Science.gov

Sample records for alanine dehydrogenase aladh

  1. Alteration of substrate specificity of alanine dehydrogenase

    PubMed Central

    Fernandes, Puja; Aldeborgh, Hannah; Carlucci, Lauren; Walsh, Lauren; Wasserman, Jordan; Zhou, Edward; Lefurgy, Scott T.; Mundorff, Emily C.

    2015-01-01

    The l-alanine dehydrogenase (AlaDH) has a natural history that suggests it would not be a promising candidate for expansion of substrate specificity by protein engineering: it is the only amino acid dehydrogenase in its fold family, it has no sequence or structural similarity to any known amino acid dehydrogenase, and it has a strong preference for l-alanine over all other substrates. By contrast, engineering of the amino acid dehydrogenase superfamily members has produced catalysts with expanded substrate specificity; yet, this enzyme family already contains members that accept a broad range of substrates. To test whether the natural history of an enzyme is a predictor of its innate evolvability, directed evolution was carried out on AlaDH. A single mutation identified through molecular modeling, F94S, introduced into the AlaDH from Mycobacterium tuberculosis (MtAlaDH) completely alters its substrate specificity pattern, enabling activity toward a range of larger amino acids. Saturation mutagenesis libraries in this mutant background additionally identified a double mutant (F94S/Y117L) showing improved activity toward hydrophobic amino acids. The catalytic efficiencies achieved in AlaDH are comparable with those that resulted from similar efforts in the amino acid dehydrogenase superfamily and demonstrate the evolvability of MtAlaDH specificity toward other amino acid substrates. PMID:25538307

  2. Purification and characterization of alanine dehydrogenase from a cyanobacterium, Phormidium lapideum.

    PubMed

    Sawa, Y; Tani, M; Murata, K; Shibata, H; Ochiai, H

    1994-11-01

    Alanine dehydrogenase (AlaDH) was purified to homogeneity from cell-free extracts of a non-N2-fixing filamentous cyanobacterium, Phormidium lapideum. The molecular mass of the native enzyme was 240 kDa, and SDS-PAGE revealed a minimum molecular mass of 41 kDa, suggesting a six-subunit structure. The NH2 terminal amino acid residues of the purified AlaDH revealed marked similarity with that of other AlaDHs. The enzyme was highly specific for L-alanine and NAD+, but showed relatively low amino-acceptor specificity. The pH optimum was 8.4 for reductive amination of pyruvate and 9.2 for oxidative deamination of L-alanine. The Km values were 5.0 mM for L-alanine and 0.04 mM for NAD+, 0.33 mM for pyruvate, 60.6 mM for NH4+ (pH 8.7), and 0.02 mM for NADH. Various L-amino acids including alanine, serine, threonine, and aromatic amino acids, inhibited the aminating reaction. The enzyme was inactivated upon incubation with pyridoxal 5'-phosphate (PLP) followed by reduction with sodium borohydride. The copresence of NADH and pyruvate largely protected the enzyme against the inactivation by PLP. PMID:7896761

  3. Determination of Ammonium Ion Using a Reagentless Amperometric Biosensor Based on Immobilized Alanine Dehydrogenase

    PubMed Central

    Tan, Ling Ling; Musa, Ahmad; Lee, Yook Heng

    2011-01-01

    The use of the enzyme alanine dehydrogenase (AlaDH) for the determination of ammonium ion (NH4+) usually requires the addition of pyruvate substrate and reduced nicotinamide adenine dinucleotide (NADH) simultaneously to effect the reaction. This addition of reagents is inconvenient when an enzyme biosensor based on AlaDH is used. To resolve the problem, a novel reagentless amperometric biosensor using a stacked methacrylic membrane system coated onto a screen-printed carbon paste electrode (SPE) for NH4+ ion determination is described. A mixture of pyruvate and NADH was immobilized in low molecular weight poly(2-hydroxyethyl methacrylate) (pHEMA) membrane, which was then deposited over a photocured pHEMA membrane (photoHEMA) containing alanine dehydrogenase (AlaDH) enzyme. Due to the enzymatic reaction of AlaDH and the pyruvate substrate, NH4+ was consumed in the process and thus the signal from the electrocatalytic oxidation of NADH at an applied potential of +0.55 V was proportional to the NH4+ ion concentration under optimal conditions. The stacked methacrylate membranes responded rapidly and linearly to changes in NH4+ ion concentrations between 10–100 mM, with a detection limit of 0.18 mM NH4+ ion. The reproducibility of the amperometrical NH4+ biosensor yielded low relative standard deviations between 1.4–4.9%. The stacked membrane biosensor has been successfully applied to the determination of NH4+ ion in spiked river water samples without pretreatment. A good correlation was found between the analytical results for NH4+ obtained from the biosensor and the Nessler spectrophotometric method. PMID:22163699

  4. Catalytic properties of Sepharose-bound L-alanine dehydrogenase from Bacillus cereus.

    PubMed

    Mureşan, L; Vancea, D; Presecan, E; Porumb, H; Lascu, I; Oargă, M; Matinca, D; Abrudan, I; Bârzu, O

    1983-02-15

    (1) L-Alanine dehydrogenase from Bacillus cereus was purified by a two-step chromatographic procedure involving Cibacron-Blue 3G-A Sepharose 4B-CL, and Sepharose 6B-CL, and immobilized on CNBr-activated Sepharose 4B. (2) Following immobilization via two of the six subunits, L-alanine dehydrogenase retained 66% of the specific activity of the soluble enzyme. The affinity of the immobilized enzyme for NH4+, pyruvate and L-alanine, was not different to that of the soluble form. The Km of the Sepharose-bound L-alanine dehydrogenase for pyridine coenzymes was 6-8-times higher than in the soluble case. (3) The stability of L-alanine dehydrogenase towards urea or thermal denaturation was increased by immobilization. (4) The incubation at 37 degrees C for 24 h of the immobilized L-alanine dehydrogenase with 3 M NH4Cl/NH4OH buffer (pH 9) released 70% of the enzyme. The specific activity and the affinity of the 'solubilized' L-alanine dehydrogenase for the pyridine coenzymes was the same as that obtained with the original, soluble L-alanine dehydrogenase. PMID:6404304

  5. Expression of an L-alanine dehydrogenase gene in Zymomonas mobilis and excretion of L-alanine

    SciTech Connect

    Uhlenbusch, I.; Sahm, H.; Sprenger, G.A. )

    1991-05-01

    Gene alaD for L-alanine dehydrogenase from Bacillus sphaericus was cloned and introduced into Z. mobilis. Under the control of the strong promoter of the pyruvate decarboxylase (pdc) gene, the enzyme was expressed up to a specific activity of nearly 1 {mu}mol {center dot} min{sup {minus}1} {center dot} mg of protein{sup {minus}1} in recombinant cells. As a result of this high L-alanine dehydrogenase activity, growing cells excreted up to 10 mmol of alanine per 280 mmol of glucose utilized into a mineral salts medium. By the addition of 85 mM NH{sub 4}{sup +} to the medium, growth of the recombinant cells stopped, and up to 41 mmol of alanine was secreted. As alanine dehydrogenase competed with pyruvate decarboxylase (PDC) for the same substrate (pyruvate), PDC activity was reduced by starvation for the essential PDC cofactor thiamine PP{sub i}. A thiamine auxotrophy mutant of Z. mobilis which carried the alaD gene was starved for 40 h in glucose-supplemented mineral salts medium and then shifted to mineral salts medium with 85 mM NH {sub 4}{sup +} and 280 mmol of glucose. The recombinants excreted up to 84 mmol of alanine over 25 h. Alanine excretion proceeded at an initial velocity of 238 nmol {center dot} min{sup {minus}1} {center dot} mg(dry weight){sup {minus}1}. Despite this high activity, the excretion rate seemed to be a limiting factor, as the intracellular concentration of alanine was as high as 260 mM at the beginning of the excretion phase and decreased to 80 to 90 mM over 24 h.

  6. Structural and catalytic properties of L-alanine dehydrogenase from Bacillus cereus.

    PubMed

    Porumb, H; Vancea, D; Mureşan, L; Presecan, E; Lascu, I; Petrescu, I; Porumb, T; Pop, R; Bârzu, O

    1987-04-01

    Alanine dehydrogenase from Bacillus cereus, a non-allosteric enzyme composed of six identical subunits, was purified to homogeneity by chromatography on blue-Sepharose and Sepharose 6B-CL. Like other pyridine-linked dehydrogenases, alanine dehydrogenase is inhibited by Cibacron blue, competitively with respect to NADH and noncompetitively with respect to pyruvate. The enzyme was inactivated by 0.1 M glycine/HCl (pH 2) and reactivated by 0.1 M phosphate (pH 8) supplemented with NAD+ or NADH. The reactivation was characterized by sigmoidal kinetics indicating a complex mechanism involving rate-limiting folding and association steps. Cibacron blue interfered with renaturation, presumably by competition with NADH. Chromatography on Sepharose 6B-CL of the partially renatured alanine dehydrogenase led to the separation of several intermediates, but only the hexamer was characterized by enzymatic activity. By immobilization on Sepharose 4B, alanine dehydrogenase from B. cereus retained 66% of the specific activity of the soluble enzyme. After denaturation of immobilized alanine dehydrogenase with 7 M urea, 37% of the initial protein was still bound to Sepharose, indicating that on the average the hexamer was attached to the matrix via, at most, two subunits. The ability of the denatured, immobilized subunits to pick up subunits from solution shows their capacity to fold back to the native conformation after urea treatment. The formation of "hybrids" between subunits of enzyme from B. cereus and Bacillus subtilis demonstrates the close resemblance of the tertiary and quaternary structures of alanine dehydrogenases from these species. PMID:3104322

  7. Role of Alanine Dehydrogenase of Mycobacterium tuberculosis during Recovery from Hypoxic Nonreplicating Persistence

    PubMed Central

    Giffin, Michelle M.; Shi, Lanbo; Gennaro, Maria L.; Sohaskey, Charles D.

    2016-01-01

    Mycobacterium tuberculosis can maintain a nonreplicating persistent state in the host for decades, but must maintain the ability to efficiently reactivate and produce active disease to survive and spread in a population. Among the enzymes expressed during this dormancy is alanine dehydrogenase, which converts pyruvate to alanine, and glyoxylate to glycine concurrent with the oxidation of NADH to NAD. It is involved in the metabolic remodeling of M. tuberculosis through its possible interactions with both the glyoxylate and methylcitrate cycle. Both mRNA levels and enzymatic activities of isocitrate lyase, the first enzyme of the glyoxylate cycle, and alanine dehydrogenase increased during entry into nonreplicating persistence, while the gene and activity for the second enzyme of the glyoxylate cycle, malate synthase were not. This could suggest a shift in carbon flow away from the glyoxylate cycle and instead through alanine dehydrogenase. Expression of ald was also induced in vitro by other persistence-inducing stresses such as nitric oxide, and was expressed at high levels in vivo during the initial lung infection in mice. Enzyme activity was maintained during extended hypoxia even after transcription levels decreased. An ald knockout mutant of M. tuberculosis showed no reduction in anaerobic survival in vitro, but resulted in a significant lag in the resumption of growth after reoxygenation. During reactivation the ald mutant had an altered NADH/NAD ratio, and alanine dehydrogenase is proposed to maintain the optimal NADH/NAD ratio during anaerobiosis in preparation of eventual regrowth, and during the initial response during reoxygenation. PMID:27203084

  8. Role of Alanine Dehydrogenase of Mycobacterium tuberculosis during Recovery from Hypoxic Nonreplicating Persistence.

    PubMed

    Giffin, Michelle M; Shi, Lanbo; Gennaro, Maria L; Sohaskey, Charles D

    2016-01-01

    Mycobacterium tuberculosis can maintain a nonreplicating persistent state in the host for decades, but must maintain the ability to efficiently reactivate and produce active disease to survive and spread in a population. Among the enzymes expressed during this dormancy is alanine dehydrogenase, which converts pyruvate to alanine, and glyoxylate to glycine concurrent with the oxidation of NADH to NAD. It is involved in the metabolic remodeling of M. tuberculosis through its possible interactions with both the glyoxylate and methylcitrate cycle. Both mRNA levels and enzymatic activities of isocitrate lyase, the first enzyme of the glyoxylate cycle, and alanine dehydrogenase increased during entry into nonreplicating persistence, while the gene and activity for the second enzyme of the glyoxylate cycle, malate synthase were not. This could suggest a shift in carbon flow away from the glyoxylate cycle and instead through alanine dehydrogenase. Expression of ald was also induced in vitro by other persistence-inducing stresses such as nitric oxide, and was expressed at high levels in vivo during the initial lung infection in mice. Enzyme activity was maintained during extended hypoxia even after transcription levels decreased. An ald knockout mutant of M. tuberculosis showed no reduction in anaerobic survival in vitro, but resulted in a significant lag in the resumption of growth after reoxygenation. During reactivation the ald mutant had an altered NADH/NAD ratio, and alanine dehydrogenase is proposed to maintain the optimal NADH/NAD ratio during anaerobiosis in preparation of eventual regrowth, and during the initial response during reoxygenation. PMID:27203084

  9. Methylmalonic semialdehyde dehydrogenase deficiency: demonstration of defective valine and beta-alanine metabolism and reduced malonic semialdehyde dehydrogenase activity in cultured fibroblasts

    SciTech Connect

    Gray, R.G.; Pollitt, R.J.; Webley, J.

    1987-08-01

    Intact cultured fibroblasts from a child with a new metabolic disorder, thought to be due to a deficiency of methylmalonic semialdehyde dehydrogenase, produced labeled CO/sub 2/ normally from (1-/sup 14/C)valine but not from (2-/sup 14/C)valine. CO/sub 2/ production from labeled beta-alanine was also much reduced, confirming the suspicion that malonic semialdehyde dehydrogenase is also deficient in this condition. An assay for malonic semialdehyde dehydrogenase in cell homogenates showed low activity but it was impossible to assess the degree of reduction.

  10. Crystallization and preliminary X-ray study of alanine dehydrogenase from Bacillus pseudofirmus OF4

    PubMed Central

    Wen, Jinjin; Li, Zhenzhen; He, Guangzheng; Xu, Shujing; Zhao, Baohua; Zhu, Xianming; Dong, Hui; Ju, Jiansong

    2013-01-01

    Alanine dehydrogenase (OF4Ald) from the alkaliphilic Bacillus pseudofirmus OF4 was expressed and purified with a His6 tag in a form suitable for X-ray crystallographic analysis. Crystals were grown by the hanging-drop vapour-diffusion method at 289 K using a solution consisting of 0.1 M Tris–HCl pH 8.0, 0.2 M LiSO4, 22%(w/v) PEG 3350. X-ray diffraction data were collected to 2.8 Å resolution. The crystal belonged to the triclinic space group P1, with unit-cell parameters a = 88.04, b = 105.59, c = 120.53 Å, α = 88.37, β = 78.77, γ = 82.65°. PMID:24192355

  11. Design and development of new class of Mycobacterium tuberculosisl-alanine dehydrogenase inhibitors.

    PubMed

    Reshma, Rudraraju Srilakshmi; Saxena, Shalini; Bobesh, Karyakulam Andrews; Jeankumar, Variam Ullas; Gunda, Saritha; Yogeeswari, Perumal; Sriram, Dharmarajan

    2016-09-15

    Mycobacterium tuberculosisl-alanine dehydrogenase (MTB l-AlaDH) is one of the important drug targets for treating latent/persistent tuberculosis. In this study we used crystal structure of the MTB l-AlaDH bound with cofactor NAD(+) as a structural framework for virtual screening of our in-house database to identified new classes of l-AlaDH inhibitor. We identified azetidine-2,4-dicarboxamide derivative as one of the potent inhibitor with IC50 of 9.22±0.72μM. Further lead optimization by synthesis leads to compound 1-(isonicotinamido)-N(2),N(4)-bis(benzo[d]thiazol-2-yl)azetidine-2,4-dicarboxamide (18) with l-AlaDH IC50 of 3.83±0.12μM, 2.0log reduction in nutrient starved dormant MTB model and MIC of 11.81μM in actively replicative MTB. PMID:27477207

  12. Reconfiguration of N Metabolism upon Hypoxia Stress and Recovery: Roles of Alanine Aminotransferase (AlaAT) and Glutamate Dehydrogenase (GDH)

    PubMed Central

    Diab, Houssein; Limami, Anis M.

    2016-01-01

    In the context of climatic change, more heavy precipitation and more frequent flooding and waterlogging events threaten the productivity of arable farmland. Furthermore, crops were not selected to cope with flooding- and waterlogging-induced oxygen limitation. In general, low oxygen stress, unlike other abiotic stresses (e.g., cold, high temperature, drought and saline stress), received little interest from the scientific community and less financial support from stakeholders. Accordingly, breeding programs should be developed and agronomical practices should be adapted in order to save plants’ growth and yield—even under conditions of low oxygen availability (e.g., submergence and waterlogging). The prerequisite to the success of such breeding programs and changes in agronomical practices is a good knowledge of how plants adapt to low oxygen stress at the cellular and the whole plant level. In the present paper, we summarized the recent knowledge on metabolic adjustment in general under low oxygen stress and highlighted thereafter the major changes pertaining to the reconfiguration of amino acids syntheses. We propose a model showing (i) how pyruvate derived from active glycolysis upon hypoxia is competitively used by the alanine aminotransferase/glutamate synthase cycle, leading to alanine accumulation and NAD+ regeneration. Carbon is then saved in a nitrogen store instead of being lost through ethanol fermentative pathway. (ii) During the post-hypoxia recovery period, the alanine aminotransferase/glutamate dehydrogenase cycle mobilizes this carbon from alanine store. Pyruvate produced by the reverse reaction of alanine aminotransferase is funneled to the TCA cycle, while deaminating glutamate dehydrogenase regenerates, reducing equivalent (NADH) and 2-oxoglutarate to maintain the cycle function. PMID:27258319

  13. Reconfiguration of N Metabolism upon Hypoxia Stress and Recovery: Roles of Alanine Aminotransferase (AlaAT) and Glutamate Dehydrogenase (GDH).

    PubMed

    Diab, Houssein; Limami, Anis M

    2016-01-01

    In the context of climatic change, more heavy precipitation and more frequent flooding and waterlogging events threaten the productivity of arable farmland. Furthermore, crops were not selected to cope with flooding- and waterlogging-induced oxygen limitation. In general, low oxygen stress, unlike other abiotic stresses (e.g., cold, high temperature, drought and saline stress), received little interest from the scientific community and less financial support from stakeholders. Accordingly, breeding programs should be developed and agronomical practices should be adapted in order to save plants' growth and yield-even under conditions of low oxygen availability (e.g., submergence and waterlogging). The prerequisite to the success of such breeding programs and changes in agronomical practices is a good knowledge of how plants adapt to low oxygen stress at the cellular and the whole plant level. In the present paper, we summarized the recent knowledge on metabolic adjustment in general under low oxygen stress and highlighted thereafter the major changes pertaining to the reconfiguration of amino acids syntheses. We propose a model showing (i) how pyruvate derived from active glycolysis upon hypoxia is competitively used by the alanine aminotransferase/glutamate synthase cycle, leading to alanine accumulation and NAD⁺ regeneration. Carbon is then saved in a nitrogen store instead of being lost through ethanol fermentative pathway. (ii) During the post-hypoxia recovery period, the alanine aminotransferase/glutamate dehydrogenase cycle mobilizes this carbon from alanine store. Pyruvate produced by the reverse reaction of alanine aminotransferase is funneled to the TCA cycle, while deaminating glutamate dehydrogenase regenerates, reducing equivalent (NADH) and 2-oxoglutarate to maintain the cycle function. PMID:27258319

  14. Domain Motions and Functionally-Key Residues of L-Alanine Dehydrogenase Revealed by an Elastic Network Model.

    PubMed

    Li, Xing-Yuan; Zhang, Jing-Chao; Zhu, Yan-Ying; Su, Ji-Guo

    2015-01-01

    Mycobacterium tuberculosis L-alanine dehydrogenase (L-MtAlaDH) plays an important role in catalyzing L-alanine to ammonia and pyruvate, which has been considered to be a potential target for tuberculosis treatment. In the present work, the functional domain motions encoded in the structure of L-MtAlaDH were investigated by using the Gaussian network model (GNM) and the anisotropy network model (ANM). The slowest modes for the open-apo and closed-holo structures of the enzyme show that the domain motions have a common hinge axis centered in residues Met133 and Met301. Accompanying the conformational transition, both the 1,4-dihydronicotinamide adenine dinucleotide (NAD)-binding domain (NBD) and the substrate-binding domain (SBD) move in a highly coupled way. The first three slowest modes of ANM exhibit the open-closed, rotation and twist motions of L-MtAlaDH, respectively. The calculation of the fast modes reveals the residues responsible for the stability of the protein, and some of them are involved in the interaction with the ligand. Then, the functionally-important residues relevant to the binding of the ligand were identified by using a thermodynamic method. Our computational results are consistent with the experimental data, which will help us to understand the physical mechanism for the function of L-MtAlaDH. PMID:26690143

  15. Regulation Mechanism of the ald Gene Encoding Alanine Dehydrogenase in Mycobacterium smegmatis and Mycobacterium tuberculosis by the Lrp/AsnC Family Regulator AldR

    PubMed Central

    Jeong, Ji-A; Hyun, Jaekyung

    2015-01-01

    ABSTRACT In the presence of alanine, AldR, which belongs to the Lrp/AsnC family of transcriptional regulators and regulates ald encoding alanine dehydrogenase in Mycobacterium smegmatis, changes its quaternary structure from a homodimer to an octamer with an open-ring conformation. Four AldR-binding sites (O2, O1, O4, and O3) with a consensus sequence of GA/T-N2-NWW/WWN-N2-A/TC were identified upstream of the M. smegmatis ald gene by means of DNase I footprinting analysis. O2, O1, and O4 are required for the induction of ald expression by alanine, while O3 is directly involved in the repression of ald expression. In addition to O3, both O1 and O4 are also necessary for full repression of ald expression in the absence of alanine, due to cooperative binding of AldR dimers to O1, O4, and O3. Binding of a molecule of the AldR octamer to the ald control region was demonstrated to require two AldR-binding sites separated by three helical turns between their centers and one additional binding site that is in phase with the two AldR-binding sites. The cooperative binding of AldR dimers to DNA requires three AldR-binding sites that are aligned with a periodicity of three helical turns. The aldR gene is negatively autoregulated independently of alanine. Comparative analysis of ald expression of M. smegmatis and Mycobacterium tuberculosis in conjunction with sequence analysis of both ald control regions led us to suggest that the expression of the ald genes in both mycobacterial species is regulated by the same mechanism. IMPORTANCE In mycobacteria, alanine dehydrogenase (Ald) is the enzyme required both to utilize alanine as a nitrogen source and to grow under hypoxic conditions by maintaining the redox state of the NADH/NAD+ pool. Expression of the ald gene was reported to be regulated by the AldR regulator that belongs to the Lrp/AsnC (feast/famine) family, but the underlying mechanism was unknown. This study revealed the regulation mechanism of ald in Mycobacterium

  16. A chemically modified carbon paste electrode with d-lactate dehydrogenase and alanine aminotranferase enzyme sequences for d-lactic acid analysis.

    PubMed

    Shu, H C; Wu, N P

    2001-04-12

    An amperometric biosensor was constructed for the analysis of d-lactic acid based on immobilizing d-lactate dehydrogenase(d-LDH), alanine aminotransferase (ALT), NAD(+), a redox polymer and polyethylenimine in carbon paste. The effect of addition of ALT in the paste, using enzyme sequences of ALT/d-LDH, was insignificant for d-lactic acid analysis. The responses of d-lactic acid in ALT/d-LDH paste electrode are the same as those in d-LDH paste electrode. However, the interference effect of pyruvate in the sample can be substantially reduced if sodium glutamate was applied in the carrier solution. When ALT immobilized in control porous glass as an immobilized enzyme reactor (IMER) was mounted in flow injection analysis system with the d-LDH paste electrode as detector for d-lactate analysis, the interference of the pyruvate can be significantly eliminated. The adverse effect of pyruvate in the samples for d-lactic acid analysis was reduced more effectively in ALT IMER with d-LDH electrode than in ALT/d-LDH electrode. PMID:18968259

  17. IFCC primary reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 degrees C. International Federation of Clinical Chemistry and Laboratory Medicine. Part 7. Certification of four reference materials for the determination of enzymatic activity of gamma-glutamyltransferase, lactate dehydrogenase, alanine aminotransferase and creatine kinase accord.

    PubMed

    Siekmann, Lothar; Bonora, Roberto; Burtis, Carl A; Ceriotti, Ferruccio; Clerc-Renaud, Pascale; Férard, Georges; Ferrero, Carlo A; Forest, Jean-Claude; Franck, Paul F H; Gella, F-Javier; Hoelzel, Wieland; Jørgensen, Poul Jørgen; Kanno, Takashi; Kessner, Art; Klauke, Rainer; Kristiansen, Nina; Lessinger, Jean-Marc; Linsinger, Thomas P J; Misaki, Hideo; Mueller, Mathias M; Panteghini, Mauro; Pauwels, Jean; Schiele, Françoise; Schimmel, Heinz G; Vialle, Arlette; Weidemann, Gerhard; Schumann, Gerhard

    2002-07-01

    This paper is the seventh in a series dealing with reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 degrees C and the certification of reference preparations. Other parts deal with: Part 1. The Concept of Reference Procedures for the Measurement of Catalytic Activity Concentrations of Enzymes; Part 2. Reference Procedure for the Measurement of Catalytic Concentration of Creatine Kinase; Part 3. Reference Procedure for the Measurement of Catalytic Concentration of Lactate Dehydrogenase; Part 4. Reference Procedure for the Measurement of Catalytic Concentration of Alanine Aminotransferase; Part 5. Reference Procedure for the Measurement of Catalytic Concentration of Aspartate Aminotransferase; Part 6. Reference Procedure for the Measurement of Catalytic Concentration of Gamma-Glutamyltransferase. A document describing the determination of preliminary reference values is also in preparation. The certification of the catalytic activity concentrations as determined by the recently elaborated IFCC primary reference methods at 37 degrees C of four enzyme preparations, namely IRMM/IFCC 452 (gamma-glutamyltransferase), IRMM/IFCC 453 (lactate dehydrogenase 1), IRMM/IFCC 454 (alanine aminotransferase) and IRMM/IFCC 455 (creatine kinase) is described. Homogeneity data were derived from previous results. Stability was assessed using recently obtained data as well as data from previous stability studies. The collaborative study for value assignment was performed under a strict quality control scheme to ensure traceability to the primary reference method. Uncertainty of the materials was assessed in compliance with the Guide to the Expression of Uncertainty in Measurement. The certified values obtained at 37 degrees C are 1.90 microkat/l +/- 0.04 microkat/l (114.1 U/l +/- 2.4 U/l), for gamma-glutamyltransferase, 8.37 microkat/l +/- 0.12 microkat/l (502 U/l +/- 7 U/l), for lactate dehydrogenase 1, 3.09 microkat/l +/- 0.07 microkat

  18. Initiation of Spore Germination in Bacillus subtilis: Relationship to Inhibition of l-Alanine Metabolism

    PubMed Central

    Prasad, Chandan

    1974-01-01

    The inhibitory effects of anthranilic acid esters (methyl anthranilate and N-methyl anthranilate) on the l-alanine-induced initiation of spore germination was examined in Bacillus subtilis 168. Methyl anthranilate irreversibly inhibited alanine initiation by a competitive mechanism. In its presence, the inhibition could be reversed only by the combined addition of d-glucose, d-fructose, and K+. Both l-alanine dehydrogenase and l-glutamate-pyruvate transaminase, enzymes which catalyze the first reaction in l-alanine metabolism, were competitively inhibited by methyl anthranilate. The Ki values for germination initiation (0.053 mM) and of l-glutamate-pyruvate transaminase (0.068 mM) were similar, whereas that for l-alanine dehydrogenase (0.4 mM) was six to seven times higher. Since a mutant lacking l-alanine dehydrogenase activity germinated normally in l-alanine alone, it is speculated that the major pathway of l-alanine metabolism during initiation may be via transmination reaction. PMID:4212093

  19. Efficient L-Alanine Production by a Thermo-Regulated Switch in Escherichia coli.

    PubMed

    Zhou, Li; Deng, Can; Cui, Wen-Jing; Liu, Zhong-Mei; Zhou, Zhe-Min

    2016-01-01

    L-Alanine has important applications in food, pharmaceutical and veterinary and is used as a substrate for production of engineered thermoplastics. Microbial fermentation could reduce the production cost and promote the application of L-alanine. However, the presence of L-alanine significantly inhibit cell growth rate and cause a decrease in the ultimate L-alanine productivity. For efficient L-alanine production, a thermo-regulated genetic switch was designed to dynamically control the expression of L-alanine dehydrogenase (alaD) from Geobacillus stearothermophilus on the Escherichia coli B0016-060BC chromosome. The optimal cultivation conditions for the genetically switched alanine production using B0016-060BC were the following: an aerobic growth phase at 33 °C with a 1-h thermo-induction at 42 °C followed by an oxygen-limited phase at 42 °C. In a bioreactor experiment using the scaled-up conditions optimized in a shake flask, B0016-060BC accumulated 50.3 g biomass/100 g glucose during the aerobic growth phase and 96 g alanine/100 g glucose during the oxygen-limited phase, respectively. The L-alanine titer reached 120.8 g/l with higher overall and oxygen-limited volumetric productivities of 3.09 and 4.18 g/l h, respectively, using glucose as the sole carbon source. Efficient cell growth and L-alanine production were reached separately, by switching cultivation temperature. The results revealed the application of a thermo-regulated strategy for heterologous metabolic production and pointed to strategies for improving L-alanine production. PMID:26453031

  20. 21 CFR 582.5118 - Alanine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Alanine. 582.5118 Section 582.5118 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5118 Alanine. (a) Product. Alanine...

  1. Glucose-6-phosphate dehydrogenase

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a type of ...

  2. Inhibitors of alanine racemase enzyme: a review.

    PubMed

    Azam, Mohammed Afzal; Jayaram, Unni

    2016-08-01

    Alanine racemase is a fold type III PLP-dependent amino acid racemase enzyme catalysing the conversion of l-alanine to d-alanine utilised by bacterial cell wall for peptidoglycan synthesis. As there are no known homologs in humans, it is considered as an excellent antibacterial drug target. The standard inhibitors of this enzyme include O-carbamyl-d-serine, d-cycloserine, chlorovinyl glycine, alaphosphin, etc. d-Cycloserine is indicated for pulmonary and extra pulmonary tuberculosis but therapeutic use of drug is limited due to its severe toxic effects. Toxic effects due to off-target affinities of cycloserine and other substrate analogs have prompted new research efforts to identify alanine racemase inhibitors that are not substrate analogs. In this review, an updated status of known inhibitors of alanine racemase enzyme has been provided which will serve as a rich source of structural information and will be helpful in generating selective and potent inhibitor of alanine racemase. PMID:26024289

  3. Vibrational dynamics of crystalline L-alanine

    SciTech Connect

    Bordallo, H.N.; Eckert, J.; Barthes, M.

    1997-11-01

    The authors report a new, complete vibrational analysis of L-alanine and L-alanine-d{sub 4} which utilizes IINS intensities in addition to frequency information. The use of both isotopomers resulted in a self-consistent force field for and assignment of the molecular vibrations in L-alanine. Some details of the calculation as well as a comparison of calculated and observed IINS spectra are presented. The study clarifies a number of important issues on the vibrational dynamics of this molecule and presents a self-consistent force field for the molecular vibrations in crystalline L-alanine.

  4. Catalytic Stereoinversion of L-Alanine to Deuterated D-Alanine.

    PubMed

    Moozeh, Kimia; So, Soon Mog; Chin, Jik

    2015-08-01

    A combination of an achiral pyridoxal analogue and a chiral base has been developed for catalytic deuteration of L-alanine with inversion of stereochemistry to give deuterated D-alanine under mild conditions (neutral pD and 25 °C) without the use of any protecting groups. This system can also be used for catalytic deuteration of D-alanine with retention of stereochemistry to give deuterated D-alanine. Thus a racemic mixture of alanine can be catalytically deuterated to give an enantiomeric excess of deuterated D-alanine. While catalytic deracemization of alanine is forbidden by the second law of thermodynamics, this system can be used for catalytic deracemization of alanine with deuteration. Such green and biomimetic approach to catalytic stereocontrol provides insights into efficient amino acid transformations. PMID:26119066

  5. Functional Characterization of Alanine Racemase from Schizosaccharomyces pombe: a Eucaryotic Counterpart to Bacterial Alanine Racemase

    PubMed Central

    Uo, Takuma; Yoshimura, Tohru; Tanaka, Naotaka; Takegawa, Kaoru; Esaki, Nobuyoshi

    2001-01-01

    Schizosaccharomyces pombe has an open reading frame, which we named alr1+, encoding a putative protein similar to bacterial alanine racemase. We cloned the alr1+ gene in Escherichia coli and purified the gene product (Alr1p), with an Mr of 41,590, to homogeneity. Alr1p contains pyridoxal 5′-phosphate as a coenzyme and catalyzes the racemization of alanine with apparent Km and Vmax values as follows: for l-alanine, 5.0 mM and 670 μmol/min/mg, respectively, and for d-alanine, 2.4 mM and 350 μmol/min/mg, respectively. The enzyme is almost specific to alanine, but l-serine and l-2-aminobutyrate are racemized slowly at rates 3.7 and 0.37% of that of l-alanine, respectively. S. pombe uses d-alanine as a sole nitrogen source, but deletion of the alr1+ gene resulted in retarded growth on the same medium. This indicates that S. pombe has catabolic pathways for both enantiomers of alanine and that the pathway for l-alanine coupled with racemization plays a major role in the catabolism of d-alanine. Saccharomyces cerevisiae differs markedly from S. pombe: S. cerevisiae uses l-alanine but not d-alanine as a sole nitrogen source. Moreover, d-alanine is toxic to S. cerevisiae. However, heterologous expression of the alr1+ gene enabled S. cerevisiae to grow efficiently on d-alanine as a sole nitrogen source. The recombinant yeast was relieved from the toxicity of d-alanine. PMID:11244061

  6. Metabolism of 1-aminoethylphosphinate generates acetylphosphinate, a potent inhibitor of pyruvate dehydrogenase.

    PubMed Central

    Laber, B; Amrhein, N

    1987-01-01

    The alanine analogue 1-aminoethylphosphinate [H3C-CH(NH2)-PO2H2] effectively inhibited anthocyanin synthesis in buckwheat hypocotyls and caused an increase in the concentrations of alanine and alanine-derived metabolites. Aminotransferase inhibitors partially alleviated the effects of the analogue. 1-Aminoethylphosphinate did not affect the growth of Klebsiella pneumoniae under anaerobic conditions, but under aerobic conditions it inhibited growth and caused the massive excretion of pyruvate. The analogue inhibited the pyruvate dehydrogenase complex in vitro in the presence of an aminotransferase activity. The transamination product of 1-aminoethylphosphinate, acetylphosphinate (H3C-CO-PO2H2), was found to inhibit the pyruvate dehydrogenase complex in a time-dependent reaction that followed first-order and saturation kinetics and required the presence of thiamin pyrophosphate. PMID:3325039

  7. Metabolism of 1-aminoethylphosphinate generates acetylphosphinate, a potent inhibitor of pyruvate dehydrogenase.

    PubMed

    Laber, B; Amrhein, N

    1987-12-01

    The alanine analogue 1-aminoethylphosphinate [H3C-CH(NH2)-PO2H2] effectively inhibited anthocyanin synthesis in buckwheat hypocotyls and caused an increase in the concentrations of alanine and alanine-derived metabolites. Aminotransferase inhibitors partially alleviated the effects of the analogue. 1-Aminoethylphosphinate did not affect the growth of Klebsiella pneumoniae under anaerobic conditions, but under aerobic conditions it inhibited growth and caused the massive excretion of pyruvate. The analogue inhibited the pyruvate dehydrogenase complex in vitro in the presence of an aminotransferase activity. The transamination product of 1-aminoethylphosphinate, acetylphosphinate (H3C-CO-PO2H2), was found to inhibit the pyruvate dehydrogenase complex in a time-dependent reaction that followed first-order and saturation kinetics and required the presence of thiamin pyrophosphate. PMID:3325039

  8. Plant Formate Dehydrogenase

    SciTech Connect

    John Markwell

    2005-01-10

    The research in this study identified formate dehydrogenase, an enzyme that plays a metabolic role on the periphery of one-carbon metabolism, has an unusual localization in Arabidopsis thaliana and that the enzyme has an unusual kinetic plasticity. These properties make it possible that this enzyme could be engineered to attempt to engineer plants with an improved photosynthetic efficiency. We have produced transgenic Arabidopsis and tobacco plants with increased expression of the formate dehydrogenase enzyme to initiate further studies.

  9. Concerted modulation of alanine and glutamate metabolism in young Medicago truncatula seedlings under hypoxic stress

    PubMed Central

    Limami, Anis M.; Glévarec, Gaëlle; Ricoult, Claudie; Cliquet, Jean-Bernard; Planchet, Elisabeth

    2008-01-01

    The modulation of primary nitrogen metabolism by hypoxic stress was studied in young Medicago truncatula seedlings. Hypoxic seedlings were characterized by the up-regulation of glutamate dehydrogenase 1 (GDH1) and mitochondrial alanine aminotransferase (mAlaAT), and down-regulation of glutamine synthetase 1b (GS1b), NADH-glutamate synthase (NADH-GOGAT), glutamate dehydrogenase 3 (GDH3), and isocitrate dehydrogenase (ICDH) gene expression. Hypoxic stress severely inhibited GS activity and stimulated NADH-GOGAT activity. GDH activity was lower in hypoxic seedlings than in the control, however, under either normoxia or hypoxia, the in vivo activity was directed towards glutamate deamination. 15NH4 labelling showed for the first time that the adaptive reaction of the plant to hypoxia consisted of a concerted modulation of nitrogen flux through the pathways of both alanine and glutamate synthesis. In hypoxic seedlings, newly synthesized 15N-alanine increased and accumulated as the major amino acid, asparagine synthesis was inhibited, while 15N-glutamate was synthesized at a similar rate to that in the control. A discrepancy between the up-regulation of GDH1 expression and the down-regulation of GDH activity by hypoxic stress highlighted for the first time the complex regulation of this enzyme by hypoxia. Higher rates of glycolysis and ethanol fermentation are known to cause the fast depletion of sugar stores and carbon stress. It is proposed that the expression of GDH1 was stimulated by hypoxia-induced carbon stress, while the enzyme protein might be involved during post-hypoxic stress contributing to the regeneration of 2-oxoglutarate via the GDH shunt. PMID:18508812

  10. Separation of dehydrogenases on polyaminomethylstyrene.

    PubMed

    Schöpp, W; Meinert, S; Thyfronitou, J; Aurich, H

    1975-01-29

    The binding of dehydrogenases, especially alcohol dehydrogenase, and other proteins to several ion exchangers and hydrophobic polymers was investigated. Quantitative parameters for the stability of the polymer-protein complexes (obtained form double reciprocal plots) indicate a high but different affinity of many proteins for polyaminomethylstyrene. The chromatography of a mixture of five dehydrogenases and human serum albumin on polyaminomethylstyrene is described. PMID:237012

  11. 21 CFR 582.5118 - Alanine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Alanine. 582.5118 Section 582.5118 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  12. 21 CFR 582.5118 - Alanine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Alanine. 582.5118 Section 582.5118 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  13. 21 CFR 582.5118 - Alanine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Alanine. 582.5118 Section 582.5118 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  14. 21 CFR 582.5118 - Alanine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Alanine. 582.5118 Section 582.5118 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  15. Alanine transport across in vitro rabbit vagina.

    PubMed

    Hajjar, J J; Mroueh, A M

    1979-04-01

    Transmural flux of alanine across the vaginal epithelium of the rabbit is a specialized mechanism. There is a net serosal to mucosal translocation of the amino acid in the absence of a concentration gradient. Changes in reproductive cycle do not influence this mechanism but, in castrated animals, it is abolished. Transport properties of vaginal epithelium is important because of increasing utilization of intravaginal contraceptives. PMID:455986

  16. Earthworms accumulate alanine in response to drought.

    PubMed

    Holmstrup, Martin; Slotsbo, Stine; Henriksen, Per G; Bayley, Mark

    2016-09-01

    Earthworms have ecologically significant functions in tropical and temperate ecosystems and it is therefore important to understand how these animals survive during drought. In order to explore the physiological responses to dry conditions, we simulated a natural drought incident in a laboratory trial exposing worms in slowly drying soil for about one month, and then analyzed the whole-body contents of free amino acids (FAAs). We investigated three species forming estivation chambers when soils dry out (Aporrectodea tuberculata, Aporrectodea icterica and Aporrectodea longa) and one species that does not estivate during drought (Lumbricus rubellus). Worms subjected to drought conditions (< -2MPa) substantially increased the concentration of FAAs and in particular alanine that was significantly upregulated in all tested species. Alanine was the most important FAA reaching 250-650μmolg(-1) dry weight in dehydrated Aporrectodea species and 300μmolg(-1) dry weight in L. rubellus. Proline was only weakly upregulated in some species as were a few other FAAs. Species forming estivation chambers (Aporrectodea spp.) did not show a better ability to conserve body water than the non-estivating species (L. rubellus) at the same drought level. These results suggest that the accumulation of alanine is an important adaptive trait in drought tolerance of earthworms in general. PMID:27107492

  17. Weak BMAA toxicity compares with that of the dietary supplement β-alanine.

    PubMed

    Lee, Moonhee; McGeer, Patrick L

    2012-07-01

    β-N-methylamino-L-alanine (BMAA) is routinely described in the literature as a potent neurotoxin and as a possible cause of neurodegenerative disorders of aging such as Alzheimer's disease, amyotrophic lateral sclerosis, and the amyotrophic lateral sclerosis/parkinsonism-dementia complex (ALS-PDC) syndrome of Guam. To test for the toxicity of BMAA against human neurons, we chose 3 standard human neuronal cell lines for examination and compared the toxicity with the muscle-building nutritional supplement β-alanine, glutamic acid, and the established excitotoxins kainic acid, quisqualic acid, ibotenic acid, domoic acid, and quinolinic acid. Neurotoxicity was measured by the standard lactic dehydrogenase release assay after 5-day incubation of NT-2, SK-N-MC, and SH-SY5Y cells with BMAA and the comparative substances. The ED(50) of BMAA, corresponding to 50% death of neurons, varied from 1430 to 1604 μM while that of the nutritional supplement β-alanine was almost as low, varying from 1945 to 2134 μM. The ED(50) for glutamic acid and the 5 established excitotoxins was 200- to 360-fold lower, varying from 44 to 70 μM. These in vitro data are in accord with previously published in vivo data on BMAA toxicity in which mice showed no pathological effects from oral consumption of 500 mg/kg/day for more than 10 weeks. Because there are no known natural sources of BMAA that would make consumption of such amounts possible, and because the toxicity observed was in the same range as the nutritional supplement β-alanine, the hypothesis that BMAA is an environmental hazard and a contributor to degenerative neurological diseases becomes untenable. PMID:21236519

  18. L-alanine uptake in membrane vesicles from Mytilus edulis gills

    SciTech Connect

    Pajor, A.M.; Wright, S.H.

    1986-03-05

    Previous studies have shown that gills from M. edulis can accumulate L-alanine from seawater by a saturable process specific for ..cap alpha..-neutral amino acids. This uptake occurs against chemical gradients in excess of 10/sup 6/ to 1. To further characterize this uptake, membrane vesicles were prepared from M. edulis gill tissue by differential centrifugation. Enrichments of putative enzyme markers (relative to that in combined initial fractions) were as follows: ..gamma..-Glutamyltranspeptidase, 25-30x; Alkaline Phosphatase, 5-6x; K/sup +/-dependent para-Nitrophenyl Phosphatase, 3-5x; Succinate Dehydrogenase 0.1-0.2x. These results suggest that the preparation is enriched in plasma membranes, although histochemical studies will be needed to verify this. The time course of /sup 14/C-L-alanine uptake in the presence of inwardly-directed Na/sup +/ gradient showed a transient overshoot (3-5 fold) at 10 minutes which decreased to equilibrium after six hours. The size of the overshoot and early uptake rates depended on the size of the inwardly-directed Na/sup +/ gradient. No overshoot was seen in the presence of inwardly-directed gradients of LiCl or choline-Cl, or with equilibrium concentrations NaCl or mannitol. A reduced overshoot was seen with a gradient of NaSCN. A small overshoot was seen with an inwardly-directed gradient of KCl. Transport of L-alanine included saturable and diffusive components. Uptake of 6 ..mu..M L-alanine was inhibited more than 80% by 100 ..mu..M ..cap alpha..-zwitterionic amino acids (alanine, leucine, glycine); by 30 to 75% by proline, aspartate and lysine; and less than 20% by a ..beta..-amino acid, taurine. The results of these experiments agree with those from intact gill studies and support the hypothesis that L-alanine is transported into gill epithelial cells by a secondary active transport process involving Na/sup +/.

  19. Cyanobacterial NADPH dehydrogenase complexes

    SciTech Connect

    Ogawa, Teruo; Mi, Hualing

    2007-07-01

    Cyanobacteria possess functionally distinct multiple NADPH dehydrogenase (NDH-1) complexes that are essential to CO2 uptake, photosystem-1 cyclic electron transport and respiration. The unique nature of cyanobacterial NDH-1 complexes is the presence of subunits involved in CO2 uptake. Other than CO2 uptake, chloroplastic NDH-1 complex has similar role as cyanobacterial NDH-1 complexes in photosystem-1 cyclic electron transport and respiration (chlororespiration). In this mini-review we focus on the structure and function of cyanobacterial NDH-1 complexes and their phylogeny. The function of chloroplastic NDH-1 complex and characteristics of plants defective in NDH-1 are also described forcomparison.

  20. Genetics Home Reference: pyruvate dehydrogenase deficiency

    MedlinePlus

    ... control the activity of the complex: pyruvate dehydrogenase phosphatase turns on (activates) the complex, while pyruvate dehydrogenase ... binding protein (the PDHX gene), and pyruvate dehydrogenase phosphatase (the PDP1 gene) have been identified in people ...

  1. Crystallization and preliminary crystallographic analysis of d-alanine-d-alanine ligase from Streptococcus mutans

    SciTech Connect

    Lu, Yong-Zhi; Sheng, Yu; Li, Lan-Fen; Tang, De-Wei; Liu, Xiang-Yu; Zhao, Xiaojun; Liang, Yu-He Su, Xiao-Dong

    2007-09-01

    A potential target for antibiotic drug design, d-alanine-d-alanine ligase from S. mutans, was expressed in E. coli, purified and crystallized. Diffraction data were collected to 2.4 Å resolution. d-Alanine-d-alanine ligase is encoded by the gene ddl (SMU-599) in Streptococcus mutans. This ligase plays a very important role in cell-wall biosynthesis and may be a potential target for drug design. To study the structure and function of this ligase, the gene ddl was amplified from S. mutans genomic DNA and cloned into the expression vector pET28a. The protein was expressed in soluble form in Escherichia coli strain BL21 (DE3). Homogeneous protein was obtained using a two-step procedure consisting of Ni{sup 2+}-chelating and size-exclusion chromatography. Purified protein was crystallized and the cube-shaped crystal diffracted to 2.4 Å. The crystal belongs to space group P3{sub 1}21 or P3{sub 2}21, with unit-cell parameters a = b = 79.50, c = 108.97 Å. There is one molecule per asymmetric unit.

  2. Racemization of alanine by the alanine racemases from Salmonella typhimurium and Bacillus stearothermophilus: energetic reaction profiles

    SciTech Connect

    Faraci, W.S.; Walsh, C.T.

    1988-05-03

    Alanine racemases are bacterial pyridoxal 5'-phosphate (PLP) dependent enzymes providing D-alanine as an essential building block for biosynthesis of the peptidoglycan layer of the cell wall. Two isozymic alanine racemases, encoded by the dadB gene and the alr gene, from the Gram-negative mesophilic Salmonella typhimurium and one from the Gram-positive thermophilic Bacillus stearothermophilus have been examined for the racemization mechanism. Substrate deuterium isotope effects and solvent deuterium isotope effects have been measured in both L ..-->.. D and D..-->.. L directions for all three enzymes to assess the degree to which abstraction of the ..cap alpha..-proton or protonation of substrate PLP carbanion is limiting in catalysis. Additionally, experiments measuring internal return of ..cap alpha..-/sup 3/H from substrate to product and solvent exchange/substrate conversion experiments in /sup 3/H/sub 2/O have been used with each enzyme to examine the partitioning of substrate PLP carbanion intermediates and to obtain the relative heights of kinetically significant energy barriers in alanine racemase catalysis.

  3. International society of sports nutrition position stand: Beta-Alanine.

    PubMed

    Trexler, Eric T; Smith-Ryan, Abbie E; Stout, Jeffrey R; Hoffman, Jay R; Wilborn, Colin D; Sale, Craig; Kreider, Richard B; Jäger, Ralf; Earnest, Conrad P; Bannock, Laurent; Campbell, Bill; Kalman, Douglas; Ziegenfuss, Tim N; Antonio, Jose

    2015-01-01

    The International Society of Sports Nutrition (ISSN) provides an objective and critical review of the mechanisms and use of beta-alanine supplementation. Based on the current available literature, the conclusions of the ISSN are as follows: 1) Four weeks of beta-alanine supplementation (4-6 g daily) significantly augments muscle carnosine concentrations, thereby acting as an intracellular pH buffer; 2) Beta-alanine supplementation currently appears to be safe in healthy populations at recommended doses; 3) The only reported side effect is paraesthesia (tingling), but studies indicate this can be attenuated by using divided lower doses (1.6 g) or using a sustained-release formula; 4) Daily supplementation with 4 to 6 g of beta-alanine for at least 2 to 4 weeks has been shown to improve exercise performance, with more pronounced effects in open end-point tasks/time trials lasting 1 to 4 min in duration; 5) Beta-alanine attenuates neuromuscular fatigue, particularly in older subjects, and preliminary evidence indicates that beta-alanine may improve tactical performance; 6) Combining beta-alanine with other single or multi-ingredient supplements may be advantageous when supplementation of beta-alanine is high enough (4-6 g daily) and long enough (minimum 4 weeks); 7) More research is needed to determine the effects of beta-alanine on strength, endurance performance beyond 25 min in duration, and other health-related benefits associated with carnosine. PMID:26175657

  4. Alanine aminotransferase controls seed dormancy in barley.

    PubMed

    Sato, Kazuhiro; Yamane, Miki; Yamaji, Nami; Kanamori, Hiroyuki; Tagiri, Akemi; Schwerdt, Julian G; Fincher, Geoffrey B; Matsumoto, Takashi; Takeda, Kazuyoshi; Komatsuda, Takao

    2016-01-01

    Dormancy allows wild barley grains to survive dry summers in the Near East. After domestication, barley was selected for shorter dormancy periods. Here we isolate the major seed dormancy gene qsd1 from wild barley, which encodes an alanine aminotransferase (AlaAT). The seed dormancy gene is expressed specifically in the embryo. The AlaAT isoenzymes encoded by the long and short dormancy alleles differ in a single amino acid residue. The reduced dormancy allele Qsd1 evolved from barleys that were first domesticated in the southern Levant and had the long dormancy qsd1 allele that can be traced back to wild barleys. The reduced dormancy mutation likely contributed to the enhanced performance of barley in industrial applications such as beer and whisky production, which involve controlled germination. In contrast, the long dormancy allele might be used to control pre-harvest sprouting in higher rainfall areas to enhance global adaptation of barley. PMID:27188711

  5. Alanine aminotransferase controls seed dormancy in barley

    PubMed Central

    Sato, Kazuhiro; Yamane, Miki; Yamaji, Nami; Kanamori, Hiroyuki; Tagiri, Akemi; Schwerdt, Julian G.; Fincher, Geoffrey B.; Matsumoto, Takashi; Takeda, Kazuyoshi; Komatsuda, Takao

    2016-01-01

    Dormancy allows wild barley grains to survive dry summers in the Near East. After domestication, barley was selected for shorter dormancy periods. Here we isolate the major seed dormancy gene qsd1 from wild barley, which encodes an alanine aminotransferase (AlaAT). The seed dormancy gene is expressed specifically in the embryo. The AlaAT isoenzymes encoded by the long and short dormancy alleles differ in a single amino acid residue. The reduced dormancy allele Qsd1 evolved from barleys that were first domesticated in the southern Levant and had the long dormancy qsd1 allele that can be traced back to wild barleys. The reduced dormancy mutation likely contributed to the enhanced performance of barley in industrial applications such as beer and whisky production, which involve controlled germination. In contrast, the long dormancy allele might be used to control pre-harvest sprouting in higher rainfall areas to enhance global adaptation of barley. PMID:27188711

  6. Lactate dehydrogenase-elevating virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter describes the taxonomic classification of Lactate dehydrogenase-elevating virus (LDV). Included are: host, genome, classification, morphology, physicochemical and physical properties, nucleic acid, proteins, lipids, carbohydrates, geographic range, phylogenetic properties, biologic...

  7. Characterization of interactions of dihydrolipoamide dehydrogenase with its binding protein in the human pyruvate dehydrogenase complex

    SciTech Connect

    Park, Yun-Hee; Patel, Mulchand S.

    2010-05-07

    Unlike pyruvate dehydrogenase complexes (PDCs) from prokaryotes, PDCs from higher eukaryotes have an additional structural component, E3-binding protein (BP), for binding of dihydrolipoamide dehydrogenase (E3) in the complex. Based on the 3D structure of the subcomplex of human (h) E3 with the di-domain (L3S1) of hBP, the amino acid residues (H348, D413, Y438, and R447) of hE3 for binding to hBP were substituted singly by alanine or other residues. These substitutions did not have large effects on hE3 activity when measured in its free form. However, when these hE3 mutants were reconstituted in the complex, the PDC activity was significantly reduced to 9% for Y438A, 20% for Y438H, and 18% for D413A. The binding of hE3 mutants with L3S1 determined by isothermal titration calorimetry revealed that the binding affinities of the Y438A, Y438H, and D413A mutants to L3S1 were severely reduced (1019-, 607-, and 402-fold, respectively). Unlike wild-type hE3 the binding of the Y438A mutant to L3S1 was accompanied by an unfavorable enthalpy change and a large positive entropy change. These results indicate that hE3-Y438 and hE3-D413 play important roles in binding of hE3 to hBP.

  8. Alcohol Dehydrogenase from Methylobacterium organophilum

    PubMed Central

    Wolf, H. J.; Hanson, R. S.

    1978-01-01

    The alcohol dehydrogenase from Methylobacterium organophilum, a facultative methane-oxidizing bacterium, has been purified to homogeneity as indicated by sodium dodecyl sulfate-gel electrophoresis. It has several properties in common with the alcohol dehydrogenases from other methylotrophic bacteria. The active enzyme is a dimeric protein, both subunits having molecular weights of about 62,000. The enzyme exhibits broad substrate specificity for primary alcohols and catalyzes the two-step oxidation of methanol to formate. The apparent Michaelis constants of the enzyme are 2.9 × 10−5 M for methanol and 8.2 × 10−5 M for formaldehyde. Activity of the purified enzyme is dependent on phenazine methosulfate. Certain characteristics of this enzyme distinguish it from the other alcohol dehydrogenases of other methylotrophic bacteria. Ammonia is not required for, but stimulates the activity of newly purified enzyme. An absolute dependence on ammonia develops after storage of the purified enzyme. Activity is not inhibited by phosphate. The fluorescence spectrum of the enzyme indicates that it and the cofactor associated with it may be chemically different from the alcohol dehydrogenases from other methylotrophic bacteria. The alcohol dehydrogenases of Hyphomicrobium WC-65, Pseudomonas methanica, Methylosinus trichosporium, and several facultative methylotrophs are serologically related to the enzyme purified in this study. The enzymes of Rhodopseudomonas acidophila and of organisms of the Methylococcus group did not cross-react with the antiserum prepared against the alcohol dehydrogenase of M. organophilum. Images PMID:80974

  9. Comparison of EPR response of alanine and Gd₂O₃-alanine dosimeters exposed to TRIGA Mainz reactor.

    PubMed

    Marrale, M; Schmitz, T; Gallo, S; Hampel, G; Longo, A; Panzeca, S; Tranchina, L

    2015-12-01

    In this work we report some preliminary results regarding the analysis of electron paramagnetic resonance (EPR) response of alanine pellets and alanine pellets added with gadolinium used for dosimetry at the TRIGA research reactor in Mainz, Germany. Two set-ups were evaluated: irradiation inside PMMA phantom and irradiation inside boric acid phantom. We observed that the presence of Gd2O3 inside alanine pellets increases the EPR signal by a factor of 3.45 and 1.24 in case of PMMA and boric acid phantoms, respectively. We can conclude that in the case of neutron beam with a predominant thermal neutron component the addition of gadolinium oxide can significantly improve neutron sensitivity of alanine pellets. Monte Carlo (MC) simulations of both response of alanine and Gd-added alanine pellets with FLUKA code were performed and a good agreement was achieved for pure alanine dosimeters. For Gd2O3-alanine deviations between MC simulations and experimental data were observed and discussed. PMID:26315099

  10. Purification, characterization, and cDNA cloning of opine dehydrogenases from the polychaete rockworm Marphysa sanguinea.

    PubMed

    Endo, Noriyuki; Kan-no, Nobuhiro; Nagahisa, Eizoh

    2007-06-01

    Alanopine dehydrogenase (AlDH) and three isoforms of strombine/alanopine dehydrogenase (St/AlDH) were purified from muscle tissue of the polychaete rockworm Marphysa sanguinea. The four enzymes, which can be distinguished by the isoelectric point, are monomeric 42 kDa proteins, possess similar pH-activity profiles, and display specificity for pyruvate and NAD(H). The three isoforms of St/AlDH show equivalent Km and Vmax for glycine and L-alanine and for D-strombine and meso-alanopine. Free amino acid levels in the muscle and D-strombine accumulation in vivo during muscle activity suggest that St/AlDHs function physiologically as StDH. AlDH shows specificity for L-alanine and meso-alanopine, but not for glycine or D-strombine. The amino acid sequences of AlDH and one of the St/AlDH isoforms were determined by a combination of amino acid sequence analysis and cDNA cloning. St/AlDH cDNA consisted of 1586 bp nucleotides that encode a 399-residue protein (43,346.70 Da), and AlDH cDNA consisted of 1587 bp nucleotides that encode a 399-residue protein (43,886.68 Da). The two amino acid sequences deduced from the cDNA displayed 67% amino acid identity, with greatest similarity to that of tauropine dehydrogenase from the polychaete Arabella iricolor. PMID:17350870

  11. New insights in dihydropyrimidine dehydrogenase deficiency: a pivotal role for beta-aminoisobutyric acid?

    PubMed Central

    Van Kuilenburg, André B P; Stroomer, Alida E M; Van Lenthe, Henk; Abeling, Nico G G M; Van Gennip, Albert H

    2004-01-01

    DPD (dihydropyrimidine dehydrogenase) constitutes the first step of the pyrimidine degradation pathway, in which the pyrimidine bases uracil and thymine are catabolized to beta-alanine and the R-enantiomer of beta-AIB (beta-aminoisobutyric acid) respectively. The S-enantiomer of beta-AIB is predominantly derived from the catabolism of valine. It has been suggested that an altered homoeostasis of beta-alanine underlies some of the clinical abnormalities encountered in patients with a DPD deficiency. In the present study, we demonstrated that only a slightly decreased concentration of beta-alanine was present in the urine and plasma, whereas normal levels of beta-alanine were present in the cerebrospinal fluid of patients with a DPD deficiency. Therefore the metabolism of beta-alanine-containing peptides, such as carnosine, may be an important factor involved in the homoeostasis of beta-alanine in patients with DPD deficiency. The mean concentration of beta-AIB was approx. 2-3-fold lower in cerebrospinal fluid and urine of patients with a DPD deficiency, when compared with controls. In contrast, strongly decreased levels (10-fold) of beta-AIB were present in the plasma of DPD patients. Our results demonstrate that, under pathological conditions, the catabolism of valine can result in the production of significant amounts of beta-AIB. Furthermore, the observation that the R-enantiomer of beta-AIB is abundantly present in the urine of DPD patients suggests that significant cross-over exists between the thymine and valine catabolic pathways. PMID:14705962

  12. New insights in dihydropyrimidine dehydrogenase deficiency: a pivotal role for beta-aminoisobutyric acid?

    PubMed

    Van Kuilenburg, André B P; Stroomer, Alida E M; Van Lenthe, Henk; Abeling, Nico G G M; Van Gennip, Albert H

    2004-04-01

    DPD (dihydropyrimidine dehydrogenase) constitutes the first step of the pyrimidine degradation pathway, in which the pyrimidine bases uracil and thymine are catabolized to beta-alanine and the R-enantiomer of beta-AIB (beta-aminoisobutyric acid) respectively. The S-enantiomer of beta-AIB is predominantly derived from the catabolism of valine. It has been suggested that an altered homoeostasis of beta-alanine underlies some of the clinical abnormalities encountered in patients with a DPD deficiency. In the present study, we demonstrated that only a slightly decreased concentration of beta-alanine was present in the urine and plasma, whereas normal levels of beta-alanine were present in the cerebrospinal fluid of patients with a DPD deficiency. Therefore the metabolism of beta-alanine-containing peptides, such as carnosine, may be an important factor involved in the homoeostasis of beta-alanine in patients with DPD deficiency. The mean concentration of beta-AIB was approx. 2-3-fold lower in cerebrospinal fluid and urine of patients with a DPD deficiency, when compared with controls. In contrast, strongly decreased levels (10-fold) of beta-AIB were present in the plasma of DPD patients. Our results demonstrate that, under pathological conditions, the catabolism of valine can result in the production of significant amounts of beta-AIB. Furthermore, the observation that the R-enantiomer of beta-AIB is abundantly present in the urine of DPD patients suggests that significant cross-over exists between the thymine and valine catabolic pathways. PMID:14705962

  13. Michael hydratase alcohol dehydrogenase or just alcohol dehydrogenase?

    PubMed Central

    2014-01-01

    The Michael hydratase – alcohol dehydrogenase (MhyADH) from Alicycliphilus denitrificans was previously identified as a bi-functional enzyme performing a hydration of α,β-unsaturated ketones and subsequent oxidation of the formed alcohols. The investigations of the bi-functionality were based on a spectrophotometric assay and an activity staining in a native gel of the dehydrogenase. New insights in the recently discovered organocatalytic Michael addition of water led to the conclusion that the previously performed experiments to identify MhyADH as a bi-functional enzyme and their results need to be reconsidered and the reliability of the methodology used needs to be critically evaluated. PMID:24949265

  14. REVERSAL OF d-CYCLOSERINE INHIBITION OF BACTERIAL GROWTH BY ALANINE

    PubMed Central

    Zygmunt, Walter A.

    1962-01-01

    Zygmunt, Walter A. (Mead Johnson & Co., Evansville, Ind.). Reversal of d-cycloserine inhibition of bacterial growth by alanine. J. Bacteriol. 84:154–156. 1962.—Reversal of the antibacterial activity of d-4-amino-3-isoxazolidone by alanine in bacterial cultures actively growing on chemically defined media was compared in cultures requiring exogenous alanine and those capable of its synthesis. dl-Alanine was the most effective reversal agent in Pediococcus cerevisiae, an alanine-requiring organism, and d-alanine was effective in Escherichia coli and Staphylococcus aureus, organisms synthesizing alanine. With all three cultures, l-alanine was the least effective reversal agent. PMID:16561951

  15. Metabolomics Analysis Identifies D-Alanine-D-alanine Ligase as the Primary Lethal Target of D-cycloserine in Mycobacteria

    PubMed Central

    Halouska, Steven; Fenton, Robert J.; Zinniel, Denise K.; Marshall, Darrell D.; Barletta, Raúl G.; Powers, Robert

    2014-01-01

    D-cycloserine is an effective second line antibiotic used as a last resort to treat multi (MDR)- and extensively (XDR)- drug resistant strains of Mycobacterium tuberculosis. D-cycloserine interferes with the formation of peptidoglycan biosynthesis by competitive inhibition of Alanine racemase (Alr) and D-Alanine-D-alanine ligase (Ddl). Although, the two enzymes are known to be inhibited, the in vivo lethal target is still unknown. Our NMR metabolomics work has revealed that Ddl is the primary target of DCS, as cell growth is inhibited when the production of D-alanyl-D-alanine is halted. It is shown that inhibition of Alr may contribute indirectly by lowering the levels of D-alanine thus allowing DCS to outcompete D-alanine for Ddl binding. The NMR data also supports the possibility of a transamination reaction to produce D-alanine from pyruvate and glutamate, thereby bypassing Alr inhibition. Furthermore, the inhibition of peptidoglycan synthesis results in a cascading effect on cellular metabolism as there is a shift toward the catabolic routes to compensate for accumulation of peptidoglycan precursors. PMID:24303782

  16. Dye-linked D-amino acid dehydrogenases: biochemical characteristics and applications in biotechnology.

    PubMed

    Satomura, Takenori; Sakuraba, Haruhiko; Suye, Shin-Ichiro; Ohshima, Toshihisa

    2015-11-01

    Dye-linked D-amino acid dehydrogenases (Dye-DADHs) catalyze the dehydrogenation of free D-amino acids in the presence of an artificial electron acceptor. Although Dye-DADHs functioning in catabolism of L-alanine and as primary enzymes in electron transport chains are widely distributed in mesophilic Gram-negative bacteria, biochemical and biotechnological information on these enzymes remains scanty. This is in large part due to their instability after isolation. On the other hand, in the last decade, several novel types of Dye-DADH have been found in thermophilic bacteria and hyperthermophilic archaea, where they contribute not only to L-alanine catabolism but also to the catabolism of other amino acids, including D-arginine and L-hydroxyproline. In this minireview, we summarize recent developments in our understanding of the biochemical characteristics of Dye-DADHs and their specific application to electrochemical biosensors. PMID:26362681

  17. Postirradiation effects in alanine dosimeter probes of two different suppliers.

    PubMed

    Anton, Mathias

    2008-03-01

    The measurand relevant for the dosimetry for radiation therapy is the absorbed dose to water, DW. The Physikalisch-Technische Bundesanstalt (PTB) is establishing a secondary standard for DW for high-energy photon and electron radiation based on electron spin resonance (ESR) of the amino acid alanine. For practical applications, like, for example, intercomparison measurements using the ESR/alanine dosimetry system, the temporal evolution of the ESR signal of irradiated probes is an important issue. This postirradiation behaviour is investigated for alanine pellets of two different suppliers for different storage conditions. The influence of the storage conditions on the temporal evolution may be dependent on the type of probes used. The measurement and analysis method developed at the PTB is able to circumvent the apparent difficulties in the case of alanine/paraffin probes. Care has to be taken in case this method cannot be applied. PMID:18296760

  18. Genetics Home Reference: lactate dehydrogenase deficiency

    MedlinePlus

    ... dehydrogenase-B pieces (subunits) of the lactate dehydrogenase enzyme. This enzyme is found throughout the body and is important ... cells. There are five different forms of this enzyme, each made up of four protein subunits. Various ...

  19. Highly efficient and easy protease-mediated protein purification.

    PubMed

    Last, Daniel; Müller, Janett; Dawood, Ayad W H; Moldenhauer, Eva J; Pavlidis, Ioannis V; Bornscheuer, Uwe T

    2016-02-01

    As both research on and application of proteins are rarely focused on the resistance towards nonspecific proteases, this property remained widely unnoticed, in particular in terms of protein purification and related fields. In the present study, diverse aspects of protease-mediated protein purification (PMPP) were explored on the basis of the complementary proteases trypsin and proteinase K as well as the model proteins green fluorescent protein (GFP) from Aequorea victoria, lipase A from Candida antarctica (CAL-A), a transaminase from Aspergillus fumigatus (AspFum), quorum quenching lactonase AiiA from Bacillus sp., and an alanine dehydrogenase from Thermus thermophilus (AlaDH). While GFP and AiiA were already known to be protease resistant, the thermostable enzymes CAL-A, AspFum, and AlaDH were selected due to the documented correlation between thermostability and protease resistance. As proof of principle for PMPP, recombinant GFP remained unaffected whereas most Escherichia coli (E. coli) host proteins were degraded by trypsin. PMPP was highly advantageous compared to the widely used heat-mediated purification of commercial CAL-A. The resistance of AspFum towards trypsin was improved by rational protein design introducing point mutation R20Q. Trypsin also served as economical and efficient substitute for site-specific endopeptidases for the removal of a His-tag fused to AiiA. Moreover, proteolysis of host enzymes with interfering properties led to a strongly improved sensitivity and accuracy of the NADH assay in E. coli cell lysate for AlaDH activity measurements. Thus, PMPP is an attractive alternative to common protein purification methods and facilitates also enzyme characterization in cell lysate. PMID:26671615

  20. Structure of D-alanine-D-alanine ligase from Yersinia pestis: nucleotide phosphate recognition by the serine loop.

    PubMed

    Tran, Huyen Thi; Hong, Myoung Ki; Ngo, Ho Phuong Thuy; Huynh, Kim Hung; Ahn, Yeh Jin; Wang, Zhong; Kang, Lin Woo

    2016-01-01

    D-Alanyl-D-alanine is an essential precursor of bacterial peptidoglycan and is synthesized by D-alanine-D-alanine ligase (DDL) with hydrolysis of ATP; this reaction makes DDL an important drug target for the development of antibacterial agents. Five crystal structures of DDL from Yersinia pestis (YpDDL) were determined at 1.7-2.5 Å resolution: apo, AMP-bound, ADP-bound, adenosine 5'-(β,γ-imido)triphosphate-bound, and D-alanyl-D-alanine- and ADP-bound structures. YpDDL consists of three domains, in which four loops, loop 1, loop 2 (the serine loop), loop 3 (the ω-loop) and loop 4, constitute the binding sites for two D-alanine molecules and one ATP molecule. Some of them, especially the serine loop and the ω-loop, show flexible conformations, and the serine loop is mainly responsible for the conformational change in substrate nucleotide phosphates. Enzyme-kinetics assays were carried out for both the D-alanine and ATP substrates and a substrate-binding mechanism was proposed for YpDDL involving conformational changes of the loops. PMID:26894530

  1. Effective disposal of nitrogen waste in blood-fed Aedes aegypti mosquitoes requires alanine aminotransferase.

    PubMed

    Mazzalupo, Stacy; Isoe, Jun; Belloni, Virginia; Scaraffia, Patricia Y

    2016-01-01

    To better understand the mechanisms responsible for the success of female mosquitoes in their disposal of excess nitrogen, we investigated the role of alanine aminotransferase (ALAT) in blood-fed Aedes aegypti. Transcript and protein levels from the 2 ALAT genes were analyzed in sucrose- and blood-fed A. aegypti tissues. ALAT1 and ALAT2 exhibit distinct expression patterns in tissues during the first gonotrophic cycle. Injection of female mosquitoes with either double-stranded RNA (dsRNA)-ALAT1 or dsRNA ALAT2 significantly decreased mRNA and protein levels of ALAT1 or ALAT2 in fat body, thorax, and Malpighian tubules compared with dsRNA firefly luciferase-injected control mosquitoes. The silencing of either A. aegypti ALAT1 or ALAT2 caused unexpected phenotypes such as a delay in blood digestion, a massive accumulation of uric acid in the midgut posterior region, and a significant decrease of nitrogen waste excretion during the first 48 h after blood feeding. Concurrently, the expression of genes encoding xanthine dehydrogenase and ammonia transporter (Rhesus 50 glycoprotein) were significantly increased in tissues of both ALAT1- and ALAT2-deficient females. Moreover, perturbation of ALAT1 and ALAT2 in the female mosquitoes delayed oviposition and reduced egg production. These novel findings underscore the efficient mechanisms that blood-fed mosquitoes use to avoid ammonia toxicity and free radical damage.-Mazzalupo, S., Isoe, J., Belloni, V., Scaraffia, P. Y. Effective disposal of nitrogen waste in blood-fed Aedes aegypti mosquitoes requires alanine aminotransferase. PMID:26310269

  2. EPR/alanine dosimetry for two therapeutic proton beams

    NASA Astrophysics Data System (ADS)

    Marrale, Maurizio; Carlino, Antonio; Gallo, Salvatore; Longo, Anna; Panzeca, Salvatore; Bolsi, Alessandra; Hrbacek, Jan; Lomax, Tony

    2016-02-01

    In this work the analysis of the electron paramagnetic resonance (EPR) response of alanine pellets exposed to two different clinical proton beams employed for radiotherapy is performed. One beam is characterized by a passive delivery technique and is dedicated to the eyes treatment (OPTIS2 beam line). Alanine pellets were irradiated with a 70 MeV proton beam corresponding to 35 mm range in eye tissue. We investigated how collimators with different sizes and shape used to conform the dose to the planned target volume influence the delivered dose. For this purpose we performed measurements with varying the collimator size (Output Factor) and the results were compared with those obtained with other dosimetric techniques (such as Markus chamber and diode detector). This analysis showed that the dosimeter response is independent of collimator diameter if this is larger than or equal to 10 mm. The other beam is characterized by an active spot-scanning technique, the Gantry1 beam line (maximum energy 230 MeV), and is used to treat deep-seated tumors. The dose linearity of alanine response in the clinical dose range was tested and the alanine dose response at selected locations in depth was measured and compared with the TPS planned dose in a quasi-clinical scenario. The alanine response was found to be linear in the dose in the clinical explored range (from 10 to 70 Gy). Furthermore, a depth dose profile in a quasi-clinical scenario was measured and compared to the dose computed by the Treatment Planning System PSIPLAN. The comparison of calibrated proton alanine measurements and TPS dose shows a difference under 1% in the SOBP and a "quenching" effect up to 4% in the distal part of SOBP. The positive dosimetric characteristics of the alanine pellets confirm the feasibility to use these detectors for "in vivo" dosimetry in clinical proton beams.

  3. The structure of alanine racemase from Acinetobacter baumannii

    PubMed Central

    Davis, Emily; Scaletti-Hutchinson, Emma; Opel-Reading, Helen; Nakatani, Yoshio; Krause, Kurt L.

    2014-01-01

    Acinetobacter baumannii is an opportunistic Gram-negative bacterium which is a common cause of hospital-acquired infections. Numerous antibiotic-resistant strains exist, emphasizing the need for the development of new antimicrobials. Alanine racemase (Alr) is a pyridoxal 5′-phosphate dependent enzyme that is responsible for racemization between enantiomers of alanine. As d-alanine is an essential component of the bacterial cell wall, its inhibition is lethal to prokaryotes, making it an excellent antibiotic drug target. The crystal structure of A. baumannii alanine racemase (AlrAba) from the highly antibiotic-resistant NCTC13302 strain has been solved to 1.9 Å resolution. Comparison of AlrAba with alanine racemases from closely related bacteria demonstrates a conserved overall fold. The substrate entryway and active site of the enzymes were shown to be highly conserved. The structure of AlrAba will provide the template required for future structure-based drug-design studies. PMID:25195891

  4. Caramelization of maltose solution in presence of alanine.

    PubMed

    Fadel, H H M; Farouk, A

    2002-01-01

    Two solutions of maltose in water were used to prepare caramels. Alanine as a catalyst was added to one of these solutions. The caramelization was conducted at 130 degrees C for total time period 90 minutes. Convenient samples were taken of each caramel solution every 30 min and subjected to sensory analysis and isolation of volatile components. The odour and colour sensory tests were evaluated according to the international standard methods (ISO). The results showed that, the presence of alanine gave rise to a high significant (P < 0.01) decrease in acid attributes and remarkable increase in the sweet and caramel attributes, which are the most important caramel notes. On the other hand the increase in heating time in presence of alanine as a catalyst resulted in a high significant (P < 0.01) increase in the browning rate of caramel solution. The new technique Solid Phase Micro Extraction (SPME) was used for trapping the volatile components in the headspace of each caramel samples followed by thermal desorption and GC and GC - MS analysis. The 5-hydroxymethyl-2-furfural (HMF), the main characteristic caramel product, showed its highest value in sample containing alanine after heating for 60 minutes. The best sensory results of the sample contains alanine were confirmed by the presence of high concentrations of the most potent odorants of caramel besides to the formation of some volatile compounds have caramel like flavours such as 2-acetyl pyrrole, 2-furanones and 1-(2-furanyl)1,2-propandione. PMID:12395187

  5. Morphosynthesis of alanine mesocrystals by pH control.

    PubMed

    Ma, Yurong; Cölfen, Helmut; Antonietti, Markus

    2006-06-01

    Crystallization of DL-alanine is studied as a single polymorph model case to analyze the different modes of crystallization of polar organic molecules in absence of any structure directing additives. Depending on supersaturation, which is controlled either by temperature or by pH, and in the absence of additives, crystallization by mesoscale assembly of nanoparticles is found over a wide range of conditions, leading to so-called mesocrystals. This supplements the classical molecule-based crystallization mechanism, which is identified at lower supersaturations and at pH values away from the isoelectric point (IEP). The resulting alanine crystals are characterized by SEM, XRD, and single-crystal analysis. Time-resolved conductivity measurements and dynamic light scattering of the reaction solutions reveal information about precursor structures and reaction kinetics. A formation mechanism is proposed for the alanine mesocrystals. PMID:16771332

  6. First-principles studies of pure and fluorine substituted alanines

    NASA Astrophysics Data System (ADS)

    Ahmad, Sardar; Vaizie, Hamide; Rahnamaye Aliabad, H. A.; Ahmad, Rashid; Khan, Imad; Ali, Zahid; Jalali-Asadabadi, S.; Ahmad, Iftikhar; Khan, Amir Abdullah

    2016-05-01

    This paper communicates the structural, electronic and optical properties of L-alanine, monofluoro and difluoro substituted alanines using density functional calculations. These compounds exist in orthorhombic crystal structure and the calculated structural parameters such as lattice constants, bond angles and bond lengths are in agreement with the experimental results. L-alanine is an indirect band gap insulator, while its fluorine substituted compounds (monofluoroalanine and difluoroalanine) are direct band gap insulators. The substitution causes reduction in the band gap and hence these optically tailored direct wide band gap materials have enhanced optical properties in the ultraviolet (UV) region of electromagnetic spectrum. Therefore, optical properties like dielectric function, refractive index, reflectivity and energy loss function are also investigated. These compounds have almost isotropic nature in the lower frequency range while at higher energies, they have a significant anisotropic nature.

  7. Atomic Layer Deposition of L-Alanine Polypeptide

    DOE PAGESBeta

    Fu, Yaqin; Li, Binsong; Jiang, Ying-Bing; Dunphy, Darren R.; Tsai, Andy; Tam, Siu-Yue; Fan, Hongyou Y.; Zhang, Hongxia; Rogers, David; Rempe, Susan; et al

    2014-10-30

    L-Alanine polypeptide thin films were synthesized via atomic layer deposition (ALD). Rather, instead of using an amino acid monomer as the precursor, an L-alanine amino acid derivatized with a protecting group was used to prevent self-polymerization, increase the vapor pressure, and allow linear cycle-by-cycle growth emblematic of ALD. Moreover, the successful deposition of a conformal polypeptide film has been confirmed by FTIR, TEM, and Mass Spectrometry, and the ALD process has been extended to polyvaline.

  8. Formaldehyde dehydrogenase preparations from Methylococcus capsulatus (Bath) comprise methanol dehydrogenase and methylene tetrahydromethanopterin dehydrogenase.

    PubMed

    Adeosun, Ekundayo K; Smith, Thomas J; Hoberg, Anne-Mette; Velarde, Giles; Ford, Robert; Dalton, Howard

    2004-03-01

    In methylotrophic bacteria, formaldehyde is an important but potentially toxic metabolic intermediate that can be assimilated into biomass or oxidized to yield energy. Previously reported was the purification of an NAD(P)(+)-dependent formaldehyde dehydrogenase (FDH) from the obligate methane-oxidizing methylotroph Methylococcus capsulatus (Bath), presumably important in formaldehyde oxidation, which required a heat-stable factor (known as the modifin) for FDH activity. Here, the major protein component of this FDH preparation was shown by biophysical techniques to comprise subunits of 64 and 8 kDa in an alpha(2)beta(2) arrangement. N-terminal sequencing of the subunits of FDH, together with enzymological characterization, showed that the alpha(2)beta(2) tetramer was a quinoprotein methanol dehydrogenase of the type found in other methylotrophs. The FDH preparations were shown to contain a highly active NAD(P)(+)-dependent methylene tetrahydromethanopterin dehydrogenase that was the probable source of the NAD(P)(+)-dependent formaldehyde oxidation activity. These results support previous findings that methylotrophs possess multiple pathways for formaldehyde dissimilation. PMID:14993320

  9. Stereoselective aminoacylation of a dinucleoside monophosphate by the imidazolides of DL-alanine and N-(tert-butoxycarbonyl)-DL-alanine

    NASA Technical Reports Server (NTRS)

    Profy, A. T.; Usher, D. A.

    1984-01-01

    The aminoacylation of diinosine monophosphate was studied experimentally. When the acylating agent was the imidazolide of N-(tert-butoxycarbonyl)-DL-alanine, a 40 percent enantiomeric excess of the isomer was incorporated at the 2' site and the positions of equilibrium for the reversible 2'-3' migration reaction differed for the D and L enantiomers. The reactivity of the nucleoside hydroxyl groups was found to decrease on the order 2'(3') less than internal 2' and less than 5', and the extent of the reaction was affected by the concentration of the imidazole buffer. Reaction of IpI with imidazolide of unprotected DL-alanine, by contrast, led to an excess of the D isomer at the internal 2' site. Finally, reaction with the N-carboxy anhydride of DL-alanine occurred without stereoselection. These results are found to be relevant to the study of the evolution of optical chemical activity and the origin of genetically directed protein synthesis.

  10. Two alanine aminotranferases link mitochondrial glycolate oxidation to the major photorespiratory pathway in Arabidopsis and rice.

    PubMed

    Niessen, Markus; Krause, Katrin; Horst, Ina; Staebler, Norma; Klaus, Stephanie; Gaertner, Stefanie; Kebeish, Rashad; Araujo, Wagner L; Fernie, Alisdair R; Peterhansel, Christoph

    2012-04-01

    The major photorespiratory pathway in higher plants is distributed over chloroplasts, mitochondria, and peroxisomes. In this pathway, glycolate oxidation takes place in peroxisomes. It was previously suggested that a mitochondrial glycolate dehydrogenase (GlcDH) that was conserved from green algae lacking leaf-type peroxisomes contributes to photorespiration in Arabidopsis thaliana. Here, the identification of two Arabidopsis mitochondrial alanine:glyoxylate aminotransferases (ALAATs) that link glycolate oxidation to glycine formation are described. By this reaction, the mitochondrial side pathway produces glycine from glyoxylate that can be used in the glycine decarboxylase (GCD) reaction of the major pathway. RNA interference (RNAi) suppression of mitochondrial ALAAT did not result in major changes in metabolite pools under standard conditions or enhanced photorespiratroy flux, respectively. However, RNAi lines showed reduced photorespiratory CO(2) release and a lower CO(2) compensation point. Mitochondria isolated from RNAi lines are incapable of converting glycolate to CO(2), whereas simultaneous overexpression of GlcDH and ALAATs in transiently transformed tobacco leaves enhances glycolate conversion. Furthermore, analyses of rice mitochondria suggest that the side pathway for glycolate oxidation and glycine formation is conserved in monocotyledoneous plants. It is concluded that the photorespiratory pathway from green algae has been functionally conserved in higher plants. PMID:22268146

  11. Respiration of [14C]alanine by the ectomycorrhizal fungus Paxillus involutus.

    PubMed

    Chalot, M; Brun, A; Finlay, R D; Söderström, B

    1994-08-01

    The ectomycorrhizal fungus Paxillus involutus efficiently took up exogenously supplied [14C]alanine and rapidly converted it to pyruvate, citrate, succinate, fumarate and to CO2, thus providing direct evidence for the utilisation of alanine as a respiratory substrate. [14C]alanine was further actively metabolised to glutamate, glutamine and aspartate. Exposure to aminooxyacetate completely suppressed 14CO2 evolution and greatly reduced the flow of carbon from [14C]alanine to tricarboxylic acid cycle intermediates and amino acids, suggesting that alanine aminotransferase plays a pivotal role in alanine metabolism in Paxillus involutus. PMID:8082830

  12. Spectrophotometric readout for an alanine dosimeter for food irradiation applications

    NASA Astrophysics Data System (ADS)

    Ebraheem, S.; Beshir, W. B.; Eid, S.; Sobhy, R.; Kovács, A.

    2003-06-01

    The alanine-electron spin resonance (EPR) readout system is well known as a reference and transfer dosimetry system for the evaluation of high doses in radiation processing. The high cost of an EPR/alanine dosimetry system is a serious handicap for large-scale routine application in irradiation facilities. In this study, the use of a complex produced by dissolving irradiated L-alanine in 1,4-phenyl diammonium dichloride solution was investigated for dosimetry purposes. This complex—having a purple colour—has an increasing absorbance with increasing dose in the range of 1-20 kGy. The applicability of spectrophotometric evaluation was studied by measuring the absorbance intensity of this complex at 360 and 505 nm, respectively. Fluorimetric evaluation was also investigated by measuring the emission of the complex at 435 nm as a function of dose. The present method is easy for routine application. The effect of the dye concentration as well as the suitable amount of irradiated alanine has been studied. With respect to routine application, the stability of the product complex after its formation was also investigated.

  13. Formation of {gamma}-alumina nanorods in presence of alanine

    SciTech Connect

    Dabbagh, Hossein A.; Rasti, Elham; Yalfani, Mohammad S.; Medina, Francesc

    2011-02-15

    Graphical abstract: Nanorod aluminas with a possible hexagonal symmetry, high surface area and relatively narrow pore size distribution were obtained. Research highlights: {yields} Research highlights {yields} Boehmite was prepared using a green sol-gel process in the presence of alanine. {yields} Nanorod aluminas with a high surface area were obtained. {yields} Addition of alanine would shape the size of the holes and crevices. {yields} The morphologies of the nanorods were revealed by transmission electron microscope. -- Abstract: Boehmite and alumina nanostructures were prepared using a simple green sol-gel process in the presence of alanine in water medium at room temperature. The uncalcined (dried at 200 {sup o}C) and the calcined materials (at 500, 600 and 700 {sup o}C for 4 h) were characterized using XRD, TEM, SEM, N{sub 2} physisorption and TGA. Nanorod aluminas with a possible hexagonal symmetry, high surface area and relatively narrow pore size distribution were obtained. The surface area was enhanced and crystallization was retarded as the alanine content increased. The morphologies of the nanoparticles and nanorods were revealed by a transmission electron microscope (TEM).

  14. Cellobiose dehydrogenase in cellulose degradation

    SciTech Connect

    Eriksson, L.; Igarashi, Kiyohiko; Samejima, Masahiro

    1996-10-01

    Cellobiose dehydrogenase is produced by a variety of fungi. Although it was already discovered during the 70`s, it`s role in cellulose and lignin degradation is yet ambiguous. The enzyme contains both heme and FAD as prosthetic groups, and seems to have a domain specifically designed to bind the enzyme to cellulose. It`s affinity to amorphous cellulose is higher than to crystalline cellulose. We will report on the binding behavior of the enzyme, its usefulness in elucidation of cellulose structures and also, possibilities for applications such as its use in measuring individual and synergistic mechanisms for cellulose degradation by endo- and exo-glucanases.

  15. Beta-alanine supplementation in high-intensity exercise.

    PubMed

    Harris, Roger C; Sale, Craig

    2012-01-01

    Glycolysis involves the oxidation of two neutral hydroxyl groups on each glycosyl (or glucosyl) unit metabolised, yielding two carboxylic acid groups. During low-intensity exercise these, along with the remainder of the carbon skeleton, are further oxidised to CO(2) and water. But during high-intensity exercise a major portion (and where blood flow is impaired, then most) is accumulated as lactate anions and H(+). The accumulation of H(+) has deleterious effects on muscle function, ultimately impairing force production and contributing to fatigue. Regulation of intracellular pH is achieved over time by export of H(+) out of the muscle, although physicochemical buffers in the muscle provide the first line of defence against H(+) accumulation. In order to be effective during high-intensity exercise, buffers need to be present in high concentrations in muscle and have pK(a)s within the intracellular exercise pH transit range. Carnosine (β-alanyl-L-histidine) is ideal for this role given that it occurs in millimolar concentrations within the skeletal muscle and has a pK(a) of 6.83. Carnosine is a cytoplasmic dipeptide formed by bonding histidine and β-alanine in a reaction catalysed by carnosine synthase, although it is the availability of β-alanine, obtained in small amounts from hepatic synthesis and potentially in greater amounts from the diet that is limiting to synthesis. Increasing muscle carnosine through increased dietary intake of β-alanine will increase the intracellular buffering capacity, which in turn might be expected to increase high-intensity exercise capacity and performance where this is pH limited. In this study we review the role of muscle carnosine as an H(+) buffer, the regulation of muscle carnosine by β-alanine, and the available evidence relating to the effects of β-alanine supplementation on muscle carnosine synthesis and the subsequent effects of this on high-intensity exercise capacity and performance. PMID:23075550

  16. The unresolved puzzle why alanine extensions cause disease.

    PubMed

    Winter, Reno; Liebold, Jens; Schwarz, Elisabeth

    2013-08-01

    The prospective increase in life expectancy will be accompanied by a rise in the number of elderly people who suffer from ill health caused by old age. Many diseases caused by aging are protein misfolding diseases. The molecular mechanisms underlying these disorders receive constant scientific interest. In addition to old age, mutations also cause congenital protein misfolding disorders. Chorea Huntington, one of the most well-known examples, is caused by triplet extensions that can lead to more than 100 glutamines in the N-terminal region of huntingtin, accompanied by huntingtin aggregation. So far, nine disease-associated triplet extensions have also been described for alanine codons. The extensions lead primarily to skeletal malformations. Eight of these proteins represent transcription factors, while the nuclear poly-adenylate binding protein 1, PABPN1, is an RNA binding protein. Additional alanines in PABPN1 lead to the disease oculopharyngeal muscular dystrophy (OPMD). The alanine extension affects the N-terminal domain of the protein, which has been shown to lack tertiary contacts. Biochemical analyses of the N-terminal domain revealed an alanine-dependent fibril formation. However, fibril formation of full-length protein did not recapitulate the findings of the N-terminal domain. Fibril formation of intact PABPN1 was independent of the alanine segment, and the fibrils displayed biochemical properties that were completely different from those of the N-terminal domain. Although intranuclear inclusions have been shown to represent the histochemical hallmark of OPMD, their role in pathogenesis is currently unclear. Several cell culture and animal models have been generated to study the molecular processes involved in OPMD. These studies revealed a number of promising future therapeutic strategies that could one day improve the quality of life for the patients. PMID:23612654

  17. Betaine aldehyde dehydrogenase in sorghum.

    PubMed Central

    Wood, A J; Saneoka, H; Rhodes, D; Joly, R J; Goldsbrough, P B

    1996-01-01

    The ability to synthesize and accumulate glycine betaine is wide-spread among angiosperms and is thought to contribute to salt and drought tolerance. In plants glycine betaine is synthesized by the two-step oxidation of choline via the intermediate betaine aldehyde, catalyzed by choline monooxygenase and betaine aldehyde dehydrogenase (BADH). Two sorghum (Sorghum bicolor) cDNA clones, BADH1 and BADH15, putatively encoding betaine aldehyde dehydrogenase were isolated and characterized. BADH1 is a truncated cDNA of 1391 bp. BADH15 is a full-length cDNA clone, 1812 bp in length, predicted to encode a protein of 53.6 kD. The predicted amino acid sequences of BADH1 and BADH15 share significant homology with other plant BADHs. The effects of water deficit on BADH mRNA expression, leaf water relations, and glycine betaine accumulation were investigated in leaves of preflowering sorghum plants. BADH1 and BADH15 mRNA were both induced by water deficit and their expression coincided with the observed glycine betaine accumulation. During the course of 17 d, the leaf water potential in stressed sorghum plants reached -2.3 MPa. In response to water deficit, glycine betaine levels increased 26-fold and proline levels increased 108-fold. In severely stressed plants, proline accounted for > 60% of the total free amino acid pool. Accumulation of these compatible solutes significantly contributed to osmotic potential and allowed a maximal osmotic adjustment of 0.405 MPa. PMID:8934627

  18. Formation of simple biomolecules from alanine in ocean by impacts

    NASA Astrophysics Data System (ADS)

    Umeda, Y.; Sekine, T.; Furukawa, Y.; Kakegawa, T.; Kobayashi, T.

    2013-12-01

    The biomolecules on the Earth are thought either to have originated from the extraterrestrial parts carried with flying meteorites or to have been formed from the inorganic materials on the Earth through given energy. From the standpoint to address the importance of impact energy, it is required to simulate experimentally the chemical reactions during impacts, because violent impacts may have occurred 3.8-4.0 Gyr ago to create biomolecules initially. It has been demonstrated that shock reactions among ocean (H2O), atmospheric nitrogen, and meteoritic constitution (Fe) can induce locally reduction environment to form simple bioorganic molecules such as ammonia and amino acid (Nakazawa et al., 2005; Furukawa et al., 2009). We need to know possible processes for alanine how chemical reactions proceed during repeated impacts and how complicated biomolecules are formed. Alanine can be formed from glycine (Umeda et al., in preparation). In this study, we carried out shock recovery experiments at pressures of 4.4-5.7 GPa to investigate the chemical reactions of alanine. Experiments were carried out with a propellant gun. Stainless steel containers (30 mm in diameter, 30 mm long) with 13C-labeled alanine aqueous solution immersed in olivine or hematite powders were used as targets. Air gap was present in the sample room (18 mm in diameter, 2 mm thick) behind the sample. The powder, solution, and air represent meteorite, ocean, and atmosphere on early Earth, respectively. Two powders of olivine and hematite help to keep the oxygen fugacity low and high during experiments, respectively in order to investigate the effect of oxygen fugacity on chemical processes of alanine. The recovered containers, after cleaned completely, were immersed into liquid nitrogen to freeze sample solution and then we drilled on the impact surface to extract water-soluble run products using pure water. Thus obtained products were analyzed by LC/MS for four amino acids (glycine, alanine, valine, and

  19. Structure of the Mycobacterium tuberculosis D-Alanine:D-Alanine Ligase, a Target of the Antituberculosis Drug D-Cycloserine

    SciTech Connect

    Bruning, John B.; Murillo, Ana C.; Chacon, Ofelia; Barletta, Raúl G.; Sacchettini, James C.

    2011-09-28

    D-Alanine:D-alanine ligase (EC 6.3.2.4; Ddl) catalyzes the ATP-driven ligation of two D-alanine (D-Ala) molecules to form the D-alanyl:D-alanine dipeptide. This molecule is a key building block in peptidoglycan biosynthesis, making Ddl an attractive target for drug development. D-Cycloserine (DCS), an analog of D-Ala and a prototype Ddl inhibitor, has shown promise for the treatment of tuberculosis. Here, we report the crystal structure of Mycobacterium tuberculosis Ddl at a resolution of 2.1 {angstrom}. This structure indicates that Ddl is a dimer and consists of three discrete domains; the ligand binding cavity is at the intersection of all three domains and conjoined by several loop regions. The M. tuberculosis apo Ddl structure shows a novel conformation that has not yet been observed in Ddl enzymes from other species. The nucleotide and D-alanine binding pockets are flexible, requiring significant structural rearrangement of the bordering regions for entry and binding of both ATP and D-Ala molecules. Solution affinity and kinetic studies showed that DCS interacts with Ddl in a manner similar to that observed for D-Ala. Each ligand binds to two binding sites that have significant differences in affinity, with the first binding site exhibiting high affinity. DCS inhibits the enzyme, with a 50% inhibitory concentration (IC{sub 50}) of 0.37 mM under standard assay conditions, implicating a preferential and weak inhibition at the second, lower-affinity binding site. Moreover, DCS binding is tighter at higher ATP concentrations. The crystal structure illustrates potential drugable sites that may result in the development of more-effective Ddl inhibitors.

  20. Methemoglobin reduction mediated by D-amino acid dehydrogenase in Propsilocerus akamusi (Tokunaga) larvae.

    PubMed

    Kobori, Hiroki; Tanigawa, Minoru; Maeda, Shintaro; Hori, Hiroshi; Yubisui, Toshitsugu; Nagata, Yoko

    2015-06-01

    A methemoglobin (metHb) reduction system is required for aerobic respiration. In humans, Fe(III)-heme-bearing metHb (the oxidized form of hemoglobin), which cannot bind oxygen, is converted to Fe(II)-heme-bearing oxyhemoglobin (oxyHb, the reduced form), which can bind oxygen, in a system comprising NADH, NADH-cytochrome b5 reductase, and cytochrome b5. However, the mechanism of metHb reduction in organisms that inhabit oxygen-deficient environments is unknown. In the coelomic fluid of the larvae of Propsilocerus akamusi, which inhabit a microaerobic environment, we found that metHb was reduced by D-alanine. We purified an FAD-containing enzyme, D-amino acid dehydrogenase (DAD), and component V hemoglobin from the larvae. Using the purified components and spectrophotometric analyses, we showed a novel function of DAD: DAD-mediation of P. akamusi component V metHb reduction with using D-alanine as an electron donor. P. akamusi larvae possess this D-alanine-DAD metHb reduction system in addition to a previously discovered NADH-NADH-cytochrome b5 reductase system. This is the first report of the presence of DAD in a multicellular organism. The molecular mass of DAD was estimated to be 45 kDa. The optimal pH and temperature of the enzyme were 7.4 and 20 °C, respectively, and the optimal substrate was D-alanine. The enzyme activity was inhibited by benzoate and sulfhydryl-binding reagents. PMID:25896287

  1. Degradation of Glycine and Alanine on Irradiated Quartz

    NASA Astrophysics Data System (ADS)

    Pawlikowski, Maciej; Benko, Aleksandra; Wróbel, Tomasz P.

    2013-04-01

    Recent researches suggest participation of minerals in the formation of life under primordial conditions. Among all of the minerals, quartz seems to be one of the most probable to take part in such processes. However, an external source of energy is needed, e.g. electric discharge. A device simulating the proposed conditions was designed and was used to simulate prebiotic conditions. Investigation of processes occurring during the stimulation of quartz with electric discharge was studied by means of Ultraviolet-visible (UV-VIS) spectroscopy, in order to monitor the generation kinetics of free radicals. Additionally, infrared spectroscopy was applied to identify chemical reaction products created in a solution of alanine or glycine, in the presence of quartz treated with electric discharge. Formation of increased amounts of free radicals, compared to experiments performed without quartz and/or amino acid, is reported, along with identification of possible degradation products of alanine. No synthetic reactions were observed.

  2. Single motoneuron succinate dehydrogenase activity.

    PubMed

    Chalmers, G R; Edgerton, V R

    1989-07-01

    We have developed a quantitative histochemical assay for measurement of succinate dehydrogenase (SDH) activity in single motoneurons. A computer image processing system was used to quantify the histochemical enzyme reaction product and to follow the time course of the reaction. The optimal concentration for each of the ingredients of the incubation medium for the SDH reaction was determined and the importance of using histochemical "blanks" in the determination of enzymatic activity was demonstrated. The enzymatic activity was linear with respect to reaction time and tissue thickness. The procedure described meets the criteria generally considered essential for establishment of a quantitative histochemical assay. The assay was then used to examine the SDH activity of cat and rat motoneurons. It was found that motoneurons with a small soma size had a wide range of SDH activity, whereas those with a large soma size were restricted to low SDH activity. PMID:2732457

  3. Glucose-6-Phosphate Dehydrogenase Deficiency.

    PubMed

    Luzzatto, Lucio; Nannelli, Caterina; Notaro, Rosario

    2016-04-01

    G6PD is a housekeeping gene expressed in all cells. Glucose-6-phosphate dehydrogenase (G6PD) is part of the pentose phosphate pathway, and its main physiologic role is to provide NADPH. G6PD deficiency, one of the commonest inherited enzyme abnormalities in humans, arises through one of many possible mutations, most of which reduce the stability of the enzyme and its level as red cells age. G6PD-deficient persons are mostly asymptomatic, but they can develop severe jaundice during the neonatal period and acute hemolytic anemia when they ingest fava beans or when they are exposed to certain infections or drugs. G6PD deficiency is a global health issue. PMID:27040960

  4. Physiological hypercortisolemia increases proteolysis, glutamine, and alanine production

    SciTech Connect

    Darmaun, D.; Matthews, D.E.; Bier, D.M. Cornell Univ. Medical College, New York, NY )

    1988-09-01

    Physiological elevations of plasma cortisol levels, as are encountered in stress and severe trauma, were produced in six normal subjects by infusing them with hydrocortisone for 64 h. Amino acid kinetics were measured in the postabsorptive state using three 4-h infusions of L-(1-{sup 13}C)leucine, L-phenyl({sup 2}H{sub 5})phenylalanine, L-(2-{sup 15}N)glutamine, and L-(1-{sup 13}C)alanine tracers (1) before, (2) at 12 h, and (3) at 60 h of cortisol infusion. Before and throughout the study, the subjects ate a normal diet of adequate protein and energy intake. The cortisol infusion raised plasma cortisol levels significantly from 10 {plus minus} 1 to 32 {plus minus} 4 {mu}g/dl, leucine flux from 83 {plus minus} 3 to 97 {plus minus} 3 {mu}mol{center dot}kg{sup {minus}1}{center dot}h{sup {minus}1}, and phenylalanine flux from 34 {plus minus} 1 to 39 {plus minus} 1 (SE) {mu}mol{center dot}kg{sup {minus}1}{center dot}h{sup {minus}1} after 12 h of cortisol infusion. These increases were maintained until the cortisol infusion was terminated. These nearly identical 15% increases in two different essential amino acid appearance rates are reflective of increased whole body protein breakdown. Glutamine flux rose by 12 h of cortisol infusion and remained elevated at the same level at 64 h. The increase in flux was primarily due to a 55% increase in glutamine de novo synthesis. Alanine flux increased with acute hypercortisolemia and increased further at 60 h of cortisol infusion, a result primarily of increased alanine de novo synthesis. Insulin, alanine, and lactate plasma levels responded similarly with significant rises between the acute and chronic periods of cortisol infusion. Thus hypercortisolemia increases both protein breakdown and the turnover of important nonessential amino acids for periods of up to 64 h.

  5. Crystal Structures of Aedes Aegypt Alanine Glyoxylate Aminotransferase

    SciTech Connect

    Han,Q.; Robinson, H.; Gao, Y.; Vogelaar, N.; Wilson, S.; Rizzi, M.; Li, J.

    2006-01-01

    Mosquitoes are unique in having evolved two alanine glyoxylate aminotransferases (AGTs). One is 3-hydroxykynurenine transaminase (HKT), which is primarily responsible for catalyzing the transamination of 3-hydroxykynurenine (3-HK) to xanthurenic acid (XA). Interestingly, XA is used by malaria parasites as a chemical trigger for their development within the mosquito. This 3-HK to XA conversion is considered the major mechanism mosquitoes use to detoxify the chemically reactive and potentially toxic 3-HK. The other AGT is a typical dipteran insect AGT and is specific for converting glyoxylic acid to glycine. Here we report the 1.75{angstrom} high-resolution three-dimensional crystal structure of AGT from the mosquito Aedes aegypti (AeAGT) and structures of its complexes with reactants glyoxylic acid and alanine at 1.75 and 2.1{angstrom} resolution, respectively. This is the first time that the three-dimensional crystal structures of an AGT with its amino acceptor, glyoxylic acid, and amino donor, alanine, have been determined. The protein is dimeric and adopts the type I-fold of pyridoxal 5-phosphate (PLP)-dependent aminotransferases. The PLP co-factor is covalently bound to the active site in the crystal structure, and its binding site is similar to those of other AGTs. The comparison of the AeAGT-glyoxylic acid structure with other AGT structures revealed that these glyoxylic acid binding residues are conserved in most AGTs. Comparison of the AeAGT-alanine structure with that of the Anopheles HKT-inhibitor complex suggests that a Ser-Asn-Phe motif in the latter may be responsible for the substrate specificity of HKT enzymes for 3-HK.

  6. Characterization of psychrophilic alanine racemase from Bacillus psychrosaccharolyticus.

    PubMed

    Okubo, Y; Yokoigawa, K; Esaki, N; Soda, K; Kawai, H

    1999-03-16

    A psychrophilic alanine racemase gene from Bacillus psychrosaccharolyticus was cloned and expressed in Escherichia coli SOLR with a plasmid pYOK3. The gene starting with the unusual initiation codon GTG showed higher preference for codons ending in A or T. The enzyme purified to homogeneity showed the high catalytic activity even at 0 degrees C and was extremely labile over 35 degrees C. The enzyme was found to have a markedly large Km value (5.0 microM) for the pyridoxal 5'-phosphate (PLP) cofactor in comparison with other reported alanine racemases, and was stabilized up to 50 degrees C in the presence of excess amounts of PLP. The low affinity of the enzyme for PLP may be related to the thermolability, and may be related to the high catalytic activity, initiated by the transaldimination reaction, at low temperature. The enzyme has a distinguishing hydrophilic region around the residue no. 150 in the deduced amino acid sequence (383 residues), whereas the corresponding regions of other Bacillus alanine racemases are hydrophobic. The position of the region in the three dimensional structure of C atoms of the enzyme was predicted to be in a surface loop surrounding the active site. The region may interact with solvent and reduce the compactness of the active site. PMID:10080917

  7. ESR/alanine dosimetry applied to radiation processing

    NASA Astrophysics Data System (ADS)

    Mosse, D. C.

    The radiation processing of food products is specified in terms of absorbed dose, and processing quality is assessed on the basis of absorbed dose measurements. The validity of process quality control is highly dependent on the quality of the measurements and associated instrumentation; in this respect, dosimetry calibration by an Organization with official status provides an essential guarantee of validity to the quality control steps taken. The Laboratoire de Métrologie des Rayonnements Ionisants (L.M.R.I.) is the primary standards and evaluation laboratory approved by the Bureau National de Métrologie (B.N.M.), which is the French National Bureau of Standards. The LMRI implements correlation procedures in response to the various requirements which arise in connection with high doses and doserates. Such procedures are mainly based on ESR/alanine spectrometry, a dosimetry technique ideally suited to that purpose. Dosemeter geometry and design are tailored to operating conditions. "Photon" dosemeters consist of a detector material in powder or compacted form, and a wall with thickness and chemical composition consistent with the application. "Electron" dosemeters have a detector core of compacted alanine with thickness down to a few tenths of a millimeter. The ESR/alanine dosimetry technique, developed at LMRI is a flexible, reliable and accurate tool which effectively meets the various requirements arising in the field of reference dosimetry, where high doses and doserates are involved.

  8. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion.

    PubMed

    Sousa, Cristovão M; Biancur, Douglas E; Wang, Xiaoxu; Halbrook, Christopher J; Sherman, Mara H; Zhang, Li; Kremer, Daniel; Hwang, Rosa F; Witkiewicz, Agnes K; Ying, Haoqiang; Asara, John M; Evans, Ronald M; Cantley, Lewis C; Lyssiotis, Costas A; Kimmelman, Alec C

    2016-08-25

    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease characterized by an intense fibrotic stromal response and deregulated metabolism. The role of the stroma in PDAC biology is complex and it has been shown to play critical roles that differ depending on the biological context. The stromal reaction also impairs the vasculature, leading to a highly hypoxic, nutrient-poor environment. As such, these tumours must alter how they capture and use nutrients to support their metabolic needs. Here we show that stroma-associated pancreatic stellate cells (PSCs) are critical for PDAC metabolism through the secretion of non-essential amino acids (NEAA). Specifically, we uncover a previously undescribed role for alanine, which outcompetes glucose and glutamine-derived carbon in PDAC to fuel the tricarboxylic acid (TCA) cycle, and thus NEAA and lipid biosynthesis. This shift in fuel source decreases the tumour’s dependence on glucose and serum-derived nutrients, which are limited in the pancreatic tumour microenvironment. Moreover, we demonstrate that alanine secretion by PSCs is dependent on PSC autophagy, a process that is stimulated by cancer cells. Thus, our results demonstrate a novel metabolic interaction between PSCs and cancer cells, in which PSC-derived alanine acts as an alternative carbon source. This finding highlights a previously unappreciated metabolic network within pancreatic tumours in which diverse fuel sources are used to promote growth in an austere tumour microenvironment. PMID:27509858

  9. Vertebrate Acyl CoA synthetase family member 4 (ACSF4-U26) is a β-alanine-activating enzyme homologous to bacterial non-ribosomal peptide synthetase.

    PubMed

    Drozak, Jakub; Veiga-da-Cunha, Maria; Kadziolka, Beata; Van Schaftingen, Emile

    2014-03-01

    Mammalian ACSF4-U26 (Acyl CoA synthetase family member 4), a protein of unknown function, comprises a putative adenylation domain (AMP-binding domain) similar to those of bacterial non-ribosomal peptide synthetases, a putative phosphopantetheine attachment site, and a C-terminal PQQDH (pyrroloquinoline quinone dehydrogenase)-related domain. Orthologues comprising these three domains are present in many eukaryotes including plants. Remarkably, the adenylation domain of plant ACSF4-U26 show greater identity with Ebony, the insect enzyme that ligates β-alanine to several amines, than with vertebrate or insect ACSF4-U26, and prediction of its specificity suggests that it activates β-alanine. In the presence of ATP, purified mouse recombinant ACSF4-U26 progressively formed a covalent bond with radiolabelled β-alanine. The bond was not formed in a point mutant lacking the phosphopantetheine attachment site. Competition experiments with various amino acids indicated that the reaction was almost specific for β-alanine, and a KM of ~ 5 μm was calculated for this reaction. The loaded enzyme was used to study the formation of a potential end product. Among the 20 standard amino acids, only cysteine stimulated unloading of the enzyme. This effect was mimicked by cysteamine and dithiothreitol, and was unaffected by absence of the PQQDH-related domain, suggesting that β-alanine transfer onto thiols is catalysed by the ACSF4-U26 adenylation domain, but is physiologically irrelevant. We conclude that ACSF4-U26 is a β-alanine-activating enzyme, and hypothesize that it is involved in a rare intracellular reaction, possibly an infrequent post-translational or post-transcriptional modification. PMID:24467666

  10. Synthesis and sweetness characteristics of L-aspartyl-D-alanine fenchyl esters.

    PubMed

    Yuasa, Y; Nagakura, A; Tsuruta, H

    2001-10-01

    Four isomers of the L-aspartyl-D-alanine fenchyl esters were prepared as potential peptide sweeteners. L-Aspartyl-D-alanine (+)-alpha-fenchyl ester and L-aspartyl-D-alanine (-)-beta-fenchyl ester showed sweetness with potencies 250 and 160 times higher than that of sucrose, respectively. In contrast, L-aspartyl-D-alanine (+)-beta-fenchyl ester and L-aspartyl-D-alanine (-)-alpha-fenchyl ester had the highest sweetness potencies at 5700 and 1100 times that of sucrose, respectively. In particular, L-aspartyl-D-alanine (-)-alpha-fenchyl ester had an excellent sweetness quality; but L-aspartyl-D-alanine (+)-beta-fenchyl ester did not have an excellent quality of sweetness because it displayed an aftertaste caused by the strong sweetness. PMID:11600060

  11. Genetics Home Reference: succinic semialdehyde dehydrogenase deficiency

    MedlinePlus

    ... a chemical that transmits signals in the brain (neurotransmitter) called gamma-amino butyric acid (GABA). The primary ... Diseases National Organization for Rare Disorders (NORD) Pediatric Neurotransmitter Disease Association GeneReviews (1 link) Succinic Semialdehyde Dehydrogenase ...

  12. Phosphorylation site on yeast pyruvate dehydrogenase complex

    SciTech Connect

    Uhlinger, D.J.

    1986-01-01

    The pyruvate dehydrogenase complex was purified to homogeneity from baker's yeast (Saccharomyces cerevisiae). Yeast cells were disrupted in a Manton-Gaulin laboratory homogenizer. The pyruvate dehydrogenase complex was purified by fractionation with polyethylene glycol, isoelectric precipitation, ultracentrifugation and chromatography on hydroxylapatite. Final purification of the yeast pyruvate dehydrogenase complex was achieved by cation-exchange high pressure liquid chromatography (HPLC). No endogenous pyruvate dehydrogenase kinase activity was detected during the purification. However, the yeast pyruvate dehydrogenase complex was phosphorylated and inactivated with purified pyruvate dehydrogenase kinase from bovine kidney. Tryptic digestion of the /sup 32/P-labeled complex yielded a single phosphopeptide which was purified to homogeniety. The tryptic digest was subjected to chromatography on a C-18 reverse phase HPLC column with a linear gradient of acetonitrile. Radioactive fractions were pooled, concentrated, and subjected to anion-exchange HPLC. The column was developed with a linear gradient of ammonium acetate. Final purification of the phosphopeptide was achieved by chromatography on a C-18 reverse phase HPLC column developed with a linear gradient of acetonitrile. The amino acid sequence of the homogeneous peptide was determined by manual modified Edman degradation.

  13. Converting the NiFeS Carbon Monoxide Dehydrogenase to a Hydrogenase and a Hydroxylamine Reductase

    PubMed Central

    Heo, Jongyun; Wolfe, Marcus T.; Staples, Christopher R.; Ludden, Paul W.

    2002-01-01

    Substitution of one amino acid for another at the active site of an enzyme usually diminishes or eliminates the activity of the enzyme. In some cases, however, the specificity of the enzyme is changed. In this study, we report that the changing of a metal ligand at the active site of the NiFeS-containing carbon monoxide dehydrogenase (CODH) converts the enzyme to a hydrogenase or a hydroxylamine reductase. CODH with alanine substituted for Cys531 exhibits substantial uptake hydrogenase activity, and this activity is enhanced by treatment with CO. CODH with valine substituted for His265 exhibits hydroxylamine reductase activity. Both Cys531 and His265 are ligands to the active-site cluster of CODH. Further, CODH with Fe substituted for Ni at the active site acquires hydroxylamine reductase activity. PMID:12374822

  14. Performance effects of acute β-alanine induced paresthesia in competitive cyclists.

    PubMed

    Bellinger, Phillip M; Minahan, Clare L

    2016-01-01

    β-alanine is a common ingredient in supplements consumed by athletes. Indeed, athletes may believe that the β-alanine induced paresthesia, experienced shortly after ingestion, is associated with its ergogenic effect despite no scientific mechanism supporting this notion. The present study examined changes in cycling performance under conditions of β-alanine induced paresthesia. Eight competitive cyclists (VO2max = 61.8 ± 4.2 mL·kg·min(-1)) performed three practices, one baseline and four experimental trials. The experimental trials comprised a 1-km cycling time trial under four conditions with varying information (i.e., athlete informed β-alanine or placebo) and supplement content (athlete received β-alanine or placebo) delivered to the cyclist: informed β-alanine/received β-alanine, informed placebo/received β-alanine, informed β-alanine/received placebo and informed placebo/received placebo. Questionnaires were undertaken exploring the cyclists' experience of the effects of the experimental conditions. A possibly likely increase in mean power was associated with conditions in which β-alanine was administered (±95% CL: 2.2% ± 4.0%), but these results were inconclusive for performance enhancement (p = 0.32, effect size = 0.18, smallest worthwhile change = 56% beneficial). A possibly harmful effect was observed when cyclists were correctly informed that they had ingested a placebo (-1.0% ± 1.9%). Questionnaire data suggested that β-alanine ingestion resulted in evident sensory side effects and six cyclists reported placebo effects. Acute ingestion of β-alanine is not associated with improved 1-km TT performance in competitive cyclists. These findings are in contrast to the athlete's "belief" as cyclists reported improved energy and the ability to sustain a higher power output under conditions of β-alanine induced paresthesia. PMID:25636080

  15. Role of pyruvate dehydrogenase kinase isoenzyme 4 (PDHK4) in glucose homoeostasis during starvation

    PubMed Central

    Jeoung, Nam Ho; Wu, Pengfei; Joshi, Mandar A.; Jaskiewicz, Jerzy; Bock, Cheryl B.; Depaoli-Roach, Anna A.; Harris, Robert A.

    2006-01-01

    The PDC (pyruvate dehydrogenase complex) is strongly inhibited by phosphorylation during starvation to conserve substrates for gluconeogenesis. The role of PDHK4 (pyruvate dehydrogenase kinase isoenzyme 4) in regulation of PDC by this mechanism was investigated with PDHK4−/− mice (homozygous PDHK4 knockout mice). Starvation lowers blood glucose more in mice lacking PDHK4 than in wild-type mice. The activity state of PDC (percentage dephosphorylated and active) is greater in kidney, gastrocnemius muscle, diaphragm and heart but not in the liver of starved PDHK4−/− mice. Intermediates of the gluconeogenic pathway are lower in concentration in the liver of starved PDHK4−/− mice, consistent with a lower rate of gluconeogenesis due to a substrate supply limitation. The concentration of gluconeogenic substrates is lower in the blood of starved PDHK4−/− mice, consistent with reduced formation in peripheral tissues. Isolated diaphragms from starved PDHK4−/− mice accumulate less lactate and pyruvate because of a faster rate of pyruvate oxidation and a reduced rate of glycolysis. BCAAs (branched chain amino acids) are higher in the blood in starved PDHK4−/− mice, consistent with lower blood alanine levels and the importance of BCAAs as a source of amino groups for alanine formation. Non-esterified fatty acids are also elevated more in the blood of starved PDHK4−/− mice, consistent with lower rates of fatty acid oxidation due to increased rates of glucose and pyruvate oxidation due to greater PDC activity. Up-regulation of PDHK4 in tissues other than the liver is clearly important during starvation for regulation of PDC activity and glucose homoeostasis. PMID:16606348

  16. Proline dehydrogenase (oxidase) in cancer.

    PubMed

    Liu, Wei; Phang, James M

    2012-01-01

    Proline dehydrogenase (oxidase, PRODH/POX), the first enzyme in the proline degradative pathway, plays a special role in tumorigenesis and tumor development. Proline metabolism catalyzed by PRODH/POX is closely linked with the tricarboxylic acid (TCA) cycle and urea cycle. The proline cycle formed by the interconversion of proline and Δ(1) -pyrroline-5-carboxylate (P5C) between mitochondria and cytosol interlocks with pentose phosphate pathway. Importantly, by catalyzing proline to P5C, PRODH/POX donates electrons into the electron transport chain to generate ROS or ATP. In earlier studies, we found that PRODH/POX functions as a tumor suppressor to initiate apoptosis, inhibit tumor growth, and block the cell cycle, all by ROS signaling. It also suppresses hypoxia inducible factor signaling by increasing α-ketoglutarate. During tumor progression, PRODH/POX is under the control of various tumor-associated factors, such as tumor suppressor p53, inflammatory factor peroxisome proliferator-activated receptor gamma (PPARγ), onco-miRNA miR-23b*, and oncogenic transcription factor c-MYC. Recent studies revealed the two-sided features of PRODH/POX-mediated regulation. Under metabolic stress such as oxygen and glucose deprivation, PRODH/POX can be induced to serve as a tumor survival factor through ATP production or ROS-induced autophagy. The paradoxical roles of PRODH/POX can be understood considering the temporal and spatial context of the tumor. Further studies will provide additional insights into this protein and on its metabolic effects in tumors, which may lead to new therapeutic strategies. PMID:22886911

  17. Caffeine–N-phthaloyl-β-alanine (1/1)

    PubMed Central

    Bhatti, Moazzam H.; Yunus, Uzma; Shah, Syed Raza; Flörke, Ulrich

    2012-01-01

    The title co-crystal [systematic name: 3-(1,3-dioxoisoindolin-2-yl)propanoic acid–1,3,7-trimethyl-1H-purine-2,6(3H,7H)-dione (1/1)], C8H10N4O2·C11H9NO4, is the combination of 1:1 adduct of N-phthaloyl-β-alanine with caffeine. The phthalimide and purine rings in the N-phthaloyl-β-alanine and caffeine mol­ecules are essentially planar, with r.m.s. deviations of the fitted atoms of 0.0078 and 0.0118 Å, respectively. In the crystal, the two mol­ecules are linked via an O—H⋯N hydrogen bond involving the intact carb­oxy­lic acid (COOH) group. The crystal structure is consolidated by C—H⋯O inter­actions. The H atoms of a methyl group of the caffeine mol­ecule are disordered over two sets of sites of equal occupancy. PMID:22719646

  18. The effect of immunonutrition (glutamine, alanine) on fracture healing

    PubMed Central

    Küçükalp, Abdullah; Durak, Kemal; Bayyurt, Sarp; Sönmez, Gürsel; Bilgen, Muhammed S.

    2014-01-01

    Background There have been various studies related to fracture healing. Glutamine is an amino acid with an important role in many cell and organ functions. This study aimed to make a clinical, radiological, and histopathological evaluation of the effects of glutamine on fracture healing. Methods Twenty rabbits were randomly allocated into two groups of control and immunonutrition. A fracture of the fibula was made to the right hind leg. All rabbits received standard food and water. From post-operative first day for 30 days, the study group received an additional 2 ml/kg/day 20% L-alanine L-glutamine solution via a gastric catheter, and the control group received 2 ml/kg/day isotonic via gastric catheter. At the end of 30 days, the rabbits were sacrificed and the fractures were examined clinically, radiologically, and histopathologically in respect to the degree of union. Results Radiological evaluation of the control group determined a mean score of 2.5 according to the orthopaedists and 2.65 according to the radiologists. In the clinical evaluation, the mean score was 1.875 for the control group and 2.0 for the study group. Histopathological evaluation determined a mean score of 8.5 for the control group and 9.0 for the study group. Conclusion One month after orally administered glutamine–alanine, positive effects were observed on fracture healing radiologically, clinically, and histopathologically, although no statistically significant difference was determined.

  19. An autosomal glucose-6-phosphate dehydrogenase (hexose-6-phosphate dehydrogenase) polymorphism in human saliva.

    PubMed

    Tan, S G; Ashton, G C

    1976-01-01

    Glucose-6-phosphate dehydrogenase (hexose-6-phosphate dehydrogenase) from human saliva has been demonstrated by the zymogram technique. Three phenotypes were found. Family and population studies suggested that these phenotypes are the products of an autosomal locus with two alleles Sgd-1 and Sgd-2. PMID:950237

  20. Carbohydrate metabolism during prolonged exercise and recovery: interactions between pyruvate dehydrogenase, fatty acids, and amino acids.

    PubMed

    Mourtzakis, Marina; Saltin, Bengt; Graham, Terry; Pilegaard, Henriette

    2006-06-01

    During prolonged exercise, carbohydrate oxidation may result from decreased pyruvate production and increased fatty acid supply and ultimately lead to reduced pyruvate dehydrogenase (PDH) activity. Pyruvate also interacts with the amino acids alanine, glutamine, and glutamate, whereby the decline in pyruvate production could affect tricarboxycylic acid cycle flux as well as gluconeogenesis. To enhance our understanding of these interactions, we studied the time course of changes in substrate utilization in six men who cycled at 44+/-1% peak oxygen consumption (mean+/-SE) until exhaustion (exhaustion at 3 h 23 min+/-11 min). Femoral arterial and venous blood, blood flow measurements, and muscle samples were obtained hourly during exercise and recovery (3 h). Carbohydrate oxidation peaked at 30 min of exercise and subsequently decreased for the remainder of the exercise bout (P<0.05). PDH activity peaked at 2 h of exercise, whereas pyruvate production peaked at 1 h of exercise and was reduced (approximately 30%) thereafter, suggesting that pyruvate availability primarily accounted for reduced carbohydrate oxidation. Increased free fatty acid uptake (P<0.05) was also associated with decreasing PDH activity (P<0.05) and increased PDH kinase 4 mRNA (P<0.05) during exercise and recovery. At 1 h of exercise, pyruvate production was greatest and was closely linked to glutamate, which was the predominant amino acid taken up during exercise and recovery. Alanine and glutamine were also associated with pyruvate metabolism, and they comprised approximately 68% of total amino-acid release during exercise and recovery. Thus reduced pyruvate production was primarily associated with reduced carbohydrate oxidation, whereas the greatest production of pyruvate was related to glutamate, glutamine, and alanine metabolism in early exercise. PMID:16424076

  1. Benzene toxicity: emphasis on cytosolic dihydrodiol dehydrogenases

    SciTech Connect

    Bolcsak, L.E.

    1982-01-01

    Blood dyscrasias such as leukopenia and anemia have been clearly identified as consequences of chronic benzene exposure. The metabolites, phenol, catechol, and hydroquinone produced inhibition of /sup 59/Fe uptake in mice which followed the same time course as that produced by benzene. The inhibitor of benzene oxidation, 3-amino-1,2,4-triazole, mitigated the inhibitory effects of benzene and phenol only. These data support the contention that benzene toxicity is mediated by a metabolite and suggest that the toxicity of phenol is a consequence of its metabolism to hydroquinone and that the route of metabolism to catechol may also contribute to the production of toxic metabolite(s). The properties of mouse liver cytosolic dihydrodiol dehydrogenases were examined. These enzymes catalyze the NADP/sup +/-dependent oxidation of trans-1,2-dihydro-1,2-dihydroxybenzene (BDD) to catechol, a possible toxic metabolite of benzene produced via this metabolic route. Four distinct dihydrodiol dehydrogenases (DD1, DD2, DD3, and DD4) were purified to apparent homogeneity as judged by SDS polyacrylamide gel electrophoresis and isoelectric focusing. DD1 appeared to be identical to the major ketone reductase and 17..beta..-hydroxysteroid dehydrogenase activity in the liver. DD2 exhibited aldehyde reductase activity. DD3 and DD4 oxidized 17..beta..-hydroxysteroids, but no carbonyl reductase activity was detected. These relationships between BDD dehydrogenases and carbonyl reductase and/or 17..beta..-hydroxysteroid dehydrogenase activities were supported by several lines of evidence.

  2. Decreased alanine aminotransferase activity in serum of man during gamma-acetylenic-GABA treatment.

    PubMed

    Olsen, R; Hørder, M

    1980-06-01

    Decreasing concentrations of alanine aminotransferase were observed in nine patients receiving gamma-acetylenic-GABA, an inhibitor of GABA aminotransferase. In vitro studies showed that preincubation at 37 degrees C of serum with gamma-acetylenic-GABA and with urine from a patient receiving the drug led to inhibition of alanine aminotransferase. This inhibition of alanine aminotransferase by gamma-acetylenic-GABA was neutralized by 1-analine, the natural substrate for the enzyme. The mechanism of inhibition may be a competition between the drug and 1-alanine for the substrate binding site of the enzyme. PMID:7414257

  3. Effect of β-alanine supplementation on high-intensity exercise performance.

    PubMed

    Harris, Roger C; Stellingwerff, Trent

    2013-01-01

    Carnosine is a dipeptide of β-alanine and L-histidine found in high concentrations in skeletal muscle. Combined with β-alanine, the pKa of the histidine imidazole ring is raised to ∼6.8, placing it within the muscle intracellular pH high-intensity exercise transit range. Combination with β-alanine renders the dipeptide inert to intracellular enzymic hydrolysis and blocks the histidinyl residue from participation in proteogenesis, thus making it an ideal, stable intracellular buffer. For vegetarians, synthesis is limited by β-alanine availability; for meat-eaters, hepatic synthesis is supplemented with β-alanine from the hydrolysis of dietary carnosine. Direct oral β-alanine supplementation will compensate for low meat and fish intake, significantly raising the muscle carnosine concentration. This is best achieved with a sustained-release formulation of β-alanine to avoid paresthesia symptoms and decreasing urinary spillover. In humans, increased levels of carnosine through β-alanine supplementation have been shown to increase exercise capacity and performance of several types, particularly where the high-intensity exercise range is 1-4 min. β-Alanine supplementation is used by athletes competing in high-intensity track and field cycling, rowing, swimming events and other competitions. PMID:23899755

  4. Targeting Tumor Metabolism for Cancer Treatment: Is Pyruvate Dehydrogenase Kinases (PDKs) a Viable Anticancer Target?

    PubMed Central

    Zhang, Wen; Zhang, Shao-Lin; Hu, Xiaohui; Tam, Kin Yip

    2015-01-01

    Cancer remains a lethal threat to global lives. Development of novel anticancer therapeutics is still a challenge to scientists in the field of biomedicine. In cancer cells, the metabolic features are significantly different from those of normal ones, which are hallmarks of several malignancies. Recent studies brought atypical cellular metabolism, such as aerobic glycolysis or the Warburg effect, into the scientific limelight. Targeting these altered metabolic pathways in cancer cells presents a promising therapeutic strategy. Pyruvate dehydrogenase kinases (PDKs), key enzymes in the pathway of glucose metabolism, could inactivate the pyruvate dehydrogenase complex (PDC) by phosphorylating it and preserving the substrates pyruvate, lactate and alanine for gluconeogenesis. Overexpression of PDKs could block the oxidative decarboxylation of pyruvate to satisfy high oxygen demand in cancer cells, while inhibition of PDKs could upregulate the activity of PDC and rectify the balance between the demand and supply of oxygen, which could lead to cancer cell death. Thus, inhibitors targeting PDKs represent a promising strategy for cancer treatment by acting on glycolytic tumors while showing minimal side effects on the oxidative healthy organs. This review considers the role of PDKs as regulator of PDC that catalyzes the oxidative decarboxylation of pyruvate in mitochondrion. It is concluded that PDKs are solid therapeutic targets. Inhibition of PDKs could be an attractive therapeutic approach for the development of anti-cancer drugs. PMID:26681918

  5. NAD + -dependent Formate Dehydrogenase from Plants

    PubMed Central

    Alekseeva, A.A.; Savin, S.S.; Tishkov, V.I.

    2011-01-01

    NAD+-dependent formate dehydrogenase (FDH, EC 1.2.1.2) widely occurs in nature. FDH consists of two identical subunits and contains neither prosthetic groups nor metal ions. This type of FDH was found in different microorganisms (including pathogenic ones), such as bacteria, yeasts, fungi, and plants. As opposed to microbiological FDHs functioning in cytoplasm, plant FDHs localize in mitochondria. Formate dehydrogenase activity was first discovered as early as in 1921 in plant; however, until the past decade FDHs from plants had been considerably less studied than the enzymes from microorganisms. This review summarizes the recent results on studying the physiological role, properties, structure, and protein engineering of plant formate dehydrogenases. PMID:22649703

  6. Two different dihydroorotate dehydrogenases in Lactococcus lactis.

    PubMed Central

    Andersen, P S; Jansen, P J; Hammer, K

    1994-01-01

    The pyrimidine de novo biosynthesis pathway has been characterized for a number of organisms. The general pathway consists of six enzymatic steps. In the characterization of the pyrimidine pathway of Lactococcus lactis, two different pyrD genes encoding dihydroorotate dehydrogenase were isolated. The nucleotide sequences of the two genes, pyrDa and pyrDb, have been determined. One of the deduced amino acid sequences has a high degree of homology to the Saccharomyces cerevisiae dihydroorotate dehydrogenase, and the other resembles the dihydroorotate dehydrogenase from Bacillus subtilis. It is possible to distinguish between the two enzymes in crude extracts by using different electron acceptors. We constructed mutants containing a mutated form of either one or the other or both of the pyrD genes. Only the double mutant is pyrimidine auxotrophic. Images PMID:8021180

  7. Fundamental molecular differences between alcohol dehydrogenase classes.

    PubMed Central

    Danielsson, O; Atrian, S; Luque, T; Hjelmqvist, L; Gonzàlez-Duarte, R; Jörnvall, H

    1994-01-01

    Two types of alcohol dehydrogenase in separate protein families are the "medium-chain" zinc enzymes (including the classical liver and yeast forms) and the "short-chain" enzymes (including the insect form). Although the medium-chain family has been characterized in prokaryotes and many eukaryotes (fungi, plants, cephalopods, and vertebrates), insects have seemed to possess only the short-chain enzyme. We have now also characterized a medium-chain alcohol dehydrogenase in Drosophila. The enzyme is identical to insect octanol dehydrogenase. It is a typical class III alcohol dehydrogenase, similar to the corresponding human form (70% residue identity), with mostly the same residues involved in substrate and coenzyme interactions. Changes that do occur are conservative, but Phe-51 is of functional interest in relation to decreased coenzyme binding and increased overall activity. Extra residues versus the human enzyme near position 250 affect the coenzyme-binding domain. Enzymatic properties are similar--i.e., very low activity toward ethanol (Km beyond measurement) and high selectivity for formaldehyde/glutathione (S-hydroxymethylglutathione; kcat/Km = 160,000 min-1.mM-1). Between the present class III and the ethanol-active class I enzymes, however, patterns of variability differ greatly, highlighting fundamentally separate molecular properties of these two alcohol dehydrogenases, with class III resembling enzymes in general and class I showing high variation. The gene coding for the Drosophila class III enzyme produces an mRNA of about 1.36 kb that is present at all developmental stages of the fly, compatible with the constitutive nature of the vertebrate enzyme. Taken together, the results bridge a previously apparent gap in the distribution of medium-chain alcohol dehydrogenases and establish a strictly conserved class III enzyme, consistent with an important role for this enzyme in cellular metabolism. Images PMID:8197167

  8. Radiolysis of alanine adsorbed in a clay mineral

    NASA Astrophysics Data System (ADS)

    Aguilar-Ovando, Ellen Y.; Negrón-Mendoza, Alicia

    2013-07-01

    Optical activity in molecules is a chemical characteristic of living beings. In this work, we examine the hypothesis of the influence of different mineral surfaces on the development of a specific chirality in organic molecules when subjected to conditions simulating the primitive Earth during the period of chemical evolution. By using X-ray diffraction techniques and HPLC/ELSD to analyze aqueous suspensions of amino acids adsorbed on minerals irradiated in different doses with a cobalt-60 gamma source, the experiments attempt to prove the hypothesis that some solid surfaces (like clays and meteorite rocks) may have a concentration capacity and protective role against external sources of ionizing radiation (specifically γ-ray) for some organic compounds (like some amino acids) adsorbed on them. Preliminary results show a slight difference in the adsorption and radiolysis of the D-and L-alanine.

  9. Radiolysis of alanine adsorbed in a clay mineral

    SciTech Connect

    Aguilar-Ovando, Ellen Y.; Negron-Mendoza, Alicia

    2013-07-03

    Optical activity in molecules is a chemical characteristic of living beings. In this work, we examine the hypothesis of the influence of different mineral surfaces on the development of a specific chirality in organic molecules when subjected to conditions simulating the primitive Earth during the period of chemical evolution. By using X-ray diffraction techniques and HPLC/ELSD to analyze aqueous suspensions of amino acids adsorbed on minerals irradiated in different doses with a cobalt-60 gamma source, the experiments attempt to prove the hypothesis that some solid surfaces (like clays and meteorite rocks) may have a concentration capacity and protective role against external sources of ionizing radiation (specifically {gamma}-ray) for some organic compounds (like some amino acids) adsorbed on them. Preliminary results show a slight difference in the adsorption and radiolysis of the D-and L-alanine.

  10. Determination of the anti-inflammatory and cytoprotective effects of l-glutamine and l-alanine, or dipeptide, supplementation in rats submitted to resistance exercise.

    PubMed

    Raizel, Raquel; Leite, Jaqueline Santos Moreira; Hypólito, Thaís Menezes; Coqueiro, Audrey Yule; Newsholme, Philip; Cruzat, Vinicius Fernandes; Tirapegui, Julio

    2016-08-01

    We evaluated the effects of chronic oral supplementation with l-glutamine and l-alanine in their free form or as the dipeptide l-alanyl-l-glutamine (DIP) on muscle damage, inflammation and cytoprotection, in rats submitted to progressive resistance exercise (RE). Wistar rats (n 8/group) were submitted to 8-week RE, which consisted of climbing a ladder with progressive loads. In the final 21 d before euthanasia, supplements were delivered in a 4 % solution in drinking water. Glutamine, creatine kinase (CK), lactate dehydrogenase (LDH), TNF-α, specific IL (IL-1β, IL-6 and IL-10) and monocyte chemoattractant protein-1 (MCP-1) levels were evaluated in plasma. The concentrations of glutamine, TNF-α, IL-6 and IL-10, as well as NF-κB activation, were determined in extensor digitorum longus (EDL) skeletal muscle. HSP70 level was assayed in EDL and peripheral blood mononuclear cells (PBMC). RE reduced glutamine concentration in plasma and EDL (P<0·05 v. sedentary group). However, l-glutamine supplements (l-alanine plus l-glutamine (GLN+ALA) and DIP groups) restored glutamine levels in plasma (by 40 and 58 %, respectively) and muscle (by 93 and 105 %, respectively). GLN+ALA and DIP groups also exhibited increased level of HSP70 in EDL and PBMC, consistent with the reduction of NF-κB p65 activation and cytokines in EDL. Muscle protection was also indicated by attenuation in plasma levels of CK, LDH, TNF-α and IL-1β, as well as an increase in IL-6, IL-10 and MCP-1. Our study demonstrates that chronic oral l-glutamine treatment (given with l-alanine or as dipeptide) following progressive RE induces cyprotective effects mediated by HSP70-associated responses to muscle damage and inflammation. PMID:27215379

  11. Inactivation of 3-(3,4-dihydroxyphenyl)alanine decarboxylase by 2-(fluoromethyl)-3-(3,4-dihydroxyphenyl)alanine.

    PubMed

    Maycock, A L; Aster, S D; Patchett, A A

    1980-02-19

    2-(Fluoromethyl)-3-(3,4-dihydroxyphenyl)alanine [alpha-FM-Dopa (I)] causes rapid, time-dependent, stereospecific, and irreversible inhibition of hog kidney aromatic amino acid (Dopa) decarboxylase. The inactivation occurs with loss of both the carboxyl carbon and fluoride from I and results in the stoichimetric formation of a covalent enzyme-inhibitor adduct. The data are consistent with I being a suicide inactivator of the enzyme, and a plausible mechanism for the inactivation process is presented. The inactivation is highly efficient in that there is essentially no enzymatic turnover of I to produce the corresponding amine, 1-(fluoromethyl)-2-(3,4-dihydroxyphenyl)ethylamine [alpha-FM-dopamine (II)]. Amine II is also a potent inactivator of the enzyme. In vivo compound I is found to inactivate both brain and peripheral (liver) Dopa decarboxylase activity. The possible significance of these data with respect to the known antihypertensive effect of I is discussed. PMID:7356954

  12. Polymerization of alanine in the presence of a non-swelling montmorillonite

    NASA Technical Reports Server (NTRS)

    Paecht-Horowitz, M.; Lahav, N.

    1977-01-01

    Alanine, starting from alanine-adenylate, has been polymerized in the presence of non-swelling Al-montmorillonite. The yield of polymerization is much lower than that obtained in the presence of swelling Na-montmorillonite. The possibility that the changing interlayer spacing in Na-montmorillonite might be responsible for its catalytic properties, is discussed.

  13. Psoriatic therapeutics and glucose-6-phosphate dehydrogenase.

    PubMed

    Cotton, D W; van Rossum, E

    1975-01-01

    The inhibitory effects of various agents on the enzyme glucose-6-phosphate dehydrogenase have been studied in vitro. Stress is laid on the calculation of kinetic parameters such as true K-I values. The most active inhibitor was methotrexate, closely followed by cGMP. The increase in inhibitory activity after incubation of methotrexate with liver slices is discussed. PMID:167665

  14. Thermal decomposition behavior of potassium and sodium jarosite synthesized in the presence of methylamine and alanine

    SciTech Connect

    J. Michelle Kotler; Nancy W. Hinman; C. Doc Richardson; Jill R. Scott

    2010-10-01

    Biomolecules, methylamine and alanine, found associated with natural jarosite samples peaked the interest of astrobiologists and planetary geologists. How the biomolecules are associated with jarosite remains unclear although the mechanism could be important for detecting biosignatures in the rock record on Earth and other planets. A series of thermal gravimetric experiments using synthetic K-jarosite and Na-jarosite were conducted to determine if thermal analysis could differentiate physical mixtures of alanine and methylamine with jarosite from samples where the methylamine or alanine was incorporated into the synthesis procedure. Physical mixtures and synthetic experiments with methylamine and alanine could be differentiated from one another and from the standards by thermal analysis for both the K-jarosite and Na-jarosite end-member suites. Changes included shifts in on-set temperatures, total temperature changes from on-set to final, and the presence of indicator peaks for methylamine and alanine in the physical mixture experiments.

  15. How similar is the electronic structures of β-lactam and alanine?

    NASA Astrophysics Data System (ADS)

    Chatterjee, Subhojyoti; Ahmed, Marawan; Wang, Feng

    2016-02-01

    The C1s spectra of β-lactam i.e. 2-azetidinone (C3H5NO), a drug and L-alanine (C3H7NO2), an amino acid, exhibit striking similarities, which may be responsible for the competition between 2-azetidinone and the alanyl-alanine moiety in biochemistry. The present study is to reveal the degree of similarities and differences between their electronic structures of the two model molecular pairs. It is found that the similarities in C1s and inner valence binding energy spectra are due to their bonding connections but other properties such as ring structure (in 2-azetidinone) and chiral carbon (alanine) can be very different. Further, the inner valence region of ionization potential greater than 18 eV for 2-azetidinone and alanine is also significantly similar. Finally the strained lactam ring exhibits more chemical reactivity measured at all non-hydrogen atoms by Fukui functions with respect to alanine.

  16. Multiple retinoid dehydrogenases in testes cytosol from alcohol dehydrogenase negative or positive deermice.

    PubMed

    Posch, K C; Napoli, J L

    1992-05-28

    Retinoic acid syntheses from retinol by cytosol from testes of alcohol dehydrogenase negative or positive deermice were similar in specific activity and in their insensitivity to 1 M ethanol or 100 mM 4-methylpyrazole. Anion-exchange followed by size-exclusion chromatography revealed multiple and similarly migrating peaks in each cytosol that had both retinol and retinal dehydrogenase activities. Thus, the effects of ethanol on testes cannot be caused by direct inhibition of cytosolic retinoic acid synthesis because retinoid dehydrogenases distinct from mouse class A2 alcohol dehydrogenases, which corresponds to human class I, occurred in testes and they were not inhibited by ethanol. These data also demonstrate the occurrence of multiple cytosolic retinoic acid synthesis activities and indicate that the two reactions of cytosolic retinoic acid synthesis, retinol and retinal dehydrogenation, may be catalyzed by enzymes that occur as complexes. PMID:1599517

  17. Expression, purification, and characterization of alanine racemase from Pseudomonas putida YZ-26.

    PubMed

    Liu, Jun-Lin; Liu, Xiao-Qin; Shi, Ya-Wei

    2012-01-01

    Alanine racemase catalyzes the interconversion of D: - and L: -alanine and plays an important role in supplying D: -alanine, a component of peptidoglycan biosynthesis, to most bacteria. Alanine racemase exists mostly in prokaryotes and is generally absent in higher eukaryotes; this makes it an attractive target for the design of new antibacterial drugs. Here, we present the cloning and characterization of a new gene-encoding alanine racemase from Pseudomonas putida YZ-26. An open reading frame (ORF) of 1,230 bp, encoding a protein of 410 amino acids with a calculated molecular weight of 44,217.3 Da, was cloned into modified vector pET32M to form the recombinant plasmid pET-alr. After introduction into E.coli BL21, the strain pET-alr/E.coli BL21 expressed His(6)-tagged alanine racemase. The recombinant alanine racemase was efficiently purified to homogeneity using Ni(2+)-NTA and a gel filtration column, with 82.5% activity recovery. The amino acid sequence deduced from the alanine racemase gene revealed identity similarities of 97.0, 93, 23, and 22.0% with from P. putida F1, P. putida200, P. aeruginosa, and Salmonella typhimurium, respectively. The recombinant alanine racemase is a monomeric protein with a molecular mass of 43 kDa. The enzyme exhibited activity with L: -alanine and L: -isoleucine, and showed higher specificity for the former compared with the latter. The enzyme was stable from pH 7.0-11.0; its optimum pH was at 9.0. The optimum temperature for the enzyme was 37°C, and its activity was rapidly lost at temperatures above 40°C. Divalent metals, including Sr(2+), Mn(2+), Co(2+), and Ni(2+) obviously enhanced enzymatic activity, while the Cu(2+) ion showed inhibitory effects. PMID:22806802

  18. Characterization of xylitol dehydrogenase from Debaryomyces hansenii

    SciTech Connect

    Girio, F.M.; Amaral-Collaco, M.T.; Pelica, F.

    1996-01-01

    The xylitol dehydrogenase (EC 1.1.1.9) from xylose-grown cells of Debaryomyces hansenii was partially purified in two chromatographic steps, and characterization studies were carried out in order to investigate the role of the xylitol dehydrogenase-catalyzed step in the regulation of D-xylose metabolism. The enzyme was most active at pH 9.0-9.5, and exhibited a broad polyol specificity. The Michaelis constants for xylitol and NAD{sup +} were 16.5 and 0.55 mM, respectively. Ca{sup 2+}, Mg{sup 2+}, and Mn{sup 2+} did not affect the enzyme activity. Conversely, Zn{sup 2+}, Cd{sup 2+}, and Co{sup 2+} strongly inhibited the enzyme activity. It was concluded that NAD{sup +}-xylitol dehydrogenase from D. hansenii has similarities with other xylose-fermenting yeasts in respect to optimal pH, substrate specificity, and K{sub m} value for xylitol, and therefore should be named L-iditol:NAD{sup +}-5-oxidoreductase (EC 1.1.1.14). The reason D. hansenii is a good xylitol producer is not because of its value of K for xylitol, which is low enough to assure its fast oxidation by NAD{sup +}-xylitol dehydrogenase. However, a higher K{sub m} value of xylitol dehydrogenase for NAD{sup +} compared to the K{sub m} values of other xylose-fermenting yeasts may be responsible for the higher xylitol yields. 22 refs., 4 figs., 2 tabs.

  19. Calibration of helical tomotherapy machine using EPR/alanine dosimetry

    SciTech Connect

    Perichon, Nicolas; Garcia, Tristan; Francois, Pascal; Lourenco, Valerie; Lesven, Caroline; Bordy, Jean-Marc

    2011-03-15

    Purpose: Current codes of practice for clinical reference dosimetry of high-energy photon beams in conventional radiotherapy recommend using a 10x10 cm{sup 2} square field, with the detector at a reference depth of 10 cm in water and 100 cm source to surface distance (SSD) (AAPM TG-51) or 100 cm source-to-axis distance (SAD) (IAEA TRS-398). However, the maximum field size of a helical tomotherapy (HT) machine is 40x5 cm{sup 2} defined at 85 cm SAD. These nonstandard conditions prevent a direct implementation of these protocols. The purpose of this study is twofold: To check the absorbed dose in water and dose rate calibration of a tomotherapy unit as well as the accuracy of the tomotherapy treatment planning system (TPS) calculations for a specific test case. Method: Both topics are based on the use of electron paramagnetic resonance (EPR) using alanine as transfer dosimeter between the Laboratoire National Henri Becquerel (LNHB) {sup 60}Co-{gamma}-ray reference beam and the Institut Curie's HT beam. Irradiations performed in the LNHB reference {sup 60}Co-{gamma}-ray beam allowed setting up the calibration method, which was then implemented and tested at the LNHB 6 MV linac x-ray beam, resulting in a deviation of 1.6% (at a 1% standard uncertainty) relative to the reference value determined with the standard IAEA TRS-398 protocol. Results: HT beam dose rate estimation shows a difference of 2% with the value stated by the manufacturer at a 2% standard uncertainty. A 4% deviation between measured dose and the calculation from the tomotherapy TPS was found. The latter was originated by an inadequate representation of the phantom CT-scan values and, consequently, mass densities within the phantom. This difference has been explained by the mass density values given by the CT-scan and used by the TPS which were not the true ones. Once corrected using Monte Carlo N-Particle simulations to validate the accuracy of this process, the difference between corrected TPS

  20. A β-Alanine Catabolism Pathway Containing a Highly Promiscuous ω-Transaminase in the 12-Aminododecanate-Degrading Pseudomonas sp. Strain AAC

    PubMed Central

    Wilding, Matthew; Peat, Thomas S.; Newman, Janet

    2016-01-01

    ABSTRACT We previously isolated the transaminase KES23458 from Pseudomonas sp. strain AAC as a promising biocatalyst for the production of 12-aminododecanoic acid, a constituent building block of nylon-12. Here, we report the subsequent characterization of this transaminase. It exhibits activity with a broad substrate range which includes α-, β-, and ω-amino acids, as well as α,ω-diamines and a number of other industrially relevant compounds. It is therefore a prospective candidate for the biosynthesis of a range of polyamide monomers. The crystal structure of KES23458 revealed that the protein forms a dimer containing a large active site pocket and unusual phosphorylated histidine residues. To infer the physiological role of the transaminase, we expressed, purified, and characterized a dehydrogenase from the same operon, KES23460. Unlike the transaminase, the dehydrogenase was shown to be quite selective, catalyzing the oxidation of malonic acid semialdehyde, formed from β-alanine transamination via KES23458. In keeping with previous reports, the dehydrogenase was shown to catalyze both a coenzyme A (CoA)-dependent reaction to form acetyl-CoA and a significantly slower CoA-independent reaction to form acetate. These findings support the original functional assignment of KES23458 as a β-alanine transaminase. However, a seemingly well-adapted active site and promiscuity toward unnatural compounds, such as 12-aminododecanoic acid, suggest that this enzyme could perform multiple functions for Pseudomonas sp. strain AAC. IMPORTANCE We describe the characterization of an industrially relevant transaminase able to metabolize 12-aminododecanoic acid, a constituent building block of the widely used polymer nylon-12, and we report the biochemical and structural characterization of the transaminase protein. A physiological role for this highly promiscuous enzyme is proposed based on the characterization of a related gene from the host organism. Molecular dynamics

  1. Identification of a mutation affecting an alanine-alpha-ketoisovalerate transaminase activity in Escherichia coli K-12.

    PubMed

    Falkinham, J O

    1979-10-01

    A mutation affecting alanine-alpha-ketoisovalerate transaminase activity has been shown to be cotransducible with ilv gene cluster. The transaminase deficiency results in conditional isoleucine auxotrophy in the presence of alanine. PMID:396446

  2. Substrate specificity, substrate channeling, and allostery in BphJ: an acylating aldehyde dehydrogenase associated with the pyruvate aldolase BphI.

    PubMed

    Baker, Perrin; Carere, Jason; Seah, Stephen Y K

    2012-06-01

    BphJ, a nonphosphorylating acylating aldehyde dehydrogenase, catalyzes the conversion of aldehydes to form acyl-coenzyme A in the presence of NAD(+) and coenzyme A (CoA). The enzyme is structurally related to the nonacylating aldehyde dehydrogenases, aspartate-β-semialdehyde dehydrogenase and phosphorylating glyceraldehyde-3-phosphate dehydrogenase. Cys-131 was identified as the catalytic thiol in BphJ, and pH profiles together with site-specific mutagenesis data demonstrated that the catalytic thiol is not activated by an aspartate residue, as previously proposed. In contrast to the wild-type enzyme that had similar specificities for two- or three-carbon aldehydes, an I195A variant was observed to have a 20-fold higher catalytic efficiency for butyraldehyde and pentaldehyde compared to the catalytic efficiency of the wild type toward its natural substrate, acetaldehyde. BphJ forms a heterotetrameric complex with the class II aldolase BphI that channels aldehydes produced in the aldol cleavage reaction to the dehydrogenase via a molecular tunnel. Replacement of Ile-171 and Ile-195 with bulkier amino acid residues resulted in no more than a 35% reduction in acetaldehyde channeling efficiency, showing that these residues are not critical in gating the exit of the channel. Likewise, the replacement of Asn-170 in BphJ with alanine and aspartate did not substantially alter aldehyde channeling efficiencies. Levels of activation of BphI by BphJ N170A, N170D, and I171A were reduced by ≥3-fold in the presence of NADH and ≥4.5-fold when BphJ was undergoing turnover, indicating that allosteric activation of the aldolase has been compromised in these variants. The results demonstrate that the dehydrogenase coordinates the catalytic activity of BphI through allostery rather than through aldehyde channeling. PMID:22574886

  3. Folding simulations of alanine-based peptides with lysine residues.

    PubMed Central

    Sung, S S

    1995-01-01

    The folding of short alanine-based peptides with different numbers of lysine residues is simulated at constant temperature (274 K) using the rigid-element Monte Carlo method. The solvent-referenced potential has prevented the multiple-minima problem in helix folding. From various initial structures, the peptides with three lysine residues fold into helix-dominated conformations with the calculated average helicity in the range of 60-80%. The peptide with six lysine residues shows only 8-14% helicity. These results agree well with experimental observations. The intramolecular electrostatic interaction of the charged lysine side chains and their electrostatic hydration destabilize the helical conformations of the peptide with six lysine residues, whereas these effects on the peptides with three lysine residues are small. The simulations provide insight into the helix-folding mechanism, including the beta-bend intermediate in helix initiation, the (i, i + 3) hydrogen bonds, the asymmetrical helix propagation, and the asymmetrical helicities in the N- and C-terminal regions. These findings are consistent with previous studies. PMID:7756550

  4. Alanine synthesis from glyceraldehyde and ammonium ion in aqueous solution

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    1985-01-01

    The formation of alanine (ala) form C(14)-glyceraldehyde and ammonium phosphate in the presence or absence of a thiol is reported. At ambient temperature, ala synthesis was six times more rapid in the presence of 3-mercaptopropionic acid than in its absence (0.6 and 0.1 percent, respectively, after 60 days). Similarly, the presence of another thiol, N-acetylcysteinate, increased the production of ala, as well as of lactate. The reaction pathway of thiol-catalyzed synthesis of ala, with the lactic acid formed in a bypath, is suggested. In this, dehydration of glyceraldehyde is followed by the formation of hemithioacetal. In the presence of ammonia, an imine is formed, which eventually yields ala. This pathway is consistent with the observation that the rate ratio of ala/lactate remains constant throughout the process. The fact that the reaction takes place under anaerobic conditions in the presence of H2O and with the low concentrations of simple substrates and catalysts makes it an attractive model prebiotic reaction in the process of molecular evolution.

  5. Energy landscapes and global thermodynamics for alanine peptides

    NASA Astrophysics Data System (ADS)

    Somani, Sandeep; Wales, David J.

    2013-09-01

    We compare different approaches for computing the thermodynamics of biomolecular systems. Techniques based on parallel replicas evolving via molecular dynamics or Monte Carlo simulations produce overlapping histograms for the densities of states. In contrast, energy landscape methods employ a superposition partition function constructed from local minima of the potential energy surface. The latter approach is particularly powerful for systems exhibiting broken ergodicity, and it is usually implemented using a harmonic normal mode approximation, which has not been extensively tested for biomolecules. The present contribution compares these alternative approaches for small alanine peptides modelled using the CHARMM and AMBER force fields. Densities of states produced from canonical sampling using multiple temperature replicas provide accurate reference data to evaluate the effect of the harmonic normal mode approximation in the superposition calculations. This benchmarking lays foundations for the application of energy landscape methods to larger biomolecules. It will also provide well characterised model systems for developing enhanced sampling methods, and for the treatment of anharmonicity corresponding to individual local minima.

  6. Structure of a bacterial enzyme regulated by phosphorylation, isocitrate dehydrogenase.

    PubMed

    Hurley, J H; Thorsness, P E; Ramalingam, V; Helmers, N H; Koshland, D E; Stroud, R M

    1989-11-01

    The structure of isocitrate dehydrogenase [threo-DS-isocitrate: NADP+ oxidoreductase (decarboxylating), EC 1.1.1.42] from Escherichia coli has been solved and refined at 2.5 A resolution and is topologically different from that of any other dehydrogenase. This enzyme, a dimer of identical 416-residue subunits, is inactivated by phosphorylation at Ser-113, which lies at the edge of an interdomain pocket that also contains many residues conserved between isocitrate dehydrogenase and isopropylmalate dehydrogenase. Isocitrate dehydrogenase contains an unusual clasp-like domain in which both polypeptide chains in the dimer interlock. Based on the structure of isocitrate dehydrogenase and conservation with isopropylmalate dehydrogenase, we suggest that the active site lies in an interdomain pocket close to the phosphorylation site. PMID:2682654

  7. Alanine-EPR as a transfer standard dosimetry system for low energy X radiation

    NASA Astrophysics Data System (ADS)

    Khoury, H. J.; da Silva, E. J.; Mehta, K.; de Barros, V. S.; Asfora, V. K.; Guzzo, P. L.; Parker, A. G.

    2015-11-01

    The purpose of this paper is to evaluate the use of alanine-EPR as a transfer standard dosimetry system for low energy X radiation, such as that in RS-2400, which operates in the range from 25 to 150 kV and 2 to 45 mA. Two types of alanine dosimeters were investigated. One is a commercial alanine pellets from Aérial-Centre de Ressources Technologiques, France and one was prepared in our laboratory (LMRI-DEN/UFPE). The EPR spectra of the irradiated dosimeters were recorded in the Nuclear Energy Department of UFPE, using a Bruker EMX10 EPR spectrometer operating in the X-band. The alanine-EPR dosimetry system was calibrated in the range of 20-220 Gy in this X-ray field, against an ionization chamber calibrated at the relevant X-ray energy with traceability to PTB. The results showed that both alanine dosimeters presented a linear dose response the same sensitivity, when the EPR signal was normalized to alanine mass. The total uncertainty in the measured dose was estimated to be about 3%. The results indicate that it is possible to use the alanine-EPR dosimetry system for validation of a low-energy X ray irradiator, such as RS-2400.

  8. Sodium dependency of L-alanine absorption in canine Thiry-Vella loops.

    PubMed

    Fleshler, B; Nelson, R A

    1970-03-01

    The effect of sodium on the absorption of L-alanine in vivo was tested by measuring the absorption of L-alanine from Thiry-Vella loops in dogs. Solutions containing L-alanine (10 or 50 mM) sodium at concentrations of 0, 74, or 145 m-equiv/1 and mannitol, as needed to maintain isotonicity were instilled into the loops for 10 minutes. Similar studies were done with L-alanine 50 mM and either 0 or 145 m-equiv/1 of sodium for five minutes. Under all conditions absorption of alanine was significantly less from the solution initially free of sodium. Although these differences were statistically significant, the physiological significance was not great since the actual differences in amounts of L-alanine absorbed were small. Insorption of sodium was low from the fluid which initially had no sodium, but exsorption proceeded rapidly and was unaffected by the luminal sodium concentration. This resulted in a rapid rise of intraluminal sodium concentration when no sodium was initially present. This persistent exsorption of sodium was, therefore, adequate to provide sodium in the lumen to activate the sodium-dependent carrier, postulated on the basis of studies in vitro. These data in vivo are consistent with the view that sodium at the intraluminal surface is important in accelerating amino acid transport, but indicate that in the absence of added intraluminal sodium the gut mucosa itself, under normal circumstances, provides the sodium needed for L-alanine absorption. PMID:5423904

  9. Mitochondrial defects associated with β-alanine toxicity: relevance to hyper-beta-alaninemia.

    PubMed

    Shetewy, Aza; Shimada-Takaura, Kayoko; Warner, Danielle; Jong, Chian Ju; Mehdi, Abu-Bakr Al; Alexeyev, Mikhail; Takahashi, Kyoko; Schaffer, Stephen W

    2016-05-01

    Hyper-beta-alaninemia is a rare metabolic condition that results in elevated plasma and urinary β-alanine levels and is characterized by neurotoxicity, hypotonia, and respiratory distress. It has been proposed that at least some of the symptoms are caused by oxidative stress; however, only limited information is available on the mechanism of reactive oxygen species generation. The present study examines the hypothesis that β-alanine reduces cellular levels of taurine, which are required for normal respiratory chain function; cellular taurine depletion is known to reduce respiratory function and elevate mitochondrial superoxide generation. To test the taurine hypothesis, isolated neonatal rat cardiomyocytes and mouse embryonic fibroblasts were incubated with medium lacking or containing β-alanine. β-alanine treatment led to mitochondrial superoxide accumulation in conjunction with a decrease in oxygen consumption. The defect in β-alanine-mediated respiratory function was detected in permeabilized cells exposed to glutamate/malate but not in cells utilizing succinate, suggesting that β-alanine leads to impaired complex I activity. Taurine treatment limited mitochondrial superoxide generation, supporting a role for taurine in maintaining complex I activity. Also affected by taurine is mitochondrial morphology, as β-alanine-treated fibroblasts undergo fragmentation, a sign of unhealthy mitochondria that is reversed by taurine treatment. If left unaltered, β-alanine-treated fibroblasts also undergo mitochondrial apoptosis, as evidenced by activation of caspases 3 and 9 and the initiation of the mitochondrial permeability transition. Together, these data show that β-alanine mediates changes that reduce ATP generation and enhance oxidative stress, factors that contribute to heart failure. PMID:27023909

  10. Characterization of the l-alanine exporter AlaE of Escherichia coli and its potential role in protecting cells from a toxic-level accumulation of l-alanine and its derivatives

    PubMed Central

    Kim, Seryoung; Ihara, Kohei; Katsube, Satoshi; Hori, Hatsuhiro; Ando, Tasuke; Isogai, Emiko; Yoneyama, Hiroshi

    2015-01-01

    We previously reported that the alaE gene of Escherichia coli encodes the l-alanine exporter AlaE. The objective of this study was to elucidate the mechanism of the AlaE exporter. The minimum inhibitory concentration of l-alanine and l-alanyl-l-alanine in alaE-deficient l-alanine-nonmetabolizing cells MLA301ΔalaE was 4- and >4000-fold lower, respectively, than in the alaE-positive parent cells MLA301, suggesting that AlaE functions as an efflux pump to avoid a toxic-level accumulation of intracellular l-alanine and its derivatives. Furthermore, the growth of the alaE-deficient mutant derived from the l-alanine-metabolizing strain was strongly inhibited in the presence of a physiological level of l-alanyl-l-alanine. Intact MLA301ΔalaE and MLA301ΔalaE/pAlaE cells producing plasmid-borne AlaE, accumulated approximately 200% and 50%, respectively, of the [3H]l-alanine detected in MLA301 cells, suggesting that AlaE exports l-alanine. When 200 mmol/L l-alanine-loaded inverted membrane vesicles prepared from MLA301ΔalaE/pAlaE were placed in a solution containing 200 mmol/L or 0.34 μmol/L l-alanine, energy-dependent [3H]l-alanine accumulation occurred under either condition. This energy-dependent uphill accumulation of [3H]l-alanine was strongly inhibited in the presence of carbonyl cyanide m-chlorophenylhydrazone but not by dicyclohexylcarbodiimide, suggesting that the AlaE-mediated l-alanine extrusion was driven by proton motive force. Based on these results, physiological roles of the l-alanine exporter are discussed. PMID:26073055

  11. Characterization of the l-alanine exporter AlaE of Escherichia coli and its potential role in protecting cells from a toxic-level accumulation of l-alanine and its derivatives.

    PubMed

    Kim, Seryoung; Ihara, Kohei; Katsube, Satoshi; Hori, Hatsuhiro; Ando, Tasuke; Isogai, Emiko; Yoneyama, Hiroshi

    2015-08-01

    We previously reported that the alaE gene of Escherichia coli encodes the l-alanine exporter AlaE. The objective of this study was to elucidate the mechanism of the AlaE exporter. The minimum inhibitory concentration of l-alanine and l-alanyl-l-alanine in alaE-deficient l-alanine-nonmetabolizing cells MLA301ΔalaE was 4- and >4000-fold lower, respectively, than in the alaE-positive parent cells MLA301, suggesting that AlaE functions as an efflux pump to avoid a toxic-level accumulation of intracellular l-alanine and its derivatives. Furthermore, the growth of the alaE-deficient mutant derived from the l-alanine-metabolizing strain was strongly inhibited in the presence of a physiological level of l-alanyl-l-alanine. Intact MLA301ΔalaE and MLA301ΔalaE/pAlaE cells producing plasmid-borne AlaE, accumulated approximately 200% and 50%, respectively, of the [(3) H]l-alanine detected in MLA301 cells, suggesting that AlaE exports l-alanine. When 200 mmol/L l-alanine-loaded inverted membrane vesicles prepared from MLA301ΔalaE/pAlaE were placed in a solution containing 200 mmol/L or 0.34 μmol/L l-alanine, energy-dependent [(3) H]l-alanine accumulation occurred under either condition. This energy-dependent uphill accumulation of [(3) H]l-alanine was strongly inhibited in the presence of carbonyl cyanide m-chlorophenylhydrazone but not by dicyclohexylcarbodiimide, suggesting that the AlaE-mediated l-alanine extrusion was driven by proton motive force. Based on these results, physiological roles of the l-alanine exporter are discussed. PMID:26073055

  12. Peafowl lactate dehydrogenase: problem of isoenzyme identification.

    PubMed

    Rose, R G; Wilson, A C

    1966-09-16

    Peafowl, like other vertebrates, contain multiple forms of lactate dehydrogenase. The electrophoretic properties of the peafowl isoenzymes are unusual in that the isoenzyme from heart tissue can be either more or less anodic than that of muscle, depending on the pH. This finding focuses attention on the problem of isoenzyme identification. It is suggested that isoenzymes be identified on the basis of properties that are chemically and biologically more significant than electrophoretic mobility. PMID:5917779

  13. Neuropathology in Succinic Semialdehyde Dehydrogenase Deficiency

    PubMed Central

    Knerr, Ina; Gibson, K. Michael; Murdoch, Geoffrey; Salomons, Gajja S.; Jakobs, Cornelis; Combs, Susan; Pearl, Phillip L.

    2010-01-01

    Reported here is the novel finding of neuropathology in a patient with succinic semialdehyde dehydrogenase deficiency, an inherited disorder of γ-aminobutyric acid metabolism characterized by intellectual deficiency, hypotonia, and epilepsy, with 4-hydroxybutyric aciduria and abnormalities of the globus pallidus on neuroimaging. A 19-year-old woman of European origin with a neurodevelopmental disorder and epilepsy died unexpectedly in 1998. A postmortem examination was performed, with a final diagnosis of sudden unexpected death in epilepsy patients. Eight years later, her sister with a neurodevelopmental disorder presented at 13 years of age with seizures and was diagnosed with succinic semialdehyde dehydrogenase deficiency. In the decedent, succinic semialdehyde dehydrogenase deficiency was established at the molecular level, 10 years after her death, using genomic DNA from brain tissue specimens. The neuropathologic findings revealed striking discoloration of the globi pallidi, leptomeningeal congestion, and a scar in the frontal cortex. After detection of the pathogenic homozygous mutation c.1226G>A, p.Gly409Asp in the living sister, it was confirmed in the decedent. An underlying metabolic disease may be an additional risk factor for sudden unexpected death in epilepsy patients. PMID:20304328

  14. Succinate dehydrogenase-deficient gastrointestinal stromal tumors

    PubMed Central

    Wang, Ya-Mei; Gu, Meng-Li; Ji, Feng

    2015-01-01

    Most gastrointestinal stromal tumors (GISTs) are characterized by KIT or platelet-derived growth factor alpha (PDGFRA) activating mutations. However, there are still 10%-15% of GISTs lacking KIT and PDGFRA mutations, called wild-type GISTs (WT GISTs). Among these so-called WT GISTs, a small subset is associated with succinate dehydrogenase (SDH) deficiency, known as SDH-deficient GISTs. In addition, GISTs that occur in Carney triad and Carney-Stratakis syndrome represent specific examples of SDH-deficient GISTs. SDH-deficient GISTs locate exclusively in the stomach, showing predilection for children and young adults with female preponderance. The tumor generally pursues an indolent course and exhibits primary resistance to imatinib therapy in most cases. Loss of succinate dehydrogenase subunit B expression and overexpression of insulin-like growth factor 1 receptor (IGF1R) are common features of SDH-deficient GISTs. In WT GISTs without succinate dehydrogenase activity, upregulation of hypoxia-inducible factor 1α may lead to increased growth signaling through IGF1R and vascular endothelial growth factor receptor (VEGFR). As a result, IGF1R and VEGFR are promising to be the novel therapeutic targets of GISTs. This review will update the current knowledge on characteristics of SDH-deficient GISTs and further discuss the possible mechanisms of tumorigenesis and clinical management of SDH-deficient GISTs. PMID:25741136

  15. Dihydrodiol dehydrogenase and polycyclic aromatic hydrocarbon metabolism

    SciTech Connect

    Smithgall, T.E.

    1986-01-01

    Carcinogenic activation of polycyclic aromatic hydrocarbons by microsomal monoxygenases proceeds through trans-dihydrodiol metabolites to diol-epoxide ultimate carcinogens. This thesis directly investigated the role of dihydrodiol dehydrogenase, a cytosolic NAD(P)-linked oxidoreductase, in the detoxification of polycyclic aromatic trans-dihydrodiols. A wide variety of non-K-region trans-dihydrodiols were synthesized and shown to be substrates for the homogeneous rat liver dehydrogenase, including several potent proximate carcinogens derived from 7,12-dimethylbenz(a)anthracene, 5-methylchrysene, and benzo(a)pyrene. Since microsomal activation of polycyclic aromatic hydrocarbons is highly stereospecific, the stereochemical course of enzymatic trans-dihydrodiol oxidation was monitored using circular dichroism spectropolarimetry. The major product formed from the dehydrogenase-catalyzed oxidation of the trans-1,2-dihydrodiol of naphthalene was characterized using UV, IR, NMR, and mass spectroscopy, and appears to be 4-hydroxy-1,2-naphthoquinone. Mass spectral analysis suggests that an analogous hydroxylated o-quinone is formed as the major product of benzo(a)pyrene-7,8-dihydrodiol oxidation. Enzymatic oxidation of trans-dihydrodiols was shown to be potently inhibited by all of the major classes of the nonsteroidal antiinflammatory drugs. Enhancement of trans-dihydrodiol proximate carcinogen oxidation may protect against possible adverse effects of the aspirin-like drugs, and help maintain the balance between activation and detoxification of polycyclic aromatic hydrocarbons.

  16. Inducible l-Alanine Exporter Encoded by the Novel Gene ygaW (alaE) in Escherichia coli ▿

    PubMed Central

    Hori, Hatsuhiro; Yoneyama, Hiroshi; Tobe, Ryuta; Ando, Tasuke; Isogai, Emiko; Katsumata, Ryoichi

    2011-01-01

    We previously isolated a mutant hypersensitive to l-alanyl-l-alanine from a non-l-alanine-metabolizing Escherichia coli strain and found that it lacked an inducible l-alanine export system. Consequently, this mutant showed a significant accumulation of intracellular l-alanine and a reduction in the l-alanine export rate compared to the parent strain. When the mutant was used as a host to clone a gene(s) that complements the dipeptide-hypersensitive phenotype, two uncharacterized genes, ygaW and ytfF, and two characterized genes, yddG and yeaS, were identified. Overexpression of each gene in the mutant resulted in a decrease in the intracellular l-alanine level and enhancement of the l-alanine export rate in the presence of the dipeptide, suggesting that their products function as exporters of l-alanine. Since ygaW exhibited the most striking impact on both the intra- and the extracellular l-alanine levels among the four genes identified, we disrupted the ygaW gene in the non-l-alanine-metabolizing strain. The resulting isogenic mutant showed the same intra- and extracellular l-alanine levels as observed in the dipeptide-hypersensitive mutant obtained by chemical mutagenesis. When each gene was overexpressed in the wild-type strain, which does not intrinsically excrete alanine, only the ygaW gene conferred on the cells the ability to excrete alanine. In addition, expression of the ygaW gene was induced in the presence of the dipeptide. On the basis of these results, we concluded that YgaW is likely to be the physiologically most relevant exporter for l-alanine in E. coli and proposed that the gene be redesignated alaE for alanine export. PMID:21531828

  17. Solvation free energies of alanine peptides: the effect of flexibility.

    PubMed

    Kokubo, Hironori; Harris, Robert C; Asthagiri, Dilipkumar; Pettitt, B Montgomery

    2013-12-27

    The electrostatic (ΔGel), van der Waals cavity-formation (ΔGvdw), and total (ΔG) solvation free energies for 10 alanine peptides ranging in length (n) from 1 to 10 monomers were calculated. The free energies were computed both with fixed, extended conformations of the peptides and again for some of the peptides without constraints. The solvation free energies, ΔGel, and components ΔGvdw, and ΔG, were found to be linear in n, with the slopes of the best-fit lines being γel, γvdw, and γ, respectively. Both γel and γ were negative for fixed and flexible peptides, and γvdw was negative for fixed peptides. That γvdw was negative was surprising, as experimental data on alkanes, theoretical models, and MD computations on small molecules and model systems generally suggest that γvdw should be positive. A negative γvdw seemingly contradicts the notion that ΔGvdw drives the initial collapse of the protein when it folds by favoring conformations with small surface areas. When we computed ΔGvdw for the flexible peptides, thereby allowing the peptides to assume natural ensembles of more compact conformations, γvdw was positive. Because most proteins do not assume extended conformations, a ΔGvdw that increases with increasing surface area may be typical for globular proteins. An alternative hypothesis is that the collapse is driven by intramolecular interactions. We find few intramolecular H-bonds but show that the intramolecular van der Waals interaction energy is more favorable for the flexible than for the extended peptides, seemingly favoring this hypothesis. The large fluctuations in the vdw energy may make attributing the collapse of the peptide to this intramolecular energy difficult. PMID:24328358

  18. Solvation Free Energies of Alanine Peptides: The Effect of Flexibility

    PubMed Central

    Kokubo, Hironori; Harris, Robert C.; Asthigiri, Dilipkumar; Pettitt, B. Montgomery

    2014-01-01

    The electrostatic (ΔGel), van der Waals cavity-formation (ΔGvdw), and total (ΔG) solvation free energies for 10 alanine peptides ranging in length (n) from 1 to 10 monomers were calculated. The free energies were computed both with fixed, extended conformations of the peptides and again for some of the peptides without constraints. The solvation free energies, ΔGel, and components ΔGvdw, and ΔG, were found to be linear in n, with the slopes of the best-fit lines being γel, γvdw, and γ, respectively. Both γel and γ were negative for fixed and flexible peptides, and γvdw was negative for fixed peptides. That γvdw was negative was surprising, as experimental data on alkanes, theoretical models, and MD computations on small molecules and model systems generally suggest that γvdw should be positive. A negative γvdw seemingly contradicts the notion that ΔGvdw drives the initial collapse of the protein when it folds by favoring conformations with small surface areas. When we computed ΔGvdw for the flexible peptides, thereby allowing the peptides to assume natural ensembles of more compact conformations, γvdw was positive. Because most proteins do not assume extended conformations, a ΔGvdw that increases with increasing surface area may be typical for globular proteins. An alternative hypothesis is that the collapse is driven by intramolecular interactions. We find few intramolecular h-bonds but show that the intramolecular van der Waal’s interaction energy is more favorable for the flexible than for the extended peptides, seemingly favoring this hypothesis. The large fluctuations in the vdw energy may make attributing the collapse of the peptide to this intramolecular energy difficult. PMID:24328358

  19. Solvation Free Energies of Alanine Peptides: The Effect of Flexibility

    SciTech Connect

    Kokubo, Hironori; Harris, Robert C.; Asthagiri, Dilip; Pettitt, Bernard M.

    2013-12-03

    The electrostatic (?Gel), cavity-formation (?Gvdw), and total (?G) solvation free energies for 10 alanine peptides ranging in length (n) from 1 to 10 monomers were calculated. The free energies were computed both with xed, extended conformations of the peptides and again for some of the peptides without constraints. The solvation free energies, ?Gel, ?Gvdw, and ?G, were found to be linear in n, with the slopes of the best-fit lines being gamma_el, gamma_vdw, and gamma, respectively. Both gamma_el and gamma were negative for fixed and flexible peptides, and gamma_vdw was negative for fixed peptides. That gamma_vdw was negative was surprising, as experimental data on alkanes, theoretical models, and MD computations on small molecules and model systems generally suggest that gamma_vdw should be positive. A negative gamma_vdw seemingly contradicts the notion that ?Gvdw drives the initial collapse of the protein when it folds by favoring conformations with small surface areas, but when we computed ?Gvdw for the flexible peptides, thereby allowing the peptides to assume natural ensembles of more compact conformations, gamma-vdw was positive. Because most proteins do not assume extended conformations, a ?Gvdw that increases with increasing surface area may be typical for globular proteins. An alternative hypothesis is that the collapse is driven by intramolecular interactions. We show that the intramolecular van der Waal's interaction energy is more favorable for the flexible than for the extended peptides, seemingly favoring this hypothesis, but the large fluctuations in this energy may make attributing the collapse of the peptide to this intramolecular energy difficult.

  20. Isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma.

    PubMed

    Kipp, Benjamin R; Voss, Jesse S; Kerr, Sarah E; Barr Fritcher, Emily G; Graham, Rondell P; Zhang, Lizhi; Highsmith, W Edward; Zhang, Jun; Roberts, Lewis R; Gores, Gregory J; Halling, Kevin C

    2012-10-01

    Somatic mutations in isocitrate dehydrogenase 1 and 2 genes are common in gliomas and help stratify patients with brain cancer into histologic and molecular subtypes. However, these mutations are considered rare in other solid tumors. The aims of this study were to determine the frequency of isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma and to assess histopathologic differences between specimens with and without an isocitrate dehydrogenase mutation. We sequenced 94 formalin-fixed, paraffin-embedded cholangiocarcinoma (67 intrahepatic and 27 extrahepatic) assessing for isocitrate dehydrogenase 1 (codon 132) and isocitrate dehydrogenase 2 (codons 140 and 172) mutations. Multiple histopathologic characteristics were also evaluated and compared with isocitrate dehydrogenase 1/2 mutation status. Of the 94 evaluated specimens, 21 (22%) had a mutation including 14 isocitrate dehydrogenase 1 and 7 isocitrate dehydrogenase 2 mutations. Isocitrate dehydrogenase mutations were more frequently observed in intrahepatic cholangiocarcinoma than in extrahepatic cholangiocarcinoma (28% versus 7%, respectively; P = .030). The 14 isocitrate dehydrogenase 1 mutations were R132C (n = 9), R132S (n = 2), R132G (n = 2), and R132L (n = 1). The 7 isocitrate dehydrogenase 2 mutations were R172K (n = 5), R172M (n = 1), and R172G (n = 1). Isocitrate dehydrogenase mutations were more frequently observed in tumors with clear cell change (P < .001) and poorly differentiated histology (P = .012). The results of this study show for the first time that isocitrate dehydrogenase 1 and 2 genes are mutated in cholangiocarcinoma. The results of this study are encouraging because it identifies a new potential target for genotype-directed therapeutic trials and may represent a potential biomarker for earlier detection of cholangiocarcinoma in a subset of cases. PMID:22503487

  1. Structural Studies of the Final Enzyme in the alpha-Aminoadipate Pathway-Saccharopine Dehydrogenase from Saccharomyces cerevisiae

    SciTech Connect

    Burk,D.; Hwang, J.; Kwok, E.; Marrone, L.; Goodfellow, V.; Dmitrienko, G.; Berghuis, A.

    2007-01-01

    The 1.64 Angstroms structure of the apoenzyme form of saccharopine dehydrogenase (SDH) from Saccharomyces cerevisiae shows the enzyme to be composed of two domains with similar dinucleotide binding folds with a deep cleft at the interface. The structure reveals homology to alanine dehydrogense, despite low primary sequence similarity. A model of the ternary complex of SDH, NAD, and saccharopine identifies residues Lys77 and Glu122 as potentially important for substrate binding and/or catalysis, consistent with a proton shuttle mechanism. Furthermore, the model suggests that a conformational change is required for catalysis and that residues Lys99 and Asp281 may be instrumental in mediating this change. Analysis of the crystal structure in the context of other homologous enzymes from pathogenic fungi and human sources sheds light into the suitability of SDH as a target for antimicrobial drug development.

  2. A novel low molecular weight alanine aminotransferase from fasted rat liver.

    PubMed

    Vedavathi, M; Girish, K S; Kumar, M Karuna

    2006-01-01

    Alanine is the most effective precursor for gluconeogenesis among amino acids, and the initial reaction is catalyzed by alanine aminotransferase (AlaAT). Although the enzyme activity increases during fasting, this effect has not been studied extensively. The present study describes the purification and characterization of an isoform of AlaAT from rat liver under fasting. The molecular mass of the enzyme is 17.7 kD with an isoelectric point of 4.2; glutamine is the N-terminal residue. The enzyme showed narrow substrate specificity for L-alanine with Km values for alanine of 0.51 mM and for 2-oxoglutarate of 0.12 mM. The enzyme is a glycoprotein. Spectroscopic and inhibition studies showed that pyridoxal phosphate (PLP) and free -SH groups are involved in the enzymatic catalysis. PLP activated the enzyme with a Km of 0.057 mM. PMID:16487061

  3. Titration of Alanine Monitored by NMR Spectroscopy: A Biochemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Waller, Francis J.; And Others

    1977-01-01

    The experiment described here involves simultaneous monitoring of pH and NMR chemical shifts during an aqueous titration of alpha- and beta-alanine. This experiment is designed for use in an undergraduate biochemistry course. (MR)

  4. Repeated Supramaximal Exercise-Induced Oxidative Stress: Effect of β-Alanine Plus Creatine Supplementation

    PubMed Central

    Belviranli, Muaz; Okudan, Nilsel; Revan, Serkan; Balci, Serdar; Gokbel, Hakki

    2016-01-01

    Background: Carnosine is a dipeptide formed from the β-alanine and histidine amino acids and found in mainly in the brain and muscle, especially fast twitch muscle. Carnosine and creatine has an antioxidant effect and carnosine accounts for about 10% of the muscle's ability to buffer the H+ ions produced by exercise. Objectives: The aim of the study was to investigate the effects of beta alanine and/or creatine supplementation on oxidant and antioxidant status during repeated Wingate tests (WTs). Patients and Methods: Forty four sedentary males participated in the study. Participants performed three 30s WTs with 2 minutes rest between exercise bouts. After the first exercise session, the subjects were assigned to one of four groups: Placebo, Creatine, Beta-alanine and Beta-alanine plus creatine. Participants ingested twice per day for 22 consecutive days, then four times per day for the following 6 days. After the supplementation period the second exercise session was applied. Blood samples were taken before and immediately after the each exercise session for the analysis of oxidative stress and antioxidant markers. Results: Malondialdehyde levels and superoxide dismutase activities were affected by neither supplementation nor exercise. During the pre-supplementation session, protein carbonyl reduced and oxidized glutathione (GSH and GSSG) levels increased immediately after the exercise. However, during the post-supplementation session GSH and GSSG levels increased in beta-alanine and beta-alanine plus creatine groups immediately after the exercise compared to pre-exercise. In addition, during the post-supplementation session total antioxidant capacity increased in beta-alanine group immediately after the exercise. Conclusions: Beta-alanine supplementation has limited antioxidant effect during the repeated WTs. PMID:27217925

  5. Internal bias field in triglycine sulphate crystals with L-, α-alanine grown at negative temperatures

    NASA Astrophysics Data System (ADS)

    Milovidova, S. D.; Rogazinskaya, O. V.; Sidorkin, A. S.; Ionova, E. V.; Kirichenko, A. P.; Bavykin, S. A.

    2010-09-01

    The dielectric and pyroelectric properties of triglycine sulphate (TGS) crystals with L, α-alanine impurities grown at negative temperatures have been investigated. It is shown that a lower impurity concentration (2 mol % in solution) in this temperature range leads to the formation of internal bias fields of the same order of magnitude (˜800 V/cm) as for TGS crystals grown at T ⩽ 50°C but with an L, α-alanine concentration of 20 mol % in solution.

  6. IR spectroscopic signatures of solid glycine and alanine in astrophysical ices

    NASA Astrophysics Data System (ADS)

    Rodriguez-Lazcano, Y.; Maté, B.; Tanarro, I.; Herrero, V.; Escribano, R.

    2012-09-01

    The conversion from solid neutral to zwitterionic glycine (or alanine) is studied using infrared spectroscopy from the point of view of the interactions of this molecule with polar (water) and non-polar (CO2, CH4) surroundings. Such environments could be found on astrophysical matter. Different spectral features are suggested as suitable probes for the presence of glycine (or alanine) in astrophysical media, depending on their form (normal or zwitterionic), temperature, and composition.

  7. Lactate dehydrogenase X, malate dehydrogenase and total protein in rat spermatozoa during epididymal transit.

    PubMed

    Vermouth, N T; Carriazo, C S; Ponce, R H; Blanco, A

    1986-01-01

    Lactate dehydrogenase isozyme X (LDH X), malate dehydrogenase (MDH) and total soluble protein have been determined in lysates of spermatozoa isolated from caput, corpus and cauda of rat epididymis. Transit of spermatozoa through epididymis is accompanied by a reduction of LDH X, MDH and total protein per cell in sexually rested animals. The profiles of reduction along epididymal segments are different for the three variables studied. Mating with receptive females during the 5 days prior to determinations increases significantly the levels of MDH in spermatozoa from all sections of epididymis and produces increase of total soluble protein in the cells contained in cauda. PMID:3956158

  8. [Alanine solution as enzyme reaction buffer used in A to O blood group conversion].

    PubMed

    Li, Su-Bo; Zhang, Xue; Zhang, Yin-Ze; Tan, Ying-Xia; Bao, Guo-Qiang; Wang, Ying-Li; Ji, Shou-Ping; Gong, Feng; Gao, Hong-Wei

    2014-06-01

    The aim of this study was to investigate the effect of alanine solution as α-N-acetylgalactosaminidase enzyme reaction buffer on the enzymatic activity of A antigen. The binding ability of α-N-acetylgalactosaminidase with RBC in different reaction buffer such as alanine solution, glycine solution, normal saline (0.9% NaCl), PBS, PCS was detected by Western blot. The results showed that the efficiency of A to O conversion in alanine solution was similar to that in glycine solution, and Western blot confirmed that most of enzymes blinded with RBC in glycine or alanine solution, but few enzymes blinded with RBC in PBS, PCS or normal saline. The evidences indicated that binding of enzyme with RBC was a key element for A to O blood group conversion, while the binding ability of α-N-acetylgalactosaminidase with RBC in alanine or glycine solution was similar. It is concluded that alanine solution can be used as enzyme reaction buffer in A to O blood group conversion. In this buffer, the α-N-acetylgalactosaminidase is closely blinded with RBC and α-N-acetylgalactosaminidase plays efficient enzymatic activity of A antigen. PMID:24989301

  9. EPR dosimetry of radiotherapy photon beams in inhomogeneous media using alanine films

    NASA Astrophysics Data System (ADS)

    Helge Østerås, Bjørn; Olaug Hole, Eli; Rune Olsen, Dag; Malinen, Eirik

    2006-12-01

    In the current work, EPR (electron paramagnetic resonance) dosimetry using alanine films (134 µm thick) was utilized for dose measurements in inhomogeneous phantoms irradiated with radiotherapy photon beams. The main phantom material was PMMA, while either Styrofoam or aluminium was introduced as an inhomogeneity. The phantoms were irradiated to a maximum dose of about 30 Gy with 6 or 15 MV photons. The performance of the alanine film dosimeters was investigated and compared to results from ion chamber dosimetry, Monte Carlo simulations and radiotherapy treatment planning calculations. It was found that the alanine film dosimeters had a linear dose response above approximately 5 Gy, while a background signal obscured the response at lower dose levels. For doses between 5 and 60 Gy, the standard deviation of single alanine film dose estimates was about 2%. The alanine film dose estimates yielded results comparable to those from the Monte Carlo simulations and the ion chamber measurements, with absolute differences between estimates in the order of 1 15%. The treatment planning calculations exhibited limited applicability. The current work shows that alanine film dosimetry is a method suitable for estimating radiotherapeutical doses and for dose measurements in inhomogeneous media.

  10. Association of Alanine Aminotransferase and Periodontitis: A Cross-Sectional Analysis—NHANES 2009–2012

    PubMed Central

    Wiener, R. Constance; Sambamoorthi, Usha; Jurevic, Richard J.

    2016-01-01

    Objective. Alanine Aminotransferase is an enzyme associated with not only liver diseases, liver conditions, and metabolic syndrome, but also inflammation. Periodontitis is associated with increased cytokines and other markers of inflammation. The purpose of this study is to determine if an independent association between Alanine Aminotransferase and periodontitis exists. Methods. Data from the 2009-2010 and 2011-2012 National Health and Nutrition Surveys (NHANES) were combined. Data concerning periodontitis and Alanine Aminotransferase were extracted and analyzed with Rao Scott Chi-square and logistic regressions. Serum Alanine Aminotransferase was dichotomized at 40 units/liter, and periodontitis was dichotomized to the presence or absence of periodontitis. Results. In bivariate Chi-square analyses, periodontitis and Alanine Aminotransferase were associated (p = 0.0360) and remained significant in unadjusted logistic regression (OR = 1.30 [95% CI: 1.02, 1.65]). However, when other known risk factors of periodontitis were included in the analyses, the relationship attenuated and failed to reach significance (adjusted OR = 1.17 [95% CI: 0.85, 1.60]). Conclusion. Our study adds to the literature a positive but attenuated association of serum Alanine Aminotransferase with periodontitis which failed to reach significance when other known, strong risk factors of periodontitis were included in the analysis. PMID:26981311

  11. Identification of an arginine residue in the dual coenzyme-specific glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides that plays a key role in binding NADP+ but not NAD+.

    PubMed

    Levy, H R; Vought, V E; Yin, X; Adams, M J

    1996-02-01

    Glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides can utilize either NADP or NAD as coenzyme. The enzyme's three-dimensional structure has been solved (Rowland et al., 1994, Structure 2, 1073-1087) and shown to contain a conventional nucleotide binding domain. NADP+ was modeled into the structure by superimposing the beta alpha beta domain and that of coenzyme-bound 6-phosphogluconate dehydrogenase (Adams et al., 1994, Structure 2, 651-658), enabling us to identify Arg-46 as a potentially important residue for NADP+ binding. Using site-directed mutagenesis, we constructed mutant enzymes in which Arg-46 was replaced by glutamine (R46Q) and alanine (R46A) and examined their kinetic properties. The principal effects in these mutant enzymes were that the Km and Ki values for NADP+ increased by 2 to 3 orders of magnitude over those of the wild-type enzyme. No other kinetic constant was altered more than 6.5-fold. Changing this single amino acid leads to mutant glucose-6-phosphate dehydrogenases with coenzyme specificities that favor NAD+, whereas the wild-type enzyme prefers NADP+ as coenzyme. These results confirm that Arg-46 plays a key role in NADP+ binding by contributing a positively charged planar residue that interacts primarily with the 2'-adenosine phosphate. The Arg residue corresponding to Arg-46 in L. mesenteroides glucose-6-phosphate dehydrogenase is conserved in all glucose-6-phosphate dehydrogenases and, presumably, plays the same role in all these enzymes. PMID:8579362

  12. Global cellular responses to β-methyl-amino-L-alanine (BMAA) by olfactory ensheathing glial cells (OEC).

    PubMed

    Chiu, Alexander S; Braidy, Nady; Marçal, Helder; Welch, Jeffrey H; Gehringer, Michelle M; Guillemin, Gilles J; Neilan, Brett A

    2015-06-01

    This study utilised a proteomics approach to identify any differential protein expression in a glial cell line, rat olfactory ensheathing cells (OECs), treated with the cyanotoxin β-methylamino-l-alanine (BMAA). Five proteins of interest were identified, namely Rho GDP-dissociation inhibitor 1 (RhoGDP1), Nck-associated protein 1 (NCKAP1), voltage-dependent anion-selective channel protein 1 (VDAC1), 3-hydroxyacyl-CoA dehydrogenase type-2 (3hCoAdh2), and ubiquilin-4 (UBQLN4). Four of these candidates, nuclear receptor subfamily 4 group A member 1 (Nur77), cyclophilin A (CyPA), RhoGDP1 and VDAC1, have been reported to be involved in cell growth. A microarray identified UBQLN4, palladin and CyPA, which have been implicated to have roles in excitotoxicity. Moreover, the NCKAP1, UBQLN4, CyPA and 3hCoAdh2 genes have been associated with abnormal protein aggregation. Differential expression of genes involved in mitochondrial activity, Nur77, 3hCoAdh2, VDAC1 and UBQLN4, were also identified. Confirmatory reverse transcription quantitative PCR (RT-qPCR) analysis of transcripts generated from the genes of interest corroborated the differential expression trends identified in the global protein analysis. BMAA induced cell cycle arrest in the G2/M phase of OEC and apoptosis after 48 h at concentrations of 250 μM and 500 μM. Collectively, this work advances our understanding of the mechanism of BMAA-mediated glial-toxicity in vitro. PMID:25797319

  13. Pyruvate dehydrogenase kinase-4 contributes to the recirculation of gluconeogenic precursors during postexercise glycogen recovery

    PubMed Central

    Herbst, Eric A. F.; MacPherson, Rebecca E. K.; LeBlanc, Paul J.; Roy, Brian D.; Jeoung, Nam Ho; Harris, Robert A.

    2013-01-01

    During recovery from glycogen-depleting exercise, there is a shift from carbohydrate oxidation to glycogen resynthesis. The activity of the pyruvate dehydrogenase (PDH) complex may decrease to reduce oxidation of carbohydrates in favor of increasing gluconeogenic recycling of carbohydrate-derived substrates for this process. The precise mechanism behind this has yet to be elucidated; however, research examining mRNA content has suggested that the less-abundant pyruvate dehydrogenase kinase-4 (PDK4) may reduce PDH activation during exercise recovery. To investigate this, skeletal muscle and liver of wild-type (WT) and PDK4-knockout (PDK4-KO) mice were analyzed at rest (Rest), after exercise to exhaustion (Exh), and after 2 h of recovery with ad libitum feeding (Rec). Although there were no differences in exercise tolerance between genotypes, caloric consumption was doubled by PDK4-KO mice during Rec. Because of this, PDK4-KO mice at Rec supercompensated muscle glycogen to 120% of resting stores. Therefore, an extra group of PDK4-KO mice were pair-fed (PF) with WT mice during Rec for comparison. PF mice fully replenished muscle glycogen but recovered only 50% of liver glycogen stores. Concentrations of muscle lactate and alanine were also lower in PF than in WT mice, indicating that this decrease may lead to a potential reduction of recycled gluconeogenic substrates, due to oxidation of their carbohydrate precursors in skeletal muscle, leading to observed reductions in hepatic glucose and glycogen concentrations. Because of the impairments seen in PF PDK4-KO mice, these results suggest a role for PDK4 in regulating the PDH complex in muscle and promoting gluconeogenic precursor recirculation during recovery from exhaustive exercise. PMID:24305065

  14. Effect of pyruvate dehydrogenase complex deficiency on L-lysine production with Corynebacterium glutamicum.

    PubMed

    Blombach, Bastian; Schreiner, Mark E; Moch, Matthias; Oldiges, Marco; Eikmanns, Bernhard J

    2007-09-01

    Intracellular precursor supply is a critical factor for amino acid productivity of Corynebacterium glutamicum. To test for the effect of improved pyruvate availability on L-lysine production, we deleted the aceE gene encoding the E1p enzyme of the pyruvate dehydrogenase complex (PDHC) in the L-lysine-producer C. glutamicum DM1729 and characterised the resulting strain DM1729-BB1 for growth and L-lysine production. Compared to the host strain, C. glutamicum DM1729-BB1 showed no PDHC activity, was acetate auxotrophic and, after complete consumption of the available carbon sources glucose and acetate, showed a more than 50% lower substrate-specific biomass yield (0.14 vs 0.33 mol C/mol C), an about fourfold higher biomass-specific L-lysine yield (5.27 vs 1.23 mmol/g cell dry weight) and a more than 40% higher substrate-specific L-lysine yield (0.13 vs 0.09 mol C/mol C). Overexpression of the pyruvate carboxylase or diaminopimelate dehydrogenase genes in C. glutamicum DM1729-BB1 resulted in a further increase in the biomass-specific L-lysine yield by 6 and 56%, respectively. In addition to L-lysine, significant amounts of pyruvate, L-alanine and L-valine were produced by C. glutamicum DM1729-BB1 and its derivatives, suggesting a surplus of precursor availability and a further potential to improve L-lysine production by engineering the L-lysine biosynthetic pathway. PMID:17333167

  15. 21 CFR 862.1500 - Malic dehydrogenase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... plasma. Malic dehydrogenase measurements are used in the diagnosis and treatment of muscle and liver diseases, myocardial infarctions, cancer, and blood disorders such as myelogenous (produced in the...

  16. 21 CFR 866.5560 - Lactic dehydrogenase immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... blood cells), myocardial infarction (heart disease), and some forms of leukemia (cancer of the blood... conditions known to cause increased lactic dehydrogenase levels. (b) Classification. Class I...

  17. 21 CFR 866.5560 - Lactic dehydrogenase immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... blood cells), myocardial infarction (heart disease), and some forms of leukemia (cancer of the blood... conditions known to cause increased lactic dehydrogenase levels. (b) Classification. Class I...

  18. 21 CFR 866.5560 - Lactic dehydrogenase immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... blood cells), myocardial infarction (heart disease), and some forms of leukemia (cancer of the blood... conditions known to cause increased lactic dehydrogenase levels. (b) Classification. Class I...

  19. 21 CFR 866.5560 - Lactic dehydrogenase immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... blood cells), myocardial infarction (heart disease), and some forms of leukemia (cancer of the blood... conditions known to cause increased lactic dehydrogenase levels. (b) Classification. Class I...

  20. 21 CFR 862.1420 - Isocitric dehydrogenase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... and plasma. Isocitric dehydrogenase measurements are used in the diagnosis and treatment of liver disease such as viral hepatitis, cirrhosis, or acute inflammation of the biliary tract; pulmonary...

  1. 21 CFR 862.1420 - Isocitric dehydrogenase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... and plasma. Isocitric dehydrogenase measurements are used in the diagnosis and treatment of liver disease such as viral hepatitis, cirrhosis, or acute inflammation of the biliary tract; pulmonary...

  2. 21 CFR 862.1420 - Isocitric dehydrogenase test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... and plasma. Isocitric dehydrogenase measurements are used in the diagnosis and treatment of liver disease such as viral hepatitis, cirrhosis, or acute inflammation of the biliary tract; pulmonary...

  3. 21 CFR 862.1420 - Isocitric dehydrogenase test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... and plasma. Isocitric dehydrogenase measurements are used in the diagnosis and treatment of liver disease such as viral hepatitis, cirrhosis, or acute inflammation of the biliary tract; pulmonary...

  4. 21 CFR 862.1420 - Isocitric dehydrogenase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... and plasma. Isocitric dehydrogenase measurements are used in the diagnosis and treatment of liver disease such as viral hepatitis, cirrhosis, or acute inflammation of the biliary tract; pulmonary...

  5. Lactate dehydrogenase in sickle cell disease.

    PubMed

    Stankovic Stojanovic, Katia; Lionnet, François

    2016-07-01

    Lactate dehydrogenase (LDH) activity is elevated in many pathological states. Interest in LDH activity in sickle cell disease (SCD) has developed out of an increased comprehension of the pathophysiological process and the clinical course of the disease. Elevated LDH activity in SCD comes from various mechanisms, especially intravascular hemolysis, as well as ischemia-reperfusion damage and tissular necrosis. Intravascular hemolysis is associated with vasoconstriction, platelet activation, endothelial damage, and vascular complications. LDH has been used as a diagnostic and prognostic factor of acute and chronic complications. In this review we have evaluated the literature where LDH activity was examined during steady-state or acute conditions in SCD. PMID:27138446

  6. Substrate specificity of sheep liver sorbitol dehydrogenase.

    PubMed Central

    Lindstad, R I; Köll, P; McKinley-McKee, J S

    1998-01-01

    The substrate specificity of sheep liver sorbitol dehydrogenase has been studied by steady-state kinetics over the range pH 7-10. Sorbitol dehydrogenase stereo-selectively catalyses the reversible NAD-linked oxidation of various polyols and other secondary alcohols into their corresponding ketones. The kinetic constants are given for various novel polyol substrates, including L-glucitol, L-mannitol, L-altritol, D-altritol, D-iditol and eight heptitols, as well as for many aliphatic and aromatic alcohols. The maximum velocities (kcat) and the substrate specificity-constants (kcat/Km) are positively correlated with increasing pH. The enzyme-catalysed reactions occur by a compulsory ordered kinetic mechanism with the coenzyme as the first, or leading, substrate. With many substrates, the rate-limiting step for the overall reaction is the enzyme-NADH product dissociation. However, with several substrates there is a transition to a mechanism with partial rate-limitation at the ternary complex level, especially at low pH. The kinetic data enable the elucidation of new empirical rules for the substrate specificity of sorbitol dehydrogenase. The specificity-constants for polyol oxidation vary as a function of substrate configuration with D-xylo> D-ribo > L-xylo > D-lyxo approximately L-arabino > D-arabino > L-lyxo. Catalytic activity with a polyol or an aromatic substrate and various 1-deoxy derivatives thereof varies with -CH2OH > -CH2NH2 > -CH2OCH3 approximately -CH3. The presence of a hydroxyl group at each of the remaining chiral centres of a polyol, apart from the reactive C2, is also nonessential for productive ternary complex formation and catalysis. A predominantly nonpolar enzymic epitope appears to constitute an important structural determinant for the substrate specificity of sorbitol dehydrogenase. The existence of two distinct substrate binding regions in the enzyme active site, along with that of the catalytic zinc, is suggested to account for the lack of

  7. Methylenetetrahydrofolate dehydrogenase from Clostridium formicoaceticum and methylenetetrahydrofolate dehydrogenase, methenyltetrahydrofolate cyclohydrolase (combined) from Clostridium thermoaceticum

    SciTech Connect

    Ljungdahl, L.G.; O'Brien, W.E.; Moore, M.R.; Liu, M.T.

    1980-01-01

    Methylenetetrahydrofolate dehydrogenase is widely distributed and has been found in every cell type investigated. The NAD-specific enzyme has been purified to homogeneity from Clostridium formicoaceticum and the NADP-specific enzyme has been obtained from Clostridium thermoaceticum. Other sources of the NADP-specific enzyme are Streptococcus species, Escherichia coli, Clostridium cylindrosporum, Salmonella typhimurium, yeast, liver from various animals, calf thymus, and plants. The NAD-specific enzyme has been demonstrated in Acetobacterium woodii, some methane bacteria, and in Ehrlich ascites tumor cells. Of considerable interest are the observations that in porcine and ovine livers, as well as in yeast, methylenetetrahydrofolate dehydrogenase purified to homogeneity also contains methylenetetrahydrofolate cyclohydrolase and formyltetrahydrofolate synthetase activities. Now it appears that the purified methylenetetrahydrofolate dehydrogenase from C. thermoaceticum also has cyclohydrolase but not synthetase activity. Methylenetetrahydrofolate dehydrogenase has been discussed previously in this series, as has methenyltetrahydrofolate cyclohydrolase. In C. formicoaceticum and C. thermoaceticum these tetrahydrofolate-dependent enzymes participate in a sequence of metabolic reactions by which carbon dioxide is reduced to the methyl group of 5-methyltetrahydrofolate which in turn is utilized for the synthesis of acetate. This pathway provides the mechanism for disposing of reducing equivalents generated in glycolysis.

  8. Crystal structure of Pseudomonas fluorescens mannitol 2-dehydrogenase: evidence for a very divergent long-chain dehydrogenase family.

    PubMed

    Kavanagh, Kathryn L; Klimacek, Mario; Nidetzky, Bernd; Wilson, David K

    2003-02-01

    Mannitol 2-dehydrogenase from Pseudomonas fluorescens (pfMDH) is a secondary alcohol dehydrogenase that catalyzes the reversible NAD(P)-dependent oxidation of D-mannitol to D-fructose, D-arabinitol to D-xylulose, and D-sorbitol to L-sorbose. It is a member of the mostly prokaryotic family of long-chain mannitol dehydrogenases that so far includes 66 members. Unlike other alcohol and polyol dehydrogenases that utilize metal cofactors or a conserved active-site tyrosine for catalysis, an invariant lysine is the general base. The crystal structure of pfMDH in a binary complex with NAD(H) and a ternary complex with NAD(H) and D-mannitol have been determined to 1.7 and 1.8 A resolution respectively. Comparison of secondary structure assignment to sequence alignments suggest the shortest members of this family, mannitol-1-phosphate 5-dehydrogenases, retain core elements but lack secondary structural components found on the surface of pfMDH. The elements predicted to be absent are distributed throughout the primary sequence, implying that a simple truncation or fusion did not occur. The closest structural neighbors are 6-phosphogluconate dehydrogenase, UDP-glucose dehydrogenase, N-(1-D-carboxyethyl)-L-norvaline dehydrogenase, and glycerol-3-phosphate dehydrogenase. Although sequence identity is only a barely recognizable 7-10%, conservation of secondary structural elements as well as homologous residues that are contributed to the active site indicates they may be related by divergent evolution. PMID:12604241

  9. Glucose and Alanine Metabolism in Children with Maple Syrup Urine Disease

    PubMed Central

    Haymond, Morey W.; Ben-Galim, Ehud; Strobel, Karen E.

    1978-01-01

    In vitro studies have suggested that catabolism of branched chain amino acids is linked with alanine and glutamine formed in, and released from, muscle. To explore this possibility in vivo, static and kinetic studies were performed in three patients with classical, and one patient with partial, branched chain α-ketoacid decarboxylase deficiency (maple syrup urine disease, MSUD) and compared to similar studies in eight age-matched controls. The subjects underwent a 24-30-h fast, and a glucose-alanine flux study using stable isotopes. Basal plasma leucine concentrations were elevated (P <0.001) in patients with MSUD (1,140±125 μM vs. 155±18 μM in controls); and in contrast to the controls, branched chain amino acid concentrations in plasma increased during the fast in the MSUD patients. Basal plasma alanine concentrations were lower (P <0.01) in patients with classical MSUD (153±8 μM vs. 495±27 μM in controls). This discrepancy was maintained throughout the fast despite a decrease in alanine concentrations in both groups. Plasma alanine and leucine concentrations in the patient with partial MSUD were intermediate between those of the controls and the subjects with the classical form of the disease. Circulating ketone bodies and glucoregulatory hormones concentrations were similar in the MSUD and normal subjects during the fast. Alanine flux rates in two patients with classical MSUD (3.76 and 4.00 μmol/Kg per min) and the patient with partial MSUD (5.76 μmol/Kg per min) were clearly lower than those of the controls (11.72±2.53 [SD] μmol/Kg per min). After short-term starvation, glucose flux and fasting concentrations were similar in the MSUD patients and normal subjects. These data indicate that branched chain amino acid catabolism is an important rate limiting event for alanine production in vivo. PMID:670400

  10. Exchange interactions and magnetic dimension in Cu(L-alanine)2

    NASA Astrophysics Data System (ADS)

    Calvo, R.; Passeggi, M. C. G.; Novak, M. A.; Symko, O. G.; Oseroff, S. B.; Nascimento, O. R.; Terrile, M. C.

    1991-01-01

    A study of the magnetic properties of the copper (II) complex of the amino acid l-alanine [Cu(l-alanine)2] is reported. The susceptibility of a powder sample has been measured between 0.013 and 240 K. A linear-spin-chain model with antiferromagnetic exchange coupling J=-0.52 K fits well the susceptibility data above 0.3 K. Room-temperature electron paramagnetic resonance (EPR) spectra of single crystals of Cu(l-alanine)2 at 9 and 35 GHz show a single, exchange-narrowed resonance. The g tensor, with principal values g1=2.0554+/-0.0005, g2=2.1064+/-0.0005, and g3=2.2056+/-0.0005, reflects the crystal structure of Cu(l-alanine)2 and the electronic properties of the copper ions. The observed angular variation of the linewidth is attributed to the magnetic interactions, narrowed by the exchange coupling between copper ions, and shows a contribution characteristic of the dipole-dipole interaction in a spin system with a predominant two-dimensional spin dynamics. Considering the exchange-collapsed resonance corresponding to the two lattice sites for copper in Cu(l-alanine)2, we evaluate an exchange constant ||J(AB1)||=0.47 K between nonequivalent copper neighbors in a spin chain, similar to the value obtained from the susceptibility data. The one-dimensional magnetic behavior suggested by the susceptibility data in Cu(l-alanine)2, where the metal ions are distributed in layers, is explained by proposing that carboxylate bridges provide electronic paths for superexchange interactions between coppers. Considering the characteristics of the molecular structure of Cu(l-alanine)2, the layers seem to be magnetically split off into one-dimensional zigzag ribbons. The apparent disagreement between the one-dimensional behavior suggested by the susceptibility data and the two-dimensional behavior of the spin dynamics suggested by the EPR linewidth is analyzed.

  11. FTIR spectra and conformational structure of deutero-β-alanine isolated in argon matrices

    NASA Astrophysics Data System (ADS)

    Stepanian, Stepan G.; Ivanov, Alexander Yu; Adamowicz, Ludwik

    2016-02-01

    Low temperature FTIR spectra of β-alanine-d3 isolated in argon matrices are used to determine the conformational composition of this compound. UV irradiation of the matrix samples is found to change the relative populations of the β-alanine-d3 conformers. The populations of conformers I and II with an Nsbnd D⋯O intramolecular H-bond decrease after the UV irradiation while the populations of conformer V with an N⋯Dsbnd O H-bond and conformer IV which has no intramolecular H-bonds increase. This behavior of the β-alanine-d3 conformers are used to separate the bands of the different conformers. The analysis of the experimental FTIR spectra is based on the calculated harmonic B3LYP/6-311++G(df,pd) frequencies and on the MP2/aug-cc-pVDZ frequencies calculated with a method that includes anharmonic effects. Polynomial scaling of the calculated frequencies is used to achieve better agreement with the experimental data. The observation of the wide band of the OD stretching vibration at 2201 cm-1 is a direct evidence of the presence of the β-alanine-d3 conformer V in the Ar matrix. In total ten bands of conformer V are detected. The influence of the matrix environment on the structures and the IR spectra of the β-alanine and β-alanine-d3 conformers is investigated. This involves performing calculations of the β-alanine conformers embedded in argon clusters containing from 163 to 166 argon atoms using the M06-2X and B3LYP(GD3BJ) density-functional methods. Good agreement between the calculated and the experimental matrix splitting is demonstrated.

  12. Catecholamine regulation of lactate dehydrogenase in rat brain cell culture

    SciTech Connect

    Kumar, S.; McGinnis, J.F.; de Vellis, J.

    1980-03-25

    The mechanism of catecholamine induction of the soluble cytoplasmic enzyme lactate dehydrogenase (EC 1.1.1.27) was studied in the rat glial tumor cell line, C6. Lactate dehydrogenase was partially purified from extracts of (/sup 3/H)leucine-labeled cells by affinity gel chromatography and quantitatively immunoprecipitated with anti-lactate dehydrogenase-5 IgG and with antilactate dehydrogenase-1 IgG. The immunoprecipitates were dissociated and electrophoresed on sodium dodecyl sulfate polyacrylamide gels. Using this methodology, the increased enzyme activity of lactate dehydrogenase in norepinephrine-treated C6 cells was observed to be concomitant with the increased synthesis of enzyme molecules. Despite the continued presence of norepinephrine, the specific increase in the rate of synthesis of lactate dehydrogenase was transient. It was first detected at 4 h, was maximum at 9 h, and returned to basal levels by 24 h. The half-life of lactate dehydrogenase enzyme activity was 36 h during the induction and 40 h during deinduction. The half-life for decay of /sup 3/H-labeled lactate dehydrogenase was 41 h. These observations suggest that the increase in lactate dehydrogenase activity in norepinephrine-treated cells does not involve any change in the rate of degradation. Norepinephrine increased the specific rate of synthesis of both lactate dehydrogenase-5 (a tetramer of four M subunits) and lactate dehydrogenase-1 (a tetramer of four H subunits), although to different extents. Since these subunits are coded for by two separate genes on separate chromosomes, it suggests that the regulatory mechanism involves at least two separate sites of action.

  13. Aldehyde dehydrogenase protein superfamily in maize.

    PubMed

    Zhou, Mei-Liang; Zhang, Qian; Zhou, Ming; Qi, Lei-Peng; Yang, Xiong-Bang; Zhang, Kai-Xuan; Pang, Jun-Feng; Zhu, Xue-Mei; Shao, Ji-Rong; Tang, Yi-Xiong; Wu, Yan-Min

    2012-11-01

    Maize (Zea mays ssp. mays L.) is an important model organism for fundamental research in the agro-biotechnology field. Aldehydes were generated in response to a suite of environmental stresses that perturb metabolism including salinity, dehydration, desiccation, and cold and heat shock. Many biologically important aldehydes are metabolized by the superfamily of NAD(P)(+)-dependent aldehyde dehydrogenases. Here, starting from the database of Z. mays, we identified 28 aldehyde dehydrogenase (ALDH) genes and 48 transcripts by the in silico cloning method using the ALDH-conserved domain amino acid sequence of Arabidopsis and rice as a probe. Phylogenetic analysis shows that all 28 members of the ALDH gene families were classified to ten distinct subfamilies. Microarray data and quantitative real-time PCR analysis reveal that ZmALDH9, ZmALDH13, and ZmALDH17 genes involve the function of drought stress, acid tolerance, and pathogens infection. These results suggested that these three ZmALDH genes might be potentially useful in maize genetic improvement. PMID:22983498

  14. Alcohol dehydrogenases from olive (Olea europaea) fruit.

    PubMed

    Salas, J J; Sánchez, J

    1998-05-01

    Alcohol dehydrogenase activity was detected in extracts from the pericarp tissues of developing olive fruits using hexanal as the substrate. Total activity in the crude extract was 20-fold higher with NADPH than with NADH. Three discrete enzymes were resolved by means of a purification protocol involving ammonium sulfate fractionation followed by ion-exchange and affinity chromatography. One of the enzymes was NAD-dependent and displayed a high K(m) for hexanal (K(m) = 2.1 mM). Two NADP-dependent alcohol dehydrogenases were resolved, one showing a high K(m) for hexanal (K(m) = 1.9 mM) and the second with a lower K(m) for the same substrate (K(m) = 0.04 mM). The three enzymes have been partially purified and their kinetic parameters and specificities for various aldehydes determined. The involvement of these enzymes in the biogenesis of six carbon alcohols constituent of the aroma of olive oil is discussed. PMID:9621451

  15. Phosphorylation-dephosphorylation of yeast pyruvate dehydrogenase

    SciTech Connect

    Uhlinger, D.J.; Reed, L.J.

    1986-05-01

    Pyruvate dehydrogenase complex (PDC) was purified to homogeneity from baker's yeast (Saccharomyces cerevisiae). No pyruvate dehydrogenase (PDH) kinase activity was detected at any stage of the purification. However, the purified PDC was phosphorylated and inactivated by purified PDH kinase from bovine kidney mitochondria, Mg/sup 2 +/, and (..gamma..-/sup 32/P)ATP. The protein-bound radioactivity was localized in the PDH ..cap alpha.. subunit. The phosphorylated, inactivated PDC was dephosphorylated and reactivated with purified bovine PDH phosphatase, Mg/sup 2 +/, and Ca/sup 2 +/. From a tryptic digest of phosphorylated yeast PDC a radioactive peptide was isolated by anion and reverse phase HPLC. The sequence of this tetradecapeptide is Tyr-Gly-Gly-His-Ser(P)-Met-Ser-Asp-Pro-Gly-Thr-Thr-Tyr-Arg. This sequence is very similar to the sequence of a tryptic phosphopeptide derived from the ..cap alpha.. subunit of bovine kidney and heart PDH: Tyr-His-Gly-His-Ser(P)-Met-Ser-Asp-Pro-Gly-Val-Ser-Tyr-Arg.

  16. Isolation and characterization of cytosolic alanine aminotransferase isoforms from starved rat liver.

    PubMed

    Vedavathi, M; Girish, K S; Kumar, M Karuna

    2004-12-01

    Alanine is the most effective precursor for gluconeogenesis among amino acids and the initial reaction is catalyzed by alanine aminotransferases (AlaATs). It is a less extensively studied enzyme under starvation and known to that the enzyme activity increases in liver under starvation. The present study describes the purification and characterization of two isoforms of alanine aminotransferases from starved male rat liver under starvation. The molecular mass of isoforms was found to be 17.7 and 112.2 kDa with isoelectric points of 4.2 and 5.3 respectively for AlaAT I and AlaAT II. Both the enzymes showed narrow substrate specificity for L-alanine with different Km for alanine and 2-oxoglutarate. Both the enzymes were glycoprotein in nature. Inhibition, modification and spectroscopic studies showed that both PLP and free-SH groups are directly involved in the enzymatic catalysis. PLP activated both the enzymes with a Km 0.057 mM and 0.2 mM for AlaAT I and II respectively. PMID:15663181

  17. L-alanine in a droplet of water: a density-functional molecular dynamics study.

    PubMed

    Degtyarenko, Ivan M; Jalkanen, Karl J; Gurtovenko, Andrey A; Nieminen, Risto M

    2007-04-26

    We report the results of a Born-Oppenheimer molecular dynamics study on an L-alanine amino acid in neutral aqueous solution. The whole system, the L-alanine zwitterion and 50 water molecules, was treated quantum mechanically. We found that the hydrophobic side chain (R = CH3) defines the trajectory path of the molecule. Initially fully hydrated in an isolated droplet of water, the amino acid moves to the droplet's surface, exposing its hydrophobic methyl group and alpha-hydrogen out of the water. The structure of an L-alanine with the methyl group exposed to the water surface was found to be energetically favorable compared to a fully hydrated molecule. The dynamic behavior of the system suggests that the first hydration shell of the amino acid is localized around carboxylate (CO2-) and ammonium (NH3+) functional groups; it is highly ordered and quite rigid. In contrast, the hydration shell around the side chain is much less structured, suggesting a modest influence of the methyl group on the structure of water. The number of water molecules in the first hydration shell of an alanine molecule is constantly changing; the average number was found to equal 7. The molecular dynamics results show that L-alanine in water does not have a preferred conformation, as all three of the molecule's functional sites (i.e., CH3, NH3+, CO2-) perform rotational movements around the C(alpha)-site bond. PMID:17407339

  18. Perturbation correction for alanine dosimeters in different phantom materials in high-energy photon beams

    NASA Astrophysics Data System (ADS)

    von Voigts-Rhetz, P.; Anton, M.; Vorwerk, H.; Zink, K.

    2016-02-01

    In modern radiotherapy the verification of complex treatments plans is often performed in inhomogeneous or even anthropomorphic phantoms. For dose verification small detectors are necessary and therefore alanine detectors are most suitable. Though the response of alanine for a wide range of clinical photon energies in water is well know, the knowledge about the influence of the surrounding phantom material on the response of alanine is sparse. Therefore we investigated the influence of twenty different surrounding/phantom materials for alanine dosimeters in clinical photon fields via Monte Carlo simulations. The relative electron density of the used materials was in the range {{n}e}/{{n}e,\\text{w}}=0.20 up to 1.69, covering almost all materials appearing in inhomogeneous or anthropomorphic phantoms used in radiotherapy. The investigations were performed for three different clinical photon spectra ranging from 6 to 25 MV-X and Co-60 and as a result a perturbation correction {{k}\\text{env}} depending on the environmental material was established. The Monte Carlo simulation show, that there is only a small dependence of {{k}\\text{env}} on the phantom material and the photon energy, which is below  ±0.6%. The results confirm the good suitability of alanine detectors for in-vivo dosimetry.

  19. Perturbation correction for alanine dosimeters in different phantom materials in high-energy photon beams.

    PubMed

    von Voigts-Rhetz, P; Anton, M; Vorwerk, H; Zink, K

    2016-02-01

    In modern radiotherapy the verification of complex treatments plans is often performed in inhomogeneous or even anthropomorphic phantoms. For dose verification small detectors are necessary and therefore alanine detectors are most suitable. Though the response of alanine for a wide range of clinical photon energies in water is well know, the knowledge about the influence of the surrounding phantom material on the response of alanine is sparse. Therefore we investigated the influence of twenty different surrounding/phantom materials for alanine dosimeters in clinical photon fields via Monte Carlo simulations. The relative electron density of the used materials was in the range [Formula: see text] up to 1.69, covering almost all materials appearing in inhomogeneous or anthropomorphic phantoms used in radiotherapy. The investigations were performed for three different clinical photon spectra ranging from 6 to 25 MV-X and Co-60 and as a result a perturbation correction [Formula: see text] depending on the environmental material was established. The Monte Carlo simulation show, that there is only a small dependence of [Formula: see text] on the phantom material and the photon energy, which is below  ±0.6%. The results confirm the good suitability of alanine detectors for in-vivo dosimetry. PMID:26758810

  20. 21 CFR 862.1500 - Malic dehydrogenase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Malic dehydrogenase test system. 862.1500 Section 862.1500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1500 Malic dehydrogenase test system....

  1. 21 CFR 862.1440 - Lactate dehydrogenase test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lactate dehydrogenase test system. 862.1440 Section 862.1440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1440 Lactate dehydrogenase...

  2. 21 CFR 866.5560 - Lactic dehydrogenase immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lactic dehydrogenase immunological test system. 866.5560 Section 866.5560 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5560 Lactic dehydrogenase immunological...

  3. BACTERIAL EXPRESSION, PURIFICATION, AND CHARACTERIZATION OF ARABIDOPSIS THALIANA PYRUVATE DEHYDROGENASE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pyruvate dehydrogenase complex (PDC) is a very large multi-component structure that catalyzes decarboxylation of pyruvate, yielding CO2, NADH, and acetyl-CoA as products. The decarboxylation reaction is catalyzed by pyruvate dehydrogenase (E1). The PDC occupies a key position in intermediary met...

  4. Saturation transfer difference NMR studies on substrates and inhibitors of succinic semialdehyde dehydrogenases

    SciTech Connect

    Jaeger, Martin Rothacker, Boris; Ilg, Thomas

    2008-08-01

    Saturation transfer difference (STD) NMR experiments on Escherichia coli and Drosophila melanogaster succinic semialdehyde dehydrogenase (SSADH, EC1.2.1.24) suggest that only the aldehyde forms and not the gem-diol forms of the specific substrate succinic semialdehyde (SSA), of selected aldehyde substrates, and of the inhibitor 3-tolualdehyde bind to these enzymes. Site-directed mutagenesis of the active site cysteine311 to alanine in D. melanogaster SSADH leads to an inactive product binding both SSA aldehyde and gem-diol. Thus, the residue cysteine311 is crucial for their discrimination. STD experiments on SSADH and NAD{sup +}/NADP{sup +} indicate differential affinity in agreement with the respective cosubstrate properties. Epitope mapping by STD points to a strong interaction of the NAD{sup +}/NADP{sup +} adenine H2 proton with SSADH. Adenine H8, nicotinamide H2, H4, and H6 also show STD signals. Saturation transfer to the ribose moieties is limited to the anomeric protons of E. coli SSADH suggesting that the NAD{sup +}/NADP{sup +} adenine and nicotinamide, but not the ribose moieties are important for the binding of the coenzymes.

  5. Substrate Specificity of the Aspartate:Alanine Antiporter (AspT) of Tetragenococcus halophilus in Reconstituted Liposomes*

    PubMed Central

    Sasahara, Ayako; Nanatani, Kei; Enomoto, Masaru; Kuwahara, Shigefumi; Abe, Keietsu

    2011-01-01

    The aspartate:alanine antiporter (AspT) of the lactic acid bacterium Tetragenococcus halophilus is a member of the aspartate:alanine exchanger (AAEx) transporter family. T. halophilus AspT catalyzes the electrogenic exchange of l-aspartate1− with l-alanine0. Although physiological functions of AspT were well studied, l-aspartate1−:l-alanine0 antiport mechanisms are still unsolved. Here we report that the binding sites of l-aspartate and l-alanine are independently present in AspT by means of the kinetic studies. We purified His6-tagged T. halophilus AspT and characterized its kinetic properties when reconstituted in liposomes (Km = 0.35 ± 0.03 mm for l-aspartate, Km = 0.098 ± 0 mm for d-aspartate, Km = 26 ± 2 mm for l-alanine, Km = 3.3 ± 0.2 mm for d-alanine). Competitive inhibition by various amino acids of l-aspartate or l-alanine in self-exchange reactions revealed that l-cysteine selectively inhibited l-aspartate self-exchange but only weakly inhibited l-alanine self-exchange. Additionally, l-serine selectively inhibited l-alanine self-exchange but barely inhibited l-aspartate self-exchange. The aspartate analogs l-cysteine sulfinic acid, l-cysteic acid, and d-cysteic acid competitively and strongly inhibited l-aspartate self-exchange compared with l-alanine self-exchange. Taken together, these kinetic data suggest that the putative binding sites of l-aspartate and l-alanine are independently located in the substrate translocation pathway of AspT. PMID:21719707

  6. Substrate specificity of the aspartate:alanine antiporter (AspT) of Tetragenococcus halophilus in reconstituted liposomes.

    PubMed

    Sasahara, Ayako; Nanatani, Kei; Enomoto, Masaru; Kuwahara, Shigefumi; Abe, Keietsu

    2011-08-19

    The aspartate:alanine antiporter (AspT) of the lactic acid bacterium Tetragenococcus halophilus is a member of the aspartate:alanine exchanger (AAEx) transporter family. T. halophilus AspT catalyzes the electrogenic exchange of L-aspartate(1-) with L-alanine(0). Although physiological functions of AspT were well studied, L-aspartate(1-):L-alanine(0) antiport mechanisms are still unsolved. Here we report that the binding sites of L-aspartate and L-alanine are independently present in AspT by means of the kinetic studies. We purified His(6)-tagged T. halophilus AspT and characterized its kinetic properties when reconstituted in liposomes (K(m) = 0.35 ± 0.03 mm for L-aspartate, K(m) = 0.098 ± 0 mm for D-aspartate, K(m) = 26 ± 2 mm for L-alanine, K(m) = 3.3 ± 0.2 mm for D-alanine). Competitive inhibition by various amino acids of L-aspartate or L-alanine in self-exchange reactions revealed that L-cysteine selectively inhibited L-aspartate self-exchange but only weakly inhibited L-alanine self-exchange. Additionally, L-serine selectively inhibited L-alanine self-exchange but barely inhibited L-aspartate self-exchange. The aspartate analogs L-cysteine sulfinic acid, L-cysteic acid, and D-cysteic acid competitively and strongly inhibited L-aspartate self-exchange compared with L-alanine self-exchange. Taken together, these kinetic data suggest that the putative binding sites of L-aspartate and L-alanine are independently located in the substrate translocation pathway of AspT. PMID:21719707

  7. GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE-S, A SPERM-SPECIFIC GLYCOLYTIC ENZYME, IS REQUIRED FOR SPERM MOTILITY AND MALE FERTILITY

    EPA Science Inventory

    While glycolysis is highly conserved, it is remarkable that several novel isozymes in this central metabolic pathway are found in mammalian sperm. Glyceraldehyde 3-phosphate dehydrogenase-S (GAPDS) is the product of a mouse gene expressed only during spermatogenesis and, like it...

  8. Combined TL and 10B-alanine ESR dosimetry for BNCT.

    PubMed

    Bartolotta, A; D'Oca, M C; Lo Giudice, B; Brai, M; Borio, R; Forini, N; Salvadori, P; Manera, S

    2004-01-01

    The dosimetric technique described in this paper is based on electron spin resonance (ESR) detectors using an alanine-boric compound acid enriched with (10)B, and beryllium oxide thermoluminescent (TL) detectors; with this combined dosimetry, it is possible to discriminate the doses due to thermal neutrons and gamma radiation in a mixed field. Irradiations were carried out inside the thermal column of a TRIGA MARK II water-pool-type research nuclear reactor, also used for Boron Neutron Capture therapy (BNCT) applications, with thermal neutron fluence from 10(9) to 10(14) nth cm(-2). The ESR dosemeters using the alanine-boron compound indicated ESR signals about 30-fold stronger than those using only alanine. Moreover, a negligible correction for the gamma contribution, measured with TL detectors, almost insensitive to thermal neutrons, was necessary. Therefore, a simultaneous analysis of our TL and ESR detectors allows discrimination between thermal neutron and gamma doses, as required in BNCT. PMID:15353720

  9. Applicability of EPR/alanine dosimetry for quality assurance in proton eye radiotherapy.

    PubMed

    Michalec, B; Mierzwinska, G; Ptaszkiewicz, M; Sowa, U; Stolarczyk, L; Weber, A

    2014-06-01

    A new quality assurance and quality control method for proton eye radiotherapy based on electron paramagnetic resonance (EPR)/alanine dosimetry has been developed. It is based on Spread-Out Bragg Peak entrance dose measurement with alanine detectors. The entrance dose is well correlated with the dose at the facility isocenter, where, during the therapeutic irradiation, the tumour is placed. The unique alanine detector features namely keeping the dose record in a form of stable radiation-induced free radicals trapped in the material structure, and the non-destructive read-out makes this type of detector a good candidate for additional documentation of the patient's exposure over the therapy course. PMID:24876341

  10. Enantiocomplementary Yarrowia lipolytica Oxidoreductases: Alcohol Dehydrogenase 2 and Short Chain Dehydrogenase/Reductase

    PubMed Central

    Napora-Wijata, Kamila; Strohmeier, Gernot A.; Sonavane, Manoj N.; Avi, Manuela; Robins, Karen; Winkler, Margit

    2013-01-01

    Enzymes of the non-conventional yeast Yarrowia lipolytica seem to be tailor-made for the conversion of lipophilic substrates. Herein, we cloned and overexpressed the Zn-dependent alcohol dehydrogenase ADH2 from Yarrowia lipolytica in Escherichia coli. The purified enzyme was characterized in vitro. The substrate scope for YlADH2 mediated oxidation and reduction was investigated spectrophotometrically and the enzyme showed a broader substrate range than its homolog from Saccharomyces cerevisiae. A preference for secondary compared to primary alcohols in oxidation direction was observed for YlADH2. 2-Octanone was investigated in reduction mode in detail. Remarkably, YlADH2 displays perfect (S)-selectivity and together with a highly (R)-selective short chain dehydrogenase/ reductase from Yarrowia lipolytica it is possible to access both enantiomers of 2-octanol in >99% ee with Yarrowia lipolytica oxidoreductases. PMID:24970175

  11. Antimicrobial Cellobiose Dehydrogenase-Chitosan Particles.

    PubMed

    Tegl, Gregor; Thallinger, Barbara; Beer, Bianca; Sygmund, Christoph; Ludwig, Roland; Rollett, Alexandra; Nyanhongo, Gibson S; Guebitz, Georg M

    2016-01-13

    Increasing prevalence of chronic wounds and microbial infection constitute a severe health challenge. The situation is further complicated by emerging multidrug resistance making the treatment of infections increasingly difficult. Here, a novel antimicrobial system based on in situ release of hydrogen peroxide (H2O2) by cellobiose dehydrogenase (CDH) immobilized on chitosan (CTS) particles is described. Covalent immobilization using carbodiimide coupling lead to a higher amount of protein immobilized on CTS (104 μg CDH/mg CTS) when compared to noncovalent immobilization, which, however, showed highest recovery of CDH activity (0.01 U/mg CTS). The CDH-CTS in situ generated H2O2 completely inhibited growth of Escherichia coli and Staphylococcus aureus over a period of 24 h. This resilient antimicrobial system represents a novel strategy for preventing infection with potential application in counteracting microbial colonization of chronic wounds. PMID:26672396

  12. Crystal structure of Arabidopsis thaliana cytokinin dehydrogenase

    SciTech Connect

    Bae, Euiyoung; Bingman, Craig A.; Bitto, Eduard; Aceti, David J.; Phillips, Jr., George N.

    2008-08-13

    Since first discovered in Zea mays, cytokinin dehydrogenase (CKX) genes have been identified in many plants including rice and Arabidopsis thaliana, which possesses CKX homologues (AtCKX1-AtCKX7). So far, the three-dimensional structure of only Z. mays CKX (ZmCKX1) has been determined. The crystal structures of ZmCKX1 have been solved in the native state and in complex with reaction products and a slowly reacting substrate. The structures revealed four glycosylated asparagine residues and a histidine residue covalently linked to FAD. Combined with the structural information, recent biochemical analyses of ZmCKX1 concluded that the final products of the reaction, adenine and a side chain aldehyde, are formed by nonenzymatic hydrolytic cleavage of cytokinin imine products resulting directly from CKX catalysis. Here, we report the crystal structure of AtCKX7 (gene locus At5g21482.1, UniProt code Q9FUJ1).

  13. Fast internal dynamics in alcohol dehydrogenase

    SciTech Connect

    Monkenbusch, M.; Stadler, A. Biehl, R.; Richter, D.; Ollivier, J.; Zamponi, M.

    2015-08-21

    Large-scale domain motions in alcohol dehydrogenase (ADH) have been observed previously by neutron spin-echo spectroscopy (NSE). We have extended the investigation on the dynamics of ADH in solution by using high-resolution neutron time-of-flight (TOF) and neutron backscattering (BS) spectroscopy in the incoherent scattering range. The observed hydrogen dynamics were interpreted in terms of three mobility classes, which allowed a simultaneous description of the measured TOF and BS spectra. In addition to the slow global protein diffusion and domain motions observed by NSE, a fast internal process could be identified. Around one third of the protons in ADH participate in the fast localized diffusive motion. The diffusion coefficient of the fast internal motions is around two third of the value of the surrounding D{sub 2}O solvent. It is tempting to associate the fast internal process with solvent exposed amino acid residues with dangling side chains.

  14. Stability of immobilized yeast alcohol dehydrogenase

    SciTech Connect

    Ooshima, H.; Genko, Y.; Harano, Y.

    1981-12-01

    The effects of substrate on stabilities of native (NA) and three kinds of immobilized yeast alcohol dehydrogenase (IMA), namely PGA (the carrier; porous glass), SEA (agarose gel) prepared covalently, and AMA (anion-exchange resin) prepared ionically, were studied. The following results were obtained. 1) The deactivations of NA and IMA free from the substrate or in the presence of ethanol obey the first-order kinetics, whereas, in the presence of butyraldehyde, their deactivation behaviors are explained on the basis of coexistence of two components of YADHs, namely the labile E1 and the comparatively stable E2, with different first-order deactivation constants. (2) A few attempts for stabilization of IMA were carried out from the viewpoint of the effects of crosslinkages among the subunits of YADH for PGA and the multibonding between the carrier and enzyme for SEA. The former is effective for the stabilization, whereas the latter is not. (Refs. 19).

  15. Betaine aldehyde dehydrogenase isozymes of spinach

    SciTech Connect

    Hanson, A.D.; Weretilnyk, E.A.; Weigel, P.

    1986-04-01

    Betaine is synthesized in spinach chloroplasts via the pathway Choline ..-->.. Betaine Aldehyde ..-->.. Betaine; the second step is catalyzed by betaine aldehyde dehydrogenase (BADH). The subcellular distribution of BADH was determined in leaf protoplast lysates; BADH isozymes were separated by 6-9% native PAGE. The chloroplast stromal fraction contains a single BADH isozyme (number1) that accounts for > 80% of the total protoplast activity; the extrachloroplastic fraction has a minor isozyme (number2) which migrates more slowly than number1. Both isozymes appear specific for betaine aldehyde, are more active with NAD than NADP, and show a ca. 3-fold activity increase in salinized leaves. The phenotype of a natural variant of isozyme number1 suggests that the enzyme is a dimer.

  16. Fast internal dynamics in alcohol dehydrogenase.

    PubMed

    Monkenbusch, M; Stadler, A; Biehl, R; Ollivier, J; Zamponi, M; Richter, D

    2015-08-21

    Large-scale domain motions in alcohol dehydrogenase (ADH) have been observed previously by neutron spin-echo spectroscopy (NSE). We have extended the investigation on the dynamics of ADH in solution by using high-resolution neutron time-of-flight (TOF) and neutron backscattering (BS) spectroscopy in the incoherent scattering range. The observed hydrogen dynamics were interpreted in terms of three mobility classes, which allowed a simultaneous description of the measured TOF and BS spectra. In addition to the slow global protein diffusion and domain motions observed by NSE, a fast internal process could be identified. Around one third of the protons in ADH participate in the fast localized diffusive motion. The diffusion coefficient of the fast internal motions is around two third of the value of the surrounding D2O solvent. It is tempting to associate the fast internal process with solvent exposed amino acid residues with dangling side chains. PMID:26298156

  17. Requirement for alanine in the amino acid control of deprivation-induced protein degradation in liver.

    PubMed Central

    Pösö, A R; Mortimore, G E

    1984-01-01

    Protein degradation in liver is actively controlled by a small group of inhibitory amino acids--leucine, tyrosine (or phenylalanine), glutamine, proline, histidine, tryptophan, and methionine. Other evidence, however, suggests that one or more of the remaining 12 noninhibitory amino acids is also required for suppression of proteolysis at normal concentrations. This question was investigated in livers of fed rats perfused in the single-pass mode. The deletion of alanine at normal (1x), but not at 4x or 10x normal, plasma amino acid concentrations evoked a near-maximal acceleration of protein degradation. No other noninhibitory amino acid was effective. Because alanine alone was not directly inhibitory and its omission was not associated with a decrease in inhibitory amino acid pools, alanine was presumed to act as a coregulator in the expression of inhibitory activity. When tested alone, the inhibitory group was as effective as the complete mixture at 0.5x and 4x levels, but it lost its suppressive ability within a narrow zone of concentration centered slightly above 1x. The addition of 1x (0.48 mM) alanine completely restored the inhibition. Pyruvate and lactate could be effectively substituted, but only at concentrations 10-20 times greater than that of alanine. These, together with earlier findings, indicate the existence of a regulatory complex that recognizes specific amino acids and transmits positive and negative signals to proteolytic sites. The results also suggest that alanine can provide an important regulatory link between energy demands and protein degradation. PMID:6589593

  18. Relative response of the alanine dosimeter to medium energy x-rays

    NASA Astrophysics Data System (ADS)

    Anton, M.; Büermann, L.

    2015-08-01

    The response of the alanine dosimeter to kilovoltage x-rays with respect to the dose to water was measured, relative to the response to Co-60 radiation. Two series of x-ray qualities were investigated, one ranging from 30 kV to 100 kV tube voltage (TW series), the other one ranging from 70 kV to 280 kV (TH series). Due to the use of the water calorimeter as a primary standard, the uncertainty of the delivered dose is significantly lower than for other published data. The alanine response was measured as described in a previous publication (Anton et al 2013 Phys. Med. Biol. 58 3259-82). The uncertainty component due to the alanine measurement and analysis is ⩽0.4%, the major part of the combined uncertainty of the relative response originates from the uncertainty of the delivered dose. The relative uncertainties of the relative response vary from ⩽2% for the TW series to ⩽1.1% for the TH series. Different from the behaviour of the alanine dosimeter for megavoltage x-rays or electrons, the relative response drops significantly from unity for Co-60 radiation to less than 64% for the TW quality with a tube voltage of 30 kV. In order to reproduce this behaviour through Monte Carlo simulations, not only the ratio of the absorbed dose to alanine to the absorbed dose to water has to be known, but also the intrinsic efficiency, i.e. the dependence of the number of free radicals generated per unit of absorbed dose on the photon energy. This quantity is not yet accessible for the TW series. For a possible use of the alanine dosimeter for kilovoltage x-rays, for example in electronic brachytherapy, users should rely on the measured data for the relative response which have become available with this publication.

  19. Relative response of the alanine dosimeter to medium energy x-rays.

    PubMed

    Anton, M; Büermann, L

    2015-08-01

    The response of the alanine dosimeter to kilovoltage x-rays with respect to the dose to water was measured, relative to the response to Co-60 radiation.Two series of x-ray qualities were investigated, one ranging from 30 kV to 100 kV tube voltage (TW series), the other one ranging from 70 kV to 280 kV (TH series). Due to the use of the water calorimeter as a primary standard, the uncertainty of the delivered dose is significantly lower than for other published data. The alanine response was measured as described in a previous publication (Anton et al 2013 Phys. Med. Biol. 58 3259-82). The uncertainty component due to the alanine measurement and analysis is ⩽0.4%, the major part of the combined uncertainty of the relative response originates from the uncertainty of the delivered dose. The relative uncertainties of the relative response vary from ⩽2% for the TW series to ⩽1.1% for the TH series.Different from the behaviour of the alanine dosimeter for megavoltage x-rays or electrons, the relative response drops significantly from unity for Co-60 radiation to less than 64% for the TW quality with a tube voltage of 30 kV. In order to reproduce this behaviour through Monte Carlo simulations, not only the ratio of the absorbed dose to alanine to the absorbed dose to water has to be known, but also the intrinsic efficiency, i.e. the dependence of the number of free radicals generated per unit of absorbed dose on the photon energy. This quantity is not yet accessible for the TW series.For a possible use of the alanine dosimeter for kilovoltage x-rays, for example in electronic brachytherapy, users should rely on the measured data for the relative response which have become available with this publication. PMID:26216572

  20. The effect of β-alanine supplementation on cycling time trials of different length.

    PubMed

    Bellinger, Phillip M; Minahan, Clare L

    2016-10-01

    The varying results reported in response to β-alanine supplementation may be related to the duration and nature of the exercise protocol employed. We investigated the effects of β-alanine supplementation on a wide range of cycling performance tests in order to produce a clear concise set of criteria for its efficacy. Fourteen trained cyclists (Age = 24.8 ± 6.7 years; VO2max = 65.4 ± 10.2 mL·kg·min(-1)) participated in this placebo-controlled, double-blind study. Prior to supplementation, subjects completed two (familiarization and baseline) supramaximal cycling bouts until exhaustion (120% pre-supplementation VO2max) and two 1-, 4- and 10-km cycling time trial (TT). Subjects then supplemented orally for 4 weeks with 6.4 g/d placebo or β-alanine and repeated the battery of performance tests. Blood lactate was measured pre-exercise, post-exercise and 5  min post-exercise. β-alanine supplementation elicited significant increases in time to exhaustion (TTE) (17.6 ± 11.5 s; p = 0.013, effect compared with placebo) and was likely to be beneficial to 4-km TT performance time (-7.8 ± 8.1 s; 94% likelihood), despite not being statistically different (p = 0.060). Performance times in the 1- and 10-km TT were not affected by treatment. For the highly trained cyclists in the current study, β-alanine supplementation significantly extended supramaximal cycling TTE and may have provided a worthwhile improvement to 4-km TT performance. However, 1- and 10-km cycling TT performance appears to be unaffected by β-alanine supplementation. PMID:26652037

  1. The energy dependence of lithium formate and alanine EPR dosimeters for medium energy x rays

    SciTech Connect

    Waldeland, Einar; Hole, Eli Olaug; Sagstuen, Einar; Malinen, Eirik

    2010-07-15

    Purpose: To perform a systematic investigation of the energy dependence of alanine and lilthium formate EPR dosimeters for medium energy x rays. Methods: Lithium formate and alanine EPR dosimeters were exposed to eight different x-ray beam qualities, with nominal potentials ranging from 50 to 200 kV. Following ionometry based on standards of absorbed dose to water, the dosimeters were given two different doses of approximately 3 and 6 Gy for each radiation quality, with three dosimeters for each dose. A reference series was also irradiated to three different dose levels at a {sup 60}Co unit. The dose to water energy response, that is, the dosimeter reading per absorbed dose to water relative to that for {sup 60}Co {gamma}-rays, was estimated for each beam quality. In addition, the energy response was calculated by Monte Carlo simulations and compared to the experimental energy response. Results: The experimental energy response estimates ranged from 0.89 to 0.94 and from 0.68 to 0.90 for lithium formate and alanine, respectively. The uncertainties in the experimental energy response estimates were typically 3%. The relative effectiveness, that is, the ratio of the experimental energy response to that following Monte Carlo simulations was, on average, 0.96 and 0.94 for lithium formate and alanine, respectively. Conclusions: This work shows that lithium formate dosimeters are less dependent on x-ray energy than alanine. Furthermore, as the relative effectiveness for both lithium formate and alanine were systematically less than unity, the yield of radiation-induced radicals is decreased following x-irradiation compared to irradiation with {sup 60}Co {gamma}-rays.

  2. Purification and properties of L-mandelate dehydrogenase and comparison with other membrane-bound dehydrogenases from Acinetobacter calcoaceticus.

    PubMed

    Hoey, M E; Allison, N; Scott, A J; Fewson, C A

    1987-12-15

    L-Mandelate dehydrogenase was purified from Acinetobacter calcoaceticus by Triton X-100 extraction from a 'wall + membrane' fraction, ion-exchange chromatography on DEAE-Sephacel, (NH4)2SO4 fractionation and gel filtration followed by further ion-exchange chromatography. The purified enzyme was partially characterized with respect to its subunit Mr (44,000), pH optimum (7.5), pI value (4.2), substrate specificity and susceptibility to various potential inhibitors including thiol-blocking reagents. FMN was identified as the non-covalently bound cofactor. The properties of L-mandelate dehydrogenase are compared with those of D-mandelate dehydrogenase, D-lactate dehydrogenase and L-lactate dehydrogenase from A. calcoaceticus. PMID:3325042

  3. Purification and properties of L-mandelate dehydrogenase and comparison with other membrane-bound dehydrogenases from Acinetobacter calcoaceticus.

    PubMed Central

    Hoey, M E; Allison, N; Scott, A J; Fewson, C A

    1987-01-01

    L-Mandelate dehydrogenase was purified from Acinetobacter calcoaceticus by Triton X-100 extraction from a 'wall + membrane' fraction, ion-exchange chromatography on DEAE-Sephacel, (NH4)2SO4 fractionation and gel filtration followed by further ion-exchange chromatography. The purified enzyme was partially characterized with respect to its subunit Mr (44,000), pH optimum (7.5), pI value (4.2), substrate specificity and susceptibility to various potential inhibitors including thiol-blocking reagents. FMN was identified as the non-covalently bound cofactor. The properties of L-mandelate dehydrogenase are compared with those of D-mandelate dehydrogenase, D-lactate dehydrogenase and L-lactate dehydrogenase from A. calcoaceticus. PMID:3325042

  4. Temperature-sensitive mutants of Escherichia coli K-12 with low activities of the L-alanine adding enzyme and the D-alanyl-D-alanine adding enzyme.

    PubMed

    Lugtenberg, E J; v Schijndel-van Dam, A

    1972-04-01

    A number of properties of temperature-sensitive mutants in murein synthesis are described. The mutants grow at 30 C but lyse at 42 C. One mutant possesses a temperature-sensitive d-alanyl-d-alanine adding enzyme, has an impaired rate of murein synthesis in vivo at both 30 and 42 C, and contains elevated levels of uridine diphosphate-N-acetyl-muramyl-tripeptide (UDP-MurNAc-l-Ala-d-Glu-m-diaminopimelic acid) at 42 C. The other mutant possesses an l-alanine adding enzyme with a very low in vitro activity at both 30 and 42 C. Its in vivo rate of murein synthesis is almost normal at 30 C but is much less at 42 C. When the murein precursors were isolated after incubation of the cells in the presence of (14)C-l-alanine, they contained only a fraction of the radioactivity that could be obtained from a wild-type strain. A genetic nomenclature for genes concerned with murein synthesis is proposed. PMID:4552998

  5. Anaerobic Accumulation of γ-Aminobutyric Acid and Alanine in Radish Leaves (Raphanus sativus, L.)

    PubMed Central

    Streeter, John G.; Thompson, John F.

    1972-01-01

    In leaves, the anaerobic accumulation of alanine was accompanied by a loss of aspartate, and these changes preceded γ-aminobutyrate accumulation and glutamate loss. Changes in keto acid content did not appear to be the cause of amino acid changes. Accumulation of γ-aminobutyrate was due to acceleration of glutamate decarboxylation and arrest of γ-aminobutyrate transamination. Changes in enzyme content did not explain the changes in reaction rates in vivo. Most of the aspartate may be converted anaerobically to alanine via oxalacetate and pyruvate. PMID:16658004

  6. Steric effect exerted by the proline residue on the antecedent alanine residue.

    PubMed

    Siemión, I Z; Sobczyk, K; Nawrocka, E

    1982-05-01

    Five model tetrapeptides: Ala-Ala-Ala-Ala, Pro-Ala-Ala-Ala, Ala-Pro-Ala-Ala, Ala-Ala-Pro-Ala and Ala-Ala-Ala-Pro, were synthesized and measured in D2O by 13 C-n.m.r. spectroscopy. The spectra analysis led us to the conclusion that for each model (irrespective of pD) in conformational equilibrium, the predominant conformation is the one in which side methyl of alanine preceding proline residue eclipses alanine carbonyl group. The influence of pD changes in cis-trans isomerism of Ala-Pro amide bond was also investigated. PMID:7118413

  7. Multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase causing excessive acetaldehyde production from ethanol by oral streptococci

    PubMed Central

    Pavlova, Sylvia I.; Jin, Ling; Gasparovich, Stephen R.

    2013-01-01

    Ethanol consumption and poor oral hygiene are risk factors for oral and oesophageal cancers. Although oral streptococci have been found to produce excessive acetaldehyde from ethanol, little is known about the mechanism by which this carcinogen is produced. By screening 52 strains of diverse oral streptococcal species, we identified Streptococcus gordonii V2016 that produced the most acetaldehyde from ethanol. We then constructed gene deletion mutants in this strain and analysed them for alcohol and acetaldehyde dehydrogenases by zymograms. The results showed that S. gordonii V2016 expressed three primary alcohol dehydrogenases, AdhA, AdhB and AdhE, which all oxidize ethanol to acetaldehyde, but their preferred substrates were 1-propanol, 1-butanol and ethanol, respectively. Two additional dehydrogenases, S-AdhA and TdhA, were identified with specificities to the secondary alcohol 2-propanol and threonine, respectively, but not to ethanol. S. gordonii V2016 did not show a detectable acetaldehyde dehydrogenase even though its adhE gene encodes a putative bifunctional acetaldehyde/alcohol dehydrogenase. Mutants with adhE deletion showed greater tolerance to ethanol in comparison with the wild-type and mutant with adhA or adhB deletion, indicating that AdhE is the major alcohol dehydrogenase in S. gordonii. Analysis of 19 additional strains of S. gordonii, S. mitis, S. oralis, S. salivarius and S. sanguinis showed expressions of up to three alcohol dehydrogenases, but none showed detectable acetaldehyde dehydrogenase, except one strain that showed a novel ALDH. Therefore, expression of multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase may contribute to excessive production of acetaldehyde from ethanol by certain oral streptococci. PMID:23637459

  8. Biochemical and structural characterization of Cryptosporidium parvum Lactate dehydrogenase.

    PubMed

    Cook, William J; Senkovich, Olga; Hernandez, Agustin; Speed, Haley; Chattopadhyay, Debasish

    2015-03-01

    The protozoan parasite Cryptosporidium parvum causes waterborne diseases worldwide. There is no effective therapy for C. parvum infection. The parasite depends mainly on glycolysis for energy production. Lactate dehydrogenase is a major regulator of glycolysis. This paper describes the biochemical characterization of C. parvum lactate dehydrogenase and high resolution crystal structures of the apo-enzyme and four ternary complexes. The ternary complexes capture the enzyme bound to NAD/NADH or its 3-acetylpyridine analog in the cofactor binding pocket, while the substrate binding site is occupied by one of the following ligands: lactate, pyruvate or oxamate. The results reveal distinctive features of the parasitic enzyme. For example, C. parvum lactate dehydrogenase prefers the acetylpyridine analog of NADH as a cofactor. Moreover, it is slightly less sensitive to gossypol inhibition compared with mammalian lactate dehydrogenases and not inhibited by excess pyruvate. The active site loop and the antigenic loop in C. parvum lactate dehydrogenase are considerably different from those in the human counterpart. Structural features and enzymatic properties of C. parvum lactate dehydrogenase are similar to enzymes from related parasites. Structural comparison with malate dehydrogenase supports a common ancestry for the two genes. PMID:25542170

  9. Pyruvate Dehydrogenase Complex from Chloroplasts of Pisum sativum L 1

    PubMed Central

    Williams, Michael; Randall, Douglas D.

    1979-01-01

    Pyruvate dehydrogenase complex is associated with intact chloroplasts and mitochondria of 9-day-old Pisum sativum L. seedlings. The ratio of the mitochondrial complex to the chloroplast complex activities is about 3 to 1. Maximal rates observed for chloroplast pyruvate dehydrogenase complex activity ranged from 6 to 9 micromoles of NADH produced per milligram of chlorophyll per hour. Osmotic rupture of pea chloroplasts released 88% of the complex activity, indicating that chloroplast pyruvate dehydrogenase complex is a stromal complex. The pH optimum for chloroplast pyruvate dehydrogenase complex was between 7.8 and 8.2, whereas the mitochondrial pyruvate dehydrogenase complex had a pH optimum between 7.3 and 7.7. Chloroplast pyruvate dehydrogenase complex activity was specific for pyruvate, dependent upon coenzyme A and NAD and partially dependent upon Mg2+ and thiamine pyrophosphate. Chloroplast-associated pyruvate dehydrogenase complex provides a direct link between pyruvate metabolism and chloroplast fatty acid biosynthesis by providing the substrate, acetyl-CoA, necessary for membrane development in young plants. Images PMID:16661100

  10. 40 CFR 721.520 - Alanine, N-(2-carboxyethyl)-N-alkyl-, salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...)(4), (c)(4) (where N = 100). The requirement of 40 CFR 721.91(a)(4) that the amount of the substance...-, salt. 721.520 Section 721.520 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.520 Alanine, N-(2-carboxyethyl)-N-alkyl-, salt. (a) Chemical...

  11. 40 CFR 721.520 - Alanine, N-(2-carboxyethyl)-N-alkyl-, salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...)(4), (c)(4) (where N = 100). The requirement of 40 CFR 721.91(a)(4) that the amount of the substance...-, salt. 721.520 Section 721.520 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.520 Alanine, N-(2-carboxyethyl)-N-alkyl-, salt. (a) Chemical...

  12. Protein Homeostasis Defects of Alanine-Glyoxylate Aminotransferase: New Therapeutic Strategies in Primary Hyperoxaluria Type I

    PubMed Central

    Pey, Angel L.; Albert, Armando; Salido, Eduardo

    2013-01-01

    Alanine-glyoxylate aminotransferase catalyzes the transamination between L-alanine and glyoxylate to produce pyruvate and glycine using pyridoxal 5′-phosphate (PLP) as cofactor. Human alanine-glyoxylate aminotransferase is a peroxisomal enzyme expressed in the hepatocytes, the main site of glyoxylate detoxification. Its deficit causes primary hyperoxaluria type I, a rare but severe inborn error of metabolism. Single amino acid changes are the main type of mutation causing this disease, and considerable effort has been dedicated to the understanding of the molecular consequences of such missense mutations. In this review, we summarize the role of protein homeostasis in the basic mechanisms of primary hyperoxaluria. Intrinsic physicochemical properties of polypeptide chains such as thermodynamic stability, folding, unfolding, and misfolding rates as well as the interaction of different folding states with protein homeostasis networks are essential to understand this disease. The view presented has important implications for the development of new therapeutic strategies based on targeting specific elements of alanine-glyoxylate aminotransferase homeostasis. PMID:23956997

  13. Beta-alanine/alpha-ketoglutarate aminotransferase for 3-hydroxypropionic acid production

    DOEpatents

    Jessen, Holly Jean; Liao, Hans H; Gort, Steven John; Selifonova, Olga V

    2014-11-18

    The present disclosure provides novel beta-alanine/alpha ketoglutarate aminotransferase nucleic acid and protein sequences having increased biological activity. Also provided are cells containing such enzymes, as well as methods of their use, for example to produce malonyl semialdehyde and downstream products thereof, such as 3-hydroxypropionic acid and derivatives thereof.

  14. Growth and characterization of pure and semiorganic nonlinear optical Lithium Sulphate admixtured l-alanine crystal

    NASA Astrophysics Data System (ADS)

    Vela, T.; Selvarajan, P.; Freeda, T. H.; Balasubramanian, K.

    2013-04-01

    Lithium sulphate admixtured l-alanine (LSLA) salt was synthesized and the solubility of the commercially available l-alanine and the synthesized LSLA sample was determined in de-ionized water at various temperatures. In accordance with the solubility data, the saturated aqueous solutions of l-alanine and lithium admixtured l-alanine were prepared separately and the single crystals of the samples were grown by the solution method with a slow evaporation technique. Studying single x-ray diffraction shows that pure and LSLA crystal belong to the orthorhombic system with a non-centrosymmetric space group P212121. Using the powder x-ray diffraction study, the crystallinity of the grown crystals is confirmed and the diffraction peaks are indexed. The various functional groups present in the pure and LSLA crystal are elucidated from Fourier transform infrared spectroscopy study. UV-visible transmittance is recorded to study the optical transmittance range for the grown crystals. The powder second harmonic generation test confirms the nonlinear optical property of the grown crystals. From the microhardness test, the hardness of the grown crystals is estimated. The dielectric behaviour, such as the dielectric constant and the loss of the sample, are measured as a function of temperature and frequency. The ac conductivity of the grown crystals is also studied and the activation energy is calculated.

  15. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  16. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  17. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  18. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  19. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  20. Synthesis, characterization, and biocompatible properties of alanine-grafted chitosan copolymers.

    PubMed

    Park, Gyu Han; Kang, Min-Sil; Knowles, Jonathan C; Gong, Myoung-Seon

    2016-04-01

    In order to overcome major problems regarding the lack of affinity to solvents and limited reactivity of the free amines of chitosan, introduction of appropriate spacer arms having terminal amine function is considered of interest.L-Alanine-N-carboxyanhydride was grafted onto chitosan via anionic ring-opening polymerization. The chemical and structural characterizations ofL-alanine-grafted chitosan (Ala-g-Cts) were confirmed through Fourier transform infrared spectroscopy and proton nuclear magnetic resonance spectroscopy ((1)H NMR). In addition, the viscoelastic properties ofAla-g-Cts were examined by means of a rotational viscometer, and thermal analysis was carried out with a thermogravimetric analyzer and differential scanning calorimetry. Morphological changes in the chitosanL-alanine moiety were determined by x-ray diffraction. To determine the feasibility of using these films as biomedical materials, we investigated the effects of theirL-alanine content on physical and mechanical properties. The biodegradation results of crosslinkedAla-g-Cts films were evaluated in phosphate-buffered solution containing lysozyme at 37℃. Proliferation of MC3T3-E1 cells on crosslinkedAla-g-Cts films was also investigated with use of the CCK-8 assay. PMID:26767393

  1. AlaScan: A Graphical User Interface for Alanine Scanning Free-Energy Calculations.

    PubMed

    Ramadoss, Vijayaraj; Dehez, François; Chipot, Christophe

    2016-06-27

    Computation of the free-energy changes that underlie molecular recognition and association has gained significant importance due to its considerable potential in drug discovery. The massive increase of computational power in recent years substantiates the application of more accurate theoretical methods for the calculation of binding free energies. The impact of such advances is the application of parent approaches, like computational alanine scanning, to investigate in silico the effect of amino-acid replacement in protein-ligand and protein-protein complexes, or probe the thermostability of individual proteins. Because human effort represents a significant cost that precludes the routine use of this form of free-energy calculations, minimizing manual intervention constitutes a stringent prerequisite for any such systematic computation. With this objective in mind, we propose a new plug-in, referred to as AlaScan, developed within the popular visualization program VMD to automate the major steps in alanine-scanning calculations, employing free-energy perturbation as implemented in the widely used molecular dynamics code NAMD. The AlaScan plug-in can be utilized upstream, to prepare input files for selected alanine mutations. It can also be utilized downstream to perform the analysis of different alanine-scanning calculations and to report the free-energy estimates in a user-friendly graphical user interface, allowing favorable mutations to be identified at a glance. The plug-in also assists the end-user in assessing the reliability of the calculation through rapid visual inspection. PMID:27214306

  2. Mechanism of inactivation of alanine racemase by beta, beta, beta-trifluoroalanine

    SciTech Connect

    Faraci, W.S.; Walsh, C.T.

    1989-01-24

    The alanine racemases are a group of PLP-dependent bacterial enzymes that catalyze the racemization of alanine, providing D-alanine for cell wall synthesis. Inactivation of the alanine racemases from the Gram-negative organism Salmonella typhimurium and Gram-positive organism Bacillus stearothermophilus with beta, beta, beta-trifluoroalanine has been studied. The inactivation occurs with the same rate constant as that for formation of a broad 460-490-nm chromophore. Loss of two fluoride ions per mole of inactivated enzyme and retention of (1-/sup 14/C)trifluoroalanine label accompany inhibition, suggesting a monofluoro enzyme adduct. Partial denaturation (1 M guanidine) leads to rapid return of the initial 420-nm chromophore, followed by a slower (t1/2 approximately 30 min-1 h) loss of the fluoride ion and /sup 14/CO/sub 2/ release. At this point, reduction by NaB/sub 3/H/sub 4/ and tryptic digestion yield a single radiolabeled peptide. Purification and sequencing of the peptide reveals that lysine-38 is covalently attached to the PLP cofactor. A mechanism for enzyme inactivation by trifluoroalanine is proposed and contrasted with earlier results on monohaloalanines, in which nucleophilic attack of released aminoacrylate on the PLP aldimine leads to enzyme inactivation. For trifluoroalanine inactivation, nucleophilic attack of lysine-38 on the electrophilic beta-difluoro-alpha, beta-unsaturated imine provides an alternative mode of inhibition for these enzymes.

  3. Beta-alanine/alpha-ketoglutarate aminotransferase for 3-hydroxypropionic acid production

    DOEpatents

    Jessen, Holly Jean; Liao, Hans H.; Gort, Steven John; Selifonova, Olga V.

    2011-10-04

    The present disclosure provides novel beta-alanine/alpha ketoglutarate aminotransferase nucleic acid and protein sequences having increased biological activity. Also provided are cells containing such enzymes, as well as methods of their use, for example to produce malonyl semialdehyde and downstream products thereof, such as 3-hydroxypropionic acid and derivatives thereof.

  4. 40 CFR 721.520 - Alanine, N-(2-carboxyethyl)-N-alkyl-, salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...)(4), (c)(4) (where N = 100). The requirement of 40 CFR 721.91(a)(4) that the amount of the substance...-, salt. 721.520 Section 721.520 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.520 Alanine, N-(2-carboxyethyl)-N-alkyl-, salt. (a) Chemical...

  5. 40 CFR 721.520 - Alanine, N-(2-carboxyethyl)-N-alkyl-, salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...)(4), (c)(4) (where N = 100). The requirement of 40 CFR 721.91(a)(4) that the amount of the substance...-, salt. 721.520 Section 721.520 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.520 Alanine, N-(2-carboxyethyl)-N-alkyl-, salt. (a) Chemical...

  6. 40 CFR 721.520 - Alanine, N-(2-carboxyethyl)-N-alkyl-, salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...)(4), (c)(4) (where N = 100). The requirement of 40 CFR 721.91(a)(4) that the amount of the substance...-, salt. 721.520 Section 721.520 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.520 Alanine, N-(2-carboxyethyl)-N-alkyl-, salt. (a) Chemical...

  7. The effects of post-exercise glucose and alanine ingestion on plasma carnitine and ketosis in humans.

    PubMed Central

    Carlin, J I; Olson, E B; Peters, H A; Reddan, W G

    1987-01-01

    1. Several studies have hypothesized that alanine decreases plasma ketone body levels by increasing availability of oxaloacetate, thus allowing acetyl groups to enter the tricarboxylic acid cycle and releasing co-enzyme A (CoA). 2. Four, fasted adult males exercised at 50% of their maximal oxygen consumption for 1.5 h, then ingested 100 g of either glucose or alanine 2 h into recovery. 3. Post-exercise ketosis had developed at 2 h into recovery, as shown by a significantly elevated concentration of beta-hydroxybutyrate in the plasma. At this time plasma free fatty acids were elevated above resting levels while plasma free carnitine concentrations had fallen below resting values. 4. After either alanine or glucose ingestion beta-hydroxybutyrate concentrations fell to the same extent. After the alanine load free carnitine increased above that seen in the glucose trial. Following either alanine or glucose ingestion free fatty acid levels fell; they remained at resting levels in the alanine trial but decreased below rest in the glucose trial. 5. We assume that plasma carnitine concentrations largely reflect the hepatic carnitine pools; therefore, elevations in the plasma free carnitine are probably the result of an increased utilization of acetyl CoA. The significant elevation in plasma free carnitine concentration found after alanine ingestion is consistent with the hypothesis that alanine increases the oxidation of acetyl CoA by providing oxaloacetate for the tricarboxylic acid cycle. PMID:3443938

  8. A preliminary optimization of alanine blends for ESR dosimetry in a mixed n–γ field: Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Hoseininaveh, M.; Ranjbar, A. H.

    2016-04-01

    In this study, a preliminary work on the enhancement of ESR response of several arrangements of alanine and boron compounds, exposed to a thermal neutron beam, is presented using FLUKA code. A multi-layer dosimeter consist of consecutive layers of alanine and boron compounds showed that the amount of energy deposited in the alanine layers is maximized when their thickness is 5 μm and the thickness of boron compound layers are between 2 and 3 μm. Furthermore, the optimum number of 10B layers in the dosimeter was found to be 35 layers. Moreover, the alanine samples consisting of small spherical grains of boron compounds, arranged regularly in the middle plane of the dosimeters, exposed to a thermal neutron beam, were modeled. The dependence of energy deposition in the alanine material on the size of grains, and on their composition were also studied, as well.

  9. Biochemical and structural characterization of alanine racemase from Bacillus anthracis (Ames)

    PubMed Central

    Couñago, Rafael M; Davlieva, Milya; Strych, Ulrich; Hill, Ryan E; Krause, Kurt L

    2009-01-01

    Background Bacillus anthracis is the causative agent of anthrax and a potential bioterrorism threat. Here we report the biochemical and structural characterization of B. anthracis (Ames) alanine racemase (AlrBax), an essential enzyme in prokaryotes and a target for antimicrobial drug development. We also compare the native AlrBax structure to a recently reported structure of the same enzyme obtained through reductive lysine methylation. Results B. anthracis has two open reading frames encoding for putative alanine racemases. We show that only one, dal1, is able to complement a D-alanine auxotrophic strain of E. coli. Purified Dal1, which we term AlrBax, is shown to be a dimer in solution by dynamic light scattering and has a Vmax for racemization (L- to D-alanine) of 101 U/mg. The crystal structure of unmodified AlrBax is reported here to 1.95 Å resolution. Despite the overall similarity of the fold to other alanine racemases, AlrBax makes use of a chloride ion to position key active site residues for catalysis, a feature not yet observed for this enzyme in other species. Crystal contacts are more extensive in the methylated structure compared to the unmethylated structure. Conclusion The chloride ion in AlrBax is functioning effectively as a carbamylated lysine making it an integral and unique part of this structure. Despite differences in space group and crystal form, the two AlrBax structures are very similar, supporting the case that reductive methylation is a valid rescue strategy for proteins recalcitrant to crystallization, and does not, in this case, result in artifacts in the tertiary structure. PMID:19695097

  10. Persistent GABAA/C responses to gabazine, taurine and beta-alanine in rat hypoglossal motoneurons.

    PubMed

    Chesnoy-Marchais, D

    2016-08-25

    In hypoglossal motoneurons, a sustained anionic current, sensitive to a blocker of ρ-containing GABA receptors, (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) and insensitive to bicuculline, was previously shown to be activated by gabazine. In order to better characterize the receptors involved, the sensitivity of this atypical response to pentobarbital (30μM), allopregnanolone (0.3μM) and midazolam (0.5μM) was first investigated. Pentobarbital potentiated the response, whereas the steroid and the benzodiazepine were ineffective. The results indicate the involvement of hybrid heteromeric receptors, including at least a GABA receptor ρ subunit and a γ subunit, accounting for the pentobarbital-sensitivity. The effects of the endogenous β amino acids, taurine and β-alanine, which are released under various pathological conditions and show neuroprotective properties, were then studied. In the presence of the glycine receptor blocker strychnine (1μM), both taurine (0.3-1mM) and β-alanine (0.3mM) activated sustained anionic currents, which were partly blocked by TPMPA (100μM). Thus, both β amino acids activated ρ-containing GABA receptors in hypoglossal motoneurons. Bicuculline (20μM) reduced responses to taurine and β-alanine, but small sustained responses persisted in the presence of both strychnine and bicuculline. Responses to β-alanine were slightly increased by allopregnanolone, indicating a contribution of the bicuculline- and neurosteroid-sensitive GABAA receptors underlying tonic inhibition in these motoneurons. Since sustained activation of anionic channels inhibits most mature principal neurons, the ρ-containing GABA receptors permanently activated by taurine and β-alanine might contribute to some of their neuroprotective properties under damaging overexcitatory situations. PMID:27246441

  11. Structural features and kinetic characterization of alanine racemase from Staphylococcus aureus (Mu50)

    PubMed Central

    Scaletti, Emma R.; Luckner, Sylvia R.; Krause, Kurt L.

    2012-01-01

    Staphylococcus aureus is an opportunistic Gram-positive bacterium which causes a wide variety of diseases ranging from minor skin infections to potentially fatal conditions such as pneumonia, meningitis and septicaemia. The pathogen is a leading cause of nosocomial acquired infections, a problem that is exacerbated by the existence of methicillin- and glycopeptide antibiotic-resistant strains which can be challenging to treat. Alanine racemase (Alr) is a pyridoxal-5′-phosphate-dependent enzyme which catalyzes reversible racemization between enantiomers of alanine. As d-alanine is an essential component of the bacterial cell-wall peptidoglycan, inhibition of Alr is lethal to prokaryotes. Additionally, while ubiquitous amongst bacteria, this enzyme is absent in humans and most eukaryotes, making it an excellent antibiotic drug target. The crystal structure of S. aureus alanine racemase (AlrSas), the sequence of which corresponds to that from the highly antibiotic-resistant Mu50 strain, has been solved to 2.15 Å resolution. Comparison of the AlrSas structure with those of various alanine racemases demonstrates a conserved overall fold, with the enzyme sharing most similarity to those from other Gram-positive bacteria. Structural examination indicates that the active-site binding pocket, dimer interface and active-site entryway of the enzyme are potential targets for structure-aided inhibitor design. Kinetic constants were calculated in this study and are reported here. The potential for a disulfide bond in this structure is noted. This structural and biochemical information provides a template for future structure-based drug-development efforts targeting AlrSas. PMID:22194336

  12. ALDEHYDE DEHYDROGENASES EXPRESSION DURING POSTNATAL DEVELOPMENT: LIVER VS. LUNG

    EPA Science Inventory

    Aldehydes are highly reactive molecules present in the environment, and can be produced during biotransformation of xenobiotics. Although the lung can be a major target for aldehyde toxicity, development of aldehyde dehydrogenases (ALDHs), which detoxify aldehydes, in lung has be...

  13. Genetics Home Reference: 3-beta-hydroxysteroid dehydrogenase deficiency

    MedlinePlus

    ... not by hormone test. Clin Endocrinol (Oxf). 2003 Mar;58(3):323-31. Citation on PubMed Pang S, ... dehydrogenase deficiency. Endocrinol Metab Clin North Am. 2001 Mar;30(1):81-99, vi-vii. Review. Citation ...

  14. Quinoprotein alcohol dehydrogenase from ethanol-grown Pseudomonas aeruginosa.

    PubMed Central

    Groen, B; Frank, J; Duine, J A

    1984-01-01

    Cell-free extracts of Pseudomonas aeruginosa strains, grown on ethanol, showed dye-linked alcohol dehydrogenase activities. The enzyme responsible for this activity was purified to homogeneity. It appeared to contain two molecules of pyrroloquinoline quinone per enzyme molecule. In many respects, it resembled other quinoprotein alcohol dehydrogenases (EC 1.1.99.8), having a substrate specificity intermediate between that of methanol dehydrogenases and ethanol dehydrogenases in this group. On the other hand, it also showed dissimilarities: the enzyme was found to be a monomer (Mr 101 000), to need only one molecule of the suicide substrate cyclopropanol to become fully inactivated, and to have a different aromatic amino acid composition. PMID:6439190

  15. 21 CFR 862.1380 - Hydroxybutyric dehydrogenase test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... dehydrogenase (HBD) in plasma or serum. HBD measurements are used in the diagnosis and treatment of myocardial infarction, renal damage (such as rejection of transplants), certain hematological diseases (such as...

  16. 21 CFR 862.1380 - Hydroxybutyric dehydrogenase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... dehydrogenase (HBD) in plasma or serum. HBD measurements are used in the diagnosis and treatment of myocardial infarction, renal damage (such as rejection of transplants), certain hematological diseases (such as...

  17. 21 CFR 862.1380 - Hydroxybutyric dehydrogenase test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... dehydrogenase (HBD) in plasma or serum. HBD measurements are used in the diagnosis and treatment of myocardial infarction, renal damage (such as rejection of transplants), certain hematological diseases (such as...

  18. 21 CFR 862.1380 - Hydroxybutyric dehydrogenase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... dehydrogenase (HBD) in plasma or serum. HBD measurements are used in the diagnosis and treatment of myocardial infarction, renal damage (such as rejection of transplants), certain hematological diseases (such as...

  19. N-acylethanolamines as novel alcohol dehydrogenase 3 substrates.

    PubMed

    Ivkovic, Milena; Dempsey, Daniel R; Handa, Sumit; Hilton, Joshua H; Lowe, Edward W; Merkler, David J

    2011-02-15

    N-acylethanolamines (NAEs) are members of the fatty acid amide family. The NAEs have been proposed to serve as metabolic precursors to N-acylglycines (NAGs). The sequential oxidation of the NAEs by an alcohol dehydrogenase and an aldehyde dehydrogenase would yield the N-acylglycinals and/or the NAGs. Alcohol dehydrogenase 3 (ADH3) is one enzyme that might catalyze this reaction. To define a potential role for ADH3 in NAE catabolism, we synthesized a set of NAEs and evaluated these as ADH3 substrates. NAEs were oxidized by ADH3, yielding the N-acylglycinals as the product. The (V/K)(app) values for the NAEs included here were low relative to cinnamyl alcohol. Our data show that the NAEs can serve as alcohol dehydrogenase substrates. PMID:21144815

  20. Aldehyde dehydrogenase inhibitors from the mushroom Clitocybe clavipes.

    PubMed

    Kawagishi, Hirokazu; Miyazawa, Toshiyuki; Kume, Hiroko; Arimoto, Yasushi; Inakuma, Takahiro

    2002-11-01

    Five fatty acid derivatives including three novel compounds were isolated from the mushroom Clitocybe clavipe. Their structures were elucidated by spectral analyses. These compounds inhibited aldehyde dehydrogenase in vitro. PMID:12444711

  1. Purification and properties of carbon monoxide dehydrogenase from Methanococcus vannielii.

    PubMed Central

    DeMoll, E; Grahame, D A; Harnly, J M; Tsai, L; Stadtman, T C

    1987-01-01

    Carbon monoxide dehydrogenase was purified to homogeneity from Methanococcus vannielii grown with formate as the sole carbon source. The enzyme is composed of subunits with molecular weights of 89,000 and 21,000 in an alpha 2 beta 2 oligomeric structure. The native molecular weight of carbon monoxide dehydrogenase, determined by gel electrophoresis, is 220,000. The enzyme from M. vannielii contains 2 g-atoms of nickel per mol of enzyme. Except for its relatively high pH optimum of 10.5 and its slightly greater net positive charge, the enzyme from M. vannielii closely resembles carbon monoxide dehydrogenase isolated previously from acetate-grown Methanosarcina barkeri. Carbon monoxide dehydrogenase from M. vannielii constitutes 0.2% of the soluble protein of the cell. By comparison the enzyme comprises 5% of the soluble protein in acetate-grown cells of M. barkeri and approximately 1% in methanol-grown cells. Images PMID:3624199

  2. 21 CFR 862.1440 - Lactate dehydrogenase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... dehydrogenase measurements are used in the diagnosis and treatment of liver diseases such as acute viral hepatitis, cirrhosis, and metastatic carcinoma of the liver, cardiac diseases such as myocardial...

  3. 21 CFR 862.1440 - Lactate dehydrogenase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... dehydrogenase measurements are used in the diagnosis and treatment of liver diseases such as acute viral hepatitis, cirrhosis, and metastatic carcinoma of the liver, cardiac diseases such as myocardial...

  4. 21 CFR 862.1440 - Lactate dehydrogenase test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... dehydrogenase measurements are used in the diagnosis and treatment of liver diseases such as acute viral hepatitis, cirrhosis, and metastatic carcinoma of the liver, cardiac diseases such as myocardial...

  5. 21 CFR 862.1440 - Lactate dehydrogenase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... dehydrogenase measurements are used in the diagnosis and treatment of liver diseases such as acute viral hepatitis, cirrhosis, and metastatic carcinoma of the liver, cardiac diseases such as myocardial...

  6. Mammalian class IV alcohol dehydrogenase (stomach alcohol dehydrogenase): structure, origin, and correlation with enzymology.

    PubMed Central

    Parés, X; Cederlund, E; Moreno, A; Hjelmqvist, L; Farrés, J; Jörnvall, H

    1994-01-01

    The structure of a mammalian class IV alcohol dehydrogenase has been determined by peptide analysis of the protein isolated from rat stomach. The structure indicates that the enzyme constitutes a separate alcohol dehydrogenase class, in agreement with the distinct enzymatic properties; the class IV enzyme is somewhat closer to class I (the "classical" liver alcohol dehydrogenase; approximately 68% residue identities) than to the other classes (II, III, and V; approximately 60% residue identities), suggesting that class IV might have originated through duplication of an early vertebrate class I gene. The activity of the class IV protein toward ethanol is even higher than that of the classical liver enzyme. Both Km and kcat values are high, the latter being the highest of any class characterized so far. Structurally, these properties are correlated with replacements at the active site, affecting both substrate and coenzyme binding. In particular, Ala-294 (instead of valine) results in increased space in the middle section of the substrate cleft, Gly-47 (instead of a basic residue) results in decreased charge interactions with the coenzyme pyrophosphate, and Tyr-363 (instead of a basic residue) may also affect coenzyme binding. In combination, these exchanges are compatible with a promotion of the off dissociation and an increased turnover rate. In contrast, residues at the inner part of the substrate cleft are bulky, accounting for low activity toward secondary alcohols and cyclohexanol. Exchanges at positions 259-261 involve minor shifts in glycine residues at a reverse turn in the coenzyme-binding fold. Clearly, class IV is distinct in structure, ethanol turnover, stomach expression, and possible emergence from class I. PMID:8127901

  7. Enzymic and structural studies on Drosophila alcohol dehydrogenase and other short-chain dehydrogenases/reductases.

    PubMed

    Smilda, T; Kamminga, A H; Reinders, P; Baron, W; van Hylckama Vlieg, J E; Beintema, J J

    2001-05-01

    Enzymic and structural studies on Drosophila alcohol dehydrogenases and other short-chain dehydrogenases/reductases (SDRs) are presented. Like alcohol dehydrogenases from other Drosophila species, the enzyme from D. simulans is more active on secondary than on primary alcohols, although ethanol is its only known physiological substrate. Several secondary alcohols were used to determine the kinetic parameters kcat and Km. The results of these experiments indicate that the substrate-binding region of the enzyme allows optimal binding of a short ethyl side-chain in a small binding pocket, and of a propyl or butyl side-chain in large binding pocket, with stereospecificity for R(-) alcohols. At a high concentration of R(-) alcohols substrate activation occurs. The kcat and Km values determined under these conditions are about two-fold, and two orders of magnitude, respectively, higher than those at low substrate concentrations. Sequence alignment of several SDRs of known, and unknown three-dimensional structures, indicate the presence of several conserved residues in addition to those involved in the catalyzed reactions. Structural roles of these conserved residues could be derived from observations made on superpositioned structures of several SDRs with known structures. Several residues are conserved in tetrameric SDRs, but not in dimeric ones. Two halohydrin-halide-lyases show significant homology with SDRs in the catalytic domains of these enzymes, but they do not have the structural features required for binding NAD+. Probably these lyases descend from an SDR, which has lost the capability to bind NAD+, but the enzyme reaction mechanisms may still be similar. PMID:11443349

  8. Characterization of the metabolic effect of β-alanine on markers of oxidative metabolism and mitochondrial biogenesis in skeletal muscle

    PubMed Central

    Sunderland, Kyle L.; Kuennen, Matthew R.; Vaughan, Roger A.

    2016-01-01

    [Purpose] β-alanine is a common component of numerous sports supplements purported to improve athletic performance through enhanced carnosine biosynthesis and related intracellular buffering. To date, the effects of β-alanine on oxidative metabolism remain largely unexplored. This work investigated the effects of β-alanine on the expression of proteins which regulate cellular energetics. [Methods] C2C12 myocytes were cultured and differentiated under standard conditions followed by treatment with either β-alanine or isonitrogenous non-metabolizable control D-alanine at 800μM for 24 hours. Metabolic gene and protein expression were quantified by qRT-PCR and immunoblotting, respectively. Glucose uptake and oxygen consumption were measured via fluorescence using commercially available kits. [Results] β-alanine-treated myotubes displayed significantly elevated markers of improved oxidative metabolism including elevated peroxisome proliferator-activated receptor β/δ (PPARβ/δ) and mitochondrial transcription factor a (TFAM) which led to increased mitochondrial content (evidenced by concurrent increases in cytochrome c content). Additionally, β-alanine-treated cells exhibited significantly increased oxygen consumption compared to control in a PPARβ/δ-dependent manner. β-alanine significantly enhanced expression of myocyte enhancer factor 2 (MEF-2) leading to increased glucose transporter 4 (GLUT4) content. [Conclusion] β-alanine appears to increase cellular oxygen consumption as well as the expression of several cellular proteins associated with improved oxidative metabolism, suggesting β-alanine supplementation may provide additional metabolic benefit (although these observations require in vivo experimental verification). PMID:27508152

  9. The metabolism of histamine in the Drosophila optic lobe involves an ommatidial pathway: β-alanine recycles through the retina

    PubMed Central

    Borycz, Janusz; Borycz, Jolanta A.; Edwards, Tara N.; Boulianne, Gabrielle L.; Meinertzhagen, Ian A.

    2012-01-01

    SUMMARY Flies recycle the photoreceptor neurotransmitter histamine by conjugating it to β-alanine to form β-alanyl-histamine (carcinine). The conjugation is regulated by Ebony, while Tan hydrolyses carcinine, releasing histamine and β-alanine. In Drosophila, β-alanine synthesis occurs either from uracil or from the decarboxylation of aspartate but detailed roles for the enzymes responsible remain unclear. Immunohistochemically detected β-alanine is present throughout the fly’s entire brain, and is enhanced in the retina especially in the pseudocone, pigment and photoreceptor cells of the ommatidia. HPLC determinations reveal 10.7 ng of β-alanine in the wild-type head, roughly five times more than histamine. When wild-type flies drink uracil their head β-alanine increases more than after drinking l-aspartic acid, indicating the effectiveness of the uracil pathway. Mutants of black, which lack aspartate decarboxylase, cannot synthesize β-alanine from l-aspartate but can still synthesize it efficiently from uracil. Our findings demonstrate a novel function for pigment cells, which not only screen ommatidia from stray light but also store and transport β-alanine and carcinine. This role is consistent with a β-alanine-dependent histamine recycling pathway occurring not only in the photoreceptor terminals in the lamina neuropile, where carcinine occurs in marginal glia, but vertically via a long pathway that involves the retina. The lamina’s marginal glia are also a hub involved in the storage and/or disposal of carcinine and β-alanine. PMID:22442379

  10. Human liver aldehyde dehydrogenase: coenzyme binding

    SciTech Connect

    Kosley, L.L.; Pietruszko, R.

    1987-05-01

    The binding of (U-/sup 14/C) NAD to mitochondrial (E2) and cytoplasmin(E1) aldehyde dehydrogenase was measured by gel filtration and sedimentation techniques. The binding data for NAD and (E1) yielded linear Scatchard plots giving a dissociation constant of 25 (+/- 8) uM and the stoichiometry of 2 mol of NAD bound per mol of E1. The binding data for NAD and (E2) gave nonlinear Scatchard plots. The binding of NADH to E2 was measured via fluorescence enhancement; this could not be done with E1 because there was no signal. The dissociation constant for E2 by this technique was 0.7 (+/- 0.4) uM and stoichiometry of 1.0 was obtained. The binding of (U-/sup 14/C) NADH to (E1) and (E2) was also measured by the sedimentation technique. The binding data for (E1) and NADH gave linear Scatchard plots giving a dissociation constant of 13 (+/- 6) uM and the stoichiometry of 2.0. The binding data for NADH to (E2) gave nonlinear Scatchard plots. With (E1), the dissociation constants for both NAD and NADH are similar to those determined kinetically, but the stoichiometry is only half of that found by stopped flow technique. With (E2) the dissociation constant by fluorometric procedure was 2 orders of magnitude less than that from catalytic reaction.

  11. Targeting isocitrate dehydrogenase (IDH) in cancer.

    PubMed

    Fujii, Takeo; Khawaja, Muhammad Rizwan; DiNardo, Courtney D; Atkins, Johnique T; Janku, Filip

    2016-05-01

    Isocitrate dehydrogenase (IDH) is an essential enzyme for cellular respiration in the tricarboxylic acid (TCA) cycle. Recurrent mutations in IDH1 or IDH2 are prevalent in several cancers including glioma, acute myeloid leukemia (AML), cholangiocarcinoma and chondrosarcoma. The mutated IDH1 and IDH2 proteins have a gain-of-function, neomorphic activity, catalyzing the reduction of α-ketoglutarate (α-KG) to 2-hydroxyglutarate (2-HG) by NADPH. Cancer-associated IDH mutations block normal cellular differentiation and promote tumorigenesis via the abnormal production of the oncometabolite 2-HG. High levels of 2-HG have been shown to inhibit α-KG dependent dioxygenases, including histone and deoxyribonucleic acid (DNA) demethylases, which play a key role in regulating the epigenetic state of cells. Current targeted inhibitors of IDH1 (AG120, IDH305), IDH2 (AG221), and pan-IDH1/2 (AG881) selectively inhibit mutant IDH protein and induce cell differentiation in in vitro and in vivo models. Preliminary results from phase I clinical trials with IDH inhibitors in patients with advanced hematologic malignancies have demonstrated an objective response rate ranging from 31% to 40% with durable responses (>1 year) observed. Furthermore, the IDH inhibitors have demonstrated early signals of activity in solid tumors with IDH mutations, including cholangiocarcinomas and low grade gliomas. PMID:27355333

  12. SAXS fingerprints of aldehyde dehydrogenase oligomers.

    PubMed

    Tanner, John J

    2015-12-01

    Enzymes of the aldehyde dehydrogenase (ALDH) superfamily catalyze the nicotinamide adenine dinucleotide-dependent oxidation of aldehydes to carboxylic acids. ALDHs are important in detoxification of aldehydes, amino acid metabolism, embryogenesis and development, neurotransmission, oxidative stress, and cancer. Mutations in genes encoding ALDHs cause metabolic disorders, including alcohol flush reaction (ALDH2), Sjögren-Larsson syndrome (ALDH3A2), hyperprolinemia type II (ALDH4A1), γ-hydroxybutyric aciduria (ALDH5A1), methylmalonic aciduria (ALDH6A1), pyridoxine dependent epilepsy (ALDH7A1), and hyperammonemia (ALDH18A1). We previously reported crystal structures and small-angle X-ray scattering (SAXS) analyses of ALDHs exhibiting dimeric, tetrameric, and hexameric oligomeric states (Luo et al., Biochemistry 54 (2015) 5513-5522; Luo et al., J. Mol. Biol. 425 (2013) 3106-3120). Herein I provide the SAXS curves, radii of gyration, and distance distribution functions for the three types of ALDH oligomer. The SAXS curves and associated analysis provide diagnostic fingerprints that allow rapid identification of the type of ALDH oligomer that is present in solution. The data sets provided here serve as a benchmark for characterizing oligomerization of ALDHs. PMID:26693506

  13. Eucalypt NADP-Dependent Isocitrate Dehydrogenase1

    PubMed Central

    Boiffin, Vincent; Hodges, Michael; Gálvez, Susana; Balestrini, Raffaella; Bonfante, Paola; Gadal, Pierre; Martin, Francis

    1998-01-01

    NADP-dependent isocitrate dehydrogenase (NADP-ICDH) activity is increased in roots of Eucalyptus globulus subsp. bicostata ex Maiden Kirkp. during colonization by the ectomycorrhizal fungus Pisolithus tinctorius Coker and Couch. To investigate the regulation of the enzyme expression, a cDNA (EgIcdh) encoding the NADP-ICDH was isolated from a cDNA library of E. globulus-P. tinctorius ectomycorrhizae. The putative polypeptide sequence of EgIcdh showed a high amino acid similarity with plant NADP-ICDHs. Because the deduced EgICDH protein lacks an amino-terminal targeting sequence and shows highest similarity to plant cytosolic ICDHs, it probably represents a cytoplasmic isoform. RNA analysis showed that the steady-state level of EgIcdh transcripts was enhanced nearly 2-fold in ectomycorrhizal roots compared with nonmycorrhizal roots. Increased accumulation of NADP-ICDH transcripts occurred as early as 2 d after contact and likely led to the observed increased enzyme activity. Indirect immunofluorescence microscopy indicated that NADP-ICDH was preferentially accumulated in the epidermis and stele parenchyma of nonmycorrhizal and ectomycorrhizal lateral roots. The putative role of cytosolic NADP-ICDH in ectomycorrhizae is discussed. PMID:9662536

  14. Aggregation states of mitochondrial malate dehydrogenase.

    PubMed Central

    Sánchez, S. A.; Hazlett, T. L.; Brunet, J. E.; Jameson, D. M.

    1998-01-01

    The oligomeric state of fluorescein-labeled mitochondrial malate dehydrogenase (L-malate NAD+ oxidoreductase; mMDH; EC 1.1.1.37), as a function of protein concentration, has been examined using steady-state and dynamic polarization methodologies. A "global" rotational relaxation time of 103 +/- 7 ns was found for micromolar concentrations of mMDH-fluorescein, which is consistent with the reported size and shape of mMDH. Dilution of the mMDH-fluorescein conjugates, prepared using a phosphate buffer protocol, to nanomolar concentrations had no significant effect on the rotational relaxation time of the adduct, indicating that the dimer-monomer dissociation constant for mMDH is below 10(-9) M. In contrast to reports in the literature suggesting a pH-dependent dissociation of mMDH, the oligomeric state of this mMDH-fluorescein preparation remained unchanged between pH 5.0 and 8.0. Application of hydrostatic pressure up to 2.5 kilobars was ineffective in dissociating the mMDH dimer. However, the mMDH dimer was completely dissociated in 1.5 M guanidinium hydrochloride. Dilution of a mMDH-fluorescein conjugate, prepared using a Tris buffer protocol, did show dissociation, which can be attributed to aggregates present in these preparations. These results are considered in light of the disparities in the literature concerning the properties of the mMDH dimer-monomer equilibrium. PMID:9792106

  15. Targeting Aldehyde Dehydrogenase 2: New Therapeutic Opportunities

    PubMed Central

    Chen, Che-Hong; Ferreira, Julio Cesar Batista; Gross, Eric R.; Mochly-Rosen, Daria

    2014-01-01

    A family of detoxifying enzymes called aldehyde dehydrogenases (ALDHs) has been a subject of recent interest, as its role in detoxifying aldehydes that accumulate through metabolism and to which we are exposed from the environment has been elucidated. Although the human genome has 19 ALDH genes, one ALDH emerges as a particularly important enzyme in a variety of human pathologies. This ALDH, ALDH2, is located in the mitochondrial matrix with much known about its role in ethanol metabolism. Less known is a new body of research to be discussed in this review, suggesting that ALDH2 dysfunction may contribute to a variety of human diseases including cardiovascular diseases, diabetes, neurodegenerative diseases, stroke, and cancer. Recent studies suggest that ALDH2 dysfunction is also associated with Fanconi anemia, pain, osteoporosis, and the process of aging. Furthermore, an ALDH2 inactivating mutation (termed ALDH2*2) is the most common single point mutation in humans, and epidemiological studies suggest a correlation between this inactivating mutation and increased propensity for common human pathologies. These data together with studies in animal models and the use of new pharmacological tools that activate ALDH2 depict a new picture related to ALDH2 as a critical health-promoting enzyme. PMID:24382882

  16. Postischemic hyperoxia reduces hippocampal pyruvate dehydrogenase activity

    PubMed Central

    Richards, Erica M.; Rosenthal, Robert E.; Kristian, Tibor; Fiskum, Gary

    2008-01-01

    The pyruvate dehydrogenase complex (PDHC) is a mitochondrial matrix enzyme that catalyzes the oxidative decarboxylation of pyruvate and represents the sole bridge between anaerobic and aerobic cerebral energy metabolism. Previous studies demonstrating loss of PDHC enzyme activity and immunoreactivity during reperfusion after cerebral ischemia suggest that oxidative modifications are involved. This study tested the hypothesis that hyperoxic reperfusion exacerbates loss of PDHC enzyme activity, possibly due to tyrosine nitration or S-nitrosation. We used a clinically relevant canine ventricular fibrillation cardiac arrest model in which, after resuscitation and ventilation on either 100% O2 (hyperoxic) or 21–30% O2 (normoxic), animals were sacrificed at 2 h reperfusion and the brains removed for enzyme activity and immunoreactivity measurements. Animals resuscitated under hyperoxic conditions exhibited decreased PDHC activity and elevated 3-nitrotyrosine immunoreactivity in the hippocampus but not the cortex, compared to nonischemic controls. These measures were unchanged in normoxic animals. In vitro exposure of purified PDHC to peroxynitrite resulted in a dose-dependent loss of activity and increased nitrotyrosine immunoreactivity. These results support the hypothesis that oxidative stress contributes to loss of hippocampal PDHC activity during cerebral ischemia and reperfusion and suggest that PDHC is a target of peroxynitrite. PMID:16716897

  17. Iodination of glyceraldehyde 3-phosphate dehydrogenase

    PubMed Central

    Thomas, Jean O.; Harris, J. Ieuan

    1970-01-01

    1. A high degree of homology in the positions of tyrosine residues in glyceraldehyde 3-phosphate dehydrogenase from lobster and pig muscle, and from yeast, prompted an examination of the reactivity of tyrosine residues in the enzyme. 2. Iodination of the enzyme from lobster muscle with low concentrations of potassium tri-[125I]-iodide led to the identification of tyrosine residues of differing reactivity. Tyrosine-46 appeared to be the most reactive in the native enzyme. 3. When the monocarboxymethylated enzyme was briefly treated with small amounts of iodine, iodination could be confined almost entirely to tyrosine-46 in the lobster enzyme; tyrosine-39 or tyrosine-42, or both, were also beginning to react. 4. These three tyrosine residues were also those that reacted most readily in the carboxymethylated pig and yeast enzymes. 5. The difficulties in attaining specific reaction of the native enzyme are considered. 6. The differences between our results and those of other workers are discussed. ImagesPLATE 1PLATE 2 PMID:5530750

  18. [Pyruvate dehydrogenase deficiency and cerebral malformations].

    PubMed

    Eirís, J; Alvarez-Moreno, A; Briones, P; Alonso-Alonso, C; Castro-Gago, M

    1996-10-01

    Pyruvate dehydrogenase (PDH) deficiency is a major cause of primary lactic acidosis and severe global developmental delay. A deficiency of PDH E1 alpha, a subunit of the PDH complex is a prominent cause of congenital lactic acidosis. The E1 alpha cDNA and corresponding genomic DNA have been located in the short arm of the X-chromosome (Xp22-1). A isolated 'cerebral' lactic acidosis with cerebral dysgenesis is a recognized pattern of presentation of PDH deficiency. Here, we report clinical features, magnetic resonance, and biochemical studies of two females aged 6 months (case 1) and 26 months (case 2). Both had severe development delay, minor dysmorphic features, microcephaly, severe hypoplasia of the corpus callosum, cerebral atrophy, ventricular dilatation and increase in serum lactate levels without systemic acidosis. Urinary organic acid profile was compatible with PDH deficiency. Increased CSF lactate and pyruvate levels and reduced total PDH and PDH E1 activities in muscle and fibroblasts were observed in case 1. Otherwise, decreased total PDH activity in muscle but not in fibroblasts was seen in case 2. The PDH E1á gene was sequenced in the case 1 and a deletion in exon 7 was demonstrated. Dysmorphism with severe cerebral malformations in female patients merits a metabolic evaluation, including determination of lactate and pyruvate levels in CSF. PMID:8983728

  19. Inhibitors of 17beta-hydroxysteroid dehydrogenase type 1.

    PubMed

    Brozic, P; Lanisnik Risner, T; Gobec, S

    2008-01-01

    Carcinogenesis of hormone-related cancers involves hormone-stimulated cell proliferation, which increases the number of cell divisions and the opportunity for random genetic errors. In target tissues, steroid hormones are interconverted between their potent, high affinity forms for their respective receptors and their inactive, low affinity forms. One group of enzymes responsible for these interconversions are the hydroxysteroid dehydrogenases, which regulate ligand access to steroid receptors and thus act at a pre-receptor level. As part of this group, the 17beta-hydroxysteroid dehydrogenases catalyze either oxidation of hydroxyl groups or reduction of keto groups at steroid position C17. The thoroughly characterized 17beta-hydroxysteroid dehydrogenase type 1 activates the less active estrone to estradiol, a potent ligand for estrogen receptors. This isoform is expressed in gonads, where it affects circulating levels of estradiol, and in peripheral tissue, where it regulates ligand occupancy of estrogen receptors. Inhibitors of 17beta-hydroxysteroid dehydrogenase type 1 are thus highly interesting potential therapeutic agents for the control of estrogen-dependent diseases such as endometriosis, as well as breast and ovarian cancers. Here, we present the review on the recent development of inhibitors of 17beta-hydroxysteroid dehydrogenase type 1 published and patented since the previous review of 17beta-hydroxysteroid dehydrogenase inhibitors of Poirier (Curr. Med. Chem., 2003, 10, 453). These inhibitors are divided into two separate groups according to their chemical structures: steroidal and non-steroidal 17beta-hydroxysteroid dehydrogenase type 1 inhibitors. Their estrogenic/ proliferative activities and selectivities over other 17beta-hydroxysteroid dehydrogenases that are involved in local regulation of estrogen action (types 2, 7 and 12) are also presented. PMID:18220769

  20. Succinate Dehydrogenase Loss in Familial Paraganglioma: Biochemistry, Genetics, and Epigenetics

    PubMed Central

    Her, Yeng F.; Maher, L. James

    2015-01-01

    It is counterintuitive that metabolic defects reducing ATP production can cause, rather than protect from, cancer. Yet this is precisely the case for familial paraganglioma, a form of neuroendocrine malignancy caused by loss of succinate dehydrogenase in the tricarboxylic acid cycle. Here we review biochemical, genetic, and epigenetic considerations in succinate dehydrogenase loss and present leading models and mysteries associated with this fascinating and important tumor. PMID:26294907

  1. Role of threonine dehydrogenase in Escherichia coli threonine degradation.

    PubMed Central

    Potter, R; Kapoor, V; Newman, E B

    1977-01-01

    Threonine was used as nitrogen source by Escherichia coli K-12 through a pathway beginning with the enzyme threonine dehydrogenase. The 2-amino-3-ketobutyrate formed was converted to glycine, and the glycine was converted to serine, which acted as the actual nitrogen donor. The enzyme formed under anaerobic conditions and known as threonine deaminase (biodegradative) is less widespread than threonine dehydrogenase and may be involved in energy metabolism rather than in threonine degradation per se. PMID:334738

  2. Retinol dehydrogenase 10 but not retinol/sterol dehydrogenase(s) regulates the expression of retinoic acid-responsive genes in human transgenic skin raft culture.

    PubMed

    Lee, Seung-Ah; Belyaeva, Olga V; Wu, Lizhi; Kedishvili, Natalia Y

    2011-04-15

    Retinoic acid is essential for skin growth and differentiation, and its concentration in skin is controlled tightly. In humans, four different members of the short-chain dehydrogenase/reductase (SDR) superfamily of proteins were proposed to catalyze the rate-limiting step in the biosynthesis of retinoic acid (the oxidation of retinol to retinaldehyde). Epidermis contains at least three of these enzymes, but their relative importance for retinoic acid biosynthesis and regulation of gene expression during growth and differentiation of epidermis is not known. Here, we investigated the effect of the four human SDRs on retinoic acid biosynthesis, and their impact on growth and differentiation of keratinocytes using organotypic skin raft culture model of human epidermis. The results of this study demonstrate that ectopic expression of retinol dehydrogenase 10 (RDH10, SDR16C4) in skin rafts dramatically increases proliferation and inhibits differentiation of keratinocytes, consistent with the increased steady-state levels of retinoic acid and activation of retinoic acid-inducible genes in RDH10 rafts. In contrast, SDRs with dual retinol/sterol substrate specificity, namely retinol dehydrogenase 4 (RoDH4, SDR9C8), RoDH-like 3α-hydroxysteroid dehydrogenase (RL-HSD, SDR9C6), and RDH-like SDR (RDHL, SDR9C4) do not affect the expression of retinoic acid-inducible genes but alter the expression levels of several components of extracellular matrix. These results reveal essential differences in the metabolic contribution of RDH10 versus retinol/sterol dehydrogenases to retinoic acid biosynthesis and provide the first evidence that non-retinoid metabolic products of retinol/sterol dehydrogenases affect gene expression in human epidermis. PMID:21345790

  3. Retinol Dehydrogenase 10 but Not Retinol/Sterol Dehydrogenase(s) Regulates the Expression of Retinoic Acid-responsive Genes in Human Transgenic Skin Raft Culture*

    PubMed Central

    Lee, Seung-Ah; Belyaeva, Olga V.; Wu, Lizhi; Kedishvili, Natalia Y.

    2011-01-01

    Retinoic acid is essential for skin growth and differentiation, and its concentration in skin is controlled tightly. In humans, four different members of the short-chain dehydrogenase/reductase (SDR) superfamily of proteins were proposed to catalyze the rate-limiting step in the biosynthesis of retinoic acid (the oxidation of retinol to retinaldehyde). Epidermis contains at least three of these enzymes, but their relative importance for retinoic acid biosynthesis and regulation of gene expression during growth and differentiation of epidermis is not known. Here, we investigated the effect of the four human SDRs on retinoic acid biosynthesis, and their impact on growth and differentiation of keratinocytes using organotypic skin raft culture model of human epidermis. The results of this study demonstrate that ectopic expression of retinol dehydrogenase 10 (RDH10, SDR16C4) in skin rafts dramatically increases proliferation and inhibits differentiation of keratinocytes, consistent with the increased steady-state levels of retinoic acid and activation of retinoic acid-inducible genes in RDH10 rafts. In contrast, SDRs with dual retinol/sterol substrate specificity, namely retinol dehydrogenase 4 (RoDH4, SDR9C8), RoDH-like 3α-hydroxysteroid dehydrogenase (RL-HSD, SDR9C6), and RDH-like SDR (RDHL, SDR9C4) do not affect the expression of retinoic acid-inducible genes but alter the expression levels of several components of extracellular matrix. These results reveal essential differences in the metabolic contribution of RDH10 versus retinol/sterol dehydrogenases to retinoic acid biosynthesis and provide the first evidence that non-retinoid metabolic products of retinol/sterol dehydrogenases affect gene expression in human epidermis. PMID:21345790

  4. Light modulation of glyceraldehyde-3-phosphate dehydrogenase and glucose-6-phosphate dehydrogenase by photosynthetic electron flow in pea chloroplasts

    SciTech Connect

    Akamba, L.M.; Anderson, L.E.

    1981-02-01

    Light activation of NADP-linked glyceraldehyde-3-P dehydrogenase (EC 1.2.1.13) and light inactivation of glucose-6-P dehydrogenase (EC 1.1.1.49) appear to be modulated within pea leaf chloroplasts by mediators which are reduced by photosynthetic electron flow from the photosystem I reaction center. Dichlorophenyl-1,1-dimethylurea inhibition of this modulation can be completely reversed by ascorbate plus 2,6-dichlorophenolindophenol in broken chloroplasts, but not in intact chloroplasts. Intact chloroplasts are impermeable to 2,6-dichlorophenolindophenol at pH 7.5. Studies on the effect of light in reconstituted chloroplasts with photosystem I-enriched particles in the place of whole thylakoids revealed that photosystem I participants in the light modulation of NADP-linked glyceraldehyde-3-P dehydrogenase and of glucose-6-P dehydrogenase.

  5. Synthesis and evaluation of 18F labeled alanine derivatives as potential tumor imaging agents

    PubMed Central

    Wang, Limin; Zha, Zhihao; Qu, Wenchao; Qiao, Hongwen; Lieberman, Brian P.; Plössl, Karl; Kung, Hank F.

    2012-01-01

    Introduction This paper reports the synthesis and labeling of 18F alanine derivatives. We also investigate their biological characteristics as potential tumor imaging agents mediated by alanine-serine-cysteine preferring (ASC) transporter system. Methods Three new 18F alanine derivatives were prepared from corresponding tosylate-precursors through a two-step labelling reaction. In vitro uptake studies to evaluate and to compare these three analogs were carried out in 9L glioma and PC-3 prostate cancer cell lines. Potential transport mechanisms, protein incorporation and stability of 3-(1-[18F]fluoromethyl)-L-alanine (L[18F]FMA) were investigated in 9L glioma cells. Its biodistribution was determined in a rat-bearing 9L tumor model. PET imaging studies were performed on rat bearing 9L glioma tumors and transgenic mouse carrying spontaneous generated M/tomND tumor (mammary gland adenocarcinoma). Results New 18F alanine derivatives were prepared with 7–34% uncorrected radiochemical yields, excellent enantiomeric purity (>99%) and good radiochemical purity (>99%). In vitro uptake of the L-[18F]FMA in 9L glioma and PC-3 prostate cancer cells was higher than those observed for other two alanine derivatives and [18F]FDG in first 1 h. Inhibition of cell uptake studies suggested that L-[18F]FMA uptake in 9L glioma was predominantly via transport system ASC. After entering into cells, L-[18F]FMA remained stable and was not incorporated into protein within 2 h. In vivo biodistribution studies demonstrated that L-[18F]FMA had relatively high uptake in liver and kidney. Tumor uptake was fast, reaching a maximum within 30 min. The tumor-to-muscle, tumor-to-blood and tumor-to-brain ratios at 60 min post injection were 2.2, 1.9 and 3.0, respectively. In PET imaging studies, tumors were visualized with L-[18F]FMA in both 9L rat and transgenic mouse. Conclusion L-[18F]FMA showed promising properties as a PET imaging agent for up-regulated ASC transporter associated with tumor

  6. The alanine detector in BNCT dosimetry: Dose response in thermal and epithermal neutron fields

    SciTech Connect

    Schmitz, T.; Bassler, N.; Blaickner, M.; Ziegner, M.; Hsiao, M. C.; Liu, Y. H.; Koivunoro, H.; Auterinen, I.; Serén, T.; Kotiluoto, P.; Palmans, H.; Sharpe, P.; Langguth, P.; Hampel, G.

    2015-01-15

    Purpose: The response of alanine solid state dosimeters to ionizing radiation strongly depends on particle type and energy. Due to nuclear interactions, neutron fields usually also consist of secondary particles such as photons and protons of diverse energies. Various experiments have been carried out in three different neutron beams to explore the alanine dose response behavior and to validate model predictions. Additionally, application in medical neutron fields for boron neutron capture therapy is discussed. Methods: Alanine detectors have been irradiated in the thermal neutron field of the research reactor TRIGA Mainz, Germany, in five experimental conditions, generating different secondary particle spectra. Further irradiations have been made in the epithermal neutron beams at the research reactors FiR 1 in Helsinki, Finland, and Tsing Hua open pool reactor in HsinChu, Taiwan ROC. Readout has been performed with electron spin resonance spectrometry with reference to an absorbed dose standard in a {sup 60}Co gamma ray beam. Absorbed doses and dose components have been calculated using the Monte Carlo codes FLUKA and MCNP. The relative effectiveness (RE), linking absorbed dose and detector response, has been calculated using the Hansen and Olsen alanine response model. Results: The measured dose response of the alanine detector in the different experiments has been evaluated and compared to model predictions. Therefore, a relative effectiveness has been calculated for each dose component, accounting for its dependence on particle type and energy. Agreement within 5% between model and measurement has been achieved for most irradiated detectors. Significant differences have been observed in response behavior between thermal and epithermal neutron fields, especially regarding dose composition and depth dose curves. The calculated dose components could be verified with the experimental results in the different primary and secondary particle fields. Conclusions: The

  7. Stringency of substrate specificity of Escherichia coli malate dehydrogenase.

    SciTech Connect

    Boernke, W. E.; Millard, C. S.; Stevens, P. W.; Kakar, S. N.; Stevens, F. J.; Donnelly, M. I.; Nebraska Wesleyan Univ.

    1995-09-10

    Malate dehydrogenase and lactate dehydrogenase are members of the structurally and functionally homologous family of 2-ketoacid dehydrogenases. Both enzymes display high specificity for their respective keto substrates, oxaloacetate and pyruvate. Closer analysis of their specificity, however, reveals that the specificity of malate dehydrogenase is much stricter and less malleable than that of lactate dehydrogenase. Site-specific mutagenesis of the two enzymes in an attempt to reverse their specificity has met with contrary results. Conversion of a specific active-site glutamine to arginine in lactate dehydrogenase from Bacillus stearothermophilus generated an enzyme that displayed activity toward oxaloacetate equal to that of the native enzyme toward pyruvate (H. M. Wilks et al. (1988) Science 242, 1541-1544). We have constructed a series of mutants in the mobile, active site loop of the Escherichia coli malate dehydrogenase that incorporate the complementary change, conversion of arginine 81 to glutamine, to evaluate the role of charge distribution and conformational flexibility within this loop in defining the substrate specificity of these enzymes. Mutants incorporating the change R81Q all had reversed specificity, displaying much higher activity toward pyruvate than to the natural substrate, oxaloacetate. In contrast to the mutated lactate dehydrogenase, these reversed-specificity mutants were much less active than the native enzyme. Secondary mutations within the loop of the E. coli enzyme (A80N, A80P, A80P/M85E/D86T) had either no or only moderately beneficial effects on the activity of the mutant enzyme toward pyruvate. The mutation A80P, which can be expected to reduce the overall flexibility of the loop, modestly improved activity toward pyruvate. The possible physiological relevance of the stringent specificity of malate dehydrogenase was investigated. In normal strains of E. coli, fermentative metabolism was not affected by expression of the mutant

  8. Structural Studies of Human Pyruvate Dehydrogenase

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa; Korotchkina, Lioubov G.; Dominiak, Paulina; Sidhu, Sukhdeep; Patel, Mulchand S.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Human pyruvate dehydrogenase (E1) catalyzes the irreversible decarboxylation of pyruvate in the presence of Mg(2+) and thiamin pyrophosphate (TPP) followed by the rate-limiting reductive acetylation of the lipoyl moiety linked to dihydrolipoamide acetyltransferase. The three-dimensional structure of human E1 is elucidated using the methods of macromolecular X-ray crystallography. The structure is an alpha, alpha', beta and beta' tetramer with the protein units being in the tetrahedral arrangement. Each 361-residue alpha-subunit and 329-residue beta-subunit is composed of a beta-sheet core surrounded by alpha-helical domains. Each subunit is in extensive contact with all the three subunits involving TPP and magnesium cofactors, and potassium ions. The two binding sites for TPP are at the alpha-beta' and alpha'-beta interfaces, each involving a magnesium ion and Phe6l, His63, Tyr89, and Met200 from the alpha-subunit (or alpha'-subunit), and Met81 Phe85, His128 from the beta-subunit (or beta'-subunit). K+ ions are nestled between two beta-sheets and the end of an alpha-helix in each beta-subunit, where they are coordinated by four carbonyl oxygen groups from Ile12, Ala160, Asp163, and Asnl65, and a water molecule. The catalytic C2 carbon of thiazolium ring in this structure forms a 3.2 A contact with a water molecule involved in a series of H-bonds with other water molecules, and indirectly with amino acids including those involved in the catalysis and regulation of the enzyme.

  9. Succinate dehydrogenase gene mutations in cardiac paragangliomas.

    PubMed

    Martucci, Victoria L; Emaminia, Abbas; del Rivero, Jaydira; Lechan, Ronald M; Magoon, Bindiya T; Galia, Analyza; Fojo, Tito; Leung, Steve; Lorusso, Roberto; Jimenez, Camilo; Shulkin, Barry L; Audibert, Jennifer L; Adams, Karen T; Rosing, Douglas R; Vaidya, Anand; Dluhy, Robert G; Horvath, Keith A; Pacak, Karel

    2015-06-15

    Pheochromocytomas and paragangliomas are chromaffin cell tumors arising from neuroendocrine cells. At least 1/3 of paragangliomas are related to germline mutations in 1 of 17 genes. Although these tumors can occur throughout the body, cardiac paragangliomas are very rare, accounting for <0.3% of mediastinal tumors. The purpose of this study was to determine the clinical characteristics of patients with cardiac paragangliomas, particularly focusing on their genetic backgrounds. A retrospective chart analysis of 15 patients with cardiac paragangliomas was performed to determine clinical presentation, genetic background, diagnostic workup, and outcomes. The average age at diagnosis was 41.9 years. Typical symptoms of paraganglioma (e.g., hypertension, sweating, palpitations, headache) were reported at initial presentation in 13 patients (86.7%); the remaining 2, as well as 4 symptomatic patients, initially presented with cardiac-specific symptoms (e.g., chest pain, dyspnea). Genetic testing was done in 13 patients (86.7%); 10 (76.9%) were positive for mutations in succinate dehydrogenase (SDHx) subunits B, C, or D. Thirteen patients (86.7%) underwent surgery to remove the paraganglioma with no intraoperative morbidity or mortality; 1 additional patient underwent surgical resection but experienced intraoperative complications after removal of the tumor due to co-morbidities and did not survive. SDHx mutations are known to be associated with mediastinal locations and malignant behavior of paragangliomas. In this report, the investigators extend the locations of predominantly SDHx-related paragangliomas to cardiac tumors. In conclusion, cardiac paragangliomas are frequently associated with underlying SDHx germline mutations, suggesting a need for genetic testing of all patients with this rare tumor. PMID:25896150

  10. The Carbon Monoxide Dehydrogenase from Desulfovibrio vulgaris.

    PubMed

    Hadj-Saïd, Jessica; Pandelia, Maria-Eirini; Léger, Christophe; Fourmond, Vincent; Dementin, Sébastien

    2015-12-01

    Ni-containing Carbon Monoxide Dehydrogenases (CODHs) catalyze the reversible conversion between CO and CO₂and are involved in energy conservation and carbon fixation. These homodimeric enzymes house two NiFeS active sites (C-clusters) and three accessory [4Fe-4S] clusters. The Desulfovibrio vulgaris (Dv) genome contains a two-gene CODH operon coding for a CODH (cooS) and a maturation protein (cooC) involved in nickel insertion in the active site. According to the literature, the question of the precise function of CooC as a chaperone folding the C-cluster in a form which accommodates free nickel or as a mere nickel donor is not resolved. Here, we report the biochemical and spectroscopic characterization of two recombinant forms of the CODH, produced in the absence and in the presence of CooC, designated CooS and CooS(C), respectively. CooS contains no nickel and cannot be activated, supporting the idea that the role of CooC is to fold the C-cluster so that it can bind nickel. As expected, CooS(C) is Ni-loaded, reversibly converts CO and CO₂, displays the typical Cred1 and Cred2 EPR signatures of the C-cluster and activates in the presence of methyl viologen and CO in an autocatalytic process. However, Ni-loaded CooS(C) reaches maximum activity only upon reductive treatment in the presence of exogenous nickel, a phenomenon that had not been observed before. Surprisingly, the enzyme displays the Cred1 and Cred2 signatures whether it has been activated or not, showing that this activation process of the Ni-loaded Dv CODH is not associated with structural changes at the active site. PMID:26255854

  11. Computational Prediction of Alanine Scanning and Ligand Binding Energetics in G-Protein Coupled Receptors

    PubMed Central

    Boukharta, Lars; Gutiérrez-de-Terán, Hugo; Åqvist, Johan

    2014-01-01

    Site-directed mutagenesis combined with binding affinity measurements is widely used to probe the nature of ligand interactions with GPCRs. Such experiments, as well as structure-activity relationships for series of ligands, are usually interpreted with computationally derived models of ligand binding modes. However, systematic approaches for accurate calculations of the corresponding binding free energies are still lacking. Here, we report a computational strategy to quantitatively predict the effects of alanine scanning and ligand modifications based on molecular dynamics free energy simulations. A smooth stepwise scheme for free energy perturbation calculations is derived and applied to a series of thirteen alanine mutations of the human neuropeptide Y1 receptor and series of eight analogous antagonists. The robustness and accuracy of the method enables univocal interpretation of existing mutagenesis and binding data. We show how these calculations can be used to validate structural models and demonstrate their ability to discriminate against suboptimal ones. PMID:24743773

  12. Membrane topology of the electrogenic aspartate-alanine antiporter AspT of Tetragenococcus halophilus.

    PubMed

    Nanatani, Kei; Ohonishi, Fumito; Yoneyama, Hiroshi; Nakajima, Tasuku; Abe, Keietsu

    2005-03-01

    AspT is an electrogenic aspartate:alanine exchange protein that represents the vectorial component of a proton-motive metabolic cycle found in some strains of Tetragenococcus halophilus. AspT is the sole member of a new family, the Aspartate: Alanine Exchanger (AAE) family, in secondary transporters, according to the computational classification proposed by Saier et al. (http://www.biology.ucsd.edu/~msaier/transport/). We analyzed the topology of AspT biochemically, by using fusion methods in combination with alkaline phosphatase or beta-lactamase. These results suggested that AspT has a unique topology; 8 TMS, a large cytoplasmic loop (183 amino acids) between TMS5 and TMS6, and N- and C-termini that both face the periplasm. These results demonstrated a unique 2D-structure of AspT as the novel AAE family. PMID:15670744

  13. Chiral effects on helicity studied via the energy landscape of short (d, l)-alanine peptides

    NASA Astrophysics Data System (ADS)

    Neelamraju, Sridhar; Oakley, Mark T.; Johnston, Roy L.

    2015-10-01

    The homochirality of natural amino acids facilitates the formation of regular secondary structures such as α-helices and β-sheets. Here, we study the relationship between chirality and backbone structure for the example of hexa-alanine. The most stable stereoisomers are identified through global optimisation. Further, the energy landscape, a database of connected low-energy local minima and transition points, is constructed for various neutral and zwitterionic stereoisomers of hexa-alanine. Three order parameters for partial helicity are applied and metric disconnectivity graphs are presented with partial helicity as a metric. We also apply the Zimm-Bragg model to derive average partial helicities for Ace-(l-Ala)6-NHMe, Ace-(d-Ala-l-Ala)3-NHMe, and Ace-(l-Ala)3-(d-Ala)3-NHMe from the database of local minima and compare with previous studies.

  14. Synthesis of beta-hydroxy-alpha-amino acids with a reengineered alanine racemase.

    PubMed

    Fesko, Kateryna; Giger, Lars; Hilvert, Donald

    2008-11-15

    The Y265A mutant of alanine racemase (alrY265A) was evaluated as a catalyst for the synthesis of beta-hydroxy-alpha-amino acids. It promotes the PLP-dependent aldol condensation of glycine with a range of aromatic aldehydes. The desired products were obtained with complete stereocontrol at C(alpha) (ee>99%, D) and moderate to high selectivity at C(beta) (up to 97% de). The designed enzyme is thus similar to natural d-threonine aldolases in its substrate specificity and stereoselectivity. Moreover, its ability to utilize alanine as an alternative donor suggests an expanded scope of potential utility for the production of biologically active compounds. PMID:18760921

  15. Unusual hydroxyl migration in the fragmentation of β-alanine dication in the gas phase.

    PubMed

    Piekarski, Dariusz Grzegorz; Delaunay, Rudy; Maclot, Sylvain; Adoui, Lamri; Martín, Fernando; Alcamí, Manuel; Huber, Bernd A; Rousseau, Patrick; Domaracka, Alicja; Díaz-Tendero, Sergio

    2015-07-14

    We present a combined experimental and theoretical study of the fragmentation of doubly positively charged β-alanine molecules in the gas phase. The dissociation of the produced dicationic molecules, induced by low-energy ion collisions, is analysed by coincidence mass spectrometric techniques; the coupling with ab initio molecular dynamics simulations allows rationalisation of the experimental observations. The present strategy gives deeper insights into the chemical mechanisms of multiply charged amino acids in the gas phase. In the case of the β-alanine dication, in addition to the expected Coulomb explosion and hydrogen migration processes, we have found evidence of hydroxyl-group migration, which leads to unusual fragmentation products, such as hydroxymethyl cation, and is necessary to explain some of the observed dominant channels. PMID:26035826

  16. Response of the alanine/ESR dosimeter to radiation from an Ir-192 HDR brachytherapy source

    NASA Astrophysics Data System (ADS)

    Anton, M.; Hackel, T.; Zink, K.; von Voigts-Rhetz, P.; Selbach, H.-J.

    2015-01-01

    The response of the alanine dosimeter to radiation from an Ir-192 source with respect to the absorbed dose to water, relative to Co-60 radiation, was determined experimentally as well as by Monte Carlo simulations. The experimental and Monte Carlo results for the response agree well within the limits of uncertainty. The relative response decreases with an increasing distance between the measurement volume and the source from approximately 98% at a 1 cm distance to 96% at 5 cm. The present data are more accurate, but agree well with data published by Schaeken et al (2011 Phys. Med. Biol. 56 6625-34). The decrease of the relative response with an increasing distance that had already been observed by these authors is confirmed. In the appendix, the properties of the alanine dosimeter with respect to volume and sensitivity corrections are investigated. The inhomogeneous distribution of the detection probability that was taken into account for the analysis was determined experimentally.

  17. The effects of boron on the electron paramagnetic resonance spectra of alanine irradiated with thermal neutrons

    SciTech Connect

    Ciesielski, B.; Wielopolski, L.

    1995-10-01

    The effects of boric acid admixture on the intensity and line structure of EPR spectra of free radicals produced in alanine by thermal neutrons are presented. The EPR signal enhancement, up to a factor of 40 depending on the boron concentration, is related to additional energy deposition in alanine crystals by the disintegration products resulting from the capture of a thermal neutron by boron, {sup 10}B(n,{alpha}){sup 7}Li. The changes in the shape of the EPR spectra observed by changing the microwave power are due to the differences in the microwave power saturation of the free radicals produced by a low-LET radiation and those produced by the high-LET components of the radiation after the neutron capture reaction. 27 refs., 4 figs., 2 tabs.

  18. Formation of homochiral glycine/Cu(111) quantum corral array realized using alanine nuclei

    NASA Astrophysics Data System (ADS)

    Nakamura, Miki; Huang, Hui; Kanazawa, Ken; Taninaka, Atsushi; Yoshida, Shoji; Takeuchi, Osamu; Shigekawa, Hidemi

    2015-08-01

    Glycine has enantiomeric isomers on a Cu(111) surface through the dissociation of hydrogen from the carboxyl group and forms an array of quantum corrals of ∼1.3 nm diameter. Stable homo-chiral glycinate trimers are formed in the first step, which subsequently form a network with a hexagonal arrangement. However, domains with R- or S-chirality coexist with the same probability. On the other hand, α-alanine has D- and L-chirality in nature and forms a similar quantum corral array on Cu(111) with R- and S-chirality, respectively. Here, by using α-alanine molecules as nuclei, the chirality of glycine molecules was controlled and a homochiral quantum corral array was successfully formed, which indicates the possibility that the optical isomers can be separated through a method such as preferential crystallization.

  19. Crystallization and preliminary X-ray data analysis of β-alanine synthase from Drosophila melanogaster

    SciTech Connect

    Lundgren, Stina; Andersen, Birgit; Piškur, Jure; Dobritzsch, Doreen

    2007-10-01

    β-Alanine synthase catalyzes the last step in the reductive degradation pathway for uracil and thymine. Crystals of the recombinant enzyme from D. melanogaster belong to space group C2. Diffraction data to 3.3 Å resolution were collected and analyzed. β-Alanine synthase catalyzes the last step in the reductive degradation pathway for uracil and thymine, which represents the main clearance route for the widely used anticancer drug 5-fluorouracil. Crystals of the recombinant enzyme from Drosophila melanogaster, which is closely related to the human enzyme, were obtained by the hanging-drop vapour-diffusion method. They diffracted to 3.3 Å at a synchrotron-radiation source, belong to space group C2 (unit-cell parameters a = 278.9, b = 95.0, c = 199.3 Å, β = 125.8°) and contain 8–10 molecules per asymmetric unit.

  20. Role of alanine-valine transaminase in Salmonella typhimurium and analysis of an avtA::Tn5 mutant.

    PubMed Central

    Berg, C M; Whalen, W A; Archambault, L B

    1983-01-01

    In Salmonella typhimurium, as in Escherichia coli, mutations in avtA, the gene encoding the alanine-valine transaminase (transaminase C), are silent unless they are combined with mutations involved in isoleucine-valine biosynthesis. avtA is repressed by leucine or alanine but not by valine. Transaminase C is found at reduced levels upon starvation for any one of several amino acids. We hypothesize that this is due to repression of avtA by the elevated alanine and leucine pools found in amino acid-starved cells. PMID:6309735

  1. Role of alanine-valine transaminase in Salmonella typhimurium and analysis of an avtA::Tn5 mutant.

    PubMed

    Berg, C M; Whalen, W A; Archambault, L B

    1983-09-01

    In Salmonella typhimurium, as in Escherichia coli, mutations in avtA, the gene encoding the alanine-valine transaminase (transaminase C), are silent unless they are combined with mutations involved in isoleucine-valine biosynthesis. avtA is repressed by leucine or alanine but not by valine. Transaminase C is found at reduced levels upon starvation for any one of several amino acids. We hypothesize that this is due to repression of avtA by the elevated alanine and leucine pools found in amino acid-starved cells. PMID:6309735

  2. Disruption of NAD+ binding site in glyceraldehyde 3-phosphate dehydrogenase affects its intranuclear interactions

    PubMed Central

    Phadke, Manali; Krynetskaia, Natalia; Mishra, Anurag; Barrero, Carlos; Merali, Salim; Gothe, Scott A; Krynetskiy, Evgeny

    2015-01-01

    AIM: To characterize phosphorylation of human glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and mobility of GAPDH in cancer cells treated with chemotherapeutic agents. METHODS: We used proteomics analysis to detect and characterize phosphorylation sites within human GAPDH. Site-specific mutagenesis and alanine scanning was then performed to evaluate functional significance of phosphorylation sites in the GAPDH polypeptide chain. Enzymatic properties of mutated GAPDH variants were assessed using kinetic studies. Intranuclear dynamics parameters (diffusion coefficient and the immobile fraction) were estimated using fluorescence recovery after photobleaching (FRAP) experiments and confocal microscopy. Molecular modeling experiments were performed to estimate the effects of mutations on NAD+ cofactor binding. RESULTS: Using MALDI-TOF analysis, we identified novel phosphorylation sites within the NAD+ binding center of GAPDH at Y94, S98, and T99. Using polyclonal antibody specific to phospho-T99-containing peptide within GAPDH, we demonstrated accumulation of phospho-T99-GAPDH in the nuclear fractions of A549, HCT116, and SW48 cancer cells after cytotoxic stress. We performed site-mutagenesis, and estimated enzymatic properties, intranuclear distribution, and intranuclear mobility of GAPDH mutated variants. Site-mutagenesis at positions S98 and T99 in the NAD+ binding center reduced enzymatic activity of GAPDH due to decreased affinity to NAD+ (Km = 741 ± 257 μmol/L in T99I vs 57 ± 11.1 µmol/L in wild type GAPDH. Molecular modeling experiments revealed the effect of mutations on NAD+ binding with GAPDH. FRAP (fluorescence recovery after photo bleaching) analysis showed that mutations in NAD+ binding center of GAPDH abrogated its intranuclear interactions. CONCLUSION: Our results suggest an important functional role of phosphorylated amino acids in the NAD+ binding center in GAPDH interactions with its intranuclear partners. PMID:26629320

  3. β-alanine supplementation improves isometric endurance of the knee extensor muscles

    PubMed Central

    2012-01-01

    Background We examined the effect of four weeks of β-alanine supplementation on isometric endurance of the knee extensors at 45% maximal voluntary isometric contraction (MVIC). Methods Thirteen males (age 23 ± 6 y; height 1.80 ± 0.05 m; body mass 81.0 ± 10.5 kg), matched for pre-supplementation isometric endurance, were allocated to either a placebo (n = 6) or β-alanine (n = 7; 6.4 g·d-1 over 4 weeks) supplementation group. Participants completed an isometric knee extension test (IKET) to fatigue, at an intensity of 45% MVIC, before and after supplementation. In addition, two habituation tests were completed in the week prior to the pre-supplementation test and a further practice test was completed in the week prior to the post-supplementation test. MVIC force, IKET hold-time, and impulse generated were recorded. Results IKET hold-time increased by 9.7 ± 9.4 s (13.2%) and impulse by 3.7 ± 1.3 kN·s-1 (13.9%) following β-alanine supplementation. These changes were significantly greater than those in the placebo group (IKET: t(11) = 2.9, p ≤0.05; impulse: t(11) = 3.1, p ≤ 0.05). There were no significant changes in MVIC force in either group. Conclusion Four weeks of β-alanine supplementation at 6.4 g·d-1 improved endurance capacity of the knee extensors at 45% MVIC, which most likely results from improved pH regulation within the muscle cell as a result of elevated muscle carnosine levels. PMID:22697405

  4. The PI3K/Akt Pathway Regulates Oxygen Metabolism via Pyruvate Dehydrogenase (PDH)-E1α Phosphorylation.

    PubMed

    Cerniglia, George J; Dey, Souvik; Gallagher-Colombo, Shannon M; Daurio, Natalie A; Tuttle, Stephen; Busch, Theresa M; Lin, Alexander; Sun, Ramon; Esipova, Tatiana V; Vinogradov, Sergei A; Denko, Nicholas; Koumenis, Constantinos; Maity, Amit

    2015-08-01

    Inhibition of the PI3K/Akt pathway decreases hypoxia within SQ20B human head and neck cancer xenografts. We set out to understand the molecular mechanism underlying this observation. We measured oxygen consumption using both a Clark electrode and an extracellular flux analyzer. We made these measurements after various pharmacologic and genetic manipulations. Pharmacologic inhibition of the PI3K/mTOR pathway or genetic inhibition of Akt/PI3K decreased the oxygen consumption rate (OCR) in vitro in SQ20B and other cell lines by 30% to 40%. Pharmacologic inhibition of this pathway increased phosphorylation of the E1α subunit of the pyruvate dehydrogenase (PDH) complex on Ser293, which inhibits activity of this critical gatekeeper of mitochondrial respiration. Expressing wild-type PTEN in a doxycycline-inducible manner in a cell line with mutant PTEN led to an increase in PDH-E1α phosphorylation and a decrease in OCR. Pretreatment of SQ20B cells with dichloroacetate (DCA), which inhibits PDH-E1α phosphorylation by inhibiting dehydrogenase kinases (PDK), reversed the decrease in OCR in response to PI3K/Akt/mTOR inhibition. Likewise, introduction of exogenous PDH-E1α that contains serine to alanine mutations, which can no longer be regulated by phosphorylation, also blunted the decrease in OCR seen with PI3K/mTOR inhibition. Our findings highlight an association between the PI3K/mTOR pathway and tumor cell oxygen consumption that is regulated in part by PDH phosphorylation. These results have important implications for understanding the effects of PI3K pathway activation in tumor metabolism and also in designing cancer therapy trials that use inhibitors of this pathway. PMID:25995437

  5. Conformation-specific pathways of beta-alanine: a vacuum ultraviolet photoionization and theoretical study.

    PubMed

    Zhang, Lidong; Pan, Yang; Guo, Huijun; Zhang, Taichang; Sheng, Liusi; Qi, Fei; Lo, Po-Kam; Lau, Kai-Chung

    2009-05-21

    We report a photoionization and dissociative photoionization study of beta-alanine using IR laser desorption combined with synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry. Fragments at m/z = 45, 44, 43, and 30 yielded from photoionization are assigned to NH(3)CH(2)CH(2)(+), NH(2)CHCH(3)(+), NH(2)CHCH(2)(+), and NH(2)CH(2)(+), respectively. Some new conformation-specific dissociation channels and corresponding dissociation energies for the observed fragments are established and determined with the help of ab initio G3B3 calculations and measurements of photoionization efficiency (PIE) spectra. The theoretical values are in fair agreement with the experimental results. Three low-lying conformers of the beta-alanine cation, including two gauche conformers G1+, G2+ and one anti conformer A+ are investigated by G3B3 calculations. The conformer G1+ (intramolecular hydrogen bonding N-H...OC) is found to be another precursor in forming the NH(3)CH(2)CH(2)(+) ion, which is complementary to the previously reported formation pathway that only occurs with the conformer G2+ (intramolecular hydrogen bonding O-H...N). Species NH(2)CHCH(2)(+) may come from the contributions of G1+, G2+, and A+ via different dissociation pathways. The most abundant fragment ion, NH(2)CH(2)(+), is formed from a direct C-C bond cleavage. Intramolecular hydrogen transfer processes dominate most of the fragmentation pathways of the beta-alanine cation. PMID:19400571

  6. Kinetics and mechanism of the beta-alanine + OH gas phase reaction: a quantum mechanical approach.

    PubMed

    Cruz-Torres, Armando; Galano, Annia; Alvarez-Idaboy, J Raúl

    2006-01-14

    The OH hydrogen abstraction reaction from beta-alanine has been studied using the BHandHLYP hybrid HF-density functional and 6-311G(d,p) basis sets. The energies have been improved by single point calculations at the CCSD(T)/6-311G(d,p) level of theory. The structures of the different stationary points are discussed. Reaction profiles are modeled including the formation of pre-reactive and product complexes. Negative net activation energy is obtained for the overall reaction. A complex mechanism is proposed, and the rate coefficients are calculated using transition state theory over the temperature range of 250-400 K. The rate coefficients are proposed for the first time and it was found that in the gas phase the hydrogen abstraction occurs mainly from the CH(2) group next to the amino end. The following expressions, in cm(3) mol(-1) s(-1), are obtained for the overall rate constants, at 250-400 and 290-310 K, respectively: k(250-400)= 2.36 x 10(-12) exp(340/T), and k(290-310)= 1.296 x 10(-12) exp(743/T). The three parameter expression that best describes the studied reaction is k(250-400)= 1.01 x 10(-21)T(3.09) exp(1374/T). The beta-alanine + OH reaction was found to be 1.5 times faster than the alpha-alanine + OH reaction. PMID:16482271

  7. Survivability and reactivity of glycine and alanine in early oceans: effects of meteorite impacts.

    PubMed

    Umeda, Yuhei; Fukunaga, Nao; Sekine, Toshimori; Furukawa, Yoshihiro; Kakegawa, Takeshi; Kobayashi, Takamichi; Nakazawa, Hiromoto

    2016-01-01

    Prebiotic oceans might have contained abundant amino acids, and were subjected to meteorite impacts, especially during the late heavy bombardment. It is so far unknown how meteorite impacts affected amino acids in the early oceans. Impact experiments were performed under the conditions where glycine was synthesized from carbon, ammonia, and water, using aqueous solutions containing (13)C-labeled glycine and alanine. Selected amino acids and amines in samples were analyzed with liquid chromatography-mass spectrometry (LC/MS). In particular, the (13)C-labeled reaction products were analyzed to distinguish between run products and contaminants. The results revealed that both amino acids survived partially in the early ocean through meteorite impacts, that part of glycine changed into alanine, and that large amounts of methylamine and ethylamine were formed. Fast decarboxylation was confirmed to occur during such impact processes. Furthermore, the formation of n-butylamine, detected only in the samples recovered from the solutions with additional nitrogen and carbon sources of ammonia and benzene, suggests that chemical reactions to form new biomolecules can proceed through marine impacts. Methylamine and ethylamine from glycine and alanine increased considerably in the presence of hematite rather than olivine under similar impact conditions. These results also suggest that amino acids present in early oceans can contribute further to impact-induced reactions, implying that impact energy plays a potential role in the prebiotic formation of various biomolecules, although the reactions are complicated and depend upon the chemical environments as well. PMID:26369758

  8. Surface chemistry of alanine on Cu{111}: Adsorption geometry and temperature dependence

    NASA Astrophysics Data System (ADS)

    Baldanza, Silvia; Cornish, Alix; Nicklin, Richard E. J.; Zheleva, Zhasmina V.; Held, Georg

    2014-11-01

    Adsorption of L-alanine on the Cu{111} single crystal surface was investigated as a model system for interactions between small chiral modifier molecules and close-packed metal surfaces. Synchrotron-based X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy are used to determine the chemical state, bond coordination and out-of-plane orientation of the molecule on the surface. Alanine adsorbs in its anionic form at room temperature, whilst at low temperature the overlayer consists of anionic and zwitterionic molecules. NEXAFS spectra exhibit a strong angular dependence of the π* resonance associated with the carboxylate group, which allows determining the tilt angle of this group with respect to the surface plane (48° ± 2°) at room temperature. Low-energy electron diffraction (LEED) shows a p(2√{ 13} × 2√{ 13}) R 13 ° superstructure with only one domain, which breaks the mirror symmetry of the substrate and, thus, induces global chirality to the surface. Temperature-programmed XPS (TP-XPS) and temperature-programmed desorption (TPD) experiments indicate that the zwitterionic form converts into the anionic species (alaninate) at 293 K. The latter desorbs/decomposes between 435 K and 445 K.

  9. Monte Carlo Simulation of the Irradiation of Alanine Coated Film Dosimeters with Accelerated Electrons

    NASA Astrophysics Data System (ADS)

    Uribe, R. M.; Salvat, F.; Cleland, M. R.; Berejka, A.

    2009-03-01

    The Monte Carlo code PENELOPE was used to simulate the irradiation of alanine coated film dosimeters with electron beams of energies from 1 to 5 MeV being produced by a high-current industrial electron accelerator. This code includes a geometry package that defines complex quadratic geometries, such as those of the irradiation of products in an irradiation processing facility. In the present case the energy deposited on a water film at the surface of a wood parallelepiped was calculated using the program PENMAIN, which is a generic main program included in the PENELOPE distribution package. The results from the simulation were then compared with measurements performed by irradiating alanine film dosimeters with electrons using a 150 kW Dynamitron™ electron accelerator. The alanine films were placed on top of a set of wooden planks using the same geometrical arrangement as the one used for the simulation. The way the results from the simulation can be correlated with the actual measurements, taking into account the irradiation parameters, is described. An estimation of the percentage difference between measurements and calculations is also presented.

  10. Evaluation of Conformation and Association Behavior of Multivalent Alanine-Rich Polypeptides

    PubMed Central

    Farmer, Robin S.; Top, Ayben; Argust, Lindsey M.; Liu, Shuang; Kiick, Kristi L.

    2008-01-01

    Purpose Helical alanine-rich polypeptides with functional groups displayed along the backbone can display desired molecules such as saccharides or therapeutic molecules at a prescribed spacing. Because these polypeptides have promise for application as biomaterials, the conformation and association of these molecules have been investigated under biologically relevant conditions. Methods Three polypeptide sequences, 17-H-3, 17-H-6, and 35-H-6, have been produced through recombinant techniques. Circular dichroic (CD) spectroscopy was used to monitor the secondary structure of the polypeptides in PBS (phosphate buffered saline, pH 7.4). The aggregation behavior in PBS was monitored via analytical ultracentrifugation and non-denaturing polyacrylamide gel electrophoresis. Results The three polypeptides adopt a highly helical structure at low and ambient temperatures, and when heated, undergo a helix-to-coil transition, typical of other alanine-rich peptide sequences. The melting temperatures and van’t Hoff enthalpies, extracted from the CD data, suggest similar stability of the sequences. Although alanine-rich sequences can be prone to aggregation, there is no indication of aggregation for the three polypeptides at a range of concentrations relevant for possible biological applications. Conclusions The helical polypeptides are monomeric under biologically relevant conditions enabling application of these polypeptides as useful scaffolds for ligand or drug display. PMID:17674161

  11. Theoretical study of alpha/beta-alanine and their protonated/alkali metal cationized complexes.

    PubMed

    Abirami, S; Xing, Y M; Tsang, C W; Ma, N L

    2005-01-27

    Density functional theory has been employed to model the structure and the relative stabilities of alpha/beta-alanine conformers and their protonated and alkali metal cationized complexes. In general, we find that the behavior of the beta-alanine (beta-Ala) system is quite similar to that of alpha-alanine (alpha-Ala). However, the presence of the methylene group (-CH2-) at the beta position in beta-Ala leads to a few key differences. First, the intramolecular hydrogen bonding patterns are different between free alpha- and beta-Ala. Second, the stability of zwitterionic species (in either the free ligand or alkali metal cationized complexes) is often enhanced in beta-Ala. Third, the preferred mode of alkali metal cation (M+) binding may also differ in alpha- and beta-Ala. Natural energy decomposition analysis has been applied here to gain further insight into the effects of the ligand, cation size, and mode of binding on the nature of interaction in these M+-Ala complexes. PMID:16833371

  12. Development of an alanine dosimetry system for radiation dose measurements in the radiotherapy range

    NASA Astrophysics Data System (ADS)

    Gago-Arias, A.; González-Castaño, D. M.; Gómez, F.; Peteiro, E.; Lodeiro, C.; Pardo-Montero, J.

    2015-08-01

    Alanine/ESR systems provide an interesting alternative to standard dosimetry systems like solid state or gas ionization chambers for dosimetry in radiotherapy. This is primarily due to the negligible energy dependence, high stability, and the possibility of using small pellets that are especially suitable for the dosimetry of small fields. In order to obtain acceptable dose uncertainties in the radiotherapy dose range, the setup, operational parameters and quantification methods need to be carefully investigated and optimized. In this work we present the development of an alanine/ESR dosimetry system, traced to the secondary standard laboratory of absorbed dose to water at the Radiation Physics Laboratory of the Universidade de Santiago de Compostela (Spain). We focus on the setup, the optimization of the operational parameters of the ESR spectrometer, the quantification of the readout signal and the construction of a calibration curve. The evaluation of the uncertainty budget is also a key component of an alanine/ESR system for radiotherapy dosimetry, and is presented in detail.After the optimization of the procedures, we have achieved a relative uncertainty of 1.7% (k=2) for an absorbed dose of 10 Gy, decreasing to 0.9% for 50 Gy.

  13. Chiral molecule for spin filtering purposes: the study of L- and D-Alanine

    NASA Astrophysics Data System (ADS)

    Yitamben, Esmeralda; Rosenberg, Richard; Guisinger, Nathan

    2011-03-01

    The field of molecular electronics has attracted scientists by the great opportunities and versatility it offers as a replacement for standard semiconductor electronics with organic materials, thus bringing down the cost, and opening endless possibilities for chemical synthesis, and scientific breakthrough. Of particular interest is the use of chiral molecules, such as alanine, for spin filtering studies in hope of creating highly spin-polarized charge carriers for spintronics applications. Preliminary studies of both L- and D-alanine on Cu(111) were conducted using scanning tunneling microscopy and spectroscopy, revealing the formation of a 2-dimensional phase at low coverage, a hexagonal ``flower'' pattern at intermediate coverage, and a chain and ring superstructures at high coverage. A model is proposed to explain the surface chemistry and bonding of the molecules on the metallic surface. Current studies of L- and D-alanine on Fe/W show promises in the intermediate coverage regime. This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

  14. Assessment of toxicity using dehydrogenases activity and mathematical modeling.

    PubMed

    Matyja, Konrad; Małachowska-Jutsz, Anna; Mazur, Anna K; Grabas, Kazimierz

    2016-07-01

    Dehydrogenase activity is frequently used to assess the general condition of microorganisms in soil and activated sludge. Many studies have investigated the inhibition of dehydrogenase activity by various compounds, including heavy metal ions. However, the time after which the measurements are carried out is often chosen arbitrarily. Thus, it can be difficult to estimate how the toxic effects of compounds vary during the reaction and when the maximum of the effect would be reached. Hence, the aim of this study was to create simple and useful mathematical model describing changes in dehydrogenase activity during exposure to substances that inactivate enzymes. Our model is based on the Lagergrens pseudo-first-order equation, the rate of chemical reactions, enzyme activity, and inactivation and was created to describe short-term changes in dehydrogenase activity. The main assumption of our model is that toxic substances cause irreversible inactivation of enzyme units. The model is able to predict the maximum direct toxic effect (MDTE) and the time to reach this maximum (TMDTE). In order to validate our model, we present two examples: inactivation of dehydrogenase in microorganisms in soil and activated sludge. The model was applied successfully for cadmium and copper ions. Our results indicate that the predicted MDTE and TMDTE are more appropriate than EC50 and IC50 for toxicity assessments, except for long exposure times. PMID:27021434

  15. Characterization and purification of carbon monoxide dehydrogenase from Methanosarcina barkeri.

    PubMed Central

    Krzycki, J A; Zeikus, J G

    1984-01-01

    Carbon monoxide-dependent production of H2, CO2, and CH4 was detected in crude cell extracts of acetate-grown Methanosarcina barkeri. This metabolic transformation was associated with an active methyl viologen-linked CO dehydrogenase activity (5 to 10 U/mg of protein). Carbon monoxide dehydrogenase activity was inhibited 85% by 10 microM KCN and was rapidly inactivated by O2. The enzyme was nearly homogeneous after 20-fold purification, indicating that a significant proportion of soluble cell protein was CO dehydrogenase (ca. 5%). The native purified enzyme displayed a molecular weight of 232,000 and a two-subunit composition of 92,000 and 18,000 daltons. The enzyme was shown to contain nickel by isolation of radioactive CO dehydrogenase from cells grown in 63Ni. Analysis of enzyme kinetic properties revealed an apparent Km of 5 mM for CO and a Vmax of 1,300 U/mg of protein. The spectral properties of the enzyme were similar to those published for CO dehydrogenase from acetogenic anaerobes. The physiological functions of the enzyme are discussed. Images PMID:6425262

  16. Dehydrogenase activity of forest soils depends on the assay used

    NASA Astrophysics Data System (ADS)

    Januszek, Kazimierz; Długa, Joanna; Socha, Jarosław

    2015-01-01

    Dehydrogenases are exclusively intracellular enzymes, which play an important role in the initial stages of oxidation of soil organic matter. One of the most frequently used methods to estimate dehydrogenase activity in soil is based on the use of triphenyltetrazolium chloride as an artificial electron acceptor. The purpose of this study was to compare the activity of dehydrogenases of forest soils with varied physicochemical properties using different triphenyltetrazolium chloride assays. The determination was carried out using the original procedure by Casida et al., a modification of the procedure which involves the use of Ca(OH)2 instead of CaCO3, the Thalmann method, and the assay by Casida et al. without addition of buffer or any salt. Soil dehydrogenase activity depended on the assay used. Dehydrogenase determined by the Casida et al. method without addition of buffer or any salt correlated with the pH values of soils. The autoclaved strongly acidic samples of control soils showed high concentrations of triphenylformazan, probably due to chemical reduction of triphenyltetrazolium chloride. There is, therefore, a need for a sterilization method other than autoclaving, ie a process that results in significant changes in soil properties, thus helping to increase the chemical reduction of triphenyltetrazolium chloride.

  17. Evaluation of NAD(P)-Dependent Dehydrogenase Activities in Neutrophilic Granulocytes by the Bioluminescent Method.

    PubMed

    Savchenko, A A

    2015-09-01

    Bioluminescent method for measurements of the neutrophilic NAD(P)-dependent dehydrogenases (lactate dehydrogenase, NAD-dependent malate dehydrogenase, NADP-dependent decarboxylating malate dehydrogenase, NAD-dependent isocitrate dehydrogenase, and glucose- 6-phosphate dehydrogenase) is developed. The sensitivity of the method allows minimization of the volume of biological material for measurements to 104 neutrophils per analysis. The method is tried in patients with diffuse purulent peritonitis. Low levels of NADPH synthesis enzymes and high levels of enzymes determining the substrate flow by the Krebs cycle found in these patients can lead to attenuation of functional activity of cells. PMID:26468025

  18. β-alanine supplementation improves tactical performance but not cognitive function in combat soldiers

    PubMed Central

    2014-01-01

    Background There are no known studies that have examined β-alanine supplementation in military personnel. Considering the physiological and potential neurological effects that have been reported during sustained military operations, it appears that β-alanine supplementation may have a potential benefit in maintaining physical and cognitive performance during high-intensity military activity under stressful conditions. The purpose of this study was to examine the effect of 28 days of β-alanine ingestion in military personnel while fatigued on physical and cognitive performance. Methods Twenty soldiers (20.1 ± 0.9 years) from an elite combat unit were randomly assigned to either a β-alanine (BA) or placebo (PL) group. Soldiers were involved in advanced military training, including combat skill development, navigational training, self-defense/hand-to-hand combat and conditioning. All participants performed a 4-km run, 5-countermovement jumps using a linear position transducer, 120-m sprint, a 10-shot shooting protocol with assault rifle, including overcoming a misfire, and a 2-min serial subtraction test to assess cognitive function before (Pre) and after (Post) 28 days of supplementation. Results The training routine resulted in significant increases in 4-km run time for both groups, but no between group differences were seen (p = 0.597). Peak jump power at Post was greater for BA than PL (p = 0.034), while mean jump power for BA at Post was 10.2% greater (p = 0.139) than PL. BA had a significantly greater (p = 0.012) number of shots on target at Post (8.2 ± 1.0) than PL (6.5 ± 2.1), and their target engagement speed at Post was also significantly faster (p = 0.039). No difference in serial subtraction performance was seen between the groups (p = 0.844). Conclusion Results of this study indicate that 4-weeks of β-alanine ingestion in young, healthy soldiers did not impact cognitive performance, but did enhance power

  19. Determination of muscle protein synthesis rates in fish using (2)H2O and (2)H NMR analysis of alanine.

    PubMed

    Marques, Cátia; Viegas, Filipa; Rito, João; Jones, John; Viegas, Ivan

    2016-09-15

    Following administration of deuterated water ((2)H2O), the fractional synthetic rate (FSR) of a given endogenous protein can be estimated by (2)H-enrichment quantification of its alanine residues. Currently, this is measured by mass spectrometry following a derivatization procedure. Muscle FSR was measured by (1)H/(2)H NMR analysis of alanine from seabass kept for 6 days in 5% (2)H-enriched saltwater, following acid hydrolysis and amino acid isolation by cation-exchange chromatography of muscle tissue. The analysis is simple and robust, and provides precise measurements of excess alanine (2)H-enrichment in the 0.1-0.4% range from 50 mmol of alanine recovered from muscle protein. PMID:27418547

  20. Alanine with the Precipitate of Tomato Juice Administered to Rats Enhances the Reduction in Blood Ethanol Levels

    PubMed Central

    Oshima, Shunji; Shiiya, Sachie; Tokumaru, Yoshimi; Kanda, Tomomasa

    2015-01-01

    Delay in gastric emptying (GE) lowers the blood ethanol concentration (BEC) after alcohol administration. We previously demonstrated that water-insoluble fractions, mainly comprising dietary fiber derived from many types of botanical foods, possessed the ability to absorb ethanol-containing aqueous solutions. Furthermore, there was a significant correlation between the absorption of ethanol and lowering of BEC because of delay in GE. Here we identified dietary nutrients that synergize with the water-insoluble fraction of tomatoes to lower BEC in rats. Consequently, unlike tomato juice without alanine, tomato juice with 5.0% alanine decreased BEC depending on the delay in GE and mediated the ethanol-induced decrease in the spontaneous motor activity (an indicator of drunkenness). Our findings indicate that the synergism between tomato juice and alanine to reduce the absorption of ethanol was attributable to the effect of alanine on precipitates such as the water-insoluble fraction of tomatoes. PMID:26713162

  1. Alanine with the Precipitate of Tomato Juice Administered to Rats Enhances the Reduction in Blood Ethanol Levels.

    PubMed

    Oshima, Shunji; Shiiya, Sachie; Tokumaru, Yoshimi; Kanda, Tomomasa

    2015-01-01

    Delay in gastric emptying (GE) lowers the blood ethanol concentration (BEC) after alcohol administration. We previously demonstrated that water-insoluble fractions, mainly comprising dietary fiber derived from many types of botanical foods, possessed the ability to absorb ethanol-containing aqueous solutions. Furthermore, there was a significant correlation between the absorption of ethanol and lowering of BEC because of delay in GE. Here we identified dietary nutrients that synergize with the water-insoluble fraction of tomatoes to lower BEC in rats. Consequently, unlike tomato juice without alanine, tomato juice with 5.0% alanine decreased BEC depending on the delay in GE and mediated the ethanol-induced decrease in the spontaneous motor activity (an indicator of drunkenness). Our findings indicate that the synergism between tomato juice and alanine to reduce the absorption of ethanol was attributable to the effect of alanine on precipitates such as the water-insoluble fraction of tomatoes. PMID:26713162

  2. Structural insights into the efficient CO2-reducing activity of an NAD-dependent formate dehydrogenase from Thiobacillus sp. KNK65MA.

    PubMed

    Choe, Hyunjun; Ha, Jung Min; Joo, Jeong Chan; Kim, Hyunook; Yoon, Hye-Jin; Kim, Seonghoon; Son, Sang Hyeon; Gengan, Robert M; Jeon, Seung Taeg; Chang, Rakwoo; Jung, Kwang Deog; Kim, Yong Hwan; Lee, Hyung Ho

    2015-02-01

    CO2 fixation is thought to be one of the key factors in mitigating global warming. Of the various methods for removing CO2, the NAD-dependent formate dehydrogenase from Candida boidinii (CbFDH) has been widely used in various biological CO2-reduction systems; however, practical applications of CbFDH have often been impeded owing to its low CO2-reducing activity. It has recently been demonstrated that the NAD-dependent formate dehydrogenase from Thiobacillus sp. KNK65MA (TsFDH) has a higher CO2-reducing activity compared with CbFDH. The crystal structure of TsFDH revealed that the biological unit in the asymmetric unit has two conformations, i.e. open (NAD(+)-unbound) and closed (NAD(+)-bound) forms. Three major differences are observed in the crystal structures of TsFDH and CbFDH. Firstly, hole 2 in TsFDH is blocked by helix α20, whereas it is not blocked in CbFDH. Secondly, the sizes of holes 1 and 2 are larger in TsFDH than in CbFDH. Thirdly, Lys287 in TsFDH, which is crucial for the capture of formate and its subsequent delivery to the active site, is an alanine in CbFDH. A computational simulation suggested that the higher CO2-reducing activity of TsFDH is owing to its lower free-energy barrier to CO2 reduction than in CbFDH. PMID:25664741

  3. Aminotransferase and glutamate dehydrogenase activities in lactobacilli and streptococci.

    PubMed

    Peralta, Guillermo Hugo; Bergamini, Carina Viviana; Hynes, Erica Rut

    2016-01-01

    Aminotransferases and glutamate dehydrogenase are two main types of enzymes involved in the initial steps of amino acid catabolism, which plays a key role in the cheese flavor development. In the present work, glutamate dehydrogenase and aminotransferase activities were screened in twenty one strains of lactic acid bacteria of dairy interest, either cheese-isolated or commercial starters, including fifteen mesophilic lactobacilli, four thermophilic lactobacilli, and two streptococci. The strains of Streptococcus thermophilus showed the highest glutamate dehydrogenase activity, which was significantly elevated compared with the lactobacilli. Aspartate aminotransferase prevailed in most strains tested, while the levels and specificity of other aminotransferases were highly strain- and species-dependent. The knowledge of enzymatic profiles of these starter and cheese-isolated cultures is helpful in proposing appropriate combinations of strains for improved or increased cheese flavor. PMID:27266631

  4. Effects of high-salinity seawater acclimation on the levels of D-alanine in the muscle and hepatopancreas of kuruma prawn, Marsupenaeus japonicus.

    PubMed

    Yoshikawa, Naoko; Yokoyama, Masahumi

    2015-12-10

    Changes in D- and L-alanine contents were determined in the muscle and hepatopancreas of kuruma prawn Marsupenaeus japonicus, during acclimation from seawater containing 100% salinity to artificial seawater containing 150% salinity. In the hepatopancreas, contents of both amino acids increased by approximately threefold. The activity of alanine racemase, which catalyzes the interconversion of D- and L-alanine, also increased in the high-salinity seawater. In addition, the expression of the gene encoding alanine racemase increased in the hepatopancreas with an increase in the alanine racemase activity. These data indicate that the biosynthesis of D- and L-alanine is controlled by the gene expression level of alanine racemase, and D-alanine in the hepatopancreas functions as a major osmolyte for isosmotic regulation. In contrast, the content of D-alanine and alanine racemase activity did not change in the muscle during hyper-osmotic acclimation. Therefore, we suggest that D-alanine, which exists in the several tissues of M. japonicus, is considered to be utilized in some different physiological phenomena in different tissues. PMID:26025417

  5. The effect of beta-alanine supplementation on isokinetic force and cycling performance in highly trained cyclists.

    PubMed

    Howe, Samuel T; Bellinger, Phillip M; Driller, Matthew W; Shing, Cecilia M; Fell, James W

    2013-12-01

    Beta-alanine may benefit short-duration, high-intensity exercise performance. The aim of this randomized double-blind placebo-controlled study was to examine the effects of beta-alanine supplementation on aspects of muscular performance in highly trained cyclists. Sixteen highly trained cyclists (mean ± SD; age = 24 ± 7 yr; mass = 70 ± 7 kg; VO2max = 67 ± 4 ml · kg(-1) · min(-1)) supplemented with either beta-alanine (n = 8, 65 mg · kg - 1BM) or a placebo (n = 8; dextrose monohydrate) over 4 weeks. Pre- and postsupplementation cyclists performed a 4-minute maximal cycling test to measure average power and 30 reciprocal maximal isokinetic knee contractions at a fixed angular velocity of 180° · sec(-1) to measure average power/repetition, total work done (TWD), and fatigue index (%). Blood pH, lactate (La-) and bicarbonate (HCO3-) concentrations were measured pre- and postisokinetic testing at baseline and following the supplementation period. Beta-alanine supplementation was 44% likely to increase average power output during the 4-minute cycling time trial when compared with the placebo, although this was not statistically significant (p = .25). Isokinetic average power/repetition was significantly increased post beta-alanine supplementation compared with placebo (beta-alanine: 6.8 ± 9.9 W, placebo: -4.3 ± 9.5 W, p = .04, 85% likely benefit), while fatigue index was significantly reduced (p = .03, 95% likely benefit). TWD was 89% likely to be improved following beta-alanine supplementation; however, this was not statistically significant (p = .09). There were no significant differences in blood pH, lactate, and HCO3- between groups (p > .05). Four weeks of beta-alanine supplementation resulted in worthwhile changes in time-trial performance and short-duration muscular force production in highly trained cyclists. PMID:23630052

  6. Feasibility on using composite gel-alanine dosimetry on the validation of a multiple brain metastasis radiosurgery VMAT technique

    NASA Astrophysics Data System (ADS)

    Pavoni, J. F.; Neves-Junior, W. F. P.; Silveira, M. A.; Ramos, P. A. M. M.; Haddad, C. M. K.; Baffa, O.

    2015-01-01

    This work presents an end-to-end test using a composite Gel-Alanine phantom, in order to validate 3-dimensionally the dose distribution delivered by a single isocenter VMAT technique on the simultaneous treatment of multiple brain metastases. The results obtained with the gel and alanine dosimeters are consistent with the expected by the treatment planning system, showing the potential of this multidosimetric approach and validating dosimetrically the multiple brain metastases treatment using VMAT.

  7. Elevated plasma citrulline: look for dihydrolipoamide dehydrogenase deficiency.

    PubMed

    Haviv, Ruby; Zeharia, Avraham; Belaiche, Corinne; Haimi Cohen, Yishai; Saada, Ann

    2014-02-01

    The E3 subunit of the pyruvate dehydrogenase complex (dihydrolipoamide dehydrogenase/dihydrolipoyl dehydrogenase/DLD/lipoamide dehydrogenase/LAD), is a mitochondrial matrix enzyme and also a part of the branched-chain ketoacid dehydrogenase and alpha-ketoglutarate dehydrogenase complexes. DLD deficiency (MIM #246900), is relatively frequent in the Ashkenazi Jewish population but occurs in other populations as well. Early diagnosis is important to prevent episodes of metabolic decompensation, liver failure, and encephalopathy. The clinical presentations are varied and may include Reye-like syndrome, hepatic failure, myopathy, and myoglobinuria. Laboratory markers, such as elevated urinary alpha-ketoglutarate, blood pyruvate, lactate, and ammonia, are mostly nonspecific and not always present, making the diagnosis difficult. Since we observed elevated plasma citrulline levels in a number of confirmed cases, we retrospectively examined the value of citrulline as a biochemical marker for DLD deficiency. Data was gathered from the files of 17 pediatric patients with DLD deficiency, confirmed by enzymatic and genetic analysis. The control group included 19 patients in whom urea cycle defects were ruled out but DLD deficiency was suspected. Seven of the DLD-deficient patients presented with elevated plasma citrulline levels (median value 205 μM, range 59-282 μM) (normal range 1-45 μM) while none in the control patient group. In five patients, elevated citrulline was associated with elevated plasma glutamine and metabolic acidosis. Interestingly, elevated plasma citrulline was associated with the common G229C mutation. In conclusion, we suggest that elevated plasma citrulline in the absence of urea cycle defects warrants an investigation for DLD deficiency. PMID:23995961

  8. Crystal structure of homoisocitrate dehydrogenase from Schizosaccharomyces pombe

    SciTech Connect

    Bulfer, Stacie L.; Hendershot, Jenna M.; Trievel, Raymond C.

    2013-09-18

    Lysine biosynthesis in fungi, euglena, and certain archaebacteria occurs through the {alpha}-aminoadipate pathway. Enzymes in the first steps of this pathway have been proposed as potential targets for the development of antifungal therapies, as they are absent in animals but are conserved in several pathogenic fungi species, including Candida, Cryptococcus, and Aspergillus. One potential antifungal target in the {alpha}-aminoadipate pathway is the third enzyme in the pathway, homoisocitrate dehydrogenase (HICDH), which catalyzes the divalent metal-dependent conversion of homoisocitrate to 2-oxoadipate (2-OA) using nicotinamide adenine dinucleotide (NAD{sup +}) as a cofactor. HICDH belogns to a family of {beta}-hydroxyacid oxidative decarboxylases that includes malate dehydrogenase, tartrate dehydrogenase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase (ICDH), and 3-isopropylmalte dehydrogenase (IPMDH). ICDH and IPMDH are well-characterized enzymes that catalyze the decarboxylation of isocitrate to yield 2-oxoglutarate (2-OG) in the citric acid cycle and the conversion of 3-isopropylmalate to 2-oxoisovalerate in the leucine biosynthetic pathway, respectively. Recent structural and biochemical studies of HICDH reveal that this enzyme shares sequence, structural, and mechanistic homology with ICDH and IPMDH. To date, the only published structures of HICDH are from the archaebacteria Thermus thermophilus (TtHICDH). Fungal HICDHs diverge from TtHICDH in several aspects, including their thermal stability, oligomerization state, and substrate specificity, thus warranting further characterization. To gain insights into these differences, they determined crystal structures of a fungal Schizosaccharomyces pombe HICDH (SpHICDH) as an apoenzyme and as a binary complex with additive tripeptide glycyl-glycyl-glycine (GGG) to 1.55 {angstrom} and 1.85 {angstrom} resolution, respectively. Finally, a comparison of the SpHICDH and TtHICDH structures reveal differences in

  9. Reversible inactivation of CO dehydrogenase with thiol compounds

    SciTech Connect

    Kreß, Oliver; Gnida, Manuel; Pelzmann, Astrid M.; Marx, Christian; Meyer-Klaucke, Wolfram; Meyer, Ortwin

    2014-05-09

    Highlights: • Rather large thiols (e.g. coenzyme A) can reach the active site of CO dehydrogenase. • CO- and H{sub 2}-oxidizing activity of CO dehydrogenase is inhibited by thiols. • Inhibition by thiols was reversed by CO or upon lowering the thiol concentration. • Thiols coordinate the Cu ion in the [CuSMo(=O)OH] active site as a third ligand. - Abstract: Carbon monoxide dehydrogenase (CO dehydrogenase) from Oligotropha carboxidovorans is a structurally characterized member of the molybdenum hydroxylase enzyme family. It catalyzes the oxidation of CO (CO + H{sub 2}O → CO{sub 2} + 2e{sup −} + 2H{sup +}) which proceeds at a unique [CuSMo(=O)OH] metal cluster. Because of changing activities of CO dehydrogenase, particularly in subcellular fractions, we speculated whether the enzyme would be subject to regulation by thiols (RSH). Here we establish inhibition of CO dehydrogenase by thiols and report the corresponding K{sub i}-values (mM): L-cysteine (5.2), D-cysteine (9.7), N-acetyl-L-cysteine (8.2), D,L-homocysteine (25.8), L-cysteine–glycine (2.0), dithiothreitol (4.1), coenzyme A (8.3), and 2-mercaptoethanol (9.3). Inhibition of the enzyme was reversed by CO or upon lowering the thiol concentration. Electron paramagnetic resonance spectroscopy (EPR) and X-ray absorption spectroscopy (XAS) of thiol-inhibited CO dehydrogenase revealed a bimetallic site in which the RSH coordinates to the Cu-ion as a third ligand ([Mo{sup VI}(=O)OH{sub (2)}SCu{sup I}(SR)S-Cys]) leaving the redox state of the Cu(I) and the Mo(VI) unchanged. Collectively, our findings establish a regulation of CO dehydrogenase activity by thiols in vitro. They also corroborate the hypothesis that CO interacts with the Cu-ion first. The result that thiol compounds much larger than CO can freely travel through the substrate channel leading to the bimetallic cluster challenges previous concepts involving chaperone function and is of importance for an understanding how the sulfuration step in

  10. Isolation of human lactate dehydrogenase isoenzyme X by affinity chromatography.

    PubMed Central

    Kolk, A H; van Kuyk, L; Boettcher, B

    1978-01-01

    Human isoenzyme LDH-X (lactate dehydrogenase isoenzyme X) was isolated from seminal fluid of frozen semen samples by affinity chromatography by using oxamate-Sepharose and AMP-Sepharose. In the presence of 1.6 mM-NAD+, isoenzyme LDH-X does not bind to AMP-Sepharose, whereas the other lactate dehydrogenase isoenzymes do. This is the crucial point in the isolation of isoenzyme LDH-X from the other isoenzymes. The purified human isoenzyme LDH-X had a specific activity of 146 units/mg of protein. Images Fig. 2. Fig. 3. PMID:213050

  11. Oxygen radical-mediated oxidation reactions of an alanine peptide motif - density functional theory and transition state theory study

    PubMed Central

    2012-01-01

    Background Oxygen-base (O-base) oxidation in protein backbone is important in the protein backbone fragmentation due to the attack from reactive oxygen species (ROS). In this study, an alanine peptide was used model system to investigate this O-base oxidation by employing density functional theory (DFT) calculations combining with continuum solvent model. Detailed reaction steps were analyzed along with their reaction rate constants. Results Most of the O-base oxidation reactions for this alanine peptide are exothermic except for the bond-breakage of the Cα-N bond to form hydroperoxy alanine radical. Among the reactions investigated in this study, the activated energy of OH α-H abstraction is the lowest one, while the generation of alkylperoxy peptide radical must overcome the highest energy barrier. The aqueous situation facilitates the oxidation reactions to generate hydroxyl alanine peptide derivatives except for the fragmentations of alkoxyl alanine peptide radical. The Cα-Cβ bond of the alkoxyl alanine peptide radical is more labile than the peptide bond. Conclusion the rate-determining step of oxidation in protein backbone is the generation of hydroperoxy peptide radical via the reaction of alkylperoxy peptide radical with HO2. The stabilities of alkylperoxy peptide radical and complex of alkylperoxy peptide radical with HO2 are crucial in this O-base oxidation reaction. PMID:22524792

  12. Exploration of Sitagliptin as a potential inhibitor for the M1 Alanine aminopeptidase enzyme in Plasmodium falciparum using computational docking

    PubMed Central

    Krishnamoorthy, Mohana; Achary, Anant

    2013-01-01

    Plasmodium falciparum has limited capacity for de novo amino acid synthesis and rely on degradation of host hemoglobin to maintain protein metabolism and synthesis of proteins. M1 alanine aminopeptidase enzyme of the parasite involved in the terminal degradation of host hemoglobin was subjected to in silico screening with low molecular weight protease inhibitors. The km (avg) of the enzyme M1 alanine aminopeptidase for the substrate DL – Alanine β Napthylamide Hydrochloride was estimated as 322.05µM. The molecular interactions between the enzyme and the substrate and the mechanism of enzyme action were analyzed which paved way for inhibition strategies. Among all the inhibitors screened, Sitagliptin was found to be most potent inhibitor with ki of 0.152 µM in its best orientation whereas the ki(avg) was 2.0055 µM. The ki of Sitagliptin is lower than the km of M1 alanine aminopeptidase for the substrate DL – Alanine β Napthylamide Hydrochloride (322.05 µM) and Ki of the known inhibitor Bestatin. Therefore Sitagliptin may serve as a potent competitive inhibitor of the enzyme M1 alanine aminopeptidase of Plasmodium falciparum. PMID:23559748

  13. Prostaglandin dehydrogenase and the initiation of labor.

    PubMed

    Challis, J R; Patel, F A; Pomini, F

    1999-01-01

    In summary, these studies have suggested that prostaglandin dehydrogenase may have a central role to play in the mechanisms which determine biologically active prostaglandin concentrations within human fetal membranes and placenta at the time of labor, at term or preterm. Moreover, our studies indicate that the regulation of PGDH may by multifactorial (figure 3). In certain regions of the membranes, we suggest that PGDH expression may be influenced by levels of anti-inflammatory and pro-inflammatory cytokines. In other regions of the membranes, we suggest that PGDH may be regulated at a transcriptional level by competing activities of progesterone and cortisol. The action of progesterone could be effected through systemically-derived steroid, or by locally synthesized steroid, acting in a paracrine and/or autocrine fashion. The effects of cortisol in placenta must be due to glucocorticoid derived from the maternal or fetal compartment, since the placenta lacks the hydroxylases required for endogenous cortisol production. However, metabolism of cortisol by 11 beta-HSD-2 reduces the potency of this glucocorticoid in placental tissue. In chorion however, cortisol may be formed locally, from cortisone, in addition to its being derived from the maternal circulation and/or from the amniotic fluid. Our current studies do not allow us to delineate whether the effects of progesterone and cortisol on PGDH are exerted through the glucocorticoid receptor (GR) or progesterone receptor (PR) or both. It is possible that through pregnancy, PGDH activity is maintained by progesterone acting either through low levels of PR in membranes, or, more likely, acting through GR. At term, elevated levels of cortisol compete with and displace progesterone from GR, resulting in inhibition of PGDH transcription and activity. In this way, local withdrawal of progesterone action would be effected within human intrauterine tissues, without requiring changes in systemic, circulating progesterone

  14. GMXPBSA 2.0: A GROMACS tool to perform MM/PBSA and computational alanine scanning

    NASA Astrophysics Data System (ADS)

    Paissoni, C.; Spiliotopoulos, D.; Musco, G.; Spitaleri, A.

    2014-11-01

    GMXPBSA 2.0 is a user-friendly suite of Bash/Perl scripts for streamlining MM/PBSA calculations on structural ensembles derived from GROMACS trajectories, to automatically calculate binding free energies for protein-protein or ligand-protein complexes. GMXPBSA 2.0 is flexible and can easily be customized to specific needs. Additionally, it performs computational alanine scanning (CAS) to study the effects of ligand and/or receptor alanine mutations on the free energy of binding. Calculations require only for protein-protein or protein-ligand MD simulations. GMXPBSA 2.0 performs different comparative analysis, including a posteriori generation of alanine mutants of the wild-type complex, calculation of the binding free energy values of the mutant complexes and comparison of the results with the wild-type system. Moreover, it compares the binding free energy of different complexes trajectories, allowing the study the effects of non-alanine mutations, post-translational modifications or unnatural amino acids on the binding free energy of the system under investigation. Finally, it can calculate and rank relative affinity to the same receptor utilizing MD simulations of proteins in complex with different ligands. In order to dissect the different MM/PBSA energy contributions, including molecular mechanic (MM), electrostatic contribution to solvation (PB) and nonpolar contribution to solvation (SA), the tool combines two freely available programs: the MD simulations software GROMACS and the Poisson-Boltzmann equation solver APBS. All the calculations can be performed in single or distributed automatic fashion on a cluster facility in order to increase the calculation by dividing frames across the available processors. The program is freely available under the GPL license. Catalogue identifier: AETQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETQ_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing

  15. Selection of tRNA(Asp) amber suppressor mutants having alanine, arginine, glutamine, and lysine identity.

    PubMed Central

    Martin, F; Reinbolt, J; Dirheimer, G; Gangloff, J; Eriani, G

    1996-01-01

    Elements that confer identity to a tRNA in the cellular environment, where all aminoacyl-tRNA synthetases are competing for substrates, may be delineated by in vivo experiments using suppressor tRNAs. Here we describe the selection of active Escherichia coli tRNAAsp amber mutants and analyze their identity. Starting from a library containing randomly mutated tRNA(CUA)Asp genes, we isolated four amber suppressors presenting either lysine, alanine, or glutamine activity. Two of them, presenting mainly alanine or lysine activity, were further submitted to a second round of mutagenesis selection in order to improve their efficiency of suppression. Eleven suppressors were isolated, each containing two or three mutations. Ten presented identities of the two parental mutants, whereas one had switched from lysine to arginine identity. Analysis of the different mutants revealed (or confirmed for some nucleotides) their role as positive and/or negative determinants in AlaRS, LysRS, and ArgRS recognition. More generally, it appears that tRNAAsp presents identity characteristics closely related to those of tRNALys, as well as a structural basis for acquiring alanine or arginine identity upon moderate mutational changes; these consist of addition or suppression of the corresponding positive or negative determinants, as well as tertiary interactions. Failure to isolate aspartic acid-inserting suppressors is probably due to elimination of the important G34 identity element and its replacement by an antideterminant when changing the anticodon of the tRNAAsp to the CUA triplet. PMID:8809018

  16. Comparative study of glycine, alanine or casein as inert nitrogen sources in endotoxemic rats.

    PubMed

    Chambon-Savanovitch, C; Felgines, C; Farges, M C; Raul, F; Cézard, J P; Davot, P; Vasson, M P; Cynober, L A

    1999-10-01

    Pharmacological effects of dietary amino acids (AA) and peptides must be compared to an isonitrogenous control that is as inert as possible. To establish a rationale for the choice of such a control, potential metabolic and nutritional effects of three currently used nitrogenous controls (glycine, alanine, and casein) were evaluated in an endotoxemic rat model that has well-defined alterations in AA and protein metabolism. Five-week-old male Sprague-Dawley rats (113 +/- 1 g) were randomly assigned to four groups and received at d 0 an intraperitoneal injection of endotoxin (3 mg/kg). After withdrawal of food for 24 h, the rats were enterally refed for 48 h with a liquid diet (Osmolite((R))) supplemented with 0.19 g N. kg(-1). d(-1) in the form of glycine [lipopolysaccharide (LPS)-GLY group], alanine (LPS-ALA group) or casein (LPS-CAS group). One group (LPS group) received only Osmolite((R)). Plasma, two skeletal muscles, the liver and the intestine were then removed. Body and tissue weights and tissue protein contents did not differ among the four groups. Intestine histomorphometry showed no significant difference among groups. Jejunal hydrolase activities were significantly affected by the nitrogenous supplementations, but no effect was observed in the ileum. Only limited significant effects were observed on plasma and tissue-free AA concentrations, except for an accumulation of glycine in the plasma and tissues from the LPS-GLY group, compared to other groups. Overall, whereas glycine as a nitrogenous control should be used with care, either alanine or casein may be used as the "placebo," with the choice depending on the study to be performed. PMID:10498760

  17. Alanine scan of core positions in ubiquitin reveals links between dynamics, stability, and function.

    PubMed

    Lee, Shirley Y; Pullen, Lester; Virgil, Daniel J; Castañeda, Carlos A; Abeykoon, Dulith; Bolon, Daniel N A; Fushman, David

    2014-04-01

    Mutations at solvent-inaccessible core positions in proteins can impact function through many biophysical mechanisms including alterations to thermodynamic stability and protein dynamics. As these properties of proteins are difficult to investigate, the impacts of core mutations on protein function are poorly understood for most systems. Here, we determined the effects of alanine mutations at all 15 core positions in ubiquitin on function in yeast. The majority (13 of 15) of alanine substitutions supported yeast growth as the sole ubiquitin. Both the two null mutants (I30A and L43A) were less stable to temperature-induced unfolding in vitro than wild type (WT) but were well folded at physiological temperatures. Heteronuclear NMR studies indicated that the L43A mutation reduces temperature stability while retaining a ground-state structure similar to WT. This structure enables L43A to bind to common ubiquitin receptors in vitro. Many of the core alanine ubiquitin mutants, including one of the null variants (I30A), exhibited an increased accumulation of high-molecular-weight species, suggesting that these mutants caused a defect in the processing of ubiquitin-substrate conjugates. In contrast, L43A exhibited a unique accumulation pattern with reduced levels of high-molecular-weight species and undetectable levels of free ubiquitin. When conjugation to other proteins was blocked, L43A ubiquitin accumulated as free ubiquitin in yeast. Based on these findings, we speculate that ubiquitin's stability to unfolding may be required for efficient recycling during proteasome-mediated substrate degradation. PMID:24361330

  18. Structural and biochemical analyses of alanine racemase from the multidrug-resistant Clostridium difficile strain 630

    PubMed Central

    Asojo, Oluwatoyin A.; Nelson, Sarah K.; Mootien, Sara; Lee, Yashang; Rezende, Wanderson C.; Hyman, Daniel A.; Matsumoto, Monica M.; Reiling, Scott; Kelleher, Alan; Ledizet, Michel; Koski, Raymond A.; Anthony, Karen G.

    2014-01-01

    Clostridium difficile, a Gram-positive, spore-forming anaerobic bacterium, is the leading cause of infectious diarrhea among hospitalized patients. C. difficile is frequently associated with antibiotic treatment, and causes diseases ranging from antibiotic-associated diarrhea to life-threatening pseudo­membranous colitis. The severity of C. difficile infections is exacerbated by the emergence of hypervirulent and multidrug-resistant strains, which are difficult to treat and are often associated with increased mortality rates. Alanine racemase (Alr) is a pyridoxal-5′-phosphate (PLP)-dependent enzyme that catalyzes the reversible racemization of l- and d-alanine. Since d-alanine is an essential component of the bacterial cell-wall peptidoglycan, and there are no known Alr homologs in humans, this enzyme is being tested as an antibiotic target. Cycloserine is an antibiotic that inhibits Alr. In this study, the catalytic properties and crystal structures of recombinant Alr from the virulent and multidrug-resistant C. difficile strain 630 are presented. Three crystal structures of C. difficile Alr (CdAlr), corresponding to the complex with PLP, the complex with cycloserine and a K271T mutant form of the enzyme with bound PLP, are presented. The structures are prototypical Alr homodimers with two active sites in which the cofactor PLP and cycloserine are localized. Kinetic analyses reveal that the K271T mutant CdAlr has the highest catalytic constants reported to date for any Alr. Additional studies are needed to identify the basis for the high catalytic activity. The structural and activity data presented are first steps towards using CdAlr for the development of structure-based therapeutics for C. difficile infections. PMID:25004969

  19. NADP+-Preferring d-Lactate Dehydrogenase from Sporolactobacillus inulinus

    PubMed Central

    Zhu, Lingfeng; Xu, Xiaoling; Wang, Limin; Ma, Yanhe

    2015-01-01

    Hydroxy acid dehydrogenases, including l- and d-lactate dehydrogenases (L-LDH and D-LDH), are responsible for the stereospecific conversion of 2-keto acids to 2-hydroxyacids and extensively used in a wide range of biotechnological applications. A common feature of LDHs is their high specificity for NAD+ as a cofactor. An LDH that could effectively use NADPH as a coenzyme could be an alternative enzymatic system for regeneration of the oxidized, phosphorylated cofactor. In this study, a d-lactate dehydrogenase from a Sporolactobacillus inulinus strain was found to use both NADH and NADPH with high efficiencies and with a preference for NADPH as its coenzyme, which is different from the coenzyme utilization of all previously reported LDHs. The biochemical properties of the D-LDH enzyme were determined by X-ray crystal structural characterization and in vivo and in vitro enzymatic activity analyses. The residue Asn174 was demonstrated to be critical for NADPH utilization. Characterization of the biochemical properties of this enzyme will contribute to understanding of the catalytic mechanism and provide referential information for shifting the coenzyme utilization specificity of 2-hydroxyacid dehydrogenases. PMID:26150461

  20. KINETIC PROPERTIES OF MALIC DEHYDROGENASE FROM THREE CULTIVARS OF RICE

    EPA Science Inventory

    Temperature induced changes in the kinetics of the enzyme malic dehydrogenase (MON) were investigated in three cultivars of rice(Oryza sativa L.). Cultivars, included IR74, SWAT2, and N22. Plants were grown in a controlled environment chamber for 29 days, at 31 degrees C day/25 d...

  1. Efficiency of superoxide anions in the inactivation of selected dehydrogenases

    NASA Astrophysics Data System (ADS)

    Rodacka, Aleksandra; Serafin, Eligiusz; Puchala, Mieczyslaw

    2010-09-01

    The most ubiquitous of the primary reactive oxygen species, formed in all aerobes, is the superoxide free radical. It is believed that the superoxide anion radical shows low reactivity and in oxidative stress it is regarded mainly as an initiator of more reactive species such as rad OH and ONOO -. In this paper, the effectiveness of inactivation of selected enzymes by radiation-generated superoxide radicals in comparison with the effectiveness of the other products of water radiolysis is examined. We investigate three enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH). We show that the direct contribution of the superoxide anion radical to GAPDH and ADH inactivation is significant. The effectiveness of the superoxide anion in the inactivation of GAPDH and ADG was only 2.4 and 2.8 times smaller, respectively, in comparison with hydroxyl radical. LDH was practically not inactivated by the superoxide anion. Despite the fact that the studied dehydrogenases belong to the same class of enzymes (oxidoreductases), all have a similar molecular weight and are tetramers, their susceptibility to free-radical damage varies. The differences in the radiosensitivity of the enzymes are not determined by the basic structural parameters analyzed. A significant role in inactivation susceptibility is played by the type of amino acid residues and their localization within enzyme molecules.

  2. 21 CFR 862.1380 - Hydroxybutyric dehydrogenase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Hydroxybutyric dehydrogenase test system. 862.1380 Section 862.1380 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  3. Mutants of Escherichia coli deficient in the fermentative lactate dehydrogenase.

    PubMed Central

    Mat-Jan, F; Alam, K Y; Clark, D P

    1989-01-01

    Mutants of Escherichia coli deficient in the fermentative NAD-linked lactate dehydrogenase (ldh) have been isolated. These mutants showed no growth defects under anaerobic conditions unless present together with a defect in pyruvate formate lyase (pfl). Double mutants (pfl ldh) were unable to grow anaerobically on glucose or other sugars even when supplemented with acetate, whereas pfl mutants can do so. The ldh mutation was found to map at 30.5 min on the E. coli chromosome. The ldh mutant FMJ39 showed no detectable lactate dehydrogenase activity and produced no lactic acid from glucose under anaerobic conditions as estimated by in vivo nuclear magnetic resonance measurements. We also found that in wild-type strains the fermentative lactate dehydrogenase was conjointly induced by anaerobic conditions and an acidic pH. Despite previous findings that phosphate concentrations affect the proportion of lactic acid produced during fermentation, we were unable to find any intrinsic effect of phosphate on lactate dehydrogenase activity, apart from the buffering effect of this ion. PMID:2644194

  4. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Lactate dehydrogenase isoenzymes test system. 862.1445 Section 862.1445 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  5. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lactate dehydrogenase isoenzymes test system. 862.1445 Section 862.1445 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  6. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Lactate dehydrogenase isoenzymes test system. 862.1445 Section 862.1445 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1445 Lactate...

  7. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Lactate dehydrogenase isoenzymes test system. 862.1445 Section 862.1445 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1445 Lactate...

  8. Genetics Home Reference: 3-hydroxyacyl-CoA dehydrogenase deficiency

    MedlinePlus

    ... step that metabolizes groups of fats called medium-chain fatty acids and short-chain fatty acids. Mutations in the HADH gene lead ... a shortage of 3-hydroxyacyl-CoA dehydrogenase. Medium-chain and short-chain fatty acids cannot be metabolized ...

  9. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lactate dehydrogenase isoenzymes test system. 862.1445 Section 862.1445 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1445 Lactate...

  10. Molecular cloning of gluconobacter oxydans DSM 2003 xylitol dehydrogenase gene

    PubMed Central

    Sadeghi, H. Mir Mohammad; Ahmadi, R.; Aghaabdollahian, S.; Mofid, M.R.; Ghaemi, Y.; Abedi, D.

    2011-01-01

    Due to the widespread applications of xylitol dehydrogenase, an enzyme used for the production of xylitol, the present study was designed for the cloning of xylitol dehydrogenase gene from Glcunobacter oxydans DSM 2003. After extraction of genomic DNA from this bacterium, xylitol dehydrogenase gene was replicated using polymerase chain reaction (PCR). The amplified product was entered into pTZ57R cloning vector by T/A cloning method and transformation was performed by heat shocking of the E. coli XL1-blue competent cells. Following plasmid preparation, the cloned gene was digested out and ligated into the expression vector pET-22b(+). Electrophoresis of PCR product showed a 789 bp band. Recombinant plasmid (rpTZ57R) was then constructed. This plasmid was double digested with XhoI and EcoRI resulting in 800 bp and 2900 bp bands. The obtained insert was ligated into pET-22b(+) vector and its orientation was confirmed with XhoI and BamHI restriction enzymes. In conclusion, in the present study the recombinant expression vector containing xylitol dehydrogenase gene has been constructed and can be used for the production of this enzyme in high quantities. PMID:22110522

  11. Succinate dehydrogenase is the regulator of respiration in Mycobacterium tuberculosis.

    PubMed

    Hartman, Travis; Weinrick, Brian; Vilchèze, Catherine; Berney, Michael; Tufariello, Joanne; Cook, Gregory M; Jacobs, William R

    2014-11-01

    In chronic infection, Mycobacterium tuberculosis bacilli are thought to enter a metabolic program that provides sufficient energy for maintenance of the protonmotive force, but is insufficient to meet the demands of cellular growth. We sought to understand this metabolic downshift genetically by targeting succinate dehydrogenase, the enzyme which couples the growth processes controlled by the TCA cycle with the energy production resulting from the electron transport chain. M. tuberculosis contains two operons which are predicted to encode succinate dehydrogenase enzymes (sdh-1 and sdh-2); we found that deletion of Sdh1 contributes to an inability to survive long term stationary phase. Stable isotope labeling and mass spectrometry revealed that Sdh1 functions as a succinate dehydrogenase during aerobic growth, and that Sdh2 is dispensable for this catalysis, but partially overlapping activities ensure that the loss of one enzyme can incompletely compensate for loss of the other. Deletion of Sdh1 disturbs the rate of respiration via the mycobacterial electron transport chain, resulting in an increased proportion of reduced electron carrier (menaquinol) which leads to increased oxygen consumption. The loss of respiratory control leads to an inability to recover from stationary phase. We propose a model in which succinate dehydrogenase is a governor of cellular respiration in the adaptation to low oxygen environments. PMID:25412183

  12. 21 CFR 864.7360 - Erythrocytic glucose-6-phosphate dehydrogenase assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Erythrocytic glucose-6-phosphate dehydrogenase... § 864.7360 Erythrocytic glucose-6-phosphate dehydrogenase assay. (a) Identification. An erythrocytic glucose-6-phosphate dehydrogenase assay is a device used to measure the activity of the enzyme...

  13. 21 CFR 864.7360 - Erythrocytic glucose-6-phosphate dehydrogenase assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Erythrocytic glucose-6-phosphate dehydrogenase... § 864.7360 Erythrocytic glucose-6-phosphate dehydrogenase assay. (a) Identification. An erythrocytic glucose-6-phosphate dehydrogenase assay is a device used to measure the activity of the enzyme...

  14. Aspartate Aminotransferase (AST/GOT) and Alanine Aminotransferase (ALT/GPT) Detection Techniques

    PubMed Central

    Huang, Xing-Jiu; Choi, Yang-Kyu; Im, Hyung-Soon; Yarimaga, Oktay; Yoon, Euisik; Kim, Hak-Sung

    2006-01-01

    The levels of aspartate aminotransferase (AST/GOT) and alanine aminotransferase (ALT/GPT) in serum can help people diagnose body tissues especially the heart and the liver are injured or not. This article provides a comprehensive review of research activities that concentrate on AST/GOT and ALT/GPT detection techniques due to their clinical importance. The detection techniques include colorimetric, spectrophotometric, chemiluminescence, chromatography, fluorescence and UV absorbance, radiochemical, and electrochemical techniques. We devote the most attention on experimental principle. In some methods a few representative devices and important conclusions are presented.

  15. GMXPBSA 2.1: A GROMACS tool to perform MM/PBSA and computational alanine scanning

    NASA Astrophysics Data System (ADS)

    Paissoni, C.; Spiliotopoulos, D.; Musco, G.; Spitaleri, A.

    2015-01-01

    GMXPBSA 2.1 is a user-friendly suite of Bash/Perl scripts for streamlining MM/PBSA calculations on structural ensembles derived from GROMACS trajectories, to automatically calculate binding free energies for protein-protein or ligand-protein complexes [R.T. Bradshaw et al., Protein Eng. Des. Sel. 24 (2011) 197-207]. GMXPBSA 2.1 is flexible and can easily be customized to specific needs and it is an improvement of the previous GMXPBSA 2.0 [C. Paissoni et al., Comput. Phys. Commun. (2014), 185, 2920-2929]. Additionally, it performs computational alanine scanning (CAS) to study the effects of ligand and/or receptor alanine mutations on the free energy of binding. Calculations require only for protein-protein or protein-ligand MD simulations. GMXPBSA 2.1 performs different comparative analyses, including a posteriori generation of alanine mutants of the wild-type complex, calculation of the binding free energy values of the mutant complexes and comparison of the results with the wild-type system. Moreover, it compares the binding free energy of different complex trajectories, allowing the study of the effects of non-alanine mutations, post-translational modifications or unnatural amino acids on the binding free energy of the system under investigation. Finally, it can calculate and rank relative affinity to the same receptor utilizing MD simulations of proteins in complex with different ligands. In order to dissect the different MM/PBSA energy contributions, including molecular mechanic (MM), electrostatic contribution to solvation (PB) and nonpolar contribution to solvation (SA), the tool combines two freely available programs: the MD simulations software GROMACS [S. Pronk et al., Bioinformatics 29 (2013) 845-854] and the Poisson-Boltzmann equation solver APBS [N.A. Baker et al., Proc. Natl. Acad. Sci. U.S.A 98 (2001) 10037-10041]. All the calculations can be performed in single or distributed automatic fashion on a cluster facility in order to increase the

  16. Evaluation of alanine as a reference dosimeter for therapy level dose comparisons in megavoltage electron beams

    NASA Astrophysics Data System (ADS)

    McEwen, Malcolm; Sharpe, Peter; Vörös, Sándor

    2015-04-01

    When comparing absorbed dose standards from different laboratories (e.g. National Measurement Institutes, NMIs, for Key or Supplementary comparisons) it is rarely possible to carry out a direct comparison of primary standard instruments, and therefore some form of transfer detector is required. Historically, air-filled, unsealed ionization chambers have been used because of the long history of using these instruments, very good stability over many years, and ease of transport. However, the use of ion chambers for therapy-level comparisons is not without its problems. Findings from recent investigations suggest that ion chambers are prone to non-random variations, they are not completely robust to standard courier practices, and failure at any step in a comparison can render all measurements potentially useless. An alternative approach is to identify a transfer system that is insensitive to some of these concerns—effectively a dosimeter that is inexpensive, simple to use, robust, but with sufficient precision and of a size relevant to the disseminated quantity in question. The alanine dosimetry system has been successfully used in a number of situations as an audit dosimeter and therefore the purpose of this investigation was to determine whether alanine could also be used as the transfer detector for dosimetric comparisons, which require a lower value for the measurement uncertainty. A measurement protocol was developed for comparing primary standards of absorbed dose to water in high-energy electron beams using alanine pellets irradiated in a water-equivalent plastic phantom. A trial comparison has been carried out between three NMIs and has indicated that alanine is a suitable alternative to ion chambers, with the system used achieving a precision of 0.1%. Although the focus of the evaluation was on the performance of the dosimeter, the comparison results are encouraging, showing agreement at the level of the combined uncertainties (~0.6%). Based on this

  17. Functionalization of single-walled carbon nanotubes with uracil, guanine, thymine and L-alanine

    NASA Astrophysics Data System (ADS)

    Silambarasan, D.; Iyakutti, K.; Vasu, V.

    2014-06-01

    Experimental investigation of functionalization of oxidized single-walled carbon nanotubes (OSWCNTs) with three nucleic acid bases such as uracil, guanine, thymine and one amino acid, L-alanine is carried out. Initially, the SWCNTs are oxidized by acid treatment. Further, the oxidized SWCNTs are effectively functionalized with aforementioned biological compounds by ultrasonication. The diameter of OSWCNTs has increased after the adsorption of biological compounds. The cumulative Π-Π stacking, hydrogen bond and polar interaction are the key factors to realize the adsorption. The amount of adsorption of each biological compound is estimated. The adsorption of guanine is more among all the four biological compounds.

  18. Is there an influence of the surrounding material on the response of the alanine dosimetry system?

    NASA Astrophysics Data System (ADS)

    Anton, Mathias; Kapsch, Ralf-Peter; Hackel, Thomas

    2009-04-01

    In a combined experimental and Monte Carlo study the possible influence of the surrounding material on the response of the alanine dosimetry system was investigated. The aim of this work was to estimate the uncertainties induced by the surroundings with respect to quality assurance measurements for radiotherapy, for example in humanoid phantoms. Six different materials were tested. The electron density range covered comprises the range present in human tissue. No significant influence of the surrounding material could be found for irradiations in the 60Co reference field of the Physikalisch-Technische Bundesanstalt (PTB).

  19. (L)-(Trimethylsilyl)alanine synthesis exploiting hydroxypinanone-induced diastereoselective alkylation.

    PubMed

    René, A; Vanthuyne, N; Martinez, J; Cavelier, F

    2013-08-01

    A new and efficient synthesis of (L)-(trimethylsilyl)alanine (TMSAla) with suitable protection for use in Solid Phase Peptide Synthesis (SPPS) has been accomplished starting from glycine tert-butyl ester and using hydroxypinanone as chiral inductor. The silylated side chain was introduced by alkylation of the Schiff base intermediate with iodomethyl(trimethylsilane) at -78 °C. Among the different synthetic routes that were tested including several chiral inductors and different Schiff bases, this strategy was selected and afforded (L)-TMSAla in good chemical overall yield with 98 % ee. PMID:23620077

  20. Biosynthesis of d-Alanyl-Lipoteichoic Acid: Characterization of Ester-Linked d-Alanine in the In Vitro-Synthesized Product

    PubMed Central

    Childs, Warren C.; Neuhaus, Francis C.

    1980-01-01

    d-Alanyl-lipoteichoic acid (d-alanyl-LTA) contains d-alanine ester residues which control the ability of this polyer to chelate Mg2+. In Lactobacillus casei a two-step in vitro reaction sequence catalyzed by the d-alanine-activating enzyme and d-alanine:membrane acceptor ligase incorporates d-alanine into membrane acceptor. In this paper we provide additional evidence that the in vitro system catalyzes the covalent incorporation of d-[14C]alanine into membrane acceptor which is the poly([3H]glycerol phosphate) moiety of d-alanyl-LTA. This conclusion was supported by the observation that the d-[14C]alanine and [3H]glycerol labels of the partially purified product were co-precipitated by antiserum containing globulins specific for poly(glycerol phosphate). The isolation of d-[14C]alanyl-[3H]glycerol from d-[14C]alanine·[3H]glycerol-labeled d-alanyl-LTA synthesized in the in vitro system indicated that the d-alanine was linked to the poly(glycerol phosphate) chain of the LTA. A comparison of the reactivities of the d-alanine residues of d-alanyl-glycerol and d-alanyl-LTA supported the conclusion that the incorporated residue of d-alanine was attached by an ester linkage. Thus, the data indicated that the in vitro system catalyzes the incorporation of d-alanine covalently linked by ester linkages to the glycerol moieties of the poly(glycerol phosphate) chains of d-alanyl-LTA. New procedures are presented for the partial purification of d-alanyl-LTA with a high yield of ester-linked d-alanine and for the sequential degradation of the poly(glycerol phosphate) moiety substituted with d-alanine of d-alanyl-LTA with phosphodiesterase II/phosphatase from Aspergillus niger. PMID:6772629

  1. Verification of the pure alanine in PMMA tube dosimeter applicability for dosimetry of radiotherapy photon beams: a feasibility study.

    PubMed

    Al-Karmi, Anan M; Ayaz, Ali Asghar H; Al-Enezi, Mamdouh S; Abdel-Rahman, Wamied; Dwaikat, Nidal

    2015-09-01

    Alanine dosimeters in the form of pure alanine powder in PMMA plastic tubes were investigated for dosimetry in a clinical application. Electron paramagnetic resonance (EPR) spectroscopy was used to measure absorbed radiation doses by detection of signals from radicals generated in irradiated alanine. The measurements were performed for low-dose ranges typical for single-fraction doses often used in external photon beam radiotherapy. First, the dosimeters were irradiated in a solid water phantom to establish calibration curves in the dose range from 0.3 to 3 Gy for 6 and 18 MV X-ray beams from a clinical linear accelerator. Next, the dosimeters were placed at various locations in an anthropomorphic pelvic phantom to measure the dose delivery of a conventional four-field box technique treatment plan to the pelvis. Finally, the doses measured with alanine dosimeters were compared against the doses calculated with a commercial treatment planning system (TPS). The results showed that the alanine dosimeters have a highly sensitive dose response with good linearity and no energy dependence in the dose range and photon beams used in this work. Also, a fairly good agreement was found between the in-phantom dose measurements with alanine dosimeters and the TPS dose calculations. The mean value of the ratios of measured to calculated dose values was found to be near unity. The measured points in the in-field region passed dose-difference acceptance criterion of 3% and those in the penumbral region passed distance-to-agreement acceptance criterion of 3 mm. These findings suggest that the pure alanine powder in PMMA tube dosimeter is a suitable option for dosimetry of radiotherapy photon beams. PMID:26138456

  2. Spatial variability of the dehydrogenase activity in forest soils

    NASA Astrophysics Data System (ADS)

    Błońska, Ewa; Lasota, Jarosław

    2014-05-01

    The aim of this study was to assess the spatial variability of the dehydrogenase activity (DH) in forest soils using geostatistics. We have studied variability soil dehydrogenase and their relationship with variability of some physic-chemical properties. Two study areas (A and B) were set up in southern Poland in the Zlotoryja Forest District. Study areas were covered by different types of vegetation (A- broadleaf forest with beech, ash and sycamore), B- coniferous forest with Norway spruce). The soils were classified as Dystric Cambisols (WRB 2006). The samples for laboratory testing were collected from 49 places on each areas. 15 cm of surface horizon of soil were taken (with previously removed litter). Dehydrogenase activity was marked with Lenhard's method according to the Casida procedure. Soil pH, nitrogen (N) and soil organic carbon (C) content (by LECO CNS 2000 carbon analyzer) was marked. C/N ratio was calculated. Particle size composition was determined using laser diffraction. Statistical analysis were performed using STATISTICA 10 software. Geostatistical analysis and mapping were done by application of GS 9+ (Gamma Design) and Surfer 11 (Golden Software). The activity of DH ranged between 5,02 and 71,20 mg TPP• kg-1 •24 h-1 on the A area and between 0,94 and 16,47 mg TPP• kg-1 •24 h-1. Differences in spatial variability of the analised features were noted. The variability of dehydrogenase activity on the A study area was described by an exponential model, whereas on the B study area the spatial correlation has not been noted. The relationship of dehydrogenase activity with the remaining parameters of soil was noted only in the case of A study area. The variability of organic carbon content on the A and B study areas were described by an exponential model. The variability of nitrogen content on both areas were described by an spherical model.

  3. Incorporation of D-alanine into lipoteichoic acid and wall teichoic acid in Bacillus subtilis. Identification of genes and regulation.

    PubMed

    Perego, M; Glaser, P; Minutello, A; Strauch, M A; Leopold, K; Fischer, W

    1995-06-30

    The Bacillus subtilis dlt operon (D-alanyl-lipoteichoic acid) is responsible for D-alanine esterification of both lipoteichoic acid (LTA) and wall teichoic acid (WTA). The dlt operon contains five genes, dltA-dltE. Insertional inactivation of dltA-dltD results in complete absence of D-alanine from both LTA and WTA. Based on protein sequence similarity with the Lactobacillus casei dlt gene products (Heaton, M. P., and Neuhaus, F. C. (1992) J. Bacteriol. 174, 4707-4717), we propose that dltA encodes the D-alanine-D-alanyl carrier protein ligase (Dcl) and dltC the D-alanyl carrier protein (Dcp). We further hypothesize that the products of dltB and dltD are concerned with the transport of activated D-alanine through the membrane and the final incorporation of D-alanine into LTA. The hydropathy profiles of the dltB and dltD gene products suggest a transmembrane location for the former and an amino-terminal signal peptide for the latter. The incorporation of D-alanine into LTA and WTA did not separate in any of the mutants studied which indicates that either one and the same enzyme is responsible for D-alanine incorporation into both polymers or a separate enzyme, encoded outside the dlt operon, transfers the D-alanyl residues from LTA to WTA (Haas, R., Koch, H.-U., and Fischer, W. (1984) FEMS Microbiol. Lett. 21, 27-31). Inactivation of dltE has no effect on D-alanine ester content of both LTA and WTA, and at present we cannot propose any function for its gene product. Transcription analysis shows that the dlt operon is transcribed from a sigma D-dependent promoter and follows the pattern of transcription of genes belonging to the sigma D regulon. However, the turn off of transcription observed before sporulation starts seems to be dependent on the Spo0A and AbrB sporulation proteins and results in a D-alanine-free purely anionic LTA in the spore membrane. The dlt operon is dispensable for cell growth; its inactivation does not affect cell growth or morphology as

  4. Alanine aminotransferase as a predictor of adverse perinatal outcomes in women with intrahepatic cholestasis of pregnancy

    PubMed Central

    Ekiz, Ali; Kaya, Basak; Avci, Muhittin Eftal; Polat, Ibrahim; Dikmen, Selin; Yildirim, Gokhan

    2016-01-01

    Objective: To evaluate the associations between adverse perinatal outcomes and serum transaminase levels at the time of diagnosis in patients with intrahepatic cholestasis of pregnancy. Methods: We performed a retrospective analysis of patients hospitalized for evaluation of intrahepatic cholestasis of pregnancy from January 2013 to June 2014 in a tertiary center. Seventy-one patients were divided into two groups according to the presence (Group I) or absence of adverse perinatal outcomes (Group II). Results: The mean aminotransferase levels and conjugated bilirubin levels at the time of diagnosis were significantly higher in Group I than in Group II. Receiver operating characteristic curve analysis revealed that the alanine aminotransferase level could predict adverse perinatal outcomes with 76.47% sensitivity and 78.38% specificity, and the cut-off value was 95 IU/L. Among patients with intrahepatic cholestasis of pregnancy, those with adverse perinatal outcomes were significantly older, had an earlier diagnosis, and had higher alanine aminotransferase levels. Using the 95-IU/L cut-off value, patients with intrahepatic cholestasis of pregnancy had a 3.54-fold increased risk for adverse perinatal outcomes. Conclusions: Patients with intrahepatic cholestasis of pregnancy and high alanineaminotransferase levels should be followed up for possible adverse perinatal outcomes.

  5. A single glycine-alanine exchange directs ligand specificity of the elephant progestin receptor.

    PubMed

    Wierer, Michael; Schrey, Anna K; Kühne, Ronald; Ulbrich, Susanne E; Meyer, Heinrich H D

    2012-01-01

    The primary gestagen of elephants is 5α-dihydroprogesterone (DHP), which is unlike all other mammals studied until now. The level of DHP in elephants equals that of progesterone in other mammals, and elephants are able to bind DHP with similar affinity to progesterone indicating a unique ligand-binding specificity of the elephant progestin receptor (PR). Using site-directed mutagenesis in combination with in vitro binding studies we here report that this change in specificity is due to a single glycine to alanine exchange at position 722 (G722A) of PR, which specifically increases DHP affinity while not affecting binding of progesterone. By conducting molecular dynamics simulations comparing human and elephant PR ligand-binding domains (LBD), we observed that the alanine methyl group at position 722 is able to push the DHP A-ring into a position similar to progesterone. In the human PR, the DHP A-ring position is twisted towards helix 3 of PR thereby disturbing the hydrogen bond pattern around the C3-keto group, resulting in a lower binding affinity. Furthermore, we observed that the elephant PR ligand-binding pocket is more rigid than the human analogue, which probably explains the higher affinity towards both progesterone and DHP. Interestingly, the G722A substitution is not elephant-specific, rather it is also present in five independent lineages of mammalian evolution, suggesting a special role of the substitution for the development of distinct mammalian gestagen systems. PMID:23209719

  6. A novel N(alpha)-acetyl alanine aminopeptidase from Allomyces arbuscula.

    PubMed

    Beti, Raniera; Cattaneo, Arlette; Gabriel, Jean Marc; Ojha, Mukti

    2002-04-01

    An N(alpha)-acetyl alanine aminopeptidase has been purified from the aquatic fungus Allomyces arbuscula. The apparent molecular mass of the enzyme was estimated to be 280 kDa by gel filtration through calibrated Sephacryl S300 column. In SDS-PAGE, the purified enzyme appeared as a single band of M(r) 80 kDa. Catalytic activity of the enzyme was inhibited by specific serine protease inhibitors, 3,4-DCI and APMSF, as well as SH reacting compounds, HgCl(2) and iodoacetate, indicating that the enzyme is a serine protease with some functional SH group(s) involved in the catalytic reaction. 3H-DFP was used to label the reactive serine of the enzyme. When the labeled protein was analyzed in SDS-PAGE, most of the label appeared in the M(r) 80 kDa band, however, a few additional faster migrating minor bands were also seen, probably representing a minor degradation product of the enzyme. The enzyme cleaved mainly N(alpha)-acetlylated alanine, although a small but negligible activity was also obtained with acetylated leucine and phenylalanine. The role of the enzyme in N-end rule proteolysis is discussed. PMID:12106909

  7. In vivo dose evaluation during gynaecological radiotherapy using L-alanine/ESR dosimetry.

    PubMed

    Rech, Amanda Burg; Barbi, Gustavo Lazzaro; Ventura, Luiz Henrique Almeida; Guimarães, Flavio Silva; Oliveira, Harley Francisco; Baffa, Oswaldo

    2014-06-01

    The dose delivered by in vivo 3-D external beam radiation therapy (EBRT) was verified with L-alanine/electron spin resonance (ESR) dosimetry for patients diagnosed with gynaecological cancer. Measurements were performed with an X-band ESR spectrometer. Dosemeters were positioned inside the vaginal cavity with the assistance of an apparatus specially designed for this study. Previous phantom studies were performed using the same conditions as in the in vivo treatment. Four patients participated in this study during 20-irradiation sessions, giving 220 dosemeters to be analysed. The doses were determined with the treatment planning system, providing dose confirmation. The phantom study resulted in a deviation between -2.5 and 2.1 %, and for the in vivo study a deviation between -9.2 and 14.2 % was observed. In all cases, the use of alanine with ESR was effective for dose assessment, yielding results consistent with the values set forth in the International Commission on Radiation Units and Measurements (ICRU) reports. PMID:24751984

  8. Rapid Crystallization of L-Alanine on Engineered Surfaces using Metal-Assisted and Microwave-Accelerated Evaporative Crystallization.

    PubMed

    Alabanza, Anginelle M; Pozharski, Edwin; Aslan, Kadir

    2012-01-01

    This study demonstrates the application of metal-assisted and microwave-accelerated evaporative crystallization (MA-MAEC) technique to rapid crystallization of L-alanine on surface engineered silver nanostructures. In this regard, silver island films (SIFs) were modified with hexamethylenediamine (HMA), 1-undecanethiol (UDET), and 11-mercaptoundecanoic acid (MUDA), which introduced -NH(2), -CH(3) and -COOH functional groups to SIFs, respectively. L-Alanine was crystallized on these engineered surfaces and blank SIFs at room temperature and using MA-MAEC technique. Significant improvements in crystal size, shape, and quality were observed on HMA-, MUDA- and UDET-modified SIFs at room temperature (crystallization time = 144, 40 and 147 min, respectively) as compared to those crystals grown on blank SIFs. Using the MA-MAEC technique, the crystallization time of L-alanine on engineered surfaces were reduced to 17 sec for microwave power level 10 (i.e., duty cycle 100%) and 7 min for microwave power level 1 (duty cycle 10%). Raman spectroscopy and powder x-ray diffraction (XRD) measurements showed that L-Alanine crystals grown on engineered surfaces using MA-MAEC technique had identical characteristic peaks of L-alanine crystals grown using traditional evaporative crystallization. PMID:22267957

  9. Monopeptide versus Monopeptoid: Insights on Structure and Hydration of Aqueous Alanine and Sarcosine via X-ray Absorption Spectroscopy

    SciTech Connect

    Uejio, Janel S.; Schwartz, Craig P.; Duffin, Andrew M.; England, Alice; Prendergast, David; Saykally, Richard J.

    2009-11-19

    Despite the obvious significance, the aqueous interactions of peptides remain incompletely understood. Their synthetic analogues called peptoids (poly-N-substituted glycines), have recently emerged as a promising biomimetic material, particularly due to their robust secondary structure and resistance to denaturation. We describe comparative near-edge x-ray absorption fine structure (NEXAFS) spectroscopy studies of aqueous sarcosine, the simplest peptoid, and alanine, its peptide isomer, interpreted by density functional theory calculations. The sarcosine nitrogen K-edge spectrum is blue-shifted with respect to that of alanine, in agreement with our calculations; we conclude that this shift results primarily from the methyl group substitution on the nitrogen of sarcosine. Our calculations indicate that the nitrogen K-edge spectrum of alanine differs significantly between dehydrated and hydrated scenarios, while that of the sarcosine zwitterion is less affected by hydration. In contrast, the computed sarcosine spectrum is greatly impacted by conformational variations, while the alanine spectrum is not. This relates to a predicted solvent dependence for alanine, as compared to sarcosine. Additionally, we show the theoretical nitrogen K-edge spectra to be sensitive to the degree of hydration, indicating that experimental X-ray spectroscopy may be able to distinguish between bulk and partial hydration, such as found in confined environments near proteins and in reverse micelles.

  10. The alcohol dehydrogenase isoenzyme alcohol dehydrogenase IV as a candidate marker of Helicobacter pylori infection

    PubMed Central

    Laniewska-Dunaj, Magdalena; Strumnik, Anna; Szmitkowski, Maciej

    2014-01-01

    Introduction Helicobacter pylori infection is associated with decreased alcohol dehydrogenase (ADH) activity in the gastric mucosa. The decrease in gastric ADH activity depends on the severity of inflammation and mucosal injury. This damage can be a reason of the release of enzyme from gastric mucosa and leads to the increase of the ADH activity in the sera of patients with H. pylori infection. Material and methods Serum samples were taken from 140 patients with H. pylori infection. Total ADH activity was measured by photometric method with p-nitrosodimethylaniline as a substrate and ALDH activity by the fluorometric method with 6-methoxy-2-naphtaldehyde. For the measurement of the activity of class I and II isoenzymes we employed the fluorometric methods, with class-specific fluorogenic substrates. The activity of class III ADH was measured by the photometric method with n-octanol and class IV with m-nitrobenzaldehyde as a substrate. Results The activity of ADH IV in the serum of patients with H. pylori infection increased about 42% (7.86 mU/l) in the comparison to the control level (4.52 mU/l). Total activity of ADH was 1105 mU/l in patients group and 682 mU/l in control. The diagnostic sensitivity for ADH IV was 88%, specificity 90%, positive and negative predictive values were 91% and 84% respectively. Area under ROC curve for ADH IV was 0.84. Conclusions Helicobacter pylori infection of gastric mucosa is reflected in the serum by significant increase of class IV and total ADH activity. The results suggest a potential role for ADH IV as a marker of H. pylori infection. PMID:25395946

  11. Succinate dehydrogenase subunit D and succinate dehydrogenase subunit B mutation analysis in canine phaeochromocytoma and paraganglioma.

    PubMed

    Holt, D E; Henthorn, P; Howell, V M; Robinson, B G; Benn, D E

    2014-07-01

    Phaeochromocytomas (PCs) are tumours of the adrenal medulla chromaffin cells. Paragangliomas (PGLs) arise in sympathetic ganglia (previously called extra-adrenal PCs) or in non-chromaffin parasympathetic ganglia cells that are usually non-secretory. Parenchymal cells from these tumours have a common embryological origin from neural crest ectoderm. Several case series of canine PCs and PGLs have been published and a link between the increased incidence of chemoreceptor neoplasia in brachycephalic dog breeds and chronic hypoxia has been postulated. A similar link to hypoxia in man led to the identification of germline heterozygous mutations in the gene encoding succinate dehydrogenase subunit D (SDHD) and subsequently SDHA, SDHB and SDHC in similar tumours. We investigated canine PCs (n = 6) and PGLs (n = 2) for SDHD and SDHB mutations and in one PGL found a somatic SDHD mutation c.365A>G (p.Lys122Arg) in exon 4, which was not present in normal tissue from this brachycephalic dog. Two PCs were heterozygous for both c.365A>G (p.Lys122Arg) mutation and an exon 3 silent variant c.291G>A. We also identified the heterozygous SDHB exon 2 mutation c.113G>A (p.Arg38Gln) in a PC. These results illustrate that genetic mutations may underlie tumourigenesis in canine PCs and PGLs. The spontaneous nature of these canine diseases and possible association of PGLs with hypoxia in brachycephalic breeds may make them an attractive model for studying the corresponding human tumours. PMID:24813157

  12. Regulation of human dihydrodiol dehydrogenase by Michael acceptor xenobiotics.

    PubMed

    Ciaccio, P J; Jaiswal, A K; Tew, K D

    1994-06-01

    A human oxidoreductase (H-37) that is overexpressed in ethacrynic acid-resistant HT29 colon cells (Ciaccio, P. J., Stuart, J.E., and Tew, K.D. (1993) Mol. Pharmacol. 43, 845-853) has been identified as a dihydrodiol dehydrogenase. Translated protein from a dihydrodiol dehydrogenase cDNA isolated from a library prepared from ethacrynic acid-resistant HT29 cell poly(A+) RNA was recognized by anti-H-37 IgG and was identical in molecular weight with H-37. The isolated cDNA was identical in both nucleotide and amino acid sequences with the recently cloned liver dihydrodiol dehydrogenase (Stolz, A., Hammond, L., Lou, H., Takikawa, H., Ronk, M., and Shively, J.E. (1993) J. Biol. Chem. 268, 10448-10457). Using this cDNA as probe, we have examined its induction by Michael acceptors. The steady state dihydrodiol dehydrogenase mRNA level in the ethacrynic acid-resistant line was increased 30-fold relative to that of wild-type cells. Twenty-four hour treatment of wild-type cells with ethacrynic acid or dimethyl maleate increased mRNA 10-fold and 5-fold, respectively. These changes are accompanied by both increased protein expression and increased NADP-dependent 1-acenaphthenol oxidative activity in cell cytosol. In gel shift assays, compared to wild type controls, increased binding of NAD(P)H quinone oxidoreductase human antioxidant response element (hARE) DNA to redox labile protein complexes present in treated and resistant cell nuclear extract was observed. Ethacrynic acid induced CAT activity 2-fold in Hepa1 cells stably transfected with NAD(P)H quinone oxidoreductase hARE-tk-CAT chimeric gene construct. Thus, dihydrodiol dehydrogenase protein is inducible by de novo synthesis from mRNA by structurally related monofunctional inducer Michael acceptors. Altered in vitro binding of nuclear protein to the hARE is indirect evidence for the involvement of an element similar to hARE in the regulation of dihydrodiol dehydrogenase by these agents. PMID:7515059

  13. Ultraviolet radiation induces stress in etiolated Landoltia punctata, as evidenced by the presence of alanine, a universal stress signal: a ¹⁵N NMR study.

    PubMed

    Monselise, E B-I; Levkovitz, A; Kost, D

    2015-01-01

    Analysis with (15) N NMR revealed that alanine, a universal cellular stress signal, accumulates in etiolated duckweed plants exposed to 15-min pulsed UV light, but not in the absence of UV irradiation. The addition of 10 mm vitamin C, a radical scavenger, reduced alanine levels to zero, indicating the involvement of free radicals. Free D-alanine was detected in (15) N NMR analysis of the chiral amino acid content, using D-tartaric acid as solvent. The accumulation of D-alanine under stress conditions presents a new perspective on the biochemical processes taking place in prokaryote and eukaryote cells. PMID:24889211

  14. Contribution of proteolysis and de novo synthesis to alanine production in diabetic rat skeletal muscle: a 15N/1H nuclear magnetic resonance study.

    PubMed

    Meynial-Denis, D; Chavaroux, A; Foucat, L; Mignon, M; Prugnaud, J; Bayle, G; Renou, J P; Arnal, M

    1997-10-01

    To assess the role of leucine as a precursor of alanine alpha-amino nitrogen in skeletal muscle during diabetes, extensor digitorum longus muscles from control (n = 7 experiments) and streptozotocin-diabetic rats (n = 8 experiments) were isolated and superfused with [15N]leucine (3 mmol/l) in the presence of glucose (10 mmol/l) for 2 h. Muscle perchloric acid extraction was performed at the end of superfusion in order to quantify newly synthesized alanine by 15N/1H nuclear magnetic resonance. Release of [15N]alanine in the superfusion medium was also measured. The pool of newly synthesized [15N]alanine was significantly increased (approximately 40%) in extensor digitorum longus muscles from streptozotocin-diabetic rats. Whereas a significant enhancement of total alanine release from muscle was induced by diabetes (20%), only a slight increase in [15N]alanine release was detectable under our experimental conditions. Consequently, we conclude that streptozotocin-diabetes in growing rats induces in skeletal muscle: 1) an increase in nitrogen exchange between leucine and alanine leading to newly synthesized [15N]alanine; and 2) an increase of total alanine release from muscle originating from both proteolysis and de novo synthesis. PMID:9349596

  15. Comparative Physiological Evidence that β-Alanine Betaine and Choline-O-Sulfate Act as Compatible Osmolytes in Halophytic Limonium Species 1

    PubMed Central

    Hanson, Andrew D.; Rathinasabapathi, Bala; Chamberlin, Beverly; Gage, Douglas A.

    1991-01-01

    The quaternary ammonium compounds accumulated in saline conditions by five salt-tolerant species of Limonium (Plumbaginaceae) were analyzed by fast atom bombardment mass spectrometry. Three species accumulated β-alanine betaine and choline-O-sulfate; the others accumulated glycine betaine and choline-O-sulfate. Three lines of evidence indicated that β-alanine betaine and choline-O-sulfate replace glycine betaine as osmo-regulatory solutes. First, tests with bacteria showed that β-alanine betaine and choline-O-sulfate have osmoprotective properties comparable to glycine betaine. Second, when β-alanine betaine and glycine betaine accumulators were salinized, the levels of their respective betaines, plus that of choline-O-sulfate, were closely correlated with leaf solute potential. Third, substitution of sulfate for chloride salinity caused an increase in the level of choline-O-sulfate and a matching decrease in glycine betaine level. Experiments with 14C-labeled precursors established that β-alanine betaine accumulators did not synthesize glycine betaine and vice versa. These experiments also showed that β-alanine betaine synthesis occurs in roots as well as leaves of β-alanine betaine accumulators and that choline-O-sulfate and glycine betaine share choline as a precursor. Unlike glycine betaine, β-alanine betaine synthesis cannot interfere with conjugation of sulfate to choline by competing for choline and does not require oxygen. These features of β-alanine betaine may be advantageous in sulfate-rich salt marsh environments. PMID:16668509

  16. Crystal growth, structure and characterizations of a new semiorganic nonlinear optical material-{beta}-Alanine zinc chloride

    SciTech Connect

    Anbuchezhiyan, M.; Ponnusamy, S.; Muthamizhchelvan, C.; Sivakumar, K.

    2010-08-15

    The title compound, {beta}-alanine zinc chloride-a new semiorganic nonlinear optical crystal was grown by slow evaporation technique. Single crystals of {beta}-alanine zinc chloride have been subjected to X-ray diffraction analysis to determine the crystal structure. The powder X-ray diffractogram of the crystal has also been recorded. The amount of carbon, nitrogen and hydrogen in the crystals was also estimated. Fourier Transform Infrared and Raman spectral measurements have been carried out on the grown crystals in order to identify the functional groups. The presence of hydrogen and carbon in the {beta}-alanine zinc chloride was confirmed by using proton and carbon nuclear magnetic resonance spectral analyses. The percentage of zinc in the crystal was determined by atomic absorption spectroscopy. Optical behavior such as ultraviolet-vis-near infrared transmittance spectrum and second harmonic generation has been investigated. The mechanical strength and thermal behavior of the grown crystal have been analyzed.

  17. Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation

    NASA Astrophysics Data System (ADS)

    Tan, Tien-Chye; Kracher, Daniel; Gandini, Rosaria; Sygmund, Christoph; Kittl, Roman; Haltrich, Dietmar; Hällberg, B. Martin; Ludwig, Roland; Divne, Christina

    2015-07-01

    A new paradigm for cellulose depolymerization by fungi focuses on an oxidative mechanism involving cellobiose dehydrogenases (CDH) and copper-dependent lytic polysaccharide monooxygenases (LPMO); however, mechanistic studies have been hampered by the lack of structural information regarding CDH. CDH contains a haem-binding cytochrome (CYT) connected via a flexible linker to a flavin-dependent dehydrogenase (DH). Electrons are generated from cellobiose oxidation catalysed by DH and shuttled via CYT to LPMO. Here we present structural analyses that provide a comprehensive picture of CDH conformers, which govern the electron transfer between redox centres. Using structure-based site-directed mutagenesis, rapid kinetics analysis and molecular docking, we demonstrate that flavin-to-haem interdomain electron transfer (IET) is enabled by a haem propionate group and that rapid IET requires a closed CDH state in which the propionate is tightly enfolded by DH. Following haem reduction, CYT reduces LPMO to initiate oxygen activation at the copper centre and subsequent cellulose depolymerization.

  18. [Cooperative properties of D-glyceraldehyde-3-phosphate dehydrogenase].

    PubMed

    Nagradova, N K

    1977-03-01

    The structure of the active center of glyceraldehyde-3-phosphate dehydrogenase and the arrangement of subunits in the tetrameric molecule is delineated. The mechanism of cooperative effects in the oligomer is considered, and the involvement of various regions of the active center and of different-subunit contact area in the realization of the cooperative phenomena is discussed. A special attention is paid to the effect of NAD+ bound to one of the subunits of the tetramer on the structure of an adjacent subunit and to the problem of the participation of the coenzyme in the creation of anion-binding sites of the enzyme. The conditions of reversible dissociation of the tetrameric apoenzyme molecule into dimers are depicted, and the role of NAD+ in the organization of the quaternary structure of the dehydrogenase is discussed. The problem of catalytic activity of the dimeric form of the enzyme is argued. PMID:193581

  19. Effects of β-Alanine on Body Composition and Performance Measures in Collegiate Women.

    PubMed

    Outlaw, Jordan J; Smith-Ryan, Abbie E; Buckley, Amanda L; Urbina, Stacie L; Hayward, Sara; Wingfield, Hailee L; Campbell, Bill; Foster, Cliffa; Taylor, Lem W; Wilborn, Colin D

    2016-09-01

    Outlaw, JJ, Smith-Ryan, AE, Buckley, AL, Urbina, SL, Hayward, S, Wingfield, HL, Campbell, B, Foster, C, Taylor, LW, and Wilborn, CD. Effects of β-alanine on body composition and performance measures in collegiate women. J Strength Cond Res 30(9): 2627-2637, 2016-The purpose of this study was to evaluate the effects of β-alanine (BA) supplementation and resistance training on body composition and performance. In a double-blind placebo-controlled design, 16 untrained collegiate females (mean ± SD: 21.0 ± 2.2 years; 64.8 ± 8.5 kg; 164.5 ± 7.0 cm; 30.1 ± 5.1 percent body fat [%BF]) completed 8 weeks of resistance training while consuming either 3.4 g BA or placebo (PL; 5 g maltodextrin) before training sessions. Training consisted of 4 days per week upper- and lower-body exercises. Lean body mass (LBM), fat mass (FM), and %BF were assessed using dual-energy x-ray absorptiometry. Maximal oxygen consumption (V[Combining Dot Above]O2max), aerobic time to exhaustion, Wingate peak power, bench press and leg press 1RM (BPmax; LPmax), and repetitions at 65% (BPreps; LPreps), vertical jump (VJ), and standing broad jump were assessed using standard National Strength and Conditioning Association guidelines. All measurements were taken at baseline (T1), 4 weeks (T2), and 8 weeks (T3). Repeated-measures analysis of variance and 95% confidence intervals were used to determine significance. Body composition (LBM, FM, and %BF) improved over time (p < 0.01) for both groups. Maximal strength and VJ increased significantly from baseline to T3 (p ≤ 0.05). There was a significant interaction for LPreps (p = 0.040), with only BA group resulting in significantly greater LPreps (p = 0.041) at T2 and T3. Results from this study suggest that 8 weeks, 4 days per week progressive resistance training and BA supplementation may be effective for improving lower-body muscular endurance. β-alanine had no additive effects on body composition or maximal strength in collegiate women. PMID

  20. Hydroxysteroid dehydrogenases (HSDs) in bacteria: a bioinformatic perspective.

    PubMed

    Kisiela, Michael; Skarka, Adam; Ebert, Bettina; Maser, Edmund

    2012-03-01

    Steroidal compounds including cholesterol, bile acids and steroid hormones play a central role in various physiological processes such as cell signaling, growth, reproduction, and energy homeostasis. Hydroxysteroid dehydrogenases (HSDs), which belong to the superfamily of short-chain dehydrogenases/reductases (SDR) or aldo-keto reductases (AKR), are important enzymes involved in the steroid hormone metabolism. HSDs function as an enzymatic switch that controls the access of receptor-active steroids to nuclear hormone receptors and thereby mediate a fine-tuning of the steroid response. The aim of this study was the identification of classified functional HSDs and the bioinformatic annotation of these proteins in all complete sequenced bacterial genomes followed by a phylogenetic analysis. For the bioinformatic annotation we constructed specific hidden Markov models in an iterative approach to provide a reliable identification for the specific catalytic groups of HSDs. Here, we show a detailed phylogenetic analysis of 3α-, 7α-, 12α-HSDs and two further functional related enzymes (3-ketosteroid-Δ(1)-dehydrogenase, 3-ketosteroid-Δ(4)(5α)-dehydrogenase) from the superfamily of SDRs. For some bacteria that have been previously reported to posses a specific HSD activity, we could annotate the corresponding HSD protein. The dominating phyla that were identified to express HSDs were that of Actinobacteria, Proteobacteria, and Firmicutes. Moreover, some evolutionarily more ancient microorganisms (e.g., Cyanobacteria and Euryachaeota) were found as well. A large number of HSD-expressing bacteria constitute the normal human gastro-intestinal flora. Another group of bacteria were originally isolated from natural habitats like seawater, soil, marine and permafrost sediments. These bacteria include polycyclic aromatic hydrocarbons-degrading species such as Pseudomonas, Burkholderia and Rhodococcus. In conclusion, HSDs are found in a wide variety of microorganisms including

  1. Novel Xylose Dehydrogenase in the Halophilic Archaeon Haloarcula marismortui†

    PubMed Central

    Johnsen, Ulrike; Schönheit, Peter

    2004-01-01

    During growth of the halophilic archaeon Haloarcula marismortui on d-xylose, a specific d-xylose dehydrogenase was induced. The enzyme was purified to homogeneity. It constitutes a homotetramer of about 175 kDa and catalyzed the oxidation of xylose with both NADP+ and NAD+ as cosubstrates with 10-fold higher affinity for NADP+. In addition to d-xylose, d-ribose was oxidized at similar kinetic constants, whereas d-glucose was used with about 70-fold lower catalytic efficiency (kcat/Km). With the N-terminal amino acid sequence of the subunit, an open reading frame (ORF)—coding for a 39.9-kDA protein—was identified in the partially sequenced genome of H. marismortui. The function of the ORF as the gene designated xdh and coding for xylose dehydrogenase was proven by its functional overexpression in Escherichia coli. The recombinant enzyme was reactivated from inclusion bodies following solubilization in urea and refolding in the presence of salts, reduced and oxidized glutathione, and substrates. Xylose dehydrogenase showed the highest sequence similarity to glucose-fructose oxidoreductase from Zymomonas mobilis and other putative bacterial and archaeal oxidoreductases. Activities of xylose isomerase and xylulose kinase, the initial reactions of xylose catabolism of most bacteria, could not be detected in xylose-grown cells of H. marismortui, and the genes that encode them, xylA and xylB, were not found in the genome of H. marismortui. Thus, we propose that this first characterized archaeal xylose dehydrogenase catalyzes the initial step in xylose degradation by H. marismortui. PMID:15342590

  2. Reappraisal of the regulation of lactococcal L-lactate dehydrogenase.

    PubMed

    van Niel, Ed W J; Palmfeldt, Johan; Martin, Rani; Paese, Marco; Hahn-Hägerdal, Bärbel

    2004-03-01

    Lactococcal lactate dehydrogenases (LDHs) are coregulated at the substrate level by at least two mechanisms: the fructose-1,6-biphosphate/phosphate ratio and the NADH/NAD ratio. Among the Lactococcus lactis species, there are strains that are predominantly regulated by the first mechanism (e.g., strain 65.1) or by the second mechanism (e.g., strain NCDO 2118). A more complete model of the kinetics of the regulation of lactococcal LDH is discussed. PMID:15006814

  3. Characterization of Flavin-Containing Opine Dehydrogenase from Bacteria

    PubMed Central

    Watanabe, Seiya; Sueda, Rui; Fukumori, Fumiyasu; Watanabe, Yasuo

    2015-01-01

    Opines, in particular nopaline and octopine, are specific compounds found in crown gall tumor tissues induced by infections with Agrobacterium species, and are synthesized by well-studied NAD(P)H-dependent dehydrogenases (synthases), which catalyze the reductive condensation of α-ketoglutarate or pyruvate with L-arginine. The corresponding genes are transferred into plant cells via a tumor-inducing (Ti) plasmid. In addition to the reverse oxidative reaction(s), the genes noxB-noxA and ooxB-ooxA are considered to be involved in opine catabolism as (membrane-associated) oxidases; however, their properties have not yet been elucidated in detail due to the difficulties associated with purification (and preservation). We herein successfully expressed Nox/Oox-like genes from Pseudomonas putida in P. putida cells. The purified protein consisted of different α-, β-, and γ-subunits encoded by the OdhA, OdhB, and OdhC genes, which were arranged in tandem on the chromosome (OdhB-C-A), and exhibited dehydrogenase (but not oxidase) activity toward nopaline in the presence of artificial electron acceptors such as 2,6-dichloroindophenol. The enzyme contained FAD, FMN, and [2Fe-2S]-iron sulfur as prosthetic groups. On the other hand, the gene cluster from Bradyrhizobium japonicum consisted of OdhB1-C-A-B2, from which two proteins, OdhAB1C and OdhAB2C, appeared through the assembly of each β-subunit together with common α- and γ-subunits. A poor phylogenetic relationship was detected between OdhB1 and OdhB2 in spite of them both functioning as octopine dehydrogenases, which provided clear evidence for the acquisition of novel functions by “subunit-exchange”. To the best of our knowledge, this is the first study to have examined flavin-containing opine dehydrogenase. PMID:26382958

  4. A guide to 17beta-hydroxysteroid dehydrogenases.

    PubMed

    Adamski, J; Jakob, F J

    2001-01-22

    17beta-Hydroxysteroid dehydrogenases (17beta-HSD) are pivotal in controlling the biological potency of steroid hormones by catalyzing oxidation or reduction at position 17. Several 17beta-HSDs may as well metabolize further substrates including alcohols, bile acids, fatty acids and retinols. This review summarizes recent progress in the field of 17beta-HSD research provides an update of nomenclature. PMID:11165003

  5. Drosophila alcohol dehydrogenase: developmental studies on cryptic variant lines.

    PubMed

    Miglani, G S; Ampy, F R

    1981-10-01

    Thirty-five cryptic variant lines were used to examine the mechanisms involved in genetic modulation of alcohol metabolism in Drosophila. Late third-instar larval, preemergence pupal, and adult stages cultured at 18 and 28 C were examined. Spectrophotometric analyses for native alcohol dehydrogenase (ADH) activity and residual ADH activity after treatment with guanidine hydrochloride and heat were performed. Differential response of cryptic variants to treatment with the denaturants during development suggested that this variation may have an adaptive significance. PMID:6800354

  6. On the role of Brønsted catalysis in Pseudomonas fluorescens mannitol 2-dehydrogenase.

    PubMed

    Klimacek, Mario; Kavanagh, Kathryn L; Wilson, David K; Nidetzky, Bernd

    2003-10-01

    X-ray structure of the Pseudomonas fluorescens mannitol 2-dehydrogenase ternary complex with NAD+ and D-mannitol suggests that Lys-295 provides catalytic base assistance to secondary alcohol group oxidation. We have replaced Lys-295 by site-directed mutagenesis with alanine or methionine and evaluated the catalytic significance of side-chain substitution by kinetic analysis of restoration of activity with external amines, and from pH and solvent isotope effects on the reaction catalysed by K295A (Lys-295-->Ala mutant). K295A and K295M (Lys-295-->Met mutants) show 3x10(4)- and 2x10(6)-fold lower turnover numbers respectively for D-mannitol oxidation (kcatO) at pH 10.0 than the wild-type. The second-order rate constant for non-covalent rescue of activity (kB) by free methylamine base is 31 M(-1) x s(-1) for K295A, but only 0.021 M(-1) x s(-1) for K295M. A Brønsted relationship of log kB (corrected for molecular size effects) and pKa of the external amine is linear (slope beta=0.66+/-0.16; r2=0.99) for K295A-catalysed D-mannitol oxidation at pH 10.0. The kcatO values of K295A in H2O and 2H2O are linearly dependent on [OL-] in the pL range 7.5-10.5 (where L is 1H or 2H). The solvent isotope effect on kcatO is 0.69. The time course of D-fructose reduction by K295A at pH 8.2 displays a pre-steady-state burst of NADH consumption. These data support a mechanism in which the epsilon -NH2 group of Lys-295 participates in an obligatory pH-dependent, pre-catalytic equilibrium which may control alcohol/alkoxide equilibration of enzyme-bound D-mannitol and activates the C2 atom for subsequent catalytic oxidation by NAD+. PMID:12826012

  7. High-temperature Raman study of L-alanine, L-threonine and taurine crystals related to thermal decomposition

    NASA Astrophysics Data System (ADS)

    Cavaignac, A. L. O.; Lima, R. J. C.; Façanha Filho, P. F.; Moreno, A. J. D.; Freire, P. T. C.

    2016-03-01

    In this work high-temperature Raman spectra are used to compare temperature dependence of the lattice mode wavenumber of L-alanine, L-threonine and taurine crystals. Anharmonic effects observed are associated with intermolecular N-H· · ·O hydrogen bond that plays an important role in thermal decomposition process of these materials. Short and strong hydrogen bonds in L-alanine crystal were associated with anharmonic effects in lattice modes leading to low thermal stability compared to taurine crystals. Connection between thermal decomposition process and anharmonic effects is furnished for the first time.

  8. Cloning, purification and crystallization of Thermus thermophilus proline dehydrogenase

    SciTech Connect

    White, Tommi A.; Tanner, John J.

    2005-08-01

    Cloning, purification and crystallization of T. thermophilus proline dehydrogenase is reported. The detergent n-octyl β-d-glucopyranoside was used to reduce polydispersity, which enabled crystallization. Nature recycles l-proline by converting it to l-glutamate. This four-electron oxidation process is catalyzed by the two enzymes: proline dehydrogenase (PRODH) and Δ{sup 1}-pyrroline-5-carboxylate dehydrogenase. This note reports the cloning, purification and crystallization of Thermus thermophilus PRODH, which is the prototype of a newly discovered superfamily of bacterial monofunctional PRODHs. The results presented here include production of a monodisperse protein solution through use of the detergent n-octyl β-d-glucopyranoside and the growth of native crystals that diffracted to 2.3 Å resolution at Advanced Light Source beamline 4.2.2. The space group is P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 82.2, b = 89.6, c = 94.3 Å. The asymmetric unit is predicted to contain two protein molecules and 46% solvent. Molecular-replacement trials using a fragment of the PRODH domain of the multifunctional Escherichia coli PutA protein as the search model (24% amino-acid sequence identity) did not produce a satisfactory solution. Therefore, the structure of T. thermophilus PRODH will be determined by multiwavelength anomalous dispersion phasing using a selenomethionyl derivative.

  9. Biochemical mechanisms of glucose-6-phosphate dehydrogenase deficiency.

    PubMed Central

    Morelli, A; Benatti, U; Gaetani, G F; De Flora, A

    1978-01-01

    A solid-phase radioimmunoassay for human glucose-6-phosphate dehydrogenase (D-glucose-6-phosphate: NADP+ 1-oxidoreductase; EC 1.1.1.49) was developed that allowed the specific activity of this enzyme protein to be measured in lysates from whole erythrocyte populations, in lysates from erythrocytes of different ages, and in purified samples. The enzyme was highly purified from erythrocytes of single donors by a simple procedure of affinity chromatography with insolubilized adenosine 2',5'-bisphosphate. These techniques were used in an attempt to elucidate the molecular mechanisms leading to deficiency of glucose-6-phosphate dehydrogenase activity in two genetic variants of the enzyme, i.e., the Mediterranean and the Seattle-like variants. The results indicate that the lowered activity of erythrocytes containing the Mediterranean variant of glucose-6-phosphate dehydrogenase is related to an enhanced rate of degradation of a catalytically defective protein synthesized at a nearly normal rate. Synthesis of a normally functioning protein and an increased breakdown of it are involved in the Seattle-like variant of the enzyme. Images PMID:273924

  10. Pyruvate dehydrogenase deficiency: molecular basis for intrafamilial heterogeneity.

    PubMed

    Fujii, T; Van Coster, R N; Old, S E; Medori, R; Winter, S; Gubits, R M; Matthews, P M; Brown, R M; Brown, G K; Dahl, H H

    1994-07-01

    Two half-brothers and their mother had symptomatic pyruvate dehydrogenase complex deficiency. The infants had severe congenital lactic acidosis, seizures, and apneic spells and died at the ages 3 and 4 months. The mother was less symptomatic with mental retardation, truncal ataxia, and dysarthria. The residual pyruvate dehydrogenase activities in cultured skin fibroblasts from the 2 infants and their mother were 7, 15, and 10% of control values. Immunoblot analysis showed negligible amounts of E1 alpha and E1 beta subunits of the complex. Northern blot analysis for the E1 alpha subunit showed normal results. In the 2 sons, complementary DNA sequence analysis revealed a cytosine to thymine mutation in exon 4, resulting in a change of arginine 127 to tryptophan in the E1 alpha subunit. Restriction enzyme analysis of the polymerase chain reaction product representing exon 4 of the E1 alpha gene revealed that the mother was a heterozygotes. Complementary DNA restriction analysis and methylation analysis of the X chromosome DXS255 loci revealed skewed activation of the mutant allele, consistent with the deficient pyruvate dehydrogenase activity in the mother's fibroblasts. The milder maternal phenotype is consistent with variable X-inactivation patterns in different organs of female heterozygotes. PMID:8024267

  11. A glycolate dehydrogenase in the mitochondria of Arabidopsis thaliana.

    PubMed

    Bari, Rafijul; Kebeish, Rashad; Kalamajka, Rainer; Rademacher, Thomas; Peterhänsel, Christoph

    2004-03-01

    The fixation of molecular O2 by the oxygenase activity of Rubisco leads to the formation of phosphoglycolate in the chloroplast that is further metabolized in the process of photorespiration. The initial step of this pathway is the oxidation of glycolate to glyoxylate. Whereas in higher plants this reaction takes place in peroxisomes and is dependent on oxygen as a co-factor, most algae oxidize glycolate in the mitochondria using organic co-factors. The identification and characterization of a novel glycolate dehydrogenase in Arabidopsis thaliana is reported here. The enzyme is dependent on organic co-factors and resembles algal glycolate dehydrogenases in its enzymatic properties. Mutants of E. coli incapable of glycolate oxidation can be complemented by overexpression of the Arabidopsis open reading frame. The corresponding RNA accumulates preferentially in illuminated leaves, but was also found in other tissues investigated. A fusion of the N-terminal part of the Arabidopsis glycolate dehydrogenase to red fluorescent protein accumulates in mitochondria when overexpressed in the homologous system. Based on these results it is proposed that the basic photorespiratory system of algae is conserved in higher plants. PMID:14966218

  12. Functional Analysis of a Mosquito Short Chain Dehydrogenase Cluster

    PubMed Central

    Mayoral, Jaime G.; Leonard, Kate T.; Defelipe, Lucas A.; Turjansksi, Adrian G.; Nouzova, Marcela; Noriegal, Fernando G.

    2013-01-01

    The short chain dehydrogenases (SDR) constitute one the oldest and largest families of enzymes with over 46,000 members in sequence databases. About 25% of all known dehydrogenases belong to the SDR family. SDR enzymes have critical roles in lipid, amino acid, carbohydrate, hormone and xenobiotic metabolism as well as in redox sensor mechanisms. This family is present in archaea, bacteria, and eukaryota, emphasizing their versatility and fundamental importance for metabolic processes. We identified a cluster of eight SDRs in the mosquito Aedes aegypti (AaSDRs). Members of the cluster differ in tissue specificity and developmental expression. Heterologous expression produced recombinant proteins that had diverse substrate specificities, but distinct from the conventional insect alcohol (ethanol) dehydrogenases. They are all NADP+-dependent and they have S-enantioselectivity and preference for secondary alcohols with 8–15 carbons. Homology modeling was used to build the structure of AaSDR1 and two additional cluster members. The computational study helped explain the selectivity towards the (10S)-isomers as well as the reduced activity of AaSDR4 and AaSDR9 for longer isoprenoid substrates. Similar clusters of SDRs are present in other species of insects, suggesting similar selection mechanisms causing duplication and diversification of this family of enzymes. PMID:23238893

  13. Novel yeast cell dehydrogenase activity assay in situ.

    PubMed

    Berłowska, Joanna; Kregiel, Dorota; Klimek, Leszek; Orzeszyna, Bartosz; Ambroziak, Wojciech

    2006-01-01

    The aim of this research was to develop a suitable method of succinate dehydrogenase activity assay in situ for different industrial yeast strains. For this purpose different compounds: EDTA, Triton X-100, sodium deoxycholate, digitonin, nystatin and beta-mercaptoethanol were used. The permeabilization process was controlled microscopically by primuline staining. Enzyme assay was conducted in whole yeast cells with Na-succinate as substrate, phenazine methosulfate (PMS) as electron carrier and in the presence one of two different tetrazolium salts: tetrazolium blue chloride (BT) or cyanoditolyl tetrazolium chloride (CTC) reduced during the assay. In comparabile studies of yeast vitality the amount of intracellular ATP was determined according to luciferin/luciferase method. During the succinate dehydrogenase assay in intact yeast cells without permeabilization, BT formazans were partially visualized in the cells, but CTC formazans appeared to be totally extracellular or associated with the plasma membrane. Under these conditions there was no linear relationship between formazan color intensity signal and yeast cell density. From all chemical compounds tested, only digitonin was effective in membrane permeabilization without negative influence on cell morphology. Furthermore, with digitonin-treated cells a linear relationship between formazan color intensity signal and yeast cell number was noticed. Significant decreasing of succinate dehydrogenase activity and ATP content were observed during aging of the tested yeast strains. PMID:17419290

  14. Isocitrate Dehydrogenase and Glutamate Synthesis in Acetobacter suboxydans1

    PubMed Central

    Greenfield, Seymour; Claus, G. W.

    1969-01-01

    Acetobacter suboxydans is an obligate aerobe for which an operative tricarboxylic acid cycle has not been demonstrated. Glutamate synthesis has been reported to occur by mechanisms other than those utilizing isocitrate dehydrogenase, a tricarboxylic acid cycle enzyme not previously detected in this organism. We have recovered α-ketoglutarate and glutamate from a system containing citrate, nicotinamide adenine dinucleotide (NAD), a divalent cation, pyridoxal phosphate, an amino donor, and dialyzed, cell-free extract. Aconitase activity was readily detected in these extracts, but isocitrate dehydrogenase activity, measured by NAD reduction, was masked by a cyanide-resistant, particulate, reduced NAD oxidase. Isocitrate dehydrogenase activity could be demonstrated after centrifuging the extracts at 150,000 × g for 3 hr and treating the supernatant fluid with 2-heptyl-4-hydroxyquinoline N-oxide. It is concluded that A. suboxydans can utilize the conventional tricarboxylic acid cycle enzymes to convert citrate to α-ketoglutarate which can then undergo a transamination to glutamate. Images PMID:5361215

  15. Asp295 stabilizes the active-site loop structure of pyruvate dehydrogenase, facilitating phosphorylation of Ser292 by pyruvate dehydrogenase-kinase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have developed an invitro system for detailed analysis of reversible phosphorylation of the plant mitochondrial pyruvate dehydrogenase complex, comprising recombinant Arabidopsis thaliana a2b2-hetero tetrameric pyruvate dehydrogenase (E1) plus A.thaliana E1-kinase (AtPDK). Upon addition of MgATP...

  16. Growth, Structural And Optical Studies On Bis L-alanine Lithium Chloride (BLALC) Single Crystal

    NASA Astrophysics Data System (ADS)

    Rose, A. S. J. Lucia; Selvarajan, P.; Perumal, S.

    2011-10-01

    Bis L-alanine Lithium Chloride (BLALC) single crystals were grown successfully by solution method with slow evaporation technique at room temperature. Crystals of size 15 x 9 x 4 mm3 have been obtained in 28 days. The grown crystals were colourless and transparent. Single crystal X-ray diffraction (XRD) study showed that BLALC belongs to orthorhombic system with a non-centro-symmetric space group P212121. The crystallinity of BLALC crystal was confirmed by the powder X-ray diffraction study and diffraction peaks were indexed. The functional groups of the grown crystals have been identified by FTIR studies. UV-visible transmittance spectrum was recorded to study the optical transparency of BLALC crystal. The nonlinear optical (NLO) property of the grown crystal was confirmed by Kurtz-Perry powder technique.

  17. The influence of various cations on the catalytic properties of clays. [polymerization of alanine adenylate

    NASA Technical Reports Server (NTRS)

    Paecht-Horowitz, M.

    1978-01-01

    The polymerization of alanine adenylate in the presence of the sodium form of various clays was studied, and hectorite was found to cause more polymerization than nontronite and montmorillonite (in that order) although the differences were not great. The effect on polymerization of presaturating montmorillonite with different cations was determined. Hectorite, with increased basicity of the interspatial planes, allows polymerization of lysine, which montmorillonite does not. The general trend is that, for the same amino acid, higher degrees of polymerization are obtained when the cation in the octahedral lattice of the clay is divalent rather than trivalent. With the exchangeable cations the order is reversed, for a reason that is explained. The main role of clays in the polymerization mechanism of amino acids is concentration and neutralization of charges.

  18. Experimental and DFT computational studies of L-alanine cadmium chloride crystals

    NASA Astrophysics Data System (ADS)

    Ignatius, I. Cicili; Dheivamalar, S.; Kirubavathi, K.; Selvaraju, K.

    2016-05-01

    In this work, we report the combined experimental and theoretical study on molecular structure and vibrational spectra of nonlinear optical crystal L-alanine cadmium chloride (LACC). The single X-ray diffraction studies have revealed that the compound crystallizes in monoclinic system C2 space group with cell parameters a = 16.270, b = 7.358, c = 7.887 and Z = 4. FTIR and Raman spectra of the nonlinear optical materials LACC have been recorded and analyzed. The optimized geometric bond length and bond angles are obtained with the help of density functional theory (DFT) (B3LYP) calculation. The optimized geometric bond lengths and bond angles obtained by using DFT show good agreement with the experimental data. Using the natural bond orbital analysis the electronic effect and hydrogen bonding were confirmed. The HOMO-LUMO energy gap and the first order hyperpolarizability were calculated and it supports the nonlinear optical activity of LACC crystal.

  19. Free energy surfaces from an extended harmonic superposition approach and kinetics for alanine dipeptide

    NASA Astrophysics Data System (ADS)

    Strodel, Birgit; Wales, David J.

    2008-12-01

    Approximate free energy surfaces and transition rates are presented for alanine dipeptide for a variety of force fields and implicit solvent models. Our calculations are based upon local minima, transition states and pathways characterised for each potential energy surface using geometry optimisation. The superposition approach employing only local minima and harmonic densities of states provides a representation of low-lying regions of the free energy surfaces. However, including contributions from the transition states of the potential energy surface and selected points obtained from displacements along the corresponding reaction vectors produces surfaces that compare quite well with results from replica exchange molecular dynamics. Characterising the local minima, transition states, normal modes, pathways, rate constants and free energy surfaces for each force field within this framework typically requires between one and five minutes cpu time on a single processor.

  20. Gliotoxicity of the cyanotoxin, β-methyl-amino-L-alanine (BMAA)

    PubMed Central

    Chiu, Alexander S.; Gehringer, Michelle M.; Braidy, Nady; Guillemin, Gilles J.; Welch, Jeffrey H.; Neilan, Brett A.

    2013-01-01

    The amino acid variant β-methyl-amino-L-alanine (BMAA) has long been associated with the increased incidence and progression of the amyotrophic lateral sclerosis/Parkinsonism dementia complex (ALS/PDC). Previous studies have indicated that BMAA damages neurons via excitotoxic mechanisms. We have challenged rat olfactory ensheathing cells (OECs) with exogenous BMAA and found it to be cytotoxic. BMAA also induces a significant increase in Ca2+ influx, enhanced production of reactive oxygen species (ROS), and disrupts mitochondrial activity in OECs. This is the first study investigating BMAA toxicity using pure glial cells. These findings align BMAA with the three proposed mechanisms of degeneration in ALS, those being non-cell autonomous death, excitotoxicity and mitochondrial dysfunction. PMID:23508043

  1. Linking β-methylamino-L-alanine exposure to sporadic amyotrophic lateral sclerosis in Annapolis, MD.

    PubMed

    Field, Nicholas C; Metcalf, James S; Caller, Tracie A; Banack, Sandra A; Cox, Paul A; Stommel, Elijah W

    2013-08-01

    Most amyotrophic lateral sclerosis (ALS) cases occur sporadically. Some environmental triggers have been implicated, including beta-methylamino-L-alanine (BMAA), a cyanobacteria produced neurotoxin. This study aimed to identify environmental risk factors common to three sporadic ALS patients who lived in Annapolis, Maryland, USA and developed the disease within a relatively short time and within close proximity to each other. A questionnaire was used to identify potential risk factors for ALS among the cohort of patients. One common factor among the ALS patients was the frequent consumption of blue crab. Samples of blue crab from the patients' local fish market were tested for BMAA using LC-MS/MS. BMAA was identified in these Chesapeake Bay blue crabs. We conclude that the presence of BMAA in the Chesapeake Bay food web and the lifetime consumption of blue crab contaminated with BMAA may be a common risk factor for sporadic ALS in all three patients. PMID:23660330

  2. The fate of the cyanobacterial toxin β-N-methylamino-L-alanine in freshwater mussels.

    PubMed

    Downing, Simoné; Contardo-Jara, Valeska; Pflugmacher, Stephan; Downing, Timothy Grant

    2014-03-01

    The cyanobacterial neurotoxin, β-N-methylamino-l-alanine (BMAA) has been suggested as a causative agent for certain neurodegenerative diseases. This cyanotoxin bioaccumulates in an array of aquatic organisms, in which it occurs as both a free amino acid and in a protein-associated form. This study was intended to investigate the environmental fate of BMAA by examining the metabolism of isotopically labeled BMAA in four freshwater mussel species. All species showed substantial uptake of BMAA from the culture media. Data showed no significant evidence for BMAA catabolism in any of the animals but did suggest metabolism via the reversible covalent modification of BMAA in freshwater mussels, a process that appears to be variable in different species. PMID:24507126

  3. Controlled radical polymerization of an acrylamide containing L-alanine moiety via ATRP.

    PubMed

    Rafiee, Zahra

    2016-02-01

    Homopolymerization of an optically active acrylamide having an amino acid moiety in the side chain, N-acryloyl-L-alanine (AAla) was carried out via atom transfer radical polymerization (ATRP) at room temperature using 2-hydroxyethyl-2'-methyl-2'-bromopropionate (HMB) or sodium-4-(bromomethyl)benzoate (SBB) as initiator in pure water, methanol/water mixture and pure methanol solvents. The polymerization reaction resulted in the optically active biocompatible amino acid-based homopolymer in good yield with narrow molecular weight distribution. The number average molecular weight increased with conversion and polydispersity was low. The structure and molecular weight of synthesized polymer were characterized by (1)H NMR, FT-IR spectroscopic techniques and size-exclusion chromatography. PMID:26385362

  4. Alanine-Scanning Mutational Analysis of Durancin GL Reveals Residues Important for Its Antimicrobial Activity.

    PubMed

    Ju, Xingrong; Chen, Xinquan; Du, Lihui; Wu, Xueyou; Liu, Fang; Yuan, Jian

    2015-07-22

    Durancin GL is a novel class IIa bacteriocin with 43 residues produced by Enterococcus durans 41D. This bacteriocin demonstrates narrow inhibition spectrum and potent antimicrobial activity against several Listeria monocytogenes strains, including nisin-resistant L. monocytogenes NR30. A systematic alanine-scanning mutational analysis with site-directed mutagenesis was performed to analyze durancin GL residues important for antimicrobial activity and specificity. Results showed that three mutations lost their antimicrobial activity, ten mutations demonstrated a decreased effect on the activity, and seven mutations exhibited relatively high activity. With regard to inhibitory spectrum, four mutants demonstrated a narrower antimicrobial spectrum than wild-type durancin GL. Another four mutants displayed a broader target cell spectrum and increased potency relative to wild-type durancin GL. These findings broaden our understanding of durancin GL residues important for its antimicrobial activity and contribute to future rational design of variants with increased potency. PMID:26168032

  5. Evaluation of drug-induced tissue injury by measuring alanine aminotransferase (ALT) activity in silkworm hemolymph

    PubMed Central

    2012-01-01

    Background Our previous studies suggest silkworms can be used as model animals instead of mammals in pharmacologic studies to develop novel therapeutic medicines. We examined the usefulness of the silkworm larvae Bombyx mori as an animal model for evaluating tissue injury induced by various cytotoxic drugs. Drugs that induce hepatotoxic effects in mammals were injected into the silkworm hemocoel, and alanine aminotransferase (ALT) activity was measured in the hemolymph 1 day later. Results Injection of CCl4 into the hemocoel led to an increase in ALT activity. The increase in ALT activity was attenuated by pretreatment with N-acetyl-L-cysteine. Injection of benzoic acid derivatives, ferric sulfate, sodium valproate, tetracycline, amiodarone hydrochloride, methyldopa, ketoconazole, pemoline (Betanamin), N-nitroso-fenfluramine, and D-galactosamine also increased ALT activity. Conclusions These findings indicate that silkworms are useful for evaluating the effects of chemicals that induce tissue injury in mammals. PMID:23137391

  6. EPR/alanine pellets with low Gd content for neutron dosimetry.

    PubMed

    Marrale, M; Brai, M; Longo, A; Panzeca, S; Carlino, A; Tranchina, L; Tomarchio, E; Parlato, A; Buttafava, A; Dondi, D; Zeffiro, A

    2014-10-01

    This paper reports on results obtained by electron paramagnetic resonance (EPR) measurements and Monte Carlo (MC) simulation on a blend of alanine added with low content of gadolinium oxide (5 % by weight) to improve the sensitivity to thermal neutron without excessively affecting tissue equivalence. The sensitivity is enhanced by this doping procedure of more an order of magnitude. The results are compared with those obtained with the addition of boric acid (50 % by weight) where boron is in its natural isotopic composition in order to produce low-cost EPR dosemeters. The gadolinium addition influences neutron sensitivity more than the boron addition. The presence of additives does not substantially change the fading of the EPR signal induced by neutrons. The MC simulations agree the experimental results in case of gadolinium addition. PMID:24262924

  7. Gliotoxicity of the cyanotoxin, β-methyl-amino-L-alanine (BMAA).

    PubMed

    Chiu, Alexander S; Gehringer, Michelle M; Braidy, Nady; Guillemin, Gilles J; Welch, Jeffrey H; Neilan, Brett A

    2013-01-01

    The amino acid variant β-methyl-amino-L-alanine (BMAA) has long been associated with the increased incidence and progression of the amyotrophic lateral sclerosis/Parkinsonism dementia complex (ALS/PDC). Previous studies have indicated that BMAA damages neurons via excitotoxic mechanisms. We have challenged rat olfactory ensheathing cells (OECs) with exogenous BMAA and found it to be cytotoxic. BMAA also induces a significant increase in Ca2+ influx, enhanced production of reactive oxygen species (ROS), and disrupts mitochondrial activity in OECs. This is the first study investigating BMAA toxicity using pure glial cells. These findings align BMAA with the three proposed mechanisms of degeneration in ALS, those being non-cell autonomous death, excitotoxicity and mitochondrial dysfunction. PMID:23508043

  8. Discovery of an L-alanine ester prodrug of the Hsp90 inhibitor, MPC-3100.

    PubMed

    Kim, Se-Ho; Tangallapally, Rajendra; Kim, In Chul; Trovato, Richard; Parker, Daniel; Patton, J Scott; Reeves, Leslie; Bradford, Chad; Wettstein, Daniel; Baichwal, Vijay; Papac, Damon; Bajji, Ashok; Carlson, Robert; Yager, Kraig M

    2015-11-15

    Various types of Hsp90 inhibitors have been and continue to undergo clinical investigation. One development candidate is the purine-based, synthetic Hsp90 inhibitor 1 (MPC-3100), which successfully completed a phase I clinical study. However, further clinical development of 1 was hindered by poor solubility and consequent formulation issues and promoted development of a more water soluble prodrug. Towards this end, numerous pro-moieties were explored in vitro and in vivo. These studies resulted in identification of L-alanine ester mesylate, 2i (MPC-0767), which exhibited improved aqueous solubility, adequate chemical stability, and rapid bioconversion without the need for solubilizing excipients. Based on improved physical characteristics and favorable PK and PD profiles, 2i mesylate was selected for further development. A convergent, scalable, chromatography-free synthesis for 2i mesylate was developed to support further clinical evaluation. PMID:26483201

  9. Terahertz and far infrared spectroscopy of alanine-rich peptides having variable ellipticity.

    PubMed

    Ding, Tao; Li, Ruoyu; Zeitler, J Axel; Huber, Thomas L; Gladden, Lynn F; Middelberg, Anton P J; Falconer, Robert J

    2010-12-20

    Terahertz spectra of four alanine-rich peptides with known secondary structures were studied by terahertz time domain spectroscopy (THz-TDS) and by Fourier transform infrared spectroscopy (FTIR) using a synchrotron light source and a liquid-helium cooled bolometer. At ambient temperatures the usable bandwidth was restricted to 0.2-1.5 THz by the absorbance of water. The existence of a solvation shell around the peptide in solution was observed and its size estimated to be between 11 and 17 Å. By cooling the peptide solution to 80 K in order to reduce the water absorbance the bandwidth was increased to 0.1-3.0 THz for both THz-TDS and FTIR. Spectra were consistent with monotonic absorbance of the peptide and the existence of a solid amorphous low density solvation shell. PMID:21197019

  10. Multiple adaptive losses of alanine-glyoxylate aminotransferase mitochondrial targeting in fruit-eating bats.

    PubMed

    Liu, Yang; Xu, Huihui; Yuan, Xinpu; Rossiter, Stephen J; Zhang, Shuyi

    2012-06-01

    The enzyme alanine-glyoxylate aminotransferase 1 (AGT) functions to detoxify glyoxylate before it is converted into harmful oxalate. In mammals, mitochondrial targeting of AGT in carnivorous species versus peroxisomal targeting in herbivores is controlled by two signal peptides that correspond to these respective organelles. Differential expression of the mitochondrial targeting sequence (MTS) is considered an adaptation to diet-specific subcellular localization of glyoxylate precursors. Bats are an excellent group in which to study adaptive changes in dietary enzymes; they show unparalleled mammalian dietary diversification as well as independent origins of carnivory, frugivory, and nectarivory. We studied the AGT gene in bats and other mammals with diverse diets and found that the MTS has been lost in unrelated lineages of frugivorous bats. Conversely, species exhibiting piscivory, carnivory, insectivory, and sanguinivory possessed intact MTSs. Detected positive selection in the AGT of ancestral fruit bats further supports adaptations related to evolutionary changes in diet. PMID:22319153

  11. Synthesis and Characterization in Vitro and in Vivo of (l)-(Trimethylsilyl)alanine Containing Neurotensin Analogues.

    PubMed

    Fanelli, Roberto; Besserer-Offroy, Élie; René, Adeline; Côté, Jérôme; Tétreault, Pascal; Collerette-Tremblay, Jasmin; Longpré, Jean-Michel; Leduc, Richard; Martinez, Jean; Sarret, Philippe; Cavelier, Florine

    2015-10-01

    The silylated amino acid (l)-(trimethylsilyl)alanine (TMSAla) was incorporated at the C-terminal end of the minimal biologically active neurotensin (NT) fragment, leading to the synthesis of new hexapeptide NT[8-13] analogues. Here, we assessed the ability of these new silylated NT compounds to bind to NTS1 and NTS2 receptors, promote regulation of multiple signaling pathways, induce inhibition of the ileal smooth muscle contractions, and affect distinct physiological variables, including blood pressure and pain sensation. Among the C-terminal modified analogues, compound 6 (JMV2007) carrying a TMSAla residue in position 13 exhibits a higher affinity toward NT receptors than the NT native peptide. We also found that compound 6 is effective in reversing carbachol-induced contraction in the isolated strip preparation assay and at inducing a drop in blood pressure. Finally, compound 6 produces potent analgesia in experimental models of acute and persistent pain. PMID:26348111

  12. X-linked glucose-6-phosphate dehydrogenase (G6PD) and autosomal 6-phosphogluconate dehydrogenase (6PGD) polymorphisms in baboons

    SciTech Connect

    VandeBerg, J.L.; Aivaliotis, M.J.; Samollow, P.B. )

    1992-12-01

    Electrophoretic polymorphisms of glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD) were examined in captive colonies of five subspecies of baboons (Papio hamadryas). Phenotype frequencies and family data verified the X-linked inheritance of the G6PD polymorphism. Insufficient family data were available to confirm autosomal inheritance of the 6PGD polymorphism, but the electrophoretic patterns of variant types (putative heterozygotes) suggested the codominant expression of alleles at an autosomal locus. Implications of the G6PD polymorphism are discussed with regard to its utility as a marker system for research on X-chromosome inactivation during baboon development and for studies of clonal cell proliferation and/or cell selection during the development of atherosclerotic lesions in the baboon model. 61 refs., 1 fig., 4 tabs.

  13. Screening for genetic haemochromatosis in blood samples with raised alanine aminotransferase

    PubMed Central

    Bhavnani, M; Lloyd, D; Bhattacharyya, A; Marples, J; Elton, P; Worwood, M

    2000-01-01

    BACKGROUND—In the UK approximately 1 in 140 people are homozygous for the C282Y mutation of the HFE gene and are at risk from iron overload caused by genetic haemochromatosis (GH). Early detection can prevent organ damage secondary to iron deposition and increase life expectancy.
AIM—To screen for GH in all blood samples sent to the laboratory for routine liver function tests in which raised serum alanine aminotransferase (ALT) activity was detected.
METHODS—ALT was measured in sera sent to the laboratory for routine liver function tests. In those samples found to have raised activity, transferrin saturation and ferritin were measured followed by genetic testing when transferrin saturation was increased.
RESULTS—Of the 35 069 serum samples assayed for routine liver function tests, 1490 (4.2%) had raised ALT levels (>50 u/l). Transferrin saturation and serum ferritin concentrations were measured in these patient samples, and in 56 transferrin saturation was >60%. Further blood samples were requested from these patients for genetic testing: 33 samples were obtained. There were nine patients homozygous for the C282Y mutation of the HFE gene and three compound heterozygotes (heterozygous for both C282Y and H63D mutations).
CONCLUSIONS—The association of raised ALT activity and transferrin saturation of >60% could provide a simple, cost effective method for detecting individuals with clinical haemochromatosis. Although many patients with GH may have been missed, this study suggests that the clinical penetrance of the disorder may be much lower than is generally supposed and that genetic screening will identify many people who may never develop clinical haemochromatosis.


Keywords: haemochromatosis; alanine aminotransferase PMID:10764716

  14. Alanine screening mutagenesis establishes the critical inactivating damage of irradiated E. coli lactose repressor.

    PubMed

    Goffinont, Stephane; Villette, Sandrine; Spotheim-Maurizot, Melanie

    2012-06-01

    The function of the E. coli lactose operon requires the binding of lactose repressor to operator DNA. We have previously shown that γ rradiation destabilizes the repressor-operator complex because the repressor loses its DNA-binding ability. It was suggested that the observed oxidation of the four tyrosines (Y7, Y12, Y17, Y47) and the concomitant structural changes of the irradiated DNA-binding domains (headpieces) could be responsible for the inactivation. To pinpoint the tyrosine whose oxidation has the strongest effect, four headpieces containing the product of tyrosine oxidation, 3,4-dihydroxyphenylalanine (DOPA), were simulated by molecular dynamics. We have observed that replacing Y47 by DOPA triggers the largest change of structure and stability of the headpiece and have concluded that Y47 oxidation is the greatest contributor to the decrease of repressor binding to DNA. To experimentally verify this conclusion, we applied the alanine screening mutagenesis approach. Tetrameric mutated repressors bearing an alanine instead of each one of the tyrosines were prepared and their binding to operator DNA was checked. Their binding ability is quite similar to that of the wild-type repressor, except for the Y47A mutant whose binding is strongly reduced. Circular dichroism determinations revealed small reductions of the proportion of α helices and of the melting temperature for Y7A, Y12A and Y17A headpieces, but much larger ones were revealed for Y47A headpiece. These results established the critical role of Y47 oxidation in modifying the structure and stability of the headpiece, and in reduction of the binding ability of the whole lactose repressor. PMID:22551504

  15. Active Sites of Spinoxin, a Potassium Channel Scorpion Toxin, Elucidated by Systematic Alanine Scanning.

    PubMed

    Peigneur, Steve; Yamaguchi, Yoko; Kawano, Chihiro; Nose, Takeru; Nirthanan, Selvanayagam; Gopalakrishnakone, Ponnampalam; Tytgat, Jan; Sato, Kazuki

    2016-05-31

    Peptide toxins from scorpion venoms constitute the largest group of toxins that target the voltage-gated potassium channel (Kv). Spinoxin (SPX) isolated from the venom of scorpion Heterometrus spinifer is a 34-residue peptide neurotoxin cross-linked by four disulfide bridges. SPX is a potent inhibitor of Kv1.3 potassium channels (IC50 = 63 nM), which are considered to be valid molecular targets in the diagnostics and therapy of various autoimmune disorders and cancers. Here we synthesized 25 analogues of SPX and analyzed the role of each amino acid in SPX using alanine scanning to study its structure-function relationships. All synthetic analogues showed similar disulfide bond pairings and secondary structures as native SPX. Alanine replacements at Lys(23), Asn(26), and Lys(30) resulted in loss of activity against Kv1.3 potassium channels, whereas replacements at Arg(7), Met(14), Lys(27), and Tyr(32) also largely reduced inhibitory activity. These results suggest that the side chains of these amino acids in SPX play an important role in its interaction with Kv1.3 channels. In particular, Lys(23) appears to be a key residue that underpins Kv1.3 channel inhibition. Of these seven amino acid residues, four are basic amino acids, suggesting that the positive electrostatic potential on the surface of SPX is likely required for high affinity interaction with Kv1.3 channels. This study provides insight into the structure-function relationships of SPX with implications for the rational design of new lead compounds targeting potassium channels with high potency. PMID:27159046

  16. Conformational Changes of the Alanine Dipeptide in Water-Ethanol Binary Mixtures.

    PubMed

    Almeida, Glauco G; Cordeiro, João M M; Martín, M Elena; Aguilar, Manuel A

    2016-04-12

    Experimental work developed in the last years has evidenced the capacity of alcohols and polyalcohols to modify the energy landscape of peptides and proteins. However, the mechanism underlying this effect is not clear. Taking as a model system the alanine dipeptide (AD) we perform a QM/MM study in water, ethanol, and a 40-60% in volume water-ethanol mixture. The AD molecule was described at the MP2/aug-cc-pVDZ level. In polar solution, only αR and PPII conformers contribute in an appreciable way to the conformational equilibrium. The final in solution αR-PPII free energy difference is determined from the interplay between the internal energy of the dipeptide and the solute-solvent interaction free energy. Internal energy favors the formation of PPII, whereas, on the contrary, solute-solvent interaction is favorable to αR, so any factor that decreases the solute-solvent interaction free energy will increase the PPII population. The addition of ethanol increases the stability of the PPII conformer. Our results point to the presence of preferential solvation in this system, the composition of the first solvation shell in the binary mixture being dominated by water molecules. Remarkably, this fact does not affect the differential conformational stability that is controlled by long-range interactions. From the analysis of solvent density maps it is concluded that, in the water-ethanol mixture, ethanol molecules are more likely found around the alanine side chain and the carbonyl group, but while in PPII ethanol molecules interact mainly with the carbonyl group of the N-terminal end, in C5 the interaction is with the carbonyl group of the C-terminal end. In αR, ethanol interacts with both carbonyl groups. PMID:26910305

  17. Fibrous biodegradable l-alanine-based scaffolds for vascular tissue engineering.

    PubMed

    Srinath, Deepta; Lin, Shigang; Knight, Darryl K; Rizkalla, Amin S; Mequanint, Kibret

    2014-07-01

    In vascular tissue engineering, three-dimensional (3D) biodegradable scaffolds play an important role in guiding seeded cells to produce matrix components by providing both mechanical and biological cues. The objective of this work was to fabricate fibrous biodegradable scaffolds from novel poly(ester amide)s (PEAs) derived from l-alanine by electrospinning, and to study the degradation profiles and its suitability for vascular tissue-engineering applications. In view of this, l-alanine-derived PEAs (dissolved in chloroform) were electrospun together with 18-30% w/w polycaprolactone (PCL) to improve spinnability. A minimum of 18% was required to effectively electrospin the solution while the upper value was set in order to limit the influence of PCL on the electrospun PEA fibres. Electrospun fibre mats with average fibre diameters of ~0.4 µm were obtained. Both fibre diameter and porosity increased with increasing PEA content and solution concentration. The degradation of a PEA fibre mat over a period of 28 days indicated that mass loss kinetics was linear, and no change in molecular weight was found, suggesting a surface erosion mechanism. Human coronary artery smooth muscle cells (HCASMCs) cultured for 7 days on the fibre mats showed significantly higher viability (p < 0.0001), suggesting that PEA scaffolds provided a better microenvironment for seeded cells compared with control PCL fibre mats of similar fibre diameter and porosity. Furthermore, elastin expression on the PEA fibre mats was significantly higher than the pure PEA discs and pure PCL fibre mat controls (p < 0.0001). These novel biodegradable PEA fibrous scaffolds could be strong candidates for vascular tissue-engineering applications. PMID:22899439

  18. Chiral selectivity of amino acid adsorption on chiral surfaces—The case of alanine on Pt

    SciTech Connect

    Franke, J.-H.; Kosov, D. S.

    2015-02-07

    We study the binding pattern of the amino acid alanine on the naturally chiral Pt surfaces Pt(531), Pt(321), and Pt(643). These surfaces are all vicinal to the (111) direction but have different local environments of their kink sites and are thus a model for realistic roughened Pt surfaces. Alanine has only a single methyl group attached to its chiral center, which makes the number of possible binding conformations computationally tractable. Additionally, only the amine and carboxyl group are expected to interact strongly with the Pt substrate. On Pt(531), we study the molecule in its pristine as well as its deprotonated form and find that the deprotonated one is more stable by 0.47 eV. Therefore, we study the molecule in its deprotonated form on Pt(321) and Pt(643). As expected, the oxygen and nitrogen atoms of the deprotonated molecule provide a local binding “tripod” and the most stable adsorption configurations optimize the interaction of this “tripod” with undercoordinated surface atoms. However, the interaction of the methyl group plays an important role: it induces significant chiral selectivity of about 60 meV on all surfaces. Hereby, the L-enantiomer adsorbs preferentially to the Pt(321){sup S} and Pt(643){sup S} surfaces, while the D-enantiomer is more stable on Pt(531){sup S}. The binding energies increase with increasing surface density of kink sites, i.e., they are largest for Pt(531){sup S} and smallest for Pt(643){sup S}.

  19. Oral administration of D-alanine in monkeys robustly increases plasma and cerebrospinal fluid levels but experimental D-amino acid oxidase inhibitors had minimal effect.

    PubMed

    Rojas, Camilo; Alt, Jesse; Ator, Nancy A; Wilmoth, Heather; Rais, Rana; Hin, Niyada; DeVivo, Michael; Popiolek, Michael; Tsukamoto, Takashi; Slusher, Barbara S

    2016-09-01

    Hypofunction of the N-methyl-d-aspartate (NMDA) receptor is thought to exacerbate psychosis in patients diagnosed with schizophrenia. Consistent with this hypothesis, D-alanine, a co-agonist at the glycine site of the NMDA receptor, was shown to improve positive and cognitive symptoms when used as add-on therapy for schizophrenia treatment. However, D-alanine had to be administered at high doses (~7 g) to observe clinical effects. One possible reason for the high dose is that D-alanine could be undergoing oxidation by D-amino acid oxidase (DAAO) before it reaches the brain. If this is the case, the dose could be reduced by co-administration of D-alanine with a DAAO inhibitor (DAAOi). Early studies with rodents showed that co-administration of D-alanine with 5-chloro-benzo[d]isoxazol-3-ol (CBIO), a prototype DAAOi, significantly enhanced the levels of extracellular D-alanine in the frontal cortex compared with D-alanine alone. Further, the use of CBIO reduced the dose of D-alanine needed to attenuate prepulse inhibition deficits induced by dizocilpine. The objective of the work reported herein was to confirm the hypothesis that DAAO inhibition can enhance D-alanine exposure in a species closer to humans: non-human primates. We report that while oral D-alanine administration to baboons (10 mg/kg) enhanced D-alanine plasma and CSF levels over 20-fold versus endogenous levels, addition of experimental DAAOi to the regimen exhibited a 2.2-fold enhancement in plasma and no measurable effect on CSF levels. The results provide caution regarding the utility of DAAO inhibition to increase D-amino acid levels as treatment for patients with schizophrenia. PMID:27287825

  20. Determination of β-Cyano-L-alanine, γ-Glutamyl-β-cyano-L-alanine, and Common Free Amino Acids in Vicia sativa (Fabaceae) Seeds by Reversed-Phase High-Performance Liquid Chromatography

    PubMed Central

    Megías, Cristina; Cortés-Giraldo, Isabel; Girón-Calle, Julio; Vioque, Javier; Alaiz, Manuel

    2014-01-01

    A method for determination of β-cyano-L-alanine, γ-glutamyl-β-cyano-L-alanine and other free amino acids in Vicia sativa is presented. Seed extracts were derivatized by reaction with diethyl ethoxymethylenemalonate and analyzed by reverse-phase high-performance liquid chromatography. Calibration curves showed very good linearity of the response. The limit of detection and quantification was 0.15 and 0.50 μM, respectively. The method has high intra- (RSD = 0.28–0.31%) and interrepeatability (RSD = 2.76–3.08%) and remarkable accuracy with a 99% recovery in spiked samples. The method is very easy to carry out and allows for ready analysis of large number of samples using very basic HPLC equipment because the derivatized samples are very stable and have very good chromatographic properties. The method has been applied to the determination of γ-glutamyl-β-cyano-L-alanine, β-cyano-L-alanine, and common free amino acids in eight wild populations of V. sativa from southwestern Spain. PMID:25587488

  1. GMXPBSA 2.0: A GROMACS tool to perform MM/PBSA and computational alanine scanning

    NASA Astrophysics Data System (ADS)

    Paissoni, C.; Spiliotopoulos, D.; Musco, G.; Spitaleri, A.

    2014-11-01

    GMXPBSA 2.0 is a user-friendly suite of Bash/Perl scripts for streamlining MM/PBSA calculations on structural ensembles derived from GROMACS trajectories, to automatically calculate binding free energies for protein-protein or ligand-protein complexes. GMXPBSA 2.0 is flexible and can easily be customized to specific needs. Additionally, it performs computational alanine scanning (CAS) to study the effects of ligand and/or receptor alanine mutations on the free energy of binding. Calculations require only for protein-protein or protein-ligand MD simulations. GMXPBSA 2.0 performs different comparative analysis, including a posteriori generation of alanine mutants of the wild-type complex, calculation of the binding free energy values of the mutant complexes and comparison of the results with the wild-type system. Moreover, it compares the binding free energy of different complexes trajectories, allowing the study the effects of non-alanine mutations, post-translational modifications or unnatural amino acids on the binding free energy of the system under investigation. Finally, it can calculate and rank relative affinity to the same receptor utilizing MD simulations of proteins in complex with different ligands. In order to dissect the different MM/PBSA energy contributions, including molecular mechanic (MM), electrostatic contribution to solvation (PB) and nonpolar contribution to solvation (SA), the tool combines two freely available programs: the MD simulations software GROMACS and the Poisson-Boltzmann equation solver APBS. All the calculations can be performed in single or distributed automatic fashion on a cluster facility in order to increase the calculation by dividing frames across the available processors. The program is freely available under the GPL license. Catalogue identifier: AETQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETQ_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing

  2. Human dehydrogenase/reductase (SDR family) member 11 is a novel type of 17β-hydroxysteroid dehydrogenase.

    PubMed

    Endo, Satoshi; Miyagi, Namiki; Matsunaga, Toshiyuki; Hara, Akira; Ikari, Akira

    2016-03-25

    We report characterization of a member of the short-chain dehydrogenase/reductase superfamily encoded in a human gene, DHRS11. The recombinant protein (DHRS11) efficiently catalyzed the conversion of the 17-keto group of estrone, 4- and 5-androstenes and 5α-androstanes into their 17β-hydroxyl metabolites with NADPH as a coenzyme. In contrast, it exhibited reductive 3β-hydroxysteroid dehydrogenase activity toward 5β-androstanes, 5β-pregnanes, 4-pregnenes and bile acids. Additionally, DHRS11 reduced α-dicarbonyls (such as diacetyl and methylglyoxal) and alicyclic ketones (such as 1-indanone and loxoprofen). The enzyme activity was inhibited in a mixed-type manner by flavonoids, and competitively by carbenoxolone, glycyrrhetinic acid, zearalenone, curcumin and flufenamic acid. The expression of DHRS11 mRNA was observed widely in human tissues, most abundantly in testis, small intestine, colon, kidney and cancer cell lines. Thus, DHRS11 represents a novel type of 17β-hydroxysteroid dehydrogenase with unique catalytic properties and tissue distribution. PMID:26920053

  3. Evidence for distinct dehydrogenase and isomerase sites within a single 3. beta. -hydroxysteroid dehydrogenase/5-ene-4-ene isomerase protein

    SciTech Connect

    Luu-The, V.; Takahashi, Masakazu; de Launoit, Y.; Dumont, M.; Lachance, Y.; Labrie, F. )

    1991-09-10

    Complementary DNA encoding human 3{beta}-hydroxysteroid dehydrogenase/5-ene-4-ene isomerase (3-{beta}-HSD) has been expressed in transfected GH{sub 4}C{sub 1} with use of the cytomegalovirus promoter. The activity of the expressed protein clearly shows that both dehydrogenase and isomerase enzymatic activities are present within a single protein. However, such findings do not indicate whether the two activities reside within one or two closely related catalytic sites. With use of ({sup 3}H)-5-androstenedione, the intermediate compound in dehydroepiandrosterone (DHEA) transformation into 4-androstenedione by 3{beta}-HSD, the present study shows that 4MA (N,N-diethyl-4-methyl-3-oxo-4-aza-5{alpha}-androstane-17{beta}-carboxamide) and its analogues of 5-androstenedione to 4-androstenedione with an approximately 1,000-fold higher K{sub i} value. The present results thus strongly suggest that dehydrogenase and isomerase activities are present at separate sites on the 3-{beta}-HSD protein. Such data suggest that the irreversible step in the transformation of DHEA to 4-androstenedione is due to a separate site possessing isomerase activity that converts the 5-ene-3-keto to a much more stable 4-ene-3-keto configuration.

  4. Pyruvate Dehydrogenase and Pyruvate Dehydrogenase Kinase Expression in Non Small Cell Lung Cancer and Tumor-Associated Stroma1

    PubMed Central

    Koukourakis, Michael I; Giatromanolaki, Alexandra; Sivridis, Efthimios; Gatter, Kevin C; Harris, Adrian L; “Tumor and Angiogenesis Research Group”

    2005-01-01

    Abstract Pyruvate dehydrogenase (PDH) catalyzes the conversion of pyruvate to acetyl-coenzyme A, which enters into the Krebs cycle, providing adenosine triphosphate (ATP) to the cell. PDH activity is under the control of pyruvate dehydrogenase kinases (PDKs). Under hypoxic conditions, conversion of pyruvate to lactate occurs, a reaction catalyzed by lactate dehydrogenase 5 (LDH5). In cancer cells, however, pyruvate is transformed to lactate occurs, regardless of the presence of oxygen (aerobic glycolysis/Warburg effect). Although hypoxic intratumoral conditions account for HIF1α stabilization and induction of anaerobic metabolism, recent data suggest that high pyruvate concentrations also result in HIF1α stabilization independently of hypoxia. In the present immunohistochemical study, we provide evidence that the PDH/PDK pathway is repressed in 73% of non small cell lung carcinomas, which may be a key reason for HIF1α stabilization and “aerobic glycolysis.” However, about half of PDH-deficient carcinomas are not able to switch on the HIF pathway, and patients harboring these tumors have an excellent postoperative outcome. A small subgroup of clinically aggressive tumors maintains a coherent PDH and HIF/LDH5 expression. In contrast to cancer cells, fibroblasts in the tumor-supporting stroma exhibit an intense PDH but reduced PDK1 expression favoring maximum PDH activity. This means that stroma may use lactic acid produced by tumor cells, preventing the creation of an intolerable intratumoral acidic environment at the same time. PMID:15736311

  5. Structures of the G81A mutant form of the active chimera of (S)-mandelate dehydrogenase and its complex with two of its substrates

    SciTech Connect

    Sukumar, Narayanasami; Dewanti, Asteriani; Merli, Angelo; Rossi, Gian Luigi; Mitra, Bharati; Mathews, F. Scott

    2009-06-12

    (S)-Mandelate dehydrogenase (MDH) from Pseudomonas putida, a membrane-associated flavoenzyme, catalyzes the oxidation of (S)-mandelate to benzoylformate. Previously, the structure of a catalytically similar chimera, MDH-GOX2, rendered soluble by the replacement of its membrane-binding segment with the corresponding segment of glycolate oxidase (GOX), was determined and found to be highly similar to that of GOX except within the substituted segments. Subsequent attempts to cocrystallize MDH-GOX2 with substrate proved unsuccessful. However, the G81A mutants of MDH and of MDH-GOX2 displayed {approx}100-fold lower reactivity with substrate and a modestly higher reactivity towards molecular oxygen. In order to understand the effect of the mutation and to identify the mode of substrate binding in MDH-GOX2, a crystallographic investigation of the G81A mutant of the MDH-GOX2 enzyme was initiated. The structures of ligand-free G81A mutant MDH-GOX2 and of its complexes with the substrates 2-hydroxyoctanoate and 2-hydroxy-3-indolelactate were determined at 1.6, 2.5 and 2.2 {angstrom} resolution, respectively. In the ligand-free G81A mutant protein, a sulfate anion previously found at the active site is displaced by the alanine side chain introduced by the mutation. 2-Hydroxyoctanoate binds in an apparently productive mode for subsequent reaction, while 2-hydroxy-3-indolelactate is bound to the enzyme in an apparently unproductive mode. The results of this investigation suggest that a lowering of the polarity of the flavin environment resulting from the displacement of nearby water molecules caused by the glycine-to-alanine mutation may account for the lowered catalytic activity of the mutant enzyme, which is consistent with the 30 mV lower flavin redox potential. Furthermore, the altered binding mode of the indolelactate substrate may account for its reduced activity compared with octanoate, as observed in the crystalline state.

  6. Species-specific differences in the inhibition of human and zebrafish 11β-hydroxysteroid dehydrogenase 2 by thiram and organotins.

    PubMed

    Meyer, Arne; Strajhar, Petra; Murer, Céline; Da Cunha, Thierry; Odermatt, Alex

    2012-11-15

    Dithiocarbamates and organotins can inhibit enzymes by interacting with functionally essential sulfhydryl groups. Both classes of chemicals were shown to inhibit human 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2), which converts active cortisol into inactive cortisone and has a role in renal and intestinal electrolyte regulation and in the feto-placental barrier to maternal glucocorticoids. In fish, 11β-HSD2 has a dual role by inactivating glucocorticoids and generating the major androgen 11-ketotestosterone. Inhibition of this enzyme may enhance glucocorticoid and diminish androgen effects in fish. Here, we characterized 11β-HSD2 activity of the model species zebrafish. A comparison with human and mouse 11β-HSD2 revealed species-specific substrate preference. Unexpectedly, assessment of the effects of thiram and several organotins on the activity of zebrafish 11β-HSD2 showed weak inhibition by thiram and no inhibition by any of the organotins tested. Sequence comparison revealed the presence of an alanine at position 253 on zebrafish 11β-HSD2, corresponding to cysteine-264 in the substrate-binding pocket of the human enzyme. Substitution of alanine-253 by cysteine resulted in a more than 10-fold increased sensitivity of zebrafish 11β-HSD2 to thiram. Mutating cysteine-264 on human 11β-HSD2 to serine resulted in 100-fold lower inhibitory activity. Our results demonstrate significant species differences in the sensitivity of human and zebrafish 11β-HSD2 to inhibition by thiram and organotins. Site-directed mutagenesis revealed a key role of cysteine-264 in the substrate-binding pocket of human 11β-HSD2 for sensitivity to sulfhydryl modifying agents. PMID:22796344

  7. Rice alcohol dehydrogenase 1 promotes survival and has a major impact on carbohydrate metabolism in the embryo and endosperm when seeds are germinated in partially oxygenated water

    PubMed Central

    Takahashi, Hirokazu; Greenway, Hank; Matsumura, Hideo; Tsutsumi, Nobuhiro; Nakazono, Mikio

    2014-01-01

    Background and Aims Rice (Oryza sativa) has the rare ability to germinate and elongate a coleoptile under oxygen-deficient conditions, which include both hypoxia and anoxia. It has previously been shown that ALCOHOL DEHYDROGENASE 1 (ADH1) is required for cell division and cell elongation in the coleoptile of submerged rice seedlings by means of studies using a rice ADH1-deficient mutant, reduced adh activity (rad). The aim of this study was to understand how low ADH1 in rice affects carbohydrate metabolism in the embryo and endosperm, and lactate and alanine synthesis in the embryo during germination and subsequent coleoptile growth in submerged seedlings. Methods Wild-type and rad mutant rice seeds were germinated and grown under complete submergence. At 1, 3, 5 and 7 d after imbibition, the embryo and endosperm were separated and several of their metabolites were measured and compared. Key results In the rad embryo, the rate of ethanol fermentation was halved, while lactate and alanine concentrations were 2·4- and 5·7- fold higher in the mutant than in the wild type. Glucose and fructose concentrations in the embryos increased with time in the wild type, but not in the rad mutant. The rad mutant endosperm had lower amounts of the α-amylases RAMY1A and RAMY3D, resulting in less starch degradation and lower glucose concentrations. Conclusions These results suggest that ADH1 is essential for sugar metabolism via glycolysis to ethanol fermentation in both the embryo and endosperm. In the endosperm, energy is presumably needed for synthesis of the amylases and for sucrose synthesis in the endosperm, as well as for sugar transport to the embryo. PMID:24431339

  8. The maximum activities of hexokinase, phosphorylase, phosphofructokinase, glycerol phosphate dehydrogenases, lactate dehydrogenase, octopine dehydrogenase, phosphoenolpyruvate carboxykinase, nucleoside diphosphatekinase, glutamate-oxaloacetate transaminase and arginine kinase in relation to carbohydrate utilization in muscles from marine invertebrates.

    PubMed Central

    Zammit, V A; Newsholme, E A

    1976-01-01

    Comparison of the activities of hexokinase, phosphorylase and phosphofructokinase in muscles from marine invertebrates indicates that they can be divided into three groups. First, the activities of the three enzymes are low in coelenterate muscles, catch muscles of molluscs and muscles of echinoderms; this indicates a low rate of carbohydrate (and energy) utilization by these muscles. Secondly, high activities of phosphorylase and phosphofructokinase relative to those of hexokinase are found in, for example, lobster abdominal and scallop snap muscles; this indicates that these muscles depend largely on anaerobic degradation of glycogen for energy production. Thirdly, high activities of hexokinase are found in the radular muscles of prosobranch molluscs and the fin muscles of squids; this indicates a high capacity for glucose utilization, which is consistent with the high activities of enzymes of the tricarboxylic acid cycle in these muscles [Alp, Newsholme & Zammit (1976) Biochem. J. 154, 689-700]. 2. The activities of lactate dehydrogenase, octopine dehydrogenase, phosphoenolpyruvate carboxykinase, cytosolic and mitochondrial glycerol 3-phosphate dehydrogenase and glutamate-oxaloacetate transaminase were measured in order to provide a qualitative indication of the importance of different processes for oxidation of glycolytically formed NADH. The muscles are divided into four groups: those that have a high activity of lactate dehydrogenase relative to the activities of phosphofructokinase (e.g. crustacean muscles); those that have high activities of octopine dehydrogenase but low activities of lactate dehydrogenase (e.g. scallop snap muscle); those that have moderate activities of both lactate dehydrogenase and octopine dehydrogenase (radular muscles of prosobranchs), and those that have low activities of both lactate dehydrogenase and octopine dehydrogenase, but which possess activities of phosphoenolpyruvate carboxykinase (oyster adductor muscles). It is

  9. The amidating enzyme in pituitary will accept a peptide with C-terminal D-alanine as substrate.

    PubMed

    Landymore-Lim, A E; Bradbury, A F; Smyth, D G

    1983-11-30

    A series of tripeptides which terminated in d-alanine, d-serine, d-leucine or l-alanine was synthesized and the peptides tested for their ability to act as substrates for an amidating enzyme present in porcine pituitary. The peptides were allowed to compete with a radiolabelled substrate 125I d-Tyr Phe Gly in the presence of a rate limiting concentration of amidating enzyme and the degree of conversion to 125I d-Tyr Phe amide was determined by ion exchange chromatography. An accelerated procedure was developed for investigating the rates of reaction. The results showed that d-Tyr Phe d-Ala has a significant affinity for the amidating enzyme; no affinity could be demonstrated with d-Tyr Phe 1-Ala, d-Tyr Phe d-Ser or d-Tyr Phe d-Leu. Direct evidence that d-Tyr Phe d-Ala can undergo amidation was obtained by incubating the 125I labelled tripeptide with the pituitary enzyme. Amidation took place readily with d-Tyr Phe d-Ala but not with the other tripeptides; thus, while the enzyme is unable to catalyse the conversion of a peptide terminating in 1-alanine, it can accept a peptide terminating in d-alanine. The results indicate that the amidating enzyme has a highly compact substrate binding site. PMID:6661225

  10. Helix propensities of conformationally restricted amino acids. Non-natural substitutes for helix breaking proline and helix forming alanine.

    PubMed

    Alías, Miriam; Ayuso-Tejedor, Sara; Fernández-Recio, Juan; Cativiela, Carlos; Sancho, Javier

    2010-02-21

    Alpha helices are useful scaffolds to build biologically active peptides. The intrinsic stability of an alpha-helix is a key feature that can be successfully designed, and it is governed by the constituting amino acid residues. Their individual contributions to helix stability are given, according to Lifson-Roig theory, by their w parameters, which are known for all proteinogenic amino acids, but not for non-natural ones. On the other hand, non-natural, conformationally-restricted amino acids can be used to impart biochemical stability to peptides intended for in vivo administration. Efficient design of peptides based on these amino acids requires the previous determination of their w parameters. We begin here this task by determining the w parameters of two restricted analogs of alanine: (alpha-methyl)alanine and 1-aminocyclopropanecarboxylic acid. According to their w values (alpha-methyl)alanine is almost as good a helix forming residue as alanine, while 1-aminocyclopropanecarboxylic acid is, similarly to proline, a helix breaker. PMID:20135035

  11. Streptomyces beta-alanine:alpha-ketoglutarate aminotransferase, a novel omega-amino acid transaminase. Purification, crystallization, and enzymologic properties.

    PubMed

    Yonaha, K; Suzuki, K; Toyama, S

    1985-03-25

    An enzyme which catalyzes the transamination of beta-alanine with alpha-ketoglutarate was purified to homogeneity from Streptomyces griseus IFO 3102 and crystallized. Molecular weight of the enzyme was found to be 185,000 +/- 10,000 by a gel-filtration method. The enzyme consists of four subunits identical in molecular weight (51,000 +/- 1,000). The transaminase is composed of 483 amino acids/subunit containing 7 and 8 residues of half-cystine and methionine, respectively. The enzyme exhibits absorption maxima at 278 and 415 nm. The pyridoxal 5'-phosphate content was determined to be 4 mol/mol of enzyme. The enzyme catalyzes transamination of omega-amino acids including taurine and hypotaurine. beta-Alanine and DL-beta-aminoisobutyrate served as a good amino donor; the Michaelis constants are 8.0 and 12.5 mM, respectively. alpha-Ketoglutarate is the only amino acceptor (Km = 4.0 mM); pyruvate and oxalacetate are inactive. Based on the substrate specificity, the terminology of beta-alanine:alpha-ketoglutarate transaminase is proposed for the enzyme. Carbonyl reagents, HgCl2,DL-gabaculine, and alpha-fluoro-beta-alanine strongly inhibited the enzyme. PMID:3972825

  12. Translocation of Radioactive Carbon after the Application of 14C-Alanine and 14CO2 to Sunflower Leaves 1

    PubMed Central

    Chopowick, R. E.; Forward, D. F.

    1974-01-01

    14C-(UL)-l-Alanine was applied to the surface of mature leaves at the second node of sunflower (Helianthus annuus L. cv Commander) plants, under illumination. The alanine was absorbed during a 4-hour period, and some of it was metabolized by the absorbing tissue. After a lag period of about 15 minutes from first application, distribution of 14C through the plant proceeded in much the same pattern as when 14CO2 is assimilated by similar leaves. Most, if not all, of the 14C exported from the absorbing regions was in sucrose. Only minute amounts appeared in alanine or other amino acids in surrounding parts of the leaf blade or in the petiole, although these were strongly labeled in the tissue absorbing 14C-alanine. When 14CO2 was supplied for 15 minutes to leaves of different ages, amino acids were lightly labeled in the leaf blade. Mature green leaves exported only sucrose. Yellowing leaves on 60-day-old plants exported a variety of substances including amino acids. PMID:16658645

  13. Structures of the G81A mutant form of the active chimera of (S)-mandelate dehydrogenase and its complex with two of its substrates

    SciTech Connect

    Sukumar, Narayanasami; Dewanti, Asteriani; Merli, Angelo; Rossi, Gian Luigi; Mitra, Bharati; Mathews, F. Scott

    2009-06-01

    The crystal structure of the G81A mutant form of the chimera of (S)-mandelate dehydrogenase and of its complexes with two of its substrates reveal productive and non-productive modes of binding for the catalytic reaction. The structure also indicates the role of G81A in lowering the redox potential of the flavin co-factor leading to an ∼200-fold slower catalytic rate of substrate oxidation. (S)-Mandelate dehydrogenase (MDH) from Pseudomonas putida, a membrane-associated flavoenzyme, catalyzes the oxidation of (S)-mandelate to benzoylformate. Previously, the structure of a catalytically similar chimera, MDH-GOX2, rendered soluble by the replacement of its membrane-binding segment with the corresponding segment of glycolate oxidase (GOX), was determined and found to be highly similar to that of GOX except within the substituted segments. Subsequent attempts to cocrystallize MDH-GOX2 with substrate proved unsuccessful. However, the G81A mutants of MDH and of MDH-GOX2 displayed ∼100-fold lower reactivity with substrate and a modestly higher reactivity towards molecular oxygen. In order to understand the effect of the mutation and to identify the mode of substrate binding in MDH-GOX2, a crystallographic investigation of the G81A mutant of the MDH-GOX2 enzyme was initiated. The structures of ligand-free G81A mutant MDH-GOX2 and of its complexes with the substrates 2-hydroxyoctanoate and 2-hydroxy-3-indolelactate were determined at 1.6, 2.5 and 2.2 Å resolution, respectively. In the ligand-free G81A mutant protein, a sulfate anion previously found at the active site is displaced by the alanine side chain introduced by the mutation. 2-Hydroxyoctanoate binds in an apparently productive mode for subsequent reaction, while 2-hydroxy-3-indolelactate is bound to the enzyme in an apparently unproductive mode. The results of this investigation suggest that a lowering of the polarity of the flavin environment resulting from the displacement of nearby water molecules caused by

  14. Dihydrolipoamide dehydrogenase from halophilic archaebacteria: purification and properties of the enzyme from halobacterium halobium

    SciTech Connect

    Danson, J.J.; McQuattie, A.; Stevenson, K.J.

    1986-07-01

    Halophilic archaebacteria possess dihydrolipoamide dehydrogenase activity but apparently lack the 2-oxoacid dehydrogenase multienzyme complexes of which it is usually an integral component. In this paper, the purification of dihydrolipoamide dehydrogenase from Halobacterium halobium is reported. The enzyme is a dimer with a polypeptide chain M/sub r/ of 58,000 (+/-3000). The amino acid composition of the enzyme is compared with those of the eubacterial and eukaryotic dihydrolipoamide dehydrogenases, and evidence is presented to suggest that the N-terminal amino acid of the H. halobium enzyme is blocked. Chemical modification with the trivalent arsenical reagent (p-aminophenyl)dichloroarsine indicates the involvement of a reversibly reducible disulfide bond in the enzyme's catalytic mechanism. The possible metabolic role of this dihydrolipoamide dehydrogenase in the absence of 2-oxoacid dehydrogenase complexes is discussed.

  15. Molecular structure of the pyruvate dehydrogenase complex from Escherichia coli K-12.

    PubMed

    Vogel, O; Hoehn, B; Henning, U

    1972-06-01

    The pyruvate dehydrogenase core complex from E. coli K-12, defined as the multienzyme complex that can be obtained with a unique polypeptide chain composition, has a molecular weight of 3.75 x 10(6). All results obtained agree with the following numerology. The core complex consists of 48 polypeptide chains. There are 16 chains (molecular weight = 100,000) of the pyruvate dehydrogenase component, 16 chains (molecular weight = 80,000) of the dihydrolipoamide dehydrogenase component, and 16 chains (molecular weight = 56,000) of the dihydrolipoamide dehydrogenase component. Usually, but not always, pyruvate dehydrogenase complex is produced in vivo containing at least 2-3 mol more of dimers of the pyruvate dehydrogenase component than the stoichiometric ratio with respect to the core complex. This "excess" component is bound differently than are the eight dimers in the core complex. PMID:4556465

  16. Molecular Structure of the Pyruvate Dehydrogenase Complex from Escherichia coli K-12

    PubMed Central

    Vogel, Otto; Hoehn, Barbara; Henning, Ulf

    1972-01-01

    The pyruvate dehydrogenase core complex from E. coli K-12, defined as the multienzyme complex that can be obtained with a unique polypeptide chain composition, has a molecular weight of 3.75 × 106. All results obtained agree with the following numerology. The core complex consists of 48 polypeptide chains. There are 16 chains (molecular weight = 100,000) of the pyruvate dehydrogenase component, 16 chains (molecular weight = 80,000) of the dihydrolipoamide dehydrogenase component, and 16 chains (molecular weight = 56,000) of the dihydrolipoamide dehydrogenase component. Usually, but not always, pyruvate dehydrogenase complex is produced in vivo containing at least 2-3 mol more of dimers of the pyruvate dehydrogenase component than the stoichiometric ratio with respect to the core complex. This “excess” component is bound differently than are the eight dimers in the core complex. Images PMID:4556465

  17. Glycolysis and the Tricarboxylic Acid Cycle Are Linked by Alanine Aminotransferase during Hypoxia Induced by Waterlogging of Lotus japonicus1[W][OA

    PubMed Central

    Rocha, Marcio; Licausi, Francesco; Araújo, Wagner L.; Nunes-Nesi, Adriano; Sodek, Ladaslav; Fernie, Alisdair R.; van Dongen, Joost T.

    2010-01-01

    The role of nitrogen metabolism in the survival of prolonged periods of waterlogging was investigated in highly flood-tolerant, nodulated Lotus japonicus plants. Alanine production revealed to be a critical hypoxic pathway. Alanine is the only amino acid whose biosynthesis is not inhibited by nitrogen deficiency resulting from RNA interference silencing of nodular leghemoglobin. The metabolic changes that were induced following waterlogging can be best explained by the activation of alanine metabolism in combination with the modular operation of a split tricarboxylic acid pathway. The sum result of this metabolic scenario is the accumulation of alanine and succinate and the production of extra ATP under hypoxia. The importance of alanine metabolism is discussed with respect to its ability to regulate the level of pyruvate, and this and all other changes are discussed in the context of current models concerning the regulation of plant metabolism. PMID:20089769

  18. Characterization of Lactobacillus salivarius alanine racemase: short-chain carboxylate-activation and the role of A131.

    PubMed

    Kobayashi, Jyumpei; Yukimoto, Jotaro; Shimizu, Yasuhiro; Ohmori, Taketo; Suzuki, Hirokazu; Doi, Katsumi; Ohshima, Toshihisa

    2015-01-01

    Many strains of lactic acid bacteria produce high concentrations of d-amino acids. Among them, Lactobacillus salivarius UCC 118 produces d-alanine at a relative concentration much greater than 50 % of the total d, l-alanine (100d/d, l-alanine). We characterized the L. salivarius alanine racemase (ALR) likely responsible for this d-alanine production and found that the enzyme was activated by carboxylates, which is an unique characteristic among ALRs. In addition, alignment of the amino acid sequences of several ALRs revealed that A131 of L. salivarius ALR is likely involved in the activation. To confirm that finding, an L. salivarius ALR variant with an A131K (ALR(A131K)) substitution was prepared, and its properties were compared with those of ALR. The activity of ALR(A131K) was about three times greater than that of ALR. In addition, whereas L. salivarius ALR was strongly activated by low concentrations (e.g., 1 mM) of short chain carboxylates, and was inhibited at higher concentrations (e.g., 10 mM), ALR(A131K) was clearly inhibited at all carboxylate concentrations tested (1-40 mM). Acetate also increased the stability of ALR such that maximum activity was observed at 35 °C and pH 8.0 without acetate, but at 50 °C in the presence of 1 mM acetate. On the other hand, maximum ALR(A131K) activity was observed at 45 °C and around pH 9.0 with or without acetate. It thus appears that A131 mediates the activation and stabilization of L. salivarius ALR by short chain carboxylates. PMID:26543773

  19. Effects of Beta-Alanine Supplementation on Brain Homocarnosine/Carnosine Signal and Cognitive Function: An Exploratory Study

    PubMed Central

    Hobson, Ruth M; Artioli, Guilherme G.; Otaduy, Maria C.; Roschel, Hamilton; Robertson, Jacques; Martin, Daniel; S. Painelli, Vitor; Harris, Roger C.; Gualano, Bruno

    2015-01-01

    Objectives Two independent studies were conducted to examine the effects of 28 d of beta-alanine supplementation at 6.4 g d-1 on brain homocarnosine/carnosine signal in omnivores and vegetarians (Study 1) and on cognitive function before and after exercise in trained cyclists (Study 2). Methods In Study 1, seven healthy vegetarians (3 women and 4 men) and seven age- and sex-matched omnivores undertook a brain 1H-MRS exam at baseline and after beta-alanine supplementation. In study 2, nineteen trained male cyclists completed four 20-Km cycling time trials (two pre supplementation and two post supplementation), with a battery of cognitive function tests (Stroop test, Sternberg paradigm, Rapid Visual Information Processing task) being performed before and after exercise on each occasion. Results In Study 1, there were no within-group effects of beta-alanine supplementation on brain homocarnosine/carnosine signal in either vegetarians (p = 0.99) or omnivores (p = 0.27); nor was there any effect when data from both groups were pooled (p = 0.19). Similarly, there was no group by time interaction for brain homocarnosine/carnosine signal (p = 0.27). In study 2, exercise improved cognitive function across all tests (P<0.05), although there was no effect (P>0.05) of beta-alanine supplementation on response times or accuracy for the Stroop test, Sternberg paradigm or RVIP task at rest or after exercise. Conclusion 28 d of beta-alanine supplementation at 6.4g d-1 appeared not to influence brain homocarnosine/carnosine signal in either omnivores or vegetarians; nor did it influence cognitive function before or after exercise in trained cyclists. PMID:25875297

  20. Metabolic consequences of β-alanine supplementation during exhaustive supramaximal cycling and 4000-m time-trial performance.

    PubMed

    Bellinger, Phillip M; Minahan, Clare L

    2016-08-01

    The present study investigated the effects of β-alanine supplementation on the resultant blood acidosis, lactate accumulation, and energy provision during supramaximal-intensity cycling, as well as the aerobic and anaerobic contribution to power output during a 4000-m cycling time trial (TT). Seventeen trained cyclists (maximal oxygen uptake = 4.47 ± 0.55 L·min(-1)) were administered 6.4 g of β-alanine (n = 9) or placebo (n = 8) daily for 4 weeks. Participants performed a supramaximal cycling test to exhaustion (equivalent to 120% maximal oxygen uptake) before (PreExh) and after (PostExh) the 4-week supplementation period, as well as an additional postsupplementation supramaximal cycling test identical in duration and power output to PreExh (PostMatch). Anaerobic capacity was quantified and blood pH, lactate, and bicarbonate concentrations were measured pre-, immediately post-, and 5 min postexercise. Subjects also performed a 4000-m cycling TT before and after supplementation while the aerobic and anaerobic contributions to power output were quantified. β-Alanine supplementation increased time to exhaustion (+12.8 ± 8.2 s; P = 0.041) and anaerobic capacity (+1.1 ± 0.7 kJ; P = 0.048) in PostExh compared with PreExh. Performance time in the 4000-m TT was reduced following β-alanine supplementation (-6.3 ± 4.6 s; P = 0.034) and the mean anaerobic power output was likely to be greater (+6.2 ± 4.5 W; P = 0.035). β-Alanine supplementation increased time to exhaustion concomitant with an augmented anaerobic capacity during supramaximal intensity cycling, which was also mirrored by a meaningful increase in the anaerobic contribution to power output during a 4000-m cycling TT, resulting in an enhanced overall performance. PMID:27467218

  1. Aldehyde Dehydrogenase-2 (ALDH2) Ameliorates Chronic Alcohol Ingestion-Induced Hepatic Steatosis and Inflammation: Role of Autophagy

    PubMed Central

    Guo, Rui; Xu, Xihui; Babcock, Sara A.; Zhang, Yingmei; Ren, Jun

    2014-01-01

    Background & Aims Mitochondrial aldehyde dehydrogenase (ALDH2) plays a critical role in the detoxification of the ethanol metabolite acetaldehyde. This study was designed to examine the impact of global ALDH2 overexpression on alcohol-induced hepatic steatosis. Methods Wild-type friendly virus B (FVB) and ALDH2 transgenic mice were placed on a 4% alcohol or control diet for 12 weeks. Serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), bilirubin and cholesterol, hepatic triglyceride, steatosis, fat metabolism-related proteins, pro-inflammatory cytokines, glutathione (GSH), oxidized glutathione (GSSG), autophagy and autophagy signaling were examined. The role of autophagy was evaluated in ADH1-transfected human hepatocellular liver carcinoma cells (VA-13) treated with or without autophagy inducer rapamycin and lysosomal inhibitors. Results Chronic alcohol intake led to elevated AST, ALT, bilirubin, AST/ALT ratio, cholesterol, hepatic triglycerides, hepatic fat deposition as evidenced by H&E and oil Red O staining, associated with disturbed fat metabolism-related proteins (fatty acid synthase, SCD1), upregulated interleukin-6, TNF-α, cyclooxygenase, oxidative stress, and loss of autophagy, the effects of which were attenuated or ablated by ALDH2 transgene. Moreover, ethanol (100 mM) and acetaldehyde (100, 500 μM) increased levels of IL-6 and IFN-γ, and suppressed autophagy in VA-13 cells, the effects of which were markedly alleviated by rapamycin. In addition, lysosomal inhibitors mimicked ethanol-induced p62 accumulation with little additive effect with ethanol. Ethanol significantly suppressed LC3 conversion in the presence of lysosomal inhibitors. Conclusions In summary, our results revealed that ALDH2 plays a beneficial role in ameliorating chronic alcohol intake-induced hepatic steatosis and inflammation through regulation of autophagy. PMID:25457208

  2. Loss of Mitochondrial Malate Dehydrogenase Activity Alters Seed Metabolism Impairing Seed Maturation and Post-Germination Growth in Arabidopsis.

    PubMed

    Sew, Yun Shin; Ströher, Elke; Fenske, Ricarda; Millar, A Harvey

    2016-06-01

    Mitochondrial malate dehydrogenase (mMDH; EC 1.1.1.37) has multiple roles; the most commonly described is its catalysis of the interconversion of malate and oxaloacetate in the tricarboxylic acid cycle. The roles of mMDH in Arabidopsis (Arabidopsis thaliana) seed development and germination were investigated in mMDH1 and mMDH2 double knockout plants. A significant proportion of mmdh1mmdh2 seeds were nonviable and developed only to torpedo-shaped embryos, indicative of arrested seed embryo growth during embryogenesis. The viable mmdh1mmdh2 seeds had an impaired maturation process that led to slow germination rates as well as retarded post-germination growth, shorter root length, and decreased root biomass. During seed development, mmdh1mmdh2 showed a paler green phenotype than the wild type and exhibited deficiencies in reserve accumulation and reduced final seed biomass. The respiration rate of mmdh1mmdh2 seeds was significantly elevated throughout their maturation, consistent with the previously reported higher respiration rate in mmdh1mmdh2 leaves. Mutant seeds showed a consistently higher content of free amino acids (branched-chain amino acids, alanine, serine, glycine, proline, and threonine), differences in sugar and sugar phosphate levels, and lower content of 2-oxoglutarate. Seed-aging assays showed that quiescent mmdh1mmdh2 seeds lost viability more than 3 times faster than wild-type seeds. Together, these data show the important role of mMDH in the earliest phases of the life cycle of Arabidopsis. PMID:27208265

  3. Characterization of the functional role of allosteric site residue Asp102 in the regulatory mechanism of human mitochondrial NAD(P)+-dependent malate dehydrogenase (malic enzyme)

    PubMed Central

    2005-01-01

    Human mitochondrial NAD(P)+-dependent malate dehydrogenase (decarboxylating) (malic enzyme) can be specifically and allosterically activated by fumarate. X-ray crystal structures have revealed conformational changes in the enzyme in the absence and in the presence of fumarate. Previous studies have indicated that fumarate is bound to the allosteric pocket via Arg67 and Arg91. Mutation of these residues almost abolishes the activating effect of fumarate. However, these amino acid residues are conserved in some enzymes that are not activated by fumarate, suggesting that there may be additional factors controlling the activation mechanism. In the present study, we tried to delineate the detailed molecular mechanism of activation of the enzyme by fumarate. Site-directed mutagenesis was used to replace Asp102, which is one of the charged amino acids in the fumarate binding pocket and is not conserved in other decarboxylating malate dehydrogenases. In order to explore the charge effect of this residue, Asp102 was replaced by alanine, glutamate or lysine. Our experimental data clearly indicate the importance of Asp102 for activation by fumarate. Mutation of Asp102 to Ala or Lys significantly attenuated the activating effect of fumarate on the enzyme. Kinetic parameters indicate that the effect of fumarate was mainly to decrease the Km values for malate, Mg2+ and NAD+, but it did not notably elevate kcat. The apparent substrate Km values were reduced by increasing concentrations of fumarate. Furthermore, the greatest effect of fumarate activation was apparent at low malate, Mg2+ or NAD+ concentrations. The Kact values were reduced with increasing concentrations of malate, Mg2+ and NAD+. The Asp102 mutants, however, are much less sensitive to regulation by fumarate. Mutation of Asp102 leads to the desensitization of the co-operative effect between fumarate and substrates of the enzyme. PMID:15989682

  4. Deciphering the Dynamics of Non-Covalent Interactions Affecting Thermal Stability of a Protein: Molecular Dynamics Study on Point Mutant of Thermus thermophilus Isopropylmalate Dehydrogenase

    PubMed Central

    Sharma, Reetu; Sastry, G. Narahari

    2015-01-01

    Thermus thermophilius isopropylmalate dehydrogenase catalyzes oxidative decarboxylation and dehydrogenation of isopropylmalate. Substitution of leucine to alanine at position 172 enhances the thermal stability among the known point mutants. Exploring the dynamic properties of non-covalent interactions such as saltbridges, hydrogen bonds and hydrophobic interactions to explain thermal stability of a protein is interesting in its own right. In this study dynamic changes in the non-covalent interactions are studied to decipher the deterministic features of thermal stability of a protein considering a case study of a point mutant in Thermus thermophilus isopropylmalate dehydrogenase. A total of four molecular dynamic simulations of 0.2 μs were carried out on wild type and mutant’s functional dimers at 300 K and 337 K. Higher thermal stability of the mutant as compared to wild type is revealed by root mean square deviation, root mean square fluctuations and Cα-Cα distance with an increase in temperature from 300 K to 337 K. Most of the regions of wild type fluctuate higher than the corresponding regions of mutant with an increase in temperature. Cα-Cα distance analysis suggests that long distance networks are significantly affected in wild type as compared to the mutant. Short lived contacts are higher in wild type, while long lived contacts are lost at 337 K. The mutant forms less hydrogen bonds with water as compared to wild type at 337 K. In contrast to wild type, the mutant shows significant increase in unique saltbridges, hydrogen bonds and hydrophobic contacts at 337 K. The current study indicates that there is a strong inter-dependence of thermal stability on the way in which non-covalent interactions reorganize, and it is rewarding to explore this connection in single mutant studies. PMID:26657745

  5. Deciphering the Dynamics of Non-Covalent Interactions Affecting Thermal Stability of a Protein: Molecular Dynamics Study on Point Mutant of Thermus thermophilus Isopropylmalate Dehydrogenase.

    PubMed

    Sharma, Reetu; Sastry, G Narahari

    2015-01-01

    Thermus thermophilius isopropylmalate dehydrogenase catalyzes oxidative decarboxylation and dehydrogenation of isopropylmalate. Substitution of leucine to alanine at position 172 enhances the thermal stability among the known point mutants. Exploring the dynamic properties of non-covalent interactions such as saltbridges, hydrogen bonds and hydrophobic interactions to explain thermal stability of a protein is interesting in its own right. In this study dynamic changes in the non-covalent interactions are studied to decipher the deterministic features of thermal stability of a protein considering a case study of a point mutant in Thermus thermophilus isopropylmalate dehydrogenase. A total of four molecular dynamic simulations of 0.2 μs were carried out on wild type and mutant's functional dimers at 300 K and 337 K. Higher thermal stability of the mutant as compared to wild type is revealed by root mean square deviation, root mean square fluctuations and Cα-Cα distance with an increase in temperature from 300 K to 337 K. Most of the regions of wild type fluctuate higher than the corresponding regions of mutant with an increase in temperature. Cα-Cα distance analysis suggests that long distance networks are significantly affected in wild type as compared to the mutant. Short lived contacts are higher in wild type, while long lived contacts are lost at 337 K. The mutant forms less hydrogen bonds with water as compared to wild type at 337 K. In contrast to wild type, the mutant shows significant increase in unique saltbridges, hydrogen bonds and hydrophobic contacts at 337 K. The current study indicates that there is a strong inter-dependence of thermal stability on the way in which non-covalent interactions reorganize, and it is rewarding to explore this connection in single mutant studies. PMID:26657745

  6. Effects of ruminally degradable nitrogen intake and in vitro addition of ammonia and propionate on the metabolic fate of L-[1-14C]alanine and L-[15N]alanine in isolated sheep hepatocytes.

    PubMed

    Mutsvangwa, T; Buchanan-Smith, J G; McBride, B W

    1997-04-01

    Isolated hepatocytes prepared from sheep fed a basal diet (bromegrass hay-corn, 50:50 wt/ wt, as-fed basis) with or without urea were used to determine the effects of added ammonia (as NH4Cl) and propionate on the partitioning of C from 1.25 mM L-[1-14C]alanine between oxidation and gluconeogenesis, and the flux of 15N from 1.25 mM L-[15N]alanine to [14N15N]urea and [15N15N]urea. Hepatocyte suspensions were incubated with NH4Cl (0, .31, .63, and 1.25 mM) and (or) propionate (0, .31, .63, and 1.25 mM) in the presence of either 1.25 mM L-[15N]alanine or 1.25 mM L-alanine plus 18.5 kBq of L-[1-14C]alanine. Feeding dietary urea did not affect [1-14C]alanine oxidation to 14CO2 (P = .601), or its conversion to [14C]glucose (P = .576) by isolated hepatocytes. Increasing in vitro concentrations of NH4Cl and propionate between 0 and 1.25 mM reduced [1-14C]alanine oxidation to 14CO2 (P < .001). Increasing NH4Cl concentration between 0 and 1.25 mM reduced [1-14C]alanine conversion to [14C]glucose in isolated hepatocytes (P < .001), whereas addition of propionate between 0 and 1.25 mM stimulated production of [14C]glucose from [1-14C]alanine (P < .001). Feeding urea did not affect in vitro rates of total urea production (P = .655) but increased the production of [14N15N]urea and [15N15N]urea (P < .05). Addition of NH4Cl increased total urea, [14N15N]urea, and [15N15N]urea production (P < .001), but reduced 15N isotopic enrichments of [14N15N]urea and [15N15N]urea (P < .001). Increasing propionate concentration between 0 and 1.25 mM reduced total urea production (P < .001), but [14N15N]urea and [15N15N]urea production was reduced only at 1.25 mM propionate (P < .001). We conclude that NH3 detoxification by isolated sheep hepatocytes increases amino acid deamination and this might have implications for nitrogen retention in ruminants consuming diets that promote considerable NH3 absorption from the digestive tract. PMID:9110231

  7. Localization of the major dehydrogenases in two methylotrophs by radiochemical labeling.

    PubMed Central

    Kasprzak, A A; Steenkamp, D J

    1983-01-01

    The localization of prominent proteins in intact cells of two methylotrophic bacteria, Hyphomicrobium sp. strain X and bacterium W3A1, was investigated by radiochemical labeling with [14C]isethionyl acetimidate. In bacterium W3A1, trimethylamine dehydrogenase was not labeled by the reagent and is, therefore, an intracellular protein, whereas the periplasmic location of the methylamine and methanol dehydrogenases was evidenced by being readily labeled in intact cells. Similarly, an intracellular location of the trimethylamine and dimethylamine dehydrogenases in Hyphomicrobium sp. strain X was indicated, whereas methanol dehydrogenase was periplasmic. Images PMID:6311799

  8. Excitotoxic potential of the cyanotoxin β-methyl-amino-L-alanine (BMAA) in primary human neurons.

    PubMed

    Chiu, Alexander S; Gehringer, Michelle M; Braidy, Nady; Guillemin, Gilles J; Welch, Jeffrey H; Neilan, Brett A

    2012-11-01

    The toxicity of the cyanobacterial modified amino acid, BMAA, has been described in rat, mouse and leech neurons. Particular emphasis has been placed on the potential ability of BMAA to induce neuronal damage via excitotoxic mechanisms. Here we present data indicating that the effects observed on lower organisms are also evident in a human model. Our data indicates that BMAA induces increased intracellular Ca²⁺ influx, DNA damage, mitochondrial activity, lactate dehydrogenase (LDH) release and generation of reactive oxygen species (ROS). The amelioration of LDH release in the presence of the N-methyl-D-aspartate (NMDA) receptor antagonist MK801 indicates that the neurotoxic effects of BMAA are mediated via NMDA receptor activation. Additionally, we have shown that BMAA induces the expression of neuronal nitric oxide synthase (nNOS) and caspase-3 indicating that it can stimulate apoptosis in human neurons, presumably via activation of NMDA receptors. PMID:22885173

  9. γ-Guanidinobutyraldehyde Dehydrogenase of Vicia faba Leaves

    PubMed Central

    Matsuda, Hitoshi; Suzuki, Yonezo

    1984-01-01

    γ-Guanidinobutyraldehyde dehydrogenase was purified 27-fold in 40% yield from extracts of Vicia faba leaves. High specificity exist only for γ-guanidinobutyraldehyde and γ-aminobutyraldehyde; the Km value was 3.4 micromolar for γ-guanidinobutyraldehyde, 25 micromolar for γ-aminobutyraldehyde, and 84 micromolar (case of γ-guanidinobutyraldehyde) for NAD, respectively. The enzyme had a molecular weight of approximately 83,000. Optimal pH and temperature for activity were 9.5 and 45°C, respectively. The enzyme was inhibited strongly by p-chloromercuribenzoate, N-ethylmaleimide, and zincon (2-carboxy-2′-hydroxy-5′-sulfoformazylbenzene). PMID:16663901

  10. Direct Observation of Correlated Interdomain Motion in Alcohol Dehydrogenase

    SciTech Connect

    Biehl, Ralf; Monkenbusch, Michael; Richter, Dieter; Hoffmann, Bernd; Merkel, Rudolf; Falus, Peter; Preost, Sylvain

    2008-09-26

    Interdomain motions in proteins are essential to enable or promote biochemical function. Neutron spin-echo spectroscopy is used to directly observe the domain dynamics of the protein alcohol dehydrogenase. The collective motion of domains as revealed by their coherent form factor relates to the cleft opening dynamics between the binding and the catalytic domains enabling binding and release of the functional important cofactor. The cleft opening mode hardens as a result of an overall stiffening of the domain complex due to the binding of the cofactor.

  11. Some properties of aldehyde dehydrogenase from sheep liver mitochondria.

    PubMed Central

    Hart, G J; Dickinson, F M

    1977-01-01

    Aldehyde dehydrogenase from sheep liver mitochondria was purified to homogeneity as judged by electrophoresis on polyacrylamide gels, and by sedimentation-equilibrium experiments in the analytical ultracentrifuge. The enzyme has a molecular weight of 198000 and a subunit size of 48000, indicating that the molecule is a tetramer. Fluorescence and spectrophotometric titrations indicate that each subunit can bind 1 molecule of NADH. Enzymic activity is completely blocked by reaction of 4mol of 5,5'-dithiobis-(2-nitrobenzoate)/mol of enzyme. Excess of disulfiram or iodoacetamide decreases activity to only 50% of the control value, and only two thiol groups per molecule are apparently modified by these reagents. PMID:194582

  12. Malaria, favism and glucose-6-phosphate dehydrogenase deficiency.

    PubMed

    Huheey, J E; Martin, D L

    1975-10-15

    Although glucose-6-phosphate dehydrogenase deficient individuals may suffer (sometimes fatally) from favism, a high incidence of this trait occurs in many Mediterranean populations. This apparent paradox is explained on the basis of a synergistic interaction between favism and G-6-PD deficiency that provides increased protection against malaria compared to that of the G-6-PD deficiency alone. This relationship is analogous to that between various hemoglobins and malaria in that there is selection for a more severe trait if it provides more protection against malaria. PMID:1107056

  13. In vitro hydrogen production by glucose dehydrogenase and hydrogenase

    SciTech Connect

    Woodward, J.

    1996-10-01

    A new in vitro enzymatic pathway for the generation of molecular hydrogen from glucose has been demonstrated. The reaction is based upon the oxidation of glucose by Thermoplasma acidophilum glucose dehydrogenase with the concomitant oxidation of NADPH by Pyrococcus furiosus hydrogenase. Stoichiometric yields of hydrogen were produced from glucose with continuous cofactor recycle. This simple system may provide a method for the biological production of hydrogen from renewable sources. In addition, the other product of this reaction, gluconic acid, is a high-value commodity chemical.

  14. Evolution of D-lactate dehydrogenase activity from glycerol dehydrogenase and its utility for D-lactate production from lignocellulose.

    PubMed

    Wang, Qingzhao; Ingram, Lonnie O; Shanmugam, K T

    2011-11-22

    Lactic acid, an attractive, renewable chemical for production of biobased plastics (polylactic acid, PLA), is currently commercially produced from food-based sources of sugar. Pure optical isomers of lactate needed for PLA are typically produced by microbial fermentation of sugars at temperatures below 40 °C. Bacillus coagulans produces L(+)-lactate as a primary fermentation product and grows optimally at 50 °C and pH 5, conditions that are optimal for activity of commercial fungal cellulases. This strain was engineered to produce D(-)-lactate by deleting the native ldh (L-lactate dehydrogenase) and alsS (acetolactate synthase) genes to impede anaerobic growth, followed by growth-based selection to isolate suppressor mutants that restored growth. One of these, strain QZ19, produced about 90 g L(-1) of optically pure D(-)-lactic acid from glucose in < 48 h. The new source of D-lactate dehydrogenase (D-LDH) activity was identified as a mutated form of glycerol dehydrogenase (GlyDH; D121N and F245S) that was produced at high levels as a result of a third mutation (insertion sequence). Although the native GlyDH had no detectable activity with pyruvate, the mutated GlyDH had a D-LDH specific activity of 0.8 μmoles min(-1) (mg protein)(-1). By using QZ19 for simultaneous saccharification and fermentation of cellulose to D-lactate (50 °C and pH 5.0), the cellulase usage could be reduced to 1/3 that required for equivalent fermentations by mesophilic lactic acid bacteria. Together, the native B. coagulans and the QZ19 derivative can be used to produce either L(+) or D(-) optical isomers of lactic acid (respectively) at high titers and yields from nonfood carbohydrates. PMID:22065761

  15. Proline dehydrogenase 2 (PRODH2) is a hydroxyproline dehydrogenase (HYPDH) and molecular target for treating primary hyperoxaluria.

    PubMed

    Summitt, Candice B; Johnson, Lynnette C; Jönsson, Thomas J; Parsonage, Derek; Holmes, Ross P; Lowther, W Todd

    2015-03-01

    The primary hyperoxalurias (PH), types 1-3, are disorders of glyoxylate metabolism that result in increased oxalate production and calcium oxalate stone formation. The breakdown of trans-4-hydroxy-L-proline (Hyp) from endogenous and dietary sources of collagen makes a significant contribution to the cellular glyoxylate pool. Proline dehydrogenase 2 (PRODH2), historically known as hydroxyproline oxidase, is the first step in the hydroxyproline catabolic pathway and represents a drug target to reduce the glyoxylate and oxalate burden of PH patients. This study is the first report of the expression, purification, and biochemical characterization of human PRODH2. Evaluation of a panel of N-terminal and C-terminal truncation variants indicated that residues 157-515 contain the catalytic core with one FAD molecule. The 12-fold higher k(cat)/K(m) value of 0.93 M⁻¹·s⁻¹ for Hyp over Pro demonstrates the preference for Hyp as substrate. Moreover, an anaerobic titration determined a K(d) value of 125 μM for Hyp, a value ~1600-fold lower than the K(m) value. A survey of ubiquinone analogues revealed that menadione, duroquinone, and CoQ₁ reacted more efficiently than oxygen as the terminal electron acceptor during catalysis. Taken together, these data and the slow reactivity with sodium sulfite support that PRODH2 functions as a dehydrogenase and most likely utilizes CoQ₁₀ as the terminal electron acceptor in vivo. Thus, we propose that the name of PRODH2 be changed to hydroxyproline dehydrogenase (HYPDH). Three Hyp analogues were also identified to inhibit the activity of HYPDH, representing the first steps toward the development of a novel approach to treat all forms of PH. PMID:25697095

  16. Proline dehydrogenase 2 (PRODH2) is a hydroxyproline dehydrogenase (HYPDH) and molecular target for treating primary hyperoxaluria

    PubMed Central

    Summitt, Candice B.; Johnson, Lynnette C.; Jönsson, Thomas J.; Parsonage, Derek; Holmes, Ross P.; Lowther, W. Todd

    2015-01-01

    The primary hyperoxalurias (PH), types 1–3, are disorders of glyoxylate metabolism that result in increased oxalate production and calcium oxalate stone formation. The breakdown of trans-4-hydroxy-L-proline (Hyp) from endogenous and dietary sources of collagen makes a significant contribution to the cellular glyoxylate pool. Proline dehydrogenase 2 (PRODH2), historically known as hydroxyproline oxidase, is the first step in the hydroxyproline catabolic pathway and represents a drug target to reduce the glyoxylate and oxalate burden of PH patients. This study is the first report of the expression, purification, and biochemical characterization of human PRODH2. Evaluation of a panel of N-terminal and C-terminal truncation variants indicated that residues 157–515 contain the catalytic core with one FAD molecule. The 12-fold higher kcat/Km value of 0.93 M−1·s−1 for Hyp over Pro demonstrates the preference for Hyp as substrate. Moreover, an anaerobic titration determined a Kd value of 125 μM for Hyp, a value ~1600-fold lower than the Km value. A survey of ubiquinone analogues revealed that menadione, duroquinone, and CoQ1 reacted more efficiently than oxygen as the terminal electron acceptor during catalysis. Taken together, these data and the slow reactivity with sodium sulfite support that PRODH2 functions as a dehydrogenase and most likely utilizes CoQ10 as the terminal electron acceptor in vivo. Thus, we propose that the name of PRODH2 be changed to hydroxyproline dehydrogenase (HYPDH). Three Hyp analogues were also identified to inhibit the activity of HYPDH, representing the first steps toward the development of a novel approach to treat all forms of PH. PMID:25697095

  17. Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation

    PubMed Central

    Tan, Tien-Chye; Kracher, Daniel; Gandini, Rosaria; Sygmund, Christoph; Kittl, Roman; Haltrich, Dietmar; Hällberg, B. Martin; Ludwig, Roland; Divne, Christina

    2015-01-01

    A new paradigm for cellulose depolymerization by fungi focuses on an oxidative mechanism involving cellobiose dehydrogenases (CDH) and copper-dependent lytic polysaccharide monooxygenases (LPMO); however, mechanistic studies have been hampered by the lack of structural information regarding CDH. CDH contains a haem-binding cytochrome (CYT) connected via a flexible linker to a flavin-dependent dehydrogenase (DH). Electrons are generated from cellobiose oxidation catalysed by DH and shuttled via CYT to LPMO. Here we present structural analyses that provide a comprehensive picture of CDH conformers, which govern the electron transfer between redox centres. Using structure-based site-directed mutagenesis, rapid kinetics analysis and molecular docking, we demonstrate that flavin-to-haem interdomain electron transfer (IET) is enabled by a haem propionate group and that rapid IET requires a closed CDH state in which the propionate is tightly enfolded by DH. Following haem reduction, CYT reduces LPMO to initiate oxygen activation at the copper centre and subsequent cellulose depolymerization. PMID:26151670

  18. Characterization of the iron-sulfur centers in succinate dehydrogenase.

    PubMed Central

    Coles, C J; Holm, R H; Kurtz, D M; Orme-Johnson, W H; Rawlings, J; Singer, T P; Wong, G B

    1979-01-01

    Two techniques have been applied to the determination of the number and type (2-Fe, 4-Fe) of iron-sulfur centers in the iron-sulfur flavoprotein succinate dehydrogenase [succinate:(acceptor) oxidoreductase, EC 1.3.99.1]. One procedure uses p-CF3C6H4SH as an extrusion reagent and Fourier transform 19F nuclear magentic resonance as the method of detection and quantitation of extruded cores of these centers in the form of [Fe2S2(SRF)4]2- and [Fe4S4(SRF)4]2- (RF = p-C6H4CF3). The second procedure, interprotein core transfer, involves thiol displacement of iron-sulfur cores followed by specific core transfer to the apoproteins of Bacillus polymyxa ferredoxin and adrenodoxin. Detection and quantitation are accomplished by electron paramagnetic resonance of reduced proteins at low temperatures. Both procedures clearly show that succinate dehydrogenase contains two dimeric (Fe2S2) and one tetrameric (Fe4S4) centers per mole of histidyl flavin, accounting for all eight nonheme iron and eight labile sulfur atoms found by chemical analysis. These results remove uncertainties created by the less than stoichiometric amounts of binuclear centers detected by electron paramagnetic resonance after dithionite reduction and provide secure characterization of the iron-sulfur centers in this enzyme. PMID:226982

  19. Peroxisomal lactate dehydrogenase is generated by translational readthrough in mammals

    PubMed Central

    Schueren, Fabian; Lingner, Thomas; George, Rosemol; Hofhuis, Julia; Dickel, Corinna; Gärtner, Jutta; Thoms, Sven

    2014-01-01

    Translational readthrough gives rise to low abundance proteins with C-terminal extensions beyond the stop codon. To identify functional translational readthrough, we estimated the readthrough propensity (RTP) of all stop codon contexts of the human genome by a new regression model in silico, identified a nucleotide consensus motif for high RTP by using this model, and analyzed all readthrough extensions in silico with a new predictor for peroxisomal targeting signal type 1 (PTS1). Lactate dehydrogenase B (LDHB) showed the highest combined RTP and PTS1 probability. Experimentally we show that at least 1.6% of the total cellular LDHB is targeted to the peroxisome by a conserved hidden PTS1. The readthrough-extended lactate dehydrogenase subunit LDHBx can also co-import LDHA, the other LDH subunit, into peroxisomes. Peroxisomal LDH is conserved in mammals and likely contributes to redox equivalent regeneration in peroxisomes. DOI: http://dx.doi.org/10.7554/eLife.03640.001 PMID:25247702

  20. High-pressure-induced water penetration into 3-isopropylmalate dehydrogenase

    SciTech Connect

    Nagae, Takayuki; Kawamura, Takashi; Chavas, Leonard M. G.; Niwa, Ken; Hasegawa, Masashi; Kato, Chiaki; Watanabe, Nobuhisa

    2012-03-01

    Structures of 3-isopropylmalate dehydrogenase were determined at pressures ranging from 0.1 to 650 MPa. Comparison of these structures gives a detailed picture of the swelling of a cavity at the dimer interface and the generation of a new cleft on the molecular surface, which are accompanied by water penetration. Hydrostatic pressure induces structural changes in proteins, including denaturation, the mechanism of which has been attributed to water penetration into the protein interior. In this study, structures of 3-isopropylmalate dehydrogenase (IPMDH) from Shewanella oneidensis MR-1 were determined at about 2 Å resolution under pressures ranging from 0.1 to 650 MPa using a diamond anvil cell (DAC). Although most of the protein cavities are monotonically compressed as the pressure increases, the volume of one particular cavity at the dimer interface increases at pressures over 340 MPa. In parallel with this volume increase, water penetration into the cavity could be observed at pressures over 410 MPa. In addition, the generation of a new cleft on the molecular surface accompanied by water penetration could also be observed at pressures over 580 MPa. These water-penetration phenomena are considered to be initial steps in the pressure-denaturation process of IPMDH.

  1. Structural analysis of fungus-derived FAD glucose dehydrogenase

    PubMed Central

    Yoshida, Hiromi; Sakai, Genki; Mori, Kazushige; Kojima, Katsuhiro; Kamitori, Shigehiro; Sode, Koji

    2015-01-01

    We report the first three-dimensional structure of fungus-derived glucose dehydrogenase using flavin adenine dinucleotide (FAD) as the cofactor. This is currently the most advanced and popular enzyme used in glucose sensor strips manufactured for glycemic control by diabetic patients. We prepared recombinant nonglycosylated FAD-dependent glucose dehydrogenase (FADGDH) derived from Aspergillus flavus (AfGDH) and obtained the X-ray structures of the binary complex of enzyme and reduced FAD at a resolution of 1.78 Å and the ternary complex with reduced FAD and D-glucono-1,5-lactone (LGC) at a resolution of 1.57 Å. The overall structure is similar to that of fungal glucose oxidases (GOxs) reported till date. The ternary complex with reduced FAD and LGC revealed the residues recognizing the substrate. His505 and His548 were subjected for site-directed mutagenesis studies, and these two residues were revealed to form the catalytic pair, as those conserved in GOxs. The absence of residues that recognize the sixth hydroxyl group of the glucose of AfGDH, and the presence of significant cavity around the active site may account for this enzyme activity toward xylose. The structural information will contribute to the further engineering of FADGDH for use in more reliable and economical biosensing technology for diabetes management. PMID:26311535

  2. Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation.

    PubMed

    Tan, Tien-Chye; Kracher, Daniel; Gandini, Rosaria; Sygmund, Christoph; Kittl, Roman; Haltrich, Dietmar; Hällberg, B Martin; Ludwig, Roland; Divne, Christina

    2015-01-01

    A new paradigm for cellulose depolymerization by fungi focuses on an oxidative mechanism involving cellobiose dehydrogenases (CDH) and copper-dependent lytic polysaccharide monooxygenases (LPMO); however, mechanistic studies have been hampered by the lack of structural information regarding CDH. CDH contains a haem-binding cytochrome (CYT) connected via a flexible linker to a flavin-dependent dehydrogenase (DH). Electrons are generated from cellobiose oxidation catalysed by DH and shuttled via CYT to LPMO. Here we present structural analyses that provide a comprehensive picture of CDH conformers, which govern the electron transfer between redox centres. Using structure-based site-directed mutagenesis, rapid kinetics analysis and molecular docking, we demonstrate that flavin-to-haem interdomain electron transfer (IET) is enabled by a haem propionate group and that rapid IET requires a closed CDH state in which the propionate is tightly enfolded by DH. Following haem reduction, CYT reduces LPMO to initiate oxygen activation at the copper centre and subsequent cellulose depolymerization. PMID:26151670

  3. In Silico Analysis of Arabidopsis thaliana Peroxisomal 6-Phosphogluconate Dehydrogenase

    PubMed Central

    Fernández-Fernández, Álvaro D.; Corpas, Francisco J.

    2016-01-01

    NADPH, whose regeneration is critical for reductive biosynthesis and detoxification pathways, is an essential component in cell redox homeostasis. Peroxisomes are subcellular organelles with a complex biochemical machinery involved in signaling and stress processes by molecules such as hydrogen peroxide (H2O2) and nitric oxide (NO). NADPH is required by several peroxisomal enzymes involved in β-oxidation, NO, and glutathione (GSH) generation. Plants have various NADPH-generating dehydrogenases, one of which is 6-phosphogluconate dehydrogenase (6PGDH). Arabidopsis contains three 6PGDH genes that probably are encoded for cytosolic, chloroplastic/mitochondrial, and peroxisomal isozymes, although their specific functions remain largely unknown. This study focuses on the in silico analysis of the biochemical characteristics and gene expression of peroxisomal 6PGDH (p6PGDH) with the aim of understanding its potential function in the peroxisomal NADPH-recycling system. The data show that a group of plant 6PGDHs contains an archetypal type 1 peroxisomal targeting signal (PTS), while in silico gene expression analysis using affymetrix microarray data suggests that Arabidopsis p6PGDH appears to be mainly involved in xenobiotic response, growth, and developmental processes. PMID:27034898

  4. Phenylbutyrate Therapy for Pyruvate Dehydrogenase Complex Deficiency and Lactic Acidosis

    PubMed Central

    Ferriero, Rosa; Manco, Giuseppe; Lamantea, Eleonora; Nusco, Edoardo; Ferrante, Mariella I.; Sordino, Paolo; Stacpoole, Peter W.; Lee, Brendan; Zeviani, Massimo; Brunetti-Pierri, Nicola

    2014-01-01

    Lactic acidosis is a build-up of lactic acid in the blood and tissues, which can be due to several inborn errors of metabolism as well as nongenetic conditions. Deficiency of pyruvate dehydrogenase complex (PDHC) is the most common genetic disorder leading to lactic acidosis. Phosphorylation of specific serine residues of the E1α subunit of PDHC by pyruvate dehydrogenase kinase (PDK) inactivates the enzyme, whereas dephosphorylation restores PDHC activity. We found that phenylbutyrate enhances PDHC enzymatic activity in vitro and in vivo by increasing the proportion of unphosphorylated enzyme through inhibition of PDK. Phenylbutyrate given to C57B6/L wild-type mice results in a significant increase in PDHC enzyme activity and a reduction of phosphorylated E1α in brain, muscle, and liver compared to saline-treated mice. By means of recombinant enzymes, we showed that phenylbutyrate prevents phosphorylation of E1α through binding and inhibition of PDK, providing a molecular explanation for the effect of phenylbutyrate on PDHC activity. Phenylbutyrate increases PDHC activity in fibroblasts from PDHC-deficient patients harboring various molecular defects and corrects the morphological, locomotor, and biochemical abnormalities in the noam631 zebrafish model of PDHC deficiency. In mice, phenylbutyrate prevents systemic lactic acidosis induced by partial hepatectomy. Because phenylbutyrate is already approved for human use in other diseases, the findings of this study have the potential to be rapidly translated for treatment of patients with PDHC deficiency and other forms of primary and secondary lactic acidosis. PMID:23467562

  5. Alcohol and aldehyde dehydrogenase polymorphisms in Chinese and Indian populations.

    PubMed

    Tan, Ene-Choo; Lim, Leslie; Leong, Jern-Yi; Lim, Jing-Yan; Lee, Arthur; Yang, Jun; Tan, Chay-Hoon; Winslow, Munidasa

    2010-01-01

    The association between two functional polymorphisms in alcohol dehydrogenase (ADH2/ADH1B) and aldehyde dehydrogenase (ALDH2) genes and alcohol dependence was examined in 182 Chinese and Indian patients undergoing treatment for alcohol dependence and 184 screened control subjects from Singapore. All subjects were screened by the Alcohol Use Disorders Identification Test (AUDIT). Patients were also administered the Severity of Alcohol Dependence Questionnaire (SADQ). Polymorphisms were genotyped by allele-specific polymerase chain reaction and selected genotypes confirmed by DNA sequencing or restriction fragment length polymorphism. Our results showed that frequencies of ADH1B*2 and ALDH2*2 were higher in controls compared to alcohol-dependent subjects for both Chinese and Indians. Frequencies of these two alleles were also higher in the 104 Chinese controls compared to the 80 Indian controls. None of the eight Chinese who were homozygous for both protective alleles was alcohol dependent. The higher frequencies of the protective alleles could explain the lower rate of alcohol dependence in Chinese. PMID:20025435

  6. Engineering of Pyranose Dehydrogenase for Increased Oxygen Reactivity

    PubMed Central

    Krondorfer, Iris; Lipp, Katharina; Brugger, Dagmar; Staudigl, Petra; Sygmund, Christoph; Haltrich, Dietmar; Peterbauer, Clemens K.

    2014-01-01

    Pyranose dehydrogenase (PDH), a member of the GMC family of flavoproteins, shows a very broad sugar substrate specificity but is limited to a narrow range of electron acceptors and reacts extremely slowly with dioxygen as acceptor. The use of substituted quinones or (organo)metals as electron acceptors is undesirable for many production processes, especially of food ingredients. To improve the oxygen reactivity, site-saturation mutagenesis libraries of twelve amino acids around the active site of Agaricus meleagris PDH were expressed in Saccharomyces cerevisiae. We established high-throughput screening assays for oxygen reactivity and standard dehydrogenase activity using an indirect Amplex Red/horseradish peroxidase and a DCIP/D-glucose based approach. The low number of active clones confirmed the catalytic role of H512 and H556. Only one position was found to display increased oxygen reactivity. Histidine 103, carrying the covalently linked FAD cofactor in the wild-type, was substituted by tyrosine, phenylalanine, tryptophan and methionine. Variant H103Y was produced in Pichia pastoris and characterized and revealed a five-fold increase of the oxygen reactivity. PMID:24614932

  7. Crystal structure of a chimaeric bacterial glutamate dehydrogenase.

    PubMed

    Oliveira, Tânia; Sharkey, Michael A; Engel, Paul C; Khan, Amir R

    2016-06-01

    Glutamate dehydrogenases (EC 1.4.1.2-4) catalyse the oxidative deamination of L-glutamate to α-ketoglutarate using NAD(P)(+) as a cofactor. The bacterial enzymes are hexameric, arranged with 32 symmetry, and each polypeptide consists of an N-terminal substrate-binding segment (domain I) followed by a C-terminal cofactor-binding segment (domain II). The catalytic reaction takes place in the cleft formed at the junction of the two domains. Distinct signature sequences in the nucleotide-binding domain have been linked to the binding of NAD(+) versus NADP(+), but they are not unambiguous predictors of cofactor preference. In the absence of substrate, the two domains move apart as rigid bodies, as shown by the apo structure of glutamate dehydrogenase from Clostridium symbiosum. Here, the crystal structure of a chimaeric clostridial/Escherichia coli enzyme has been determined in the apo state. The enzyme is fully functional and reveals possible determinants of interdomain flexibility at a hinge region following the pivot helix. The enzyme retains the preference for NADP(+) cofactor from the parent E. coli domain II, although there are subtle differences in catalytic activity. PMID:27303899

  8. A straightforward radiometric technique for measuring IMP dehydrogenase.

    PubMed

    Cooney, D A; Wilson, Y; McGee, E

    1983-04-15

    [2-3H]Inosinic acid ([2-3H]IMP) has been biosynthesized in good yield from [2-3H]hypoxanthine and PRPP via the action of a partially purified preparation of hypoxanthine/guanine phosphoribosyl transferase from mouse brain. The product was purified in one step by ascending paper chromatography, and used to assess the activity of IMP dehydrogenase. To conduct the assay, tritiated substrate is admixed with enzyme in a final volume of 10 microliters; NAD is present to serve as cofactor for the reaction, and allopurinol to inhibit the oxidation of any hypoxanthine generated as a consequence of side reactions. After an appropriate period of incubation, the 3H2O arising from the oxidation of tritiated IMP via [3H]NAD is isolated by quantitative microdistillation. Performed as described, the assay is facile, sensitive, and accurate, with the capability of detecting the dehydrogenation of as little as 1 pmol of [3H]IMP. Using it, measurements have been made of IMP dehydrogenase in a comprehensive array of mouse organs. Of these, pancreas contained the enzyme at the highest specific activity. PMID:6135372

  9. Predicting Three-Dimensional Conformations of Peptides Constructed of Only Glycine, Alanine, Aspartic Acid, and Valine

    NASA Astrophysics Data System (ADS)

    Oda, Akifumi; Fukuyoshi, Shuichi

    2015-06-01

    The GADV hypothesis is a form of the protein world hypothesis, which suggests that life originated from proteins (Lacey et al. 1999; Ikehara 2002; Andras 2006). In the GADV hypothesis, life is thought to have originated from primitive proteins constructed of only glycine, alanine, aspartic acid, and valine ([GADV]-proteins). In this study, the three-dimensional (3D) conformations of randomly generated short [GADV]-peptides were computationally investigated using replica-exchange molecular dynamics (REMD) simulations (Sugita and Okamoto 1999). Because the peptides used in this study consisted of only 20 residues each, they could not form certain 3D structures. However, the conformational tendencies of the peptides were elucidated by analyzing the conformational ensembles generated by REMD simulations. The results indicate that secondary structures can be formed in several randomly generated [GADV]-peptides. A long helical structure was found in one of the hydrophobic peptides, supporting the conjecture of the GADV hypothesis that many peptides aggregated to form peptide multimers with enzymatic activity in the primordial soup. In addition, these results indicate that REMD simulations can be used for the structural investigation of short peptides.

  10. Anisotropy-Guided Enantiomeric Enhancement in Alanine Using Far-UV Circularly Polarized Light.

    PubMed

    Meinert, Cornelia; Cassam-Chenaï, Patrick; Jones, Nykola C; Nahon, Laurent; Hoffmann, Søren V; Meierhenrich, Uwe J

    2015-06-01

    All life on Earth is characterized by its asymmetry - both the genetic material and proteins are composed of homochiral monomers. Understanding how this molecular asymmetry initially arose is a key question related to the origins of life. Cometary ice simulations, L-enantiomeric enriched amino acids in meteorites and the detection of circularly polarized electromagnetic radiation in star-forming regions point to a possible interstellar/protostellar generation of stereochemical asymmetry. Based upon our recently recorded anisotropy spectra g(λ) of amino acids in the vacuum-UV range, we subjected amorphous films of racemic (13)C-alanine to far-UV circularly polarized synchrotron radiation to probe the asymmetric photon-molecule interaction under interstellar conditions. Optical purities of up to 4% were reached, which correlate with our theoretical predictions. Importantly, we show that chiral symmetry breaking using circularly polarized light is dependent on both the helicity and the wavelength of incident light. In order to predict such stereocontrol, time-dependent density functional theory was used to calculate anisotropy spectra. The calculated anisotropy spectra show good agreement with the experimental ones. The European Space Agency's Rosetta mission, which successfully landed Philae on comet 67P/Churyumov-Gerasimenko on 12 November 2014, will investigate the configuration of chiral compounds and thereby obtain data that are to be interpreted in the context of the results presented here. PMID:25773582

  11. A Micro-Platinum Wire Biosensor for Fast and Selective Detection of Alanine Aminotransferase

    PubMed Central

    Thuy, Tran Nguyen Thanh; Tseng, Tina T.-C.

    2016-01-01

    In this study, a miniaturized biosensor based on permselective polymer layers (overoxidized polypyrrole (Ppy) and Nafion®) modified and enzyme (glutamate oxidase (GlutOx)) immobilized micro-platinum wire electrode for the detection of alanine aminotransferase (ALT) was fabricated. The proposed ALT biosensor was measured electrochemically by constant potential amperometry at +0.7 V vs. Ag/AgCl. The ALT biosensor provides fast response time (~5 s) and superior selectivity towards ALT against both negatively and positively charged species (e.g., ascorbic acid (AA) and dopamine (DA), respectively). The detection range of the ALT biosensor is found to be 10–900 U/L which covers the range of normal ALT levels presented in the serum and the detection limit and sensitivity are found to be 8.48 U/L and 0.059 nA/(U/L·mm2) (N = 10), respectively. We also found that one-day storage of the ALT biosensor at −20 °C right after the sensor being fabricated can enhance the sensor sensitivity (1.74 times higher than that of the sensor stored at 4 °C). The ALT biosensor is stable after eight weeks of storage at −20 °C. The sensor was tested in spiked ALT samples (ALT activities: 20, 200, 400, and 900 U/L) and reasonable recoveries (70%~107%) were obtained. PMID:27240366

  12. Bidirectional Interaction of Alanine with Sulfuric Acid in the Presence of Water and the Atmospheric Implication.

    PubMed

    Wang, Chun-Yu; Ma, Yan; Chen, Jiao; Jiang, Shuai; Liu, Yi-Rong; Wen, Hui; Feng, Ya-Juan; Hong, Yu; Huang, Teng; Huang, Wei

    2016-04-21

    Amino acids are recognized as important components of atmospheric aerosols, which impact on the Earth's climate directly and indirectly. However, much remains unknown about the initial events of nucleation. In this work, the interaction of alanine [NH2CH(CH3)COOH or Ala], one of the most abundant amino acids in the atmosphere, with sulfuric acid (SA) and water (W) has been investigated at the M06-2X/6-311++G(3df, 3pd) level of theory. We have studied thermodynamics of the hydrated (Ala)(SA) core system with up to four water molecules. We found that Ala, with one amino group and one carboxyl group, can interact with H2SO4 and H2O in two directions and that it has a high cluster stabilizing effect similar to that of ammonia, which is one of the key nucleation precursor. The corresponding Gibbs free energies of the (Ala)(SA)(W)n (n = 0-4) clusters formation at 298.15 K predicted that Ala can contribute to the stabilization of small binary clusters. Our results showed that the hydrate distribution is temperature-dependent and that a higher humidity and temperature can contribute to the formation of hydrated clusters. PMID:26997115

  13. Quantification of neurotoxin BMAA (β-N-methylamino-L-alanine) in seafood from Swedish markets

    NASA Astrophysics Data System (ADS)

    Jiang, Liying; Kiselova, Nadezda; Rosén, Johan; Ilag, Leopold L.

    2014-11-01

    The neurotoxin β-N-methylamino-L-alanine (BMAA) produced naturally by cyanobacteria, diatoms and dinoflagellates can be transferred and accumulated up the food chain, and may be a risk factor for neurodegenerative diseases. This study provides the first systematic screening of BMAA exposure of a large population through the consumption of seafood sold in metropolitan markets. BMAA was distinguished from known isomers by liquid chromatography tandem mass spectrometry after acidic hydrolysis and derivatization. Using deuterium-labeled internal standard, BMAA was quantified as 0.01-0.90 μg/g wet weight of tissues in blue mussel, oyster, shrimp, plaice, char and herring, but was undetectable (<0.01 μg/g) in other samples (salmon, cod, perch and crayfish). Provided that the content of BMAA detected is relevant for intake calculations, the data presented may be used for a first estimation of BMAA exposure through seafood from Swedish markets, and to refine the design of future toxicological experiments and assessments.

  14. Biotransfer of β-N-methylamino-L-alanine (BMAA) in a eutrophicated freshwater lake.

    PubMed

    Lage, Sandra; Annadotter, Heléne; Rasmussen, Ulla; Rydberg, Sara

    2015-03-01

    β-N-Methylamino-L-alanine (BMAA), a neurotoxic non-protein amino acid, plays a significant role as an environmental risk factor in neurodegenerative diseases, such as amyotrophic lateral sclerosis. BMAA producers occur globally, colonizing almost all habitats and represent species from distinct phytoplanktonic groups, i.e., cyanobacteria, diatoms, and dinoflagellates. Bioaccumulation of BMAA in invertebrate and vertebrate organisms has also been registered around the globe. In the Baltic Sea, BMAA has been detected in several commercial fish species, raising the question of the bioaccumulation of BMAA in Swedish limnic systems. Here we find the presence of BMAA in water samples from Lake Finjasjön and identify its bioaccumulation patterns in both plankti-benthivorous and piscivorous fish, according to fish species, total weight, gender, and season of collection. For the first time, a large number of fish individuals were used in order to draw conclusions on BMAA bioaccumulation in a closed ecological community based on a statistical approach. We may, therefore, conclude that feeding patterns (plankti-benthivorous) and increased age of fish may lead to a higher tissue concentration of BMAA. PMID:25738330

  15. β-N-methylamino-L-alanine (BMAA) metabolism in the aquatic macrophyte Ceratophyllum demersum.

    PubMed

    Downing, Simoné; Esterhuizen-Londt, Maranda; Grant Downing, Timothy

    2015-10-01

    The cyanobacterial neurotoxin, β-N-methylamino-l-alanine (BMAA) bioaccumulates and biomagnifies within the environment. However, most reports on the environmental presence of BMAA focus on the presence of BMAA in animals rather than in plants. Various laboratory studies have reported that this neurotoxin, implicated in neurodegenerative disease, is rapidly taken up by various aquatic and terrestrial plants, including crop plants. In this study the metabolism of BMAA in the aquatic macrophyte, Ceratophyllum demersum, was investigated using stable isotopically labelled BMAA. Data show that the toxin is rapidly removed from the environment by the plant. However, during depuration cellular BMAA concentrations decrease considerably, without excretion of the toxin back into the environment and without catabolism of BMAA, evidenced by the absence of label transfer to other amino acids. This strongly suggests that BMAA is metabolised via covalent modification and sequestered inside the plant as a BMAA-derivative. This modification may be reversed in humans following consumption of BMAA-containing plant material. These data therefore impact on the assessment of the risk of human exposure to this neurotoxin. PMID:26036420

  16. Bacteria do not incorporate β-N-methylamino-L-alanine into their proteins.

    PubMed

    van Onselen, Rianita; Cook, Niall A; Phelan, Richard R; Downing, Tim G

    2015-08-01

    β-N-methylamino-l-alanine (BMAA), is commonly found in both a free and proteinassociated form in various organisms exposed to the toxin. The long latency of development of neurodegeneration attributed to BMAA, is hypothesized to be the result of excitotoxicity following slow release of the toxin from protein reservoirs. It was recently suggested that these BMAA-protein associations may reflect misincorporation of BMAA in place of serine, as occurs, for example, when canavanine misincorporates in place of arginine. We therefore compared BMAA and canavanine toxicty in various bacterial species, and misincorporation of these amino acids into proteins in a bacterial protein expression system. None of the bacterial species showed any physiological stress responses to BMAA in contrast to the growth reduction observed when cultures were incubated in media containing canavanine. LC-MS analysis confirmed uptake of BMAA from growth media. However, after immobilized metal affinity chromatography and SDS-PAGE purification of proteins produced in an E scherichia coli expression system, no BMAA was detected by either LC-MS or LC-MS/MS analysis using two derivatization methods, or by orbitrap MS of trypsin digests of the protein. We therefore conclude that BMAA is not misincorporated into proteins in bacteria and that the observed BMAA-protein association in bacteria is superficial. PMID:26051985

  17. Acute β-N-Methylamino-L-alanine Toxicity in a Mouse Model.

    PubMed

    Al-Sammak, Maitham Ahmed; Rogers, Douglas G; Hoagland, Kyle D

    2015-01-01

    The cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) is considered to be an "excitotoxin," and its suggested mechanism of action is killing neurons. Long-term exposure to L-BMAA is believed to lead to neurodegenerative diseases including Parkinson's and Alzheimer's diseases and amyotrophic lateral sclerosis (Lou Gehrig's disease). Objectives of this study were to determine the presumptive median lethal dose (LD50), the Lowest-Observed-Adverse-Effect Level (LOAEL), and histopathologic lesions caused by the naturally occurring BMAA isomer, L-BMAA, in mice. Seventy NIH Swiss Outbred mice (35 male and 35 female) were used. Treatment group mice were injected intraperitoneally with 0.03, 0.3, 1, 2, and 3 mg/g body weight L-BMAA, respectively, and control mice were sham-injected. The presumptive LD50 of L-BMAA was 3 mg/g BW and the LOAEL was 2 mg/g BW. There were no histopathologic lesions in brain, liver, heart, kidney, lung, or spleen in any of the mice during the 14-day study. L-BMAA was detected in brains and livers in all of treated mice but not in control mice. Males injected with 0.03 mg/g BW, 0.3 mg/g BW, and 3.0 mg/g BW L-BMAA showed consistently higher concentrations (P < 0.01) in brain and liver samples as compared to females in those respective groups. PMID:26604922

  18. Quantification of neurotoxin BMAA (β-N-methylamino-L-alanine) in seafood from Swedish markets.

    PubMed

    Jiang, Liying; Kiselova, Nadezda; Rosén, Johan; Ilag, Leopold L

    2014-01-01

    The neurotoxin β-N-methylamino-L-alanine (BMAA) produced naturally by cyanobacteria, diatoms and dinoflagellates can be transferred and accumulated up the food chain, and may be a risk factor for neurodegenerative diseases. This study provides the first systematic screening of BMAA exposure of a large population through the consumption of seafood sold in metropolitan markets. BMAA was distinguished from known isomers by liquid chromatography tandem mass spectrometry after acidic hydrolysis and derivatization. Using deuterium-labeled internal standard, BMAA was quantified as 0.01-0.90 μg/g wet weight of tissues in blue mussel, oyster, shrimp, plaice, char and herring, but was undetectable (<0.01 μg/g) in other samples (salmon, cod, perch and crayfish). Provided that the content of BMAA detected is relevant for intake calculations, the data presented may be used for a first estimation of BMAA exposure through seafood from Swedish markets, and to refine the design of future toxicological experiments and assessments. PMID:25373604

  19. Membrane topology of aspartate:alanine antiporter AspT from Comamonas testosteroni.

    PubMed

    Fujiki, Takashi; Nanatani, Kei; Nishitani, Kei; Yagi, Kyoko; Ohnishi, Fumito; Yoneyama, Hiroshi; Uchida, Takafumi; Nakajima, Tasuku; Abea, Keietsu

    2007-01-01

    We cloned the aspT gene encoding the L-aspartate:L-alanine antiporter AspTCt in Comamonas testosteroni genomic DNA. Analysis of the nucleotide sequence revealed that C. testosteroni has an asp operon containing aspT upstream of the l-aspartate 4-decarboxylase gene, and that the gene order of the asp operon of C. testosteroni is the inverse of that of Tetragenococcus halophilus. We used proteoliposomes to confirm the transport processes of AspTCt. To elucidate the two-dimensional structure of AspTCt, we analysed its membrane topology by means of alkaline phosphatase (PhoA) and beta-lactamase (BlaM) fusion methods. The fusion analyses revealed that AspTCt has seven transmembrane segments (TMs), a large cytoplasmic loop containing approximately 200 amino acid residues between TM4 and TM5, a cytoplasmic N-terminus, and a periplasmic C-terminus. These results suggest that the orientation of the N-terminus of AspTCt differs from that of tetragenococcal AspT, even though these two AspT orthologues catalyse the same transport reactions. PMID:17158863

  20. Anisotropy-Guided Enantiomeric Enhancement in AlanineUsing Far-UV Circularly Polarized Light

    NASA Astrophysics Data System (ADS)

    Meinert, Cornelia; Cassam-Chenaï, Patrick; Jones, Nykola C.; Nahon, Laurent; Hoffmann, Søren V.; Meierhenrich, Uwe J.

    2015-06-01

    All life on Earth is characterized by its asymmetry - both the genetic material and proteins are composed of homochiral monomers. Understanding how this molecular asymmetry initially arose is a key question related to the origins of life. Cometary ice simulations, l-enantiomeric enriched amino acids in meteorites and the detection of circularly polarized electromagnetic radiation in star-forming regions point to a possible interstellar/protostellar generation of stereochemical asymmetry. Based upon our recently recorded anisotropy spectra g( λ) of amino acids in the vacuum-UV range, we subjected amorphous films of racemic 13C-alanine to far-UV circularly polarized synchrotron radiation to probe the asymmetric photon-molecule interaction under interstellar conditions. Optical purities of up to 4 % were reached, which correlate with our theoretical predictions. Importantly, we show that chiral symmetry breaking using circularly polarized light is dependent on both the helicity and the wavelength of incident light. In order to predict such stereocontrol, time-dependent density functional theory was used to calculate anisotropy spectra. The calculated anisotropy spectra show good agreement with the experimental ones. The European Space Agency's Rosetta mission, which successfully landed Philae on comet 67P/Churyumov-Gerasimenko on 12 November 2014, will investigate the configuration of chiral compounds and thereby obtain data that are to be interpreted in the context of the results presented here.

  1. Growth and characterization of L-alanine cadmium bromide a semiorganic nonlinear optical crystals.

    PubMed

    Ilayabarathi, P; Chandrasekaran, J

    2012-10-01

    A new semiorganic nonlinear optical crystal, l-alanine cadmium bromide (LACB) was grown from aqueous solution by slow solvent evaporation method at room temperature. As grown crystals were characterized for its spectral, thermal, linear and second order nonlinear optical properties. LACB crystallizes in orthorhombic system and unit cell parameters a=5.771(2)Å, b=6.014(4)Å, c=12.298(2)Å, α=β=γ=90° and volume=426.8(3)Å(3). The mode of vibrations of different molecular groups present in the crystal was identified by FTIR study. The grown crystals were found to be transparent in the entire visible region. The thermal strength and the decomposition of the grown crystals were studied using TG/DTA and DSC analysis. Dielectric measurement revealed that the crystals had very low dielectric constant at higher frequency in room temperature. The mechanical behavior was studied by Vicker's microhardness tester. The grown crystal has negative photoconductivity nature. The fluorescence spectrum of the crystal was recorded and its optical band gap is about 3.356 eV. The NLO property of crystal using modified Kurtz-Perry powder technique with Nd:YAG laser light of wavelength 1064nm indicated that their second harmonic generation (SHG) efficiency was half that of pure KDP. PMID:22885081

  2. Biotransfer of β-N-Methylamino-l-alanine (BMAA) in a Eutrophicated Freshwater Lake

    PubMed Central

    Lage, Sandra; Annadotter, Heléne; Rasmussen, Ulla; Rydberg, Sara

    2015-01-01

    β-N-Methylamino-l-alanine (BMAA), a neurotoxic non-protein amino acid, plays a significant role as an environmental risk factor in neurodegenerative diseases, such as amyotrophic lateral sclerosis. BMAA producers occur globally, colonizing almost all habitats and represent species from distinct phytoplanktonic groups, i.e., cyanobacteria, diatoms, and dinoflagellates. Bioaccumulation of BMAA in invertebrate and vertebrate organisms has also been registered around the globe. In the Baltic Sea, BMAA has been detected in several commercial fish species, raising the question of the bioaccumulation of BMAA in Swedish limnic systems. Here we find the presence of BMAA in water samples from Lake Finjasjön and identify its bioaccumulation patterns in both plankti-benthivorous and piscivorous fish, according to fish species, total weight, gender, and season of collection. For the first time, a large number of fish individuals were used in order to draw conclusions on BMAA bioaccumulation in a closed ecological community based on a statistical approach. We may, therefore, conclude that feeding patterns (plankti-benthivorous) and increased age of fish may lead to a higher tissue concentration of BMAA. PMID:25738330

  3. Analysis of parameters that influence the amplitude of the ESR/alanine signal after irradiation.

    PubMed

    Dolo, J M; Feaugas, V

    2005-02-01

    When ESR/alanine dosimetry is used for comparison, the time elapsed between irradiation and measurement is critical. Several publications have already mentioned the need for monitoring some of the parameters before, during and after irradiation for accurate normalization of ESR measurements. Nevertheless, neither classification nor coupling effects have yet been mentioned. By application of an experimental design approach, some parameters such as temperature and humidity during storage, before and after irradiation, have been studied. Results are given about the way the signal tends to evolve, ranking the parameters according to their influence and the effects of parameter coupling. A comparison with a conventional approach (study of one parameter at a time) is made. It is proposed to use a normalized ESR measurement that better accounts for the chemical aspect. A better fit of the results (amplitude versus time) is observed when amplitude is corrected taking into account the water content of the dosimeter for a given relative humidity of the surrounding atmosphere during storage. PMID:15607461

  4. Transcription and genetic analyses of a putative N-acetylmuramyl-L-alanine amidase in Borrelia burgdorferi

    PubMed Central

    Yang, Yu; Li, Chunhao

    2010-01-01

    In this study, a putative N-acetylmuramyl-L-alanine amidase gene (bb0666) was identified in the genome of the Lyme disease spirochete Borrelia burgdorferi. This protein shares c. 30% identity with its counterparts from other bacteria. Reverse transcriptase-PCR analysis showed that bb0666 along with two other genes (bb0665 and bb0667) are cotranscribed with the motility and chemotaxis genes. This newly identified operon is termed as pami. Sequence and primer extension analyses showed that pami was regulated by a σ70-like promoter, which is designated as Pami. Transcriptional analysis using a gene encoding green fluorescence protein as a reporter demonstrated that Pami functions in both Escherichia coli and B. burgdorferi. Genetic studies showed that the Δbb0666 mutant grows in long chains of unseparated cells, whose phenotype is similar to its counterparts in E. coli. Taken together, these results demonstrate that bb0666 is a homolog of MurNac-LAAs that contributes to the cell division of B. burgdorferi. PMID:19025570

  5. A Micro-Platinum Wire Biosensor for Fast and Selective Detection of Alanine Aminotransferase.

    PubMed

    Thuy, Tran Nguyen Thanh; Tseng, Tina T-C

    2016-01-01

    In this study, a miniaturized biosensor based on permselective polymer layers (overoxidized polypyrrole (Ppy) and Nafion(®)) modified and enzyme (glutamate oxidase (GlutOx)) immobilized micro-platinum wire electrode for the detection of alanine aminotransferase (ALT) was fabricated. The proposed ALT biosensor was measured electrochemically by constant potential amperometry at +0.7 V vs. Ag/AgCl. The ALT biosensor provides fast response time (~5 s) and superior selectivity towards ALT against both negatively and positively charged species (e.g., ascorbic acid (AA) and dopamine (DA), respectively). The detection range of the ALT biosensor is found to be 10-900 U/L which covers the range of normal ALT levels presented in the serum and the detection limit and sensitivity are found to be 8.48 U/L and 0.059 nA/(U/L·mm²) (N = 10), respectively. We also found that one-day storage of the ALT biosensor at -20 °C right after the sensor being fabricated can enhance the sensor sensitivity (1.74 times higher than that of the sensor stored at 4 °C). The ALT biosensor is stable after eight weeks of storage at -20 °C. The sensor was tested in spiked ALT samples (ALT activities: 20, 200, 400, and 900 U/L) and reasonable recoveries (70%~107%) were obtained. PMID:27240366

  6. Development of an alanine dosimeter for gamma dosimetry in mixed environments

    SciTech Connect

    Vehar, D.W.; Griffin, P.J.

    1992-12-31

    L-{alpha}a-Alanine, a nontoxic polycrystalline amino acid, has been investigated for use in high-precision, high-level absorbed-dose measurements in mixed neutron/photon environments such as research and test reactors. The technique is based on the use of electron paramagnetic resonance (EPR) spectroscopy to determine the extent of free radical production in a sample exposed to ionizing radiation, and has been successfully used for photon absorbed-dose measurements at levels exceeding 10{sup 5} Gy with high measurement precision. Application of the technique to mixed environments requires knowledge of the energy-dependent response of the dosimeter for both photons and neutrons. Determination of the dosimeter response to photons is accomplished by irradiations in {sup 60}Co and bremsstrahlung sources and by calculations of energy-dependent photon kerma. Neutron response is determined by calculations in conjunction with CaF{sub 2}:Mn thermoluminescence dosimeters and by calculations of energy-dependent neutron kerma. Several neutron environments are used, including the ACRR and SPR-III reactors.

  7. Development of an alanine dosimeter for gamma dosimetry in mixed environments -- Summary of research

    SciTech Connect

    Vehar, D.W.; Griffin, P.J.

    1994-02-01

    L-{alpha}-alanine, a nontoxic polycrystalline amino acid, has been investigated for use in high-precision, high-level absorbed-dose measurements in mixed neutron/photon environments such as research and test reactors. The technique is based on the use of electron paramagnetic resonance spectroscopy to determine the extent of free radical production in a sample exposed to ionizing radiation, and has been successfully used for photon absorbed-dose measurements at levels exceeding 10{sup 5} Gy with high measurement precision. Application of the technique to mixed environments requires knowledge of the energy-dependent response of the dosimeter for both photons and neutrons. Determination of the dosimeter response to photons is accomplished by irradiations in {sup 60}Co and bremsstrahlung sources and by calculations of energy-dependent photon kerma. Neutron response is determined by irradiations in conjunction with CaF{sub 2}:Mn thermoluminescence dosimeters and by calculations of energy-dependent neutron kerma. Several neutron environments are used, including those provided by the Annular Core Research Reactor and Sandia Pulsed Reactor.

  8. Moments and distribution functions for polypeptide chains. Poly-L-alanine.

    PubMed

    Conrad, J C; Flory, P J

    1976-01-01

    Statistical mechanical averages of vectors and tensors characterizing the configurations of polypeptides have been calculated for poly-L-alanines (PLA) of xu = 2-400 peptide units. These quantities are expressed in the reference frame of the first peptide unit, the X axis being situated along the virtual bond, the Y axis in the plane of the peptide unit. The persistence vector a identical to (r) converges rapidly with chain length to its limit a infinity which lies virtually in the XZ plane. Configurational averages of Cartesian tensors up to the sixth rank formed from the displacement vector p = r-a have been computed. For xu greater than 50 the even moments of fourth and sixth rank formed from the reduced vector p for the real chain are well repreented by the freely jointed chain with 21.7 virtual bonds equivalent to one of the model. The moments of p display assymmetry for xu less than 50. Density distribution functions Wa(p), evaluated from the three-dimensional Hermite series truncated at the term in the polynomial involving the tensors of p of sixth rank, display no obvious symmetry for xu less than 50. Approximate spherical symmetry of the distribution of p about a is observed only for xu greater than or equal to 100. PMID:1249990

  9. PPAR{alpha} regulates the hepatotoxic biomarker alanine aminotransferase (ALT1) gene expression in human hepatocytes

    SciTech Connect

    Thulin, Petra; Rafter, Ingalill; Stockling, Kenneth; Tomkiewicz, Celine; Norjavaara, Ensio; Aggerbeck, Martine; Hellmold, Heike; Ehrenborg, Ewa; Andersson, Ulf; Cotgreave, Ian; Glinghammar, Bjoern

    2008-08-15

    In this work, we investigated a potential mechanism behind the observation of increased aminotransferase levels in a phase I clinical trial using a lipid-lowering drug, the peroxisome proliferator-activated receptor (PPAR) {alpha} agonist, AZD4619. In healthy volunteers treated with AZD4619, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities were elevated without an increase in other markers for liver injury. These increases in serum aminotransferases have previously been reported in some patients receiving another PPAR{alpha} agonist, fenofibrate. In subsequent in vitro studies, we observed increased expression of ALT1 protein and mRNA in human hepatocytes after treatment with fenofibric acid. The PPAR effect on ALT1 expression was shown to act through a direct transcriptional mechanism involving at least one PPAR response element (PPRE) in the proximal ALT1 promoter, while no effect of fenofibrate and AZD4619 was observed on the ALT2 promoter. Binding of PPARs to the PPRE located at - 574 bp from the transcriptional start site was confirmed on both synthetic oligonucleotides and DNA in hepatocytes. These data show that intracellular ALT expression is regulated by PPAR agonists and that this mechanism might contribute to increased ALT activity in serum.

  10. Overexpression of Ste20-related proline/alanine-rich kinase exacerbates experimental colitis in mice.

    PubMed

    Yan, Yutao; Laroui, Hamed; Ingersoll, Sarah A; Ayyadurai, Saravanan; Charania, Moiz; Yang, Stephen; Dalmasso, Guillaume; Obertone, Tracy S; Nguyen, Hang; Sitaraman, Shanthi V; Merlin, Didier

    2011-08-01

    Inflammatory bowel disease, mainly Crohn's disease and ulcerative colitis, are characterized by epithelial barrier disruption and altered immune regulation. Colonic Ste20-like proline/alanine-rich kinase (SPAK) plays a role in intestinal inflammation, but its underlying mechanisms need to be defined. Both SPAK-transfected Caco2-BBE cells and villin-SPAK transgenic (TG) FVB/6 mice exhibited loss of intestinal barrier function. Further studies demonstrated that SPAK significantly increased paracellular intestinal permeability to FITC-dextran. In vivo studies using the mouse models of colitis induced by dextran sulfate sodium (DSS) and trinitrobenzene sulfonic acid showed that TG FVB/6 mice were more susceptible to DSS and trinitrobenzene sulfonic acid treatment than wild-type FVB/6 mice, as demonstrated by clinical and histological characteristics and enzymatic activities. Consistent with this notion, we found that SPAK increased intestinal epithelial permeability, which likely facilitated the production of inflammatory cytokines in vitro and in vivo, aggravated bacterial translocation in TG mice under DSS treatment, and consequently established a context favorable for the triggering of intestinal inflammation cascades. In conclusion, overexpression of SPAK inhibits maintenance of intestinal mucosal innate immune homeostasis, which makes regulation of SPAK important to attenuate pathological responses in inflammatory bowel disease. PMID:21705622

  11. Enantioselective hydrogenation of pyruvic acid oxime to alanine on Pd/Alumina

    SciTech Connect

    Borszeky, K.; Mallat, T.; Aeschiman, R.

    1996-06-01

    The chemo- and enantioselective hydrogenation of pyruvic acid oxime have been studied on Pd/alumina, the latter in the presence of the 1,2-amino alcohol type alkaloids ephedrine, cinchonidine, and cinchonine. High yields of racemic alanine (90-98%) were obtained in the absence of alkaloids in polar solvents at 0-45{degrees}C and 10 bar. Enantioselection increased with higher temperature and alkalid: oxime molar ratio. A 1:1 ephedrine: oxime molar ratio afforded the best enantiomeric excess (26%). The presence of alkaloid resulted in a decrease of reaction rate by a factor of up to 140, compared to the racemic hydrogenation. Based on X-ray crystal structure analysis of the alkaloid-pyruvic acid oxime adduct, a mechanism is proposed for the steric course of the reaction. Extended interactions by multiple H bonds between the adsorbed alkaloid-oxime salt units on the Pd surface is assumed to be at the origin of the moderate enantioselectivity and the very low enantioselective hydrogenation rate. 28 refs., 5 figs., 3 tabs.

  12. Uptake of a cyanotoxin, β-N-methylamino-L-alanine, by wheat (Triticum aestivum).

    PubMed

    Contardo-Jara, Valeska; Schwanemann, Torsten; Pflugmacher, Stephan

    2014-06-01

    In order to study the uptake of the cyanobacterial neurotoxin β-N-methylamino-l-alanine (BMAA) into the crop plant Triticum aestivum during germination and primary growth imbibed grains and 7-day-old seedlings were irrigated with 100 and 1000µg l(-1) BMAA for 4 days and 100µg l(-1) BMAA for 28 days. Content of derivatized free and protein-associated BMAA in seedlings, root and shoot tissue, respectively, were analyzed by LC-MS/MS. Free BMAA was only detected in seedlings exposed to 1000µg l(-1) BMAA, whereas protein-associated BMAA was found at both exposure concentrations. Irrigation with 100µgl(-1) BMAA led to an uptake of the neurotoxin into roots and shoots and to immediate protein-association. In roots, protein-associated BMAA was detectable after 5 days with peaking amounts after 14 days. Longer exposure did not cause further accumulation in roots. In contrast, protein-associated BMAA was detected in shoot samples after only 1 day. In shoots the highest amounts of protein-associated BMAA were found after 28 days. In turn, in both plant compartments free BMAA was below the measurable concentration. PMID:24675440

  13. Cyclic side-chain-linked opioid analogs utilizing cis- and trans-4-aminocyclohexyl-D-alanine.

    PubMed

    Piekielna, Justyna; Gentilucci, Luca; De Marco, Rossella; Perlikowska, Renata; Adamska, Anna; Olczak, Jacek; Mazur, Marzena; Artali, Roberto; Modranka, Jakub; Janecki, Tomasz; Tömböly, Csaba; Janecka, Anna

    2014-12-01

    Cyclization of linear sequences is a well recognized tool in opioid peptide chemistry for generating analogs with improved bioactivities. Cyclization can be achieved through various bridging bonds between peptide ends or side-chains. In our earlier paper we have reported the synthesis and biological activity of a cyclic peptide, Tyr-c[D-Lys-Phe-Phe-Asp]NH2 (1), which can be viewed as an analog of endomorphin-2 (EM-2, Tyr-Pro-Phe-Phe-NH2). Cyclization was achieved through an amide bond between side-chains of D-Lys and Asp residues. Here, to increase rigidity of the cyclic structure, we replaced d-Lys with cis- or trans-4-aminocyclohexyl-D-alanine (D-ACAla). Two sets of analogs incorporating either Tyr or Dmt (2',6'-dimethyltyrosine) residues in position 1 were synthesized. In the binding studies the analog incorporating Dmt and trans-D-ACAla showed high affinity for both, μ- and δ-opioid receptors (MOR and DOR, respectively) and moderate affinity for the κ-opioid receptor (KOR), while analog with Dmt and cis-D-ACAla was exceptionally MOR-selective. Conformational analyses by NMR and molecular docking studies have been performed to investigate the molecular structural features responsible for the noteworthy MOR selectivity. PMID:25456075

  14. Peptide conformational preferences in osmolyte solutions: Transfer free energies of deca-alanine

    PubMed Central

    Kokubo, Hironori; Hu, Char Y.; Pettitt, B. Montgomery

    2011-01-01

    The nature in which the protecting osmolyte trimethylamine-N-oxide (TMAO) and the denaturing osmolyte urea affect protein stability is investigated simulating a deca-alanine peptide model in multiple conformations of the denatured ensemble. Binary solutions of both osmolytes and mixed osmolyte solutions at physiologically-relevant concentrations of 2:1 (urea:TMAO) are studied using standard molecular dynamics simulations and solvation free energy calculations. Component analysis reveals the differences in the importance of the van der Waals (vdW) and electrostatic interactions for protecting and denaturing osmolytes. We find that urea denaturation governed by transfer free energy differences is dominated by vdW attractions, whereas TMAO exerts its effect by causing unfavorable electrostatic interactions both in the binary solution and mixed osmolyte solution. Analysis of the results showed no evidence in the ternary solution of disruption of the correlations among the peptide and osmolytes, nor of significant changes in the strength of the water hydrogen bond network. PMID:21250690

  15. Sodium Perchlorate Effects on the Helical Stability of a Mainly Alanine Peptide

    PubMed Central

    Asciutto, Eliana K.; General, Ignacio J.; Xiong, Kang; Asher, Sanford A.; Madura, Jeffry D.

    2010-01-01

    Sodium perchlorate salt (NaClO4) is commonly used as an internal intensity standard in ultraviolet resonance Raman (UVRR) spectroscopy experiments. It is well known that NaClO4 can have profound effects on peptide stability. The impact of NaClO4 on protein stability in UVRR experiments has not yet been fully investigated. It is well known from experiment that protein stability is strongly affected by the solution composition (water, salts, osmolytes, etc.). Therefore, it is of the utmost importance to understand the physical basis on which the presence of salts and osmolytes in the solution impact protein structure and stability. The aim of this study is to investigate the effects of NaClO4, on the helical stability of an alanine peptide in water. Based upon replica-exchange molecular dynamics data, it was found that NaClO4 solution strongly stabilizes the helical state and that the number of pure helical conformations found at room temperature is greater than in pure water. A thorough investigation of the anion effects on the first and second solvation shells of the peptide, along with the Kirkwood-Buff theory for solutions, allows us to explain the physical mechanisms involved in the observed specific ion effects. A direct mechanism was found in which ClO4− ions are strongly attracted to the folded backbone. PMID:20338840

  16. Determination of free L- and D-alanine in hydrolysed protein fertilisers by capillary electrophoresis.

    PubMed

    Cavani, Luciano; Ciavatta, Claudio; Gessa, Carlo

    2003-01-24

    of racemisation of hydrolysed protein fertilisers (HPFs) using an The objective of this study was to determine the degree inexpensive and easy to handle analytical method for qualitative control of the products. Using a polyacrylamide coated capillary and a run buffer containing 0.1 M Tris-borate+2.5 mM EDTA-Na2+0.1% sodium dodecylsulfate+10 mM beta-cyclodextrin a quantitative separation of D- and L-alanine (Ala) was made from an not treated HPF sample derivatised with dansyl chlorine by capillary electrophoresis. The D-Ala:[D-Ala+L-Ala] ratio, called degree of racemisation (RD), was calculated. The analysis of ten commercial HPFs has shown that more than 60% of HPFs have an RD > or = 40%. while only one product has shown an RD <5%. These results showed that most of the HPFs on the market are obtained with strong hydrolytic processes and high contents of D-amino acids are probably less effective as plant nutrients or even potentially dangerous to plants. PMID:12580515

  17. The role of herpes simplex virus-1 thymidine kinase alanine 168 in substrate specificity.

    PubMed

    Candice L, Willmon; Django, Sussman; Margaret E, Black

    2008-01-01

    Herpes simplex virus type 1 (HSV) thymidine kinase (TK) has been widely used in suicide gene therapy for the treatment of cancer due to its broad substrate specificity and the inability of the endogenous human TK to phosphorylate guanosine analogs such as ganciclovir (GCV). The basis of suicide gene therapy is the introduction of a gene that encodes a prodrug-activating enzyme into tumor cells. After administration, the prodrug is selectively converted to a toxic drug by the suicide gene product thereby bringing about the eradication of the cancer cells. A major drawback to this therapy is the low activity the enzyme displays towards the prodrugs, requiring high prodrug doses that result in adverse side effects. Earlier studies revealed two HSV TK variants (SR39 and mutant 30) derived by random mutagenesis with enhanced activities towards GCV in vitro and in vivo. While these mutants contain multiple amino acid substitutions, molecular modeling suggests that substitutions at alanine 168 (A168) may be responsible for the observed increase in prodrug sensitivity. To evaluate this, site-directed mutagenesis was used to individually substitute A168 with phenylalanine or tyrosine to reflect the mutations found in SR39 and mutant 30, respectively. Additionally, kinetic parameters and the ability of these mutants to sensitize tumor cells to GCV in comparison to wild-type thymidine kinase were determined. PMID:18949076

  18. Mapping protein-protein interactions with phage-displayed combinatorial peptide libraries and alanine scanning.

    PubMed

    Kokoszka, Malgorzata E; Kay, Brian K

    2015-01-01

    One avenue for inferring the function of a protein is to learn what proteins it may bind to in the cell. Among the various methodologies, one way for doing so is to affinity select peptide ligands from a phage-displayed combinatorial peptide library and then to examine if the proteins that carry such peptide sequences interact with the target protein in the cell. With the protocols described in this chapter, a laboratory with skills in microbiology, molecular biology, and protein biochemistry can readily identify peptides in the library that bind selectively, and with micromolar affinity, to a given target protein on the time scale of 2 months. To illustrate this approach, we use a library of bacteriophage M13 particles, which display 12-mer combinatorial peptides, to affinity select different peptide ligands for two different targets, the SH3 domain of the human Lyn protein tyrosine kinase and a segment of the yeast serine/threonine protein kinase Cbk1. The binding properties of the selected peptide ligands are then dissected by sequence alignment, Kunkel mutagenesis, and alanine scanning. Finally, the peptide ligands can be used to predict cellular interacting proteins and serve as the starting point for drug discovery. PMID:25616333

  19. Associations of functional alanine-glyoxylate aminotransferase 2 gene variants with atrial fibrillation and ischemic stroke.

    PubMed

    Seppälä, Ilkka; Kleber, Marcus E; Bevan, Steve; Lyytikäinen, Leo-Pekka; Oksala, Niku; Hernesniemi, Jussi A; Mäkelä, Kari-Matti; Rothwell, Peter M; Sudlow, Cathie; Dichgans, Martin; Mononen, Nina; Vlachopoulou, Efthymia; Sinisalo, Juha; Delgado, Graciela E; Laaksonen, Reijo; Koskinen, Tuomas; Scharnagl, Hubert; Kähönen, Mika; Markus, Hugh S; März, Winfried; Lehtimäki, Terho

    2016-01-01

    Asymmetric and symmetric dimethylarginines (ADMA and SDMA) impair nitric oxide bioavailability and have been implicated in the pathogenesis of atrial fibrillation (AF). Alanine-glyoxylate aminotransferase 2 (AGXT2) is the only enzyme capable of metabolizing both of the dimethylarginines. We hypothesized that two functional AGXT2 missense variants (rs37369, V140I; rs16899974, V498L) are associated with AF and its cardioembolic complications. Association analyses were conducted using 1,834 individulas with AF and 7,159 unaffected individuals from two coronary angiography cohorts and a cohort comprising patients undergoing clinical exercise testing. In coronary angiography patients without structural heart disease, the minor A allele of rs16899974 was associated with any AF (OR = 2.07, 95% CI 1.59-2.68), and with paroxysmal AF (OR = 1.98, 95% CI 1.44-2.74) and chronic AF (OR = 2.03, 95% CI 1.35-3.06) separately. We could not replicate the association with AF in the other two cohorts. However, the A allele of rs16899974 was nominally associated with ischemic stroke risk in the meta-analysis of WTCCC2 ischemic stroke cohorts (3,548 cases, 5,972 controls) and with earlier onset of first-ever ischemic stroke (360 cases) in the cohort of clinical exercise test patients. In conclusion, AGXT2 variations may be involved in the pathogenesis of AF and its age-related thromboembolic complications. PMID:26984639

  20. Cyanobacterial Neurotoxin β-N-Methylamino-L-alanine (BMAA) in Shark Fins

    PubMed Central

    Mondo, Kiyo; Hammerschlag, Neil; Basile, Margaret; Pablo, John; Banack, Sandra A.; Mash, Deborah C.

    2012-01-01

    Sharks are among the most threatened groups of marine species. Populations are declining globally to support the growing demand for shark fin soup. Sharks are known to bioaccumulate toxins that may pose health risks to consumers of shark products. The feeding habits of sharks are varied, including fish, mammals, crustaceans and plankton. The cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) has been detected in species of free-living marine cyanobacteria and may bioaccumulate in the marine food web. In this study, we sampled fin clips from seven different species of sharks in South Florida to survey the occurrence of BMAA using HPLC-FD and Triple Quadrupole LC/MS/MS methods. BMAA was detected in the fins of all species examined with concentrations ranging from 144 to 1836 ng/mg wet weight. Since BMAA has been linked to neurodegenerative diseases, these results may have important relevance to human health. We suggest that consumption of shark fins may increase the risk for human exposure to the cyanobacterial neurotoxin BMAA. PMID:22412816

  1. Cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) in shark fins.

    PubMed

    Mondo, Kiyo; Hammerschlag, Neil; Basile, Margaret; Pablo, John; Banack, Sandra A; Mash, Deborah C

    2012-02-01

    Sharks are among the most threatened groups of marine species. Populations are declining globally to support the growing demand for shark fin soup. Sharks are known to bioaccumulate toxins that may pose health risks to consumers of shark products. The feeding habits of sharks are varied, including fish, mammals, crustaceans and plankton. The cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) has been detected in species of free-living marine cyanobacteria and may bioaccumulate in the marine food web. In this study, we sampled fin clips from seven different species of sharks in South Florida to survey the occurrence of BMAA using HPLC-FD and Triple Quadrupole LC/MS/MS methods. BMAA was detected in the fins of all species examined with concentrations ranging from 144 to 1836 ng/mg wet weight. Since BMAA has been linked to neurodegenerative diseases, these results may have important relevance to human health. We suggest that consumption of shark fins may increase the risk for human exposure to the cyanobacterial neurotoxin BMAA. PMID:22412816

  2. Alanine Scanning Mutagenesis of Anti-TRAP (AT) Reveals Residues Involved in Binding to TRAP

    PubMed Central

    Chen, Yanling; Gollnick, Paul

    2008-01-01

    SUMMARY The trp RNA-binding attenuation protein (TRAP) regulates expression of the tryptophan biosynthetic (trp) genes in response to changes in intracellular levels of free L-tryptophan in many gram positive bacteria. When activated by binding tryptophan, TRAP binds to the mRNAs of several genes involved in tryptophan metabolism, and down-regulates transcription or translation of these genes. Anti-TRAP (AT) is an antagonist of TRAP that binds to tryptophan-activated TRAP and prevents it from binding to its RNA targets, and thereby up-regulates trp gene expression. The crystal structure shows that AT is a cone-shaped trimer (AT3) with the N-terminal residues of the three subunits assembled at the apex of the cone and that these trimers can further assemble into a dodecameric (AT12) structure. Using alanine-scanning mutagenesis we found four residues, all located on the “top” region of AT3, which are essential for binding to TRAP. Fluorescent labeling experiments further suggest that the top region of AT is in close juxtaposition to TRAP in the AT-TRAP complex. In vivo studies confirmed the importance of these residues on the top of AT in regulating TRAP mediated gene regulation. PMID:18334255

  3. Knockout of Ste20-like proline/alanine-rich kinase (SPAK) attenuates intestinal inflammation in mice.

    PubMed

    Zhang, Yuchen; Viennois, Emilie; Xiao, Bo; Baker, Mark T; Yang, Stephen; Okoro, Ijeoma; Yan, Yutao

    2013-05-01

    Inflammatory bowel diseases are characterized by epithelial barrier disruption and alterations in immune regulation. Ste20-like proline/alanine-rich kinase (SPAK) plays a role in intestinal inflammation, but the underlying mechanisms need to be defined. Herein, SPAK knockout (KO) C57BL/6 mice exhibited significant increases in intestinal transepithelial resistance, a marked decrease in paracellular permeability to fluorescence isothiocyanate-dextran, and altered apical side tight junction sodium ion selectivity, compared with wild-type mice. Furthermore, the expression of junction protein, claudin-2, decreased. In contrast, expressions of occludin, E-cadherin, β-catenin, and claudin-5 increased significantly, whereas no obvious change of claudin-1, claudin-4, zonula occludens protein 1, and zonula occludens protein 2 expressions was observed. In murine models of colitis induced by dextran sulfate sodium and trinitrobenzene sulfuric acid, KO mice were more tolerant than wild-type mice, as demonstrated by colonoscopy features, histological characteristics, and myeloperoxidase activities. Consistent with these findings, KO mice showed increased IL-10 levels and decreased proinflammatory cytokine secretion, ameliorated bacterial translocation on treatment with dextran sulfate sodium, and regulation of with no lysine (WNK) kinase activity. Together, these features may reduce epithelial permeability. In conclusion, SPAK deficiency increases intestinal innate immune homeostasis, which is important for control or attenuation of pathological responses in inflammatory bowel diseases. PMID:23499375

  4. Inhibition of alanine racemase by alanine phosphonate: detection of an imine linkage to pyridoxal 5'-phosphate in the enzyme-inhibitor complex by solid-state /sup 15/N nuclear magnetic resonance

    SciTech Connect

    Copie, V.; Faraci, W.S.; Walsh, C.T.; Griffin, R.G.

    1988-07-12

    Inhibition of alanine racemase from the Gram-positive bacterium Bacillus stearothermophilus by (1-aminoethyl)phosphonic acid (Ala-P) proceeds via a two-step reaction pathway in which reactivation occurs very slowly. In order to determine the mechanism of inhibition, the authors have recorded low-temperature, solid-state /sup 15/N NMR spectra from microcrystals of the (/sup 15/N)Ala-P-enzyme complex, together with spectra of a series of model compounds that provide the requisite database for the interpretation of the /sup 15/N chemical shifts. Proton-decoupled spectra of the microcrystals exhibit a line at approx. 150 ppm, which conclusively demonstrates the presence of a protonated Ala-P-PLP aldimine and thus clarifies the structure of the enzyme-inhibitor complex. They also report the pH dependence of Ala-P binding to alanine racemase.

  5. Structures of an alanine racemase from Bacillus anthracis (BA0252) in the presence and absence of (R)-1-aminoethylphosphonic acid (l-Ala-P)

    SciTech Connect

    Au, Kinfai; Ren, Jingshan; Walter, Thomas S.; Harlos, Karl; Nettleship, Joanne E.; Owens, Raymond J.; Stuart, David I.; Esnouf, Robert M.

    2008-05-01

    Structures of BA0252, an alanine racemase from B. anthracis, in the presence and absence of the inhibitor (R)-1-aminoethylphosphonic acid (l-Ala-P) and determined by X-ray crystallography to resolutions of 2.1 and 1.47 Å, respectively, are described. Bacillus anthracis, the causative agent of anthrax, has been targeted by the Oxford Protein Production Facility to validate high-throughput protocols within the Structural Proteomics in Europe project. As part of this work, the structures of an alanine racemase (BA0252) in the presence and absence of the inhibitor (R)-1-aminoethylphosphonic acid (l-Ala-P) have determined by X-ray crystallo@@graphy to resolutions of 2.1 and 1.47 Å, respectively. Difficulties in crystallizing this protein were overcome by the use of reductive methylation. Alanine racemase has attracted much interest as a possible target for anti-anthrax drugs: not only is d-alanine a vital component of the bacterial cell wall, but recent studies also indicate that alanine racemase, which is accessible in the exosporium, plays a key role in inhibition of germination in B. anthracis. These structures confirm the binding mode of l-Ala-P but suggest an unexpected mechanism of inhibition of alanine racemase by this compound and could provide a basis for the design of improved alanine racemase inhibitors with potential as anti-anthrax therapies.

  6. d-Xylose Metabolism in Hypocrea jecorina: Loss of the Xylitol Dehydrogenase Step Can Be Partially Compensated for by lad1-Encoded l-Arabinitol-4-Dehydrogenase

    PubMed Central

    Seiboth, Bernhard; Hartl, Lukas; Pail, Manuela; Kubicek, Christian P.

    2003-01-01

    With the goal of the genetic characterization of the d-xylose pathway in Hypocrea jecorina (anamorph: Trichoderma reesei), we cloned the xdh1 gene, encoding NAD-xylitol dehydrogenase, which catalyzes the second step of fungal d-xylose catabolism. This gene encodes a 363-amino-acid protein which has a mass of 38 kDa, belongs to the zinc-containing alcohol dehydrogenase family, exhibits high sequence identity to the published sequences of xylitol dehydrogenases from yeast origins, but contains a second, additional binding site for Zn2+. The enzyme catalyzed the NAD-dependent oxidation of xylitol and d-sorbitol and the NADH-dependent reduction of d-xylulose and d-fructose. No activity was observed with NADP, l-arabinose, or l-arabinitol. A single 1.4-kb transcript was formed during growth on xylan, d-xylose, l-arabinose, l-arabinitol and, at a lower abundance, xylitol, d-galactose, galactitol, and lactose but not on d-glucose and glycerol. xdh1 deletion mutants exhibited 50% reduced growth rates on d-xylose, whereas growth rates on xylitol remained unaltered. These mutants contained 30% of the xylitol dehydrogenase activity of the parent strain, indicating the presence of a second xylitol dehydrogenase. This activity was shown to be due to lad1-encoded l-arabinitol-4-dehydrogenase, because H. jecorina xdh1 lad1 double-deletion strains failed to grow on d-xylose or xylitol. In contrast, lad1 deletion strains of H. jecorina grew normally on these carbon sources. These results show that H. jecorina contains a single xylitol dehydrogenase which is encoded by xdh1 and is involved in the metabolism of d-xylose and that lad1-encoded l-arabinitol-4-dehydrogenase can compensate for it partially in mutants with a loss of xdh1 function. PMID:14555469

  7. Heterogeneous expression of protein and mRNA in pyruvate dehydrogenase deficiency.

    PubMed Central

    Wexler, I D; Kerr, D S; Ho, L; Lusk, M M; Pepin, R A; Javed, A A; Mole, J E; Jesse, B W; Thekkumkara, T J; Pons, G

    1988-01-01

    Deficiency of pyruvate dehydrogenase [pyruvate:lipoamide 2-oxidoreductase (decarboxylating and acceptor-acetylating), EC 1.2.4.1], the first component of the pyruvate dehydrogenase complex, is associated with lactic acidosis and central nervous system dysfunction. Using both specific antibodies to pyruvate dehydrogenase and cDNAs coding for its two alpha and beta subunits, we characterized pyruvate dehydrogenase deficiency in 11 patients. Three different patterns were found on immunologic and RNA blot analyses. (i) Seven patients had immunologically detectable crossreactive material for the alpha and beta proteins of pyruvate dehydrogenase. (ii) Two patients had no detectable crossreactive protein for either the alpha or beta subunit but had normal amounts of mRNA for both alpha and beta subunits. (iii) The remaining two patients also had no detectable crossreactive protein but had diminished amounts of mRNA for the alpha subunit of pyruvate dehydrogenase only. These results indicate that loss of pyruvate dehydrogenase activity may be associated with either absent or catalytically inactive proteins, and in those cases in which this enzyme is absent, mRNA for one of the subunits may also be missing. When mRNA for one of the subunits is lacking, both protein subunits are absent, suggesting that a mutation affecting the expression of one of the subunit proteins causes the remaining uncomplexed subunit to be unstable. The results show that several different mutations account for the molecular heterogeneity of pyruvate dehydrogenase deficiency. Images PMID:3140238

  8. Cloning and mRNA Expression of NADH Dehydrogenase during Ochlerotatus taeniorhynchus Development and Pesticide Response

    Technology Transfer Automated Retrieval System (TEKTRAN)

    NADH dehydrogenase, the largest of the respiratory complexes, is the first enzyme of the mitochondrial electron transport chain. We have cloned and sequenced cDNA of NADH dehydrogenase gene from Ochlerotatus (Ochlerotatus) taeniorhynchus (Wiedemann) adult (GeneBank Accession number: FJ458415). The ...

  9. The influence of oxygen on radiation-induced structural and functional changes in glyceraldehyde-3-phosphate dehydrogenase and lactate dehydrogenase

    NASA Astrophysics Data System (ADS)

    Rodacka, Aleksandra; Serafin, Eligiusz; Bubinski, Michal; Krokosz, Anita; Puchala, Mieczyslaw

    2012-07-01

    Proteins are major targets for oxidative damage due to their abundance in cells and high reactivity with free radicals. In the present study we examined the influence of oxygen on radiation-induced inactivation and structural changes of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and lactate dehydrogenase (LDH). We chose these two enzymes because they occur at high concentrations and participate in the most important processes in organisms; furthermore, they show considerable similarity in their structure. Protein solutions were irradiated with X-rays in doses ranging from 0.1 to 0.7 kGy, in air and N2O. The much higher radiation inactivation of GAPDH as compared to LDH is correlated with substantially greater structural changes in this protein, mainly involving the loss of free thiol groups (-SH). Of lesser importance in the differentiation of the radiosensitivity of the studied enzymes are tryptophan residues. Molecular oxygen, present during irradiation, increased to a significantly greater extent the inactivation and structural changes of GAPDH than that of LDH. The results suggest that the greater effect of oxygen on GAPDH is due to the higher efficiency of the superoxide radical, the higher amount of hydroperoxides generated, and the higher degree of unfolding of this protein.

  10. Electrochemical conversion of carbon dioxide to methanol with the assistance of formate dehydrogenase and methanol dehydrogenase as biocatalysts

    SciTech Connect

    Kuwabata, Susumu; Tsuda, Ryo; Yoneyama, Hiroshi )

    1994-06-15

    Electrolysis at potentials between -0.7 and -0.9 V vs SCE of carbon dioxide-saturated phosphate buffer solutions (pH7) containing formate dehydrogenase (FDH) and either methyl viologen (MV[sup 2+]) or pyrroloquinolinequinone (PQQ) as an electron mediator yielded formate with current efficiencies as high as 90%. The enzyme was durable as long as the electrolysis was carried out in the dark. Electrolysis of phosphate buffer solutions containing sodium formate in the presence of methanol dehydrogenase (MDH) and MV[sup 2+] at -0.7 V vs SCE yielded formaldehyde if the concentration of the enzyme used was low, whereas both formaldehyde and methanol were produced for relatively high concentrations of the enzyme where the methanol production began to occur when the formaldehyde produced accumulated. The use of PQQ in place of MV[sup 2+] as the electron mediator exclusively produced methanol alone after some induction period in the electrolysis. On the basis of these results, successful attempts have been made to reduce carbon dioxide to methanol with cooperative assistance of FDH and MDH in the presence of PQQ as the electron mediator. The role of enzyme and mediator in these reduction processes is discussed in detail. 34 refs., 10 figs., 2 tabs.

  11. Evaluation of alcohol dehydrogenase and aldehyde dehydrogenase enzymes as bi-enzymatic anodes in a membraneless ethanol microfluidic fuel cell

    NASA Astrophysics Data System (ADS)

    Galindo-de-la-Rosa, J.; Arjona, N.; Arriaga, L. G.; Ledesma-García, J.; Guerra-Balcázar, M.

    2015-12-01

    Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (AldH) enzymes were immobilized by covalent binding and used as the anode in a bi-enzymatic membraneless ethanol hybrid microfluidic fuel cell. The purpose of using both enzymes was to optimize the ethanol electro-oxidation reaction (EOR) by using ADH toward its direct oxidation and AldH for the oxidation of aldehydes as by-products of the EOR. For this reason, three enzymatic bioanode configurations were evaluated according with the location of enzymes: combined, vertical and horizontally separated. In the combined configuration, a current density of 16.3 mA cm-2, a voltage of 1.14 V and a power density of 7.02 mW cm-2 were obtained. When enzymes were separately placed in a horizontal and vertical position the ocp drops to 0.94 V and to 0.68 V, respectively. The current density also falls to values of 13.63 and 5.05 mA cm-2. The decrease of cell performance of bioanodes with separated enzymes compared with the combined bioanode was of 31.7% and 86.87% for the horizontal and the vertical array.

  12. A New Glucose-6-Phosphate Dehydrogenase Variant, G6PD Orissa (44 Ala→Gly), is the Major Polymorphic Variant in Tribal Populations in India

    PubMed Central

    Kaeda, J. S.; Chhotray, G. P.; Ranjit, M. R.; Bautista, J. M.; Reddy, P. H.; Stevens, D.; Naidu, J. M.; Britt, R. P.; Vulliamy, T. J.; Luzzatto, L.; Mason, P. J.

    1995-01-01

    Deficiency of glucose-6-phosphate dehydrogenase (G6PD) is usually found at high frequencies in areas of the world where malaria has been endemic. The frequency and genetic basis of G6PD deficiency have been studied in Africa, around the Mediterranean, and in the Far East, but little such information is available about the situation in India. To determine the extent of heterogeneity of G6PD, we have studied several different Indian populations by screening for G6PD deficiency, followed by molecular analysis of deficient alleles. The frequency of G6PD deficiency varies between 3% and 15% in different tribal and urban groups. Remarkably, a previously unreported deficient variant, G6PD Orissa (44 Ala→Gly), is responsible for most of the G6PD deficiency in tribal Indian populations but is not found in urban populations, where most of the G6PD deficiency is due to the G6PD Mediterranean (188 Ser→Phe) variant. The K of G6PD Orissa is fivefold higher than that of the normal enzyme. This may be due to the fact that the alanine residue that is replaced by glycine is part of a putative coenzyme-binding site. ImagesFigure 2 PMID:8533762

  13. I86A/C295A mutant secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus has broadened substrate specificity for aryl ketones.

    PubMed

    Nealon, Christopher M; Welsh, Travis P; Kim, Chang Sup; Phillips, Robert S

    2016-09-15

    Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase (SADH) reduces aliphatic ketones according to Prelog's Rule, with binding pockets for small and large substituents. It was shown previously that the I86A mutant SADH reduces acetophenone, which is not a substrate of wild-type SADH, to give the anti-Prelog R-product (Musa, M. M.; Lott, N.; Laivenieks, M.; Watanabe, L.; Vieille, C.; Phillips, R. S. ChemCatChem2009, 1, 89-93.). However, I86A SADH did not reduce aryl ketones with substituents larger than fluorine. We have now expanded the small pocket of the active site of I86A SADH by mutation of Cys-295 to alanine to allow reaction of substituted acetophenones. As predicted, the double mutant I86A/C295A SADH has broadened substrate specificity for meta-substituted, but not para-substituted, acetophenones. However, the increase of the substrate specificity of I86A/C295A SADH is accompanied by a decrease in the kcat/Km values of acetophenones, possibly due to the substrates fitting loosely inside the more open active site. Nevertheless, I86A/C295A SADH gives high conversions and very high enantiomeric excess of the anti-Prelog R-alcohols from the tested substrates. PMID:27495738

  14. Pathways of Amino Acid Degradation in Nilaparvata lugens (Stål) with Special Reference to Lysine-Ketoglutarate Reductase/Saccharopine Dehydrogenase (LKR/SDH)

    PubMed Central

    Wan, Pin-Jun; Yuan, San-Yue; Tang, Yao-Hua; Li, Kai-Long; Yang, Lu; Fu, Qiang; Li, Guo-Qing

    2015-01-01

    Nilaparvata lugens harbors yeast-like symbionts (YLSs). In present paper, a genome-wide analysis found 115 genes from Ni. lugens and 90 genes from YLSs that were involved in the metabolic degradation of 20 proteinogenic amino acids. These 205 genes encoded for 77 enzymes. Accordingly, the degradation pathways for the 20 amino acids were manually constructed. It is postulated that Ni. lugens can independently degrade fourteen amino acids (threonine, alanine, glycine, serine, aspartate, asparagine, phenylalanine, tyrosine, glutamate, glutamine, proline, histidine, leucine and lysine). Ni. lugens and YLSs enzymes may work collaboratively to break down tryptophan, cysteine, arginine, isoleucine, methionine and valine. We cloned a lysine-ketoglutarate reductase/saccharopine dehydrogenase gene (Nllkr/sdh) that encoded a bifunctional enzyme catalyzing the first two steps of lysine catabolism. Nllkr/sdh is widely expressed in the first through fifth instar nymphs and adults, and is highly expressed in the fat body, ovary and gut in adults. Ingestion of dsNllkr/sdh by nymphs successfully knocked down the target gene, and caused nymphal/adult mortality, shortened nymphal development stage and reduced adult fresh weight. Moreover, Nllkr/sdh knockdown resulted in three defects: wings were shortened and thickened; cuticles were stretched and thinned; and old nymphal cuticles remained on the tips of legs and abdomen and were not completely shed. These data indicate that impaired lysine degradation negatively affects the survival and development of Ni. lugens. PMID:26000452

  15. Characterization of a NADH-Dependent Glutamate Dehydrogenase Mutant of Arabidopsis Demonstrates the Key Role of this Enzyme in Root Carbon and Nitrogen Metabolism[W

    PubMed Central

    Fontaine, Jean-Xavier; Tercé-Laforgue, Thérèse; Armengaud, Patrick; Clément, Gilles; Renou, Jean-Pierre; Pelletier, Sandra; Catterou, Manuella; Azzopardi, Marianne; Gibon, Yves; Lea, Peter J.; Hirel, Bertrand; Dubois, Frédéric

    2012-01-01

    The role of NADH-dependent glutamate dehydrogenase (GDH) was investigated by studying the physiological impact of a complete lack of enzyme activity in an Arabidopsis thaliana plant deficient in three genes encoding the enzyme. This study was conducted following the discovery that a third GDH gene is expressed in the mitochondria of the root companion cells, where all three active GDH enzyme proteins were shown to be present. A gdh1-2-3 triple mutant was constructed and exhibited major differences from the wild type in gene transcription and metabolite concentrations, and these differences appeared to originate in the roots. By placing the gdh triple mutant under continuous darkness for several days and comparing it to the wild type, the evidence strongly suggested that the main physiological function of NADH-GDH is to provide 2-oxoglutarate for the tricarboxylic acid cycle. The differences in key metabolites of the tricarboxylic acid cycle in the triple mutant versus the wild type indicated that, through metabolic processes operating mainly in roots, there was a strong impact on amino acid accumulation, in particular alanine, γ-aminobutyrate, and aspartate in both roots and leaves. These results are discussed in relation to the possible signaling and physiological functions of the enzyme at the interface of carbon and nitrogen metabolism. PMID:23054470

  16. Characterization of a NADH-dependent glutamate dehydrogenase mutant of Arabidopsis demonstrates the key role of this enzyme in root carbon and nitrogen metabolism.

    PubMed

    Fontaine, Jean-Xavier; Tercé-Laforgue, Thérèse; Armengaud, Patrick; Clément, Gilles; Renou, Jean-Pierre; Pelletier, Sandra; Catterou, Manuella; Azzopardi, Marianne; Gibon, Yves; Lea, Peter J; Hirel, Bertrand; Dubois, Frédéric

    2012-10-01

    The role of NADH-dependent glutamate dehydrogenase (GDH) was investigated by studying the physiological impact of a complete lack of enzyme activity in an Arabidopsis thaliana plant deficient in three genes encoding the enzyme. This study was conducted following the discovery that a third GDH gene is expressed in the mitochondria of the root companion cells, where all three active GDH enzyme proteins were shown to be present. A gdh1-2-3 triple mutant was constructed and exhibited major differences from the wild type in gene transcription and metabolite concentrations, and these differences appeared to originate in the roots. By placing the gdh triple mutant under continuous darkness for several days and comparing it to the wild type, the evidence strongly suggested that the main physiological function of NADH-GDH is to provide 2-oxoglutarate for the tricarboxylic acid cycle. The differences in key metabolites of the tricarboxylic acid cycle in the triple mutant versus the wild type indicated that, through metabolic processes operating mainly in roots, there was a strong impact on amino acid accumulation, in particular alanine, γ-aminobutyrate, and aspartate in both roots and leaves. These results are discussed in relation to the possible signaling and physiological functions of the enzyme at the interface of carbon and nitrogen metabolism. PMID:23054470

  17. A new glucose-6-phosphate dehydrogenase variant, G6PD Orissa (44 Ala{yields}Gly), is the major polymorphic variant in tribal populations in India

    SciTech Connect

    Kaeda, J.S.; Bautista, J.M.; Stevens, D.

    1995-12-01

    Deficiency of glucose-6-phosphate dehydrogenase (G6PD) is usually found at high frequencies in areas of the world where malaria has been epidemic. The frequency and genetic basis of G6PD deficiency have been studied in Africa, around the Mediterranean, and in the Far East, but little such information is available about the situation in India. To determine the extent of heterogeneity of G6PD, we have studied several different Indian populations by screening for G6PD deficiency, followed by molecular analysis of deficient alleles. The frequency of G6PD deficiency varies between 3% and 15% in different tribal and urban groups. Remarkably, a previously unreported deficient variant, G6PD Orissa (44 Ala{yields}Gly), is responsible for most of the G6PD deficiency in tribal Indian populations but is not found in urban populations, where most of the G6PD deficiency is due to the G6PD Mediterranean (188 Ser{yields}Phe) variant. The K{sup NADP}{sub m} of G6PD Orissa is fivefold higher than that of the normal enzyme. This may be due to the fact that the alanine residue that is replaced by glycine is part of a putative coenzyme-binding site. 37 refs., 2 figs., 3 tabs.

  18. An Optical Overview of Poly[μ2-L-alanine-μ3-nitrato-sodium(I)] Crystals

    PubMed Central

    Gallegos-Loya, E.; Orrantia-Borunda, E.; Duarte-Moller, A.

    2012-01-01

    Single crystals of the semiorganic materials, L-alanine sodium nitrate (LASN) and D-alanine sodium nitrate (DASN), were grown from an aqueous solution by slow-evaporation technique. X-ray diffraction (XRD) studies were carried for the doped grown crystals. The absorption of these grown crystals was analyzed using UV-Vis-NIR studies, and it was found that these crystals possess minimum absorption from 200 to 1100 nm. An infrared (FTIR) spectrum of single crystal has been measured in the 4000–400 cm−1 range. The assignment of the observed vibrational modes to corresponding symmetry type has been performed. A thermogravimetric study was carried out to determine the thermal properties of the grown crystal. The efficiency of second harmonic generation was obtained by a variant of the Kurtz-Perry method. PMID:22566774

  19. Molecular dynamics of glycine ions in alanine doped TGS single crystal as probed by polarized laser raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Bajpai, P. K.; Verma, A. L.

    2012-10-01

    Polarized Raman spectra of pure and alanine doped tri-glycine sulfate (TGS) single crystals at 12 K in different scattering geometries are analyzed. Sub species modes due to three crystallographically distinguishable glycine ions G (I), G (II) and G (III) are assigned. It is observed that alanine doping does not change the crystalline field and acts as local perturbation only. The major changes due to doping are observed in the relative intensities of different modes; most of the modes associated with G (I) and SO42- ions show reversal behavior in relative intensity at high doping concentration. The observed spectral changes are analyzed in terms of reorientation of G (I) ions with sub species modes of G (II)/ G (III) following the reorientation due to complex hydrogen bonding network.

  20. New Poly(amide-imide)/Nanocomposites Reinforced Silicate Nanoparticles Based on N-pyromellitimido-L-phenyl Alanine Containing Ether Moieties

    NASA Astrophysics Data System (ADS)

    Faghihi, Khalil; Shabanian, Meisam; Dadfar, Ehsan

    2012-02-01

    A series of Poly(amide-imide)/montmorillonite nanocomposites containing N-pyromellitimido-L-phenyl alanine moiety in the main chain were synthesized by a convenient solution intercalation technique. Poly(amide-imide) (PAI) 5 as a source of polymer matrix was synthesized by the direct polycondensation reaction of N-pyromellitimido-L-phenyl alanine 3 with 4,4'-diamino diphenyl ether 4 in the presence of triphenyl phosphite (TPP), CaCl2, pyridine and N-methyl-2-pyrrolidone (NMP). The resulting nanocomposite films were characterized by Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The results showed that organo-modified clay was dispersed homogeneously in PAI matrix. TGA indicated an enhancement of thermal stability of new nanocomposites compared with the pure polymer.