast zone of Mount St. Helens

    SciTech Connect

    Wissmar, R.C. )

    1990-11-01

    Over the past 10 years, following the catastrophic 1980 eruption of Mount St. Helens, considerable research has been conducted on altered and newly created lake ecosystems in different depositional regions of the blast zone. Impact and recovery characteristics have been followed for the altered Spirit Lake and two newly created lakes S. F. Castle and Coldwater Lakes. During the 1980 eruption, Spirit Lake was directly impacted by debris avalanches and pyroclastic flows. The unique characteristics of the Mount St. Helens volcanic eruption and geochemistry, such as low inputs of sulfate and high loadings of organics from devastated forests to lakes, combined to form chemical environments favorable to biological activity. Even though weathering, organic and microbial reactions were evidently the important processes regulating alkalinity of these lakes, patterns of changes in pH, total alkalinity, and dissolved organic carbon and changes in microbial assemblages and processes also suggested a sequence of biological reactions that occurred during the early recovery period of 1980 and 1981. The biological recovery of the lakes via succession of microbial reactions suggests a tendency for the higher energy producing reactions to dominate lesser energy producing reactions. As turbid and high suspended particulate matter levels decreased, phytoplankton primary production increased to produce mixed bacteria-phytoplankton-zooplankton communities.

  7. Comparison of Mount Saint Helens volcanic eruption to a nuclear explosion. Technical note

    SciTech Connect

    Gould, K.E.

    1981-01-01

    The phenomena and effects of airblast, ground shock, thermal radiation, cratering and ejecta, and debris cloud and deposition from the eruption of Mt. St. Helens were compared to those that would result from a nuclear explosion to determine if phenomena or effects were analogous and thus might provide useful data for military nuclear weapon effects studies. It is concluded that the phenomena are not analogous. In particular, airblast destruction was caused by clouds of ash driven by subsonic winds, rather than by a supersonic shock wave that would be the damage mechanism of a nuclear explosion. Because of the lack of analogy between the eruption and nuclear explosion phenomena, it appears questionable that any of the effects are analogous; therefore, it is unlikely that anything more of military interest can be gained from studying the effects of the eruption. However, key contacts for further information on the eruption and the associated research studies are given. The comparison of the eruption of Mt. St. Helens to the explosion of a 10- to 20-megaton nuclear weapon is misleading. Such comparisons serve no useful purpose and should be avoided.

  8. Posteruption glacier development within the crater of Mount St. Helens, Washington, USA

    USGS Publications Warehouse

    Schilling, S.P.; Carrara, P.E.; Thompson, R.A.; Iwatsubo, E.Y.

    2004-01-01

    The cataclysmic eruption of Mount St. Helens on May 18, 1980, resulted in a large, north-facing amphitheater, with a steep headwall rising 700 m above the crater floor. In this deeply shaded niche a glacier, here named the Amphitheater glacier, has formed. Tongues of ice-containing crevasses extend from the main ice mass around both the east and the west sides of the lava dome that occupies the center of the crater floor. Aerial photographs taken in September 1996 reveal a small glacier in the southwest portion of the amphitheater containing several crevasses and a bergschrund-like feature at its head. The extent of the glacier at this time is probably about 0.1 km2. By September 2001, the debris-laden glacier had grown to about 1 km2 in area, with a maximum thickness of about 200 m, and contained an estimated 120,000,000 m3 of ice and rock debris. Approximately one-third of the volume of the glacier is thought to be rock debris derived mainly from rock avalanches from the surrounding amphitheater walls. The newly formed Amphitheater glacier is not only the largest glacier on Mount St. Helens but its aerial extent exceeds that of all other remaining glaciers combined. Published by University of Washington.

  9. Zircon reveals protracted magma storage and recycling beneath Mount St. Helens

    USGS Publications Warehouse

    Claiborne, L.L.; Miller, C.F.; Flanagan, D.M.; Clynne, M.A.; Wooden, J.L.

    2010-01-01

    Current data and models for Mount St. Helens volcano (Washington, United States) suggest relatively rapid transport from magma genesis to eruption, with no evidence for protracted storage or recycling of magmas. However, we show here that complex zircon age populations extending back hundreds of thousands of years from eruption age indicate that magmas regularly stall in the crust, cool and crystallize beneath the volcano, and are then rejuvenated and incorporated by hotter, young magmas on their way to the surface. Estimated dissolution times suggest that entrained zircon generally resided in rejuvenating magmas for no more than about a century. Zircon elemental compositions reflect the increasing influence of mafic input into the system through time, recording growth from hotter, less evolved magmas tens of thousands of years prior to the appearance of mafic magmas at the surface, or changes in whole-rock geochemistry and petrology, and providing a new, time-correlated record of this evolution independent of the eruption history. Zircon data thus reveal the history of the hidden, long-lived intrusive portion of the Mount St. Helens system, where melt and crystals are stored for as long as hundreds of thousands of years and interact with fresh influxes of magmas that traverse the intrusive reservoir before erupting. ?? 2010 Geological Society of America.

  10. Trioctahedral vermiculite in a 1980 pyroclastic flow, Mt. St. Helens, Washington

    SciTech Connect

    LaManna, J.M.; Ugolini, F.C.

    1987-03-01

    Trioctahedral vermiculite, previously unreported, is an abundant phyllosilicate in a Mt. St. Helens pyroclastic flow that was emplaced during the 18 May 1980 eruption. The response of this mineral to various treatments suggests its layer charge is approximately 0.6 per O/sub 10/(OH)/sub 2/. In the pyroclastic flow, vermiculite is present in samples collected in 1981 from the surface-to-90-cm depth, but it is present only from 5 to 90 cm deep in samples collected in 1983. The apparent depletion in trioctahedral vermiculite of the 1983 surface (0-1.5 cm) is believed to be caused by weathering due to the prevailing acidic rainfall (pH = 4.0-4.6). One crucial problem in tephritic soils is to establish the origin of the 2:1 phyllosilicates. The authors findings show that these layer silicates, possessing different layer charges, were most likely present with the lithic fragments of the ejecta. Consequently trioctahedral vermiculite and the previously reported saponite present in Mt. St. Helens tephra should be considered detrital minerals.

  11. Precipitation Data for the Mount St. Helens Area, Washington--1981-86

    USGS Publications Warehouse

    Uhrich, Mark A.

    1990-01-01

    This report is a compilation of precipitation data from U.S. Geological Survey telemetered 'Early Flood Warning' sites near Mount St. Helens, Washington, and from telemetered hydrologic data sites in the Toutle River and Muddy River basins for the years 1981-86. It also includes precipitation data for 1981-86 from non-telemetered recording rain gages established near the debris-avalanche blockages of Spirit Lake, Coldwater Lake, and Castle Lake. Daily values (midnight to midnight) are listed by station and calendar year for 32 sites. Hourly data, where available, are presented for the storm that generated the highest peak discharge in the North Fork Toutle River each water year. Instrumentation includes 25 tipping-bucket, and 7 weighing-bucket rain gages all without windshields. The seven sites with weighing-bucket gages were the only U.S. Geological Survey sites at which snowfall was measured. Additional snowfall measurements for the same time period in the Mount St. Helens area were collected by the National Weather Service, the U.s. Soil Conservation Service, and the U.S. Army Corps of Engineers and also are presented in this report.

  12. Legionella sainthelensi: a new species of Legionella isolated from water near Mt. St. Helens.

    PubMed Central

    Campbell, J; Bibb, W F; Lambert, M A; Eng, S; Steigerwalt, A G; Allard, J; Moss, C W; Brenner, D J

    1984-01-01

    Six strains of a new species, Legionella sainthelensi, were isolated from freshwater in areas affected by the volcanic eruptions of Mt. St. Helens in the state of Washington. Strains of L. sainthelensi are culturally and biochemically similar to other legionellae. They grow on buffered charcoal yeast agar but not on media that lack cysteine. They are gram-negative, nonsporeforming, motile rods that are positive in reactions for catalase, oxidase, gelatin liquefaction, and beta-lactamase. They are negative in reactions for urease, hydrolysis of hippurate, reduction of nitrates, fermentation of glucose, and blue-white autofluorescence. Their cell wall fatty acid composition is qualitatively similar to those of other legionellae, with 50 to 62% branched-chain fatty acids. They contain the isobranched-chain 14- and 16-carbon acids and anteisobranched-chain 15- and 17-carbon acids and relatively large amounts of straight-chain 16-carbon acid. All strains of L. sainthelensi contain approximately equal amounts of ubiquinones Q9, Q10, Q11, and Q12, a pattern similar to those of Legionella bozemanii, Legionella dumoffi, and Legionella longbeachae. Serological cross-reactions were observed between L. sainthelensi, both serogroups of L. longbeachae, and Legionella oakridgensis. Three strains of L. sainthelensi were greater than 90% related by DNA hybridization. The type strain of L. sainthelensi, Mt. St. Helens 4, was 36% related to the type strain of L. longbeachae and 3 to 14% related to the other nine described Legionella species. PMID:6712210

  13. Towards a Transactional View of Rhetorical and Feminist Theory: Rereading Helen Cixous's "The Laugh of the Medusa."

    ERIC Educational Resources Information Center

    Biesecker, Barbara A.

    1992-01-01

    Argues that by rereading Helene Cixous's "The Laugh of Medusa" as a rhetoric--that is, an essay which posits what can and must be done by women if they are to intervene effectively in the public sphere through written or oral discourse--both rhetorical and feminist theory and criticism are enriched. (SR)

  14. Educating Black Girls in the Early 20th Century: The Pioneering Work of Nannie Helen Burroughs (1879-1961)

    ERIC Educational Resources Information Center

    Bair, Sarah D.

    2008-01-01

    Using social education as a theoretical framework, this article examines the educational theories of Nannie Helen Burroughs (1883-1961), founder of the National Training School for Women and Girls in 1909, and discusses the social studies curriculum at her school. Burroughs's papers reveal her efforts to build a curriculum that blended practical,…

  15. Impossible Practice and Theories of the Impossible: A Response to Helene Illeris's "Potentials of Togetherness"

    ERIC Educational Resources Information Center

    Kallio-Tavin, Mira

    2014-01-01

    In a recent commentary in "Studies in Art Education," Helene Illeris (2013) discussed the idea of "performative experimental communities" via a critique of visual culture pedagogy and the romanticism of community-oriented art education in Nordic countries. Illeris underpinned her arguments with Jean-Luc Nancy's (1997)…

  16. Democracy and Schooling in California: The Legacy of Helen Heffernan and Corinne Seeds. Historical Studies in Education

    ERIC Educational Resources Information Center

    Weiler, Kathleen

    2011-01-01

    Helen Heffernan and Corinne Seeds were nationally recognized as leaders of the progressive education movement and were key figures in what was probably the most concerted attempt to put the ideals of progressive education into practice in a state-wide system of public education in the United States. This book examines the struggle over public…

  17. Hydrogen storage in calcium alanate: First-principles thermodynamics and crystal structures

    NASA Astrophysics Data System (ADS)

    Wolverton, Christopher; Ozoliņš, Vidvuds

    2007-02-01

    Using first-principles density functional theory (DFT) calculations, we study the thermodynamics and crystal structure of calcium alanate, Ca(AlH4)2 , and its decomposition products CaAlH5 , CaH2 , and CaAl2 . Using a large database of AB2C8 and ABC5 structure types, we perform nearly 200 DFT calculations in an effort to predict the crystal structures of the Ca(AlH4)2 and CaAlH5 phases. For the low-energy T=0K phases, we perform DFT frozen-phonon calculations to ascertain the zero-point and vibrational entropy contributions to the thermodynamics of decomposition. We find the following: (i) For Ca(AlH4)2 , we confirm the previously predicted CaB2F8 -type structure as the stable phase. In addition, we uncover several phases (e.g., β-ThMo2O8 -type, AgAu2F8 -type, and PbRe2O8 -type) very competitive in energy with the ground state structure. (ii) For CaAlH5 , we find the stable structure type to be the recently observed α'-SrAlF5 -type, with UTlF5 -type, SrFeF5 -type and BaGaF5 -type structures being close in energy to the ground state. (iii) In agreement with recent experiments, our calculations show that the decomposition of Ca(AlH4)2 is divided into a weakly exothermic step [Ca(AlH4)2→CaAlH5+Al+3/2H2] , a weakly endothermic step [CaAlH5→CaH2+Al+3/2H2] , and a strong endothermic step [CaH2+2Al→CaAl2+H2] . (iv) Including static T=0K energies, zero-point energies, and the dynamic contributions of H2 gas, the DFT-calculated ΔH values for the first two decomposition steps ( -9 and +26kJ/mol H2 at the observed decomposition temperatures Ttilde 127 and 250°C , respectively) agree well with the experimental values recently reported ( -7 and +32kJ/mol H2 ). Only the second step [CaAlH5/CaH2] has thermodynamics near the targeted range that might make a suitable on-board hydrogen storage reaction for hydrogen-fueled vehicles. (v) Comparing the enthalpies for final stage of decomposition [ CaH2+2Al→CaAl2+H2 , ΔH=72kJ/mol H2 ] with the pure decomposition of CaH2

  18. The effect of the NH2 substituent on NH3: hydrazine as an alternative for ammonia in hydrogen release in the presence of boranes and alanes.

    PubMed

    Vinh-Son, Nguyen; Swinnen, Saartje; Matus, Myrna H; Nguyen, Minh Tho; Dixon, David A

    2009-08-14

    Potential energy surfaces for H(2) release from hydrazine interacting with borane, alane, diborane, dialane and borane-alane were constructed from MP2/aVTZ geometries and zero point energies with single point energies at the CCSD(T)/aug-cc-pVTZ level. With one borane or alane molecule, the energy barrier for H(2)-loss of approximately 38 or 30 kcal mol(-1) does not compete with the B-N or Al-N bond cleavage ( approximately 30 or approximately 28 kcal mol(-1)). The second borane or alane molecule can play the role of a bifunctional catalyst. The barrier energy for H(2)-elimination is reduced from 38 to 23 kcal mol(-1), or 30 to 20 kcal mol(-1) in the presence of diborane or dialane, respectively. The mixed borane-alane dimer reduces the barrier energy for H(2) release from hydrazine to approximately 17 kcal mol(-1). A systematic comparison with the reaction pathways from ammonia borane shows that hydrazine could be an alternative for ammonia in producing borane amine derivatives. The results show a significant effect of the NH(2) substituent on the relevant thermodynamics. The B-N dative bond energy of 31 kcal mol(-1) in NH(2)NH(2)BH(3) is approximately 5 kcal mol(-1) larger than that of the parent BH(3)NH(3). The higher thermodynamic stability could allow hydrazine-borane to be used as a material for certain energetic H(2) storage applications.

  19. An investigation of pre-eruptive deformation for the 2004 eruption of Mount St. Helens using persistent scatterer interferometry

    NASA Astrophysics Data System (ADS)

    Welch, M.; Schmidt, D. A.

    2014-12-01

    The volcanoes of the Cascade Range pose a legitimate threat to people living in the Pacific Northwest. Mt St Helens, which erupted in 2004 as a part of a dome building event, is a notable example of this danger. Deformation and seismicity are known indicators of volcanic activity and can provide warning of an imminent eruption. In the weeks leading up to the 2004 eruption, a shallow earthquake swarm was detected under St. Helens, suggesting ongoing deformation with its source beneath the edifice. A campaign GPS survey conducted in 2000 found no evidence of deformation. The sole continuous GPS station that was operational prior to the eruption (located ~9 km away from the crater) began moving only with the onset of the earthquake swarm. Because of the lack of ground based geodetic instruments in the near-field of Mt St Helens at the time of the 2004 eruption, it is unknown whether pre-eruptive deformation occurred on the edifice or solely within crater. InSAR is the only method available to conclusively determine whether the 2004 eruption was preceded by deformation of the edifice. Previous work explored this question using standard 2-pass interferometry, but the results were inconclusive. The main obstacle to implementing InSAR methods in the Cascades region is phase decorrelation due to the presence of both dense forest and snow for most of the year. We revisit the available InSAR data for St. Helens by experimenting with the application of the Persistent Scatterers and Distributed Scatterers processing techniques in order to overcome the decorrelation problem. By using these techniques on the question of Mt St Helens pre-eruptive deformation, we will demonstrate the viability of their application to the entire Northwest region as a low cost, low maintenance, monitoring tool.

  20. Scattering matrices of volcanic ash particles of Mount St. Helens, Redoubt, and Mount Spurr Volcanoes

    NASA Astrophysics Data System (ADS)

    MuñOz, O.; Volten, H.; Hovenier, J. W.; Veihelmann, B.; van der Zande, W. J.; Waters, L. B. F. M.; Rose, W. I.

    2004-08-01

    We present measurements of the whole scattering matrix as a function of the scattering angle at a wavelength of 632.8 nm in the scattering angle range 3°-174° of randomly oriented particles taken from seven samples of volcanic ashes corresponding to four different volcanic eruptions: the 18 May 1980 Mount St. Helens eruption, the 1989-1990 Redoubt eruption, and the 18 August and 17 September 1992 Mount Spurr eruptions. The samples were collected at different distances from the vent. The samples studied contain large mass fractions of fine particles and were chosen to represent ash that could remain in the atmosphere for at least hours or days. They include fine ashfall samples that fell at a variety of distances from the volcano and pyroclastic flows that retained their fine fractions. Together, they represent a range of ashes likely to remain in the atmosphere in volcanic clouds following eruptions from convergent plate boundary volcanoes, Earth's most important group of explosive sources of ash. All measured scattering matrix elements are confined to rather limited domains when plotted as functions of the scattering angle following the general trends presented by irregular mineral particles. This similarity in the scattering behavior justifies the construction of an average scattering matrix for volcanic ash particles as a function of the scattering angle. To facilitate the use of the average scattering matrix for multiple-scattering calculations with polarization included, we present a synthetic scattering matrix based on the average scattering matrix for volcanic ashes and the assumption that the diffraction forward scattering peak is the same for randomly oriented nonspherical particles and projected-surface-area-equivalent spheres. This synthetic scattering matrix is normalized so that the average of its 1-1 element over all directions equals unity. It is available in the full range from 0° to 180° and can be used, for example, for interpretation of

  1. Photogeologic maps of the 2004-2005 Mount St. Helens eruption: Chapter 10 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Herriott, Trystan M.; Sherrod, David R.; Pallister, John S.; Vallance, James W.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    The 2004-5 eruption of Mount St. Helens, still ongoing as of this writing (September 2006), has comprised chiefly lava dome extrusion that produced a series of solid, faultgouge-mantled dacite spines. Vertical aerial photographs taken every 2 to 4 weeks, visual observations, and oblique photographs taken from aircraft and nearby observation points provide the basis for two types of photogeologic maps of the dome--photo-based maps and rectified maps. Eight map pairs, covering the period from October 1, 2004, through December 15, 2005, document the development of seven spines: an initial small, fin-shaped vertical spine; a north-south elongate wall of dacite; two large and elongate recumbent spines (“whalebacks”); a tall and elongate inclined spine; a smaller bulbous spine; and an initially endogenous spine extruded between remnants of preceding spines. All spines rose from the same general vent area near the southern margin of the 1980s lava dome. Maps also depict translation and rotation of active and abandoned spines, progressive deformation affecting Crater Glacier, and distribution of ash on the crater floor from phreatic and phreatomagmatic explosions. The maps help track key geologic and geographic features in the rapidly changing crater and help date dome, gouge, and ash samples that are no longer readily correlated to their original context because of deformation in a dynamic environment where spines extrude, deform, slough, and are overrun by newly erupted material.

  2. Seismic and acoustic recordings of an unusually large rockfall at Mount St. Helens, Washington

    USGS Publications Warehouse

    Moran, S.C.; Matoza, R.S.; Garces, M.A.; Hedlin, M.A.H.; Bowers, D.; Scott, W.E.; Sherrod, D.R.; Vallance, J.W.

    2008-01-01

    On 29 May 2006 a large rockfall off the Mount St. Helens lava dome produced an atmospheric plume that was reported by airplane pilots to have risen to 6,000 m above sea level and interpreted to be a result of an explosive event. However, subsequent field reconnaissance found no evidence of a ballistic field, indicating that there was no explosive component. The rockfall produced complex seismic and infrasonic signals, with the latter recorded at sites 0.6 and 13.4 km from the source. An unusual, very long-period (50 s) infrasonic signal was recorded, a signal we model as the result of air displacement. Two high-frequency infrasonic signals are inferred to result from the initial contact of a rock slab with the ground and from interaction of displaced air with a depression at the base of the active lava dome. Copyright 2008 by the American Geophysical Union.

  3. In the path of destruction - eyewitness chronicles of Mount St. Helens

    USGS Publications Warehouse

    Waitt, Richard B.

    2015-01-01

    “The air had no oxygen, like being trapped underwater…I was being cremated, the pain unbearable.”-- Jim Scymanky“I was on my knees, my back to the hot wind. It blew me along, lifting my rear so I was up on my hands…It was hot but I didn’t feel burned—until I felt my ears curl.”—Mike HubbardA napping volcano blinked awake in March 1980. Two months later, the mountain roared. Author Richard Waitt was one of the first to arrive following the mountain’s early rumblings. A geologist with intimate knowledge of Mount St. Helens, Waitt delivers a detailed and accurate chronicle of events. The eruption story unfolds through unforgettable, riveting narratives—the heart of a masterful chronology that also delivers engrossing science, history, and journalism.

  4. Atmospheric oscillations after the May 18, 1980 eruption of Mount St. Helens

    NASA Astrophysics Data System (ADS)

    Bolt, Bruce A.; Tanimoto, Toshiro

    Air waves corresponding both to direct (A1) and antipodean (A2) travel paths were clearly recorded on a sensitive microbarograph at Berkeley after the violent eruption of Mount St. Helens on May 18, 1980 (see Figure 1). These unusual complementary recordings throw light on the acoustic energy released as compared with Krakatoa [Strachey, 1888], atmospheric oscillations and their attenuation, and the directive properties of the phreatic blast. The principal explosive eruptions followed closely on an earthquake, Richter magnitude 4.9, origin time 1532 GMT, centered near the volcano. Atmospheric waves and associated magnetic perturbations [Fougere and Tsacoyeanes, 1980] from these eruptions were recorded by microbarographs, seismographs, and magnetometers around the world. In particular, Ritsema [1980] has published records of the A1 atmospheric wave train and the A2 wave (called B1 by him) recorded at De Bilt, Holland. The A2 waves at De Bilt, however, are barely visible on the paper record.

  5. Gaseous constituents in the plume from eruptions of Mount St. Helens

    NASA Technical Reports Server (NTRS)

    Inn, E. C. Y.; Vedder, J. F.; Condon, E. P.; Ohara, D.

    1981-01-01

    Measurements in the stratosphere of gaseous constituents in the plume of Mount St. Helens were obtained during five flights of the NASA U-2 aircraft between 19 May and 17 June 1980. Mixing ratios from gas chromatographic measurements on samples acquired about 24 hours after the initial eruption show considerable enhancement over nonvolcanic concentrations for sulfur dioxide (more than 1000 times), methyl chloride (about 10 times), and carbon disulfide (more than 3 times). The mixing ratio of carbonyl sulfide was comparable to nonvolcanic mixing ratios although 3 days later it was enhanced two to three times. Ion chromatography measurements on water-soluble constituents are also reported. Very large concentrations of chloride, nitrate, and sulfate ions were measured, implying large mixing ratios for the water-soluble gaseous constituents from which the anions are derived. Measurements of radon-222 present in the plume are also reported.

  6. Thermal property measurements in a fresh pumice flow at Mt. St. Helens

    SciTech Connect

    Hardee, H.C.

    1981-03-01

    A thermal penetrator that was air dropped into a freshly emplaced pumice flow at Mt. St. Helens yielded information on the in-situ thermal properties of the pumice. The in-situ conductivity-density-specific heat product at a depth of 60 cm was found to be 7.24 x 10/sup -5/ cal/sup 2/cm//sup 4/ s- /sup 0/C/sup 2/ at an average pumice temperature of 200 /sup 0/C. Using this data, values for the average in-situ thermal conductivity (2.9 x 10/sup -4/ cal/cm-s-/sup 0/C) and thermal diffusivity (1.2 x 10/sup -3/ cm/sup 2//s) were estimated. These thermal properties are of use in studies of pumice cooling and in the interpretation of infrared remote sensing data.

  7. Evaluation of heat flow and its geological implications on Mt. St. Helens

    SciTech Connect

    Grady, T.; Adams, E.; Brown, R.L.; Sato, A.

    1982-04-01

    A study to determine the heat flux pattern in the vicinity of Mt. St. Helens was undertaken as part of a program to evaluate the effects of the eruption on future snowpack conditions in the area. Subsurface temperature and low energy refraction seismic studies were made during the early spring in 1981 to determine both the heat flux in the area of pyroclastic deposition and its potential source. In addition, samples were collected for later laboratory determination of thermal conductivity and diffusivity. Results indicate that the heat flow values in the area of pyroclastic deposition are as large as forty times greater than the heat flow values measured on Mt. Adams and Mt. Hood during the same period. The highest heat flow values appear to coincide with a pumice flow unit on the north side of the mountain.. Comparison with work done on the eruption of Mt. Komagatake indicates that the large heat flow values continue for several years.

  8. Chronology and pyroclastic stratigraphy of the May 18, 1980, eruption of Mount St. Helens, Washington

    NASA Technical Reports Server (NTRS)

    Criswell, C. William

    1987-01-01

    The eruption of Mount St. Helens on May 18, 1980 can be subdivided into six phases: the paroxysmal phase I, the early Plinian phase II, the early ash flow phase III, the climactic phase IV, the late ash flow phase V, and phase VI, the activity of which consisted of a low-energy ash plume. These phases are correlated with stratigraphic subunits of ash-fall tephra and pyroclastic flow deposits. Sustained vertical discharge of phase II produced evolved dacite with high S/Cl ratios. Ash flow activity of phase III is attributed to decreases in gas content, indicated by reduced S/Cl ratios and increased clast density of the less evolved gray pumice. Climactic events are attributed to vent clearing and exhaustion of the evolved dacite.

  9. Low cost volcano deformation monitoring: optical strain measurement and application to Mount St. Helens data

    NASA Astrophysics Data System (ADS)

    Walter, Thomas R.

    2011-08-01

    This paper describes an innovative method of volcano deformation measurements, applied to camera images taken from the 2004-2008 eruption period at Mount St. Helens. Dome growth was thought to be characterized by sustained, near-linear rates of a solid dacite plug. Through spatial digital image correlation (DIC) analysis of the camera images, new evidences arise that the deformation and strain rate of the spine was more complex. DIC yielded cumulative and incremental displacements, strain and shear planes at decimetre resolution. It was found that dome extrusion rates are highly non-linear, decelerating prior to partial collapse, followed by a pronounced dome extrusion increase and direction change. Associated processes have been identified through DIC, such as shallow landslides and reworking of talus apron material. The work highlights the strengths of camera strain monitoring, and illustrates that dome growth and collapse is a very dynamic process complexly interplaying with the surrounding.

  10. Didymus the blind: an unknown precursor of Louis Braille and Helen Keller.

    PubMed

    Lascaratos, J; Marketos, S

    1994-01-01

    The present study presents the case of Didymus the Blind, worthy author, philosopher and theologian of the 4th century AD. Blinded by ophthalmia at the age of four years, Didymus succeeded in achieving great learning in the philosophical and natural sciences. He began his education by using a system which was remarkably like Braille, that is reading letters engraved into the surface of wood by touch and subsequently furthering his knowledge by listening. This learning process of Didymus the Blind appears as the precursor of Louis Braille who invented the educational system of reading embossed dots by touch. Like Didymus, Braille lost his vision in infancy (at three years of age). Another parallel of Didymus' career and written works is found in the example and achievements of Helen Keller.

  11. The role of mycorrhizal fungi and microsites in primary succession on Mount St. Helens.

    PubMed

    Titus, J; Del Moral, R

    1998-03-01

    This study was designed to examine the role of vesicular-arbuscular mycorrhizae (VAM) and microsites on the growth of pioneer species. Flat, rill, near-rock, and dead lupine microsites were created in plots in barren areas of the Pumice Plain of Mount St. Helens. VAM propagules were added to the soil in half of the plots. Six pioneer species were planted into both VAM and non-VAM inoculated microsites. Plants in dead lupine microsites were greater in biomass than those in flat, rill, and near-rock microsites. Significant effects of VAM on plant biomass did not occur. Microsites continue to be important to plant colonization on the Pumice Plain, but VAM do not yet appear to play an important role. This may be due to limited nutrient availability and the facultatively mycotrophic nature of the colonizing plant species. It is unlikely that VAM play an important role in successional processes in newly emplaced nutrient-poor surfaces.

  12. Dynamics of seismogenic volcanic extrusion at Mount St Helens in 2004-05

    USGS Publications Warehouse

    Iverson, R.M.; Dzurisin, D.; Gardner, C.A.; Gerlach, T.M.; LaHusen, R.G.; Lisowski, M.; Major, J.J.; Malone, S.D.; Messerich, J.A.; Moran, S.C.; Pallister, J.S.; Qamar, A.I.; Schilling, S.P.; Vallance, J.W.

    2006-01-01

    The 2004-05 eruption of Mount St Helens exhibited sustained, near-equilibrium behaviour characterized by relatively steady extrusion of a solid dacite plug and nearly periodic shallow earthquakes. Here we present a diverse data set to support our hypothesis that these earthquakes resulted from stick-slip motion along the margins of the plug as it was forced incrementally upwards by ascending, solidifying, gas-poor magma. We formalize this hypothesis with a dynamical model that reveals a strong analogy between behaviour of the magma-plug system and that of a variably damped oscillator. Modelled stick-slip oscillations have properties that help constrain the balance of forces governing the earthquakes and eruption, and they imply that magma pressure never deviated much from the steady equilibrium pressure. We infer that the volcano was probably poised in a near-eruptive equilibrium state long before the onset of the 2004-05 eruption. ??2006 Nature Publishing Group.

  13. Was the 18 May 1980 lateral blast at Mt St Helens the product of two explosions?

    USGS Publications Warehouse

    Hoblitt, R.P.

    2000-01-01

    The 18 May 1980 lateral blast at Mt St Helens has been interpreted as the product of a single explosion by some stratigraphers and as two closely spaced explosions by others. The stratigraphic evidence that bears on this question is inconclusive; strata change dramatically over short distances and this complexity provides wide latitude for interpretation. Some independent non-stratigraphic evidence, however, suggests that the blast was the product of two explosions or clusters of explosions. The independent evidence comes from eyewitness accounts and photographs, from satellite sensors, and from seismic records. This paper reviews the pertinent evidence, offers a new interpretation, and concludes that the blast was indeed the product of two explosions or clusters of explosions.

  14. Volcano collapse promoted by progressive strength reduction: New data from Mount St. Helens

    USGS Publications Warehouse

    Reid, Mark E.; Keith, Terry E.C.; Kayen, Robert; Iverson, Neal R.; Iverson, Richard M.; Brien, Dianne

    2010-01-01

    Rock shear strength plays a fundamental role in volcano flank collapse, yet pertinent data from modern collapse surfaces are rare. Using samples collected from the inferred failure surface of the massive 1980 collapse of Mount St. Helens (MSH), we determined rock shear strength via laboratory tests designed to mimic conditions in the pre-collapse edifice. We observed that the 1980 failure shear surfaces formed primarily in pervasively shattered older dome rocks; failure was not localized in sloping volcanic strata or in weak, hydrothermally altered rocks. Our test results show that rock shear strength under large confining stresses is reduced ∼20% as a result of large quasi-static shear strain, as preceded the 1980 collapse of MSH. Using quasi-3D slope-stability modeling, we demonstrate that this mechanical weakening could have provoked edifice collapse, even in the absence of transiently elevated pore-fluid pressures or earthquake ground shaking. Progressive strength reduction could promote collapses at other volcanic edifices.

  15. Target diagnostics for commissioning the AWE HELEN Laser Facility 100 TW chirped pulse amplification beam

    NASA Astrophysics Data System (ADS)

    Eagleton, R. T.; Clark, E. L.; Davies, H. M.; Edwards, R. D.; Gales, S.; Girling, M. T.; Hoarty, D. J.; Hopps, N. W.; James, S. F.; Kopec, M. F.; Nolan, J. R.; Ryder, K.

    2006-10-01

    The capability of the HELEN laser at the Atomic Weapons Establishment Aldermaston has been enhanced by the addition of a short-pulse laser beam to augment the twin opposing nanosecond time scale beams. The short-pulse beam utilizes the chirped pulse amplification (CPA) technique and is capable of delivering up to 60J on target in a 500fs pulse, around 100TW, at the fundamental laser wavelength of 1.054μm. During the commissioning phase a number of diagnostic systems have been fielded, these include: x-ray pinhole imaging of the laser heated spot, charged particle time of flight, thermoluminescent dosimeter array, calibrated radiochromic film, and CR39 nuclear track detector. These diagnostic systems have been used to verify the performance of the CPA beam to achieve a focused intensity of around 1019Wcm-2 and to underwrite the facility radiological safety system.

  16. Forward scattering and backscattering of solar radiation by the stratospheric limb after Mount St. Helens eruption

    NASA Technical Reports Server (NTRS)

    Ackerman, M.; Lippens, C.

    1982-01-01

    Stratospheric limb radiance profiles versus altitude of closest approach of the line of sight to the Earth's surface have been measured before and after the Mount St. Helens eruptions by means of photographs taken from a Sun-oriented balloon gondola floating above 35 km altitude over France. Preliminary data were reported for flights in October 1979 and in May and June 1980. The radiance integrated along the line of sight as in-situ radiance (R) can be derived taking into account absorption by ozone and air. The onion peeling inversion method was used to derive the vertical radiance (R) profiles respectively. The values of R were determined in the solar azimuth. The solar elevation angles are chosen larger for the backscattering observation than for the forward scattering observation to deal with as similar illumination conditions as possible despite the Earth's sphericity.

  17. Anthropology in a postcolonial colony: Helen I. Safa's contribution to Puerto Rican ethnography.

    PubMed

    Duany, Jorge

    2010-01-01

    This article assesses Helen I. Safa's legacy to anthropological thought in Puerto Rico. The first part of the article locates Safa's research on the Island within a long tradition of fieldwork by U.S. scholars since the early twentieth century. More recent research, conducted mostly by Puerto Rican women anthropologists and other social scientists, has expanded upon Safa's insights on gender and work. The second part of the essay analyzes Safa's major empirical work, The Urban Poor of Puerto Rico: A Study in Development and Inequality. Above all, this book helped overcome the theoretical impasse over the culture of poverty that characterized much of urban anthropology during the 1960s and 1970s. The article concludes with an appraisal of the relevance of Safa's work for the ethnography of contemporary Puerto Rico.

  18. Monitoring the 1980-1982 eruptions of mount st. Helens: compositions and abundances of glass.

    PubMed

    Melson, W G

    1983-09-30

    The Mount St. Helens eruptive sequence of 1980 through 1982 reflects the tapping of successively less water-rich, more highly crystallized, and more viscous, highly phyric dacitic magmas. These changes reflect both syn- and preeruption processes. The decreasing water content points to a continued decline in the volume and intensity of explosive pyroclastic activity. This decreasing water content appears to be composed of a long-term trend established during a long period of repose (about 130 years) imposed on short-term trends established during short periods (about 7 to 100 days) of repose between eruptions in the present eruptive cycle. The last two eruptive cycles of this volcano, the T (A.D. 1800) and W cycles (about A. D. 1500), exhibited similar trends. These changes are inferred from a combination of petrographic, bulk chemical, and electron- and ion-microprobe analyses of matrix and melt-inclusion glasses.

  19. Dynamics of seismogenic volcanic extrusion at Mount St Helens in 2004-05.

    PubMed

    Iverson, Richard M; Dzurisin, Daniel; Gardner, Cynthia A; Gerlach, Terrence M; LaHusen, Richard G; Lisowski, Michael; Major, Jon J; Malone, Stephen D; Messerich, James A; Moran, Seth C; Pallister, John S; Qamar, Anthony I; Schilling, Steven P; Vallance, James W

    2006-11-23

    The 2004-05 eruption of Mount St Helens exhibited sustained, near-equilibrium behaviour characterized by relatively steady extrusion of a solid dacite plug and nearly periodic shallow earthquakes. Here we present a diverse data set to support our hypothesis that these earthquakes resulted from stick-slip motion along the margins of the plug as it was forced incrementally upwards by ascending, solidifying, gas-poor magma. We formalize this hypothesis with a dynamical model that reveals a strong analogy between behaviour of the magma-plug system and that of a variably damped oscillator. Modelled stick-slip oscillations have properties that help constrain the balance of forces governing the earthquakes and eruption, and they imply that magma pressure never deviated much from the steady equilibrium pressure. We infer that the volcano was probably poised in a near-eruptive equilibrium state long before the onset of the 2004-05 eruption.

  20. Gas emissions and the eruptions of mount st. Helens through 1982.

    PubMed

    Casadevall, T; Rose, W; Gerlach, T; Greenland, L P; Ewert, J; Wunderman, R; Symonds, R

    1983-09-30

    The monitoring of gas emissions from Mount St. Helens includes daily airborne measurements of sulfur dioxide in the volcanic plume and monthly sampling of gases from crater fumaroles. The composition of the fumarolic gases has changed slightly since 1980: the water content increased from 90 to 98 percent, and the carbon dioxide concentrations decreased from about 10 to 1 percent. The emission rates of sulfur dioxide and carbon dioxide were at their peak during July and August 1980, decreased rapidly in late 1980, and have remained low and decreased slightly through 1981 and 1982. These patterns suggest steady outgassing of a single batch of magma (with a volume of not less than 0.3 cubic kilometer) to which no significant new magma has been added since mid-1980. The gas data were useful in predicting eruptions in August 1980 and June 1981.

  1. Seismic precursors to the mount st. Helens eruptions in 1981 and 1982.

    PubMed

    Malone, S D; Boyko, C; Weaver, C S

    1983-09-30

    Six categories of seismic events are recognized on the seismograms from stations in the vicinity of Mount St. Helens. Two types of high-frequency earthquakes occur near the volcano and under the volcano at depths of more than 4 kilometers. Medium- and low-frequency earthquakes occur at shallow depths (less than 3 kilometers) within the volcano and increase in number and size before eruptions. Temporal changes in the energy release of the low-frequency earthquakes have been used in predicting all the eruptions since October 1980. During and after eruptions, two types of low-frequency emergent surface events occur, including rockfalls and steam or gas bursts from the lava dome.

  2. Gas emissions and the eruptions of Mount St. Helens through 1982

    SciTech Connect

    Casadevall, T.; Rose, W.; Gerlach, T.; Greenland, L.P.; Ewert, J.; Wunderman, R.; Symonds, R.

    1983-09-30

    The monitoring of gas emissions from Mount St. Helens includes daily airborne measurements of sulfur dioxide in the volcanic plume and monthly sampling of gases from crater fumaroles. The composition of the fumarolic gases has changed slightly since 1980: the water content increased from 90 to 98 percent, and the carbon dioxide concentrations decreased from about 10 to 1 percent. The emission rates of sulfur dioxide and carbon dioxide were at their peak during July and August 1980, decreased rapidly in late 1980, and have remained low and decreased slightly through 1981 and 1982. These patterns suggest steady outgassing of a single batch of magma has been added since mid-1980. The gas data were useful in predicting eruptions in August 1980 and June 1981.

  3. Monitoring vegetation recovery patterns on Mount St. Helens using thermal infrared multispectral data

    NASA Technical Reports Server (NTRS)

    Langran, K. J.

    1985-01-01

    The eruptions of Mount St. Helens created new surfaces by stripping and implacing large volumes of eroded material and depositing tephra in the blast area and on the flanks of the mountain. Areas of major disturbance are those in the blast zone that were subject to debris avalanche, pyroclastic flows, mudflows, and blowdown and scorched timber; and those outside the blast zone that received extensive tephra deposits. These zones represent a spectrum of disturbance types and intensities that can be indexed by temperature, impact force, and depth of subsequent deposition. This paper describes an application of NASA's Thermal Infrared Multispectral Scanner (TIMS) in monitoring vegetation recovery patterns in disturbed areas. Preliminary study results indicate a significant correlation between measured effective radiant temperature and vegetated/nonvegetated areas, percent vegetation cover, and vegetation type.

  4. Gaseous constituents in the plume from eruptions of mount st. Helens.

    PubMed

    Inn, E C; Vedder, J F; Condon, E P; O'hara, D

    1981-02-20

    Measurements in the stratosphere of gaseous constituents in the plume of Mount St. Helens were obtained during five flights of the NASA U-2 aircraft between 19 May and 17 June 1980. Mixing ratios from gas chromatographic measurements on samples acquired about 24 hours after the initial eruption show considerable enhancement over nonvolcanic concentrations for sulfur dioxide (more than 1000 times), methyl chloride (about 10 times), and carbon disulfide (more than 3 times). The mixing ratio of carbonyl sulfide was comparable to nonvolcanic mixing ratios although 3 days later it was enhanced two to three times. Ion chromatography measurements on water-soluble constituents are also reported. Very large concentrations of chloride, nitrate, and sulfate ions were measured, implying large mixing ratios for the water-soluble gaseous constituents from which the anions are derived. Measurements of radon-222 present in the plume are also reported.

  5. Deep earthquakes beneath mount st. Helens: evidence for magmatic gas transport?

    PubMed

    Weaver, C S; Zollweg, J E; Malone, S D

    1983-09-30

    Small-magnitude earthquakes began beneath Mount St. Helens 40 days before the eruption of 20 March 1982. Unlike earlier preeruption seismicity for this volcano, which had been limited to shallow events (less than 3 kilometers), many of these earthquakes were deep (between 5 and 11 kilometers). The location of these preeruptive events at such depth indicates that a larger volume of the volcanic system was affected prior to the 20 March eruption than prior to any of the earlier dome-building eruptions. The depth-time relation between the deep earthquakes and the explosive onset of the eruption is compatible with the upward migration of magmatic gas released from a separate deep reservoir.

  6. Intrusive and extrusive growth of the Mount St Helens lava dome

    NASA Technical Reports Server (NTRS)

    Fink, Jonathan H.; Malin, Michael C.; Anderson, Steven W.

    1990-01-01

    High-resolution, digital topographic maps of the Mount St. Helens dome derived from aerial photographs are used here to make a quantitative assessment of the partitioning of magma into endogenous intrusion and exogenous lobes. The endogenous growth is found to be predictable, which shows that the cooling dome controls its own development independently of such deep-seated factors as magma overpressure and extrusion rate. The observed regular decrease in exogenous growth rate also allows volume prediction. Knowledge of the volume can be used to determine when an ongoing eruptive event should end. Finally, the observed transition from predominantly exogenous to predominantly endogenous growth reflects the increase in crust thickness, which in turn seems to depend on long repose periods rather than some fundamental change in the character of the dome.

  7. Petrologic monitoring of 1981 and 1982 eruptive products from mount st. Helens.

    PubMed

    Cashman, K V; Taggart, J E

    1983-09-30

    New material from the dacite lava dome of Mount St. Helens, collected soon after the start of each successive extrusion, is subjected to rapid chemical and petrologic analysis. The crystallinity of the dacite lava produced in 1981 and 1982 is 38 to 42 percent, about 10 percent higher than for products of the explosive 1980 eruptions. This increase in crystallinity accompanies a decrease in the ratio of hornblende to hornblende plus orthopyroxene, which suggests that the volatile-rich, crystal-poor material explosively erupted in 1980 came from the top of a zoned magma chamber and that a lower, volatile-poor and crystal-rich region is now being tapped. The major-element chemistry of the dacite lava has remained essentially constant (62 to 63 percent silica) since August 1980, ending a trend of decreasing silica seen in the products of the explosive eruptions of May through August 1980.

  8. Petrologic monitoring of 1981 and 1982 eruptive products from Mount St. Helens

    USGS Publications Warehouse

    Cashman, K.V.; Taggart, J.E.

    1983-01-01

    New material from the dacite lava dome of Mount St. Helens, collected soon after the start of each successive extrusion, is subjected to rapid chemical and petrologic analysis. The crystallinity of the dacite lava produced in 1981 and 1982 is 38 to 42 percent, about 10 percent higher than for products of the explosive 1980 eruptions. This increase in crystallinity accompanies a decrease in the ratio of hornblende to hornblende plus orthopyroxene, which suggests that the volatile-rich, crystal-poor material explosively erupted in 1980 came from the top of a zoned magma chamber and that a lower, volatile-poor and crystal-rich region is now being tapped. The major-element chemistry of the dacite lava has remained essentially constant (62 to 63 percent silica) since August 1980, ending a trend of decreasing silica seen in the products of the explosive eruptions of May through August 1980.

  9. Deep earthquakes beneath Mount St. Helens: Evidence for magmatic gas transport?

    USGS Publications Warehouse

    Weaver, C.S.; Zollweg, J.E.; Malone, S.D.

    1983-01-01

    Small-magnitude earthquakes began beneath Mount St. Helens 40 days before the eruption of 20 March 1982. Unlike earlier preeruption seismicity for this volcano, which had been limited to shallow events (less than 3 kilometers), many of these earthquakes were deep (between 5 and 11 kilometers). The location of these preeruptive events at such depth indicates that a larger volume of the volcanic system was affected prior to the 20 March eruption than prior to any of the earlier dome-building eruptions. The depth-time relation between the deep earthquakes and the explosive onset of the eruption is compatible with the upward migration of magmatic gas released from a separate deep reservoir.

  10. Thrust faults and related structures in the crater floor of Mount St. Helens volcano, Washington

    USGS Publications Warehouse

    Chadwick, W.W.; Swanson, D.A.

    1989-01-01

    A lava dome was built in the crater of Mount St. Helens by intermittent intrusion and extrusion of dacite lava between 1980 and 1986. Spectacular ground deformation was associated with the dome-building events and included the development of a system of radial cracks and tangential thrust faults in the surrounding crater floor. These cracks and thrusts, best developed and studied in 1981-1982, formed first and, as some evolved into strike-slip tear faults, influenced the subsequent geometry of thrusting. Once faulting began, deformation was localized near the thrust scarps and their bounding tear faults. The magnitude of displacements systematically increased before extrusions, whereas the azimuth and inclination of displacements remained relatively constant. The thrust-fault scarps were bulbous in profile, lobate in plan, and steepened during continued fault movement. The hanging walls of each thrust were increasingly disrupted as cumulative fault slip increased. -from Authors

  11. Hydrogen-isotope evidence for extrusion mechanisms of the Mount St Helens lava dome

    NASA Technical Reports Server (NTRS)

    Anderson, Steven W.; Fink, Jonathan H.

    1989-01-01

    Hydrogen isotope analyses were used to determine water content and deuterium content for 18 samples of the Mount St Helens dome dacite in an attempt to identify the triggering mechanisms for periodic dome-building eruptions of lava. These isotope data, the first ever collected from an active lava dome, suggest a steady-state process of magma evolution combining crystallization-induced volatile production in the chamber with three different degassing mechanisms: closed-system volatile loss in the magma chamber, open-system volatile release during ascent, and kinetically controlled degassing upon eruption at the surface. The data suggest the future dome-building eruptions may require a new influx of volatile-rich magma into the chamber.

  12. Magmatic model for the Mount St. Helens blast of May 18, 1980

    SciTech Connect

    Eichelberger, J.C.; Hayes, D.B.

    1982-09-10

    Analytical and numerical solutions to the hydrodynamic equations of motion, constrained by physical properties of juvenile ejecta in the Mount St. Helens blast deposit, were used to investigate magmatic conditions required to produce the initial devastating blast phase of the eruption of May 18, 1980. Evidence that the blast was magmatic includes equivalence in volume of juvenile blast ejecta to preeruption inflation of the cone, substantial vesicularity of this ejecta, and continued vesiculation of large juvenile clasts after eruption. Observed or inferred ejecta velocities of 100 to 250 m/s are shown to require 0.2 to 0.7 wt% water vapor preexisting in magma unloaded by a landslide 200 to 900 m thick. These conditions imply total magmatic water contents of 0.7 to 1.7 wt%, respectively. Such low required water content suggests that volcanic blasts may be regarded as a normal consequence of magma intrusion into an unstable edifice.

  13. Vapor transfer prior to the October 2004 eruption of Mount St. Helens, Washington

    USGS Publications Warehouse

    Kent, A.J.R.; Blundy, J.; Cashman, K.V.; Copper, K.M.; Donnelly, C.; Pallister, J.S.; Reagan, M.; Rowe, M.C.; Thornber, C.R.

    2007-01-01

    Dome lavas from the 2004 eruption of Mount St. Helens show elevated Li contents in plagioclase phenocrysts at the onset of dome growth in October 2004. These cannot be explained by variations in plagioclase-melt partitioning, but require elevated Li contents in coexisting melt, a fact confirmed by measurements of Li contents as high as 207 ??g/g in coexisting melt inclusions. Similar Li enrichment has been observed in material erupted prior to and during the climactic May 1980 eruption, and is likewise best explained via pre-eruptive transfer of an exsolved alkali-rich vapor phase derived from deeper within the magma transport system. Unlike 1980, however, high Li samples from 2004 show no evidence of excess (210Pb)/(226 Ra), implying that measurable Li enrichments may occur despite significant differences in the timing and/or extent of magmatic degassing. Diffusion modeling shows that Li enrichment occurred within -1 yr before eruption, and that magma remained Li enriched until immediately before eruption and cooling. This short flux time and the very high Li contents in ash produced by phreatomagmatic activity prior to the onset of dome extrusion suggest that vapor transfer and accumulation were associated with initiation of the current eruption. Overall, observation of a high Li signature in both 1980 and 2004 dacites indicates that Li enrichment may be a relatively common phenomenon, and may prove useful for petrologic monitoring of Mount St. Helens and other silicic volcanoes. Lithium diffusion is also sufficiently rapid to constrain vapor transfer on similar time scales to short-lived radionuclides. ?? 2007 Geological Society of America.

  14. Attenuation and Scattering Tomography of the Deep Plumbing System of Mount St. Helens

    NASA Astrophysics Data System (ADS)

    De Siena, L.; Thomas, C.; Waite, G. P.; Moran, S. C.; Klemme, S.

    2014-12-01

    We present a combined 3D P-wave attenuation, 2D S-coda attenuation, and 3D S-coda scattering tomography model of fluid pathways, feeding systems, and sediments below Mount St. Helens (MSH) volcano between depths of 0 and 18 km. High-scattering and high-attenuation shallow anomalies are indicative of magma and fluid-rich zones within and below the volcanic edifice down to 6 km depth, where a high-scattering body outlines the top of a deeper aseismic velocity anomaly. Both the volcanic edifice and these structures induce a combination of strong scattering and attenuation on any seismic wave-field, particularly those recorded on the northern and eastern flanks of the volcanic cone. North of the cone, between depths of 0 and 10 km, a low-velocity, high-scattering, and high-attenuation north-south trending trough is attributed to thick piles of Tertiary marine sediments within the St. Helens Seismic Zone. A laterally-extended 3D scattering contrast at depths of 10 to 14 km is related to the boundary between upper and lower crust, and caused in our interpretation by the large scale interaction of the Siletz terrane with the Cascade arc crust. This contrast presents a low scattering, 4-6 km2 "hole" under the north-eastern flank of the volcano. We infer that this section represents the main path of magma ascent from depths greater than 6 km at MSH, with a small north-east shift in the lower plumbing system of the volcano. We conclude that combinations of different non-standard tomographic methods, and particularly the application of full-waveform tomography to highly heterogeneous media, represent the future of seismic volcano imaging.

  15. Attenuation and scattering tomography of the deep plumbing system of Mount St. Helens

    NASA Astrophysics Data System (ADS)

    De Siena, Luca; Waite, Greg; Moran, Seth; Klemme, Stephan; Thomas, Christine

    2014-05-01

    We present a combined 3D P-wave attenuation, 2D S-coda attenuation, and 3D S-coda scattering tomography model of magmatic/fluid chambers, feeding systems, and sediments below Mount St. Helens (MSH) volcano between depths of 0 and 18 km. High scattering and high attenuation shallow anomalies are indicative of magma and fluid cumulates within and below the volcanic edifice down to 6 km depth. These structures induce a combination of resonant-scattering and strong attenuation on any seismic wave-field recorded north and east of the volcanic cone. North of the cone between depths of 0 and 10 km a low-velocity, high-scattering, and high-attenuation north-south trending trough is attributed to thick piles of Tertiary marine sediments inferred to lie within the Saint Helens Seismic Zone (SHZ). A laterally-extended 3D scattering contrast at depths of 10 to 14 km is related to the boundary between upper and lower crust, and caused in our interpretation by the large scale interaction of the Siletz terrane with the Cascade arc crust. This contrast presents a low scattering, 4-6 km2 "hole" under the north-eastern flank of the volcano: we infer that this section represents the main path of magma ascent from depths larger than 6 km at MSH. The images suggest a small north-east shift in the lower plumbing system of the volcano as well as the absence of any large melt sill extending between depths of 0 and 18 km. We conclude that combinations of different non-standard tomographic methods, and particularly the application of full-waveform tomography to highly heterogeneous media, represent the future of seismic volcano imaging.

  16. Attenuation and scattering tomography of the deep plumbing system of Mount St. Helens

    NASA Astrophysics Data System (ADS)

    De Siena, Luca; Thomas, Christine; Waite, Greg; Moran, Seth; Klemme, Stephan

    2015-04-01

    We present a combined 3-D P wave attenuation, 2-D S coda attenuation, and 3-D S coda scattering tomography model of fluid pathways, feeding systems, and sediments below Mount St. Helens (MSH) volcano between depths of 0 and 18 km. High-scattering and high-attenuation shallow anomalies are indicative of magma and fluid-rich zones within and below the volcanic edifice down to 6 km depth, where a high-scattering body outlines the top of deeper aseismic velocity anomalies. Both the volcanic edifice and these structures induce a combination of strong scattering and attenuation on any seismic wavefield, particularly those recorded on the northern and eastern flanks of the volcanic cone. North of the cone between depths of 0 and 10 km, a low-velocity, high-scattering, and high-attenuation north-south trending trough is attributed to thick piles of Tertiary marine sediments within the St. Helens Seismic Zone. A laterally extended 3-D scattering contrast at depths of 10 to 14 km is related to the boundary between upper and lower crust and caused in our interpretation by the large-scale interaction of the Siletz terrane with the Cascade arc crust. This contrast presents a low-scattering, 4-6 km2 "hole" under the northeastern flank of the volcano. We infer that this section represents the main path of magma ascent from depths greater than 6 km at MSH, with a small north-east shift in the lower plumbing system of the volcano. We conclude that combinations of different nonstandard tomographic methods, leading toward full-waveform tomography, represent the future of seismic volcano imaging.

  17. Attenuation and scattering tomography of the deep plumbing system of Mount St. Helens

    NASA Astrophysics Data System (ADS)

    De Siena, L.; Thomas, C.; Waite, G. P.; Moran, S. C.; Klemme, S.

    2014-11-01

    We present a combined 3-D P wave attenuation, 2-D S coda attenuation, and 3-D S coda scattering tomography model of fluid pathways, feeding systems, and sediments below Mount St. Helens (MSH) volcano between depths of 0 and 18 km. High-scattering and high-attenuation shallow anomalies are indicative of magma and fluid-rich zones within and below the volcanic edifice down to 6 km depth, where a high-scattering body outlines the top of deeper aseismic velocity anomalies. Both the volcanic edifice and these structures induce a combination of strong scattering and attenuation on any seismic wavefield, particularly those recorded on the northern and eastern flanks of the volcanic cone. North of the cone between depths of 0 and 10 km, a low-velocity, high-scattering, and high-attenuation north-south trending trough is attributed to thick piles of Tertiary marine sediments within the St. Helens Seismic Zone. A laterally extended 3-D scattering contrast at depths of 10 to 14 km is related to the boundary between upper and lower crust and caused in our interpretation by the large-scale interaction of the Siletz terrane with the Cascade arc crust. This contrast presents a low-scattering, 4-6 km2 "hole" under the northeastern flank of the volcano. We infer that this section represents the main path of magma ascent from depths greater than 6 km at MSH, with a small north-east shift in the lower plumbing system of the volcano. We conclude that combinations of different nonstandard tomographic methods, leading toward full-waveform tomography, represent the future of seismic volcano imaging.

  18. A continuous record of intereruption velocity change at Mount St. Helens from coda wave interferometry

    USGS Publications Warehouse

    Hotovec-Ellis, Alicia J.; Gomberg, Joan S.; Vidale, John; Creager, Ken C.

    2014-01-01

    In September 2004, Mount St. Helens volcano erupted after nearly 18 years of quiescence. However, it is unclear from the limited geophysical observations when or if the magma chamber replenished following the 1980–1986 eruptions in the years before the 2004–2008 extrusive eruption. We use coda wave interferometry with repeating earthquakes to measure small changes in the velocity structure of Mount St. Helens volcano that might indicate magmatic intrusion. By combining observations of relative velocity changes from many closely located earthquake sources, we solve for a continuous function of velocity changes with time. We find that seasonal effects dominate the relative velocity changes. Seismicity rates and repeating earthquake occurrence also vary seasonally; therefore, velocity changes and seismicity are likely modulated by snow loading, fluid saturation, and/or changes in groundwater level. We estimate hydrologic effects impart stress changes on the order of tens of kilopascals within the upper 4 km, resulting in annual velocity variations of 0.5 to 1%. The largest nonseasonal change is a decrease in velocity at the time of the deep Mw = 6.8 Nisqually earthquake. We find no systematic velocity changes during the most likely times of intrusions, consistent with a lack of observable surface deformation. We conclude that if replenishing intrusions occurred, they did not alter seismic velocities where this technique is sensitive due to either their small size or the finite compressibility of the magma chamber. We interpret the observed velocity changes and shallow seasonal seismicity as a response to small stress changes in a shallow, pressurized system.

  19. A continuous record of intereruption velocity change at Mount St. Helens from coda wave interferometry

    NASA Astrophysics Data System (ADS)

    Hotovec-Ellis, A. J.; Gomberg, J.; Vidale, J. E.; Creager, K. C.

    2014-03-01

    In September 2004, Mount St. Helens volcano erupted after nearly 18 years of quiescence. However, it is unclear from the limited geophysical observations when or if the magma chamber replenished following the 1980-1986 eruptions in the years before the 2004-2008 extrusive eruption. We use coda wave interferometry with repeating earthquakes to measure small changes in the velocity structure of Mount St. Helens volcano that might indicate magmatic intrusion. By combining observations of relative velocity changes from many closely located earthquake sources, we solve for a continuous function of velocity changes with time. We find that seasonal effects dominate the relative velocity changes. Seismicity rates and repeating earthquake occurrence also vary seasonally; therefore, velocity changes and seismicity are likely modulated by snow loading, fluid saturation, and/or changes in groundwater level. We estimate hydrologic effects impart stress changes on the order of tens of kilopascals within the upper 4 km, resulting in annual velocity variations of 0.5 to 1%. The largest nonseasonal change is a decrease in velocity at the time of the deep Mw = 6.8 Nisqually earthquake. We find no systematic velocity changes during the most likely times of intrusions, consistent with a lack of observable surface deformation. We conclude that if replenishing intrusions occurred, they did not alter seismic velocities where this technique is sensitive due to either their small size or the finite compressibility of the magma chamber. We interpret the observed velocity changes and shallow seasonal seismicity as a response to small stress changes in a shallow, pressurized system.

  20. Mass Intrusion at Mount St. Helens (WA) From Temporal Gravity Variations

    NASA Astrophysics Data System (ADS)

    Battaglia, M.; Lisowski, M.; Dzurisin, D.; Poland, M. P.; Schilling, S. P.; Diefenbach, A. K.; Wynn, J.

    2015-12-01

    Repeated high-precision gravity measurements made at Mount St. Helens (WA) have revealed systematic temporal variations in the gravity field several years after the end of the 2004-2008 dome-building eruption. Changes in gravity with respect to a stable reference station 36 km NW of the volcano were measured at 10 sites on the volcanic edifice and at 4 sites far afield (10 to 36 km) from the summit in August 2010, August 2012 and August 2014. After simulating and removing the gravity signal associated with changes in mass of the crater glacier, the local hydrothermal aquifer, and vertical deformation, the residual gravity field observed at sites near the volcano's summit significantly increased with respect to the stable reference site during 2010-2012 (maximum change 48 ± 15 mgal). No significant change was measured during 2012-2014. The pattern of gravity increase is radially symmetrical, with a half-width of about 2.5 km and a point of maximum change centered at the 2004-2008 lava dome. Forward modeling of residual gravity data using the same source geometry, depth, and location as that inferred from geodetic data (a spheroidal source centered 7.5 km beneath the 2004-2008 dome) indicates a mass increase rate of the order of 1011 kg/year. For a reasonable magma density (~2250 kg/m3), the volume rate of magma intrusion beneath the summit region inferred from gravity (~ 0.1 km3/yr) greatly exceeds the volume inferred from inversion of geodetic data (0.001 km3/yr between 2008-2011), suggesting that either magma compressibility or other processes are important aspects of magma storage at Mount St. Helens, or that the data argue for a different source.

  1. Trophic Interactions during Primary Succession: Herbivores Slow a Plant Reinvasion at Mount St. Helens.

    PubMed

    Fagan; Bishop

    2000-02-01

    Lupines (Lupinus lepidus var. lobbii), the earliest plant colonists of primary successional habitats at Mount St. Helens, were expected to strongly affect successional trajectories through facilitative effects. However, their effects remain localized because initially high rates of reinvasive spread were short lived, despite widespread habitat availability. We experimentally tested whether insect herbivores, by reducing plant growth and fecundity at the edge of the expanding lupine population, could curtail the rate of reinvasion and whether those herbivores had comparable impacts in the older, more successionally advanced core region. We found that removing insect herbivores increased both the areal growth of individual lupine plants and the production of new plants in the edge region, thereby accelerating the lupine's intrinsic rate of increase at the front of the lupine reinvasion. We found no such impacts of herbivory in the core region, where low plant quality or a complex of recently arrived natural enemies may hold herbivores in check. In the context of invasion theory, herbivore-mediated decreases in lupine population growth rate in the edge region translate into decreased rates of lupine spread, which we quantify here using diffusion models. In the Mount St. Helens system, decreased rate of lupine reinvasion will result in reductions in rates of soil formation, nitrogen input, and entrapment of seeds and detritus that are likely to postpone or alter trajectories of primary succession. If the type of spatial subtleties in herbivore effects we found here are common, with herbivory focused on the edge of an expanding plant population and suppressed or ineffective in the larger, denser central region (where the plants might be more readily noticed and studied), then insect herbivores may have stronger impacts on the dynamics of primary succession and plant invasions than previously recognized.

  2. Attenuation and scattering tomography of the deep plumbing system of Mount St. Helens

    USGS Publications Warehouse

    De Siena, Luca; Thomas, Christine; Waite, Greg P.; Moran, Seth C.; Klemme, Stefan

    2014-01-01

    We present a combined 3-D P wave attenuation, 2-D S coda attenuation, and 3-D S coda scattering tomography model of fluid pathways, feeding systems, and sediments below Mount St. Helens (MSH) volcano between depths of 0 and 18 km. High-scattering and high-attenuation shallow anomalies are indicative of magma and fluid-rich zones within and below the volcanic edifice down to 6 km depth, where a high-scattering body outlines the top of deeper aseismic velocity anomalies. Both the volcanic edifice and these structures induce a combination of strong scattering and attenuation on any seismic wavefield, particularly those recorded on the northern and eastern flanks of the volcanic cone. North of the cone between depths of 0 and 10 km, a low-velocity, high-scattering, and high-attenuation north-south trending trough is attributed to thick piles of Tertiary marine sediments within the St. Helens Seismic Zone. A laterally extended 3-D scattering contrast at depths of 10 to 14 km is related to the boundary between upper and lower crust and caused in our interpretation by the large-scale interaction of the Siletz terrane with the Cascade arc crust. This contrast presents a low-scattering, 4–6 km2 “hole” under the northeastern flank of the volcano. We infer that this section represents the main path of magma ascent from depths greater than 6 km at MSH, with a small north-east shift in the lower plumbing system of the volcano. We conclude that combinations of different nonstandard tomographic methods, leading toward full-waveform tomography, represent the future of seismic volcano imaging.

  3. The effects of catastrophic ecosystem disturbance: the residual mammals at Mount St. Helens

    USGS Publications Warehouse

    Andersen, Douglas C.; MacMahon, James A.

    1985-01-01

    Individuals that survive the direct effects of community- or ecosystem-level disturbances, i.e., "residuals", can have major roles in determining the rate and pathway of subsequent secondary succession. The explosive eruption of the Mount St. Helens volcano on 19 May 1980 resulted in severe damage to a cast array of animal and plant populations (Edwards and Schwartz, 1981; MacMahon, 1982; Hayward et al., 1982). We apply the term "catastrophic" to this event because of its intensity and the large area (>600 km2) over which successional processes were initiated. We present here the results of surveys for mammals, particularly small mammals (excluding bats), conducted in the Mount St. Helens region during the 40 months following the eruption. Our purpose was to elucidate any patterns in species representation that might exist along a gradient of disturbance "intensity", and thus document which species could potentially influence early plant successional patterns there. We infer whether individuals captured were more likely to have been residuals (or their descendants), or immigrants from areas less affected by the eruption, from consideration of the time span between the eruption and the capture date, the trapping location, and life history data. We also make inferences concerning the animal-environment relationships that led to our survey results, and thereby address the question of the likelihood of other types of disturbance, either natural or anthropogenic, producing similar results. Data concerning survival of Thomomys talpoides, the northern pocket gopher, have been presented elsewhere (Andersen, 1982). Initial results from our studies of the relationships among residual small mammals and plant population dynamics are detailed in MacMahon and Warner (1984), Allen et al. (1984) and Andersen and MacMahon (in press).

  4. Catalog of Mount St. Helens 2004-2007 Dome Samples with Major- and Trace-Element Chemistry

    USGS Publications Warehouse

    Thornber, Carl R.; Pallister, John S.; Rowe, Michael C.; McConnell, Siobhan; Herriott, Trystan M.; Eckberg, Alison; Stokes, Winston C.; Cornelius, Diane Johnson; Conrey, Richard M.; Hannah, Tammy; Taggart, Joseph E.; Adams, Monique; Lamothe, Paul J.; Budahn, James R.; Knaack, Charles M.

    2008-01-01

    Sampling and analysis of eruptive products at Mount St. Helens is an integral part of volcano monitoring efforts conducted by the U.S. Geological Survey?s Cascades Volcano Observatory (CVO). The objective of our eruption sampling program is to enable petrological assessments of pre-eruptive magmatic conditions, critical for ascertaining mechanisms for eruption triggering and forecasting potential changes in eruption behavior. This report provides a catalog of near-vent lithic debris and new dome-lava collected during 34 intra-crater sampling forays throughout the October 2004 to October 2007 (2004?7) eruptive interval at Mount St. Helens. In addition, we present comprehensive bulk-rock geochemistry for a time-series of representative (2004?7) eruption products. This data, along with that in a companion report on Mount St. Helens 2004 to 2006 tephra by Rowe and others (2008), are presented in support of the contents of the U.S. Geological Survey Professional Paper 1750 (Sherrod and others, eds., 2008). Readers are referred to appropriate chapters in USGS Professional Paper 1750 for detailed narratives of eruptive activity during this time period and for interpretations of sample characteristics and geochemical data. The suite of rock samples related to the 2004?7 eruption of Mount St. Helens and presented in this catalog are archived at the David A. Johnson Cascades Volcano Observatory, Vancouver, Wash. The Mount St. Helens 2004?7 Dome Sample Catalogue with major- and trace-element geochemistry is tabulated in 3 worksheets of the accompanying Microsoft Excel file, of2008-1130.xls. Table 1 provides location and sampling information. Table 2 presents sample descriptions. In table 3, bulk-rock major and trace-element geochemistry is listed for 44 eruption-related samples with intra-laboratory replicate analyses of 19 dacite lava samples. A brief overview of the collection methods and lithology of dome samples is given below as an aid to deciphering the dome sample

  5. D. Alan Shewmon and the PCBE's White Paper on Brain Death: are brain-dead patients dead?

    PubMed

    Brugger, E Christian

    2013-04-01

    The December 2008 White Paper (WP) on "Brain Death" published by the President's Council on Bioethics (PCBE) reaffirmed its support for the traditional neurological criteria for human death. It spends considerable time explaining and critiquing what it takes to be the most challenging recent argument opposing the neurological criteria formulated by D. Alan Shewmon, a leading critic of the "whole brain death" standard. The purpose of this essay is to evaluate and critique the PCBE's argument. The essay begins with a brief background on the history of the neurological criteria in the United States and on the preparation of the 2008 WP. After introducing the WP's contents, the essay sets forth Shewmon's challenge to the traditional neurological criteria and the PCBE's reply to Shewmon. The essay concludes by critiquing the WP's novel justification for reaffirming the traditional conclusion, a justification the essay finds wanting.

  6. Seismicity and infrasound associated with explosions at Mount St. Helens, 2004-2005: Chapter 6 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Moran, Seth C.; McChesney, Patrick J.; Lockhart, Andrew B.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    Six explosions occurred during 2004-5 in association with renewed eruptive activity at Mount St. Helens, Washington. Of four explosions in October 2004, none had precursory seismicity and two had explosion-related seismic tremor that marked the end of the explosion. However, seismicity levels dropped following each of the October explosions, providing the primary instrumental means for explosion detection during the initial vent-clearing phase. In contrast, explosions on January 16 and March 8, 2005, produced noticeable seismicity in the form of explosion-related tremor, infrasonic signals, and, in the case of the March 8 explosion, an increase in event size ~2 hours before the explosion. In both 2005 cases seismic tremor appeared before any infrasonic signals and was best recorded on stations located within the crater. These explosions demonstrated that reliable explosion detection at volcanoes like Mount St. Helens requires seismic stations within 1-2 km of the vent and stations with multiple acoustic sensors.

  7. Multiphase-flow numerical modeling of the 18 May 1980 lateral blast at Mount St. Helens, USA

    USGS Publications Warehouse

    Ongaro, T.E.; Widiwijayanti, C.; Clarke, A.B.; Voight, B.; Neri, A.

    2011-01-01

    Volcanic lateral blasts are among the most spectacular and devastating of natural phenomena, but their dynamics are still poorly understood. Here we investigate the best documented and most controversial blast at Mount St. Helens (Washington State, United States), on 18 May 1980. By means of three-dimensional multiphase numerical simulations we demonstrate that the blast front propagation, fi nal runout, and damage can be explained by the emplacement of an unsteady, stratifi ed pyroclastic density current, controlled by gravity and terrain morphology. Such an interpretation is quantitatively supported by large-scale observations at Mount St. Helens and will infl uence the defi nition and predictive mapping of hazards on blast-dangerous volcanoes worldwide. ?? 2011 Geological Society of America.

  8. Ambient airborne solids concentrations including volcanic ash at Hanford, Washington sampling sites subsequent to the Mount St. Helens eruption

    NASA Technical Reports Server (NTRS)

    Sehmel, G. A.

    1982-01-01

    Airborne solids concentrations were measured on a near daily basis at two Hanford, Washington sites after the eruption of Mount St. Helens on May 18, 1980. These sites are about 211 km east of Mount St. Helens. Collected airborne solids included resuspended volcanic ash plus normal ambient solids. Average airborne solids concentrations were greater at the Hanford meteorological station sampling site which is 24 km northwest of the Horn Rapids dam sampling site. These increased concentrations reflect the sampling site proximity to greater ash fallout depths. Both sites are in low ash fallout areas although the Hanford meteorological station site is closer to the greater ash fallout areas. Airborne solids concentrations were decreased by rain, but airborne solids concentrations rapidly increased as surfaces dried. Airborne concentrations tended to become nearly the same at both sampling sites only for July 12 and 13.

  9. Building the full fermion-photon vertex of QED by imposing multiplicative renormalizability of the Schwinger-Dyson equations for the fermion and photon propagators

    SciTech Connect

    Kizilersue, Ayse; Pennington, Michael R.

    2009-06-15

    In principle, calculation of a full Green's function in any field theory requires knowledge of the infinite set of multipoint Green's functions, unless one can find some way of truncating the corresponding Schwinger-Dyson equations. For the fermion and boson propagators in QED this requires an ansatz for the full 3-point vertex. Here we illustrate how the properties of gauge invariance, gauge covariance and multiplicative renormalizability impose severe constraints on this fermion-boson interaction, allowing a consistent truncation of the propagator equations. We demonstrate how these conditions imply that the 3-point vertex in the propagator equations is largely determined by the behavior of the fermion propagator itself and not by knowledge of the many higher-point functions. We give an explicit form for the fermion-photon vertex, which in the fermion and photon propagator fulfills these constraints to all orders in leading logarithms for massless QED, and accords with the weak coupling limit in perturbation theory at O({alpha}). This provides the first attempt to deduce nonperturbative Feynman rules for strong physics calculations of propagators in massless QED that ensure a more consistent truncation of the 2-point Schwinger-Dyson equations. The generalization to next-to-leading order and masses will be described in a longer publication.

  10. Revisiting the ALA/N (alpha-lipoic acid/low-dose naltrexone) protocol for people with metastatic and nonmetastatic pancreatic cancer: a report of 3 new cases.

    PubMed

    Berkson, Burton M; Rubin, Daniel M; Berkson, Arthur J

    2009-12-01

    The authors, in a previous article, described the long-term survival of a man with pancreatic cancer and metastases to the liver, treated with intravenous alpha-lipoic acid and oral low-dose naltrexone (ALA/N) without any adverse effects. He is alive and well 78 months after initial presentation. Three additional pancreatic cancer case studies are presented in this article. At the time of this writing, the first patient, GB, is alive and well 39 months after presenting with adenocarcinoma of the pancreas with metastases to the liver. The second patient, JK, who presented to the clinic with the same diagnosis was treated with the ALA/N protocol and after 5 months of therapy, PET scan demonstrated no evidence of disease. The third patient, RC, in addition to his pancreatic cancer with liver and retroperitoneal metastases, has a history of B-cell lymphoma and prostate adenocarcinoma. After 4 months of the ALA/N protocol his PET scan demonstrated no signs of cancer. In this article, the authors discuss the poly activity of ALA: as an agent that reduces oxidative stress, its ability to stabilize NF(k)B, its ability to stimulate pro-oxidant apoptosic activity, and its discriminative ability to discourage the proliferation of malignant cells. In addition, the ability of lowdose naltrexone to modulate an endogenous immune response is discussed. This is the second article published on the ALA/N protocol and the authors believe the protocol warrants clinical trial.

  11. The reactivity of sodium alanates with O[2], H[2]O, and CO[2] : an investigation of complex metal hydride contamination in the context of automotive systems.

    SciTech Connect

    Dedrick, Daniel E.; Bradshaw, Robert W.; Behrens, Richard, Jr.

    2007-08-01

    Safe and efficient hydrogen storage is a significant challenge inhibiting the use of hydrogen as a primary energy carrier. Although energy storage performance properties are critical to the success of solid-state hydrogen storage systems, operator and user safety is of highest importance when designing and implementing consumer products. As researchers are now integrating high energy density solid materials into hydrogen storage systems, quantification of the hazards associated with the operation and handling of these materials becomes imperative. The experimental effort presented in this paper focuses on identifying the hazards associated with producing, storing, and handling sodium alanates, and thus allowing for the development and implementation of hazard mitigation procedures. The chemical changes of sodium alanates associated with exposure to oxygen and water vapor have been characterized by thermal decomposition analysis using simultaneous thermogravimetric modulated beam mass spectrometry (STMBMS) and X-ray diffraction methods. Partial oxidation of sodium alanates, an alkali metal complex hydride, results in destabilization of the remaining hydrogen-containing material. At temperatures below 70 C, reaction of sodium alanate with water generates potentially combustible mixtures of H{sub 2} and O{sub 2}. In addition to identifying the reaction hazards associated with the oxidation of alkali-metal containing complex hydrides, potential treatment methods are identified that chemically stabilize the oxidized material and reduce the hazard associated with handling the contaminated metal hydrides.

  12. Deep long-period earthquakes under Mount St. Helens captured with dense recordings by iMUSH

    NASA Astrophysics Data System (ADS)

    Vidale, J. E.; Moran, S. C.; Creager, K. C.; Levander, A.; Malone, S. D.; Sisson, T. W.; Hotovec-Ellis, A. J.; Schmandt, B.

    2014-12-01

    Mysteries abound regarding the mechanism generating deep-long-period earthquakes (DLPs). DLPs are most commonly associated with the process of magma ascent from a deep source to a crustal reservoir, and plausible ideas include dehydration embrittlement, sluggish faulting, gurgling flow of magmatic fluids, and cooling of relic magma conduits. By good fortune, at least four DLPs occurred since the imaging Magma Under St Helens (iMUSH) experiment began in late June 2014. The DLPs were captured by 70 broadband seismometers in the passive array, and several were also recorded by the 3500 short-period seismometers deployed for the active experiment. These lower crust/upper mantle events were 20-35 km deep, offset less than 15 km from the crater, and have the low-frequency, long-duration reverberative waveforms, and lower crust/upper mantle locations characteristic of DLPs. One DLP had numerous bursts across ~100s, and two others consisted of two bursts within a minute. These are similar to the 19 DLPs seen beneath Mount St. Helens (MSH) previously [Nichols et al., 2011, JVGR]. We will also use these DLPs as templates in the search for others that are too small to be found otherwise. DLPs at MSH occur beneath the St. Helens Seismic Zone, proposed to be the block boundary between the Southern Washington Cascades Conductor and Siletzia rocks to the west. This actively-slipping and weak structural boundary could enhance the ability of magmatic fluids to reach the surface, and the co-located DLPs provide evidence for such fluid migration. We plan to investigate the frequency content, time evolution, spatial location, and clustering of DLPs under Mount St. Helens to shed light on the underlying physics and implications for shallower activity.

  13. Total sulfur dioxide emissions and pre-eruption vapor-saturated magma at Mount St. Helens, 1980-88

    SciTech Connect

    Gerlach, T.M.; McGee, K.A.

    1994-12-15

    SO{sub 2} from explosive volcanism can cause significant climatic and atmospheric impacts, but the source of the sulfur is controversial. TOMS, COSPEC, and ash leachate data for Mount St. Helens from the time of the climactic eruption on 18 May 1980 to the final stages of non-explosive degassing in 1988 give a total SO{sub 2} emission of 2 Mt. COSPEC data show a sharp drop in emission rate that was apparently controlled by a decreasing rate of magma supply. A total SO{sub 2} emission of only 0.08 Mt is estimated from melt inclusion data and the conventional assumption that the main sulfur source was pre-eruption melt; commonly invoked sources of {open_quotes}excess sulfur{close_quotes} (anhydrite decomposition, basaltic magma, and degassing of non-erupted magma) are unlikely in this case. Thus melt inclusions may significantly underestimate SO{sub 2} emissions and impacts of explosive volcanism on climate and the atmosphere. Measured CO{sub 2} emissions, together with the H{sub 2}O content of melt inclusions and experimental solubility data, indicate the Mount St. Helens dacite was vapor-saturated at depth prior to ascent and suggest that a vapor phase was the main source of sulfur for the 2-Mt of SO{sub 2}. A vapor source is consistent with experimental studies on the Mount St. Helens dacite and removes the need for a much debated shallow magma body. 23 refs., 3 figs.

  14. Petrology and geochemistry of high cascade volcanics in southern Washington: Mount St. Helens volcano and the Indian Heaven basalt field

    SciTech Connect

    Smith, D.R.

    1984-01-01

    Mount St. Helens volcano (Washington, USA) has been characterized by four eruptive periods during the last 2200 years. Eruptive products include a wide spectrum of rock types including basaltic to andesitic lavas, andesitic to dacitic pyroclastic flows and tephra, and dacite domes. The major and trace element compositions of some andesites and dacites are broadly consistent with their derivation from a basaltic andesite parental magma by fractional cyrstallization processes involving the observed phenocryst assemblages. However, the strontium and oxygen isotopic compositions of representative samples of the Mount St. Helens suite indicate that closed system processes cannot explain the isotopic variations. The isotopic rations are positively correlated with one another and the bulk composition (SiO/sub 2/, Mg number, etc.). The vents of the nearby Indian Heaven Quaternary volcanic field erupted several basalt types which can be defined on the basis of major and trace element composition - calcalkaline (low and high TiO/sub 2/ varieties), transitional, and tholeiitic. Several of these basalt types occur at Mount St. Helens as well, but Indian Heaven lavas are generally more primitive as indicated by higher Mg/(Mg + Fe) ratios. The distribution of volcanic rock types in relation to local structures in the Cascade Range of southern Washington and northern Oregon suggests that crustal structure may influence the degree of evolution of specific volcanic fields. Cascade arc suggests that volcanic arc magma evolution does not necessarily produce a continuous sequence from tholeiitic to calcalkaline rocks in time or space.

  15. Environmental Impact of the Helen, Research, and Chicago Mercury Mines on Water, Sediment, and Biota in the Upper Dry Creek Watershed, Lake County, California

    USGS Publications Warehouse

    Rytuba, James J.; Hothem, Roger L.; May, Jason T.; Kim, Christopher S.; Lawler, David; Goldstein, Daniel; Brussee, Brianne E.

    2009-01-01

    The Helen, Research, and Chicago mercury (Hg) deposits are among the youngest Hg deposits in the Coast Range Hg mineral belt and are located in the southwestern part of the Clear Lake volcanic field in Lake County, California. The mine workings and tailings are located in the headwaters of Dry Creek. The Helen Hg mine is the largest mine in the watershed having produced about 7,600 flasks of Hg. The Chicago and Research Hg mines produced only a small amount of Hg, less than 30 flasks. Waste rock and tailings have eroded from the mines, and mine drainage from the Helen and Research mines contributes Hg-enriched mine wastes to the headwaters of Dry Creek and contaminate the creek further downstream. The mines are located on federal land managed by the U.S. Bureau of Land Management (USBLM). The USBLM requested that the U.S. Geological Survey (USGS) measure and characterize Hg and geochemical constituents in tailings, sediment, water, and biota at the Helen, Research, and Chicago mines and in Dry Creek. This report is made in response to the USBLM request to conduct a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA - Removal Site Investigation (RSI). The RSI applies to removal of Hg-contaminated mine waste from the Helen, Research, and Chicago mines as a means of reducing Hg transport to Dry Creek. This report summarizes data obtained from field sampling of mine tailings, waste rock, sediment, and water at the Helen, Research, and Chicago mines on April 19, 2001, during a storm event. Further sampling of water, sediment, and biota at the Helen mine area and the upper part of Dry Creek was completed on July 15, 2003, during low-flow conditions. Our results permit a preliminary assessment of the mining sources of Hg and associated chemical constituents that could elevate levels of monomethyl Hg (MMeHg) in the water, sediment, and biota that are impacted by historic mining.

  16. Geologic Map of the Saint Helens Quadrangle, Columbia County, Oregon, and Clark and Cowlitz Counties, Washington

    USGS Publications Warehouse

    Evarts, Russell C.

    2004-01-01

    The Saint Helens 7.5' quadrangle is situated in the Puget-Willamette Lowland approximately 35 km north Portland, Oregon. The lowland, which extends from Puget Sound into west-central Oregon, is a complex structural and topographic trough that lies between the Coast Range and the Cascade Range. Since late Eocene time, Cascade Range has been the locus of a discontinuously active volcanic arc associated with underthrusting of oceanic lithosphere beneath the North American continent along the Cascadia Subduction Zone. The Coast Range occupies the forearc position within the Cascadia arc-trench system and consists of a complex assemblage of Eocene to Miocene volcanic and marine sedimentary rocks. The Saint Helens quadrangle lies in the northern part of the Portland Basin, a roughly 2000-km2 topographic and structural depression. It is the northernmost of several sediment-filled structural basins that collectively constitute the Willamette Valley segment of the Puget-Willamette Lowland (Beeson and others, 1989; Swanson and others, 1993; Yeats and others, 1996). The rhomboidal basin is approximately 70 km long and 30 km wide, with its long dimension oriented northwest. The Columbia River flows west and north through the Portland Basin at an elevation near sea level and exits through a confined bedrock valley less than 2.5 km wide about 16 km north of Saint Helens. The flanks of the basin consist of Eocene through Miocene volcanic and sedimentary rocks that rise to elevations exceeding 2000 ft (610 m). Seismic-reflection profiles (L.M. Liberty, written commun., 2003) and lithologic logs of water wells (Swanson and others, 1993; Mabey and Madin, 1995) indicate that as much as 550 m of late Miocene and younger sediments have accumulated in the deepest part of the basin near Vancouver. Most of this basin-fill material was carried in from the east by the Columbia River but contributions from streams draining the adjacent highlands are locally important. The Portland Basin has

  17. Leaching characteristics of ash from the May 18, 1980, eruption of Mount St. Helens volcano, Washington

    NASA Astrophysics Data System (ADS)

    Smith, D. B.; Zielinski, R. A.; Taylor, H. E.; Sawyer, M. B.

    1983-06-01

    Leaching of freshly erupted air-fall ash, unaffected by rain, from the May 18, 1980, eruption of Mount St. Helens volcano, Washington, shows that Ca2+, Na+, Mg2+, SO{4/2-}, and Cl- are the predominant chemical species released on first exposure of the ash to water. Extremely high correlation of Ca with SO4 and Na with Cl in water leachates suggests the presence of CaSO4 and NaCl salts on the ash. The amount of water soluble material on ash increases with distance from source and with the weight fraction of small (less than 63 micrometers) ash particles of high-surface area. This suggests that surface reactions such as adsorption are responsible for concentrating the soluble material. CaSO4, NaCl, and other salts are probably formed as microscopic crystals in the high-temperature core of the eruption column and are then adsorbed by silicate ash particles. The environmentally important elements Zn, Cu, Cd, F. Pb, and Ba are released by a water leach in concentrations which could pose short-term hazards to some forms of aquatic life. However, calculated concentrations are based on a water-to-ash ratio of 4:1 or less, which is probably an underestimation of the regionally operative ratio. A subsequent leach of ash by warm alkaline solution shows dramatic increases, in the amount of dissolved SiO2, U, and V, which are probably caused by increased dissolution of the glassy component of ash. Glass dissolution by alkaline ground water is a mechanism for providing these three elements to sedimentary traps where they may coaccumulate as uraniferous silica or U-V minerals. Leaching characteristics of ash from Mount St. Helens are comparable to characteristics of ash of similar composition from volcanoes in Guatemala. Ashes from each locality show similar ions predominating for a given leachate and similar fractions of a particular element in the ash removed on contact with the leach solution.

  18. Effects of lava-dome emplacement on the Mount St. Helens crater glacier

    NASA Astrophysics Data System (ADS)

    Walder, J. S.; Schilling, S. P.; Denlinger, R. P.; Vallance, J. W.

    2004-12-01

    Since the end of the 1981-1986 episode of lava-dome growth at Mount St. Helens, an unusual glacier has grown rapidly within the crater of the volcano. The glacier, which is fed primarily by avalanching from the crater walls, contains about 30% rock debris by volume, has a maximum thickness of about 220 m and a volume of about 120 million cubic m, and forms a crescent that wraps around the old lava dome on both east and west sides. The new (October 2004) lava dome in the south of the crater began to grow centered roughly on the contact between the old lava dome and the glacier, in the process uplifting both ice and old dome rock. As the new dome is spreading to the south, the adjacent glacier is bulging upward. Firn layers on the outer flank of the glacier bulge have been warped upward almost vertically. In contrast, ice adjacent to the new dome has been thoroughly fractured. The overall style of deformation is reminiscent of that associated with salt-dome intrusion. Drawing an analogy to sand-box experiments, we suggest that the glacier is being deformed by high-angle reverse faults propagating upward from depth. Comparison of Lidar images of the glacier from September 2003 and October 2004 reveals not only the volcanogenic bulge but also elevated domains associated with the passage of kinematic waves, which are caused by glacier-mass-balance perturbations and have nothing to do with volcanic activity. As of 25 October 2004, growth of the new lava dome has had negligible hydrological consequences. Ice-surface cauldrons are common consequences of intense melting caused by either subglacial eruptions (as in Iceland) or subglacial venting of hot gases (as presently taking place at Mount Spurr, Alaska). However, there has been a notable absence of ice-surface cauldrons in the Mount St. Helens crater glacier, aside from a short-lived pond formed where the 1 October eruption pierced the glacier. We suggest that heat transfer to the glacier base is inefficient because

  19. Rockslide-debris avalanche of May 18, 1980, Mount St. Helens Volcano, Washington

    USGS Publications Warehouse

    Glicken, Harry

    1996-01-01

    This report provides a detailed picture of the rockslide-debris avalanche of the May 18, 1980, eruption of Mount St. Helens volcano. It provides a characterization of the deposit, a reinterpretation of the details of the first minutes of the eruption of May 18, and insight into the transport mechanism of the mass movement. Details of the rockslide event, as revealed by eyewitness photographs, are correlated with features of the deposit. The photographs show three slide blocks in the rockslide movement. Slide block I was triggered by a magnitude 5.1 earthquake at 8:32 a.m. Pacific Daylight Time (P.D.T.). An exploding cryptodome burst through slide block II to produce the 'blast surge.' Slide block III consisted of many discrete failures that were carried out in continuing pyroclastic currents generated from the exploding cryptodome. The cryptodome continued to depressurize after slide block III, producing a blast deposit that rests on top of the debris-avalanche deposit. The hummocky 2.5 cubic kilometer debris-avalanche deposit consists of block facies (pieces of the pre-eruption Mount St. Helens transported relatively intact) and matrix facies (a mixture of rocks from the old mountain and cryptodome dacite). Block facies is divided into five lithologic units. Matrix facies was derived from the explosively generated current of slide block III as well as from disaggregation and mixing of debris-avalanche blocks. The mean density of the old cone was measured to be abut 20 percent greater than the mean density of the avalanche deposit. Density in the deposit does not decrease with distance which suggests that debris-avalanche blocks were dilated at the mountain, rather than during transport. Various grain-size parameters that show that clast size converges about a mean with distance suggest mixing during transport. The debris-avalanche flow can be considered a grain flow, where particles -- either debris-avalanche blocks or the clasts within the blocks -- collided and

  20. Investigating microseismicity and crustal structure beneath Mount St. Helens with a 900-geophone array

    NASA Astrophysics Data System (ADS)

    Schmandt, B.; Hansen, S. M.; Kiser, E.; Levander, A.; Wang, Y.; Lin, F. C.

    2015-12-01

    During Summer 2014 we deployed ~900 cable-free seismographs within ~12 km of Mount St. Helens. Each seismograph contained a 10-Hz geophone and recorded continuously for two weeks with a sample rate of 250 Hz. The array temporarily provides a major increase in spatial coverage compared to the 10-station long-term monitoring array, but each of the geophone has a high noise floor compared to the force-feedback sensors of the long-term array that is part of the Pacific Northwest Seismic Network (PNSN). We are investigating the utility of the geophone array for source and structural analyses using ambient noise, high-frequency microseismicity, deep long-period seismicity, and 23 controlled sources from the concurrent iMUSH active source project. Surface waves extracted from ambient noise cross-correlation have adequate signal to noise ratios for upper crustal tomography using frequencies ~0.2-0.5 Hz. Efforts to extract higher frequency body waves with interferometry are ongoing and include focusing on time periods with stronger high frequency noise or coda from controlled sources and earthquakes. Continuous back-projection of the array data into the 3-D subsurface was used to automatically detect and locate high-frequency (>5 Hz) microseismicity extending down to ~M-2, with a completeness magnitude of ~0.3. Two deep crustal low frequency earthquakes (<5 Hz) detected by PNSN occurred during our survey. We relocated these events and are using them to optimize back-projection parameters and create matched filters to search for additional deep low frequency seismicity. One of the deep low frequency events locates at approximately Moho depth using back-projection of S-wave energy and S-P times from dense geophone sub-arrays. This event occurs just southeast of Mount St. Helens in an area where controlled source refraction tomography images anomalously slow lower crust and common midpoint stacking images a bright Moho indicative of a locally high impedance contrast between

  1. Subsurface Imaging at Mount St. Helens with a Large-N Geophone Array

    NASA Astrophysics Data System (ADS)

    Hansen, S. M.; Schmandt, B.; Levander, A.; Kiser, E.; Vidale, J. E.; Moran, S. C.

    2015-12-01

    The 900-instrument Mount St. Helens nodal array recorded continuous data for approximately two weeks in the summer of 2014 and provides a remarkable opportunity to interrogate the structure beneath an active arc volcano. Two separate imaging techniques are applied to constrain both the distribution of microseismicity and subsurface velocity structure. Reverse-time source imaging is applied to the 10 km3 region beneath the volcanic edifice where most of cataloged seismicity occurred during the experiment. These efforts resulted in an order of magnitude increase in earthquake detections over the normal monitoring operations of the Pacific Northwest Seismic Network. Earthquake locations resolve a narrow, ≤1 km wide, vertical lineament of seismicity that extends from the surface to 4 km depth directly beneath the summit crater, consistent with the historical event distribution of Waite and Moran[2009]. This feature is interpreted as a fracture network that acts as a conduit connecting an underlying magma chamber to the surface. Moho imaging is achieved using the near-offset (< 30 km) PmP phase generated by the iMUSH active source shots that occurred during the deployment. The PmP arrivals are enhanced using short-term-average over long-term-average processing and then migrated using a 3D velocity model. The observed Moho depths range from 35-40 km with a slight eastward deepening across the Mt St Helens fracture zone. Significant variations are observed in the Moho reflectivity. Large amplitude PmP energy is observed in shots originating from the north and east whereas shots from the south-west display little-to-no PmP energy. The region above the reflective Moho is approximately coincident with areas displaying reduced lower-crustal velocities in the initial iMUSH tomography models and may therefore contain fluids and/or partial melt. Additional evidence for lower crustal fluids in this region is provided by deep-long-period (DLP) events which have historically been

  2. Leaching characteristics of ash from the May 18, 1980, eruption of Mount St. Helens Volcano, Washington

    USGS Publications Warehouse

    Smith, David Burl; Zielinski, Robert A.; Taylor, Howard Edward

    1982-01-01

    Leaching of freshly erupted air-fall ash, unaffected by rain, from the May 18, 1.980,eruption of Mount St. Helens volcano, Washington, shows that Ca 2+, Na+, Mg+, SO4 2-, and Cl- are the predominant chemical species released on first exposure of the ash to water. Extremely high correlation of Ca with SO4 and Na with Cl in water leachates suggests the presence of CaSO4 and NaCl salts on the ash. The amount of water soluble material on ash increases with distance from source and with the weight fraction of small (less than 63 micrometers) ash particles of high-surface area. This suggests that surface reactions such as adsorption are responsible for concentrating the soluble material. CaSO4, NaCl, and other salts are probably formed as microscopic crystals in the high-temperature core of the eruption column and are then adsorbed by silicate ash particles. The environmentally important elements Zn, Cu, Cd, F, Pb, and Ba are released by a water leach in concentrations which could pose short-term hazards to some forms of aquatic life. However, calculated concentrations are based on a water-to-ash ratio of 4:1 or less, which is probably an underestimation of the regionally operative ratio. A subsequent leach of ash by warm alkaline solution shows dramatic increases in the amount of dissolved SiO2, U, and V, which are probably caused by increased dissolution of the glassy component of ash. Glass dissolution by alkaline ground water is a mechanism for providing these three elements to sedimentary traps where they may co-accumulate as uraniferous silica or U-V minerals. Leaching characteristics of ash from Mount St. Helens are comparable to characteristics of ash of similar composition from volcanoes in Guatemala. Ashes from each locality show similar ions predominating for a given leachate and similar fractions of a particular element in the ash removed on contact with the leach solution.

  3. Magma reservoirs from the upper crust to the Moho inferred from high-resolution Vp and Vs models beneath Mount St. Helens, Cascades, USA

    NASA Astrophysics Data System (ADS)

    Kiser, Eric; Levander, Alan; Zelt, Colin; Palomeras, Imma; Schmandt, Brandon; Hansen, Steven; Creager, Kenneth; Ulberg, Carl

    2016-04-01

    Mount St. Helens is currently the most active volcano along the Cascadia arc. Though several studies investigated the magmatic system beneath Mount St. Helens following the May 18, 1980 eruption, tomographic imaging of the system has been limited to ~10 km depth due to the distribution of earthquakes in the region. This has made it difficult to estimate the volume of the shallow magma reservoir beneath the volcano, the regions of magma entry into the lower crust, and the connectivity of this magma system throughout the crust. The latter is particularly interesting as one interpretation of the Southern Washington Cascades Conductor (SWCC) suggests that the Mount St Helens and Mount Adams volcanic systems are connected in the middle crust (Hill et al., 2009). The multi-disciplinary iMUSH (imaging Magma Under St. Helens) project is designed to investigate these and other fundamental questions associated with Mount St. Helens. Here we present the first high-resolution 2D Vp and Vs models derived from travel-time data from the iMUSH 3D active-source seismic experiment. The experiment consisted of ~6000 seismograph stations which recorded 23 explosions and hundreds of local earthquakes. Directly beneath Mount St. Helens, we observe a high Vp/Vs body, inferred to be the upper/middle crustal magma reservoir, between 4 and 13 km depth. We observe a second high Vp/Vs body, likely of magmatic origin, at roughly the same depth beneath Indian Heaven Volcanic Field, which last erupted 9 ka. Southeast of Mount St. Helens is a low Vp column extending from the middle crust, ~15 km depth, to the Moho at ~40 km depth. A cluster of deep long-period events, typically associated with injection of magma, occurs at the northwestern boundary of this low Vp column. We interpret this as the middle-lower crust magma reservoir. In the lower crust, high Vp features bound the magma reservoir directly beneath Mount St. Helens and the Indian Heaven Volcanic Field. One explanation for these high Vp

  4. Emplacement of a silicic lava dome through a crater glacier: Mount St Helens, 2004-06

    USGS Publications Warehouse

    Walder, J.S.; LaHusen, R.G.; Vallance, J.W.; Schilling, S.P.

    2007-01-01

    The process of lava-dome emplacement through a glacier was observed for the first time after Mount St Helens reawakened in September 2004. The glacier that had grown in the crater since the cataclysmic 1980 eruption was split in two by the new lava dome. The two parts of the glacier were successively squeezed against the crater wall. Photography, photogrammetry and geodetic measurements document glacier deformation of an extreme variety, with strain rates of extraordinary magnitude as compared to normal alpine glaciers. Unlike normal temperate glaciers, the crater glacier shows no evidence of either speed-up at the beginning of the ablation season or diurnal speed fluctuations during the ablation season. Thus there is evidently no slip of the glacier over its bed. The most reasonable explanation for this anomaly is that meltwater penetrating the glacier is captured by a thick layer of coarse rubble at the bed and then enters the volcano's groundwater system rather than flowing through a drainage network along the bed.

  5. Mount St. Helens Ash from the 18 May 1980 Eruption: Chemical, Physical, Mineralogical, and Biological Properties

    NASA Astrophysics Data System (ADS)

    Fruchter, Jonathan S.; Robertson, David E.; Evans, John C.; Olsen, Khris B.; Lepel, Elwood A.; Laul, Jagdish C.; Abel, Keith H.; Sanders, Ronald W.; Jackson, Peter O.; Wogman, Ned S.; Perkins, Richard W.; van Tuyl, Harold H.; Beauchamp, Raymond H.; Shade, John W.; Leland Daniel, J.; Erikson, Robert L.; Sehmel, George A.; Lee, Richard N.; Robinson, Alfred V.; Moss, Owen R.; Briant, James K.; Cannon, William C.

    1980-09-01

    Samples of ash from the 18 May 1980 eruption of Mount St. Helens were collected from several locations in eastern Washington and Montana. The ash was subjected to a variety of analyses to determine its chemical, physical, mineralogical, and biological characteristics. Chemically, the ash samples were of dacitic composition. Particle size data showed bimodal distributions and differed considerably with location. However, all samples contained comparable amounts of particles less than 3.5 micrometers in diameter (respirable fraction). Mineralogically, the samples ranged from almost totally glassy to almost totally crystalline. Crystalline samples were dominated by plagioclase feldspar (andesine) and orthopyroxene (hypersthene), with smaller amounts of titanomagnetite and hornblende. All but one of the samples contained from less than 1 percent to 3 percent free crystalline silica (quartz, trydimite, or cristobalite) in both the bulk samples and 1 to 2 percent in the fractions smaller than 3.5 micrometers. The long-lived natural radionuclide content of the ash was comparable to that of crustal material; however, relatively large concentrations of short-lived radon daughters were present and polonium-210 content was inversely correlated with particle size. In vitro biological tests showed the ash to be nontoxic to alveolar macrophages, which are an important part of the lungs' natural clearance mechanism. On the basis of a substantial body of data that has shown a correlation between macrophage cytotoxicity and fibrogenicity of minerals, the ash is not predicted to be highly fibrogenic.

  6. Potential impact of dust aerosols on the pre-Helene (2006) mesoscale convective vortex

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Sokolik, I. N.; Curry, J. A.

    2011-12-01

    The potential impact of dust aerosols on the early development of Hurricane Helene (2006) was examined using the Weather Research and Forecasting (WRF) and WRF-Chem model. The goal of this study is to examine the extent to which dust aerosols can influence the intensity, track, and structure of a developing TC through the microphysical and radiation processes. Remote sensing observations from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), CloudSat, Moderate Resolution Imaging Spectroradiometer (MODIS), and Tropical Rainfall Measuring Mission (TRMM) were utilized to examine the distributions and characteristics of dust particles, hydrometeors, cloud top temperature, latent heat release and precipitation, as well as to constrain and evaluate the model simulations. The WRF simulations were conducted by implementing an ice nucleation parameterization accounting for the deliquescent heterogeneous freezing (DHF) mode. The DHF mode refers to the freezing process for internally mixed aerosols with soluble and insoluble species that can serve as both cloud condensation nuclei (CCN) and ice nuclei (IN), such as dust. Simulations showed the tendency of DHF mode to promote ice formation at lower altitudes in strong updraft cores, increase the local latent heat release, and produce more low clouds and less high clouds. Further more, a series of WRF-Chem simulations were conducted, which includes aerosol emission scheme, a radiative transfer scheme accounting for aerosol optical properties, and a dual moment microphysics scheme that will account for environmental aerosols as nuclei. Differences between the results from WRF and WRF-Chem simulations were examined.

  7. Impact of dust aerosols on Hurricane Helene's early development through the deliquescent heterogeneous freezing mode

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Sokolik, I. N.; Curry, J. A.

    2011-05-01

    An ice nucleation parameterization accounting for the deliquescent heterogeneous freezing (DHF) mode was implemented into the Weather Research Forecast (WRF) model. The DHF mode refers to the freezing process for internally mixed aerosols with soluble and insoluble species that can serve as both cloud condensation nuclei (CCN) and ice nuclei (IN), such as dust. A modified version of WRF was used to examine the effect of Saharan dust on the early development of Hurricane Helene (2006) via acting as CCN and IN. The WRF simulations showed the tendency of DHF mode to promote ice formation at lower altitudes in strong updraft cores, increase the local latent heat release, and produce more low clouds and less high clouds. The inclusion of dust acting as CCN and IN through the DHF mode modified the storm intensity, track, hydrometeor distribution, cloud top temperature (hence the storm radiative energy budget), and precipitation and latent heat distribution. However, changes in storm intensity, latent heating rate, and total precipitation exhibit nonlinear dependence on the dust concentration. Improvement in the representation of atmospheric aerosols and cloud microphysics has the potential to contribute to better prediction of tropical cyclone development.

  8. Bimodal Density Distribution of Cryptodome Dacite from the 1980 Eruption of Mount St. Helens, Washington

    USGS Publications Warehouse

    Hoblitt, R.P.; Harmon, R.S.

    1993-01-01

    The explosion of a cryptodome at Mount St. Helens in 1980 produced two juvenile rock types that are derived from the same source magma. Their differences-color, texture and density-are due only to vesicularity differences. The vesicular gray dacite comprises bout 72% of the juvenile material; the black dacite comprises the other 28%. The density of juvenile dacite is bimodally distributed, with peaks at 1.6 g cm-3 (gray dacite) and 2.3 g cm-3 (black dacite). Water contents, deuterium abundances, and the relationship of petrographic structures to vapor-phase crystals indicate both rock types underwent pre-explosion subsurface vesiculation and degassing. The gray dacite underwent a second vesiculation event, probably during the 18 May explosion. In the subsurface, gases probably escaped through interconnected vesicles into the permeable volcanic edifice. We suggest that nonuniform degassing of an initially homogeneous magma produced volatile gradients in the cryptodome and that these gradients were responsible for the density bimodality. That is, water contents less than about 0.2-0.4 wt% produced vesicle growth rates that were slow in comparison to the pyroclast cooling rates; greater water contents produced vesicle growth rates that were fast in comparison to cooling rates. In this scheme, the dacite densities are bimodally distributed simply because, following decompression on 18 May 1980, one clast population vesiculated while the other did not. For clasts that did vesiculate, vesicle growth continued until it was arrested by fragmentation. ?? 1993 Springer-Verlag.

  9. Geologic map of the Sasquatch Steps area, north flank of Mount St. Helens, Washington

    USGS Publications Warehouse

    Hausback, Brian P.

    2000-01-01

    The 1980 eruption of Mount St. Helens resulted in both new volcanic deposits and deeply incised exposures into pre-1980 deposits. These exposures were produced by excavation of the crater by the 1980 landslides and lateral explosion as well as the subsequent erosion of Step and Loowit creeks by northerly stream flow out of the horseshoe-shaped crater. The map covers the area known as the Sasquatch Steps (commonly called the Steps), which lies between the Pumice Plain on the north and the lowermost portion of the crater on the south. Rapid alluvial aggradation at the base of the Steps is presently burying some of the lowest exposures, and erosion is stripping many of the upland deposits. The stratigraphic sequence exposed in the map area includes deposits from the eruptive periods listed in table 1 (Crandell, 1987). Assignment of deposits to the various eruptive periods is based on lithology and ferromagnesian-mineral suites typical for each of the eruptive periods (Mullineaux and Crandell, 1981; Mullineaux, 1986), as well as three 14 C dates from wood found in the deposits. Faults displayed on the map are largely confined to the older part of the stratigraphic section. These older units are highly shattered, with an extremely complicated fracture pattern, and it is only possible to show the largest and most distinctive of these structures at the map scale. Interpretation of the stratigraphy and structure of this area is given in Hausback and Swanson (1990).

  10. GOES weather satellite observations and measurements of the May 18, 1980, Mount St. Helens eruption

    NASA Technical Reports Server (NTRS)

    Holasek, R. E.; Self, S.

    1995-01-01

    We demonstrate the use of Geostationary Operational Environmental Satellite (GOES) images of the May 18, 1980, Mount St. Helens volcanic plume in providing details of the dynamics and changing character of this major explosive eruption. Visible and thermal infrared (IR) data from a sequence of images at 30-min intervals from 0850 to 1720 Local Time (LT) give information on dispersal and plume top temperature. Initial visible and IR images at 0850 show the top of a spreading co-ignimbrite-like umbrella plume and an overshooting column emerging from it, both rising off the ground-hugging pyroclastic gravity flow generated by the opening directed blast. The overshooting column had a minimum temperature significantly colder than local ambient atmosphere, indicating substantial undercooling, and a maximum altitude of 31 +/- 2 km at 0920. This large plume system then formed a high-velocity, radially spreading, gravitationally driven current before becoming advected in the wind field at an average downwind velocity of 29 m/s. Reflectance values from visible GOES data change from lower to higher during periods of transition from darker toned Plinian to lighter toned co-ignimbrite plumes indicating that in this case satellite data resolved changes in eruptive style from plumes with a coarser to a finer dominant particle size.

  11. Drainage evolution in the debris avalanche deposits near Mount Saint Helens, Washington

    NASA Technical Reports Server (NTRS)

    Beach, G. L.; Dzurisin, D.

    1984-01-01

    The 18 May 1980 eruption of Mount St. Helens was initiated by a massive rockslide-debris avalanche which completely transformed the upper 25 km of the North Fork Toutle River valley. The debris was generated by one of the largest gravitational mass movements ever recorded on Earth. Moving at an average velocity of 35 m/s, the debris avalanche buried approximately 60 sq km of terrain to an average depth of 45 m with unconsolidated, poorly sorted volcaniclastic material, all within a period of 10 minutes. Where exposed and unaltered by subsequent lahars and pyroclastic flows, the new terrain surface was characterized predominantly by hummocks, closed depressions, and the absence of an identifiable channel network. Following emplacement of the debris avalanche, a complex interrelationship of fluvial and mass wasting processes immediately began operating to return the impacted area to an equilibrium status through the removal of material (potential energy) and re-establishment of graded conditions. In an attempt to chronicle the morphologic evolution of this unique environmental setting, a systematic series of interpretative maps of several selected areas was produced. These maps, which document the rate and character of active geomorphic processes, are discussed.

  12. Sediment yield following severe volcanic disturbance - A two-decade perspective from Mount St. Helens

    USGS Publications Warehouse

    Major, J.J.; Pierson, T.C.; Dinehart, R.L.; Costa, J.E.

    2000-01-01

    Explosive volcanic eruptions perturb water and sediment fluxes in watersheds; consequently, posteruption sediment yields can exceed pre-eruption yields by several orders of magnitude. Annual suspended-sediment yields following the catastrophic 1980 Mount St. Helens eruption were as much as 500 times greater than typical background level, and they generally declined nonlinearly for more than a decade. Although sediment yields responded primarily to type and degree of disturbance, streamflow fluctuations significantly affected sediment-yield trends. Consecutive years (1995-1999) of above-average discharge reversed the nonlinear decline and rejuvenated yields to average values measured within a few years of the eruption. After 20 yr, the average annual suspended-sediment yield from the 1980 debris-avalanche deposit remains 100 times (104 Mg [megagrams]/km2) above typical background level (~102 Mg/km2). Within five years of the eruption, annual yields from valleys coated by lahar deposits roughly plateaued, and average yields remain about 10 times (103 Mg/km2) above background level. Yield from a basin devastated solely by a blast pyroclastic current diminished to background level within five years. These data demonstrate long-term instability of eruption-generated detritus, and show that effective mitigation measures must remain functional for decades.

  13. Changes in Seismic Velocity During the 2004 - 2008 Eruption of Mount St. Helens Volcano

    NASA Astrophysics Data System (ADS)

    Hotovec-Ellis, A. J.; Vidale, J. E.; Gomberg, J. S.; Moran, S. C.; Thelen, W. A.

    2013-12-01

    Mount St. Helens (MSH) effusively erupted in late 2004, following an 18-year quiescence. Many swarms of repeating earthquakes accompanied the extrusion and in some cases the waveforms from these earthquakes evolved slowly, possibly reflecting changes in the properties of the volcano that affect seismic wave propagation. We use coda-wave interferometry to quantify these changes in terms of small (usually <1%) changes in seismic velocity structure by determining how relatively condensed or stretched the coda is between two similar earthquakes. We then utilize several hundred distinct families of repeating earthquakes at once to create a continuous function of velocity change observed at any station in the seismic network. The rate of earthquakes allows us to track these changes on a daily or even hourly time scale. Following years of no seismic velocity changes larger than those due to climatic processes (tenths of a percent), we observed decreases in seismic velocity of >1% coincident with the onset of increased earthquake activity beginning September 23, 2004. These changes are largest near the summit of the volcano, and likely related to shallow deformation as magma first worked its way to the surface. Changes in velocity are often attributed to deformation, especially volumetric strain and the opening or closing of cracks, but also with nonlinear responses to ground shaking and fluid intrusion. We compare velocity changes across the eruption with other available observations, such as deformation (e.g., GPS, tilt, photogrammetry), to better constrain the relationships between velocity change and its possible causes.

  14. Temporal changes in stress preceding the 2004-2008 eruption of Mount St. Helens, Washington

    USGS Publications Warehouse

    Lehto, H.L.; Roman, D.C.; Moran, S.C.

    2010-01-01

    The 2004-2008 eruption of Mount St. Helens (MSH), Washington, was preceded by a swarm of shallow volcano-tectonic earthquakes (VTs) that began on September 23, 2004. We calculated locations and fault-plane solutions (FPS) for shallow VTs recorded during a background period (January 1999 to July 2004) and during the early vent-clearing phase (September 23 to 29, 2004) of the 2004-2008 eruption. FPS show normal and strike-slip faulting during the background period and on September 23; strike-slip and reverse faulting on September 24; and a mixture of strike-slip, reverse, and normal faulting on September 25-29. The orientation of ??1 beneath MSH, as estimated from stress tensor inversions, was found to be sub-horizontal for all periods and oriented NE-SW during the background period, NW-SE on September 24, and NE-SW on September 25-29. We suggest that the ephemeral ~90?? change in ??1 orientation was due to intrusion and inflation of a NE-SW-oriented dike in the shallow crust prior to the eruption onset. ?? 2010 Elsevier B.V.

  15. Source Mechanism of Tiny Long-Period Events at Mount St. Helens in July 2005

    NASA Astrophysics Data System (ADS)

    Matoza, R. S.; Chouet, B. A.; Dawson, P. B.; Shearer, P. M.; Haney, M. M.; Waite, G. P.; Moran, S. C.; Mikesell, T. D.

    2015-12-01

    Long-period (LP, 0.5-5 Hz) seismicity is a recognized signature of unrest and eruption at volcanoes worldwide. The characteristic seismicity during the sustained dome-building phase of the 2004-2008 eruption of Mount St. Helens (MSH), USA was cyclic LP "drumbeating". However, accompanying the LP drumbeating was a near-continuous, randomly occurring series of tiny LP seismic events (LP "subevents"), which may hold important additional information on the mechanism of seismogenesis at restless volcanoes. We employ template matching, phase-weighted stacking, and full-waveform inversion to image the source mechanism of one multiplet of these LP subevents at MSH in July 2005. We apply network-based template matching to 8 days of continuous velocity waveform data from 29 June to 7 July 2005. We stack waveforms for high-quality triggers at each station and component, using a combination of linear and phase-weighted stacking to produce clean stacks for use in waveform inversion. The derived source mechanism points to the volumetric oscillation (~10 m3) of a subhorizontal crack located at shallow depth (~30 m) in an area to the south of Crater Glacier in the southern portion of the breached MSH crater. A possible excitation mechanism is the sudden condensation of metastable steam from a shallow pressurized hydrothermal system as it encounters cool meteoric water in the outer parts of the edifice.

  16. Monitoring eruptive activity at Mount St. Helens with TIR image data

    USGS Publications Warehouse

    Vaughan, R.G.; Hook, S.J.; Ramsey, M.S.; Realmuto, V.J.; Schneider, D.J.

    2005-01-01

    Thermal infrared (TIR) data from the MASTER airborne imaging spectrometer were acquired over Mount St. Helens in Sept and Oct, 2004, before and after the onset of recent eruptive activity. Pre-eruption data showed no measurable increase in surface temperatures before the first phreatic eruption on Oct 1. MASTER data acquired during the initial eruptive episode on Oct 14 showed maximum temperatures of ???330??C and TIR data acquired concurrently from a Forward Looking Infrared (FLIR) camera showed maximum temperatures ???675??C, in narrow (???1-m) fractures of molten rock on a new resurgent dome. MASTER and FLIR thermal flux calculations indicated a radiative cooling rate of ???714 J/m2/S over the new dome, corresponding to a radiant power of ???24 MW. MASTER data indicated the new dome was dacitic in composition, and digital elevation data derived from LIDAR acquired concurrently with MASTER showed that the dome growth correlated with the areas of elevated temperatures. Low SO2 concentrations in the plume combined with sub-optimal viewing conditions prohibited quantitative measurement of plume SO2. The results demonstrate that airborne TIR data can provide information on the temperature of both the surface and plume and the composition of new lava during eruptive episodes. Given sufficient resources, the airborne instrumentation could be deployed rapidly to a newly-awakening volcano and provide a means for remote volcano monitoring. Copyright 2005 by the American Geophysical Union.

  17. Monitoring Eruptive Activity at Mount St. Helens with TIR Image Data

    NASA Technical Reports Server (NTRS)

    Vaughan, R. G.; Hook, S. J.; Ramsey, M. S.; Realmuto, V. J.; Schneider, D. J.

    2005-01-01

    Thermal infrared (TIR) data from the MASTER airborne imaging spectrometer were acquired over Mount St. Helens in Sept and Oct, 2004, before and after the onset of recent eruptive activity. Pre-eruption data showed no measurable increase in surface temperatures before the first phreatic eruption on Oct 1. MASTER data acquired during the initial eruptive episode on Oct 14 showed maximum temperatures of similar to approximately 330 C and TIR data acquired concurrently from a Forward Looking Infrared (FLIR) camera showed maximum temperatures similar to approximately 675 C, in narrow (approximately 1-m) fractures of molten rock on a new resurgent dome. MASTER and FLIR thermal flux calculations indicated a radiative cooling rate of approximately 714 J/m(exp 2)/s over the new dome, corresponding to a radiant power of approximately 24 MW. MASTER data indicated the new dome was dacitic in composition, and digital elevation data derived from LIDAR acquired concurrently with MASTER showed that the dome growth correlated with the areas of elevated temperatures. Low SO2 concentrations in the plume combined with sub-optimal viewing conditions prohibited quantitative measurement of plume SO2. The results demonstrate that airborne TIR data can provide information on the temperature of both the surface and plume and the composition of new lava during eruptive episodes. Given sufficient resources, the airborne instrumentation could be deployed rapidly to a newly-awakening volcano and provide a means for remote volcano monitoring.

  18. Mt. St. Helens: Influence of Magmatic Activity on the Biogeochemistry of Thermal Springs

    NASA Astrophysics Data System (ADS)

    Montross, S. N.; Skidmore, M.; Abrahamson, I. S.

    2005-12-01

    Mt St. Helens erupted explosively in 1980, and the intense heat of this event effectively sterilized the crater. The crater is filled with significant ash and volcanic debris and the crater environment has limited vegetation despite relatively abundant water, from rainfall and snowmelt. However, microorganisms thrive in the hot springs that have developed in the crater since the 1980 eruption in this otherwise biologically hostile environment. Channelized drainages exiting the crater contain numerous hot spring sources which result from thermal heating of meteoric water and gain solutes from water-rock interactions. These solutes are important inputs for the microbial communities found within the crater thermal systems. Water samples collected in August 2004 and August 2005 from thermal springs in Step Canyon allow the opportunity to assess the effects of recent magmatic activity in the crater since September 2004, on the aqueous chemistry and microbiology of thermal spring water. We have investigated the composition of microbial communities in crater hot spring ecosystems by identifying small subunit ribosomal RNA sequences amplified directly from extracted genomic DNA. Initial screening of cloned DNA (16S rRNA gene sequence) by restriction fragment length polymorphism and sequencing indicates moderate microbial diversity in this environment with representatives from the domains Bacteria and Archaea. The presentation will examine relationships between the aqueous geochemistry and the microbial communities and temporal changes in these related to the recent magmatic activity.

  19. Yellow Cat revisited: a review of Helen Cannon's selenium indicator plants

    SciTech Connect

    Arp, G.K.

    1983-03-01

    In the late 1940s, Helen Cannon of the USGS conducted her famous studies on the association of plants to selenium. She used this association for detection of sedimentary uranium deposits on the Colorado plateau. Cannon demonstrated that locoweeds (Astragalus) from the Yellow Cat area of the Thompson district in eastern Utah did reflect the presence of selenium-rich uranium deposits by their colonization of the soils over the deposits. During the subsequent 30 years, Cannon's work has repeatedly been cited as a classic example of the use of indicator geobotany in mineral exploration. During the same 30-year period, geobotanical techniques have not found wide utilization as an exploration tool. Further, Cannon's work has not been demonstrated elsewhere to any extent. In 1980, the author returned to Yellow Cat to see what changes, if any, may have transpired at the site. The author also wanted to gather insight into why geobotanical methods have not gained wider acceptance and perhaps determine why subsequent work is so rare. Results of this study support Cannon's basic work. The results also suggest that the methods are ecologically sound and have applicability to modern mineral exploration programs. Limitations to the method are also discussed, along with some speculation as to why geobotanical methods have not seen wider application.

  20. Precursor gases of aerosols in the Mount St. Helens eruption plumes at stratospheric altitudes

    NASA Technical Reports Server (NTRS)

    Inn, E. C. Y.; Vedder, J. F.; Condon, E. P.; Ohara, D.

    1982-01-01

    Nineteen stratospheric samples from the eruption plumes of Mount St. Helens were collected in five flight experiments. The plume samples were collected at various altitudes from 13.1 to 20.7 km by using the Ames cryogenic sampling system on board the NASA U-2 aircraft. The enriched, cryogenically collected samples were analyzed by chromatography. The concentrations of aerosols precursor gases (OCS, SO2, and CS2), CH3Cl, N2O, CF2Cl2, and CFCl3 were measured by gas chromatography. Large enhancement of the mixing ratio of SO2 and moderate enhancement of CS2 and OCS were found in the plume samples compared with similar measurement under pre-volcanic conditions. A fast decay rate of the SO2 mixing ratio in the plume was observed. Measurement of Cl(-), SO2(2-), and NO3(-) by ion chromatography was also carried out on water solutions prepared from the plume samples. The results obtained with this technique imply large mixing ratios of HCl, (NO + NO2 + HNO3), and SO2, in which these constituents are the respective sources of the anions. Measurement of the Rn222 concentration in the plume was made. Other stratospheric constituents in the plume samples, such as H2O, CO2, CH4, and CO, were also observed.

  1. Analysis of seismic body waves excited by the Mount Saint Helens eruption of May 18, 1980

    NASA Technical Reports Server (NTRS)

    Kanamori, H.; Given, J. W.; Lay, T.

    1982-01-01

    Seismic body waves which were excited by eruption of Mt. St. Helens, and recorded by the Global Digital Seismographic Network (GDSN) stations are analyzed to determine the nature and the time sequence of the events associated with the eruption. The polarity of teleseismic P waves (period 20 sec) is identical at six stations which are distributed over a wide azimuthal range. This observation, together with a very small S to P amplitude ratio (at 20 sec), suggests that the source is a nearly vertical single force that represents the counter force of the eruption. The time history of the vertical force suggests two distinct groups of events, about two minutes apart, each consisting of several subevents with a duration of about 25 sec. The magnitude of the force is approximately 2.6 to the 17th power dyne. this vertical force is in contrast with the long period (approximately 150 sec) southward horizontal single force which was determined by a previous study and interpreted to be due to the massive landslide.

  2. Geospatial and statistical analysis of volcanic ash leachate data from Mt. St. Helens

    NASA Astrophysics Data System (ADS)

    Ayris, P. M.; Delmelle, P.; Pereira, B.; Damby, D. E.; Durant, A. J.; Maters, E. C.; Dingwell, D. B.

    2014-12-01

    Upon contact with water, freshly-fallen volcanic ash releases a pulse of readily soluble material, derived from dissolution of S-, Cl- and F-bearing salts formed on ash surfaces during transport through the volcanic eruption plume. Analysis of leachate solutions can provide insight into the spatial and temporal variations in surface salt loadings, and hence the processes by which they were emplaced, and the hazards which they may induce upon mobilisation within receiving environments. However, excluding a small number of publications from the 1970's and 1980's, leachate studies are often limited by the use of small datasets with an uncertain capacity to adequately represent their parent ash deposit. Here we illustrate the significance of such limitations through the compilation and interrogation of a database of 96 published leachate compositions from 6 studies which investigated the May 18th, 1980 eruption of Mt. St. Helens. Utilising statistical analysis techniques, we removed outliers and biases between studies by linear transformation in order to produce a useable ash leachate dataset. The corrected data were mapped by kriging method to derive the spatial distribution of soluble S and Cl concentrations downwind of the volcano. Our treatment highlighted spatial trends in leachate data which may reflect various volcanic and atmospheric processes. In order to be able to disentangle these processes, we emphasise the need to obtain a homogeneous spatial distribution when sampling ash for leaching purposes, and to conduct those analyses according to a standardized protocol.

  3. Digital database of channel cross-section surveys, Mount St. Helens, Washington

    USGS Publications Warehouse

    Mosbrucker, Adam R.; Spicer, Kurt R.; Major, Jon J.; Saunders, Dennis R.; Christianson, Tami S.; Kingsbury, Cole G.

    2015-08-06

    Stream-channel cross-section survey data are a fundamental component to studies of fluvial geomorphology. Such data provide important parameters required by many open-channel flow models, sediment-transport equations, sediment-budget computations, and flood-hazard assessments. At Mount St. Helens, Washington, the long-term response of channels to the May 18, 1980, eruption, which dramatically altered the hydrogeomorphic regime of several drainages, is documented by an exceptional time series of repeat stream-channel cross-section surveys. More than 300 cross sections, most established shortly following the eruption, represent more than 100 kilometers of surveyed topography. Although selected cross sections have been published previously in print form, we present a comprehensive digital database that includes geospatial and tabular data. Furthermore, survey data are referenced to a common geographic projection and to common datums. Database design, maintenance, and data dissemination are accomplished through a geographic information system (GIS) platform, which integrates survey data acquired with theodolite, total station, and global navigation satellite system (GNSS) instrumentation. Users can interactively perform advanced queries and geospatial time-series analysis. An accuracy assessment provides users the ability to quantify uncertainty within these data. At the time of publication, this project is ongoing. Regular database updates are expected; users are advised to confirm they are using the latest version.

  4. Analysis of seismic body waves excited by the Mount St. Helens eruption of May 18, 1980

    NASA Technical Reports Server (NTRS)

    Kanamori, H.; Given, J. W.; Lay, T.

    1984-01-01

    Seismic body waves which were excited by eruption of Mt. St. Helens, and recorded by the Global Digital Seismographic Network (GDSN) stations are analyzed to determine the nature and the time sequence of the events associated with the eruption. The polarity of teleseismic P waves (period 20 sec) is identical at six stations which are distributed over a wide azimuthal range. This observation, together with a very small S to P amplitude ratio (at 20 sec), suggests that the source is a nearly vertical single force that represents the counter force of the eruption. The time history of the vertical force suggests two distinct groups of events, about two minutes apart, each consisting of several subevents with a duration of about 25 sec. The magnitude of the force is approximately 2.6 to the 17th power dyne. This vertical force is in contrast with the long period (approximately 150 sec) southward horizontal single force which was determined by a previous study and interpreted to be due to the massive landslide. Previously announced in STAR as N83-15968

  5. Interaction of Mount St. Helens' volcanic ash with cells of the respiratory epithelium.

    PubMed

    Adler, K B; Mossman, B T; Butler, G B; Jean, L M; Craighead, J E

    1984-12-01

    Respirable-sized dust from the Mount St. Helens (MSH) eruption of Spring 1980, and minerals similar to the major components of the volcanic ash, were examined comparatively for interactions with epithelial cells of rodent respiratory airways in vitro. MSH dust, Na feldspar, cristobalite, and alpha-quartz, in concentrations of 0.4 to 40 mg/ml, had neither significant effects on mucin release by tracheal explants nor acute toxic effects after exposure for 2 hr. Long-term incubation (1 and 3 weeks) of explants after a 1-hr exposure to MSH dust failed to elicit widespread toxic or proliferative changes in airway epithelial cells. In contrast, long-term exposure to Na feldspar, cristobalite, and alpha-quartz caused significant toxicity to the explants, although metaplastic changes were not observed. Ultrastructural evidence of associations (e.g., phagocytosis) between particulates and respiratory epithelium was not observed. The results of these studies suggest that volcanic ash from MSH interacts minimally with cells of the respiratory mucosa.

  6. Influence of Mount St. Helens volcanic ash on alfalfa growth and nutrient uptake

    SciTech Connect

    Mahler, R.L.

    1984-01-01

    Concern has been expressed that large amounts of volcanic ash from the May 18, 1980 eruption of Mount St. Helens may have created potential nutritional problems associated with forage production in northern Idaho and eastern Washington to the extent that adjustments need to be made in soil test correlation data. The objectives of this greenhouse study were to : (1) determine the effect of varying amounts of volcanic ash mixed into soils of northern Idaho on total alfalfa biomass production, and (2) to determine the effect of various soil/ash mixtures on the nutrient concentrations of P, K, S, Ca, Mg, Mn and Zn in alfalfa. Alfalfa was grown in eight different northern Idaho soils amended with differing levels of volcanic ash (0, 20, 35, 50 and 75%) in the greenhouse. The alfalfa seeds were inoculated and fertilizer P and S were added to all treatments. Total plant biomass and P, K, S, Ca, Mg, Mn and Zn plant concentrations were measured. The eight were pooled for analysis and it was found that increasing amounts of volcanic ash increased alfalfa biomass production. Plant P, S, Ca, Mg and Zn concentrations also increased with increasing levels of ash. Conversely, increasing levels of ash resulted in lower alfalfa tissue K and Mn concentrations. 13 references, 7 figures.

  7. Airborne aerosol measurements in the quiescent plume of Mount St. Helens: September, 1980

    SciTech Connect

    Phelan, J.M.; Finnegan, D.L.; Ballantine, D.S.; Zoller, W.H.; Hart, M.A.; Moyers, J.L.

    1982-09-01

    Atmospheric particulate matter and condensed volatile species were collected in the quiescent plume of Mount St. Helens volcano in Sept. 1980 using air filter systems mounted aboard a NASA turbo-prop P-3 aircraft. Concentrations of 27 elements were determined by instrumental neutron activation analysis and ion chromotagraphy. The volatile elements Cl, Br, F, Zn, W, In, S, Cd, Se, Sb, Hg, As and Au were enriched relative to bulk ash emitted during the earlier eruptions by factors of 50 to 20,000. Particulate S concentrations were approx.3 ..mu..g/m/sup 3/ and accounted for 6% of the total plume sulfur. Gas-phase Hg concentrations were 2.5 to 16 ng/m/sup 3/. Fluxes of elements were estimated by normalizing elemental concentrations to the concurrently measured total sulfur flux. Emission rates vary from 3500 kg/day for particulate Cl to 3 kg/day for Au, with substantial quantities of the enriched elements Zn, As, Hg, Sb, Se, and Cd also being released. Estimated global fluxes of these elements from volcanoes to the atmosphere are in reasonable agreement with other literature estimates.

  8. Response of hamster trachea in organ culture to Mount St. Helens volcano ash.

    PubMed

    Schiff, L J; Byrne, M M; Elliott, S F; Moore, S J; Ketels, K V; Graham, J A

    1981-01-01

    The effects of Mount St. Helens volcanic ash on rings of hamster tracheal epithelium in organ culture were studied. Volcanic ash samples with mass median aerodynamic diameters (MMAD) of 7.7 micrometers and 1.6 micrometers caused markedly different alterations in the tracheal mucosa. Examination by SEM of the ventral epithelial surface of tissue from untreated control explants after 2 weeks in culture showed equal numbers of ciliated and microvillous cells. Examination by SEM of tracheas exposed to the smaller size particles revealed that ash concentrations as low as 1 microgram/ml increased mucous secretion after one 2-hr exposure. After four or nine 2-hr exposures, cells contained cilia that were short and blunt. Ciliary activity after these exposures showed a significant depression in beating frequency. Tracheal ring cultures exposed to the larger volcanic ash particles exhibited moderate cytomorphological changes after one 2-hr exposure at concentrations of 1, 10 and 100 micrograms/ml. As the number of exposures increased, most of the columnar cell layer was lost, resulting in exposure of the basal cells. After nine exposures at the two highest concentrations of ash (10 and 100 micrograms/ml), only a few ciliated cells were remaining. Statistically significant reductions in ciliary activity paralleled the epithelial damage. The degree of epithelial damage and changes in the cilia beating frequency were related to the dose and the number of exposures to the volcanic ash.

  9. The 1980 eruptions of Mount St. Helens - Physical and chemical processes in the stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Toon, O. B.; Whitten, R. C.; Hamill, P.; Keesee, R. G.

    1983-01-01

    The large and diverse set of observational data collected in the high-altitude plumes of the May 18, May 25, and June 13, 1980 eruptions is organized and analyzed with a view to discerning the processes at work. The data serve to guide and constrain detailed model simulations of the volcanic clouds. For this purpose, use is made of a comprehensive one-dimensional model of stratospheric sulfate aerosols, sulfur precursor gases, and volcanic ash and dust. The model takes into account gas-phase and condensed-phase (heterogeneous) chemistry in the clouds, aerosol nucleation and growth, and cloud expansion. Computational results are presented for the time histories of the gaseous species concentrations, aerosol size distributions, and ash burdens of the eruption clouds. Also investigated are the long-term buildup of stratospheric aerosols in the Northern Hemisphere and the persistent effects of injected chlorine and water vapor on stratospheric ozone. It is concluded that SO2, water vapor, and ash were probably the most important substances injected into the stratosphere by the Mount St. Helens volcano, both with respect to their widespread effects on composition and their effect on climate.

  10. Vegetation patterns 25 years after the eruption of Mount St. Helens, Washington, USA.

    PubMed

    Del Moral, Roger; Lacher, Iara L

    2005-12-01

    In 2004, we surveyed the vegetation on Mount St. Helens to document changes since 1992. We asked how communities differentiate and if they develop predictable relationships with local environments. We sought evidence from links between species and environment and changes in community structure in 271 250-m(2) plots. The habitats of the seven community types (CTs) overlapped broadly. Ordination methods demonstrated weak correlations among species distributions and location, elevation, and surface variables. Comparisons to 1992 by habitat demonstrated a large increase in plant cover and substantial development of vegetation structure. Pioneer species declined while mosses increased proportionately leading to more pronounced dominance hierarchies in most habitats. In Lupinus colonies, dominance declined, and diversity increased due to the increased abundance of formerly rare species. On once barren sites, dominance increased, but diversity changed slightly, which suggested the incipient development of competitive hierarchies. Weak correlations between vegetation and the environment suggested that initially stochastic establishment patterns had not yet been erased by deterministic factors. A vegetation mosaic that is loosely controlled by environmental factors may produce different successional trajectories that lead to alternative stable communities in similar habitats. This result has implications for restoration planning.

  11. Comparative in vitro cytotoxicity of volcanic ashes from Mount St. Helens, El Chichon, and Galunggung.

    PubMed

    Vallyathan, V; Robinson, V; Reasor, M; Stettler, L; Bernstein, R

    1984-01-01

    Dry sedimented volcanic ash samples from each of three widely separated volcanoes of the "Circum Pacific" region have been subjected to mineralogic analysis and in vitro tests for cytotoxicity. The ash samples from the three different volcanoes varied in particle size, surface area, and concentration of silica. Total crystalline silica in the respirable fraction of ashes was 1.5% (Mount St. Helens, Moses Lake); 1.36% (Galunggung, Bandung-1); 1.95% (Gallunggung, Bandung-2); and 1.72% (El Chichon, Tuxtla). Hemolysis as an index of cytotoxicity was measured by in vitro tests on sheep blood erythrocytes and indicated wide differences in hemolytic activity among ash samples. Alveolar macrophage cytosolic (lactate dehydrogenase) and lysosomal (beta-glucuronidase and beta-N-acetyl glucosaminidase) enzymes were measured as an index of cellular integrity following dust exposure. Hemolysis and release of enzymes from alveolar macrophages were greater with volcanic ash from Galunggung (Bandung-1) and El Chichon (Tuxtla) than the other ashes. Although crystalline silica induced an effect similar to volcanic ash from Galunggung (Bandung-1) on the release of enzymes from alveolar macrophages, the hemolytic potency of silica was much greater. Light and electron microscopic observations of dust-exposed alveolar macrophages indicated that the ash particles were readily phagocytized. These results indicate that volcanic ash is moderately cytotoxic and that exposure may lead to overt reactions and the exacerbation of preexisting chronic inflammatory processes.

  12. Mount St. Helens eruptions: the acute respiratory effects of volcanic ash in a North American community.

    PubMed

    Baxter, P J; Ing, R; Falk, H; Plikaytis, B

    1983-01-01

    After the May 18, 1980 volcanic eruption of Mount St. Helens, increases were observed in the number of patients who, because of asthma or bronchitis, sought medical care at emergency rooms of major hospitals in areas of ashfall. An interview study of 39 asthma and 44 bronchitis patients who became sick during the 4 wk following the eruption and who attended the emergency rooms of two major hospitals in Yakima, Washington, and of healthy matched controls indicated that a history of asthma, and possibly of bronchitis, were risk factors for contracting respiratory problems. The interview study also indicated that the main exacerbating factor was the elevated level of airborne total suspended particulates (in excess of 30,000 micrograms/m3) after the eruption. An interview study of 97 patients who had chronic lung disease and who lived in the same area as the above-mentioned patients, but who did not go to a hospital, showed that the ashfall exacerbated the condition in about one-third of these. Emergency planners and their geologist advisers should be aware that special preventive measures are justified for people with a history of asthma or chronic lung disease who live in communities at risk to volcanic ashfalls.

  13. Mount St. Helens ash fall in the Bull Run watershed, Oregon, May-June 1980

    SciTech Connect

    Shulters, M.V.; Clifton, D.G.

    1980-07-01

    On May 25-26, May 30-June 2, and June 12-13, 1980, strong, high-altitude winds from the north occurred during periods of volcanic-ash eruption at Mount St. Helens in southwestern Washington. As a result, ash fell in the Bull Run watershed, Oregon, some 50 miles to the south, the principal water-supply source for the Portland area. Samples from precipitation collectors and from stream sites in the Bull Run watershed were collected on several dates during May and June 1980. Analyses were made and are tabulated for pH, conductivity, acidity, sulfate, and nitrate plus nitrite. Field pH values of the precipitation ranged from 4.0 to 5.6 pH units and the stream samples from 6.7 to 7.5 units. Particle-size analyses for ash samples collected in the Bull Run watershed and Portland, Oregon, are also shown. Volcanic events, precipitation and high-altitude speeds for northerly winds are given for May 18-June 15, 1980. 6 references, 5 figures, 3 tables.

  14. Mount St. Helens ash from the 18 May 1980 eruption: chemical, physical, mineralogical, and biological properties

    SciTech Connect

    Fruchter, J.S.; Robertson, D.E.; Evans, J.C.

    1980-09-05

    Samples of ash from the 18 May 1980 eruption of Mount St. Helens were collected from several locations in eastern Washington and Montana. The ash was subjected to a variety of analyses to determine its chemical, physical, mineralogical, and biological characteristics. Chemically, the ash samples were of dacitic composition. Particle size data showed bimodal distributions and differed considerably with location. However, all samples contained comparable amounts of particles less than 3.5 micrometers in diameter (respirable fraction). Mineralogically, the samples ranged from almost totally glassy to almost totally crystalline. Crystalline samples were dominated by plagioclase feldspar (andesine) and orthopyroxene (hypersthene), with smaller amounts of titanomagnetite and hornblende. All but one of the samples contained from less than 1% to 3% free crystalline silica (quartz, trydimite, or cristobalite) in both the bulk samples and 1 to 2% in the fractions smaller than 3.5 micrometers. The long-lived natural radionuclide content of the ash was comparable to that of crustal material; however, relatively large concentrations of short-lived radon daughters were present and polonium-210 content was inversely correlated with particle size. In vitro biological tests showed the ash to be nontoxic to alveolar macrophages, which are an important pat of the lungs' natural clearance mechanism. On the basis of a substantial body of data that has shown a correlation between macrophage cytotoxicity and fibrogenicity of minerals, the ash is not predicted to be highly fibrogenic.

  15. Colonization genetics of an animal-dispersed plant (Vaccinium membranaceum) at Mount St Helens, Washington.

    PubMed

    Yang, S; Bishop, J G; Webster, M S

    2008-02-01

    Population founding and spatial spread may profoundly influence later population genetic structure, but their effects are difficult to quantify when population history is unknown. We examined the genetic effects of founder group formation in a recently founded population of the animal-dispersed Vaccinium membranaceum (black huckleberry) on new volcanic deposits at Mount St Helens (Washington, USA) 24 years post-eruption. Using amplified fragment length polymorphisms and assignment tests, we determined sources of the newly founded population and characterized genetic variation within new and source populations. Our analyses indicate that while founders were derived from many sources, about half originated from a small number of plants that survived the 1980 eruption in pockets of remnant soil embedded within primary successional areas. We found no evidence of a strong founder effect in the new population; indeed genetic diversity in the newly founded population tended to be higher than in some of the source regions. Similarly, formation of the new population did not increase among-population genetic variance, and there was no evidence of kin-structured dispersal in the new population. These results indicate that high gene flow among sources and long-distance dispersal were important processes shaping the genetic diversity in this young V. membranaceum population. Other species with similar dispersal abilities may also be able to colonize new habitats without significant reduction in genetic diversity or increase in differentiation among populations.

  16. Impact of mount st. Helens eruption on bacteriology of lakes in the blast zone.

    PubMed

    Staley, J T; Lehmicke, L G; Palmer, F E; Peet, R W; Wissmar, R C

    1982-03-01

    Lakes lying within the blast zone of Mount St. Helens showed dramatic increases in heterotrophic bacterial numbers after the eruption of 18 May 1980. The total microscopic counts of bacteria in some of the most severely affected lakes were more than 10 cells per ml, an order of magnitude above the counts in outlying control lakes. Likewise, the numbers of viable bacteria reached levels of more than 10 cells per ml, compated with fewer than 10 cells per ml in control lakes. The CPS medium used for enumeration provided growth of up to 81.5% of the bacteria during sampling of one of the blast zone lakes. The high numbers of bacteria and the efficacy of the viable enumeration procedure are evidence that the lakes have been transformed rapidly from oligotrophy to eutrophy due to the eruption and its aftermath. Organic material leached from the devastated forest vegetation is thought to be responsible for the enrichment of heterotrophs. Total coliform bacteria were found in all of the blast zone lakes, and some lakes contained fecal coliform bacteria. Klebsiella pneumoniae was the predominant total coliform and was also identified as one of the fecal coliform bacteria, although Escherichia coli was the predominant species in that category. Our data indicate that bacterial populations peaked in the outer blast zone lakes in the summer of 1980 and in most of the inner lakes during the summer of 1981.

  17. Acute effects of volcanic ash from Mount Saint Helens on lung function in children.

    PubMed

    Buist, A S; Johnson, L R; Vollmer, W M; Sexton, G J; Kanarek, P H

    1983-06-01

    To evaluate the acute effects of volcanic ash from Mt. St. Helens on the lung function of children, we studied 101 children 8 to 13 yr of age who were attending a 2-wk summer camp for children with diabetes mellitus in an area where about 1.2 cm of ash had fallen after the June 12, 1980, eruption. The outcome variables used were forced vital capacity, forced expiratory volume in one second, their ratio and mean transit time. Total and respirable dust levels were measured using personal sampling pumps. The children were tested on arrival and twice (early morning [A.M.] and late afternoon [P.M.]) every second or third day during the session. A within-day effect was measured by the P.M./A.M. ratio for the lung function variables; a between-day effect was measured by the change in the P.M. measurements over the 2 wk of camp. We found no strong evidence of either a within-day or a between-day effect on lung function, even in a subgroup of children who had preexisting lung disease or symptoms, despite daytime dust/ash levels that usually exceeded the Environmental Protection Agency's significant harm level for particulate matter.

  18. Mount st. Helens ash from the 18 may 1980 eruption: chemical, physical, mineralogical, and biological properties.

    PubMed

    Fruchter, J S; Robertson, D E; Evans, J C; Olsen, K B; Lepel, E A; Laul, J C; Abel, K H; Sanders, R W; Jackson, P O; Wogman, N S; Perkins, R W; VAN Tuyl, H H; Beauchamp, R H; Shade, J W; Daniel, J L; Erikson, R L; Sehmel, G A; Lee, R N; Robinson, A V; Moss, O R; Briant, J K; Cannon, W C

    1980-09-05

    Samples of ash from the 18 May 1980 eruption of Mount St. Helens were collected from several locations in eastern Washington and Montana. The ash was subjected to a variety of analyses to determine its chemical, physical, mineralogical, and biological characteristics. Chemically, the ash samples were of dacitic composition. Particle size data showed bimodal distributions and differed considerably with location. However, all samples contained comparable amounts of particles less than 3.5 micrometers in diameter (respirable fraction). Mineralogically, the samples ranged from almost totally glassy to almost totally crystalline. Crystalline samples were dominated by plagioclase feldspar (andesine) and orthopyroxene (hypersthene), with smaller amounts of titanomagnetite and hornblende. All but one of the samples contained from less than 1 percent to 3 percent free crystalline silica (quartz, trydimite, or cristobalite) in both the bulk samples and 1 to 2 percent in the fractions smaller than 3.5 micrometers. The long-lived natural radionuclide content of the ash was comparable to that of crustal material; however, relatively large concentrations of short-lived radon daughters were present and polonium-210 content was inversely correlated with particle size. In vitro biological tests showed the ash to be nontoxic to alveolar macrophages, which are an important part of the lungs' natural clearance mechanism. On the basis of a substantial body of data that has shown a correlation between macrophage cytotoxicity and fibrogenicity of minerals, the ash is not predicted to be highly fibrogenic.

  19. Equisetum plants and the cycling of mercury at Mount St. Helens

    SciTech Connect

    Siegel, B.Z.; Siegel, S.M.; Horsky, S.J.

    1984-03-01

    Samples of Equisetum arvense collected in July 1982 at nine stations around Mount St. Helens have increased by 63-158 ppb in mercury content since the last sampling at the same locations in June 1981. Associated soils show little change by comparison. Unlike the highly directional pattern of June 1981, suggestive of the plume vector of the major 1980 eruption, the July 1982 distribution is more diffuse. It seems consistent with a continuous and extended mercury output distributed around the compass by seasonal and local wind variation. Mercury in follow-up samples at four stations in Sept 1982 had decreased 20-91 ppb without significant soil change. The authors propose that these variations are based on a predominat atmospheric source of plant mercury, the episodic character of volcanic mercury emission into the atmosphere, and relatively steady rates of volatilization of mercury from the plants. Calculated loss rates in the field samples agree well with measured rates of mercury release by Equisetum in the laboratory.

  20. Ash loading and insolation at Hanford, Washington during and after the eruption of Mount St. Helens

    NASA Technical Reports Server (NTRS)

    Laulainen, N. S.

    1982-01-01

    The effects of volcanic ash suspended in the atmosphere on the incident solar radiation was monitored at the Hanford Meteorological Station (HMS) subsequent to the major eruption of Mount St. Helens on May 18, 1980. Passage of the ash plume over Hanford resulted in a very dramatic decrease of solar radiation intensity to zero. A reduction in visibility to less than 1 km was observed, as great quantities of ash fell out of the plume onto the ground. Ash loading in the atmosphere remained very high for several days following the eruption, primarily as a result of resuspension from the surface. Visibilities remained low (2 to 8 km) during this period. Estimates of atmospheric turbidity were made from the ratio of diffuse-to-direct solar radiation; these turbidities were used to estimate extinction along a horizontal path, a quantity which can be related to visibility. Comparisons of observed and estimated visibilities were very good, in spite of the rather coarse approximations used in the estimates. Atmospheric clarity and visibility improved to near pre-eruption conditions following a period of rain showers. The diffuse-to-direct ratio of solar radiation provided a useful index for estimating volcanic ash loading of the atmosphere.

  1. Erosion by flowing lava: Geochemical evidence in the Cave Basalt, Mount St. Helens, Washington

    USGS Publications Warehouse

    Williams, D.A.; Kadel, S.D.; Greeley, R.; Lesher, C.M.; Clynne, M.A.

    2004-01-01

    We sampled basaltic lava flows and underlying dacitic tuff deposits in or near lava tubes of the Cave Basalt, Mount St. Helens, Washington to determine whether the Cave Basalt lavas contain geochemical evidence of substrate contamination by lava erosion. The samples were analyzed using a combination of wavelength-dispersive X-ray fluorescence spectrometry and inductively-coupled plasma mass spectrometry. The results indicate that the oldest, outer lava tube linings in direct contact with the dacitic substrate are contaminated, whereas the younger, inner lava tube linings are uncontaminated and apparently either more evolved or enriched in residual liquid. The most heavily contaminated lavas occur closer to the vent and in steeper parts of the tube system, and the amount of contamination decreases with increasing distance downstream. These results suggest that erosion by lava and contamination were limited to only the initially emplaced flows and that erosion was localized and enhanced by vigorous laminar flow over steeper slopes. After cooling, the initial Cave Basalt lava flows formed an insulating lining within the tubes that prevented further erosion by later flows. This interpretation is consistent with models of lava erosion that predict higher erosion rates closer to sources and over steeper slopes. A greater abundance of xenoliths and xenocrysts relative to xenomelts in hand samples indicates that mechanical erosion rather than thermal erosion was the dominant erosional process in the Cave Basalt, but further sampling and petrographic analyses must be performed to verify this hypothesis. ?? Springer-Verlag 2003.

  2. Secondary hydroeruptions in pyroclastic-flow deposits: Examples from Mount St. Helens

    USGS Publications Warehouse

    Moyer, T.C.; Swanson, D.A.

    1987-01-01

    Secondary hydroeruptions occur in pyroclastic-flow deposits when water or ice is trapped beneath hot pyroclastic debris and rapidly heated to steam. These eruptions display various styles of activity including fumarolic degassing, tephra fountaining, and explosive cratering. The deposits, which occupy the layer 3 stratigraphic position on the top of pyroclastic-flow units, can be distinguished from ash-cloud material by lateral thickness variation, clast composition, and other sedimentary features. The ejecta of secondary hydroeruptions comprise a subset of hydrovolcanic pyroclastic deposits. A small secondary hydroeruption observed on the Mount St. Helens pumice plain in 1981 produced tephra that was emplaced ballistically, by deposition from base surges, and by fallout from an eruption column. Stratigraphic descriptions and grain-size analysis of the ejecta from several secondary craters on the pumice plain demonstrate that the bedforms produced by a hydroeruption change with crater diameter. In particular, craters of small diameter are surrounded by interbedded ripple-laminated ash horizons and nonstratified, fines-depleted units; large craters have ejecta ramparts comprised of coarse dunes and antidunes. These bedform changes are related to a progressive increase in eruptive energy, which produces base surges of greater power and eruptive columns of greater height. We suggest that the style of activity displayed during a secondary hydroeruption is controlled by both the total thermal energy of the system and the permeability of the pyroclastic overburden. ?? 1987.

  3. Hydrothermal circulation at Mount St. Helens determined by self-potential measurements

    USGS Publications Warehouse

    Bedrosian, P.A.; Unsworth, M.J.; Johnston, M.J.S.

    2007-01-01

    The distribution of hydrothermal circulation within active volcanoes is of importance in identifying regions of hydrothermal alteration which may in turn control explosivity, slope stability and sector collapse. Self-potential measurements, indicative of fluid circulation, were made within the crater of Mount St. Helens in 2000 and 2001. A strong dipolar anomaly in the self-potential field was detected on the north face of the 1980-86 lava dome. This anomaly reaches a value of negative one volt on the lower flanks of the dome and reverses sign toward the dome summit. The anomaly pattern is believed to result from a combination of thermoelectric, electrokinetic, and fluid disruption effects within and surrounding the dome. Heat supplied from a cooling dacite magma very likely drives a shallow hydrothermal convection cell within the dome. The temporal stability of the SP field, low surface recharge rate, and magmatic component to fumarole condensates and thermal waters suggest the hydrothermal system is maintained by water vapor exsolved from the magma and modulated on short time scales by surface recharge. ?? 2006 Elsevier B.V. All rights reserved.

  4. Erosional furrows formed during the lateral blast at Mount St. Helens, May 18, 1980

    USGS Publications Warehouse

    Kieffer, S.W.; Sturtevant, B.

    1988-01-01

    Nearly horizontal, quasi-periodic erosional features of 7-m average transverse wavelength and of order 100-m length occur in scattered locations from 3.5 to 9 km from the crater at Mount St. Helens under deposits of the lateral blast of May 18, 1980. We attribute the erosional features to scouring by longitudinal vortices resulting from flow instabilities induced by complex topography, namely, by streamline curvature in regions of reattachment downstream of sheltered regions, and by the cross-flow component of flow subparallel to ridge crests. The diameter of the vortices and their transverse spacing, inferred from the distance between furrows, are taken to be of the order of the boundary layer thickness. The inferred boundary layer thickness (???14 m at 9 km from the source of the blast) is consistent with the running length from the mountain to the furrow locations. The orientation of furrows induced by the cross-flow instability can be used to measure the upwash angle and estimate the flow Mach number: at the central ridge of Spirit Lake the Mach number is inferred to have been about 2.5, and the flow velocity approximately 235 m/s. -from Authors

  5. Bending space-time: a commentary on Dyson, Eddington and Davidson (1920) 'A determination of the deflection of light by the Sun's gravitational field'.

    PubMed

    Longair, Malcolm

    2015-04-13

    The famous eclipse expedition of 1919 to Sobral, Brazil, and the island of Principe, in the Gulf of Guinea, led by Dyson, Eddington and Davidson was a turning point in the history of relativity, not only because of its importance as a test of Einstein's General Theory of Relativity, but also because of the intense public interest which was aroused by the success of the expedition. The dramatic sequence of events which occurred is reviewed, as well as the long-term impact of its success. The gravitational bending of electromagnetic waves by massive bodies is a subject of the greatest importance for contemporary and future astronomy, astrophysics and cosmology. Examples of the potential impact of this key tool of modern observational astronomy are presented. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.

  6. Bending space–time: a commentary on Dyson, Eddington and Davidson (1920) ‘A determination of the deflection of light by the Sun's gravitational field’

    PubMed Central

    Longair, Malcolm

    2015-01-01

    The famous eclipse expedition of 1919 to Sobral, Brazil, and the island of Principe, in the Gulf of Guinea, led by Dyson, Eddington and Davidson was a turning point in the history of relativity, not only because of its importance as a test of Einstein's General Theory of Relativity, but also because of the intense public interest which was aroused by the success of the expedition. The dramatic sequence of events which occurred is reviewed, as well as the long-term impact of its success. The gravitational bending of electromagnetic waves by massive bodies is a subject of the greatest importance for contemporary and future astronomy, astrophysics and cosmology. Examples of the potential impact of this key tool of modern observational astronomy are presented. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750149

  7. Timing of degassing and plagioclase growth in lavas erupted from Mount St. Helens, 2004-2005, from 210Po-210Pb-226Ra disequilibria: Chapter 37 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Reagan, Mark K.; Cooper, Kari M.; Pallister, John S.; Thornber, Carl R.; Wortel, Matthew; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    Disequilibrium between 210Po, 210Pb, and 226Ra was measured on rocks and plagioclase mineral separates erupted during the first year of the ongoing eruption of Mount St. Helens. The purpose of this study was to monitor the volatile fluxing and crystal growth that occurred in the weeks, years, and decades leading up to eruption. Whole-rock samples were leached in dilute HCl to remove 210Po precipitated in open spaces. Before leaching, samples had variable initial (210Po) values, whereas after leaching, the groundmasses of nearly all juvenile samples were found to have had (210Po) ≈ 0 when they erupted. Thus, most samples degassed 210Po both before and after the magmas switched from open- to closed-system degassing. All juvenile samples have (210Pb)/(226Ra) ratios within 2 δ of equilibrium, suggesting that the magmas involved in the ongoing eruption did not have strong, persistent fluxes of 222Rn in or out of magmas during the decades and years leading to eruption. These equilibrium values also require a period of at least a century after magma generation and the last significant differentiation of the Mount St. Helens dacites. Despite this, the elevated (210Pb)/(226Ra) value measured in a plagioclase mineral separate from lava erupted in 2004 suggests that a significant proportion of this plagioclase grew within a few decades of eruption. The combined dataset suggests that for most 2004-5 lavas, the last stage of open-system degassing of the dacite magmas at Mount St. Helens is confined to the period between 1-2 years and 1-2 weeks before eruption, whereas plagioclase large enough to be included in the mineral separate grew around the time of the 1980s eruption or earlier.

  8. Study of the molecular structure, ionization spectrum, and electronic wave function of 1,3-butadiene using electron momentum spectroscopy and benchmark Dyson orbital theories

    NASA Astrophysics Data System (ADS)

    Deleuze, M. S.; Knippenberg, S.

    2006-09-01

    The scope of the present work is to reconcile electron momentum spectroscopy with elementary thermodynamics, and refute conclusions drawn by Saha et al. in J. Chem. Phys. 123, 124315 (2005) regarding fingerprints of the gauche conformational isomer of 1,3-butadiene in electron momentum distributions that were experimentally inferred from gas phase (e,2e) measurements on this compound [M. J. Brunger et al., J. Chem. Phys. 108, 1859 (1998)]. Our analysis is based on thorough calculations of one-electron and shake-up ionization spectra employing one-particle Green's function theory along with the benchmark third-order algebraic diagrammatic construction [ADC(3)] scheme. Accurate spherically averaged electron momentum distributions are correspondingly computed from the related Dyson orbitals. The ionization spectra and Dyson orbital momentum distributions that were computed for the trans-conformer of 1,3-butadiene alone are amply sufficient to quantitatively unravel the shape of all available experimental (e,2e) electron momentum distributions. A comparison of theoretical ADC(3) spectra for the s-trans and gauche energy minima with inner- and outer-valence high-resolution photoelectron measurements employing a synchrotron radiation beam [D. M. P. Holland et al., J. Phys. B 29, 3091 (1996)] demonstrates that the gauche structure is incompatible with ionization experiments in high-vacuum conditions and at standard temperatures. On the other hand, outer-valence Green's function calculations on the s-trans energy minimum form and approaching basis set completeness provide highly quantitative insights, within ˜0.2eV accuracy, into the available experimental one-electron ionization energies. At last, analysis of the angular dependence of relative (e,2e) ionization intensities nicely confirms the presence of one rather intense π-2 π*+1 satellite at ˜13.1eV in the ionization spectrum of the s-trans conformer.

  9. Formation of Al2H7- anions--indirect evidence of volatile AlH3 on sodium alanate using solid-state NMR spectroscopy.

    PubMed

    Felderhoff, Michael; Zibrowius, Bodo

    2011-10-14

    After more than a decade of intense research on NaAlH(4) doped with transition metals as hydrogen storage material, the actual mechanism of the decomposition and rehydrogenation reaction is still unclear. Early on, monomeric AlH(3) was named as a possible transport shuttle for aluminium, but never observed experimentally. Here we report for the first time the trapping of volatile AlH(3) produced during the decomposition of undoped NaAlH(4) by an adduct of sodium alanate and crown ether. The resulting Al(2)H(7)(-) anion was identified by solid-state (27)Al NMR spectroscopy. Based on this indirect evidence of volatile alane, we present a simple description of the processes occurring during the reversible dehydrogenation of NaAlH(4).

  10. Constraints and conundrums resulting from ground-deformation measurements made during the 2004-2005 dome-building eruption of Mount St. Helens, Washington: Chapter 14 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Dzurisin, Daniel; Lisowski, Michael; Poland, Michael P.; Sherrod, David R.; LaHusen, Richard G.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    Lack of precursory inflation suggests that the volcano was poised to erupt magma already stored in a crustal reservoir when JRO1 was installed in 1997. Trilateration and campaign GPS data indicate surface dilatation, presumably caused by reservoir expansion between 1982 and 1991, but no measurable deformation between 1991 and 2003. We conclude that all three of the traditionally reliable eruption precursors (seismicity, ground deformation, and volcanic gas emission) failed to provide warning that an eruption was imminent until a few days before a visible welt appeared at the surface--a situation reminiscent of the 1980 north-flank bulge at Mount St. Helens.

  11. Seismic-monitoring changes and the remote deployment of seismic stations (seismic spider) at Mount St. Helens, 2004-2005: Chapter 7 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    McChesney, Patrick J.; Couchman, Marvin R.; Moran, Seth C.; Lockhart, Andrew B.; Swinford, Kelly J.; LaHusen, Richard G.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    The instruments in place at the start of volcanic unrest at Mount St. Helens in 2004 were inadequate to record the large earthquakes and monitor the explosions that occurred as the eruption developed. To remedy this, new instruments were deployed and the short-period seismic network was modified. A new method of establishing near-field seismic monitoring was developed, using remote deployment by helicopter. The remotely deployed seismic sensor was a piezoelectric accelerometer mounted on a surface-coupled platform. Remote deployment enabled placement of stations within 250 m of the active vent.

  12. Strong dissimilarities between the gas-phase acidities of saturated and alpha,beta-unsaturated boranes and the corresponding alanes and gallanes.

    PubMed

    Gámez, José A; Guillemin, Jean-Claude; Mó, Otilia; Yáñez, Manuel

    2008-01-01

    The effect that unsaturation has on the intrinsic acidity of boranes, alanes, and gallanes, was analyzed by B3 LYP and CCSD(T)/6-311+G(3df,2p) calculations on methyl-, ethyl-, vinyl-, and ethynylboranes, -alanes and -gallanes, and on the corresponding hydrides XH3. Quite unexpectedly, methylborane, which behaves as a carbon acid, is predicted to have an intrinsic acidity almost 200 kJ mol(-1) stronger than BH3, reflecting the large reinforcement of the C--B bond, which upon deprotonation becomes a double bond through the donation of the lone pair created on the carbon atom into the empty p orbital of the boron. Also unexpectedly, and for the same reason, the saturated and alpha,beta-unsaturated boranes are much stronger acids than the corresponding hydrocarbons, in spite of being carbon acids as well. The Al derivatives also behave as carbon acids, but in this case the most favorable deprotonation process occurs at C beta, leading to the formation of rather stable three-membered rings, again through the donation of the C beta lone pair into the empty p orbital of Al. For Ga-containing compounds the deprotonation of the GaH2 group is the most favorable process. Therefore only Ga derivatives behave similarly to the analogues of Groups 14, 15, and 16 of the periodic table, and the saturated derivatives exhibit a weaker acidity than the unsaturated ones. Within Group 13, boranes are stronger acids than alanes and gallanes. For ethyl and vinyl derivatives, alanes are stronger acids than gallanes. We have shown, for the first time, that acidity enhancement for primary heterocompounds is not only dictated by the position of the heteroatom in the periodic table and the nature of the substituent, but also by the bonding rearrangements triggered by the deprotonation of the neutral acid.

  13. Density Functional Theory Based Kinetic Monte Carlo Approach for Understanding Atomistic Mechanisms for Reversible Hydrogen Storage in Metal Hydrides: Application to Alane Formation on Ti Doped Al Surfaces

    NASA Astrophysics Data System (ADS)

    Karim, A.; Muckerman, J.; Sutter, P.; Muller, E.

    2008-03-01

    We describe a density functional kinetic Monte Carlo approach enabling us to study and simulate the steady-state situation of dissociative adsorption of hydrogen along with diffusion and reaction of Al and H atoms leading towards the formation of alane species on Ti-doped Al surfaces. In the first step, density functional theory is used in conjunction with the nudged elastic band/drag method to obtain the energetics of the relevant atomistic processes of Al and H diffusion and their reactions on Al surfaces with different concentration of dopant Ti atoms. Subsequently, the kinetic Monte Carlo method is employed, which accounts for the spatial distribution, fluctuations, and evolution of chemical species at Ti-doped Al surfaces under steady-state conditions. This DFT-based KMC approach provides an insight into the kinetics of alanes at technologically relevant pressure and temperature conditions. Our computed production rates of AlH3 on Al surfaces are in agreement with experimental data. We also obtained temperature programmed desorption spectra of different alane species, which is agreeing well with experiments.

  14. Identifying Water on Mt. Baker and Mt. St. Helens, WA with Geophysics: Implications for Volcanic Landslide Hazards

    NASA Astrophysics Data System (ADS)

    Finn, C.; Bedrosian, P.; Wisniewski, M.; Deszcz-Pan, M.

    2015-12-01

    Groundwater position, abundance, and flow rates within a volcano affect the transmission of fluid pressure, transport of mass and heat and formation of mechanically weak hydrothermal alteration influencing the stability of volcanoes. In addition, eruptions can shatter volcanic rocks, weakening the edifice. Helicopter magnetic and electromagnetic (HEM) data collected over Mt. Baker and Mt. St. Helens volcanoes reveal the distribution of water, shattered volcanic rocks and hydrothermal alteration essential to evaluating volcanic landslide hazards. These data, combined with geological mapping and rock property measurements, indicate the presence of localized <100 m thick zones of water-saturated hydrothermally altered rock beneath Sherman Crater and the Dorr Fumarole Fields at Mt. Baker. Nuclear magnetic resonance data indicate that the hydrothermal clays contain ~50% bound water with no evidence for free water ponded beneath the ice. The HEM data suggest water-saturated fresh volcanic rocks from the surface to the detection limit (~100 m) over the entire summit of Mt. Baker (below the ice). A 50-100 m thick high resistivity layer (>1500 ohm-m) corresponding to domes, debris avalanche, volcanic rocks and glaciers mantles the crater at Mt. St. Helens. Shallow low resistivity layers corresponding to fresh, cold water and hot brines are observed below the high resistivity surface in EM data. Shallow ground water mainly concentrates in shattered dome material in the crater of Mt. St. Helens. Aeromagnetic data indicate the location of basalts sandwiched between debris avalanche deposits and shattered dome material. The combination of the EM and magnetic data help map the location of the shattered dome material that is considered to be the failure surface for the 1980 debris avalanche. The EM data image the regional groundwater table near the base of the volcano. The geophysical identification of groundwater and weak layers constrain landslide hazards assessments.

  15. GeoGirls: A Geology and Geophysics Field Camp for Middle School Girls at Mount St. Helens

    NASA Astrophysics Data System (ADS)

    Samson, C.; Allstadt, K.; Melander, S.; Groskopf, A.; Driedger, C. L.; Westby, E.

    2015-12-01

    The August 2015 GeoGirls program was a project designed to inspire girls to gain an appreciation and enthusiasm for Earth sciences using Mount St. Helens as an outdoor volcanic laboratory. Occupations in the field of science and engineering tend to be held by more males than females. One way to address this is to introduce girls to possible opportunities within the geosciences and encourage them to learn more about the dynamic environment in which they live. In 2015, the GeoGirls program sought to accomplish this goal through organizing a five day-long field camp for twenty middle school-aged girls, along with four high school-aged mentors and two local teachers. This group explored Mount St. Helens guided by female scientists from the USGS Cascade Volcano Observatory (CVO), the Mount St. Helens Institute (MSHI), UNAVCO, Boise State, Georgia Tech, University of Washington and Oregon State University. To introduce participants to techniques used by volcanologists, the girls participated in hands-on experiments and research projects focusing on seismology, GPS, terrestrial lidar, photogrammetry, water and tephra. Participants also learned to collect samples, analyze data and use microscopes. Through this experience, participants acquired strategies for conducting research by developing hypotheses, making observations, thinking critically and sharing their findings with others. The success of the GeoGirls program was evaluated by participant and parent survey questionnaires, which allowed assessment of overall enthusiasm and interest in pursuing careers in the geosciences. The program was free to participants and was run jointly by MSHI and CVO and funded by NSF, the American Association of University Women, the Association for Women Geoscientists, the Association of Environmental & Engineering Geologists and private donors. The program will run again in the summer of 2016.

  16. Experimental phase equilibria of a Mount St. Helens rhyodacite: a framework for interpreting crystallization paths in degassing silicic magmas

    NASA Astrophysics Data System (ADS)

    Riker, Jenny M.; Blundy, Jonathan D.; Rust, Alison C.; Botcharnikov, Roman E.; Humphreys, Madeleine C. S.

    2015-07-01

    We present isothermal (885 °C) phase equilibrium experiments for a rhyodacite from Mount St. Helens (USA) at variable total pressure (25-457 MPa) and fluid composition (XH2Ofl = 0.6-1.0) under relatively oxidizing conditions (NNO to NNO + 3). Run products were characterized by SEM, electron microprobe, and SIMS. Experimental phase assemblages and phase chemistry are consistent with those of natural samples from Mount St. Helens from the last 4000 years. Our results emphasize the importance of pressure and melt H2O content in controlling phase proportions and compositions, showing how significant textural and compositional variability may be generated in the absence of mixing, cooling, or even decompression. Rather, variations in the bulk volatile content of magmas, and the potential for fluid migration relative to surrounding melts, mean that magmas may take varied trajectories through pressure-fluid composition space during storage, transport, and eruption. We introduce a novel method for projecting isothermal phase equilibria into CO2-H2O space (as conventionally done for melt inclusions) and use this projection to interpret petrological data from Mount St. Helens dacites. By fitting the experimental data as empirical functions of melt water content, we show how different scenarios of isothermal magma degassing (e.g., water-saturated ascent, vapor-buffered ascent, and vapor fluxing) can have quite different textural and chemical consequences. We explore how petrological data might be used to infer degassing paths of natural magmas and conclude that melt CO2 content is a much more useful parameter in this regard than melt H2O.

  17. Magma reservoirs from the upper crust to the Moho inferred from high-resolution Vp and Vs models beneath Mount St. Helens

    NASA Astrophysics Data System (ADS)

    Kiser, E.; Palomeras, I.; Levander, A.; Zelt, C. A.; Harder, S. H.; Schmandt, B.; Hansen, S. M.; Creager, K. C.; Ulberg, C. W.

    2015-12-01

    Seismic investigations following the 1980 eruption of Mount St. Helens have led to a detailed model of the magmatic and tectonic structure directly beneath the volcano. These studies suffer from limited resolution below ~10 km, making it difficult to estimate the volume of the shallow magma reservoir beneath the volcano, the regions of magma entry into the lower crust, and the connectivity of this magma system throughout the crust. The latter is particularly interesting as one interpretation of the Southern Washington Cascades Conductor (SWCC) suggests that the Mount St Helens and Mount Adams volcanic systems are connected in the crust (Hill et al., 2009). The multi-disciplinary iMUSH (imaging Magma Under St. Helens) project is designed to investigate these and other fundamental questions associated with Mount St. Helens. Here we present the first high-resolution 2D Vp and Vs models derived from travel-time data from the iMUSH 3D active-source seismic experiment. Significant lateral heterogeneity exists in both the Vp and Vs models. Directly beneath Mount St. Helens we observe a high Vp/Vs body, inferred to be the upper/middle crustal magma reservoir, between 4 and 13 km depth. Southeast of this body is a low Vp column extending from the Moho to approximately 15 km depth. A cluster of low frequency events, typically associated with injection of magma, occurs at the northwestern boundary of this low Vp column. Much of the recorded seismicity between the shallow high Vp/Vs body and deep low Vp column took place in the months preceding and hours following the May 18, 1980 eruption. This may indicate a transient migration of magma between these two reservoirs associated with this eruption. Outside of the inferred magma bodies that feed Mount St. Helens, we observe several other interesting velocity anomalies. In the lower crust, high Vp features bound the low Vp column. One explanation for these features is the presence of lower crustal cumulates associated with

  18. Operation of a digital seismic network on Mount St. Helens volcano and observations of long-period seismic events that originate under the volcano

    SciTech Connect

    Fehler, M.; Chouet, B.

    1982-01-01

    During the period May through October 1981, a nine station digital seismic array was operated on the flanks of Mount St. Helens volcano in the state of Washington. The purpose was to obtain high quality digital seismic data from a dense seismic array operating near and in the summit crater of the volcano to facilitate study of near field seismic waveforms generated under the volcano. Our goal is to investigate the source mechanism of volcanic tremor and seismic activity associated with magma intrusion, dome growth and steam-ash emissions occurring within the crater of Mount St. Helens.

  19. Measurements of the imaginary part of the refractive index between 300 and 700 nanometers for mount st. Helens ash.

    PubMed

    Patterson, E M

    1981-02-20

    The absorption properties, expressed as a wavelength-dependent imaginary index of refraction, of the Mount St. Helens ash from the 18 May 1980 eruption were measured between 300 and 700 nanometers by diffuse reflectance techniques. The measurements were made for both surface and stratospheric samples. The stratospheric samples show imaginary index values that decrease from approximately 0.01 to 0.02 at 300 nanometers to about 0.0015 at 700 nanometers. The surface samples show less wavelength variation in imaginary refractive index over this spectral range.

  20. A comparison of thermal observations of mount st. Helens before and during the first week of the initial 1980 eruption.

    PubMed

    Lawrence, W S; Qamar, A; Moore, J; Kendrick, G

    1980-09-26

    Before and during the first week of the March-April 1980 eruptions of Mount St. Helens, Washington, infrared thermal surveys were conducted to monitor the thermal activity of the volcano. The purpose was to determine if an increase in thermal activity had taken place since an earlier airborne survey in 1966. Nine months before the eruption there was no evidence of an increase in thermal activity. The survey during the first week of the 1980 eruptions indicated that little or no change in thermal activity had taken place up to 4 April. Temperatures of ejected ash and steam were low and never exceeded 15 degrees C directly above the vent.