Science.gov

Sample records for alanine aminotransferase creatine

  1. Alanine aminotransferase controls seed dormancy in barley.

    PubMed

    Sato, Kazuhiro; Yamane, Miki; Yamaji, Nami; Kanamori, Hiroyuki; Tagiri, Akemi; Schwerdt, Julian G; Fincher, Geoffrey B; Matsumoto, Takashi; Takeda, Kazuyoshi; Komatsuda, Takao

    2016-01-01

    Dormancy allows wild barley grains to survive dry summers in the Near East. After domestication, barley was selected for shorter dormancy periods. Here we isolate the major seed dormancy gene qsd1 from wild barley, which encodes an alanine aminotransferase (AlaAT). The seed dormancy gene is expressed specifically in the embryo. The AlaAT isoenzymes encoded by the long and short dormancy alleles differ in a single amino acid residue. The reduced dormancy allele Qsd1 evolved from barleys that were first domesticated in the southern Levant and had the long dormancy qsd1 allele that can be traced back to wild barleys. The reduced dormancy mutation likely contributed to the enhanced performance of barley in industrial applications such as beer and whisky production, which involve controlled germination. In contrast, the long dormancy allele might be used to control pre-harvest sprouting in higher rainfall areas to enhance global adaptation of barley. PMID:27188711

  2. Alanine aminotransferase controls seed dormancy in barley

    PubMed Central

    Sato, Kazuhiro; Yamane, Miki; Yamaji, Nami; Kanamori, Hiroyuki; Tagiri, Akemi; Schwerdt, Julian G.; Fincher, Geoffrey B.; Matsumoto, Takashi; Takeda, Kazuyoshi; Komatsuda, Takao

    2016-01-01

    Dormancy allows wild barley grains to survive dry summers in the Near East. After domestication, barley was selected for shorter dormancy periods. Here we isolate the major seed dormancy gene qsd1 from wild barley, which encodes an alanine aminotransferase (AlaAT). The seed dormancy gene is expressed specifically in the embryo. The AlaAT isoenzymes encoded by the long and short dormancy alleles differ in a single amino acid residue. The reduced dormancy allele Qsd1 evolved from barleys that were first domesticated in the southern Levant and had the long dormancy qsd1 allele that can be traced back to wild barleys. The reduced dormancy mutation likely contributed to the enhanced performance of barley in industrial applications such as beer and whisky production, which involve controlled germination. In contrast, the long dormancy allele might be used to control pre-harvest sprouting in higher rainfall areas to enhance global adaptation of barley. PMID:27188711

  3. IFCC primary reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 degrees C. International Federation of Clinical Chemistry and Laboratory Medicine. Part 7. Certification of four reference materials for the determination of enzymatic activity of gamma-glutamyltransferase, lactate dehydrogenase, alanine aminotransferase and creatine kinase accord.

    PubMed

    Siekmann, Lothar; Bonora, Roberto; Burtis, Carl A; Ceriotti, Ferruccio; Clerc-Renaud, Pascale; Férard, Georges; Ferrero, Carlo A; Forest, Jean-Claude; Franck, Paul F H; Gella, F-Javier; Hoelzel, Wieland; Jørgensen, Poul Jørgen; Kanno, Takashi; Kessner, Art; Klauke, Rainer; Kristiansen, Nina; Lessinger, Jean-Marc; Linsinger, Thomas P J; Misaki, Hideo; Mueller, Mathias M; Panteghini, Mauro; Pauwels, Jean; Schiele, Françoise; Schimmel, Heinz G; Vialle, Arlette; Weidemann, Gerhard; Schumann, Gerhard

    2002-07-01

    This paper is the seventh in a series dealing with reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 degrees C and the certification of reference preparations. Other parts deal with: Part 1. The Concept of Reference Procedures for the Measurement of Catalytic Activity Concentrations of Enzymes; Part 2. Reference Procedure for the Measurement of Catalytic Concentration of Creatine Kinase; Part 3. Reference Procedure for the Measurement of Catalytic Concentration of Lactate Dehydrogenase; Part 4. Reference Procedure for the Measurement of Catalytic Concentration of Alanine Aminotransferase; Part 5. Reference Procedure for the Measurement of Catalytic Concentration of Aspartate Aminotransferase; Part 6. Reference Procedure for the Measurement of Catalytic Concentration of Gamma-Glutamyltransferase. A document describing the determination of preliminary reference values is also in preparation. The certification of the catalytic activity concentrations as determined by the recently elaborated IFCC primary reference methods at 37 degrees C of four enzyme preparations, namely IRMM/IFCC 452 (gamma-glutamyltransferase), IRMM/IFCC 453 (lactate dehydrogenase 1), IRMM/IFCC 454 (alanine aminotransferase) and IRMM/IFCC 455 (creatine kinase) is described. Homogeneity data were derived from previous results. Stability was assessed using recently obtained data as well as data from previous stability studies. The collaborative study for value assignment was performed under a strict quality control scheme to ensure traceability to the primary reference method. Uncertainty of the materials was assessed in compliance with the Guide to the Expression of Uncertainty in Measurement. The certified values obtained at 37 degrees C are 1.90 microkat/l +/- 0.04 microkat/l (114.1 U/l +/- 2.4 U/l), for gamma-glutamyltransferase, 8.37 microkat/l +/- 0.12 microkat/l (502 U/l +/- 7 U/l), for lactate dehydrogenase 1, 3.09 microkat/l +/- 0.07 microkat

  4. Aspartate Aminotransferase (AST/GOT) and Alanine Aminotransferase (ALT/GPT) Detection Techniques

    PubMed Central

    Huang, Xing-Jiu; Choi, Yang-Kyu; Im, Hyung-Soon; Yarimaga, Oktay; Yoon, Euisik; Kim, Hak-Sung

    2006-01-01

    The levels of aspartate aminotransferase (AST/GOT) and alanine aminotransferase (ALT/GPT) in serum can help people diagnose body tissues especially the heart and the liver are injured or not. This article provides a comprehensive review of research activities that concentrate on AST/GOT and ALT/GPT detection techniques due to their clinical importance. The detection techniques include colorimetric, spectrophotometric, chemiluminescence, chromatography, fluorescence and UV absorbance, radiochemical, and electrochemical techniques. We devote the most attention on experimental principle. In some methods a few representative devices and important conclusions are presented.

  5. Crystal Structures of Aedes Aegypt Alanine Glyoxylate Aminotransferase

    SciTech Connect

    Han,Q.; Robinson, H.; Gao, Y.; Vogelaar, N.; Wilson, S.; Rizzi, M.; Li, J.

    2006-01-01

    Mosquitoes are unique in having evolved two alanine glyoxylate aminotransferases (AGTs). One is 3-hydroxykynurenine transaminase (HKT), which is primarily responsible for catalyzing the transamination of 3-hydroxykynurenine (3-HK) to xanthurenic acid (XA). Interestingly, XA is used by malaria parasites as a chemical trigger for their development within the mosquito. This 3-HK to XA conversion is considered the major mechanism mosquitoes use to detoxify the chemically reactive and potentially toxic 3-HK. The other AGT is a typical dipteran insect AGT and is specific for converting glyoxylic acid to glycine. Here we report the 1.75{angstrom} high-resolution three-dimensional crystal structure of AGT from the mosquito Aedes aegypti (AeAGT) and structures of its complexes with reactants glyoxylic acid and alanine at 1.75 and 2.1{angstrom} resolution, respectively. This is the first time that the three-dimensional crystal structures of an AGT with its amino acceptor, glyoxylic acid, and amino donor, alanine, have been determined. The protein is dimeric and adopts the type I-fold of pyridoxal 5-phosphate (PLP)-dependent aminotransferases. The PLP co-factor is covalently bound to the active site in the crystal structure, and its binding site is similar to those of other AGTs. The comparison of the AeAGT-glyoxylic acid structure with other AGT structures revealed that these glyoxylic acid binding residues are conserved in most AGTs. Comparison of the AeAGT-alanine structure with that of the Anopheles HKT-inhibitor complex suggests that a Ser-Asn-Phe motif in the latter may be responsible for the substrate specificity of HKT enzymes for 3-HK.

  6. Decreased alanine aminotransferase activity in serum of man during gamma-acetylenic-GABA treatment.

    PubMed

    Olsen, R; Hørder, M

    1980-06-01

    Decreasing concentrations of alanine aminotransferase were observed in nine patients receiving gamma-acetylenic-GABA, an inhibitor of GABA aminotransferase. In vitro studies showed that preincubation at 37 degrees C of serum with gamma-acetylenic-GABA and with urine from a patient receiving the drug led to inhibition of alanine aminotransferase. This inhibition of alanine aminotransferase by gamma-acetylenic-GABA was neutralized by 1-analine, the natural substrate for the enzyme. The mechanism of inhibition may be a competition between the drug and 1-alanine for the substrate binding site of the enzyme. PMID:7414257

  7. Association of Alanine Aminotransferase and Periodontitis: A Cross-Sectional Analysis—NHANES 2009–2012

    PubMed Central

    Wiener, R. Constance; Sambamoorthi, Usha; Jurevic, Richard J.

    2016-01-01

    Objective. Alanine Aminotransferase is an enzyme associated with not only liver diseases, liver conditions, and metabolic syndrome, but also inflammation. Periodontitis is associated with increased cytokines and other markers of inflammation. The purpose of this study is to determine if an independent association between Alanine Aminotransferase and periodontitis exists. Methods. Data from the 2009-2010 and 2011-2012 National Health and Nutrition Surveys (NHANES) were combined. Data concerning periodontitis and Alanine Aminotransferase were extracted and analyzed with Rao Scott Chi-square and logistic regressions. Serum Alanine Aminotransferase was dichotomized at 40 units/liter, and periodontitis was dichotomized to the presence or absence of periodontitis. Results. In bivariate Chi-square analyses, periodontitis and Alanine Aminotransferase were associated (p = 0.0360) and remained significant in unadjusted logistic regression (OR = 1.30 [95% CI: 1.02, 1.65]). However, when other known risk factors of periodontitis were included in the analyses, the relationship attenuated and failed to reach significance (adjusted OR = 1.17 [95% CI: 0.85, 1.60]). Conclusion. Our study adds to the literature a positive but attenuated association of serum Alanine Aminotransferase with periodontitis which failed to reach significance when other known, strong risk factors of periodontitis were included in the analysis. PMID:26981311

  8. The value of aspartate aminotransferase and alanine aminotransferase in cardiovascular disease risk assessment

    PubMed Central

    Weng, Stephen F; Kai, Joe; Guha, Indra Neil; Qureshi, Nadeem

    2015-01-01

    Objective Aspartate aminotransferase to alanine aminotransferase (AST/ALT) ratio, reflecting liver disease severity, has been associated with increased risk of cardiovascular disease (CVD). The aim of this study was to evaluate whether the AST/ALT ratio improves established risk prediction tools in a primary care population. Methods Data were analysed from a prospective cohort of 29 316 UK primary care patients, aged 25–84 years with no history of CVD at baseline. Cox proportional hazards regression was used to derive 10-year multivariate risk models for the first occurrence of CVD based on two established risk prediction tools (Framingham and QRISK2), with and without including the AST/ALT ratio. Overall, model performance was assessed by discriminatory accuracy (AUC c-statistic). Results During a total follow-up of 120 462 person-years, 782 patients (59% men) experienced their first CVD event. Multivariate models showed that elevated AST/ALT ratios were significantly associated with CVD in men (Framingham: HR 1.37, 95% CI 1.05 to 1.79; QRISK2: HR 1.40, 95% CI 1.04 to 1.89) but not in women (Framingham: HR 1.06, 95% CI 0.78 to 1.43; QRISK2: HR 0.97, 95% CI 0.70 to 1.35). Including the AST/ALT ratio with all Framingham risk factors (AUC c-statistic: 0.72, 95% CI 0.71 to 0.74) or QRISK2 risk factors (AUC c-statistic: 0.73, 95% CI 0.71 to 0.74) resulted in no change in discrimination from the established risk prediction tools. Limiting analysis to those individuals with raised ALT showed that discrimination could improve by 5% and 4% with Framingham and QRISK2 risk factors, respectively. Conclusions Elevated AST/ALT ratio is significantly associated with increased risk of developing CVD in men but not women. However, the ratio does not confer any additional benefits over established CVD risk prediction tools in the general population, but may have clinical utility in certain subgroups. PMID:26322236

  9. Beta-alanine/alpha-ketoglutarate aminotransferase for 3-hydroxypropionic acid production

    DOEpatents

    Jessen, Holly Jean; Liao, Hans H; Gort, Steven John; Selifonova, Olga V

    2014-11-18

    The present disclosure provides novel beta-alanine/alpha ketoglutarate aminotransferase nucleic acid and protein sequences having increased biological activity. Also provided are cells containing such enzymes, as well as methods of their use, for example to produce malonyl semialdehyde and downstream products thereof, such as 3-hydroxypropionic acid and derivatives thereof.

  10. Beta-alanine/alpha-ketoglutarate aminotransferase for 3-hydroxypropionic acid production

    DOEpatents

    Jessen, Holly Jean; Liao, Hans H.; Gort, Steven John; Selifonova, Olga V.

    2011-10-04

    The present disclosure provides novel beta-alanine/alpha ketoglutarate aminotransferase nucleic acid and protein sequences having increased biological activity. Also provided are cells containing such enzymes, as well as methods of their use, for example to produce malonyl semialdehyde and downstream products thereof, such as 3-hydroxypropionic acid and derivatives thereof.

  11. Repeated Supramaximal Exercise-Induced Oxidative Stress: Effect of β-Alanine Plus Creatine Supplementation

    PubMed Central

    Belviranli, Muaz; Okudan, Nilsel; Revan, Serkan; Balci, Serdar; Gokbel, Hakki

    2016-01-01

    Background: Carnosine is a dipeptide formed from the β-alanine and histidine amino acids and found in mainly in the brain and muscle, especially fast twitch muscle. Carnosine and creatine has an antioxidant effect and carnosine accounts for about 10% of the muscle's ability to buffer the H+ ions produced by exercise. Objectives: The aim of the study was to investigate the effects of beta alanine and/or creatine supplementation on oxidant and antioxidant status during repeated Wingate tests (WTs). Patients and Methods: Forty four sedentary males participated in the study. Participants performed three 30s WTs with 2 minutes rest between exercise bouts. After the first exercise session, the subjects were assigned to one of four groups: Placebo, Creatine, Beta-alanine and Beta-alanine plus creatine. Participants ingested twice per day for 22 consecutive days, then four times per day for the following 6 days. After the supplementation period the second exercise session was applied. Blood samples were taken before and immediately after the each exercise session for the analysis of oxidative stress and antioxidant markers. Results: Malondialdehyde levels and superoxide dismutase activities were affected by neither supplementation nor exercise. During the pre-supplementation session, protein carbonyl reduced and oxidized glutathione (GSH and GSSG) levels increased immediately after the exercise. However, during the post-supplementation session GSH and GSSG levels increased in beta-alanine and beta-alanine plus creatine groups immediately after the exercise compared to pre-exercise. In addition, during the post-supplementation session total antioxidant capacity increased in beta-alanine group immediately after the exercise. Conclusions: Beta-alanine supplementation has limited antioxidant effect during the repeated WTs. PMID:27217925

  12. Protein Homeostasis Defects of Alanine-Glyoxylate Aminotransferase: New Therapeutic Strategies in Primary Hyperoxaluria Type I

    PubMed Central

    Pey, Angel L.; Albert, Armando; Salido, Eduardo

    2013-01-01

    Alanine-glyoxylate aminotransferase catalyzes the transamination between L-alanine and glyoxylate to produce pyruvate and glycine using pyridoxal 5′-phosphate (PLP) as cofactor. Human alanine-glyoxylate aminotransferase is a peroxisomal enzyme expressed in the hepatocytes, the main site of glyoxylate detoxification. Its deficit causes primary hyperoxaluria type I, a rare but severe inborn error of metabolism. Single amino acid changes are the main type of mutation causing this disease, and considerable effort has been dedicated to the understanding of the molecular consequences of such missense mutations. In this review, we summarize the role of protein homeostasis in the basic mechanisms of primary hyperoxaluria. Intrinsic physicochemical properties of polypeptide chains such as thermodynamic stability, folding, unfolding, and misfolding rates as well as the interaction of different folding states with protein homeostasis networks are essential to understand this disease. The view presented has important implications for the development of new therapeutic strategies based on targeting specific elements of alanine-glyoxylate aminotransferase homeostasis. PMID:23956997

  13. A novel low molecular weight alanine aminotransferase from fasted rat liver.

    PubMed

    Vedavathi, M; Girish, K S; Kumar, M Karuna

    2006-01-01

    Alanine is the most effective precursor for gluconeogenesis among amino acids, and the initial reaction is catalyzed by alanine aminotransferase (AlaAT). Although the enzyme activity increases during fasting, this effect has not been studied extensively. The present study describes the purification and characterization of an isoform of AlaAT from rat liver under fasting. The molecular mass of the enzyme is 17.7 kD with an isoelectric point of 4.2; glutamine is the N-terminal residue. The enzyme showed narrow substrate specificity for L-alanine with Km values for alanine of 0.51 mM and for 2-oxoglutarate of 0.12 mM. The enzyme is a glycoprotein. Spectroscopic and inhibition studies showed that pyridoxal phosphate (PLP) and free -SH groups are involved in the enzymatic catalysis. PLP activated the enzyme with a Km of 0.057 mM. PMID:16487061

  14. Isolation and characterization of cytosolic alanine aminotransferase isoforms from starved rat liver.

    PubMed

    Vedavathi, M; Girish, K S; Kumar, M Karuna

    2004-12-01

    Alanine is the most effective precursor for gluconeogenesis among amino acids and the initial reaction is catalyzed by alanine aminotransferases (AlaATs). It is a less extensively studied enzyme under starvation and known to that the enzyme activity increases in liver under starvation. The present study describes the purification and characterization of two isoforms of alanine aminotransferases from starved male rat liver under starvation. The molecular mass of isoforms was found to be 17.7 and 112.2 kDa with isoelectric points of 4.2 and 5.3 respectively for AlaAT I and AlaAT II. Both the enzymes showed narrow substrate specificity for L-alanine with different Km for alanine and 2-oxoglutarate. Both the enzymes were glycoprotein in nature. Inhibition, modification and spectroscopic studies showed that both PLP and free-SH groups are directly involved in the enzymatic catalysis. PLP activated both the enzymes with a Km 0.057 mM and 0.2 mM for AlaAT I and II respectively. PMID:15663181

  15. Serum γ-Glutamyltransferase, Alanine Aminotransferase and Aspartate Aminotransferase Activity in Healthy Blood Donor of Different Ethnic Groups in Gorgan

    PubMed Central

    Mehrpouya, Masoumeh; Pourhashem, Zeinab

    2016-01-01

    Introduction Measure of liver enzymes may help to increase safety of blood donation for both blood donor and recipient. Determination of liver enzymes may prepare valuable clinical information. Aim To assess serum γ-Glutamyltransferase (GGT), Alanine Aminotransferase (ALT), and Aspartate Aminotransferase (AST) activities in healthy blood donors in different ethnic groups in Gorgan. Materials and Methods This study was performed in 450 healthy male blood donors, in three ethnic groups (Fars, Sistanee and Turkman) who attended Gorgan blood transfusion center. Liver enzymes (GGT, ALT and AST) were determined. Results Serum AST and ALT in three ethnic groups were significant except for serum GGT levels. There was significant correlation between family histories of liver disease and systolic blood pressure and AST in Fars, and GGT in Sistanee ethnic groups. Conclusion Several factors, such as age, family history of diabetes mellitus, family history of liver disease and smoking habit had no effect on some liver enzymes in different ethnic groups in this area. Variation of AST, ALT, and GGT enzyme activities in healthy subjects was associated with some subjects in our study groups. According to our study, it suggests that screening of AST and GGT enzymes in subjects with family history of liver disease is necessary in different ethnic groups.

  16. Alanine aminotransferase as a predictor of adverse perinatal outcomes in women with intrahepatic cholestasis of pregnancy

    PubMed Central

    Ekiz, Ali; Kaya, Basak; Avci, Muhittin Eftal; Polat, Ibrahim; Dikmen, Selin; Yildirim, Gokhan

    2016-01-01

    Objective: To evaluate the associations between adverse perinatal outcomes and serum transaminase levels at the time of diagnosis in patients with intrahepatic cholestasis of pregnancy. Methods: We performed a retrospective analysis of patients hospitalized for evaluation of intrahepatic cholestasis of pregnancy from January 2013 to June 2014 in a tertiary center. Seventy-one patients were divided into two groups according to the presence (Group I) or absence of adverse perinatal outcomes (Group II). Results: The mean aminotransferase levels and conjugated bilirubin levels at the time of diagnosis were significantly higher in Group I than in Group II. Receiver operating characteristic curve analysis revealed that the alanine aminotransferase level could predict adverse perinatal outcomes with 76.47% sensitivity and 78.38% specificity, and the cut-off value was 95 IU/L. Among patients with intrahepatic cholestasis of pregnancy, those with adverse perinatal outcomes were significantly older, had an earlier diagnosis, and had higher alanine aminotransferase levels. Using the 95-IU/L cut-off value, patients with intrahepatic cholestasis of pregnancy had a 3.54-fold increased risk for adverse perinatal outcomes. Conclusions: Patients with intrahepatic cholestasis of pregnancy and high alanineaminotransferase levels should be followed up for possible adverse perinatal outcomes.

  17. PPAR{alpha} regulates the hepatotoxic biomarker alanine aminotransferase (ALT1) gene expression in human hepatocytes

    SciTech Connect

    Thulin, Petra; Rafter, Ingalill; Stockling, Kenneth; Tomkiewicz, Celine; Norjavaara, Ensio; Aggerbeck, Martine; Hellmold, Heike; Ehrenborg, Ewa; Andersson, Ulf; Cotgreave, Ian; Glinghammar, Bjoern

    2008-08-15

    In this work, we investigated a potential mechanism behind the observation of increased aminotransferase levels in a phase I clinical trial using a lipid-lowering drug, the peroxisome proliferator-activated receptor (PPAR) {alpha} agonist, AZD4619. In healthy volunteers treated with AZD4619, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities were elevated without an increase in other markers for liver injury. These increases in serum aminotransferases have previously been reported in some patients receiving another PPAR{alpha} agonist, fenofibrate. In subsequent in vitro studies, we observed increased expression of ALT1 protein and mRNA in human hepatocytes after treatment with fenofibric acid. The PPAR effect on ALT1 expression was shown to act through a direct transcriptional mechanism involving at least one PPAR response element (PPRE) in the proximal ALT1 promoter, while no effect of fenofibrate and AZD4619 was observed on the ALT2 promoter. Binding of PPARs to the PPRE located at - 574 bp from the transcriptional start site was confirmed on both synthetic oligonucleotides and DNA in hepatocytes. These data show that intracellular ALT expression is regulated by PPAR agonists and that this mechanism might contribute to increased ALT activity in serum.

  18. Creatine

    MedlinePlus

    ... acids twice daily for 30 days might reduce pain and swelling. But the effects of creatine alone ... not been proven. Creatine can also cause stomach pain, nausea, diarrhea, and muscle cramping. Creatine causes muscles ...

  19. Evaluation of drug-induced tissue injury by measuring alanine aminotransferase (ALT) activity in silkworm hemolymph

    PubMed Central

    2012-01-01

    Background Our previous studies suggest silkworms can be used as model animals instead of mammals in pharmacologic studies to develop novel therapeutic medicines. We examined the usefulness of the silkworm larvae Bombyx mori as an animal model for evaluating tissue injury induced by various cytotoxic drugs. Drugs that induce hepatotoxic effects in mammals were injected into the silkworm hemocoel, and alanine aminotransferase (ALT) activity was measured in the hemolymph 1 day later. Results Injection of CCl4 into the hemocoel led to an increase in ALT activity. The increase in ALT activity was attenuated by pretreatment with N-acetyl-L-cysteine. Injection of benzoic acid derivatives, ferric sulfate, sodium valproate, tetracycline, amiodarone hydrochloride, methyldopa, ketoconazole, pemoline (Betanamin), N-nitroso-fenfluramine, and D-galactosamine also increased ALT activity. Conclusions These findings indicate that silkworms are useful for evaluating the effects of chemicals that induce tissue injury in mammals. PMID:23137391

  20. Multiple adaptive losses of alanine-glyoxylate aminotransferase mitochondrial targeting in fruit-eating bats.

    PubMed

    Liu, Yang; Xu, Huihui; Yuan, Xinpu; Rossiter, Stephen J; Zhang, Shuyi

    2012-06-01

    The enzyme alanine-glyoxylate aminotransferase 1 (AGT) functions to detoxify glyoxylate before it is converted into harmful oxalate. In mammals, mitochondrial targeting of AGT in carnivorous species versus peroxisomal targeting in herbivores is controlled by two signal peptides that correspond to these respective organelles. Differential expression of the mitochondrial targeting sequence (MTS) is considered an adaptation to diet-specific subcellular localization of glyoxylate precursors. Bats are an excellent group in which to study adaptive changes in dietary enzymes; they show unparalleled mammalian dietary diversification as well as independent origins of carnivory, frugivory, and nectarivory. We studied the AGT gene in bats and other mammals with diverse diets and found that the MTS has been lost in unrelated lineages of frugivorous bats. Conversely, species exhibiting piscivory, carnivory, insectivory, and sanguinivory possessed intact MTSs. Detected positive selection in the AGT of ancestral fruit bats further supports adaptations related to evolutionary changes in diet. PMID:22319153

  1. Effective disposal of nitrogen waste in blood-fed Aedes aegypti mosquitoes requires alanine aminotransferase.

    PubMed

    Mazzalupo, Stacy; Isoe, Jun; Belloni, Virginia; Scaraffia, Patricia Y

    2016-01-01

    To better understand the mechanisms responsible for the success of female mosquitoes in their disposal of excess nitrogen, we investigated the role of alanine aminotransferase (ALAT) in blood-fed Aedes aegypti. Transcript and protein levels from the 2 ALAT genes were analyzed in sucrose- and blood-fed A. aegypti tissues. ALAT1 and ALAT2 exhibit distinct expression patterns in tissues during the first gonotrophic cycle. Injection of female mosquitoes with either double-stranded RNA (dsRNA)-ALAT1 or dsRNA ALAT2 significantly decreased mRNA and protein levels of ALAT1 or ALAT2 in fat body, thorax, and Malpighian tubules compared with dsRNA firefly luciferase-injected control mosquitoes. The silencing of either A. aegypti ALAT1 or ALAT2 caused unexpected phenotypes such as a delay in blood digestion, a massive accumulation of uric acid in the midgut posterior region, and a significant decrease of nitrogen waste excretion during the first 48 h after blood feeding. Concurrently, the expression of genes encoding xanthine dehydrogenase and ammonia transporter (Rhesus 50 glycoprotein) were significantly increased in tissues of both ALAT1- and ALAT2-deficient females. Moreover, perturbation of ALAT1 and ALAT2 in the female mosquitoes delayed oviposition and reduced egg production. These novel findings underscore the efficient mechanisms that blood-fed mosquitoes use to avoid ammonia toxicity and free radical damage.-Mazzalupo, S., Isoe, J., Belloni, V., Scaraffia, P. Y. Effective disposal of nitrogen waste in blood-fed Aedes aegypti mosquitoes requires alanine aminotransferase. PMID:26310269

  2. Screening for genetic haemochromatosis in blood samples with raised alanine aminotransferase

    PubMed Central

    Bhavnani, M; Lloyd, D; Bhattacharyya, A; Marples, J; Elton, P; Worwood, M

    2000-01-01

    BACKGROUND—In the UK approximately 1 in 140 people are homozygous for the C282Y mutation of the HFE gene and are at risk from iron overload caused by genetic haemochromatosis (GH). Early detection can prevent organ damage secondary to iron deposition and increase life expectancy.
AIM—To screen for GH in all blood samples sent to the laboratory for routine liver function tests in which raised serum alanine aminotransferase (ALT) activity was detected.
METHODS—ALT was measured in sera sent to the laboratory for routine liver function tests. In those samples found to have raised activity, transferrin saturation and ferritin were measured followed by genetic testing when transferrin saturation was increased.
RESULTS—Of the 35 069 serum samples assayed for routine liver function tests, 1490 (4.2%) had raised ALT levels (>50 u/l). Transferrin saturation and serum ferritin concentrations were measured in these patient samples, and in 56 transferrin saturation was >60%. Further blood samples were requested from these patients for genetic testing: 33 samples were obtained. There were nine patients homozygous for the C282Y mutation of the HFE gene and three compound heterozygotes (heterozygous for both C282Y and H63D mutations).
CONCLUSIONS—The association of raised ALT activity and transferrin saturation of >60% could provide a simple, cost effective method for detecting individuals with clinical haemochromatosis. Although many patients with GH may have been missed, this study suggests that the clinical penetrance of the disorder may be much lower than is generally supposed and that genetic screening will identify many people who may never develop clinical haemochromatosis.


Keywords: haemochromatosis; alanine aminotransferase PMID:10764716

  3. Cytokeratin 18, Alanine Aminotransferase, Platelets and Triglycerides Predict the Presence of Nonalcoholic Steatohepatitis

    PubMed Central

    Cao, Wei; Zhao, Caiyan; Shen, Chuan; Wang, Yadong

    2013-01-01

    Background Nonalcoholic fatty liver disease (NAFLD) is one of the critical public health problems in China. The full spectrum of the disease ranges from simple steatosis and nonalcoholic steatohepatitis (NASH) to cirrhosis and hepatocellular carcinoma(HCC). The infiltration of inflammatory cells characterizes NASH. This characteristic contributes to the progression of hepatitis, fibrosis, cirrhosis, and HCC. Therefore, distinguishing NASH from NAFLD is crucial. Objective and Methods Ninety-five patients with NAFLD, 44 with NASH, and 51 with non-NASH were included in the study to develop a new scoring system for differentiating NASH from NAFLD. Data on clinical and biological characteristics, as well as blood information, were obtained. Cytokeratin-18 (CK-18) fragments levels were measured using an enzyme-linked immunosorbant assay. Results Several indexes show significant differences between the two groups, which include body mass index (BMI), waist-on-hip ratio (WHR), aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), γ-glutamyl transpeptidase (γ-GT), platelets, uric acid (UA), hs-C-reactive protein (hs-CRP), triglycerides (TG), albumin (ALB), and CK-18 fragments (all P < 0.05). The CK-18 fragment levels showed a significant positive correlation with steatosis severity, ballooning, lobular inflammation, and fibrosis stage (all P < 0.05). Therefore, a new model that combines ALT, platelets, CK-18 fragments, and TG was established by logistic regression among NAFLD patients. The AUROC curve in predicting NASH was 0.920 (95% CI: 0.866 - 0.974, cutoff value = 0.361, sensitivity = 89%, specificity = 86%, positive predictive value = 89%, negative predictive value = 89%). Conclusion The novel scoring system may be considered as a useful model in predicting the presence of NASH in NAFLD patients. PMID:24324749

  4. Irritable Bowel Syndrome May Be Associated with Elevated Alanine Aminotransferase and Metabolic Syndrome

    PubMed Central

    Lee, Seung-Hwa; Kim, Kwang-Min; Joo, Nam-Seok

    2016-01-01

    Purpose Recent studies have revealed close relationships between hepatic injury, metabolic pathways, and gut microbiota. The microorganisms in the intestine also cause irritable bowel syndrome (IBS). The aim of this study was to examine whether IBS was associated with elevated hepatic enzyme [alanine aminotransferase (ALT) and aspartate aminotransferase (AST)], gamma-glutamyl transferase (γ-GT) levels, and metabolic syndrome (MS). Materials and Methods This was a retrospective, cross-sectional, case-control study. The case and control groups comprised subjects who visited our health promotion center for general check-ups from June 2010 to December 2010. Of the 1127 initially screened subjects, 83 had IBS according to the Rome III criteria. The control group consisted of 260 age- and sex-matched subjects without IBS who visited our health promotion center during the same period. Results Compared to control subjects, patients with IBS showed significantly higher values of anthropometric parameters (body mass index, waist circumference), liver enzymes, γ-GT, and lipid levels. The prevalences of elevated ALT (16.9% vs. 7.7%; p=0.015) and γ-GT (24.1% vs. 11.5%; p=0.037) levels were significantly higher in patients with IBS than in control subjects. A statistically significant difference was observed in the prevalence of MS between controls and IBS patients (12.7% vs. 32.5%; p<0.001). The relationships between elevated ALT levels, MS, and IBS remained statistically significant after controlling for potential confounding factors. Conclusion On the basis of our study results, IBS may be an important condition in certain patients with elevated ALT levels and MS. PMID:26632395

  5. A Micro-Platinum Wire Biosensor for Fast and Selective Detection of Alanine Aminotransferase

    PubMed Central

    Thuy, Tran Nguyen Thanh; Tseng, Tina T.-C.

    2016-01-01

    In this study, a miniaturized biosensor based on permselective polymer layers (overoxidized polypyrrole (Ppy) and Nafion®) modified and enzyme (glutamate oxidase (GlutOx)) immobilized micro-platinum wire electrode for the detection of alanine aminotransferase (ALT) was fabricated. The proposed ALT biosensor was measured electrochemically by constant potential amperometry at +0.7 V vs. Ag/AgCl. The ALT biosensor provides fast response time (~5 s) and superior selectivity towards ALT against both negatively and positively charged species (e.g., ascorbic acid (AA) and dopamine (DA), respectively). The detection range of the ALT biosensor is found to be 10–900 U/L which covers the range of normal ALT levels presented in the serum and the detection limit and sensitivity are found to be 8.48 U/L and 0.059 nA/(U/L·mm2) (N = 10), respectively. We also found that one-day storage of the ALT biosensor at −20 °C right after the sensor being fabricated can enhance the sensor sensitivity (1.74 times higher than that of the sensor stored at 4 °C). The ALT biosensor is stable after eight weeks of storage at −20 °C. The sensor was tested in spiked ALT samples (ALT activities: 20, 200, 400, and 900 U/L) and reasonable recoveries (70%~107%) were obtained. PMID:27240366

  6. A Micro-Platinum Wire Biosensor for Fast and Selective Detection of Alanine Aminotransferase.

    PubMed

    Thuy, Tran Nguyen Thanh; Tseng, Tina T-C

    2016-01-01

    In this study, a miniaturized biosensor based on permselective polymer layers (overoxidized polypyrrole (Ppy) and Nafion(®)) modified and enzyme (glutamate oxidase (GlutOx)) immobilized micro-platinum wire electrode for the detection of alanine aminotransferase (ALT) was fabricated. The proposed ALT biosensor was measured electrochemically by constant potential amperometry at +0.7 V vs. Ag/AgCl. The ALT biosensor provides fast response time (~5 s) and superior selectivity towards ALT against both negatively and positively charged species (e.g., ascorbic acid (AA) and dopamine (DA), respectively). The detection range of the ALT biosensor is found to be 10-900 U/L which covers the range of normal ALT levels presented in the serum and the detection limit and sensitivity are found to be 8.48 U/L and 0.059 nA/(U/L·mm²) (N = 10), respectively. We also found that one-day storage of the ALT biosensor at -20 °C right after the sensor being fabricated can enhance the sensor sensitivity (1.74 times higher than that of the sensor stored at 4 °C). The ALT biosensor is stable after eight weeks of storage at -20 °C. The sensor was tested in spiked ALT samples (ALT activities: 20, 200, 400, and 900 U/L) and reasonable recoveries (70%~107%) were obtained. PMID:27240366

  7. Associations of functional alanine-glyoxylate aminotransferase 2 gene variants with atrial fibrillation and ischemic stroke.

    PubMed

    Seppälä, Ilkka; Kleber, Marcus E; Bevan, Steve; Lyytikäinen, Leo-Pekka; Oksala, Niku; Hernesniemi, Jussi A; Mäkelä, Kari-Matti; Rothwell, Peter M; Sudlow, Cathie; Dichgans, Martin; Mononen, Nina; Vlachopoulou, Efthymia; Sinisalo, Juha; Delgado, Graciela E; Laaksonen, Reijo; Koskinen, Tuomas; Scharnagl, Hubert; Kähönen, Mika; Markus, Hugh S; März, Winfried; Lehtimäki, Terho

    2016-01-01

    Asymmetric and symmetric dimethylarginines (ADMA and SDMA) impair nitric oxide bioavailability and have been implicated in the pathogenesis of atrial fibrillation (AF). Alanine-glyoxylate aminotransferase 2 (AGXT2) is the only enzyme capable of metabolizing both of the dimethylarginines. We hypothesized that two functional AGXT2 missense variants (rs37369, V140I; rs16899974, V498L) are associated with AF and its cardioembolic complications. Association analyses were conducted using 1,834 individulas with AF and 7,159 unaffected individuals from two coronary angiography cohorts and a cohort comprising patients undergoing clinical exercise testing. In coronary angiography patients without structural heart disease, the minor A allele of rs16899974 was associated with any AF (OR = 2.07, 95% CI 1.59-2.68), and with paroxysmal AF (OR = 1.98, 95% CI 1.44-2.74) and chronic AF (OR = 2.03, 95% CI 1.35-3.06) separately. We could not replicate the association with AF in the other two cohorts. However, the A allele of rs16899974 was nominally associated with ischemic stroke risk in the meta-analysis of WTCCC2 ischemic stroke cohorts (3,548 cases, 5,972 controls) and with earlier onset of first-ever ischemic stroke (360 cases) in the cohort of clinical exercise test patients. In conclusion, AGXT2 variations may be involved in the pathogenesis of AF and its age-related thromboembolic complications. PMID:26984639

  8. Reconfiguration of N Metabolism upon Hypoxia Stress and Recovery: Roles of Alanine Aminotransferase (AlaAT) and Glutamate Dehydrogenase (GDH)

    PubMed Central

    Diab, Houssein; Limami, Anis M.

    2016-01-01

    In the context of climatic change, more heavy precipitation and more frequent flooding and waterlogging events threaten the productivity of arable farmland. Furthermore, crops were not selected to cope with flooding- and waterlogging-induced oxygen limitation. In general, low oxygen stress, unlike other abiotic stresses (e.g., cold, high temperature, drought and saline stress), received little interest from the scientific community and less financial support from stakeholders. Accordingly, breeding programs should be developed and agronomical practices should be adapted in order to save plants’ growth and yield—even under conditions of low oxygen availability (e.g., submergence and waterlogging). The prerequisite to the success of such breeding programs and changes in agronomical practices is a good knowledge of how plants adapt to low oxygen stress at the cellular and the whole plant level. In the present paper, we summarized the recent knowledge on metabolic adjustment in general under low oxygen stress and highlighted thereafter the major changes pertaining to the reconfiguration of amino acids syntheses. We propose a model showing (i) how pyruvate derived from active glycolysis upon hypoxia is competitively used by the alanine aminotransferase/glutamate synthase cycle, leading to alanine accumulation and NAD+ regeneration. Carbon is then saved in a nitrogen store instead of being lost through ethanol fermentative pathway. (ii) During the post-hypoxia recovery period, the alanine aminotransferase/glutamate dehydrogenase cycle mobilizes this carbon from alanine store. Pyruvate produced by the reverse reaction of alanine aminotransferase is funneled to the TCA cycle, while deaminating glutamate dehydrogenase regenerates, reducing equivalent (NADH) and 2-oxoglutarate to maintain the cycle function. PMID:27258319

  9. Reconfiguration of N Metabolism upon Hypoxia Stress and Recovery: Roles of Alanine Aminotransferase (AlaAT) and Glutamate Dehydrogenase (GDH).

    PubMed

    Diab, Houssein; Limami, Anis M

    2016-01-01

    In the context of climatic change, more heavy precipitation and more frequent flooding and waterlogging events threaten the productivity of arable farmland. Furthermore, crops were not selected to cope with flooding- and waterlogging-induced oxygen limitation. In general, low oxygen stress, unlike other abiotic stresses (e.g., cold, high temperature, drought and saline stress), received little interest from the scientific community and less financial support from stakeholders. Accordingly, breeding programs should be developed and agronomical practices should be adapted in order to save plants' growth and yield-even under conditions of low oxygen availability (e.g., submergence and waterlogging). The prerequisite to the success of such breeding programs and changes in agronomical practices is a good knowledge of how plants adapt to low oxygen stress at the cellular and the whole plant level. In the present paper, we summarized the recent knowledge on metabolic adjustment in general under low oxygen stress and highlighted thereafter the major changes pertaining to the reconfiguration of amino acids syntheses. We propose a model showing (i) how pyruvate derived from active glycolysis upon hypoxia is competitively used by the alanine aminotransferase/glutamate synthase cycle, leading to alanine accumulation and NAD⁺ regeneration. Carbon is then saved in a nitrogen store instead of being lost through ethanol fermentative pathway. (ii) During the post-hypoxia recovery period, the alanine aminotransferase/glutamate dehydrogenase cycle mobilizes this carbon from alanine store. Pyruvate produced by the reverse reaction of alanine aminotransferase is funneled to the TCA cycle, while deaminating glutamate dehydrogenase regenerates, reducing equivalent (NADH) and 2-oxoglutarate to maintain the cycle function. PMID:27258319

  10. Anthropometric Indices in Adults: Which Is the Best Indicator to Identify Alanine Aminotransferase Levels?

    PubMed Central

    Chen, Shuang; Guo, Xiaofan; Yu, Shasha; Zhou, Ying; Li, Zhao; Sun, Yingxian

    2016-01-01

    Background: To evaluate the correlations between serum alanine aminotransferase (ALT) levels and anthropometric indices including body mass index (BMI), waist circumference (WC), hip circumference (HC), waist-to-height ratio (WHtR), waist-to-hip ratio (WHR), and a new body index, the A Body Shape Index (ABSI) in Chinese adults. Methods: A multicenter, cross-sectional study was conducted in rural areas of China in 2012–2013, and 11,331 adults were included in our final analysis. Results: BMI, WC, HC, WHtR, WHR and ABSI were significantly positively correlated with ALT levels. Spearman rank test showed that WHtR (r = 0.346 for men, r = 0.282 for women, both p < 0.001) had the highest correlation coefficient for ALT level, whereas ABSI showed the lowest, and the correlation coefficient of each measure was higher in men than that in women. Comparing the lowest with the highest quintile of each anthropometric measure, the multivariate logistic model presented that WHtR had the superiority of identifying the presence of elevated ALT (OR 4.38; 95% CI 3.15–6.08 for men, OR 4.29; 95% CI 2.91–6.33 for women, both p < 0.001), and the ABSI was the poorest predictor in men (OR 2.51; 95% CI 1.93–3.27, p < 0.001). No association was observed for ABSI in women. Conclusions: Our results indicated that BMI, WC, HC, WHtR and WHR were able to determine elevated ALT presence, while ABSI was not capable. WHtR and to some extent BMI were the best body indices, for predicting the ALT levels in this population. Nevertheless, the predictive ability of ABSI as a novel body index was not superior compared to established anthropometric indices. PMID:26901214

  11. The associations of physical activity and adiposity with alanine aminotransferase and gamma-glutamyltransferase.

    PubMed

    Lawlor, Debbie A; Sattar, Naveed; Smith, George Davey; Ebrahim, Shah

    2005-06-01

    The mechanisms linking obesity and inactivity to diabetes mellitus are unclear. Recent studies have shown associations of alanine aminotransferase (ALT) and gamma-glutamyltransferase (GGT) with diabetes. In a random sample of 3,789 British women aged 60-79 years, the authors examined the associations of obesity and physical activity with ALT and GGT (1999-2001). Both body mass index and waist:hip ratio were independently (of each other, physical activity, alcohol consumption, smoking, and childhood and adulthood social class) positively and linearly associated with ALT and GGT. In adjusted models, a one-standard-deviation increase in body mass index was associated with a 0.46-units/liter (95% confidence interval (CI): 0.16, 0.75) increase in ALT and a 2.14-units/liter (95% CI: 0.99, 3.30) increase in GGT. Similar results for a one-standard-deviation increase in waist:hip ratio were 13.96 (95% CI: 10.44, 17.48) for ALT and 39.44 (95% CI: 25.89, 52.98) for GGT. Frequency of physical activity was inversely and linearly associated with GGT in fully adjusted models, but the inverse association with ALT was attenuated towards the null after adjustment for body mass index and waist:hip ratio. Adjustment for ALT and GGT resulted in some attenuation of the strong linear associations of body mass index and waist:hip ratio with diabetes. These findings provide some support for the suggestion that the relation between obesity and diabetes is, at least in part, mediated by liver pathology. PMID:15901629

  12. Association between Elevated Alanine Aminotransferase and Urosepsis in Children with Acute Pyelonephritis

    PubMed Central

    Kim, Dongwan; Lee, Sung Hyun; Ryoo, Eell; Cho, Hye Kyung; Kim, Yun Mi

    2016-01-01

    Purpose The aim of this study is to investigate the association between elevated alanine aminotransferase (ALT) and urosepsis in children with acute pyelonephritis (APN). Methods We retrospectively identified all children who were managed in our hospital with APN during a decade period. In our study a diagnosis of APN was defined as having a positive urine culture and a positive (99m)Tc-dimercaptosuccinic acid scintigraphy. We compared those with elevated ALT and those with normal ALT according to the following variables: age, gender, duration of fever prior to admission, presence of hypotension, C-reactive protein (CRP), creatinine, presence of anemia, white blood cells count, platelet count, blood culture result, and grades of vesicoureteral reflux. In addition, the correlation between elevated ALT and positive blood culture was analyzed in detail. Results A total of 996 children were diagnosed with APN, of which 883 were included in the study. ALT was elevated in 81 children (9.2%). In the analysis of demographic characteristics, the number of children with elevated ALT was higher in children between 0 to 3 months, boys, and in those with positive blood culture (p=0.002, 0.036, and 0.010, respectively). In multivariate analysis of variables associated with positive blood culture, age younger than 3 months, elevated ALT, elevated CRP, and elevated creatinine showed statistical significance (p=0.004, 0.030, 0.043, and 0.044, respectively). Conclusion Our study demonstrates the association between elevated ALT and increased prevalence of urosepsis in addition to elevated CRP, elevated creatinine, and age younger than 3 months in children with APN. PMID:27066449

  13. Upper Limits of Normal for Serum Alanine Aminotransferase Levels in Chinese Han Population

    PubMed Central

    Zheng, Ming-Hua; Shi, Ke-Qing; Fan, Yu-Chen; Liu, Wen-Yue; Lin, Xian-Feng; Li, Ling-Fei; Chen, Yong-Ping

    2012-01-01

    Background and Objectives Serum alanine aminotransferase (ALT) activity is the most common tool for the assessment of liver diseases. However, it is not clear whether the current normal ALT range really discriminate patients with or without liver diseases. The present study was to establish a new normal range of ALT and examine its ability to identify patients with hepatitis B or nonalcoholic fatty liver disease (NAFLD) in Chinese Han population. Methods 53037 adults were included in this study from January 1st 2008 to August 31st 2010. The 95th percentile of ALT in population with relative low risk factors for liver diseases was set as the new upper limits of normal ALT in gender-specific manner. Results The 95th percentile levels at low risk factors for liver diseases were achieved at 35 U/L for men and 23 U/L for women. The concordance statistics for detection were 0.873 (95%CI: 0.865–0.881) for HBV and 0.932 (95%CI: 0.927–0.937) for NAFLD in men while 0.857 (95%CI: 0.850–0.864) for HBV and 0.909 (95%CI: 0.903–0.915) for NAFLD in women. The median sensitivity of the current used ALT upper limit (40 U/L) was 6.6% for HBV and 29.7% for NAFLD and median specificity was 98.7% for men and 99.4% for women. Using our new-derived thresholds, the sensitivities ranged from 35.3% to 61.1% and the specificities were 94.8% for men and 94.6% for women. Conclusions Our results suggest that upper limits of ALT 35 U/L for men and 23 U/L for women in Chinese Han population. Re-consideration of normal limits of ALT should be recommended. Trial Registration ChiCTR.org ChiCTR-OCS-11001173 PMID:22962588

  14. Correlation between liver cell necrosis and circulating alanine aminotransferase after ischaemia/reperfusion injuries in the rat liver.

    PubMed

    Knudsen, Anders R; Andersen, Kasper J; Hamilton-Dutoit, Stephen; Nyengaard, Jens R; Mortensen, Frank V

    2016-04-01

    Circulating liver enzymes such as alanine transaminase are often used as markers of hepatocellular damage. Ischaemia/reperfusion (I/R) injury is an inevitable consequence of prolonged liver ischaemia. The aim of this study was to examine the correlation between liver enzymes and volume of liver cell necrosis after ischaemia/reperfusion injuries, using design-unbiased stereological methods. Forty-seven male Wistar rats were subjected to 1 h of partial liver ischaemia, followed by either 4 or 24 h of reperfusion. Within each group, one-third of animals were subjected to ischaemic preconditioning and one-third to ischaemic postconditioning. At the end of reperfusion, blood and liver samples were collected for analysis. The volume of necrotic liver tissue was subsequently correlated to circulating markers of I/R injury. Correlation between histological findings and circulating markers was performed using Pearson's correlation coefficient. Alanine transferase peaked after 4 h of reperfusion; however, at this time-point, only mild necrosis was observed, with a Pearson's correlation coefficient of 0.663 (P = 0.001). After 24 h of reperfusion, alanine aminotransferase was found to be highly correlated to the degree of hepatocellular necrosis R = 0.836 (P = 0.000). Furthermore, alkaline phosphatase (R = 0.806) and α-2-macroglobulin (R = 0.655) levels were also correlated with the degree of necrosis. We show for the first time that there is a close correlation between the volume of hepatocellular necrosis and alanine aminotransferase levels in a model of I/R injury. This is especially apparent after 24 h of reperfusion. Similarly, increased levels of alkaline phosphatase and α-2-macroglobulin are correlated to the volume of liver necrosis. PMID:27292534

  15. Alanine Aminotransferase Is Associated with an Adverse Nocturnal Blood Glucose Profile in Individuals with Normal Glucose Regulation

    PubMed Central

    Li, Hong; Ran, Xingwu; Yang, Wenying; Li, Qiang; Peng, Yongde; Li, Yanbing; Gao, Xin; Luan, Xiaojun; Wang, Weiqing; Jia, Weiping

    2013-01-01

    Objective Although the association between alanine aminotransferase (ALT) levels and risk of type 2 diabetes is well-studied, the effects of slightly increased ALT levels within the normal range on the temporal normal glucose profile remains poorly understood. Methods A total of 322 Chinese subjects without impaired glucose tolerance or previous diagnoses of diabetes were recruited for study from 10 hospitals in urban areas across China. All subjects wore a continuous glucose monitoring (CGM) system for three consecutive days. The diurnal (06∶00–20∶00) and nocturnal (20∶00–06∶00) mean blood glucose (MBG) levels were calculated. Subjects were stratified by ALT quartile level and correlation analyses were performed. Results The median ALT level was 17 IU/L, and subjects with ALT ≥17 IU/L had higher nocturnal MBG level than those with ALT <17 IU/L (P<0.05). Nocturnal MBG was positively correlated with ALT levels (Pearson correlation analysis: r = 0.187, P = 0.001), and the correlation remained significant after correction for the homeostatic model assessment of insulin resistance index (HOMA-IR) (r = 0.105, P = 0.041). No correlations were found between diurnal MBG and ALT, and nocturnal or diurnal MBG and aspartate aminotransferase or gamma-glutamyltransferase (all, P>0.05). Multivariate stepwise regression analysis of elevated nocturnal MBG identified increased HOMA-IR, elevated ALT levels, and decreased homeostatic model assessment of ß-cell function as independent factors (all, P<0.05). Conclusions Mildly elevated ALT levels, within the normal range, are associated with unfavorable nocturnal glucose profiles in Chinese subjects with normal glucose regulation. PMID:23424646

  16. Associations of functional alanine-glyoxylate aminotransferase 2 gene variants with atrial fibrillation and ischemic stroke

    PubMed Central

    Seppälä, Ilkka; Kleber, Marcus E.; Bevan, Steve; Lyytikäinen, Leo-Pekka; Oksala, Niku; Hernesniemi, Jussi A.; Mäkelä, Kari-Matti; Rothwell, Peter M.; Sudlow, Cathie; Dichgans, Martin; Mononen, Nina; Vlachopoulou, Efthymia; Sinisalo, Juha; Delgado, Graciela E.; Laaksonen, Reijo; Koskinen, Tuomas; Scharnagl, Hubert; Kähönen, Mika; Markus, Hugh S.; März, Winfried; Lehtimäki, Terho

    2016-01-01

    Asymmetric and symmetric dimethylarginines (ADMA and SDMA) impair nitric oxide bioavailability and have been implicated in the pathogenesis of atrial fibrillation (AF). Alanine–glyoxylate aminotransferase 2 (AGXT2) is the only enzyme capable of metabolizing both of the dimethylarginines. We hypothesized that two functional AGXT2 missense variants (rs37369, V140I; rs16899974, V498L) are associated with AF and its cardioembolic complications. Association analyses were conducted using 1,834 individulas with AF and 7,159 unaffected individuals from two coronary angiography cohorts and a cohort comprising patients undergoing clinical exercise testing. In coronary angiography patients without structural heart disease, the minor A allele of rs16899974 was associated with any AF (OR = 2.07, 95% CI 1.59-2.68), and with paroxysmal AF (OR = 1.98, 95% CI 1.44–2.74) and chronic AF (OR = 2.03, 95% CI 1.35–3.06) separately. We could not replicate the association with AF in the other two cohorts. However, the A allele of rs16899974 was nominally associated with ischemic stroke risk in the meta-analysis of WTCCC2 ischemic stroke cohorts (3,548 cases, 5,972 controls) and with earlier onset of first-ever ischemic stroke (360 cases) in the cohort of clinical exercise test patients. In conclusion, AGXT2 variations may be involved in the pathogenesis of AF and its age-related thromboembolic complications. PMID:26984639

  17. Hepatocyte nuclear factor 4α transactivates the mitochondrial alanine aminotransferase gene in the kidney of Sparus aurata.

    PubMed

    Salgado, María C; Metón, Isidoro; Anemaet, Ida G; González, J Diego; Fernández, Felipe; Baanante, Isabel V

    2012-02-01

    Alanine aminotransferase (ALT) plays an important role in amino acid metabolism and gluconeogenesis. The preference of carnivorous fish for protein amino acids instead of carbohydrates as a source of energy lead us to study the transcriptional regulation of the mitochondrial ALT (mALT) gene and to characterize the enzyme kinetics and modulation of mALT expression in the kidney of gilthead sea bream (Sparus aurata) under different nutritional and hormonal conditions. 5'-Deletion analysis of mALT promoter in transiently transfected HEK293 cells, site-directed mutagenesis and electrophoretic mobility shift assays allowed us to identify HNF4α as a new factor involved in the transcriptional regulation of mALT expression. Quantitative RT-PCR assays showed that starvation and the administration of streptozotocin (STZ) decreased HNF4α levels in the kidney of S. aurata, leading to the downregulation of mALT transcription. Analysis of the tissue distribution showed that kidney, liver, and intestine were the tissues with higher mALT and HNF4α expression. Kinetic analysis indicates that mALT enzyme is more efficient in catalyzing the conversion of L: -alanine to pyruvate than the reverse reaction. From these results, we conclude that HNF4α transactivates the mALT promoter and that the low levels of mALT expression found in the kidney of starved and STZ-treated fish result from a decreased expression of HNF4α. Our findings suggest that the mALT isoenzyme plays a major role in oxidazing dietary amino acids, and points to ALT as a target for a biotechnological action to spare protein and optimize the use of dietary nutrients for fish culture. PMID:21607544

  18. Relationships between serum asunaprevir concentration and alanine aminotransferase elevation during daclatasvir plus asunaprevir for chronic HCV genotype 1b infection.

    PubMed

    Akuta, Norio; Sezaki, Hitomi; Suzuki, Fumitaka; Kawamura, Yusuke; Hosaka, Tetsuya; Kobayashi, Masahiro; Kobayashi, Mariko; Saitoh, Satoshi; Suzuki, Yoshiyuki; Arase, Yasuji; Ikeda, Kenji; Kumada, Hiromitsu

    2016-03-01

    Alanine aminotransferase (ALT) elevations were the most frequent adverse events during all-oral combinations with daclatasvir and asunaprevir for patients with hepatitis C virus (HCV) infection, but the underline mechanisms are unclear. Seventy patients with chronic HCV genotype 1b infection, who were introduced daclatasvir 60 mg once daily plus asunaprevir 100 mg twice daily for 24 weeks, were measured serum asunaprevir concentrations at the one point or more of 2, 4, and 8 weeks after the start of treatment. In 4 and 8 weeks after the start of treatment, asunaprevir concentrations in patients with albumin levels <3.6 g/dl at baseline were significantly higher than those in patients with albumin levels ≥3.6 g/dl. The baseline factors did not affect to ALT severe elevations (≥300 IU/l). At 2 weeks after the start of treatment, ALT severe elevations with asunaprevir concentrations of ≥800 ng/ml (54.5%) tended to indicate the higher rates than those of <800 ng/ml (17.6%). Furthermore, the discontinuation or reduction of asunaprevir improved ALT levels, regardless the significant decrease of serum asunaprevir concentrations. In conclusion, serum albumin levels affected to serum asunaprevir concentrations, and serum asunaprevir concentrations might partly affect to ALT severe elevations. Further large-scale prospective studies are needed to investigate the impact of the discontinuation or reduction of asunaprevir to help in the design of more effective therapeutic regimens. PMID:26292191

  19. A low-CO2-inducible gene encoding an alanine: alpha-ketoglutarate aminotransferase in Chlamydomonas reinhardtii.

    PubMed Central

    Chen, Z Y; Burow, M D; Mason, C B; Moroney, J V

    1996-01-01

    At low-CO2 (air) conditions, the unicellular green alga Chlamydomonas reinhardtii acquires the ability to raise its internal inorganic carbon concentration. To study this adaptation to low CO2, cDNA clones induced under low-CO2 growth conditions were selected through differential screening. One full-length clone is 2552 bp, with an open reading frame encoding 521 amino acids. The deduced amino acid sequence shows about 50% identity with alanine: alpha-ketogutarate aminotransferase (Ala AT, EC 2.6.1.2) from plants and animals, and the mRNA of this clone increased 4- to 5-fold 4 h after cells were switched from high-CO2 to low-CO2 growth conditions. The expression of the enzyme and its activity also increased accordingly at low-CO2 growth conditions. To study the physiological role of Ala AT, a pyridoxal phosphate inhibitor, aminooxyacetic acid, was added at 40 microM to the growth medium when cells were beginning to adapt to low CO2. This caused a 30% decrease in the maximum photosynthetic rate in air-adapting cells 8 h later. The addition of the inhibitor also caused the cells to excrete glycolate, a photorespiratory intermediate, but did not change the apparent affinity of the cell for external CO2. These physiological studies are consistent with the assumption that Ala AT is involved in the adaptation to low-CO2 conditions. PMID:8883380

  20. A low-CO2-inducible gene encoding an alanine: alpha-ketoglutarate aminotransferase in Chlamydomonas reinhardtii.

    PubMed

    Chen, Z Y; Burow, M D; Mason, C B; Moroney, J V

    1996-10-01

    At low-CO2 (air) conditions, the unicellular green alga Chlamydomonas reinhardtii acquires the ability to raise its internal inorganic carbon concentration. To study this adaptation to low CO2, cDNA clones induced under low-CO2 growth conditions were selected through differential screening. One full-length clone is 2552 bp, with an open reading frame encoding 521 amino acids. The deduced amino acid sequence shows about 50% identity with alanine: alpha-ketogutarate aminotransferase (Ala AT, EC 2.6.1.2) from plants and animals, and the mRNA of this clone increased 4- to 5-fold 4 h after cells were switched from high-CO2 to low-CO2 growth conditions. The expression of the enzyme and its activity also increased accordingly at low-CO2 growth conditions. To study the physiological role of Ala AT, a pyridoxal phosphate inhibitor, aminooxyacetic acid, was added at 40 microM to the growth medium when cells were beginning to adapt to low CO2. This caused a 30% decrease in the maximum photosynthetic rate in air-adapting cells 8 h later. The addition of the inhibitor also caused the cells to excrete glycolate, a photorespiratory intermediate, but did not change the apparent affinity of the cell for external CO2. These physiological studies are consistent with the assumption that Ala AT is involved in the adaptation to low-CO2 conditions. PMID:8883380

  1. Genetic engineering of improved nitrogen use efficiency in rice by the tissue-specific expression of alanine aminotransferase.

    PubMed

    Shrawat, Ashok K; Carroll, Rebecka T; DePauw, Mary; Taylor, Gregory J; Good, Allen G

    2008-09-01

    Summary Nitrogen is quantitatively the most essential nutrient for plants and a major factor limiting crop productivity. One of the critical steps limiting the efficient use of nitrogen is the ability of plants to acquire it from applied fertilizer. Therefore, the development of crop plants that absorb and use nitrogen more efficiently has been a long-term goal of agricultural research. In an attempt to develop nitrogen-efficient plants, rice (Oryza sativa L.) was genetically engineered by introducing a barley AlaAT (alanine aminotransferase) cDNA driven by a rice tissue-specific promoter (OsAnt1). This modification increased the biomass and grain yield significantly in comparison with control plants when plants were well supplied with nitrogen. Compared with controls, transgenic rice plants also demonstrated significant changes in key metabolites and total nitrogen content, indicating increased nitrogen uptake efficiency. The development of crop plants that take up and assimilate nitrogen more efficiently would not only improve the use of nitrogen fertilizers, resulting in lower production costs, but would also have significant environmental benefits. These results are discussed in terms of their relevance to the development of strategies to engineer enhanced nitrogen use efficiency in crop plants. PMID:18510577

  2. Plasma Levels of Alanine Aminotransferase in the First Trimester Identify High Risk Chinese Women for Gestational Diabetes

    PubMed Central

    Leng, Junhong; Zhang, Cuiping; Wang, Peng; Li, Nan; Li, Weiqin; Liu, Huikun; Zhang, Shuang; Hu, Gang; Yu, Zhijie; Ma, Ronald CW; Chan, Juliana CN; Yang, Xilin

    2016-01-01

    Alanine aminotransferase (ALT) predicts type 2 diabetes but it is uncertain whether it also predicts gestational diabetes mellitus (GDM). We recruited 17359 Chinese women with ALT measured in their first trimester. At 24–28 weeks of gestation, all women underwent a 50-gram 1-hour glucose challenge test (GCT) followed by a 75-gram 2-hour oral glucose tolerance test if GCT result was ≥7.8 mmol/L. Restricted cubic spline analysis was used to examine full-range risk associations of ALT levels with GDM. Relative excess risk due to interaction, attributable proportion due to interaction and synergy index were used to estimate additive interaction between high ALT and overweight/obesity for GDM. Finally, 1332 (7.7%) women had GDM. ALT levels were positively associated with GDM risk without a clear threshold. Using ALT levels <22 U/L as the referent, the middle ALT levels (≥22 to <40 U/L) [odds ratio (OR) (95% confidence intervals): 1.41(1.21–1.65)] and high ALT levels (≥40 U/L) [1.62 (1.31–2.00)] were associated with increased GDM risk. Maternal overweight/obesity greatly enhanced the OR of ALT ≥22 U/L from 1.44 (1.23–1.69) to 3.46 (2.79–4.29) with significant additive interactions. In conclusion, elevated ALT levels in the first trimester even within normal range predicted GDM risk, further enhanced by overweight/obesity. PMID:27264612

  3. Effects of alanine:glyoxylate aminotransferase variants and pyridoxine sensitivity on oxalate metabolism in a cell-based cytotoxicity assay.

    PubMed

    Fargue, Sonia; Knight, John; Holmes, Ross P; Rumsby, Gill; Danpure, Christopher J

    2016-06-01

    The hereditary kidney stone disease primary hyperoxaluria type 1 (PH1) is caused by a functional deficiency of the liver-specific, peroxisomal, pyridoxal-phosphate-dependent enzyme, alanine:glyoxylate aminotransferase (AGT). One third of PH1 patients, particularly those expressing the p.[(Pro11Leu; Gly170Arg; Ile340Met)] mutant allele, respond clinically to pharmacological doses of pyridoxine. To gain further insight into the metabolic effects of AGT dysfunction in PH1 and the effect of pyridoxine, we established an "indirect" glycolate cytotoxicity assay using CHO cells expressing glycolate oxidase (GO) and various normal and mutant forms of AGT. In cells expressing GO the great majority of glycolate was converted to oxalate and glyoxylate, with the latter causing the greater decrease in cell survival. Co-expression of normal AGTs and some, but not all, mutant AGT variants partially counteracted this cytotoxicity and led to decreased synthesis of oxalate and glyoxylate. Increasing the extracellular pyridoxine up to 0.3μM led to an increased metabolic effectiveness of normal AGTs and the AGT-Gly170Arg variant. The increased survival seen with AGT-Gly170Arg was paralleled by a 40% decrease in oxalate and glyoxylate levels. These data support the suggestion that the effectiveness of pharmacological doses of pyridoxine results from an improved metabolic effectiveness of AGT; that is the increased rate of transamination of glyoxylate to glycine. The indirect glycolate toxicity assay used in the present study has potential to be used in cell-based drug screening protocols to identify chemotherapeutics that might enhance or decrease the activity and metabolic effectiveness of AGT and GO, respectively, and be useful in the treatment of PH1. PMID:26854734

  4. Plasma Levels of Alanine Aminotransferase in the First Trimester Identify High Risk Chinese Women for Gestational Diabetes.

    PubMed

    Leng, Junhong; Zhang, Cuiping; Wang, Peng; Li, Nan; Li, Weiqin; Liu, Huikun; Zhang, Shuang; Hu, Gang; Yu, Zhijie; Ma, Ronald Cw; Chan, Juliana Cn; Yang, Xilin

    2016-01-01

    Alanine aminotransferase (ALT) predicts type 2 diabetes but it is uncertain whether it also predicts gestational diabetes mellitus (GDM). We recruited 17359 Chinese women with ALT measured in their first trimester. At 24-28 weeks of gestation, all women underwent a 50-gram 1-hour glucose challenge test (GCT) followed by a 75-gram 2-hour oral glucose tolerance test if GCT result was ≥7.8 mmol/L. Restricted cubic spline analysis was used to examine full-range risk associations of ALT levels with GDM. Relative excess risk due to interaction, attributable proportion due to interaction and synergy index were used to estimate additive interaction between high ALT and overweight/obesity for GDM. Finally, 1332 (7.7%) women had GDM. ALT levels were positively associated with GDM risk without a clear threshold. Using ALT levels <22 U/L as the referent, the middle ALT levels (≥22 to <40 U/L) [odds ratio (OR) (95% confidence intervals): 1.41(1.21-1.65)] and high ALT levels (≥40 U/L) [1.62 (1.31-2.00)] were associated with increased GDM risk. Maternal overweight/obesity greatly enhanced the OR of ALT ≥22 U/L from 1.44 (1.23-1.69) to 3.46 (2.79-4.29) with significant additive interactions. In conclusion, elevated ALT levels in the first trimester even within normal range predicted GDM risk, further enhanced by overweight/obesity. PMID:27264612

  5. A Mechanistic Assessment of the Discordance between Normal Serum Alanine Aminotransferase Levels and Altered Liver Histology in Chronic Hepatitis B

    PubMed Central

    Gong, Xianqiong; Yang, Jiaen; Tang, Jinmo; Gu, Chong; Huang, Lijian; Zheng, Ying; Liang, Huiqing; Wang, Min; Wu, Chuncheng; Chen, Yue; Zhang, Manying; Yu, Zhijian; Mao, Qianguo

    2015-01-01

    To understand the mechanisms underlying the discordance between normal serum alanine aminotransferase (ALT) levels and significant alterations in liver histology of chronic hepatitis B virus (HBV) infection with persistent normal ALT (PNALT) or minimally elevated ALT. A total of 300 treatment-naive chronic HBV-infected patients with PNALT (ALT ≤ upper limit of normal [ULN, 40 U/ml]) or minimally elevated ALT (1-2×ULN) were retrospectively enrolled. All patients underwent liver biopsy and histological changes were analyzed along with biochemical and HBV markers. Among 300 participants, 177 were HBeAg-positive and 123 HBeAg-negative. Significant histologic abnormalities were found in 42.9% (76/177) and 52.8% (65/123) of HBeAg-positive and HBeAg-negative patients, respectively. Significant fibrosis, which is a marker of prior injury, was more frequently detected than significant necroinflammation (suggesting active liver injury) in both HBeAg-positive and -negative groups, suggesting that liver injury occurred intermittently in our cohort. No significant differences were noticed in the percentage of patients with severe fibrosis between HBeAg-positive and negative phases or between ages 30 and 40 and over 40, suggesting that the fibrosis was possibly carried over from an early phase. Finally, lowering ALT ULN (30 U/L for men, 19 U/L for women) alone was not adequate to increase the sensitivity of ALT detection of liver injury. However, the study was limited to a small sample size of 13 HBeAg-positive patients with ALT in the revised normal range. We detected significant liver pathology in almost 50% of chronic HBV infected patients with PNALT (ALT ≤ 40 U/ml) or minimally elevated ALT. We postulated that small-scale intermittent liver injury was possibly responsible for the discordance between normal serum ALT and significant liver changes in our cohort. PMID:26230094

  6. Ingesting a preworkout supplement containing caffeine, creatine, β-alanine, amino acids, and B vitamins for 28 days is both safe and efficacious in recreationally active men.

    PubMed

    Kendall, Kristina L; Moon, Jordan R; Fairman, Ciaran M; Spradley, Brandon D; Tai, Chih-Yin; Falcone, Paul H; Carson, Laura R; Mosman, Matt M; Joy, Jordan M; Kim, Michael P; Serrano, Eric R; Esposito, Enrico N

    2014-05-01

    The purpose of this study was to determine the safety and efficacy of consuming a preworkout supplement (SUP) containing caffeine, creatine, β-alanine, amino acids, and B vitamins for 28 days. We hypothesized that little to no changes in kidney and liver clinical blood markers or resting heart rate and blood pressure (BP) would be observed. In addition, we hypothesized that body composition and performance would improve in recreationally active males after 28 days of supplementation. In a double-blind, placebo-controlled study, participants were randomly assigned to ingest one scoop of either the SUP or placebo every day for 28 days, either 20 minutes before exercise or ad libitum on nonexercise days. Resting heart rate and BP, body composition, and fasting blood samples were collected before and after supplementation. Aerobic capacity as well as muscular strength and endurance were also measured. Significant (P < .05) main effects for time were observed for resting heart rate (presupplementation, 67.59 ± 7.90 beats per minute; postsupplementation, 66.18 ± 7.63 beats per minute), systolic BP (presupplementation, 122.41 ± 11.25 mm Hg; postsupplementation, 118.35 ± 11.58 mm Hg), blood urea nitrogen (presupplementation, 13.12 ± 2.55 mg/dL; postsupplementation, 15.24 ± 4.47 mg/dL), aspartate aminotransferase (presupplementation, 34.29 ± 16.48 IU/L; postsupplementation, 24.76 ± 4.71 IU/L), and alanine aminotransferase (presupplementation, 32.76 ± 19.72 IU/L; postsupplementation, 24.88 ± 9.68 IU/L). Significant main effects for time were observed for body fat percentage (presupplementation, 15.55% ± 5.79%; postsupplementation, 14.21% ± 5.38%; P = .004) and fat-free mass (presupplementation, 70.80 ± 9.21 kg; postsupplementation, 71.98 ± 9.27 kg; P = .006). A significant decrease in maximal oxygen consumption (presupplementation, 47.28 ± 2.69 mL/kg per minute; postsupplementation, 45.60 ± 2.81 mL/kg per minute) and a significant increase in percentage of

  7. ALT (Alanine Aminotransferase) Test

    MedlinePlus

    ... Nausea, vomiting Abdominal swelling and/or pain Jaundice Dark urine, light-colored stool Itching ( pruritus ) ALT may ... sponsored by ... Learn more about ... Understanding Your Tests Inside the Lab In the News Article Index About ...

  8. Elevated Preoperative Serum Alanine Aminotransferase/Aspartate Aminotransferase (ALT/AST) Ratio Is Associated with Better Prognosis in Patients Undergoing Curative Treatment for Gastric Adenocarcinoma

    PubMed Central

    Chen, Shu-Lin; Li, Jian-Pei; Li, Lin-Fang; Zeng, Tao; He, Xia

    2016-01-01

    The level of anine aminotransferase/aspartate aminotransferase (ALT/AST) ratio in the serum was often used to assess liver injury. Whether the ALT/AST ratio (LSR) was associated with prognosis for gastric adenocarcinoma (GA) has not been reported in the literature. Our aim was to investigate the prognostic value of the preoperative LSR in patients with GA. A retrospective study was performed in 231 patients with GA undergoing curative resection. The medical records collected include clinical information and laboratory results. We investigated the correlations between the preoperative LSR and overall survival (OS). Survival analysis was conducted with the Kaplan–Meier method, and Cox regression analysis was used to determine significant independent prognostic factors for predicting survival. A p value of <0.05 was considered to be statistically significant. A total of 231 patients were finally enrolled. The median overall survival was 47 months. Multivariate analysis indicated that preoperative LSR was an independent prognostic factor in GA. Patients with LSR ≤ 0.80 had a greater risk of death than those with LSR > 0.80. The LSR was independently associated with OS in patients with GA (hazard ratio: 0.610; 95% confidence interval: 0.388–0.958; p = 0.032), along with tumor stages (hazard ratio: 3.118; 95% confidence interval: 2.044–4.756; p < 0.001) and distant metastases (hazard ratio: 1.957; 95% confidence interval: 1.119–3.422; p = 0.019). Our study first established a connection between the preoperative LSR and patients undergoing curative resection for GA, suggesting that LSR was a simple, inexpensive, and easily measurable marker as a prognostic factor, and may help to identify high-risk patients for treatment decisions. PMID:27294917

  9. Relationship of creatine kinase, aspartate aminotransferase, lactate dehydrogenase, and proteinuria to cardiomyopathy in the owl monkey (Aotus vociferans)

    SciTech Connect

    Gozalo, Alfonso S.; Chavera, Alfonso; Montoya, Enrique J.; Takano, Juan; Weller, Richard E.

    2008-02-01

    The purpose of this study was to determine serum reference values for crea- tine kinase (CK), aspartate aminotransferase (AST), and lactate dehydroge- nase (LDH) in captive-born and wild-caught owl monkeys to assess their usefulness for diagnosing myocardial disease. Urine samples were also collected and semi-quantitative tests performed. There was no statistically significant difference between CK, AST, and LDH when comparing both groups. However, when comparing monkeys with proteinuria to those without proteinuria, a statistically significant difference in CK value was observed (P = 0.021). In addition, the CK/AST ratio revealed that 29% of the animals included in this study had values suggesting cardiac infarction. Grossly, cardiac concentric hypertrophy of the left ventricle and small, pitted kidneys were the most common findings. Microscopically, myocardial fibrosis, contraction band necrosis, hypertrophy and hyperplasia of coronary arteries, medium-sized renal arteries, and afferent glomerular arteriolae were the most significant lesions, along with increased mesangial matrix and hypercellularity of glomeruli, Bowman’s capsule, and peritubular space fibroplasia. These findings suggest that CK, AST, and LDH along with urinalysis provide a reliable method for diagnosing cardiomyopathies in the owl monkey. In addition, CK/AST ratio, proteinuria, and the observed histological and ultrastructural changes suggest that Aotus vociferans suffer from arterial hypertension and chronic myocardial infarction.

  10. Alanine aminotransferase 1 (OsAlaAT1) plays an essential role in the regulation of starch storage in rice endosperm.

    PubMed

    Yang, Jungil; Kim, Sung-Ryul; Lee, Sang-Kyu; Choi, Heebak; Jeon, Jong-Seong; An, Gynheung

    2015-11-01

    Alteration of storage substances, in particular the major storage form starch, leads to floury endosperm. Because floury mutants have physical attributes for milling processes, identification and characterization of those mutants are valuable. In this study we identified a floury endosperm mutant caused by a T-DNA insertion in Oryza sativa alanine-aminotransferase1 (OsAlaAT1). OsAlaAT1 is localized in the cytosol and has aminotransferase enzyme activity. The osalaat1 mutant has less amylose and its amylopectin is structurally altered. OsAlaAT1 is predominantly expressed in developing seeds during active starch synthesis. AlaAT catalyzes the interconversion of pyruvate to alanine, and this pathway is activated under low-oxygen conditions. Consistently, OsAlaAT1 is induced by such conditions. Expression of the starch synthesis genes AGPases, OsSSI, OsSSIIa, and OsPPDKB is decreased in the mutant. Thus, our observations suggest that OsAlaAT1 plays an essential role in starch synthesis in developing seeds that are exposed to low concentrations of oxygen. PMID:26475189

  11. The enzymology of alanine aminotransferase (AlaAT) isoforms from Hordeum vulgare and other organisms, and the HvAlaAT crystal structure.

    PubMed

    Duff, Stephen M G; Rydel, Timothy J; McClerren, Amanda L; Zhang, Wenlan; Li, Jimmy Y; Sturman, Eric J; Halls, Coralie; Chen, Songyang; Zeng, Jiamin; Peng, Jiexin; Kretzler, Crystal N; Evdokimov, Artem

    2012-12-01

    In this paper we describe the expression, purification, kinetics and biophysical characterization of alanine aminotransferase (AlaAT) from the barley plant (Hordeum vulgare). This dimeric PLP-dependent enzyme is a pivotal element of several key metabolic pathways from nitrogen assimilation to carbon metabolism, and its introduction into transgenic plants results in increased yield. The enzyme exhibits a bi-bi ping-pong reaction mechanism with a K(m) for alanine, 2-oxoglutarate, glutamate and pyruvate of 3.8, 0.3, 0.8 and 0.2 mM, respectively. Barley AlaAT catalyzes the forward (alanine-forming) reaction with a k(cat) of 25.6 s(-1), the reverse (glutamate-forming) reaction with k(cat) of 12.1 s(-1) and an equilibrium constant of ~0.5. The enzyme is also able to utilize aspartate and oxaloacetate with ~10% efficiency as compared to the native substrates, which makes it much more specific than related bacterial/archaeal enzymes (that also have lower K(m) values). We have crystallized barley AlaAT in complex with PLP and l-cycloserine and solved the structure of this complex at 2.7 Å resolution. This is the first example of a plant AlaAT structure, and it reveals a canonical aminotransferase fold similar to structures of the Thermotoga maritima, Pyrococcus furiosus, and human enzymes. This structure bridges our structural understanding of AlaAT mechanism between three kingdoms of life and allows us to shed some light on the specifics of the catalysis performed by these proteins. PMID:22750542

  12. Streptomyces beta-alanine:alpha-ketoglutarate aminotransferase, a novel omega-amino acid transaminase. Purification, crystallization, and enzymologic properties.

    PubMed

    Yonaha, K; Suzuki, K; Toyama, S

    1985-03-25

    An enzyme which catalyzes the transamination of beta-alanine with alpha-ketoglutarate was purified to homogeneity from Streptomyces griseus IFO 3102 and crystallized. Molecular weight of the enzyme was found to be 185,000 +/- 10,000 by a gel-filtration method. The enzyme consists of four subunits identical in molecular weight (51,000 +/- 1,000). The transaminase is composed of 483 amino acids/subunit containing 7 and 8 residues of half-cystine and methionine, respectively. The enzyme exhibits absorption maxima at 278 and 415 nm. The pyridoxal 5'-phosphate content was determined to be 4 mol/mol of enzyme. The enzyme catalyzes transamination of omega-amino acids including taurine and hypotaurine. beta-Alanine and DL-beta-aminoisobutyrate served as a good amino donor; the Michaelis constants are 8.0 and 12.5 mM, respectively. alpha-Ketoglutarate is the only amino acceptor (Km = 4.0 mM); pyruvate and oxalacetate are inactive. Based on the substrate specificity, the terminology of beta-alanine:alpha-ketoglutarate transaminase is proposed for the enzyme. Carbonyl reagents, HgCl2,DL-gabaculine, and alpha-fluoro-beta-alanine strongly inhibited the enzyme. PMID:3972825

  13. Relationship Between Alcohol Drinking and Aspartate Aminotransferase:Alanine Aminotransferase (AST:ALT) Ratio, Mean Corpuscular Volume (MCV), Gamma-Glutamyl Transpeptidase (GGT), and Apolipoprotein A1 and B in the U.S. Population*

    PubMed Central

    Liangpunsakul, Suthat; Qi, Rong; Crabb, David W.; Witzmann, Frank

    2010-01-01

    Objective: The misuse of alcohol, even at levels just above two drinks per day, is a public health problem, but identifying patients with this potentially unhealthy drinking is hindered by the lack of tests. Several blood tests, such as those testing for gamma-glutamyl transpeptidase (GGT) or mean corpuscular volume (MCV), are among the commonly used markers to identify very heavy drinking, but combinations of these markers have rarely been tested in lighter drinkers. We examined the relationship between alcohol drinking and the levels of these markers in a national population-based study composed primarily of lighter drinkers. Method: Data were analyzed from 8,708 adult participants in the third U.S. National Health and Nutrition Examination Survey after excluding subjects with iron overload; with hepatitis B and C; who were pregnant; and who were taking prescription drugs such as phenytoin (Dilantin), barbiturates, and hydroxyurea (Droxia and Hydrea). The relationship between the amount of alcohol drinking and GGT, aspartate aminotransferase:alanine aminotransferase ratio, MCV of erythrocytes, and apolipoprotein A1 and B were analyzed and adjusted for potential liver injury risk factors. Results: The prevalence of unhealthy alcohol drinking (defined as consumption of more than two standard drinks per day) was 6.7%. Heavier drinkers tended to be younger and reported an average of 4.2 drinks per day. When tested alone or in combination, the sensitivity and positive predictive values for these blood tests were too low to be clinically useful in identifying the subjects in the heavier drinking category. Conclusions: In this large, national, population-based study, the markers of heavy drinking studied here, either alone or in combination, did not appear to be useful in identifying unhealthy drinking. More work is needed to find the novel marker(s) associated with risky alcohol drinking. PMID:20230722

  14. Alanine-glyoxylate aminotransferase-deficient mice, a model for primary hyperoxaluria that responds to adenoviral gene transfer.

    PubMed

    Salido, Eduardo C; Li, Xiao M; Lu, Yang; Wang, Xia; Santana, Alfredo; Roy-Chowdhury, Namita; Torres, Armando; Shapiro, Larry J; Roy-Chowdhury, Jayanta

    2006-11-28

    Mutations in the alanine-glyoxylate amino transferase gene (AGXT) are responsible for primary hyperoxaluria type I, a rare disease characterized by excessive hepatic oxalate production that leads to renal failure. We generated a null mutant mouse by targeted mutagenesis of the homologous gene, Agxt, in embryonic stem cells. Mutant mice developed normally, and they exhibited hyperoxaluria and crystalluria. Approximately half of the male mice in mixed genetic background developed calcium oxalate urinary stones. Severe nephrocalcinosis and renal failure developed after enhancement of oxalate production by ethylene glycol administration. Hepatic expression of human AGT1, the protein encoded by AGXT, by adenoviral vector-mediated gene transfer in Agxt(-/-) mice normalized urinary oxalate excretion and prevented oxalate crystalluria. Subcellular fractionation and immunofluorescence studies revealed that, as in the human liver, the expressed wild-type human AGT1 was predominantly localized in mouse hepatocellular peroxisomes, whereas the most common mutant form of AGT1 (G170R) was localized predominantly in the mitochondria. PMID:17110443

  15. Risk factors associated with hepatitis B or C markers or elevated alanine aminotransferase level among blood donors on a tropical island: the Guadeloupe experience.

    PubMed

    Fest, T; Viel, J F; Agis, F; Coffe, C; Dupond, J L; Hervé, P

    1992-10-01

    Donated blood is currently screened for hepatitis B surface antigen (HBsAg), antibody to hepatitis B core antigen (anti-HBc), antibody to hepatitis C virus (anti-HCV), and alanine aminotransferase (ALT) levels to prevent posttransfusion hepatitis. A prospective study of 2368 blood donors was carried out in Guadeloupe (French West Indies) with a view to determining the risk factors associated with serologic abnormalities. Blood donors included in the study had to complete a questionnaire. Statistical analysis was performed on the data thus obtained: 571 donations (24%) were positive for at least one of the four analyzed markers. The results were that 3.2 percent were positive for HBsAg, 22 percent for anti-HBc, and 0.8 percent for anti-HCV, and 1.4 percent had ALT > or = 45 IU per L. A good correlation was found between anti-HCV and elevated ALT. Transfusion history and two socioeconomic categories (working class, military personnel) were found to be risk factors. Other risk factors were lifelong residence in Guadeloupe (with risk increasing with the number of years), birthplace and current residence in the southern part of the island, and the existence of gastrointestinal discomfort unrelated to viral hepatitis (odds ratio = 2.98). The results of this study illustrate the difficulty of implementing a preventive policy against posttransfusion hepatitis in a tropical area. The unique epidemiologic situation of Guadeloupe as regards hepatitis B virus has led to more restrictive criteria for the acceptance of blood donors. PMID:1412685

  16. Comparison of measurements of canine plasma creatinine, glucose, proteins, urea, alanine aminotransferase, and alkaline phosphatase obtained with Spotchem SP 4430 and Vitros 250 analyzers.

    PubMed

    Trumel, C; Diquélou, A; Germain, C; Palanché, F; Braun, J P

    2005-12-01

    The suitability of the Spotchem 4430 benchtop biochemistry analyzer for canine blood samples was tested for creatinine, glucose, proteins, urea, alkaline phosphatases and alanine aminotransferase. Results obtained from whole blood and corresponding heparin plasma were identical except for proteins which were higher in plasma (n=10). Between series imprecision (n=10) was <5% for substrates and <10% for enzymes. Comparison of results from 100 Li-heparin samples with those measured with a Vitros 250 analyzer showed good correlation (r>0.93). The slopes of the Passing-Bablock's regression ranged from 0.90 to 1.20 and intercepts were low. The mean biases were low, except for creatinine for which the results obtained by Spotchem (Jaffe reaction) were about 20 micromol/L higher than with the Vitros (enzymatic reaction). The results of this study show that the Spotchem analyzer is suitable for use in canine whole blood or plasma when small numbers of tests are to be performed and large analyzers are not available. PMID:16054888

  17. Plasma glutathione S-transferase and F protein are more sensitive than alanine aminotransferase as markers of paracetamol (acetaminophen)-induced liver damage.

    PubMed

    Beckett, G J; Foster, G R; Hussey, A J; Oliveira, D B; Donovan, J W; Prescott, L F; Proudfoot, A T

    1989-11-01

    Concentrations of glutathione S-transferase (GST; glutathione transferase; EC 2.5.1.18) B1 subunits, F protein, and the activity of alanine aminotransferase (ALT; EC 2.6.1.2) were measured in sequential plasma samples taken from nine patients with self-administered paracetamol (acetaminophen) poisoning. GST exceeded the reference interval in all patients at the time of admission, and F protein was increased in seven. In contrast, abnormal activities of ALT in plasma were found in only one of the nine on admission, a patient admitted 12 h after poisoning. Subsequent to admission nine, eight, and five patients, respectively, had abnormal concentrations of GST, F protein, and ALT. When expressed as multiples of the upper reference limit, the highest values for GST measured in each patient always far exceeded the greatest abnormalities in ALT; this was true for F protein in only five patients. Patients in whom the concentration of GST exceeded 10 micrograms/L on admission subsequently went on to develop moderate or severe liver damage, despite treatment with N-acetylcysteine. F protein and ALT measurements on admission were not as efficient as GST at predicting the clinical outcome of the patients. We conclude that GST and F protein offer clear advantages over ALT for detecting minor degrees of acute liver dysfunction, particularly when only centrilobular damage may be involved. PMID:2582614

  18. NMR studies of protonation and hydrogen bond states of internal aldimines of pyridoxal 5'-phosphate acid-base in alanine racemase, aspartate aminotransferase, and poly-L-lysine.

    PubMed

    Chan-Huot, Monique; Dos, Alexandra; Zander, Reinhard; Sharif, Shasad; Tolstoy, Peter M; Compton, Shara; Fogle, Emily; Toney, Michael D; Shenderovich, Ilya; Denisov, Gleb S; Limbach, Hans-Heinrich

    2013-12-01

    Using (15)N solid-state NMR, we have studied protonation and H-bonded states of the cofactor pyridoxal 5'-phosphate (PLP) linked as an internal aldimine in alanine racemase (AlaR), aspartate aminotransferase (AspAT), and poly-L-lysine. Protonation of the pyridine nitrogen of PLP and the coupled proton transfer from the phenolic oxygen (enolimine form) to the aldimine nitrogen (ketoenamine form) is often considered to be a prerequisite to the initial step (transimination) of the enzyme-catalyzed reaction. Indeed, using (15)N NMR and H-bond correlations in AspAT, we observe a strong aspartate-pyridine nitrogen H-bond with H located on nitrogen. After hydration, this hydrogen bond is maintained. By contrast, in the case of solid lyophilized AlaR, we find that the pyridine nitrogen is neither protonated nor hydrogen bonded to the proximal arginine side chain. However, hydration establishes a weak hydrogen bond to pyridine. To clarify how AlaR is activated, we performed (13)C and (15)N solid-state NMR experiments on isotopically labeled PLP aldimines formed by lyophilization with poly-L-lysine. In the dry solid, only the enolimine tautomer is observed. However, a fast reversible proton transfer involving the ketoenamine tautomer is observed after treatment with either gaseous water or gaseous dry HCl. Hydrolysis requires the action of both water and HCl. The formation of an external aldimine with aspartic acid at pH 9 also produces the ketoenamine form stabilized by interaction with a second aspartic acid, probably via a H-bond to the phenolic oxygen. We postulate that O-protonation is an effectual mechanism for the activation of PLP, as is N-protonation, and that enzymes that are incapable of N-protonation employ this mechanism. PMID:24147985

  19. Reconstituted high-density lipoprotein can elevate plasma alanine aminotransferase by transient depletion of hepatic cholesterol: role of the phospholipid component.

    PubMed

    Herzog, Eva; Pragst, Ingo; Waelchli, Marcel; Gille, Andreas; Schenk, Sabrina; Mueller-Cohrs, Jochen; Diditchenko, Svetlana; Zanoni, Paolo; Cuchel, Marina; Seubert, Andreas; Rader, Daniel J; Wright, Samuel D

    2016-08-01

    Human apolipoprotein A-I preparations reconstituted with phospholipids (reconstituted high-density lipoprotein [HDL]) have been used in a large number of animal and human studies to investigate the physiological role of apolipoprotein A-I. Several of these studies observed that intravenous infusion of reconstituted HDL might cause transient elevations in plasma levels of hepatic enzymes. Here we describe the mechanism of this enzyme release. Observations from several animal models and in vitro studies suggest that the extent of hepatic transaminase release (alanine aminotransferase [ALT]) correlates with the movement of hepatic cholesterol into the blood after infusion. Both the amount of ALT release and cholesterol movement were dependent on the amount and type of phospholipid present in the reconstituted HDL. As cholesterol is known to dissolve readily in phospholipid, an HDL preparation was loaded with cholesterol before infusion into rats to assess the role of diffusion of cholesterol out of the liver and into the reconstituted HDL. Cholesterol-loaded HDL failed to withdraw cholesterol from tissues and subsequently failed to cause ALT release. To investigate further the role of cholesterol diffusion, we employed mice deficient in SR-BI, a transporter that facilitates spontaneous movement of cholesterol between cell membranes and HDL. These mice showed substantially lower movement of cholesterol into the blood and markedly lower ALT release. We conclude that initial depletion of hepatic cholesterol initiates transient ALT release in response to infusion of reconstituted HDL. This effect may be controlled by appropriate choice of the type and amount of phospholipid in reconstituted HDL. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26651060

  20. Interferon sensitivity-determining region of nonstructural region 5A of hepatitis C virus genotype 1b correlates with serum alanine aminotransferase levels in chronic infection.

    PubMed

    Yoshioka, K; Ito, H; Watanabe, K; Yano, M; Ishigami, M; Mizutani, T; Sasaki, Y; Goto, H

    2005-03-01

    The mutations in the interferon (IFN) sensitivity-determining region (ISDR) of nonstructural region 5A (NS5A) of hepatitis C virus (HCV) have been correlated with response to IFN therapy. NS5A appears to disrupt a host antiviral pathway that plays a role in suppressing virus replication and protects hepatocytes from apoptosis. We assessed whether ISDR correlates with viral load and serum alanine aminotransferase (ALT) levels. Serum viral load and ALT levels were prospectively measured bimonthly by HCV core protein assay and monthly, respectively, for 22 months in 87 patients chronically infected with HCV genotype 1b. ISDR of HCV was directly sequenced from the products of reverse transcription and polymerase chain reaction of HCV RNA. Five patients had four or more substitutions (mutant type), 33 had 1-3 (intermediate type), and 49 had no substitutions (wild type) in ISDR. The numbers of substitutions in ISDR were inversely correlated with mean viral load over a 22-month period (r = 0.292, P = 0.0060) and directly with mean serum ALT levels (r = 0.360, P = 0.0006). The numbers of substitutions in ISDR was significantly larger in the patients with changes of viral load more than fivefold during the 22 months (1.4 +/- 2.4) than in those without changes (0.6 +/- 0.8) (P = 0.0188). The present study demonstrates that the patients with more substitutions in ISDR had significantly higher serum ALT levels and smaller viral load. These results suggest that NS5A with more substitutions in ISDR may lose the ability to block host antiviral pathways and to protect hepatocytes from apoptosis. PMID:15720528

  1. Primary hyperoxaluria type 1 in the Canary Islands: a conformational disease due to I244T mutation in the P11L-containing alanine:glyoxylate aminotransferase.

    PubMed

    Santana, A; Salido, E; Torres, A; Shapiro, L J

    2003-06-10

    Primary hyperoxaluria type 1 (PH1) is an inborn error of metabolism resulting from a deficiency of alanine:glyoxylate aminotransferase (AGXT; EC 2.6.1.44). Most of the PH1 alleles detected in the Canary Islands carry the Ile-244 --> Thr (I244T) mutation in the AGXT gene, with 14 of 16 patients homozygous for this mutation. Four polymorphisms within AGXT and regional microsatellites also were shared in their haplotypes (AGXT*LTM), consistent with a founder effect. The consequences of these amino acid changes were investigated. Although I244T alone did not affect AGXT activity or subcellular localization, when present in the same protein molecule as Leu-11 --> Pro (L11P), it resulted in loss of enzymatic activity in soluble cell extracts. Like its normal counterpart, the AGXT*LTM protein was present in the peroxisomes but it was insoluble in detergent-free buffers. The polymorphism L11P behaved as an intragenic modifier of the I244T mutation, with the resulting protein undergoing stable interaction with molecular chaperones and aggregation. This aggregation was temperature-sensitive. AGXT*LTM expressed in Escherichia coli, as a GST-fusion protein, and in insect cells could be purified and retained enzymatic activity. Among various chemical chaperones tested in cell culture, betaine substantially improved the solubility of the mutant protein and the enzymatic activity in cell lysates. In summary, I244T, the second most common mutation responsible for PH1, is a protein conformational disease that may benefit from new therapies with pharmacological chaperones or small molecules to minimize protein aggregation. PMID:12777626

  2. High serum carotenoids are associated with lower risk for developing elevated serum alanine aminotransferase among Japanese subjects: the Mikkabi cohort study.

    PubMed

    Sugiura, Minoru; Nakamura, Mieko; Ogawa, Kazunori; Ikoma, Yoshinori; Yano, Masamichi

    2016-04-01

    Many recent studies have shown that antioxidant vitamins and/or carotenoids may reduce liver disease, but this association has not been well established with thorough longitudinal cohort studies. The objective of this study was to longitudinally investigate whether serum carotenoids at baseline are associated with the risk of developing elevated serum alanine aminotransferase (ALT) among Japanese subjects. We conducted a follow-up study of 1073 males and females aged between 30 and 79 years at baseline from the Mikkabi prospective cohort study. Those who participated in the baseline study and completed follow-up surveys were examined longitudinally. Exclusions included excessive alcohol consumption (≥60 g alcohol/d), hepatitis B and C and having a history of medication use for liver disease. A cohort of 213 males and 574 females free of elevated serum ALT (>30 IU/ml) at baseline was studied. Over a mean follow-up period of 7·4 (sd 3·1) years, thirty-one males and forty-nine females developed new elevated serum ALT. After adjustments for confounders, the hazard ratios for elevated serum ALT in the highest tertiles of basal serum β-carotene, β-cryptoxanthin and total provitamin A carotenoids against the lowest tertiles were 0·43 (95 % CI 0·22, 0·81), 0·51 (CI 0·27, 0·94) and 0·52 (CI 0·28, 0·97), respectively. For α-carotene and lycopene, borderline reduced risks were also observed; however, these were not significant. Our results further support the hypothesis that antioxidant carotenoids, especially provitamin A carotenoids, might help prevent earlier pathogenesis of non-alcoholic liver disease in Japanese subjects. PMID:26916997

  3. Knockdown of a putative alanine aminotransferase gene affects amino acid content and flight capacity in the Colorado potato beetle Leptinotarsa decemlineata.

    PubMed

    Wan, Pin-Jun; Fu, Kai-Yun; Lü, Feng-Gong; Guo, Wen-Chao; Li, Guo-Qing

    2015-07-01

    Alanine aminotransferase (ALT) plays important physiological and biochemical roles in insect. In this study, a full-length Ldalt cDNA was cloned from Leptinotarsa decemlineata. It was ubiquitously expressed in the eggs, larvae, pupae and adults. In the adults, Ldalt mRNA was widely distributed in thorax muscles, fat body, midgut, foregut, hindgut, Malpighian tubules, ventral ganglion and epidermis, with the expression levels from the highest to the lowest. Two double-stranded RNAs (dsRNAs) (dsLdalt1 and dsLdalt2) targeting Ldalt were constructed and bacterially expressed. After adults fed on dsLdalt1- and dsLdalt2-immersed foliage for 3 day, Ldalt mRNA abundance was significantly decreased by 79.5 and 71.1 %, and ALT activities were significantly reduced by 64.5 and 67.6 %, respectively. Moreover, silencing Ldalt affected free amino acid contents. Lysine was decreased by 100.0 and 100.0 %, and arginine was reduced by 87.5 and 89.4 %, respectively, in the hemolymph from dsLdalt1- and dsLdalt2-ingested beetles, compared with control ones. In contrast, proline was increased by 88.7 and 96.4 %. Furthermore, ingestion of dsLdalt1 and dsLdalt2 significantly decreased flight speed, shortened flight duration time and flight distance. In addition, knocking down Ldalt significantly increased adult mortality. These data imply that LdALT plays important roles in amino acid metabolism and in flight in L. decemlineata. PMID:25868655

  4. Primary hyperoxaluria type 1 in the Canary Islands: A conformational disease due to I244T mutation in the P11L-containing alanine:glyoxylate aminotransferase

    PubMed Central

    Santana, A.; Salido, E.; Torres, A.; Shapiro, L. J.

    2003-01-01

    Primary hyperoxaluria type 1 (PH1) is an inborn error of metabolism resulting from a deficiency of alanine:glyoxylate aminotransferase (AGXT; EC 2.6.1.44). Most of the PH1 alleles detected in the Canary Islands carry the Ile-244 → Thr (I244T) mutation in the AGXT gene, with 14 of 16 patients homozygous for this mutation. Four polymorphisms within AGXT and regional microsatellites also were shared in their haplotypes (AGXT*LTM), consistent with a founder effect. The consequences of these amino acid changes were investigated. Although I244T alone did not affect AGXT activity or subcellular localization, when present in the same protein molecule as Leu-11 → Pro (L11P), it resulted in loss of enzymatic activity in soluble cell extracts. Like its normal counterpart, the AGXT*LTM protein was present in the peroxisomes but it was insoluble in detergent-free buffers. The polymorphism L11P behaved as an intragenic modifier of the I244T mutation, with the resulting protein undergoing stable interaction with molecular chaperones and aggregation. This aggregation was temperature-sensitive. AGXT*LTM expressed in Escherichia coli, as a GST-fusion protein, and in insect cells could be purified and retained enzymatic activity. Among various chemical chaperones tested in cell culture, betaine substantially improved the solubility of the mutant protein and the enzymatic activity in cell lysates. In summary, I244T, the second most common mutation responsible for PH1, is a protein conformational disease that may benefit from new therapies with pharmacological chaperones or small molecules to minimize protein aggregation. PMID:12777626

  5. Pyridoxamine and pyridoxal are more effective than pyridoxine in rescuing folding-defective variants of human alanine:glyoxylate aminotransferase causing primary hyperoxaluria type I.

    PubMed

    Oppici, Elisa; Fargue, Sonia; Reid, Emma S; Mills, Philippa B; Clayton, Peter T; Danpure, Christopher J; Cellini, Barbara

    2015-10-01

    Vitamin B6 in the form of pyridoxine (PN) is one of the most widespread pharmacological therapies for inherited diseases involving pyridoxal phosphate (PLP)-dependent enzymes, including primary hyperoxaluria type I (PH1). PH1 is caused by a deficiency of liver-peroxisomal alanine: glyoxylate aminotransferase (AGT), which allows glyoxylate oxidation to oxalate leading to the deposition of insoluble calcium oxalate in the kidney. Only a minority of PH1 patients, mostly bearing the F152I and G170R mutations, respond to PN, the only pharmacological treatment currently available. Moreover, excessive doses of PN reduce the specific activity of AGT in a PH1 cellular model. Nevertheless, the possible effect(s) of other B6 vitamers has not been investigated previously. Here, we compared the ability of PN in rescuing the effects of the F152I and G170R mutations with that of pyridoxamine (PM) and PL. We found that supplementation with PN raises the intracellular concentration of PN phosphate (PNP), which competes with PLP for apoenzyme binding leading to the formation of an inactive AGT-PNP complex. In contrast, PNP does not accumulate in the cell upon PM or PL supplementation, but higher levels of PLP and PM phosphate (PMP), the two active forms of the AGT coenzyme, are found. This leads to an increased ability of PM and PL to rescue the effects of the F152I and G170R mutations compared with PN. A similar effect was also observed for other folding-defective AGT variants. Thus, PM and PL should be investigated as matter of importance as therapeutics for PH1 patients bearing folding mutations. PMID:26199318

  6. Misfolding caused by the pathogenic mutation G47R on the minor allele of alanine:glyoxylate aminotransferase and chaperoning activity of pyridoxine.

    PubMed

    Montioli, Riccardo; Oppici, Elisa; Dindo, Mirco; Roncador, Alessandro; Gotte, Giovanni; Cellini, Barbara; Borri Voltattorni, Carla

    2015-10-01

    Liver peroxisomal alanine:glyoxylate aminotransferase (AGT), a pyridoxal 5'-phosphate (PLP) enzyme, exists as two polymorphic forms, the major (AGT-Ma) and the minor (AGT-Mi) haplotype. Deficit of AGT causes Primary Hyperoxaluria Type 1 (PH1), an autosomal recessive rare disease. Although ~one-third of the 79 disease-causing missense mutations segregates on AGT-Mi, only few of them are well characterized. Here for the first time the molecular and cellular defects of G47R-Mi are reported. When expressed in Escherichia coli, the recombinant purified G47R-Mi variant exhibits only a 2.5-fold reduction of its kcat, and its apo form displays a remarkably decreased PLP binding affinity, increased dimer-monomer equilibrium dissociation constant value, susceptibility to thermal denaturation and to N-terminal region proteolytic cleavage, and aggregation propensity. When stably expressed in a mammalian cell line, we found ~95% of the intact form of the variant in the insoluble fraction, and proteolyzed (within the N-terminal region) and aggregated forms both in the soluble and insoluble fractions. Moreover, the intact and nicked forms have a peroxisomal and a mitochondrial localization, respectively. Unlike what already seen for G41R-Mi, exposure of G47R-Mi expressing cells to pyridoxine (PN) remarkably increases the expression level and the specific activity in a dose-dependent manner, reroutes all the protein to peroxisomes, and rescues its functionality. Although the mechanism of the different effect of PN on the variants G47R-Mi and G41R-Mi remains elusive, the chaperoning activity of PN may be of value in the therapy of patients bearing the G47R mutation. PMID:26149463

  7. Higher Ratio of Serum Alpha-Fetoprotein Could Predict Outcomes in Patients with Hepatitis B Virus-Associated Hepatocellular Carcinoma and Normal Alanine Aminotransferase

    PubMed Central

    Park, Joong-Won

    2016-01-01

    Background The role of serum alpha-fetoprotein (AFP) levels in the surveillance and diagnosis of hepatocellular carcinoma (HCC) is controversial. The aim of this study was to investigate the value of serially measured serum AFP levels in HCC progression or recurrence after initial treatment. Methods A total of 722 consecutive patients newly diagnosed with HCC and treated at the National Cancer Center, Korea, between January 2004 and December 2009 were enrolled. The AFP ratios between 4–8 weeks post-treatment and those at the time of HCC progression or recurrence were obtained. Multivariate logistic regression analysis was performed to correlate the post-treatment AFP ratios with the presence of HCC progression or recurrence. Results The etiology of HCC was related to chronic hepatitis B virus (HBV) infection in 562 patients (77.8%), chronic hepatitis C virus (HCV) infection in 74 (10.2%), and non-viral cause in 86 (11.9%). There was a significant decrease in serum AFP levels from the baseline to 4 to 8 weeks after treatment (median AFP, 319.6 ng/mL vs. 49.6 ng/mL; p< 0.001). Multivariate analysis showed that an AFP ratio > 1.0 was an independently associated with HCC progression or recurrence. Among the different causes of HCC analyzed, this association was significant only for HCC related to chronic hepatitis B (p< 0.001) and non-viral causes (p<0.05), and limited only to patients who had normal alanine aminotransferase (ALT) levels. Conclusion Serial measurements of serum AFP ratios could be helpful in detecting progression or recurrence in treated patients with HBV-HCC and normal ALT. PMID:27304617

  8. Enzymological and mutational analysis of a complex primary hyperoxaluria type I phenotype involving alanine: Glyoxylate aminotransferase peroxisome-to-mitochondrion mistargeting and intraperoxisomal aggregation

    SciTech Connect

    Danpure, C.J.; Purdue, P.E.; Allsop, J.; Lumb, M.J.; Jennings, P.R. ); Scheinman, J.I. ); Mauer, S.M. ); Davidson, N.O. )

    1993-08-01

    Primary hyperoxaluri type 1 (PH1) is a rare autosomal recessive disease caused by a deficiency of the liver-specific peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT). Three unrelated PH1 patients, who possess a novel complex phenotype, are described. At the enzymological level, this phenotype is characterized by a complete, or nearly complete, absence of AGT catalytic activity and reduced AGT immunoreactivity. Unlike normal individuals in whom the AGT is confined to the peroxisomal matrix, the immunoreactive AGT in these three patients was distributed approximately equally between the peroxisomes and mitochondria. The peroxisomal AGT appeared to be aggregated into amorphous core-like structures in which no other peroxisomal enzymes could be identified. Mutational analysis of the AGT gene showed that two of the three patients were compound heterozygotes for two previously unrecognized point mutations which caused Gly41[yields]Arg and Phe152[yields]Iso amino acid substitutions. The third patient was shown to be a compound heterozygote for the Gly41[yields]Arg mutation and a previously recognized Gly170[yields]Arg mutation. All three patients were homozygous for the Pro11[yields]Leu polymorphism that had been found previously with a high allelic frequency in normal populations. It is suggested the the Phe152[yields]Iso and Gly170[yields]Arg substitutions, which are only eighteen residues apart and located in the same highly conserved internal region of 58 amino acids, might be involved in the inhibition of peroxisomal targeting and/or import of AGT and, in combination with the Pro11[yields]Leu polymorphism, be responsible for its aberrant mitochondrial compartmentalization. On the other hand, the Gly41[yields]Arg substitution, either in combination with the Pro11[yields]Leu polymorphism or by itself, is predicted to be responsible for the intraperoxisomal aggregation of the AGT protein. 50 refs., 8 figs., 4 tabs.

  9. Clinical and laboratory characteristics of patients with thyroid diseases with and without alanine aminotransferase levels above the upper tertile - Cross-sectional analytical study.

    PubMed

    Silva, Nathanael de Oliveira E; Ronsoni, Marcelo Fernando; Colombo, Bruno da Silveira; Corrêa, Carina Gabriela; Hatanaka, Simone Aiko; Canalli, Maria Heloisa Büsi da Silva; Schiavon, Leonardo de Lucca; Narciso-Schiavon, Janaína Luz

    2016-04-01

    Objective Thyroid disease affects 6.6% of the general population. The liver is fundamental in metabolizing thyroid hormones, and hepatocytes are often affected in thyroid disease. We aimed to compare clinical and laboratory parameters among thyroid disease patients with alanine aminotransferase (ALT) levels above vs. below the upper tertile. Subjects and methods A retrospective cross-sectional analytical study was conducted in the endocrinology clinic at Polydoro Ernani de São Thiago University Hospital. Patients with thyroid disease between August 2012 and January 2014 were included in the study. Clinical and laboratory parameters were collected from medical records. Results One hundred patients were included, of which 14.0% were male, with a mean age of 49.1 ± 14.4 years. ALT levels ranged from 9 to 90 U/L, and the ALT upper tertile was defined as 0,64 times the upper normal limit (xUNL). Patients with ALT levels above the upper tertile exhibited a higher proportion of systemic arterial hypertension (SAH), a higher mean abdominal circumference and a higher frequency of elevated TSH levels than did patients with ALT levels below the upper tertile. In multivariate analysis, ALT ≥ 0.64 (xUNL) was independently associated with abdominal circumference (odds ratio [OR] = 0.087, 95% confidence interval [CI] 0012-0167, P = 0.022). ALT (xUNL) correlated positively with total cholesterol (r = 0.213, P = 0.042). Conclusions In patients with thyroid diseases, it was observed that those with ALT above the upper tertile are associated with abdominal circumference and ALT levels correlate with total cholesterol. PMID:26331222

  10. Performance of an Optimized Paper-Based Test for Rapid Visual Measurement of Alanine Aminotransferase (ALT) in Fingerstick and Venipuncture Samples

    PubMed Central

    Noubary, Farzad; Coonahan, Erin; Schoeplein, Ryan; Baden, Rachel; Curry, Michael; Afdhal, Nezam; Kumar, Shailendra; Pollock, Nira R.

    2015-01-01

    Background A paper-based, multiplexed, microfluidic assay has been developed to visually measure alanine aminotransferase (ALT) in a fingerstick sample, generating rapid, semi-quantitative results. Prior studies indicated a need for improved accuracy; the device was subsequently optimized using an FDA-approved automated platform (Abaxis Piccolo Xpress) as a comparator. Here, we evaluated the performance of the optimized paper test for measurement of ALT in fingerstick blood and serum, as compared to Abaxis and Roche/Hitachi platforms. To evaluate feasibility of remote results interpretation, we also compared reading cell phone camera images of completed tests to reading the device in real time. Methods 96 ambulatory patients with varied baseline ALT concentration underwent fingerstick testing using the paper device; cell phone images of completed devices were taken and texted to a blinded off-site reader. Venipuncture serum was obtained from 93/96 participants for routine clinical testing (Roche/Hitachi); subsequently, 88/93 serum samples were captured and applied to paper and Abaxis platforms. Paper test and reference standard results were compared by Bland-Altman analysis. Findings For serum, there was excellent agreement between paper test and Abaxis results, with negligible bias (+4.5 U/L). Abaxis results were systematically 8.6% lower than Roche/Hitachi results. ALT values in fingerstick samples tested on paper were systematically lower than values in paired serum tested on paper (bias -23.6 U/L) or Abaxis (bias -18.4 U/L); a correction factor was developed for the paper device to match fingerstick blood to serum. Visual reads of cell phone images closely matched reads made in real time (bias +5.5 U/L). Conclusions The paper ALT test is highly accurate for serum testing, matching the reference method against which it was optimized better than the reference methods matched each other. A systematic difference exists between ALT values in fingerstick and paired

  11. Alanine-glyoxylate aminotransferase 2 (AGXT2) Polymorphisms Have Considerable Impact on Methylarginine and β-aminoisobutyrate Metabolism in Healthy Volunteers

    PubMed Central

    König, Jörg; Mieth, Maren; Sticht, Heinrich; Zolk, Oliver; Kralj, Ana; Heinrich, Markus R.; Fromm, Martin F.; Maas, Renke

    2014-01-01

    Elevated plasma concentrations of asymmetric (ADMA) and symmetric (SDMA) dimethylarginine have repeatedly been linked to adverse clinical outcomes. Both methylarginines are substrates of alanine-glyoxylate aminotransferase 2 (AGXT2). It was the aim of the present study to simultaneously investigate the functional relevance and relative contributions of common AGXT2 single nucleotide polymorphisms (SNPs) to plasma and urinary concentrations of methylarginines as well as β-aminoisobutyrate (BAIB), a prototypic substrate of AGXT2. In a cohort of 400 healthy volunteers ADMA, SDMA and BAIB concentrations were determined in plasma and urine using HPLC-MS/MS and were related to the coding AGXT2 SNPs rs37369 (p.Val140Ile) and rs16899974 (p.Val498Leu). Volunteers heterozygous or homozygous for the AGXT2 SNP rs37369 had higher SDMA plasma concentrations by 5% and 20% (p = 0.002) as well as higher BAIB concentrations by 54% and 146%, respectively, in plasma and 237% and 1661%, respectively, in urine (both p<0.001). ADMA concentrations were not affected by both SNPs. A haplotype analysis revealed that the second investigated AGXT2 SNP rs16899974, which was not significantly linked to the other AGXT2 SNP, further aggravates the effect of rs37369 with respect to BAIB concentrations in plasma and urine. To investigate the impact of the amino acid exchange p.Val140Ile, we established human embryonic kidney cell lines stably overexpressing wild-type or mutant (p.Val140Ile) AGXT2 protein and assessed enzyme activity using BAIB and stable-isotope labeled [2H6]-SDMA as substrate. In vitro, the amino acid exchange of the mutant protein resulted in a significantly lower enzyme activity compared to wild-type AGXT2 (p<0.05). In silico modeling of the SNPs indicated reduced enzyme stability and substrate binding. In conclusion, SNPs of AGXT2 affect plasma as well as urinary BAIB and SDMA concentrations linking methylarginine metabolism to the common genetic trait of hyper

  12. Alanine-glyoxylate aminotransferase 2 (AGXT2) polymorphisms have considerable impact on methylarginine and β-aminoisobutyrate metabolism in healthy volunteers.

    PubMed

    Kittel, Anja; Müller, Fabian; König, Jörg; Mieth, Maren; Sticht, Heinrich; Zolk, Oliver; Kralj, Ana; Heinrich, Markus R; Fromm, Martin F; Maas, Renke

    2014-01-01

    Elevated plasma concentrations of asymmetric (ADMA) and symmetric (SDMA) dimethylarginine have repeatedly been linked to adverse clinical outcomes. Both methylarginines are substrates of alanine-glyoxylate aminotransferase 2 (AGXT2). It was the aim of the present study to simultaneously investigate the functional relevance and relative contributions of common AGXT2 single nucleotide polymorphisms (SNPs) to plasma and urinary concentrations of methylarginines as well as β-aminoisobutyrate (BAIB), a prototypic substrate of AGXT2. In a cohort of 400 healthy volunteers ADMA, SDMA and BAIB concentrations were determined in plasma and urine using HPLC-MS/MS and were related to the coding AGXT2 SNPs rs37369 (p.Val140Ile) and rs16899974 (p.Val498Leu). Volunteers heterozygous or homozygous for the AGXT2 SNP rs37369 had higher SDMA plasma concentrations by 5% and 20% (p = 0.002) as well as higher BAIB concentrations by 54% and 146%, respectively, in plasma and 237% and 1661%, respectively, in urine (both p<0.001). ADMA concentrations were not affected by both SNPs. A haplotype analysis revealed that the second investigated AGXT2 SNP rs16899974, which was not significantly linked to the other AGXT2 SNP, further aggravates the effect of rs37369 with respect to BAIB concentrations in plasma and urine. To investigate the impact of the amino acid exchange p.Val140Ile, we established human embryonic kidney cell lines stably overexpressing wild-type or mutant (p.Val140Ile) AGXT2 protein and assessed enzyme activity using BAIB and stable-isotope labeled [²H₆]-SDMA as substrate. In vitro, the amino acid exchange of the mutant protein resulted in a significantly lower enzyme activity compared to wild-type AGXT2 (p<0.05). In silico modeling of the SNPs indicated reduced enzyme stability and substrate binding. In conclusion, SNPs of AGXT2 affect plasma as well as urinary BAIB and SDMA concentrations linking methylarginine metabolism to the common genetic trait of hyper

  13. Glycolysis and the Tricarboxylic Acid Cycle Are Linked by Alanine Aminotransferase during Hypoxia Induced by Waterlogging of Lotus japonicus1[W][OA

    PubMed Central

    Rocha, Marcio; Licausi, Francesco; Araújo, Wagner L.; Nunes-Nesi, Adriano; Sodek, Ladaslav; Fernie, Alisdair R.; van Dongen, Joost T.

    2010-01-01

    The role of nitrogen metabolism in the survival of prolonged periods of waterlogging was investigated in highly flood-tolerant, nodulated Lotus japonicus plants. Alanine production revealed to be a critical hypoxic pathway. Alanine is the only amino acid whose biosynthesis is not inhibited by nitrogen deficiency resulting from RNA interference silencing of nodular leghemoglobin. The metabolic changes that were induced following waterlogging can be best explained by the activation of alanine metabolism in combination with the modular operation of a split tricarboxylic acid pathway. The sum result of this metabolic scenario is the accumulation of alanine and succinate and the production of extra ATP under hypoxia. The importance of alanine metabolism is discussed with respect to its ability to regulate the level of pyruvate, and this and all other changes are discussed in the context of current models concerning the regulation of plant metabolism. PMID:20089769

  14. Effect of L-tryptophan injection in rats on some enzymes of amino acid metabolism in liver. I. In vitro studies of the effect of L-tryptophan and its metabolites on the extramitochondrial L-alanine: 2-ketoglutaric aminotransferase.

    PubMed

    Katsos, A; Philippidis, H; Palaiologos, G

    1981-02-01

    Fed and fasted rats were injected with L-tryptophan (12.5 mg/100 g body weight) and the specific activities of L-glutamic: NAD oxidoreductase (deaminating) (EC 1.4.1.2) (GDH), L-aspartic-2-ketoglutaric aminotransferase (EC 2.6.1.1) (GOT) and L-alanine-2-ketoglutaric aminotransferase (EC 2.6.1.2) (GPT) from hepatic mitochondria and cytosol were compared. L-tryptophan results in a decrease of mitochondrial GDH activity by 22% and of cytosolic GPT and GOT by 42% and 38% respectively in the liver of fasted rats. Xanthurenate is a potent inhibitor of purified extramitochondrial GPT, whereas anthranilate and quinolinate are less potent inhibitors. L-tryptophan, 5-OH-tryptophan and indole exert a slight inhibition. Kynurenine, 5-OH-tryptamine, tryptamine, picolinic acid, nicotinic acid and indoloacetic acid do not show any inhibition of GPT. It is suggested that L-tryptophan injection inhibits extramitochondrial GPT by its transformation to xanthurenate and anthranilate. PMID:7227974

  15. Recurrent truncating mutations in alanine-glyoxylate aminotransferase gene in two South Indian families with primary hyperoxaluria type 1 causing later onset end-stage kidney disease

    PubMed Central

    Dutta, A. K.; Paulose, B. K.; Danda, S.; Alexander, S.; Tamilarasi, V.; Omprakash, S.

    2016-01-01

    Primary hyperoxaluria type 1 is an autosomal recessive inborn error of metabolism due to liver-specific peroxisomal enzyme alanine-glyoxylate transaminase deficiency. Here, we describe two unrelated patients who were diagnosed to have primary hyperoxaluria. Homozygous c.445_452delGTGCTGCT (p.L151Nfs*14) (Transcript ID: ENST00000307503; human genome assembly GRCh38.p2) (HGMD ID CD073567) mutation was detected in both the patients and the parents were found to be heterozygous carriers. Our patients developed end-stage renal disease at 23 years and 35 years of age. However, in the largest series published from OxalEurope cohort, the median age of end-stage renal disease for null mutations carriers was 9.9 years, which is much earlier than our cases. Our patients had slower progressions as compared to three unrelated patients from North India and Pakistan, who had homozygous c.302T>C (p.L101P) (HGMD ID CM093792) mutation in exon 2. Further, patients need to be studied to find out if c.445_452delGTGCTGCT mutation represents a founder mutation in Southern India. PMID:27512303

  16. Lingmao Formula Combined with Entecavir for HBeAg-Positive Chronic Hepatitis B Patients with Mildly Elevated Alanine Aminotransferase: A Multicenter, Randomized, Double-Blind, Placebo-Controlled Trial

    PubMed Central

    Zhu, Xiao-Jun; Sun, Xue-Hua; Zhou, Zheng-Hua; Liu, Shun-Qing; Lv, Hua; Li, Man; Li, Lu; Gao, Yue-Qiu

    2013-01-01

    Objective. To determine the efficacy and safety of Lingmao Formula combined with entecavir for HBeAg-positive chronic hepatitis B patients with mildly elevated alanine aminotransferase (ALT). Methods. 301 patients were randomly assigned to receive Lingmao Formula combined with entecavir (treatment group) or placebo combined with entecavir (control group) for 52 weeks. The outcomes of interest included the reduction of serum HBV DNA level, HBeAg loss, HBeAg seroconversion, ALT normalization, and histological improvement. Results. The mean decrease of serum HBV DNA level from baseline and the percentage of patients who had reduction in serum HBV DNA level ≥2 lg copies/mL in treatment group were significantly greater than that in control group (5.5 versus 5.4 lg copies/mL, P = 0.010; 98.5% versus 92.6%, P = 0.019). The percentage of HBeAg loss in treatment group was 22.8%, which was much higher than a percentage of 12.6% in control group (P = 0.038). There was no significant difference between the two groups in histological improvement. Safety was similar in the two groups. Conclusions. The combination of Lingmao Formula with entecavir could result in significant decrease of serum HBV DNA and increase of HBeAg loss for HBeAg-positive chronic hepatitis B patients with mildly elevated ALT without any serious adverse events. Clinical trial registration number is ChiCTR-TRC-09000594. PMID:24058372

  17. The peroxisome proliferator-activated receptor α agonist, AZD4619, induces alanine aminotransferase-1 gene and protein expression in human, but not in rat hepatocytes: Correlation with serum ALT levels.

    PubMed

    Thulin, Petra; Bamberg, Krister; Buler, Marcin; Dahl, Björn; Glinghammar, Björn

    2016-09-01

    Alanine aminotransferase (ALT) in serum is the standard biomarker for liver injury. We have previously described a clinical trial with a novel selective peroxisome proliferator-activated receptor α (PPARα) agonist (AZD4619), which unexpectedly caused increased serum levels of ALT in treated individuals without any other evidence of liver injury. We pinpointed a plausible mechanism through which AZD4619 could increase serum ALT levels; namely through the PPARα-specific activation of the human ALT1 gene at the transcriptional level. In the present study, we present data from the preceding rat toxicity study, demonstrating that AZD4619 had no effect on rat serum ALT activity levels, and further experiments were performed to elucidate the mechanisms responsible for this species-related difference. Our results revealed that AZD4619 increased ALT1 protein expression in a dose-dependent manner in human, but not in rat primary hepatocytes. Cloning of the human and rat ALT1 promoters into luciferase vectors confirmed that AZD4619 induced only the human, but not the rat ALT1 gene promoter in a dose-dependent manner. In PPARα-GAL4 reporter gene assays, AZD4619 was >100-fold more potent on the human vs. rat PPARα levels, explaining the differences in induction of the ALT1 gene between the species at the concentration range tested. These data demonstrate the usefulness of the human and rat ALT1 reporter gene assays for testing future drug candidates at the preclinical stage. In drug discovery projects, these assays elucidate whether elevations in ALT levels observed in vivo or in the clinic are due to metabolic effects rather than a toxic event in the liver. PMID:27430334

  18. Evolution of alanine:glyoxylate aminotransferase 1 peroxisomal and mitochondrial targeting. A survey of its subcellular distribution in the livers of various representatives of the classes Mammalia, Aves and Amphibia.

    PubMed

    Danpure, C J; Fryer, P; Jennings, P R; Allsop, J; Griffiths, S; Cunningham, A

    1994-08-01

    As part of a wider study on the molecular evolution of alanine:glyoxylate aminotransferase 1 (AGT1) intracellular compartmentalization, we have determined the subcellular distribution of immunoreactive AGT1, using postembedding protein A-gold immunoelectron microscopy, in the livers of various members of the classes Mammalia, Aves, and Amphibia. As far as organellar distribution is concerned, three categories could be distinguished. In members of the first category (type I), all, or nearly all, of the immunoreactive AGT1 was concentrated within the peroxisomes. In the second category (type II), AGT1 was found more evenly distributed in both peroxisomes and mitochondria. In the third category (type III), AGT1 was localized mainly within the mitochondria with much lower, but widely variable, amounts in the peroxisomes. Type I animals include the human, two great apes (gorilla, orangutan), two Old World monkeys (anubis baboon, Japanese macaque), a New World monkey (white-faced Saki monkey), a lago, morph (European rabbit), a bat (Seba's short-tailed fruit bat), two caviomorph rodents (guinea pig, orange-rumped agouti), and two Australian marsupials (koala, Bennett's wallaby). Type II animals include two New World monkeys (common marmoset, cotton-top tamarin), three prosimians (brown lemur, fat-tailed dwarf lemur, pygmy slow loris), five rodents (a hybrid crested porcupine, Colombian ground squirrel, laboratory rat, laboratory mouse, golden hamster), an American marsupial (grey short-tailed opossum), and a bird (raven). Type III animals include the large tree shrew, three insectivores (common Eurasian mole, European hedgehog, house shrew), four carnivores (domestic cat, ocelot, domestic dog, polecat ferret), and an amphibian (common frog). In addition to these categories, some animals (e.g. guinea pig, common frog) possessed significant amounts of cytosolic AGT1. Whereas the subcellular distribution of AGT1 in some orders (e.g. Insectivora and Carnivora) did not appear

  19. AGXT2: a promiscuous aminotransferase

    PubMed Central

    Rodionov, Roman N.; Jarzebska, Natalia; Weiss, Norbert; Lentz, Steven R.

    2014-01-01

    Alanine-glyoxylate aminotransferase 2 (AGXT2) is a multifunctional mitochondrial aminotransferase that was first identified in 1978. The physiological importance of AGXT2 was largely overlooked for three decades because AGXT2 is less active in glyoxylate metabolism than AGXT1, the enzyme that is deficient in primary hyperoxaluria type I. Recently, several novel functions of AGXT2 have been “rediscovered” in the setting of modern genomic and metabolomic studies. It is now apparent that AGXT2 has multiple substrates and products and that altered AGXT2 activity may contribute to the pathogenesis of cardiovascular, renal, neurological and hematological diseases. This article reviews the biochemical properties and physiological functions of AGXT2, its unique role at the intersection of key mitochondrial pathways, and its potential as a drug target. PMID:25294000

  20. Comparison of blood aminotransferase methods for assessment of myopathy and hepatopathy in Florida manatees (Trichechus manatus latirostris).

    PubMed

    Harr, Kendal E; Allison, Kathryn; Bonde, Robert K; Murphy, David; Harvey, John W

    2008-06-01

    Muscle injury is common in Florida manatees (Trichechus manatus latirostris). Plasma aspartate aminotransferase (AST) is frequently used to assess muscular damage in capture myopathy and traumatic injury. Therefore, accurate measurement of AST and alanine aminotransferase (ALT) is important in managed, free-ranging animals, as well as in those rehabilitating from injury. Activities of these enzymes, however, are usually not increased in manatees with either acute or chronic muscle damage, despite marked increases in plasma creatine kinase activity. It is hypothesized that this absence of response is due to apoenzymes in the blood not detected by commonly used veterinary assays. Addition of coenzyme pyridoxal-5-phosphate (P5P or vitamin B6) should, therefore, result in higher measured enzyme activities. The objective of this study was to determine the most accurate, precise, and diagnostically useful method for aminotransferase measurement in manatees that can be used in veterinary practices and diagnostic laboratories. Additionally, appropriate collection and storage techniques were assessed. The use of an optimized commercial wet chemical assay with 100 micromol P5P resulted in a positive bias of measured enzyme activities in a healthy population of animals. However, AST and ALT were still much lower than that typically observed in domestic animals and should not be used alone in the assessment of capture myopathy and muscular trauma. Additionally, the dry chemistry analyzer, typically used in clinics, reported significantly higher and less precise AST and ALT activities with poor correlation to those measured with wet chemical methods found in diagnostic laboratories. Therefore, these results cannot be clinically compared. Overall, the optimized wet chemical method was the most precise and diagnostically useful measurement of aminotransferase in samples. Additionally, there was a statistically significant difference between paired serum and plasma measurement

  1. Antiretroviral Drugs and Risk of Chronic Alanine Aminotransferase Elevation in Human Immunodeficiency Virus (HIV)-Monoinfected Persons: The Data Collection on Adverse Events of Anti-HIV Drugs Study.

    PubMed

    Kovari, Helen; Sabin, Caroline A; Ledergerber, Bruno; Ryom, Lene; Reiss, Peter; Law, Matthew; Pradier, Christian; Dabis, Francois; d'Arminio Monforte, Antonella; Smith, Colette; de Wit, Stephane; Kirk, Ole; Lundgren, Jens D; Weber, Rainer

    2016-01-01

    Background.  Although human immunodeficiency virus (HIV)-positive persons on antiretroviral therapy (ART) frequently have chronic liver enzyme elevation (cLEE), the underlying cause is often unclear. Methods.  Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) Study participants without chronic viral hepatitis were observed to the earliest of cLEE (elevated aminotransferase ≥6 months), death, last follow-up, or January 2, 2014. Antiretroviral treatment exposure was categorized as follows: no exposure and ongoing short- and long-term exposure (<2 or ≥2 years) after initiation. Association between development of cLEE and ART exposure was investigated using Poisson regression. Results.  Among 21 485 participants observed for 105 413 person-years (PY), 6368 developed cLEE (incidence 6.04/100 PY; 95% confidence interval [CI], 5.89-6.19). Chronic liver enzyme elevation was associated with short-and long-term exposure to didanosine (<2 years rate ratio [RR] = 1.29, 95% CI, 1.11-1.49; >2 years RR = 1.26, 95% CI, 1.13-1.41); stavudine (<2 years RR = 1.51, 95% CI, 1.26-1.81; >2 years RR = 1.17, 95% CI, 1.03-1.32), and tenofovir disoproxil fumarate (<2 years RR = 1.55, 95% CI, 1.40-1.72; >2 years RR = 1.18, 95% CI, 1.05-1.32), but only short-term exposure to nevirapine (<2 years RR = 1.44, 95% CI, 1.29-1.61), efavirenz (<2 years RR = 1.14, 95% CI, 1.03-1.26), emtricitabine (<2 years RR = 1.18, 95% CI, 1.04-1.33), and atazanavir (<2 years RR = 1.20, 95% CI, 1.04-1.38). Chronic liver enzyme elevation was not associated with use of lamivudine, abacavir, and other protease inhibitors. Mortality did not differ between participants with and without cLEE. Conclusions.  Although didanosine, stavudine, nevirapine, and efavirenz have been described to be hepatotoxic, we additionally observed a consistent association between tenofovir and cLEE emerging within the first 2 years after drug initiation. This novel tenofovir-cLEE signal should be further investigated

  2. Antiretroviral Drugs and Risk of Chronic Alanine Aminotransferase Elevation in Human Immunodeficiency Virus (HIV)-Monoinfected Persons: The Data Collection on Adverse Events of Anti-HIV Drugs Study

    PubMed Central

    Kovari, Helen; Sabin, Caroline A.; Ledergerber, Bruno; Ryom, Lene; Reiss, Peter; Law, Matthew; Pradier, Christian; Dabis, Francois; d'Arminio Monforte, Antonella; Smith, Colette; de Wit, Stephane; Kirk, Ole; Lundgren, Jens D.; Weber, Rainer

    2016-01-01

    Background. Although human immunodeficiency virus (HIV)-positive persons on antiretroviral therapy (ART) frequently have chronic liver enzyme elevation (cLEE), the underlying cause is often unclear. Methods. Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) Study participants without chronic viral hepatitis were observed to the earliest of cLEE (elevated aminotransferase ≥6 months), death, last follow-up, or January 2, 2014. Antiretroviral treatment exposure was categorized as follows: no exposure and ongoing short- and long-term exposure (<2 or ≥2 years) after initiation. Association between development of cLEE and ART exposure was investigated using Poisson regression. Results. Among 21 485 participants observed for 105 413 person-years (PY), 6368 developed cLEE (incidence 6.04/100 PY; 95% confidence interval [CI], 5.89–6.19). Chronic liver enzyme elevation was associated with short-and long-term exposure to didanosine (<2 years rate ratio [RR] = 1.29, 95% CI, 1.11–1.49; >2 years RR = 1.26, 95% CI, 1.13–1.41); stavudine (<2 years RR = 1.51, 95% CI, 1.26–1.81; >2 years RR = 1.17, 95% CI, 1.03–1.32), and tenofovir disoproxil fumarate (<2 years RR = 1.55, 95% CI, 1.40–1.72; >2 years RR = 1.18, 95% CI, 1.05–1.32), but only short-term exposure to nevirapine (<2 years RR = 1.44, 95% CI, 1.29–1.61), efavirenz (<2 years RR = 1.14, 95% CI, 1.03–1.26), emtricitabine (<2 years RR = 1.18, 95% CI, 1.04–1.33), and atazanavir (<2 years RR = 1.20, 95% CI, 1.04–1.38). Chronic liver enzyme elevation was not associated with use of lamivudine, abacavir, and other protease inhibitors. Mortality did not differ between participants with and without cLEE. Conclusions. Although didanosine, stavudine, nevirapine, and efavirenz have been described to be hepatotoxic, we additionally observed a consistent association between tenofovir and cLEE emerging within the first 2 years after drug initiation. This novel tenofovir-cLEE signal should be

  3. Elevated Serum Aminotransferases Secondary to Rippling Muscle Disease

    PubMed Central

    Nalankilli, Kumanan; Lubel, John

    2013-01-01

    A 43-year-old man was referred by his general practitioner to the hepatology clinic with deranged serum aminotransferases, discovered as part of routine blood tests. The objective was to identify the cause of elevated serum aminotransferases in this patient in a systematic manner. Thorough history and physical examination revealed a background history of rippling muscle disease secondary to caveolin-3 protein deficiency, with typical clinical signs. There was a positive family history of musculoskeletal disease in the patient's father and brother. Previous diagnostic tests performed to investigate the patient's musculoskeletal symptoms, including muscle biopsies, were revisited. Subsequent systematic investigations such as blood tests, liver ultrasound scan and Fibroscan® were performed to exclude potential causes of the deranged serum aminotransferases. Liver biopsy was not performed. A consistent pattern of chronic low-grade elevations of serum aminotransferases, less than three times the upper limit of the normal range, was found. This was associated with a consistently elevated serum creatine kinase and normal renal function tests. Previous muscle biopsies had revealed chronic degenerative and regenerative changes suggestive of a focal necrotizing myopathy. Liver ultrasound scan and Fibroscan® were normal. With exclusion of other liver diseases and identification of profoundly elevated serum creatine kinase concentration, the deranged aminotransferases were attributed to rippling muscle disease. PMID:23798914

  4. Creatine deficiency syndromes.

    PubMed

    Schulze, Andreas

    2003-02-01

    Since the first description of a creatine deficiency syndrome, the guanidinoacetate methyltransferase (GAMT) deficiency, in 1994, the two further suspected creatine deficiency syndromes--the creatine transporter (CrT1) defect and the arginine:glycine amidinotransferase (AGAT) deficiency were disclosed. GAMT and AGAT deficiency have autosomal-recessive traits, whereas the CrT1 defect is a X-linked disorder. All patients reveal developmental delay/regression, mental retardation, and severe disturbance of their expressive and cognitive speech. The common feature of all creatine deficiency syndromes is the severe depletion of creatine/phosphocreatine in the brain. Only the GAMT deficiency is in addition characterized by accumulation of guanidinoacetic acid in brain and body fluids. Guanidinoacetic acid seems to be responsible for intractable seizures and the movement disorder, both exclusively found in GAMT deficiency. Treatment with oral creatine supplementation is in part successful in GAMT and AGAT deficiency, whereas in CrT1 defect it is not able to replenish creatine in the brain. Treatment of combined arginine restriction and ornithine substitution in GAMT deficiency is capable to decrease guanidinoacetic acid permanently and improves the clinical outcome. The lack of the creatine/phosphocreatine signal in the patient's brain by means of in vivo proton magnetic resonance spectroscopy is the common finding and the diagnostic clue in all three diseases. In AGAT deficiency guanidinoacetic acid is decreased, whereas creatine in blood was found to be normal. On the other hand the CrT1 defect is characterized by an increased concentration of creatine in blood and urine whereas guanidinoacetic acid concentration is normal. The increasing number of patients detected very recently suffering from a creatine deficiency syndrome and the unfavorable outcome highlights the need of further attempts in early recognition of affected individuals and in optimizing its treatment

  5. Comparative aspects of aminotransferases in the rat, pigeon and rainbow trout.

    PubMed

    Cornish, E C; Cussen, C M; Hird, F J; Todd, P E

    1978-01-01

    1. The activities of aminotransferases catalysing the transfer of amino groups from aspartate, alanine and leucine to 2-oxoglutarate in different tissues of the rat, pigeon and trout have been determined. 2. Alanine-2-oxoglutarate aminotransferase was high in the liver of the rat and trout and low in that of the pigeon. 3. Aspartate-2-oxoglutarate aminotransferase was usually the dominant aminotransferase in all tissues and was highest in oxidative tissues where the TCA cycle is active. Its activity in the various livers is not correlated with the function of aspartate in nitrogen excretion. 4. The activity of aspartate-2-oxoglutarate aminotransferase in oxidative tissues argues that aspartate in conjunction with this enzyme serves as a buffer of oxaloacetate to keep the TCA cycle running and/or to mediate the transfer of reducing equivalents across mitochondrial membranes. PMID:318383

  6. Ornithine δ-aminotransferase

    PubMed Central

    Stránská, Jana; Kopečný, David; Tylichová, Martina; Snégaroff, Jacques

    2008-01-01

    This review deals with biochemical and physiological aspects of plant ornithine d-aminotransferase (OAT, EC 2.6.1.13). OAT is a mitochondrial enzyme containing pyridoxal-5′-phosphate as a cofactor, which catalyzes the conversion of L-ornithine to L-glutamate γ-semialdehyde using 2-oxoglutarate as a terminal amino group acceptor. It has been described in humans, animals, insects, plants and microorganisms. Based on the crystal structure of human OAT, both substrate binding and reaction mechanism of the enzyme are well understood. OAT shows a large structural and mechanistic similarity to other enzymes from the subgroup III of aminotransferases, which transfer an amino group from a carbon atom that does not carry a carboxyl function. In plants, the enzyme has been implicated in proline biosynthesis and accumulation (via pyrroline-5-carboxylate), which represents a way to regulate cellular osmolarity in response to osmotic stress. However, the exact metabolic pathway involving OAT remains a subject of controversy. PMID:19513195

  7. Respiration of [14C]alanine by the ectomycorrhizal fungus Paxillus involutus.

    PubMed

    Chalot, M; Brun, A; Finlay, R D; Söderström, B

    1994-08-01

    The ectomycorrhizal fungus Paxillus involutus efficiently took up exogenously supplied [14C]alanine and rapidly converted it to pyruvate, citrate, succinate, fumarate and to CO2, thus providing direct evidence for the utilisation of alanine as a respiratory substrate. [14C]alanine was further actively metabolised to glutamate, glutamine and aspartate. Exposure to aminooxyacetate completely suppressed 14CO2 evolution and greatly reduced the flow of carbon from [14C]alanine to tricarboxylic acid cycle intermediates and amino acids, suggesting that alanine aminotransferase plays a pivotal role in alanine metabolism in Paxillus involutus. PMID:8082830

  8. Comparison of blood aminotransferase methods for assessment of myopathy and hepatopathy in Florida manatees (Trichechus manatus latirostris)

    USGS Publications Warehouse

    Harr, K.E.; Allison, K.; Bonde, R.K.; Murphy, D.; Harvey, J.W.

    2008-01-01

    Muscle injury is common in Florida manatees (Trichechus manatus latirostris). Plasma aspartate amino-transferase (AST) is frequently used to assess muscular damage in capture myopathy and traumatic injury. Therefore, accurate measurement of AST and alanine aminotransferase (ALT) is important in managed, free-ranging animals, as well as in those rehabilitating from injury. Activities of these enzymes, however, are usually not increased in manatees with either acute or chronic muscle damage, despite marked increases in plasma creatine kinase activity. It is hypothesized that this absence of response is due to apoenzymes in the blood not detected by commonly used veterinary assays. Addition of coenzyme pyridoxal-5-phosphate (P5P or vitamin B6) should, therefore, result in higher measured enzyme activities. The objective of this study was to determine the most accurate, precise, and diagnostically useful method for aminotransferase measurement in manatees that can be used in veterinary practices and diagnostic laboratories. Additionally, appropriate collection and storage techniques were assessed. The use of an optimized commercial wet chemical assay with 100 ??mol P5P resulted in a positive bias of measured enzyme activities in a healthy population of animals. However, AST and ALT were still much lower than that typically observed in domestic animals and should not be used alone in the assessment of capture myopathy and muscular trauma. Additionally, the dry chemistry analyzer, typically used in clinics, reported significantly higher and less precise AST and ALT activities with poor correlation to those measured with wet chemical methods found in diagnostic laboratories. Therefore, these results cannot be clinically compared. Overall, the optimized wet chemical method was the most precise and diagnostically useful measurement of aminotransferase in samples. Additionally, there was a statistically significant difference between paired serum and plasma measurement

  9. Structure and function of branched chain aminotransferases.

    PubMed

    Hutson, S

    2001-01-01

    Branched chain aminotransferases (BCATs) catalyze transamination of the branched chain amino acids (BCAAs) leucine, isoleucine, and valine. Except for the Escherichia coli and Salmonella proteins, which are homohexamers arranged as a double trimer, the BCATs are homodimers. Structurally, the BCATs belong to the fold type IV class of pyridoxal phosphate (PLP) enzymes. Other members are D-alanine aminotransferase and 4-amino-4-deoxychorismate lyase. Catalysis is on the re face of the PLP cofactor, whereas in other classes, catalysis occurs from the si face of PLP. Crystal structures of the fold type IV proteins show that they are distinct from the fold type I aspartate aminotransferase family and represent a new protein fold. Because the fold type IV enzymes catalyze diverse reactions, it is not surprising that the greatest structural similarities involve residues that participate in PLP binding rather than residues involved in substrate binding. The BCATs are widely distributed in the bacterial kingdom, where they are involved in the synthesis/degradation of the BCAAs. Bacteria contain a single BCAT. In eukaryotes there are two isozymes, one is mitochondrial (BCATm) and the other is cytosolic (BCATc). In mammals, BCATm is in most tissues, and BCATm is thought to be important in body nitrogen metabolism. BCATc is largely restricted to the central nervous system (CNS). Recently, BCATc has been recognized as a target of the neuroactive drug gabapentin. BCATc is involved in excitatory neurotransmitter glutamate synthesis in the CNS. Ongoing structural studies of the BCATs may facilitate the design of therapeutic compounds to treat neurodegenerative disorders involving disturbances of the glutamatergic system. PMID:11642362

  10. Molecular cloning, expression and characterization of pyridoxamine–pyruvate aminotransferase

    PubMed Central

    Yoshikane, Yu; Yokochi, Nana; Ohnishi, Kouhei; Hayashi, Hideyuki; Yagi, Toshiharu

    2006-01-01

    Pyridoxamine–pyruvate aminotransferase is a PLP (pyridoxal 5′-phosphate) (a coenzyme form of vitamin B6)-independent aminotransferase which catalyses a reversible transamination reaction between pyridoxamine and pyruvate to form pyridoxal and L-alanine. The gene encoding the enzyme has been identified, cloned and overexpressed for the first time. The mlr6806 gene on the chromosome of a symbiotic nitrogen-fixing bacterium, Mesorhizobium loti, encoded the enzyme, which consists of 393 amino acid residues. The primary sequence was identical with those of archaeal aspartate aminotransferase and rat serine–pyruvate aminotransferase, which are PLP-dependent aminotransferases. The results of fold-type analysis and the consensus amino acid residues found around the active-site lysine residue identified in the present study showed that the enzyme could be classified into class V aminotransferases of fold type I or the AT IV subfamily of the α family of the PLP-dependent enzymes. Analyses of the absorption and CD spectra of the wild-type and point-mutated enzymes showed that Lys197 was essential for the enzyme activity, and was the active-site lysine residue that corresponded to that found in the PLP-dependent aminotransferases, as had been suggested previously [Hodsdon, Kolb, Snell and Cole (1978) Biochem. J. 169, 429–432]. The Kd value for pyridoxal determined by means of CD was 100-fold lower than the Km value for it, suggesting that Schiff base formation between pyridoxal and the active-site lysine residue is partially rate determining in the catalysis of pyridoxal. The active-site structure and evolutionary aspects of the enzyme are discussed. PMID:16545075

  11. Human, rat and chicken small intestinal Na+-Cl−-creatine transporter: functional, molecular characterization and localization

    PubMed Central

    Peral, M J; García-Delgado, M; Calonge, M L; Durán, J M; De La Horra, M C; Wallimann, T; Speer, O; Ilundáin, A A

    2002-01-01

    In spite of all the fascinating properties of oral creatine supplementation, the mechanism(s) mediating its intestinal absorption has(have) not been investigated. The purpose of this study was to characterize intestinal creatine transport. [14C]Creatine uptake was measured in chicken enterocytes and rat ileum, and expression of the creatine transporter CRT was examined in human, rat and chicken small intestine by reverse transcription-polymerase chain reaction, Northern blot, in situ hybridization, immunoblotting and immunohistochemistry. Results show that enterocytes accumulate creatine against its concentration gradient. This accumulation was electrogenic, Na+- and Cl−-dependent, with a probable stoichiometry of 2 Na+: 1 Cl−: 1 creatine, and inhibited by ouabain and iodoacetic acid. The kinetic study revealed a Km for creatine of 29 μm. [14C]Creatine uptake was efficiently antagonized by non-labelled creatine, guanidinopropionic acid and cyclocreatine. More distant structural analogues of creatine, such as GABA, choline, glycine, β-alanine, taurine and betaine, had no effect on intestinal creatine uptake, indicating a high substrate specificity of the creatine transporter. Consistent with these functional data, messenger RNA for CRT was detected only in the cells lining the intestinal villus. The sequences of partial clones, and of the full-length cDNA clone, isolated from human and rat small intestine were identical to previously cloned CRT cDNAs. Immunological analysis revealed that CRT protein was mainly associated with the apical membrane of the enterocytes. This study reports for the first time that mammalian and avian enterocytes express CRT along the villus, where it mediates high-affinity, Na+- and Cl−-dependent, apical creatine uptake. PMID:12433955

  12. Creatine uptake in mouse hearts with genetically altered creatine levels

    PubMed Central

    Hove, Michiel ten; Makinen, Kimmo; Sebag-Montefiore, Liam; Hunyor, Imre; Fischer, Alexandra; Wallis, Julie; Isbrandt, Dirk; Lygate, Craig; Neubauer, Stefan

    2008-01-01

    Creatine plays an important role in energy metabolism in the heart. Cardiomyocytes accumulate creatine via a specific creatine transporter (CrT), the capacity of which is reduced in the failing heart, resulting in lower myocardial creatine concentration. Therefore, to gain insight into how the CrT is regulated, we studied two mouse models of severely altered myocardial creatine levels. Cardiac creatine uptake levels were measured in isolated hearts from creatine-free guanidinoacetate-N-methyl transferase knock out (GAMT−/−) mice and from mice overexpressing the myocardial CrT (CrT-OE) using 14C-radiolabeled creatine. CrT mRNA levels were measured using real time RT-PCR and creatine levels with HPLC. Hearts from GAMT−/− mice showed a 7-fold increase in Vmax of creatine uptake and a 1.4-fold increase in CrT mRNA levels. The increase in Cr uptake and in CrT mRNA levels, however, was almost completely prevented when mice were fed a creatine supplemented diet, indicating that creatine uptake is subject to negative feedback regulation. Cardiac creatine uptake levels in CrT-OE mice were increased on average 2.7-fold, showing a considerable variation, in line with a similar variation in creatine content. Total CrT mRNA levels correlated well with myocardial creatine content (r = 0.67; p < 0.0001) but endogenous CrT mRNA levels did not correlate at all with myocardial creatine content (r = 0.01; p = 0.96). This study shows that creatine uptake can be massively upregulated in the heart, by almost an order of magnitude and that this upregulation is subject to feedback inhibition. In addition, our results strongly suggest that CrT activity is predominantly regulated by mechanisms other than alterations in gene expression. PMID:18602925

  13. The role of dietary creatine.

    PubMed

    Brosnan, Margaret E; Brosnan, John T

    2016-08-01

    The daily requirement of a 70-kg male for creatine is about 2 g; up to half of this may be obtained from a typical omnivorous diet, with the remainder being synthesized in the body Creatine is a carninutrient, which means that it is only available to adults via animal foodstuffs, principally skeletal muscle, or via supplements. Infants receive creatine in mother's milk or in milk-based formulas. Vegans and infants fed on soy-based formulas receive no dietary creatine. Plasma and muscle creatine levels are usually somewhat lower in vegetarians than in omnivores. Human intake of creatine was probably much higher in Paleolithic times than today; some groups with extreme diets, such as Greenland and Alaskan Inuit, ingest much more than is currently typical. Creatine is synthesized from three amino acids: arginine, glycine and methionine (as S-adenosylmethionine). Humans can synthesize sufficient creatine for normal function unless they have an inborn error in a creatine-synthetic enzyme or a problem with the supply of substrate amino acids. Carnivorous animals, such as lions and wolves, ingest much larger amounts of creatine than humans would. The gastrointestinal tract and the liver are exposed to dietary creatine in higher concentrations before it is assimilated by other tissues. In this regard, our observations that creatine supplementation can prevent hepatic steatosis (Deminice et al. J Nutr 141:1799-1804, 2011) in a rodent model may be a function of the route of dietary assimilation. Creatine supplementation has also been reported to improve the intestinal barrier function of the rodent suffering from inflammatory bowel disease. PMID:26874700

  14. Diagnostic and prognostic value of serum creatine-kinase activity in ill cats: a retrospective study of 601 cases.

    PubMed

    Aroch, Itamar; Keidar, Ido; Himelstein, Anat; Schechter, Miri; Shamir, Merav Hagar; Segev, Gilad

    2010-06-01

    In veterinary medicine, serum creatine-kinase (CK) activity is mostly used to assess skeletal muscle damage. This retrospective study aimed to evaluate the prevalence of increased CK activity in a large, ill-cat population and to characterise associated diseases, clinical and laboratory findings and its prognostic value. Cats with a complete serum biochemistry analysis were consecutively enrolled, divided into two CK activity-based groups (within and above reference interval) and compared. The study included 601 cats. Median serum CK was 402 U/l (range 16-506870). Increased CK (>250 U/l) was observed in 364 (60%) cats, and>30-fold its upper reference limit in 43 (7%). Cats with increased CK had greater (P < or = 0.05) body weight, and were more likely to have a history of collapse, dyspnoea, abnormal lung sounds, cyanosis, shock and paraplegia, higher median serum alanine aminotransferase, aspartate aminotransferase and lactate dehydrogenase activities and total bilirubin and triglyceride concentrations, but lower, median total protein, albumin, globulin and cholesterol concentrations and proportion of anorexia than cats with normal CK. Cardiac diseases, trauma, bite wounds, systemic bacterial infections, prior anaesthesia and intramuscular injections were more common (P < or = 0.05) in cats with increased compared to normal CK activity. The hospitalisation period was longer (P=0.007) and treatment cost and mortality were higher (P<0.005) in cats with increased CK activity. However, CK activity was an inaccurate outcome predictor (area under the receiver operator characteristics curve 0.58). Increased CK activity is very common in ill cats. PMID:20236849

  15. Evaluation of aminotransferase abnormality in dengue patients: A meta analysis.

    PubMed

    Wang, Xiao-Jun; Wei, Hai-Xia; Jiang, Shi-Chen; He, Cheng; Xu, Xiu-Juan; Peng, Hong-Juan

    2016-04-01

    Dengue virus is a type of flavivirus transmitted by Aedes mosquitoes. The symptoms of infection by this virus range from asymptomatic or mild symptomatic dengue fever (DF) to dengue haemorrhagic fever (DHF) and dengue shock syndrome (DSS). Significant abnormality in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) has been shown in a large number of dengue infection cases and to be indicator for liver injury provided that there are no other combined infections or liver injury. This study aims to assess the abnormal levels of liver aminotransferase in dengue patients. The related literature was searched in multiple databases, including PubMed, Embase, Google Scholar and Cochrane Library. The literature was selected through strict inclusion and exclusion criteria, and the quantitative synthesis of the liver aminotransferase abnormality was performed with R software. The fixed or random effects model was employed based on the results of the statistical test for homogeneity. In total, 15 studies were included. The proportion of AST abnormality with 95% confidence interval (95% CI) was 0.80 (95% CI: 0.56-0.92) in DHF patients and 0.75 (95% CI: 0.63-0.84) in DF patients; the proportion of ALT abnormality was 0.54 (95% CI: 0.34-0.73) in DHF patients and 0.52 (95% CI: 0.41-0.63) in DF patients. Serum ALT and AST levels may be indicators for evaluating liver injury in dengue infection and for diagnosis and treatment effect. PMID:26739659

  16. Brain creatine depletion: guanidinoacetate methyltransferase deficiency (improving with creatine supplementation).

    PubMed

    Leuzzi, V; Bianchi, M C; Tosetti, M; Carducci, C; Cerquiglini, C A; Cioni, G; Antonozzi, I

    2000-11-14

    The authors describe an Italian child with guanidinoacetate methyltransferase deficiency, neurologic regression, movement disorders, and epilepsy during the first year of life. Brain MRI showed pallidal and periaqueductal alterations. In vivo 1H-MRS showed brain creatine depletion. The assessment of guanidinoacetic acid concentration in biologic fluids confirmed the diagnosis. Clinical, biochemical, and neuroradiologic improvement followed creatine supplementation. PMID:11087795

  17. Increased serum mitochondrial creatine kinase activity as a risk for hepatocarcinogenesis in chronic hepatitis C patients.

    PubMed

    Enooku, Kenichiro; Nakagawa, Hayato; Soroida, Yoko; Ohkawa, Ryunosuke; Kageyama, Yuko; Uranbileg, Baasanjav; Watanabe, Naoko; Tateishi, Ryosuke; Yoshida, Haruhiko; Koike, Kazuhiko; Yatomi, Yutaka; Ikeda, Hitoshi

    2014-08-15

    Serum mitochondrial creatine kinase (MtCK) activity was reportedly increased in cirrhotic patients although less prominent than that in hepatocellular carcinoma (HCC) patients. To elucidate the clinical significance of serum MtCK activity in chronic liver disease, 171 chronic hepatitis C patients were enrolled. Serum MtCK activity in study subjects was correlated with serum albumin, platelet counts, liver stiffness values and serum aspartate and alanine aminotransferase. In mouse fibrotic liver induced by bile duct ligation, ubiquitous MtCK mRNA and protein expressions were significantly enhanced and its immunoreactivity was increased, predominantly in hepatocytes. During the mean follow-up period of 2.7 years, HCC developed in 21 patients, in whom serum MtCK activity was significantly higher than that in patients without HCC development. Multivariate Cox regression analysis revealed that higher serum MtCK activity was a risk for HCC development. A cutoff value of MtCK for the prediction of HCC development was determined as 9.0 U/L on receiver operating characteristics analysis, where area under receiver operating characteristics curve was 0.754, with a sensitivity of 61.9%, a specificity of 92.8% and a high negative predictive value of 94.2%. Cumulative incidence of HCC was significantly higher in patients with serum MtCK activity of >9.0 U/L compared to those with serum MtCK activity of ≤ 9.0 U/L even in patients with elevated liver stiffness value, >15 kPa. In conclusion, serum MtCK activity may be increased correlatively with the stage of liver fibrosis and hepatocellular damage. Increased serum MtCK activity is an independent risk for hepatocarcinogenesis in chronic hepatitis C patients. PMID:24420733

  18. Creatine metabolism in urea cycle defects.

    PubMed

    Boenzi, Sara; Pastore, Anna; Martinelli, Diego; Goffredo, Bianca Maria; Boiani, Arianna; Rizzo, Cristiano; Dionisi-Vici, Carlo

    2012-07-01

    Creatine (Cr) and phosphocreatine play an essential role in energy storage and transmission. Maintenance of creatine pool is provided by the diet and by de novo synthesis, which utilizes arginine, glycine and s-adenosylmethionine as substrates. Three primary Cr deficiencies exists: arginine:glycine amidinotransferase deficiency, guanidinoacetate methyltransferase deficiency and the defect of Cr transporter SLC6A8. Secondary Cr deficiency is characteristic of ornithine-aminotransferase deficiency, whereas non-uniform Cr abnormalities have anecdotally been reported in patients with urea cycle defects (UCDs), a disease category related to arginine metabolism in which Cr must be acquired by de novo synthesis because of low dietary intake. To evaluate the relationships between ureagenesis and Cr synthesis, we systematically measured plasma Cr in a large series of UCD patients (i.e., OTC, ASS, ASL deficiencies, HHH syndrome and lysinuric protein intolerance). Plasma Cr concentrations in UCDs followed two different trends: patients with OTC and ASS deficiencies and HHH syndrome presented a significant Cr decrease, whereas in ASL deficiency and lysinuric protein intolerance Cr levels were significantly increased (23.5 vs. 82.6 μmol/L; p < 0.0001). This trend distribution appears to be regulated upon cellular arginine availability, highlighting its crucial role for both ureagenesis and Cr synthesis. Although decreased Cr contributes to the neurological symptoms in primary Cr deficiencies, still remains to be explored if an altered Cr metabolism may participate to CNS dysfunction also in patients with UCDs. Since arginine in most UCDs becomes a semi-essential aminoacid, measuring plasma Cr concentrations might be of help to optimize the dose of arginine substitution. PMID:22644604

  19. The Effect of Artichoke Leaf Extract on Alanine Aminotransferase and Aspartate Aminotransferase in the Patients with Nonalcoholic Steatohepatitis.

    PubMed

    Rangboo, Vajiheh; Noroozi, Mostafa; Zavoshy, Roza; Rezadoost, Seyed Amirmansoor; Mohammadpoorasl, Asghar

    2016-01-01

    Background. Based on recent basic and clinical investigations, the extract of artichoke (Cynara scolymus) leaf has been revealed to be used for hepatoprotective and cholesterol reducing purposes. We aimed to assess the therapeutic effects of artichoke on biochemical and liver biomarkers in patients with nonalcoholic steatohepatitis (NASH). Methods. In a randomized double blind clinical trial, 60 consecutive patients suffering NASH were randomly assigned to receive Cynara scolymus extract (as 6 tablets per day consisting of 2700 mg extract of the herb) as the intervention group or placebo as the control group for two months. Results. Comparing changes in study markers following interventions showed improvement in liver enzymes. The levels of triglycerides and cholesterol were significantly reduced in the group treated with Cynara scolymus when compared to placebo group. To compare the role of Cynara scolymus use with placebo in changes in study parameters, multivariate linear regression models were employed indicating higher improvement in liver enzymes and also lipid profile particularly triglycerides and total cholesterol following administration of Cynara scolymus in comparison with placebo use. Conclusion. This study sheds light on the potential hepatoprotective activity and hypolipidemic effect of Cynara scolymus in management of NASH. This clinical trial is registered in the IRCT, Iranian Registry of Clinical Trials, by number IRCT2014070218321N1. PMID:27293900

  20. The Effect of Artichoke Leaf Extract on Alanine Aminotransferase and Aspartate Aminotransferase in the Patients with Nonalcoholic Steatohepatitis

    PubMed Central

    Rangboo, Vajiheh; Noroozi, Mostafa; Zavoshy, Roza; Rezadoost, Seyed Amirmansoor; Mohammadpoorasl, Asghar

    2016-01-01

    Background. Based on recent basic and clinical investigations, the extract of artichoke (Cynara scolymus) leaf has been revealed to be used for hepatoprotective and cholesterol reducing purposes. We aimed to assess the therapeutic effects of artichoke on biochemical and liver biomarkers in patients with nonalcoholic steatohepatitis (NASH). Methods. In a randomized double blind clinical trial, 60 consecutive patients suffering NASH were randomly assigned to receive Cynara scolymus extract (as 6 tablets per day consisting of 2700 mg extract of the herb) as the intervention group or placebo as the control group for two months. Results. Comparing changes in study markers following interventions showed improvement in liver enzymes. The levels of triglycerides and cholesterol were significantly reduced in the group treated with Cynara scolymus when compared to placebo group. To compare the role of Cynara scolymus use with placebo in changes in study parameters, multivariate linear regression models were employed indicating higher improvement in liver enzymes and also lipid profile particularly triglycerides and total cholesterol following administration of Cynara scolymus in comparison with placebo use. Conclusion. This study sheds light on the potential hepatoprotective activity and hypolipidemic effect of Cynara scolymus in management of NASH. This clinical trial is registered in the IRCT, Iranian Registry of Clinical Trials, by number IRCT2014070218321N1. PMID:27293900

  1. Isolation and partial characterization of a broad specificity aminotransferase from Leishmania mexicana promastigotes.

    PubMed

    Vernal, J; Cazzulo, J J; Nowicki, C

    1998-10-30

    A broad specificity aminotransferase (BSAT), with high activity with both, aromatic amino acids and aspartate as substrates, was purified to homogeneity from promastigotes of Leishmania mexicana by a method involving chromatography on DEAE-cellulose, Red-120-Sepharose and Mono Q, and gel filtration on Sephacryl S-200. The purified enzyme showed a single band in SDS-polyacrylamide gel electrophoresis, with an apparent molecular mass of 45 kDa. Since the apparent molecular mass of the native enzyme, determined by gel filtration, was 90 kDa, the native enzyme is a dimer of similar subunits. The amino acid composition was determined, as well as the sequence of four internal peptides obtained by tryptic digestion. Two of these peptides, consisting of 49 amino acid residues in total, showed high similarity (57%) with corresponding sequences of plant aspartate aminotransferases, whereas they had only 33% identity with the aromatic aminotransferase of Escherichia coli, and 16% identity with the tyrosine aminotransferase from the related parasite Trypanosoma cruzi. The BSAT contained only one 1/2 Cys residue per monomer. The optimal pH for the enzyme reaction, with tyrosine and alpha-oxoglutarate as substrates, was 7.0. The apparent Km values for tyrosine, phenylalanine, tryptophan and glutamate, with oxaloacetate as co-substrate, were 1.3, 0.9, 0.9 and 171.8 mM, respectively; the value for aspartate with alpha-oxoglutarate as co-substrate was 2.5 mM, and that for alanine with alpha-oxoglutarate as co-substrate was 216 mM. The values for pyruvate, alpha-oxoglutarate and oxaloacetate, with tyrosine as co-substrate, were 5.6, 0.71 and 0.12 mM, respectively. These results suggest that the enzyme is a broad-specificity aminotransferase, able to transaminate the aromatic amino acids, aspartate, and to a lower extent alanine, with high sequence similarity to aspartate aminotransferases. PMID:9851609

  2. Active-site Arg --> Lys substitutions alter reaction and substrate specificity of aspartate aminotransferase.

    PubMed

    Vacca, R A; Giannattasio, S; Graber, R; Sandmeier, E; Marra, E; Christen, P

    1997-08-29

    Arg386 and Arg292 of aspartate aminotransferase bind the alpha and the distal carboxylate group, respectively, of dicarboxylic substrates. Their substitution with lysine residues markedly decreased aminotransferase activity. The kcat values with L-aspartate and 2-oxoglutarate as substrates under steady-state conditions at 25 degrees C were 0.5, 2.0, and 0.03 s-1 for the R292K, R386K, and R292K/R386K mutations, respectively, kcat of the wild-type enzyme being 220 s-1. Longer dicarboxylic substrates did not compensate for the shorter side chain of the lysine residues. Consistent with the different roles of Arg292 and Arg386 in substrate binding, the effects of their substitution on the activity toward long chain monocarboxylic (norleucine/2-oxocaproic acid) and aromatic substrates diverged. Whereas the R292K mutation did not impair the aminotransferase activity toward these substrates, the effect of the R386K substitution was similar to that on the activity toward dicarboxylic substrates. All three mutant enzymes catalyzed as side reactions the beta-decarboxylation of L-aspartate and the racemization of amino acids at faster rates than the wild-type enzyme. The changes in reaction specificity were most pronounced in aspartate aminotransferase R292K, which decarboxylated L-aspartate to L-alanine 15 times faster (kcat = 0.002 s-1) than the wild-type enzyme. The rates of racemization of L-aspartate, L-glutamate, and L-alanine were 3, 5, and 2 times, respectively, faster than with the wild-type enzyme. Thus, Arg --> Lys substitutions in the active site of aspartate aminotransferase decrease aminotransferase activity but increase other pyridoxal 5'-phosphate-dependent catalytic activities. Apparently, the reaction specificity of pyridoxal 5'-phosphate-dependent enzymes is not only achieved by accelerating the specific reaction but also by preventing potential side reactions of the coenzyme substrate adduct. PMID:9268327

  3. Genetics Home Reference: X-linked creatine deficiency

    MedlinePlus

    ... gene mutations impair the ability of the transporter protein to bring creatine into cells, resulting in a creatine shortage ... E, Uldry J. Creatine deficiency syndromes and the importance of creatine synthesis in the brain. Amino Acids. 2011 May;40( ...

  4. Creatine synthesis: hepatic metabolism of guanidinoacetate and creatine in the rat in vitro and in vivo

    PubMed Central

    da Silva, Robin P.; Nissim, Itzhak; Brosnan, Margaret E.; Brosnan, John T.

    2009-01-01

    Since creatinine excretion reflects a continuous loss of creatine and creatine phosphate, there is a need for creatine replacement, from the diet and/or by de novo synthesis. Creatine synthesis requires three amino acids, methionine, glycine, and arginine, and two enzymes, l-arginine:glycine amidinotransferase (AGAT), which produces guanidinoacetate acid (GAA), and guanidinoacetate methyltransferase (GAMT), which methylates GAA to produce creatine. In the rat, high activities of AGAT are found in the kidney, whereas high activities of GAMT occur in the liver. Rat hepatocytes readily convert GAA to creatine; this synthesis is stimulated by the addition of methionine, which increases cellular S-adenosylmethionine concentrations. These same hepatocytes are unable to produce creatine from methionine, arginine, and glycine. 15N from 15NH4Cl is readily incorporated into urea but not into creatine. Hepatic uptake of GAA is evident in vivo by livers of rats fed a creatine-free diet but not when rats were fed a creatine-supplemented diet. Rats fed the creatine-supplemented diet had greatly decreased renal AGAT activity and greatly decreased plasma [GAA] but no decrease in hepatic GAMT or in the capacity of hepatocytes to produce creatine from GAA. These studies indicate that hepatocytes are incapable of the entire synthesis of creatine but are capable of producing it from GAA. They also illustrate the interplay between the dietary provision of creatine and its de novo synthesis and point to the crucial role of renal AGAT expression in regulating creatine synthesis in the rat. PMID:19017728

  5. Augmentation of Creatine in the Heart

    PubMed Central

    Russell, Angela J.; Lygate, Craig A.

    2015-01-01

    Creatine is a principle component of the creatine kinase (CK) phosphagen system common to all vertebrates. It is found in excitable cells, such as cardiomyocytes, where it plays an important role in the buffering and transport of chemical energy to ensure that supply meets the dynamic demands of the heart. Multiple components of the CK system, including intracellular creatine levels, are reduced in heart failure, while ischaemia and hypoxia represent acute crises of energy provision. Elevation of myocardial creatine levels has therefore been suggested as potentially beneficial, however, achieving this goal is not trivial. This mini-review outlines the evidence in support of creatine elevation and critically examines the pharmacological approaches that are currently available. In particular, dietary creatine-supplementation does not sufficiently elevate creatine levels in the heart due to subsequent down-regulation of the plasma membrane creatine transporter (CrT). Attempts to increase passive diffusion and bypass the CrT, e.g. via creatine esters, have yet to be tested in the heart. However, studies in mice with genetic overexpression of the CrT demonstrate proof-of-principle that elevated creatine protects the heart from ischaemia-reperfusion injury. This suggests activation of the CrT as a major unmet pharmacological target. However, translation of this finding to the clinic will require a greater understanding of CrT regulation in health and disease and the development of small molecule activators. PMID:26202199

  6. Augmentation of Creatine in the Heart

    PubMed Central

    Zervou, Sevasti; Whittington, Hannah J.; Russell, Angela J.; Lygate, Craig A.

    2016-01-01

    Creatine is a principle component of the creatine kinase (CK) phosphagen system common to all vertebrates. It is found in excitable cells, such as cardiomyocytes, where it plays an important role in the buffering and transport of chemical energy to ensure that supply meets the dynamic demands of the heart. Multiple components of the CK system, including intracellular creatine levels, are reduced in heart failure, while ischaemia and hypoxia represent acute crises of energy provision. Elevation of myocardial creatine levels has therefore been suggested as potentially beneficial, however, achieving this goal is not trivial. This mini-review outlines the evidence in support of creatine elevation and critically examines the pharmacological approaches that are currently available. In particular, dietary creatine-supplementation does not sufficiently elevate creatine levels in the heart due to subsequent down-regulation of the plasma membrane creatine transporter (CrT). Attempts to increase passive diffusion and bypass the CrT, e.g. via creatine esters, have yet to be tested in the heart. However, studies in mice with genetic overexpression of the CrT demonstrate proof-of-principle that elevated creatine protects the heart from ischaemia-reperfusion injury. This suggests activation of the CrT as a major unmet pharmacological target. However, translation of this finding to the clinic will require a greater understanding of CrT regulation in health and disease and the development of small molecule activators.

  7. Beyond muscles: The untapped potential of creatine.

    PubMed

    Riesberg, Lisa A; Weed, Stephanie A; McDonald, Thomas L; Eckerson, Joan M; Drescher, Kristen M

    2016-08-01

    Creatine is widely used by both elite and recreational athletes as an ergogenic aid to enhance anaerobic exercise performance. Older individuals also use creatine to prevent sarcopenia and, accordingly, may have therapeutic benefits for muscle wasting diseases. Although the effect of creatine on the musculoskeletal system has been extensively studied, less attention has been paid to its potential effects on other physiological systems. Because there is a significant pool of creatine in the brain, the utility of creatine supplementation has been examined in vitro as well as in vivo in both animal models of neurological disorders and in humans. While the data are preliminary, there is evidence to suggest that individuals with certain neurological conditions may benefit from exogenous creatine supplementation if treatment protocols can be optimized. A small number of studies that have examined the impact of creatine on the immune system have shown an alteration in soluble mediator production and the expression of molecules involved in recognizing infections, specifically toll-like receptors. Future investigations evaluating the total impact of creatine supplementation are required to better understand the benefits and risks of creatine use, particularly since there is increasing evidence that creatine may have a regulatory impact on the immune system. PMID:26778152

  8. Augmentation of Creatine in the Heart.

    PubMed

    Zervou, Sevasti; Whittington, Hannah J; Russell, Angela J; Lygate, Craig A

    2016-01-01

    Creatine is a principle component of the creatine kinase (CK) phosphagen system common to all vertebrates. It is found in excitable cells, such as cardiomyocytes, where it plays an important role in the buffering and transport of chemical energy to ensure that supply meets the dynamic demands of the heart. Multiple components of the CK system, including intracellular creatine levels, are reduced in heart failure, while ischaemia and hypoxia represent acute crises of energy provision. Elevation of myocardial creatine levels has therefore been suggested as potentially beneficial, however, achieving this goal is not trivial. This mini-review outlines the evidence in support of creatine elevation and critically examines the pharmacological approaches that are currently available. In particular, dietary creatine-supplementation does not sufficiently elevate creatine levels in the heart due to subsequent down-regulation of the plasma membrane creatine transporter (CrT). Attempts to increase passive diffusion and bypass the CrT, e.g. via creatine esters, have yet to be tested in the heart. However, studies in mice with genetic overexpression of the CrT demonstrate proof-of-principle that elevated creatine protects the heart from ischaemia-reperfusion injury. This suggests activation of the CrT as a major unmet pharmacological target. However, translation of this finding to the clinic will require a greater understanding of CrT regulation in health and disease and the development of small molecule activators. PMID:26202199

  9. Creatine as nutritional supplementation and medicinal product.

    PubMed

    Benzi, G; Ceci, A

    2001-03-01

    Because of assumed ergogenic effects, the creatine administration has become popular practice among subjects participating in different sports. Appropriate creatine monohydrate dosage may be considered a medicinal product since, in accordance with the Council Directive 65/65/EEC, any substance which may be administered with a view to restoring, correcting or modifying physiological functions in humans beings is considered a medicinal product. Thus, quality, efficacy and safety must characterise the substance. In addition, the European Court of Justice has held that a product which is recommended or described as having preventive or curative properties is a medicinal product even if it is generally considered as a foodstuff and even if it has no known therapeutic effect in the present state of scientific knowledge. In biochemical terms, creatine administration increases creatine and phosphocreatine muscle concentration, allowing for an accelerated rate of ATP synthesis. In thermodynamics terms, creatine stimulates the creatine-creatine kinase-phosphocreatine circuit, which is related to the mitochondrial function as a highly organised system for the control of the subcellular adenylate pool. In pharmacokinetics terms, creatine entry into skeletal muscle is initially dependent on the extracellular concentration, but the creatine transport is subsequently downregulated. In pharmacodynamics terms, the creatine enhances the possibility to maintain power output during brief periods of high-intensity exercises. In spite of uncontrolled daily dosage and long-term administration, no researches on creatine monohydrate safety in humans were set up by standardised protocols of clinical pharmacology and toxicology, as currently occurs in phases I and II for products for human use. More or less documented side effects induced by creatine monohydrate are weight gain; influence on insulin production; feedback inhibition of endogenous creatine synthesis; long-term damages on renal

  10. 21 CFR 862.1215 - Creatine phosphokinase/creatine kinase or isoenzymes test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1215 Creatine phosphokinase/creatine kinase or isoenzymes test...

  11. 21 CFR 862.1215 - Creatine phosphokinase/creatine kinase or isoenzymes test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1215 Creatine phosphokinase/creatine kinase or isoenzymes test...

  12. 21 CFR 862.1215 - Creatine phosphokinase/creatine kinase or isoenzymes test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1215 Creatine phosphokinase/creatine kinase or isoenzymes test...

  13. 21 CFR 862.1215 - Creatine phosphokinase/creatine kinase or isoenzymes test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1215 Creatine phosphokinase/creatine kinase or isoenzymes test...

  14. 21 CFR 862.1215 - Creatine phosphokinase/creatine kinase or isoenzymes test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1215 Creatine phosphokinase/creatine kinase or isoenzymes test...

  15. Creatine

    MedlinePlus

    ... speed up recovery of muscle strength after surgery. Bipolar disorder. Other conditions. More evidence is needed to rate ... has been taken safely for 2-6 months. Bipolar disorder: There have been cases of manic episodes in ...

  16. Structural studies of Pseudomonas and Chromobacterium ω-aminotransferases provide insights into their differing substrate specificity

    SciTech Connect

    Sayer, Christopher; Isupov, Michail N.; Westlake, Aaron; Littlechild, Jennifer A.

    2013-04-01

    The X-ray structures of two ω-aminotransferases from P. aeruginosa and C. violaceum in complex with an inhibitor offer the first detailed insight into the structural basis of the substrate specificity of these industrially important enzymes. The crystal structures and inhibitor complexes of two industrially important ω-aminotransferase enzymes from Pseudomonas aeruginosa and Chromobacterium violaceum have been determined in order to understand the differences in their substrate specificity. The two enzymes share 30% sequence identity and use the same amino acceptor, pyruvate; however, the Pseudomonas enzyme shows activity towards the amino donor β-alanine, whilst the Chromobacterium enzyme does not. Both enzymes show activity towards S-α-methylbenzylamine (MBA), with the Chromobacterium enzyme having a broader substrate range. The crystal structure of the P. aeruginosa enzyme has been solved in the holo form and with the inhibitor gabaculine bound. The C. violaceum enzyme has been solved in the apo and holo forms and with gabaculine bound. The structures of the holo forms of both enzymes are quite similar. There is little conformational difference observed between the inhibitor complex and the holoenzyme for the P. aeruginosa aminotransferase. In comparison, the crystal structure of the C. violaceum gabaculine complex shows significant structural rearrangements from the structures of both the apo and holo forms of the enzyme. It appears that the different rigidity of the protein scaffold contributes to the substrate specificity observed for the two ω-aminotransferases.

  17. Creatine kinase in ischemic and inflammatory disorders.

    PubMed

    Kitzenberg, David; Colgan, Sean P; Glover, Louise E

    2016-12-01

    The creatine/phosphocreatine pathway plays a conserved and central role in energy metabolism. Compartmentalization of specific creatine kinase enzymes permits buffering of local high energy phosphates in a thermodynamically favorable manner, enabling both rapid energy storage and energy transfer within the cell. Augmentation of this metabolic pathway by nutritional creatine supplementation has been shown to elicit beneficial effects in a number of diverse pathologies, particularly those that incur tissue ischemia, hypoxia or oxidative stress. In these settings, creatine and phosphocreatine prevent depletion of intracellular ATP and internal acidification, enhance post-ischemic recovery of protein synthesis and promote free radical scavenging and stabilization of cellular membranes. The creatine kinase energy system is itself further regulated by hypoxic signaling, highlighting the existence of endogenous mechanisms in mammals that can enhance creatine metabolism during oxygen deprivation to promote tissue resolution and homeostasis. Here, we review recent insights into the creatine kinase pathway, and provide rationale for dietary creatine supplementation in human ischemic and inflammatory pathologies. PMID:27527620

  18. Use of protease sensitivity to probe the conformations of newly synthesised mutant forms of mitochondrial aspartate aminotransferase.

    PubMed

    Azzariti, A; Giannattasio, S; Doonan, S; Merafina, R S; Marra, E; Quagliariello, E

    1995-10-24

    Sensitivity to digestion with pronase has been used to show that the precursor form of mitochondrial aspartate aminotransferase, the form lacking the N-terminal presequence, that with a deletion of the first 9 residues and mutants of the mature enzyme in which residue Cys-166 is mutated to alanine or serine, all retain unfolded conformations after synthesis in a reticulocyte lysate. In the presence of lysed mitochondria the various forms of mitochondrial aspartate aminotransferase retained their susceptibilities to pronase in a way that mirrored the efficiencies with which they are imported into intact mitochondria. The results are interpreted as showing that the presequence of mitochondrial aspartate aminotransferase is not uniquely required for interaction with cytosolic factors required to maintain the newly synthesised protein in a form competent for interacting with, and being imported into, mitochondria. PMID:7488044

  19. Creatine supplementation: exploring the role of the creatine kinase/phosphocreatine system in human muscle.

    PubMed

    Hespel, P; Eijnde, B O; Derave, W; Richter, E A

    2001-01-01

    The effect of oral creatine supplementation on high-intensity exercise performance has been extensively studied over the past ten years and its ergogenic potential in young healthy subjects is now well documented. Recently, research has shifted from performance evaluation towards elucidating the mechanisms underlying enhanced muscle functional capacity after creatine supplementation. In this review, we attempt to summarise recent advances in the understanding of potential mechanisms of action of creatine supplementation at the level of skeletal muscle cells. By increasing intracellular creatine content, oral creatine ingestion conceivably stimulates operation of the creatine kinase (CK)/phosphocreatine (PCr) system, which in turn facilitates muscle relaxation. Furthermore, evidence is accumulating to suggest that creatine supplementation can beneficially impact on muscle protein and glycogen synthesis. Thus, muscle hypertrophy and glycogen supercompensation are candidate factors to explain the ergogenic potential of creatine ingestion. Additional issues discussed in this review are the fibre-type specificity of muscle creatine metabolism, the identification of responders versus non-responders to creatine intake, and the scientific background concerning potential side effects of creatine supplementation. PMID:11897886

  20. Creatine biosynthesis and transport in health and disease.

    PubMed

    Joncquel-Chevalier Curt, Marie; Voicu, Pia-Manuela; Fontaine, Monique; Dessein, Anne-Frédérique; Porchet, Nicole; Mention-Mulliez, Karine; Dobbelaere, Dries; Soto-Ares, Gustavo; Cheillan, David; Vamecq, Joseph

    2015-12-01

    Creatine is physiologically provided equally by diet and by endogenous synthesis from arginine and glycine with successive involvements of arginine glycine amidinotransferase [AGAT] and guanidinoacetate methyl transferase [GAMT]. A specific plasma membrane transporter, creatine transporter [CRTR] (SLC6A8), further enables cells to incorporate creatine and through uptake of its precursor, guanidinoacetate, also directly contributes to creatine biosynthesis. Breakthrough in the role of creatine has arisen from studies on creatine deficiency disorders. Primary creatine disorders are inherited as autosomal recessive (mutations affecting GATM [for glycine-amidinotransferase, mitochondrial]) and GAMT genes) or X-linked (SLC6A8 gene) traits. They have highlighted the role of creatine in brain functions altered in patients (global developmental delay, intellectual disability, behavioral disorders). Creatine modulates GABAergic and glutamatergic cerebral pathways, presynaptic CRTR (SLC6A8) ensuring re-uptake of synaptic creatine. Secondary creatine disorders, addressing other genes, have stressed the extraordinary imbrication of creatine metabolism with many other cellular pathways. This high dependence on multiple pathways supports creatine as a cellular sensor, to cell methylation and energy status. Creatine biosynthesis consumes 40% of methyl groups produced as S-adenosylmethionine, and creatine uptake is controlled by AMP activated protein kinase, a ubiquitous sensor of energy depletion. Today, creatine is considered as a potential sensor of cell methylation and energy status, a neurotransmitter influencing key (GABAergic and glutamatergic) CNS neurotransmission, therapeutic agent with anaplerotic properties (towards creatine kinases [creatine-creatine phosphate cycle] and creatine neurotransmission), energetic and antioxidant compound (benefits in degenerative diseases through protection against energy depletion and oxidant species) with osmolyte behavior (retention of

  1. Three Different Classes of Aminotransferases Evolved Prephenate Aminotransferase Functionality in Arogenate-competent Microorganisms*

    PubMed Central

    Graindorge, Matthieu; Giustini, Cécile; Kraut, Alexandra; Moyet, Lucas; Curien, Gilles; Matringe, Michel

    2014-01-01

    The aromatic amino acids phenylalanine and tyrosine represent essential sources of high value natural aromatic compounds for human health and industry. Depending on the organism, alternative routes exist for their synthesis. Phenylalanine and tyrosine are synthesized either via phenylpyruvate/4-hydroxyphenylpyruvate or via arogenate. In arogenate-competent microorganisms, an aminotransferase is required for the transamination of prephenate into arogenate, but the identity of the genes is still unknown. We present here the first identification of prephenate aminotransferases (PATs) in seven arogenate-competent microorganisms and the discovery that PAT activity is provided by three different classes of aminotransferase, which belong to two different fold types of pyridoxal phosphate enzymes: an aspartate aminotransferase subgroup 1β in tested α- and β-proteobacteria, a branched-chain aminotransferase in tested cyanobacteria, and an N-succinyldiaminopimelate aminotransferase in tested actinobacteria and in the β-proteobacterium Nitrosomonas europaea. Recombinant PAT enzymes exhibit high activity toward prephenate, indicating that the corresponding genes encode bona fide PAT. PAT functionality was acquired without other modification of substrate specificity and is not a general catalytic property of the three classes of aminotransferases. PMID:24302739

  2. Stabilized enzymatic reagents for measuring glucose, creatine kinase and gamma-glutamyltransferase with thermostable enzymes from a thermophile, Bacillus stearothermophilus.

    PubMed

    Tomita, K; Nomura, K; Kondo, H; Nagata, K; Tsubota, H

    1995-04-01

    Stabilized enzymatic reagents for measuring some components in biological fluids have been successfully developed based on two kinds of thermostable enzymes derived from Bacillus stearothermophilus with separation of the reagent into two complementary solutions. The thermostable glucokinase produced was applied to the measurement of glucose and creatine kinase activity, while the alanine dehydrogenase produced was used for the measurement of gamma-glutamyltransferase activity. The enzymatic reagents were also stabilized by developing two separate reagents with an optimum pH for the main reagent components. The stability of the reagents in liquid form was examined at 10 degrees C. It was clearly shown that the reagents for measuring glucose and creatine kinase activity were stable and retained their full capability for accurate measurement in biological fluids for over one year. The alanine dehydrogenase product was stable for at least 40 days. PMID:9696559

  3. Substitution of apolar residues in the active site of aspartate aminotransferase by histidine. Effects on reaction and substrate specificity.

    PubMed

    Vacca, R A; Christen, P; Malashkevich, V N; Jansonius, J N; Sandmeier, E

    1995-01-15

    In an attempt to change the reaction and substrate specificity of aspartate aminotransferase, several apolar active-site residues were substituted in turn with a histidine residue. Aspartate aminotransferase W140H (of Escherichia coli) racemizes alanine seven times faster (Kcat' = 2.2 x 10(-4) s-1) than the wild-type enzyme, while the aminotransferase activity toward L-alanine was sixfold decreased. X-ray crystallographic analysis showed that the structural changes brought about by the mutation are limited to the immediate environment of H140. In contrast to the tryptophan side chain in the wild-type structure, the imidazole ring of H140 does not form a stacking interaction with the coenzyme pyridine ring. The angle between the two ring planes is about 50 degrees. Pyridoxamine 5'-phosphate dissociates 50 times more rapidly from the W140H mutant than from the wild-type enzyme. A model of the structure of the quinonoid enzyme substrate intermediate indicates that H140 might assist in the reprotonation of C alpha of the amino acid substrate from the re side of the deprotonated coenzyme-substrate adduct in competition with si-side reprotonation by K258. In aspartate aminotransferase I17H (of chicken mitochondria), the substituted residue also lies on the re side of the coenzyme. This mutant enzyme slowly decarboxylates L-aspartate to L-alanine (Kcat' = 8 x 10(-5) s-1). No beta-decarboxylase activity is detectable in the wild-type enzyme. In aspartate aminotransferase V37H (of chicken mitochondria), the mutated residue lies besides the coenzyme in the plane of the pyridine ring; no change in reaction specificity was observed. All three mutations, i.e. W140-->H, I17-->H and V37--H, decreased the aminotransferase activity toward aromatic amino acids by 10-100-fold, while decreasing the activity toward dicarboxylic substrates only moderately to 20%, 20% and 60% of the activity of the wild-type enzymes, respectively. In all three mutant enzymes, the decrease in aspartate

  4. The creatine transporter mediates the uptake of creatine by brain tissue, but not the uptake of two creatine-derived compounds.

    PubMed

    Lunardi, G; Parodi, A; Perasso, L; Pohvozcheva, A V; Scarrone, S; Adriano, E; Florio, T; Gandolfo, C; Cupello, A; Burov, S V; Balestrino, M

    2006-11-01

    Hereditary creatine transporter deficiency causes brain damage, despite the brain having the enzymes to synthesize creatine. Such damage occurring despite an endogenous synthesis is not easily explained. This condition is incurable, because creatine may not be delivered to the brain without its transporter. Creatine-derived compounds that crossed the blood-brain barrier in a transporter-independent fashion would be useful in the therapy of hereditary creatine transporter deficiency, and possibly also in neuroprotection against brain anoxia or ischemia. We tested the double hypothesis that: (1) the creatine carrier is needed to make creatine cross the plasma membrane of brain cells and (2) creatine-derived molecules may cross this plasma membrane independently of the creatine carrier. In in vitro mouse hippocampal slices, incubation with creatine increased creatine and phosphocreatine content of the tissue. Inhibition of the creatine transporter with 3-guanidinopropionic acid (GPA) dose-dependently prevented this increase. Incubation with creatine benzyl ester (CrOBzl) or phosphocreatine-Mg-complex acetate (PCr-Mg-CPLX) increased tissue creatine content, not phosphocreatine. This increase was not prevented by GPA. Thus, the creatine transporter is required for creatine uptake through the plasma membrane. Since there is a strong indication that creatine in the brain is mainly synthesized by glial cells and transferred to neurons, this might explain why hereditary transporter deficiency is attended by severe brain damage despite the possibility of an endogenous synthesis. CrOBzl and PCr-Mg-CPLX cross the plasma membrane in a transporter-independent way, and might be useful in the therapy of hereditary creatine transporter deficiency. They may also prove useful in the therapy of brain anoxia or ischemia. PMID:16949212

  5. Creatine and Caffeine: Considerations for Concurrent Supplementation.

    PubMed

    Trexler, Eric T; Smith-Ryan, Abbie E

    2015-12-01

    Nutritional supplementation is a common practice among athletes, with creatine and caffeine among the most commonly used ergogenic aids. Hundreds of studies have investigated the ergogenic potential of creatine supplementation, with consistent improvements in strength and power reported for exercise bouts of short duration (≤ 30 s) and high intensity. Caffeine has been shown to improve endurance exercise performance, but results are mixed in the context of strength and sprint performance. Further, there is conflicting evidence from studies comparing the ergogenic effects of coffee and caffeine anhydrous supplementation. Previous research has identified independent mechanisms by which creatine and caffeine may improve strength and sprint performance, leading to the formulation of multi-ingredient supplements containing both ingredients. Although scarce, research has suggested that caffeine ingestion may blunt the ergogenic effect of creatine. While a pharmacokinetic interaction is unlikely, authors have suggested that this effect may be explained by opposing effects on muscle relaxation time or gastrointestinal side effects from simultaneous consumption. The current review aims to evaluate the ergogenic potential of creatine and caffeine in the context of high-intensity exercise. Research directly comparing coffee and caffeine anhydrous is discussed, along with previous studies evaluating the concurrent supplementation of creatine and caffeine. PMID:26219105

  6. Creatine for women: a review of the relationship between creatine and the reproductive cycle and female-specific benefits of creatine therapy.

    PubMed

    Ellery, Stacey J; Walker, David W; Dickinson, Hayley

    2016-08-01

    The creatine/phosphocreatine/creatine kinase circuit is instrumental in regulating high-energy phosphate metabolism, and the maintenance of cellular energy turnover. The mechanisms by which creatine is able to buffer and regulate cellular energy balance, maintain acid-base balance, and reduce the effects of oxidative stress have led to a large number of studies into the use of creatine supplementation in exercise performance and to treat diseases associated with cellular energy depletion. Some of these studies have identified sex-specific responses to creatine supplementation, as such; there is the perception, that females might be less receptive to the benefits of creatine supplementation and therapy, compared to males. This review will describe the differences in male and female physique and physiology that may account for such differences, and discuss the apparent endocrine modulation of creatine metabolism in females. Hormone-driven changes to endogenous creatine synthesis, creatine transport and creatine kinase expression suggest that significant changes in this cellular energy circuit occur during specific stages of a female's reproductive life, including pregnancy and menopause. Recent studies suggest that creatine supplementation may be highly beneficial for women under certain conditions, such as depression. A greater understanding of these pathways, and the consequences of alterations to creatine bioavailability in females are needed to ensure that creatine is used to full advantage as a dietary supplement to optimize and enhance health outcomes for women. PMID:26898548

  7. Studies on Phosphorylation by Phosphoroguanidinates. The Mechanism of Action of Creatine: ATP Transphosphorylase (Creatine Kinase)

    PubMed Central

    Haake, Paul; Allen, Gary W.

    1971-01-01

    The solvolyses of phosphorocreatine (creatine phosphate) and models for phosphorocreatine have been investigated and the results are applied to the mechanism of action of creatine kinase (EC 2.7.3.2). A metaphosphate intermediate appears to be involved. PMID:5288244

  8. Glutamate-1-semialdehyde aminotransferase from Sulfolobus solfataricus.

    PubMed

    Palmieri, G; Di Palo, M; Scaloni, A; Orru, S; Marino, G; Sannia, G

    1996-12-01

    Glutamate-1-semialdehyde aminotransferase (GSA-AT) from the extremely thermophilic bacterium Sulfolobus solfataricus has been purified to homogeneity and characterized. GSA-AT is the last enzyme in the C5 pathway for the conversion of glutamate into the tetrapyrrole precursor delta-aminolaevulinate (ALA) in plants, algae and several bacteria. The active form of GSA-AT from S. solfataricus seems to be a homodimer with a molecular mass of 87 kDa. The absorption spectrum of the purified aminotransferase is indicative of the presence of pyridoxamine 5'-phosphate (PMP) cofactor, and the catalytic activity of the enzyme is further stimulated by addition of PMP. 3-Amino-2,3-dihydrobenzoic acid is an inhibitor of the aminotransferase activity. The N-terminal amino acid sequence of GSA-AT from S. solfataricus was found to share significant similarity with the eukaryotic and eubacterial enzymes. Evidence is provided that ALA synthesis in S. solfataricus follows the C5 pathway characteristic of plants, algae, cyanobacteria and many other bacteria. PMID:8973563

  9. Dietary creatine supplementation during pregnancy: a study on the effects of creatine supplementation on creatine homeostasis and renal excretory function in spiny mice.

    PubMed

    Ellery, Stacey J; LaRosa, Domenic A; Kett, Michelle M; Della Gatta, Paul A; Snow, Rod J; Walker, David W; Dickinson, Hayley

    2016-08-01

    Recent evidence obtained from a rodent model of birth asphyxia shows that supplementation of the maternal diet with creatine during pregnancy protects the neonate from multi-organ damage. However, the effect of increasing creatine intake on creatine homeostasis and biosynthesis in females, particularly during pregnancy, is unknown. This study assessed the impact of creatine supplementation on creatine homeostasis, body composition, capacity for de novo creatine synthesis and renal excretory function in non-pregnant and pregnant spiny mice. Mid-gestation pregnant and virgin spiny mice were fed normal chow or chow supplemented with 5 % w/w creatine for 18 days. Weight gain, urinary creatine and electrolyte excretion were assessed during supplementation. At post mortem, body composition was assessed by Dual-energy X-ray absorptiometry, or tissues were collected to assess creatine content and mRNA expression of the creatine synthesising enzymes arginine:glycine amidinotransferase (AGAT) and guanidinoacetate methyltransferase (GAMT) and the creatine transporter (CrT1). Protein expression of AGAT and GAMT was also assessed by Western blot. Key findings of this study include no changes in body weight or composition with creatine supplementation; increased urinary creatine excretion in supplemented spiny mice, with increased sodium (P < 0.001) and chloride (P < 0.05) excretion in pregnant dams after 3 days of supplementation; lowered renal AGAT mRNA (P < 0.001) and protein (P < 0.001) expressions, and lowered CrT1 mRNA expression in the kidney (P < 0.01) and brain (P < 0.001). Creatine supplementation had minimal impact on creatine homeostasis in either non-pregnant or pregnant spiny mice. Increasing maternal dietary creatine consumption could be a useful treatment for birth asphyxia. PMID:26695944

  10. Effect of Hypericum perforatum Aqueous Extracts on Serum Lipids, Aminotransferases, and Lipid Peroxidation in Hyperlipidemic Rats

    PubMed Central

    Ghosian Moghaddam, Mohammad Hassan; Roghani, Mehrdad; Maleki, Maryam

    2016-01-01

    Background: Patients with high levels of total cholesterol (TCH), low-density lipoprotein cholesterol (LDL-CH), and triglyceride (TG) are at increased risk of coronary heart disease. Studies have shown that flavonoids and antioxidant compounds have beneficial effects on hyperlipidemia. Objectives: The aim of the present study was to evaluate the effects of extract of Hypericum perforatum (EHP) on the serum lipid profile (TCH, TG, and LDL-CH), aminotransferase, alkaline phosphatase, and lipid peroxidation in hyperlipidemic rats. Materials and Methods: Thirty-two male rats weighting 200 ± 10 g were randomly divided into four experimental groups: 1) control, 2) control + EHP, 3) hyperlipidemia, and 4) hyperlipidemia + EHP. The rats in the hyperlipidemic groups were fed a high-fat diet for 60 days, and EHP (300 mg/kg) was injected intraperitoneally for 2 weeks in the rats in the second and fourth groups. At the end of the experimental period, blood samples from each group were analyzed. Results: There was a significant reduction in LDL-CH in the control + EHP group and the hyperlipidemia + EHP group (P < 0.05). TCH was significantly reduced in the control + EHP group (P < 0.05). There were no significant changes in the levels of TG and HDL-CH. Malondialdehyde, aspartate aminotransferase, and alanine aminotransferase were significantly reduced in the hyperlipidemia + EHP group (P < 0.05), with no significant change in alkaline phosphatase. Conclusions: EHP was able to both reduce LDL-CH and to significantly decrease markers of oxidative stress and lipid peroxidation induced by hyperlipidemia. Therefore, this herb, as a new pharmacological component, could be used to reduce certain blood lipids, lipid peroxidation, and aminotransferase markers. PMID:26949689

  11. Inborn errors of creatine metabolism and epilepsy.

    PubMed

    Leuzzi, Vincenzo; Mastrangelo, Mario; Battini, Roberta; Cioni, Giovanni

    2013-02-01

    Creatine metabolism disorders include guanidinoacetate methyltransferase (GAMT) deficiency, arginine:glycine amidinotransferase (AGAT) deficiency, and the creatine transporter (CT1-encoded by SLC6A8 gene) deficiency. Epilepsy is one of the main symptoms in GAMT and CT1 deficiency, whereas the occurrence of febrile convulsions in infancy is a relatively common presenting symptom in all the three above-mentioned diseases. GAMT deficiency results in a severe early onset epileptic encephalopathy with development arrest, neurologic deterioration, drug-resistant seizures, movement disorders, mental disability, and autistic-like behavior. In this disorder, epilepsy and associated abnormalities on electroencephalography (EEG) are more responsive to substitutive treatment with creatine monohydrate than to conventional antiepileptic drugs. AGAT deficiency is mainly characterized by mental retardation and severe language disorder without epilepsy. In CT1 deficiency epilepsy is generally less severe than in GAMT deficiency. All creatine disorders can be investigated through measurement of creatine metabolites in body fluids, brain proton magnetic resonance spectroscopy ((1) H-MRS), and molecular genetic techniques. Blood guanidinoacetic acid (GAA) assessment and brain H-MRS examination should be part of diagnostic workup for all patients presenting with epileptic encephalopathy of unknown origin. In girls with learning and/or intellectual disabilities with or without epilepsy, SLC6A8 gene assessment should be part of the diagnostic procedures. The aims of this review are the following: (1) to describe the electroclinical features of epilepsy occurring in inborn errors of creatine metabolism; and (2) to delineate the metabolic alterations associated with GAMT, AGAT, and CT1 deficiency and the role of a substitutive therapeutic approach on their clinical and electroencephalographic epileptic patterns. PMID:23157605

  12. Creatine metabolism in the seminiferous epithelium of rats. I. Creatine synthesis by isolated and cultured cells.

    PubMed

    Moore, N P; Gray, T J; Timbrell, J A

    1998-03-01

    The testis synthesizes creatine from both arginine and glycine precursors, but when rat testicular tissue is separated into seminiferous tubules and interstitial cells, creatine synthesis occurs only in the tubular fraction. The purpose of the work presented here was to define the locus of creatine synthesis within the seminiferous tubules, by using cell separation and culture techniques to examine synthesis in the Sertoli cells and germ cells. The total creatine content, in the cellular compartment and incubation medium, of Sertoli-germ cell co-cultures and of Sertoli cell-enriched cultures, largely free of germ cells, increased by similar amounts over a 24 h incubation period. Sertoli cell-enriched cultures incorporated radioactivity from L-[guanidino-14C]arginine and [1-14C]glycine into both creatine and its biosynthetic precursor, guanidinoacetic acid. Isolated germ cells did not incorporate radioactivity from L-[guanidino-14C]arginine into either creatine or guanidinoacetic acid when incubated at a similar density and protein concentration under similar conditions. It is concluded that the synthesis of creatine observed in isolated rat seminiferous tubules occurs within the Sertoli cells and not the germ cells. PMID:9640271

  13. Creatine metabolism and psychiatric disorders: Does creatine supplementation have therapeutic value?

    PubMed

    Allen, Patricia J

    2012-05-01

    Athletes, body builders, and military personnel use dietary creatine as an ergogenic aid to boost physical performance in sports involving short bursts of high-intensity muscle activity. Lesser known is the essential role creatine, a natural regulator of energy homeostasis, plays in brain function and development. Creatine supplementation has shown promise as a safe, effective, and tolerable adjunct to medication for the treatment of brain-related disorders linked with dysfunctional energy metabolism, such as Huntington's Disease and Parkinson's Disease. Impairments in creatine metabolism have also been implicated in the pathogenesis of psychiatric disorders, leaving clinicians, researchers and patients alike wondering if dietary creatine has therapeutic value for treating mental illness. The present review summarizes the neurobiology of the creatine-phosphocreatine circuit and its relation to psychological stress, schizophrenia, mood and anxiety disorders. While present knowledge of the role of creatine in cognitive and emotional processing is in its infancy, further research on this endogenous metabolite has the potential to advance our understanding of the biological bases of psychopathology and improve current therapeutic strategies. PMID:22465051

  14. Creatine metabolism and psychiatric disorders: Does creatine supplementation have therapeutic value?

    PubMed Central

    Allen, Patricia J.

    2012-01-01

    Athletes, body builders, and military personnel use dietary creatine as an ergogenic aid to boost physical performance in sports involving short bursts of high-intensity muscle activity. Lesser known is the essential role creatine, a natural regulator of energy homeostasis, plays in brain function and development. Creatine supplementation has shown promise as a safe, effective, and tolerable adjunct to medication for the treatment of brain-related disorders linked with dysfunctional energy metabolism, such as Huntington’s Disease and Parkinson’s Disease. Impairments in creatine metabolism have also been implicated in the pathogenesis of psychiatric disorders, leaving clinicians, researchers and patients alike wondering if dietary creatine has therapeutic value for treating mental illness. The present review summarizes the neurobiology of the creatine-phosphocreatine circuit and its relation to psychological stress, schizophrenia, mood and anxiety disorders. While present knowledge of the role of creatine in cognitive and emotional processing is in its infancy, further research on this endogenous metabolite has the potential to advance our understanding of the biological bases of psychopathology and improve current therapeutic strategies. PMID:22465051

  15. The reaction of ornithine aminotransferase with ornithine.

    PubMed Central

    Williams, J A; Bridge, G; Fowler, L J; John, R A

    1982-01-01

    Rat liver ornithine aminotransferase is found to exchange the pro-S hydrogen on the delta-carbon atom of ornithine exclusively, thus showing that the mammalian enzyme transfers the delta-amino group and not the alpha-amino group as has been demonstrated with the plant enzyme [Mestichelli, Gupta & Spenser (1979) J. Biol. Chem. 254, 640-647]. The enzyme also transfers the alpha-amino group of glutamate and the kinetics of the half reactions between the enzyme and both amino acids are compared. Rate and dissociation constants for both reactions are determined. PMID:6282258

  16. Whole body creatine and protein kinetics in healthy men and women: effects of creatine and amino acid supplementation.

    PubMed

    Kalhan, Satish C; Gruca, Lourdes; Marczewski, Susan; Bennett, Carole; Kummitha, China

    2016-03-01

    Creatine kinetics were measured in young healthy subjects, eight males and seven females, age 20-30 years, after an overnight fast on creatine-free diet. Whole body turnover of glycine and its appearance in creatine was quantified using [1-(13)C] glycine and the rate of protein turnover was quantified using L-ring [(2)H5] phenylalanine. The creatine pool size was estimated by the dilution of a bolus [C(2)H3] creatine. Studies were repeated following a five days supplement creatine 21 g.day(-1) and following supplement amino acids 14.3 g day(-1). Creatine caused a ten-fold increase in the plasma concentration of creatine and a 50 % decrease in the concentration of guanidinoacetic acid. Plasma amino acids profile showed a significant decrease in glycine, glutamine, and taurine and a significant increase in citrulline, valine, lysine, and cysteine. There was a significant decrease in the rate of appearance of glycine, suggesting a decrease in de-novo synthesis (p = 0.006). The fractional and absolute rate of synthesis of creatine was significantly decreased by supplemental creatine. Amino acid supplement had no impact on any of the parameters. This is the first detailed analysis of creatine kinetics and the effects of creatine supplement in healthy young men and women. These methods can be applied for the analysis of creatine kinetics in different physiological states. PMID:26480831

  17. Comparison of effect of cafetière and filtered coffee on serum concentrations of liver aminotransferases and lipids: six month randomised controlled trial.

    PubMed Central

    Urgert, R.; Meyboom, S.; Kuilman, M.; Rexwinkel, H.; Vissers, M. N.; Klerk, M.; Katan, M. B.

    1996-01-01

    OBJECTIVE: To study the effects of prolonged intake of cafetière coffee, which is rich in the diterpenes cafestol and kahweol, on serum aminotransferase and lipid concentrations. DESIGN: Randomised parallel controlled trial. SUBJECTS: 46 healthy men and women aged 19 to 69. INTERVENTION: Consumption of five to six strong cups (0.9 litres) a day of either cafetière (22 subjects) or filtered coffee (24 subjects) for 24 weeks. MAIN OUTCOME MEASURES: Mean changes in serum aminotransferase and lipid concentrations. RESULTS: Cafetière coffee raised alanine aminotransferase concentration by up to 80% above baseline values relative to filtered coffee. After 24 weeks the rise was still 45% (9 U/l (95% confidence interval 3 to 15 U/l), P = 0.007). Alanine aminotransferase concentration exceeded the upper limit of normal in eight of the 22 subjects drinking cafetière coffee, being twice the upper limit of normal in three of them. Cafetière coffee raised low density lipoprotein cholesterol concentrations by 9-14%. After 24 weeks the rise was 0.26 mmol/l (0.04 to 0.47 mmol/l) (P = 0.03) relative to filtered coffee. Triglyceride concentrations initially rose by 26% with cafetière coffee but returned close to baseline values within six months. All increases were reversible after the intervention was stopped. CONCLUSIONS: Daily consumption of five to six cups of strong cafetière coffee affects the integrity of liver cells as suggested by small increases in serum alanine aminotransferase concentration. The effect does not subside with prolonged intake. High intakes of coffee brews rich in cafestol and kahweol may thus be responsible for unexplained increases in this enzyme activity in apparently healthy subjects. Cafetière coffee also raises low density lipoprotein cholesterol concentration and thus the risk of coronary heart disease. PMID:8956701

  18. Creatine and the Male Adolescent Athlete

    ERIC Educational Resources Information Center

    Schumaker, Shauna; Eyers, Christina; Cappaert, Thomas

    2012-01-01

    As the level of competition in youth sports increases, so does athletes' vulnerability to experimenting with performance-enhancing aids (PEAs) at alarmingly young ages. One of the more commonly used PEAs is a supplement called creatine, which has the ability to generate muscular energy, allowing athletes to train at higher intensities for longer…

  19. The active site histidines of creatine kinase. A critical role of His 61 situated on a flexible loop.

    PubMed Central

    Forstner, M.; Müller, A.; Stolz, M.; Wallimann, T.

    1997-01-01

    A histidine residue with a pKa of 7 has been inferred to act as a general acid-base catalyst for the reaction of creatine kinase (CK), catalyzing the reversible phosphorylation of creatine by ATP. The chicken sarcomeric muscle mitochondrial isoenzyme Mib-CK contains several histidine residues that are conserved throughout the family of creatine kinases. By X-ray crystal structure analysis, three of them (His 61, His 92, and His 186) were recently shown to be located close to the active site of the enzyme. These residues were exchanged against alanine or aspartate by in vitro mutagenesis, and the six mutant proteins were expressed in E. coli and purified. Structural integrity of the mutant proteins was checked by small-angle X-ray scattering. Kinetic analysis showed the mutant His 61 Asp to be completely inactive in the direction of ATP consumption while exhibiting a residual activity of 1.7% of the wild-type (wt) activity in the reverse direction. The respective His to Ala mutant of residue 61 showed approximately 1% wt activity in the forward and 10% wt activity in the reverse reaction. All other mutants showed near wt activities. Changes in the kinetic parameters K(m) or Vmax, as well as a significant loss of synergism in substrate binding, could be observed with all active mutants. These effects were most pronounced for the binding of creatine and phosphocreatine, whereas ATP or ADP binding were less severely affected. Based on our results, we assume that His 92 and His 186 are involved in the binding of creatine and ATP in the active site, whereas His 61 is of importance for the catalytic reaction but does not serve as an acid-base catalyst in the transphosphorylation of creatine and ATP. In addition, our data support the idea that the flexible loop bearing His 61 is able to move towards the active site and to participate in catalysis. PMID:9041634

  20. Effect of creatine supplementation and a lacto-ovo-vegetarian diet on muscle creatine concentration.

    PubMed

    Lukaszuk, Judith M; Robertson, Robert J; Arch, Judith E; Moore, Geoffrey E; Yaw, Kenneth M; Kelley, David E; Rubin, Joshua T; Moyna, Niall M

    2002-09-01

    The purpose of this investigation was to examine the effects of preceding oral creatine monohydrate with a lacto-ovo-vegetarian diet on muscle creatine concentration. Thirty-two healthy men, who regularly consumed an omnivorous diet, were randomly assigned to consume a weight maintaining, lacto-ovo-vegetarian (LOV; n = 16) or omnivorous (Omni; n = 16) diet for 26 days. In addition to their assigned diet, on day 22 of the study, subjects were assigned in a double-blind manner to receive either creatine monohydrate (CM; 0.3 g kg d 1 + 20 g Polycose) or an equivalent dose of placebo (PL) for 5 days. There were no significant differences between the LOV and Omni groups at baseline with respect to age, height, and weight. The results demonstrated that consuming a LOV diet for 21 days was an effective procedure to decrease muscle creatine concentration (p <.01) in individuals who normally consume meat and fish in their diet. However, muscle total creatine (TCr) following creatine supplementation did not differ statistically between LOV and Omni diet groups (148.6 4.5 vs. 141.7 4.5 mmol kg-1 d.m.). PMID:12432177

  1. The Effects of Low-Dose Creatine Supplementation Versus Creatine Loading in Collegiate Football Players

    PubMed Central

    Deivert, Richard G.; Hagerman, Frederick; Gilders, Roger

    2001-01-01

    Objective: To compare the effects of low doses of creatine and creatine loading on strength, urinary creatinine concentration, and percentage of body fat. Design and Setting: Division IA collegiate football players took creatine monohydrate for 10 weeks during a sport-specific, periodized, off-season strength and conditioning program. One-repetition maximum (1-RM) squat, urinary creatinine concentrations, and percentage of body fat were analyzed. Subjects: Twenty-five highly trained, Division IA collegiate football players with at least 1 year of college playing experience. Measurements: We tested strength with a 1-RM squat exercise before, during, and after creatine supplementation. Percentage of body fat was measured by hydrostatic weighing before and after supplementation. Urinary creatinine concentration was measured via light spectrophotometer at 0, 1, 3, 7, 14, 21, 28, 35, 42, 48, 56, and 63 days. An analysis of variance with repeated measures was computed to compare means for all variables. Results: Creatine supplementation had no significant group, time, or interaction effects on strength, urinary creatinine concentration, or percentage of body fat. However, significant time effects were found for 1-RM squat and fat-free mass in all groups. Conclusions: Our data suggest that creatine monohydrate in any amount does not have any beneficial ergogenic effects in highly trained collegiate football players. However, a proper resistance training stimulus for 10 weeks can increase strength and fat-free mass in highly trained athletes. PMID:12937451

  2. Transcriptomic and metabolic analyses reveal salvage pathways in creatine-deficient AGAT(-/-) mice.

    PubMed

    Stockebrand, Malte; Nejad, Ali Sasani; Neu, Axel; Kharbanda, Kusum K; Sauter, Kathrin; Schillemeit, Stefan; Isbrandt, Dirk; Choe, Chi-Un

    2016-08-01

    Skeletal muscles require energy either at constant low (e.g., standing and posture) or immediate high rates (e.g., exercise). To fulfill these requirements, myocytes utilize the phosphocreatine (PCr)/creatine (Cr) system as a fast energy buffer and shuttle. We have generated mice lacking L-arginine:glycine amidino transferase (AGAT), the first enzyme of creatine biosynthesis. These AGAT(-/-) (d/d) mice are devoid of the PCr/Cr system and reveal severely altered oxidative phosphorylation. In addition, they exhibit complete resistance to diet-induced obesity, which is associated with a chronic activation of AMP-activated protein kinase in muscle and white adipose tissue. The underlying metabolic rearrangements have not yet been further analyzed. Here, we performed gene expression analysis in skeletal muscle and a serum amino acid profile of d/d mice revealing transcriptomic and metabolic alterations in pyruvate and glucose pathways. Differential pyruvate tolerance tests demonstrated preferential conversion of pyruvate to alanine, which was supported by increased protein levels of enzymes involved in pyruvate and alanine metabolism. Pyruvate tolerance tests suggested severely impaired hepatic gluconeogenesis despite increased availability of pyruvate and alanine. Furthermore, enzymes of serine production and one-carbon metabolism were significantly up-regulated in d/d mice, indicating increased de novo formation of one-carbon units from carbohydrate metabolism linked to NAD(P)H production. Besides the well-established function of the PCr/Cr system in energy metabolism, our transcriptomic and metabolic analyses suggest that it plays a pivotal role in systemic one-carbon metabolism, oxidation/reduction, and biosynthetic processes. Therefore, the PCr/Cr system is not only an energy buffer and shuttle, but also a crucial component involved in numerous systemic metabolic processes. PMID:26940723

  3. Characterization of two aminotransferases from Candida albicans.

    PubMed

    Rząd, Kamila; Gabriel, Iwona

    2015-01-01

    Aminoadipate aminotransferase (AmAA) is an enzyme of α-aminoadipate pathway (AAP) for L-lysine biosynthesis. AmAA may also participated in biosynthesis or degradation of aromatic amino acids and in D-tryptophan based pigment production. The AAP is unique for fungal microorganisms. Enzymes involved in this pathway have specific structures and properties. These features can be used as potential molecular markers. Enzymes catalyzing reactions of L-lysine biosynthesis in Candida albicans may also become new targets for antifungal chemotherapy. Search of the NCBI database resulted in identification of two putative aminoadipate aminotransferase genes from Candida albicans: ARO8 (ORFs 19.2098 and 19.9645) and YER152C (ORFs 19.1180 and 19.8771). ARO8 from C. albicans exhibits 53% identity to ARO8 from S. cerevisiae, while YER152C exhibits 30% identity to ARO8 and 45% to YER152C from S. cerevisiae. We amplified two genes from the C. albicans genome: ARO8 and YER152C. Both were cloned and expressed as His-tagged fusion proteins in E. coli. The purified Aro8CHp gene product revealed aromatic and α-aminoadipate aminotransferase activity. Basic molecular properties of the purified protein were determined. We obtained catalytic parameters of Aro8CHp with aromatic amino acids and aminoadipate (AA) (Km(L-Phe) 0.05±0.003 mM, Km(L-Tyr) 0.1±0.008 mM, Km(L-AA) 0.02±0.006 mM) and confirmed the enzyme broad substrate spectrum. The assays also demonstrated that this enzyme may use 2-oxoadipate and 2-oxoglutarate (2-OG) as amino acceptors. Aro8-CHp exhibited pH optima range of 8, which is similar to AmAA from S. cerevisiae. Our results also indicate that CaYer152Cp has a possible role only in aromatic amino acids degradation, in contrast to CaAro8CHp. PMID:26619256

  4. Cumulative effects of mutations in newly synthesised mitochondrial aspartate aminotransferase on uptake into mitochondria.

    PubMed

    Marra, E; Azzariti, A; Giannattasio, S; Doonan, S; Quagliariello, E

    1995-09-14

    Mutant genes were constructed which coded for the precursor form of mitochondrial aspartate aminotransferase in which residue cysteine 166 was mutated to either serine or alanine and for forms of the protein lacking both the presequence and residues 1-9 of the mature protein but carrying the same cysteine mutations. The protein products of all of these mutant genes were imported into mitochondria that had been added to the expression system but with varying degrees of efficiency. The results showed that the effects of mutation of cysteine 166 and of deletion of residues 1-9 of the mature protein on sequestration into mitochondria were essentially cumulative, suggesting that these parts of the protein are involved in distinct steps on the recognition/uptake pathway. PMID:7677759

  5. Benign elevations in serum aminotransferases and biomarkers of hepatotoxicity in healthy volunteers treated with cholestyramine

    PubMed Central

    2014-01-01

    Background There are currently no serum biomarkers capable of distinguishing elevations in serum alanine aminotransferase (ALT) that portend serious liver injury potential from benign elevations such as those occurring during cholestyramine treatment. The aim of the research was to test the hypothesis that newly proposed biomarkers of hepatotoxicity would not significantly rise in serum during elevations in serum ALT associated with cholestyramine treatment, which has never been associated with clinically relevant liver injury. Methods In a double-blind placebo-controlled trial, cholestyramine (8g) was administered for 11 days to healthy adult volunteers. Serum from subjects with elevations in alanine aminotransferase (ALT) exceeding three-fold the upper limit of normal (ULN) were utilized for biomarker quantification. Results In 11 of 67 subjects, cholestyramine treatment resulted in ALT elevation by >3x ULN (mean 6.9 fold; range 3–28 fold). In these 11 subjects, there was a 22.4-fold mean increase in serum levels of miR-122 relative to baseline, supporting a liver origin of the serum ALT. Significant elevations were noted in mean levels of necrosis biomarkers sorbitol dehydrogenase (8.1 fold), cytokeratin 18 (2.1 fold) and HMGB1 (1.7 fold). Caspase-cleaved cytokeratin 18, a biomarker of apoptosis was also significantly elevated (1.7 fold). A rise in glutamate dehydrogenase (7.3 fold) may support mitochondrial dysfunction. Conclusion All toxicity biomarkers measured in this study were elevated along with ALT, confirming the liver origin and reflecting both hepatocyte necrosis and apoptosis. Since cholestyramine treatment has no clinical liver safety concerns, we conclude that interpretation of the biomarkers studied may not be straightforward in the context of assessing liver safety of new drugs. PMID:25086653

  6. Ornithine aminotransferase vs. GABA aminotransferase. Implications for the design of new anticancer drugs

    PubMed Central

    Lee, Hyunbeom; Juncosa, Jose I.; Silverman, Richard B.

    2015-01-01

    Ornithine aminotransferase (OAT) and γ-aminobutyric acid aminotransferase (GABA-AT) are classified under the same evolutionary subgroup and share a large portion of structural, functional, and mechanistic features. Therefore, it is not surprising that many molecules that bind to GABA-AT also bind well to OAT. Unlike GABA-AT, OAT had not been viewed as a potential therapeutic target until recently; consequently, the number of therapeutically viable molecules that target OAT is very limited. In this review the two enzymes are compared with respect to their active site structures, catalytic and inactivation mechanisms, and selective inhibitors. Insight is offered that could aid in the design and development of new selective inhibitors of OAT for the treatment of cancer. PMID:25145640

  7. Guanidinoacetic acid versus creatine for improved brain and muscle creatine levels: a superiority pilot trial in healthy men.

    PubMed

    Ostojic, Sergej M; Ostojic, Jelena; Drid, Patrik; Vranes, Milan

    2016-09-01

    In this randomized, double-blind, crossover trial, we evaluated whether 4-week supplementation with guanidinoacetic acid (GAA) is superior to creatine in facilitating creatine levels in healthy men (n = 5). GAA (3.0 g/day) resulted in a more powerful rise (up to 16.2%) in tissue creatine levels in vastus medialis muscle, middle-cerebellar peduncle, and paracentral grey matter, as compared with creatine (P < 0.05). These results indicate that GAA as a preferred alternative to creatine for improved bioenergetics in energy-demanding tissues. PMID:27560540

  8. [Amides of creatine: perspectives of neuroprotection].

    PubMed

    Vlasov, T D; Chefu, S G; Baĭsa, A E; Leko, M V; Burov, S V; Veselkina, O S

    2011-07-01

    We evaluated the efficacy of derivatives of creatine and amino acids (CrAA) for decreasing cerebral injury in rats with transient middle cerebral artery occlusion (MCAO). Neuroprotective effects of amides of creatine and glycine (CrGlyOEt), phenylalanine (CrPheNH2), thyrosine (CrTyrNH2), and GABA (CrGABAOEt) were investigated. Brain injury was evaluated on day 2 after transient MCAO using a TTC staining of brain slices. Compared with the MCAO control group, all the CrAms showed decreased cerebral injury (p < 0.05). However CrPheNH2, CrTyrNH2, and CrGABAOEt were toxic after intravenous administration and investigated only after intraperitoneal injection. CrGlyOEt did not show any toxicity at dose of 1 mmol/kg. These data evidenced that creatinyl amides can represent promising candidates for the development of new drugs useful in brain ischemia treatment. PMID:21961295

  9. Preoperative Aspartate Aminotransferase to White Blood Cell Count Ratio Predicting Postoperative Outcomes of Hepatocellular Carcinoma.

    PubMed

    Liao, Weijia; Wang, Yongqin; Liao, Yan; He, Songqing; Jin, Junfei

    2016-04-01

    Effective biomarkers for predicting prognosis of hepatocellular carcinoma (HCC) patients after hepatectomy is urgently needed. The purpose of this study is to evaluate the value of the preoperative peripheral aspartate aminotransferase to white blood cell count ratio (AWR) for the prognostication of patients with HCC.Clinical data of 396 HCC patients who underwent radical hepatectomy were retrospectively analyzed. The patients were divided into the low-AWR group (AWR ≤5.2) and the high-AWR group (AWR >5.2); univariate analysis, Kaplan-Meier method analysis, and the multivariate analysis by Cox regression were conducted, respectively.The results showed that AWR was associated with alpha-fetoprotein (AFP), tumor size, Barcelona clinic liver cancer (BCLC) stage, portal vein tumor thrombus (PVTT), and alanine aminotransferase (ALT) in HCC. AWR > 5.2, AFP > 100 ng/mL, size of tumor >6 cm, number of multiple tumors, B-C of BCLC stage, PVTT, and distant metastasis were predictors of poorer disease-free survival (DFS) and overall survival (OS). Except for recurrence, which was an independent predictor for OS only, AWR >5.2, size of tumor >6 cm, and PVTT were independent predictors of both DFS and OS.We concluded that preoperative AWR > 5.2 was an adverse predictor of DFS and OS in HCC after hepatectomy, AWR might be a novel prognostic biomarker in HCC after curative resection. PMID:27057915

  10. Liver aminotransferases and risk of incident type 2 diabetes: a systematic review and meta-analysis.

    PubMed

    Kunutsor, Setor K; Apekey, Tanefa A; Walley, John

    2013-07-15

    We evaluated the associations of liver aminotransferases with risk of type 2 diabetes (T2D) in general populations by conducting a systematic review and meta-analysis of published prospective studies. Studies were identified in a literature search of PubMed, EMBASE, and Web of Science from 1950 through October 2012. Of the 2,729 studies reviewed, 17 studies involving 60,359 participants and 3,890 incident T2D events were included. All of the studies assessed associations between alanine aminotransferase (ALT) level and T2D, with heterogeneous findings (I(2) = 88%, 95% confidence interval (CI): 82, 92; P < 0.001). The pooled fully adjusted relative risk of T2D was 1.26 (95% CI: 1.14, 1.41) per 1-standard-deviation change in log baseline ALT level. This association became nonsignificant after trim-and-fill correction for publication bias. Nine studies evaluated associations between aspartate aminotransferase (AST) levels and T2D risk, with a corresponding relative risk of 1.02 (95% CI: 0.99, 1.04). The relative risk of T2D per 5-IU/L increase in ALT level was 1.16 (95% CI: 1.08, 1.25). Available data indicate moderate associations of ALT with risk of T2D events, which may be attributable to publication bias. There was no evidence for an increased risk of T2D with AST. Large prospective studies may still be needed to establish the magnitude and nature of these associations. PMID:23729682

  11. Approach to asymptomatic creatine kinase elevation

    PubMed Central

    MOGHADAM-KIA, SIAMAK; ODDIS, CHESTER V.; AGGARWAL, ROHIT

    2016-01-01

    How to manage a patient who has an elevated serum creatine kinase (CK) level but no or insignificant muscle-related signs and symptoms is a clinical conundrum. The authors provide a systematic approach, including repeat testing after a period of rest, defining higher thresholds over which pursuing a diagnosis is worthwhile, and evaluating for a variety of nonneuromuscular causes. They also outline a workup for neuromuscular causes. PMID:26760521

  12. 21 CFR 582.5118 - Alanine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Alanine. 582.5118 Section 582.5118 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5118 Alanine. (a) Product. Alanine...

  13. Cerebral creatine deficiency syndromes: clinical aspects, treatment and pathophysiology.

    PubMed

    Stockler, Sylvia; Schutz, Peter W; Salomons, Gajja S

    2007-01-01

    Cerebral creatine deficiency syndromes (CCDSs) are a group of inborn errors of creatine metabolism comprising two autosomal recessive disorders that affect the biosynthesis of creatine--i.e. arginine:glycine amidinotransferase deficiency (AGAT; MIM 602360) and guanidinoacetate methyltransferase deficiency (GAMT; MIM 601240)--and an X-linked defect that affects the creatine transporter, SLC6A8 deficiency (SLC6A8; MIM 300036). The biochemical hallmarks of these disorders include cerebral creatine deficiency as detected in vivo by 1H magnetic resonance spectroscopy (MRS) of the brain, and specific disturbances in metabolites of creatine metabolism in body fluids. In urine and plasma, abnormal guanidinoacetic acid (GAA) levels are found in AGAT deficiency (reduced GAA) and in GAMT deficiency (increased GAA). In urine of males with SLC6A8 deficiency, an increased creatine/creatinine ratio is detected. The common clinical presentation in CCDS includes mental retardation, expressive speech and language delay, autistic like behaviour and epilepsy. Treatment of the creatine biosynthesis defects has yielded clinical improvement, while for creatine transporter deficiency, successful treatment strategies still need to be discovered. CCDSs may be responsible for a considerable fraction of children and adults affected with mental retardation of unknown etiology. Thus, screening for this group of disorders should be included in the differential diagnosis of this population. In this review, also the importance of CCDSs for the unravelling of the (patho)physiology of cerebral creatine metabolism is discussed. PMID:18652076

  14. Disturbed energy metabolism and muscular dystrophy caused by pure creatine deficiency are reversible by creatine intake

    PubMed Central

    Nabuurs, C I; Choe, C U; Veltien, A; Kan, H E; van Loon, L J C; Rodenburg, R J T; Matschke, J; Wieringa, B; Kemp, G J; Isbrandt, D; Heerschap, A

    2013-01-01

    Creatine (Cr) plays an important role in muscle energy homeostasis by its participation in the ATP–phosphocreatine phosphoryl exchange reaction mediated by creatine kinase. Given that the consequences of Cr depletion are incompletely understood, we assessed the morphological, metabolic and functional consequences of systemic depletion on skeletal muscle in a mouse model with deficiency of l-arginine:glycine amidinotransferase (AGAT−/−), which catalyses the first step of Cr biosynthesis. In vivo magnetic resonance spectroscopy showed a near-complete absence of Cr and phosphocreatine in resting hindlimb muscle of AGAT−/− mice. Compared with wild-type, the inorganic phosphate/β-ATP ratio was increased fourfold, while ATP levels were reduced by nearly half. Activities of proton-pumping respiratory chain enzymes were reduced, whereas F1F0-ATPase activity and overall mitochondrial content were increased. The Cr-deficient AGAT−/− mice had a reduced grip strength and suffered from severe muscle atrophy. Electron microscopy revealed increased amounts of intramyocellular lipid droplets and crystal formation within mitochondria of AGAT−/− muscle fibres. Ischaemia resulted in exacerbation of the decrease of pH and increased glycolytic ATP synthesis. Oral Cr administration led to rapid accumulation in skeletal muscle (faster than in brain) and reversed all the muscle abnormalities, revealing that the condition of the AGAT−/− mice can be switched between Cr deficient and normal simply by dietary manipulation. Systemic creatine depletion results in mitochondrial dysfunction and intracellular energy deficiency, as well as structural and physiological abnormalities. The consequences of AGAT deficiency are more pronounced than those of muscle-specific creatine kinase deficiency, which suggests a multifaceted involvement of creatine in muscle energy homeostasis in addition to its role in the phosphocreatine–creatine kinase system. PMID:23129796

  15. Structure of tyrosine aminotransferase from Leishmania infantum

    PubMed Central

    Moreno, M. A.; Abramov, A.; Abendroth, J.; Alonso, A.; Zhang, S.; Alcolea, P. J.; Edwards, T.; Lorimer, D.; Myler, P. J.; Larraga, V.

    2014-01-01

    The trypanosomatid parasite Leishmania infantum is the causative agent of visceral leishmaniasis (VL), which is usually fatal unless treated. VL has an incidence of 0.5 million cases every year and is an important opportunistic co-infection in HIV/AIDS. Tyrosine aminotransferase (TAT) has an important role in the metabolism of trypanosomatids, catalyzing the first step in the degradation pathway of aromatic amino acids, which are ultimately converted into their corresponding l-2-oxoacids. Unlike the enzyme in Trypanosoma cruzi and mammals, L. infantum TAT (LiTAT) is not able to transaminate ketoglutarate. Here, the structure of LiTAT at 2.35 Å resolution is reported, and it is confirmed that the presence of two Leishmania-specific residues (Gln55 and Asn58) explains, at least in part, this specific reactivity. The difference in substrate specificity between leishmanial and mammalian TAT and the importance of this enzyme in parasite metabolism suggest that it may be a useful target in the development of new drugs against leishmaniasis. PMID:24817714

  16. Crystal Structure of Human Kynurenine Aminotransferase ll*

    SciTech Connect

    Han,Q.; Robinson, H.; Li, J.

    2008-01-01

    Human kynurenine aminotransferase II (hKAT-II) efficiently catalyzes the transamination of knunrenine to kynurenic acid (KYNA). KYNA is the only known endogenous antagonist of N-methyl-d-aspartate (NMDA) receptors and is also an antagonist of 7-nicotinic acetylcholine receptors. Abnormal concentrations of brain KYNA have been implicated in the pathogenesis and development of several neurological and psychiatric diseases in humans. Consequently, enzymes involved in the production of brain KYNA have been considered potential regulatory targets. In this article, we report a 2.16 Angstroms crystal structure of hKAT-II and a 1.95 Angstroms structure of its complex with kynurenine. The protein architecture of hKAT-II reveals that it belongs to the fold-type I pyridoxal 5-phosphate (PLP)-dependent enzymes. In comparison with all subclasses of fold-type I-PLP-dependent enzymes, we propose that hKAT-II represents a novel subclass in the fold-type I enzymes because of the unique folding of its first 65 N-terminal residues. This study provides a molecular basis for future effort in maintaining physiological concentrations of KYNA through molecular and biochemical regulation of hKAT-II.

  17. Creatine synthesis and exchanges between brain cells: What can be learned from human creatine deficiencies and various experimental models?

    PubMed

    Hanna-El-Daher, Layane; Braissant, Olivier

    2016-08-01

    While it has long been thought that most of cerebral creatine is of peripheral origin, the last 20 years has provided evidence that the creatine synthetic pathway (AGAT and GAMT enzymes) is expressed in the brain together with the creatine transporter (SLC6A8). It has also been shown that SLC6A8 is expressed by microcapillary endothelial cells at the blood-brain barrier, but is absent from surrounding astrocytes, raising the concept that the blood-brain barrier has a limited permeability for peripheral creatine. The first creatine deficiency syndrome in humans was also discovered 20 years ago (GAMT deficiency), followed later by AGAT and SLC6A8 deficiencies, all three diseases being characterized by creatine deficiency in the CNS and essentially affecting the brain. By reviewing the numerous and latest experimental studies addressing creatine transport and synthesis in the CNS, as well as the clinical and biochemical characteristics of creatine-deficient patients, our aim was to delineate a clearer view of the roles of the blood-brain and blood-cerebrospinal fluid barriers in the transport of creatine and guanidinoacetate between periphery and CNS, and on the intracerebral synthesis and transport of creatine. This review also addresses the question of guanidinoacetate toxicity for brain cells, as probably found under GAMT deficiency. PMID:26861125

  18. Protective effects of some creatine derivatives in brain tissue anoxia.

    PubMed

    Perasso, Luisa; Lunardi, Gian Luigi; Risso, Federica; Pohvozcheva, Anna V; Leko, Maria V; Gandolfo, Carlo; Florio, Tullio; Cupello, Aroldo; Burov, Sergey V; Balestrino, Maurizio

    2008-05-01

    Some derivatives more lipophylic than creatine, thus theoretically being capable to better cross the blood-brain barrier, were studied for their protective effect in mouse hippocampal slices. We found that N-amidino-piperidine is harmful to brain tissue, and that phosphocreatine is ineffective. Creatine, creatine-Mg-complex (acetate) and phosphocreatine-Mg-complex (acetate) increased the latency to population spike disappearance during anoxia. Creatine and creatine-Mg-complex (acetate) also increased the latency of anoxic depolarization, while the delay induced by phosphocreatine-Mg-complex (acetate) was of borderline significance (P = 0.056). Phosphocreatine-Mg-complex (acetate) significantly reduced neuronal hyperexcitability during anoxia, an effect that no other compound (including creatine itself) showed. For all parameters except reduced hyperexcitability the effects statistically correlated with tissue levels of creatine or phosphocreatine. Summing up, exogenous phosphocreatine and N-amidino piperidine are not useful for brain protection, while chelates of both creatine and phosphocreatine do replicate some of the known protective effects of creatine. In addition, phosphocreatine-Mg-complex (acetate) also reduced neuronal hyperexcitability during anoxia. PMID:17940889

  19. Skeletal muscle total creatine content and creatine transporter gene expression in vegetarians prior to and following creatine supplementation.

    PubMed

    Watt, Kenneth K O; Garnham, Andrew P; Snow, Rodney J

    2004-10-01

    This study examined the effect of vegetarianism on skeletal muscle total creatine (TCr) content and creatine transporter (CreaT) gene expression, prior to and during 5 d of Cr supplementation (CrS). In a double-blind, crossover design, 7 vegetarians (VEG) and nonvegetarians (NVEG) were assigned Cr or placebo supplements for 5 d and after 5 wk, received the alternative treatment. Muscle sampling occurred before, and after 1 and 5 d of treatment ingestion. Basal muscle TCr content was lower (P < 0.05) in VEG compared with NVEG. Muscle TCr increased (P < 0.05) throughout the Cr trial in both groups but was greater (P < 0.05) in VEG compared with NVEG, at days 1 and 5. CreaT gene expression was not different between VEG and NVEG. The results indicate that VEG have a lower muscle TCr content and an increased capacity to load Cr into muscle following CrS. Muscle CreaT gene expression does not appear to be affected by vegetarianism. PMID:15673098

  20. The Creatine Kinase/Creatine Connection to Alzheimer's Disease: CK Inactivation, APP-CK Complexes, and Focal Creatine Deposits

    PubMed Central

    Bürklen, Tanja S.; Schlattner, Uwe; Homayouni, Ramin; Gough, Kathleen; Rak, Margaret; Szeghalmi, Adriana; Wallimann, Theo

    2006-01-01

    Cytosolic brain-type creatine kinase (BB-CK), which is coexpressed with ubiquitous mitochondrial uMtCK, is significantly inactivated by oxidation in Alzheimer's disease (AD) patients. Since CK has been shown to play a fundamental role in cellular energetics of the brain, any disturbance of this enzyme may exasperate the AD disease process. Mutations in amyloid precursor protein (APP) are associated with early onset AD and result in abnormal processing of APP, and accumulation of Aβ peptide, the main constituent of amyloid plaques in AD brain. Recent data on a direct interaction between APP and the precursor of uMtCK support an emerging relationship between AD, cellular energy levels, and mitochondrial function. In addition, recently discovered creatine (Cr) deposits in the brain of transgenic AD mice, as well as in the hippocampus from AD patients, indicate a direct link between perturbed energy state, Cr metabolism, and AD. Here, we review the roles of Cr and Cr-related enzymes and consider the potential value of supplementation with Cr, a potent neuroprotective substance. As a hypothesis, we consider whether Cr, if given at an early time point of the disease, may prevent or delay the course of AD-related neurodegeneration. PMID:17047305

  1. On the Importance of Exchangeable NH Protons in Creatine for the Magnetic Coupling of Creatine Methyl Protons in Skeletal Muscle

    NASA Astrophysics Data System (ADS)

    Kruiskamp, M. J.; Nicolay, K.

    2001-03-01

    The methyl protons of creatine in skeletal muscle exhibit a strong off-resonance magnetization transfer effect. The mechanism of this process is unknown. We previously hypothesized that the exchangeable amide/amino protons of creatine might be involved. To test this the characteristics of the creatine magnetization transfer effect were investigated in excised rat hindleg skeletal muscle that was equilibrated in either H2O or D2O solutions containing creatine. The efficiency of off-resonance magnetization transfer to the protons of mobile creatine in excised muscle was similar to that previously reported in intact muscle in vivo. Equilibrating the isolated muscle in D2O solution had no effect on the magnetic coupling to the immobile protons. It is concluded that exchangeable protons play a negligible role in the magnetic coupling of creatine methyl protons in muscle.

  2. Kynurenine Aminotransferase Isozyme Inhibitors: A Review

    PubMed Central

    Nematollahi, Alireza; Sun, Guanchen; Jayawickrama, Gayan S.; Church, W. Bret

    2016-01-01

    Kynurenine aminotransferase isozymes (KATs 1–4) are members of the pyridoxal-5’-phosphate (PLP)-dependent enzyme family, which catalyse the permanent conversion of l-kynurenine (l-KYN) to kynurenic acid (KYNA), a known neuroactive agent. As KATs are found in the mammalian brain and have key roles in the kynurenine pathway, involved in different categories of central nervous system (CNS) diseases, the KATs are prominent targets in the quest to treat neurodegenerative and cognitive impairment disorders. Recent studies suggest that inhibiting these enzymes would produce effects beneficial to patients with these conditions, as abnormally high levels of KYNA are observed. KAT-1 and KAT-3 share the highest sequence similarity of the isozymes in this family, and their active site pockets are also similar. Importantly, KAT-2 has the major role of kynurenic acid production (70%) in the human brain, and it is considered therefore that suitable inhibition of this isozyme would be most effective in managing major aspects of CNS diseases. Human KAT-2 inhibitors have been developed, but the most potent of them, chosen for further investigations, did not proceed in clinical studies due to the cross toxicity caused by their irreversible interaction with PLP, the required cofactor of the KAT isozymes, and any other PLP-dependent enzymes. As a consequence of the possibility of extensive undesirable adverse effects, it is also important to pursue KAT inhibitors that reversibly inhibit KATs and to include a strategy that seeks compounds likely to achieve substantial interaction with regions of the active site other than the PLP. The main purpose of this treatise is to review the recent developments with the inhibitors of KAT isozymes. This treatise also includes analyses of their crystallographic structures in complex with this enzyme family, which provides further insight for researchers in this and related studies. PMID:27314340

  3. Kynurenine Aminotransferase Isozyme Inhibitors: A Review.

    PubMed

    Nematollahi, Alireza; Sun, Guanchen; Jayawickrama, Gayan S; Church, W Bret

    2016-01-01

    Kynurenine aminotransferase isozymes (KATs 1-4) are members of the pyridoxal-5'-phosphate (PLP)-dependent enzyme family, which catalyse the permanent conversion of l-kynurenine (l-KYN) to kynurenic acid (KYNA), a known neuroactive agent. As KATs are found in the mammalian brain and have key roles in the kynurenine pathway, involved in different categories of central nervous system (CNS) diseases, the KATs are prominent targets in the quest to treat neurodegenerative and cognitive impairment disorders. Recent studies suggest that inhibiting these enzymes would produce effects beneficial to patients with these conditions, as abnormally high levels of KYNA are observed. KAT-1 and KAT-3 share the highest sequence similarity of the isozymes in this family, and their active site pockets are also similar. Importantly, KAT-2 has the major role of kynurenic acid production (70%) in the human brain, and it is considered therefore that suitable inhibition of this isozyme would be most effective in managing major aspects of CNS diseases. Human KAT-2 inhibitors have been developed, but the most potent of them, chosen for further investigations, did not proceed in clinical studies due to the cross toxicity caused by their irreversible interaction with PLP, the required cofactor of the KAT isozymes, and any other PLP-dependent enzymes. As a consequence of the possibility of extensive undesirable adverse effects, it is also important to pursue KAT inhibitors that reversibly inhibit KATs and to include a strategy that seeks compounds likely to achieve substantial interaction with regions of the active site other than the PLP. The main purpose of this treatise is to review the recent developments with the inhibitors of KAT isozymes. This treatise also includes analyses of their crystallographic structures in complex with this enzyme family, which provides further insight for researchers in this and related studies. PMID:27314340

  4. Aspartate Aminotransferase in Alfalfa Root Nodules 1

    PubMed Central

    Farnham, Mark W.; Griffith, Stephen M.; Miller, Susan S.; Vance, Carroll P.

    1990-01-01

    Aspartate aminotransferase (AAT) plays an important role in nitrogen metabolism in all plants and is particularly important in the assimilation of fixed N derived from the legume-Rhizoblum symbiosis. Two isozymes of AAT (AAT-1 and AAT-2) occur in alfalfa (Medicago sativa L.). Antibodies against alfalfa nodule AAT-2 do not recognize AAT-1, and these antibodies were used to study AAT-2 expression in different tissues and genotypes of alfalfa and also in other legume and nonlegume species. Rocket immunoelectrophoresis indicated that nodules of 38-day-old alfalfa plants contained about eight times more AAT-2 than did nodules of 7-day-old plants, confirming the nodule-enhanced nature of this isozyme. AAT-2 was estimated to make up 16, 15, 5, and 8 milligrams per gram of total soluble protein in mature nodules, roots, stems, and leaves, respectively, of effective N2-fixing alfalfa. The concentration of AAT-2 in nodules of ineffective non-N2-fixing alafalfa genotypes was about 70% less than that of effective nodules. Western blots of soluble protein from nodules of nine legume species indicated that a 40-kilodalton polypeptide that reacts strongly with AAT-2 antibodies is conserved in legumes. Nodule AAT-2 immunoprecipitation data suggested that amide- and ureide-type legumes may differ in expression and regulation of the enzyme. In addition, Western blotting and immunoprecipitations of AAT activity demonstrated that antibodies against alfalfa AAT-2 are highly cross-reactive with AAT enzyme protein in leaves of soybean (Glycine max L.), wheat (Triticum aestivum L.), and maize (Zea mays L.) and in roots of maize, but not with AAT in soybean and wheat roots. Results from this study indicate that AAT-2 is structurally conserved and localized in similar tissues among diverse species. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:16667896

  5. Creatine kinase expression and creatine phosphate accumulation are developmentally regulated during differentiation of mouse and human monocytes

    PubMed Central

    1984-01-01

    We have studied the expression of creatine kinase (CK) and the accumulation of creatine phosphate during the differentiation of human and mouse peripheral blood monocytes. Mouse monocytes cultured for 24 h do not contain detectable levels of CK and creatine phosphate. However, resident tissue macrophages and inflammatory elicited macrophages obtained from the peritoneal cavities of mice have 70 and 300 mU per mg protein of CK activity and contain 3 and 6 mol of creatine phosphate per mol of ATP, respectively. The major isozyme of CK in these cells has been identified as the brain form. These findings suggest that the differentiation of monocytes into macrophages is associated with the expression of CK and the accumulation of creatine phosphate. We have found a similar pattern in human monocytes. Human blood monocytes, maintained in culture for 24 or 48 h, do not contain detectable levels of CK or creatine phosphate. Monocyte-derived macrophages (monocytes maintained in tissue cultures for 1 to 2 wk) have up to 100 mU per mg protein of CK activity and contain 0.5 mol of creatine phosphate per mol of ATP. Human macrophages express multiple isozymes of CK including the brain (BB) and possibly the mitochondrial forms of this enzyme. Thus, the expression of CK and the accumulation of creatine phosphate in human monocytes is induced by their in vitro cultivation. The induction of CK during in vitro cultivation occurs independently of the concentration of creatine in the medium. However, the size of the creatine phosphate pool varies with respect to extracellular creatine concentration. Creatine phosphate and CK are not detectable in freshly isolated human lymphocytes, polymorphonuclear leukocytes or erythrocytes, but are found in freshly isolated human platelets. PMID:6699543

  6. Aminotransferase and glutamate dehydrogenase activities in lactobacilli and streptococci.

    PubMed

    Peralta, Guillermo Hugo; Bergamini, Carina Viviana; Hynes, Erica Rut

    2016-01-01

    Aminotransferases and glutamate dehydrogenase are two main types of enzymes involved in the initial steps of amino acid catabolism, which plays a key role in the cheese flavor development. In the present work, glutamate dehydrogenase and aminotransferase activities were screened in twenty one strains of lactic acid bacteria of dairy interest, either cheese-isolated or commercial starters, including fifteen mesophilic lactobacilli, four thermophilic lactobacilli, and two streptococci. The strains of Streptococcus thermophilus showed the highest glutamate dehydrogenase activity, which was significantly elevated compared with the lactobacilli. Aspartate aminotransferase prevailed in most strains tested, while the levels and specificity of other aminotransferases were highly strain- and species-dependent. The knowledge of enzymatic profiles of these starter and cheese-isolated cultures is helpful in proposing appropriate combinations of strains for improved or increased cheese flavor. PMID:27266631

  7. Biochemical and structural characterization of mouse mitochondrial aspartate aminotransferase, a newly identified kynurenine aminotransferase-IV

    SciTech Connect

    Han, Q.; Robinson, H.; Cai, T.; Tagle, D. A.; Li, J.

    2011-10-01

    Mammalian mAspAT (mitochondrial aspartate aminotransferase) is recently reported to have KAT (kynurenine aminotransferase) activity and plays a role in the biosynthesis of KYNA (kynurenic acid) in rat, mouse and human brains. This study concerns the biochemical and structural characterization of mouse mAspAT. In this study, mouse mAspAT cDNA was amplified from mouse brain first stand cDNA and its recombinant protein was expressed in an Escherichia coli expression system. Sixteen oxo acids were tested for the co-substrate specificity of mouse mAspAT and 14 of them were shown to be capable of serving as co-substrates for the enzyme. Structural analysis of mAspAT by macromolecular crystallography revealed that the cofactor-binding residues of mAspAT are similar to those of other KATs. The substrate-binding residues of mAspAT are slightly different from those of other KATs. Our results provide a biochemical and structural basis towards understanding the overall physiological role of mAspAT in vivo and insight into controlling the levels of endogenous KYNA through modulation of the enzyme in the mouse brain.

  8. Substrate Specificity and Structure of Human Aminoadipate Aminotransferase/kynurenine Aminotransferase II

    SciTech Connect

    Han,Q.; Cai, T.; Tagle, D.; Robinson, H.; Li, J.

    2008-01-01

    KAT (kynurenine aminotransferase) II is a primary enzyme in the brain for catalysing the transamination of kynurenine to KYNA (kynurenic acid). KYNA is the only known endogenous antagonist of the N-methyl-D-aspartate receptor. The enzyme also catalyses the transamination of aminoadipate to a-oxoadipate; therefore it was initially named AADAT (aminoadipate aminotransferase). As an endotoxin, aminoadipate influences various elements of glutamatergic neurotransmission and kills primary astrocytes in the brain. A number of studies dealing with the biochemical and functional characteristics of this enzyme exist in the literature, but a systematic assessment of KAT II addressing its substrate profile and kinetic properties has not been performed. The present study examines the biochemical and structural characterization of a human KAT II/AADAT. Substrate screening of human KAT II revealed that the enzyme has a very broad substrate specificity, is capable of catalysing the transamination of 16 out of 24 tested amino acids and could utilize all 16 tested a-oxo acids as amino-group acceptors. Kinetic analysis of human KAT II demonstrated its catalytic efficiency for individual amino-group donors and acceptors, providing information as to its preferred substrate affinity. Structural analysis of the human KAT II complex with a-oxoglutaric acid revealed a conformational change of an N-terminal fraction, residues 15-33, that is able to adapt to different substrate sizes, which provides a structural basis for its broad substrate specificity.

  9. Substrate Specificity and Structure of Human aminoadipate aminotransferase/kynurenine aminotransferase II

    SciTech Connect

    Han, Q.; Cai, T; Tagle, D; Robinson, H; Li, J

    2009-01-01

    KAT (kynurenine aminotransferase) II is a primary enzyme in the brain for catalysing the transamination of kynurenine to KYNA (kynurenic acid). KYNA is the only known endogenous antagonist of the N-methyl-D-aspartate receptor. The enzyme also catalyses the transamination of aminoadipate to alpha-oxoadipate; therefore it was initially named AADAT (aminoadipate aminotransferase). As an endotoxin, aminoadipate influences various elements of glutamatergic neurotransmission and kills primary astrocytes in the brain. A number of studies dealing with the biochemical and functional characteristics of this enzyme exist in the literature, but a systematic assessment of KAT II addressing its substrate profile and kinetic properties has not been performed. The present study examines the biochemical and structural characterization of a human KAT II/AADAT. Substrate screening of human KAT II revealed that the enzyme has a very broad substrate specificity, is capable of catalysing the transamination of 16 out of 24 tested amino acids and could utilize all 16 tested alpha-oxo acids as amino-group acceptors. Kinetic analysis of human KAT II demonstrated its catalytic efficiency for individual amino-group donors and acceptors, providing information as to its preferred substrate affinity. Structural analysis of the human KAT II complex with alpha-oxoglutaric acid revealed a conformational change of an N-terminal fraction, residues 15-33, that is able to adapt to different substrate sizes, which provides a structural basis for its broad substrate specificity.

  10. Effects of β-alanine administration on selected parameters of oxidative stress and phosphoryltransfer network in cerebral cortex and cerebellum of rats.

    PubMed

    Gemelli, Tanise; de Andrade, Rodrigo Binkowski; Rojas, Denise Bertin; Bonorino, Nariélle Ferner; Mazzola, Priscila Nicolao; Tortorelli, Lucas Silva; Funchal, Cláudia; Filho, Carlos Severo Dutra; Wannmacher, Clovis Milton Duval

    2013-08-01

    β-Alanine is a β-amino acid derivative of the degradation of pyrimidine uracil and precursor of the oxidative substrate acetyl-coenzyme A (acetyl-CoA). The accumulation of β-alanine occurs in β-alaninemia, an inborn error of metabolism. Patients with β-alaninemia may develop neurological abnormalities whose mechanisms are far from being understood. In this study we evaluated the effects of β-alanine administration on some parameters of oxidative stress and on creatine kinase, pyruvate kinase, and adenylate kinase in cerebral cortex and cerebellum of 21-day-old rats. The animals received three peritoneal injections of β-alanine (0.3 mg /g of body weight) and the controls received the same volume (10 μL/g of body weight) of saline solution (NaCl 0.85 %) at 3 h intervals. CSF levels of β-alanine increased five times, achieving 80 μM in the rats receiving the amino acid. The results of β-alanine administration in the parameters of oxidative stress were similar in both tissues studied: reduction of superoxide dismutase activity, increased oxidation of 2',7'-dihydrodichlorofluorescein, total content of sulfhydryl and catalase activity. However, the results of the phosphoryltransfer network enzymes were similar in all enzymes, but different in the tissues studied: the β-alanine administration was able to inhibit the enzyme pyruvate kinase, cytosolic creatine kinase, and adenylate kinase activities in cerebral cortex, and increase in cerebellum. In case this also occurs in the patients, these results suggest that oxidative stress and alteration of the phosphoryltransfer network may be involved in the pathophysiology of β-alaninemia. Moreover, the ingestion of β-alanine to improve muscular performance deserves more attention in respect to possible side-effects. PMID:23620342

  11. Inhibitors of alanine racemase enzyme: a review.

    PubMed

    Azam, Mohammed Afzal; Jayaram, Unni

    2016-08-01

    Alanine racemase is a fold type III PLP-dependent amino acid racemase enzyme catalysing the conversion of l-alanine to d-alanine utilised by bacterial cell wall for peptidoglycan synthesis. As there are no known homologs in humans, it is considered as an excellent antibacterial drug target. The standard inhibitors of this enzyme include O-carbamyl-d-serine, d-cycloserine, chlorovinyl glycine, alaphosphin, etc. d-Cycloserine is indicated for pulmonary and extra pulmonary tuberculosis but therapeutic use of drug is limited due to its severe toxic effects. Toxic effects due to off-target affinities of cycloserine and other substrate analogs have prompted new research efforts to identify alanine racemase inhibitors that are not substrate analogs. In this review, an updated status of known inhibitors of alanine racemase enzyme has been provided which will serve as a rich source of structural information and will be helpful in generating selective and potent inhibitor of alanine racemase. PMID:26024289

  12. A randomized, placebo-controlled trial to determine the course of aminotransferase elevation during prolonged acetaminophen administration

    PubMed Central

    2014-01-01

    Background Acetaminophen administration for more than 4 days causes aminotransferase elevation in some subjects. The objective of this randomized, placebo-controlled trial is to describe the course of alanine aminotransferase (ALT) elevation in subjects administered 4 g/day of acetaminophen for at least 16 days. Methods A randomized, placebo controlled trial of acetaminophen (4 g/day) vs placebo. Subjects were healthy volunteers with normal liver enzymes. The primary outcome was the course of ALT during acetaminophen administration. All subjects were treated for a minimum of 16 days. Subjects with ALT elevation at day 16 were continued on treatment until these elevations resolved up to a maximum of 40 days. Subjects were also evaluated for elevation of INR or serum bilirubin as evidence of hepatic dysfunction. Results 157/205 (77%) completed acetaminophen subjects had no ALT elevation or transient elevations that resolved by day 16. Of the 48 subjects who had ALT elevations at study day 16, 47 continued on acetaminophen and had resolution by study day 40. One acetaminophen subject did not have resolution by study day 40, and the course of aminotransferase elevation suggests an alternative cause. One placebo subject had an ALT elevation at day 16 that resolved by day 22. The highest observed ALT among all acetaminophen subjects was 191 IU/L. The mean ALT at day 16 was 4.4 IU/L higher for the acetaminophen than for the placebo group. No subject developed liver dysfunction. Conclusions A minority of subjects treated with 4 g/day of acetaminophen for 16 days will have low-grade aminotransferase elevations that are not accompanied by liver dysfunction and resolve if administration is continued. Trials registration Clintrials.gov NCT00743093 registered August 26, 2008 PMID:25047090

  13. Elevation of Serum Aminotransferase Levels and Future Risk of Death from External Causes: A Prospective Cohort Study in Korea

    PubMed Central

    Sohn, Jungwoo; Kang, Dae Ryong; Kim, Hyeon Chang; Cho, Jaelim; Choi, Yoon Jung; Suh, Il

    2015-01-01

    Purpose The association between liver enzymes and death from external causes has not been examined. We investigated the association between serum aminotransferase levels and external-cause mortality in a large prospective cohort study. Materials and Methods A total of 142322 subjects of 35-59 years of age who completed baseline examinations in 1990 and 1992 were enrolled. Mortalities were identified using death certificates. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were categorized into quintiles. Sub-distribution hazards ratios and 95% confidence intervals (CIs) were estimated using a competing risks regression model in which deaths from other causes were treated as competing risks. Results Of 8808 deaths, 1111 (12.6%) were due to external causes. Injury accounted for 256 deaths, and suicide accounted for 255. After adjusting for covariates, elevated ALT and AST were significantly associated with an increased risk of all external-cause mortalities, as well as suicide and injury. Sub-distribution hazards ratios (95% CIs) of the highest versus the lowest quintiles of serum ALT and AST were, respectively, 1.57 (1.26-1.95) and 1.45 (1.20-1.76) for all external causes, 2.73 (1.68-4.46) and 1.75 (1.15-2.66) for suicide, and 1.79 (1.10-2.90) and 1.85 (1.21-2.82) for injury. The risk of external-cause mortality was also significantly higher in the fourth quintile of ALT (21.6-27.5 IU/L) than in its first quintile. Conclusion Elevated aminotransferase levels, even within the normal range, were significantly associated with increased risk of all external-cause mortalities, including suicide, and injury. PMID:26446640

  14. Creatine phosphokinase in rat mast cells.

    PubMed Central

    Magro, A M

    1980-01-01

    The soluble cytoplasmic fraction of an homogenate from peritoneal rat mast cells, demonstrated a considerable amount of catalytic activity which promotes the transfer of phosphate from creatine phosphate to ADP. The plasma membrane, mitochondrial and microsomal fractions show negligible amounts of the catalyst. Enzyme activity is maximal at 37 degrees showing little activity below 17 degrees or above 45 degrees. The enzyme is strongly Mg2+-dependent, whereas it is only slightly activated by Ca2+. pH values between 7 and 8 are optimal and the enzyme is irreversibly inactivated below pH 4. The overall behaviour of the catalyst indicates it to be a creatine phosphokinase (CPK), an enzyme considered important to muscle and nerve tissues. The CPK is probably not encapsulated within the mast cells' perigranular membranes and is retained in the soluble cytoplasm during exocytosis. The possible role of CPK, as to whether it is assisting in maintaining proper levels of intracellular ATP during exocytosis, and/or whether it is associated with components of the mast cells' contractile apparatus, is discussed. PMID:6160090

  15. Vibrational dynamics of crystalline L-alanine

    SciTech Connect

    Bordallo, H.N.; Eckert, J.; Barthes, M.

    1997-11-01

    The authors report a new, complete vibrational analysis of L-alanine and L-alanine-d{sub 4} which utilizes IINS intensities in addition to frequency information. The use of both isotopomers resulted in a self-consistent force field for and assignment of the molecular vibrations in L-alanine. Some details of the calculation as well as a comparison of calculated and observed IINS spectra are presented. The study clarifies a number of important issues on the vibrational dynamics of this molecule and presents a self-consistent force field for the molecular vibrations in crystalline L-alanine.

  16. Catalytic Stereoinversion of L-Alanine to Deuterated D-Alanine.

    PubMed

    Moozeh, Kimia; So, Soon Mog; Chin, Jik

    2015-08-01

    A combination of an achiral pyridoxal analogue and a chiral base has been developed for catalytic deuteration of L-alanine with inversion of stereochemistry to give deuterated D-alanine under mild conditions (neutral pD and 25 °C) without the use of any protecting groups. This system can also be used for catalytic deuteration of D-alanine with retention of stereochemistry to give deuterated D-alanine. Thus a racemic mixture of alanine can be catalytically deuterated to give an enantiomeric excess of deuterated D-alanine. While catalytic deracemization of alanine is forbidden by the second law of thermodynamics, this system can be used for catalytic deracemization of alanine with deuteration. Such green and biomimetic approach to catalytic stereocontrol provides insights into efficient amino acid transformations. PMID:26119066

  17. Creatine Synthesis: An Undergraduate Organic Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Smith, Andri L.; Tan, Paula

    2006-01-01

    Students in introductory chemistry classes typically appreciate seeing the connection between course content and the "real world". For this reason, we have developed a synthesis of creatine monohydrate--a popular supplement used in sports requiring short bursts of energy--for introductory organic chemistry laboratory courses. Creatine monohydrate…

  18. Complete inhibition of creatine kinase in isolated perfused rat hearts

    SciTech Connect

    Fossel, E.T.; Hoefeler, H.

    1987-01-01

    Transient exposure of an isolated isovolumic perfused rat heart to low concentrations (0.5 mM) of perfusate-born iodoacetamide resulted in complete inhibition of creatine kinase and partial inhibition of glyceraldehyde-3-phosphate dehydrogenase in the heart. At low levels of developed pressure, hearts maintained mechanical function, ATP, and creatine phosphate levels at control values. However, iodoacetamide-inhibited hearts were unable to maintain control values of end diastolic pressure or peak systolic pressure as work load increased. Global ischemia resulted in loss of all ATP without loss of creatine phosphate, indicating lack of active creatine kinase. These results indicate that isovolumic perfused rat hearts are able to maintain normal function and normal levels of high-energy phosphates without active creatine kinase at low levels of developed pressure. /sup 31/P-NMR of the heart was carried out.

  19. Creatine supplementation and glycemic control: a systematic review.

    PubMed

    Pinto, Camila Lemos; Botelho, Patrícia Borges; Pimentel, Gustavo Duarte; Campos-Ferraz, Patrícia Lopes; Mota, João Felipe

    2016-09-01

    The focus of this review is the effects of creatine supplementation with or without exercise on glucose metabolism. A comprehensive examination of the past 16 years of study within the field provided a distillation of key data. Both in animal and human studies, creatine supplementation together with exercise training demonstrated greater beneficial effects on glucose metabolism; creatine supplementation itself demonstrated positive results in only a few of the studies. In the animal studies, the effects of creatine supplementation on glucose metabolism were even more distinct, and caution is needed in extrapolating these data to different species, especially to humans. Regarding human studies, considering the samples characteristics, the findings cannot be extrapolated to patients who have poorer glycemic control, are older, are on a different pharmacological treatment (e.g., exogenous insulin therapy) or are physically inactive. Thus, creatine supplementation is a possible nutritional therapy adjuvant with hypoglycemic effects, particularly when used in conjunction with exercise. PMID:27306768

  20. Leukemic cell creatine kinase and its isoenzymes.

    PubMed

    Fang, S R; Yao, E G; Wei, S Z; Fan, H; Dong, Z R

    1989-06-01

    Using malachite green single agent coloration and acetate membrane electrophoresis, we studied the cellular creatine kinase (CK) activity and its isoenzymes in 7 normal controls and 26 leukemia patients. The leukemic cellular CK activity was 12.62 +/- 4.86 u/mg protein, 2.2 times higher than the normal value (5.73 +/- 2.66 u/mg protein, p less than 0.05). Only 2 of 5 normal leukocyte samples showed '+' CK isoenzyme MM. 22 leukemia patients had CK isoenzyme. CK-BB appeared mainly in acute granulocytic leukemic, and CK-MM mainly in other types. CK-MB was also found in 6 patients. The recurrence of CK-BB may indicate atavism, and the enhanced anaerobic glycolysis and the accelerated energetic turnover may be on of the metabolic characteristics of leukemic cell. PMID:2512061

  1. Functional Characterization of Alanine Racemase from Schizosaccharomyces pombe: a Eucaryotic Counterpart to Bacterial Alanine Racemase

    PubMed Central

    Uo, Takuma; Yoshimura, Tohru; Tanaka, Naotaka; Takegawa, Kaoru; Esaki, Nobuyoshi

    2001-01-01

    Schizosaccharomyces pombe has an open reading frame, which we named alr1+, encoding a putative protein similar to bacterial alanine racemase. We cloned the alr1+ gene in Escherichia coli and purified the gene product (Alr1p), with an Mr of 41,590, to homogeneity. Alr1p contains pyridoxal 5′-phosphate as a coenzyme and catalyzes the racemization of alanine with apparent Km and Vmax values as follows: for l-alanine, 5.0 mM and 670 μmol/min/mg, respectively, and for d-alanine, 2.4 mM and 350 μmol/min/mg, respectively. The enzyme is almost specific to alanine, but l-serine and l-2-aminobutyrate are racemized slowly at rates 3.7 and 0.37% of that of l-alanine, respectively. S. pombe uses d-alanine as a sole nitrogen source, but deletion of the alr1+ gene resulted in retarded growth on the same medium. This indicates that S. pombe has catabolic pathways for both enantiomers of alanine and that the pathway for l-alanine coupled with racemization plays a major role in the catabolism of d-alanine. Saccharomyces cerevisiae differs markedly from S. pombe: S. cerevisiae uses l-alanine but not d-alanine as a sole nitrogen source. Moreover, d-alanine is toxic to S. cerevisiae. However, heterologous expression of the alr1+ gene enabled S. cerevisiae to grow efficiently on d-alanine as a sole nitrogen source. The recombinant yeast was relieved from the toxicity of d-alanine. PMID:11244061

  2. The retarded hair growth (rhg) mutation in mice is an allele of ornithine aminotransferase (Oat)

    PubMed Central

    Bisaillon, Jason J.; Radden, Legairre A.; Szabo, Eric T.; Hughes, Samantha R.; Feliciano, Aaron M.; Nesta, Alex V.; Petrovic, Belinda; Palanza, Kenneth M.; Lancinskas, Dainius; Szmurlo, Theodore A.; Artus, David C.; Kapper, Martin A.; Mulrooney, James P.; King, Thomas R.

    2014-01-01

    Because of the similar phenotypes they generate and their proximate reported locations on Chromosome 7, we tested the recessive retarded hair growth (rhg) and frizzy (fr) mouse mutations for allelism, but found instead that these defects complement. To discover the molecular basis of rhg, we analyzed a large intraspecific backcross panel that segregated for rhg and restricted this locus to a 0.9 Mb region that includes fewer than ten genes, only five of which have been reported to be expressed in skin. Complementation testing between rhg and a recessive null allele of fibroblast growth factor receptor 2 eliminated Fgfr2 as the possible basis of the retarded hair growth phenotype, but DNA sequencing of another of these candidates, ornithine aminotransferase (Oat), revealed a G to C transversion specifically associated with the rhg allele that would result in a glycine to alanine substitution at residue 353 of the gene product. To test whether this missense mutation might cause the mutant phenotype, we crossed rhg/rhg mice with mice that carried a recessive, perinatal-lethal, null mutation in Oat (designated OatΔ herein). Hybrid offspring that inherited both rhg and OatΔ displayed markedly delayed postnatal growth and hair development, indicating that these two mutations are allelic, and suggesting strongly that the G to C mutation in Oat is responsible for the retarded hair growth phenotype. Comparisons among +/+, rhg/+, rhg/rhg and rhg/OatΔ mice showed plasma ornithine levels and ornithine aminotransferase activities (in liver lysates) consistent with this assignment. Because histology of 7- and 12-month-old rhg/rhg and rhg/OatΔ retinas revealed chorioretinal degeneration similar to that described previously for OatΔ/OatΔ mice, we suggest that the rhg mutant may offer an ideal model for gyrate atrophy of the choroid and retina (GACR) in humans, which is also caused by the substitution of glycine 353 in some families. PMID:25264521

  3. Enzymatic cycling method using creatine kinase to measure creatine by real-time detection.

    PubMed

    Ueda, Shigeru; Sakasegawa, Shin-Ichi

    2016-08-01

    We have developed a novel enzymatic cycling method that uses creatine kinase (CK) to measure creatine. The method takes advantage of the reversibility of the CK reaction in which the forward (creatine phosphate forming) and reverse reactions are catalyzed in the presence of an excess amount of ATP and IDP, respectively. Real-time detection was accomplished using ADP-dependent glucokinase (ADP-GK) together with glucose-6-phosphate dehydrogenase. ADP, one of the cycling reaction products, was distinguished from IDP by using the nucleotide selectivity of the ADP-GK. The increasing level of ADP was measured from the level of reduced NADP at 340 nm. The method is appropriate for an assay that requires high sensitivity because the rate of increase in absorbance at 340 nm is proportional to the amount of CK present in the reaction mix. We reasoned that the method with CK in combination with creatinine amidohydrolase could be used to assay creatinine, an important marker of kidney function. Our results confirmed the quantitative capability of the assay. PMID:27173608

  4. Strategic creatine supplementation and resistance training in healthy older adults.

    PubMed

    Candow, Darren G; Vogt, Emelie; Johannsmeyer, Sarah; Forbes, Scott C; Farthing, Jonathan P

    2015-07-01

    Creatine supplementation in close proximity to resistance training may be an important strategy for increasing muscle mass and strength; however, it is unknown whether creatine supplementation before or after resistance training is more effective for aging adults. Using a double-blind, repeated measures design, older adults (50-71 years) were randomized to 1 of 3 groups: creatine before (CR-B: n = 15; creatine (0.1 g/kg) immediately before resistance training and placebo (0.1 g/kg cornstarch maltodextrin) immediately after resistance training), creatine after (CR-A: n = 12; placebo immediately before resistance training and creatine immediately after resistance training), or placebo (PLA: n = 12; placebo immediately before and immediately after resistance training) for 32 weeks. Prior to and following the study, body composition (lean tissue, fat mass; dual-energy X-ray absorptiometry) and muscle strength (1-repetition maximum leg press and chest press) were assessed. There was an increase over time for lean tissue mass and muscle strength and a decrease in fat mass (p < 0.05). CR-A resulted in greater improvements in lean tissue mass (Δ 3.0 ± 1.9 kg) compared with PLA (Δ 0.5 ± 2.1 kg; p < 0.025). Creatine supplementation, independent of the timing of ingestion, increased muscle strength more than placebo (leg press: CR-B, Δ 36.6 ± 26.6 kg; CR-A, Δ 40.8 ± 38.4 kg; PLA, Δ 5.6 ± 35.1 kg; chest press: CR-B, Δ 15.2 ± 13.0 kg; CR-A, Δ 15.7 ± 12.5 kg; PLA, Δ 1.9 ± 14.7 kg; p < 0.025). Compared with resistance training alone, creatine supplementation improves muscle strength, with greater gains in lean tissue mass resulting from post-exercise creatine supplementation. PMID:25993883

  5. Inhibition of rate of tumor growth by creatine and cyclocreatine.

    PubMed Central

    Miller, E E; Evans, A E; Cohn, M

    1993-01-01

    Growth rate inhibition of subcutaneously implanted tumors results from feeding rats and athymic nude mice diets containing 1% cyclocreatine or 1%, 2%, 5%, or 10% creatine. The tumors studied included rat mammary tumors (Ac33tc in Lewis female rats and 13762A in Fischer 344 female rats), rat sarcoma MCI in Lewis male rats, and tumors resulting from the injection of two human neuroblastoma cell lines, IMR-5 and CHP-134, in athymic nude mice. Inhibition was observed regardless of the time experimental diets were administered, either at the time of tumor implantation or after the appearance of palpable tumors. For mammary tumor Ac33tc, the growth inhibition during 24 days after the implantation was approximately 50% for both 1% cyclocreatine and 1% creatine, and inhibition increased as creatine was increased from 2% to 10% of the diet. For the other rat mammary tumor (13762A), there was approximately 35% inhibition by both 1% cyclocreatine and 2% creatine. In the case of the MCI sarcoma, the inhibitory effect appeared more pronounced at earlier periods of growth, ranging from 26% to 41% for 1% cyclocreatine and from 30% to 53% for 1% creatine; there was no significant difference in growth rate between the tumors in the rats fed 1% and 5% creatine. The growth rate of tumors in athymic nude mice, produced by implantation of the human neuroblastoma IMR-5 cell line, appeared somewhat more effectively inhibited by 1% cyclocreatine than by 1% creatine, and 5% creatine feeding was most effective. For the CHP-134 cell line, 33% inhibition was observed for the 1% cyclocreatine diet and 71% for the 5% creatine diet. In several experiments, a delay in appearance of tumors was observed in animals on the experimental diets. In occasional experiments, neither additive inhibited tumor growth rate for the rat tumors or the athymic mouse tumors. Images Fig. 3 PMID:8475072

  6. Cloning and nucleotide sequencing of Rhizobium meliloti aminotransferase genes: an aspartate aminotransferase required for symbiotic nitrogen fixation is atypical.

    PubMed Central

    Watson, R J; Rastogi, V K

    1993-01-01

    In Rhizobium meliloti, an aspartate aminotransferase (AspAT) encoded within a 7.3-kb HindIII fragment was previously shown to be required for symbiotic nitrogen fixation and aspartate catabolism (V. K. Rastogi and R.J. Watson, J. Bacteriol. 173:2879-2887, 1991). A gene coding for an aromatic aminotransferase located within an 11-kb HindIII fragment was found to complement the AspAT deficiency when overexpressed. The genes encoding these two aminotransferases, designated aatA and tatA, respectively, have been localized by subcloning and transposon Tn5 mutagenesis. Sequencing of the tatA gene revealed that it encodes a protein homologous to an Escherichia coli aromatic aminotransferase and most of the known AspAT enzymes. However, sequencing of the aatA gene region revealed two overlapping open reading frames, neither of which encoded an enzyme with homology to the typical AspATs. Polymerase chain reaction was used to selectively generate one of the candidate sequences for subcloning. The cloned fragment complemented the original nitrogen fixation and aspartate catabolism defects and was shown to encode an AspAT with the expected properties. Sequence analysis showed that the aatA protein has homology to AspATs from two thermophilic bacteria and the eukaryotic tyrosine aminotransferases. These aminotransferases form a distinct class in which only 13 amino acids are conserved in comparison with the well-known AspAT family. DNA homologous to the aatA gene was found to be present in Agrobacterium tumefaciens and other rhizobia but not in Klebsiella pneumoniae or E. coli. Images PMID:8096210

  7. Temperature dependent Raman and DFT study of creatine.

    PubMed

    Gangopadhyay, Debraj; Sharma, Poornima; Singh, Ranjan K

    2015-01-01

    Temperature dependent Raman spectra of creatine powder have been recorded in the temperature range 420-100K at regular intervals and different clusters of creatine have been optimized using density functional theory (DFT) in order to determine the effect of temperature on the hydrogen bonded network in the crystal structure of creatine. Vibrational assignments of all the 48 normal modes of the zwitterionic form of creatine have been done in terms of potential energy distribution obtained from DFT calculations. Precise analysis gives information about thermal motion and intermolecular interactions with respect to temperature in the crystal lattice. Formation of higher hydrogen bonded aggregates on cooling can be visualized from the spectra through clear signature of phase transition between 200K and 180K. PMID:26010702

  8. The Use of Varying Creatine Regimens on Sprint Cycling

    PubMed Central

    Havenetidis, Konstantinos; Matsouka, Ourania; Cooke, Carlton Brian; Theodorou, Apostolos

    2003-01-01

    This study aimed to determine the effects of different acute creatine loadings (ACRL) on repeated cycle sprints. Twenty-eight active subjects divided into the control (n=7) and the experimental (n=21) group. The exercise protocol comprised three 30s Anaerobic Wingate Tests (AWT) interspersed with six minutes recovery, without any supplements ingested and following placebo and creatine ingestion, according to each ACRL (40g, 100g and 135g throughout a four-day period). Blood and urinary creatine levels were also determined from the experimental group for each ACRL. Protein intake (across all groups) was held constant during the study. There were no changes in protein intake or performance of the control group. For the experimental group creatine supplementation produced significant (p<0.01) increases in body mass (82.5 ± 1.4kg pre vs 82.9 ± 1.2kg post), blood (0.21 ± 0.04mmol·l-1 pre vs 2.24 ± 0.98mmol·l-1 post), and urinary creatine (0.23 ± 0.09mmol·l-1 pre vs 4.29 ± 1.98mmol·l-1 post). No significant differences were found between the non-supplement and placebo condition. Creatine supplementation produced an average improvement of 0.7%, 11.8% and 11.1% for the 40g, 100g and 135g ACRL respectively. However, statistics revealed significant (p<0.01) differences only for the 100g and 135g ACRL. Mean ± SD values for the 100g ACRL for mean and minimum power were 612 ± 180W placebo vs 693 ± 221W creatine and 381 ± 35W placebo vs 415 ± 11W creatine accordingly. For the 135g ACRL the respective performance values were 722 ± 215W placebo vs 810 ± 240W creatine and 405 ± 59W placebo vs 436 ± 30W creatine. These data indicate that a 100g compared to 40g ACRL produces a greater potentiation of performance whilst, greater quantities of creatine ingestion (135g ACRL) can not provide a greater benefit. PMID:24627660

  9. Creatine transporter deficiency: Novel mutations and functional studies.

    PubMed

    Ardon, O; Procter, M; Mao, R; Longo, N; Landau, Y E; Shilon-Hadass, A; Gabis, L V; Hoffmann, C; Tzadok, M; Heimer, G; Sada, S; Ben-Zeev, B; Anikster, Y

    2016-09-01

    X-linked cerebral creatine deficiency (MIM 300036) is caused by deficiency of the creatine transporter encoded by the SLC6A8 gene. Here we report three patients with this condition from Israel. These unrelated patients were evaluated for global developmental delays and language apraxia. Borderline microcephaly was noted in one of them. Diagnosis was prompted by brain magnetic resonance imaging and spectroscopy which revealed normal white matter distribution, but absence of the creatine peak in all three patients. Biochemical testing indicated normal plasma levels of creatine and guanidinoacetate, but an increased urine creatine/creatinine ratio. The diagnosis was confirmed by demonstrating absent ([14])C-creatine transport in fibroblasts. Molecular studies indicated that the first patient is hemizygous for a single nucleotide change substituting a single amino acid (c.619 C > T, p.R207W). Expression studies in HeLa cells confirmed the causative role of the R207W substitution. The second patient had a three base pair deletion in the SLC6A8 gene (c.1222_1224delTTC, p.F408del) as well as a single base change (c.1254 + 1G > A) at a splicing site in the intron-exon junction of exon 8, the latter occurring de novo. The third patient, had a three base pair deletion (c.1006_1008delAAC, p.N336del) previously reported in other patients with creatine transporter deficiency. These three patients are the first reported cases of creatine transporter deficiency in Israel. PMID:27408820

  10. Creatine supplementation and oxidative stress in rat liver

    PubMed Central

    2013-01-01

    Background The objective of this study was to determine the effects of creatine supplementation on liver biomarkers of oxidative stress in exercise-trained rats. Methods Forty 90-day-old adult male Wistar rats were assigned to four groups for the eight-week experiment. Control group (C) rats received a balanced control diet; creatine control group (CCr) rats received a balanced diet supplemented with 2% creatine; trained group (T) rats received a balanced diet and intense exercise training equivalent to the maximal lactate steady state phase; and supplemented-trained (TCr) rats were given a balanced diet supplemented with 2% creatine and subjected to intense exercise training equivalent to the maximal lactate steady state phase. At the end of the experimental period, concentrations of creatine, hydrogen peroxide (H2O2) and thiobarbituric acid reactive substances (TBARS) were measured as well as the enzyme activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-GPx) and catalase (CAT). Liver tissue levels of reduced glutathione (GSH), oxidized glutathione (GSSG) and the GSH/GSSG ratio were also determined. Results Hepatic creatine levels were highest in the CCr and TCr groups with increased concentration of H2O2 observed in the T and TCr animal groups. SOD activity was decreased in the TCr group. GSH-GPx activity was increased in the T and TCr groups while CAT was elevated in the CCr and TCr groups. GSH, GGS and the GSH/GSSG ratio did not differ between all animal subsets. Conclusions Our results demonstrate that creatine supplementation acts in an additive manner to physical training to raise antioxidant enzymes in rat liver. However, because markers of liver oxidative stress were unchanged, this finding may also indicate that training-induced oxidative stress cannot be ameliorated by creatine supplementation. PMID:24325803

  11. Kinetic properties and thermal stabilities of mutant forms of mitochondrial aspartate aminotransferase.

    PubMed

    Azzariti, A; Vacca, R A; Giannattasio, S; Merafina, R S; Marra, E; Doonan, S

    1998-07-28

    Kinetic properties and thermal stabilities of the precursor form of mitochondrial aspartate aminotransferase, the mature form lacking 9 amino acids from the N-terminus, and forms of the mature protein in which cysteine-166 had been mutated to serine or alanine were compared with those of the mature enzyme. The precursor and the cysteine mutants showed moderately impaired catalytic properties consistent with decreased ability to undergo transition from the open to the closed conformation which is an integral part of the mechanism of action of the enzyme. The deletion mutant had a kcat only 2% of that of the mature enzyme but also much reduced Km values for both substrates. In addition it showed enhanced reactivity of cysteine-166 with 5,5'-dithiobis(2-nitrobenzoate), which is characteristic of the closed form of the enzyme, with no enhancement of reactivity in the presence of substrates. This is taken to show that the deletion mutant adopts a conformation that is significantly different from that of the mature enzyme particularly in respect of the small domain. The deletion mutant was found to be more resistant to thermal inactivation over a range of temperatures than were the other forms of the enzyme consistent with its having a more tightly packed small domain. PMID:9675237

  12. Proteomic and metabolomic changes driven by elevating myocardial creatine suggest novel metabolic feedback mechanisms.

    PubMed

    Zervou, Sevasti; Yin, Xiaoke; Nabeebaccus, Adam A; O'Brien, Brett A; Cross, Rebecca L; McAndrew, Debra J; Atkinson, R Andrew; Eykyn, Thomas R; Mayr, Manuel; Neubauer, Stefan; Lygate, Craig A

    2016-08-01

    Mice over-expressing the creatine transporter have elevated myocardial creatine levels [Cr] and are protected against ischaemia/reperfusion injury via improved energy reserve. However, mice with very high [Cr] develop cardiac hypertrophy and dysfunction. To investigate these contrasting effects, we applied a non-biased hypothesis-generating approach to quantify global protein and metabolite changes in the LV of mice stratified for [Cr] levels: wildtype, moderately elevated, and high [Cr] (65-85; 100-135; 160-250 nmol/mg protein, respectively). Male mice received an echocardiogram at 7 weeks of age with tissue harvested at 8 weeks. RV was used for [Cr] quantification by HPLC to select LV tissue for subsequent analysis. Two-dimensional difference in-gel electrophoresis identified differentially expressed proteins, which were manually picked and trypsin digested for nano-LC-MS/MS. Principal component analysis (PCA) showed efficient group separation (ANOVA P ≤ 0.05) and peptide sequences were identified by mouse database (UniProt 201203) using Mascot. A total of 27 unique proteins were found to be differentially expressed between normal and high [Cr], with proteins showing [Cr]-dependent differential expression, chosen for confirmation, e.g. α-crystallin B, a heat shock protein implicated in cardio-protection and myozenin-2, which could contribute to the hypertrophic phenotype. Nuclear magnetic resonance (¹H-NMR at 700 MHz) identified multiple strong correlations between [Cr] and key cardiac metabolites. For example, positive correlations with α-glucose (r² = 0.45; P = 0.002), acetyl-carnitine (r² = 0.50; P = 0.001), glutamine (r² = 0.59; P = 0.0002); and negative correlations with taurine (r² = 0.74; P < 0.0001), fumarate (r² = 0.45; P = 0.003), aspartate (r² = 0.59; P = 0.0002), alanine (r² = 0.66; P < 0.0001) and phosphocholine (r² = 0.60; P = 0.0002). These findings suggest wide-ranging and hitherto unexpected

  13. Recombinant expression of twelve evolutionarily diverse subfamily Iα aminotransferases

    PubMed Central

    Muratore, Kathryn E.; Srouji, John R.; Chow, Margaret A.; Kirsch, Jack F.

    2009-01-01

    Aminotransferases are essential enzymes involved in the central metabolism of all organisms. The Iα subfamily of aspartate and tyrosine aminotransferases (AATases and TATases) is the best-characterized grouping, but only eight enzymes from this subfamily, representing relatively little sequence diversity, have been experimentally characterized for substrate specificity (i.e., AATase vs. TATase). Genome annotation, based on this limited dataset, provides tentative assignments for all sequenced members of this subfamily. This procedure is, however, subject to error, particularly when the experimental basis set is limited. To address this problem we cloned twelve additional subfamily Iα enzymes from an evolutionarily divergent set of organisms. Nine were purified to homogeneity after heterologous expression in E. coli in native, intein-tagged or His6-tagged forms and the two S. cerevisiae isoforms were recombinantly produced in yeast. The effects of the C-terminal tags on expression, purification and enzyme activity are discussed. PMID:17964807

  14. Effect of oral creatine supplementation on jumping and running performance.

    PubMed

    Bosco, C; Tihanyi, J; Pucspk, J; Kovacs, I; Gabossy, A; Colli, R; Pulvirenti, G; Tranquilli, C; Foti, C; Viru, M; Viru, A

    1997-07-01

    The study was designed to investigate the effect of creatine monohydrate ingestion (20 g daily for 5 days) on performance in 45 s maximal continuous jumping and in all-out treadmill running at 20 km x h(-1), (inclination 5 degrees, duration approximately 60s). The participants were qualified sprinters and jumpers. The effect of creatine was compared with placebo in a double-blind design. Creatine (Cr) supplementation led to a significant enhancement of performance capacity in the jumping test by 7% during the first 15 s and by 12% during the second 15 s of the exercise. The positive effect of Cr supplementation was not observed in the last third of the continuous jumping exercise, when the contribution of anaerobic metabolism was decreasing. The time of intensive running up to exhaustion improved by 13%. The results show that Cr supplementation helps to prolong the time during which the maximal rate of power output could be maintained. PMID:9298778

  15. Creatine supplementation, sleep deprivation, cortisol, melatonin and behavior.

    PubMed

    McMorris, T; Harris, R C; Howard, A N; Langridge, G; Hall, B; Corbett, J; Dicks, M; Hodgson, C

    2007-01-30

    The effect of creatine supplementation and sleep deprivation, with intermittent moderate-intensity exercise, on cognitive and psychomotor performance, mood state, effort and salivary concentrations of cortisol and melatonin were examined. Subjects were divided into a creatine supplementation group and a placebo group. They took 5 g of creatine monohydrate or a placebo, dependent on their group, four times a day for 7 days immediately prior to the experiment. They undertook tests examining central executive functioning, short-term memory, choice reaction time, balance, mood state and effort at baseline and following 18-, 24- and 36-h sleep deprivation, with moderate intermittent exercise. Saliva samples were taken prior to each set of tests. A group x time analysis of covariance, with baseline performance the covariate, showed that the creatine group performed significantly (p < 0.05) better than the placebo group on the central executive task but only at 36 h. The creatine group demonstrated a significant (p < 0.01) linear improvement in performance of the central executive task throughout the experiment, while the placebo group showed no significant effects. There were no significant differences between the groups for any of the other variables. A significant (p < 0.001) main effect of time was found for the balance test with a linear improvement being registered. Cortisol concentrations on Day 1 were significantly (p < 0.01) higher than on Day 2. Mood significantly (p < 0.001) deteriorated up to 24 h with no change from 24 to 36 h. Effort at baseline was significantly (p < 0.01) lower than in the other conditions. It was concluded that, during sleep deprivation with moderate-intensity exercise, creatine supplementation only affects performance of complex central executive tasks. PMID:17046034

  16. Creatine kinase MB isoenzyme in dermatomyositis: a noncardiac source

    SciTech Connect

    Larca, L.J.; Coppola, J.T.; Honig, S.

    1981-03-01

    Three patients with polymyositis had elevated serum levels of creatine kinase MB isoenzyme. The presence of this isoenzyme is used extensively to diagnose myocardial infarction, but the isoenzyme is also found in sera of patients with primary muscular and neuromuscular disorders. Researchers studied cardiac function in two of our patients with electrocardiograms, technetium stannous pyrophosphate scanning, and technetium 99m-labeled erythrocyte gated blood pool imaging and in the third patient by postmortem examination. There was no evidence of myocardial involvement to account for the high serum levels of isoenzyme. Creatine kinase MB in the sera of patients with polymyositis does not necessarily indicate myocardial necrosis.

  17. Correlation between HIV viral load and aminotransferases as liver damage markers in HIV infected naive patients: a concordance cross-sectional study

    PubMed Central

    Mata-Marín, José Antonio; Gaytán-Martínez, Jesús; Grados-Chavarría, Bernardo Horacio; Fuentes-Allen, José Luis; Arroyo-Anduiza, Carla Ileana; Alfaro-Mejía, Alfredo

    2009-01-01

    Abnormalities in liver function tests could be produced exclusively by direct inflammation in hepatocytes, caused by the human immunodeficiency virus (HIV). Mechanisms by which HIV causes hepatic damage are still unknown. Our aim was to determine the correlation between HIV viral load, and serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) as markers of hepatic damage in HIV naive infected patients. We performed a concordance cross-sectional study. Patients with antiviral treatment experience, hepatotoxic drugs use or co-infection were excluded. We used a Pearson's correlation coefficient to calculate the correlation between aminotransferases serum levels with HIV viral load. We enrolled 59 patients, 50 men and 9 women seen from 2006 to 2008. The mean (± SD) age of our subjects was 34.24 ± 9.5, AST 37.73 ± 29.94 IU/mL, ALT 43.34 ± 42.41 IU/mL, HIV viral load 199,243 ± 292,905 copies/mL, and CD4+ cells count 361 ± 289 cells/mm3. There was a moderately strong, positive correlation between AST serum levels and HIV viral load (r = 0.439, P < 0.001); and a weak correlation between ALT serum levels and HIV viral load (r = 0.276, P = 0.034); after adjusting the confounders in lineal regression model the correlation remained significant. Our results suggest that there is an association between HIV viral load and aminotransferases as markers of hepatic damage; we should improved recognition, diagnosis and potential therapy of hepatic damage in HIV infected patients. PMID:19878552

  18. Correlation between HIV viral load and aminotransferases as liver damage markers in HIV infected naive patients: a concordance cross-sectional study.

    PubMed

    Mata-Marín, José Antonio; Gaytán-Martínez, Jesús; Grados-Chavarría, Bernardo Horacio; Fuentes-Allen, José Luis; Arroyo-Anduiza, Carla Ileana; Alfaro-Mejía, Alfredo

    2009-01-01

    Abnormalities in liver function tests could be produced exclusively by direct inflammation in hepatocytes, caused by the human immunodeficiency virus (HIV). Mechanisms by which HIV causes hepatic damage are still unknown. Our aim was to determine the correlation between HIV viral load, and serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) as markers of hepatic damage in HIV naive infected patients. We performed a concordance cross-sectional study. Patients with antiviral treatment experience, hepatotoxic drugs use or co-infection were excluded. We used a Pearson's correlation coefficient to calculate the correlation between aminotransferases serum levels with HIV viral load. We enrolled 59 patients, 50 men and 9 women seen from 2006 to 2008. The mean (+/- SD) age of our subjects was 34.24 +/- 9.5, AST 37.73 +/- 29.94 IU/mL, ALT 43.34 +/- 42.41 IU/mL, HIV viral load 199,243 +/- 292,905 copies/mL, and CD4+ cells count 361 +/- 289 cells/mm(3). There was a moderately strong, positive correlation between AST serum levels and HIV viral load (r = 0.439, P < 0.001); and a weak correlation between ALT serum levels and HIV viral load (r = 0.276, P = 0.034); after adjusting the confounders in lineal regression model the correlation remained significant. Our results suggest that there is an association between HIV viral load and aminotransferases as markers of hepatic damage; we should improved recognition, diagnosis and potential therapy of hepatic damage in HIV infected patients. PMID:19878552

  19. A buffered form of creatine does not promote greater changes in muscle creatine content, body composition, or training adaptations than creatine monohydrate

    PubMed Central

    2012-01-01

    Background Creatine monohydrate (CrM) has been consistently reported to increase muscle creatine content and improve high-intensity exercise capacity. However, a number of different forms of creatine have been purported to be more efficacious than CrM. The purpose of this study was to determine if a buffered creatine monohydrate (KA) that has been purported to promote greater creatine retention and training adaptations with fewer side effects at lower doses is more efficacious than CrM supplementation in resistance-trained individuals. Methods In a double-blind manner, 36 resistance-trained participants (20.2 ± 2 years, 181 ± 7 cm, 82.1 ± 12 kg, and 14.7 ± 5% body fat) were randomly assigned to supplement their diet with CrM (Creapure® AlzChem AG, Trostberg, Germany) at normal loading (4 x 5 g/d for 7-days) and maintenance (5 g/d for 21-days) doses; KA (Kre-Alkalyn®, All American Pharmaceutical, Billings, MT, USA) at manufacturer’s recommended doses (KA-L, 1.5 g/d for 28-days); or, KA with equivalent loading (4 x 5 g/d for 7-days) and maintenance (5 g/d) doses of CrM (KA-H). Participants were asked to maintain their current training programs and record all workouts. Muscle biopsies from the vastus lateralis, fasting blood samples, body weight, DEXA determined body composition, and Wingate Anaerobic Capacity (WAC) tests were performed at 0, 7, and 28-days while 1RM strength tests were performed at 0 and 28-days. Data were analyzed by a repeated measures multivariate analysis of variance (MANOVA) and are presented as mean ± SD changes from baseline after 7 and 28-days, respectively. Results Muscle free creatine content obtained in a subgroup of 25 participants increased in all groups over time (1.4 ± 20.7 and 11.9 ± 24.0 mmol/kg DW, p = 0.03) after 7 and 28-days, respectively, with no significant differences among groups (KA-L −7.9 ± 22.3, 4.7 ± 27.0; KA-H 1.0 ± 12.8, 9.1 ± 23.2; Cr

  20. 21 CFR 582.5118 - Alanine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Alanine. 582.5118 Section 582.5118 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  1. 21 CFR 582.5118 - Alanine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Alanine. 582.5118 Section 582.5118 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  2. 21 CFR 582.5118 - Alanine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Alanine. 582.5118 Section 582.5118 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  3. 21 CFR 582.5118 - Alanine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Alanine. 582.5118 Section 582.5118 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  4. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat.

    PubMed

    Kazak, Lawrence; Chouchani, Edward T; Jedrychowski, Mark P; Erickson, Brian K; Shinoda, Kosaku; Cohen, Paul; Vetrivelan, Ramalingam; Lu, Gina Z; Laznik-Bogoslavski, Dina; Hasenfuss, Sebastian C; Kajimura, Shingo; Gygi, Steve P; Spiegelman, Bruce M

    2015-10-22

    Thermogenic brown and beige adipose tissues dissipate chemical energy as heat, and their thermogenic activities can combat obesity and diabetes. Herein the functional adaptations to cold of brown and beige adipose depots are examined using quantitative mitochondrial proteomics. We identify arginine/creatine metabolism as a beige adipose signature and demonstrate that creatine enhances respiration in beige-fat mitochondria when ADP is limiting. In murine beige fat, cold exposure stimulates mitochondrial creatine kinase activity and induces coordinated expression of genes associated with creatine metabolism. Pharmacological reduction of creatine levels decreases whole-body energy expenditure after administration of a β3-agonist and reduces beige and brown adipose metabolic rate. Genes of creatine metabolism are compensatorily induced when UCP1-dependent thermogenesis is ablated, and creatine reduction in Ucp1-deficient mice reduces core body temperature. These findings link a futile cycle of creatine metabolism to adipose tissue energy expenditure and thermal homeostasis. PAPERCLIP. PMID:26496606

  5. EFFECT OF SHORT-TERM EXPOSURE TO THREE CHEMICALS ON THE BLOOD CHEMISTRY OF THE PINFISH (LAGODON RHOMBOIDES)

    EPA Science Inventory

    Injections of 3 ml/kg CCl4 caused significant elevations in the CC14 serum enzymes alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatine kinase (CK) and lactate dehydrogenase (LD-L). erum lipids and total protein were significantly lower, while serum glucose ...

  6. Creatine Loading, Resistance Exercise Performance, and Muscle Mechanics.

    ERIC Educational Resources Information Center

    Stevenson, Scott W.; Dudley, Gary A.

    2001-01-01

    Examined whether creatine (CR) monohydrate loading would alter resistance exercise performance, isometric strength, or in vivo contractile properties of the quadriceps femoris muscle compared with placebo loading in resistance-trained athletes. Overall, CR loading did not provide an ergogenic benefit for the unilateral dynamic knee extension…

  7. 21 CFR 862.1210 - Creatine test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Creatine test system. 862.1210 Section 862.1210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  8. 21 CFR 862.1210 - Creatine test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Creatine test system. 862.1210 Section 862.1210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  9. 21 CFR 862.1210 - Creatine test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Creatine test system. 862.1210 Section 862.1210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  10. 21 CFR 862.1210 - Creatine test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Creatine test system. 862.1210 Section 862.1210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  11. 21 CFR 862.1210 - Creatine test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Creatine test system. 862.1210 Section 862.1210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  12. [Aspartate aminotransferase--key enzyme in the human systemic metabolism].

    PubMed

    Otto-Ślusarczyk, Dagmara; Graboń, Wojciech; Mielczarek-Puta, Magdalena

    2016-01-01

    Aspartate aminotransferase is an organ-nonspecific enzyme located in many tissues of the human body where it catalyzes reversible reaction of transamination. There are two aspartate aminotransferase isoforms--cytoplasmic (AST1) and mitochondrial (AST2), that usually occur together and interact with each other metabolically. Both isoforms are homodimers containing highly conservative regions responsible for catalytic properties of enzyme. The common feature of all aspartate aminotransfeses is Lys - 259 residue covalent binding with prosthetic group - pyridoxal phosphate. The differences in the primary structure of AST isoforms determine their physico-chemical, kinetic and immunological properties. Because of the low concentration of L-aspartate (L-Asp) in the blood, AST is the only enzyme, which supply of this amino acid as a substrate for many metabolic processes, such as urea cycle or purine and pyrimidine nucleotides in the liver, synthesis of L-arginine in the kidney and purine nucleotide cycle in the brain and the skeletal muscle. AST is also involved in D-aspartate production that regulates the metabolic activity at the auto-, para- and endocrine level. Aspartate aminotransferase is a part of the malate-aspartate shuttle in the myocardium, is involved in gluconeogenesis in the liver and kidney, glyceroneogenesis in the adipose tissue, and synthesis of neurotransmitters and neuro-glial pathway in the brain. Recently, the significant role of AST in glutaminolysis - normal metabolic pathway in tumor cells, was demonstrated. The article is devoted the role of AST, known primarily as a diagnostic liver enzyme, in metabolism of various human tissues and organs. PMID:27117097

  13. Concerted modulation of alanine and glutamate metabolism in young Medicago truncatula seedlings under hypoxic stress

    PubMed Central

    Limami, Anis M.; Glévarec, Gaëlle; Ricoult, Claudie; Cliquet, Jean-Bernard; Planchet, Elisabeth

    2008-01-01

    The modulation of primary nitrogen metabolism by hypoxic stress was studied in young Medicago truncatula seedlings. Hypoxic seedlings were characterized by the up-regulation of glutamate dehydrogenase 1 (GDH1) and mitochondrial alanine aminotransferase (mAlaAT), and down-regulation of glutamine synthetase 1b (GS1b), NADH-glutamate synthase (NADH-GOGAT), glutamate dehydrogenase 3 (GDH3), and isocitrate dehydrogenase (ICDH) gene expression. Hypoxic stress severely inhibited GS activity and stimulated NADH-GOGAT activity. GDH activity was lower in hypoxic seedlings than in the control, however, under either normoxia or hypoxia, the in vivo activity was directed towards glutamate deamination. 15NH4 labelling showed for the first time that the adaptive reaction of the plant to hypoxia consisted of a concerted modulation of nitrogen flux through the pathways of both alanine and glutamate synthesis. In hypoxic seedlings, newly synthesized 15N-alanine increased and accumulated as the major amino acid, asparagine synthesis was inhibited, while 15N-glutamate was synthesized at a similar rate to that in the control. A discrepancy between the up-regulation of GDH1 expression and the down-regulation of GDH activity by hypoxic stress highlighted for the first time the complex regulation of this enzyme by hypoxia. Higher rates of glycolysis and ethanol fermentation are known to cause the fast depletion of sugar stores and carbon stress. It is proposed that the expression of GDH1 was stimulated by hypoxia-induced carbon stress, while the enzyme protein might be involved during post-hypoxic stress contributing to the regeneration of 2-oxoglutarate via the GDH shunt. PMID:18508812

  14. Serum aminotransferase ratio is independently correlated with hepatosteatosis in patients with HCV: a cross-sectional observational study

    PubMed Central

    Lin, Ming-Shyan; Lin, Huang-Shen; Chung, Chang-Ming; Lin, Yu-Sheng; Chen, Mei-Yen; Chen, Po-Han; Hu, Jing-Hong; Chou, Wen-Nan; Huang, Jui-Chu; Huang, Tung-Jung

    2015-01-01

    Objectives The incidence of non-alcoholic fatty liver disease (NAFLD) is significant in hepatitis C virus (HCV) carriers due to multiple mechanisms, and this worsens the progression of chronic liver diseases, such as cirrhosis and hepatocellular carcinoma, and death. The purpose of this study was to examine whether the alanine aminotransferase/aspartate aminotransferase (ALT/AST) ratio correlates with the status of hepatosteatosis. Design A cross-sectional observational study. Setting Community-based annual examination in northern Taiwan. Participants A total of 1354 participants (age 20 years or over) were enrolled after excluding participants with HCV seronegative, laboratory or questionnaires loss, moderate alcohol consumption, liver cirrhosis, tumours and postlobectomy. Outcome measures Fatty liver was diagnosed according to echogenic findings. NAFLD included grades 1–3 fatty liver and high-degree NAFLD defined grades 2–3 fatty liver. Results 580 males and 774 females with a mean age of 47.2 (SD=16.1) years were cross-sectionally studied. The participants with NAFLD have significantly higher levels of ALT/AST ratio, fasting glucose, triglyceride and systolic/diastolic blood pressure than non-NAFLD participants. The association between NAFLD and ALT/AST was significant even when adjusting for the metabolic syndrome (aOR 1.90; 95% CI 1.37 to 2.65; p<0.001). In patients with a high degree of NAFLD, the ALT/AST ratio was still a significant predictor for hepatosteatosis (aOR 2.44; 95% CI 1.58 to 3.77; p<0.001). Conclusions The ALT/AST ratio could be a strong risk of hepatosteatosis in patients with chronic HCV infection. PMID:26369802

  15. Biocatalytic potential of vanillin aminotransferase from Capsicum chinense

    PubMed Central

    2014-01-01

    Background The conversion of vanillin to vanillylamine is a key step in the biosynthetic route towards capsaicinoids in pungent cultivars of Capsicum sp. The reaction has previously been annotated to be catalysed by PAMT (putative aminotransferase; [GenBank: AAC78480.1, Swiss-Prot: O82521]), however, the enzyme has previously not been biochemically characterised in vitro. Results The biochemical activity of the transaminase was confirmed by direct measurement of the reaction with purified recombinant enzyme. The enzyme accepted pyruvate, and oxaloacetate but not 2-oxoglutarate as co-substrate, which is in accordance with other characterised transaminases from the plant kingdom. The enzyme was also able to convert (S)-1-phenylethylamine into acetophenone with high stereo-selectivity. Additionally, it was shown to be active at a broad pH range. Conclusions We suggest PAMT to be renamed to VAMT (vanillin aminotransferase, abbreviation used in this study) as formation of vanillin from vanillylamine could be demonstrated. Furthermore, due to high stereoselectivity and activity at physiological pH, VAMT is a suitable candidate for biocatalytic transamination in a recombinant whole-cell system. PMID:24712445

  16. Characterization of aromatic aminotransferases from Ephedra sinica Stapf.

    PubMed

    Kilpatrick, Korey; Pajak, Agnieszka; Hagel, Jillian M; Sumarah, Mark W; Lewinsohn, Efraim; Facchini, Peter J; Marsolais, Frédéric

    2016-05-01

    Ephedra sinica Stapf (Ephedraceae) is a broom-like shrub cultivated in arid regions of China, Korea and Japan. This plant accumulates large amounts of the ephedrine alkaloids in its aerial tissues. These analogs of amphetamine mimic the actions of adrenaline and stimulate the sympathetic nervous system. While much is known about their pharmacological properties, the mechanisms by which they are synthesized remain largely unknown. A functional genomics platform was established to investigate their biosynthesis. Candidate enzymes were obtained from an expressed sequence tag collection based on similarity to characterized enzymes with similar functions. Two aromatic aminotransferases, EsAroAT1 and EsAroAT2, were characterized. The results of quantitative reverse transcription-polymerase chain reaction indicated that both genes are expressed in young stem tissue, where ephedrine alkaloids are synthesized, and in mature stem tissue. Nickel affinity-purified recombinant EsAroAT1 exhibited higher catalytic activity and was more homogeneous than EsAroAT2 as determined by size-exclusion chromatography. EsAroAT1 was highly active as a tyrosine aminotransferase with α-ketoglutarate followed by α-ketomethylthiobutyrate and very low activity with phenylpyruvate. In the reverse direction, catalytic efficiency was similar for the formation of all three aromatic amino acids using L-glutamate. Neither enzyme accepted putative intermediates in the ephedrine alkaloid biosynthetic pathway, S-phenylacetylcarbinol or 1-phenylpropane-1,2-dione, as substrates. PMID:26832171

  17. Alanine transport across in vitro rabbit vagina.

    PubMed

    Hajjar, J J; Mroueh, A M

    1979-04-01

    Transmural flux of alanine across the vaginal epithelium of the rabbit is a specialized mechanism. There is a net serosal to mucosal translocation of the amino acid in the absence of a concentration gradient. Changes in reproductive cycle do not influence this mechanism but, in castrated animals, it is abolished. Transport properties of vaginal epithelium is important because of increasing utilization of intravaginal contraceptives. PMID:455986

  18. Earthworms accumulate alanine in response to drought.

    PubMed

    Holmstrup, Martin; Slotsbo, Stine; Henriksen, Per G; Bayley, Mark

    2016-09-01

    Earthworms have ecologically significant functions in tropical and temperate ecosystems and it is therefore important to understand how these animals survive during drought. In order to explore the physiological responses to dry conditions, we simulated a natural drought incident in a laboratory trial exposing worms in slowly drying soil for about one month, and then analyzed the whole-body contents of free amino acids (FAAs). We investigated three species forming estivation chambers when soils dry out (Aporrectodea tuberculata, Aporrectodea icterica and Aporrectodea longa) and one species that does not estivate during drought (Lumbricus rubellus). Worms subjected to drought conditions (< -2MPa) substantially increased the concentration of FAAs and in particular alanine that was significantly upregulated in all tested species. Alanine was the most important FAA reaching 250-650μmolg(-1) dry weight in dehydrated Aporrectodea species and 300μmolg(-1) dry weight in L. rubellus. Proline was only weakly upregulated in some species as were a few other FAAs. Species forming estivation chambers (Aporrectodea spp.) did not show a better ability to conserve body water than the non-estivating species (L. rubellus) at the same drought level. These results suggest that the accumulation of alanine is an important adaptive trait in drought tolerance of earthworms in general. PMID:27107492

  19. Ornithine delta-aminotransferase mutations in gyrate atrophy. Allelic heterogeneity and functional consequences.

    PubMed

    Brody, L C; Mitchell, G A; Obie, C; Michaud, J; Steel, G; Fontaine, G; Robert, M F; Sipila, I; Kaiser-Kupfer, M; Valle, D

    1992-02-15

    Ornithine delta-aminotransferase is a nuclear-encoded mitochondrial matrix enzyme which catalyzes the reversible interconversion of ornithine and alpha-ketoglutarate to glutamate semialdehyde and glutamate. Inherited deficiency of ornithine delta-aminotransferase results in ornithine accumulation and a characteristic chorioretinal degeneration, gyrate atrophy of the choroid and retina. We have surveyed the ornithine delta-aminotransferase genes of gyrate atrophy patients for mutations. Using a variety of techniques, we discovered and molecularly characterized 21 newly recognized ornithine delta-aminotransferase alleles. We determined the consequences of these and three previously described mutations on ornithine delta-aminotransferase mRNA, antigen, and enzyme activity in cultured fibroblasts. The majority (20/24) of these alleles produce normal amounts of normally sized ornithine delta-aminotransferase mRNA. By contrast, only 2/24 had normal amounts of ornithine delta-aminotransferase antigen. Reproducing these mutations by site-directed mutagenesis and expressing the mutant ornithine delta-aminotransferase in Chinese hamster ovary cells confirms that several of these mutations inactivate ornithine delta-aminotransferase and cause gyrate atrophy in these patients. PMID:1737786

  20. Creatine protects against mitochondrial dysfunction associated with HIV-1 Tat-induced neuronal injury

    PubMed Central

    Stevens, Patrick R.; Gawryluk, Jeremy W.; Hui, Liang; Chen, Xuesong; Geiger, Jonathan D.

    2015-01-01

    HIV-1 infected individuals are living longer but experiencing a prevalence rate of over 50% for HIV-1 associated neurocognitive disorders (HAND) for which no effective treatment is available. Viral and cellular factors secreted by HIV-1 infected cells leads to neuronal injury and HIV-1 Tat continues to be implicated in the pathogenesis of HAND. Here we tested the hypothesis that creatine protected against HIV-1 Tat-induced neuronal injury by preventing mitochondrial bioenergetic crisis and/or redox catastrophe. Creatine blocked HIV-1 Tat1-72-induced increases in neuron cell death and synaptic area loss. Creatine protected against HIV-1 Tat-induced decreases in ATP. Creatine and creatine plus HIV-1 Tat increased cellular levels of creatine, and creatine plus HIV-1 Tat further decreased ratios of phosphocreatine to creatine observed with creatine or HIV-1 Tat treatments alone. Additionally, creatine protected against HIV-1 Tat-induced mitochondrial hypopolarization and HIV-1 Tat-induced mitochondrial permeability transition pore opening. Thus, creatine may be a useful adjunctive therapy against HAND. PMID:25613139

  1. Studies of the haemodynamic effects of creatine phosphate in man.

    PubMed Central

    Hurlow, R A; Aukland, A; Hardman, J; Whittington, J R

    1982-01-01

    1 The haemodynamic effects of intravenous creatine phosphate 1000 mg have been studied. 2 During the first 60 min following drug administration heart rate and blood pressure did not change but cardiac output fell significantly by approximately 18%. Calculated total peripheral resistance showed a corresponding significant rise, the maximum increase being approximately 24%. All these changes were beginning to diminish within 90 min after the injection. 3 Total limb blood flow measured in both arm and leg (using venous occlusion strain-gauge plethysmography) showed no appreciable changes following injection of creatine phosphate. 4 There was a progressive reduction in leg muscle blood flow (Xe133 clearance method) following injection which was statistically significant with respect to the initial level and reached a minimum (46% reduction) 50 min after the injection. 5 Skin blood flow, estimated by infra-red photoplethysmography, showed changes complementary to those seen with muscle flow. There was a progressive and significant rise to a peak (73% increase) 30 min after the injection. 6 No adverse reactions to the injections were noted. 7 Reduced cardiac output in the absence of altered total limb blood flow presumably reflects a reduction in visceral blood flow, which was not measured in this study. Within the limbs, creatine phosphate appears to result in a redistribution of blood flow from muscle to skin. Thus, these preliminary results suggest that intravenous creatine phosphate could be clinically useful in situations where short term improvement in skin blood flow would be advantageous and that further controlled studies would be justified. PMID:7093109

  2. Aspartate aminotransferase activity in human healthy and inflamed dental pulps.

    PubMed

    Spoto, G; Fioroni, M; Rubini, C; Tripodi, D; Perinetti, G; Piattelli, A

    2001-06-01

    Aspartate aminotransferase (AST) seems to be an important mediator of inflammatory processes. Its role in the progression and detection of inflammatory periodontal disease has been increasingly recognized in recent years. In the present study AST activity was analyzed in normal healthy human dental pulps, in reversible pulpitis, and in irreversible pulpitis. Enzymatic AST activity showed that the control values for the healthy pulps were 4.8 +/- 0.7 units/mg of pulp tissue. In reversible pulpitis specimens the AST activity increased to 7.98 +/- 2.1 units/mg of pulp tissue. In irreversible pulpitis specimens the values decreased to 2.28 +/- 1.7 units/mg of pulp tissue. Differences between the groups (control versus reversible pulpitis and reversible pulpitis versus irreversible pulpitis) were statistically significant (p = 0.0015). These results could point to a role of AST in the early events that lead to development of pulpal inflammation. PMID:11487132

  3. Stabilization and purification of tyrosine aminotransferase from rat liver.

    PubMed

    Hargrove, J L

    1990-01-01

    Purification of unmodified tyrosine aminotransferase from rat liver requires that the activity of cathepsin T be minimized, and that losses of enzyme due to dilution or oxidation by prevented. The enzyme was stabilized by pyridoxal 5'-phosphate, dithiothreitol, and potassium phosphate, but was destabilized by L-tyrosine or L-glutamate. A rapid, efficient method for purification of this enzyme included the following steps: twenty-fold induction with a high-casein diet plus dexamethasone phosphate administered in the drinking water; a heat step (65 degrees C) followed by precipitation from 0.20 M sucrose at pH 5.0; and small-scale chromatography on DEAE-cellulose, hydroxyapatite and CM-Sephadex C50 at pH 6.0. These steps yielded more than 10 mg of native enzyme from 35 rats, with a recovery of 68% of the initial activity. PMID:1973296

  4. Estimation of skeletal muscle mass from body creatine content

    NASA Technical Reports Server (NTRS)

    Pace, N.; Rahlmann, D. F.

    1982-01-01

    Procedures have been developed for studying the effect of changes in gravitational loading on skeletal muscle mass through measurements of the body creatine content. These procedures were developed for studies of gravitational scale effects in a four-species model, comprising the hamster, rat, guinea pig, and rabbit, which provides a sufficient range of body size for assessment of allometric parameters. Since intracellular muscle creatine concentration varies among species, and with age within a given species, the concentration values for metabolically mature individuals of these four species were established. The creatine content of the carcass, skin, viscera, smooth muscle, and skeletal muscle was determined for each species. In addition, the skeletal muscle mass of the major body components was determined, as well as the total and fat-free masses of the body and carcass, and the percent skeletal muscle in each. It is concluded that these procedures are particularly useful for studying the effect of gravitational loading on the skeletal muscle content of the animal carcass, which is the principal weight-bearing organ of the body.

  5. Creatine Supplementation and Exercise Performance: A Brief Review

    PubMed Central

    Bird, Stephen P.

    2003-01-01

    During the past decade, the nutritional supplement creatine monohydrate has been gaining popularity exponentially. Introduced to the general public in the early 1990s, shortly after the Barcelona Olympic Games, creatine (Cr) has become one of the most widely used nutritional supplements or ergogenic aids, with loading doses as high as 20-30 g·day-1 for 5-7 days typical among athletes. This paper reviews the available research that has examined the potential ergogenic value of creatine supplementation (CrS) on exercise performance and training adaptations. Short-term CrS has been reported to improve maximal power/strength, work performed during sets of maximal effort muscle contractions, single-effort sprint performance, and work performed during repetitive sprint performance. During training CrS has been reported to promote significantly greater gains in strength, fat free mass, and exercise performance primarily of high intensity tasks. However, not all studies demonstrate a beneficial effect on exercise performance, as CrS does not appear to be effective in improving running and swimming performance. CrS appears to pose no serious health risks when taken at doses described in the literature and may enhance exercise performance in individuals that require maximal single effort and/or repetitive sprint bouts. PMID:24688272

  6. Creatine supplementation with specific view to exercise/sports performance: an update

    PubMed Central

    2012-01-01

    Creatine is one of the most popular and widely researched natural supplements. The majority of studies have focused on the effects of creatine monohydrate on performance and health; however, many other forms of creatine exist and are commercially available in the sports nutrition/supplement market. Regardless of the form, supplementation with creatine has regularly shown to increase strength, fat free mass, and muscle morphology with concurrent heavy resistance training more than resistance training alone. Creatine may be of benefit in other modes of exercise such as high-intensity sprints or endurance training. However, it appears that the effects of creatine diminish as the length of time spent exercising increases. Even though not all individuals respond similarly to creatine supplementation, it is generally accepted that its supplementation increases creatine storage and promotes a faster regeneration of adenosine triphosphate between high intensity exercises. These improved outcomes will increase performance and promote greater training adaptations. More recent research suggests that creatine supplementation in amounts of 0.1 g/kg of body weight combined with resistance training improves training adaptations at a cellular and sub-cellular level. Finally, although presently ingesting creatine as an oral supplement is considered safe and ethical, the perception of safety cannot be guaranteed, especially when administered for long period of time to different populations (athletes, sedentary, patient, active, young or elderly). PMID:22817979

  7. Meta-analysis of the influence of TM6SF2 E167K variant on Plasma Concentration of Aminotransferases across different Populations and Diverse Liver Phenotypes

    PubMed Central

    Sookoian, Silvia; Pirola, Carlos J.

    2016-01-01

    A nonsynonymous E167K (rs58542926 C/T) variant in TM6SF2 gene was recently associated with nonalcoholic fatty liver disease (NAFLD). We explored the association between E167K and plasma concentrations of alanine (ALT) and aspartate (AST) aminotransferases through a meta-analysis. We also estimated the strength of the effect across diverse liver phenotypes, including NAFLD and chronic viral hepatitis; fourteen studies were included. We found that ALT (p = 3.2 × 10−6, n = 94,414) and AST (p = 0007, n = 93,809) levels were significantly associated with rs58542926 in NAFLD. By contrast, rs58542926 was not associated with either ALT (p = 0.24, n = 4187) or AST (p = 0.17, n = 2678) levels in four studies on chronic hepatitis. In conclusion, the results of the pooled estimates in patients with NAFLD showed that carriers of the T allele (EK + KK), when compared with homozygous subjects for the C allele (EE genotype) have increased levels of aminotransferases; however, this increase represents –2.5 (9.8%) and 1.2 (5%) IU/L of ALT and AST respectively, which is fairly small compared with the large effect of PNPLA3- rs738409-G allele that is associated with a –28% increase in serum ALT. PMID:27278285

  8. Meta-analysis of the influence of TM6SF2 E167K variant on Plasma Concentration of Aminotransferases across different Populations and Diverse Liver Phenotypes.

    PubMed

    Sookoian, Silvia; Pirola, Carlos J

    2016-01-01

    A nonsynonymous E167K (rs58542926 C/T) variant in TM6SF2 gene was recently associated with nonalcoholic fatty liver disease (NAFLD). We explored the association between E167K and plasma concentrations of alanine (ALT) and aspartate (AST) aminotransferases through a meta-analysis. We also estimated the strength of the effect across diverse liver phenotypes, including NAFLD and chronic viral hepatitis; fourteen studies were included. We found that ALT (p = 3.2 × 10(-6), n = 94,414) and AST (p = 0007, n = 93,809) levels were significantly associated with rs58542926 in NAFLD. By contrast, rs58542926 was not associated with either ALT (p = 0.24, n = 4187) or AST (p = 0.17, n = 2678) levels in four studies on chronic hepatitis. In conclusion, the results of the pooled estimates in patients with NAFLD showed that carriers of the T allele (EK + KK), when compared with homozygous subjects for the C allele (EE genotype) have increased levels of aminotransferases; however, this increase represents -2.5 (9.8%) and 1.2 (5%) IU/L of ALT and AST respectively, which is fairly small compared with the large effect of PNPLA3- rs738409-G allele that is associated with a -28% increase in serum ALT. PMID:27278285

  9. Effect of arsenic and chromium on the serum amino-transferases activity in Indian major carp, Labeo rohita.

    PubMed

    Vutukuru, Sesha Srinivas; Prabhath, N Arun; Raghavender, M; Yerramilli, Anjaneyulu

    2007-09-01

    Arsenic and hexavalent chromium toxicity results from their ability to interact with sulfahydryl groups of proteins and enzymes, and to substitute phosphorus in a variety of biochemical reactions. Alanine aminotransferase (ALT; E.C: 2.6.1.2) and Aspartate amino transferase (AST; EC 2.6.1.1) play a crucial role in transamination reactions and can be used as potential biomarkers to indicate hepatotoxicity and cellular damage. While histopathological studies in liver tissue require more time and expertise, simple and reliable biochemical analysis of ALT and AST can be used for a rapid assessment of tissue and cellular damage within 96 h. The main objective of this study was to determine the acute effects of arsenic and hexavalent chromium on the activity of ALT and AST in the Indian major carp, Labeo rohita for 24 h and 96 h. Significant increase in the activity of ALT (P < 0.01) from controls in arsenic exposed fish indicates serious hepatic damage and distress condition to the fish. However, no such significant changes were observed in chromium-exposed fish suggesting that arsenic is more toxic to the fish. These findings indicate that ALT and AST are candidate biomarkers for arsenic-induced hepatotoxicity in Labeo rohita. PMID:17911661

  10. Effect of Arsenic and Chromium on the Serum Amino-Transferases Activity in Indian Major Carp, Labeo rohita

    PubMed Central

    Vutukuru, Sesha Srinivas; Arun Prabhath, N.; Raghavender, M.; Yerramilli, Anjaneyulu

    2007-01-01

    Arsenic and hexavalent chromium toxicity results from their ability to interact with sulfahydryl groups of proteins and enzymes, and to substitute phosphorus in a variety of biochemical reactions. Alanine aminotransferase (ALT; E.C: 2.6.1.2) and Aspartate amino transferase (AST; EC 2.6.1.1) play a crucial role in transamination reactions and can be used as potential biomarkers to indicate hepatotoxicity and cellular damage. While histopathological studies in liver tissue require more time and expertise, simple and reliable biochemical analysis of ALT and AST can be used for a rapid assessment of tissue and cellular damage within 96 h. The main objective of this study was to determine the acute effects of arsenic and hexavalent chromium on the activity of ALT and AST in the Indian major carp, Labeo rohita for 24 h and 96 h. Significant increase in the activity of ALT (P < 0.01) from controls in arsenic exposed fish indicates serious hepatic damage and distress condition to the fish. However, no such significant changes were observed in chromium-exposed fish suggesting that arsenic is more toxic to the fish. These findings indicate that ALT and AST are candidate biomarkers for arsenic-induced hepatotoxicity in Labeo rohita. PMID:17911661

  11. High content of creatine kinase in chicken retina: compartmentalized localization of creatine kinase isoenzymes in photoreceptor cells.

    PubMed Central

    Wallimann, T; Wegmann, G; Moser, H; Huber, R; Eppenberger, H M

    1986-01-01

    Two isoforms of creatine kinase (CK; ATP:creatine N-phosphotransferase, E.C. 2.7.3.2), brain type (BB-CK) and mitochondrial type (MiMi-CK), but not the muscle types (MM- or hybrid MB-CK), were identified by cellulose polyacetate electrophoresis and immunoblots in retina from adult chickens. Indirect immunofluorescence labeling of cryosections of retinas revealed high concentrations of BB-CK in both rod and cone photoreceptor cells. Most of the fluorescence staining with anti-B-CK antibodies was found within the myoid and the ellipsoid portions of inner segments and the peripheral region of the outer segments. Significant staining with anti-B-CK antibodies was also found in horizontal cells and in the optical nerve fibers, with additional stratified staining in the inner plexiform layer. MiMi-CK was solely demonstrated in the ellipsoid portion of the photoreceptor cells. The presence of high concentrations of compartmentalized CK isoenzymes within photoreceptor cells (approximately equal to 30 enzyme units/mg) as well as the relatively high concentration of total creatine in these cells (approximately equal to 10-15 mM) indicates an important physiological function for CK and phosphocreatine in the energy transduction of vision. Images PMID:3520556

  12. Comparison of the value of novel rapid measurement of myoglobin, creatine kinase, and creatine kinase-MB with the electrocardiogram for the diagnosis of acute myocardial infarction.

    PubMed Central

    Lee, H. S.; Cross, S. J.; Garthwaite, P.; Dickie, A.; Ross, I.; Walton, S.; Jennings, K.

    1994-01-01

    OBJECTIVE--To determine whether serum myoglobin, creatine kinase, and creatine kinase-MB measured at admission by rapid, compact, and easy to use automated quantitative analysers (results within 10 min) helped the early identification of acute myocardial infarction. The results were compared with the data obtained from the electrocardiograms recorded at admission. DESIGN--A prospective study. SETTING--Coronary care unit. PATIENTS--94 consecutive patients with suspected myocardial infarction. Myocardial infarction was subsequently confirmed in 44 patients and excluded in 50. METHODS--All admission serum myoglobin, creatine kinase, and creatine kinase-MB were measured by clinical staff using analysers in the coronary care unit. An admission electrocardiogram was obtained from all patients. RESULTS--The sensitivity, specificity, and predictive accuracy for diagnosing myocardial infarction were: electrocardiogram 68%, 100%, and 85%; myoglobin 57%, 100%, and 80%; creatine kinase (threshold of 190 U/l) 34%, 98%, and 68%; creatine kinase-MB (threshold of 25 U/l) 43%, 100%, and 73%. When the electrocardiographic and myoglobin data were combined the sensitivity improved to 91%, diagnostic accuracy to 96%, with specificity of 100%. The results for the electrocardiogram and creatine kinase-MB were 80%, 90%, 100% respectively and those for the electrocardiogram with creatine kinase were 80%, 89%, 98% respectively. CONCLUSIONS--Admission myoglobin, creatine kinase, and creatine kinase-MB measurements were not as useful as the electrocardiogram for the diagnosis of acute myocardial infarction. Combining the electrocardiogram and myoglobin data substantially improved the sensitivity and predictive accuracy for the diagnosis of acute myocardial infarction. PMID:8198879

  13. Crystallization and preliminary crystallographic analysis of d-alanine-d-alanine ligase from Streptococcus mutans

    SciTech Connect

    Lu, Yong-Zhi; Sheng, Yu; Li, Lan-Fen; Tang, De-Wei; Liu, Xiang-Yu; Zhao, Xiaojun; Liang, Yu-He Su, Xiao-Dong

    2007-09-01

    A potential target for antibiotic drug design, d-alanine-d-alanine ligase from S. mutans, was expressed in E. coli, purified and crystallized. Diffraction data were collected to 2.4 Å resolution. d-Alanine-d-alanine ligase is encoded by the gene ddl (SMU-599) in Streptococcus mutans. This ligase plays a very important role in cell-wall biosynthesis and may be a potential target for drug design. To study the structure and function of this ligase, the gene ddl was amplified from S. mutans genomic DNA and cloned into the expression vector pET28a. The protein was expressed in soluble form in Escherichia coli strain BL21 (DE3). Homogeneous protein was obtained using a two-step procedure consisting of Ni{sup 2+}-chelating and size-exclusion chromatography. Purified protein was crystallized and the cube-shaped crystal diffracted to 2.4 Å. The crystal belongs to space group P3{sub 1}21 or P3{sub 2}21, with unit-cell parameters a = b = 79.50, c = 108.97 Å. There is one molecule per asymmetric unit.

  14. Racemization of alanine by the alanine racemases from Salmonella typhimurium and Bacillus stearothermophilus: energetic reaction profiles

    SciTech Connect

    Faraci, W.S.; Walsh, C.T.

    1988-05-03

    Alanine racemases are bacterial pyridoxal 5'-phosphate (PLP) dependent enzymes providing D-alanine as an essential building block for biosynthesis of the peptidoglycan layer of the cell wall. Two isozymic alanine racemases, encoded by the dadB gene and the alr gene, from the Gram-negative mesophilic Salmonella typhimurium and one from the Gram-positive thermophilic Bacillus stearothermophilus have been examined for the racemization mechanism. Substrate deuterium isotope effects and solvent deuterium isotope effects have been measured in both L ..-->.. D and D..-->.. L directions for all three enzymes to assess the degree to which abstraction of the ..cap alpha..-proton or protonation of substrate PLP carbanion is limiting in catalysis. Additionally, experiments measuring internal return of ..cap alpha..-/sup 3/H from substrate to product and solvent exchange/substrate conversion experiments in /sup 3/H/sub 2/O have been used with each enzyme to examine the partitioning of substrate PLP carbanion intermediates and to obtain the relative heights of kinetically significant energy barriers in alanine racemase catalysis.

  15. Relationship between lactate and glutamine metabolism in vitro by the kidney: differences between dog and rat and importance of alanine synthesis in the dog.

    PubMed

    Lemieux, G; Vinay, P; Baverel, G; Brière, R; Gougoux, A

    1979-10-01

    Interaction between lactate (1 or 5 mM) and glutamine (1 or 5 mM) metabolism was studied with renal cortical slices incubated at a pH of 7.0 and obtained from acidotic (ammonium chloride) dogs and rats. The effect of aminooxyacetate (0.2 mM), dichloroacetate (3 mM), and fluoroacetate (0.05 mM) was also studied. Significant differences were observed between dog and rat. In the dog, lactate had no effect on glutamine uptake and vice versa, but gluconeogenesis increased. Ammonia production, however, decreased by 13 to 21%, whereas a significant increase in alanine production was noted. In the rat, glutamine extraction and ammonia production dropped by 33% with 5 mM lactate. In contrast to the observation in the dog, no production of alanine was noted, but significant accumulation of glutamate took place. Amino-oxyacetate inhibited alanine production in the dog and reestablished ammoniagenesis, and it led to a marked decrement in the uptake of lactate and glucose production in both species. Dichloroacetate in the dog resulted in a reduction in pyruvate, alanine, glucose, and ammonia production while glutamate accumulation was observed. In both species, fluoroacetate stimulated glutamine uptake and ammonia production. With lactate alone, fluoroacetate decreased lactate uptake and glucose production. With both lactate and glutamine in the medium, fluoroacetate prevented any effect of lactate on ammoniagenesis. The present study demonstrates that lactate has a modest depressing effect on renal ammonia production by dog slices through increased synthesis of alanine and redistribution of nitrogen from glutamine. In the rat, the depressing effect of lactate on ammonia production in the alanine amino-transferase deficient kidney occurs through accumulation of glutamate. The data also reveal that oxidation of lactate to carbon dioxide is greater in the dog than it is in the rat, but that gluconeogenesis from lactate is more important in the rat. PMID:548591

  16. Alteration of substrate specificity of alanine dehydrogenase

    PubMed Central

    Fernandes, Puja; Aldeborgh, Hannah; Carlucci, Lauren; Walsh, Lauren; Wasserman, Jordan; Zhou, Edward; Lefurgy, Scott T.; Mundorff, Emily C.

    2015-01-01

    The l-alanine dehydrogenase (AlaDH) has a natural history that suggests it would not be a promising candidate for expansion of substrate specificity by protein engineering: it is the only amino acid dehydrogenase in its fold family, it has no sequence or structural similarity to any known amino acid dehydrogenase, and it has a strong preference for l-alanine over all other substrates. By contrast, engineering of the amino acid dehydrogenase superfamily members has produced catalysts with expanded substrate specificity; yet, this enzyme family already contains members that accept a broad range of substrates. To test whether the natural history of an enzyme is a predictor of its innate evolvability, directed evolution was carried out on AlaDH. A single mutation identified through molecular modeling, F94S, introduced into the AlaDH from Mycobacterium tuberculosis (MtAlaDH) completely alters its substrate specificity pattern, enabling activity toward a range of larger amino acids. Saturation mutagenesis libraries in this mutant background additionally identified a double mutant (F94S/Y117L) showing improved activity toward hydrophobic amino acids. The catalytic efficiencies achieved in AlaDH are comparable with those that resulted from similar efforts in the amino acid dehydrogenase superfamily and demonstrate the evolvability of MtAlaDH specificity toward other amino acid substrates. PMID:25538307

  17. Effects of Beta-Alanine on Muscle Carnosine and Exercise Performance:A Review of the Current Literature

    PubMed Central

    Culbertson, Julie Y.; Kreider, Richard B.; Greenwood, Mike; Cooke, Matthew

    2010-01-01

    Muscle carnosine has been reported to serve as a physiological buffer, possess antioxidant properties, influence enzyme regulation, and affect sarcoplasmic reticulum calcium regulation. Beta-alanine (β-ALA) is a non-essential amino acid. β-ALA supplementation (e.g., 2-6 grams/day) has been shown to increase carnosine concentrations in skeletal muscle by 20-80%. Several studies have reported that β-ALA supplementation can increase high-intensity intermittent exercise performance and/or training adaptations. Although the specific mechanism remains to be determined, the ergogenicity of β-ALA has been most commonly attributed to an increased muscle buffering capacity. More recently, researchers have investigated the effects of co-ingesting β-ALA with creatine monohydrate to determine whether there may be synergistic and/or additive benefits. This paper overviews the theoretical rationale and potential ergogenic value of β-ALA supplementation with or without creatine as well as provides future research recommendations. PMID:22253993

  18. International society of sports nutrition position stand: Beta-Alanine.

    PubMed

    Trexler, Eric T; Smith-Ryan, Abbie E; Stout, Jeffrey R; Hoffman, Jay R; Wilborn, Colin D; Sale, Craig; Kreider, Richard B; Jäger, Ralf; Earnest, Conrad P; Bannock, Laurent; Campbell, Bill; Kalman, Douglas; Ziegenfuss, Tim N; Antonio, Jose

    2015-01-01

    The International Society of Sports Nutrition (ISSN) provides an objective and critical review of the mechanisms and use of beta-alanine supplementation. Based on the current available literature, the conclusions of the ISSN are as follows: 1) Four weeks of beta-alanine supplementation (4-6 g daily) significantly augments muscle carnosine concentrations, thereby acting as an intracellular pH buffer; 2) Beta-alanine supplementation currently appears to be safe in healthy populations at recommended doses; 3) The only reported side effect is paraesthesia (tingling), but studies indicate this can be attenuated by using divided lower doses (1.6 g) or using a sustained-release formula; 4) Daily supplementation with 4 to 6 g of beta-alanine for at least 2 to 4 weeks has been shown to improve exercise performance, with more pronounced effects in open end-point tasks/time trials lasting 1 to 4 min in duration; 5) Beta-alanine attenuates neuromuscular fatigue, particularly in older subjects, and preliminary evidence indicates that beta-alanine may improve tactical performance; 6) Combining beta-alanine with other single or multi-ingredient supplements may be advantageous when supplementation of beta-alanine is high enough (4-6 g daily) and long enough (minimum 4 weeks); 7) More research is needed to determine the effects of beta-alanine on strength, endurance performance beyond 25 min in duration, and other health-related benefits associated with carnosine. PMID:26175657

  19. Creatine supplementation enhances corticomotor excitability and cognitive performance during oxygen deprivation.

    PubMed

    Turner, Clare E; Byblow, Winston D; Gant, Nicholas

    2015-01-28

    Impairment or interruption of oxygen supply compromises brain function and plays a role in neurological and neurodegenerative conditions. Creatine is a naturally occurring compound involved in the buffering, transport, and regulation of cellular energy, with the potential to replenish cellular adenosine triphosphate without oxygen. Creatine is also neuroprotective in vitro against anoxic/hypoxic damage. Dietary creatine supplementation has been associated with improved symptoms in neurological disorders defined by impaired neural energy provision. Here we investigate, for the first time in humans, the utility of creatine as a dietary supplement to protect against energetic insult. The aim of this study was to assess the influence of oral creatine supplementation on the neurophysiological and neuropsychological function of healthy young adults during acute oxygen deprivation. Fifteen healthy adults were supplemented with creatine and placebo treatments for 7 d, which increased brain creatine on average by 9.2%. A hypoxic gas mixture (10% oxygen) was administered for 90 min, causing global oxygen deficit and impairing a range of neuropsychological processes. Hypoxia-induced decrements in cognitive performance, specifically attentional capacity, were restored when participants were creatine supplemented, and corticomotor excitability increased. A neuromodulatory effect of creatine via increased energy availability is presumed to be a contributing factor of the restoration, perhaps by supporting the maintenance of appropriate neuronal membrane potentials. Dietary creatine monohydrate supplementation augments neural creatine, increases corticomotor excitability, and prevents the decline in attention that occurs during severe oxygen deficit. This is the first demonstration of creatine's utility as a neuroprotective supplement when cellular energy provision is compromised. PMID:25632150

  20. Effect of oral creatine supplementation on human muscle GLUT4 protein content after immobilization.

    PubMed

    Op 't Eijnde, B; Ursø, B; Richter, E A; Greenhaff, P L; Hespel, P

    2001-01-01

    The purpose of this study was to investigate the effect of oral creatine supplementation on muscle GLUT4 protein content and total creatine and glycogen content during muscle disuse and subsequent training. A double-blind placebo-controlled trial was performed with 22 young healthy volunteers. The right leg of each subject was immobilized using a cast for 2 weeks, after which subjects participated in a 10-week heavy resistance training program involving the knee-extensor muscles (three sessions per week). Half of the subjects received creatine monohydrate supplements (20 g daily during the immobilization period and 15 and 5 g daily during the first 3 and the last 7 weeks of rehabilitation training, respectively), whereas the other 11 subjects ingested placebo (maltodextrine). Muscle GLUT4 protein content and glycogen and total creatine concentrations were assayed in needle biopsy samples from the vastus lateralis muscle before and after immobilization and after 3 and 10 weeks of training. Immobilization decreased GLUT4 in the placebo group (-20%, P < 0.05), but not in the creatine group (+9% NS). Glycogen and total creatine were unchanged in both groups during the immobilization period. In the placebo group, during training, GLUT4 was normalized, and glycogen and total creatine were stable. Conversely, in the creatine group, GLUT4 increased by approximately 40% (P < 0.05) during rehabilitation. Muscle glycogen and total creatine levels were higher in the creatine group after 3 weeks of rehabilitation (P < 0.05), but not after 10 weeks of rehabilitation. We concluded that 1) oral creatine supplementation offsets the decline in muscle GLUT4 protein content that occurs during immobilization, and 2) oral creatine supplementation increases GLUT4 protein content during subsequent rehabilitation training in healthy subjects. PMID:11147785

  1. Potential ergogenic effects of arginine and creatine supplementation.

    PubMed

    Paddon-Jones, Douglas; Børsheim, Elisabet; Wolfe, Robert R

    2004-10-01

    The rationale for the use of nutritional supplements to enhance exercise capacity is based on the assumption that they will confer an ergogenic effect above and beyond that afforded by regular food ingestion alone. The proposed or advertised ergogenic effect of many supplements is based on a presumptive metabolic pathway and may not necessarily translate to quantifiable changes in a variable as broadly defined as exercise performance. L-arginine is a conditionally essential amino acid that has received considerable attention due to potential effects on growth hormone secretion and nitric oxide production. In some clinical circumstances (e.g., burn injury, sepsis) in which the demand for arginine cannot be fully met by de novo synthesis and normal dietary intake, exogenous arginine has been shown to facilitate the maintenance of lean body mass and functional capacity. However, the evidence that supplemental arginine may also confer an ergogenic effect in normal healthy individuals is less compelling. In contrast to arginine, numerous studies have reported that supplementation with the arginine metabolite creatine facilitates an increase in anaerobic work capacity and muscle mass when accompanied by resistance training programs in both normal and patient populations. Whereas improvement in the rate of phosphocreatine resynthesis is largely responsible for improvements in acute work capacity, the direct effect of creatine supplementation on skeletal muscle protein synthesis is less clear. The purpose of this review is to summarize the role of arginine and its metabolite creatine in the context of a nutrition supplement for use in conjunction with an exercise stimulus in both healthy and patient populations. PMID:15465806

  2. Age dependence of myosin heavy chain transitions induced by creatine depletion in rat skeletal muscle

    NASA Technical Reports Server (NTRS)

    Adams, Gregory R.; Baldwin, Kenneth M.

    1995-01-01

    This study was designed to test the hypothesis that myosin heavy chain (MHC) plasticity resulting from creatine depletion is an age-dependent process. At weaning (age 28 days), rat pups were placed on either standard rat chow (normal diet juvenile group) or the same chow supplemented with 1% wt/wt of the creatine analogue beta-guanidinopropionic acid (creatine depletion juvenile (CDJ) group). Two groups of adult rats (age approximately 8 wk) were placed on the same diet regimens (normal diet adult and creatine depletion adult (CDA) groups). After 40 days (CDJ and normal diet juvenile groups) and 60 days (CDA and normal diet adult groups), animals were killed and several skeletal muscles were removed for analysis of creatine content or MHC ditribution. In the CDJ group, creatine depletion (78%) was accompanied by significant shifts toward expression of slower MHC isoforms in two slow and three fast skeletal muscles. In contrast, creatine depletion in adult animals did not result in similar shifts toward slow MHC isoform expression in either muscle type. The results of this study indicate that there is a differential effect of creatine depletion on MHC tranitions that appears to be age dependent. These results strongly suggest that investigators contemplating experimental designs involving the use of the creatine analogue beta-guanidinopropionic acid should consider the age of the animals to be used.

  3. Role of creatine supplementation in exercise-induced muscle damage: A mini review.

    PubMed

    Kim, Jooyoung; Lee, Joohyung; Kim, Seungho; Yoon, Daeyoung; Kim, Jieun; Sung, Dong Jun

    2015-10-01

    Muscle damage is induced by both high-intensity resistance and endurance exercise. Creatine is a widely used dietary supplement to improve exercise performance by reducing exercise-induced muscle damage. Many researchers have suggested that taking creatine reduces muscle damage by decreasing the inflammatory response and oxidative stress, regulating calcium homeostasis, and activating satellite cells. However, the underlying mechanisms of creatine and muscle damage have not been clarified. Therefore, this review discusses the regulatory effects of creatine on muscle damage by compiling the information collected from basic science and sports science research. PMID:26535213

  4. Putting to rest the myth of creatine supplementation leading to muscle cramps and dehydration.

    PubMed

    Dalbo, V J; Roberts, M D; Stout, J R; Kerksick, C M

    2008-07-01

    Creatine is one of the most popular athletic supplements with sales surpassing 400 million dollars in 2004. Due to the popularity and efficacy of creatine supplementation over 200 studies have examined the effects of creatine on athletic performance. Despite the abundance of research suggesting the effectiveness and safety of creatine, a fallacy appears to exist among the general public, driven by media claims and anecdotal reports, that creatine supplementation can result in muscle cramps and dehydration. Although a number of published studies have refuted these claims, a recent position statement by the American College of Sports Medicine (ACSM) in 2000 advised individuals who are managing their weight and exercising intensely or in hot environments to avoid creatine supplementation. Recent reports now suggest that creatine may enhance performance in hot and/or humid conditions by maintaining haematocrit, aiding thermoregulation and reducing exercising heart rate and sweat rate. Creatine may also positively influence plasma volume during the onset of dehydration. Considering these new published findings, little evidence exists that creatine supplementation in the heat presents additional risk, and this should be taken into consideration as position statements and other related documents are published. PMID:18184753

  5. Effects of creatine supplementation on oxidative stress profile of athletes

    PubMed Central

    2012-01-01

    Background Creatine (Cr) supplementation has been widely used among athletes and physically active individuals. Secondary to its performance-enhancing ability, an increase in oxidative stress may occur, thus prompting concern about its use. The purpose of this study is to investigate the effects of Cr monohydrate supplementation and resistance training on muscle strength and oxidative stress profile in healthy athletes. Methods A randomized, double-blind, placebo-controlled method was used to assess twenty-six male elite Brazilian handball players divided into 3 groups: Cr monohydrate supplemented group (GC, N = 9), placebo group (GP, N = 9), no treatment group (COT, N = 8) for 32 days. All subjects underwent a resistance training program. Blood samples were drawn on 0 and 32 days post Cr supplementation to analyze the oxidative stress markers, thiobarbituric acid reactive species (TBARS), total antioxidant status (TAS), and uric acid. Creatine phosphokinase, urea, and creatinine were also analyzed, as well. Fitness tests (1 repetition maximum - 1RM and muscle endurance) were performed on the bench press. Body weight and height, body fat percentage (by measuring skin folds) and upper muscular area were also evaluated. Statistical analysis was performed using ANOVA. Results Only GC group showed increase in 1RM (54 ± 9 vs. 63 ± 10 kg; p = 0.0356) and uric acid (4.6 ± 1.0 vs. 7.4 ± 1.6 mg/dl; p = 0.025), with a decrease in TAS (1.11 ± 0.34 vs. 0.60 ± 0.19 mmol/l; p = 0.001). No differences (pre- vs. post-training) in TBARS, creatine phosphokinase, urea, creatinine, body weight and height, body fat percentage, or upper muscular area were observed in any group. When compared to COT, GC group showed greater decrease in TAS (−0.51 ± 0.36 vs. -0.02 ± 0.50 mmol/l; p = 0.0268), higher increase in 1RM (8.30 ± 2.26 vs. 5.29 ± 2.36 kg; p = 0.0209) and uric acid (2.77 ± 1.70 vs. 1.00 ± 1.03 mg/dl; p = 0.0276). Conclusion We conclude that Cr monohydrate

  6. Radiochemical microassay for aspartate aminotransferase activity in the nervous system

    SciTech Connect

    Garrison, D.; Beattie, J.; Namboodiri, M.A.

    1988-07-01

    A radiochemical procedure for measuring aspartate aminotransferase activity in the nervous system is described. The method is based on the exchange of tritium atoms at positions 2 and 3 of L-2,3-(/sup 3/H)aspartate with water when this amino acid is transaminated in the presence of alpha-ketoglutarate to form oxaloacetate. The tritiated water is separated from the radiolabeled aspartate by passing the reaction mixture over a cation exchange column. Confirmation that the radioactivity in the product is associated with water was obtained by separating it by anion exchange HPLC and by evaporation. The product formation is linear with time up to 120 min and with tissue in the 0.05- to 10-micrograms range. The apparent Km for aspartate in the rat brain homogenate is found to be 0.83 mM and that for alpha-ketoglutarate to be 0.12 mM. Methods that further improve the sensitivity of the assay are also discussed.

  7. Tyrosine aminotransferase from Leishmania infantum: A new drug target candidate.

    PubMed

    Moreno, Miguel Angel; Alonso, Ana; Alcolea, Pedro Jose; Abramov, Ariel; de Lacoba, Mario García; Abendroth, Jan; Zhang, Sunny; Edwards, Thomas; Lorimer, Don; Myler, Peter John; Larraga, Vicente

    2014-12-01

    Leishmania infantum is the etiological agent of zoonotic visceral leishmaniasis in the Mediterranean basin. The disease is fatal without treatment, which has been based on antimonial pentavalents for more than 60 years. Due to resistances, relapses and toxicity to current treatment, the development of new drugs is required. The structure of the L. infantum tyrosine aminotransferase (LiTAT) has been recently solved showing important differences with the mammalian orthologue. The characterization of LiTAT is reported herein. This enzyme is cytoplasmic and is over-expressed in the more infective stages and nitric oxide resistant parasites. Unlike the mammalian TAT, LiTAT is able to use ketomethiobutyrate as co-substrate. The pharmacophore model of LiTAT with this specific co-substrate is described herein. This may allow the identification of new inhibitors present in the databases. All the data obtained support that LiTAT is a good target candidate for the development of new anti-leishmanial drugs. PMID:25516846

  8. Tyrosine aminotransferase from Leishmania infantum: A new drug target candidate

    PubMed Central

    Moreno, Miguel Angel; Alonso, Ana; Alcolea, Pedro Jose; Abramov, Ariel; de Lacoba, Mario García; Abendroth, Jan; Zhang, Sunny; Edwards, Thomas; Lorimer, Don; Myler, Peter John; Larraga, Vicente

    2014-01-01

    Leishmania infantum is the etiological agent of zoonotic visceral leishmaniasis in the Mediterranean basin. The disease is fatal without treatment, which has been based on antimonial pentavalents for more than 60 years. Due to resistances, relapses and toxicity to current treatment, the development of new drugs is required. The structure of the L. infantum tyrosine aminotransferase (LiTAT) has been recently solved showing important differences with the mammalian orthologue. The characterization of LiTAT is reported herein. This enzyme is cytoplasmic and is over-expressed in the more infective stages and nitric oxide resistant parasites. Unlike the mammalian TAT, LiTAT is able to use ketomethiobutyrate as co-substrate. The pharmacophore model of LiTAT with this specific co-substrate is described herein. This may allow the identification of new inhibitors present in the databases. All the data obtained support that LiTAT is a good target candidate for the development of new anti-leishmanial drugs. PMID:25516846

  9. Expression of the soybean (Glycine max) glutamate 1-semialdehyde aminotransferase gene in symbiotic root nodules.

    PubMed

    Sangwan, I; O'Brian, M R

    1993-07-01

    Extracts of soybean (Glycine max) root nodules and greening etiolated leaves catalyzed radiolabeled delta-aminolevulinic acid (ALA) formation from 3,4-[3H]glutamate but not from 1-[14C]glutamate. Nevertheless, those tissue extracts expressed the activity of glutamate 1-semialdehyde (GSA) aminotransferase, the C5 pathway enzyme that catalyzes ALA synthesis from GSA for tetrapyrrole formation. A soybean nodule cDNA clone that conferred ALA prototrophy, GSA aminotransferase activity, and glutamate-dependent ALA formation activity on an Escherichia coli GSA aminotransferase mutant was isolated. The deduced product of the nodule cDNA shared 79% identity with the GSA aminotransferase expressed in barley leaves, providing, along with the complementation data, strong evidence that the cDNA encodes GSA aminotransferase. GSA aminotransferase mRNA and enzyme activity were expressed in nodules but not in uninfected roots, indicating that the Gsa gene is induced in the symbiotic tissue. The Gsa gene was strongly expressed in leaves of etiolated plantlets independently of light treatment and, to a much lesser extent, in leaves of mature plants. We conclude that GSA aminotransferase, and possibly the C5 pathway, is expressed in a nonphotosynthetic plant organ for nodule heme synthesis and that Gsa is a regulated gene in soybean. PMID:8278535

  10. Sensitive non-radioactive determination of aminotransferase stereospecificity for C-4' hydrogen transfer on the coenzyme

    SciTech Connect

    Jomrit, Juntratip; Summpunn, Pijug; Meevootisom, Vithaya; Wiyakrutta, Suthep

    2011-02-25

    Research highlights: {yields} Stereochemical mechanism of PLP enzymes is important but difficult to determine. {yields} This new method is significantly less complicated than the previous ones. {yields} This assay is as sensitive as the radioactive based method. {yields} LC-MS/MS positively identify the analyte coenzyme. {yields} The method can be used with enzyme whose apo form is unstable. -- Abstract: A sensitive non-radioactive method for determination of the stereospecificity of the C-4' hydrogen transfer on the coenzymes (pyridoxal phosphate, PLP; and pyridoxamine phosphate, PMP) of aminotransferases has been developed. Aminotransferase of unknown stereospecificity in its PLP form was incubated in {sup 2}H{sub 2}O with a substrate amino acid resulted in PMP labeled with deuterium at C-4' in the pro-S or pro-R configuration according to the stereospecificity of the aminotransferase tested. The [4'-{sup 2}H]PMP was isolated from the enzyme protein and divided into two portions. The first portion was incubated in aqueous buffer with apo-aspartate aminotransferase (a reference si-face specific enzyme), and the other was incubated with apo-branched-chain amino acid aminotransferase (a reference re-face specific enzyme) in the presence of a substrate 2-oxo acid. The {sup 2}H at C-4' is retained with the PLP if the aminotransferase in question transfers C-4' hydrogen on the opposite face of the coenzyme compared with the reference aminotransferase, but the {sup 2}H is removed if the test and reference aminotransferases catalyze hydrogen transfer on the same face. PLP formed in the final reactions was analyzed by LC-MS/MS for the presence or absence of {sup 2}H. The method was highly sensitive that for the aminotransferase with ca. 50 kDa subunit molecular weight, only 2 mg of the enzyme was sufficient for the whole test. With this method, the use of radioactive substances could be avoided without compromising the sensitivity of the assay.

  11. Guanidinoacetate Is More Effective than Creatine at Enhancing Tissue Creatine Stores while Consequently Limiting Methionine Availability in Yucatan Miniature Pigs

    PubMed Central

    McBreairty, Laura E.; Robinson, Jason L.; Furlong, Kayla R.; Brunton, Janet A.; Bertolo, Robert F.

    2015-01-01

    Creatine (Cr) is an important high-energy phosphate buffer in tissues with a high energy demand such as muscle and brain and is consequently a highly consumed nutritional supplement. Creatine is synthesized via the S-adenosylmethionine (SAM) dependent methylation of guanidinoacetate (GAA) which is not regulated by a feedback mechanism. The first objective of this study was to determine the effectiveness of GAA at increasing tissue Cr stores. Because SAM is required for other methylation reactions, we also wanted to determine whether an increased creatine synthesis would lead to a lower availability of methyl groups for other methylated products. Three month-old pigs (n = 18) were fed control, GAA- or Cr-supplemented diets twice daily. On day 18 or 19, anesthesia was induced 1–3 hours post feeding and a bolus of [methyl-3H]methionine was intravenously infused. After 30 minutes, the liver was analyzed for methyl-3H incorporation into protein, Cr, phosphatidylcholine (PC) and DNA. Although both Cr and GAA led to higher hepatic Cr concentration, only supplementation with GAA led to higher levels of muscle Cr (P < 0.05). Only GAA supplementation resulted in lower methyl-3H incorporation into PC and protein as well as lower hepatic SAM concentration compared to the controls, suggesting that Cr synthesis resulted in a limited methyl supply for PC and protein synthesis (P < 0.05). Although GAA is more effective than Cr at supporting muscle Cr accretion, further research should be conducted into the long term consequences of a limited methyl supply and its effects on protein and PC homeostasis. PMID:26110793

  12. A novel mouse model of creatine transporter deficiency

    PubMed Central

    Baroncelli, Laura; Alessandrì, Maria Grazia; Tola, Jonida; Putignano, Elena; Migliore, Martina; Amendola, Elena; Gross, Cornelius; Leuzzi, Vincenzo; Cioni, Giovanni; Pizzorusso, Tommaso

    2014-01-01

    Mutations in the creatine (Cr) transporter (CrT) gene lead to cerebral creatine deficiency syndrome-1 (CCDS1), an X-linked metabolic disorder characterized by cerebral Cr deficiency causing intellectual disability, seizures, movement  and behavioral disturbances, language and speech impairment ( OMIM #300352). CCDS1 is still an untreatable pathology that can be very invalidating for patients and caregivers. Only two murine models of CCDS1, one of which is an ubiquitous knockout mouse, are currently available to study the possible mechanisms underlying the pathologic phenotype of CCDS1 and to develop therapeutic strategies. Given the importance of validating phenotypes and efficacy of promising treatments in more than one mouse model we have generated a new murine model of CCDS1 obtained by ubiquitous deletion of 5-7 exons in the Slc6a8 gene. We showed a remarkable Cr depletion in the murine brain tissues and cognitive defects, thus resembling the key features of human CCDS1. These results confirm that CCDS1 can be well modeled in mice. This CrT −/y murine model will provide a new tool for increasing the relevance of preclinical studies to the human disease. PMID:25485098

  13. Kinetics of creatine in blood and brain after intraperitoneal injection in the rat.

    PubMed

    Perasso, Luisa; Cupello, Aroldo; Lunardi, Gian Luigi; Principato, Cristina; Gandolfo, Carlo; Balestrino, Maurizio

    2003-06-01

    Creatine has in recent years raised the interest of the neurologist, because it has been used in children with hereditary disorders of creatine metabolism and because experimental data suggest that it may exert a protective effect against various neurological diseases including stroke. Moreover, it is widely used as a nutritional supplement. It is well known that creatine crosses the blood-brain barrier with difficulty, however its accumulation into the brain after systemic administration is still not completely known. In the present experiments we studied its accumulation into rat brain tissue after intraperitoneal (i.p.) single or repeated injections. After a single injection of 160 mg/kg, radioactively labelled creatine (14C-creatine) entered the brain to a limited extent. It reached a plateau value of around 70 microM above baseline, that remained stable for at least 9 h. This amount of exogenous creatine obviously added to the endogenous creatine store. This increase is a minor one, since endogenous creatine has a brain concentration of about 10 mM. In accordance with this conclusion, when single or repeated injections of unlabelled ('cold') creatine were administered to rats, no sizable increase could be measured with high-performance liquid chromatography in the brain levels of either this compound or its phosphorylated derivative, phosphocreatine. Although our data clearly show some passage of serum creatine into the brain, other strategies are needed to improve passage of creatine across the blood-brain barrier in a way that it may be suitable to treat acute conditions like stroke. PMID:12742622

  14. Biochemical and Structural Properties of Mouse Kynurenine Aminotransferase III

    SciTech Connect

    Han, Q.; Robinson, H; Cai, T; Tagle, D; Li, J

    2009-01-01

    Kynurenine aminotransferase III (KAT III) has been considered to be involved in the production of mammalian brain kynurenic acid (KYNA), which plays an important role in protecting neurons from overstimulation by excitatory neurotransmitters. The enzyme was identified based on its high sequence identity with mammalian KAT I, but its activity toward kynurenine and its structural characteristics have not been established. In this study, the biochemical and structural properties of mouse KAT III (mKAT III) were determined. Specifically, mKAT III cDNA was amplified from a mouse brain cDNA library, and its recombinant protein was expressed in an insect cell protein expression system. We established that mKAT III is able to efficiently catalyze the transamination of kynurenine to KYNA and has optimum activity at relatively basic conditions of around pH 9.0 and at relatively high temperatures of 50 to 60C. In addition, mKAT III is active toward a number of other amino acids. Its activity toward kynurenine is significantly decreased in the presence of methionine, histidine, glutamine, leucine, cysteine, and 3-hydroxykynurenine. Through macromolecular crystallography, we determined the mKAT III crystal structure and its structures in complex with kynurenine and glutamine. Structural analysis revealed the overall architecture of mKAT III and its cofactor binding site and active center residues. This is the first report concerning the biochemical characteristics and crystal structures of KAT III enzymes and provides a basis toward understanding the overall physiological role of mammalian KAT III in vivo and insight into regulating the levels of endogenous KYNA through modulation of the enzyme in the mouse brain.

  15. Tyrosine Aminotransferase: Biochemical and Structural Properties and Molecular Dynamics Simulations

    SciTech Connect

    P Mehere; Q Han; J Lemkul; C Vavricka; H Robinson; D Bevan; J Li

    2011-12-31

    Tyrosine aminotransferase (TAT) catalyzes the transamination of tyrosine and other aromatic amino acids. The enzyme is thought to play a role in tyrosinemia type II, hepatitis and hepatic carcinoma recovery. The objective of this study is to investigate its biochemical and structural characteristics and substrate specificity in order to provide insight regarding its involvement in these diseases. Mouse TAT (mTAT) was cloned from a mouse cDNA library, and its recombinant protein was produced using Escherichia coli cells and purified using various chromatographic techniques. The recombinant mTAT is able to catalyze the transamination of tyrosine using {alpha}-ketoglutaric acid as an amino group acceptor at neutral pH. The enzyme also can use glutamate and phenylalanine as amino group donors and p-hydroxy-phenylpyruvate, phenylpyruvate and alpha-ketocaproic acid as amino group acceptors. Through macromolecular crystallography we have determined the mTAT crystal structure at 2.9 {angstrom} resolution. The crystal structure revealed the interaction between the pyridoxal-5'-phosphate cofactor and the enzyme, as well as the formation of a disulphide bond. The detection of disulphide bond provides some rational explanation regarding previously observed TAT inactivation under oxidative conditions and reactivation of the inactive TAT in the presence of a reducing agent. Molecular dynamics simulations using the crystal structures of Trypanosoma cruzi TAT and human TAT provided further insight regarding the substrate-enzyme interactions and substrate specificity. The biochemical and structural properties of TAT and the binding of its cofactor and the substrate may help in elucidation of the mechanism of TAT inhibition and activation.

  16. Tyrosine aminotransferase: biochemical and structural properties and molecular dynamics simulations

    SciTech Connect

    Mehere, P.; Robinson, H.; Han, Q.; Lemkul, J. A.; Vavricka, C. J.; Bevan, D. R.; Li, J.

    2010-11-01

    Tyrosine aminotransferase (TAT) catalyzes the transamination of tyrosine and other aromatic amino acids. The enzyme is thought to play a role in tyrosinemia type II, hepatitis and hepatic carcinoma recovery. The objective of this study is to investigate its biochemical and structural characteristics and substrate specificity in order to provide insight regarding its involvement in these diseases. Mouse TAT (mTAT) was cloned from a mouse cDNA library, and its recombinant protein was produced using Escherichia coli cells and purified using various chromatographic techniques. The recombinant mTAT is able to catalyze the transamination of tyrosine using {alpha}-ketoglutaric acid as an amino group acceptor at neutral pH. The enzyme also can use glutamate and phenylalanine as amino group donors and p-hydroxy-phenylpyruvate, phenylpyruvate and alpha-ketocaproic acid as amino group acceptors. Through macromolecular crystallography we have determined the mTAT crystal structure at 2.9 {angstrom} resolution. The crystal structure revealed the interaction between the pyridoxal-5'-phosphate cofactor and the enzyme, as well as the formation of a disulphide bond. The detection of disulphide bond provides some rational explanation regarding previously observed TAT inactivation under oxidative conditions and reactivation of the inactive TAT in the presence of a reducing agent. Molecular dynamics simulations using the crystal structures of Trypanosoma cruzi TAT and human TAT provided further insight regarding the substrate-enzyme interactions and substrate specificity. The biochemical and structural properties of TAT and the binding of its cofactor and the substrate may help in elucidation of the mechanism of TAT inhibition and activation.

  17. Two alanine aminotranferases link mitochondrial glycolate oxidation to the major photorespiratory pathway in Arabidopsis and rice.

    PubMed

    Niessen, Markus; Krause, Katrin; Horst, Ina; Staebler, Norma; Klaus, Stephanie; Gaertner, Stefanie; Kebeish, Rashad; Araujo, Wagner L; Fernie, Alisdair R; Peterhansel, Christoph

    2012-04-01

    The major photorespiratory pathway in higher plants is distributed over chloroplasts, mitochondria, and peroxisomes. In this pathway, glycolate oxidation takes place in peroxisomes. It was previously suggested that a mitochondrial glycolate dehydrogenase (GlcDH) that was conserved from green algae lacking leaf-type peroxisomes contributes to photorespiration in Arabidopsis thaliana. Here, the identification of two Arabidopsis mitochondrial alanine:glyoxylate aminotransferases (ALAATs) that link glycolate oxidation to glycine formation are described. By this reaction, the mitochondrial side pathway produces glycine from glyoxylate that can be used in the glycine decarboxylase (GCD) reaction of the major pathway. RNA interference (RNAi) suppression of mitochondrial ALAAT did not result in major changes in metabolite pools under standard conditions or enhanced photorespiratroy flux, respectively. However, RNAi lines showed reduced photorespiratory CO(2) release and a lower CO(2) compensation point. Mitochondria isolated from RNAi lines are incapable of converting glycolate to CO(2), whereas simultaneous overexpression of GlcDH and ALAATs in transiently transformed tobacco leaves enhances glycolate conversion. Furthermore, analyses of rice mitochondria suggest that the side pathway for glycolate oxidation and glycine formation is conserved in monocotyledoneous plants. It is concluded that the photorespiratory pathway from green algae has been functionally conserved in higher plants. PMID:22268146

  18. Kinetics of steroid induction and deinduction of tyrosine aminotransferase synthesis in cultured hepatoma cells.

    PubMed Central

    Steinberg, R A; Levinson, B B; Tomkins, G M

    1975-01-01

    The specific rate of synthesis of tyrosine aminotransferase (EC 2.6.1.5; L-tyrosine:2-oxoglutarate aminotransferase) is used as a measure of the level of functional, cytoplasmic, tyrosine aminotransferase-specific mRNA in cultured rat hepatoma cells. An analysis of the kinetics of change in this rate after the addition or withdrawal of glucocorticosteroids sets an upper limit on the half-life of the enzyme-specific mRNA of 1-1.5 hr, whether or not steroid is present. The inactivation rate of the enzyme mRNA is independent of the growth condition of the cells, occuring equally rapidly in the presence or absence of serum or insulin, both of which induce tyrosine aminotransferase in these cells. The implications of these results for the mechanism of steroid induction are discussed. PMID:237268

  19. Comparison of EPR response of alanine and Gd₂O₃-alanine dosimeters exposed to TRIGA Mainz reactor.

    PubMed

    Marrale, M; Schmitz, T; Gallo, S; Hampel, G; Longo, A; Panzeca, S; Tranchina, L

    2015-12-01

    In this work we report some preliminary results regarding the analysis of electron paramagnetic resonance (EPR) response of alanine pellets and alanine pellets added with gadolinium used for dosimetry at the TRIGA research reactor in Mainz, Germany. Two set-ups were evaluated: irradiation inside PMMA phantom and irradiation inside boric acid phantom. We observed that the presence of Gd2O3 inside alanine pellets increases the EPR signal by a factor of 3.45 and 1.24 in case of PMMA and boric acid phantoms, respectively. We can conclude that in the case of neutron beam with a predominant thermal neutron component the addition of gadolinium oxide can significantly improve neutron sensitivity of alanine pellets. Monte Carlo (MC) simulations of both response of alanine and Gd-added alanine pellets with FLUKA code were performed and a good agreement was achieved for pure alanine dosimeters. For Gd2O3-alanine deviations between MC simulations and experimental data were observed and discussed. PMID:26315099

  20. Three-dimensional structure of a pyridoxal-phosphate-dependent enzyme, mitochondrial aspartate aminotransferase.

    PubMed Central

    Ford, G C; Eichele, G; Jansonius, J N

    1980-01-01

    X-ray diffraction studies to 2.8-A resolution have yielded the three-dimensional structure of mitochondrial aspartate aminotransferase (L-aspartate:2-oxoglutarate aminotransferase, EC 2.6.1.1), an isologous alpha 2 dimer (Mr = 2 x 45,000). The subunits are rich in secondary structure and contain two domains, one of which anchors the coenzyme, pyridoxal 5'-phosphate. Each active site lies between the subunits and is composed of residues from both of them. PMID:6930651

  1. Optimal cut-off value of alanine aminotransferase level to precisely estimate the presence of fatty liver in patients with poorly controlled type 2 diabetes.

    PubMed

    Tanabe, Akihito; Tatsumi, Fuminori; Okauchi, Seizo; Yabe, Hiroki; Tsuda, Tomohiro; Okutani, Kazuma; Yamashita, Kazuki; Nakashima, Koji; Kaku, Kohei; Kaneto, Hideaki

    2016-07-01

    Optimal cut-off value of ALT level to precisely estimate the presence of fatty liver was as low as 28.0 U/L. We should consider the possibility of fatty liver even when ALT level is within normal range in subjects with poorly controlled type 2 diabetes. PMID:27373695

  2. Focally Elevated Creatine Detected in Amyloid Precursor Protein (APP) Transgenic Mice and Alzheimer Disease Brain Tissue

    SciTech Connect

    Gallant,M.; Rak, M.; Szeghalmi, A.; Del Bigio, M.; Westaway, D.; Yang, J.; Julian, R.; Gough, K.

    2006-01-01

    The creatine/phosphocreatine system, regulated by creatine kinase, plays an important role in maintaining energy balance in the brain. Energy metabolism and the function of creatine kinase are known to be affected in Alzheimer diseased brain and in cells exposed to the {beta}-amyloid peptide. We used infrared microspectroscopy to examine hippocampal, cortical, and caudal tissue from 21-89-week-old transgenic mice expressing doubly mutant (K670N/M671L and V717F) amyloid precursor protein and displaying robust pathology from an early age. Microcrystalline deposits of creatine, suggestive of perturbed energetic status, were detected by infrared microspectroscopy in all animals with advanced plaque pathology. Relatively large creatine deposits were also found in hippocampal sections from post-mortem Alzheimer diseased human brain, compared with hippocampus from non-demented brain. We therefore speculate that this molecule is a marker of the disease process.

  3. Aspartate Aminotransferase in Alfalfa Root Nodules : III. Genotypic and Tissue Expression of Aspartate Aminotransferase in Alfalfa and Other Species.

    PubMed

    Farnham, M W; Griffith, S M; Miller, S S; Vance, C P

    1990-12-01

    Aspartate aminotransferase (AAT) plays an important role in nitrogen metabolism in all plants and is particularly important in the assimilation of fixed N derived from the legume-Rhizoblum symbiosis. Two isozymes of AAT (AAT-1 and AAT-2) occur in alfalfa (Medicago sativa L.). Antibodies against alfalfa nodule AAT-2 do not recognize AAT-1, and these antibodies were used to study AAT-2 expression in different tissues and genotypes of alfalfa and also in other legume and nonlegume species. Rocket immunoelectrophoresis indicated that nodules of 38-day-old alfalfa plants contained about eight times more AAT-2 than did nodules of 7-day-old plants, confirming the nodule-enhanced nature of this isozyme. AAT-2 was estimated to make up 16, 15, 5, and 8 milligrams per gram of total soluble protein in mature nodules, roots, stems, and leaves, respectively, of effective N(2)-fixing alfalfa. The concentration of AAT-2 in nodules of ineffective non-N(2)-fixing alafalfa genotypes was about 70% less than that of effective nodules. Western blots of soluble protein from nodules of nine legume species indicated that a 40-kilodalton polypeptide that reacts strongly with AAT-2 antibodies is conserved in legumes. Nodule AAT-2 immunoprecipitation data suggested that amide- and ureide-type legumes may differ in expression and regulation of the enzyme. In addition, Western blotting and immunoprecipitations of AAT activity demonstrated that antibodies against alfalfa AAT-2 are highly cross-reactive with AAT enzyme protein in leaves of soybean (Glycine max L.), wheat (Triticum aestivum L.), and maize (Zea mays L.) and in roots of maize, but not with AAT in soybean and wheat roots. Results from this study indicate that AAT-2 is structurally conserved and localized in similar tissues among diverse species. PMID:16667896

  4. Plasma guanidino compounds are altered by oral creatine supplementation in healthy humans.

    PubMed

    Derave, Wim; Marescau, Bart; Vanden Eede, Els; Eijnde, Bert O; De Deyn, Peter P; Hespel, Peter

    2004-09-01

    Although creatine is one of the most widely used nutritional supplements for athletes as well as for patients with neuromuscular disorders, the effects of oral creatine supplementation on endogenous creatine synthesis in humans remains largely unexplored. The aim of the present study was to investigate the metabolic consequences of a frequently used, long-term creatine ingestion protocol on the circulating creatine synthesis precursor molecules, guanidinoacetate and arginine, and their related guanidino compounds. For this purpose, 16 healthy young volunteers were randomly divided to ingest in a double-blind fashion either creatine monohydrate or placebo (maltodextrine) at a dosage of 20 g/day for the first week (loading phase) and 5 g/day for 19 subsequent wk (maintenance phase). Fasting plasma samples were taken at baseline and at 1, 10, and 20 wk of supplementation, and guanidino compounds were determined. Plasma guanidinoacetate levels were reduced by 50% after creatine loading and remained approximately 30% reduced throughout the maintenance phase. Several circulating guanidino compound levels were significantly altered after creatine loading but not during the maintenance phase: homoarginine (+35%), alpha-keto-delta-guanidinovaleric acid (+45%), and argininic acid (+75%) were increased, whereas guanidinosuccinate was reduced (-25%). The decrease in circulating guanidinoacetate levels suggests that exogenous supply of creatine chronically inhibits endogenous synthesis at the transamidinase step in humans, supporting earlier animal studies showing a powerful repressive effect of creatine on l-arginine:glycine amidinotransferase. Furthermore, these data suggest that this leads to enhanced utilization of arginine as a substrate for secondary pathways. PMID:15107411

  5. A review of creatine supplementation in age-related diseases: more than a supplement for athletes.

    PubMed

    Smith, Rachel N; Agharkar, Amruta S; Gonzales, Eric B

    2014-01-01

    Creatine is an endogenous compound synthesized from arginine, glycine and methionine. This dietary supplement can be acquired from food sources such as meat and fish, along with athlete supplement powders. Since the majority of creatine is stored in skeletal muscle, dietary creatine supplementation has traditionally been important for athletes and bodybuilders to increase the power, strength, and mass of the skeletal muscle. However, new uses for creatine have emerged suggesting that it may be important in preventing or delaying the onset of neurodegenerative diseases associated with aging. On average, 30% of muscle mass is lost by age 80, while muscular weakness remains a vital cause for loss of independence in the elderly population. In light of these new roles of creatine, the dietary supplement's usage has been studied to determine its efficacy in treating congestive heart failure, gyrate atrophy, insulin insensitivity, cancer, and high cholesterol. In relation to the brain, creatine has been shown to have antioxidant properties, reduce mental fatigue, protect the brain from neurotoxicity, and improve facets/components of neurological disorders like depression and bipolar disorder. The combination of these benefits has made creatine a leading candidate in the fight against age-related diseases, such as Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, long-term memory impairments associated with the progression of Alzheimer's disease, and stroke. In this review, we explore the normal mechanisms by which creatine is produced and its necessary physiology, while paying special attention to the importance of creatine supplementation in improving diseases and disorders associated with brain aging and outlining the clinical trials involving creatine to treat these diseases. PMID:25664170

  6. A review of creatine supplementation in age-related diseases: more than a supplement for athletes

    PubMed Central

    Smith, Rachel N.; Agharkar, Amruta S.; Gonzales, Eric B.

    2014-01-01

    Creatine is an endogenous compound synthesized from arginine, glycine and methionine. This dietary supplement can be acquired from food sources such as meat and fish, along with athlete supplement powders. Since the majority of creatine is stored in skeletal muscle, dietary creatine supplementation has traditionally been important for athletes and bodybuilders to increase the power, strength, and mass of the skeletal muscle. However, new uses for creatine have emerged suggesting that it may be important in preventing or delaying the onset of neurodegenerative diseases associated with aging. On average, 30% of muscle mass is lost by age 80, while muscular weakness remains a vital cause for loss of independence in the elderly population. In light of these new roles of creatine, the dietary supplement’s usage has been studied to determine its efficacy in treating congestive heart failure, gyrate atrophy, insulin insensitivity, cancer, and high cholesterol. In relation to the brain, creatine has been shown to have antioxidant properties, reduce mental fatigue, protect the brain from neurotoxicity, and improve facets/components of neurological disorders like depression and bipolar disorder. The combination of these benefits has made creatine a leading candidate in the fight against age-related diseases, such as Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, long-term memory impairments associated with the progression of Alzheimer’s disease, and stroke. In this review, we explore the normal mechanisms by which creatine is produced and its necessary physiology, while paying special attention to the importance of creatine supplementation in improving diseases and disorders associated with brain aging and outlining the clinical trials involving creatine to treat these diseases. PMID:25664170

  7. The Structure of NtdA, a Sugar Aminotransferase Involved in the Kanosamine Biosynthetic Pathway in Bacillus subtilis, Reveals a New Subclass of Aminotransferases*

    PubMed Central

    van Straaten, Karin E.; Ko, Jong Bum; Jagdhane, Rajendra; Anjum, Shazia; Palmer, David R. J.; Sanders, David A. R.

    2013-01-01

    NtdA from Bacillus subtilis is a sugar aminotransferase that catalyzes the pyridoxal phosphate-dependent equatorial transamination of 3-oxo-α-d-glucose 6-phosphate to form α-d-kanosamine 6-phosphate. The crystal structure of NtdA shows that NtdA shares the common aspartate aminotransferase fold (Type 1) with residues from both monomers forming the active site. The crystal structures of NtdA alone, co-crystallized with the product α-d-kanosamine 6-phosphate, and incubated with the amine donor glutamate reveal three key structures in the mechanistic pathway of NtdA. The structure of NtdA alone reveals the internal aldimine form of NtdA with the cofactor pyridoxal phosphate covalently attached to Lys-247. The addition of glutamate results in formation of pyridoxamine phosphate. Co-crystallization with kanosamine 6-phosphate results in the formation of the external aldimine. Only α-d-kanosamine 6-phosphate is observed in the active site of NtdA, not the β-anomer. A comparison of the structure and sequence of NtdA with other sugar aminotransferases enables us to propose that the VIβ family of aminotransferases should be divided into subfamilies based on the catalytic lysine motif. PMID:24097983

  8. Cerebral energetic effects of creatine supplementation in humans.

    PubMed

    Pan, J W; Takahashi, K

    2007-04-01

    There has been considerable interest in the use of creatine (Cr) supplementation to treat neurological disorders. However, in contrast to muscle physiology, there are relatively few studies of creatine supplementation in the brain. In this report, we use high-field MR (31)P and (1)H spectroscopic imaging of human brain with a 7-day protocol of oral Cr supplementation to examine its effects on cerebral energetics (phosphocreatine, PCr; ATP) and mitochondrial metabolism (N-acetyl aspartate, NAA; and Cr). We find an increased ratio of PCr/ATP (day 0, 0.80 +/- 0.10; day 7, 0.85 +/- 09), with this change largely due to decreased ATP, from 2.7 +/- 0.3 mM to 2.5 +/- 0.3 mM. The ratio of NAA/Cr also decreased (day 0, 1.32 +/- 0.17; day 7 1.18 +/- 0.13), primarily from increased Cr (9.6 +/- 1.9 to 10.1 +/- 2.0 mM). The Cr-induced changes significantly correlated with the basal state, with the fractional increase in PCr/ATP negatively correlating with the basal PCr/ATP value (R = -0.74, P < 0.001). As NAA is a measure of mitochondrial function, there was also a significant negative correlation between basal NAA concentrations with the fractional change in PCr and ATP. Thus healthy human brain energetics is malleable and shifts with 7 days of Cr supplementation, with the regions of initially low PCr showing the largest increments in PCr. Overall, Cr supplementation appears to improve high-energy phosphate turnover in healthy brain and can result in either a decrease or an increase in high-energy phosphate concentrations. PMID:17185404

  9. Clinical use of creatine in neuromuscular and neurometabolic disorders.

    PubMed

    Tarnopolsky, Mark A

    2007-01-01

    Many of the neuromuscular (e.g., muscular dystrophy) and neurometabolic (e.g., mitochondrial cytopathies) disorders share similar final common pathways of cellular dysfunction that may be favorably influenced by creatine monohydrate (CrM) supplementation. Studies using the mdx model of Duchenne muscular dystrophy have found evidence of enhanced mitochondrial function, reduced intra-cellular calcium and improved performance with CrM supplementation. Clinical trials in patients with Duchenne and Becker's muscular dystrophy have shown improved function, fat-free mass, and some evidence of improved bone health with CrM supplementation. In contrast, the improvements in function in myotonic dystrophy and inherited neuropathies (e.g., Charcot-Marie-Tooth) have not been significant. Some studies in patients with mitochondrial cytopathies have shown improved muscle endurance and body composition, yet other studies did not find significant improvements in patients with mitochondrial cytopathy. Lower-dose CrM supplementation in patients with McArdle's disease (myophosphorylase deficiency) improved exercise capacity, yet higher doses actually showed some indication of worsened function. Based upon known cellular pathologies, there are potential benefits from CrM supplementation in patients with steroid myopathy, inflammatory myopathy, myoadenylate deaminase deficiency, and fatty acid oxidation defects. Larger randomized control trials (RCT) using homogeneous patient groups and objective and clinically relevant outcome variables are needed to determine whether creatine supplementation will be of therapeutic benefit to patients with neuromuscular or neurometabolic disorders. Given the relatively low prevalence of some of the neuromuscular and neurometabolic disorders, it will be necessary to use surrogate markers of potential clinical efficacy including markers of oxidative stress, cellular energy charge, and gene expression patterns. PMID:18652078

  10. REVERSAL OF d-CYCLOSERINE INHIBITION OF BACTERIAL GROWTH BY ALANINE

    PubMed Central

    Zygmunt, Walter A.

    1962-01-01

    Zygmunt, Walter A. (Mead Johnson & Co., Evansville, Ind.). Reversal of d-cycloserine inhibition of bacterial growth by alanine. J. Bacteriol. 84:154–156. 1962.—Reversal of the antibacterial activity of d-4-amino-3-isoxazolidone by alanine in bacterial cultures actively growing on chemically defined media was compared in cultures requiring exogenous alanine and those capable of its synthesis. dl-Alanine was the most effective reversal agent in Pediococcus cerevisiae, an alanine-requiring organism, and d-alanine was effective in Escherichia coli and Staphylococcus aureus, organisms synthesizing alanine. With all three cultures, l-alanine was the least effective reversal agent. PMID:16561951

  11. Metabolomics Analysis Identifies D-Alanine-D-alanine Ligase as the Primary Lethal Target of D-cycloserine in Mycobacteria

    PubMed Central

    Halouska, Steven; Fenton, Robert J.; Zinniel, Denise K.; Marshall, Darrell D.; Barletta, Raúl G.; Powers, Robert

    2014-01-01

    D-cycloserine is an effective second line antibiotic used as a last resort to treat multi (MDR)- and extensively (XDR)- drug resistant strains of Mycobacterium tuberculosis. D-cycloserine interferes with the formation of peptidoglycan biosynthesis by competitive inhibition of Alanine racemase (Alr) and D-Alanine-D-alanine ligase (Ddl). Although, the two enzymes are known to be inhibited, the in vivo lethal target is still unknown. Our NMR metabolomics work has revealed that Ddl is the primary target of DCS, as cell growth is inhibited when the production of D-alanyl-D-alanine is halted. It is shown that inhibition of Alr may contribute indirectly by lowering the levels of D-alanine thus allowing DCS to outcompete D-alanine for Ddl binding. The NMR data also supports the possibility of a transamination reaction to produce D-alanine from pyruvate and glutamate, thereby bypassing Alr inhibition. Furthermore, the inhibition of peptidoglycan synthesis results in a cascading effect on cellular metabolism as there is a shift toward the catabolic routes to compensate for accumulation of peptidoglycan precursors. PMID:24303782

  12. Creatine Metabolism and Safety Profiles after Six-Week Oral Guanidinoacetic Acid Administration in Healthy Humans

    PubMed Central

    Ostojic, Sergej M.; Niess, Barbara; Stojanovic, Marko; Obrenovic, Milos

    2013-01-01

    Objectives; Guanidinoacetic acid (GAA) is a natural precursor of creatine, yet the potential use of GAA as a nutritional additive for restoring creatine availability in humans has been limited by unclear efficacy and safety after exogenous GAA administration. The present study evaluated the effects of orally administered GAA on serum and urinary GAA, creatine and creatinine concentration, and on the occurrence of adverse events in healthy humans. Methods and Results; Twenty-four healthy volunteers were randomized in a double-blind design to receive either GAA (2.4 grams daily) or placebo (PLA) by oral administration for 6 weeks. Clinical trial registration: www.clinicaltrials.gov, identification number NCT01133899. Serum creatine and creatinine increased significantly from before to after administration in GAA-supplemented participants (P < 0.05). The proportion of participants who reported minor side effects was 58.3% in the GAA group and 45.5% in the placebo group (P = 0.68). A few participants experienced serum creatine levels above 70 µmol/L. Conclusion; Exogenous GAA is metabolized to creatine, resulting in a significant increase of fasting serum creatine after intervention. GAA had an acceptable side-effects profile with a low incidence of biochemical abnormalities. PMID:23329885

  13. A Pilot Clinical Trial of Creatine and Minocycline in Early Parkinson Disease: 18-Month Results

    PubMed Central

    2015-01-01

    Objective To report an 18-month follow-up on creatine and minocycline futility study, the Neuroprotective Exploratory Trials in Parkinson Disease, Futility Study 1 (NET-PD FS-1). Background The NET-PD FS-1 futility study on creatine and minocycline found neither agent futile in slowing down the progression of disability in Parkinson disease (PD) at 12 months using the prespecified futility threshold. An additional 6 months of follow-up aimed to assess safety and potential interactions of the study interventions with anti-parkinsonian therapy. Methods Additional 6 months of follow-up in randomized, blinded phase II trial of creatine (dosage, 10 g/d) and minocycline (dosage, 200 mg/d) in subjects with early PD. Results By 18 months, symptomatic treatment of PD symptoms was required in 61% of creatine, 62% of minocycline, and 60% of placebo-treated subjects. Study treatment was prematurely discontinued in 9%, 23%, and 6% of subjects in the creatine, minocycline, and placebo arms, respectively. Creatine and minocycline did not seem to adversely influence the response to symptomatic therapy nor increase adverse events. Conclusions Data from this small, 18-month phase II trial of creatine and minocycline do not demonstrate safety concerns that would preclude a large, phase III efficacy trial, although the decreased tolerability of minocycline is a concern. PMID:18520981

  14. Effect of creatine on aerobic and anaerobic metabolism in skeletal muscle in swimmers.

    PubMed Central

    Thompson, C H; Kemp, G J; Sanderson, A L; Dixon, R M; Styles, P; Taylor, D J; Radda, G K

    1996-01-01

    OBJECTIVE: To examine the effect of a relatively low dose of creatine on skeletal muscle metabolism and oxygen supply in a group of training athletes. METHODS: 31P magnetic resonance and near-infrared spectroscopy were used to study calf muscle metabolism in a group of 10 female members of a university swimming team. Studies were performed before and after a six week period of training during which they took either 2 g creatine daily or placebo. Calf muscle metabolism and creatine/choline ratios were studied in resting muscle, during plantar flexion exercise (10-15 min), and during recovery from exercise. RESULTS: There was no effect of creatine on metabolite ratios at rest or on metabolism during exercise and recovery from exercise. Muscle oxygen supply and exercise performance were not improved by creatine if compared to placebo treated subjects. CONCLUSIONS: Oral creatine supplementation at 2 g daily has no effect on muscle creatine concentration, muscle oxygen supply or muscle aerobic or anaerobic metabolism during endurance exercise. PMID:8889115

  15. Effect of creatine and pioglitazone on Hk-2 cell line cisplatin nephrotoxicity.

    PubMed

    Genc, Gurkan; Kilinc, Veli; Bedir, Abdulkerim; Ozkaya, Ozan

    2014-08-01

    Cisplatin is a chemotherapeutic agent, which is used in the treatment of various solid organ cancers, and its main dose limiting side effect of cisplatin is nephrotoxicity. The aim of this study is to investigate the role of pioglitazone and creatine on cisplatin nephrotoxicity in vitro. Real-time cell analyzer system (RTCA) was used for real-time and time-dependent analysis of the cellular response of HK-2 cells following incubation with cisplatin and combination with creatine or pioglitazone hydrochloride. First, half-maximal inhibitory concentrations (IC50) of cisplatin, creatine and pioglitazone were calculated by RTCA system. Afterwards creatine and pioglitazone was administered with serial dilutions under RTCA system. IC50 dose for cisplatin was 7.69 M × 10(-5) at 24th hour and 3.93 M × 10(-6) at 48th hour. IC50 dose for pioglitazone was 1.61 M × 10(-3) at 24th hour and 2.85 M × 10(-4) at 48th hour. Although cells were treated the dose of 40,225 mM creatine, IC50 dose could not been reached. Neither pioglitazone nor creatine had additional protective effect in any dose. Consequently, beneficial effect of creatine and pioglitazone on cisplatin-induced cell death could not be found. Further studies and clinical trials are needed to evaluate the effect of different doses of these drugs in cisplatin-induced nephrotoxicity. PMID:24937012

  16. Caffeine and Creatine Content of Dietary Supplements Consumed by Brazilian Soccer Players.

    PubMed

    Inácio, Suelen Galante; de Oliveira, Gustavo Vieira; Alvares, Thiago Silveira

    2016-08-01

    Caffeine and creatine are ingredients in the most popular dietary supplements consumed by soccer players. However, some products may not contain the disclosed amounts of the ingredients listed on the label, compromising the safe usage and the effectiveness of these supplements. Therefore, the aim of this study was to evaluate the content of caffeine and creatine in dietary supplements consumed by Brazilian soccer players. The results obtained were compared with the caffeine content listed on the product label. Two batches of the supplement brands consumed by ≥ 50% of the players were considered for analysis. The quantification of caffeine and creatine in the supplements was determined by a high-performance liquid chromatography system with UV detector. Nine supplements of caffeine and 7 supplements of creatine met the inclusion criteria for analysis. Eight brands of caffeine and five brands of creatine showed significantly different values (p < .05) as compared with the values stated on the label. There were no significant differences between the two batches of supplements analyzed, except for one caffeine supplement. It can be concluded that caffeine and creatine dietary supplements consumed by Brazilian soccer players present inaccurate values listed on the label, although most presented no difference among batches. To ensure consumer safety and product efficacy, accurate information on caffeine and creatine content should be provided on all dietary supplement labels. PMID:26696650

  17. The Effects of Creatine Supplementation on Explosive Performance and Optimal Individual Postactivation Potentiation Time

    PubMed Central

    Wang, Chia-Chi; Yang, Ming-Ta; Lu, Kang-Hao; Chan, Kuei-Hui

    2016-01-01

    Creatine plays an important role in muscle energy metabolism. Postactivation potentiation (PAP) is a phenomenon that can acutely increase muscle power, but it is an individualized process that is influenced by muscle fatigue. This study examined the effects of creatine supplementation on explosive performance and the optimal individual PAP time during a set of complex training bouts. Thirty explosive athletes performed tests of back squat for one repetition maximum (1RM) strength and complex training bouts for determining the individual optimal timing of PAP, height and peak power of a counter movement jump before and after the supplementation. Subjects were assigned to a creatine or placebo group and then consumed 20 g of creatine or carboxymethyl cellulose per day for six days. After the supplementation, the 1RM strength in the creatine group significantly increased (p < 0.05). The optimal individual PAP time in the creatine group was also significant earlier than the pre-supplementation and post-supplementation of the placebo group (p < 0.05). There was no significant difference in jump performance between the groups. This study demonstrates that creatine supplementation improves maximal muscle strength and the optimal individual PAP time of complex training but has no effect on explosive performance. PMID:26959056

  18. URINARY CREATINE AT REST AND AFTER REPEATED SPRINTS IN ATHLETES: A PILOT STUDY

    PubMed Central

    Nasrallah, F.; Feki, M.; Chamari, K.; Omar, S.; Alouane-Trabelsi, L.; Ben Mansour, A.; Kaabachi, N.

    2014-01-01

    Creatine plays a key role in muscle function and its evaluation is important in athletes. In this study, urinary creatine concentration was measured in order to highlight its possible significance in monitoring sprinters. The study included 51 sprinters and 25 age- and sex-matched untrained subjects as a control group. Body composition was measured and dietary intake estimated. Urine samples were collected before and after standardized physical exercise. Creatine was assessed by gas chromatography mass spectrometry. Basal urinary creatine (UC) was significantly lower in sprinters than controls (34±30 vs. 74±3 µmol/mmol creatinine, p < 0.05). UC was inversely correlated with body mass (r = −0.34, p < 0.01) and lean mass (r = −0.30, p < 0.05), and positively correlated with fat mass (r = 0.32, p < 0.05). After acute exercise, urinary creatine significantly decreased in both athletes and controls. UC is low in sprinters at rest and further decreases after exercise, most likely due to a high uptake and use of creatine by muscles, as muscle mass and physical activity are supposed to be greater in athletes than untrained subjects. Further studies are needed to test the value of urinary creatine as a non-invasive marker of physical condition and as a parameter for managing Cr supplementation in athletes. PMID:24917689

  19. Creatine supplementation in the aging population: effects on skeletal muscle, bone and brain.

    PubMed

    Gualano, Bruno; Rawson, Eric S; Candow, Darren G; Chilibeck, Philip D

    2016-08-01

    This narrative review aims to summarize the recent findings on the adjuvant application of creatine supplementation in the management of age-related deficits in skeletal muscle, bone and brain metabolism in older individuals. Most studies suggest that creatine supplementation can improve lean mass and muscle function in older populations. Importantly, creatine in conjunction with resistance training can result in greater adaptations in skeletal muscle than training alone. The beneficial effect of creatine upon lean mass and muscle function appears to be applicable to older individuals regardless of sex, fitness or health status, although studies with very old (>90 years old) and severely frail individuals remain scarce. Furthermore, there is evidence that creatine may affect the bone remodeling process; however, the effects of creatine on bone accretion are inconsistent. Additional human clinical trials are needed using larger sample sizes, longer durations of resistance training (>52 weeks), and further evaluation of bone mineral, bone geometry and microarchitecture properties. Finally, a number of studies suggest that creatine supplementation improves cognitive processing under resting and various stressed conditions. However, few data are available on older adults, and the findings are discordant. Future studies should focus on older adults and possibly frail elders or those who have already experienced an age-associated cognitive decline. PMID:27108136

  20. Postirradiation effects in alanine dosimeter probes of two different suppliers.

    PubMed

    Anton, Mathias

    2008-03-01

    The measurand relevant for the dosimetry for radiation therapy is the absorbed dose to water, DW. The Physikalisch-Technische Bundesanstalt (PTB) is establishing a secondary standard for DW for high-energy photon and electron radiation based on electron spin resonance (ESR) of the amino acid alanine. For practical applications, like, for example, intercomparison measurements using the ESR/alanine dosimetry system, the temporal evolution of the ESR signal of irradiated probes is an important issue. This postirradiation behaviour is investigated for alanine pellets of two different suppliers for different storage conditions. The influence of the storage conditions on the temporal evolution may be dependent on the type of probes used. The measurement and analysis method developed at the PTB is able to circumvent the apparent difficulties in the case of alanine/paraffin probes. Care has to be taken in case this method cannot be applied. PMID:18296760

  1. Regulation of the creatine transporter by AMP-activated protein kinase in kidney epithelial cells

    PubMed Central

    Li, Hui; Thali, Ramon F.; Smolak, Christy; Gong, Fan; Alzamora, Rodrigo; Wallimann, Theo; Scholz, Roland; Pastor-Soler, Núria M.; Neumann, Dietbert

    2010-01-01

    The metabolic sensor AMP-activated protein kinase (AMPK) regulates several transport proteins, potentially coupling transport activity to cellular stress and energy levels. The creatine transporter (CRT; SLC6A8) mediates creatine uptake into several cell types, including kidney epithelial cells, where it has been proposed that CRT is important for reclamation of filtered creatine, a process critical for total body creatine homeostasis. Creatine and phosphocreatine provide an intracellular, high-energy phosphate-buffering system essential for maintaining ATP supply in tissues with high energy demands. To test our hypothesis that CRT is regulated by AMPK in the kidney, we examined CRT and AMPK distribution in the kidney and the regulation of CRT by AMPK in cells. By immunofluorescence staining, we detected CRT at the apical pole in a polarized mouse S3 proximal tubule cell line and in native rat kidney proximal tubules, a distribution overlapping with AMPK. Two-electrode voltage-clamp (TEV) measurements of Na+-dependent creatine uptake into CRT-expressing Xenopus laevis oocytes demonstrated that AMPK inhibited CRT via a reduction in its Michaelis-Menten Vmax parameter. [14C]creatine uptake and apical surface biotinylation measurements in polarized S3 cells demonstrated parallel reductions in creatine influx and CRT apical membrane expression after AMPK activation with the AMP-mimetic compound 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside. In oocyte TEV experiments, rapamycin and the AMPK activator 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranosyl 5′-monophosphate (ZMP) inhibited CRT currents, but there was no additive inhibition of CRT by ZMP, suggesting that AMPK may inhibit CRT indirectly via the mammalian target of rapamycin pathway. We conclude that AMPK inhibits apical membrane CRT expression in kidney proximal tubule cells, which could be important in reducing cellular energy expenditure and unnecessary creatine reabsorption under conditions of local

  2. Creatine affords protection against glutamate-induced nitrosative and oxidative stress.

    PubMed

    Cunha, Mauricio P; Lieberknecht, Vicente; Ramos-Hryb, Ana Belén; Olescowicz, Gislaine; Ludka, Fabiana K; Tasca, Carla I; Gabilan, Nelson H; Rodrigues, Ana Lúcia S

    2016-05-01

    Creatine has been reported to exert beneficial effects in several neurodegenerative diseases in which glutamatergic excitotoxicity and oxidative stress play an etiological role. The purpose of this study was to investigate the protective effects of creatine, as compared to the N-Methyl-d-Aspartate (NMDA) receptor antagonist dizocilpine (MK-801), against glutamate or hydrogen peroxide (H2O2)-induced injury in human neuroblastoma SH-SY5Y cells. Exposure of cells to glutamate (60-80 mM) or H2O2 (200-300 μM) for 24 h decreased cellular viability and increased dichlorofluorescein (DCF) fluorescence (indicative of increased reactive oxygen species, ROS) and nitric oxide (NO) production (assessed by mono-nitrogen oxides, NOx, levels). Creatine (1-10 mM) or MK-801 (0.1-10 μM) reduced glutamate- and H2O2-induced toxicity. The protective effect of creatine against glutamate-induced toxicity involves its antioxidant effect, since creatine, similar to MK-801, prevented the increase on DCF fluorescence induced by glutamate or H2O2. Furthermore, creatine or MK-801 blocked glutamate- and H2O2-induced increases in NOx levels. In another set of experiments, the repeated, but not acute, administration of creatine (300 mg/kg, po) in mice prevented the decreases on cellular viability and mitochondrial membrane potential (assessed by tetramethylrhodamine ethyl ester, TMRE, probe) of hippocampal slices incubated with glutamate (10 mM). Creatine concentration-dependent decreased the amount of nitrite formed in the reaction of oxygen with NO produced from sodium nitroprusside solution, suggesting that its protective effect against glutamate or H2O2-induced toxicity might be due to its scavenger activity. Overall, the results suggest that creatine may be useful as adjuvant therapy for neurodegenerative disease treatments. PMID:26804444

  3. Total body skeletal muscle mass: estimation by creatine (methyl-d3) dilution in humans

    PubMed Central

    Walker, Ann C.; O'Connor-Semmes, Robin L.; Leonard, Michael S.; Miller, Ram R.; Stimpson, Stephen A.; Turner, Scott M.; Ravussin, Eric; Cefalu, William T.; Hellerstein, Marc K.; Evans, William J.

    2014-01-01

    Current methods for clinical estimation of total body skeletal muscle mass have significant limitations. We tested the hypothesis that creatine (methyl-d3) dilution (D3-creatine) measured by enrichment of urine D3-creatinine reveals total body creatine pool size, providing an accurate estimate of total body skeletal muscle mass. Healthy subjects with different muscle masses [n = 35: 20 men (19–30 yr, 70–84 yr), 15 postmenopausal women (51–62 yr, 70–84 yr)] were housed for 5 days. Optimal tracer dose was explored with single oral doses of 30, 60, or 100 mg D3-creatine given on day 1. Serial plasma samples were collected for D3-creatine pharmacokinetics. All urine was collected through day 5. Creatine and creatinine (deuterated and unlabeled) were measured by liquid chromatography mass spectrometry. Total body creatine pool size and muscle mass were calculated from D3-creatinine enrichment in urine. Muscle mass was also measured by magnetic resonance imaging (MRI), dual-energy x-ray absorptiometry (DXA), and traditional 24-h urine creatinine. D3-creatine was rapidly absorbed and cleared with variable urinary excretion. Isotopic steady-state of D3-creatinine enrichment in the urine was achieved by 30.7 ± 11.2 h. Mean steady-state enrichment in urine provided muscle mass estimates that correlated well with MRI estimates for all subjects (r = 0.868, P < 0.0001), with less bias compared with lean body mass assessment by DXA, which overestimated muscle mass compared with MRI. The dilution of an oral D3-creatine dose determined by urine D3-creatinine enrichment provides an estimate of total body muscle mass strongly correlated with estimates from serial MRI with less bias than total lean body mass assessment by DXA. PMID:24764133

  4. Relationship Between Hepatic Steatosis and the Elevation of Aminotransferases in HBV-Infected Patients With HBe-Antigen Negativity and a Low Viral Load.

    PubMed

    Enomoto, Hirayuki; Aizawa, Nobuhiro; Nishikawa, Hiroki; Ikeda, Naoto; Sakai, Yoshiyuki; Takata, Ryo; Hasegawa, Kunihiro; Nakano, Chikage; Nishimura, Takashi; Yoh, Kazunori; Ishii, Akio; Takashima, Tomoyuki; Iwata, Yoshinori; Iijima, Hiroko; Nishiguchi, Shuhei

    2016-04-01

    Nonalcoholic fatty liver disease has been suggested to be associated with alanine aminotransferase (ALT) elevation in hepatitis B virus (HBV)-infected patients with HBe antigen (HBeAg)-negativity and a low HBV-DNA level. However, few studies have evaluated the association according to histological findings of the liver.Among a total of 198 HBV-infected patients who received a percutaneous liver biopsy, we studied the histological and laboratory findings of HBeAg-negative patients without receiving nucleoside/nucleotide analogues treatment (N = 70) in order to evaluate whether hepatic steatosis and its related metabolic disorders were associated with an elevation in ALT levels in HBeAg-negative patients.In HBeAg-negative patients with a high serum HBV-DNA level (≥2000 IU/mL), the level of HBV-DNA was the only significant factor related to ALT elevation. However, in HBeAg-negative patients with a low HBV-DNA level, the serum ferritin level, and histologically observed hepatic steatosis were significantly associated factors with ALT elevation. When we evaluated 2 metabolic variables (serum ferritin and fasting insulin) that are suggested to be relevant to the presence of progressive disease in Japanese patients, we found that the rate of metabolic disorders was significantly higher among patients with a high ALT level and a low HBV-DNA level than it was among those with other conditions. The triglyceride level and the frequency of moderate or severe hepatic steatosis were significantly higher in patients with a low HBV-DNA level than in those with a high HBV-DNA level.Histologically proven hepatic steatosis and its related metabolic disorders are suggested to be involved in the elevation of aminotransferases of HBeAg-negative patients, particularly those with low HBV-DNA levels. PMID:27124068

  5. Relationship Between Hepatic Steatosis and the Elevation of Aminotransferases in HBV-Infected Patients With HBe-Antigen Negativity and a Low Viral Load

    PubMed Central

    Enomoto, Hirayuki; Aizawa, Nobuhiro; Nishikawa, Hiroki; Ikeda, Naoto; Sakai, Yoshiyuki; Takata, Ryo; Hasegawa, Kunihiro; Nakano, Chikage; Nishimura, Takashi; Yoh, Kazunori; Ishii, Akio; Takashima, Tomoyuki; Iwata, Yoshinori; Iijima, Hiroko; Nishiguchi, Shuhei

    2016-01-01

    Abstract Nonalcoholic fatty liver disease has been suggested to be associated with alanine aminotransferase (ALT) elevation in hepatitis B virus (HBV)-infected patients with HBe antigen (HBeAg)-negativity and a low HBV-DNA level. However, few studies have evaluated the association according to histological findings of the liver. Among a total of 198 HBV-infected patients who received a percutaneous liver biopsy, we studied the histological and laboratory findings of HBeAg-negative patients without receiving nucleoside/nucleotide analogues treatment (N = 70) in order to evaluate whether hepatic steatosis and its related metabolic disorders were associated with an elevation in ALT levels in HBeAg-negative patients. In HBeAg-negative patients with a high serum HBV-DNA level (≥2000 IU/mL), the level of HBV-DNA was the only significant factor related to ALT elevation. However, in HBeAg-negative patients with a low HBV-DNA level, the serum ferritin level, and histologically observed hepatic steatosis were significantly associated factors with ALT elevation. When we evaluated 2 metabolic variables (serum ferritin and fasting insulin) that are suggested to be relevant to the presence of progressive disease in Japanese patients, we found that the rate of metabolic disorders was significantly higher among patients with a high ALT level and a low HBV-DNA level than it was among those with other conditions. The triglyceride level and the frequency of moderate or severe hepatic steatosis were significantly higher in patients with a low HBV-DNA level than in those with a high HBV-DNA level. Histologically proven hepatic steatosis and its related metabolic disorders are suggested to be involved in the elevation of aminotransferases of HBeAg-negative patients, particularly those with low HBV-DNA levels. PMID:27124068

  6. [Severe nephrotic syndrome in a young man taking anabolic steroid and creatine long term].

    PubMed

    Révai, Tamás; Sápi, Zoltán; Benedek, Szabolcs; Kovács, András; Kaszás, Ilona; Virányi, Marianna; Winkler, Gábor

    2003-12-01

    Anabolic steroids and creatine supplementation is one of the current abuse used by body builders. It is less known that this combination beside of many deleterious effects may also cause renal damage. Authors report a case of diffuse membranoproliferative glomerulonephritis type I in a 22-year-old man who had been taking continuously methandion in a large quantity and 200 grams of creatine daily, and was sent to the outpatient nephrologic unit with typical clinical signs of nephrosis syndrome. They also call attention to the role of the continuously consumed creatine in the renal failure. PMID:14725210

  7. Specificity of Aspartate Aminotransferases from Leguminous Plants for 4-Substituted Glutamic Acids 1

    PubMed Central

    Winter, Harry C.; Dekker, Eugene E.

    1989-01-01

    Aspartate aminotransferase (glutamate-oxalacetate transaminase) was partially purified from extracts of germinating seeds of peanut (Arachis hypogaea), honey locust (Gleditsia triacanthos), soybean (Glycine max), and Sophora japonica. The ability of these enzyme preparations, as well as aspartate aminotransferase purified from pig heart cytosol, to use 4-substituted glutamic acids as amino group donors and their corresponding 2-oxo acids as amino group acceptors in the aminotransferase reaction was measured. All 4-substituted glutamic acid analogs tested were poorer substrates than was glutamate or 2-oxoglutarate. 2-Oxo-4-methyleneglutarate was least effective (lowest relative Vm/Km) as a substrate for the enzyme from peanuts and honey locust, which are the two species studied that accumulate 4-methyleneglutamic acid and 4-methyleneglutamine. Of the different aminotransferases tested, the enzyme from honey locust was the least active with 2-oxo-4-hydroxy-4-methylglutarate, the corresponding amino acid of which also accumulates in that species. These results suggest that transamination of 2-oxo-4-substituted glutaric acids is not involved in the biosynthesis of the corresponding 4-substituted glutamic acids in these species. Rather, accumulation of certain 4-substituted glutamic acids in these instances may be, in part, the result of the inefficacy of their transamination by aspartate aminotransferase. PMID:16666674

  8. Kinetic studies of the uptake of aspartate aminotransferase and malate dehydrogenase into mitochondria in vitro.

    PubMed Central

    Marra, E; Passarella, S; Casamassima, E; Perlino, E; Doonan, S; Quagliariello, E

    1985-01-01

    Kinetic measurements of the uptake of native mitochondrial aspartate aminotransferase and malate dehydrogenase into mitochondria in vitro were carried out. The uptake of both the enzymes is essentially complete in 1 min and shows saturation characteristics. The rate of uptake of aspartate aminotransferase into mitochondria is decreased by malate dehydrogenase, and vice versa. The inhibition is exerted by isoenzyme remaining outside the mitochondria rather than by isoenzyme that has been imported. The thiol compound beta-mercaptoethanol decreases the rate of uptake of the tested enzymes; inhibition is a result of interaction of beta-mercaptoethanol with the mitochondria and not with the enzymes themselves. The rate of uptake of aspartate aminotransferase is inhibited non-competitively by malate dehydrogenase, but competitively by beta-mercaptoethanol. The rate of uptake of malate dehydrogenase is inhibited non-competitively by aspartate aminotransferase and by beta-mercaptoethanol. beta-Mercaptoethanol prevents the inhibition of the rate of uptake of malate dehydrogenase by aspartate aminotransferase. These results are interpreted in terms of a model system in which the two isoenzymes have separate but interacting binding sites within a receptor in the mitochondrial membrane system. PMID:4015628

  9. Creatine Use and Exercise Heat Tolerance in Dehydrated Men

    PubMed Central

    Watson, Greig; Casa, Douglas J; Fiala, Kelly A; Hile, Amy; Roti, Melissa W; Healey, Julie C; Armstrong, Lawrence E; Maresh, Carl M

    2006-01-01

    Context: Creatine monohydrate (CrM) use is highly prevalent in team sports (eg, football, lacrosse, ice hockey) and by athletes at the high school, college, professional, and recreational levels. Concerns have been raised about whether creatine use is associated with increased cramping, muscle injury, heat intolerance, and risk of dehydration. Objective: To assess whether 1 week of CrM supplementation would compromise hydration status, alter thermoregulation, or increase the incidence of symptoms of heat illness in dehydrated men performing prolonged exercise in the heat. Design: Double-blind, randomized, crossover design. Setting: Human Performance Laboratory. Patients or Other Participants: Twelve active males, age = 22 ± 1 year, height = 180 ± 3 cm, mass = 78.8 ± 1.2 kg, body fat = 9 ± 1%, V̇o2peak = 50.9 ± 1 ml·kg−1·min−1. Intervention(s): Subjects consumed 21.6 g·d−1 of CrM or placebo for 7 days, underwent 48 ± 10 days of washout between treatments, and then crossed over to the alternate treatment in the creatine group. On day 7 of each treatment, subjects lost 2% body mass by exercising in 33.5°C and then completed an 80-minute exercise heat-tolerance test (33.5°C ± 0.5°C, relative humidity = 41 ± 12%). The test consisted of four 20-minute sequences of 4 minutes of rest, alternating a 3-minute walk and 1-minute high-intensity run 3 times, and walking for 4 minutes. Main Outcome Measures: Thermoregulatory, cardiorespiratory, metabolic, urinary, and perceptual responses. Results: On day 7, body mass had increased 0.88 kg. No interaction or treatment differences for placebo versus CrM during the exercise heat-tolerance test were noted in thermoregulatory (rectal temperature, 39.3 ± 0.4°C versus 39.4 ± 0.4°C) cardiorespiratory (V̇o2, 21.4 ± 2.7 versus 20.0 ± 1.8 ml·kg−1·min−1; heart rate, 192 ± 10 versus 192 ± 11 beats·min−1; mean arterial pressure, 90 ± 9 versus 88 ± 5 mm Hg), metabolic (lactate, 6.7 ± 2.7 versus 7.0

  10. Method of empirical dependences in estimation and prediction of activity of creatine kinase isoenzymes in cerebral ischemia

    NASA Astrophysics Data System (ADS)

    Sergeeva, Tatiana F.; Moshkova, Albina N.; Erlykina, Elena I.; Khvatova, Elena M.

    2016-04-01

    Creatine kinase is a key enzyme of energy metabolism in the brain. There are known cytoplasmic and mitochondrial creatine kinase isoenzymes. Mitochondrial creatine kinase exists as a mixture of two oligomeric forms - dimer and octamer. The aim of investigation was to study catalytic properties of cytoplasmic and mitochondrial creatine kinase and using of the method of empirical dependences for the possible prediction of the activity of these enzymes in cerebral ischemia. Ischemia was revealed to be accompanied with the changes of the activity of creatine kinase isoenzymes and oligomeric state of mitochondrial isoform. There were made the models of multiple regression that permit to study the activity of creatine kinase system in cerebral ischemia using a calculating method. Therefore, the mathematical method of empirical dependences can be applied for estimation and prediction of the functional state of the brain by the activity of creatine kinase isoenzymes in cerebral ischemia.

  11. Hepatocellular Carcinoma Risk of Compensated Cirrhosis Patients with Elevated HBV DNA Levels according to Serum Aminotransferase Levels

    PubMed Central

    Lee, Junggyu; Sinn, Dong Hyun; Kim, Jung Hee; Gwak, Geum-Youn; Kim, Hye Seung; Jung, Sin-Ho; Paik, Yong-Han; Choi, Moon Seok; Lee, Joon Hyeok; Koh, Kwang Cheol; Yoo, Byung Chul

    2015-01-01

    Sometimes, hepatitis B virus (HBV)-related cirrhotic patients with normal aminotransferase levels are closely followed-up for the elevation of aminotransferase levels instead of prompt antiviral therapy (AVT). We analyzed the long-term hepatocellular carcinoma (HCC) risk according to the aminotransferase levels in a retrospective cohort of 1,468 treatment-naïve, HBV-related, compensated cirrhosis patients with elevated HBV DNA levels (≥2,000 IU/mL). Based on aminotransferase levels, patients were categorized into normal (< 40 U/L, n = 364) and elevated group (≥40 U/L, n = 1,104). During a median of 5.3 yr of follow-up (range: 1.0-8.2 yr), HCC developed in 296 (20%) patients. The 5-yr cumulative HCC incidence rate was higher in patients with elevated aminotransferase level, but was not low in normal aminotransferase level (17% vs. 14%, P = 0.004). During the follow-up, 270/364 (74%) patients with normal aminotransferase levels experienced elevation of aminotransferase levels, and AVT was initiated in 1,258 (86%) patients. Less patients with normal aminotransferase levels received AVT (70% vs. 91%, P < 0.001) and median time to start AVT was longer (17.9 vs. 2.4 months, P < 0.001). AVT duration was an independent factor associated with HCC, and median duration of AVT was shorter (4.0 vs. 2.6 yr, P < 0.001) in patients with normal aminotransferase levels. The HCC risk of compensated cirrhosis patients with normal aminotransferase level is not low, and AVT duration is associated with lowered HCC risk, indicating that prompt AVT should be strongly considered even for those with normal aminotransferase levels. PMID:26539006

  12. Effects of Coffee and Caffeine Anhydrous Intake During Creatine Loading.

    PubMed

    Trexler, Eric T; Smith-Ryan, Abbie E; Roelofs, Erica J; Hirsch, Katie R; Persky, Adam M; Mock, Meredith G

    2016-05-01

    Trexler, ET, Smith-Ryan, AE, Roelofs, EJ, Hirsch, KR, Persky, AM, and Mock, MG. Effects of coffee and caffeine anhydrous intake during creatine loading. J Strength Cond Res 30(5): 1438-1446, 2016-The purpose of this study was to determine the effect of 5 days of creatine (CRE) loading alone or in combination with caffeine anhydrous (CAF) or coffee (COF) on upper-body and lower-body strength and sprint performance. Physically active males (n = 54; mean ± SD; age = 20.1 ± 2.1 years; weight = 78.8 ± 8.8 kg) completed baseline testing, consisting of 1 repetition maximum (1RM) and repetitions to fatigue with 80% 1RM for bench press and leg press, followed by a repeated sprint test of five, 10-second sprints separated by 60-second rest on a cycle ergometer to determine peak power (PP) and total power (TP). At least 72 hours later, subjects were randomly assigned to supplement with CRE (5 g of CRE monohydrate, 4 times per day; n = 14), CRE + CAF (CRE +300 mg·d of CAF; n = 13), CRE + COF (CRE +8.9 g of COF, yielding 303 mg of CAF; n = 13), or placebo (PLA; n = 14) for 5 days. Serum creatinine (CRN) was measured before and after supplementation, and on day 6, participants repeated pretesting procedures. Strength measures were improved in all groups (p ≤ 0.05), with no significant time × treatment interactions. No significant interaction or main effects were observed for PP. For TP, a time × sprint interaction was observed (p ≤ 0.05), with no significant interactions among treatment groups. A time × treatment interaction was observed for serum CRN values (p ≤ 0.05) that showed increases in all groups except PLA. Four subjects reported mild gastrointestinal discomfort with CRE + CAF, with no side effects reported in other groups. These findings suggest that neither CRE alone nor in combination with CAF or COF significantly affected performance compared with PLA. PMID:26439785

  13. Expression of an L-alanine dehydrogenase gene in Zymomonas mobilis and excretion of L-alanine

    SciTech Connect

    Uhlenbusch, I.; Sahm, H.; Sprenger, G.A. )

    1991-05-01

    Gene alaD for L-alanine dehydrogenase from Bacillus sphaericus was cloned and introduced into Z. mobilis. Under the control of the strong promoter of the pyruvate decarboxylase (pdc) gene, the enzyme was expressed up to a specific activity of nearly 1 {mu}mol {center dot} min{sup {minus}1} {center dot} mg of protein{sup {minus}1} in recombinant cells. As a result of this high L-alanine dehydrogenase activity, growing cells excreted up to 10 mmol of alanine per 280 mmol of glucose utilized into a mineral salts medium. By the addition of 85 mM NH{sub 4}{sup +} to the medium, growth of the recombinant cells stopped, and up to 41 mmol of alanine was secreted. As alanine dehydrogenase competed with pyruvate decarboxylase (PDC) for the same substrate (pyruvate), PDC activity was reduced by starvation for the essential PDC cofactor thiamine PP{sub i}. A thiamine auxotrophy mutant of Z. mobilis which carried the alaD gene was starved for 40 h in glucose-supplemented mineral salts medium and then shifted to mineral salts medium with 85 mM NH {sub 4}{sup +} and 280 mmol of glucose. The recombinants excreted up to 84 mmol of alanine over 25 h. Alanine excretion proceeded at an initial velocity of 238 nmol {center dot} min{sup {minus}1} {center dot} mg(dry weight){sup {minus}1}. Despite this high activity, the excretion rate seemed to be a limiting factor, as the intracellular concentration of alanine was as high as 260 mM at the beginning of the excretion phase and decreased to 80 to 90 mM over 24 h.

  14. Serum biochemical values of rusa deer (Cervus timorensis russa) in New Caledonia.

    PubMed

    Audigé, L

    1992-11-01

    Blood samples were collected from 91 rusa deer (Cervus timorensis russa), immediately after being shot. Serum mean biochemical values from shot deer are presented for blood urea nitrogen, creatinine, creatine kinase, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, total bilirubin, total protein, albumin, calcium, and phosphorus. Mean total protein and albumin increased with age. There was an age-associated increase of gamma globulins. Mean creatine kinase activity and creatinine, albumin and phosphorus concentrations were higher in stags than in hinds. Pregnant hinds had lower mean creatine kinase activity and phosphorus and higher mean alanine aminotransferase and total protein than non-pregnant hinds. Mean calcium concentration increased when deer were agitated before bleeding. PMID:1288472

  15. Subcellular localization of branched-chain amino acid aminotransferase and lactate dehydrogenase C4 in rat and mouse spermatozoa.

    PubMed Central

    Montamat, E E; Vermouth, N T; Blanco, A

    1988-01-01

    Spermatozoa isolated from rat and mouse epididymes show a relatively high branched-chain amino acid aminotransferase (leucine aminotransferase, EC 2.6.1.6) activity. There is a significant reduction of leucine aminotransferase and of the isoenzyme C4 of lactate dehydrogenase (EC 1.1.1.27) in the gametes during their epididymal transit. Studies of patterns of liberation of the leucine aminotransferase and of the lactate dehydrogenase C4 from intact spermatozoa, treated with increasing concentrations of digitonin, indicate that both enzymes have the same dual subcellular location, i.e. in the cytosol and in the mitochondria. PMID:3214422

  16. Subcellular localization of branched-chain amino acid aminotransferase and lactate dehydrogenase C4 in rat and mouse spermatozoa.

    PubMed

    Montamat, E E; Vermouth, N T; Blanco, A

    1988-11-01

    Spermatozoa isolated from rat and mouse epididymes show a relatively high branched-chain amino acid aminotransferase (leucine aminotransferase, EC 2.6.1.6) activity. There is a significant reduction of leucine aminotransferase and of the isoenzyme C4 of lactate dehydrogenase (EC 1.1.1.27) in the gametes during their epididymal transit. Studies of patterns of liberation of the leucine aminotransferase and of the lactate dehydrogenase C4 from intact spermatozoa, treated with increasing concentrations of digitonin, indicate that both enzymes have the same dual subcellular location, i.e. in the cytosol and in the mitochondria. PMID:3214422

  17. Structure of D-alanine-D-alanine ligase from Yersinia pestis: nucleotide phosphate recognition by the serine loop.

    PubMed

    Tran, Huyen Thi; Hong, Myoung Ki; Ngo, Ho Phuong Thuy; Huynh, Kim Hung; Ahn, Yeh Jin; Wang, Zhong; Kang, Lin Woo

    2016-01-01

    D-Alanyl-D-alanine is an essential precursor of bacterial peptidoglycan and is synthesized by D-alanine-D-alanine ligase (DDL) with hydrolysis of ATP; this reaction makes DDL an important drug target for the development of antibacterial agents. Five crystal structures of DDL from Yersinia pestis (YpDDL) were determined at 1.7-2.5 Å resolution: apo, AMP-bound, ADP-bound, adenosine 5'-(β,γ-imido)triphosphate-bound, and D-alanyl-D-alanine- and ADP-bound structures. YpDDL consists of three domains, in which four loops, loop 1, loop 2 (the serine loop), loop 3 (the ω-loop) and loop 4, constitute the binding sites for two D-alanine molecules and one ATP molecule. Some of them, especially the serine loop and the ω-loop, show flexible conformations, and the serine loop is mainly responsible for the conformational change in substrate nucleotide phosphates. Enzyme-kinetics assays were carried out for both the D-alanine and ATP substrates and a substrate-binding mechanism was proposed for YpDDL involving conformational changes of the loops. PMID:26894530

  18. Distribution of creatine, guanidinoacetate and the enzymes for their biosynthesis in the animal kingdom. Implications for phylogeny.

    PubMed

    Van Pilsum, J F; Stephens, G C; Taylor, D

    1972-01-01

    1. The distribution of creatine and the creatine-synthesizing enzymes in the animal kingdom has been investigated. Creatine was found in tissues of all vertebrates examined, and in various invertebrates from phyla Annelida, Echinodermata, Hemichordata and Chordata, subphylum Cephalochordata. The activities of the creatine-synthesizing enzymes, arginine-glycine transamidinase and guanidinoacetate methylpherase, were not detected in the hagfish or in any of the invertebrates, including those in which creatine was found, with the exception that transamidinase activities were detected in the amphioxus and salt water clam; however, these activities are considered to be artifacts for reasons mentioned in the text. Additional evidence that the hagfish and various creatine-containing invertebrates could not synthesize creatine was the observation that these animals did not convert one or the other of the likely precursors of creatine (arginine and glycine) into creatine, in vivo. Further, the inability of these animals to synthesize creatine is correlated with the observations that all animals tested were able to abstract creatine from their aqueous environment. 2. The activities of the creatine-synthesizing enzymes were detected in the sea lamprey and in all but a few of the other vertebrates examined. Neither activity could be detected in the sharks and rays (cartilaginous fish), buffalo fish (bony fish) or the snapping turtle. Transamidinase or guanidinoacetate methylpherase activity could not be found in the salamander or garter snake, respectively. 3. The results obtained with the lamprey are in direct contrast with those obtained with the hagfish (both subphylum Agnatha, class Cyclostomata). The lamprey had the ability to synthesize creatine and did not abstract creatine from lake water. The hagfish did not have any apparent ability to synthesize creatine and did abstract creatine from sea water. The present report thus supports the theory that the myxinoid (hagfish

  19. Selective permeability of rat liver mitochondria to purified aspartate aminotransferases in vitro.

    PubMed Central

    Marra, E; Doonan, S; Saccone, C; Quagliariello, E

    1977-01-01

    1. A method was devised to allow determination of intramitochondrial aspartate amino-transferase activity in suspensions of intact mitochondria. 2. Addition of purified rat liver mitochondrial aspartate aminotransferase to suspensions of rat liver mitochondria caused an apparent increase in the intramitochondrial enzyme activity. No increase was observed when the mitochondria were preincubated with the purified cytoplasmic isoenzyme. 3. These results suggest that mitochondrial aspartate aminotransferase, but not the cytoplasmic isoenzyme, is able to pass from solution into the matrix of intact rat liver mitochondria in vitro. 4. This system may provide a model for studies of the little-understood processes by which cytoplasmically synthesized components are incorporated into mitochondria in vivo. PMID:883959

  20. Creatine for neuroprotection in neurodegenerative disease: end of story?

    PubMed

    Bender, Andreas; Klopstock, Thomas

    2016-08-01

    Creatine (Cr) is a natural compound that plays an important role in cellular energy homeostasis. In addition, it ameliorates oxidative stress, glutamatergic excitotoxicity, and apoptosis in vitro as well as in vivo. Since these pathomechanisms are implicated to play a role in several neurodegenerative diseases, Cr supplementation as a neuroprotective strategy has received a lot of attention with several positive animal studies in models of Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). This has led to a number of randomized clinical trials (RCT) with oral Cr supplementation, with durations up to 5 years. In this paper, we review the evidence and consequences stemming from these trials. In the case of PD, the initial phase II RCT was promising and led to a large and well-designed phase III trial, which, however, turned out to be negative for all outcome measures. None of the RCTs that have examined effects of Cr in ALS patients showed any clinical benefit. In HD, Cr in high doses (up to 30 g/day) was shown to slow down brain atrophy in premanifest Huntingtin mutation carriers. In spite of this, proof is still lacking that Cr can also have beneficial clinical effects in this group of patients, who will go on to develop HD symptoms. Taken together, the use of Cr supplementation has so far proved disappointing in clinical studies with a number of symptomatic neurodegenerative diseases. PMID:26748651

  1. Creatine supplementation and its effect on musculotendinous stiffness and performance.

    PubMed

    Watsford, Mark L; Murphy, Aron J; Spinks, Warwick L; Walshe, Andrew D

    2003-02-01

    Anecdotal reports suggesting that creatine (Cr) supplementation may cause side effects, such as an increased incidence of muscle strains or tears, require scientific examination. In this study, it was hypothesized that the rapid fluid retention and "dry matter growth" evident after Cr supplementation may cause an increase in musculotendinous stiffness. Intuitively, an increase in musculotendinous stiffness would increase the chance of injury during exercise. Twenty men were randomly allocated to a control or an experimental group and were examined for musculotendinous stiffness of the triceps surae and for numerous performance indices before and after Cr ingestion. The Cr group achieved a significant increase in body mass (79.7 +/- 10.8 kg vs. 80.9 +/- 10.7 kg), counter movement jump height (40.2 +/- 4.8 cm vs. 42.7 +/- 5.9 cm), and 20-cm drop jump height (32.3 +/- 3.3 cm vs. 35.1 +/- 4.8 cm) after supplementation. No increase was found for musculotendinous stiffness at any assessment load. There were no significant changes in any variables within the control group. These findings have both performance- and injury-related implications. Primarily, anecdotal evidence suggesting that Cr supplementation causes muscular strain injuries is not supported by this study. In addition, the increase in jump performance is indicative of performance enhancement in activities requiring maximal power output. PMID:12580652

  2. Creatine kinase in cell cycle regulation and cancer.

    PubMed

    Yan, Yong-Bin

    2016-08-01

    The phosphocreatine-creatine kinase (CK) shuttle system is increasingly recognized as a fundamental mechanism for ATP homeostasis in both excitable and non-excitable cells. Many intracellular processes are ATP dependent. Cell division is a process requiring a rapid rate of energy turnover. Cell cycle regulation is also a key point to understanding the mechanisms underlying cancer progression. It has been known for about 40 years that aberrant CK levels are associated with various cancers and for over 30 years that CK is involved in mitosis regulation. However, the underlying molecular mechanisms have not been investigated sufficiently until recently. By maintaining ATP at sites of high-energy demand, CK can regulate cell cycle progression by affecting the intracellular energy status as well as by influencing signaling pathways that are essential to activate cell division and cytoskeleton reorganization. Aberrant CK levels may impair cell viability under normal or stressed conditions and induce cell death. The involvement of CK in cell cycle regulation and cellular energy metabolism makes it a potential diagnostic biomarker and therapeutic target in cancer. To understand the multiple physiological/pathological functions of CK, it is necessary to identify CK-binding partners and regulators including proteins, non-coding RNAs and participating endogenous small molecular weight chemical compounds. This review will focus on molecular mechanisms of CK in cell cycle regulation and cancer progression. It will also discuss the implications of recent mechanistic studies, the emerging problems and future challenges of the multifunctional enzyme CK. PMID:27020776

  3. Scientific facts behind creatine monohydrate as sport nutrition supplement.

    PubMed

    Silber, M L

    1999-09-01

    Currently, strong efforts are being made toward demonstrating possible risks of using pure creatine monohydrate (Cr.H2O). In this article, scientific facts and considerations are presented, which support such concern. A further attempt is made to pursue the concept of possible risks of uncontrolled supplementation in athletes with pure Cr.H2O. The problem is viewed from the scientific evidence that a highly conservative mechanism of homeostatic feed-back inhibitory self-regulation of Cr biosynthesis in the body has been evolutionary developed. It is shown that numerous features characteristic to Cr biosynthesis, metabolism, and regulation allow to interpret its stimulatory action in the body as endocrine hormone-like. Based on this assumption, a practical approach for detecting altered links in Cr metabolism and biosynthesis under conditions of pure Cr.H2O overdosing, is suggested. Strategic considerations regarding early diagnosis, prognosis, and correction of the down-regulated endogenous Cr biosynthesis in athletes on continuous pure Cr.H2O supplementation, are discussed. As a high efficient and safe alternative to pure Cr.H2O, a complex nutrition supplement formula for elite athletes is proposed, which exploits natural alpha-ketoglutarate as a vehicle for delivering exogenous low molecular biologically-active compounds, including Cr. PMID:10573658

  4. EPR/alanine dosimetry for two therapeutic proton beams

    NASA Astrophysics Data System (ADS)

    Marrale, Maurizio; Carlino, Antonio; Gallo, Salvatore; Longo, Anna; Panzeca, Salvatore; Bolsi, Alessandra; Hrbacek, Jan; Lomax, Tony

    2016-02-01

    In this work the analysis of the electron paramagnetic resonance (EPR) response of alanine pellets exposed to two different clinical proton beams employed for radiotherapy is performed. One beam is characterized by a passive delivery technique and is dedicated to the eyes treatment (OPTIS2 beam line). Alanine pellets were irradiated with a 70 MeV proton beam corresponding to 35 mm range in eye tissue. We investigated how collimators with different sizes and shape used to conform the dose to the planned target volume influence the delivered dose. For this purpose we performed measurements with varying the collimator size (Output Factor) and the results were compared with those obtained with other dosimetric techniques (such as Markus chamber and diode detector). This analysis showed that the dosimeter response is independent of collimator diameter if this is larger than or equal to 10 mm. The other beam is characterized by an active spot-scanning technique, the Gantry1 beam line (maximum energy 230 MeV), and is used to treat deep-seated tumors. The dose linearity of alanine response in the clinical dose range was tested and the alanine dose response at selected locations in depth was measured and compared with the TPS planned dose in a quasi-clinical scenario. The alanine response was found to be linear in the dose in the clinical explored range (from 10 to 70 Gy). Furthermore, a depth dose profile in a quasi-clinical scenario was measured and compared to the dose computed by the Treatment Planning System PSIPLAN. The comparison of calibrated proton alanine measurements and TPS dose shows a difference under 1% in the SOBP and a "quenching" effect up to 4% in the distal part of SOBP. The positive dosimetric characteristics of the alanine pellets confirm the feasibility to use these detectors for "in vivo" dosimetry in clinical proton beams.

  5. Dysferlin-Deficient Muscular Dystrophy Identified Through Laboratory Testing for Elevated Aminotransferases

    PubMed Central

    Achdjian, Houry; Usta, Yousef; Nanda, Rakesh

    2016-01-01

    We present a 24-year-old combat veteran who underwent extensive work-up for elevated aminotransferases, including liver biopsy, with no underlying pathology identified. Subsequent investigations showed elevated creatinine kinase and aldolase. The patient was later diagnosed with biopsy-proven dysferlin-deficient muscular dystrophy. Persistent transaminase elevation despite negative liver work-up should prompt clinicians to consider extrahepatic sources of enzyme elevation. Promptly correlating aminotransferase elevation with musculoskeletal pathology may present an opportunity for clinicians to detect myopathies such as muscular dystrophy in their preclinical stages. PMID:26958568

  6. Biochemical and Structural Characterization of a Ureidoglycine Aminotransferase in the Klebsiella pneumoniae Uric Acid Catabolic Pathway

    SciTech Connect

    French, Jarrod B.; Ealick, Steven E.

    2010-09-03

    Many plants, fungi, and bacteria catabolize allantoin as a mechanism for nitrogen assimilation. Recent reports have shown that in plants and some bacteria the product of hydrolysis of allantoin by allantoinase is the unstable intermediate ureidoglycine. While this molecule can spontaneously decay, genetic analysis of some bacterial genomes indicates that an aminotransferase may be present in the pathway. Here we present evidence that Klebsiella pneumoniae HpxJ is an aminotransferase that preferentially converts ureidoglycine and an {alpha}-keto acid into oxalurate and the corresponding amino acid. We determined the crystal structure of HpxJ, allowing us to present an explanation for substrate specificity.

  7. In vivo neuroprotection by a creatine-derived compound: phosphocreatine-Mg-complex acetate.

    PubMed

    Perasso, L; Adriano, E; Ruggeri, P; Burov, S V; Gandolfo, C; Balestrino, M

    2009-08-18

    Phosphocreatine-Mg-complex acetate (PCr-Mg-CPLX) is a creatine-derived compound that in previous in vitro research was able to increase neuronal creatine independently of the creatine transporter, thus providing hope to cure the hereditary syndrome of creatine transporter deficiency. In previous research we showed that it reproduces in vitro the known neuroprotective effect of creatine against anoxic damage. In the present paper we investigated if PCr-Mg-CPLX reproduces this neuroprotective effect in vivo, too. We used a mouse model of transient middle cerebral artery occlusion. Mice received PCr-Mg-CPLX or a mixture of the two separate compounds phosphocreatine (PCr) and MgSO(4), or vehicle. The injections were done 60 min and 30 min before ischemia. Forty-eight hours after ischemia neurological damage was evaluated with Clark's behavioural tests, then the infarct volume was measured. PCr-Mg-CPLX reduced the infarct volume by 48%, an effect that was not duplicated by the separate administration of PCr and MgSO(4) and the neurological damage was decreased in a statistically significant way. We conclude that PCr-Mg-CPLX affords in vivo neuroprotection when administered before ischemia. These results are comparable to previous research on creatine administration in experimental stroke. PCr-Mg-CPLX maintains creatine-like neuroprotective effects in vivo as well as in vitro. Our study suggests that PCr-Mg-CPLX might have a therapeutic role in the treatment of hereditary creatine transporter deficiency and of conditions where there is a high risk of impending stroke or cerebral ischemic damage, like high-risk transient ischemic attacks, open heart surgery, and carotid surgery. PMID:19523930

  8. Resistance artery creatine kinase mRNA and blood pressure in humans.

    PubMed

    Karamat, Fares A; Oudman, Inge; Ris-Stalpers, Carrie; Afink, Gijs B; Keijser, Remco; Clark, Joseph F; van Montfrans, Gert A; Brewster, Lizzy M

    2014-01-01

    Hypertension remains the main risk factor for cardiovascular death. Environmental and biological factors are known to contribute to the condition, and circulating creatine kinase was reported to be the main predictor of blood pressure in the general population. This was proposed to be because of high resistance artery creatine kinase-BB rapidly regenerating ATP for vascular contractility. Therefore, we assessed whether creatine kinase isoenzyme mRNA levels in human resistance arteries are associated with blood pressure. We isolated resistance-sized arteries from omental fat donated by consecutive women undergoing uterine fibroid surgery. Blood pressure was measured in the sitting position. Vessels of 13 women were included, 6 normotensive and 7 hypertensive, mean age 42.9 years (SE, 1.6) and mean systolic/diastolic blood pressure, 144.8 (8.0)/86.5 (4.3) mm Hg. Arteriolar creatine kinase isoenzyme mRNA was assessed using quantitative real-time polymerase chain reaction. Normalized creatine kinase B mRNA copy numbers, ranging from 5.2 to 24.4 (mean, 15.0; SE, 1.9), showed a near-perfect correlation with diastolic blood pressure (correlation coefficient, 0.9; 95% confidence interval, 0.6-1.0) and were well correlated with systolic blood pressure, with a 90% relative increase in resistance artery creatine kinase B mRNA in hypertensives compared with normotensives, normalized copy numbers were, respectively, 19.3 (SE, 2.0) versus 10.1 (SE, 2.1), P=0.0045. To our knowledge, this is the first direct evidence suggesting that resistance artery creatine kinase mRNA expression levels concur with blood pressure levels, almost doubling with hypertension. These findings add to the evidence that creatine kinase might be involved in the vasculature's pressor responses. PMID:24126179

  9. Creatine monohydrate supplementation on lower-limb muscle power in Brazilian elite soccer players

    PubMed Central

    2014-01-01

    Background Studies involving chronic creatine supplementation in elite soccer players are scarce. Therefore, the aim of this study was to examine the effects of creatine monohydrate supplementation on lower-limb muscle power in Brazilian elite soccer players (n = 14 males) during pre-season training. Findings This was a randomized, double-blind, placebo-controlled parallel-group study. Brazilian professional elite soccer players participated in this study. During the pre-season (7 weeks), all the subjects underwent a standardized physical and specific soccer training. Prior to and after either creatine monohydrate or placebo supplementation, the lower-limb muscle power was measured by countermovement jump performance. The Jumping performance was compared between groups at baseline (p = 0.99). After the intervention, jumping performance was lower in the placebo group (percent change = - 0.7%; ES = - 0.3) than in the creatine group (percent change = + 2.4%; ES = + 0.1), but it did not reach statistical significance (p = 0.23 for time x group interaction). Fisher’s exact test revealed that the proportion of subjects that experienced a reduction in jumping performance was significantly greater in the placebo group than in the creatine group (5 and 1, respectively; p = 0.05) after the training. The magnitude-based inferences demonstrated that placebo resulted in a possible negative effect (50%) in jumping performance, whereas creatine supplementation led to a very likely trivial effect (96%) in jumping performance in the creatine group. Conclusions Creatine monohydrate supplementation prevented the decrement in lower-limb muscle power in elite soccer players during a pre-season progressive training. PMID:24991195

  10. The genomic organization of a human creatine transporter (CRTR) gene located in Xq28

    SciTech Connect

    Sandoval, N.; Bauer, D.; Brenner, V.

    1996-07-15

    During the course of a large-scale sequencing project in Xq28, a human creatine transporter (CRTR) gene was discovered. The gene is located approximately 36 kb centromeric to ALD. The gene contains 13 exons and spans about 8.5 kb of genomic DNA. Since the creatine transporter has a prominent function in muscular physiology, it is a candidate gene for Barth syndrome and infantile cardiomyopathy mapped to Xq28. 19 refs., 1 fig., 1 tab.

  11. The structure of alanine racemase from Acinetobacter baumannii

    PubMed Central

    Davis, Emily; Scaletti-Hutchinson, Emma; Opel-Reading, Helen; Nakatani, Yoshio; Krause, Kurt L.

    2014-01-01

    Acinetobacter baumannii is an opportunistic Gram-negative bacterium which is a common cause of hospital-acquired infections. Numerous antibiotic-resistant strains exist, emphasizing the need for the development of new antimicrobials. Alanine racemase (Alr) is a pyridoxal 5′-phosphate dependent enzyme that is responsible for racemization between enantiomers of alanine. As d-alanine is an essential component of the bacterial cell wall, its inhibition is lethal to prokaryotes, making it an excellent antibiotic drug target. The crystal structure of A. baumannii alanine racemase (AlrAba) from the highly antibiotic-resistant NCTC13302 strain has been solved to 1.9 Å resolution. Comparison of AlrAba with alanine racemases from closely related bacteria demonstrates a conserved overall fold. The substrate entryway and active site of the enzymes were shown to be highly conserved. The structure of AlrAba will provide the template required for future structure-based drug-design studies. PMID:25195891

  12. Caramelization of maltose solution in presence of alanine.

    PubMed

    Fadel, H H M; Farouk, A

    2002-01-01

    Two solutions of maltose in water were used to prepare caramels. Alanine as a catalyst was added to one of these solutions. The caramelization was conducted at 130 degrees C for total time period 90 minutes. Convenient samples were taken of each caramel solution every 30 min and subjected to sensory analysis and isolation of volatile components. The odour and colour sensory tests were evaluated according to the international standard methods (ISO). The results showed that, the presence of alanine gave rise to a high significant (P < 0.01) decrease in acid attributes and remarkable increase in the sweet and caramel attributes, which are the most important caramel notes. On the other hand the increase in heating time in presence of alanine as a catalyst resulted in a high significant (P < 0.01) increase in the browning rate of caramel solution. The new technique Solid Phase Micro Extraction (SPME) was used for trapping the volatile components in the headspace of each caramel samples followed by thermal desorption and GC and GC - MS analysis. The 5-hydroxymethyl-2-furfural (HMF), the main characteristic caramel product, showed its highest value in sample containing alanine after heating for 60 minutes. The best sensory results of the sample contains alanine were confirmed by the presence of high concentrations of the most potent odorants of caramel besides to the formation of some volatile compounds have caramel like flavours such as 2-acetyl pyrrole, 2-furanones and 1-(2-furanyl)1,2-propandione. PMID:12395187

  13. Creatine supplementation with methylglyoxal: a potent therapy for cancer in experimental models.

    PubMed

    Pal, Aparajita; Roy, Anirban; Ray, Manju

    2016-08-01

    The anti-cancer effect of methylglyoxal (MG) is now well established in the literature. The main aim of this study was to investigate the effect of creatine as a supplement in combination with MG both in vitro and in vivo. In case of the in vitro studies, two different cell lines, namely MCF-7 (human breast cancer cell line) and C2C12 (mouse myoblast cell line) were chosen. MG in combination with creatine showed enhanced apoptosis as well as higher cytotoxicity in the breast cancer MCF-7 cell line, compared to MG alone. Pre-treatment of well-differentiated C2C12 myotubes with cancerogenic 3-methylcholanthrene (3MC) induced a dedifferentiation of these myotubes towards cancerous cells (that mimic the effect of 3MC observed in solid fibro-sarcoma animal models) and subsequent exposure of these induced cancer cells with MG proved to be cytotoxic. Thus, creatine plus ascorbic acid enhanced the anti-cancer effects of MG. In contrast, when normal C2C12 muscle cells or myotubes (mouse normal myoblast cell line) were treated with MG or MG plus creatine and ascorbic acid, no detrimental effects were seen. This indicated that cytotoxic effects of MG are specifically limited towards cancer cells and are further enhanced when MG is used in combination with creatine and ascorbic acid. For the in vivo studies, tumors were induced by injecting Sarcoma-180 cells (2 × 10(6) cells/mouse) in the left hind leg. After 7 days of tumor inoculation, treatments were started with MG (20 mg/kg body wt/day, via the intravenous route), with or without creatine (150 mg/kg body wt/day, fed orally) and ascorbic acid (50 mg/kg body wt/day, fed orally) and continued for 10 consecutive days. Significant regression of tumor size was observed when Sarcoma-180 tumor-bearing mice were treated with MG and even more so with the aforesaid combination. The creatine-supplemented group demonstrated better overall survival in comparison with tumor-bearing mice without creatine. In conclusion, it may be

  14. Cloning and characterization of the promoter regions from the parent and paralogous creatine transporter genes.

    PubMed

    Ndika, Joseph D T; Lusink, Vera; Beaubrun, Claudine; Kanhai, Warsha; Martinez-Munoz, Cristina; Jakobs, Cornelis; Salomons, Gajja S

    2014-01-10

    Interconversion between phosphocreatine and creatine, catalyzed by creatine kinase is crucial in the supply of ATP to tissues with high energy demand. Creatine's importance has been established by its use as an ergogenic aid in sport, as well as the development of intellectual disability in patients with congenital creatine deficiency. Creatine biosynthesis is complemented by dietary creatine uptake. Intracellular transport of creatine is carried out by a creatine transporter protein (CT1/CRT/CRTR) encoded by the SLC6A8 gene. Most tissues express this gene, with highest levels detected in skeletal muscle and kidney. There are lower levels of the gene detected in colon, brain, heart, testis and prostate. The mechanism(s) by which this regulation occurs is still poorly understood. A duplicated unprocessed pseudogene of SLC6A8-SLC6A10P has been mapped to chromosome 16p11.2 (contains the entire SLC6A8 gene, plus 2293 bp of 5'flanking sequence and its entire 3'UTR). Expression of SLC6A10P has so far only been shown in human testis and brain. It is still unclear as to what is the function of SLC6A10P. In a patient with autism, a chromosomal breakpoint that intersects the 5'flanking region of SLC6A10P was identified; suggesting that SLC6A10P is a non-coding RNA involved in autism. Our aim was to investigate the presence of cis-acting factor(s) that regulate expression of the creatine transporter, as well as to determine if these factors are functionally conserved upstream of the creatine transporter pseudogene. Via gene-specific PCR, cloning and functional luciferase assays we identified a 1104 bp sequence proximal to the mRNA start site of the SLC6A8 gene with promoter activity in five cell types. The corresponding 5'flanking sequence (1050 bp) on the pseudogene also had promoter activity in all 5 cell lines. Surprisingly the pseudogene promoter was stronger than that of its parent gene in 4 of the cell lines tested. To the best of our knowledge, this is the first

  15. Morphosynthesis of alanine mesocrystals by pH control.

    PubMed

    Ma, Yurong; Cölfen, Helmut; Antonietti, Markus

    2006-06-01

    Crystallization of DL-alanine is studied as a single polymorph model case to analyze the different modes of crystallization of polar organic molecules in absence of any structure directing additives. Depending on supersaturation, which is controlled either by temperature or by pH, and in the absence of additives, crystallization by mesoscale assembly of nanoparticles is found over a wide range of conditions, leading to so-called mesocrystals. This supplements the classical molecule-based crystallization mechanism, which is identified at lower supersaturations and at pH values away from the isoelectric point (IEP). The resulting alanine crystals are characterized by SEM, XRD, and single-crystal analysis. Time-resolved conductivity measurements and dynamic light scattering of the reaction solutions reveal information about precursor structures and reaction kinetics. A formation mechanism is proposed for the alanine mesocrystals. PMID:16771332

  16. First-principles studies of pure and fluorine substituted alanines

    NASA Astrophysics Data System (ADS)

    Ahmad, Sardar; Vaizie, Hamide; Rahnamaye Aliabad, H. A.; Ahmad, Rashid; Khan, Imad; Ali, Zahid; Jalali-Asadabadi, S.; Ahmad, Iftikhar; Khan, Amir Abdullah

    2016-05-01

    This paper communicates the structural, electronic and optical properties of L-alanine, monofluoro and difluoro substituted alanines using density functional calculations. These compounds exist in orthorhombic crystal structure and the calculated structural parameters such as lattice constants, bond angles and bond lengths are in agreement with the experimental results. L-alanine is an indirect band gap insulator, while its fluorine substituted compounds (monofluoroalanine and difluoroalanine) are direct band gap insulators. The substitution causes reduction in the band gap and hence these optically tailored direct wide band gap materials have enhanced optical properties in the ultraviolet (UV) region of electromagnetic spectrum. Therefore, optical properties like dielectric function, refractive index, reflectivity and energy loss function are also investigated. These compounds have almost isotropic nature in the lower frequency range while at higher energies, they have a significant anisotropic nature.

  17. Reference intervals for serum creatine kinase in athletes

    PubMed Central

    Mougios, Vassilis

    2007-01-01

    Background The serum concentration of creatine kinase (CK) is used widely as an index of skeletal muscle fibre damage in sport and exercise. Since athletes have higher CK values than non‐athletes, comparing the values of athletes to the normal values established in non‐athletes is pointless. The purpose of this study was to introduce reference intervals for CK in athletes. Method CK was assayed in serum samples from 483 male athletes and 245 female athletes, aged 7–44. Samples had been obtained throughout the training and competition period. For comparison, CK was also assayed in a smaller number of non‐athletes. Reference intervals (2.5th to 97.5th percentile) were calculated by the non‐parametric method. Results The reference intervals were 82–1083 U/L (37°C) in male and 47–513 U/L in female athletes. The upper reference limits were twice the limits reported for moderately active non‐athletes in the literature or calculated in the non‐athletes in this study. The upper limits were up to six times higher than the limits reported for inactive individuals in the literature. When reference intervals were calculated specifically in male football (soccer) players and swimmers, a threefold difference in the upper reference limit was found (1492 vs 523 U/L, respectively), probably resulting from the different training and competition demands of the two sports. Conclusion Sport training and competition have profound effects on the reference intervals for serum CK. Introducing sport‐specific reference intervals may help to avoid misinterpretation of high values and to optimise training. PMID:17526622

  18. Hearts of some Antarctic fishes lack mitochondrial creatine kinase.

    PubMed

    O'Brien, K M; Mueller, I A; Orczewska, J I; Dullen, K R; Ortego, M

    2014-12-01

    Creatine kinase (CK; EC 2.7.3.2) functions as a spatial and temporal energy buffer, dampening fluctuations in ATP levels as ATP supply and demand change. There are four CK isoforms in mammals, two cytosolic isoforms (muscle [M-CK] and brain [B-CK]), and two mitochondrial isoforms (ubiquitous [uMtCK] and sarcomeric [sMtCK]). Mammalian oxidative muscle couples expression of sMtCK with M-CK, creating an energy shuttle between mitochondria and myofibrils. We hypothesized that the expression pattern and activity of CK would differ between hearts of red- and white-blooded Antarctic notothenioid fishes due to their striking differences in cardiac ultrastructure. Hearts of white-blooded icefishes (family Channichthyidae) have significantly higher mitochondrial densities compared to red-blooded species, decreasing the diffusion distance for ATP between mitochondria and myofibrils and potentially minimizing the need for CK. The distribution of CK isoforms was evaluated using western blotting and maximal activity of CK was measured in mitochondrial and cytosolic fractions and tissue homogenates of heart ventricles of red- and white-blooded notothenioids. Transcript abundance of sMtCK and M-CK was also quantified. Overall, CK activity is similar between hearts of red- and white-blooded notothenioids but hearts of icefishes lack MtCK and have higher activities of M-CK in the cytosol compared to red-blooded fishes. The absence of MtCK may compromise cardiac function under stressful conditions when ATP supply becomes limiting. PMID:25151023

  19. Structural Insights into a Novel Class of Aspartate Aminotransferase from Corynebacterium glutamicum.

    PubMed

    Son, Hyeoncheol Francis; Kim, Kyung-Jin

    2016-01-01

    Aspartate aminotransferase from Corynebacterium glutamicum (CgAspAT) is a PLP-dependent enzyme that catalyzes the production of L-aspartate and α-ketoglutarate from L-glutamate and oxaloacetate in L-lysine biosynthesis. In order to understand the molecular mechanism of CgAspAT and compare it with those of other aspartate aminotransferases (AspATs) from the aminotransferase class I, we determined the crystal structure of CgAspAT. CgAspAT functions as a dimer, and the CgAspAT monomer consists of two domains, the core domain and the auxiliary domain. The PLP cofactor is found to be bound to CgAspAT and stabilized through unique residues. In our current structure, a citrate molecule is bound at the active site of one molecule and mimics binding of the glutamate substrate. The residues involved in binding of the PLP cofactor and the glutamate substrate were confirmed by site-directed mutagenesis. Interestingly, compared with other AspATs from aminotransferase subgroup Ia and Ib, CgAspAT exhibited unique binding sites for both cofactor and substrate; moreover, it was found to have unusual structural features in the auxiliary domain. Based on these structural differences, we propose that CgAspAT does not belong to either subgroup Ia or Ib, and can be categorized into a subgroup Ic. The phylogenetic tree and RMSD analysis also indicates that CgAspAT is located in an independent AspAT subgroup. PMID:27355211

  20. Structure Expression and Function of kynurenine Aminotransferases in Human and Rodent Brains

    SciTech Connect

    Q Han; T Cai; D Tagle; J Li

    2011-12-31

    Kynurenine aminotransferases (KATs) catalyze the synthesis of kynurenic acid (KYNA), an endogenous antagonist of N-methyl-D: -aspartate and alpha 7-nicotinic acetylcholine receptors. Abnormal KYNA levels in human brains are implicated in the pathophysiology of schizophrenia, Alzheimer's disease, and other neurological disorders. Four KATs have been reported in mammalian brains, KAT I/glutamine transaminase K/cysteine conjugate beta-lyase 1, KAT II/aminoadipate aminotransferase, KAT III/cysteine conjugate beta-lyase 2, and KAT IV/glutamic-oxaloacetic transaminase 2/mitochondrial aspartate aminotransferase. KAT II has a striking tertiary structure in N-terminal part and forms a new subgroup in fold type I aminotransferases, which has been classified as subgroup Iepsilon. Knowledge regarding KATs is vast and complex; therefore, this review is focused on recent important progress of their gene characterization, physiological and biochemical function, and structural properties. The biochemical differences of four KATs, specific enzyme activity assays, and the structural insights into the mechanism of catalysis and inhibition of these enzymes are discussed.

  1. Structural Insights into a Novel Class of Aspartate Aminotransferase from Corynebacterium glutamicum

    PubMed Central

    Son, Hyeoncheol Francis; Kim, Kyung-Jin

    2016-01-01

    Aspartate aminotransferase from Corynebacterium glutamicum (CgAspAT) is a PLP-dependent enzyme that catalyzes the production of L-aspartate and α-ketoglutarate from L-glutamate and oxaloacetate in L-lysine biosynthesis. In order to understand the molecular mechanism of CgAspAT and compare it with those of other aspartate aminotransferases (AspATs) from the aminotransferase class I, we determined the crystal structure of CgAspAT. CgAspAT functions as a dimer, and the CgAspAT monomer consists of two domains, the core domain and the auxiliary domain. The PLP cofactor is found to be bound to CgAspAT and stabilized through unique residues. In our current structure, a citrate molecule is bound at the active site of one molecule and mimics binding of the glutamate substrate. The residues involved in binding of the PLP cofactor and the glutamate substrate were confirmed by site-directed mutagenesis. Interestingly, compared with other AspATs from aminotransferase subgroup Ia and Ib, CgAspAT exhibited unique binding sites for both cofactor and substrate; moreover, it was found to have unusual structural features in the auxiliary domain. Based on these structural differences, we propose that CgAspAT does not belong to either subgroup Ia or Ib, and can be categorized into a subgroup Ic. The phylogenetic tree and RMSD analysis also indicates that CgAspAT is located in an independent AspAT subgroup. PMID:27355211

  2. A stereo-inverting D-phenylglycine aminotransferase from Pseudomonas stutzeri ST-201: purification, characterization and application for D-phenylglycine synthesis.

    PubMed

    Wiyakrutta, S; Meevootisom, V

    1997-07-01

    D-phenylglycine aminotransferase (D-PhgAT) from a newly isolated soil bacterium, Pseudomonas stutzeri ST-201, was purified to electrophoretic homogeneity and characterized. The molecular weight (M(r)) of the native enzyme was estimated to be 92,000. It is composed of two subunits identical in molecular weight (M(r)) = 47,500). The isoelectric point (pI) of the native enzyme was 5.0. The enzyme catalyzed reversible transamination specific for D-phenylglycine or D-4-hydroxyphenylglycine in which 2-oxoglutarate was an exclusive amino group acceptor and was converted into L-glutamic acid. Neither the D- nor L-isomer of phenylalanine, tyrosine, alanine, valine, leucine, isoleucine or serine could serve as a substrate. The enzyme was most active at alkaline pH with maximum activity at pH 9-10. The temperature for maximum activity was 35-45 degrees C. The apparent K(m) values for D-phenylglycine and for 2-oxoglutarate at 35 degrees C, pH 9.5 were 1.1 and 2.4 mM, respectively. The enzyme activity was strongly inhibited by typical inhibitors of pyridoxal phosphate-dependent enzymes. Possible application of this enzyme for synthesis of enantiomerically pure D-phenylglycine was demonstrated. PMID:9249994

  3. Atomic Layer Deposition of L-Alanine Polypeptide

    DOE PAGESBeta

    Fu, Yaqin; Li, Binsong; Jiang, Ying-Bing; Dunphy, Darren R.; Tsai, Andy; Tam, Siu-Yue; Fan, Hongyou Y.; Zhang, Hongxia; Rogers, David; Rempe, Susan; et al

    2014-10-30

    L-Alanine polypeptide thin films were synthesized via atomic layer deposition (ALD). Rather, instead of using an amino acid monomer as the precursor, an L-alanine amino acid derivatized with a protecting group was used to prevent self-polymerization, increase the vapor pressure, and allow linear cycle-by-cycle growth emblematic of ALD. Moreover, the successful deposition of a conformal polypeptide film has been confirmed by FTIR, TEM, and Mass Spectrometry, and the ALD process has been extended to polyvaline.

  4. Stereoselective aminoacylation of a dinucleoside monophosphate by the imidazolides of DL-alanine and N-(tert-butoxycarbonyl)-DL-alanine

    NASA Technical Reports Server (NTRS)

    Profy, A. T.; Usher, D. A.

    1984-01-01

    The aminoacylation of diinosine monophosphate was studied experimentally. When the acylating agent was the imidazolide of N-(tert-butoxycarbonyl)-DL-alanine, a 40 percent enantiomeric excess of the isomer was incorporated at the 2' site and the positions of equilibrium for the reversible 2'-3' migration reaction differed for the D and L enantiomers. The reactivity of the nucleoside hydroxyl groups was found to decrease on the order 2'(3') less than internal 2' and less than 5', and the extent of the reaction was affected by the concentration of the imidazole buffer. Reaction of IpI with imidazolide of unprotected DL-alanine, by contrast, led to an excess of the D isomer at the internal 2' site. Finally, reaction with the N-carboxy anhydride of DL-alanine occurred without stereoselection. These results are found to be relevant to the study of the evolution of optical chemical activity and the origin of genetically directed protein synthesis.

  5. Diminution of Oxidative Damage to Human Erythrocytes and Lymphocytes by Creatine: Possible Role of Creatine in Blood

    PubMed Central

    Qasim, Neha; Mahmood, Riaz

    2015-01-01

    Creatine (Cr) is naturally produced in the body and stored in muscles where it is involved in energy generation. It is widely used, especially by athletes, as a staple supplement for improving physical performance. Recent reports have shown that Cr displays antioxidant activity which could explain its beneficial cellular effects. We have evaluated the ability of Cr to protect human erythrocytes and lymphocytes against oxidative damage. Erythrocytes were challenged with model oxidants, 2, 2'-azobis(2-amidinopropane) dihydrochloride (AAPH) and hydrogen peroxide (H2O2) in the presence and absence of Cr. Incubation of erythrocytes with oxidant alone increased hemolysis, methemoglobin levels, lipid peroxidation and protein carbonyl content. This was accompanied by decrease in glutathione levels. Antioxidant enzymes and antioxidant power of the cell were compromised while the activity of membrane bound enzyme was lowered. This suggests induction of oxidative stress in erythrocytes by AAPH and H2O2. However, Cr protected the erythrocytes by ameliorating the AAPH and H2O2 induced changes in these parameters. This protective effect was confirmed by electron microscopic analysis which showed that oxidant-induced cell damage was attenuated by Cr. No cellular alterations were induced by Cr alone even at 20 mM, the highest concentration used. Creatinine, a by-product of Cr metabolism, was also shown to exert protective effects, although it was slightly less effective than Cr. Human lymphocytes were similarly treated with H2O2 in absence and presence of different concentrations of Cr. Lymphocytes incubated with oxidant alone had alterations in various biochemical and antioxidant parameters including decrease in cell viability and induction of DNA damage. The presence of Cr attenuated all these H2O2-induced changes in lymphocytes. Thus, Cr can function as a blood antioxidant, protecting cells from oxidative damage, genotoxicity and can potentially increase their lifespan. PMID

  6. [Effect of macro-creatine kinase in serum on dry chemistry methods results for total creatine kinase activity].

    PubMed

    Tozawa, T; Hashimoto, M

    1999-02-01

    Most enzymes in serum that are measured in clinical laboratories can occur in macro-molecular forms in a significantly number of patients. Within dry chemistry (DC) multilayer film, physical barriers may prevent contact macro-molecular enzyme forms with the active reagent ingredients. Here, serum samples with macro-creatine kinase (macro-CK) type 1: CK-immunoglobulin complex or type 2: oligomer mitochondrial CK (CKm) were analyzed for total CK activity on three different DC analyzers: VITROS 700XR, FUJIDRYCHEM 5000, SPOTCHEM SP4410 and a classic wet chemistry (WC) analyzer: HITACHI 7350. Macro-CKs were detected and identified by electrophoresis on cellulose acetate. Serum with high amounts of oligomer CKm gave CK values by all of DC methods significantly lower than that by the WC method (p < 0.05). Oligomer CKm gradually converts into monomer forms in serum after storage. With increase in day after storage at 4 degrees C, there was a gradual shift in which percent of total CK activity for oligomer CKm decreased while the ratio of total CK activity, DC method/WC method increased. The principle of analytical method for CK activity determination is commonly to all of the DC methods, the WC method and the electrophoretic analysis. These suggest that oligomer CKm is sieved by DC multilayer film elements. In contrast, each of DC method produced highly corrected CK activities for sample containing CK-immunoglobulin complex. This difference in the effects of macro-CKs may depend upon physicochemical characteristics of analytical DC elements. PMID:10097631

  7. The cyanobacterial amino acid β-N-methylamino-l-alanine perturbs the intermediary metabolism in neonatal rats.

    PubMed

    Engskog, Mikael K R; Karlsson, Oskar; Haglöf, Jakob; Elmsjö, Albert; Brittebo, Eva; Arvidsson, Torbjörn; Pettersson, Curt

    2013-10-01

    The neurotoxic amino acid β-N-methylamino-l-alanine (BMAA) is produced by most cyanobacteria. BMAA is considered as a potential health threat because of its putative role in neurodegenerative diseases. We have previously observed cognitive disturbances and morphological brain changes in adult rodents exposed to BMAA during the development. The aim of this study was to characterize changes of major intermediary metabolites in serum following neonatal exposure to BMAA using a non-targeted metabolomic approach. NMR spectroscopy was used to obtain serum metabolic profiles from neonatal rats exposed to BMAA (40, 150, 460mg/kg) or vehicle on postnatal days 9-10. Multivariate data analysis of binned NMR data indicated metabolic pattern differences between the different treatment groups. In particular five metabolites, d-glucose, lactate, 3-hydroxybutyrate, creatine and acetate, were changed in serum of BMAA-treated neonatal rats. These metabolites are associated with changes in energy metabolism and amino acid metabolism. Further statistical analysis disclosed that all the identified serum metabolites in the lowest dose group were significantly (p<0.05) decreased. The neonatal rat model used in this study is so far the only animal model that displays significant biochemical and behavioral effects after a low short-term dose of BMAA. The demonstrated perturbation of intermediary metabolism may contribute to BMAA-induced developmental changes that result in long-term effects on adult brain function. PMID:23886855

  8. A novel SLC6A8 mutation associated with motor dysfunction in a child exhibiting creatine transporter deficiency

    PubMed Central

    Cervera-Acedo, Cristina; Lopez, Maria; Aguirre-Lamban, Jana; Santibañez, Paula; Garcia-Oguiza, Alberto; Poch-Olive, Maria Luisa; Dominguez-Garrido, Elena

    2015-01-01

    Creatine transporter (CT) deficiency is an X-linked disorder caused by mutations in the SLC6A8 gene. We describe a clinical, biochemical and molecular examination of a child with X-linked cerebral creatine deficiency. Increased urinary creatine/creatinine ratio, abnormal brain proton magnetic resonance spectroscopy and reduced creatine transport confirmed the clinical diagnosis. SLC6A8 analysis revealed a novel mutation that was hemizygous in the child and not detected in his mother. CT deficiency should be considered in children, especially males, with mental retardation. PMID:27081545

  9. Creatine kinase in non-muscle tissues and cells.

    PubMed

    Wallimann, T; Hemmer, W

    1994-01-01

    Over the past years, a concept for creatine kinase function, the 'PCr-circuit' model, has evolved. Based on this concept, multiple functions for the CK/PCr-system have been proposed, such as an energy buffering function, regulatory functions, as well as an energy transport function, mostly based on studies with muscle. While the temporal energy buffering and metabolic regulatory roles of CK are widely accepted, the spatial buffering or energy transport function, that is, the shuttling of PCr and Cr between sites of energy utilization and energy demand, is still being debated. There is, however, much circumstantial evidence, that supports the latter role of CK including the distinct, isoenzyme-specific subcellular localization of CK isoenzymes, the isolation and characterization of functionally coupled in vitro microcompartments of CK with a variety of cellular ATPases, and the observed functional coupling of mitochondrial oxidative phosphorylation with mitochondrial CK. New insight concerning the functions of the CK/PCr-system has been gained from recent M-CK null-mutant transgenic mice and by the investigation of CK localization and function in certain highly specialized non-muscle tissues and cells, such as electrocytes, retina photoreceptor cells, brain cells, kidney, salt glands, myometrium, placenta, pancreas, thymus, thyroid, intestinal brush-border epithelial cells, endothelial cells, cartilage and bone cells, macrophages, blood platelets, tumor and cancer cells. Studies with electric organ, including in vivo 31P-NMR, clearly reveal the buffer function of the CK/PCr-system in electrocytes and additionally corroborate a direct functional coupling of membrane-bound CK to the Na+/K(+)-ATPase. On the other hand, experiments with live sperm and recent in vivo 31P-NMR measurements on brain provide convincing evidence for the transport function of the CK/PCr-system. We report on new findings concerning the isoenzyme-specific cellular localization and subcellular

  10. Spectrophotometric readout for an alanine dosimeter for food irradiation applications

    NASA Astrophysics Data System (ADS)

    Ebraheem, S.; Beshir, W. B.; Eid, S.; Sobhy, R.; Kovács, A.

    2003-06-01

    The alanine-electron spin resonance (EPR) readout system is well known as a reference and transfer dosimetry system for the evaluation of high doses in radiation processing. The high cost of an EPR/alanine dosimetry system is a serious handicap for large-scale routine application in irradiation facilities. In this study, the use of a complex produced by dissolving irradiated L-alanine in 1,4-phenyl diammonium dichloride solution was investigated for dosimetry purposes. This complex—having a purple colour—has an increasing absorbance with increasing dose in the range of 1-20 kGy. The applicability of spectrophotometric evaluation was studied by measuring the absorbance intensity of this complex at 360 and 505 nm, respectively. Fluorimetric evaluation was also investigated by measuring the emission of the complex at 435 nm as a function of dose. The present method is easy for routine application. The effect of the dye concentration as well as the suitable amount of irradiated alanine has been studied. With respect to routine application, the stability of the product complex after its formation was also investigated.

  11. Formation of {gamma}-alumina nanorods in presence of alanine

    SciTech Connect

    Dabbagh, Hossein A.; Rasti, Elham; Yalfani, Mohammad S.; Medina, Francesc

    2011-02-15

    Graphical abstract: Nanorod aluminas with a possible hexagonal symmetry, high surface area and relatively narrow pore size distribution were obtained. Research highlights: {yields} Research highlights {yields} Boehmite was prepared using a green sol-gel process in the presence of alanine. {yields} Nanorod aluminas with a high surface area were obtained. {yields} Addition of alanine would shape the size of the holes and crevices. {yields} The morphologies of the nanorods were revealed by transmission electron microscope. -- Abstract: Boehmite and alumina nanostructures were prepared using a simple green sol-gel process in the presence of alanine in water medium at room temperature. The uncalcined (dried at 200 {sup o}C) and the calcined materials (at 500, 600 and 700 {sup o}C for 4 h) were characterized using XRD, TEM, SEM, N{sub 2} physisorption and TGA. Nanorod aluminas with a possible hexagonal symmetry, high surface area and relatively narrow pore size distribution were obtained. The surface area was enhanced and crystallization was retarded as the alanine content increased. The morphologies of the nanoparticles and nanorods were revealed by a transmission electron microscope (TEM).

  12. Effects of oral creatine supplementation on high intensity, intermittent exercise performance in competitive squash players.

    PubMed

    Romer, L M; Barrington, J P; Jeukendrup, A E

    2001-11-01

    The purpose of this study was to determine the effects of oral creatine supplementation on high intensity, intermittent exercise performance in competitive squash players. Nine squash players (mean +/- SEM VO2max = 61.9 +/- 2.1 ml x kg(-1) x min(-1); body mass = 73 +/- 3 kg) performed an on-court "ghosting" routine that involved 10 sets of 2 repetitions of simulated positional play, each set interspersed with 30 s passive recovery. A double blind, crossover design was utilised whereby experimental and control groups supplemented 4 times daily for 5 d with 0.075 g x kg(-1) body mass of creatine monohydrate and maltodextrine, respectively, and a 4 wk washout period separated the crossover of treatments. The experimental group improved mean set sprint time by 3.2 +/- 0.8% over and above the changes noted for the control group (P = 0.004 and 95% Cl = 1.4 to 5.1%). Sets 2 to 10 were completed in a significantly shorter time following creatine supplementation compared to the placebo condition (P < 0.05). In conclusion, these data support existing evidence that creatine supplementation improves high intensity, intermittent exercise performance. In addition, the present study provides new evidence that oral creatine supplementation improves exercise performance in competitive squash players. PMID:11719888

  13. Effect of Preexercise Creatine Ingestion on Muscle Performance in Healthy Aging Males.

    PubMed

    Baker, Taylor P; Candow, Darren G; Farthing, Jonathan P

    2016-06-01

    Baker, TP, Candow, DG, and Farthing, JP. Effect of preexercise creatine ingestion on muscle performance in healthy aging males. J Strength Cond Res 30(6): 1763-1766, 2016-Preexercise creatine supplementation may have a beneficial effect on aging muscle performance. Using a double-blind, repeated measures, crossover design, healthy males (N = 9, 54.8 ± 4.3 years; 92.9 ± 11.5 kg; 179.2 ± 11.1 cm) were randomized to consume creatine (20 g) and placebo (20 g corn starch maltodextrin), on 2 separate occasions (7 days apart), 3 hours before performing leg press and chest press repetitions to muscle fatigue (3 sets at 70% 1-repetition maximum; 1 minute rest between sets). There was a set main effect (p ≤ 0.05) for the leg press and chest press with the number of repetitions performed decreasing similarly for creatine and placebo. These results suggest that a bolus ingestion of creatine consumed 3 hours before resistance exercise has no effect on upper or lower-body muscle performance in healthy aging males. PMID:26562708

  14. The effect of creatine on treadmill running with high-intensity intervals.

    PubMed

    Biwer, Craig J; Jensen, Randall L; Schmidt, W Daniel; Watts, Phillip B

    2003-08-01

    To determine whether creatine monohydrate supplementation would improve performance during a submaximal treadmill run interspersed with high-intensity intervals, 15 college soccer players (8 women, 7 men) received either creatine or a maltodextrin placebo at 0.3 g.kg body mass per day for 6 days. The speed of the treadmill was constant at 160.8 m.min, and every 2 minutes the grade was elevated to 15%. Each hill segment was 1 minute long. At the end of the 20-minute protocol, the treadmill was again elevated to 15% and held there until volitional exhaustion occurred. There was a significant treatment effect of creatine supplementation on body mass (p < 0.05) in the men; however, no significant differences were observed in the women (p > 0.05). There were no treatment effects (p > 0.05) on time to exhaustion, ratings of perceived exertion, or blood lactate concentration. There was a tendency for blood lactate levels to be lower after short-term creatine supplementation in the women, but this was not statistically significant. Based on these results, it appears that creatine supplementation does not improve performance in submaximal running interspersed with high-intensity intervals. PMID:12930167

  15. Beta-alanine supplementation in high-intensity exercise.

    PubMed

    Harris, Roger C; Sale, Craig

    2012-01-01

    Glycolysis involves the oxidation of two neutral hydroxyl groups on each glycosyl (or glucosyl) unit metabolised, yielding two carboxylic acid groups. During low-intensity exercise these, along with the remainder of the carbon skeleton, are further oxidised to CO(2) and water. But during high-intensity exercise a major portion (and where blood flow is impaired, then most) is accumulated as lactate anions and H(+). The accumulation of H(+) has deleterious effects on muscle function, ultimately impairing force production and contributing to fatigue. Regulation of intracellular pH is achieved over time by export of H(+) out of the muscle, although physicochemical buffers in the muscle provide the first line of defence against H(+) accumulation. In order to be effective during high-intensity exercise, buffers need to be present in high concentrations in muscle and have pK(a)s within the intracellular exercise pH transit range. Carnosine (β-alanyl-L-histidine) is ideal for this role given that it occurs in millimolar concentrations within the skeletal muscle and has a pK(a) of 6.83. Carnosine is a cytoplasmic dipeptide formed by bonding histidine and β-alanine in a reaction catalysed by carnosine synthase, although it is the availability of β-alanine, obtained in small amounts from hepatic synthesis and potentially in greater amounts from the diet that is limiting to synthesis. Increasing muscle carnosine through increased dietary intake of β-alanine will increase the intracellular buffering capacity, which in turn might be expected to increase high-intensity exercise capacity and performance where this is pH limited. In this study we review the role of muscle carnosine as an H(+) buffer, the regulation of muscle carnosine by β-alanine, and the available evidence relating to the effects of β-alanine supplementation on muscle carnosine synthesis and the subsequent effects of this on high-intensity exercise capacity and performance. PMID:23075550

  16. The unresolved puzzle why alanine extensions cause disease.

    PubMed

    Winter, Reno; Liebold, Jens; Schwarz, Elisabeth

    2013-08-01

    The prospective increase in life expectancy will be accompanied by a rise in the number of elderly people who suffer from ill health caused by old age. Many diseases caused by aging are protein misfolding diseases. The molecular mechanisms underlying these disorders receive constant scientific interest. In addition to old age, mutations also cause congenital protein misfolding disorders. Chorea Huntington, one of the most well-known examples, is caused by triplet extensions that can lead to more than 100 glutamines in the N-terminal region of huntingtin, accompanied by huntingtin aggregation. So far, nine disease-associated triplet extensions have also been described for alanine codons. The extensions lead primarily to skeletal malformations. Eight of these proteins represent transcription factors, while the nuclear poly-adenylate binding protein 1, PABPN1, is an RNA binding protein. Additional alanines in PABPN1 lead to the disease oculopharyngeal muscular dystrophy (OPMD). The alanine extension affects the N-terminal domain of the protein, which has been shown to lack tertiary contacts. Biochemical analyses of the N-terminal domain revealed an alanine-dependent fibril formation. However, fibril formation of full-length protein did not recapitulate the findings of the N-terminal domain. Fibril formation of intact PABPN1 was independent of the alanine segment, and the fibrils displayed biochemical properties that were completely different from those of the N-terminal domain. Although intranuclear inclusions have been shown to represent the histochemical hallmark of OPMD, their role in pathogenesis is currently unclear. Several cell culture and animal models have been generated to study the molecular processes involved in OPMD. These studies revealed a number of promising future therapeutic strategies that could one day improve the quality of life for the patients. PMID:23612654

  17. Cellular compartmentation of energy metabolism: creatine kinase microcompartments and recruitment of B-type creatine kinase to specific subcellular sites.

    PubMed

    Schlattner, Uwe; Klaus, Anna; Ramirez Rios, Sacnicte; Guzun, Rita; Kay, Laurence; Tokarska-Schlattner, Malgorzata

    2016-08-01

    There is an increasing body of evidence for local circuits of ATP generation and consumption that are largely independent of global cellular ATP levels. These are mostly based on the formation of multiprotein(-lipid) complexes and diffusion limitations existing in cells at different levels of organization, e.g., due to the viscosity of the cytosolic medium, macromolecular crowding, multiple and bulky intracellular structures, or controlled permeability across membranes. Enzymes generating ATP or GTP are found associated with ATPases and GTPases enabling the direct fueling of these energy-dependent processes, and thereby implying that it is the local and not the global concentration of high-energy metabolites that is functionally relevant. A paradigm for such microcompartmentation is creatine kinase (CK). Cytosolic and mitochondrial isoforms of CK constitute a well established energy buffering and shuttling system whose functions are very much based on local association of CK isoforms with ATP-providing and ATP-consuming processes. Here we review current knowledge on the subcellular localization and direct protein and lipid interactions of CK isoforms, in particular about cytosolic brain-type CK (BCK) much less is known compared to muscle-type CK (MCK). We further present novel data on BCK, based on three different experimental approaches: (1) co-purification experiments, suggesting association of BCK with membrane structures such as synaptic vesicles and mitochondria, involving hydrophobic and electrostatic interactions, respectively; (2) yeast-two-hybrid analysis using cytosolic split-protein assays and the identifying membrane proteins VAMP2, VAMP3 and JWA as putative BCK interaction partners; and (3) phosphorylation experiments, showing that the cellular energy sensor AMP-activated protein kinase (AMPK) is able to phosphorylate BCK at serine 6 to trigger BCK localization at the ER, in close vicinity of the highly energy-demanding Ca(2+) ATPase pump. Thus

  18. A simple screening method using ion chromatography for the diagnosis of cerebral creatine deficiency syndromes.

    PubMed

    Wada, Takahito; Shimbo, Hiroko; Osaka, Hitoshi

    2012-08-01

    Cerebral creatine deficiency syndromes (CCDS) are caused by genetic defects in L-arginine:glycine amidinotransferase, guanidinoacetate methyltransferase or creatine transporter 1. CCDS are characterized by abnormal concentrations of urinary creatine (CR), guanidinoacetic acid (GA), or creatinine (CN). In this study, we describe a simple HPLC method to determine the concentrations of CR, GA, and CN using a weak-acid ion chromatography column with a UV detector without any derivatization. CR, GA, and CN were separated clearly with the retention times (mean ± SD, n = 3) of 5.54 ± 0.0035 min for CR, 6.41 ± 0.0079 min for GA, and 13.53 ± 0.046 min for CN. This new method should provide a simple screening test for the diagnosis of CCDS. PMID:22080216

  19. The activity of seminal creatine kinase is increased in the presence of pentoxifylline.

    PubMed

    Banihani, S A; Abu-Alhayjaa, R F

    2016-06-01

    Creatine kinase enzyme (CK) is indispensable for sperm function because it catalyses the regeneration of ATP from the chemical shuttle between creatine and creatine phosphate. Here, we measured CK activity of human spermatozoa in the presence of pentoxifylline (PF), a xanthine derivative drug primarily used to treat peripheral vascular function. Nine semen samples from different males were subjected to swim up, incubated with PF and tested for CK activity using the kinetic spectrophotometric method. The CK activity of spermatozoa significantly increased after addition of PF at 5 mm compared with the control (with 0.0 mm PF). Given that PF has been identified as a sperm motility enhancer and that CK is crucial for adequate sperm motion; then, the aptitude of PF to enhance sperm motility may be modulated by increasing CK activity. PMID:26395279

  20. Creatine kinase: race-gender differences in patients hospitalized for suspected myocardial infarction.

    PubMed Central

    Cook, J. C.; Wong, E.; Haywood, L. J.

    1990-01-01

    Race-gender differences in creatine kinase values were studied in 647 consecutive patients admitted for suspected myocardial infarction. The lowest value in a serial set for each patient was used for group comparisons. Significant differences were found between Hispanic females and black males, using standard values. Using log creatine kinase values, significant differences were found among blacks, Caucasians, and Hispanics. Males had higher log creatine kinase values than females, but no differences were found between sexes within racial groups. Body surface area differences (significant between males and females) did not explain all of the racial-gender differences found. Reexamination of ranges of normality, taking into account race-gender differences, is strongly supported by these data. PMID:2185368

  1. Determination of the anti-inflammatory and cytoprotective effects of l-glutamine and l-alanine, or dipeptide, supplementation in rats submitted to resistance exercise.

    PubMed

    Raizel, Raquel; Leite, Jaqueline Santos Moreira; Hypólito, Thaís Menezes; Coqueiro, Audrey Yule; Newsholme, Philip; Cruzat, Vinicius Fernandes; Tirapegui, Julio

    2016-08-01

    We evaluated the effects of chronic oral supplementation with l-glutamine and l-alanine in their free form or as the dipeptide l-alanyl-l-glutamine (DIP) on muscle damage, inflammation and cytoprotection, in rats submitted to progressive resistance exercise (RE). Wistar rats (n 8/group) were submitted to 8-week RE, which consisted of climbing a ladder with progressive loads. In the final 21 d before euthanasia, supplements were delivered in a 4 % solution in drinking water. Glutamine, creatine kinase (CK), lactate dehydrogenase (LDH), TNF-α, specific IL (IL-1β, IL-6 and IL-10) and monocyte chemoattractant protein-1 (MCP-1) levels were evaluated in plasma. The concentrations of glutamine, TNF-α, IL-6 and IL-10, as well as NF-κB activation, were determined in extensor digitorum longus (EDL) skeletal muscle. HSP70 level was assayed in EDL and peripheral blood mononuclear cells (PBMC). RE reduced glutamine concentration in plasma and EDL (P<0·05 v. sedentary group). However, l-glutamine supplements (l-alanine plus l-glutamine (GLN+ALA) and DIP groups) restored glutamine levels in plasma (by 40 and 58 %, respectively) and muscle (by 93 and 105 %, respectively). GLN+ALA and DIP groups also exhibited increased level of HSP70 in EDL and PBMC, consistent with the reduction of NF-κB p65 activation and cytokines in EDL. Muscle protection was also indicated by attenuation in plasma levels of CK, LDH, TNF-α and IL-1β, as well as an increase in IL-6, IL-10 and MCP-1. Our study demonstrates that chronic oral l-glutamine treatment (given with l-alanine or as dipeptide) following progressive RE induces cyprotective effects mediated by HSP70-associated responses to muscle damage and inflammation. PMID:27215379

  2. Creatine supplementation increases glucose oxidation and AMPK phosphorylation and reduces lactate production in L6 rat skeletal muscle cells

    PubMed Central

    Ceddia, Rolando B; Sweeney, Gary

    2004-01-01

    Recent observations have suggested that creatine supplementation might have a beneficial effect on glucoregulation in skeletal muscle. However, conclusive studies on the direct effects of creatine on glucose uptake and metabolism are lacking. The objective of this study was to investigate the effects of creatine supplementation on basal and insulin-stimulated glucose transporter (GLUT4) translocation, glucose uptake, glycogen content, glycogen synthesis, lactate production, glucose oxidation and AMP-activated protein kinase (AMPK) phosphorylation in L6 rat skeletal muscle cells. Four treatment groups were studied: control, insulin (100 nm), creatine (0.5 mm) and creatine + insulin. After 48 h of creatine supplementation the creatine and phosphocreatine contents of L6 myoblasts increased by ∼9.3- and ∼5.1-fold, respectively, but the ATP content of the cells was not affected. Insulin significantly increased 2-deoxyglucose uptake (∼1.9-fold), GLUT4 translocation (∼1.8-fold), the incorporation of D-[U-14C]glucose into glycogen (∼2.3-fold), lactate production (∼1.5-fold) and 14CO2 production (∼1.5-fold). Creatine neither altered the glycogen and GLUT4 contents of the cells nor the insulin-stimulated rates of 2-DG uptake, GLUT4 translocation, glycogen synthesis and glucose oxidation. However, creatine significantly reduced by ∼42% the basal rate of lactate production and increased by ∼40% the basal rate of 14CO2 production. This is in agreement with the ∼35% increase in citrate synthase activity and also with the ∼2-fold increase in the phosphorylation of both α-1 and α-2 isoforms of AMPK after creatine supplementation. We conclude that 48 h of creatine supplementation does not alter insulin-stimulated glucose uptake and glucose metabolism; however, it activates AMPK, shifts basal glucose metabolism towards oxidation and reduces lactate production in L6 rat skeletal muscle cells. PMID:14724211

  3. The N-terminal region of mature mitochondrial aspartate aminotransferase can direct cytosolic dihydrofolate reductase into mitochondria in vitro.

    PubMed

    Giannattasio, S; Azzariti, A; Marra, E; Quagliariello, E

    1994-06-30

    Two fused genes were constructed which encode for two chimeric proteins in which either 10 or 191 N-terminal amino acids of mature mitochondrial aspartate aminotransferase had been attached to the entire polypeptide chain of cytosolic dihydrofolate reductase. The precursor and mature form of mitochondrial aspartate aminotransferase, dihydrofolate reductase and both chimeric proteins were synthesized in vitro and their import into isolated mitochondria was studied. Both chimeric proteins were taken up by isolated organelles, where they became protease resistant, thus indicating the ability of the N-terminal portion of the mature moiety of the precursor of mitochondrial aspartate aminotransferase to direct cytosolic dihydrofolate reductase into mitochondria. PMID:8024546

  4. Formation of simple biomolecules from alanine in ocean by impacts

    NASA Astrophysics Data System (ADS)

    Umeda, Y.; Sekine, T.; Furukawa, Y.; Kakegawa, T.; Kobayashi, T.

    2013-12-01

    The biomolecules on the Earth are thought either to have originated from the extraterrestrial parts carried with flying meteorites or to have been formed from the inorganic materials on the Earth through given energy. From the standpoint to address the importance of impact energy, it is required to simulate experimentally the chemical reactions during impacts, because violent impacts may have occurred 3.8-4.0 Gyr ago to create biomolecules initially. It has been demonstrated that shock reactions among ocean (H2O), atmospheric nitrogen, and meteoritic constitution (Fe) can induce locally reduction environment to form simple bioorganic molecules such as ammonia and amino acid (Nakazawa et al., 2005; Furukawa et al., 2009). We need to know possible processes for alanine how chemical reactions proceed during repeated impacts and how complicated biomolecules are formed. Alanine can be formed from glycine (Umeda et al., in preparation). In this study, we carried out shock recovery experiments at pressures of 4.4-5.7 GPa to investigate the chemical reactions of alanine. Experiments were carried out with a propellant gun. Stainless steel containers (30 mm in diameter, 30 mm long) with 13C-labeled alanine aqueous solution immersed in olivine or hematite powders were used as targets. Air gap was present in the sample room (18 mm in diameter, 2 mm thick) behind the sample. The powder, solution, and air represent meteorite, ocean, and atmosphere on early Earth, respectively. Two powders of olivine and hematite help to keep the oxygen fugacity low and high during experiments, respectively in order to investigate the effect of oxygen fugacity on chemical processes of alanine. The recovered containers, after cleaned completely, were immersed into liquid nitrogen to freeze sample solution and then we drilled on the impact surface to extract water-soluble run products using pure water. Thus obtained products were analyzed by LC/MS for four amino acids (glycine, alanine, valine, and

  5. Structure of the Mycobacterium tuberculosis D-Alanine:D-Alanine Ligase, a Target of the Antituberculosis Drug D-Cycloserine

    SciTech Connect

    Bruning, John B.; Murillo, Ana C.; Chacon, Ofelia; Barletta, Raúl G.; Sacchettini, James C.

    2011-09-28

    D-Alanine:D-alanine ligase (EC 6.3.2.4; Ddl) catalyzes the ATP-driven ligation of two D-alanine (D-Ala) molecules to form the D-alanyl:D-alanine dipeptide. This molecule is a key building block in peptidoglycan biosynthesis, making Ddl an attractive target for drug development. D-Cycloserine (DCS), an analog of D-Ala and a prototype Ddl inhibitor, has shown promise for the treatment of tuberculosis. Here, we report the crystal structure of Mycobacterium tuberculosis Ddl at a resolution of 2.1 {angstrom}. This structure indicates that Ddl is a dimer and consists of three discrete domains; the ligand binding cavity is at the intersection of all three domains and conjoined by several loop regions. The M. tuberculosis apo Ddl structure shows a novel conformation that has not yet been observed in Ddl enzymes from other species. The nucleotide and D-alanine binding pockets are flexible, requiring significant structural rearrangement of the bordering regions for entry and binding of both ATP and D-Ala molecules. Solution affinity and kinetic studies showed that DCS interacts with Ddl in a manner similar to that observed for D-Ala. Each ligand binds to two binding sites that have significant differences in affinity, with the first binding site exhibiting high affinity. DCS inhibits the enzyme, with a 50% inhibitory concentration (IC{sub 50}) of 0.37 mM under standard assay conditions, implicating a preferential and weak inhibition at the second, lower-affinity binding site. Moreover, DCS binding is tighter at higher ATP concentrations. The crystal structure illustrates potential drugable sites that may result in the development of more-effective Ddl inhibitors.

  6. Ontogenic changes of kynurenine aminotransferase I activity and its expression in the chicken retina.

    PubMed

    Rejdak, Robert; Zielinska, Elzbieta; Shenk, Yana; Turski, Waldemar A; Okuno, Etsuo; Zarnowski, Tomasz; Zagorski, Zbigniew; Zrenner, Eberhart; Kohler, Konrad

    2003-06-01

    Kynurenine aminotransferases are key enzymes for the synthesis of kynurenic acid (KYNA), an endogenous glutamate receptor antagonist. The study described here examined ontogenic changes of kynurenine aminotransferase I (KAT I) activity and its expression in the chicken retina. KAT I activity measured on embryonic day 16 (E16) was significantly higher than at all other stages (E12, P0 and P7). Double labeling with antibodies against glutamine synthetase showed that on P7 KAT I was expressed in Müller cell endfeet and their processes in the inner retina. Since KAT I activity is high in the late embryonic stages, it is conceivable that it plays a neuromodulatory role in the retina during the late phase of embryogenesis. PMID:12782065

  7. Participation of cysteine and cystine in inactivation of tyrosine aminotransferase in rat liver homogenates.

    PubMed Central

    Buckley, W T; Milligan, L P

    1978-01-01

    1. Inactivation of tyrosine aminotransferase was studied in rat liver homogenates. Under an O2 atmosphere with cysteine added, inactivation was rapid after a lag period of approx. 1h, whereas a N2 atmosphere extended the lag period to approx. 3h. 2. Replacement of cysteine with cystine resulted in rapid inactivation both aerobically and anaerobically. 3. Removal of the particulate fraction by centrifuging rat liver homogenates at 13,000g for 9min resulted in an aerobic lag period of 0.5h in the presence of cystine and approx. 3h in the presence of cysteine. 4. It is proposed that the stimulatory effect of cysteine on tyrosine aminotransferase inactivation occurs largely as a result of oxidation to cystine, which appears to be a more directly effective agent. PMID:33669

  8. Raman spectroscopic approach to monitor the in vitro cyclization of creatine → creatinine

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Debraj; Sharma, Poornima; Singh, Sachin Kumar; Singh, Pushkar; Tarcea, Nicolae; Deckert, Volker; Popp, Jürgen; Singh, Ranjan K.

    2015-01-01

    The creatine → creatinine cyclization, an important metabolic phenomenon has been initiated in vitro at acidic pH and studied through Raman spectroscopic and DFT approach. The equilibrium composition of neutral, zwitterionic and protonated microspecies of creatine has been monitored with time as the reaction proceeds. Time series Raman spectra show clear signature of creatinine formation at pH 3 after ∼240 min at room temperature and reaction is faster at higher temperature. The spectra at pH 1 and pH 5 do not show such signature up to 270 min implying faster reaction rate at pH 3.

  9. Umbrella sampling of proton transfer in a creatine-water system

    NASA Astrophysics Data System (ADS)

    Ivchenko, Olga; Bachert, Peter; Imhof, Petra

    2014-04-01

    Proton transfer reactions are among the most common processes in chemistry and biology. Proton transfer between creatine and surrounding solvent water is underlying the chemical exchange saturation transfer used as a contrast in magnetic resonance imaging. The free energy barrier, determined by first-principles umbrella sampling simulations (EaDFT 3 kcal/mol) is in the same order of magnitude as the experimentally obtained activation energy. The underlying mechanism is a first proton transfer from the guanidinium group to the water pool, followed by a second transition where a proton is "transferred back" from the nearest water molecule to the deprotonated nitrogen atom of creatine.

  10. A Pilot Study of Creatine as a Novel Treatment for Depression in Methamphetamine Using Females

    PubMed Central

    Hellem, Tracy L.; Sung, Young-Hoon; Shi, Xian-Feng; Pett, Marjorie A.; Latendresse, Gwen; Morgan, Jubel; Huber, Rebekah S.; Kuykendall, Danielle; Lundberg, Kelly J.; Renshaw, Perry F.

    2015-01-01

    Objective Depression among methamphetamine users is more prevalent in females than males, but gender specific treatment options for this comorbidity have not been described. Reduced brain phosphocreatine levels have been shown to be lower in female methamphetamine users compared to males, and, of relevance, studies have demonstrated an association between treatment resistant depression and reduced brain phosphocreatine concentrations. The nutritional supplement creatine monohydrate has been reported to reduce symptoms of depression in female adolescents and adults taking antidepressants, as well as to increase brain phosphocreatine in healthy volunteers. Therefore, the purpose of this pilot study was to investigate creatine monohydrate as a treatment for depression in female methamphetamine users. Methods Fourteen females with depression and comorbid methamphetamine dependence were enrolled in an 8 week open label trial of 5 grams of daily creatine monohydrate and of these 14, eleven females completed the study. Depression was measured using the Hamilton Depression Rating Scale (HAMD) and brain phosphocreatine levels were measured using phosphorus magnetic resonance spectroscopy pre- and post-creatine treatment. Secondary outcome measures included anxiety symptoms, measured with the Beck Anxiety Inventory (BAI), as well as methamphetamine use, monitored by twice weekly urine drug screens and self-reported use. Results The results of a linear mixed effects repeated measures model showed significantly reduced HAMD and BAI scores as early as week 2 when compared to baseline scores. This improvement was maintained through study completion. Brain phosphocreatine concentrations were higher at the second phosphorus magnetic resonance spectroscopy scan compared to the baseline scan; Mbaseline = 0.223 (SD = 0.013) vs. Mpost-treatment = 0.233 (SD = 0.009), t(9) = 2.905, p < .01, suggesting that creatine increased phosphocreatine levels. Also, a reduction in methamphetamine

  11. Expression, detection of candidate function and homology modeling for Vicia villosa ornithine δ-aminotransferase.

    PubMed

    Nada, Ahmed M K; Abd-Elhalim, Haytham M; El-Domyati, Fotouh M; Abou-Ali, Rania M I; Bahieldin, Ahmed

    2010-01-01

    The accumulation of compatible solutes during stress in plant cell is well documented. Proline is one of these solutes which accumulate in the cytosol in response to drought or salinity stress in plants. Proline has several functions during stress just like osmotic adjustment, osmoprotection, free radical scavenger and antioxidant. Ornithine δ-aminotransferase (δ-OAT) is an important enzyme in proline biosynthetic pathway. It catalyzes the transamination of ornithine to pyrroline-5-carboxylate which can be reduced into proline. Expression of ornithine δ-aminotransferase gene isolated from Vicia villosa (VvOAT) showed protein with a molecular mass of 63 KDa which is compatible with the predicted mass and after VvOAT gene delivery into E. coli host HB101, VvOAT gene enhanced its salt tolerance. Homology modeling of VvOAT was performed based on the crystal structure of the ornithine δ-aminotransferase from humans (PDB code 2OATA). With this model, a flexible docking study with the substrate and inhibitors was performed. The results indicated that PHE170 and ASN171 in VvOAT are the important determinant residues in binding as they have strong hydrogen bonding contacts with the substrate and inhibitors. All the obtained results indicated the efficiency of utilizing this gene in conferring salt tolerance. PMID:21844680

  12. Structural genes of glutamate 1-semialdehyde aminotransferase for porphyrin synthesis in a cyanobacterium and Escherichia coli.

    PubMed

    Grimm, B; Bull, A; Breu, V

    1991-01-01

    In bacteria 5-aminolevulinate, the universal precursor in the biosynthesis of the porphyrin nucleus of hemes, chlorophylls and bilins is synthesised by two different pathways: in non-sulphur purple bacteria (Rhodobacter) or Rhizobium 5-aminolevulinate synthase condenses glycine and succinyl-CoA into 5-aminolevulinate as is the case in mammalian cells and yeast. In cyanobacteria, green and purple sulphur bacteria, as in chloroplasts of higher plants and algae a three step pathway converts glutamate into 5-aminolevulinate. The last step is the conversion of glutamate 1-semialdehyde into 5-aminolevulinate. Using a cDNA clone encoding glutamate 1-semialdehyde aminotransferase from barley, genes for this enzyme were cloned from Synechococcus PCC6301 and Escherichia coli and sequenced. The popC gene of E. coli, previously considered to encode 5-aminolevulinate synthase, appears to be a structural gene for glutamate 1-semialdehyde aminotransferase. Domains with identical amino acid sequences comprise 48% of the primary structure of the barley, cyanobacterial and putative E. coli glutamate 1-semialdehyde aminotransferases. The cyanobacterial and barley enzymes share 72% identical residues. The peptide containing a likely pyridoxamine phosphate binding lysine is conserved in all three protein sequences. PMID:1900346

  13. Purification and Characterization of Glutamate 1-Semialdehyde Aminotransferase from Barley Expressed in Escherichia coli.

    PubMed

    Berry-Lowe, S L; Grimm, B; Smith, M A; Kannangara, C G

    1992-08-01

    The immediate precursor in the synthesis of tetrapyrroles is Delta-aminolevulinate (ALA). ALA is synthesized from glutamate in higher plants, algae, and certain bacteria. Glutamate 1-semialdehyde aminotransferase (EC 5.4.3.8) (GSA-AT), the third enzyme involved in this metabolic pathway, catalyzes the transamination of GSA to form ALA. The gene encoding this aminotransferase has previously been isolated from barley (Hordeum vulgare) and inserted into an Escherichia coli expression vector. We describe herein the purification of this recombinant barley GSA-AT expressed in Escherichia coli. Coexpression of GroEL and GroES is required for isolation of active aminotransferase from the soluble protein fraction of Escherichia coli. Purified GSA-AT exhibits absorption maxima characteristic of vitamin B(6)-containing enzymes. GSA-AT is primarily in the pyridoxamine form when isolated and can be interconverted between this and the pyridoxal form by addition of 4,5-dioxovalerate and 4,5-diaminovalerate. The conversion of GSA to ALA under steady-state conditions exhibited typical Michaelis-Menten kinetics. Values for K(m) (d,l-GSA) and k(cat) were determined to be 25 micromolar and 0.11 per second, respectively, by nonlinear regression analysis. Stimulation of ALA synthesis by increasing concentrations of d,l-GSA at various fixed concentrations of 4,5-diaminovalerate supports the hypothesis that 4,5-diaminovalerate is the intermediate in the synthesis of ALA. PMID:16669079

  14. Uptake of aspartate aminotransferase into mitochondria in vitro depends on the transmembrane pH gradient.

    PubMed Central

    Passarella, S; Marra, E; Doonan, S; Languino, L R; Saccone, C; Quagliariello, E

    1982-01-01

    1. The effects of various inhibitors of electron transport and of oxidative phosphorylation and the effects of ionophores on the uptake of native aspartate aminotransferase into mitochondria were investigated. 2. Both antimycin and cyanide completely inhibited the uptake of the enzyme. On the other hand, uptake was stimulated to ATP and by oligomycin; however, the stimulation by ATP is inhibited by oligomycin. 3. The effects of ionophores of the valinomycin type in media containing K+ ions depended on the conditions used. Valinomycin alone stimulated the uptake of the enzyme, but in the presence of phosphate ions uptake was abolished. Nonactin was without effect at a low K+ concentration, but was stimulatory at 100 mM-KCl. Gramicidin also stimulated the uptake process. 4. Nigericin completely abolished uptake of aspartate aminotransferase into mitochondria. 5. The uptake of te enzyme was decreased by 18% in the absence of inhibitors or ionophores when the external pH was increased from 6.9 to 7.6. 6. These results indicate that ATP is not directly involved in the uptake of aspartate aminotransferase into mitochondria, neither is there a requirement for a cation gradient. Rather the uptake depends on the maintenance of a pH gradient across the mitochondrial inner membrane. PMID:7092821

  15. Simultaneous Assay of Isotopic Enrichment and Concentration of Guanidinoacetate and Creatine by Gas Chromatography-Mass Spectrometry

    PubMed Central

    Kasumov, Takhar; Gruca, Lourdes L.; Dasarathy, Srinivasan; Kalhan, Satish C.

    2012-01-01

    A gas chromatographic-mass spectrometric (GC-MS) method for the simultaneous measurement of isotopic enrichment and concentration of guanidinoacetic acid and creatine in plasma sample for kinetic studies is reported. The method, based on preparation of the bis(trifluoromethyl)-pyrimidine methyl ester derivatives of guanidinoacetic acid and creatine, is robust and sensitive. The lowest measurable m1 and m3 enrichment for guanidinoacetic acid and creatine, respectively, was 0.3%. The calibration curves for measurements of concentration were linear over a range of 0.5-250 μM guanidinoacetic acid and 2-500 μM for creatine. The method was reliable for inter-assay and intra-assay precision, accuracy and linearity. The technique was applied in a healthy adult to determine in vivo fractional synthesis rate of creatine using primed- constant rate infusion of [1-13C]glycine. It was found that isotopic enrichment of guanidinoacetic acid reached plateau by 30 min of infusion of [1-13C]glycine, indicating either a small pool size or a rapid turnover rate or both, of guanidinoacetic acid. In contrast, tracer appearance in creatin was slow (slope: 0.00097), suggesting a large pool size and a slow rate of synthesis of creatine. This method can be used to estimate rate of synthesis of creatine in-vivo in human and animal studies. PMID:19646413

  16. Selected Cytokines Serve as Potential Biomarkers for Predicting Liver Inflammation and Fibrosis in Chronic Hepatitis B Patients With Normal to Mildly Elevated Aminotransferases.

    PubMed

    Deng, Yong-Qiong; Zhao, Hong; Ma, An-Lin; Zhou, Ji-Yuan; Xie, Shi-Bin; Zhang, Xu-Qing; Zhang, Da-Zhi; Xie, Qing; Zhang, Guo; Shang, Jia; Cheng, Jun; Zhao, Wei-Feng; Zou, Zhi-Qiang; Zhang, Ming-Xiang; Wang, Gui-Qiang

    2015-11-01

    Previous studies of small cohorts have implicated several circulating cytokines with progression of chronic hepatitis B (CHB). However, to date there have been no reliable biomarkers for assessing histological liver damage in CHB patients with normal or mildly elevated alanine aminotransferase (ALT). The aim of the present study was to investigate the association between circulating cytokines and histological liver damage in a large cohort. Also, this study was designed to assess the utility of circulating cytokines in diagnosing liver inflammation and fibrosis in CHB patients with ALT less than 2 times the upper limit of normal range (ULN). A total of 227 CHB patients were prospectively enrolled. All patients underwent liver biopsy and staging by Ishak system. Patients with at least moderate inflammation showed significantly higher levels of CXCL-11, CXCL-10, and interleukin (IL)-2 receptor (R) than patients with less than moderate inflammation (P < 0.001). Patients with significant fibrosis had higher levels of IL-8 (P = 0.027), transforming growth factor alpha (TGF-α) (P = 0.011), IL-2R (P = 0.002), and CXCL-11 (P = 0.032) than the group without significant fibrosis. In addition, 31.8% and 29.1% of 151 patients with ALT < 2 × ULN had at least moderate inflammation and significant fibrosis, respectively. Multivariate analysis demonstrated that CXCL-11 was independently associated with at least moderate inflammation, and TGF-α and IL-2R independently correlated with significant fibrosis in patients with ALT < 2 × ULN. Based on certain cytokines and clinical parameters, an inflammation-index and fib-index were developed, which showed areas under the receiver operating characteristics curve (AUROC) of 0.75 (95% CI 0.66-0.84) for at least moderate inflammation and 0.82 (95% CI 0.75-0.90) for significant fibrosis, correspondingly. Compared to existing scores, fib-index was significantly superior to aspartate aminotransferase

  17. Degradation of Glycine and Alanine on Irradiated Quartz

    NASA Astrophysics Data System (ADS)

    Pawlikowski, Maciej; Benko, Aleksandra; Wróbel, Tomasz P.

    2013-04-01

    Recent researches suggest participation of minerals in the formation of life under primordial conditions. Among all of the minerals, quartz seems to be one of the most probable to take part in such processes. However, an external source of energy is needed, e.g. electric discharge. A device simulating the proposed conditions was designed and was used to simulate prebiotic conditions. Investigation of processes occurring during the stimulation of quartz with electric discharge was studied by means of Ultraviolet-visible (UV-VIS) spectroscopy, in order to monitor the generation kinetics of free radicals. Additionally, infrared spectroscopy was applied to identify chemical reaction products created in a solution of alanine or glycine, in the presence of quartz treated with electric discharge. Formation of increased amounts of free radicals, compared to experiments performed without quartz and/or amino acid, is reported, along with identification of possible degradation products of alanine. No synthetic reactions were observed.

  18. VDAC electronics: 3. VDAC-Creatine kinase-dependent generation of the outer membrane potential in respiring mitochondria.

    PubMed

    Lemeshko, Victor V

    2016-07-01

    Mitochondrial energy in cardiac cells has been reported to be channeled into the cytosol through the intermembrane contact sites formed by the adenine nucleotide translocator, creatine kinase and VDAC. Computational analysis performed in this study showed a high probability of the outer membrane potential (OMP) generation coupled to such a mechanism of energy channeling in respiring mitochondria. OMPs, positive inside, calculated at elevated concentrations of creatine are high enough to restrict ATP release from mitochondria, to significantly decrease the apparent K(m,ADP) for state 3 respiration and to maintain low concentrations of Ca(2+) in the mitochondrial intermembrane space. An inhibition by creatine of Ca(2+)-induced swelling of isolated mitochondria and other protective effects of creatine reported in the literature might be explained by generated positive OMP. We suggest that VDAC-creatine kinase-dependent generation of OMP represents a novel physiological factor controlling metabolic state of mitochondria, cell energy channeling and resistance to death. PMID:27085978

  19. Physiological hypercortisolemia increases proteolysis, glutamine, and alanine production

    SciTech Connect

    Darmaun, D.; Matthews, D.E.; Bier, D.M. Cornell Univ. Medical College, New York, NY )

    1988-09-01

    Physiological elevations of plasma cortisol levels, as are encountered in stress and severe trauma, were produced in six normal subjects by infusing them with hydrocortisone for 64 h. Amino acid kinetics were measured in the postabsorptive state using three 4-h infusions of L-(1-{sup 13}C)leucine, L-phenyl({sup 2}H{sub 5})phenylalanine, L-(2-{sup 15}N)glutamine, and L-(1-{sup 13}C)alanine tracers (1) before, (2) at 12 h, and (3) at 60 h of cortisol infusion. Before and throughout the study, the subjects ate a normal diet of adequate protein and energy intake. The cortisol infusion raised plasma cortisol levels significantly from 10 {plus minus} 1 to 32 {plus minus} 4 {mu}g/dl, leucine flux from 83 {plus minus} 3 to 97 {plus minus} 3 {mu}mol{center dot}kg{sup {minus}1}{center dot}h{sup {minus}1}, and phenylalanine flux from 34 {plus minus} 1 to 39 {plus minus} 1 (SE) {mu}mol{center dot}kg{sup {minus}1}{center dot}h{sup {minus}1} after 12 h of cortisol infusion. These increases were maintained until the cortisol infusion was terminated. These nearly identical 15% increases in two different essential amino acid appearance rates are reflective of increased whole body protein breakdown. Glutamine flux rose by 12 h of cortisol infusion and remained elevated at the same level at 64 h. The increase in flux was primarily due to a 55% increase in glutamine de novo synthesis. Alanine flux increased with acute hypercortisolemia and increased further at 60 h of cortisol infusion, a result primarily of increased alanine de novo synthesis. Insulin, alanine, and lactate plasma levels responded similarly with significant rises between the acute and chronic periods of cortisol infusion. Thus hypercortisolemia increases both protein breakdown and the turnover of important nonessential amino acids for periods of up to 64 h.

  20. Characterization of psychrophilic alanine racemase from Bacillus psychrosaccharolyticus.

    PubMed

    Okubo, Y; Yokoigawa, K; Esaki, N; Soda, K; Kawai, H

    1999-03-16

    A psychrophilic alanine racemase gene from Bacillus psychrosaccharolyticus was cloned and expressed in Escherichia coli SOLR with a plasmid pYOK3. The gene starting with the unusual initiation codon GTG showed higher preference for codons ending in A or T. The enzyme purified to homogeneity showed the high catalytic activity even at 0 degrees C and was extremely labile over 35 degrees C. The enzyme was found to have a markedly large Km value (5.0 microM) for the pyridoxal 5'-phosphate (PLP) cofactor in comparison with other reported alanine racemases, and was stabilized up to 50 degrees C in the presence of excess amounts of PLP. The low affinity of the enzyme for PLP may be related to the thermolability, and may be related to the high catalytic activity, initiated by the transaldimination reaction, at low temperature. The enzyme has a distinguishing hydrophilic region around the residue no. 150 in the deduced amino acid sequence (383 residues), whereas the corresponding regions of other Bacillus alanine racemases are hydrophobic. The position of the region in the three dimensional structure of C atoms of the enzyme was predicted to be in a surface loop surrounding the active site. The region may interact with solvent and reduce the compactness of the active site. PMID:10080917

  1. ESR/alanine dosimetry applied to radiation processing

    NASA Astrophysics Data System (ADS)

    Mosse, D. C.

    The radiation processing of food products is specified in terms of absorbed dose, and processing quality is assessed on the basis of absorbed dose measurements. The validity of process quality control is highly dependent on the quality of the measurements and associated instrumentation; in this respect, dosimetry calibration by an Organization with official status provides an essential guarantee of validity to the quality control steps taken. The Laboratoire de Métrologie des Rayonnements Ionisants (L.M.R.I.) is the primary standards and evaluation laboratory approved by the Bureau National de Métrologie (B.N.M.), which is the French National Bureau of Standards. The LMRI implements correlation procedures in response to the various requirements which arise in connection with high doses and doserates. Such procedures are mainly based on ESR/alanine spectrometry, a dosimetry technique ideally suited to that purpose. Dosemeter geometry and design are tailored to operating conditions. "Photon" dosemeters consist of a detector material in powder or compacted form, and a wall with thickness and chemical composition consistent with the application. "Electron" dosemeters have a detector core of compacted alanine with thickness down to a few tenths of a millimeter. The ESR/alanine dosimetry technique, developed at LMRI is a flexible, reliable and accurate tool which effectively meets the various requirements arising in the field of reference dosimetry, where high doses and doserates are involved.

  2. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion.

    PubMed

    Sousa, Cristovão M; Biancur, Douglas E; Wang, Xiaoxu; Halbrook, Christopher J; Sherman, Mara H; Zhang, Li; Kremer, Daniel; Hwang, Rosa F; Witkiewicz, Agnes K; Ying, Haoqiang; Asara, John M; Evans, Ronald M; Cantley, Lewis C; Lyssiotis, Costas A; Kimmelman, Alec C

    2016-08-25

    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease characterized by an intense fibrotic stromal response and deregulated metabolism. The role of the stroma in PDAC biology is complex and it has been shown to play critical roles that differ depending on the biological context. The stromal reaction also impairs the vasculature, leading to a highly hypoxic, nutrient-poor environment. As such, these tumours must alter how they capture and use nutrients to support their metabolic needs. Here we show that stroma-associated pancreatic stellate cells (PSCs) are critical for PDAC metabolism through the secretion of non-essential amino acids (NEAA). Specifically, we uncover a previously undescribed role for alanine, which outcompetes glucose and glutamine-derived carbon in PDAC to fuel the tricarboxylic acid (TCA) cycle, and thus NEAA and lipid biosynthesis. This shift in fuel source decreases the tumour’s dependence on glucose and serum-derived nutrients, which are limited in the pancreatic tumour microenvironment. Moreover, we demonstrate that alanine secretion by PSCs is dependent on PSC autophagy, a process that is stimulated by cancer cells. Thus, our results demonstrate a novel metabolic interaction between PSCs and cancer cells, in which PSC-derived alanine acts as an alternative carbon source. This finding highlights a previously unappreciated metabolic network within pancreatic tumours in which diverse fuel sources are used to promote growth in an austere tumour microenvironment. PMID:27509858

  3. ISOZYME PROFILES OF LACTIC DEHYDROGENASE AND CREATINE PHOSPHOKINASE IN NEONATAL MOUSE HEARTS

    EPA Science Inventory

    Isozyme profiles of lactic dehydrogenase (LDH) and creatine phosphokinase (CPK) were determined in cardiac tissue of mice during postnatal development. LDH isozymes 1 and 5 showed a definite developmental change, achieving the adult values by 20 days of age, while the other three...

  4. Automated urinalysis technique determines concentration of creatine and creatinine by colorimetry

    NASA Technical Reports Server (NTRS)

    Rho, J. H.

    1967-01-01

    Continuous urinalysis technique is useful in the study of muscle wastage in primates. Creatinine concentration in urine is determined in an aliquot mixture by a color reaction. Creatine is determined in a second aliquot by converting it to creatinine and measuring the difference in color intensity between the two aliquots.

  5. Creatine Kinase Activity Weakly Correlates to Volume Completed Following Upper Body Resistance Exercise

    ERIC Educational Resources Information Center

    Machado, Marco; Willardson, Jeffrey M.; Silva, Dailson P.; Frigulha, Italo C.; Koch, Alexander J.; Souza, Sergio C.

    2012-01-01

    In the current study, we examined the relationship between serum creatine kinase (CK) activity following upper body resistance exercise with a 1- or 3-min rest between sets. Twenty men performed two sessions, each consisting of four sets with a 10-repetition maximum load. The results demonstrated significantly greater volume for the 3-min…

  6. The Effects of Creatine Supplementation on Exercise-Induced Muscle Damage.

    ERIC Educational Resources Information Center

    Rawson, Eric S.; Gunn, Bridget; Clarkson, Priscilla M.

    2001-01-01

    Investigated the effects of oral creatine (Cr) supplementation on markers of exercise-induced muscle damage following high-force eccentric exercise in men randomly administered Cr or placebo. Results indicated that 5 days of Cr supplementation did not reduce indirect makers of muscle damage or enhance recovery from high-force eccentric exercise.…

  7. Exploratory studies of the potential anti-cancer effects of creatine.

    PubMed

    Campos-Ferraz, P L; Gualano, B; das Neves, W; Andrade, I T; Hangai, I; Pereira, R T S; Bezerra, R N; Deminice, R; Seelaender, M; Lancha, A H

    2016-08-01

    Two experiments were performed, in which male Wistar Walker 256 tumor-bearing rats were inoculated with 4 × 10(7) tumor cells subcutaneously and received either creatine (300 mg/kg body weight/day; CR) or placebo (water; PL) supplementation via intragastric gavage. In experiment 1, 50 rats were given PL (n = 22) or CR (n = 22) and a non-supplemented, non-inoculated group served as control CT (n = 6), for 40 days, and the survival rate and tumor mass were assessed. In experiment 2, 25 rats were given CR or PL for 15 days and sacrificed for biochemical analysis. Again, a non-supplemented, non-inoculated group served as control (CT; n = 6). Tumor and muscle creatine kinase (CK) activity and total creatine content, acidosis, inflammatory cytokines, and antioxidant capacity were assessed. Tumor growth was significantly reduced by approximately 30 % in CR when compared with PL (p = 0.03), although the survival rate was not significantly different between CR and PL (p = 0.65). Tumor creatine content tended to be higher in CR than PL (p = 0.096). Tumor CK activity in the cytosolic fraction was higher in CR than PL (p < 0.0001). Blood pCO2 was higher in CT and CR than PL (p = 0.0007 and p = 0.004, respectively). HCO3 was augmented in CT compared to PL (p = 0.03) and CR (p = 0.001). Plasma IL-6 was lower and IL-10 level was higher in CR than PL (p = 0.03 and p = 0.0007, respectively) and TNF-alpha featured a tendency of decrease in CR compared to PL (p = 0.08). Additionally, total antioxidant capacity tended to be lower in CT than PL (p = 0.07). Creatine supplementation was able to slow tumor growth without affecting the overall survival rate, probably due to the re-establishment of the CK-creatine system in cancer cells, leading to attenuation in acidosis, inflammation, and oxidative stress. These findings support the role of creatine as a putative anti-cancer agent as well as help in expanding our knowledge on its potential mechanisms

  8. The effects of pre versus post workout supplementation of creatine monohydrate on body composition and strength

    PubMed Central

    2013-01-01

    Background Chronic supplementation with creatine monohydrate has been shown to promote increases in total intramuscular creatine, phosphocreatine, skeletal muscle mass, lean body mass and muscle fiber size. Furthermore, there is robust evidence that muscular strength and power will also increase after supplementing with creatine. However, it is not known if the timing of creatine supplementation will affect the adaptive response to exercise. Thus, the purpose of this investigation was to determine the difference between pre versus post exercise supplementation of creatine on measures of body composition and strength. Methods Nineteen healthy recreational male bodybuilders (mean ± SD; age: 23.1 ± 2.9; height: 166.0 ± 23.2 cm; weight: 80.18 ± 10.43 kg) participated in this study. Subjects were randomly assigned to one of the following groups: PRE-SUPP or POST-SUPP workout supplementation of creatine (5 grams). The PRE-SUPP group consumed 5 grams of creatine immediately before exercise. On the other hand, the POST-SUPP group consumed 5 grams immediately after exercise. Subjects trained on average five days per week for four weeks. Subjects consumed the supplement on the two non-training days at their convenience. Subjects performed a periodized, split-routine, bodybuilding workout five days per week (Chest-shoulders-triceps; Back-biceps, Legs, etc.). Body composition (Bod Pod®) and 1-RM bench press (BP) were determined. Diet logs were collected and analyzed (one random day per week; four total days analyzed). Results 2x2 ANOVA results - There was a significant time effect for fat-free mass (FFM) (F = 19.9; p = 0.001) and BP (F = 18.9; p < 0.001), however, fat mass (FM) and body weight did not reach significance. While there were trends, no significant interactions were found. However, using magnitude-based inference, supplementation with creatine post workout is possibly more beneficial in comparison to pre workout supplementation

  9. The effect of creatine supplementation upon inflammatory and muscle soreness markers after a 30km race.

    PubMed

    Santos, R V T; Bassit, R A; Caperuto, E C; Costa Rosa, L F B P

    2004-09-01

    We have evaluated the effect of a creatine supplementation protocol upon inflammatory and muscle soreness markers: creatine kinase (CK), lactate dehydrogenase (LDH), prostaglandin E2) (PGE2) and tumor necrosis factor-alpha (TNF-alpha) after running 30km. Runners with previously experience in running marathons, with their personal best between 2.5-3h were supplemented for 5 days prior to the 30km race with 4 doses of 5g of creatine and 15g of maltodextrine per day while the control group received the same amount of maltodextrine. Pre-race blood samples were collected immediately before running the 30km, and 24h after the end of the test (the post-race samples). After the test, athletes from the control group presented an increase in plasma CK (4.4-fold), LDH (43%), PGE2 6.6-fold) and TNF-alpha (2.34-fold) concentrations, indicating a high level of cell injury and inflammation. Creatine supplementation attenuated the changes observed for CK (by 19%), PGE2 and TNF-alpha (by 60.9% and 33.7%, respectively, p<0.05) and abolished the increase in LDH plasma concentration observed after running 30km, The athletes did not present any side effects such as cramping, dehydration or diarrhea, neither during the period of supplementation, nor during the 30km race. All the athletes finished the race in a time equivalent to their personal best +/- 5.8%. These results indicate that creatine supplementation reduced cell damage and inflammation after an exhaustive intense race. PMID:15306159

  10. A Comparison of Thermoregulation With Creatine Supplementation Between the Sexes in a Thermoneutral Environment

    PubMed Central

    Whitman, Samantha A.; Fogarty, Tracey D.

    2004-01-01

    Objective: To compare the effect of creatine supplementation on thermoregulation in males and females during exercise in a thermoneutral environment. Design and Setting: Male and female subjects participated in 30 minutes of cycle ergometry in nonsupplemented (NS) and creatine-supplemented (Cr) conditions at 70% to 75% of predetermined peak oxygen consumption. Subjects: Ten male and ten female subjects were evaluated with and without creatine supplementation. Measurements: Analyses were performed during exercise for core temperature and mean skin temperature using two 2 × 2 × 7 mixed-factorial analyses of variance (ANOVAs). We compared mean differences between NS and Cr conditions and sex for heart rate, systolic blood pressure, and diastolic blood pressure using 3 2 × 2 × 4 mixed-factorial ANOVAs. Three 2 × 2 mixed-factorial ANOVAs were computed to examine differences between sex and conditions for the following variables: nude body weight and blood urea nitrogen before and after exercise and urine specific gravity. Results: Significant time effects were found for core temperature, skin temperature, heart rate, and diastolic blood pressure. Time effect and difference between the sexes for systolic blood pressure were both significant. Differences in nude body weight and blood urea nitrogen before and after exercise were greater for males, but there was no difference between conditions. No significant difference between sex and condition for urine specific gravity was noted. Conclusions: Short-term creatine supplementation did not affect thermoregulation between the sexes when exercising in a thermoneutral environment. Differences in changes in nude body weight before and after exercise may be due to a higher sweating rate in males versus females. Differences in blood urea nitrogen before and after exercise between the sexes may be due to a reduced glomerular filtration rate coupled with greater muscle creatine breakdown in males. PMID:15085212

  11. Synthesis and sweetness characteristics of L-aspartyl-D-alanine fenchyl esters.

    PubMed

    Yuasa, Y; Nagakura, A; Tsuruta, H

    2001-10-01

    Four isomers of the L-aspartyl-D-alanine fenchyl esters were prepared as potential peptide sweeteners. L-Aspartyl-D-alanine (+)-alpha-fenchyl ester and L-aspartyl-D-alanine (-)-beta-fenchyl ester showed sweetness with potencies 250 and 160 times higher than that of sucrose, respectively. In contrast, L-aspartyl-D-alanine (+)-beta-fenchyl ester and L-aspartyl-D-alanine (-)-alpha-fenchyl ester had the highest sweetness potencies at 5700 and 1100 times that of sucrose, respectively. In particular, L-aspartyl-D-alanine (-)-alpha-fenchyl ester had an excellent sweetness quality; but L-aspartyl-D-alanine (+)-beta-fenchyl ester did not have an excellent quality of sweetness because it displayed an aftertaste caused by the strong sweetness. PMID:11600060

  12. IFCC primary reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 degrees C. Part 1. The concept of reference procedures for the measurement of catalytic activity concentrations of enzymes.

    PubMed

    Siekmann, Lothar; Bonora, Roberto; Burtis, Carl A; Ceriotti, Ferruccio; Clerc-Renaud, Pascale; Férard, Georges; Ferrero, Carlo A; Forest, Jean-Claude; Franck, Paul F H; Gella, F Javier; Hoelzel, Wieland; Jørgensen, Poul Jørgen; Kanno, Takashi; Kessner, Art; Klauke, Rainer; Kristiansen, Nina; Lessinger, Jean-Marc; Linsinger, Thomas P J; Misaki, Hideo; Mueller, Mathias M; Panteghini, Mauro; Pauwels, Jean; Schiele, Françoise; Schimmel, Heinz G; Vialle, Arlette; Weidemann, Gerhard; Schumann, Gerhard

    2002-06-01

    This paper is the first in a series dealing with reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 degrees C and with the certification of reference preparations. Other parts deal with: Part 2. Reference Procedure for the Measurement of Catalytic Concentration of Creatine Kinase; Part 3. Reference Procedure for the Measurement of Catalytic Concentration of Lactate Dehydrogenase; Part 4. Reference Procedure for the Measurement of Catalytic Concentration of Alanine Aminotransferase; Part 5. Reference Procedure for the Measurement of Catalytic Concentration of Aspartate Aminotransferase; Part 6. Reference Procedure for the Measurement of Catalytic fication of Four Reference Materials for the Determination of Enzymatic Activity of y-Glutamyltransferase, Lactate Dehydrogenase, Alanine Aminotransferase and Creatine Kinase at 37 degrees C. A document describing the determination of preliminary reference values is also in preparation. PMID:12211661

  13. Mice lacking ornithine-delta-aminotransferase have paradoxical neonatal hypoornithinaemia and retinal degeneration.

    PubMed

    Wang, T; Lawler, A M; Steel, G; Sipila, I; Milam, A H; Valle, D

    1995-10-01

    Deficiency of ornithine-delta-aminotransferase (OAT) in humans causes hyperornithinaemia and gyrate atrophy (GA), a blinding chorioretinal degeneration. Surprisingly, OAT-deficient mice produced by gene targeting exhibit neonatal hypoornithinaemia and lethality, rescuable by short-term arginine supplementation. Post-weaning, these mice develop hyperornithinaemia similar to human GA patients. Subsequent studies in one human GA infant also showed transient hypoornithinaemia. Thus, the OAT reaction plays opposite roles in neonatal and adult mammals. Over several months, OAT-deficient mice develop a retinal degeneration with involvement of photoreceptors and pigment epithelium. OAT-deficient mice appear to be an excellent model of human GA. PMID:7550347

  14. β-N-methylamino-l-alanine causes neurological and pathological phenotypes mimicking Amyotrophic Lateral Sclerosis (ALS): the first step towards an experimental model for sporadic ALS.

    PubMed

    de Munck, Estefanía; Muñoz-Sáez, Emma; Miguel, Begoña G; Solas, M Teresa; Ojeda, Irene; Martínez, Ana; Gil, Carmen; Arahuetes, Rosa Ma

    2013-09-01

    β-N-methylamino-l-alanine (L-BMAA) is a neurotoxic amino acid that has been related to various neurodegenerative diseases. The aim of this work was to analyze the biotoxicity produced by L-BMAA in vivo in rats, trying to elucidate its physiopathological mechanisms and to search for analogies between the found effects and pathologies like Amyotrophic Lateral Sclerosis (ALS). Our data demonstrated that the neurotoxic effects in vivo were dosage-dependent. For evaluating the state of the animals, a neurological evaluation scale was developed as well as a set of functional tests. Ultrastructural cell analysis of spinal motoneurons has revealed alterations both in endoplasmic reticulum and mitochondria. Since GSK3β could play a role in some neuropathological processes, we analyzed the alterations occurring in GSK3β levels in L-BMAA treated rats, we have observed an increase in the active form of GSK3β levels in lumbar spinal cord and motor cerebral cortex. On the other hand, (TAR)-DNA-binding protein 43 (TDP-43) increased in L-BMAA treated animals. Our results indicated that N-acetylaspartate (NAA) declined in animals treated with L-BMAA, and the ratio of N-acetylaspartate/choline (NAA/Cho), N-acetylaspartate/creatine (NAA/Cr) and N-acetylaspartate/choline+creatine (NAA/Cho+Cr) tended to decrease in lumbar spinal cord and motor cortex. This project offers some encouraging results that could help establishing the progress in the development of an animal model of sporadic ALS and L-BMAA could be a useful tool for this purpose. PMID:23688553

  15. Reactions catalyzed by purified L-glutamine: keto-scyllo-inositol aminotransferase, an enzyme required for biosynthesis of aminocyclitol antibiotics.

    PubMed Central

    Lucher, L A; Chen, Y M; Walker, J B

    1989-01-01

    Dialyzed extracts of the gentamicin producer Micromonospora purpurea catalyze reactions which represent transaminations proposed for 2-deoxystreptamine biosynthesis. To determine whether these transaminations were catalyzed by a single aminotransferase or by multiple enzymes, we purified and characterized an L-glutamine:keto-scyllo-inositol aminotransferase from M. purpurea. This enzyme was purified 130- to 150-fold from late-log-phase mycelia of both wild-type M. purpurea and a 2-deoxystreptamine-less idiotroph. The cofactor pyridoxal phosphate was found to be tightly bound to the enzyme, and spectral analysis demonstrated its participation in the transamination reactions of this enzyme. The major physiological amino donor for the enzyme appears to be L-glutamine; the keto acid product derived from glutamine was characterized as 2-ketoglutaramate, indicating that the alpha amino group of glutamine participates in the transamination. We found that crude extracts contained omega-amidase activity, which may render transaminations with glutamine irreversible in vivo. The substrate specificity of the aminotransferase was shown to be restricted to deoxycyclitols, monoaminocyclitols, and diaminocyclitols, glutamine, and 2-ketoglutaramate, which contrasts with the broader substrate specificity of mammalian glutamine aminotransferase. The appearance of the enzyme in late-log phase, coupled with its narrow substrate specificity, indicates that it participates predominantly in 2-deoxystreptamine biosynthesis rather than in general metabolism. The enzyme catalyzes reactions which represent both transamination steps of 2-deoxystreptamine biosynthesis. Although copurification of two aminotransferases cannot be ruled out, our data are consistent with the participation of a single aminotransferase in the formation of both amino groups of 2-deoxystreptamine during biosynthesis by M. purpurea. We propose that this aminotransferase participates in a key initial step in the

  16. Creatine co-ingestion with carbohydrate or cinnamon extract provides no added benefit to anaerobic performance.

    PubMed

    Islam, Hashim; Yorgason, Nick J; Hazell, Tom J

    2016-09-01

    The insulin response following carbohydrate ingestion enhances creatine transport into muscle. Cinnamon extract is promoted to have insulin-like effects, therefore this study examined if creatine co-ingestion with carbohydrates or cinnamon extract improved anaerobic capacity, muscular strength, and muscular endurance. Active young males (n = 25; 23.7 ± 2.5 y) were stratified into 3 groups: (1) creatine only (CRE); (2) creatine+ 70 g carbohydrate (CHO); or (3) creatine+ 500 mg cinnamon extract (CIN), based on anaerobic capacity (peak power·kg(-1)) and muscular strength at baseline. Three weeks of supplementation consisted of a 5 d loading phase (20 g/d) and a 16 d maintenance phase (5 g/d). Pre- and post-supplementation measures included a 30-s Wingate and a 30-s maximal running test (on a self-propelled treadmill) for anaerobic capacity. Muscular strength was measured as the one-repetition maximum 1-RM for chest, back, quadriceps, hamstrings, and leg press. Additional sets of the number of repetitions performed at 60% 1-RM until fatigue measured muscular endurance. All three groups significantly improved Wingate relative peak power (CRE: 15.4% P = .004; CHO: 14.6% P = .004; CIN: 15.7%, P = .003), and muscular strength for chest (CRE: 6.6% P < .001; CHO: 6.7% P < .001; CIN: 6.4% P < .001), back (CRE: 5.8% P < .001; CHO: 6.4% P < .001; CIN: 8.1% P < .001), and leg press (CRE: 11.7% P = .013; CHO: 10.0% P = .007; CIN: 17.3% P < .001). Only the CRE (10.4%, P = .021) and CIN (15.5%, P < .001) group improved total muscular endurance. No differences existed between groups post-supplementation. These findings demonstrate that three different methods of creatine ingestion lead to similar changes in anaerobic power, strength, and endurance. PMID:26313717

  17. Performance effects of acute β-alanine induced paresthesia in competitive cyclists.

    PubMed

    Bellinger, Phillip M; Minahan, Clare L

    2016-01-01

    β-alanine is a common ingredient in supplements consumed by athletes. Indeed, athletes may believe that the β-alanine induced paresthesia, experienced shortly after ingestion, is associated with its ergogenic effect despite no scientific mechanism supporting this notion. The present study examined changes in cycling performance under conditions of β-alanine induced paresthesia. Eight competitive cyclists (VO2max = 61.8 ± 4.2 mL·kg·min(-1)) performed three practices, one baseline and four experimental trials. The experimental trials comprised a 1-km cycling time trial under four conditions with varying information (i.e., athlete informed β-alanine or placebo) and supplement content (athlete received β-alanine or placebo) delivered to the cyclist: informed β-alanine/received β-alanine, informed placebo/received β-alanine, informed β-alanine/received placebo and informed placebo/received placebo. Questionnaires were undertaken exploring the cyclists' experience of the effects of the experimental conditions. A possibly likely increase in mean power was associated with conditions in which β-alanine was administered (±95% CL: 2.2% ± 4.0%), but these results were inconclusive for performance enhancement (p = 0.32, effect size = 0.18, smallest worthwhile change = 56% beneficial). A possibly harmful effect was observed when cyclists were correctly informed that they had ingested a placebo (-1.0% ± 1.9%). Questionnaire data suggested that β-alanine ingestion resulted in evident sensory side effects and six cyclists reported placebo effects. Acute ingestion of β-alanine is not associated with improved 1-km TT performance in competitive cyclists. These findings are in contrast to the athlete's "belief" as cyclists reported improved energy and the ability to sustain a higher power output under conditions of β-alanine induced paresthesia. PMID:25636080

  18. Point mutations in the tyrosine aminotransferase gene in tyrosinemia type II.

    PubMed Central

    Natt, E; Kida, K; Odievre, M; Di Rocco, M; Scherer, G

    1992-01-01

    Tyrosinemia type II (Richner-Hanhart syndrome, RHS) is a disease of autosomal recessive inheritance characterized by keratitis, palmoplantar hyperkeratosis, mental retardation, and elevated blood tyrosine levels. The disease results from deficiency in hepatic tyrosine aminotransferase (TAT; L-tyrosine:2-oxoglutarate aminotransferase, EC 2.6.1.5), a 454-amino acid protein encoded by a gene with 12 exons. To identify the causative mutations in five TAT alleles cloned from three RHS patients, chimeric genes constructed from normal and mutant TAT alleles were tested in directing TAT activity in a transient expression assay. DNA sequence analysis of the regions identified as nonfunctional revealed six different point mutations. Three RHS alleles have nonsense mutations at codons 57, 223, and 417, respectively. One "complex" RHS allele carries a GT----GG splice donor mutation in intron 8 together with a Gly----Val substitution at amino acid 362. A new splice acceptor site in intron 2 of the fifth RHS allele leads to a shift in reading frame. Images PMID:1357662

  19. Biochemical and Structural Insights into the Aminotransferase CrmG in Caerulomycin Biosynthesis.

    PubMed

    Zhu, Yiguang; Xu, Jinxin; Mei, Xiangui; Feng, Zhan; Zhang, Liping; Zhang, Qingbo; Zhang, Guangtao; Zhu, Weiming; Liu, Jinsong; Zhang, Changsheng

    2016-04-15

    Caerulomycin A (CRM A 1) belongs to a family of natural products containing a 2,2'-bipyridyl ring core structure and is currently under development as a potent novel immunosuppressive agent. Herein, we report the functional characterization, kinetic analysis, substrate specificity, and structure insights of an aminotransferase CrmG in 1 biosynthesis. The aminotransferase CrmG was confirmed to catalyze a key transamination reaction to convert an aldehyde group to an amino group in the 1 biosynthetic pathway, preferring l-glutamate and l-glutamine as the amino donor substrates. The crystal structures of CrmG in complex with the cofactor 5'-pyridoxal phosphate (PLP) or 5'-pyridoxamine phosphate (PMP) or the acceptor substrate were determined to adopt a canonical fold-type I of PLP-dependent enzymes with a unique small additional domain. The structure guided site-directed mutagenesis identified key amino acid residues for substrate binding and catalytic activities, thus providing insights into the transamination mechanism of CrmG. PMID:26714051

  20. Structural Insight into the Mechanism of Substrate Specificity of Aedes Kynurenine Aminotransferase

    SciTech Connect

    Han,Q.; Gao, Y.; Robinson, H.; Li, J.

    2008-01-01

    Aedes aegypti kynurenine aminotransferase (AeKAT) is a multifunctional aminotransferase. It catalyzes the transamination of a number of amino acids and uses many biologically relevant a-keto acids as amino group acceptors. AeKAT also is a cysteine S-conjugate {beta}-lyase. The most important function of AeKAT is the biosynthesis of kynurenic acid, a natural antagonist of NMDA and {alpha}7-nicotinic acetylcholine receptors. Here, we report the crystal structures of AeKAT in complex with its best amino acid substrates, glutamine and cysteine. Glutamine is found in both subunits of the biological dimer, and cysteine is found in one of the two subunits. Both substrates form external aldemines with pyridoxal 5-phosphate in the structures. This is the first instance in which one pyridoxal 5-phosphate enzyme has been crystallized with cysteine or glutamine forming external aldimine complexes, cysteinyl aldimine and glutaminyl aldimine. All the units with substrate are in the closed conformation form, and the unit without substrate is in the open form, which suggests that the binding of substrate induces the conformation change of AeKAT. By comparing the active site residues of the AeKAT-cysteine structure with those of the human KAT I-phenylalanine structure, we determined that Tyr286 in AeKAT is changed to Phe278 in human KAT I, which may explain why AeKAT transaminates hydrophilic amino acids more efficiently than human KAT I does.

  1. Amino acid sequence of Salmonella typhimurium branched-chain amino acid aminotransferase.

    PubMed

    Feild, M J; Nguyen, D C; Armstrong, F B

    1989-06-13

    The complete amino acid sequence of the subunit of branched-chain amino acid aminotransferase (transaminase B, EC 2.6.1.42) of Salmonella typhimurium was determined. An Escherichia coli recombinant containing the ilvGEDAY gene cluster of Salmonella was used as the source of the hexameric enzyme. The peptide fragments used for sequencing were generated by treatment with trypsin, Staphylococcus aureus V8 protease, endoproteinase Lys-C, and cyanogen bromide. The enzyme subunit contains 308 residues and has a molecular weight of 33,920. To determine the coenzyme-binding site, the pyridoxal 5-phosphate containing enzyme was treated with tritiated sodium borohydride prior to trypsin digestion. Peptide map comparisons with an apoenzyme tryptic digest and monitoring radioactivity incorporation allowed identification of the pyridoxylated peptide, which was then isolated and sequenced. The coenzyme-binding site is the lysyl residue at position 159. The amino acid sequence of Salmonella transaminase B is 97.4% identical with that of Escherichia coli, differing in only eight amino acid positions. Sequence comparisons of transaminase B to other known aminotransferase sequences revealed limited sequence similarity (24-33%) when conserved amino acid substitutions are allowed and alignments were forced to occur on the coenzyme-binding site. PMID:2669973

  2. Prodynorphine opioid peptides and aspartate aminotransferase studied in spinal cord and sensory neurons

    SciTech Connect

    Sweetnam, P.M.

    1985-01-01

    An objective of this research was to obtain evidence for the synthesis and release of newly discovered opioid peptides, such as dynorphin, in spinal cord and sensory neurons. Several specific antisera were used to visualize dynorphin and related peptides in spinal cord and dorsal root ganglion neurons in dissociated cell culture. Antisera specific for the midportion of the dynorphin molecule revealed a subpopulation of spinal cord neurons with dense immunoreactive dynorphin in cell perikarya, but none in their associated neurites. Antisera specific for either the amino or carboxy terminal sequences of the molecule produced intense immunoreactivity in both cell perikarya and neurites of spinal neurons. These data suggest the cleavage products of dynorphin and not the complete molecule are possible neurotransmitters in the spinal cord. Additional evidence in support of this hypothesis was derived from radioimmunoassays of these cells and their culture medium following depolarization induced by elevated extracellular potassium. Antisera against aspartate aminotransferase revealed no differentially elevated immunoreactive aspartate aminotransferase in tissue sections of spinal cord or dorsal root ganglia.

  3. Caffeine–N-phthaloyl-β-alanine (1/1)

    PubMed Central

    Bhatti, Moazzam H.; Yunus, Uzma; Shah, Syed Raza; Flörke, Ulrich

    2012-01-01

    The title co-crystal [systematic name: 3-(1,3-dioxoisoindolin-2-yl)propanoic acid–1,3,7-trimethyl-1H-purine-2,6(3H,7H)-dione (1/1)], C8H10N4O2·C11H9NO4, is the combination of 1:1 adduct of N-phthaloyl-β-alanine with caffeine. The phthalimide and purine rings in the N-phthaloyl-β-alanine and caffeine mol­ecules are essentially planar, with r.m.s. deviations of the fitted atoms of 0.0078 and 0.0118 Å, respectively. In the crystal, the two mol­ecules are linked via an O—H⋯N hydrogen bond involving the intact carb­oxy­lic acid (COOH) group. The crystal structure is consolidated by C—H⋯O inter­actions. The H atoms of a methyl group of the caffeine mol­ecule are disordered over two sets of sites of equal occupancy. PMID:22719646

  4. The effect of immunonutrition (glutamine, alanine) on fracture healing

    PubMed Central

    Küçükalp, Abdullah; Durak, Kemal; Bayyurt, Sarp; Sönmez, Gürsel; Bilgen, Muhammed S.

    2014-01-01

    Background There have been various studies related to fracture healing. Glutamine is an amino acid with an important role in many cell and organ functions. This study aimed to make a clinical, radiological, and histopathological evaluation of the effects of glutamine on fracture healing. Methods Twenty rabbits were randomly allocated into two groups of control and immunonutrition. A fracture of the fibula was made to the right hind leg. All rabbits received standard food and water. From post-operative first day for 30 days, the study group received an additional 2 ml/kg/day 20% L-alanine L-glutamine solution via a gastric catheter, and the control group received 2 ml/kg/day isotonic via gastric catheter. At the end of 30 days, the rabbits were sacrificed and the fractures were examined clinically, radiologically, and histopathologically in respect to the degree of union. Results Radiological evaluation of the control group determined a mean score of 2.5 according to the orthopaedists and 2.65 according to the radiologists. In the clinical evaluation, the mean score was 1.875 for the control group and 2.0 for the study group. Histopathological evaluation determined a mean score of 8.5 for the control group and 9.0 for the study group. Conclusion One month after orally administered glutamine–alanine, positive effects were observed on fracture healing radiologically, clinically, and histopathologically, although no statistically significant difference was determined.

  5. Long-term follow-up and treatment in nine boys with X-linked creatine transporter defect.

    PubMed

    van de Kamp, Jiddeke M; Pouwels, Petra J W; Aarsen, Femke K; ten Hoopen, Leontine W; Knol, Dirk L; de Klerk, Johannes B; de Coo, Ireneus F; Huijmans, Jan G M; Jakobs, Cornelis; van der Knaap, Marjo S; Salomons, Gajja S; Mancini, Grazia M S

    2012-01-01

    The creatine transporter (CRTR) defect is a recently discovered cause of X-linked intellectual disability for which treatment options have been explored. Creatine monotherapy has not proved effective, and the effect of treatment with L-arginine is still controversial. Nine boys between 8 months and 10 years old with molecularly confirmed CRTR defect were followed with repeated (1)H-MRS and neuropsychological assessments during 4-6 years of combination treatment with creatine monohydrate, L-arginine, and glycine. Treatment did not lead to a significant increase in cerebral creatine content as observed with H(1)-MRS. After an initial improvement in locomotor and personal-social IQ subscales, no lasting clinical improvement was recorded. Additionally, we noticed an age-related decline in IQ subscales in boys affected with the CRTR defect. PMID:21556832

  6. An Evaluation of the Possible Association of Malignant Hyperpyrexia with the Noonan Syndrome Using Serum Creatine Phosphokinase Levels

    ERIC Educational Resources Information Center

    Hunter, Alasdair; Pinsky, Leonard

    1975-01-01

    Examined for malignant hyperpyrexia (extremely high fever) were serum creatine phosphokinase (enzyme) levels of 27 children from 1-to 17-years-old with Noonan syndrome which is characterized by webbed neck, short stature and low set ears. (CL)

  7. The mechanism of the reaction catalysed by adenosine triphosphate–creatine phosphotransferase

    PubMed Central

    Morrison, J. F.; James, Elizabeth

    1965-01-01

    1. The forward and reverse reactions catalysed by ATP–creatine phosphotransferase have been studied kinetically at pH8·0 in the presence and absence of products, under conditions in which the free Mg2+ concentration was maintained constant at 1mm. Thus at fixed pH the reaction may be considered as being bireactant and expressed as:MgATP2−+creatine0⇌MgADP−+phosphocreatine2−2. The initial-velocity pattern in the absence of products and the product-inhibition pattern have been determined. These are consistent with a random mechanism in which all steps are in rapid equilibrium except that concerned with the interconversion of the central ternary complexes, and in which two dead-end complexes (enzyme–MgADP–creatine and enzyme–MgATP–phosphocreatine) are formed. The results are in accord with previous suggestions that the enzyme possesses distinct sites for the combination of the nucleotide and guanidino substrates. 3. Values have been determined for the Michaelis and dissociation constants involved in the combination of each substrate with various enzyme forms. Although these values cannot be regarded as absolute, they appear to indicate that the presence of one substrate on the enzyme enhances the combination of the second substrate. In addition, it would seem that in the formation of the enzyme–MgADP–creatine complex the concentration of one reactant does not affect the combination of the other. This contrasts with the formation of the enzyme–MgATP–phosphocreatine complex, where each reactant hinders the combination of the other. PMID:16749122

  8. Is long term creatine and glutamine supplementation effective in enhancing physical performance of military police officers?

    PubMed

    da Silveira, Celismar Lázaro; de Souza, Thiago Siqueira Paiva; Batista, Gilmário Ricarte; de Araújo, Adenilson Targino; da Silva, Júlio César Gomes; de Sousa, Maria do Socorro Cirilo; Marta, Carlos; Garrido, Nuno Domingo

    2014-09-29

    The objective of this study was to analyze the effect of supplementation with creatine and glutamine on physical fitness of military police officers. Therefore, an experimental double blind study was developed, with the final sample composed by 32 men randomly distributed into three groups: a group supplemented with creatine (n=10), glutamine (n=10) and a placebo group (n=12) and evaluated in three distinct moments, in an interval of three months (T1, T2 and T3). The physical training had a weekly frequency of 5 sessions × 90 min, including strength exercises, local muscular resistance, flexibility and both aerobic and anaerobic capacity. After analyzing the effect of time, group and interaction (group × time) for measures that indicated the physical capabilities of the subjects, a significant effect of time for the entire variable was identified (p<0,05). However, these differences were not observed when the univaried intragroups and intergroups analysis was performed (p>0,05). In face of the results it was concluded that supplementation with creatine and glutamine showed no ergogenic effect on physical performance in military police officers. PMID:25713653

  9. Effect of Coenzyme Q on Serum Levels of Creatine Phosphokinase in Preclinical Muscular Dystrophy*†

    PubMed Central

    Folkers, Karl; Nakamura, Ryo; Littarru, Gian Paolo; Zellweger, Hans; Brunkhorst, John B.; Williams, Coyle W.; Langston, John H.

    1974-01-01

    Coenzyme Q10 (CoQ10) exists in human tissue, and is indispensable to mitochondrial enzymes of respiration. CoQ was administered to children with preclinical muscular dystrophy, CoQ enzymology was emphasized, and serum creatine phosphokinase, CPK, (ATP:creatine N-phosphotransferase, EC 2.7.3.2) was repeatedly monitored. A 40-week treatment of an infant, 1-2 years of age, reduced serum CPK (P < 0.001; total CPK assays, 76). A 40-week treatment of a boy, 3-5 years of age, reduced serum CPK (P < 0.01); treatment through 80 weeks reduced CPK (P < 0.001; total CPK assays, 118). This response of preclinical dystrophy to CoQ implies a deficiency of CoQ in skeletal muscle that was actually found previously by assay of the activity of the succinate dehydrogenase:coenzyme Q10 reductase of the rectus abdominis. The relationships among a CoQ deficiency in muscle, serum CPK, and use of CPK in muscle are uncertain; however, restoration of CoQ enzyme activity in muscle by oral administration of CoQ could lead to increased use of CPK in muscle to form phosphocreatine from creatine and ATP, with a corresponding decrease in serum levels of CPK. The great excess of CPK in serum comes from deteriorating muscle in which CPK is below normal. PMID:4525474

  10. Impact of creatine supplementation in combination with resistance training on lean mass in the elderly

    PubMed Central

    Pinto, Camila Lemos; Botelho, Patrícia Borges; Carneiro, Juliana Alves

    2016-01-01

    Abstract Background Human ageing is a process characterized by loss of muscle mass, strength, and bone mass. We aimed to examine the efficacy of low‐dose creatine supplementation associated with resistance training on lean mass, strength, and bone mass in the elderly. Methods This was a 12‐week, parallel‐group, double‐blind, randomized, placebo‐controlled trial. The individuals were randomly allocated into one of the following groups: placebo plus resistance training (PL + RT) and creatine supplementation plus resistance training (CR + RT) . The participants were assessed at baseline and after 12 weeks. The primary outcomes were lean mass and strength, assessed by dual energy X‐ray absorptiometry (DXA) and ten‐repetition maximal tests (10 RM), respectively. Secondary outcomes included the lumbar spine, right and left femoral neck, both femur and whole body bone mineral density (BMD), and whole body bone mineral content (BMC), assessed by DXA. Results The CR + RT group had superior gains in lean mass when compared with the PL + RT group (P = 0.02). Changes in the 10 RM tests in bench press and leg press exercises, body composition, BMD, and BMC of all assessed sites did not significantly differ between the groups (P > 0.05). Conclusions Twelve weeks of low‐dose creatine supplementation associated with resistance training resulted in increases in lean mass in the elderly. PMID:27239423

  11. Activity of creatine kinase in a contracting mammalian muscle of uniform fiber type.

    PubMed Central

    McFarland, E W; Kushmerick, M J; Moerland, T S

    1994-01-01

    We investigated whether the creatine kinase-catalyzed phosphate exchange between PCr and gamma ATP in vivo equilibrated with cellular substrates and products as predicted by in vitro kinetic properties of the enzyme, or was a function of ATPase activity as predicted by obligatory "creatine phosphate shuttle" concepts. A transient NMR spin-transfer method was developed, tested, and applied to resting and stimulated ex vivo muscle, the soleus, which is a cellularly homogeneous slow-twitch mammalian muscle, to measure creatine kinase kinetics. The forward and reverse unidirectional CK fluxes were equal, being 1.6 mM.s-1 in unstimulated muscle at 22 degrees C, and 2.7 mM.s-1 at 30 degrees C. The CK fluxes did not differ during steady-state stimulation conditions giving a 10-fold range of ATPase rates in which the ATP/PCr ratio increased from approximately 0.3 to 1.6. The observed kinetic behavior of CK activity in the muscle was that expected from the enzyme in vitro in a homogeneous solution only if account was taken of inhibition by an anion-stabilized quaternary dead-end enzyme complex: E.Cr.MgADP.anion. The CK fluxes in soleus were not a function of ATPase activity as predicted by obligatory phosphocreatine shuttle models for cellular energetics. PMID:7858128

  12. Decreased creatine kinase is linked to diastolic dysfunction in rats with right heart failure induced by pulmonary artery hypertension

    PubMed Central

    Fowler, Ewan D.; Benoist, David; Drinkhill, Mark J.; Stones, Rachel; Helmes, Michiel; Wüst, Rob C.I.; Stienen, Ger J.M.; Steele, Derek S.; White, Ed

    2015-01-01

    Our objective was to investigate the role of creatine kinase in the contractile dysfunction of right ventricular failure caused by pulmonary artery hypertension. Pulmonary artery hypertension and right ventricular failure were induced in rats by monocrotaline and compared to saline-injected control animals. In vivo right ventricular diastolic pressure–volume relationships were measured in anesthetized animals; diastolic force–length relationships in single enzymatically dissociated myocytes and myocardial creatine kinase levels by Western blot. We observed diastolic dysfunction in right ventricular failure indicated by significantly steeper diastolic pressure–volume relationships in vivo and diastolic force–length relationships in single myocytes. There was a significant reduction in creatine kinase protein expression in failing right ventricle. Dysfunction also manifested as a shorter diastolic sarcomere length in failing myocytes. This was associated with a Ca2 +-independent mechanism that was sensitive to cross-bridge cycling inhibition. In saponin-skinned failing myocytes, addition of exogenous creatine kinase significantly lengthened sarcomeres, while in intact healthy myocytes, inhibition of creatine kinase significantly shortened sarcomeres. Creatine kinase inhibition also changed the relatively flat contraction amplitude–stimulation frequency relationship of healthy myocytes into a steeply negative, failing phenotype. Decreased creatine kinase expression leads to diastolic dysfunction. We propose that this is via local reduction in ATP:ADP ratio and thus to Ca2 +-independent force production and diastolic sarcomere shortening. Creatine kinase inhibition also mimics a definitive characteristic of heart failure, the inability to respond to increased demand. Novel therapies for pulmonary artery hypertension are needed. Our data suggest that cardiac energetics would be a potential ventricular therapeutic target. PMID:26116865

  13. Effects of acute creatine supplementation on iron homeostasis and uric acid-based antioxidant capacity of plasma after wingate test

    PubMed Central

    2012-01-01

    Background Dietary creatine has been largely used as an ergogenic aid to improve strength and athletic performance, especially in short-term and high energy-demanding anaerobic exercise. Recent findings have also suggested a possible antioxidant role for creatine in muscle tissues during exercise. Here we evaluate the effects of a 1-week regimen of 20 g/day creatine supplementation on the plasma antioxidant capacity, free and heme iron content, and uric acid and lipid peroxidation levels of young subjects (23.1 ± 5.8 years old) immediately before and 5 and 60 min after the exhaustive Wingate test. Results Maximum anaerobic power was improved by acute creatine supplementation (10.5 %), but it was accompanied by a 2.4-fold increase in pro-oxidant free iron ions in the plasma. However, potential iron-driven oxidative insult was adequately counterbalanced by proportional increases in antioxidant ferric-reducing activity in plasma (FRAP), leading to unaltered lipid peroxidation levels. Interestingly, the FRAP index, found to be highly dependent on uric acid levels in the placebo group, also had an additional contribution from other circulating metabolites in creatine-fed subjects. Conclusions Our data suggest that acute creatine supplementation improved the anaerobic performance of athletes and limited short-term oxidative insults, since creatine-induced iron overload was efficiently circumvented by acquired FRAP capacity attributed to: overproduction of uric acid in energy-depleted muscles (as an end-product of purine metabolism and a powerful iron chelating agent) and inherent antioxidant activity of creatine. PMID:22691230

  14. Effect of β-alanine supplementation on high-intensity exercise performance.

    PubMed

    Harris, Roger C; Stellingwerff, Trent

    2013-01-01

    Carnosine is a dipeptide of β-alanine and L-histidine found in high concentrations in skeletal muscle. Combined with β-alanine, the pKa of the histidine imidazole ring is raised to ∼6.8, placing it within the muscle intracellular pH high-intensity exercise transit range. Combination with β-alanine renders the dipeptide inert to intracellular enzymic hydrolysis and blocks the histidinyl residue from participation in proteogenesis, thus making it an ideal, stable intracellular buffer. For vegetarians, synthesis is limited by β-alanine availability; for meat-eaters, hepatic synthesis is supplemented with β-alanine from the hydrolysis of dietary carnosine. Direct oral β-alanine supplementation will compensate for low meat and fish intake, significantly raising the muscle carnosine concentration. This is best achieved with a sustained-release formulation of β-alanine to avoid paresthesia symptoms and decreasing urinary spillover. In humans, increased levels of carnosine through β-alanine supplementation have been shown to increase exercise capacity and performance of several types, particularly where the high-intensity exercise range is 1-4 min. β-Alanine supplementation is used by athletes competing in high-intensity track and field cycling, rowing, swimming events and other competitions. PMID:23899755

  15. Both Creatine and Its Product Phosphocreatine Reduce Oxidative Stress and Afford Neuroprotection in an In Vitro Parkinson’s Model

    PubMed Central

    Martín-de-Saavedra, Maria D.; Romero, Alejandro; Egea, Javier; Ludka, Fabiana K.; Tasca, Carla I.; Farina, Marcelo; Rodrigues, Ana Lúcia S.; López, Manuela G.

    2014-01-01

    Creatine is the substrate for creatine kinase in the synthesis of phosphocreatine (PCr). This energetic system is endowed of antioxidant and neuroprotective properties and plays a pivotal role in brain energy homeostasis. The purpose of this study was to investigate the neuroprotective effect of creatine and PCr against 6-hydroxydopamine (6-OHDA)-induced mitochondrial dysfunction and cell death in rat striatal slices, used as an in vitro Parkinson’s model. The possible involvement of the signaling pathway mediated by phosphatidylinositol-3 kinase (PI3K), protein kinase B (Akt), and glycogen synthase kinase-3β (GSK3β) was also evaluated. Exposure of striatal slices to 6-OHDA caused a significant disruption of the cellular homeostasis measured as 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide reduction, lactate dehydrogenase release, and tyrosine hydroxylase levels. 6-OHDA exposure increased the levels of reactive oxygen species and thiobarbituric acid reactive substances production and decreased mitochondrial membrane potential in rat striatal slices. Furthermore, 6-OHDA decreased the phosphorylation of Akt (Serine473) and GSK3β (Serine9). Coincubation with 6-OHDA and creatine or PCr reduced the effects of 6-OHDA toxicity. The protective effect afforded by creatine or PCr against 6-OHDA-induced toxicity was reversed by the PI3K inhibitor LY294002. In conclusion, creatine and PCr minimize oxidative stress in striatum to afford neuroprotection of dopaminergic neurons. PMID:25424428

  16. Is there a rationale for the use of creatine either as nutritional supplementation or drug administration in humans participating in a sport?

    PubMed

    Benzi, G

    2000-03-01

    Even though no unambiguous proof for enhanced performance during high-intensity exercise has yet been reported, the creatine administration is charged to improve physical performance and has become a popular practice among subjects participating in different sports. Appropriate creatine dosage may be also used as a medicinal product since, in accordance with the Council Directive 65/65/CEE, any substance which may be administered with a view to restoring, correcting or modifying physiological functions in human beings is considered a medicinal product. Thus, quality, efficacy and safety must characterize the substance. In biochemical terms, creatine administration enhances both creatine and phosphocreatine concentrations, allowing for an increased total creatine pool in skeletal muscle. In thermodynamics terms, creatine interferes with the creatine-creatine kinase-phosphocreatine circuit, which is related to the mitochondrial function as a highly organized system for the energy control of the subcellular adenylate pool. In pharmacokinetics terms, creatine entry into skeletal muscle is initially dependent on the extracellular concentration, but the creatine transport is subsequently down-regulated. In pharmacodynamics terms, the creatine enhances the possibility to maintain power output during brief periods of high-intensity exercises. In spite of uncontrolled daily dosage and long-term administration, no research on creatine safety in humans has been set up by specific standard protocol of clinical pharmacology and toxicology, as currently occurs in phase I for the products for human use. More or less documented side effects induced by creatine are weight gain; influence on insulin production; feedback inhibition of endogenous creatine synthesis; long-term damages on renal function. A major point that related to the quality of creatine products is the amount of creatine ingested in relation to the amount of contaminants present. During the production of creatine

  17. Effect of Creatine Monohydrate on Clinical Progression in Patients With Parkinson Disease

    PubMed Central

    2015-01-01

    IMPORTANCE There are no treatments available to slow or prevent the progression of Parkinson disease, despite its global prevalence and significant health care burden. The National Institute of Neurological Disorders and Stroke Exploratory Trials in Parkinson Disease program was established to promote discovery of potential therapies. OBJECTIVE To determine whether creatine monohydrate was more effective than placebo in slowing long-term clinical decline in participants with Parkinson disease. DESIGN, SETTING, AND PATIENTS The Long-term Study 1, a multicenter, double-blind, parallel-group, placebo-controlled, 1:1 randomized efficacy trial. Participants were recruited from 45 investigative sites in the United States and Canada and included 1741 men and women with early (within 5 years of diagnosis) and treated (receiving dopaminergic therapy) Parkinson disease. Participants were enrolled from March 2007 to May 2010 and followed up until September 2013. INTERVENTIONS Participants were randomized to placebo or creatine (10 g/d) monohydrate for a minimum of 5 years (maximum follow-up, 8 years). MAIN OUTCOMES AND MEASURES The primary outcome measure was a difference in clinical decline from baseline to 5-year follow-up, compared between the 2 treatment groups using a global statistical test. Clinical status was defined by 5 outcome measures: Modified Rankin Scale, Symbol Digit Modalities Test, PDQ-39 Summary Index, Schwab and England Activities of Daily Living scale, and ambulatory capacity. All outcomes were coded such that higher scores indicated worse outcomes and were analyzed by a global statistical test. Higher summed ranks (range, 5–4775) indicate worse outcomes. RESULTS The trial was terminated early for futility based on results of a planned interim analysis of participants enrolled at least 5 years prior to the date of the analysis (n = 955). The median follow-up time was 4 years. Of the 955 participants, the mean of the summed ranks for placebo was 2360 (95

  18. Folic Acid and Creatine as Therapeutic Approaches to Lower Blood Arsenic: A Randomized Controlled Trial

    PubMed Central

    Peters, Brandilyn A.; Hall, Megan N.; Liu, Xinhua; Parvez, Faruque; Sanchez, Tiffany R.; van Geen, Alexander; Mey, Jacob L.; Siddique, Abu B.; Shahriar, Hasan; Uddin, Mohammad Nasir; Islam, Tariqul; Balac, Olgica; Ilievski, Vesna; Factor-Litvak, Pam; Graziano, Joseph H.

    2015-01-01

    Background The World Health Organization estimates that > 140 million people worldwide are exposed to arsenic (As)–contaminated drinking water. As undergoes biologic methylation, which facilitates renal As elimination. In folate-deficient individuals, this process is augmented by folic acid (FA) supplementation, thereby lowering blood As (bAs). Creatinine concentrations in urine are a robust predictor of As methylation patterns. Although the reasons for this are unclear, creatine synthesis is a major consumer of methyl donors, and this synthesis is down-regulated by dietary/supplemental creatine. Objectives Our aim was to determine whether 400 or 800 μg FA and/or creatine supplementation lowers bAs in an As-exposed Bangladeshi population. Methods We conducted a clinical trial in which 622 participants were randomized to receive 400 μg FA, 800 μg FA, 3 g creatine, 3 g creatine+400 μg FA, or placebo daily. All participants received an As-removal filter on enrollment, and were followed for 24 weeks. After the 12th week, half of the two FA groups were switched to placebo to evaluate post-treatment bAs patterns. Results Linear models with repeated measures indicated that the decline in ln(bAs) from baseline in the 800-μg FA group exceeded that of the placebo group (weeks 1–12: β= –0.09, 95% CI: –0.18, –0.01; weeks 13–24: FA continued: β= –0.12, 95% CI: –0.24, –0.00; FA switched to placebo: β= –0.14, 95% CI: –0.26, –0.02). There was no rebound in bAs related to cessation of FA supplementation. Declines in bAs observed in the remaining treatment arms were not significantly different from those of the placebo group. Conclusions In this mixed folate-deficient/replete study population, 12- and 24-week treatment with 800 μg (but not 400 μg) FA lowered bAs to a greater extent than placebo; this was sustained 12 weeks after FA cessation. In future studies, we will evaluate whether FA and/or creatine altered As methylation profiles. Citation

  19. Radiolysis of alanine adsorbed in a clay mineral

    NASA Astrophysics Data System (ADS)

    Aguilar-Ovando, Ellen Y.; Negrón-Mendoza, Alicia

    2013-07-01

    Optical activity in molecules is a chemical characteristic of living beings. In this work, we examine the hypothesis of the influence of different mineral surfaces on the development of a specific chirality in organic molecules when subjected to conditions simulating the primitive Earth during the period of chemical evolution. By using X-ray diffraction techniques and HPLC/ELSD to analyze aqueous suspensions of amino acids adsorbed on minerals irradiated in different doses with a cobalt-60 gamma source, the experiments attempt to prove the hypothesis that some solid surfaces (like clays and meteorite rocks) may have a concentration capacity and protective role against external sources of ionizing radiation (specifically γ-ray) for some organic compounds (like some amino acids) adsorbed on them. Preliminary results show a slight difference in the adsorption and radiolysis of the D-and L-alanine.

  20. Radiolysis of alanine adsorbed in a clay mineral

    SciTech Connect

    Aguilar-Ovando, Ellen Y.; Negron-Mendoza, Alicia

    2013-07-03

    Optical activity in molecules is a chemical characteristic of living beings. In this work, we examine the hypothesis of the influence of different mineral surfaces on the development of a specific chirality in organic molecules when subjected to conditions simulating the primitive Earth during the period of chemical evolution. By using X-ray diffraction techniques and HPLC/ELSD to analyze aqueous suspensions of amino acids adsorbed on minerals irradiated in different doses with a cobalt-60 gamma source, the experiments attempt to prove the hypothesis that some solid surfaces (like clays and meteorite rocks) may have a concentration capacity and protective role against external sources of ionizing radiation (specifically {gamma}-ray) for some organic compounds (like some amino acids) adsorbed on them. Preliminary results show a slight difference in the adsorption and radiolysis of the D-and L-alanine.

  1. The Role of Glutamine Oxoglutarate Aminotransferase and Glutamate Dehydrogenase in Nitrogen Metabolism in Mycobacterium bovis BCG

    PubMed Central

    Viljoen, Albertus J.; Kirsten, Catriona J.; Baker, Bienyameen; van Helden, Paul D.; Wiid, Ian J. F.

    2013-01-01

    Recent evidence suggests that the regulation of intracellular glutamate levels could play an important role in the ability of pathogenic slow-growing mycobacteria to grow in vivo. However, little is known about the in vitro requirement for the enzymes which catalyse glutamate production and degradation in the slow-growing mycobacteria, namely; glutamine oxoglutarate aminotransferase (GOGAT) and glutamate dehydrogenase (GDH), respectively. We report that allelic replacement of the Mycobacterium bovis BCG gltBD-operon encoding for the large (gltB) and small (gltD) subunits of GOGAT with a hygromycin resistance cassette resulted in glutamate auxotrophy and that deletion of the GDH encoding-gene (gdh) led to a marked growth deficiency in the presence of L-glutamate as a sole nitrogen source as well as reduction in growth when cultured in an excess of L-asparagine. PMID:24367660

  2. Endurance exercise increases skeletal muscle kynurenine aminotransferases and plasma kynurenic acid in humans.

    PubMed

    Schlittler, Maja; Goiny, Michel; Agudelo, Leandro Z; Venckunas, Tomas; Brazaitis, Marius; Skurvydas, Albertas; Kamandulis, Sigitas; Ruas, Jorge L; Erhardt, Sophie; Westerblad, Håkan; Andersson, Daniel C

    2016-05-15

    Physical exercise has emerged as an alternative treatment for patients with depressive disorder. Recent animal studies show that exercise protects from depression by increased skeletal muscle kynurenine aminotransferase (KAT) expression which shifts the kynurenine metabolism away from the neurotoxic kynurenine (KYN) to the production of kynurenic acid (KYNA). In the present study, we investigated the effect of exercise on kynurenine metabolism in humans. KAT gene and protein expression was increased in the muscles of endurance-trained subjects compared with untrained subjects. Endurance exercise caused an increase in plasma KYNA within the first hour after exercise. In contrast, a bout of high-intensity eccentric exercise did not lead to increased plasma KYNA concentration. Our results show that regular endurance exercise causes adaptations in kynurenine metabolism which can have implications for exercise recommendations for patients with depressive disorder. PMID:27030575

  3. Activation of tyrosine aminotransferase expression in fetal liver by 5-azacytidine

    SciTech Connect

    Rothrock, R.; Perry, S.T.; Isham, K.R.; Lee, K.L.; Kenney, F.T.

    1983-06-15

    Rat fetuses of 20 days gestational age were treated in utero with the inhibitor of DNA methylation, 5-azacytidine. The liver enzyme tyrosine aminotransferase, normally expressed at very low levels until several hours after birth, was increased by the drug in the fetal livers after a lag period of about 9 hours, reaching a level 70-fold above control levels 18 hours after treatment. The high levels attained after 5-azacytidine treatment are comparable to those of glucocorticoid-treated adult livers, and were not further increased by administration of hydrocortisone to dams carrying treated fetuses. Cytidine and two other analogs, cytosine arabinoside and 6-azacytidine, were essentially without effect. 15 references, 2 figures, 1 table.

  4. Structurally Diverse Mitochondrial Branched Chain Aminotransferase (BCATm) Leads with Varying Binding Modes Identified by Fragment Screening.

    PubMed

    Borthwick, Jennifer A; Ancellin, Nicolas; Bertrand, Sophie M; Bingham, Ryan P; Carter, Paul S; Chung, Chun-Wa; Churcher, Ian; Dodic, Nerina; Fournier, Charlène; Francis, Peter L; Hobbs, Andrew; Jamieson, Craig; Pickett, Stephen D; Smith, Sarah E; Somers, Donald O'N; Spitzfaden, Claus; Suckling, Colin J; Young, Robert J

    2016-03-24

    Inhibitors of mitochondrial branched chain aminotransferase (BCATm), identified using fragment screening, are described. This was carried out using a combination of STD-NMR, thermal melt (Tm), and biochemical assays to identify compounds that bound to BCATm, which were subsequently progressed to X-ray crystallography, where a number of exemplars showed significant diversity in their binding modes. The hits identified were supplemented by searching and screening of additional analogues, which enabled the gathering of further X-ray data where the original hits had not produced liganded structures. The fragment hits were optimized using structure-based design, with some transfer of information between series, which enabled the identification of ligand efficient lead molecules with micromolar levels of inhibition, cellular activity, and good solubility. PMID:26938474

  5. Efficient L-Alanine Production by a Thermo-Regulated Switch in Escherichia coli.

    PubMed

    Zhou, Li; Deng, Can; Cui, Wen-Jing; Liu, Zhong-Mei; Zhou, Zhe-Min

    2016-01-01

    L-Alanine has important applications in food, pharmaceutical and veterinary and is used as a substrate for production of engineered thermoplastics. Microbial fermentation could reduce the production cost and promote the application of L-alanine. However, the presence of L-alanine significantly inhibit cell growth rate and cause a decrease in the ultimate L-alanine productivity. For efficient L-alanine production, a thermo-regulated genetic switch was designed to dynamically control the expression of L-alanine dehydrogenase (alaD) from Geobacillus stearothermophilus on the Escherichia coli B0016-060BC chromosome. The optimal cultivation conditions for the genetically switched alanine production using B0016-060BC were the following: an aerobic growth phase at 33 °C with a 1-h thermo-induction at 42 °C followed by an oxygen-limited phase at 42 °C. In a bioreactor experiment using the scaled-up conditions optimized in a shake flask, B0016-060BC accumulated 50.3 g biomass/100 g glucose during the aerobic growth phase and 96 g alanine/100 g glucose during the oxygen-limited phase, respectively. The L-alanine titer reached 120.8 g/l with higher overall and oxygen-limited volumetric productivities of 3.09 and 4.18 g/l h, respectively, using glucose as the sole carbon source. Efficient cell growth and L-alanine production were reached separately, by switching cultivation temperature. The results revealed the application of a thermo-regulated strategy for heterologous metabolic production and pointed to strategies for improving L-alanine production. PMID:26453031

  6. Contribution of cysteine aminotransferase and mercaptopyruvate sulfurtransferase to hydrogen sulfide production in peripheral neurons.

    PubMed

    Miyamoto, Ryo; Otsuguro, Ken-Ichi; Yamaguchi, Soichiro; Ito, Shigeo

    2014-07-01

    Hydrogen sulfide (H2 S) is a gaseous neuromodulator produced from L-cysteine. H2 S is generated by three distinct enzymatic pathways mediated by cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS), and mercaptopyruvate sulfurtransferase (MPST) coupled with cysteine aminotransferase (CAT). This study investigated the relative contributions of these three pathways to H2 S production in PC12 cells (rat pheochromocytoma-derived cells) and the rat dorsal root ganglion. CBS, CAT, and MPST, but not CSE, were expressed in the cells and tissues, and appreciable amounts of H2 S were produced from L-cysteine in the presence of α-ketoglutarate, together with dithiothreitol. The production of H2 S was inhibited by a CAT inhibitor (aminooxyacetic acid), competitive CAT substrates (L-aspartate and oxaloacetate), and RNA interference (RNAi) against MPST. Immunocytochemistry revealed a mitochondrial localization of MPST in PC12 cells and dorsal root ganglion neurons, and the amount of H2 S produced by CAT/MPST at pH 8.0, a physiological mitochondrial matrix pH, was comparable to that produced by CSE and CBS in the liver and the brain, respectively. Furthermore, H2 S production was markedly increased by alkalization. These results indicate that CAT and MPST are primarily responsible for H2 S production in peripheral neurons, and that the regulation of mitochondrial metabolism may influence neuronal H2 S generation. In the peripheral nervous system, hydrogen sulfide (H2 S) has been implicated in neurogenic pain or hyperalgesia. This study provides evidence that H2 S is synthesized in peripheral neurons through two mitochondrial enzymes, cysteine aminotransferase (CAT) and mercaptopyruvate sulfurtransferase (MPST). We propose that mitochondrial metabolism plays key roles in the physiology and pathophysiology of the peripheral nervous system via regulation of neuronal H2 S production. PMID:24611772

  7. Recombinant expression, purification and crystallographic studies of the mature form of human mitochondrial aspartate aminotransferase.

    PubMed

    Jiang, Xiuping; Wang, Jia; Chang, Haiyang; Zhou, Yong

    2016-02-01

    Mitochondrial aspartate aminotransferase (mAspAT) was recognized as a moonlighting enzyme because it has not only aminotransferase activity but also a high-affinity long-chain fatty acids (LCFA) binding site. This enzyme plays a key role in amino acid metabolism, biosynthesis of kynurenic acid and transport of the LCFA. Therefore, it is important to study the structure-function relationships of human mAspAT protein. In this work, the mature form of human mAspAT was expressed to a high level in Escherichia coli periplasmic space using pET-22b vector, purified by a combination of immobilized metal-affinity chromatography and cation exchange chromatography. Optimal activity of the enzyme occurred at a temperature of 47.5ºC and a pH of 8.5. Crystals of human mAspAT were grown using the hanging-drop vapour diffusion method at 277K with 0.1 M HEPES pH 6.8 and 25%(v/v) Jeffamine(®) ED-2001 pH 6.8. The crystals diffracted to 2.99 Å and belonged to the space group P1 with the unit-cell parameters a =56.7, b = 76.1, c = 94.2 Å, α =78.0, β =85.6, γ = 78.4º. Elucidation of mAspAT structure can provide a molecular basis towards understanding catalysis mechanism and substrate binding site of enzyme. PMID:26902786

  8. Histidine Degradation via an Aminotransferase Increases the Nutritional Flexibility of Candida glabrata

    PubMed Central

    Seider, Katja; Richter, Martin Ernst; Bremer-Streck, Sibylle; Ramachandra, Shruthi; Kiehntopf, Michael; Brock, Matthias

    2014-01-01

    The ability to acquire nutrients during infections is an important attribute in microbial pathogenesis. Amino acids are a valuable source of nitrogen if they can be degraded by the infecting organism. In this work, we analyzed histidine utilization in the fungal pathogen of humans Candida glabrata. Hemiascomycete fungi, like C. glabrata or Saccharomyces cerevisiae, possess no gene coding for a histidine ammonia-lyase, which catalyzes the first step of a major histidine degradation pathway in most other organisms. We show that C. glabrata instead initializes histidine degradation via the aromatic amino acid aminotransferase Aro8. Although ARO8 is also present in S. cerevisiae and is induced by extracellular histidine, the yeast cannot use histidine as its sole nitrogen source, possibly due to growth inhibition by a downstream degradation product. Furthermore, C. glabrata relies only on Aro8 for phenylalanine and tryptophan utilization, since ARO8, but not its homologue ARO9, was transcriptionally activated in the presence of these amino acids. Accordingly, an ARO9 deletion had no effect on growth with aromatic amino acids. In contrast, in S. cerevisiae, ARO9 is strongly induced by tryptophan and is known to support growth on aromatic amino acids. Differences in the genomic structure of the ARO9 gene between C. glabrata and S. cerevisiae indicate a possible disruption in the regulatory upstream region. Thus, we show that, in contrast to S. cerevisiae, C. glabrata has adapted to use histidine as a sole source of nitrogen and that the aromatic amino acid aminotransferase Aro8, but not Aro9, is the enzyme required for this process. PMID:24728193

  9. Monitoring creatine and phosphocreatine by (13)C MR spectroscopic imaging during and after (13)C4 creatine loading: a feasibility study.

    PubMed

    Janssen, Barbara H; Lassche, Saskia; Hopman, Maria T; Wevers, Ron A; van Engelen, Baziel G M; Heerschap, Arend

    2016-08-01

    Creatine (Cr) supplementation to enhance muscle performance shows variable responses among individuals and different muscles. Direct monitoring of the supplied Cr in muscles would address these differences. In this feasibility study, we introduce in vivo 3D (13)C MR spectroscopic imaging (MRSI) of the leg with oral ingestion of (13)C4-creatine to observe simultaneously Cr and phosphocreatine (PCr) for assessing Cr uptake, turnover, and the ratio PCr over total Cr (TCr) in individual muscles. (13)C MRSI was performed of five muscles in the posterior thigh in seven subjects (two males and two females of ~20 years, one 82-year-old male, and two neuromuscular patients) with a (1)H/(13)C coil in a 3T MR system before, during and after intake of 15 % (13)C4-enriched Cr. Subjects ingested 20 g Cr/day for 4 days in four 5 g doses at equal time intervals. The PCr/TCr did not vary significantly during supplementation and was similar for all subjects and investigated muscles (average 0.71 ± 0.07), except for the adductor magnus (0.64 ± 0.03). The average Cr turnover rate, assessed in male muscles, was 2.1 ± 0.7 %/day. The linear uptake rates of Cr were variable between muscles, although not significantly different. This assessment was possible in all investigated muscles of young male volunteers, but less so in muscles of the other subjects due to lower signal-to-noise ratio. Improvements for future studies are discussed. In vivo (13)C MRSI after (13)C-Cr ingestion is demonstrated for longitudinal studies of Cr uptake, turnover, and PCr/TCr ratios of individual muscles in one exam. PMID:27401085

  10. Inactivation of 3-(3,4-dihydroxyphenyl)alanine decarboxylase by 2-(fluoromethyl)-3-(3,4-dihydroxyphenyl)alanine.

    PubMed

    Maycock, A L; Aster, S D; Patchett, A A

    1980-02-19

    2-(Fluoromethyl)-3-(3,4-dihydroxyphenyl)alanine [alpha-FM-Dopa (I)] causes rapid, time-dependent, stereospecific, and irreversible inhibition of hog kidney aromatic amino acid (Dopa) decarboxylase. The inactivation occurs with loss of both the carboxyl carbon and fluoride from I and results in the stoichimetric formation of a covalent enzyme-inhibitor adduct. The data are consistent with I being a suicide inactivator of the enzyme, and a plausible mechanism for the inactivation process is presented. The inactivation is highly efficient in that there is essentially no enzymatic turnover of I to produce the corresponding amine, 1-(fluoromethyl)-2-(3,4-dihydroxyphenyl)ethylamine [alpha-FM-dopamine (II)]. Amine II is also a potent inactivator of the enzyme. In vivo compound I is found to inactivate both brain and peripheral (liver) Dopa decarboxylase activity. The possible significance of these data with respect to the known antihypertensive effect of I is discussed. PMID:7356954

  11. Catalytic properties of Sepharose-bound L-alanine dehydrogenase from Bacillus cereus.

    PubMed

    Mureşan, L; Vancea, D; Presecan, E; Porumb, H; Lascu, I; Oargă, M; Matinca, D; Abrudan, I; Bârzu, O

    1983-02-15

    (1) L-Alanine dehydrogenase from Bacillus cereus was purified by a two-step chromatographic procedure involving Cibacron-Blue 3G-A Sepharose 4B-CL, and Sepharose 6B-CL, and immobilized on CNBr-activated Sepharose 4B. (2) Following immobilization via two of the six subunits, L-alanine dehydrogenase retained 66% of the specific activity of the soluble enzyme. The affinity of the immobilized enzyme for NH4+, pyruvate and L-alanine, was not different to that of the soluble form. The Km of the Sepharose-bound L-alanine dehydrogenase for pyridine coenzymes was 6-8-times higher than in the soluble case. (3) The stability of L-alanine dehydrogenase towards urea or thermal denaturation was increased by immobilization. (4) The incubation at 37 degrees C for 24 h of the immobilized L-alanine dehydrogenase with 3 M NH4Cl/NH4OH buffer (pH 9) released 70% of the enzyme. The specific activity and the affinity of the 'solubilized' L-alanine dehydrogenase for the pyridine coenzymes was the same as that obtained with the original, soluble L-alanine dehydrogenase. PMID:6404304

  12. Polymerization of alanine in the presence of a non-swelling montmorillonite

    NASA Technical Reports Server (NTRS)

    Paecht-Horowitz, M.; Lahav, N.

    1977-01-01

    Alanine, starting from alanine-adenylate, has been polymerized in the presence of non-swelling Al-montmorillonite. The yield of polymerization is much lower than that obtained in the presence of swelling Na-montmorillonite. The possibility that the changing interlayer spacing in Na-montmorillonite might be responsible for its catalytic properties, is discussed.

  13. Initiation of Spore Germination in Bacillus subtilis: Relationship to Inhibition of l-Alanine Metabolism

    PubMed Central

    Prasad, Chandan

    1974-01-01

    The inhibitory effects of anthranilic acid esters (methyl anthranilate and N-methyl anthranilate) on the l-alanine-induced initiation of spore germination was examined in Bacillus subtilis 168. Methyl anthranilate irreversibly inhibited alanine initiation by a competitive mechanism. In its presence, the inhibition could be reversed only by the combined addition of d-glucose, d-fructose, and K+. Both l-alanine dehydrogenase and l-glutamate-pyruvate transaminase, enzymes which catalyze the first reaction in l-alanine metabolism, were competitively inhibited by methyl anthranilate. The Ki values for germination initiation (0.053 mM) and of l-glutamate-pyruvate transaminase (0.068 mM) were similar, whereas that for l-alanine dehydrogenase (0.4 mM) was six to seven times higher. Since a mutant lacking l-alanine dehydrogenase activity germinated normally in l-alanine alone, it is speculated that the major pathway of l-alanine metabolism during initiation may be via transmination reaction. PMID:4212093

  14. A stereospecific solid-phase screening assay for colonies expressing both (R)- and (S)-selective ω-aminotransferases.

    PubMed

    Willies, Simon C; Galman, James L; Slabu, Iustina; Turner, Nicholas J

    2016-02-28

    A novel solid-phase screening assay was developed for colonies expressing both (R)- and (S)-selective ω-aminotransferases. This high-throughput assay can be used to screen rapidly large variant libraries with enhanced substrate selectivity and enantioselectivities. PMID:26755753

  15. Thermal decomposition behavior of potassium and sodium jarosite synthesized in the presence of methylamine and alanine

    SciTech Connect

    J. Michelle Kotler; Nancy W. Hinman; C. Doc Richardson; Jill R. Scott

    2010-10-01

    Biomolecules, methylamine and alanine, found associated with natural jarosite samples peaked the interest of astrobiologists and planetary geologists. How the biomolecules are associated with jarosite remains unclear although the mechanism could be important for detecting biosignatures in the rock record on Earth and other planets. A series of thermal gravimetric experiments using synthetic K-jarosite and Na-jarosite were conducted to determine if thermal analysis could differentiate physical mixtures of alanine and methylamine with jarosite from samples where the methylamine or alanine was incorporated into the synthesis procedure. Physical mixtures and synthetic experiments with methylamine and alanine could be differentiated from one another and from the standards by thermal analysis for both the K-jarosite and Na-jarosite end-member suites. Changes included shifts in on-set temperatures, total temperature changes from on-set to final, and the presence of indicator peaks for methylamine and alanine in the physical mixture experiments.

  16. How similar is the electronic structures of β-lactam and alanine?

    NASA Astrophysics Data System (ADS)

    Chatterjee, Subhojyoti; Ahmed, Marawan; Wang, Feng

    2016-02-01

    The C1s spectra of β-lactam i.e. 2-azetidinone (C3H5NO), a drug and L-alanine (C3H7NO2), an amino acid, exhibit striking similarities, which may be responsible for the competition between 2-azetidinone and the alanyl-alanine moiety in biochemistry. The present study is to reveal the degree of similarities and differences between their electronic structures of the two model molecular pairs. It is found that the similarities in C1s and inner valence binding energy spectra are due to their bonding connections but other properties such as ring structure (in 2-azetidinone) and chiral carbon (alanine) can be very different. Further, the inner valence region of ionization potential greater than 18 eV for 2-azetidinone and alanine is also significantly similar. Finally the strained lactam ring exhibits more chemical reactivity measured at all non-hydrogen atoms by Fukui functions with respect to alanine.

  17. Creatine Supplementation Associated or Not with Strength Training upon Emotional and Cognitive Measures in Older Women: A Randomized Double-Blind Study

    PubMed Central

    Alves, Christiano Robles Rodrigues; Merege Filho, Carlos Alberto Abujabra; Benatti, Fabiana Braga; Brucki, Sonia; Pereira, Rosa Maria R.; de Sá Pinto, Ana Lucia; Lima, Fernanda Rodrigues; Roschel, Hamilton; Gualano, Bruno

    2013-01-01

    Purpose To assess the effects of creatine supplementation, associated or not with strength training, upon emotional and cognitive measures in older woman. Methods This is a 24-week, parallel-group, double-blind, randomized, placebo-controlled trial. The individuals were randomly allocated into one of the following groups (n=14 each): 1) placebo, 2) creatine supplementation, 3) placebo associated with strength training or 4) creatine supplementation associated with strength training. According to their allocation, the participants were given creatine (4 x 5 g/d for 5 days followed by 5 g/d) or placebo (dextrose at the same dosage) and were strength trained or not. Cognitive function, assessed by a comprehensive battery of tests involving memory, selective attention, and inhibitory control, and emotional measures, assessed by the Geriatric Depression Scale, were evaluated at baseline, after 12 and 24 weeks of the intervention. Muscle strength and food intake were evaluated at baseline and after 24 weeks. Results After the 24-week intervention, both training groups (ingesting creatine supplementation and placebo) had significant reductions on the Geriatric Depression Scale scores when compared with the non-trained placebo group (p = 0.001 and p = 0.01, respectively) and the non-trained creatine group (p < 0.001 for both comparison). However, no significant differences were observed between the non-trained placebo and creatine (p = 0.60) groups, or between the trained placebo and creatine groups (p = 0.83). Both trained groups, irrespective of creatine supplementation, had better muscle strength performance than the non-trained groups. Neither strength training nor creatine supplementation altered any parameter of cognitive performance. Food intake remained unchanged. Conclusion Creatine supplementation did not promote any significant change in cognitive function and emotional parameters in apparently healthy older individuals. In addition, strength training per se

  18. A chemically modified carbon paste electrode with d-lactate dehydrogenase and alanine aminotranferase enzyme sequences for d-lactic acid analysis.

    PubMed

    Shu, H C; Wu, N P

    2001-04-12

    An amperometric biosensor was constructed for the analysis of d-lactic acid based on immobilizing d-lactate dehydrogenase(d-LDH), alanine aminotransferase (ALT), NAD(+), a redox polymer and polyethylenimine in carbon paste. The effect of addition of ALT in the paste, using enzyme sequences of ALT/d-LDH, was insignificant for d-lactic acid analysis. The responses of d-lactic acid in ALT/d-LDH paste electrode are the same as those in d-LDH paste electrode. However, the interference effect of pyruvate in the sample can be substantially reduced if sodium glutamate was applied in the carrier solution. When ALT immobilized in control porous glass as an immobilized enzyme reactor (IMER) was mounted in flow injection analysis system with the d-LDH paste electrode as detector for d-lactate analysis, the interference of the pyruvate can be significantly eliminated. The adverse effect of pyruvate in the samples for d-lactic acid analysis was reduced more effectively in ALT IMER with d-LDH electrode than in ALT/d-LDH electrode. PMID:18968259

  19. Expression, purification, and characterization of alanine racemase from Pseudomonas putida YZ-26.

    PubMed

    Liu, Jun-Lin; Liu, Xiao-Qin; Shi, Ya-Wei

    2012-01-01

    Alanine racemase catalyzes the interconversion of D: - and L: -alanine and plays an important role in supplying D: -alanine, a component of peptidoglycan biosynthesis, to most bacteria. Alanine racemase exists mostly in prokaryotes and is generally absent in higher eukaryotes; this makes it an attractive target for the design of new antibacterial drugs. Here, we present the cloning and characterization of a new gene-encoding alanine racemase from Pseudomonas putida YZ-26. An open reading frame (ORF) of 1,230 bp, encoding a protein of 410 amino acids with a calculated molecular weight of 44,217.3 Da, was cloned into modified vector pET32M to form the recombinant plasmid pET-alr. After introduction into E.coli BL21, the strain pET-alr/E.coli BL21 expressed His(6)-tagged alanine racemase. The recombinant alanine racemase was efficiently purified to homogeneity using Ni(2+)-NTA and a gel filtration column, with 82.5% activity recovery. The amino acid sequence deduced from the alanine racemase gene revealed identity similarities of 97.0, 93, 23, and 22.0% with from P. putida F1, P. putida200, P. aeruginosa, and Salmonella typhimurium, respectively. The recombinant alanine racemase is a monomeric protein with a molecular mass of 43 kDa. The enzyme exhibited activity with L: -alanine and L: -isoleucine, and showed higher specificity for the former compared with the latter. The enzyme was stable from pH 7.0-11.0; its optimum pH was at 9.0. The optimum temperature for the enzyme was 37°C, and its activity was rapidly lost at temperatures above 40°C. Divalent metals, including Sr(2+), Mn(2+), Co(2+), and Ni(2+) obviously enhanced enzymatic activity, while the Cu(2+) ion showed inhibitory effects. PMID:22806802

  20. Nonalcoholic Steatohepatitis and Hepatic Fibrosis in HIV-1–Monoinfected Adults With Elevated Aminotransferase Levels on Antiretroviral Therapy

    PubMed Central

    Morse, Caryn G.; McLaughlin, Mary; Matthews, Lindsay; Proschan, Michael; Thomas, Francine; Gharib, Ahmed M.; Abu-Asab, Mones; Orenstein, Abigail; Engle, Ronald E.; Hu, Xiaojun; Lempicki, Richard; Hadigan, Colleen; Kleiner, David E.; Heller, Theo; Kovacs, Joseph A.

    2015-01-01

    Background. Persistent aminotransferase elevations are common in human immunodeficiency virus (HIV)–infected patients on antiretroviral therapy (ART), including those without hepatitis B or C coinfection, but their clinical significance is unknown. Methods. HIV-infected adults with aminotransferase levels elevated above the upper limit of normal for ≥6 months while receiving ART, and without chronic viral hepatitis or other known causes of chronic liver disease, underwent a detailed metabolic assessment and liver biopsy. Results. Sixty-two HIV-infected subjects completed the study. Forty (65%) had clinically significant liver pathology, including 34 (55%) with nonalcoholic steatohepatitis (NASH) and 11 (18%) with bridging fibrosis, 10 of whom also had NASH. Nonspecific abnormalities alone were seen in 22 (35%) subjects, including mild steatosis, mild to moderate inflammation, and evidence of drug adaptation. Insulin resistance, obesity, and the presence of either of 2 minor alleles in the PNPLA3 gene were significantly associated with increased risk of NASH and fibrosis. NASH and/or fibrosis were not associated with duration of HIV infection or ART, specific antiretroviral drugs, history of opportunistic infection, immune status, or duration of aminotransferase elevation. Conclusions. HIV-infected adults with chronic aminotransferase elevations while receiving ART have a high rate of liver disease. Noninvasive testing can help identify liver disease in such patients, but liver biopsy is necessary to definitively identify those at risk for liver disease progression and complications. Longitudinal follow-up of this cohort will better characterize the natural history of aminotransferase elevations in this population and identify noninvasive biomarkers of liver disease progression. PMID:25681381

  1. Creatine kinase and endocrine responses of elite players pre, during, and post rugby league match play.

    PubMed

    McLellan, Christopher P; Lovell, Dale I; Gass, Gregory C

    2010-11-01

    The purpose of the present study was to (a) examine player-movement patterns to determine total distance covered during competitive Rugby League match play using global positioning systems (GPSs) and (b) examine pre, during, and postmatch creatine kinase (CK) and endocrine responses to competitive Rugby League match play. Seventeen elite rugby league players were monitored for a single game. Player movement patterns were recorded using portable GPS units (SPI-Pro, GPSports, Canberra, Australia). Saliva and blood samples were collected 24 hours prematch, 30 minutes prematch, 30 minutes postmatch, and then at 24-hour intervals for a period of 5 days postmatch to determine plasma CK and salivary testosterone, cortisol, and testosterone:cortisol ratio (T:C). The change in the dependent variables at each sample collection time was compared to 24-hour prematch measures. Backs and forwards traveled distances 5,747 ± 1,095 and 4,774 ± 1,186 m, respectively, throughout the match. Cortisol and CK increased significantly (p < 0.05) from 30 minutes prematch to 30 minutes postmatch. Creatine kinase increased significantly (p < 0.05) postmatch, with peak CK concentration measured 24 hours postmatch (889.25 ± 238.27 U·L). Cortisol displayed a clear pattern of response with significant (p < 0.05) elevations up to 24 hours postmatch, compared with 24 hours prematch. The GPS was able to successfully provide data on player-movement patterns during competitive rugby league match play. The CK and endocrine profile identified acute muscle damage and a catabolic state associated with Rugby League match play. A return to normal T:C within 48 hours postmatch indicates that a minimum period of 48 hours is required for endocrine homeostasis postcompetition. Creatine kinase remained elevated despite 120 hours of recovery postmatch identifying that a prolonged period of at least 5 days modified activity is required to achieve full recovery after muscle damage during competitive Rugby

  2. The Relationship Between Creatine and Whey Protein Supplements Consumption and Anesthesia in Rats

    PubMed Central

    Saberi, Kianoush; Gorji Mahlabani, Mohammad Amin; Tashayoie, Mohammad; Nasiri Nejad, Farinaz

    2016-01-01

    Background: Because the trend of pharmacotherapy is toward controlling diet rather than administration of drugs, in our study we examined the probable relationship between Creatine (Cr) or Whey (Wh) consumption and anesthesia (analgesia effect of ketamine). Creatine and Wh are among the most favorable supplements in the market. Whey is a protein, which is extracted from milk and is a rich source of amino acids. Creatine is an amino acid derivative that can change to ATP in the body. Both of these supplements result in Nitric Oxide (NO) retention, which is believed to be effective in N-Methyl-D-aspartate (NMDA) receptor analgesia. Objectives: The main question of this study was whether Wh and Cr are effective on analgesic and anesthetic characteristics of ketamine and whether this is related to NO retention or amino acids’ features Materials and Methods: We divided 30 male Wistar rats to three (n = 10) groups; including Cr, Wh and sham (water only) groups. Each group was administered (by gavage) the supplements for an intermediate dosage during 25 days. After this period, they became anesthetized using a Ketamine-Xylazine (KX) and their time to anesthesia and analgesia, and total sleep time were recorded. Results: Data were analyzed twice using the SPSS 18 software with Analysis of Variance (ANOVA) and post hoc test; first time we expunged the rats that didn’t become anesthetized and the second time we included all of the samples. There was a significant P-value (P < 0.05) for total anesthesia time in the second analysis. Bonferroni multiple comparison indicated that the difference was between Cr and Sham groups (P < 0.021). Conclusions: The data only indicated that there might be a significant relationship between Cr consumption and total sleep time. Further studies, with rats of different gender and different dosage of supplement and anesthetics are suggested. PMID:27110533

  3. Mice lacking brain-type creatine kinase activity show defective thermoregulation

    PubMed Central

    Streijger, Femke; Pluk, Helma; Oerlemans, Frank; Beckers, Gaby; Bianco, Antonio C.; Ribeiro, Miriam O.; Wieringa, Bé; Van der Zee, Catharina E.E.M.

    2010-01-01

    The cytosolic brain-type creatine kinase and mitochondrial ubiquitous creatine kinase (CK-B and UbCKmit) are expressed during the prepubescent and adult period of mammalian life. These creatine kinase (CK) isoforms are present in neural cell types throughout the central and peripheral nervous system and in smooth muscle containing tissues, where they have an important role in cellular energy homeostasis. Here, we report on the coupling of CK activity to body temperature rhythm and adaptive thermoregulation in mice. With both brain-type CK isoforms being absent, the body temperature reproducibly drops ~1.0°C below normal during every morning (inactive) period in the daily cycle. Facultative non-shivering thermogenesis is also impaired, since CK−−/−− mice develop severe hypothermia during 24 h cold exposure. A relationship with fat metabolism was suggested because comparison of CK−−/−− mice with wildtype controls revealed decreased weight gain associated with less white and brown fat accumulation and smaller brown adipocytes. Also, circulating levels of glucose, triglycerides and leptin are reduced. Extensive physiological testing and uncoupling protein1 analysis showed, however, that the thermogenic problems are not due to abnormal responsiveness of brown adipocytes, since noradrenaline infusion produced a normal increase of body temperature. Moreover, we demonstrate that the cyclic drop in morning temperature is also not related to altered rhythmicity with reduced locomotion, diminished food intake or increased torpor sensitivity. Although several integral functions appear altered when CK is absent in the brain, combined findings point into the direction of inefficient neuronal transmission as the dominant factor in the thermoregulatory defect. PMID:19419668

  4. Calibration of helical tomotherapy machine using EPR/alanine dosimetry

    SciTech Connect

    Perichon, Nicolas; Garcia, Tristan; Francois, Pascal; Lourenco, Valerie; Lesven, Caroline; Bordy, Jean-Marc

    2011-03-15

    Purpose: Current codes of practice for clinical reference dosimetry of high-energy photon beams in conventional radiotherapy recommend using a 10x10 cm{sup 2} square field, with the detector at a reference depth of 10 cm in water and 100 cm source to surface distance (SSD) (AAPM TG-51) or 100 cm source-to-axis distance (SAD) (IAEA TRS-398). However, the maximum field size of a helical tomotherapy (HT) machine is 40x5 cm{sup 2} defined at 85 cm SAD. These nonstandard conditions prevent a direct implementation of these protocols. The purpose of this study is twofold: To check the absorbed dose in water and dose rate calibration of a tomotherapy unit as well as the accuracy of the tomotherapy treatment planning system (TPS) calculations for a specific test case. Method: Both topics are based on the use of electron paramagnetic resonance (EPR) using alanine as transfer dosimeter between the Laboratoire National Henri Becquerel (LNHB) {sup 60}Co-{gamma}-ray reference beam and the Institut Curie's HT beam. Irradiations performed in the LNHB reference {sup 60}Co-{gamma}-ray beam allowed setting up the calibration method, which was then implemented and tested at the LNHB 6 MV linac x-ray beam, resulting in a deviation of 1.6% (at a 1% standard uncertainty) relative to the reference value determined with the standard IAEA TRS-398 protocol. Results: HT beam dose rate estimation shows a difference of 2% with the value stated by the manufacturer at a 2% standard uncertainty. A 4% deviation between measured dose and the calculation from the tomotherapy TPS was found. The latter was originated by an inadequate representation of the phantom CT-scan values and, consequently, mass densities within the phantom. This difference has been explained by the mass density values given by the CT-scan and used by the TPS which were not the true ones. Once corrected using Monte Carlo N-Particle simulations to validate the accuracy of this process, the difference between corrected TPS

  5. Identification of a mutation affecting an alanine-alpha-ketoisovalerate transaminase activity in Escherichia coli K-12.

    PubMed

    Falkinham, J O

    1979-10-01

    A mutation affecting alanine-alpha-ketoisovalerate transaminase activity has been shown to be cotransducible with ilv gene cluster. The transaminase deficiency results in conditional isoleucine auxotrophy in the presence of alanine. PMID:396446

  6. Folding simulations of alanine-based peptides with lysine residues.

    PubMed Central

    Sung, S S

    1995-01-01

    The folding of short alanine-based peptides with different numbers of lysine residues is simulated at constant temperature (274 K) using the rigid-element Monte Carlo method. The solvent-referenced potential has prevented the multiple-minima problem in helix folding. From various initial structures, the peptides with three lysine residues fold into helix-dominated conformations with the calculated average helicity in the range of 60-80%. The peptide with six lysine residues shows only 8-14% helicity. These results agree well with experimental observations. The intramolecular electrostatic interaction of the charged lysine side chains and their electrostatic hydration destabilize the helical conformations of the peptide with six lysine residues, whereas these effects on the peptides with three lysine residues are small. The simulations provide insight into the helix-folding mechanism, including the beta-bend intermediate in helix initiation, the (i, i + 3) hydrogen bonds, the asymmetrical helix propagation, and the asymmetrical helicities in the N- and C-terminal regions. These findings are consistent with previous studies. PMID:7756550

  7. Alanine synthesis from glyceraldehyde and ammonium ion in aqueous solution

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    1985-01-01

    The formation of alanine (ala) form C(14)-glyceraldehyde and ammonium phosphate in the presence or absence of a thiol is reported. At ambient temperature, ala synthesis was six times more rapid in the presence of 3-mercaptopropionic acid than in its absence (0.6 and 0.1 percent, respectively, after 60 days). Similarly, the presence of another thiol, N-acetylcysteinate, increased the production of ala, as well as of lactate. The reaction pathway of thiol-catalyzed synthesis of ala, with the lactic acid formed in a bypath, is suggested. In this, dehydration of glyceraldehyde is followed by the formation of hemithioacetal. In the presence of ammonia, an imine is formed, which eventually yields ala. This pathway is consistent with the observation that the rate ratio of ala/lactate remains constant throughout the process. The fact that the reaction takes place under anaerobic conditions in the presence of H2O and with the low concentrations of simple substrates and catalysts makes it an attractive model prebiotic reaction in the process of molecular evolution.

  8. Energy landscapes and global thermodynamics for alanine peptides

    NASA Astrophysics Data System (ADS)

    Somani, Sandeep; Wales, David J.

    2013-09-01

    We compare different approaches for computing the thermodynamics of biomolecular systems. Techniques based on parallel replicas evolving via molecular dynamics or Monte Carlo simulations produce overlapping histograms for the densities of states. In contrast, energy landscape methods employ a superposition partition function constructed from local minima of the potential energy surface. The latter approach is particularly powerful for systems exhibiting broken ergodicity, and it is usually implemented using a harmonic normal mode approximation, which has not been extensively tested for biomolecules. The present contribution compares these alternative approaches for small alanine peptides modelled using the CHARMM and AMBER force fields. Densities of states produced from canonical sampling using multiple temperature replicas provide accurate reference data to evaluate the effect of the harmonic normal mode approximation in the superposition calculations. This benchmarking lays foundations for the application of energy landscape methods to larger biomolecules. It will also provide well characterised model systems for developing enhanced sampling methods, and for the treatment of anharmonicity corresponding to individual local minima.

  9. Alanine-EPR as a transfer standard dosimetry system for low energy X radiation

    NASA Astrophysics Data System (ADS)

    Khoury, H. J.; da Silva, E. J.; Mehta, K.; de Barros, V. S.; Asfora, V. K.; Guzzo, P. L.; Parker, A. G.

    2015-11-01

    The purpose of this paper is to evaluate the use of alanine-EPR as a transfer standard dosimetry system for low energy X radiation, such as that in RS-2400, which operates in the range from 25 to 150 kV and 2 to 45 mA. Two types of alanine dosimeters were investigated. One is a commercial alanine pellets from Aérial-Centre de Ressources Technologiques, France and one was prepared in our laboratory (LMRI-DEN/UFPE). The EPR spectra of the irradiated dosimeters were recorded in the Nuclear Energy Department of UFPE, using a Bruker EMX10 EPR spectrometer operating in the X-band. The alanine-EPR dosimetry system was calibrated in the range of 20-220 Gy in this X-ray field, against an ionization chamber calibrated at the relevant X-ray energy with traceability to PTB. The results showed that both alanine dosimeters presented a linear dose response the same sensitivity, when the EPR signal was normalized to alanine mass. The total uncertainty in the measured dose was estimated to be about 3%. The results indicate that it is possible to use the alanine-EPR dosimetry system for validation of a low-energy X ray irradiator, such as RS-2400.

  10. Sodium dependency of L-alanine absorption in canine Thiry-Vella loops.

    PubMed

    Fleshler, B; Nelson, R A

    1970-03-01

    The effect of sodium on the absorption of L-alanine in vivo was tested by measuring the absorption of L-alanine from Thiry-Vella loops in dogs. Solutions containing L-alanine (10 or 50 mM) sodium at concentrations of 0, 74, or 145 m-equiv/1 and mannitol, as needed to maintain isotonicity were instilled into the loops for 10 minutes. Similar studies were done with L-alanine 50 mM and either 0 or 145 m-equiv/1 of sodium for five minutes. Under all conditions absorption of alanine was significantly less from the solution initially free of sodium. Although these differences were statistically significant, the physiological significance was not great since the actual differences in amounts of L-alanine absorbed were small. Insorption of sodium was low from the fluid which initially had no sodium, but exsorption proceeded rapidly and was unaffected by the luminal sodium concentration. This resulted in a rapid rise of intraluminal sodium concentration when no sodium was initially present. This persistent exsorption of sodium was, therefore, adequate to provide sodium in the lumen to activate the sodium-dependent carrier, postulated on the basis of studies in vitro. These data in vivo are consistent with the view that sodium at the intraluminal surface is important in accelerating amino acid transport, but indicate that in the absence of added intraluminal sodium the gut mucosa itself, under normal circumstances, provides the sodium needed for L-alanine absorption. PMID:5423904

  11. Oral creatine supplementation on performance of Quarter Horses used in barrel racing.

    PubMed

    Teixeira, F A; Araújo, A L; Ramalho, L O; Adamkosky, M S; Lacerda, T F; Coelho, C S

    2016-06-01

    The aim of this study was to evaluate the effects of oral creatine supplementation on the athletic performance of equines used for barrel racing. Ten healthy Quarter Horses, or Quarter Horse crossbred, weighing 429.7 ± 25.3 kg and with mean age of 3.8 ± 1.2 years, were used. Animals were evaluated in four different moments (M1, M2, M3, M4), and between M3 and M4, they were supplemented with 28 g of creatine/100 kg of body weight, orally, for 45 days. Although significant alterations for LDH activity, plasma glucose and packed cell volume were observed, it was possible to conclude that there was no improvement in the athletic performance for the animals used on the experiment, as there were no changes in time scores, heart rate and plasma lactate, variables considered as performance indicators, before and after supplementation. PMID:26613801

  12. In vivo CEST Imaging of Creatine (CrCEST) in Skeletal Muscle at 3T

    PubMed Central

    Kogan, Feliks; Haris, Mohammad; Debrosse, Catherine; Singh, Anup; Nanga, Ravi P.; Cai, Kejia; Hariharan, Hari; Reddy, Ravinder

    2013-01-01

    Purpose To characterize the chemical exchange saturation transfer (CEST) based technique to measure free creatine (Cr), a key component of muscle energy metabolism, distribution in skeletal muscle with high spatial resolution before and after exercise at 3T. Methods CrCEST saturation parameters were empirically optimized for 3T. CEST, T2, magnetization transfer ratio (MTR) and 31P magnetic resonance spectroscopy (MRS) acquisitions of the lower leg were performed before and after mild plantar flexion exercise on a 3T whole-body MR scanner on 6 healthy volunteers. Results The feasibility of imaging Cr changes in skeletal muscle following plantar flexion exercise using CrCEST was demonstrated at 3T. This technique exhibited good spatial resolution and was able to differentiate differences in muscle utilization among subjects. CrCEST results were compared with 31P MRS results showing good agreement in the Cr and PCr recovery kinetics. A relationship of 0.45 % CrCESTasym/mM Cr was observed across all subjects. Conclusion Demonstrated the CrCEST technique could be applied at 3T to measure dynamic changes in creatine in in vivo muscle. The widespread availability and clinical applicability of 3T scanners has the potential to clinically advance this method. PMID:24925857

  13. Creatine kinase B is necessary to limit myoblast fusion during myogenesis

    PubMed Central

    Simionescu-Bankston, Adriana; Pichavant, Christophe; Canner, James P.; Apponi, Luciano H.; Wang, Yanru; Steeds, Craig; Olthoff, John T.; Belanto, Joseph J.; Ervasti, James M.

    2015-01-01

    Myoblast fusion is critical for proper muscle growth and regeneration. During myoblast fusion, the localization of some molecules is spatially restricted; however, the exact reason for such localization is unknown. Creatine kinase B (CKB), which replenishes local ATP pools, localizes near the ends of cultured primary mouse myotubes. To gain insights into the function of CKB, we performed a yeast two-hybrid screen to identify CKB-interacting proteins. We identified molecules with a broad diversity of roles, including actin polymerization, intracellular protein trafficking, and alternative splicing, as well as sarcomeric components. In-depth studies of α-skeletal actin and α-cardiac actin, two predominant muscle actin isoforms, demonstrated their biochemical interaction and partial colocalization with CKB near the ends of myotubes in vitro. In contrast to other cell types, specific knockdown of CKB did not grossly affect actin polymerization in myotubes, suggesting other muscle-specific roles for CKB. Interestingly, knockdown of CKB resulted in significantly increased myoblast fusion and myotube size in vitro, whereas knockdown of creatine kinase M had no effect on these myogenic parameters. Our results suggest that localized CKB plays a key role in myotube formation by limiting myoblast fusion during myogenesis. PMID:25810257

  14. Creatine supplementation does not decrease oxidative stress and inflammation in skeletal muscle after eccentric exercise.

    PubMed

    Silva, Luciano A; Tromm, Camila B; Da Rosa, Guilherme; Bom, Karoliny; Luciano, Thais F; Tuon, Talita; De Souza, Cláudio T; Pinho, Ricardo A

    2013-01-01

    Thirty-six male rats were used; divided into 6 groups (n = 6): saline; creatine (Cr); eccentric exercise (EE) plus saline 24 h (saline + 24 h); eccentric exercise plus Cr 24 h (Cr + 24 h); eccentric exercise plus saline 48 h (saline + 48 h); and eccentric exercise plus Cr 48 h (Cr + 48 h). Cr supplementation was administered as a solution of 300 mg · kg body weight(-1) · day(-1) in 1 mL water, for two weeks, before the eccentric exercise. The animals were submitted to one downhill run session at 1.0 km · h(-1) until exhaustion. Twenty-four and forty-eight hours after the exercise, the animals were killed, and the quadriceps were removed. Creatine kinase levels, superoxide production, thiobarbituric acid reactive substances (TBARS) level, carbonyl content, total thiol content, superoxide dismutase, catalase, glutathione peroxidase, interleukin-1b (IL-1β), nuclear factor kappa B (NF-kb), and tumour necrosis factor (TNF) were analysed. Cr supplementation neither decreases Cr kinase, superoxide production, lipoperoxidation, carbonylation, total thiol, IL-1β, NF-kb, or TNF nor alters the enzyme activity of superoxide dismutase, catalase, and glutathione peroxides in relation to the saline group, respectively (P < 0.05). There are positive correlations between Cr kinase and TBARS and TNF-α 48 hours after eccentric exercise. The present study suggests that Cr supplementation does not decrease oxidative stress and inflammation after eccentric contraction. PMID:23560674

  15. Effect of Exercise on the Creatine Resonances in 1H MR Spectra of Human Skeletal Muscle

    NASA Astrophysics Data System (ADS)

    Kreis, R.; Jung, B.; Slotboom, J.; Felblinger, J.; Boesch, C.

    1999-04-01

    1H MR spectra of human muscles were recorded before, during, and after fatiguing exercise. In contrast to expectations, it was found that the spectral contributions of creatine/phosphocreatine (Cr/PCr) were subject to change as a function of exercise. In particular, the dipolar-coupled methylene protons of Cr/PCr were found to be reduced in intensity in proportion to the co-registered PCr levels. Recovery after exercise and behavior under ischemic conditions provide further evidence to suggest that the contributions of the CH2protons of Cr/PCr to1H MR spectra of human musclein vivoreflect PCr rather than Cr levels. Variation of experimental parameters showed that this effect is not due to a trivial change in relaxation times. At present it can only be speculated about why the Cr resonances have reduced NMR visibility. If temporary binding to macromolecules should be involved, the free Cr concentration-important for equilibrium calculations of the creatine kinase reaction-might be different from what was previously assumed.

  16. Creatine kinase B deficient neurons exhibit an increased fraction of motile mitochondria

    PubMed Central

    Kuiper, Jan WP; Oerlemans, Frank TJJ; Fransen, Jack AM; Wieringa, Bé

    2008-01-01

    Background Neurons require an elaborate system of intracellular transport to distribute cargo throughout axonal and dendritic projections. Active anterograde and retrograde transport of mitochondria serves in local energy distribution, but at the same time also requires input of ATP. Here we studied whether brain-type creatine kinase (CK-B), a key enzyme for high-energy phosphoryl transfer between ATP and CrP in brain, has an intermediary role in the reciprocal coordination between mitochondrial motility and energy distribution. Therefore, we analysed the impact of brain-type creatine kinase (CK-B) deficiency on transport activity and velocity of mitochondria in primary murine neurons and made a comparison to the fate of amyloid precursor protein (APP) cargo in these cells, using live cell imaging. Results Comparison of average and maximum transport velocities and global transport activity showed that CK-B deficiency had no effect on speed of movement of mitochondria or APP cargo, but that the fraction of motile mitochondria was significantly increased by 36% in neurons derived from CK-B knockout mice. The percentage of motile APP vesicles was not altered. Conclusion CK-B activity does not directly couple to motor protein activity but cells without the enzyme increase the number of motile mitochondria, possibly as an adaptational strategy aimed to enhance mitochondrial distribution versatility in order to compensate for loss of efficiency in the cellular network for ATP distribution. PMID:18662381

  17. Uncommon serum creatine phosphokinase and lactic dehydrogenase increase during diosmin therapy: two case reports

    PubMed Central

    2014-01-01

    Introduction Short-term administration of diosmin is usually considered safe, with only minor side effects (stomach and abdominal pain, diarrhea, dermatological disorders, and headache) occasionally observed. Within a 4-year period, a general practitioner noticed 17 cases of mild, diosmin-induced side effects, two of which showed particular interest. Cases presentation Case 1: A 55-year-old Caucasian woman presented with chronic leg venous insufficiency. She was prescribed diosmin 450mg twice a day. After 5 days of therapy, she developed pain in the legs (myalgia), and diosmin therapy was suspended. She made a spontaneous attempt of drug rechallenge and her leg pain reappeared. Thus, she underwent blood analysis, which showed elevation of creatine phosphokinase levels. Creatine phosphokinase values normalized only after prolonged discontinuation of the therapy. Case 2: A 79-year-old Caucasian man, who was diagnosed with acute hemorrhoidal syndrome. After 21 days of continuous diosmin treatment, increased levels of serum lactic dehydrogenase were detected. In both cases a comprehensive analysis of all possible causes for enzyme elevation was made. Conclusions A feasible hypothesis to explain these rare effects could be that exaggerated adrenergic activity occurred on microcirculation, leading to an excessive peripheral vasoconstriction and subsequent ischemic damage. An individual predisposition is strongly suggested. A concurrence of events was probably responsible for the elevation of nonspecific tissue necrosis markers. Physicians and patients must be aware of these rare, but possible, adverse drug reactions. PMID:24934505

  18. Roles of the creatine kinase system and myoglobin in maintaining energetic state in the working heart

    PubMed Central

    Wu, Fan; Beard, Daniel A

    2009-01-01

    Background The heart is capable of maintaining contractile function despite a transient decrease in blood flow and increase in cardiac ATP demand during systole. This study analyzes a previously developed model of cardiac energetics and oxygen transport to understand the roles of the creatine kinase system and myoglobin in maintaining the ATP hydrolysis potential during beat-to-beat transient changes in blood flow and ATP hydrolysis rate. Results The theoretical investigation demonstrates that elimination of myoglobin only slightly increases the predicted range of oscillation of cardiac oxygenation level during beat-to-beat transients in blood flow and ATP utilization. In silico elimination of myoglobin has almost no impact on the cytoplasmic ATP hydrolysis potential (ΔGATPase). In contrast, disabling the creatine kinase system results in considerable oscillations of cytoplasmic ADP and ATP levels and seriously deteriorates the stability of ΔGATPase in the beating heart. Conclusion The CK system stabilizes ΔGATPase by both buffering ATP and ADP concentrations and enhancing the feedback signal of inorganic phosphate in regulating mitochondrial oxidative phosphorylation. PMID:19228404

  19. Single Prolonged Stress Decreases Glutamate, Glutamine, and Creatine Concentrations In The Rat Medial Prefrontal Cortex

    PubMed Central

    Knox, Dayan; Perrine, Shane A.; George, Sophie A.; Galloway, Matthew P.; Liberzon, Israel

    2010-01-01

    Application of Single Prolonged Stress (SPS) in rats induces changes in neuroendocrine function and arousal that are characteristic of Post Traumatic Stress Disorder (PTSD). PTSD, in humans, is associated with decreased neural activity in the prefrontal cortex, increased neural activity in the amygdala complex, and reduced neuronal integrity in the hippocampus. However, the extent to which SPS models these aspects of PTSD has not been established. In order to address this, we used high-resolution magic angle spinning proton magnetic resonance spectroscopy (HR-MAS 1H MRS) ex vivo to assay levels of neurochemicals critical for energy metabolism (creatine and lactate), excitatory (glutamate and glutamine) and inhibitory (gamma amino butyric acid (GABA)) neurotransmission, and neuronal integrity (N-acetyl aspartate (NAA)) in the medial prefrontal cortex (mPFC), amygdala complex, and hippocampus of SPS and control rats. Glutamate, glutamine, and creatine levels were decreased in the mPFC of SPS rats when compared to controls, which suggests decreased excitatory tone in this region. SPS did not alter the neurochemical profiles of either the hippocampus or amygdala. These data suggest that SPS selectively attenuates excitatory tone, without a disruption of neuronal integrity, in the mPFC. PMID:20546834

  20. Role of submaximal exercise in promoting creatine and glycogen accumulation in human skeletal muscle.

    PubMed

    Robinson, T M; Sewell, D A; Hultman, E; Greenhaff, P L

    1999-08-01

    We examined the effect of glycogen-depleting exercise on subsequent muscle total creatine (TCr) accumulation and glycogen resynthesis during postexercise periods when the diet was supplemented with carbohydrate (CHO) or creatine (Cr) + CHO. Fourteen subjects performed one-legged cycling exercise to exhaustion. Muscle biopsies were taken from the exhausted (Ex) and nonexhausted (Nex) limbs after exercise and after 6 h and 5 days of recovery, during which CHO (CHO group, n = 7) or Cr + CHO (Cr+CHO group, n = 7) supplements were ingested. Muscle TCr concentration ([TCr]) was unchanged in both groups 6 h after supplementation commenced but had increased in the Ex (P < 0.001) and Nex limbs (P < 0.05) of the Cr+CHO group after 5 days. Greater TCr accumulation was achieved in the Ex limbs (P < 0.01) of this group. Glycogen was increased above nonexercised concentrations in the Ex limbs of both groups after 5 days, with the concentration being greater in the Cr+CHO group (P = 0.06). Thus a single bout of exercise enhanced muscle Cr accumulation, and this effect was restricted to the exercised muscle. However, exercise also diminished CHO-mediated insulin release, which may have attenuated insulin-mediated muscle Cr accumulation. Ingesting Cr with CHO also augmented glycogen supercompensation in the exercised muscle. PMID:10444618

  1. Liquid-chromatographic separation and on-line bioluminescence detection of creatine kinase isoenzymes

    SciTech Connect

    Bostick, W.D.; Denton, M.S.; Dinsmore, S.R.

    1980-01-01

    Isoenzymes of creatine kinase were separated by anion-exchange chromatography, with use of an elution gradient containing lithium acetate (0.1 to 0.6 mol/L). A stream splitter was used to divert a 5% side stream of column effluent, which was subsequently mixed with the reagents necessary for bioluminescence assay of the separated isoenzymes. The use of the stream splitter greatly decreased the rate of consumption of reagent and, when combined with a peristaltic pumping system, permitted independent control of the side-stream flow rate. Thus both the residence interval in a delay coil in which the ATP reaction product is formed and the bioluminescence emission was monitored in a flow-through fluorometer without use of an external light source or filters. Separation and detection of the isoenzymes of creatine kinase were rapid, sensitive, and highly selective. The incremental decrease of bioluminescence response owing to inhibition by the ions in the eluent was less than 31% across the entire gradient.

  2. Creatin-kinase elevation after accidental ingestion of almotriptan in an 18-month-old girl.

    PubMed

    Castagno, E; Lupica, M; Viola, S; Savino, F; Miniero, R

    2014-02-01

    Few studies have been published to demonstrate tolerability and efficacy of almotriptan in adolescents and children with migraine, particularly in the first years of life, though preliminary results are favorable. We report the case of an 18-month-old infant with elevation of serum levels of creatin-kinase after the accidental ingestion of almotriptan. A previously healthy 18-month-old girl (weight: 13 kg) was admitted to our Department four hours after the accidental ingestion of 6.25 mg of almotriptan (0.48 mg/kg), without any specific symptom. The performed investigations showed high serum levels of creatin-kinase (CK) (527 IU/L; normal values: 24-170 IU/L). Transaminase, creatinine, aldolase, myoglobin and troponin T serum levels were normal. The electrocardiogram proved negative. Initial management consisted of parenteral rehydration with saline solution. CK levels lowered significantly at 12 hours (455 IU/L) and at 65 hours (188 IU/L) after the ingestion. No symptoms were observed before discharge and on follow-up. PMID:24608586

  3. In silico investigation of molecular effects caused by missense mutations in creatine transporter protein

    NASA Astrophysics Data System (ADS)

    Zhang, Zhe; Schwatz, Charles; Alexov, Emil

    2011-03-01

    Creatine transporter (CT) protein, which is encoded by SLC6A8 gene, is essential for taking up the creatine in the cell, which in turn plays a key role in the spatial and temporal maintenance of energy in skeletal and cardiac muscle cells. It was shown that some missense mutations in CT cause mental retardation, while others are harmless non-synonymous single nucleoside polymorphism (nsSNP). Currently fifteen missense mutations in CT are known, among which twelve are disease-causing. Sequence analysis reveals that there is no clear trend distinguishing disease-causing from harmless missense mutations. Because of that, we built 3D model of the CT using highly homologous template and use the model to investigate the effects of mutations of CT stability and hydrogen bond network. It is demonstrated that disease-causing mutations affect the folding free energy and ionization states of titratable group in much greater extend as compared with harmless mutations. Supported by grants from NLM, NIH, grant numbers 1R03LM009748 and 1R03LM009748-S1.

  4. Mitochondrial defects associated with β-alanine toxicity: relevance to hyper-beta-alaninemia.

    PubMed

    Shetewy, Aza; Shimada-Takaura, Kayoko; Warner, Danielle; Jong, Chian Ju; Mehdi, Abu-Bakr Al; Alexeyev, Mikhail; Takahashi, Kyoko; Schaffer, Stephen W

    2016-05-01

    Hyper-beta-alaninemia is a rare metabolic condition that results in elevated plasma and urinary β-alanine levels and is characterized by neurotoxicity, hypotonia, and respiratory distress. It has been proposed that at least some of the symptoms are caused by oxidative stress; however, only limited information is available on the mechanism of reactive oxygen species generation. The present study examines the hypothesis that β-alanine reduces cellular levels of taurine, which are required for normal respiratory chain function; cellular taurine depletion is known to reduce respiratory function and elevate mitochondrial superoxide generation. To test the taurine hypothesis, isolated neonatal rat cardiomyocytes and mouse embryonic fibroblasts were incubated with medium lacking or containing β-alanine. β-alanine treatment led to mitochondrial superoxide accumulation in conjunction with a decrease in oxygen consumption. The defect in β-alanine-mediated respiratory function was detected in permeabilized cells exposed to glutamate/malate but not in cells utilizing succinate, suggesting that β-alanine leads to impaired complex I activity. Taurine treatment limited mitochondrial superoxide generation, supporting a role for taurine in maintaining complex I activity. Also affected by taurine is mitochondrial morphology, as β-alanine-treated fibroblasts undergo fragmentation, a sign of unhealthy mitochondria that is reversed by taurine treatment. If left unaltered, β-alanine-treated fibroblasts also undergo mitochondrial apoptosis, as evidenced by activation of caspases 3 and 9 and the initiation of the mitochondrial permeability transition. Together, these data show that β-alanine mediates changes that reduce ATP generation and enhance oxidative stress, factors that contribute to heart failure. PMID:27023909

  5. Characterization of the l-alanine exporter AlaE of Escherichia coli and its potential role in protecting cells from a toxic-level accumulation of l-alanine and its derivatives

    PubMed Central

    Kim, Seryoung; Ihara, Kohei; Katsube, Satoshi; Hori, Hatsuhiro; Ando, Tasuke; Isogai, Emiko; Yoneyama, Hiroshi

    2015-01-01

    We previously reported that the alaE gene of Escherichia coli encodes the l-alanine exporter AlaE. The objective of this study was to elucidate the mechanism of the AlaE exporter. The minimum inhibitory concentration of l-alanine and l-alanyl-l-alanine in alaE-deficient l-alanine-nonmetabolizing cells MLA301ΔalaE was 4- and >4000-fold lower, respectively, than in the alaE-positive parent cells MLA301, suggesting that AlaE functions as an efflux pump to avoid a toxic-level accumulation of intracellular l-alanine and its derivatives. Furthermore, the growth of the alaE-deficient mutant derived from the l-alanine-metabolizing strain was strongly inhibited in the presence of a physiological level of l-alanyl-l-alanine. Intact MLA301ΔalaE and MLA301ΔalaE/pAlaE cells producing plasmid-borne AlaE, accumulated approximately 200% and 50%, respectively, of the [3H]l-alanine detected in MLA301 cells, suggesting that AlaE exports l-alanine. When 200 mmol/L l-alanine-loaded inverted membrane vesicles prepared from MLA301ΔalaE/pAlaE were placed in a solution containing 200 mmol/L or 0.34 μmol/L l-alanine, energy-dependent [3H]l-alanine accumulation occurred under either condition. This energy-dependent uphill accumulation of [3H]l-alanine was strongly inhibited in the presence of carbonyl cyanide m-chlorophenylhydrazone but not by dicyclohexylcarbodiimide, suggesting that the AlaE-mediated l-alanine extrusion was driven by proton motive force. Based on these results, physiological roles of the l-alanine exporter are discussed. PMID:26073055

  6. Characterization of the l-alanine exporter AlaE of Escherichia coli and its potential role in protecting cells from a toxic-level accumulation of l-alanine and its derivatives.

    PubMed

    Kim, Seryoung; Ihara, Kohei; Katsube, Satoshi; Hori, Hatsuhiro; Ando, Tasuke; Isogai, Emiko; Yoneyama, Hiroshi

    2015-08-01

    We previously reported that the alaE gene of Escherichia coli encodes the l-alanine exporter AlaE. The objective of this study was to elucidate the mechanism of the AlaE exporter. The minimum inhibitory concentration of l-alanine and l-alanyl-l-alanine in alaE-deficient l-alanine-nonmetabolizing cells MLA301ΔalaE was 4- and >4000-fold lower, respectively, than in the alaE-positive parent cells MLA301, suggesting that AlaE functions as an efflux pump to avoid a toxic-level accumulation of intracellular l-alanine and its derivatives. Furthermore, the growth of the alaE-deficient mutant derived from the l-alanine-metabolizing strain was strongly inhibited in the presence of a physiological level of l-alanyl-l-alanine. Intact MLA301ΔalaE and MLA301ΔalaE/pAlaE cells producing plasmid-borne AlaE, accumulated approximately 200% and 50%, respectively, of the [(3) H]l-alanine detected in MLA301 cells, suggesting that AlaE exports l-alanine. When 200 mmol/L l-alanine-loaded inverted membrane vesicles prepared from MLA301ΔalaE/pAlaE were placed in a solution containing 200 mmol/L or 0.34 μmol/L l-alanine, energy-dependent [(3) H]l-alanine accumulation occurred under either condition. This energy-dependent uphill accumulation of [(3) H]l-alanine was strongly inhibited in the presence of carbonyl cyanide m-chlorophenylhydrazone but not by dicyclohexylcarbodiimide, suggesting that the AlaE-mediated l-alanine extrusion was driven by proton motive force. Based on these results, physiological roles of the l-alanine exporter are discussed. PMID:26073055

  7. Creatine deficiency syndrome caused by guanidinoacetate methyltransferase deficiency: diagnostic tools for a new inborn error of metabolism.

    PubMed

    Schulze, A; Hess, T; Wevers, R; Mayatepek, E; Bachert, P; Marescau, B; Knopp, M V; De Deyn, P P; Bremer, H J; Rating, D

    1997-10-01

    Hepatic guanidinoacetate methyltransferase deficiency induces a deficiency of creatine/phosphocreatine in muscle and brain and an accumulation of guanidinoacetic acid (GAA), the precursor of creatine. We describe a patient with this defect, a 4-year-old girl with a dystonic-dyskinetic syndrome in addition to developmental delay and therapy-resistant epilepsy. Several methods were used in the diagnosis of the disease: (1) the creatinine excretion in 24-hour urine was significantly lowered, whereas the creatinine concentration in plasma and in randomly collected urine was not strikingly different from control values; (2) the Sakaguchi staining reaction of guanidino compounds in random urine samples indicated an enhanced GAA excretion; (3) GAA excretion measured quantitatively by guanidino compound analysis using an amino acid analyzer was markedly elevated in random urine samples; (4) in vivo 1H magnetic resonance spectroscopy (MRS) revealed a strong depletion of creatine and an accumulation of GAA in brain; (5) in vivo phosphorus 31 MRS showed a strong decrease of the phosphocreatine resonance and a resonance identified as guanidinoacetate phosphate; and (6) in vitro 1H MRS showed an absence of creatine and creatinine resonances in cerebrospinal fluid and the occurrence of GAA in urine. For early detection of this disease, we recommend the Sakaguchi staining reaction of urine from patients with dystonic-dyskinetic syndrome, seizures, and psychomotor retardation. Positive results should result in further investigations including quantitative guanidino compound analysis and both in vivo and in vitro MRS. Although epilepsy was not affected by orally administered creatine (400 to 500 mg/kg per day), this treatment resulted in clinical improvement and an increase of creatine in cerebrospinal fluid and brain tissue. PMID:9386672

  8. Creatine Usage and Education of Track and Field Throwers at National Collegiate Athletic Association Division I Universities.

    PubMed

    Judge, Lawrence W; Petersen, Jeffrey C; Craig, Bruce W; Hoover, Donald L; Holtzclaw, Kara A; Leitzelar, Brianna N; Tyner, Rebecca M R; Blake, Amy S; Hindawi, Omar S; Bellar, David M

    2015-07-01

    The purpose of this study was to analyze the level of creatine use along with the perceived benefits and barriers of creatine use among collegiate athletes who participate in throwing events within the sport of track and field. A total of 258 throwers from National Collegiate Athletic Association Division I institutions completed an online survey regarding creatine. The results provided baseline levels of creatine use and allowed for the analysis of factors related to athletic conference affiliation. Results indicate that creatine use remains to be a common (32.7%) practice among throwers with significantly higher levels of use among Football Bowl Subdivision (FBS) conference athletes (44.6%) than Football Championship Subdivision (FCS) conference athletes (28.8%), χ² = 5.505, p = 0.019. The most common reasons for using creatine included a desire to improve/increase: strength (83.3%), recovery time (69.0%), and performance (60.7%). The most common perceived obstacles included contamination/quality control (39.5%), cost (33.3%), inconvenience (16.7%), and cramping (14.3%). A desire for additional education and training was noted through an expression of interest (55.6%) with significantly higher levels of interest from FBS athletes (65.6%) than FCS athletes (52.2%), χ² = 6.425, p = 0.039. However, the athletic departments provide nutritional supplement counseling at only 26.6% of the schools. Although the access to full-time nutritionist counsel was available at 57.3% of the schools, there was a significant difference (χ² = 9.096, p = 0.003) between FBS schools (73.7%) and FCS schools (51.7%). PMID:25559910

  9. Expression and purification of a functional recombinant aspartate aminotransferase (AST) from Escherichia coli.

    PubMed

    Zou, Lihui; Zhao, Haijian; Wang, Daguang; Wang, Meng; Zhang, Chuanbao; Xiao, Fei

    2014-07-01

    Aspartate aminotransferase (AST; E.C. 2.6.1.1), a vitamin B6-dependent enzyme, preferentially promotes the mutual transformation of aspartate and α-ketoglutarate to oxaloacetate and glutamate. It plays a key role in amino acid metabolism and has been widely recommended as a biomarker of liver and heart damage. Our study aimed to evaluate the extensive preparation of AST and its application in quality control in clinical laboratories. We describe a scheme to express and purify the 6His-AST fusion protein. An optimized sequence coding AST was synthesized and transformed into Escherichia coli BL21 (DE3) strain for protein expression. Ideally, the fusion protein has a volumetric productivity achieving 900 mg/l cultures. After affinity chromatography, the enzyme activity of purified AST reached 150,000 U/L. Commutability assessment between the engineered AST and standard AST from Roche suggested that the engineered AST was the better candidate for the reference material. Moreover, the AST showed high stability during long-term storage at -20ºC. In conclusion, the highly soluble 6His-tagged AST can become a convenient tool for supplying a much better and cheaper standard or reference material for the clinical laboratory. PMID:24722375

  10. L-lysine epsilon-aminotransferase involved in cephamycin C synthesis in Streptomyces lactamdurans.

    PubMed Central

    Kern, B A; Hendlin, D; Inamine, E

    1980-01-01

    In Streptomyces lactamdurans, the precursor of the alpha-aminoadipoyl side-chain of cephamycin C is L-lysine. In this regard, streptomycetes differ strikingly from the fungi, which produce alpha-aminoadipic acid during the synthesis, rather than the breakdown, of L-lysine. Studies using a cell-free system showed that an aminoadipic acid. The product of this reaction was trapped and subsequently purified by ion-exchange chromatography. Thin-layer chromatography, spectrophotometry, and amino acid oxidase digestion studies identified the reaction product as L-1-piperideine-6-carboxylate, implying enzymatic removal of the epsilon amino group of L-lysine. This enzymatic activity (E.C. 2.6.1.36; L-lysine: 2-oxoglutarate 6-aminotransferase) is highly unusual and was previously conclusively demonstrated only in the genus Flavobacterium. In S. lactamdurans, the specific activity of this enzyme reaches a peak early in the fermentation (approximately 20 h) and decreases as the antibiotic begins to appear. PMID:6772093

  11. Design and mechanism of tetrahydrothiophene-based γ-aminobutyric acid aminotransferase inactivators.

    PubMed

    Le, Hoang V; Hawker, Dustin D; Wu, Rui; Doud, Emma; Widom, Julia; Sanishvili, Ruslan; Liu, Dali; Kelleher, Neil L; Silverman, Richard B

    2015-04-01

    Low levels of γ-aminobutyric acid (GABA), one of two major neurotransmitters that regulate brain neuronal activity, are associated with many neurological disorders, such as epilepsy, Parkinson's disease, Alzheimer's disease, Huntington's disease, and cocaine addiction. One of the main methods to raise the GABA level in human brain is to use small molecules that cross the blood-brain barrier and inhibit the activity of γ-aminobutyric acid aminotransferase (GABA-AT), the enzyme that degrades GABA. We have designed a series of conformationally restricted tetrahydrothiophene-based GABA analogues with a properly positioned leaving group that could facilitate a ring-opening mechanism, leading to inactivation of GABA-AT. One compound in the series is 8 times more efficient an inactivator of GABA-AT than vigabatrin, the only FDA-approved inactivator of GABA-AT. Our mechanistic studies show that the compound inactivates GABA-AT by a new mechanism. The metabolite resulting from inactivation does not covalently bind to amino acid residues of GABA-AT but stays in the active site via H-bonding interactions with Arg-192, a π-π interaction with Phe-189, and a weak nonbonded S···O═C interaction with Glu-270, thereby inactivating the enzyme. PMID:25781189

  12. Comparison of Prothrombin Time and Aspartate Aminotransferase in Predicting Hepatotoxicity After Acetaminophen Overdose.

    PubMed

    Levine, Michael; O'Connor, Ayrn D; Padilla-Jones, Angela; Gerkin, Richard D

    2016-03-01

    Despite decades of experience with acetaminophen (APAP) overdoses, it remains unclear whether elevated hepatic transaminases or coagulopathy develop first. Furthermore, comparison of the predictive value of these two variables in determining hepatic toxicity following APAP overdoses has been poorly elucidated. The primary objective of this study is to determine the test characteristics of the aspartate aminotransferase (AST) and the prothrombin time (PT) in patients with APAP toxicity. A retrospective chart review of APAP overdoses treated with IV N-acetylcysteine at a tertiary care referral center was performed. Of the 304 subjects included in the study, 246 with an initial AST less than 1000 were analyzed to determine predictors of hepatic injury, defined as an AST exceeding 1000 IU/L. The initial AST >50 was 79.5 % sensitive and 82.6 % specific for predicting hepatic injury. The corresponding negative and positive predictive values were 95.5 and 46.3 %, respectively. In contrast, an initial abnormal PT had a sensitivity of 82.1 % and a specificity of 63.6 %. The negative and positive predictive values for initial PT were 94.9 and 30.2 %, respectively. Although the two tests performed similarly for predicting a composite endpoint of death or liver transplant, neither was a useful predictor. Initial AST performed better than the initial PT for predicting hepatic injury in this series of patients with APAP overdose. PMID:26341088

  13. Ornithine-δ-aminotransferase is essential for Arginine Catabolism but not for Proline Biosynthesis

    PubMed Central

    Funck, Dietmar; Stadelhofer, Bettina; Koch, Wolfgang

    2008-01-01

    Background Like many other plant species, Arabidopsis uses arginine (Arg) as a storage and transport form of nitrogen, and proline (Pro) as a compatible solute in the defence against abiotic stresses causing water deprivation. Arg catabolism produces ornithine (Orn) inside mitochondria, which was discussed controversially as a precursor for Pro biosynthesis, alternative to glutamate (Glu). Results We show here that ornithine-δ-aminotransferase (δOAT, At5g46180), the enzyme converting Orn to pyrroline-5-carboxylate (P5C), is localised in mitochondria and is essential for Arg catabolism. Wildtype plants could readily catabolise supplied Arg and Orn and were able to use these amino acids as the only nitrogen source. Deletion mutants of δOAT, however, accumulated urea cycle intermediates when fed with Arg or Orn and were not able to utilize nitrogen provided as Arg or Orn. Utilisation of urea and stress induced Pro accumulation were not affected in T-DNA insertion mutants with a complete loss of δOAT expression. Conclusion Our findings indicate that δOAT feeds P5C exclusively into the catabolic branch of Pro metabolism, which yields Glu as an end product. Conversion of Orn to Glu is an essential route for recovery of nitrogen stored or transported as Arg. Pro biosynthesis occurs predominantly or exclusively via the Glu pathway in Arabidopsis and does not depend on Glu produced by Arg and Orn catabolism. PMID:18419821

  14. Jasmonate is involved in the induction of tyrosine aminotransferase and tocopherol biosynthesis in Arabidopsis thaliana.

    PubMed

    Sandorf, Iris; Holländer-Czytko, Heike

    2002-11-01

    Coronatine-inducible tyrosine aminotransferase (TAT), which catalyses the transamination from tyrosine to p-hydroxyphenylpyruvate, is the first enzyme of a pathway leading via homogentisic acid to plastoquinone and tocopherols, the latter of which are known to be radical scavengers in plants. TAT can be also induced by the octadecanoids methyl jasmonate (MeJA) and methyl-12-oxophytodienoic acid (MeOPDA), as well as by wounding, high light, UV light and the herbicide oxyfluorfen. In order to elucidate the role of octadecanoids in the process of TAT induction in Arabidopsis thaliana (L.) Heynh., the jasmonate-deficient mutant delayed dehiscence (dde1) was used, in which the gene for 12-oxophytodienoic acid reductase 3 is disrupted. The amount of immunodetectable TAT was low. The enzyme was still fully induced by coronatine as well as by MeJA although induction by the latter was to a lesser extent and later than in the wild type. Treatment with MeOPDA, wounding and UV light, however, had hardly any effects. Tocopherol levels that showed considerable increases in the wild type after some treatments were much less affected in the mutant. However, starting levels of tocopherol were higher in non-induced dde1 than in the wild type. We conclude that jasmonate plays an important role in the signal transduction pathway regulating TAT activity and the biosynthesis of its product tocopherol. PMID:12430028

  15. Structural Basis for the Stereochemical Control of Amine Installation in Nucleotide Sugar Aminotransferases.

    PubMed

    Wang, Fengbin; Singh, Shanteri; Xu, Weijun; Helmich, Kate E; Miller, Mitchell D; Cao, Hongnan; Bingman, Craig A; Thorson, Jon S; Phillips, George N

    2015-09-18

    Sugar aminotransferases (SATs) are an important class of tailoring enzymes that catalyze the 5'-pyridoxal phosphate (PLP)-dependent stereo- and regiospecific installation of an amino group from an amino acid donor (typically L-Glu or L-Gln) to a corresponding ketosugar nucleotide acceptor. Herein we report the strategic structural study of two homologous C4 SATs (Micromonospora echinospora CalS13 and Escherichia coli WecE) that utilize identical substrates but differ in their stereochemistry of aminotransfer. This study reveals for the first time a new mode of SAT sugar nucleotide binding and, in conjunction with previously reported SAT structural studies, provides the basis from which to propose a universal model for SAT stereo- and regiochemical control of amine installation. Specifically, the universal model put forth highlights catalytic divergence to derive solely from distinctions within nucleotide sugar orientation upon binding within a relatively fixed SAT active site where the available ligand bound structures of the three out of four representative C3 and C4 SAT examples provide a basis for the overall model. Importantly, this study presents a new predictive model to support SAT functional annotation, biochemical study and rational engineering. PMID:26023720

  16. CPP-115, a Potent γ-Aminobutyric Acid Aminotransferase Inactivator for the Treatment of Cocaine Addiction

    PubMed Central

    Pan, Yue; Gerasimov, Madina R.; Kvist, Trine; Wellendorph, Petrine; Madsen, Karsten K.; Pera, Elena; Lee, Hyunbeom; Schousboe, Arne; Chebib, Mary; Bräuner-Osborne, Hans; Craft, Cheryl M.; Brodie, Jonathan D.; Schiffer, Wynne K.; Dewey, Stephen L.; Miller, Steven R.; Silverman, Richard B.

    2011-01-01

    Vigabatrin, a GABA aminotransferase (GABA-AT) inactivator, is used to treat infantile spasms and refractory complex partial seizures and is in clinical trials to treat addiction. We evaluated a novel GABA-AT inactivator (CPP-115) and observed that it does not exhibit other GABAergic or off-target activities and is rapidly and completely orally absorbed and eliminated. Using in vivo microdialysis techniques in freely moving rats and micro-PET imaging techniques, CPP-115 produced similar inhibition of cocaine-induced increases in extracellular dopamine and in synaptic dopamine in the nucleus accumbens at 1/300–1/600th the dose of vigabatrin. It also blocks expression of cocaine-induced conditioned place preference at a dose 1/300th that of vigabatrin. Electroretinographic (ERG) responses in rats treated with CPP-115, at doses 20–40 times higher than those needed to treat addiction in rats, exhibited reductions in ERG responses, which were less than the reductions observed in rats treated with vigabatrin at the same dose needed to treat addiction in rats. In conclusion, CPP-115 can be administered at significantly lower doses than vigabatrin, which suggests a potential new treatment for addiction with a significantly reduced risk of visual field defects. PMID:22128851

  17. Aspartate aminotransferase activity in the pulp of teeth treated for 6 months with fixed orthodontic appliances

    PubMed Central

    Latkauskiene, Dalia; Racinskaite, Vilma; Skucaite, Neringa; Machiulskiene, Vita

    2015-01-01

    Objective To measure aspartate aminotransferase (AST) activity in the pulp of teeth treated with fixed appliances for 6 months, and compare it with AST activity measured in untreated teeth. Methods The study sample consisted of 16 healthy subjects (mean age 25.7 ± 4.3 years) who required the extraction of maxillary premolars for orthodontic reasons. Of these, 6 individuals had a total of 11 sound teeth extracted without any orthodontic treatment (the control group), and 10 individuals had a total of 20 sound teeth extracted after 6 months of orthodontic alignment (the experimental group). Dental pulp samples were extracted from all control and experimental teeth, and the AST activity exhibited by these samples was determined spectrophotometrically at 20℃. Results Mean AST values were 25.29 × 10-5 U/mg (standard deviation [SD] 9.95) in the control group and 27.54 × 10-5 U/mg (SD 31.81) in the experimental group. The difference between these means was not statistically significantly (p = 0.778), and the distribution of the AST values was also similar in both groups. Conclusions No statistically significant increase in AST activity in the pulp of mechanically loaded teeth was detected after 6 months of orthodontic alignment, as compared to that of teeth extracted from individuals who had not undergone orthodontic treatment. This suggests that time-related regenerative processes occur in the dental pulp. PMID:26445721

  18. Novel protein-protein interactions between Entamoeba histolyticad-phosphoglycerate dehydrogenase and phosphoserine aminotransferase.

    PubMed

    Mishra, Vibhor; Kumar, Ashutosh; Ali, Vahab; Nozaki, Tomoyoshi; Zhang, Kam Y J; Bhakuni, Vinod

    2012-08-01

    Physical interactions between d-phosphoglycerate dehydrogenase (EhPGDH) and phosphoserine aminotransferase (EhPSAT) from an enteric human parasite Entamoeba histolytica was observed by pull-down assay, gel filtration chromatography, chemical cross-linking, emission anisotropy, molecular docking and molecular dynamic simulations. The protein-protein complex had a 1:1 stochiometry with a dissociation constant of 3.453 × 10(-7) M. Ionic interactions play a significant role in complex formation and stability. Analysis of the energy minimized average simulated model of the protein complex show that the nucleotide binding domain of EhPGDH specifically interacts with EhPSAT. Denaturation studies suggest that the nucleotide binding domain (Nbd) and substrate binding domain (Sbd) of EhPGDH are independent folding/unfolding units. Thus the Nbd-EhPGDH was separately cloned over-expressed and purified to homogeneity. Fluorescence anisotropy study show that the purified Nbd interacts with EhPSAT. Forward enzyme catalyzed reaction for the EhPGDH-PSAT complex showed efficient Km values for 3-phosphoglyceric acid as compared to only EhPGDH suggesting a possibility of substrate channelling in the protein complex. PMID:22386871

  19. The rice FISH BONE gene encodes a tryptophan aminotransferase, which affects pleiotropic auxin-related processes.

    PubMed

    Yoshikawa, Takanori; Ito, Momoyo; Sumikura, Tsuyoshi; Nakayama, Akira; Nishimura, Takeshi; Kitano, Hidemi; Yamaguchi, Isomaro; Koshiba, Tomokazu; Hibara, Ken-Ichiro; Nagato, Yasuo; Itoh, Jun-Ichi

    2014-06-01

    Auxin is a fundamental plant hormone and its localization within organs plays pivotal roles in plant growth and development. Analysis of many Arabidopsis mutants that were defective in auxin biosynthesis revealed that the indole-3-pyruvic acid (IPA) pathway, catalyzed by the TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA) and YUCCA (YUC) families, is the major biosynthetic pathway of indole-3-acetic acid (IAA). In contrast, little information is known about the molecular mechanisms of auxin biosynthesis in rice. In this study, we identified a auxin-related rice mutant, fish bone (fib). FIB encodes an orthologue of TAA genes and loss of FIB function resulted in pleiotropic abnormal phenotypes, such as small leaves with large lamina joint angles, abnormal vascular development, small panicles, abnormal organ identity and defects in root development, together with a reduction in internal IAA levels. Moreover, we found that auxin sensitivity and polar transport activity were altered in the fib mutant. From these results, we suggest that FIB plays a pivotal role in IAA biosynthesis in rice and that auxin biosynthesis, transport and sensitivity are closely interrelated. PMID:24654985

  20. Molecular basis of ornithine aminotransferase deficiency in B-6-responsive and -nonresponsive forms of gyrate atrophy

    SciTech Connect

    Ramesh, V.; McClatchey, A.I.; Ramesh, N.; Benoit, L.A.; Berson, E.L.; Shih, V.E.; Gusella, J.F. )

    1988-06-01

    Gyrate atrophy (GA), a recessive eye disease involving progressive loss of vision due to chorioretinal degeneration, is associated with a deficiency of the mitochondrial enzyme ornithine aminotransferase with consequent hyperornithinemia. Genetic heterogeneity of GA has been suggested by the demonstration that administration of pyridoxine to increase the level of pyridoxal phosphate, a cofactor of OATase, reduces hyperornithinemia in a subset of patients. The authors have cloned and sequences cDNAs for OATase from two GA patients, one responsive and one nonresponsive to pyridoxine treatment. The respective cDNAs contained different single missense mutations, which were sufficient to eliminate OATase activity when each cDNA was tested in a eukaryotic expression system. However, like the enzyme in fibroblasts from the pyridoxine-responsive patient, OATase encoded by the corresponding cDNA from this individual showed a significant increase in activity when assayed in the presence of an increased pyridoxal phosphate concentration. These data firmly establish that both pyridoxine responsive and nonresponsive forms of GA result from mutations in the OATase structural gene. Moreover, they provide a molecular characterization of the primary lesion in a pyridoxine-responsive genetic disorder.

  1. Effects of self-association of ornithine aminotransferase on its physicochemical characteristics

    SciTech Connect

    Boernke, W.E.; Stevens, F.J.; Peraino, C.

    1981-01-01

    Previous work in this laboratory has shown that the molecular weight of ornithine aminotransferase (OAT) is concentration dependent. In the present study this property of OAT was further characterized by using sedimentation equilibrium centrifugation to determine the molecular weight of OAT in a range of enzyme concentrations. It was shown that OAT aggregates in a two-stage process as its concentration increases. The first stage involves the association of enzymatically active monomers into trimers, with association of the trimmers into higher order aggregates occurring in the second stage. Decreasing the pH or raising the ionic strength enhanced aggregation, while raising the pH inhibits aggregation; however, the two-stage nature of the aggregation process was not affected by changes in pH and ionic strength. Kinetic analyses of purified enzyme showed that aggregatio results in an increase in the K/sub m/ for both substrates with the V/sub max/ remaining constant, indicating that aggregation of monomers sterically hinders substrate binding. Increased K/sub m/ values were also obtained for OAT sequestered in mitochondia from rats fed a high-protein diet to increase mitochondrial OAT levels. The higher K/sub m/ values suggest that the elevation of OAT in vivo is accompanied by aggregation of the enzyme within the mitochondrion. We propose that the aggregation-dependent increase of K/sub m/ in vivo has adaptive value in that it spares ornithine for use in the urea cycle.

  2. Structural Insight into the Inhibition of Human Kynurenine Aminotransferase I/Glutamine Transaminase K

    SciTech Connect

    Han, Q.; Robinson, H; Cai, T; Tagle, D; Li, J

    2009-01-01

    Human kynurenine aminotransferase I (hKAT I) catalyzes the formation of kynurenic acid, a neuroactive compound. Here, we report three high-resolution crystal structures (1.50-1.55 A) of hKAT I that are in complex with glycerol and each of two inhibitors of hKAT I: indole-3-acetic acid (IAC) and Tris. Because Tris is able to occupy the substrate binding position, we speculate that this may be the basis for hKAT I inhibition. Furthermore, the hKAT/IAC complex structure reveals that the binding moieties of the inhibitor are its indole ring and a carboxyl group. Six chemicals with both binding moieties were tested for their ability to inhibit hKAT I activity; 3-indolepropionic acid and dl-indole-3-lactic acid demonstrated the highest level of inhibition, and as they cannot be considered as substrates of the enzyme, these two inhibitors are promising candidates for future study. Perhaps even more significantly, we report the discovery of two different ligands located simultaneously in the hKAT I active center for the first time.

  3. X-linked creatine transporter defect: A report on two unrelated boys with a severe clinical phenotype

    PubMed Central

    Anselm, I. M.; Alkuraya, F. S.; Salomons, G. S.; Jakobs, C.; Fulton, A. B.; Mazumdar, M.; Rivkin, M.; Frye, R.; Poussaint, T. Young; Marsden, D.

    2008-01-01

    Summary We report two unrelated boys with the X-linked creatine transporter defect (CRTR) and clinical features more severe than those previously described with this disorder. These two boys presented at ages 12 and 30 months with severe mental retardation, absent speech development, hypotonia, myopathy and extra-pyramidal movement disorder. One boy has seizures and some dysmorphic features; he also has evidence of an oxidative phosphorylation defect. They both had classical absence of creatine peak on brain magnetic resonance spectroscopy (MRS). In one, however, this critical finding was overlooked in the initial interpretation and was discovered upon subsequent review of the MRS. PMID:16601897

  4. Inducible l-Alanine Exporter Encoded by the Novel Gene ygaW (alaE) in Escherichia coli ▿

    PubMed Central

    Hori, Hatsuhiro; Yoneyama, Hiroshi; Tobe, Ryuta; Ando, Tasuke; Isogai, Emiko; Katsumata, Ryoichi

    2011-01-01

    We previously isolated a mutant hypersensitive to l-alanyl-l-alanine from a non-l-alanine-metabolizing Escherichia coli strain and found that it lacked an inducible l-alanine export system. Consequently, this mutant showed a significant accumulation of intracellular l-alanine and a reduction in the l-alanine export rate compared to the parent strain. When the mutant was used as a host to clone a gene(s) that complements the dipeptide-hypersensitive phenotype, two uncharacterized genes, ygaW and ytfF, and two characterized genes, yddG and yeaS, were identified. Overexpression of each gene in the mutant resulted in a decrease in the intracellular l-alanine level and enhancement of the l-alanine export rate in the presence of the dipeptide, suggesting that their products function as exporters of l-alanine. Since ygaW exhibited the most striking impact on both the intra- and the extracellular l-alanine levels among the four genes identified, we disrupted the ygaW gene in the non-l-alanine-metabolizing strain. The resulting isogenic mutant showed the same intra- and extracellular l-alanine levels as observed in the dipeptide-hypersensitive mutant obtained by chemical mutagenesis. When each gene was overexpressed in the wild-type strain, which does not intrinsically excrete alanine, only the ygaW gene conferred on the cells the ability to excrete alanine. In addition, expression of the ygaW gene was induced in the presence of the dipeptide. On the basis of these results, we concluded that YgaW is likely to be the physiologically most relevant exporter for l-alanine in E. coli and proposed that the gene be redesignated alaE for alanine export. PMID:21531828

  5. Solvation free energies of alanine peptides: the effect of flexibility.

    PubMed

    Kokubo, Hironori; Harris, Robert C; Asthagiri, Dilipkumar; Pettitt, B Montgomery

    2013-12-27

    The electrostatic (ΔGel), van der Waals cavity-formation (ΔGvdw), and total (ΔG) solvation free energies for 10 alanine peptides ranging in length (n) from 1 to 10 monomers were calculated. The free energies were computed both with fixed, extended conformations of the peptides and again for some of the peptides without constraints. The solvation free energies, ΔGel, and components ΔGvdw, and ΔG, were found to be linear in n, with the slopes of the best-fit lines being γel, γvdw, and γ, respectively. Both γel and γ were negative for fixed and flexible peptides, and γvdw was negative for fixed peptides. That γvdw was negative was surprising, as experimental data on alkanes, theoretical models, and MD computations on small molecules and model systems generally suggest that γvdw should be positive. A negative γvdw seemingly contradicts the notion that ΔGvdw drives the initial collapse of the protein when it folds by favoring conformations with small surface areas. When we computed ΔGvdw for the flexible peptides, thereby allowing the peptides to assume natural ensembles of more compact conformations, γvdw was positive. Because most proteins do not assume extended conformations, a ΔGvdw that increases with increasing surface area may be typical for globular proteins. An alternative hypothesis is that the collapse is driven by intramolecular interactions. We find few intramolecular H-bonds but show that the intramolecular van der Waals interaction energy is more favorable for the flexible than for the extended peptides, seemingly favoring this hypothesis. The large fluctuations in the vdw energy may make attributing the collapse of the peptide to this intramolecular energy difficult. PMID:24328358

  6. Solvation Free Energies of Alanine Peptides: The Effect of Flexibility

    PubMed Central

    Kokubo, Hironori; Harris, Robert C.; Asthigiri, Dilipkumar; Pettitt, B. Montgomery

    2014-01-01

    The electrostatic (ΔGel), van der Waals cavity-formation (ΔGvdw), and total (ΔG) solvation free energies for 10 alanine peptides ranging in length (n) from 1 to 10 monomers were calculated. The free energies were computed both with fixed, extended conformations of the peptides and again for some of the peptides without constraints. The solvation free energies, ΔGel, and components ΔGvdw, and ΔG, were found to be linear in n, with the slopes of the best-fit lines being γel, γvdw, and γ, respectively. Both γel and γ were negative for fixed and flexible peptides, and γvdw was negative for fixed peptides. That γvdw was negative was surprising, as experimental data on alkanes, theoretical models, and MD computations on small molecules and model systems generally suggest that γvdw should be positive. A negative γvdw seemingly contradicts the notion that ΔGvdw drives the initial collapse of the protein when it folds by favoring conformations with small surface areas. When we computed ΔGvdw for the flexible peptides, thereby allowing the peptides to assume natural ensembles of more compact conformations, γvdw was positive. Because most proteins do not assume extended conformations, a ΔGvdw that increases with increasing surface area may be typical for globular proteins. An alternative hypothesis is that the collapse is driven by intramolecular interactions. We find few intramolecular h-bonds but show that the intramolecular van der Waal’s interaction energy is more favorable for the flexible than for the extended peptides, seemingly favoring this hypothesis. The large fluctuations in the vdw energy may make attributing the collapse of the peptide to this intramolecular energy difficult. PMID:24328358

  7. Solvation Free Energies of Alanine Peptides: The Effect of Flexibility

    SciTech Connect

    Kokubo, Hironori; Harris, Robert C.; Asthagiri, Dilip; Pettitt, Bernard M.

    2013-12-03

    The electrostatic (?Gel), cavity-formation (?Gvdw), and total (?G) solvation free energies for 10 alanine peptides ranging in length (n) from 1 to 10 monomers were calculated. The free energies were computed both with xed, extended conformations of the peptides and again for some of the peptides without constraints. The solvation free energies, ?Gel, ?Gvdw, and ?G, were found to be linear in n, with the slopes of the best-fit lines being gamma_el, gamma_vdw, and gamma, respectively. Both gamma_el and gamma were negative for fixed and flexible peptides, and gamma_vdw was negative for fixed peptides. That gamma_vdw was negative was surprising, as experimental data on alkanes, theoretical models, and MD computations on small molecules and model systems generally suggest that gamma_vdw should be positive. A negative gamma_vdw seemingly contradicts the notion that ?Gvdw drives the initial collapse of the protein when it folds by favoring conformations with small surface areas, but when we computed ?Gvdw for the flexible peptides, thereby allowing the peptides to assume natural ensembles of more compact conformations, gamma-vdw was positive. Because most proteins do not assume extended conformations, a ?Gvdw that increases with increasing surface area may be typical for globular proteins. An alternative hypothesis is that the collapse is driven by intramolecular interactions. We show that the intramolecular van der Waal's interaction energy is more favorable for the flexible than for the extended peptides, seemingly favoring this hypothesis, but the large fluctuations in this energy may make attributing the collapse of the peptide to this intramolecular energy difficult.

  8. Structural characterization of AtmS13, a putative sugar aminotransferase involved in indolocarbazole AT2433 aminopentose biosynthesis.

    PubMed

    Singh, Shanteri; Kim, Youngchang; Wang, Fengbin; Bigelow, Lance; Endres, Michael; Kharel, Madan K; Babnigg, Gyorgy; Bingman, Craig A; Joachimiak, Andrzej; Thorson, Jon S; Phillips, George N

    2015-08-01

    AT2433 from Actinomadura melliaura is an indolocarbazole antitumor antibiotic structurally distinguished by its unique aminodideoxypentose-containing disaccharide moiety. The corresponding sugar nucleotide-based biosynthetic pathway for this unusual sugar derives from comparative genomics where AtmS13 has been suggested as the contributing sugar aminotransferase (SAT). Determination of the AtmS13 X-ray structure at 1.50-Å resolution reveals it as a member of the aspartate aminotransferase fold type I (AAT-I). Structural comparisons of AtmS13 with homologous SATs that act upon similar substrates implicate potential active site residues that contribute to distinctions in sugar C5 (hexose vs. pentose) and/or sugar C2 (deoxy vs. hydroxyl) substrate specificity. PMID:26061967

  9. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of the glutamate-1-semialdehyde aminotransferase from Bacillus subtilis

    SciTech Connect

    Lv, Xinhuai; Fan, Jun; Ge, Honghua; Gao, Yongxiang; Zhang, Xiao; Teng, Maikun Niu, Liwen

    2006-05-01

    Crystals of glutamate-1-semialdehyde aminotransferase (GSAT) from B. subtilis were obtained and diffraction data were collected to 2.0 Å resolution. 5-Aminolevulinic acid (ALA) is the first committed universal precursor in the tetrapyrrole-biosynthesis pathway. Plants, algae and many other bacteria synthesize ALA from glutamate by a C5 pathway in which the carbon skeleton of glutamate is converted into ALA by a series of enzymes. Glutamate-1-semialdehyde aminotransferase (GSAT) is the last enzyme in this pathway. The gene that codes for GSAT was amplified from the cDNA library of Bacillus subtilis and overexpressed in Escherichia coli strain BL21(DE3). The protein was purified and crystallized. Well diffracting single crystals were obtained by the hanging-drop vapour-diffusion method. Preliminary X-ray diffraction studies yielded excellent diffraction data to a resolution of 2.0 Å.

  10. Purification, crystallization and preliminary X-ray crystallographic analysis of branched-chain aminotransferase from Deinococcus radiodurans

    SciTech Connect

    Chen, Chung-Der; Huang, Tien-Feng; Lin, Chih-Hao; Guan, Hong-Hsiang; Hsieh, Yin-Cheng; Lin, Yi-Hung; Huang, Yen-Chieh; Liu, Ming-Yih; Chang, Wen-Chang; Chen, Chun-Jung

    2007-06-01

    The crystallization of branched-chain aminotransferase from D. radiodurans is described. The branched-chain amino-acid aminotransferase (BCAT), which requires pyridoxal 5′-phosphate (PLP) as a cofactor, is a key enzyme in the biosynthetic pathway of the hydrophobic amino acids leucine, isoleucine and valine. DrBCAT from Deinococcus radiodurans, which has a molecular weight of 40.9 kDa, was crystallized using the hanging-drop vapour-diffusion method. According to X-ray diffraction data to 2.50 Å resolution from a DrBCAT crystal, the crystal belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 56.37, b = 90.70, c = 155.47 Å. Preliminary analysis indicates the presence of two DrBCAT molecules in the asymmetric unit, with a solvent content of 47.52%.

  11. Gyrate atrophy of the choroid and retina with hyperornithinemia: characterization of mutant liver L-ornithine:2-oxoacid aminotransferase kinetics.

    PubMed

    Sipilä, I; Simell, O; O'Donnell, J J

    1981-06-01

    Deficient activity of L-ornithine:2-oxoacid aminotransferase is associated with gyrate atrophy of the choroid and retina with hyperornithinemia, an autosomal recessive disease leading to blindness. Liver tissue from two patients contained trace activity of the enzyme. The Michaelis (Km) value of the mutant enzyme for ornithine was 200 mM, 50-fold higher than normal, but increasing the concentrations of alpha-oxoglutarate and pyridoxal 5'-phosphate to 10 times those giving maximal activity of the normal enzyme had no effect on the mutant enzyme. Substrate inhibition of the mutant could not be demonstrated at 1,000 mM ornithine concentration, whereas ornithine concentrations above 70 mM inhibited the normal enzyme. The data suggest that the abnormal L-ornithine:2-oxoacid aminotransferase in the two patients studied has an altered binding site for ornithine. PMID:7240420

  12. Deciphering the Role of Aspartate and Prephenate Aminotransferase Activities in Plastid Nitrogen Metabolism1[C][W][OPEN

    PubMed Central

    de la Torre, Fernando; El-Azaz, Jorge; Ávila, Concepción; Cánovas, Francisco M.

    2014-01-01

    Chloroplasts and plastids of nonphotosynthetic plant cells contain two aspartate (Asp) aminotransferases: a eukaryotic type (Asp5) and a prokaryotic-type bifunctional enzyme displaying Asp and prephenate aminotransferase activities (PAT). We have identified the entire Asp aminotransferase gene family in Nicotiana benthamiana and isolated and cloned the genes encoding the isoenzymes with plastidic localization: NbAsp5 and NbPAT. Using a virus-induced gene silencing approach, we obtained N. benthamiana plants silenced for NbAsp5 and/or NbPAT. Phenotypic and metabolic analyses were conducted in silenced plants to investigate the specific roles of these enzymes in the biosynthesis of essential amino acids within the plastid. The NbAsp5 silenced plants had no changes in phenotype, exhibiting similar levels of free Asp and glutamate as control plants, but contained diminished levels of asparagine and much higher levels of lysine. In contrast, the suppression of NbPAT led to a severe reduction in growth and strong chlorosis symptoms. NbPAT silenced plants exhibited extremely reduced levels of asparagine and were greatly affected in their phenylalanine metabolism and lignin deposition. Furthermore, NbPAT suppression triggered a transcriptional reprogramming in plastid nitrogen metabolism. Taken together, our results indicate that NbPAT has an overlapping role with NbAsp5 in the biosynthesis of Asp and a key role in the production of phenylalanine for the biosynthesis of phenylpropanoids. The analysis of NbAsp5/NbPAT cosilenced plants highlights the central role of both plastidic aminotransferases in nitrogen metabolism; however, only NbPAT is essential for plant growth and development. PMID:24296073

  13. Titration of Alanine Monitored by NMR Spectroscopy: A Biochemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Waller, Francis J.; And Others

    1977-01-01

    The experiment described here involves simultaneous monitoring of pH and NMR chemical shifts during an aqueous titration of alpha- and beta-alanine. This experiment is designed for use in an undergraduate biochemistry course. (MR)

  14. Treatment of glycogenosys type V (McArdle disease) with creatine and ketogenic diet with clinical scores and with 31P-MRS on working leg muscle

    PubMed Central

    Vorgerd, M; Zange, J

    2007-01-01

    Summary McArdle’s disease is caused by genetic defects of the musclespecific isozyme of glycogen phosphorylase, which block ATP formation from glycogen in skeletal muscle. Creatine supplementation and ketogenic diet have been tested as potential supplements for muscle energy metabolism which may improve muscle symptomatic. Outcome measures were clinical scores describing muscle symptomatic and parameters derived from 31P-MRS examinations on working muscle. In two placebo controlled cross-over studies low dose creatine showed beneficial effects on muscle symptoms and performance whereas high dose creatine distinctly worsened muscle symptomatic in patients. In both studies, however, the absence of an elevation in phosphocreatine indicated the absence of a creatine uptake by the muscle fibre. The effects of creatine on muscle symptomatic may be independent from energy metabolism in muscle. In a case study, ketogenic diet improved muscle symptomatic and performance. However, these effects again did not result in 31PMRS visible changes in muscle energy metabolism. PMID:17915573

  15. Screening for primary creatine deficiencies in French patients with unexplained neurological symptoms

    PubMed Central

    2012-01-01

    A population of patients with unexplained neurological symptoms from six major French university hospitals was screened over a 28-month period for primary creatine disorder (PCD). Urine guanidinoacetate (GAA) and creatine:creatinine ratios were measured in a cohort of 6,353 subjects to identify PCD patients and compile their clinical, 1H-MRS, biochemical and molecular data. Six GAMT [N-guanidinoacetatemethyltransferase (EC 2.1.1.2)] and 10 X-linked creatine transporter (SLC6A8) but no AGAT (GATM) [L-arginine/glycine amidinotransferase (EC 2.1.4.1)] deficient patients were identified in this manner. Three additional affected sibs were further identified after familial inquiry (1 brother with GAMT deficiency and 2 brothers with SLC6A8 deficiency in two different families). The prevalence of PCD in this population was 0.25% (0.09% and 0.16% for GAMT and SLC6A8 deficiencies, respectively). Seven new PCD-causing mutations were discovered (2 nonsense [c.577C > T and c.289C > T] and 1 splicing [c.391 + 15G > T] mutations for the GAMT gene and, 2 missense [c.1208C > A and c.926C > A], 1 frameshift [c.930delG] and 1 splicing [c.1393-1G > A] mutations for the SLC6A8 gene). No hot spot mutations were observed in these genes, as all the mutations were distributed throughout the entire gene sequences and were essentially patient/family specific. Approximately one fifth of the mutations of SLC6A8, but not GAMT, were attributed to neo-mutation, germinal or somatic mosaicism events. The only SLC6A8-deficient female patient in our series presented with the severe phenotype usually characterizing affected male patients, an observation in agreement with recent evidence that is in support of the fact that this X-linked disorder might be more frequent than expected in the female population with intellectual disability. PMID:23234264

  16. Internal bias field in triglycine sulphate crystals with L-, α-alanine grown at negative temperatures

    NASA Astrophysics Data System (ADS)

    Milovidova, S. D.; Rogazinskaya, O. V.; Sidorkin, A. S.; Ionova, E. V.; Kirichenko, A. P.; Bavykin, S. A.

    2010-09-01

    The dielectric and pyroelectric properties of triglycine sulphate (TGS) crystals with L, α-alanine impurities grown at negative temperatures have been investigated. It is shown that a lower impurity concentration (2 mol % in solution) in this temperature range leads to the formation of internal bias fields of the same order of magnitude (˜800 V/cm) as for TGS crystals grown at T ⩽ 50°C but with an L, α-alanine concentration of 20 mol % in solution.

  17. IR spectroscopic signatures of solid glycine and alanine in astrophysical ices

    NASA Astrophysics Data System (ADS)

    Rodriguez-Lazcano, Y.; Maté, B.; Tanarro, I.; Herrero, V.; Escribano, R.

    2012-09-01

    The conversion from solid neutral to zwitterionic glycine (or alanine) is studied using infrared spectroscopy from the point of view of the interactions of this molecule with polar (water) and non-polar (CO2, CH4) surroundings. Such environments could be found on astrophysical matter. Different spectral features are suggested as suitable probes for the presence of glycine (or alanine) in astrophysical media, depending on their form (normal or zwitterionic), temperature, and composition.

  18. [Alanine solution as enzyme reaction buffer used in A to O blood group conversion].

    PubMed

    Li, Su-Bo; Zhang, Xue; Zhang, Yin-Ze; Tan, Ying-Xia; Bao, Guo-Qiang; Wang, Ying-Li; Ji, Shou-Ping; Gong, Feng; Gao, Hong-Wei

    2014-06-01

    The aim of this study was to investigate the effect of alanine solution as α-N-acetylgalactosaminidase enzyme reaction buffer on the enzymatic activity of A antigen. The binding ability of α-N-acetylgalactosaminidase with RBC in different reaction buffer such as alanine solution, glycine solution, normal saline (0.9% NaCl), PBS, PCS was detected by Western blot. The results showed that the efficiency of A to O conversion in alanine solution was similar to that in glycine solution, and Western blot confirmed that most of enzymes blinded with RBC in glycine or alanine solution, but few enzymes blinded with RBC in PBS, PCS or normal saline. The evidences indicated that binding of enzyme with RBC was a key element for A to O blood group conversion, while the binding ability of α-N-acetylgalactosaminidase with RBC in alanine or glycine solution was similar. It is concluded that alanine solution can be used as enzyme reaction buffer in A to O blood group conversion. In this buffer, the α-N-acetylgalactosaminidase is closely blinded with RBC and α-N-acetylgalactosaminidase plays efficient enzymatic activity of A antigen. PMID:24989301

  19. EPR dosimetry of radiotherapy photon beams in inhomogeneous media using alanine films

    NASA Astrophysics Data System (ADS)

    Helge Østerås, Bjørn; Olaug Hole, Eli; Rune Olsen, Dag; Malinen, Eirik

    2006-12-01

    In the current work, EPR (electron paramagnetic resonance) dosimetry using alanine films (134 µm thick) was utilized for dose measurements in inhomogeneous phantoms irradiated with radiotherapy photon beams. The main phantom material was PMMA, while either Styrofoam or aluminium was introduced as an inhomogeneity. The phantoms were irradiated to a maximum dose of about 30 Gy with 6 or 15 MV photons. The performance of the alanine film dosimeters was investigated and compared to results from ion chamber dosimetry, Monte Carlo simulations and radiotherapy treatment planning calculations. It was found that the alanine film dosimeters had a linear dose response above approximately 5 Gy, while a background signal obscured the response at lower dose levels. For doses between 5 and 60 Gy, the standard deviation of single alanine film dose estimates was about 2%. The alanine film dose estimates yielded results comparable to those from the Monte Carlo simulations and the ion chamber measurements, with absolute differences between estimates in the order of 1 15%. The treatment planning calculations exhibited limited applicability. The current work shows that alanine film dosimetry is a method suitable for estimating radiotherapeutical doses and for dose measurements in inhomogeneous media.

  20. Auxin and Tryptophan Homeostasis Are Facilitated by the ISS1/VAS1 Aromatic Aminotransferase in Arabidopsis

    PubMed Central

    Pieck, Michael; Yuan, Youxi; Godfrey, Jason; Fisher, Christopher; Zolj, Sanda; Vaughan, Dylan; Thomas, Nicholas; Wu, Connie; Ramos, Julian; Lee, Norman; Normanly, Jennifer; Celenza, John L.

    2015-01-01

    Indole-3-acetic acid (IAA) plays a critical role in regulating numerous aspects of plant growth and development. While there is much genetic support for tryptophan-dependent (Trp-D) IAA synthesis pathways, there is little genetic evidence for tryptophan-independent (Trp-I) IAA synthesis pathways. Using Arabidopsis, we identified two mutant alleles of ISS1 (Indole Severe Sensitive) that display indole-dependent IAA overproduction phenotypes including leaf epinasty and adventitious rooting. Stable isotope labeling showed that iss1, but not WT, uses primarily Trp-I IAA synthesis when grown on indole-supplemented medium. In contrast, both iss1 and WT use primarily Trp-D IAA synthesis when grown on unsupplemented medium. iss1 seedlings produce 8-fold higher levels of IAA when grown on indole and surprisingly have a 174-fold increase in Trp. These findings indicate that the iss1 mutant’s increase in Trp-I IAA synthesis is due to a loss of Trp catabolism. ISS1 was identified as At1g80360, a predicted aromatic aminotransferase, and in vitro and in vivo analysis confirmed this activity. At1g80360 was previously shown to primarily carry out the conversion of indole-3-pyruvic acid to Trp as an IAA homeostatic mechanism in young seedlings. Our results suggest that in addition to this activity, in more mature plants ISS1 has a role in Trp catabolism and possibly in the metabolism of other aromatic amino acids. We postulate that this loss of Trp catabolism impacts the use of Trp-D and/or Trp-I IAA synthesis pathways. PMID:26163189