Science.gov

Sample records for alanine glycine lysine

  1. Folding simulations of alanine-based peptides with lysine residues.

    PubMed Central

    Sung, S S

    1995-01-01

    The folding of short alanine-based peptides with different numbers of lysine residues is simulated at constant temperature (274 K) using the rigid-element Monte Carlo method. The solvent-referenced potential has prevented the multiple-minima problem in helix folding. From various initial structures, the peptides with three lysine residues fold into helix-dominated conformations with the calculated average helicity in the range of 60-80%. The peptide with six lysine residues shows only 8-14% helicity. These results agree well with experimental observations. The intramolecular electrostatic interaction of the charged lysine side chains and their electrostatic hydration destabilize the helical conformations of the peptide with six lysine residues, whereas these effects on the peptides with three lysine residues are small. The simulations provide insight into the helix-folding mechanism, including the beta-bend intermediate in helix initiation, the (i, i + 3) hydrogen bonds, the asymmetrical helix propagation, and the asymmetrical helicities in the N- and C-terminal regions. These findings are consistent with previous studies. PMID:7756550

  2. Degradation of glycine and alanine on irradiated quartz.

    PubMed

    Pawlikowski, Maciej; Benko, Aleksandra; Wróbel, Tomasz P

    2013-04-01

    Recent researches suggest participation of minerals in the formation of life under primordial conditions. Among all of the minerals, quartz seems to be one of the most probable to take part in such processes. However, an external source of energy is needed, e.g. electric discharge. A device simulating the proposed conditions was designed and was used to simulate prebiotic conditions. Investigation of processes occurring during the stimulation of quartz with electric discharge was studied by means of Ultraviolet-visible (UV-VIS) spectroscopy, in order to monitor the generation kinetics of free radicals. Additionally, infrared spectroscopy was applied to identify chemical reaction products created in a solution of alanine or glycine, in the presence of quartz treated with electric discharge. Formation of increased amounts of free radicals, compared to experiments performed without quartz and/or amino acid, is reported, along with identification of possible degradation products of alanine. No synthetic reactions were observed.

  3. Significance of lysine/glycine cluster structure in gastric H+,K+-ATPase.

    PubMed

    Asano, S; Miwa, K; Yashiro, H; Tabuchi, Y; Takeguchi, N

    2000-08-01

    Gastric H+,K+-ATPase consists of alpha- and beta-subunits. The catalytic alpha-subunit contains a very unique structure consisting of lysine and glycine clusters, KKK(or KKKK)AG(G/R)GGGK-(K/R)K, in the amino-terminal cytoplasmic region. This structure is well conserved in all gastric H+,K+-ATPases from different animal species, and was postulated to be the site controlling the access of cations (or proton) to its binding site. In this report, we studied the role of this unique structure by expressing several H+,K+-ATPase mutants of the alpha-subunit together with the wild-type beta-subunit in HEK-293 cells. Even after replacing all the positively-charged amino acid residues (six lysines and one arginine) in the cluster with alanine or removing all the glycine residues in the cluster, the mutants preserved the H+,K+-ATPase activity, and showed similar affinity for ATP and K+ as well as similar pH profiles as those of wild-type H+,K+-ATPase, indicating that the cluster is not indispensable for H+,K+-ATPase activity and not directly involved in determination of the affinity for cation (proton).

  4. ald of Mycobacterium tuberculosis encodes both the alanine dehydrogenase and the putative glycine dehydrogenase.

    PubMed

    Giffin, Michelle M; Modesti, Lucia; Raab, Ronald W; Wayne, Lawrence G; Sohaskey, Charles D

    2012-03-01

    The putative glycine dehydrogenase of Mycobacterium tuberculosis catalyzes the reductive amination of glyoxylate to glycine but not the reverse reaction. The enzyme was purified and identified as the previously characterized alanine dehydrogenase. The Ald enzyme was expressed in Escherichia coli and had both pyruvate and glyoxylate aminating activities. The gene, ald, was inactivated in M. tuberculosis, which resulted in the loss of all activities. Both enzyme activities were found associated with the cell and were not detected in the extracellular filtrate. By using an anti-Ald antibody, the protein was localized to the cell membrane, with a smaller fraction in the cytosol. None was detected in the extracellular medium. The ald knockout strain grew without alanine or glycine and was able to utilize glycine but not alanine as a nitrogen source. Transcription of ald was induced when alanine was the sole nitrogen source, and higher levels of Ald enzyme were measured. Ald is proposed to have several functions, including ammonium incorporation and alanine breakdown.

  5. Characterisation of L-alanine and glycine absorption across the gut of an ancient vertebrate.

    PubMed

    Glover, Chris N; Bucking, Carol; Wood, Chris M

    2011-08-01

    This study utilised an in vitro technique to characterise absorption of two amino acids across the intestinal epithelium of Pacific hagfish, Eptatretus stoutii. Uptake of L-alanine and glycine conformed to Michaelis-Menten kinetics. An uptake affinity (K(m); substrate concentration required to attain a 50% uptake saturation) of 7.0 mM and an uptake capacity (J (max)) of 83 nmol cm(-2) h(-1) were described for L-alanine. The K(m) and J(max) for glycine were 2.2 mM and 11.9 nmol cm(-2) h(-1), respectively. Evidence suggested that the pathways of L-alanine and glycine absorption were shared, and sodium dependent. Further analysis indicated that glycine uptake was independent of luminal pH and proline, but a component of uptake was significantly impaired by 100-fold excesses of threonine or asparagine. The presence of a short-term (24 h) exposure to waterborne glycine, similar in nature to that which may be expected to occur when feeding inside an animal carcass, had no significant impact on gastrointestinal glycine uptake. This may indicate a lack of cross talk between absorptive epithelia. These results are the first published data to describe gastrointestinal uptake of an organic nutrient in the oldest extant vertebrate and may provide potential insight into the evolution of nutrient transport systems.

  6. GABA, β-alanine and glycine in the digestive juice of privet-specialist insects: convergent adaptive traits against plant iridoids.

    PubMed

    Konno, Kotaro; Hirayama, Chikara; Yasui, Hiroe; Okada, Sachiko; Sugimura, Masahiro; Yukuhiro, Fumiko; Tamura, Yasumori; Hattori, Makoto; Shinbo, Hiroshi; Nakamura, Masatoshi

    2010-09-01

    The privet tree, Ligustrum obtusifolium (Oleaceae), defends its leaves against insects with a strong lysine-decreasing activity that make proteins non-nutritive. This is caused by oleuropein, an iridoid glycoside. We previously found that some privet-specialist caterpillars adapt by secreting glycine in the digestive juice as a neutralizer that prevents the loss of lysine. Here, we extended the survey into 42 lepidopteran and hymenopteran species. The average concentration of glycine in digestive juice for 11 privet-feeding species (40.396 mM) was higher than that for 32 non-privet-feeding species (2.198 mM). The glycine concentrations exceeded 10 mM in 7 out of 11 privet-feeding species. In Macrophya timida (Hymenoptera), it reached 164.8 mM. Three out of the four remaining privet-feeding species had other amino acids instead. Larvae of a privet-specialist butterfly, Artopoetes pryeri (Lycaenidae), had a high concentration (60.812 mM) of GABA. In two other specialists, β-alanine was found. GABA, β-alanine, and glycine as well as alanine, amines, and ammonium ion inhibited the lysine decrease, indicating that amino residues are responsible for the inhibition. However, the three amino acids found in the specialists were far more effective (20 mM showed 80% inhibition) than the rest (>140 mM was required for 80% inhibition). Our results show a clear and rare case of the apparent convergent evolution of herbivores' molecular adaptations of feeding on a plant with a chemical defense in a manner that minimizes the cost of adaptation. The novel role of GABA in plant-herbivore interactions shown here is probably the first reported non-neuronal role of animal-derived GABA.

  7. Formation of homochiral glycine/Cu(111) quantum corral array realized using alanine nuclei

    NASA Astrophysics Data System (ADS)

    Nakamura, Miki; Huang, Hui; Kanazawa, Ken; Taninaka, Atsushi; Yoshida, Shoji; Takeuchi, Osamu; Shigekawa, Hidemi

    2015-08-01

    Glycine has enantiomeric isomers on a Cu(111) surface through the dissociation of hydrogen from the carboxyl group and forms an array of quantum corrals of ∼1.3 nm diameter. Stable homo-chiral glycinate trimers are formed in the first step, which subsequently form a network with a hexagonal arrangement. However, domains with R- or S-chirality coexist with the same probability. On the other hand, α-alanine has D- and L-chirality in nature and forms a similar quantum corral array on Cu(111) with R- and S-chirality, respectively. Here, by using α-alanine molecules as nuclei, the chirality of glycine molecules was controlled and a homochiral quantum corral array was successfully formed, which indicates the possibility that the optical isomers can be separated through a method such as preferential crystallization.

  8. Survivability and reactivity of glycine and alanine in early oceans: effects of meteorite impacts.

    PubMed

    Umeda, Yuhei; Fukunaga, Nao; Sekine, Toshimori; Furukawa, Yoshihiro; Kakegawa, Takeshi; Kobayashi, Takamichi; Nakazawa, Hiromoto

    2016-01-01

    Prebiotic oceans might have contained abundant amino acids, and were subjected to meteorite impacts, especially during the late heavy bombardment. It is so far unknown how meteorite impacts affected amino acids in the early oceans. Impact experiments were performed under the conditions where glycine was synthesized from carbon, ammonia, and water, using aqueous solutions containing (13)C-labeled glycine and alanine. Selected amino acids and amines in samples were analyzed with liquid chromatography-mass spectrometry (LC/MS). In particular, the (13)C-labeled reaction products were analyzed to distinguish between run products and contaminants. The results revealed that both amino acids survived partially in the early ocean through meteorite impacts, that part of glycine changed into alanine, and that large amounts of methylamine and ethylamine were formed. Fast decarboxylation was confirmed to occur during such impact processes. Furthermore, the formation of n-butylamine, detected only in the samples recovered from the solutions with additional nitrogen and carbon sources of ammonia and benzene, suggests that chemical reactions to form new biomolecules can proceed through marine impacts. Methylamine and ethylamine from glycine and alanine increased considerably in the presence of hematite rather than olivine under similar impact conditions. These results also suggest that amino acids present in early oceans can contribute further to impact-induced reactions, implying that impact energy plays a potential role in the prebiotic formation of various biomolecules, although the reactions are complicated and depend upon the chemical environments as well. PMID:26369758

  9. Survivability and reactivity of glycine and alanine in early oceans: effects of meteorite impacts.

    PubMed

    Umeda, Yuhei; Fukunaga, Nao; Sekine, Toshimori; Furukawa, Yoshihiro; Kakegawa, Takeshi; Kobayashi, Takamichi; Nakazawa, Hiromoto

    2016-01-01

    Prebiotic oceans might have contained abundant amino acids, and were subjected to meteorite impacts, especially during the late heavy bombardment. It is so far unknown how meteorite impacts affected amino acids in the early oceans. Impact experiments were performed under the conditions where glycine was synthesized from carbon, ammonia, and water, using aqueous solutions containing (13)C-labeled glycine and alanine. Selected amino acids and amines in samples were analyzed with liquid chromatography-mass spectrometry (LC/MS). In particular, the (13)C-labeled reaction products were analyzed to distinguish between run products and contaminants. The results revealed that both amino acids survived partially in the early ocean through meteorite impacts, that part of glycine changed into alanine, and that large amounts of methylamine and ethylamine were formed. Fast decarboxylation was confirmed to occur during such impact processes. Furthermore, the formation of n-butylamine, detected only in the samples recovered from the solutions with additional nitrogen and carbon sources of ammonia and benzene, suggests that chemical reactions to form new biomolecules can proceed through marine impacts. Methylamine and ethylamine from glycine and alanine increased considerably in the presence of hematite rather than olivine under similar impact conditions. These results also suggest that amino acids present in early oceans can contribute further to impact-induced reactions, implying that impact energy plays a potential role in the prebiotic formation of various biomolecules, although the reactions are complicated and depend upon the chemical environments as well.

  10. ESR kinetics study of the decay of low-temperature radicals in glycine and. beta. -alanine

    SciTech Connect

    Smith, C.J.; Poole, C.P. Jr.; Farach, H.A.

    1981-01-15

    Monocrystals of glycine and ..beta..-alanine have been observed by electron spin resonance (ESR) after x-irradiation near 77 /sup 0/K. The rate constants of the decay of one signal in each have been determined over the ranges 127 /sup 0/--148 /sup 0/K and 98 /sup 0/--188 /sup 0/K, respectively. Both obey first-order kinetics with activation energies of approx.7.0 and approx.2.6 kcal/mole, respectively, and pre-exponential factors of 6.4 x 10/sup 8/ and 15 Hz, respectively.

  11. Effect of lysine to alanine mutations on the phosphate activation and BPTES inhibition of glutaminase.

    PubMed

    McDonald, Charles J; Acheff, Eric; Kennedy, Ryan; Taylor, Lynn; Curthoys, Norman P

    2015-09-01

    The GLS1 gene encodes a mitochondrial glutaminase that is highly expressed in brain, kidney, small intestine and many transformed cells. Recent studies have identified multiple lysine residues in glutaminase that are sites of N-acetylation. Interestingly, these sites are located within either a loop segment that regulates access of glutamine to the active site or the dimer:dimer interface that participates in the phosphate-dependent oligomerization and activation of the enzyme. These two segments also contain the binding sites for bis-2[5-phenylacetamido-1,2,4-thiadiazol-2-yl]ethylsulfide (BPTES), a highly specific and potent uncompetitive inhibitor of this glutaminase. BPTES is also the lead compound for development of novel cancer chemotherapeutic agents. To provide a preliminary assessment of the potential effects of N-acetylation, the corresponding lysine to alanine mutations were constructed in the hGACΔ1 plasmid. The wild type and mutated proteins were purified by Ni(+)-affinity chromatography and their phosphate activation and BPTES inhibition profiles were analyzed. Two of the alanine substitutions in the loop segment (K311A and K328A) and the one in the dimer:dimer interface (K396A) form enzymes that require greater concentrations of phosphate to produce half-maximal activation and exhibit greater sensitivity to BPTES inhibition. By contrast, the K320A mutation results in a glutaminase that exhibits near maximal activity in the absence of phosphate and is not inhibited by BPTES. Thus, lysine N-acetylation may contribute to the acute regulation of glutaminase activity in various tissues and alter the efficacy of BPTES-type inhibitors.

  12. Electron attachment to amino acid clusters in helium nanodroplets: Glycine, alanine, and serine

    NASA Astrophysics Data System (ADS)

    Ferreira da Silva, F.; Denifl, S.; Märk, T. D.; Ellis, A. M.; Scheier, P.

    2010-06-01

    The first detailed study of electron attachment to amino acid clusters is reported. The amino acids chosen for investigation were glycine, alanine, and serine. Clusters of these amino acids were formed inside helium nanodroplets, which provide a convenient low temperature (0.37 K) environment for growing noncovalent clusters. When subjected to low energy (2 eV) electron impact the chemistry for glycine and alanine clusters was found to be similar. In both cases, parent cluster anions were the major products, which contrasts with the corresponding monomers in the gas phase, where the dehydrogenated products ([AAn-H]-, where AA=amino acid monomer) dominate. Serine clusters are different, with the major product being the parent anion minus an OH group, an outcome presumably conferred by the facile loss of an OH group from the β carbon of serine. In addition to the bare parent anions and various fragment anions, helium atoms are also observed attached to both the parent anion clusters and the dehydrogenated parent anion clusters. Finally, we present the first anion yield spectra of amino acid clusters from doped helium nanodroplets as a function of incident electron energy.

  13. The role of metal ions in chemical evolution - Polymerization of alanine and glycine in a cation-exchanged clay environment

    NASA Technical Reports Server (NTRS)

    Lawless, J. G.; Levi, N.

    1979-01-01

    The effect of the exchangeable cation on the condensation of glycine and alanine was investigated using a series of homoionic bentonites. A cycling procedure of drying, warming and wetting was employed. Peptide bond formation was observed, and the effectiveness of metal ions to catalyze the condensation was Cu(2+) greater than Ni(2) approximately equals Zn(2+) greater than Na(+). Glycine showed 6% of the monomer incorporated into oligomers with the largest detected being the pentamer. Alanine showed less peptide bond formation (a maximum of 2%) and only the dimer was observed.

  14. A single glycine-alanine exchange directs ligand specificity of the elephant progestin receptor.

    PubMed

    Wierer, Michael; Schrey, Anna K; Kühne, Ronald; Ulbrich, Susanne E; Meyer, Heinrich H D

    2012-01-01

    The primary gestagen of elephants is 5α-dihydroprogesterone (DHP), which is unlike all other mammals studied until now. The level of DHP in elephants equals that of progesterone in other mammals, and elephants are able to bind DHP with similar affinity to progesterone indicating a unique ligand-binding specificity of the elephant progestin receptor (PR). Using site-directed mutagenesis in combination with in vitro binding studies we here report that this change in specificity is due to a single glycine to alanine exchange at position 722 (G722A) of PR, which specifically increases DHP affinity while not affecting binding of progesterone. By conducting molecular dynamics simulations comparing human and elephant PR ligand-binding domains (LBD), we observed that the alanine methyl group at position 722 is able to push the DHP A-ring into a position similar to progesterone. In the human PR, the DHP A-ring position is twisted towards helix 3 of PR thereby disturbing the hydrogen bond pattern around the C3-keto group, resulting in a lower binding affinity. Furthermore, we observed that the elephant PR ligand-binding pocket is more rigid than the human analogue, which probably explains the higher affinity towards both progesterone and DHP. Interestingly, the G722A substitution is not elephant-specific, rather it is also present in five independent lineages of mammalian evolution, suggesting a special role of the substitution for the development of distinct mammalian gestagen systems. PMID:23209719

  15. Oligomerization of Glycine and Alanine Catalyzed by Iron Oxides: Implications for Prebiotic Chemistry

    NASA Astrophysics Data System (ADS)

    Shanker, Uma; Bhushan, Brij; Bhattacharjee, G.; Kamaluddin

    2012-02-01

    Iron oxide minerals are probable constituents of the sediments present in geothermal regions of the primitive earth. They might have adsorbed different organic monomers (amino acids, nucleotides etc.) and catalyzed polymerization processes leading to the formation of the first living cell. In the present work we tested the catalytic activity of three forms of iron oxides (Goethite, Akaganeite and Hematite) in the intermolecular condensation of each of the amino acids glycine and L-alanine. The effect of zinc oxide and titanium dioxide on the oligomerization has also been studied. Oligomerization studies were performed for 35 days at three different temperatures 50, 90 and 120°C without applying drying/wetting cycling. The products formed were characterized by HPLC and ESI-MS techniques. All three forms of iron oxides catalyzed peptide bond formation (23.2% of gly2 and 10.65% of ala2). The reaction was monitored every 7 days. Formation of peptides was observed to start after 7 days at 50°C. Maximum yield of peptides was found after 35 days at 90°C. Reaction at 120°C favors formation of diketopiperazine derivatives. It is also important to note that after 35 days of reaction, goethite produced dimer and trimer with the highest yield among the oxides tested. We suggest that the activity of goethite could probably be due to its high surface area and surface acidity.

  16. Predicting Three-Dimensional Conformations of Peptides Constructed of Only Glycine, Alanine, Aspartic Acid, and Valine

    NASA Astrophysics Data System (ADS)

    Oda, Akifumi; Fukuyoshi, Shuichi

    2015-06-01

    The GADV hypothesis is a form of the protein world hypothesis, which suggests that life originated from proteins (Lacey et al. 1999; Ikehara 2002; Andras 2006). In the GADV hypothesis, life is thought to have originated from primitive proteins constructed of only glycine, alanine, aspartic acid, and valine ([GADV]-proteins). In this study, the three-dimensional (3D) conformations of randomly generated short [GADV]-peptides were computationally investigated using replica-exchange molecular dynamics (REMD) simulations (Sugita and Okamoto 1999). Because the peptides used in this study consisted of only 20 residues each, they could not form certain 3D structures. However, the conformational tendencies of the peptides were elucidated by analyzing the conformational ensembles generated by REMD simulations. The results indicate that secondary structures can be formed in several randomly generated [GADV]-peptides. A long helical structure was found in one of the hydrophobic peptides, supporting the conjecture of the GADV hypothesis that many peptides aggregated to form peptide multimers with enzymatic activity in the primordial soup. In addition, these results indicate that REMD simulations can be used for the structural investigation of short peptides.

  17. Oligomerization of glycine and alanine catalyzed by iron oxides: implications for prebiotic chemistry.

    PubMed

    Shanker, Uma; Bhushan, Brij; Bhattacharjee, G; Kamaluddin

    2012-02-01

    Iron oxide minerals are probable constituents of the sediments present in geothermal regions of the primitive earth. They might have adsorbed different organic monomers (amino acids, nucleotides etc.) and catalyzed polymerization processes leading to the formation of the first living cell. In the present work we tested the catalytic activity of three forms of iron oxides (Goethite, Akaganeite and Hematite) in the intermolecular condensation of each of the amino acids glycine and L-alanine. The effect of zinc oxide and titanium dioxide on the oligomerization has also been studied. Oligomerization studies were performed for 35 days at three different temperatures 50, 90 and 120°C without applying drying/wetting cycling. The products formed were characterized by HPLC and ESI-MS techniques. All three forms of iron oxides catalyzed peptide bond formation (23.2% of gly2 and 10.65% of ala2). The reaction was monitored every 7 days. Formation of peptides was observed to start after 7 days at 50°C. Maximum yield of peptides was found after 35 days at 90°C. Reaction at 120°C favors formation of diketopiperazine derivatives. It is also important to note that after 35 days of reaction, goethite produced dimer and trimer with the highest yield among the oxides tested. We suggest that the activity of goethite could probably be due to its high surface area and surface acidity.

  18. Predicting three-dimensional conformations of peptides constructed of only glycine, alanine, aspartic acid, and valine.

    PubMed

    Oda, Akifumi; Fukuyoshi, Shuichi

    2015-06-01

    The GADV hypothesis is a form of the protein world hypothesis, which suggests that life originated from proteins (Lacey et al. 1999; Ikehara 2002; Andras 2006). In the GADV hypothesis, life is thought to have originated from primitive proteins constructed of only glycine, alanine, aspartic acid, and valine ([GADV]-proteins). In this study, the three-dimensional (3D) conformations of randomly generated short [GADV]-peptides were computationally investigated using replica-exchange molecular dynamics (REMD) simulations (Sugita and Okamoto 1999). Because the peptides used in this study consisted of only 20 residues each, they could not form certain 3D structures. However, the conformational tendencies of the peptides were elucidated by analyzing the conformational ensembles generated by REMD simulations. The results indicate that secondary structures can be formed in several randomly generated [GADV]-peptides. A long helical structure was found in one of the hydrophobic peptides, supporting the conjecture of the GADV hypothesis that many peptides aggregated to form peptide multimers with enzymatic activity in the primordial soup. In addition, these results indicate that REMD simulations can be used for the structural investigation of short peptides.

  19. Oligomerization of glycine and alanine on metal(II) octacynaomolybdate(IV): role of double metal cyanides in prebiotic chemistry.

    PubMed

    Kumar, Anand; Kamaluddin

    2012-12-01

    Condensation reactions of amino acid (glycine and alanine) on the surface of metal(II) octacyanomolybdate(IV) (MOCMo) complexes are investigated using high-performance liquid chromatography (HPLC) and electron spray ionizations-mass spectroscopy (ESI-MS). The series of MOCMo have been synthesized and the effect of outer sphere metal ions present in the MOCMo on the oligomerization of glycine and alanine at different temperature and time found out. Formation of peptides was observed to start after 7 days at 60 °C. Maximum yield of peptides was found after 35 days at 90 °C. It has been found that zinc(II) octacyanomolybdate(IV) and cobalt(II) were the most effective metal cations present in outer sphere of the MOCMo for the production of high yield of oligomerized products. Surface area of MOCMo seems to play dominating parameter for the oligomerization of alanine and glycine. The results of the present study reveal the role of MOCMo in chemical evolution for the oligomerization of biomolecules.

  20. Functional characterization of a member of alanine or glycine: cation symporter family in halotolerant cyanobacterium Aphanothece halophytica.

    PubMed

    Bualuang, Aporn; Kageyama, Hakuto; Tanaka, Yoshito; Incharoensakdi, Aran; Takabe, Teruhiro

    2015-01-01

    Membrane proteins of amino acid-polyamine-organocation (APC) superfamily transport amino acids and amines across membranes and play important roles in the regulation of cellular processes. The alanine or glycine: cation symporter (AGCS) family belongs to APC superfamily and is found in prokaryotes, but its substrate specificity remains to be clarified. In this study, we found that a halotolerant cyanobacterium, Aphanothece halophytica has two putative ApagcS genes. The deduced amino acid sequence of one of genes, ApagcS1, exhibited high homology to Pseudomonas AgcS. The ApagcS1 gene was expressed in Escherichia coli JW4166 which is deficient in glycine uptake. Kinetics studies in JW4166 revealed that ApAgcS1 is a sodium-dependent glycine transporter. Competition experiments showed the significant inhibition by glutamine, asparagine, and glycine. The level of mRNA for ApagcS1 was induced by NaCl and nitrogen-deficient stresses. Uptake of glutamine by ApAgcS1 was also observed. Based on these data, the physiological role of ApAgcS1 was discussed.

  1. Short one-pot chemo-enzymatic synthesis of L-lysine and L-alanine diblock co-oligopeptides.

    PubMed

    Fagerland, Jenny; Finne-Wistrand, Anna; Numata, Keiji

    2014-03-10

    Amphiphilic diblock co-oligopeptides are interesting and functional macromolecular materials for biomedical applications because of their self-assembling properties. Here, we developed a synthesis method for diblock co-oligopeptides by using chemo-enzymatic polymerization, which was a relatively short (30 min) and efficient reaction (over 40% yield). Block and random oligo(L-lysine-co-L-alanine) [oligo(Lys-co-Ala)] were synthesized using activated papain as enzymatic catalyst. The reaction time was optimized according to kinetic studies of oligo(L-alanine) and oligo(L-lysine). Using (1)H NMR spectroscopy and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, we confirmed that diblock and random co-oligopeptides were synthesized. Optical microscopy further revealed differences in the crystalline morphology between random and block co-oligopeptides. Plate-like, hexagonal, and hollow crystals were formed due to the strong impact of the monomer distribution and pH of the solution. The different crystalline structures open up interesting possibilities to form materials for both tissue engineering and controlled drug/gene delivery systems.

  2. Probing catalytic hinge bending motions in thermolysin-like proteases by glycine --> alanine mutations.

    PubMed

    Veltman, O R; Eijsink, V G; Vriend, G; de Kreij, A; Venema, G; Van den Burg, B

    1998-04-14

    The active site of thermolysin-like proteases (TLPs) is located at the bottom of a cleft between the N- and C-terminal domains. Crystallographic studies have shown that the active-site cleft is more closed in ligand-binding TLPs than in ligand-free TLPs. Accordingly, it has been proposed that TLPs undergo a hinge-bending motion during catalysis resulting in "closure" and "opening" of the active-site cleft. Two hinge regions have been proposed. One is located around a conserved glycine 78; the second involves residues 135 and 136. The importance of conserved glycine residues in these hinge regions was studied experimentally by analyzing the effects of Gly --> Ala mutations on catalytic activity. Eight such mutations were made in the TLP of Bacillus stearothermophilus (TLP-ste) and their effects on activity toward casein and various peptide substrates were determined. Only the Gly78Ala, Gly136Ala, and Gly135Ala + Gly136Ala mutants decreased catalytic activity significantly. These mutants displayed a reduction in kcat/Km for 3-(2-furylacryloyl)-L-glycyl-L-leucine amide of 73%, 62%, and 96%, respectively. Comparisons of effects on kcat/Km for various substrates with effects on the Ki for phosphoramidon suggested that the mutation at position 78 primarily had an effect on substrate binding, whereas the mutations at positions 135 and 136 primarily influence kcat. The apparent importance of conserved glycine residues in proposed hinge-bending regions for TLP activity supports the idea that hinge-bending is an essential part of catalysis.

  3. Assembly Properties of an Alanine-Rich, Lysine-Containing Peptide and the Formation of Peptide/Polymer Hybrid Hydrogels.

    PubMed

    Grieshaber, Sarah E; Nie, Ting; Yan, Congqi; Zhong, Sheng; Teller, Sean S; Clifton, Rodney J; Pochan, Darrin J; Kiick, Kristi L; Jia, Xinqiao

    2011-02-01

    We are interested in developing peptide/polymer hybrid hydrogels that are chemically diverse and structurally complex. Towards this end, an alanine-based peptide doped with charged lysines with a sequence of (AKA(3)KA)(2) (AK2) was selected from the crosslinking regions of the natural elastin. Pluronic(®) F127, known to self-assemble into defined micellar structures, was employed as the synthetic building blocks. Fundamental investigations on the environmental effects on the secondary structure and assembly properties of AK2 peptide were carried out with or without the F-127 micelles. At a relatively low peptide concentration (~0.5 mg/mL), the F127 micelles are capable of not only increasing the peptide helicity but also stabilizing it against thermal denaturation. At a higher peptide concentration in basic media, the AK2 peptide developed a substantial amount of β-sheet structure that is conducive to the formation of nanofibrils. The fibril formation was confirmed collectively by atomic force microscopy (AFM), small angle neutron scattering (SANS) and transmission electron microscopy (TEM). The assembly kinetics is strongly dependent on solution temperature and pH; an increased temperature and a more basic environment led to faster fibril assembly. The self-assembled nanoscale structures were covalently interlocked via the Michael-type addition reaction between vinyl sulfone-decorated F127 micelles and the lysine amines exposed at the surface of the nanofibers. The crosslinked hybrid hydrogels were viscoelastic, exhibiting an elastic modulus of approximately 17 kPa and a loss tangent of 0.2. PMID:21359141

  4. A Highly Active and Negatively Charged Streptococcus pyogenes Lysin with a Rare d-Alanyl-l-Alanine Endopeptidase Activity Protects Mice against Streptococcal Bacteremia

    PubMed Central

    Lood, Rolf; Raz, Assaf; Molina, Henrik; Euler, Chad W.

    2014-01-01

    Bacteriophage endolysins have shown great efficacy in killing Gram-positive bacteria. PlyC, a group C streptococcal phage lysin, represents the most efficient lysin characterized to date, with a remarkably high specificity against different streptococcal species, including the important pathogen Streptococcus pyogenes. However, PlyC is a unique lysin, in terms of both its high activity and structure (two distinct subunits). We sought to discover and characterize a phage lysin active against S. pyogenes with an endolysin architecture distinct from that of PlyC to determine if it relies on the same mechanism of action as PlyC. In this study, we identified and characterized an endolysin, termed PlyPy (phage lysin from S. pyogenes), from a prophage infecting S. pyogenes. By in silico analysis, PlyPy was found to have a molecular mass of 27.8 kDa and a pI of 4.16. It was active against a majority of group A streptococci and displayed high levels of activity as well as binding specificity against group B and C streptococci, while it was less efficient against other streptococcal species. PlyPy showed the highest activity at neutral pH in the presence of calcium and NaCl. Surprisingly, its activity was not affected by the presence of the group A-specific carbohydrate, while the activity of PlyC was partly inhibited. Additionally, PlyPy was active in vivo and could rescue mice from systemic bacteremia. Finally, we developed a novel method to determine the peptidoglycan bond cleaved by lysins and concluded that PlyPy exhibits a rare d-alanyl-l-alanine endopeptidase activity. PlyPy thus represents the first lysin characterized from Streptococcus pyogenes and has a mechanism of action distinct from that of PlyC. PMID:24637688

  5. Effect of substituting arginine and lysine with alanine on antimicrobial activity and the mechanism of action of a cationic dodecapeptide (CL(14-25)), a partial sequence of cyanate lyase from rice.

    PubMed

    Taniguchi, Masayuki; Takahashi, Nobuteru; Takayanagi, Tomohiro; Ikeda, Atsuo; Ishiyama, Yohei; Saitoh, Eiichi; Kato, Tetsuo; Ochiai, Akihito; Tanaka, Takaaki

    2014-01-01

    The antimicrobial activity of analogs obtained by substituting arginine and lysine in CL(14-25), a cationic α-helical dodecapeptide, with alanine against Porphyromonas gingivalis, a periodontal pathogen, varied significantly depending on the number and position of cationic amino acids. The alanine-substituted analogs had no hemolytic activity, even at a concentration of 1 mM. The antimicrobial activities of CL(K20A) and CL(K20A, K25A) were 3.8-fold and 9.1-fold higher, respectively, than that of CL(14-25). The antimicrobial activity of CL(R15A) was slightly lower than that of CL(14-25), suggesting that arginine at position 15 is not essential but is important for the antimicrobial activity. The experiments in which the alanine-substituted analogs bearing the replacement of arginine at position 24 and/or lysine at position 25 were used showed that arginine at position 24 was crucial for the antimicrobial activity whenever lysine at position 25 was substituted with alanine. Helical wheel projections of the alanine-substituted analogs indicate that the hydrophobicity in the vicinity of leucine at position 16 and alanines at positions 18 and/or 21 increased by substituting lysine at positions 20 and 25 with alanine, respectively. The degrees of diSC3 -5 release from P. gingivalis cells and disruption of GUVs induced by the alanine-substituted analogs with different positive charges were not closely related to their antimicrobial activities. The enhanced antimicrobial activities of the alanine-substituted analogs appear to be mainly attributable to the changes in properties such as hydrophobicity and amphipathic propensity due to alanine substitution and not to their extents of positive charge (cationicity).

  6. FT-IR and Raman spectroscopic and DFT studies of anti-cancer active molecule N-{(meta-ferrocenyl) Benzoyl} - L-Alanine - Glycine ethyl ester

    NASA Astrophysics Data System (ADS)

    Xavier, T. S.; Kenny, Peter T. M.; Manimaran, D.; Joe, I. Hubert

    2015-06-01

    FT-Raman and FT-IR spectra of N-{(meta-ferrocenyl) Benzoyl} - L-alanine - glycine ethyl ester were recorded in solid phase. The optimized molecular geometry, the vibrational wavenumbers, the infrared intensities and the Raman scattering intensities were calculated by using density functional method(B3LYP) with 6-31G(d, p) basis set. Vibrational assignment of the molecule was done by using potential energy distribution analysis. Natural bond orbital analysis, Mulliken charge analysis and HOMO-LUMO energy were used to elucidate the reasons for intra molecular charge transfer. Docking studies were conducted to predict its anticancer activity.

  7. Enhanced trophic factor secretion by mesenchymal stem/stromal cells with Glycine-Histidine-Lysine (GHK)-modified alginate hydrogels

    PubMed Central

    Jose, Soumia; Hughbanks, Marissa L.; Binder, Bernard Y.K.; Ingavle, Ganesh C.; Leach, J. Kent

    2014-01-01

    Recombinant proteins and cytokines are under broad preclinical and clinical investigation to promote angiogenesis, but their success is limited by ineffective delivery, lack of long-term stability, and excessive cost. Mesenchymal stem/stromal cells (MSC) secrete bioactive trophic factors, and thus, may provide an effective alternative to address these challenges. Glycine-Histidine-Lysine (GHK) is a peptide fragment of osteonectin (SPARC), a matricellular protein with reported proangiogenic potential. We examined the capacity of GHK to upregulate secretion of proangiogenic factors from human MSC in culture and when covalently coupled to alginate hydrogels. GHK had no apparent cytotoxic effects on MSC in culture over a wide range of concentrations. We detected a dose-dependent increase in vascular endothelial growth factor (VEGF) concentration in media conditioned by GHK-treated MSC, which increased endothelial cell proliferation, migration, and tubule formation. We covalently coupled GHK to alginate using carbodiimide chemistry, and human MSC were entrapped in alginate hydrogels to assess VEGF secretion. Similar to monolayer culture, MSC responded to GHK-modified gels by secreting increased concentrations of VEGF and basic fibroblast growth factor (bFGF) compared to unmodified gels. The pre-treatment of MSC with antibodies to α6 and β1 integrins prior to entrapment in GHK-modified gels abrogated VEGF secretion, suggesting that the proangiogenic response of MSC was integrin-mediated. These data demonstrate that the proangiogenic potential of MSC can be significantly increased by the presentation of GHK with a biodegradable carrier, therefore increasing their clinical potential when used for tissue repair. PMID:24468583

  8. Spontaneous multivessel cervical artery dissection in a patient with a substitution of alanine for glycine (G13A) in the alpha 1 (I) chain of type I collagen.

    PubMed

    Mayer, S A; Rubin, B S; Starman, B J; Byers, P H

    1996-08-01

    Cervical artery dissection occurs spontaneously and in multiple vessels with surprising frequency. An underlying arteriopathy is frequently suspected, but specific causes of vascular fragility are rarely identified. We describe a 35-year-old woman who developed multiple cervical artery dissections after scuba diving. She had no stigmata of connective tissue disease apart from bluish sclerae, and no family history of arterial dissection or congenital musculoskeletal disease. Analysis of the COL1A1 gene that encodes the pro alpha 1(I) chains of type I procollagen revealed a point mutation in one allele, resulting in substitution of alanine for glycine (G13A) in about half the alpha 1(I) chains of type I collagen. Genetic disorders of collagen, such as the mild phenotypic variant of osteogenesis imperfecta identified in our patient, should be considered in the differential diagnosis of unexplained cervical artery dissection.

  9. Ab Initio and Density Functional Theory Modeling of the Chiroptical Response of Glycine and Alanine in Solution Using Explicit Solvation and Molecular Dynamics.

    PubMed

    Kundrat, Matthew D; Autschbach, Jochen

    2008-11-11

    We investigate ways in which simple point charge (SPC) water models can be used in place of more expensive quantum mechanical water molecules to efficiently model the solvent effect on a solute molecule's chiroptical responses. The effect that SPC waters have on the computed circular dichroism of a solvated glycine molecule are comparable to, albeit somewhat weaker than, that of quantum mechanical waters at the coupled cluster CC2 level of theory. The effects of SPC waters in fact correlate better with QM-CC2 waters than quantum mechanical waters computed with density functional theory (DFT) methods, since they do not promote spurious charge transfer excitations that are a known deficiency with most popular density functionals. Furthermore, the near zero order scaling of point charge waters allows multiple layers of explicit solvation to be modeled with negligible computational cost, which is not practical with CC2 or DFT levels. As a practical example, we model the molar rotations of glycine and alanine, and track their convergence.

  10. NMR studies of protonation and hydrogen bond states of internal aldimines of pyridoxal 5'-phosphate acid-base in alanine racemase, aspartate aminotransferase, and poly-L-lysine.

    PubMed

    Chan-Huot, Monique; Dos, Alexandra; Zander, Reinhard; Sharif, Shasad; Tolstoy, Peter M; Compton, Shara; Fogle, Emily; Toney, Michael D; Shenderovich, Ilya; Denisov, Gleb S; Limbach, Hans-Heinrich

    2013-12-01

    Using (15)N solid-state NMR, we have studied protonation and H-bonded states of the cofactor pyridoxal 5'-phosphate (PLP) linked as an internal aldimine in alanine racemase (AlaR), aspartate aminotransferase (AspAT), and poly-L-lysine. Protonation of the pyridine nitrogen of PLP and the coupled proton transfer from the phenolic oxygen (enolimine form) to the aldimine nitrogen (ketoenamine form) is often considered to be a prerequisite to the initial step (transimination) of the enzyme-catalyzed reaction. Indeed, using (15)N NMR and H-bond correlations in AspAT, we observe a strong aspartate-pyridine nitrogen H-bond with H located on nitrogen. After hydration, this hydrogen bond is maintained. By contrast, in the case of solid lyophilized AlaR, we find that the pyridine nitrogen is neither protonated nor hydrogen bonded to the proximal arginine side chain. However, hydration establishes a weak hydrogen bond to pyridine. To clarify how AlaR is activated, we performed (13)C and (15)N solid-state NMR experiments on isotopically labeled PLP aldimines formed by lyophilization with poly-L-lysine. In the dry solid, only the enolimine tautomer is observed. However, a fast reversible proton transfer involving the ketoenamine tautomer is observed after treatment with either gaseous water or gaseous dry HCl. Hydrolysis requires the action of both water and HCl. The formation of an external aldimine with aspartic acid at pH 9 also produces the ketoenamine form stabilized by interaction with a second aspartic acid, probably via a H-bond to the phenolic oxygen. We postulate that O-protonation is an effectual mechanism for the activation of PLP, as is N-protonation, and that enzymes that are incapable of N-protonation employ this mechanism. PMID:24147985

  11. Structures of two bacterial resistance factors mediating tRNA-dependent aminoacylation of phosphatidylglycerol with lysine or alanine

    PubMed Central

    Hebecker, Stefanie; Krausze, Joern; Hasenkampf, Tatjana; Schneider, Julia; Groenewold, Maike; Reichelt, Joachim; Jahn, Dieter; Heinz, Dirk W.; Moser, Jürgen

    2015-01-01

    The cytoplasmic membrane is probably the most important physical barrier between microbes and the surrounding habitat. Aminoacylation of the polar head group of the phospholipid phosphatidylglycerol (PG) catalyzed by Ala-tRNAAla–dependent alanyl-phosphatidylglycerol synthase (A-PGS) or by Lys-tRNALys–dependent lysyl-phosphatidylglycerol synthase (L-PGS) enables bacteria to cope with cationic peptides that are harmful to the integrity of the cell membrane. Accordingly, these synthases also have been designated as multiple peptide resistance factors (MprF). They consist of a separable C-terminal catalytic domain and an N-terminal transmembrane flippase domain. Here we present the X-ray crystallographic structure of the catalytic domain of A-PGS from the opportunistic human pathogen Pseudomonas aeruginosa. In parallel, the structure of the related lysyl-phosphatidylglycerol–specific L-PGS domain from Bacillus licheniformis in complex with the substrate analog L-lysine amide is presented. Both proteins reveal a continuous tunnel that allows the hydrophobic lipid substrate PG and the polar aminoacyl-tRNA substrate to access the catalytic site from opposite directions. Substrate recognition of A-PGS versus L-PGS was investigated using misacylated tRNA variants. The structural work presented here in combination with biochemical experiments using artificial tRNA or artificial lipid substrates reveals the tRNA acceptor stem, the aminoacyl moiety, and the polar head group of PG as the main determinants for substrate recognition. A mutagenesis approach yielded the complementary amino acid determinants of tRNA interaction. These results have broad implications for the design of L-PGS and A-PGS inhibitors that could render microbial pathogens more susceptible to antimicrobial compounds. PMID:26261323

  12. Pore Diameter Dependence and Segmental Dynamics of Poly-Z-L-lysine and Poly-L-alanine Confined in 1D Nanocylindrical Geometry

    NASA Astrophysics Data System (ADS)

    Tuncel, Eylul; Suzuki, Yasuhito; Iossifidis, Agathaggelos; Steinhart, Martin; Butt, Hans-Jurgen; Floudas, George; Duran, Hatice

    Structure formation, thermodynamic stability, phase and dynamic behaviors of polypeptides are strongly affected by confinement. Since understanding the changes in these behaviors will allow their rational design as functional devices with tunable properties, herein we investigated Poly-Z-L-lysine (PZLL) and Poly-L-alanine (PAla) homopolypeptides confined in nanoporous alumina containing aligned cylindrical nanopores as a function of pore size by differential scanning calorimetry (DSC), Fourier Transform Infrared Spectroscopy, Solid-state NMR, X-ray diffraction, Dielectric spectroscopy(DS). Bulk PZLL exhibits a glass transition temperature (Tg) at about 301K while PZLL nanorods showed slightly lower Tg (294K). The dynamic investigation by DS also revealed a decrease (4K) in Tg between bulk and PZLL nanorods. DS is a very sensitive probe of the local and global secondary structure relaxation through the large dipole to study effect of confinement. The results revealed that the local segmental dynamics, associated with broken hydrogen bonds, and segmental dynamics speed-up on confinement.

  13. Osteogenesis Imperfecta Missense Mutations in Collagen: Structural consequences of a glycine to alanine replacement at a highly charged site

    PubMed Central

    Xiao, Jianxi; Cheng, Haiming; Silva, Teresita; Baum, Jean; Brodsky, Barbara

    2011-01-01

    Glycine is required as every third residue in the collagen triple-helix, and a missense mutation leading to the replacement of even one Gly in the repeating (Gly-Xaa-Yaa)n sequence by a larger residue leads to a pathological condition. Gly to Ala missense mutations are highly underrepresented in osteogenesis imperfecta (OI) and other collagen diseases, suggesting that the smallest replacement residue Ala might cause the least structural perturbation and mildest clinical consequences. The relatively small number of Gly to Ala mutation sites that do lead to OI must have some unusual features, such as greater structural disruption due to local sequence environment or location at a biologically important site. Here, peptides are used to model a severe OI case where a Gly to Ala mutation is found within a highly stabilizing Lys-Gly-Asp sequence environment. NMR, CD and DSC studies indicate this Gly to Ala replacement leads to a substantial loss in triple-helix stability and non-equivalence of the Ala residues in the three chains such that only one of the three Ala residues is capable of form a good backbone hydrogen bond. Examination of reported OI Gly to Ala mutations suggests preferential location at known collagen binding sites, and we propose that structural defects due to Ala replacements may lead to pathology when interfering with interactions. PMID:22054507

  14. One-dimensional coordination polymers: Cu(II) and Zn(II) complexes of N-(2-pyridylmethyl)-glycine and N-(2-pyridylmethyl)- L-alanine

    NASA Astrophysics Data System (ADS)

    Wang, Xiaobai; Ranford, John D.; Vittal, Jagadese J.

    2006-08-01

    The crystal structures of three Cu(II) and one Zn(II) complexes of N-(2-pyridylmethyl)- L-glycine (Hpgly) and N-(2-pyridylmethyl)- L-alanine (Hpala) have been described. They are [Cu(pgly)Cl] · H 2O ( 1), [Cu(pala)Cl] · H 2O ( 2), [Cu(pala)(CH 3COO)] · 0.75H 2O ( 3), and [Zn(pgly)(NO 3)] ( 4). All these compounds have 1D polymeric structures in the solid state. In 1 and 2, the chloride ions bridge [Cu(pgly)] and [Cu(pala)] fragments, respectively, to generate 1D polymers while the bridging acetate ligands are responsible for the formation of ΛΔΛΔ type spiral polymers in 3. The nitrate ion in 4 is only acting as a terminal ligand while the carboxylate oxygen atom of the pala ligand bridges the Zn(II) centers to form the zigzag coordination polymeric chain. The 1D coordination polymers in 1 and 2 have very similar arrangements although crystallized in different space groups, and host 1D water chains in their crystal lattices.

  15. Vibrational 13C-cross-polarization/magic angle spinning NMR spectroscopic and thermal characterization of poly(alanine-glycine) as model for silk I Bombyx mori fibroin.

    PubMed

    Monti, Patrizia; Taddei, Paola; Freddi, Giuliano; Ohgo, Kosuke; Asakura, Tetsuo

    2003-01-01

    This study focuses on the conformational characterization of poly(alanine-glycine) II (pAG II) as a model for a Bombyx mori fibroin silk I structure. Raman, IR, and 13C-cross-polarization/magic angle spinning NMR spectra of pAG II are discussed in comparison with those of the crystalline fraction of B. mori silk fibroin (chymotryptic precipitate, Cp) with a silk I (silk I-Cp) structure. The spectral data give evidence that silk I-Cp and the synthetic copolypeptide pAG II have similar conformations. Moreover, the spectral findings reveal that silk I-Cp is more crystalline than pAG II; consequently, the latter contains a larger amount of the random coil conformation. Differential scanning calorimetry measurements confirm this result. N-Deuteration experiments on pAG II allow us to attribute the Raman component at 1320 cm(-1) to the amide III mode of a beta-turn type II conformation, thus confirming the results of those who propose a repeated beta-turn type II structure for silk I. The analysis of the Raman spectra in the nuNH region confirms that the silk I structure is characterized by the presence of different types of H-bonding arrangements, in agreement with the above model.

  16. Association of a lysine-232/alanine polymorphism in a bovine gene encoding acyl-CoA:diacylglycerol acyltransferase (DGAT1) with variation at a quantitative trait locus for milk fat content.

    PubMed

    Winter, Andreas; Krämer, Wolfgang; Werner, Fabian A O; Kollers, Sonja; Kata, Srinivas; Durstewitz, Gregor; Buitkamp, Johannes; Womack, James E; Thaller, Georg; Fries, Ruedi

    2002-07-01

    DGAT1 encodes diacylglycerol O-acyltransferase (EC ), a microsomal enzyme that catalyzes the final step of triglyceride synthesis. It became a functional candidate gene for lactation traits after studies indicated that mice lacking both copies of DGAT1 are completely devoid of milk secretion, most likely because of deficient triglyceride synthesis in the mammary gland. Our mapping studies placed DGAT1 close to the region of a quantitative trait locus (QTL) on bovine chromosome 14 for variation in fat content of milk. Sequencing of DGAT1 from pooled DNA revealed significant frequency shifts at several variable positions between groups of animals with high and low breeding values for milk fat content in different breeds (Holstein-Friesian, Fleckvieh, and Braunvieh). Among the variants was a nonconservative substitution of lysine by alanine (K232A), with the lysine-encoding allele being associated with higher milk fat content. Haplotype analysis indicated the lysine variant to be ancestral. Two animals that were typed heterozygous (Qq) at the QTL based on marker-assisted QTL-genotyping were heterozygous for the K232A substitution, whereas 14 animals that are most likely qq at the QTL were homozygous for the alanine-encoding allele. An independent association study in Fleckvieh animals confirmed the positive effect of the lysine variant on milk fat content. We consider the nonconservative K232A substitution to be directly responsible for the QTL variation, although our genetic studies cannot provide formal proof.

  17. Association of a lysine-232/alanine polymorphism in a bovine gene encoding acyl-CoA:diacylglycerol acyltransferase (DGAT1) with variation at a quantitative trait locus for milk fat content

    PubMed Central

    Winter, Andreas; Krämer, Wolfgang; Werner, Fabian A. O.; Kollers, Sonja; Kata, Srinivas; Durstewitz, Gregor; Buitkamp, Johannes; Womack, James E.; Thaller, Georg; Fries, Ruedi

    2002-01-01

    DGAT1 encodes diacylglycerol O-acyltransferase (EC 2.3.1.20), a microsomal enzyme that catalyzes the final step of triglyceride synthesis. It became a functional candidate gene for lactation traits after studies indicated that mice lacking both copies of DGAT1 are completely devoid of milk secretion, most likely because of deficient triglyceride synthesis in the mammary gland. Our mapping studies placed DGAT1 close to the region of a quantitative trait locus (QTL) on bovine chromosome 14 for variation in fat content of milk. Sequencing of DGAT1 from pooled DNA revealed significant frequency shifts at several variable positions between groups of animals with high and low breeding values for milk fat content in different breeds (Holstein–Friesian, Fleckvieh, and Braunvieh). Among the variants was a nonconservative substitution of lysine by alanine (K232A), with the lysine-encoding allele being associated with higher milk fat content. Haplotype analysis indicated the lysine variant to be ancestral. Two animals that were typed heterozygous (Qq) at the QTL based on marker-assisted QTL-genotyping were heterozygous for the K232A substitution, whereas 14 animals that are most likely qq at the QTL were homozygous for the alanine-encoding allele. An independent association study in Fleckvieh animals confirmed the positive effect of the lysine variant on milk fat content. We consider the nonconservative K232A substitution to be directly responsible for the QTL variation, although our genetic studies cannot provide formal proof. PMID:12077321

  18. Halotolerance in Methanosarcina spp.: Role of N(sup(epsilon))-Acetyl-(beta)-Lysine, (alpha)-Glutamate, Glycine Betaine, and K(sup+) as Compatible Solutes for Osmotic Adaptation

    PubMed Central

    Sowers, K. R.; Gunsalus, R. P.

    1995-01-01

    The methanogenic Archaea, like the Bacteria and Eucarya, possess several osmoregulatory strategies that enable them to adapt to osmotic changes in their environment. The physiological responses of Methanosarcina species to different osmotic pressures were studied in extracellular osmolalities ranging from 0.3 to 2.0 osmol/kg. Regardless of the isolation source, the maximum rate of growth for species from freshwater, sewage, and marine sources occurred in extracellular osmolalities between 0.62 and 1.0 osmol/kg and decreased to minimal detectable growth as the solute concentration approached 2.0 osmol/kg. The steady-state water-accessible volume of Methanosarcina thermophila showed a disproportionate decrease of 30% between 0.3 and 0.6 osmol/kg and then a linear decrease of 22% as the solute concentration in the media increased from 0.6 to 2.0 osmol/kg. The total intracellular K(sup+) ion concentration in M. thermophila increased from 0.12 to 0.5 mol/kg as the medium osmolality was raised from 0.3 to 1.0 osmol/kg and then remained above 0.4 mol/kg as extracellular osmolality was increased to 2.0 osmol/kg. Concurrent with K(sup+) accumulation, M. thermophila synthesized and accumulated (alpha)-glutamate as the predominant intracellular osmoprotectant in media containing up to 1.0 osmol of solute per kg. At medium osmolalities greater than 1.0 osmol/kg, the (alpha)-glutamate concentration leveled off and the zwitterionic (beta)-amino acid N(sup(epsilon))-acetyl-(beta)-lysine was synthesized, accumulating to an intracellular concentration exceeding 1.1 osmol/kg at an osmolality of 2.0 osmol/kg. When glycine betaine was added to culture medium, it caused partial repression of de novo (alpha)-glutamate and N(sup(epsilon))-acetyl-(beta)-lysine synthesis and was accumulated by the cell as the predominant compatible solute. The distribution and concentration of compatible solutes in eight strains representing five Methanosarcina spp. were similar to those found in M

  19. Un-catalyzed peptide bond formation between two monomers of glycine, alanine, serine, threonine, and aspartic acid in gas phase: a density functional theory study

    NASA Astrophysics Data System (ADS)

    Bhunia, Snehasis; Singh, Ajeet; Ojha, Animesh K.

    2016-05-01

    In the present report, un-catalyzed peptide bond formation between two monomers of glycine (Gly), alanine (Ala), serine (Ser), threonine (Thr), and aspartic acid (Asp) has been investigated in gas phase via two steps reaction mechanism and concerted mechanism at B3LYP/6-31G(d,p) and M062X/6-31G(d,p) level of theories. The peptide bond is formed through a nucleophilic reaction via transition states, TS1 and TS2 in stepwise mechanism. The TS1 reveals formation of a new C-N bond while TS2 illustrate the formation of C=O bond. In case of concerted mechanism, C-N bond is formed by a single four-centre transition state (TS3). The energy barrier is used to explain the involvement of energy at each step of the reaction. The energy barrier (20-48 kcal/mol) is required for the transformation of reactant state R1 to TS1 state and intermediate state I1 to TS2 state. The large value of energy barrier is explained in terms of distortion and interaction energies for stepwise mechanism. The energy barrier of TS3 in concerted mechanism is very close to the energy barrier of the first transition state (TS1) of the stepwise mechanism for the formation of Gly-Gly and Ala-Ala di- peptide. However, in case of Ser-Ser, Thr-Thr and Asp-Asp di-peptide, the energy barrier of TS3 is relatively high than that of the energy barrier of TS1 calculated at B3LYP/6-31G(d,p) and M062X/6-31G(d,p) level of theories. In both the mechanisms, the value of energy barrier calculated at B3LYP/6-31G(d,p) level of theory is greater than that of the value calculated at M062X/6-31G(d,p) level of theory.

  20. Analysis of alanine aminotransferase in various organs of soybean (Glycine max) and in dependence of different nitrogen fertilisers during hypoxic stress.

    PubMed

    Rocha, Marcio; Sodek, Ladaslav; Licausi, Francesco; Hameed, Muhammad Waqar; Dornelas, Marcelo Carnier; van Dongen, Joost T

    2010-10-01

    Alanine aminotransferase (AlaAT) catalyses the reversible conversion of pyruvate and glutamate into alanine and oxoglutarate. In soybean, two subclasses were identified, each represented by two highly similar members. To investigate the role of AlaAT during hypoxic stress in soybean, changes in transcript level of both subclasses were analysed together with the enzyme activity and alanine content of the tissue. Moreover, the dependency of AlaAT activity and gene expression was investigated in relation to the source of nitrogen supplied to the plants. Using semi-quantitative PCR, GmAlaAT genes were determined to be highest expressed in roots and nodules. Under normal growth conditions, enzyme activity of AlaAT was detected in all organs tested, with lowest activity in the roots. Upon waterlogging-induced hypoxia, AlaAT activity increased strongly. Concomitantly, alanine accumulated. During re-oxygenation, AlaAT activity remained high, but the transcript level and the alanine content decreased. Our results show a role for AlaAT in the catabolism of alanine during the initial period of re-oxygenation following hypoxia. GmAlaAT also responded to nitrogen availability in the solution during waterlogging. Ammonium as nitrogen source induced both gene expression and enzyme activity of AlaAT more than when nitrate was supplied in the nutrient solution. The work presented here indicates that AlaAT might not only be important during hypoxia, but also during the recovery phase after waterlogging, when oxygen is available to the tissue again.

  1. Ionization constants of aqueous amino acids at temperatures up to 250°C using hydrothermal pH indicators and UV-visible spectroscopy: Glycine, α-alanine, and proline

    NASA Astrophysics Data System (ADS)

    Clarke, Rodney G. F.; Collins, Christopher M.; Roberts, Jenene C.; Trevani, Liliana N.; Bartholomew, Richard J.; Tremaine, Peter R.

    2005-06-01

    Ionization constants for several simple amino acids have been measured for the first time under hydrothermal conditions, using visible spectroscopy with a high-temperature, high-pressure flow cell and thermally stable colorimetric pH indicators. This method minimizes amino acid decomposition at high temperatures because the data can be collected rapidly with short equilibration times. The first ionization constant for proline and α-alanine, K a,COOH, and the first and second ionization constants for glycine, K a,COOH and K a,NH4+, have been determined at temperatures as high as 250°C. Values for the standard partial molar heat capacity of ionization, Δ rC po, COOH and Δ rC po, NH4+, have been determined from the temperature dependence of ln (K a,COOH) and ln (K a,NH4+). The methodology has been validated by measuring the ionization constant of acetic acid up to 250°C, with results that agree with literature values obtained by potentiometric measurements to within the combined experimental uncertainty. We dedicate this paper to the memory of Dr. Donald Irish (1932-2002) of the University of Waterloo—friend and former supervisor of two of the authors (R.J.B. and P.R.T.).

  2. Determination of β-N-methylamino-L-alanine, N-(2-aminoethyl)glycine, and 2,4-diaminobutyric acid in Food Products Containing Cyanobacteria by Ultra-Performance Liquid Chromatography and Tandem Mass Spectrometry: Single-Laboratory Validation.

    PubMed

    Glover, W Broc; Baker, Teesha C; Murch, Susan J; Brown, Paula N

    2015-01-01

    A single-laboratory validation study was completed for the determination of β-N-methylamino-L-alanine (BMAA), N-(2-aminoethyl)glycine (AEG), and 2,4-diaminobutyric acid (DAB) in bulk natural health product supplements purchased from a health food store in Canada. BMAA and its isomers were extracted with acid hydrolysis to free analytes from protein association. Acid was removed with the residue evaporated to dryness and reconstituted with derivatization using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AccQ-Fluor). Chromatographic separation and detection were achieved using RP ultra-performance LC coupled to a tandem mass spectrometer operated in multiple reaction monitoring mode. Data from biological samples were evaluated for precision and accuracy across different days to ensure repeatability. Accuracy was assessed by spike recovery of biological samples using varying amino acid concentrations, with an average recovery across all samples of 108.6%. The analytical range was found to be 764-0.746 ng/mL prior to derivatization, thereby providing a linear range compatible with potentially widely varying analyte concentrations in commercial health food products. Both the U. S. Food and Drug Administration (FDA) and U. S. Pharmacopeia definitions were evaluated for determining method limits, with the FDA approach found to be most suitable having an LOD of 0.187 ng/mL and LLOQ of 0.746 ng/mL. BMAA in the collected specimens was detected at concentrations lower than 1 μg/g, while AEG and DAB were found at concentrations as high as 100 μg/g. Finding these analytes, even at low concentrations, has potential public health significance and suggests a need to screen such products prior to distribution. The method described provides a rapid, accurate, and precise method to facilitate that screening process. PMID:26651568

  3. Catalysis of Dialanine Formation by Glycine in the Salt-Induced Peptide Formation Reaction.

    NASA Astrophysics Data System (ADS)

    Suwannachot, Yuttana; Rode, Bernd M.

    1998-02-01

    Mutual catalysis of amino acids in the salt-induced peptide formation (SIPF) reaction is demonstrated for the case of glycine/alanine. The presence of glycine enhances dialanine formation by a factor up to 50 and enables dialanine formation at much lower alanine concentrations. The actual amounts of glycine play an important role for this catalytic effect, the optimal glycine concentration is 1/8 of the alanine concentration. The mechanism appears to be based on the formation of the intermediate Gly-Ala-Ala tripeptide, connected to one coordination site of copper(II) ion, and subsequent hydrolysis to dialanine and glycine.

  4. Beta-alanine as a small molecule neurotransmitter.

    PubMed

    Tiedje, K E; Stevens, K; Barnes, S; Weaver, D F

    2010-10-01

    This review discusses the role of beta-alanine as a neurotransmitter. Beta-alanine is structurally intermediate between alpha-amino acid (glycine, glutamate) and gamma-amino acid (GABA) neurotransmitters. In general, beta-alanine satisfies a number of the prerequisite classical criteria for being a neurotransmitter: beta-alanine occurs naturally in the CNS, is released by electrical stimulation through a Ca(2+) dependent process, has binding sites, and inhibits neuronal excitability. beta-Alanine has 5 recognized receptor sites: glycine co-agonist site on the NMDA complex (strychnine-insensitive); glycine receptor site (strychnine sensitive); GABA-A receptor; GABA-C receptor; and blockade of GAT protein-mediated glial GABA uptake. Although beta-alanine binding has been identified throughout the hippocampus, limbic structures, and neocortex, unique beta-alaninergic neurons with no GABAergic properties remain unidentified, and it is impossible to discriminate between beta-alaninergic and GABAergic properties in the CNS. Nevertheless, a variety of data suggest that beta-alanine should be considered as a small molecule neurotransmitter and should join the ranks of the other amino acid neurotransmitters. These realizations open the door for a more comprehensive evaluation of beta-alanine's neurochemistry and for its exploitation as a platform for drug design.

  5. Effects of dietary lysine levels on plasma free amino acid profile in late-stage finishing pigs.

    PubMed

    Regmi, Naresh; Wang, Taiji; Crenshaw, Mark A; Rude, Brian J; Wu, Guoyao; Liao, Shengfa F

    2016-01-01

    Muscle growth requires a constant supply of amino acids (AAs) from the blood. Therefore, plasma AA profile is a critical factor for maximizing the growth performance of animals, including pigs. This research was conducted to study how dietary lysine intake affects plasma AA profile in pigs at the late production stage. Eighteen crossbred (Large White × Landrace) finishing pigs (nine barrows and nine gilts; initial BW 92.3 ± 6.9 kg) were individually penned in an environment controlled barn. Pigs were assigned randomly to one of the three dietary treatments according to a randomized complete block design with sex as block and pig as experiment unit (6 pigs/treatment). Three corn- and soybean meal-based diets contained 0.43 % (lysine-deficient, Diet I), 0.71 % (lysine-adequate, Diet II), and 0.98 % (lysine-excess, Diet III) l-lysine, respectively. After a 4-week period of feeding, jugular vein blood samples were collected from the pigs and plasma was obtained for AA analysis using established HPLC methods. The change of plasma lysine concentration followed the same pattern as that of dietary lysine supply. The plasma concentrations of threonine, histidine, phenylalanine, isoleucine, valine, arginine, and citrulline of pigs fed Diet II or III were lower (P < 0.05) than that of pigs fed Diet I. The plasma concentrations of alanine, glutamate, and glycine of pigs fed Diet II or III were higher (P < 0.05) than that of pigs fed Diet I. The change of plasma leucine and asparagine concentrations followed the patterns similar to that of plasma lysine. Among those affected AAs, arginine was decreased (P < 0.05) in the greatest proportion with the lysine-excess diet. We suggest that the skeletal muscle growth of finishing pigs may be further increased with a lysine-excess diet if the plasma concentration of arginine can be increased through dietary supplementation or other practical nutritional management strategies. PMID:27386336

  6. Vesicular GABA transporter (VGAT) transports β-alanine.

    PubMed

    Juge, Narinobu; Omote, Hiroshi; Moriyama, Yoshinori

    2013-11-01

    Vesicular GABA transporter (VGAT) is expressed in GABAergic and glycinergic neurons, and is responsible for vesicular storage and subsequent exocytosis of these inhibitory amino acids. In this study, we show that VGAT recognizes β-alanine as a substrate. Proteoliposomes containing purified VGAT transport β-alanine using Δψ but not ΔpH as a driving force. The Δψ-driven β-alanine uptake requires Cl(-). VGAT also facilitates Cl(-) uptake in the presence of β-alanine. A previously described VGAT mutant (Glu213Ala) that disrupts GABA and glycine transport similarly abrogates β-alanine uptake. These findings indicated that VGAT transports β-alanine through a mechanism similar to those for GABA and glycine, and functions as a vesicular β-alanine transporter. Vesicular GABA transporter (VGAT) is expressed in GABAergic and glycinergic neurons, and is responsible for vesicular storage and subsequent exocytosis of these inhibitory amino acids. In the present study, we showed that proteoliposomes containing purified VGAT transport β-alanine using Δψ as a driving force. VGAT also facilitates Cl(-) uptake. Our findings indicated that VGAT functions as a vesicular β-alanine transporter.

  7. Pathways of Amino Acid Degradation in Nilaparvata lugens (Stål) with Special Reference to Lysine-Ketoglutarate Reductase/Saccharopine Dehydrogenase (LKR/SDH)

    PubMed Central

    Wan, Pin-Jun; Yuan, San-Yue; Tang, Yao-Hua; Li, Kai-Long; Yang, Lu; Fu, Qiang; Li, Guo-Qing

    2015-01-01

    Nilaparvata lugens harbors yeast-like symbionts (YLSs). In present paper, a genome-wide analysis found 115 genes from Ni. lugens and 90 genes from YLSs that were involved in the metabolic degradation of 20 proteinogenic amino acids. These 205 genes encoded for 77 enzymes. Accordingly, the degradation pathways for the 20 amino acids were manually constructed. It is postulated that Ni. lugens can independently degrade fourteen amino acids (threonine, alanine, glycine, serine, aspartate, asparagine, phenylalanine, tyrosine, glutamate, glutamine, proline, histidine, leucine and lysine). Ni. lugens and YLSs enzymes may work collaboratively to break down tryptophan, cysteine, arginine, isoleucine, methionine and valine. We cloned a lysine-ketoglutarate reductase/saccharopine dehydrogenase gene (Nllkr/sdh) that encoded a bifunctional enzyme catalyzing the first two steps of lysine catabolism. Nllkr/sdh is widely expressed in the first through fifth instar nymphs and adults, and is highly expressed in the fat body, ovary and gut in adults. Ingestion of dsNllkr/sdh by nymphs successfully knocked down the target gene, and caused nymphal/adult mortality, shortened nymphal development stage and reduced adult fresh weight. Moreover, Nllkr/sdh knockdown resulted in three defects: wings were shortened and thickened; cuticles were stretched and thinned; and old nymphal cuticles remained on the tips of legs and abdomen and were not completely shed. These data indicate that impaired lysine degradation negatively affects the survival and development of Ni. lugens. PMID:26000452

  8. L-alanine uptake in membrane vesicles from Mytilus edulis gills

    SciTech Connect

    Pajor, A.M.; Wright, S.H.

    1986-03-05

    Previous studies have shown that gills from M. edulis can accumulate L-alanine from seawater by a saturable process specific for ..cap alpha..-neutral amino acids. This uptake occurs against chemical gradients in excess of 10/sup 6/ to 1. To further characterize this uptake, membrane vesicles were prepared from M. edulis gill tissue by differential centrifugation. Enrichments of putative enzyme markers (relative to that in combined initial fractions) were as follows: ..gamma..-Glutamyltranspeptidase, 25-30x; Alkaline Phosphatase, 5-6x; K/sup +/-dependent para-Nitrophenyl Phosphatase, 3-5x; Succinate Dehydrogenase 0.1-0.2x. These results suggest that the preparation is enriched in plasma membranes, although histochemical studies will be needed to verify this. The time course of /sup 14/C-L-alanine uptake in the presence of inwardly-directed Na/sup +/ gradient showed a transient overshoot (3-5 fold) at 10 minutes which decreased to equilibrium after six hours. The size of the overshoot and early uptake rates depended on the size of the inwardly-directed Na/sup +/ gradient. No overshoot was seen in the presence of inwardly-directed gradients of LiCl or choline-Cl, or with equilibrium concentrations NaCl or mannitol. A reduced overshoot was seen with a gradient of NaSCN. A small overshoot was seen with an inwardly-directed gradient of KCl. Transport of L-alanine included saturable and diffusive components. Uptake of 6 ..mu..M L-alanine was inhibited more than 80% by 100 ..mu..M ..cap alpha..-zwitterionic amino acids (alanine, leucine, glycine); by 30 to 75% by proline, aspartate and lysine; and less than 20% by a ..beta..-amino acid, taurine. The results of these experiments agree with those from intact gill studies and support the hypothesis that L-alanine is transported into gill epithelial cells by a secondary active transport process involving Na/sup +/.

  9. Alanine water complexes.

    PubMed

    Vaquero, Vanesa; Sanz, M Eugenia; Peña, Isabel; Mata, Santiago; Cabezas, Carlos; López, Juan C; Alonso, José L

    2014-04-10

    Two complexes of alanine with water, alanine-(H2O)n (n = 1,2), have been generated by laser ablation of the amino acid in a supersonic jet containing water vapor and characterized using Fourier transform microwave spectroscopy. In the observed complexes, water molecules bind to the carboxylic group of alanine acting as both proton donors and acceptors. In alanine-H2O, the water molecule establishes two intermolecular hydrogen bonds forming a six-membered cycle, while in alanine-(H2O)2 the two water molecules establish three hydrogen bonds forming an eight-membered ring. In both complexes, the amino acid moiety is in its neutral form and shows the conformation observed to be the most stable for the bare molecule. The microsolvation study of alanine-(H2O)n (n = 1,2) can be taken as a first step toward understanding bulk properties at a microscopic level.

  10. β-Alanine supplementation.

    PubMed

    Hoffman, Jay R; Emerson, Nadia S; Stout, Jeffrey R

    2012-01-01

    β-Alanine is rapidly developing as one of the most popular sport supplements used by strength/power athletes worldwide. The popularity of β-alanine stems from its unique ability to enhance intramuscular buffering capacity and thereby attenuating fatigue. This review will provide an overview of the physiology that underlies the mechanisms of action behind β-alanine, examine dosing schemes, and examine the studies that have been conducted on the efficacy of this supplement. In addition, the effect that β-alanine has on body mass changes or whether it can stimulate changes in aerobic capacity also will be discussed. The review also will begin to explore the potential health benefits that β-alanine may have on older adult populations. Discussion will examine the potential adverse effects associated with this supplement as well as the added benefits of combining β-alanine with creatine.

  11. Mode of Action of Glycine on the Biosynthesis of Peptidoglycan

    PubMed Central

    Hammes, W.; Schleifer, K. H.; Kandler, O.

    1973-01-01

    The mechanism of glycine action in growth inhibition was studied on eight different species of bacteria of various genera representing the four most common peptidoglycan types. To inhibit the growth of the different organisms to 80%, glycine concentrations from 0.05 to 1.33 M had to be applied. The inhibited cells showed morphological aberrations. It has been demonstrated that glycine is incorporated into the nucleotide-activated peptidoglycan precursors. The amount of incorporated glycine was equivalent to the decrease in the amount of alanine. With one exception glycine is also incorporated into the peptidoglycan. Studies on the primary structure of both the peptidoglycan precursors and the corresponding peptidoglycan have revealed that glycine can replace l-alanine in position 1 and d-alanine residues in positions 4 and 5 of the peptide subunit. Replacement of l-alanine in position 1 of the peptide subunit together with an accumulation of uridine diphosphate-muramic acid (UDP-MurNAc), indicating an inhibition of the UDP-MurNAc:l-Ala ligase, has been found in three bacteria (Staphylococcus aureus, Lactobacillus cellobiosus and L. plantarum). However, discrimination against precursors with glycine in position 1 in peptidoglycan synthesis has been observed only in S. aureus. Replacement of d-alanine residues was most common. It occurred in the peptidoglycan with one exception in all strains studied. In Corynebacterium sp., C. callunae, L. plantarum, and L. cellobiosus most of the d-alanine replacing glycine occurs C-terminal in position 4, and in C. insidiosum and S. aureus glycine is found C-terminal in position 5. It is suggested that the modified peptidoglycan precursors are accumulated by being poor substrates for some of the enzymes involved in peptidoglycan synthesis. Two mechanisms leading to a more loosely cross-linked peptidoglycan and to morphological changes of the cells are considered. First, the accumulation of glycine-containing precursors may lead to

  12. Murine startle mutant Nmf11 affects the structural stability of the glycine receptor and increases deactivation

    PubMed Central

    Wilkins, Megan E.; Caley, Alex; Gielen, Marc C.; Harvey, Robert J.

    2016-01-01

    Key points Hyperekplexia or startle disease is a serious neurological condition affecting newborn children and usually involves dysfunctional glycinergic neurotransmission.Glycine receptors (GlyRs) are major mediators of inhibition in the spinal cord and brainstem.A missense mutation, replacing asparagine (N) with lysine (K), at position 46 in the GlyR α1 subunit induced hyperekplexia following a reduction in the potency of the transmitter glycine; this resulted from a rapid deactivation of the agonist current at mutant GlyRs.These effects of N46K were rescued by mutating a juxtaposed residue, N61 on binding Loop D, suggesting these two asparagines may interact.Asparagine 46 is considered to be important for the structural stability of the subunit interface and glycine binding site, and its mutation represents a new mechanism by which GlyR dysfunction induces startle disease. Abstract Dysfunctional glycinergic inhibitory transmission underlies the debilitating neurological condition, hyperekplexia, which is characterised by exaggerated startle reflexes, muscle hypertonia and apnoea. Here we investigated the N46K missense mutation in the GlyR α1 subunit gene found in the ethylnitrosourea (ENU) murine mutant, Nmf11, which causes reduced body size, evoked tremor, seizures, muscle stiffness, and morbidity by postnatal day 21. Introducing the N46K mutation into recombinant GlyR α1 homomeric receptors, expressed in HEK cells, reduced the potencies of glycine, β‐alanine and taurine by 9‐, 6‐ and 3‐fold respectively, and that of the competitive antagonist strychnine by 15‐fold. Replacing N46 with hydrophobic, charged or polar residues revealed that the amide moiety of asparagine was crucial for GlyR activation. Co‐mutating N61, located on a neighbouring β loop to N46, rescued the wild‐type phenotype depending on the amino acid charge. Single‐channel recording identified that burst length for the N46K mutant was reduced and fast agonist application

  13. Ruthenium-Nitrosyl Complexes with Glycine, l-Alanine, l-Valine, l-Proline, d-Proline, l-Serine, l-Threonine, and l-Tyrosine: Synthesis, X-ray Diffraction Structures, Spectroscopic and Electrochemical Properties, and Antiproliferative Activity

    PubMed Central

    2014-01-01

    The reactions of [Ru(NO)Cl5]2– with glycine (Gly), l-alanine (l-Ala), l-valine (l-Val), l-proline (l-Pro), d-proline (d-Pro), l-serine (l-Ser), l-threonine (l-Thr), and l-tyrosine (l-Tyr) in n-butanol or n-propanol afforded eight new complexes (1–8) of the general formula [RuCl3(AA–H)(NO)]−, where AA = Gly, l-Ala, l-Val, l-Pro, d-Pro, l-Ser, l-Thr, and l-Tyr, respectively. The compounds were characterized by elemental analysis, electrospray ionization mass spectrometry (ESI-MS), 1H NMR, UV–visible and ATR IR spectroscopy, cyclic voltammetry, and X-ray crystallography. X-ray crystallography studies have revealed that in all cases the same isomer type (from three theoretically possible) was isolated, namely mer(Cl),trans(NO,O)-[RuCl3(AA–H)(NO)], as was also recently reported for osmium analogues with Gly, l-Pro, and d-Pro (see Z. Anorg. Allg. Chem.2013, 639, 1590–1597). Compounds 1, 4, 5, and 8 were investigated by ESI-MS with regard to their stability in aqueous solution and reactivity toward sodium ascorbate. In addition, cell culture experiments in three human cancer cell lines, namely, A549 (nonsmall cell lung carcinoma), CH1 (ovarian carcinoma), and SW480 (colon carcinoma), were performed, and the results are discussed in conjunction with the lipophilicity of compounds. PMID:24555845

  14. [Alanine solution as enzyme reaction buffer used in A to O blood group conversion].

    PubMed

    Li, Su-Bo; Zhang, Xue; Zhang, Yin-Ze; Tan, Ying-Xia; Bao, Guo-Qiang; Wang, Ying-Li; Ji, Shou-Ping; Gong, Feng; Gao, Hong-Wei

    2014-06-01

    The aim of this study was to investigate the effect of alanine solution as α-N-acetylgalactosaminidase enzyme reaction buffer on the enzymatic activity of A antigen. The binding ability of α-N-acetylgalactosaminidase with RBC in different reaction buffer such as alanine solution, glycine solution, normal saline (0.9% NaCl), PBS, PCS was detected by Western blot. The results showed that the efficiency of A to O conversion in alanine solution was similar to that in glycine solution, and Western blot confirmed that most of enzymes blinded with RBC in glycine or alanine solution, but few enzymes blinded with RBC in PBS, PCS or normal saline. The evidences indicated that binding of enzyme with RBC was a key element for A to O blood group conversion, while the binding ability of α-N-acetylgalactosaminidase with RBC in alanine or glycine solution was similar. It is concluded that alanine solution can be used as enzyme reaction buffer in A to O blood group conversion. In this buffer, the α-N-acetylgalactosaminidase is closely blinded with RBC and α-N-acetylgalactosaminidase plays efficient enzymatic activity of A antigen.

  15. Formation of simple biomolecules from alanine in ocean by impacts

    NASA Astrophysics Data System (ADS)

    Umeda, Y.; Sekine, T.; Furukawa, Y.; Kakegawa, T.; Kobayashi, T.

    2013-12-01

    The biomolecules on the Earth are thought either to have originated from the extraterrestrial parts carried with flying meteorites or to have been formed from the inorganic materials on the Earth through given energy. From the standpoint to address the importance of impact energy, it is required to simulate experimentally the chemical reactions during impacts, because violent impacts may have occurred 3.8-4.0 Gyr ago to create biomolecules initially. It has been demonstrated that shock reactions among ocean (H2O), atmospheric nitrogen, and meteoritic constitution (Fe) can induce locally reduction environment to form simple bioorganic molecules such as ammonia and amino acid (Nakazawa et al., 2005; Furukawa et al., 2009). We need to know possible processes for alanine how chemical reactions proceed during repeated impacts and how complicated biomolecules are formed. Alanine can be formed from glycine (Umeda et al., in preparation). In this study, we carried out shock recovery experiments at pressures of 4.4-5.7 GPa to investigate the chemical reactions of alanine. Experiments were carried out with a propellant gun. Stainless steel containers (30 mm in diameter, 30 mm long) with 13C-labeled alanine aqueous solution immersed in olivine or hematite powders were used as targets. Air gap was present in the sample room (18 mm in diameter, 2 mm thick) behind the sample. The powder, solution, and air represent meteorite, ocean, and atmosphere on early Earth, respectively. Two powders of olivine and hematite help to keep the oxygen fugacity low and high during experiments, respectively in order to investigate the effect of oxygen fugacity on chemical processes of alanine. The recovered containers, after cleaned completely, were immersed into liquid nitrogen to freeze sample solution and then we drilled on the impact surface to extract water-soluble run products using pure water. Thus obtained products were analyzed by LC/MS for four amino acids (glycine, alanine, valine, and

  16. In vitro degradation of lysine by ruminal fluid-based fermentations and by Fusobacterium necrophorum.

    PubMed

    Elwakeel, E A; Amachawadi, R G; Nour, A M; Nasser, M E A; Nagaraja, T G; Titgemeyer, E C

    2013-01-01

    The objective of these studies was to characterize some factors affecting lysine degradation by mixed ruminal bacteria and by ruminal Fusobacterium necrophorum. Mixed ruminal bacteria degraded lysine, and addition of pure cultures of F. necrophorum did not increase lysine degradation. Addition of acetic or propionic acid strikingly reduced NH(3) production from lysine by mixed ruminal bacteria at pH 6, but not at pH 7. Although typical ruminal environments with acidic pH and normal concentrations of volatile fatty acids might inhibit lysine degradation by F. necrophorum, ruminal fluid contained enough bacteria with a lysine-degrading capacity to ferment 50 mM lysine in vitro. Of 7 strains of ruminal F. necrophorum tested, all grew on both lactate and lysine as the primary energy source. Both subspecies of ruminal F. necrophorum (necrophorum and funduliforme) used lysine as a primary C and energy source. Lysine and glutamic acid were effectively fermented by F. necrophorum, but alanine and tryptophan were not, and histidine and methionine were fermented only to a minor extent. The end products of lactate fermentation by F. necrophorum were propionate and acetate, and those of lysine degradation were butyrate and acetate. Fermentation of glutamic acid by F. necrophorum yielded acetate and butyrate in a ratio near to 2:1. The minimum inhibitory concentration of tylosin for F. necrophorum was not dependent on whether bacteria were grown with lactate or lysine, but F. necrophorum was more susceptible to monensin when grown on lysine than on lactate. Although F. necrophorum is generally resistant to monensin, the ionophore may reduce lysine degradation by F. necrophorum in the rumen. The essential oil components limonene, at 20 or 100 μg/mL, and thymol, at 100 μg/mL, inhibited F. necrophorum growth, whereas eugenol, guaiacol, and vanillin had no effect. Our findings may lead to ways to minimize ruminal lysine degradation and thus increase its availability to the animal

  17. Na sup + -glycine cotransport in canalicular liver plasma membrane vesicles

    SciTech Connect

    Moseley, R.H.; Ballatori, N.; Murphy, S.M. Yale Univ. School of Medicine, New Haven, CT Univ. of Rochester School of Medicine and Dentistry, NY )

    1988-08-01

    By use of purified rat canalicular liver plasma membrane (cLPM) vesicles, the present study determined the driving forces for glycine transport across this membrane domain. Initial rates of ({sup 3}H)glycine uptake in cLPM vesicles were stimulated by an inwardly directed Na{sup +} gradient but not by a K{sup +} gradient. Na{sup +} gradient-dependent uptake of glycine demonstrated cation specificity for Na{sup +}, dependence on extravesicular Cl{sup {minus}}, stimulation by an intravesicular-negative membrane potential, and inhibition by dissipation of the Na{sup +} gradient with gramicidin D. Na{sup +} gradient-dependent glycine cotransport also demonstrated greater sensitivity to inhibition by sarcosine than 2-(methylamino)-isobutyric acid. Accelerated exchange diffusion of ({sup 3}H)glycine was demonstrated in the presence of Na{sup +} when cLPM vesicles were preloaded with glycine but not with L-alanine or L-proline. Substrate velocity analysis of net Na{sup +}-dependent ({sup 3}H)glycine uptake over the range of amino acid concentrations from 5 {mu}M to 5 mM demonstrated two saturable transport systems, one of high capacity and low affinity and one of low capacity and comparatively high affinity. These results indicate that, in addition to previously described neutral and anionic amino acid transport systems, Na{sup +} gradient-dependent glycine transport mechanisms are present on the canalicular domain of the liver plasma membrane. These canalicular reabsorptive mechanisms may serve to reclaim some of the glycine generated within the canalicular lumen from the intrabiliary hydrolysis of glutathione.

  18. Synthesis of Lysine Methyltransferase Inhibitors

    NASA Astrophysics Data System (ADS)

    Ye, Tao; Hui, Chunngai

    2015-07-01

    Lysine methyltransferase which catalyze methylation of histone and nonhistone proteins, play a crucial role in diverse biological processes and has emerged as a promising target for the development of various human diseases, including cancer, inflammation, and psychiatric disorders. However, inhibiting Lysine methyltransferases selectively has presented many challenges to medicinal chemists. During the past decade, lysine methyltransferase inhibitors covering many different structural classes have been designed and developed. In this review, we describe the development of selective, small-molecule inhibitors of lysine methyltransferases with an emphasis on their discovery and chemical synthesis. We highlight the current state of lysine methyltransferase inhibitors and discuss future directions and opportunities for lysine methyltransferase inhibitor discovery.

  19. Enzymatic determination of carbon-14 labeled L-alanine in biological samples

    SciTech Connect

    Serra, F.; Palou, A.; Pons, A.

    1987-07-15

    A method for determination of L-alanine-specific radioactivity in biological samples is presented. This method is based on the specific enzymatic transformation of L-alanine to pyruvic acid hydrazone catalyzed by the enzyme L-alanine dehydrogenase, formation of the pyruvic acid 2,4-dinitrophenylhydrazone derivative, and quantitative trapping in Amberlite XAD-7 columns, followed by radioactivity counting of the lipophilic eluate. No interferences from other UC-labeled materials such as D-glucose, glycerol, L-lactate, L-serine, L-glutamate, L-phenylalanine, glycine, L-leucine, and L-arginine were observed. This inexpensive and high-speed method is applicable to the simultaneous determination of L-alanine-specific radioactivity for a large number of samples.

  20. Genetics Home Reference: glycine encephalopathy

    MedlinePlus

    ... a molecule called glycine. This molecule is an amino acid , which is a building block of proteins. Glycine ... Additional Information & Resources MedlinePlus (3 links) Health Topic: Amino Acid Metabolism Disorders Health Topic: Genetic Brain Disorders Health ...

  1. Reaction behaviors of glycine under super- and subcritical water conditions.

    PubMed

    Alargov, Dimitar K; Deguchi, Shigeru; Tsujii, Kaoru; Horikoshi, Koki

    2002-02-01

    The influence of temperature and pressure on the dimerization and decomposition of glycine under simulated hydrothermal system conditions was studied by injecting a glycine solution into water in the sub- and supercritical state. The experiments at five different temperatures of supplied water--250, 300, 350, 374, and 400 degrees C--were performed at 22.2 and 40.0 MPa. At 350 degrees C, experiments under 15.0-40.0 MPa were conducted. Diglycine, triglycine (trace), diketopiperazine, and an unidentified product with a high molecular mass (433 Da) were the main products of oligomerization. The results show that temperature and pressure influence the extent of dimerization and decomposition of glycine. The maximum of dimers formation was observed at 350 and 375 degrees C at 22.2 and 40.0 MPa, respectively, and coincided with a high rate of glycine decomposition. Glycine, alanine, aspartic acid, as well as other amino acids, were obtained by injecting a mixture of formaldehyde and ammonia. The results support the oligomerization and synthesis of amino acids in a submarine hydrothermal system. PMID:11889913

  2. Reaction Behaviors of Glycine under Super- and Subcritical Water Conditions

    NASA Astrophysics Data System (ADS)

    Alargov, Dimitar K.; Deguchi, Shigeru; Tsujii, Kaoru; Horikoshi, Koki

    2002-02-01

    The influence of temperature and pressure on the dimerization and decomposition of glycine under simulated hydrothermal system conditions was studied by injecting a glycine solution into water in the sub- and supercritical state. The experiments at five different temperatures of supplied water - 250, 300, 350, 374, and 400 °C - were performed at 22.2 and 40.0 MPa. At 350 °C, experiments under 15.0-40.0 MPa were conducted. Diglycine, triglycine (trace), diketopiperazine, and an unidentified product with a high molecular mass (433 Da) were the main products of oligomerization. The results show that temperature and pressure influence the extent of dimerization and decomposition of glycine. The maximum of dimers formation was observed at 350 and 375 °C at 22.2 and 40.0 MPa, respectively, and coincided with a high rate of glycine decomposition. Glycine, alanine, aspartic acid, as well as other amino acids, were obtained by injecting a mixture of formaldehyde and ammonia. The results support the oligomerization and synthesis of amino acids in a submarine hydrothermal system.

  3. Amperometric biosensor based on diamond paste for the enantioanalysis of L-lysine.

    PubMed

    Stefan-van Staden, Raluca-Ioana; Nejem, R'afat Mahmoud; van Staden, Jacobus Frederick; Aboul-Enein, Hassan Y

    2012-05-15

    An amperometric biosensor was proposed for the enantioanalysis of L-lysine. The biosensor is based on the impregnation of L-lysine oxidase in diamond paste. The potential used for the determination of l-lysine was 650 mV. The biosensor exhibited a linear concentration range between 1 and 100 nmol/L with a limit of detection of 4 pmol/L. The selectivity of the biosensor is high over other amino acids, such as L-serine, L-leucine, L-aspartic acid, L-glutamic acid, histamine, glycine. The proposed biosensor can be applied for the determination of L-lysine in serum samples and pharmaceutical compounds.

  4. Alanine-dependent reactions of 5'-deoxypyridoxal in water.

    PubMed

    Go, Maybelle K; Richard, John P

    2008-12-01

    The non-enzymatic reaction of 5'-deoxypyridoxal (DPL) with l-alanine in water at 25 degrees C was investigated. DPL reacts with alanine to form an imine, which then undergoes deprotonation at the alpha-amino carbon of alanine to form a resonance delocalized DPL-stabilized carbanion. At early reaction times the only detectable products are pyruvate and the dimeric species formed by addition of the alpha-pyridine stabilized carbanion to DPL. No Claisen-type products of addition of the alpha-amino carbanion to DPL, as was previously reported to form from the reaction between DPL and glycine [K. Toth, T.L. Amyes, J.P. Richard, J.P.G. Malthouse, M.E. Ni Beilliu, J. Am. Chem. Soc. 126 (2004) 10538-10539], are observed. The electrophile reacts instead at the alpha-pyridyl carbon. This dimer is in chemical equilibrium with reactants. At longer reaction times about 50% of DPL is converted to 5'-deoxypyridoxamine, the thermodynamically favored product of formal transamination of DPL.

  5. Synthesis of lysine methyltransferase inhibitors

    PubMed Central

    Hui, Chunngai; Ye, Tao

    2015-01-01

    Lysine methyltransferase which catalyze methylation of histone and non-histone proteins, play a crucial role in diverse biological processes and has emerged as a promising target for the development of various human diseases, including cancer, inflammation, and psychiatric disorders. However, inhibiting lysine methyltransferases selectively has presented many challenges to medicinal chemists. During the past decade, lysine methyltransferase inhibitors covering many different structural classes have been designed and developed. In this review, we describe the development of selective, small-molecule inhibitors of lysine methyltransferases with an emphasis on their discovery and chemical synthesis. We highlight the current state of lysine methyltransferase inhibitors and discuss future directions and opportunities for lysine methyltransferase inhibitor discovery. PMID:26258118

  6. LambdaSa1 and LambdaSa2 Prophage Lysins of Streptococcus agalactiae▿

    PubMed Central

    Pritchard, David G.; Dong, Shengli; Kirk, Marion C.; Cartee, Robert T.; Baker, John R.

    2007-01-01

    Putative N-acetylmuramyl-l-alanine amidase genes from LambdaSa1 and LambdaSa2 prophages of Streptococcus agalactiae were cloned and expressed in Escherichia coli. The purified enzymes lysed the cell walls of Streptococcus agalactiae, Streptococcus pneumoniae, and Staphylococcus aureus. The peptidoglycan digestion products in the cell wall lysates were not consistent with amidase activity. Instead, the structure of the muropeptide digestion fragments indicated that both the LambdaSa1 and LambdaSa2 lysins exhibited γ-d-glutaminyl-l-lysine endopeptidase activity. The endopeptidase cleavage specificity of the lysins was confirmed using a synthetic peptide substrate corresponding to a portion of the stem peptide and cross bridge of Streptococcus agalactiae peptidoglycan. The LambdaSa2 lysin also displayed β-d-N-acetylglucosaminidase activity. PMID:17905888

  7. Conformational variability of the glycine receptor M2 domain in response to activation by different agonists.

    PubMed

    Pless, Stephan A; Dibas, Mohammed I; Lester, Henry A; Lynch, Joseph W

    2007-12-01

    Models describing the structural changes mediating Cys loop receptor activation generally give little attention to the possibility that different agonists may promote activation via distinct M2 pore-lining domain structural rearrangements. We investigated this question by comparing the effects of different ligands on the conformation of the external portion of the homomeric alpha1 glycine receptor M2 domain. Conformational flexibility was assessed by tethering a rhodamine fluorophore to cysteines introduced at the 19' or 22' positions and monitoring fluorescence and current changes during channel activation. During glycine activation, fluorescence of the label attached to R19'C increased by approximately 20%, and the emission peak shifted to lower wavelengths, consistent with a more hydrophobic fluorophore environment. In contrast, ivermectin activated the receptors without producing a fluorescence change. Although taurine and beta-alanine were weak partial agonists at the alpha1R19'C glycine receptor, they induced large fluorescence changes. Propofol, which drastically enhanced these currents, did not induce a glycine-like blue shift in the spectral emission peak. The inhibitors strychnine and picrotoxin elicited fluorescence and current changes as expected for a competitive antagonist and an open channel blocker, respectively. Glycine and taurine (or beta-alanine) also produced an increase and a decrease, respectively, in the fluorescence of a label attached to the nearby L22'C residue. Thus, results from two separate labeled residues support the conclusion that the glycine receptor M2 domain responds with distinct conformational changes to activation by different agonists. PMID:17911099

  8. Growth enhancing effect of exogenous glycine and characterization of its uptake in halotolerant cyanobacterium Aphanothece halophytica.

    PubMed

    Bualuang, Aporn; Incharoensakdi, Aran

    2015-02-01

    Alkaliphilic halotolerant cyanobacterium Aphanothece halophytica showed optimal growth in the medium containing 0.5 M NaCl. The increase of exogenously added glycine to the medium up to 10 mM significantly promoted cell growth under both normal (0.5 M NaCl) and salt stress (2.0 M NaCl) conditions. Salt stress imposed by either 2.0 or 3.0 M NaCl retarded cell growth; however, exogenously added glycine at 10 mM concentration to salt-stress medium resulted in the reduction of growth inhibition particularly under 3.0 M NaCl condition. The uptake of glycine by intact A. halophytica was shown to exhibit saturation kinetics with an apparent K s of 160 μM and V max of 3.9 nmol/min/mg protein. The optimal pH for glycine uptake was at pH 8.0. The uptake activity was decreased in the presence of high concentration of NaCl. Both metabolic inhibitors and ionophores decreased glycine uptake in A. halophytica suggesting an energy-dependent glycine uptake. Several neutral amino acids showed considerable inhibition of glycine uptake with higher than 50 % inhibition observed with serine, cysteine and alanine whereas acidic, basic and aromatic amino acids showed only slight inhibition of glycine uptake.

  9. 15N chemical shift tensors and conformation of solid polypeptides containing 15N-labeled glycine residue by 15N NMR

    NASA Astrophysics Data System (ADS)

    Shoji, Akira; Ozaki, Takuo; Fujito, Teruaki; Deguchi, Kenzo; Ando, Isao; Magoshi, Jun

    1998-01-01

    The correlation between the isotropic 15N chemical shift ( δiso) and 15N chemical shift tensor components ( δ11, δ22 and δ33) and the main-chain conformation such as the polyglycine I (PGI: β-sheet), II (PGII: 3 1-helix), α-helix and β-sheet forms of solid polypeptides [Gly∗,X] n consisting of 15N-labeled glycine (Gly∗) and other amino acids (X: natural abundance of 15N) has been studied by solid-state 15N NMR method. A series of polypeptides [Gly∗,X] n (X = glycine, L-alanine, L-leucine, L-valine, L-isoleucine, β-benzyl L-aspartate, γ-benzyl L-glutamate, ɛ-carbobenzoxy L-lysine, and sarcosine) were synthesized by the α-amino acid N-carboxy anhydride (NCA) method. Conformations of these polypeptides in the solid state were characterized on the basis of conformation-dependent 13C chemical shifts in the 13C cross-polarization-magic angle spinning (CP-MAS) NMR spectra and by the characteristic bands in the IR and far-IR spectra. The δiso, δ11, δ22 and δ33 of the polypetides were determined from the 15N CP-MAS and 15N CP-static (powder pattern) spectra. It was found that the δiso, δ11, δ22 and δ33 in the PGI form (δ 83.5, 185, 40.7 and 25 ppm, resp.) are upfield from those in the PGII form (88.5, 194, 42.1 and 29 ppm, resp.), which were reproduced by the calculated 15N shielding constants using the finite perturbation theory (FPT)-INDO method. It was also found that the δ22 of the Gly∗ of [Gly∗,X] n is closely related to the main-chain conformation and the neighboring amino acid sequence, although the δiso is almost independent of the glycine content and conformation. Consequently, the δ22 value of Gly∗ containing copolypeptides is useful for the structural (main-chain conformation and neighboring amino acid sequence) analysis in the solid state by 15N NMR, if the 15N-labeled copolypeptide or natural protein can be provided. In addition, it is shown that the δiso of the glycine residue is useful for the conformational study of some

  10. Crystal Structures of Aedes Aegypt Alanine Glyoxylate Aminotransferase

    SciTech Connect

    Han,Q.; Robinson, H.; Gao, Y.; Vogelaar, N.; Wilson, S.; Rizzi, M.; Li, J.

    2006-01-01

    Mosquitoes are unique in having evolved two alanine glyoxylate aminotransferases (AGTs). One is 3-hydroxykynurenine transaminase (HKT), which is primarily responsible for catalyzing the transamination of 3-hydroxykynurenine (3-HK) to xanthurenic acid (XA). Interestingly, XA is used by malaria parasites as a chemical trigger for their development within the mosquito. This 3-HK to XA conversion is considered the major mechanism mosquitoes use to detoxify the chemically reactive and potentially toxic 3-HK. The other AGT is a typical dipteran insect AGT and is specific for converting glyoxylic acid to glycine. Here we report the 1.75{angstrom} high-resolution three-dimensional crystal structure of AGT from the mosquito Aedes aegypti (AeAGT) and structures of its complexes with reactants glyoxylic acid and alanine at 1.75 and 2.1{angstrom} resolution, respectively. This is the first time that the three-dimensional crystal structures of an AGT with its amino acceptor, glyoxylic acid, and amino donor, alanine, have been determined. The protein is dimeric and adopts the type I-fold of pyridoxal 5-phosphate (PLP)-dependent aminotransferases. The PLP co-factor is covalently bound to the active site in the crystal structure, and its binding site is similar to those of other AGTs. The comparison of the AeAGT-glyoxylic acid structure with other AGT structures revealed that these glyoxylic acid binding residues are conserved in most AGTs. Comparison of the AeAGT-alanine structure with that of the Anopheles HKT-inhibitor complex suggests that a Ser-Asn-Phe motif in the latter may be responsible for the substrate specificity of HKT enzymes for 3-HK.

  11. Glycine and Glycine Receptor Signalling in Non-Neuronal Cells

    PubMed Central

    den Eynden, Jimmy Van; Ali, Sheen Saheb; Horwood, Nikki; Carmans, Sofie; Brône, Bert; Hellings, Niels; Steels, Paul; Harvey, Robert J.; Rigo, Jean-Michel

    2009-01-01

    Glycine is an inhibitory neurotransmitter acting mainly in the caudal part of the central nervous system. Besides this neurotransmitter function, glycine has cytoprotective and modulatory effects in different non-neuronal cell types. Modulatory effects were mainly described in immune cells, endothelial cells and macroglial cells, where glycine modulates proliferation, differentiation, migration and cytokine production. Activation of glycine receptors (GlyRs) causes membrane potential changes that in turn modulate calcium flux and downstream effects in these cells. Cytoprotective effects were mainly described in renal cells, hepatocytes and endothelial cells, where glycine protects cells from ischemic cell death. In these cell types, glycine has been suggested to stabilize porous defects that develop in the plasma membranes of ischemic cells, leading to leakage of macromolecules and subsequent cell death. Although there is some evidence linking these effects to the activation of GlyRs, they seem to operate in an entirely different mode from classical neuronal subtypes. PMID:19738917

  12. Mechanism of inactivation of alanine racemase by beta, beta, beta-trifluoroalanine

    SciTech Connect

    Faraci, W.S.; Walsh, C.T.

    1989-01-24

    The alanine racemases are a group of PLP-dependent bacterial enzymes that catalyze the racemization of alanine, providing D-alanine for cell wall synthesis. Inactivation of the alanine racemases from the Gram-negative organism Salmonella typhimurium and Gram-positive organism Bacillus stearothermophilus with beta, beta, beta-trifluoroalanine has been studied. The inactivation occurs with the same rate constant as that for formation of a broad 460-490-nm chromophore. Loss of two fluoride ions per mole of inactivated enzyme and retention of (1-/sup 14/C)trifluoroalanine label accompany inhibition, suggesting a monofluoro enzyme adduct. Partial denaturation (1 M guanidine) leads to rapid return of the initial 420-nm chromophore, followed by a slower (t1/2 approximately 30 min-1 h) loss of the fluoride ion and /sup 14/CO/sub 2/ release. At this point, reduction by NaB/sub 3/H/sub 4/ and tryptic digestion yield a single radiolabeled peptide. Purification and sequencing of the peptide reveals that lysine-38 is covalently attached to the PLP cofactor. A mechanism for enzyme inactivation by trifluoroalanine is proposed and contrasted with earlier results on monohaloalanines, in which nucleophilic attack of released aminoacrylate on the PLP aldimine leads to enzyme inactivation. For trifluoroalanine inactivation, nucleophilic attack of lysine-38 on the electrophilic beta-difluoro-alpha, beta-unsaturated imine provides an alternative mode of inhibition for these enzymes.

  13. On the roles of the alanine and serine in the β-sheet structure of fibroin.

    PubMed

    Carrascoza Mayen, Juan Francisco; Lupan, Alexandru; Cosar, Ciprian; Kun, Attila-Zsolt; Silaghi-Dumitrescu, Radu

    2015-02-01

    In its silk II form, fibroin is almost exclusively formed from layers of β-sheets, rich in glycine, alanine and serine. Reported here are computational results on fibroin models at semi-empirical, DFT levels of theory and molecular dynamics (MD) for (Gly)10, (Gly-Ala)5 and (Gly-Ser)5 decapeptides. While alanine and serine introduce steric repulsions, the alanine side-chain adds to the rigidity of the sheet, allowing it to maintain a properly pleated structure even in a single β-sheet, and thus avoiding two alternative conformations which would interfere with the formation of the multi-layer pleated-sheet structure. The role of the serine is proposed to involve modulation of the hydrophobicity in order to construct the supramolecular assembly as opposed to random precipitation due to hydrophobicity.

  14. Biosynthesis of glyoxylate from glycine in Saccharomyces cerevisiae.

    PubMed

    Villas-Bôas, Silas Granato; Kesson, Mats; Nielsen, Jens

    2005-05-01

    Glyoxylate biosynthesis in Saccharomyces cerevisiae is traditionally mainly ascribed to the reaction catalyzed by isocitrate lyase (Icl), which converts isocitrate to glyoxylate and succinate. However, Icl is generally reported to be repressed by glucose and yet glyoxylate is detected at high levels in S. cerevisiae extracts during cultivation on glucose. In bacteria there is an alternative pathway for glyoxylate biosynthesis that involves a direct oxidation of glycine. Therefore, we investigated the glycine metabolism in S. cerevisiae coupling metabolomics data and (13)C-isotope-labeling analysis of two reference strains and a mutant with a deletion in a gene encoding an alanine:glyoxylate aminotransferase. The strains were cultivated on minimal medium containing glucose or galactose, and (13)C-glycine as sole nitrogen source. Glyoxylate presented (13)C-labeling in all cultivation conditions. Furthermore, glyoxylate seemed to be converted to 2-oxovalerate, an unusual metabolite in S. cerevisiae. 2-Oxovalerate can possibly be converted to 2-oxoisovalerate, a key precursor in the biosynthesis of branched-chain amino acids. Hence, we propose a new pathway for glycine catabolism and glyoxylate biosynthesis in S. cerevisiae that seems not to be repressed by glucose and is active under both aerobic and anaerobic conditions. This work demonstrates the great potential of coupling metabolomics data and isotope-labeling analysis for pathway reconstructions.

  15. Mycobacterium smegmatis L-alanine dehydrogenase (Ald) is required for proficient utilization of alanine as a sole nitrogen source and sustained anaerobic growth.

    PubMed

    Feng, Zhengyu; Cáceres, Nancy E; Sarath, Gautam; Barletta, Raúl G

    2002-09-01

    NAD(H)-dependent L-alanine dehydrogenase (EC 1.4.1.1) (Ald) catalyzes the oxidative deamination of L-alanine and the reductive amination of pyruvate. To assess the physiological role of Ald in Mycobacterium smegmatis, we cloned the ald gene, identified its promoter, determined the protein expression levels, and analyzed the combined effects of nutrient supplementation, oxygen availability, and growth stage on enzyme activity. High Ald activities were observed in cells grown in the presence of L- or D-alanine regardless of the oxygen availability and growth stage. In exponentially growing cells under aerobic conditions, supplementation with alanine resulted in a 25- to 50-fold increase in the enzyme activity. In the absence of alanine supplementation, 23-fold-higher Ald activities were observed in cells grown exponentially under anaerobic conditions. Furthermore, M. smegmatis ald null mutants were constructed by targeted disruption and were shown to lack any detectable Ald activity. In contrast, the glycine dehydrogenase (EC 1.4.1.10) (Gdh) activity in mutant cells remained at wild-type levels, indicating that another enzyme protein is responsible for the physiologically relevant reductive amination of glyoxylate. The ald mutants grew poorly in minimal medium with L-alanine as the sole nitrogen source, reaching a saturation density 100-fold less than that of the wild-type strain. Likewise, mutants grew to a saturation density 10-fold less than that of the wild-type strain under anaerobic conditions. In summary, the phenotypes displayed by the M. smegmatis ald mutants suggest that Ald plays an important role in both alanine utilization and anaerobic growth.

  16. Glycine lithium nitrate crystals

    NASA Astrophysics Data System (ADS)

    González-Valenzuela, R.; Hernández-Paredes, J.; Medrano-Pesqueira, T.; Esparza-Ponce, H. E.; Jesús-Castillo, S.; Rodriguez-Mijangos, R.; Terpugov, V. S.; Alvarez-Ramos, M. E.; Duarte-Möller, A.

    Crystals of glycine lithium nitrate with non-linear optical properties have been grown in a solution by slow evaporation at room temperature. The crystal shows a good thermal stability from room temperature to 175 °C where the crystal begins to degrade. This property is desirable for future technological applications. Also, a good performance on the second harmonic generation was found, characterizing the emitted dominant wavelength by a customized indirect procedure using luminance and chromaticity measured data based on the CIE-1931 standard. Additionally, the 532 nm signal was detected by using a variant to the Kurtz and Perry method.

  17. Purification and characterization of the glycine receptor of pig spinal cord

    SciTech Connect

    Graham, D.; Pfeiffer, F.; Simler, R.; Betz, H.

    1985-02-12

    A large-scale purification procedure was developed to isolate the glycine receptor of pig spinal cord by affinity chromatography on aminostrychnine agarose. After an overall purification of about 10,000-fold, the glycine receptor preparations contained three major polypeptides of Mr 48,000, 58,000, and 93,000. Photoaffinity labeling with (/sup 3/H)strychnine showed that the (/sup 3/H)strychnine binding site is associated with the Mr 48,000 and, to a much lesser extent, the Mr 58,000 polypeptides. (/sup 3/H)Strychnine binding to the purified receptor exhibited a dissociation constant K /sub D/ of 13.8 nM and was inhibited by the agonists glycine, taurine, and beta-alanine. Gel filtration and sucrose gradient centrifugation gave a Stokes radius of 7.1 nm and an apparent sedimentation coefficient of 9.6 S. Peptide mapping of the (/sup 3/H)strychnine-labeled Mr 48,000 polypeptides of purified pig and rat glycine receptor preparations showed that the strychnine binding region of this receptor subunit is highly conserved between these species. Also, three out of six monoclonal antibodies against the glycine receptor of rat spinal cord significantly cross-reacted with their corresponding polypeptides of the pig glycine receptor. These results show that the glycine receptor of pig spinal cord is very similar to the well-characterized rat receptor protein and can be purified in quantities sufficient for protein chemical analysis.

  18. Aminopeptidase-like activities in Caenorhabditis elegans and the soybean cyst nematode, Heterodera glycines.

    PubMed

    Masler, E P; Kovaleva, E S; Sardanelli, S

    2001-09-01

    Aminopeptidase-like activities in crude whole body extracts of the free-living nematode Caenorhabditis elegans and the plant parasitic soybean cyst nematode Heterodera glycines were examined. General characteristics including pH optima, heat lability, and inactivation of enzyme by organic solvent were the same for the two species. All developmental stages of H. glycines exhibited activity. In older females, activity was present primarily in the eggs. Affinity for the substrate L-alanine-4-nitroanilide was the same regardless of the stage examined, and was similar for the two species (m for C. elegans and m for H. glycines). Nearly all (>95%) of C. elegans aminopeptidase-like activity was present in the soluble fraction of the extract, while H. glycines activity was distributed between the soluble and membrane fractions. Specific activities of the soluble enzymes were highest in C. elegans and H. glycines juveniles. The C. elegans enzyme was susceptible to a number of aminopeptidase inhibitors, particularly to amastatin and leuhistin, each of which inhibited aminopeptidase-like activity more than 90% at 90 microm. In H. glycines, aminopeptidase-like activity was inhibited 39% by amastatin at 900 microm. The apparent molecular weight of the soluble C. elegans enzyme is 70-80 kDa. Some activity in H. glycines is present in the 70-80 kDa range, but most activity (80-90%) is associated with a very high molecular weight (>240 kDa) component.

  19. Effect of ruminal ammonia supply on lysine utilization by growing steers.

    PubMed

    Hussein, A H; Batista, E D; Miesner, M D; Titgemeyer, E C

    2016-02-01

    Six ruminally cannulated Holstein steers (202 ± 15 kg) were used to study the effects of ruminal ammonia loading on whole-body lysine (Lys) utilization. Steers were housed in metabolism crates and used in a 6 × 6 Latin square design. All steers received 2.52 kg DM/d of a diet (10.1% CP) containing 82% soybean hulls, 8% wheat straw, 5% cane molasses, and 5% vitamins and minerals, and 10 g/d of urea (considered to be part of the basal diet) was ruminally infused continuously to ensure adequate ruminal ammonia concentrations. All steers were ruminally infused continuously with 200 g/d of acetic acid, 200 g/d of propionic acid, and 50 g/d of butyric acid and abomasally infused with 300 g/d of glucose continuously to increase energy supply without increasing microbial protein supply. Steers were also abomasally infused continuously with an excess of all essential AA except Lys to ensure that Lys was the only limiting AA. Treatments were arranged as a 3 × 2 factorial with 3 levels of urea (0, 40, or 80 g/d) continuously infused ruminally to induce ammonia loading and 2 levels of Lys (0 or 6 g/d) continuously infused abomasally. Treatments did not affect fecal N output ( = 0.37). Lysine supplementation decreased ( < 0.01) urinary N excretion from 51.9 g/d to 44.3 g/d, increased ( < 0.01) retained N from 24.8 to 33.8 g/d, increased ( < 0.01) plasma Lys, and decreased ( ≤ 0.05) plasma serine, tyrosine, valine, leucine, and phenylalanine. Lysine supplementation also tended ( = 0.09) to reduce plasma urea-N. Urea infusions linearly increased ( = 0.05) retained N (27.1, 29.3, and 31.5 g/d) and also linearly increased ( < 0.01) urinary N excretion (31.8, 48.1, and 64.4 g/d), urinary urea (21.9, 37.7, and 54.3 g/d), urinary ammonia (1.1, 1.4, and 1.9 g/d), and plasma urea (2.7, 4.0, and 5.1 mM), and linearly decreased plasma alanine ( = 0.04) and plasma glycine ( < 0.01). Assuming that retained protein is 6.25 × retained N and contains 6.4% Lys, the incremental

  20. Glycine Transporters and Their Inhibitors

    NASA Astrophysics Data System (ADS)

    Gilfillan, Robert; Kerr, Jennifer; Walker, Glenn; Wishart, Grant

    Glycine plays a ubiquitous role in many biological processes. In the central nervous system it serves as an important neurotransmitter acting as an agonist at strychnine-sensitive glycine receptors and as an essential co-agonist with glutamate at the NMDA receptor complex. Control of glycine concentrations in the vicinity of these receptors is mediated by the specific glycine transporters, GlyT1 and GlyT2. Inhibition of these transporters has been postulated to be of potential benefit in several therapeutic indications including schizophrenia and pain. In this review we discuss our current knowledge of glycine transporters and focus on recent advances in the medicinal chemistry of GlyT1 and GlyT2 inhibitors.

  1. Biochemical characterization of alanine racemase--a spore protein produced by Bacillus anthracis.

    PubMed

    Kanodia, Shivani; Agarwal, Shivangi; Singh, Priyanka; Agarwal, Shivani; Singh, Preeti; Bhatnagar, Rakesh

    2009-01-31

    Alanine racemase catalyzes the interconversion of L-alanine and D-alanine and plays a crucial role in spore germination and cell wall biosynthesis. In this study, alanine racemase produced by Bacillus anthracis was expressed and purified as a monomer in Escherichia coli and the importance of lysine 41 in the cofactor binding octapeptide and tyrosine 270 in catalysis was evaluated. The native enzyme exhibited an apparent K(m) of 3 mM for L-alanine, and a V(max) of 295 micromoles/min/mg, with the optimum activity occurring at 37 degrees C and a pH of 8-9. The activity observed in the absence of exogenous pyridoxal 5'-phosphate suggested that the cofactor is bound to the enzyme. Additionally, the UV-visible absorption spectra indicated that the activity was pH independece, of VV-visible absorption spectra suggests that the bound PLP exists as a protonated Schiff's base. Furthermore, the loss of activity observed in the apoenzyme suggested that bound PLP is required for catalysis. Finally, the enzyme followed non-competitive and mixed inhibition kinetics for hydroxylamine and propionate with a K(i) of 160 microM and 30 mM, respectively. [BMB reports 2009; 42(1): 47-52]. PMID:19192393

  2. Role of Alanine Dehydrogenase of Mycobacterium tuberculosis during Recovery from Hypoxic Nonreplicating Persistence.

    PubMed

    Giffin, Michelle M; Shi, Lanbo; Gennaro, Maria L; Sohaskey, Charles D

    2016-01-01

    Mycobacterium tuberculosis can maintain a nonreplicating persistent state in the host for decades, but must maintain the ability to efficiently reactivate and produce active disease to survive and spread in a population. Among the enzymes expressed during this dormancy is alanine dehydrogenase, which converts pyruvate to alanine, and glyoxylate to glycine concurrent with the oxidation of NADH to NAD. It is involved in the metabolic remodeling of M. tuberculosis through its possible interactions with both the glyoxylate and methylcitrate cycle. Both mRNA levels and enzymatic activities of isocitrate lyase, the first enzyme of the glyoxylate cycle, and alanine dehydrogenase increased during entry into nonreplicating persistence, while the gene and activity for the second enzyme of the glyoxylate cycle, malate synthase were not. This could suggest a shift in carbon flow away from the glyoxylate cycle and instead through alanine dehydrogenase. Expression of ald was also induced in vitro by other persistence-inducing stresses such as nitric oxide, and was expressed at high levels in vivo during the initial lung infection in mice. Enzyme activity was maintained during extended hypoxia even after transcription levels decreased. An ald knockout mutant of M. tuberculosis showed no reduction in anaerobic survival in vitro, but resulted in a significant lag in the resumption of growth after reoxygenation. During reactivation the ald mutant had an altered NADH/NAD ratio, and alanine dehydrogenase is proposed to maintain the optimal NADH/NAD ratio during anaerobiosis in preparation of eventual regrowth, and during the initial response during reoxygenation. PMID:27203084

  3. Role of Alanine Dehydrogenase of Mycobacterium tuberculosis during Recovery from Hypoxic Nonreplicating Persistence

    PubMed Central

    Giffin, Michelle M.; Shi, Lanbo; Gennaro, Maria L.; Sohaskey, Charles D.

    2016-01-01

    Mycobacterium tuberculosis can maintain a nonreplicating persistent state in the host for decades, but must maintain the ability to efficiently reactivate and produce active disease to survive and spread in a population. Among the enzymes expressed during this dormancy is alanine dehydrogenase, which converts pyruvate to alanine, and glyoxylate to glycine concurrent with the oxidation of NADH to NAD. It is involved in the metabolic remodeling of M. tuberculosis through its possible interactions with both the glyoxylate and methylcitrate cycle. Both mRNA levels and enzymatic activities of isocitrate lyase, the first enzyme of the glyoxylate cycle, and alanine dehydrogenase increased during entry into nonreplicating persistence, while the gene and activity for the second enzyme of the glyoxylate cycle, malate synthase were not. This could suggest a shift in carbon flow away from the glyoxylate cycle and instead through alanine dehydrogenase. Expression of ald was also induced in vitro by other persistence-inducing stresses such as nitric oxide, and was expressed at high levels in vivo during the initial lung infection in mice. Enzyme activity was maintained during extended hypoxia even after transcription levels decreased. An ald knockout mutant of M. tuberculosis showed no reduction in anaerobic survival in vitro, but resulted in a significant lag in the resumption of growth after reoxygenation. During reactivation the ald mutant had an altered NADH/NAD ratio, and alanine dehydrogenase is proposed to maintain the optimal NADH/NAD ratio during anaerobiosis in preparation of eventual regrowth, and during the initial response during reoxygenation. PMID:27203084

  4. Vibrational dynamics of crystalline L-alanine

    SciTech Connect

    Bordallo, H.N.; Eckert, J.; Barthes, M.

    1997-11-01

    The authors report a new, complete vibrational analysis of L-alanine and L-alanine-d{sub 4} which utilizes IINS intensities in addition to frequency information. The use of both isotopomers resulted in a self-consistent force field for and assignment of the molecular vibrations in L-alanine. Some details of the calculation as well as a comparison of calculated and observed IINS spectra are presented. The study clarifies a number of important issues on the vibrational dynamics of this molecule and presents a self-consistent force field for the molecular vibrations in crystalline L-alanine.

  5. Catalytic Stereoinversion of L-Alanine to Deuterated D-Alanine.

    PubMed

    Moozeh, Kimia; So, Soon Mog; Chin, Jik

    2015-08-01

    A combination of an achiral pyridoxal analogue and a chiral base has been developed for catalytic deuteration of L-alanine with inversion of stereochemistry to give deuterated D-alanine under mild conditions (neutral pD and 25 °C) without the use of any protecting groups. This system can also be used for catalytic deuteration of D-alanine with retention of stereochemistry to give deuterated D-alanine. Thus a racemic mixture of alanine can be catalytically deuterated to give an enantiomeric excess of deuterated D-alanine. While catalytic deracemization of alanine is forbidden by the second law of thermodynamics, this system can be used for catalytic deracemization of alanine with deuteration. Such green and biomimetic approach to catalytic stereocontrol provides insights into efficient amino acid transformations.

  6. Hypercondensation of an amino acid: synthesis and characterization of a black glycine polymer.

    PubMed

    Fox, Stefan; Dalai, Punam; Lambert, Jean-François; Strasdeit, Henry

    2015-06-01

    A granular material was obtained by thermal polymerization of glycine at 200 °C. It has been named "thermomelanoid" because of its strikingly deep-black color. The polymerization process is mainly a dehydration condensation leading to conventional amide bonds, and also CC double bonds that are formed from CO and CH2 groups ("hypercondensation"). Spectroscopic data, in particular from (13) C and (15) N solid-state cross-polarization magic angle spinning (CP-MAS) NMR spectra, suggest that the black color is due to (cross-)conjugated CC, CO, and NH groups. Small glycine peptides, especially triglycine, appear to be key intermediates in the formation of the thermomelanoid. This has been concluded by comparing the thermal behavior of glyn homopeptides (n=2-6) and glycine. The glycine polymerization was accompanied by the formation of small amounts of byproducts. Notably, a few percent of alanine and aspartic acid could be detected in the polymer. By using (13) C-labeled glycine, it was shown that these two amino acids formed through a common pathway, namely CαCα bond formation between glycine molecules. The thermomelanoid is hydrolyzed by strong acids and bases at room temperature, forming brown solutions. PMID:25933438

  7. Recombinant bacteriophage lysins as antibacterials

    PubMed Central

    Fenton, Mark; Ross, Paul; McAuliffe, Olivia; O'Mahony, Jim

    2010-01-01

    With the increasing worldwide prevalence of antibiotic resistant bacteria, bacteriophage endolysins (lysins) represent a very promising novel alternative class of antibacterial in the fight against infectious disease. Lysins are phage-encoded peptidoglycan hydrolases which, when applied exogenously (as purified recombinant proteins) to Gram-positive bacteria, bring about rapid lysis and death of the bacterial cell. A number of studies have recently demonstrated the strong potential of these enzymes in human and veterinary medicine to control and treat pathogens on mucosal surfaces and in systemic infections. They also have potential in diagnostics and detection, bio-defence, elimination of food pathogens and control of phytopathogens. This review discusses the extensive research on recombinant bacteriophage lysins in the context of antibacterials, and looks forward to future development and potential. PMID:21327123

  8. Role of choline and glycine betaine in the formation of N,N-dimethylpiperidinium (mepiquat) under Maillard reaction conditions.

    PubMed

    Bessaire, Thomas; Tarres, Adrienne; Stadler, Richard H; Delatour, Thierry

    2014-01-01

    This study is the first to examine the role of choline and glycine betaine, naturally present in some foods, in particular in cereal grains, to generate N,N-dimethylpiperidinium (mepiquat) under Maillard conditions via transmethylation reactions involving the nucleophile piperidine. The formation of mepiquat and its intermediates piperidine - formed by cyclisation of free lysine in the presence of reducing sugars - and N-methylpiperidine were monitored over time (240°C, up to 180 min) using high-resolution mass spectrometry in a model system comprised of a ternary mixture of lysine/fructose/alkylating agent (choline or betaine). The reaction yield was compared with data recently determined for trigonelline, a known methylation agent present naturally in coffee beans. The role of choline and glycine betaine in nucleophilic displacement reactions was further supported by experiments carried out with stable isotope-labelled precursors (¹³C- and deuterium-labelled). The results unequivocally demonstrated that the piperidine ring of mepiquat originates from the carbon chain of lysine, and that either choline or glycine betaine furnishes the N-methyl groups. The kinetics of formation of the corresponding demethylated products of both choline and glycine betaine, N,N-demethyl-2-aminoethanol and N,N-dimethylglycine, respectively, were also determined using high-resolution mass spectrometry. PMID:25333319

  9. Functional Characterization of Alanine Racemase from Schizosaccharomyces pombe: a Eucaryotic Counterpart to Bacterial Alanine Racemase

    PubMed Central

    Uo, Takuma; Yoshimura, Tohru; Tanaka, Naotaka; Takegawa, Kaoru; Esaki, Nobuyoshi

    2001-01-01

    Schizosaccharomyces pombe has an open reading frame, which we named alr1+, encoding a putative protein similar to bacterial alanine racemase. We cloned the alr1+ gene in Escherichia coli and purified the gene product (Alr1p), with an Mr of 41,590, to homogeneity. Alr1p contains pyridoxal 5′-phosphate as a coenzyme and catalyzes the racemization of alanine with apparent Km and Vmax values as follows: for l-alanine, 5.0 mM and 670 μmol/min/mg, respectively, and for d-alanine, 2.4 mM and 350 μmol/min/mg, respectively. The enzyme is almost specific to alanine, but l-serine and l-2-aminobutyrate are racemized slowly at rates 3.7 and 0.37% of that of l-alanine, respectively. S. pombe uses d-alanine as a sole nitrogen source, but deletion of the alr1+ gene resulted in retarded growth on the same medium. This indicates that S. pombe has catabolic pathways for both enantiomers of alanine and that the pathway for l-alanine coupled with racemization plays a major role in the catabolism of d-alanine. Saccharomyces cerevisiae differs markedly from S. pombe: S. cerevisiae uses l-alanine but not d-alanine as a sole nitrogen source. Moreover, d-alanine is toxic to S. cerevisiae. However, heterologous expression of the alr1+ gene enabled S. cerevisiae to grow efficiently on d-alanine as a sole nitrogen source. The recombinant yeast was relieved from the toxicity of d-alanine. PMID:11244061

  10. Identification of essential lysines involved in substrate binding of vacuolar H+-pyrophosphatase.

    PubMed

    Lee, Chien-Hsien; Pan, Yih-Jiuan; Huang, Yun-Tzu; Liu, Tseng-Huang; Hsu, Shen-Hsing; Lee, Ching-Hung; Chen, Yen-Wei; Lin, Shih-Ming; Huang, Lin-Kun; Pan, Rong-Long

    2011-04-01

    H+-translocating pyrophosphatase (H+-PPase; EC 3.6.1.1) drives proton transport against an electrochemical potential gradient by hydrolyzing pyrophosphate (PPi) and is found in various endomembranes of higher plants, bacteria, and some protists. H+-PPase contains seven highly conserved lysines. We examined the functional roles of these lysines, which are, for the most part, found in the cytosolic regions of mung bean H+-PPase by site-directed mutagenesis. Construction of mutants that each had a cytosolic and highly conserved lysine substituted with an alanine resulted in dramatic drops in the PPi hydrolytic activity. The effects caused by ions on the activities of WT and mutant H+-PPases suggest that Lys-730 may be in close proximity to the Mg2+-binding site, and the great resistance of the K694A and K695A mutants to fluoride inhibition suggests that these lysines are present in the active site. The modifier fluorescein 5'-isothiocyanate (FITC) labeled a lysine at the H+-PPase active site but did not inhibit the hydrolytic activities of K250A, K250N, K250T, and K250S, which suggested that Lys-250 is essential for substrate binding and may be involved in proton translocation. Analysis of tryptic digests indicated that Lys-711 and Lys-717 help maintain the conformation of the active site. Proteolytic evidence also demonstrated that Lys-250 is the primary target of trypsin and confirmed its crucial role in H+-PPase hydrolysis.

  11. Influence of high glycine diets on the activity of glycine-catabolizing enzymes and on glycine catabolism in rats

    SciTech Connect

    Petzke, K.J.; Albrecht, V.; Przybilski, H.

    1986-05-01

    Male albino rats were adapted to isocaloric purified diets that differed mainly in their glycine and casein contents. Controls received a 30% casein diet. In experimental diets gelatin or gelatin hydrolysate was substituted for half of the 30% casein. An additional group was fed a glycine-supplemented diet, which corresponded in glycine level to the gelatin diet but in which the protein level was nearly the same as that of the casein control diet. Another group received a 15% casein diet. Rat liver glycine cleavage system, serine hydroxymethyltransferase and serine dehydratase activities were measured. /sup 14/CO/sub 2/ production from the catabolism of /sup 14/C-labeled glycine was measured in vivo and in vitro (from isolated hepatocytes). Serine dehydratase and glycine cleavage system activities were higher in animals fed 30% casein diets than in those fed 15% casein diets. Serine hydroxymethyltransferase activity of the cytosolic and mitochondrial fractions was highest when a high glycine diet (glycine administered as pure, protein bound in gelatin or peptide bound in gelatin hydrolysate) was fed. /sup 14/CO/sub 2/ formation from (1-/sup 14/C)- and (2-/sup 14/C)glycine both in vivo and in isolated hepatocytes was higher when a high glycine diet was fed than when a casein diet was fed. These results suggest that glycine catabolism is dependent on and adaptable to the glycine content of the diet. Serine hydroxymethyltransferase appears to play a major role in the regulation of glycine degradation via serine and pyruvate.

  12. Proton Affinity of Isomeric Dipeptides Containing Lysine and Non-Proteinogenic Lysine Homologues.

    PubMed

    Batoon, Patrick; Ren, Jianhua

    2016-08-18

    Conformational effects on the proton affinity of oligopeptides have been studied using six alanine (A)-based acetylated dipeptides containing a basic probe that is placed closest to either the C- or the N-terminus. The basic probe includes Lysine (Lys) and two nonproteinogenic Lys-homologues, ornithine (Orn) and 2,3-diaminopropionic acid (Dap). The proton affinities of the peptides have been determined using the extended Cooks kinetic method in a triple quadrupole mass spectrometer. Computational studies have been carried out to search for the lowest energy conformers and to calculate theoretical proton affinities as well as various molecular properties using the density functional theory. The dipeptides containing a C-terminal probe, ALys, AOrn, and ADap, were determined to have a higher proton affinity by 1-4 kcal/mol than the corresponding dipeptides containing an N-terminal probe, LysA, OrnA, and DapA. For either the C-probe peptides or the N-probe peptides, the proton affinity reduces systematically as the side-chain of the probe residue is shortened. The difference in the proton affinities between isomeric peptides is largely associated with the variation of the conformations. The peptides with higher values of the proton affinity adopt a relatively compact conformation such that the protonated peptides can be stabilized through more efficient internal solvation. PMID:27459294

  13. Quantification of hydroxyl radical-derived oxidation products in peptides containing glycine, alanine, valine, and proline.

    PubMed

    Morgan, Philip E; Pattison, David I; Davies, Michael J

    2012-01-15

    Proteins are a major target for oxidation due to their abundance and high reactivity. Despite extensive investigation over many years, only limited quantitative data exist on the contributions of different pathways to the oxidation of peptides and proteins. This study was designed to obtain quantitative data on the nature and yields of oxidation products (alcohols, carbonyls, hydroperoxides, fragment species) formed by a prototypic oxidant system (HO(•)/O(2)) on small peptides of limited, but known, amino acid composition. Peptides composed of Gly, Ala, Val, and Pro were examined with particular emphasis on the peptide Val-Gly-Val-Ala-Pro-Gly, a repeat motif in elastin with chemotactic activity and metalloproteinase regulation properties. The data obtained indicate that hydroperoxide formation occurs nonrandomly (Pro > Val > Ala > Gly) with this inversely related to carbonyl yields (both peptide-bound and released). Multiple alcohols are generated at both side-chain and backbone sites. Backbone fragmentation has been characterized at multiple positions, with sites adjacent to Pro residues being of major importance. Summation of the product concentrations provides clear evidence for the occurrence of chain reactions in peptides exposed to HO(•)/O(2), with the overall product yields exceeding that of the initial HO(•) generated.

  14. Alanine increases blood pressure during hypotension

    NASA Technical Reports Server (NTRS)

    Conlay, L. A.; Maher, T. J.; Wurtman, R. J.

    1990-01-01

    The effect of L-alanine administration on blood pressure (BP) during haemorrhagic shock was investigated using anesthetized rats whose left carotid arteries were cannulated for BP measurement, blood removal, and drug administration. It was found that L-alanine, in doses of 10, 25, 50, 100, and 200 mg/kg, increased the systolic BP of hypotensive rats by 38 to 80 percent (while 100 mg/kg pyruvate increased BP by only 9.4 mmhg, not significantly different from saline). The results suggest that L-alanine might influence cardiovascular function.

  15. Genetic identification of ACC-RESISTANT2 reveals involvement of LYSINE HISTIDINE TRANSPORTER1 in the uptake of 1-aminocyclopropane-1-carboxylic acid in Arabidopsis thaliana.

    PubMed

    Shin, Kihye; Lee, Sumin; Song, Won-Yong; Lee, Rin-A; Lee, Inhye; Ha, Kyungsun; Koo, Ja-Choon; Park, Soon-Ki; Nam, Hong-Gil; Lee, Youngsook; Soh, Moon-Soo

    2015-03-01

    1-Aminocyclopropane-1-carboxylic acid (ACC) is a biosynthetic precursor of ethylene, a gaseous plant hormone which controls a myriad of aspects of development and stress adaptation in higher plants. Here, we identified a mutant in Arabidopsis thaliana, designated as ACC-resistant2 (are2), displaying a dose-dependent resistance to exogenously applied ACC. Physiological analyses revealed that mutation of are2 impaired various aspects of exogenous ACC-induced ethylene responses, while not affecting sensitivity to other plant hormones during seedling development. Interestingly, the are2 mutant was normally sensitive to gaseous ethylene, compared with the wild type. Double mutant analysis showed that the ethylene-overproducing mutations, eto1 or eto3, and the constitutive ethylene signaling mutation, ctr1 were epistatic to the are2 mutation. These results suggest that the are2 mutant is not defective in ethylene biosynthesis or ethylene signaling per se. Map-based cloning of ARE2 demonstrated that LYSINE HISTIDINE TRANSPORTER1 (LHT1), encoding an amino acid transporter, is the gene responsible. An uptake experiment with radiolabeled ACC indicated that mutations of LHT1 reduced, albeit not completely, uptake of ACC. Further, we performed an amino acid competition assay and found that two amino acids, alanine and glycine, known as substrates of LHT1, could suppress the ACC-induced triple response in a LHT1-dependent way. Taken together, these results provide the first molecular genetic evidence supporting that a class of amino acid transporters including LHT1 takes part in transport of ACC, thereby influencing exogenous ACC-induced ethylene responses in A. thaliana. PMID:25520403

  16. Oral administration of D-alanine in monkeys robustly increases plasma and cerebrospinal fluid levels but experimental D-amino acid oxidase inhibitors had minimal effect.

    PubMed

    Rojas, Camilo; Alt, Jesse; Ator, Nancy A; Wilmoth, Heather; Rais, Rana; Hin, Niyada; DeVivo, Michael; Popiolek, Michael; Tsukamoto, Takashi; Slusher, Barbara S

    2016-09-01

    Hypofunction of the N-methyl-d-aspartate (NMDA) receptor is thought to exacerbate psychosis in patients diagnosed with schizophrenia. Consistent with this hypothesis, D-alanine, a co-agonist at the glycine site of the NMDA receptor, was shown to improve positive and cognitive symptoms when used as add-on therapy for schizophrenia treatment. However, D-alanine had to be administered at high doses (~7 g) to observe clinical effects. One possible reason for the high dose is that D-alanine could be undergoing oxidation by D-amino acid oxidase (DAAO) before it reaches the brain. If this is the case, the dose could be reduced by co-administration of D-alanine with a DAAO inhibitor (DAAOi). Early studies with rodents showed that co-administration of D-alanine with 5-chloro-benzo[d]isoxazol-3-ol (CBIO), a prototype DAAOi, significantly enhanced the levels of extracellular D-alanine in the frontal cortex compared with D-alanine alone. Further, the use of CBIO reduced the dose of D-alanine needed to attenuate prepulse inhibition deficits induced by dizocilpine. The objective of the work reported herein was to confirm the hypothesis that DAAO inhibition can enhance D-alanine exposure in a species closer to humans: non-human primates. We report that while oral D-alanine administration to baboons (10 mg/kg) enhanced D-alanine plasma and CSF levels over 20-fold versus endogenous levels, addition of experimental DAAOi to the regimen exhibited a 2.2-fold enhancement in plasma and no measurable effect on CSF levels. The results provide caution regarding the utility of DAAO inhibition to increase D-amino acid levels as treatment for patients with schizophrenia. PMID:27287825

  17. Mechanism of adenylate kinase. Are the essential lysines essential?

    PubMed

    Tian, G C; Yan, H G; Jiang, R T; Kishi, F; Nakazawa, A; Tsai, M D

    1990-05-01

    Using site-specific mutagenesis, we have probed the structural and functional roles of lysine-21 and lysine-27 of adenylate kinase (AK) from chicken muscle expressed in Escherichia coli. The two residues were chosen since according to the nuclear magnetic resonance (NMR) model [Mildvan, A. S., & Fry, D. C. (1987) Adv. Enzymol. 58, 241-313], they are located near the alpha- and the gamma-phosphates, respectively, of adenosine 5'-triphosphate (ATP) in the AK-MgATP complex. In addition, a lysine residue (Lys-21 in the case of AK) along with a glycine-rich loop is considered "essential" in the catalysis of kinases and other nucleotide binding proteins. The Lys-27 to methionine (K27M) mutant showed only slight increases in kcat and Km, but a substantial increase (1.8 kcal/mol) in the free energy of unfolding, relative to the WT AK. For proper interpretation of the steady-state kinetic data, viscosity-dependent kinetics was used to show that the chemical step is partially rate-limiting in the catalysis of AK. Computer modeling suggested that the folded form of K27M could gain stability (relative to the wild type) via hydrophobic interactions of Met-27 with Val-179 and Phe-183 and/or formation of a charge-transfer complex between Met-27 and Phe-183. The latter was supported by an upfield shift of the methyl protons of Met-27 in 1H NMR. Other than this, the 1H NMR spectrum of K27M is very similar to that of WT, suggesting little perturbation in the global or even local conformations.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2161682

  18. Barrier-Free Intermolecular Proton Transfer Induced by Excess Electron Attachment to the Complex of Alanine with Uracil

    SciTech Connect

    Dabkowska, Iwona; Rak, Janusz; Gutowski, Maciej S.; Nilles, J.M.; Stokes, Sarah; Bowen, Kit H.

    2004-04-01

    The photoelectron spectrum of the uracil-alanine anionic complex (UA)- has been recorded with 2.540 eV photons. This spectrum reveals a broad feature with a maximum between 1.6-2.1 eV. The vertical electron detachment energy is too large to be attributed to an (UA)- anionic complex in which an intact uracil anion is solvated by alanine, or vice versa. The neutral and anionic complexes of uracil and alanine were studied at the B3LYP and second order Moeller-Plesset level of theory with 6-31++G** basis sets. The neutral complexes form cyclic hydrogen bonds and the three most stable neutral complexes are bound by 0.72, 0.61 and 0.57 eV. The electron hole in complexes of uracil with alaninie is localized on uracil, but the formation of a complex with alanine strongly modulates the vertical ionization energy of uracil. The theoretical results indicate that the excess electron in (UA)- occupies a p* orbital localized on uracil. The excess electron attachment to the complex can induce a barrier-free proton transfer (BFPT) from the carboxylic group of alanine to the O8 atom of uracil. As a result, the four most stable structures of the uracil-alanine anionic complex can be characterized as the neutral radical of hydrogenated uracil solvated by the anion of deprotonated alanine. Our current results for the anionic complex of uracil with alanine are similar to our previous results for the anion of uracil with glycine [Eur. Phys. J. D 20, 431 (2002)], and together they indicate that the BFPT process is not very sensitive to the nature of the amino acid's hydrophobic residual group. The BFPT to the O8 atom of uracil may be relevant to the damage suffered by nucleic acid bases due to exposure to low energy electrons.

  19. Metabolite proofreading in carnosine and homocarnosine synthesis: molecular identification of PM20D2 as β-alanyl-lysine dipeptidase.

    PubMed

    Veiga-da-Cunha, Maria; Chevalier, Nathalie; Stroobant, Vincent; Vertommen, Didier; Van Schaftingen, Emile

    2014-07-11

    Carnosine synthase is the ATP-dependent ligase responsible for carnosine (β-alanyl-histidine) and homocarnosine (γ-aminobutyryl-histidine) synthesis in skeletal muscle and brain, respectively. This enzyme uses, also at substantial rates, lysine, ornithine, and arginine instead of histidine, yet the resulting dipeptides are virtually absent from muscle or brain, suggesting that they are removed by a "metabolite repair" enzyme. Using a radiolabeled substrate, we found that rat skeletal muscle, heart, and brain contained a cytosolic β-alanyl-lysine dipeptidase activity. This enzyme, which has the characteristics of a metalloenzyme, was purified ≈ 200-fold from rat skeletal muscle. Mass spectrometry analysis of the fractions obtained at different purification stages indicated parallel enrichment of PM20D2, a peptidase of unknown function belonging to the metallopeptidase 20 family. Western blotting showed coelution of PM20D2 with β-alanyl-lysine dipeptidase activity. Recombinant mouse PM20D2 hydrolyzed β-alanyl-lysine, β-alanyl-ornithine, γ-aminobutyryl-lysine, and γ-aminobutyryl-ornithine as its best substrates. It also acted at lower rates on β-alanyl-arginine and γ-aminobutyryl-arginine but virtually not on carnosine or homocarnosine. Although acting preferentially on basic dipeptides derived from β-alanine or γ-aminobutyrate, PM20D2 also acted at lower rates on some "classic dipeptides" like α-alanyl-lysine and α-lysyl-lysine. The same activity profile was observed with human PM20D2, yet this enzyme was ∼ 100-200-fold less active on all substrates tested than the mouse enzyme. Cotransfection in HEK293T cells of mouse or human PM20D2 together with carnosine synthase prevented the accumulation of abnormal dipeptides (β-alanyl-lysine, β-alanyl-ornithine, γ-aminobutyryl-lysine), thus favoring the synthesis of carnosine and homocarnosine and confirming the metabolite repair role of PM20D2.

  20. Solved? The reductive radiation chemistry of alanine.

    PubMed

    Pauwels, Ewald; De Cooman, Hendrik; Waroquier, Michel; Hole, Eli O; Sagstuen, Einar

    2014-02-14

    The structural changes throughout the entire reductive radiation-induced pathway of l-α-alanine are solved on an atomistic level with the aid of periodic DFT and nudged elastic band (NEB) simulations. This yields unprecedented information on the conformational changes taking place, including the protonation state of the carboxyl group in the "unstable" and "stable" alanine radicals and the internal transformation converting these two radical variants at temperatures above 220 K. The structures of all stable radicals were verified by calculating EPR properties and comparing those with experimental data. The variation of the energy throughout the full radiochemical process provides crucial insight into the reason why these structural changes and rearrangements occur. Starting from electron capture, the excess electron quickly localizes on the carbon of a carboxyl group, which pyramidalizes and receives a proton from the amino group of a neighboring alanine molecule, forming a first stable radical species (up to 150 K). In the temperature interval 150-220 K, this radical deaminates and deprotonates at the carboxyl group, the detached amino group undergoes inversion and its methyl group sustains an internal rotation. This yields the so-called "unstable alanine radical". Above 220 K, triggered by the attachment of an additional proton on the detached amino group, the radical then undergoes an internal rotation in the reverse direction, giving rise to the "stable alanine radical", which is the final stage in the reductive radiation-induced decay of alanine.

  1. β-Alanine supplementation and military performance.

    PubMed

    Hoffman, Jay R; Stout, Jeffrey R; Harris, Roger C; Moran, Daniel S

    2015-12-01

    During sustained high-intensity military training or simulated combat exercises, significant decreases in physical performance measures are often seen. The use of dietary supplements is becoming increasingly popular among military personnel, with more than half of the US soldiers deployed or garrisoned reported to using dietary supplements. β-Alanine is a popular supplement used primarily by strength and power athletes to enhance performance, as well as training aimed at improving muscle growth, strength and power. However, there is limited research examining the efficacy of β-alanine in soldiers conducting operationally relevant tasks. The gains brought about by β-alanine use by selected competitive athletes appears to be relevant also for certain physiological demands common to military personnel during part of their training program. Medical and health personnel within the military are expected to extrapolate and implement relevant knowledge and doctrine from research performed on other population groups. The evidence supporting the use of β-alanine in competitive and recreational athletic populations suggests that similar benefits would also be observed among tactical athletes. However, recent studies in military personnel have provided direct evidence supporting the use of β-alanine supplementation for enhancing combat-specific performance. This appears to be most relevant for high-intensity activities lasting 60-300 s. Further, limited evidence has recently been presented suggesting that β-alanine supplementation may enhance cognitive function and promote resiliency during highly stressful situations.

  2. Glycine restores the anabolic response to leucine in a mouse model of acute inflammation.

    PubMed

    Ham, Daniel J; Caldow, Marissa K; Chhen, Victoria; Chee, Annabel; Wang, Xuemin; Proud, Christopher G; Lynch, Gordon S; Koopman, René

    2016-06-01

    Amino acids, especially leucine, potently stimulate protein synthesis and reduce protein breakdown in healthy skeletal muscle and as a result have received considerable attention as potential treatments for muscle wasting. However, the normal anabolic response to amino acids is impaired during muscle-wasting conditions. Although the exact mechanisms of this anabolic resistance are unclear, inflammation and ROS are believed to play a central role. The nonessential amino acid glycine has anti-inflammatory and antioxidant properties and preserves muscle mass in calorie-restricted and tumor-bearing mice. We hypothesized that glycine would restore the normal muscle anabolic response to amino acids under inflammatory conditions. Relative rates of basal and leucine-stimulated protein synthesis were measured using SUnSET methodology 4 h after an injection of 1 mg/kg lipopolysaccharide (LPS). Whereas leucine failed to stimulate muscle protein synthesis in LPS-treated mice pretreated with l-alanine (isonitrogenous control), leucine robustly stimulated protein synthesis (+51%) in mice pretreated with 1 g/kg glycine. The improvement in leucine-stimulated protein synthesis was accompanied by a higher phosphorylation status of mTOR, S6, and 4E-BP1 compared with l-alanine-treated controls. Despite its known anti-inflammatory action in inflammatory cells, glycine did not alter the skeletal muscle inflammatory response to LPS in vivo or in vitro but markedly reduced DHE staining intensity, a marker of oxidative stress, in muscle cross-sections and attenuated LPS-induced wasting in C2C12 myotubes. Our observations in male C57BL/6 mice suggest that glycine may represent a promising nutritional intervention for the attenuation of skeletal muscle wasting.

  3. Persistent GABAA/C responses to gabazine, taurine and beta-alanine in rat hypoglossal motoneurons.

    PubMed

    Chesnoy-Marchais, D

    2016-08-25

    In hypoglossal motoneurons, a sustained anionic current, sensitive to a blocker of ρ-containing GABA receptors, (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) and insensitive to bicuculline, was previously shown to be activated by gabazine. In order to better characterize the receptors involved, the sensitivity of this atypical response to pentobarbital (30μM), allopregnanolone (0.3μM) and midazolam (0.5μM) was first investigated. Pentobarbital potentiated the response, whereas the steroid and the benzodiazepine were ineffective. The results indicate the involvement of hybrid heteromeric receptors, including at least a GABA receptor ρ subunit and a γ subunit, accounting for the pentobarbital-sensitivity. The effects of the endogenous β amino acids, taurine and β-alanine, which are released under various pathological conditions and show neuroprotective properties, were then studied. In the presence of the glycine receptor blocker strychnine (1μM), both taurine (0.3-1mM) and β-alanine (0.3mM) activated sustained anionic currents, which were partly blocked by TPMPA (100μM). Thus, both β amino acids activated ρ-containing GABA receptors in hypoglossal motoneurons. Bicuculline (20μM) reduced responses to taurine and β-alanine, but small sustained responses persisted in the presence of both strychnine and bicuculline. Responses to β-alanine were slightly increased by allopregnanolone, indicating a contribution of the bicuculline- and neurosteroid-sensitive GABAA receptors underlying tonic inhibition in these motoneurons. Since sustained activation of anionic channels inhibits most mature principal neurons, the ρ-containing GABA receptors permanently activated by taurine and β-alanine might contribute to some of their neuroprotective properties under damaging overexcitatory situations. PMID:27246441

  4. Monopeptide versus Monopeptoid: Insights on Structure and Hydration of Aqueous Alanine and Sarcosine via X-ray Absorption Spectroscopy

    SciTech Connect

    Uejio, Janel S.; Schwartz, Craig P.; Duffin, Andrew M.; England, Alice; Prendergast, David; Saykally, Richard J.

    2009-11-19

    Despite the obvious significance, the aqueous interactions of peptides remain incompletely understood. Their synthetic analogues called peptoids (poly-N-substituted glycines), have recently emerged as a promising biomimetic material, particularly due to their robust secondary structure and resistance to denaturation. We describe comparative near-edge x-ray absorption fine structure (NEXAFS) spectroscopy studies of aqueous sarcosine, the simplest peptoid, and alanine, its peptide isomer, interpreted by density functional theory calculations. The sarcosine nitrogen K-edge spectrum is blue-shifted with respect to that of alanine, in agreement with our calculations; we conclude that this shift results primarily from the methyl group substitution on the nitrogen of sarcosine. Our calculations indicate that the nitrogen K-edge spectrum of alanine differs significantly between dehydrated and hydrated scenarios, while that of the sarcosine zwitterion is less affected by hydration. In contrast, the computed sarcosine spectrum is greatly impacted by conformational variations, while the alanine spectrum is not. This relates to a predicted solvent dependence for alanine, as compared to sarcosine. Additionally, we show the theoretical nitrogen K-edge spectra to be sensitive to the degree of hydration, indicating that experimental X-ray spectroscopy may be able to distinguish between bulk and partial hydration, such as found in confined environments near proteins and in reverse micelles.

  5. β-alanine biosynthesis in Methanocaldococcus jannaschii.

    PubMed

    Wang, Yu; Xu, Huimin; White, Robert H

    2014-08-01

    One efficient approach to assigning function to unannotated genes is to establish the enzymes that are missing in known biosynthetic pathways. One group of such pathways is those involved in coenzyme biosynthesis. In the case of the methanogenic archaeon Methanocaldococcus jannaschii as well as most methanogens, none of the expected enzymes for the biosynthesis of the β-alanine and pantoic acid moieties required for coenzyme A are annotated. To identify the gene(s) for β-alanine biosynthesis, we have established the pathway for the formation of β-alanine in this organism after experimentally eliminating other known and proposed pathways to β-alanine from malonate semialdehyde, l-alanine, spermine, dihydrouracil, and acryloyl-coenzyme A (CoA). Our data showed that the decarboxylation of aspartate was the only source of β-alanine in cell extracts of M. jannaschii. Unlike other prokaryotes where the enzyme producing β-alanine from l-aspartate is a pyruvoyl-containing l-aspartate decarboxylase (PanD), the enzyme in M. jannaschii is a pyridoxal phosphate (PLP)-dependent l-aspartate decarboxylase encoded by MJ0050, the same enzyme that was found to decarboxylate tyrosine for methanofuran biosynthesis. A Km of ∼0.80 mM for l-aspartate with a specific activity of 0.09 μmol min(-1) mg(-1) at 70°C for the decarboxylation of l-aspartate was measured for the recombinant enzyme. The MJ0050 gene was also demonstrated to complement the Escherichia coli panD deletion mutant cells, in which panD encoding aspartate decarboxylase in E. coli had been knocked out, thus confirming the function of this gene in vivo.

  6. 21 CFR 172.540 - DL-Alanine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false DL-Alanine. 172.540 Section 172.540 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD ADDITIVES....540 DL-Alanine. DL-Alanine (a racemic mixture of D- and L-alanine; CAS Reg. No. 302-72-7) may...

  7. First Comprehensive Proteome Analyses of Lysine Acetylation and Succinylation in Seedling Leaves of Brachypodium distachyon L.

    PubMed Central

    Zhen, Shoumin; Deng, Xiong; Wang, Jian; Zhu, Gengrui; Cao, Hui; Yuan, Linlin; Yan, Yueming

    2016-01-01

    Protein acetylation and succinylation are the most crucial protein post-translational modifications (PTMs) involved in the regulation of plant growth and development. In this study, we present the first lysine-acetylation and lysine-succinylation proteome analysis of seedling leaves in Brachypodium distachyon L (Bd). Using high accuracy nano LC-MS/MS combined with affinity purification, we identified a total of 636 lysine-acetylated sites in 353 proteins and 605 lysine-succinylated sites in 262 proteins. These proteins participated in many biology processes, with various molecular functions. In particular, 119 proteins and 115 sites were found to be both acetylated and succinylated, simultaneously. Among the 353 acetylated proteins, 148 had acetylation orthologs in Oryza sativa L., Arabidopsis thaliana, Synechocystis sp. PCC 6803, and Glycine max L. Among the 262 succinylated proteins, 170 of them were found to have homologous proteins in Oryza sativa L., Escherichia coli, Sacchayromyces cerevisiae, or Homo sapiens. Motif-X analysis of the acetylated and succinylated sites identified two new acetylated motifs (K---K and K-I-K) and twelve significantly enriched succinylated motifs for the first time, which could serve as possible binding loci for future studies in plants. Our comprehensive dataset provides a promising starting point for further functional analysis of acetylation and succinylation in Bd and other plant species. PMID:27515067

  8. A single lysine of the two-lysine recognition motif of the D3 domain of receptor-associated protein is sufficient to mediate endocytosis by low-density lipoprotein receptor-related protein.

    PubMed

    van den Biggelaar, Maartje; Sellink, Erica; Klein Gebbinck, Jacqueline W T M; Mertens, Koen; Meijer, Alexander B

    2011-03-01

    Ligand binding of the low-density lipoprotein (LDL) receptor family is mediated by complement-type repeats (CR) each comprising a binding pocket for a single basic amino acid residue. It has been proposed that at least two CRs are required for high-affinity interaction by utilising two spatially distinct lysine residues on the ligand surface. LDL receptor-related protein (LRP) mediates the cellular uptake of a multitude of ligands, some of which bind LRP with a relatively low affinity suggesting a suboptimal positioning of the two critical lysines. We now addressed the role of the two critical lysines not only in LRP binding but also in LRP-dependent endocytosis. Variants of the third domain (D3) of receptor-associated protein (RAP) were created carrying lysine to alanine or arginine replacements at the putative contact residues K253, K256 and K270. Surface plasmon resonance revealed that replacement of K253 did not affect high-affinity LRP binding at all, whereas replacement of either K256 or K270 markedly reduced the affinity by approximately 10-fold. Binding was abolished when both lysines were replaced. Substitution by either alanine or arginine exerted an almost identical effect on LRP binding. This suggests that despite their positive charge, arginine residues do not support receptor binding at all. Confocal microscopy and flow cytometry studies surprisingly revealed that the single mutants were still taken up and still competed for the uptake of full length RAP despite their receptor binding defect. We therefore propose that the presence of only one of the two critical lysines is sufficient to drive endocytosis. PMID:21144910

  9. CPLM: a database of protein lysine modifications

    PubMed Central

    Liu, Zexian; Wang, Yongbo; Gao, Tianshun; Pan, Zhicheng; Cheng, Han; Yang, Qing; Cheng, Zhongyi; Guo, Anyuan; Ren, Jian; Xue, Yu

    2014-01-01

    We reported an integrated database of Compendium of Protein Lysine Modifications (CPLM; http://cplm.biocuckoo.org) for protein lysine modifications (PLMs), which occur at active ε-amino groups of specific lysine residues in proteins and are critical for orchestrating various biological processes. The CPLM database was updated from our previously developed database of Compendium of Protein Lysine Acetylation (CPLA), which contained 7151 lysine acetylation sites in 3311 proteins. Here, we manually collected experimentally identified substrates and sites for 12 types of PLMs, including acetylation, ubiquitination, sumoylation, methylation, butyrylation, crotonylation, glycation, malonylation, phosphoglycerylation, propionylation, succinylation and pupylation. In total, the CPLM database contained 203 972 modification events on 189 919 modified lysines in 45 748 proteins for 122 species. With the dataset, we totally identified 76 types of co-occurrences of various PLMs on the same lysine residues, and the most abundant PLM crosstalk is between acetylation and ubiquitination. Up to 53.5% of acetylation and 33.1% of ubiquitination events co-occur at 10 746 lysine sites. Thus, the various PLM crosstalks suggested that a considerable proportion of lysines were competitively and dynamically regulated in a complicated manner. Taken together, the CPLM database can serve as a useful resource for further research of PLMs. PMID:24214993

  10. Production of L-lysine on different silage juices using genetically engineered Corynebacterium glutamicum.

    PubMed

    Neuner, Andreas; Wagner, Ines; Sieker, Tim; Ulber, Roland; Schneider, Konstantin; Peifer, Susanne; Heinzle, Elmar

    2013-01-20

    Corynebacterium glutamicum, the best established industrial producer organism for lysine was genetically modified to allow the production of lysine on grass and corn silages. The resulting strain C. glutamicum lysC(fbr)dld(Psod)pyc(Psod)malE(Psod)fbp(Psod)gapX(Psod) was based on earlier work (Neuner and Heinzle, 2011). That mutant carries a point mutation in the aspartokinase (lysC) regulatory subunit gene as well as overexpression of D-lactate dehydrogenase (dld), pyruvate carboxylase (pyc) and malic enzyme (malE) using the strong Psod promoter. Here, we additionally overexpressed fructose 1,6-bisphosphatase (fbp) and glyceraldehyde 3-phosphate dehydrogenase (gapX) using the same promoter. The resulting strain grew readily on grass and corn silages with a specific growth rate of 0.35 h⁻¹ and lysine carbon yields of approximately 90 C-mmol (C-mol)⁻¹. Lysine yields were hardly affected by oxygen limitation whereas linear growth was observed under oxygen limiting conditions. Overall, this strain seems very robust with respect to the composition of silage utilizing all quantified low molecular weight substrates, e.g. lactate, glucose, fructose, maltose, quinate, fumarate, glutamate, leucine, isoleucine and alanine.

  11. Hemoglobin Labeled by Radioactive Lysine

    DOE R&D Accomplishments Database

    Bale, W. F.; Yuile, C. L.; DeLaVergne, L.; Miller, L. L.; Whipple, G. H.

    1949-12-08

    This paper reports on the utilization of tagged epsilon carbon of DL-lysine by a dog both anemic and hypoproteinemic due to repeated bleeding plus a diet low in protein. The experiment extended over period of 234 days, a time sufficient to indicate an erythrocyte life span of at least 115 days based upon the rate of replacement of labeled red cell proteins. The proteins of broken down red cells seem not to be used with any great preference for the synthesis of new hemoglobin.

  12. Alanine racemase from the acidophile Acetobacter aceti.

    PubMed

    Francois, Julie A; Kappock, T Joseph

    2007-01-01

    Acetobacter aceti converts ethanol to acetic acid, and survives acetic acid exposure by tolerating cytoplasmic acidification. Alanine racemase (Alr) is a pyridoxal 5' phosphate (PLP) -dependent enzyme that catalyzes the interconversion of the d- and l-isomers of alanine and has a basic pH optimum. Since d-alanine is essential for peptidoglycan biosynthesis, Alr must somehow function in the acidic cytoplasm of A. aceti. We report the partial purification of native A. aceti Alr (AaAlr) and evidence that it is a rather stable enzyme. The C-terminus of AaAlr has a strong resemblance to the ssrA-encoded protein degradation signal, which thwarted initial protein expression experiments. High-activity AaAlr forms lacking a protease recognition sequence were expressed in Escherichia coli and purified. Biophysical and enzymological experiments confirm that AaAlr is intrinsically acid-resistant, yet has the catalytic properties of an ordinary Alr.

  13. Modulation of Recombinant Human α1 Glycine Receptors by Mono- and Disaccharides: A Kinetic Study.

    PubMed

    Breitinger, Ulrike; Sticht, Heinrich; Breitinger, Hans-Georg

    2016-08-17

    Glycine receptors (GlyRs) mediate fast synaptic inhibition in spinal cord, brainstem, and higher brain centers. Recently, glucose was identified as a positive modulator of GlyR-mediated currents. Here, we investigated extent and kinetics of the positive modulation of recombinant human α1 glycine receptors by different mono- and disaccharides and sorbitol using patch-clamp recording techniques. Glucose and fructose augmented glycine-mediated whole-cell currents with an EC50 of 6-7 mM. At concentrations > 10 mM, the maximum of current enhancement was reached within ∼30 min. Kinetics of GlyR modulation resemble those of protein glycation. On-rates were <0.5 h for saturating concentrations of monosaccharides and ∼1.5 h for disaccharides. Off-rates were considerably slower (>24 h). Galactose, the C4-epimer of glucose, and the sugar alcohol sorbitol had no effect on GlyR currents. Recent cryoelectron microscopy structures were used to identify a potential binding site for saccharides near the ivermectin binding pocket with lysine 143 as possible attachment site. The GlyR mutant α1(K143A) was not potentiated by glucose, suggesting an involvement of this residue in glycine receptor modulation by saccharides. PMID:27227552

  14. 21 CFR 582.5118 - Alanine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Alanine. 582.5118 Section 582.5118 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  15. 21 CFR 582.5118 - Alanine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Alanine. 582.5118 Section 582.5118 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  16. 21 CFR 582.5118 - Alanine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Alanine. 582.5118 Section 582.5118 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  17. 21 CFR 582.5118 - Alanine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Alanine. 582.5118 Section 582.5118 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  18. 21 CFR 582.5118 - Alanine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Alanine. 582.5118 Section 582.5118 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  19. Infrared Spectroscopy of Alanine in Solid Parahydrogen

    NASA Astrophysics Data System (ADS)

    Toh, Shin Yi; Wong, Ying-Tung Angel; Djuricanin, Pavle; Momose, Takamasa

    2014-06-01

    Amino acids are the building blocks of biological molecules, and thus the investigation of their physical and chemical properties would allow for further understanding of their functions in biological systems. In addition, the existence of amino acids in interstellar space has been discussed for many years, but it is still under intense debate. The effect of UV radiation on amino acids is one of the keys for their search in interstellar space, where strong UV radiation exists. In this experiment, conformational compositions of alpha and beta alanine and their UV photolysis were investigated via matrix-isolation FTIR spectroscopy and quantum chemical calculations. Solid parahydrogen was used as the matrix, which provides higher resolution spectra than other noble gas matrices. We have identified several stable conformers for both alpha and beta alanine in solid parahydrogen. A clear correlation between conformational ratio and sublimation temperature was found for beta alanine. Furthermore, it was found that UV photolysis of alanine yields not only its conformational changes, but also photodissociation into a CO2 molecule and fragments. Observed spectra and their analysis will be discussed in relation to interstellar chemistry.

  20. Engineering a Lysine-ON Riboswitch for Metabolic Control of Lysine Production in Corynebacterium glutamicum.

    PubMed

    Zhou, Li-Bang; Zeng, An-Ping

    2015-12-18

    Riboswitches are natural RNA elements that regulate gene expression by binding a ligand. Here, we demonstrate the possibility of altering a natural lysine-OFF riboswitch from Eschericia coli (ECRS) to a synthetic lysine-ON riboswitch and using it for metabolic control. To this end, a lysine-ON riboswitch library was constructed using tetA-based dual genetic selection. After screening the library, the functionality of the selected lysine-ON riboswitches was examined using a report gene, lacZ. Selected lysine-ON riboswitches were introduced into the lysE gene (encoding a lysine transport protein) of Corynebacterium glutamicum and used to achieve dynamic control of lysine transport in a recombinant lysine-producing strain, C. glutamicum LPECRS, which bears a deregulated aspartokinase and a lysine-OFF riboswitch for dynamic control of the enzyme citrate synthase. Batch fermentation results of the strains showed that the C. glutamicum LPECRS strain with an additional lysine-ON riboswitch for the control of lysE achieved a 21% increase in the yield of lysine compared to that of the C. glutamicum LPECRS strain and even a 89% increase in yield compared to that of the strain with deregulated aspartokinase. This work provides a useful approach to generate lysine-ON riboswitches for C. glutamicum metabolic engineering and demonstrates for the first time a synergetic effect of lysine-ON and -OFF riboswitches for improving lysine production in this industrially important microorganism. The approach can be used to dynamically control other genes and can be applied to other microorganisms. PMID:26300047

  1. Experimental and computational thermochemical study of α-alanine (DL) and β-alanine.

    PubMed

    da Silva, Manuel A V Ribeiro; da Silva, Maria das Dores M C Ribeiro; Santos, Ana Filipa L O M; Roux, Maria Victoria; Foces-Foces, Concepción; Notario, Rafael; Guzmán-Mejía, Ramón; Juaristi, Eusebio

    2010-12-16

    This paper reports an experimental and theoretical study of the gas phase standard (p° = 0.1 MPa) molar enthalpies of formation, at T = 298.15 K, of α-alanine (DL) and β-alanine. The standard (p° = 0.1 MPa) molar enthalpies of formation of crystalline α-alanine (DL) and β-alanine were calculated from the standard molar energies of combustion, in oxygen, to yield CO2(g), N2(g), and H2O(l), measured by static-bomb combustion calorimetry at T = 298.15 K. The vapor pressures of both amino acids were measured as function of temperature by the Knudsen effusion mass-loss technique. The standard molar enthalpies of sublimation at T = 298.15 K was derived from the Clausius−Clapeyron equation. The experimental values were used to calculate the standard (p° = 0.1 MPa) enthalpy of formation of α-alanine (DL) and β-alanine in the gaseous phase, Δ(f)H(m)°(g), as −426.3 ± 2.9 and −421.2 ± 1.9 kJ·mol(−1), respectively. Standard ab initio molecular orbital calculations at the G3 level were performed. Enthalpies of formation, using atomization reactions, were calculated and compared with experimental data. Detailed inspections of the molecular and electronic structures of the compounds studied were carried out.

  2. Preparation and Bioavailability Analysis of Ferrous Bis Alanine Chelate as a New Micronutrient for Treatment of Iron Deficiency Anemia

    PubMed Central

    Zargaran, Marzieh; Saadat, Ebrahim; Dinarvand, Rassoul; Sharifzadeh, Mohammad; Dorkoosh, Farid

    2016-01-01

    Purpose: One of the most nutritional disorders around the world is iron deficiency. A novel iron compound was synthesized by chelating ferrous ions with alanine for prevention and treatment of iron deficiency anemia. Methods: The newly synthesized compound was characterized both qualitatively and quantitatively by Fourier Transform Infrared (FT-IR) spectroscopy. The bioavailability of newly synthesized iron micronutrient was evaluated in four groups of Wistar rats. The group I was a negative control group and the other three groups received three different iron formulations. After 14 days, the blood samples were taken and analyzed accordingly. Results: Calculations showed that more than 91.8% of iron was incorporated in the chelate formulation. In vivo studies showed that serum iron, total iron binding capacity and hemoglobin concentrations were significantly increased in group IV, which received ferrous bis alanine chelate compared with the negative control group (p<0.05) and also group II, which received ferrous sulfate.7H2O (p<0.05). It indicates that the new formulation considerably improves the blood iron status compared with the conventional iron compounds. There were no significant differences (p<0.05) in the serum iron between group IV and group III, which received ferrous bis glycine. Conclusion: The results showed better bioavailability of ferrous bis alanine as a new micronutrient for treatment of iron deficiency anemia in comparison with ferrous sulfate. Ferrous bis alanine could be considered as a suitable supplement for prevention and treatment of iron deficiency anemia. PMID:27766225

  3. Secretion of d-alanine by Escherichia coli.

    PubMed

    Katsube, Satoshi; Sato, Kazuki; Ando, Tasuke; Isogai, Emiko; Yoneyama, Hiroshi

    2016-07-01

    Escherichia coli has an l-alanine export system that protects the cells from toxic accumulation of intracellular l-alanine in the presence of l-alanyl-l-alanine (l-Ala-l-Ala). When a DadA-deficient strain was incubated with 6.0 mM l-Ala-l-Ala, we detected l-alanine and d-alanine using high-performance liquid chromatography (HPLC) analysis at a level of 7.0 mM and 3.0 mM, respectively, after 48 h incubation. Treatment of the culture supernatant with d-amino acid oxidase resulted in the disappearance of a signal corresponding to d-alanine. Additionally, the culture supernatant enabled a d-alanine auxotroph to grow without d-alanine supplementation, confirming that the signal detected by HPLC was authentic d-alanine. Upon introduction of an expression vector harbouring the alanine racemase genes, alr or dadX, the extracellular level of d-alanine increased to 11.5 mM and 8.5 mM, respectively, under similar conditions, suggesting that increased metabolic flow from l-alanine to d-alanine enhanced d-alanine secretion. When high-density DadA-deficient cells preloaded with l-Ala-l-Ala were treated with 20 µM carbonyl cyanide m-chlorophenyl hydrazone (CCCP), secretion of both l-alanine and d-alanine was enhanced ~twofold compared with that in cells without CCCP treatment. In contrast, the ATPase inhibitor dicyclohexylcarbodiimide did not exert such an effect on the l-alanine and d-alanine secretion. Furthermore, inverted membrane vesicles prepared from DadA-deficient cells lacking the l-alanine exporter AlaE accumulated [3H]D-alanine in an energy-dependent manner. This energy-dependent accumulation of [3H]D-alanine was strongly inhibited by CCCP. These results indicate that E. coli has a transport system(s) that exports d-alanine and that this function is most likely modulated by proton electrochemical potential. PMID:27166225

  4. Linkages in thermal copolymers of lysine

    NASA Technical Reports Server (NTRS)

    Fox, S. W.; Suzuki, F.

    1975-01-01

    The thermal copolymerization of lysine with other alpha-amino acids was studied. The identity of the second amino acid influences various properties of the polymer obtained, including the proportion of alpha and epsilon linkages of lysine. A review of linkages in proteinoids indicates alpha and beta linkages for aspartic acid, alpha and gamma linkages for glutamic acid, alpha and epsilon linkages for lysine, and alpha linkages for other amino acids. Thermal proteinoids are thus more complex in types of linkage than are proteins.

  5. Allosteric modulation of glycine receptors

    PubMed Central

    Yevenes, Gonzalo E; Zeilhofer, Hanns Ulrich

    2011-01-01

    Inhibitory (or strychnine sensitive) glycine receptors (GlyRs) are anion-selective transmitter-gated ion channels of the cys-loop superfamily, which includes among others also the inhibitory γ-aminobutyric acid receptors (GABAA receptors). While GABA mediates fast inhibitory neurotransmission throughout the CNS, the action of glycine as a fast inhibitory neurotransmitter is more restricted. This probably explains why GABAA receptors constitute a group of extremely successful drug targets in the treatment of a wide variety of CNS diseases, including anxiety, sleep disorders and epilepsy, while drugs specifically targeting GlyRs are virtually lacking. However, the spatially more restricted distribution of glycinergic inhibition may be advantageous in situations when a more localized enhancement of inhibition is sought. Inhibitory GlyRs are particularly relevant for the control of excitability in the mammalian spinal cord, brain stem and a few selected brain areas, such as the cerebellum and the retina. At these sites, GlyRs regulate important physiological functions, including respiratory rhythms, motor control, muscle tone and sensory as well as pain processing. In the hippocampus, RNA-edited high affinity extrasynaptic GlyRs may contribute to the pathology of temporal lobe epilepsy. Although specific modulators have not yet been identified, GlyRs still possess sites for allosteric modulation by a number of structurally diverse molecules, including alcohols, neurosteroids, cannabinoids, tropeines, general anaesthetics, certain neurotransmitters and cations. This review summarizes the present knowledge about this modulation and the molecular bases of the interactions involved. PMID:21557733

  6. 21 CFR 172.540 - DL-Alanine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true DL-Alanine. 172.540 Section 172.540 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents and Related Substances § 172.540 DL-Alanine. DL-Alanine (a racemic mixture of D- and...

  7. 21 CFR 172.540 - DL-Alanine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false DL-Alanine. 172.540 Section 172.540 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents and Related Substances § 172.540 DL-Alanine. DL-Alanine (a racemic mixture of D- and...

  8. On the existence of 'L-alanine cadmium bromide'.

    PubMed

    Srinivasan, Bikshandarkoil R

    2013-12-01

    It is argued that the recently reported nonlinear optical crystal L-alanine cadmium bromide, grown by slow solvent evaporation method at room temperature [P. Ilayabarathi, J. Chandrasekaran, Spectrochim. Acta 96A (2012) 684-689] is the well-known L-alanine crystal. The isolation of L-alanine crystal is explained due to fractional crystallization.

  9. 21 CFR 172.540 - DL-Alanine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false DL-Alanine. 172.540 Section 172.540 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents and Related Substances § 172.540 DL-Alanine. DL-Alanine (a racemic mixture of D- and...

  10. 21 CFR 172.540 - DL-Alanine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false DL-Alanine. 172.540 Section 172.540 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents and Related Substances § 172.540 DL-Alanine. DL-Alanine (a racemic mixture of D- and...

  11. 21 CFR 172.812 - Glycine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Glycine. 172.812 Section 172.812 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.812 Glycine. The...

  12. 21 CFR 172.812 - Glycine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Glycine. 172.812 Section 172.812 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.812 Glycine. The...

  13. 75 FR 62141 - Glycine From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ... glycine from China (60 FR 16116). Following first five-year reviews by Commerce and the Commission... from China (65 FR 45752). Following second five-year reviews by Commerce and the Commission, effective... glycine from China (70 FR 69316). The Commission is now conducting a third review to determine...

  14. Conformational Structure of Tyrosine, Tyrosyl-Glycine, and Tyrosyl-Glycyl-Glycine by Double Resonance Spectroscopy

    NASA Technical Reports Server (NTRS)

    Abo-Riziq, Ali; Grace, Louis; Crews, Bridgit; Callahan, Michael P,; van Mourik, Tanja; de Vries, Mattanjah S,

    2011-01-01

    We investigated the variation in conformation for the amino acid tyrosine (Y), alone and in the small peptides tyrosine-glycine (YC) and tyrosine-glycine-glycine (YGG), in the gas phase by using UV-UV and IR-UV double resonance spectroscopy and density functional theory calculations. For tyrosine we found seven different conformations, for YG we found four different conformations, and for YGG we found three different conformations. As the peptides get larger, we observe fewer stable conformers, despite the increasing complexity and number of degrees of freedom. We find structural trends similar to those in phenylalanine-glycine glycine (FGG) and tryptophan-glycine-glycine (WGG)j however) the effect of dispersive forces in FGG for stabilizing a folded structure is replaced by that of hydrogen bonding in YGG.

  15. The influence of various cations on the catalytic properties of clays. [polymerization of alanine adenylate

    NASA Technical Reports Server (NTRS)

    Paecht-Horowitz, M.

    1978-01-01

    The polymerization of alanine adenylate in the presence of the sodium form of various clays was studied, and hectorite was found to cause more polymerization than nontronite and montmorillonite (in that order) although the differences were not great. The effect on polymerization of presaturating montmorillonite with different cations was determined. Hectorite, with increased basicity of the interspatial planes, allows polymerization of lysine, which montmorillonite does not. The general trend is that, for the same amino acid, higher degrees of polymerization are obtained when the cation in the octahedral lattice of the clay is divalent rather than trivalent. With the exchangeable cations the order is reversed, for a reason that is explained. The main role of clays in the polymerization mechanism of amino acids is concentration and neutralization of charges.

  16. Glycine fluxes in squid giant axons.

    PubMed

    Caldwell, P C; Lea, T J

    1978-05-01

    1. The influx of a number of amino acids into squid giant axons has been studied. Particular emphasis has been placed on glycine and to a lesser extent glutamate. 2. To facilitate the study of the uptake of 14C-labelled amino acids a technique was devised in which the 14C taken up was measured directly in the intact axon with a glass scintillator fibre. This technique gave results similar to the usual technique in which the axoplasm was extruded for the assay of radioactivity. 3. The changes in glycine influx with extracellular glycine concentration suggests that two saturating components are present, one with high affinity and one with low affinity. 4. The glycine influx does not seem normally to be sensitive to the removal of extracellular sodium by replacement with choline. A Na-sensitive component appeared, however, after a period of immersion in artificial sea water. There was also some depression of glycine influx if Na were replaced by Li. 5. Glutamate uptake was greatly reduced by removal of extracellular Na in confirmation of work by Baker & Potashner (1973). Orthophosphate uptake was also greatly reduced by removal of extracellular Na. 6. CN reversibly inhibited glycine uptake after a delay, indicating that part of the uptake mechanism may require ATP. 7. 14C-labelled glycine injected into squid axons was found not to exchange to any serious extent with other compounds over periods of a few hours. The glycine efflux could therefore be studied. This was found to be markedly increased by extracellular glycine and by certain other neutral amino acids applied extracellularly in the artificial sea water. 8. The enhanced glycine efflux in extracellular glycine was not affected by ouabain and CN. 9. It is suggested that glycine uptake in squid axons involves two components. One is sensitive to CN and ouabain and probably derives energy from ATP break-down. The other is probably an ATP independent exchange diffusion system in which other amino acids as well as

  17. Earthworms accumulate alanine in response to drought.

    PubMed

    Holmstrup, Martin; Slotsbo, Stine; Henriksen, Per G; Bayley, Mark

    2016-09-01

    Earthworms have ecologically significant functions in tropical and temperate ecosystems and it is therefore important to understand how these animals survive during drought. In order to explore the physiological responses to dry conditions, we simulated a natural drought incident in a laboratory trial exposing worms in slowly drying soil for about one month, and then analyzed the whole-body contents of free amino acids (FAAs). We investigated three species forming estivation chambers when soils dry out (Aporrectodea tuberculata, Aporrectodea icterica and Aporrectodea longa) and one species that does not estivate during drought (Lumbricus rubellus). Worms subjected to drought conditions (< -2MPa) substantially increased the concentration of FAAs and in particular alanine that was significantly upregulated in all tested species. Alanine was the most important FAA reaching 250-650μmolg(-1) dry weight in dehydrated Aporrectodea species and 300μmolg(-1) dry weight in L. rubellus. Proline was only weakly upregulated in some species as were a few other FAAs. Species forming estivation chambers (Aporrectodea spp.) did not show a better ability to conserve body water than the non-estivating species (L. rubellus) at the same drought level. These results suggest that the accumulation of alanine is an important adaptive trait in drought tolerance of earthworms in general. PMID:27107492

  18. SPOTing Acetyl-Lysine Dependent Interactions.

    PubMed

    Picaud, Sarah; Filippakopoulos, Panagis

    2015-08-17

    Post translational modifications have been recognized as chemical signals that create docking sites for evolutionary conserved effector modules, allowing for signal integration within large networks of interactions. Lysine acetylation in particular has attracted attention as a regulatory modification, affecting chromatin structure and linking to transcriptional activation. Advances in peptide array technologies have facilitated the study of acetyl-lysine-containing linear motifs interacting with the evolutionary conserved bromodomain module, which specifically recognizes and binds to acetylated sequences in histones and other proteins. Here we summarize recent work employing SPOT peptide technology to identify acetyl-lysine dependent interactions and document the protocols adapted in our lab, as well as our efforts to characterize such bromodomain-histone interactions. Our results highlight the versatility of SPOT methods and establish an affordable tool for rapid access to potential protein/modified-peptide interactions involving lysine acetylation.

  19. SPOTing Acetyl-Lysine Dependent Interactions

    PubMed Central

    Picaud, Sarah; Filippakopoulos, Panagis

    2015-01-01

    Post translational modifications have been recognized as chemical signals that create docking sites for evolutionary conserved effector modules, allowing for signal integration within large networks of interactions. Lysine acetylation in particular has attracted attention as a regulatory modification, affecting chromatin structure and linking to transcriptional activation. Advances in peptide array technologies have facilitated the study of acetyl-lysine-containing linear motifs interacting with the evolutionary conserved bromodomain module, which specifically recognizes and binds to acetylated sequences in histones and other proteins. Here we summarize recent work employing SPOT peptide technology to identify acetyl-lysine dependent interactions and document the protocols adapted in our lab, as well as our efforts to characterize such bromodomain-histone interactions. Our results highlight the versatility of SPOT methods and establish an affordable tool for rapid access to potential protein/modified-peptide interactions involving lysine acetylation. PMID:27600229

  20. SPOTing Acetyl-Lysine Dependent Interactions

    PubMed Central

    Picaud, Sarah; Filippakopoulos, Panagis

    2015-01-01

    Post translational modifications have been recognized as chemical signals that create docking sites for evolutionary conserved effector modules, allowing for signal integration within large networks of interactions. Lysine acetylation in particular has attracted attention as a regulatory modification, affecting chromatin structure and linking to transcriptional activation. Advances in peptide array technologies have facilitated the study of acetyl-lysine-containing linear motifs interacting with the evolutionary conserved bromodomain module, which specifically recognizes and binds to acetylated sequences in histones and other proteins. Here we summarize recent work employing SPOT peptide technology to identify acetyl-lysine dependent interactions and document the protocols adapted in our lab, as well as our efforts to characterize such bromodomain-histone interactions. Our results highlight the versatility of SPOT methods and establish an affordable tool for rapid access to potential protein/modified-peptide interactions involving lysine acetylation.

  1. A Method to determine lysine acetylation stoichiometries

    SciTech Connect

    Nakayasu, Ernesto S.; Wu, Si; Sydor, Michael A.; Shukla, Anil K.; Weitz, Karl K.; Moore, Ronald J.; Hixson, Kim K.; Kim, Jong Seo; Petyuk, Vladislav A.; Monroe, Matthew E.; Pasa-Tolic, Ljiljana; Qian, Weijun; Smith, Richard D.; Adkins, Joshua N.; Ansong, Charles

    2014-07-21

    A major bottleneck to fully understanding the functional aspects of lysine acetylation is the lack of stoichiometry information. Here we describe a mass spectrometry method using a combination of isotope labeling and detection of a diagnostic fragment ion to determine the stoichiometry of lysine acetylation on proteins globally. Using this technique, we determined the modification occupancy on hundreds of acetylated peptides from cell lysates and cross-validated the measurements via immunoblotting.

  2. Lysine requirement of growing male Pekin ducks.

    PubMed

    Bons, A; Timmler, R; Jeroch, H

    2002-12-01

    1. One growth experiment and one balance test were conducted to study the response to increasing levels of dietary lysine supplementation in male Pekin ducks with special reference to the growth periods from 1 to 3 weeks and 4 to 7 weeks of age. 2. Two different low-lysine diets were used as basal diets in both periods. The basal lysine levels were 7.6 g/kg (d 1 to 21) and 6.2 g/kg (d 22 to 49) and the ranges in lysine concentration were 7.6 to 12.6 g/kg (d 1 to 21) and 6.2 to 11.2 g/kg (d 22 to 49). 3. Growth performance, feed conversion efficiency and meat yield increased (P < 0.05) with increasing lysine concentration (requirement defined as 95% of the asymptote). 4. It is concluded that the dietary lysine concentration should be 0.93 g/MJ nitrogen corrected apparent metabolisable energy (AMEN) (11.7 g/kg) for the starter period (until d 21) and 0.75 g/MJ AMEN (10.0 g/kg) for the grower period (from d 22 onwards).

  3. Genipin-cross-linked poly(L-lysine)-based hydrogels: synthesis, characterization, and drug encapsulation.

    PubMed

    Wang, Steven S S; Hsieh, Ping-Lun; Chen, Pei-Shan; Chen, Yu-Tien; Jan, Jeng-Shiung

    2013-11-01

    Genipin-cross-linked hydrogels composed of biodegradable and pH-sensitive cationic poly(L-lysine) (PLL), poly(L-lysine)-block-poly(L-alanine) (PLL-b-PLAla), and poly(L-lysine)-block-polyglycine (PLL-b-PGly) polypeptides were synthesized, characterized, and used as carriers for drug delivery. These polypeptide hydrogels can respond to pH-stimulus and their gelling and mechanical properties, degradation rate, and drug release behavior can be tuned by varying polypeptide composition and cross-linking degree. Comparing with natural polymers, the synthetic polypeptides with well-defined chain length and composition can warrant the preparation of the hydrogels with tunable properties to meet the criteria for specific biomedical applications. These hydrogels composed of natural building blocks exhibited good cell compatibility and enzyme degradability and can support cell attachment/proliferation. The evaluation of these hydrogels for in vitro drug release revealed that the controlled release profile was a biphasic pattern with a mild burst release and a moderate release rate thereafter, suggesting the drug molecules were encapsulated inside the gel matrix. With the versatility of polymer chemistry and conjugation of functional moieties, it is expected these hydrogels can be useful for biomedical applications such as polymer therapeutics and tissue engineering.

  4. D-alanine incorporation into macromolecules and effects of D-alanine deprivation on active transport in Bacillus subtilis.

    PubMed

    Clark, V L; Young, F E

    1978-03-01

    An auxotroph of Bacillus subtilis 168 unable to synthesize D-alanine loses the ability to support endogenously energized transport when deprived of D-alanine. Revertants of the mutant retain transport activity. The loss of transport is specific for substrates taken up by active transport; substrates taken up by group translocation are transported at normal rates. The loss of transport can be retarded by pretreatment of the cells with inhibitors of protein synthesis. Since the loss of transport could be due to an alteration in a D-alanine-containing polymer, we investigated the incorporation of D-[14C]alanine into macromolecules. The major D-alanine-containing polymers in B. subtilis are peptidoglycan and teichoic acid, with 4 to 6% of the D-[14C]alanine label found in trypsin-soluble material. Whereas the peptidoglycan and teichoic acid undergo turnover, the trypsin-soluble material does not. Treatment of the trypsin-soluble material with Pronase releases free D-alanine. Analysis of acid-hydrolyzed trypsin-soluble material indicated that approximately 75% of the radioactivity is present as D-alanine, with the remainder present as L-alanine. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of partially purified D-[14C]alanine-labeled membranes indicated the presence of two peaks of radioactivity (molecular weights, 230,000 and 80,000) that could be digested by trypsin. The results suggest that D-alanine may be covalently bound to cellular proteins.

  5. Simultaneous analysis of Nε-(carboxymethyl)lysine, reducing sugars, and lysine during the dairy thermal process.

    PubMed

    Xu, Xian-Bing; Ma, Fei; Yu, Shu-Juan; Guan, Yong-Guang

    2013-09-01

    A new analytical method allowing the simultaneous quantification of Nε-(carboxymethyl)lysine (CML), lysine, and reducing sugars (glucose, lactose, and galactose) is described. It is based on high performance anion-exchange chromatography with pulsed amperometric electrochemical detection. This method demonstrated a low limit of quantification (0.385 to 0.866 mg/L), excellent linear correlation (R(2)>0.997), and desired calibration range (3.125 to 25 mg/L). In addition, lactose-lysine solutions containing sulfite (4 to 400 mmol/L) were heated at 110°C for 2h. The results showed that sulfite inhibited the formation of CML and promoted the consumption of reducing sugars and lysine in the Maillard reaction model. The method proved to be useful for simultaneous analysis of CML, lysine, and reducing sugars (glucose, galactose, and lactose) in the Maillard reaction system. Moreover, sulfite was an effective inhibitor of CML formation.

  6. The glycine deportation system and its pharmacological consequences☆

    PubMed Central

    Beyoğlu, Diren; Idle, Jeffrey R.

    2013-01-01

    The glycine deportation system is an essential component of glycine catabolism in man whereby 400 to 800 mg glycine per day are deported into urine as hippuric acid. The molecular escort for this deportation is benzoic acid, which derives from the diet and from gut microbiota metabolism of dietary precursors. Three components of this system, involving hepatic and renal metabolism, and renal active tubular secretion help regulate systemic and central nervous system levels of glycine. When glycine levels are pathologically high, as in congenital nonketotic hyperglycinemia, the glycine deportation system can be upregulated with pharmacological doses of benzoic acid to assist in normalization of glycine homeostasis. In congenital urea cycle enzymopathies, similar activation of the glycine deportation system with benzoic acid is useful for the excretion of excess nitrogen in the form of glycine. Drugs which can substitute for benzoic acid as substrates for the glycine deportation system have adverse reactions that may involve perturbations of glycine homeostasis. The cancer chemotherapeutic agent ifosfamide has an unacceptably high incidence of encephalopathy. This would appear to arise as a result of the production of toxic aldehyde metabolites which deplete ATP production and sequester NADH in the mitochondrial matrix, thereby inhibiting the glycine deportation system and causing de novo glycine synthesis by the glycine cleavage system. We hypothesize that this would result in hyperglycinemia and encephalopathy. This understanding may lead to novel prophylactic strategies for ifosfamide encephalopathy. Thus, the glycine deportation system plays multiple key roles in physiological and neurotoxicological processes involving glycine. PMID:22584143

  7. Further Characterization of Glycine-Containing Microcystins from the McMurdo Dry Valleys of Antarctica

    PubMed Central

    Puddick, Jonathan; Prinsep, Michèle R.; Wood, Susanna A.; Cary, Stephen Craig; Hamilton, David P.; Holland, Patrick T.

    2015-01-01

    Microcystins are hepatotoxic cyclic peptides produced by several cyanobacterial genera worldwide. In 2008, our research group identified eight new glycine-containing microcystin congeners in two hydro-terrestrial mat samples from the McMurdo Dry Valleys of Eastern Antarctica. During the present study, high-resolution mass spectrometry, amino acid analysis and micro-scale thiol derivatization were used to further elucidate their structures. The Antarctic microcystin congeners contained the rare substitution of the position-1 d-alanine for glycine, as well as the acetyl desmethyl modification of the position-5 Adda moiety (3S-amino-9S-methoxy-2S,6,8S-trimethyl-10-phenyldeca-4E,6E-dienoic acid). Amino acid analysis was used to determine the stereochemistry of several of the amino acids and conclusively demonstrated the presence of glycine in the microcystins. A recently developed thiol derivatization technique showed that each microcystin contained dehydrobutyrine in position-7 instead of the commonly observed N-methyl dehydroalanine. PMID:25675414

  8. Evolution of threonine aldolases, a diverse family involved in the second pathway of glycine biosynthesis.

    PubMed

    Liu, Guangxiu; Zhang, Manxiao; Chen, Ximing; Zhang, Wei; Ding, Wei; Zhang, Qi

    2015-02-01

    Threonine aldolases (TAs) catalyze the interconversion of threonine and glycine plus acetaldehyde in a pyridoxal phosphate-dependent manner. This class of enzymes complements the primary glycine biosynthetic pathway catalyzed by serine hydroxymethyltransferase (SHMT), and was shown to be necessary for yeast glycine auxotrophy. Because the reverse reaction of TA involves carbon-carbon bond formation, resulting in a β-hydroxyl-α-amino acid with two adjacent chiral centers, TAs are of high interests in synthetic chemistry and bioengineering studies. Here, we report systematic phylogenetic analysis of TAs. Our results demonstrated that L-TAs and D-TAs that are specific for L- and D-threonine, respectively, are two phylogenetically unique families, and both enzymes are different from their closely related enzymes SHMTs and bacterial alanine racemases (ARs). Interestingly, L-TAs can be further grouped into two evolutionarily distinct families, which share low sequence similarity with each other but likely possess the same structural fold, suggesting a convergent evolution of these enzymes. The first L-TA family contains enzymes of both prokaryotic and eukaryotic origins, and is related to fungal ARs, whereas the second contains only prokaryotic L-TAs. Furthermore, we show that horizontal gene transfer may occur frequently during the evolution of both L-TA families. Our results indicate the complex, dynamic, and convergent evolution process of TAs and suggest an updated classification scheme for L-TAs. PMID:25644973

  9. GABA and glycine in the developing brain.

    PubMed

    Ito, Susumu

    2016-09-01

    GABA and glycine are major inhibitory neurotransmitters in the CNS and act on receptors coupled to chloride channels. During early developmental periods, both GABA and glycine depolarize membrane potentials due to the relatively high intracellular Cl(-) concentration. Therefore, they can act as excitatory neurotransmitters. GABA and glycine are involved in spontaneous neural network activities in the immature CNS such as giant depolarizing potentials (GDPs) in neonatal hippocampal neurons, which are generated by the synchronous activity of GABAergic interneurons and glutamatergic principal neurons. GDPs and GDP-like activities in the developing brains are thought to be important for the activity-dependent functiogenesis through Ca(2+) influx and/or other intracellular signaling pathways activated by depolarization or stimulation of metabotropic receptors. However, if GABA and glycine do not shift from excitatory to inhibitory neurotransmitters at the birth and in maturation, it may result in neural disorders including autism spectrum disorders. PMID:26951057

  10. A Method to Determine Lysine Acetylation Stoichiometries

    DOE PAGES

    Nakayasu, Ernesto S.; Wu, Si; Sydor, Michael A.; Shukla, Anil K.; Weitz, Karl K.; Moore, Ronald J.; Hixson, Kim K.; Kim, Jong-Seo; Petyuk, Vladislav A.; Monroe, Matthew E.; et al

    2014-01-01

    Lysine acetylation is a common protein posttranslational modification that regulates a variety of biological processes. A major bottleneck to fully understanding the functional aspects of lysine acetylation is the difficulty in measuring the proportion of lysine residues that are acetylated. Here we describe a mass spectrometry method using a combination of isotope labeling and detection of a diagnostic fragment ion to determine the stoichiometry of protein lysine acetylation. Using this technique, we determined the modification occupancy for ~750 acetylated peptides from mammalian cell lysates. Furthermore, the acetylation on N-terminal tail of histone H4 was cross-validated by treating cells with sodiummore » butyrate, a potent deacetylase inhibitor, and comparing changes in stoichiometry levels measured by our method with immunoblotting measurements. Of note we observe that acetylation stoichiometry is high in nuclear proteins, but very low in mitochondrial and cytosolic proteins. In summary, our method opens new opportunities to study in detail the relationship of lysine acetylation levels of proteins with their biological functions.« less

  11. Crystallization and preliminary crystallographic analysis of d-alanine-d-alanine ligase from Streptococcus mutans

    SciTech Connect

    Lu, Yong-Zhi; Sheng, Yu; Li, Lan-Fen; Tang, De-Wei; Liu, Xiang-Yu; Zhao, Xiaojun; Liang, Yu-He Su, Xiao-Dong

    2007-09-01

    A potential target for antibiotic drug design, d-alanine-d-alanine ligase from S. mutans, was expressed in E. coli, purified and crystallized. Diffraction data were collected to 2.4 Å resolution. d-Alanine-d-alanine ligase is encoded by the gene ddl (SMU-599) in Streptococcus mutans. This ligase plays a very important role in cell-wall biosynthesis and may be a potential target for drug design. To study the structure and function of this ligase, the gene ddl was amplified from S. mutans genomic DNA and cloned into the expression vector pET28a. The protein was expressed in soluble form in Escherichia coli strain BL21 (DE3). Homogeneous protein was obtained using a two-step procedure consisting of Ni{sup 2+}-chelating and size-exclusion chromatography. Purified protein was crystallized and the cube-shaped crystal diffracted to 2.4 Å. The crystal belongs to space group P3{sub 1}21 or P3{sub 2}21, with unit-cell parameters a = b = 79.50, c = 108.97 Å. There is one molecule per asymmetric unit.

  12. Alteration of substrate specificity of alanine dehydrogenase

    PubMed Central

    Fernandes, Puja; Aldeborgh, Hannah; Carlucci, Lauren; Walsh, Lauren; Wasserman, Jordan; Zhou, Edward; Lefurgy, Scott T.; Mundorff, Emily C.

    2015-01-01

    The l-alanine dehydrogenase (AlaDH) has a natural history that suggests it would not be a promising candidate for expansion of substrate specificity by protein engineering: it is the only amino acid dehydrogenase in its fold family, it has no sequence or structural similarity to any known amino acid dehydrogenase, and it has a strong preference for l-alanine over all other substrates. By contrast, engineering of the amino acid dehydrogenase superfamily members has produced catalysts with expanded substrate specificity; yet, this enzyme family already contains members that accept a broad range of substrates. To test whether the natural history of an enzyme is a predictor of its innate evolvability, directed evolution was carried out on AlaDH. A single mutation identified through molecular modeling, F94S, introduced into the AlaDH from Mycobacterium tuberculosis (MtAlaDH) completely alters its substrate specificity pattern, enabling activity toward a range of larger amino acids. Saturation mutagenesis libraries in this mutant background additionally identified a double mutant (F94S/Y117L) showing improved activity toward hydrophobic amino acids. The catalytic efficiencies achieved in AlaDH are comparable with those that resulted from similar efforts in the amino acid dehydrogenase superfamily and demonstrate the evolvability of MtAlaDH specificity toward other amino acid substrates. PMID:25538307

  13. Glycine-Glomus-Rhizobium Symbiosis

    PubMed Central

    Bethlenfalvay, Gabor J.; Brown, Milford S.; Mihara, Keiko L.; Stafford, Alan E.

    1987-01-01

    Soybean (Glycine max [L.] Merr.) plants were nodulated (Bradyrhizobium japonicum) and either inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe or left uncolonized. All plants were grown unstressed for 21 days initially. After this period, some VAM and non-VAM plants were exposed to four 8-day drought cycles while others were kept well watered. Drought cycles were terminated by rewatering when soil moisture potentials reached −1.2 megapascal. Nodule development and activity, transpiration, leaf conductance, leaf and root parameters including fresh and dry weight, and N and P nutrition of VAM plants and of non-VAM, P-fed plants grown under the same controlled conditions were compared. All parameters, except N content, were greater in VAM plants than in P-fed, non-VAM plants when under stress. The opposite was generally true in the unstressed comparisons. Transpiration and leaf conductance were significantly greater in stressed VAM than in non-VAM plants during the first half of the final stress cycle. Values for both VAM and non-VAM plants decreased linearly with time during the cycle and converged at a high level of stress (−1.2 megapascal). Effects of VAM fungi on the consequences of drought stress relative to P nutrition and leaf gas exchange are discussed in the light of these findings and those reported in the literature. PMID:16665641

  14. International society of sports nutrition position stand: Beta-Alanine.

    PubMed

    Trexler, Eric T; Smith-Ryan, Abbie E; Stout, Jeffrey R; Hoffman, Jay R; Wilborn, Colin D; Sale, Craig; Kreider, Richard B; Jäger, Ralf; Earnest, Conrad P; Bannock, Laurent; Campbell, Bill; Kalman, Douglas; Ziegenfuss, Tim N; Antonio, Jose

    2015-01-01

    The International Society of Sports Nutrition (ISSN) provides an objective and critical review of the mechanisms and use of beta-alanine supplementation. Based on the current available literature, the conclusions of the ISSN are as follows: 1) Four weeks of beta-alanine supplementation (4-6 g daily) significantly augments muscle carnosine concentrations, thereby acting as an intracellular pH buffer; 2) Beta-alanine supplementation currently appears to be safe in healthy populations at recommended doses; 3) The only reported side effect is paraesthesia (tingling), but studies indicate this can be attenuated by using divided lower doses (1.6 g) or using a sustained-release formula; 4) Daily supplementation with 4 to 6 g of beta-alanine for at least 2 to 4 weeks has been shown to improve exercise performance, with more pronounced effects in open end-point tasks/time trials lasting 1 to 4 min in duration; 5) Beta-alanine attenuates neuromuscular fatigue, particularly in older subjects, and preliminary evidence indicates that beta-alanine may improve tactical performance; 6) Combining beta-alanine with other single or multi-ingredient supplements may be advantageous when supplementation of beta-alanine is high enough (4-6 g daily) and long enough (minimum 4 weeks); 7) More research is needed to determine the effects of beta-alanine on strength, endurance performance beyond 25 min in duration, and other health-related benefits associated with carnosine. PMID:26175657

  15. International society of sports nutrition position stand: Beta-Alanine.

    PubMed

    Trexler, Eric T; Smith-Ryan, Abbie E; Stout, Jeffrey R; Hoffman, Jay R; Wilborn, Colin D; Sale, Craig; Kreider, Richard B; Jäger, Ralf; Earnest, Conrad P; Bannock, Laurent; Campbell, Bill; Kalman, Douglas; Ziegenfuss, Tim N; Antonio, Jose

    2015-01-01

    The International Society of Sports Nutrition (ISSN) provides an objective and critical review of the mechanisms and use of beta-alanine supplementation. Based on the current available literature, the conclusions of the ISSN are as follows: 1) Four weeks of beta-alanine supplementation (4-6 g daily) significantly augments muscle carnosine concentrations, thereby acting as an intracellular pH buffer; 2) Beta-alanine supplementation currently appears to be safe in healthy populations at recommended doses; 3) The only reported side effect is paraesthesia (tingling), but studies indicate this can be attenuated by using divided lower doses (1.6 g) or using a sustained-release formula; 4) Daily supplementation with 4 to 6 g of beta-alanine for at least 2 to 4 weeks has been shown to improve exercise performance, with more pronounced effects in open end-point tasks/time trials lasting 1 to 4 min in duration; 5) Beta-alanine attenuates neuromuscular fatigue, particularly in older subjects, and preliminary evidence indicates that beta-alanine may improve tactical performance; 6) Combining beta-alanine with other single or multi-ingredient supplements may be advantageous when supplementation of beta-alanine is high enough (4-6 g daily) and long enough (minimum 4 weeks); 7) More research is needed to determine the effects of beta-alanine on strength, endurance performance beyond 25 min in duration, and other health-related benefits associated with carnosine.

  16. Organic foliar Milstop shows efficacy against soybean aphid (Aphis glycines) on soybean (Glycine max)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean (Glycine max (L.) Merr.) has been produced in the United States since 1765. Soybean aphids (Aphis glycines Matsumura) were first detected on soybean in the United States in 2000 and now cause an estimated yield loss of up to US$4.9 billion annually. Organic soybean producers have few insecti...

  17. Bioavailability of free lysine and protein-bound lysine from casein and fishmeal in juvenile turbot (Psetta maxima).

    PubMed

    Kroeckel, Saskia; Dietz, Carsten; Schulz, Carsten; Susenbeth, Andreas

    2015-03-14

    In the present study, a linear regression analysis between lysine intake and lysine retention was conducted to investigate the efficiency of lysine utilisation (k(Lys)) at marginal lysine intake of either protein-bound or free lysine sources in juvenile turbot (Psetta maxima). For this purpose, nine isonitrogenous and isoenergetic diets were formulated to contain 2·25-4·12 g lysine/100 g crude protein (CP) to ensure that lysine was the first-limiting amino acid in all diets. The basal diet contained 2·25 g lysine/100 g CP. Graded levels of casein (Cas), fishmeal (FM) and L-lysine HCl (Lys) were added to the experimental diets to achieve stepwise lysine increments. A total of 240 fish (initial weight 50·1 g) were hand-fed all the experimental diets once daily until apparent satiation over a period of 56 d. Feed intake was significantly affected by dietary lysine concentration rather than by dietary lysine source. Specific growth rate increased significantly at higher lysine concentrations (P< 0·001). CP, crude lipid and crude ash contents in the whole body were affected by the dietary treatments. The linear regression slope between lysine retention and lysine intake (k(Lys)) was similar between all the dietary lysine sources. The k(Lys) values for the diets supplemented with Cas, Lys or FM were 0·833, 0·857 and 0·684, respectively. The bioavailability of lysine from the respective lysine sources was determined by a slope-ratio approach. The bioavailability of lysine (relative to the reference lysine source Cas) from FM and Lys was 82·1 and 103 %, respectively. Nutrient requirement for maintenance was in the range of 16·7-23·4 mg/kg(0·8) per d, and did not differ between the treatments. There were no significant differences in lysine utilisation efficiency or bioavailability of protein-bound or crystalline lysine from the respective sources observed when lysine was confirmed to be the first-limiting nutrient.

  18. Alanine aminotransferase controls seed dormancy in barley

    PubMed Central

    Sato, Kazuhiro; Yamane, Miki; Yamaji, Nami; Kanamori, Hiroyuki; Tagiri, Akemi; Schwerdt, Julian G.; Fincher, Geoffrey B.; Matsumoto, Takashi; Takeda, Kazuyoshi; Komatsuda, Takao

    2016-01-01

    Dormancy allows wild barley grains to survive dry summers in the Near East. After domestication, barley was selected for shorter dormancy periods. Here we isolate the major seed dormancy gene qsd1 from wild barley, which encodes an alanine aminotransferase (AlaAT). The seed dormancy gene is expressed specifically in the embryo. The AlaAT isoenzymes encoded by the long and short dormancy alleles differ in a single amino acid residue. The reduced dormancy allele Qsd1 evolved from barleys that were first domesticated in the southern Levant and had the long dormancy qsd1 allele that can be traced back to wild barleys. The reduced dormancy mutation likely contributed to the enhanced performance of barley in industrial applications such as beer and whisky production, which involve controlled germination. In contrast, the long dormancy allele might be used to control pre-harvest sprouting in higher rainfall areas to enhance global adaptation of barley. PMID:27188711

  19. Alanine aminotransferase controls seed dormancy in barley.

    PubMed

    Sato, Kazuhiro; Yamane, Miki; Yamaji, Nami; Kanamori, Hiroyuki; Tagiri, Akemi; Schwerdt, Julian G; Fincher, Geoffrey B; Matsumoto, Takashi; Takeda, Kazuyoshi; Komatsuda, Takao

    2016-01-01

    Dormancy allows wild barley grains to survive dry summers in the Near East. After domestication, barley was selected for shorter dormancy periods. Here we isolate the major seed dormancy gene qsd1 from wild barley, which encodes an alanine aminotransferase (AlaAT). The seed dormancy gene is expressed specifically in the embryo. The AlaAT isoenzymes encoded by the long and short dormancy alleles differ in a single amino acid residue. The reduced dormancy allele Qsd1 evolved from barleys that were first domesticated in the southern Levant and had the long dormancy qsd1 allele that can be traced back to wild barleys. The reduced dormancy mutation likely contributed to the enhanced performance of barley in industrial applications such as beer and whisky production, which involve controlled germination. In contrast, the long dormancy allele might be used to control pre-harvest sprouting in higher rainfall areas to enhance global adaptation of barley. PMID:27188711

  20. Glycine Polymerization on Oxide Minerals

    NASA Astrophysics Data System (ADS)

    Kitadai, Norio; Oonishi, Hiroyuki; Umemoto, Koichiro; Usui, Tomohiro; Fukushi, Keisuke; Nakashima, Satoru

    2016-07-01

    It has long been suggested that mineral surfaces played an important role in peptide bond formation on the primitive Earth. However, it remains unclear which mineral species was key to the prebiotic processes. This is because great discrepancies exist among the reported catalytic efficiencies of minerals for amino acid polymerizations, owing to mutually different experimental conditions. This study examined polymerization of glycine (Gly) on nine oxide minerals (amorphous silica, quartz, α-alumina and γ-alumina, anatase, rutile, hematite, magnetite, and forsterite) using identical preparation, heating, and analytical procedures. Results showed that a rutile surface is the most effective site for Gly polymerization in terms of both amounts and lengths of Gly polymers synthesized. The catalytic efficiency decreased as rutile > anatase > γ-alumina > forsterite > α- alumina > magnetite > hematite > quartz > amorphous silica. Based on reported molecular-level information for adsorption of Gly on these minerals, polymerization activation was inferred to have arisen from deprotonation of the NH3 + group of adsorbed Gly to the nucleophilic NH2 group, and from withdrawal of electron density from the carboxyl carbon to the surface metal ions. The orientation of adsorbed Gly on minerals is also a factor influencing the Gly reactivity. The examination of Gly-mineral interactions under identical experimental conditions has enabled the direct comparison of various minerals' catalytic efficiencies and has made discussion of polymerization mechanisms and their relative influences possible Further systematic investigations using the approach reported herein (which are expected to be fruitful) combined with future microscopic surface analyses will elucidate the role of minerals in the process of abiotic peptide bond formation.

  1. Effects of Glycine, Water, Ammonia, and Ammonium Bicarbonate on the Oligomerization of Methionine

    NASA Astrophysics Data System (ADS)

    Huang, Rui; Furukawa, Yoshihiro; Otake, Tsubasa; Kakegawa, Takeshi

    2016-09-01

    The abiotic oligomerization of amino acids may have created primordial, protein-like biological catalysts on the early Earth. Previous studies have proposed and evaluated the potential of diagenesis for the amino acid oligomerization, simulating the formation of peptides that include glycine, alanine, and valine, separately. However, whether such conditions can promote the formation of peptides composed of multiple amino acids remains unclear. Furthermore, the chemistry of pore water in sediments should affect the oligomerization and degradation of amino acids and oligomers, but these effects have not been studied extensively. In this study, we investigated the effects of water, ammonia, ammonium bicarbonate, pH, and glycine on the oligomerization and degradation of methionine under high pressure (150 MPa) and high temperature conditions (175 °C) for 96 h. Methionine is more difficult to oligomerize than glycine and methionine dimer was formed in the incubation of dry powder of methionine. Methionine oligomers as long as trimers, as well as methionylglycine and glycylmethionine, were formed under every condition with these additional compounds. Among the compounds tested, the oligomerization reaction rate was accelerated by the presence of water and by an increase in pH. Ammonia also increased the oligomerization rate but consumed methionine by side reactions and resulted in the rapid degradation of methionine and its peptides. Similarly, glycine accelerated the oligomerization rate of methionine and the degradation of methionine, producing water, ammonia, and bicarbonate through its decomposition. With Gly, heterogeneous dimers (methionylglycine and glycylmethionine) were formed in greater amounts than with other additional compounds although smaller amount of these heterogeneous dimers were formed with other additional compounds. These results suggest that accelerated reaction rates induced by water and co-existing reactive compounds promote the oligomerization

  2. The conserved glycine-rich segment linking the N-terminal fusion peptide to the coiled coil of human T-cell leukemia virus type 1 transmembrane glycoprotein gp21 is a determinant of membrane fusion function.

    PubMed

    Wilson, Kirilee A; Bär, Séverine; Maerz, Anne L; Alizon, Marc; Poumbourios, Pantelis

    2005-04-01

    Retroviral transmembrane proteins (TMs) contain an N-terminal fusion peptide that initiates virus-cell membrane fusion. The fusion peptide is linked to the coiled-coil core through a conserved sequence that is often rich in glycines. We investigated the functional role of the glycine-rich segment, Met-326 to Ser-337, of the human T-cell leukemia virus type 1 (HTLV-1) TM, gp21, by alanine and proline scanning mutagenesis. Alanine substitution for the hydrophobic residue Ile-334 caused an approximately 90% reduction in cell-cell fusion activity without detectable effects on the lipid-mixing and pore formation phases of fusion. Alanine substitutions at other positions had smaller effects (Gly-329, Val-330, and Gly-332) or no effect on fusion function. Proline substitution for glycine residues inhibited cell-cell fusion function with position-dependent effects on the three phases of fusion. Retroviral glycoprotein fusion function thus appears to require flexibility within the glycine-rich segment and hydrophobic contacts mediated by this segment. PMID:15767455

  3. 21 CFR 582.5411 - Lysine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Lysine. 582.5411 Section 582.5411 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  4. 21 CFR 582.5411 - Lysine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Lysine. 582.5411 Section 582.5411 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  5. 21 CFR 582.5411 - Lysine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Lysine. 582.5411 Section 582.5411 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  6. 21 CFR 582.5411 - Lysine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Lysine. 582.5411 Section 582.5411 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  7. 21 CFR 582.5411 - Lysine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Lysine. 582.5411 Section 582.5411 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  8. Radioactive Lysine in Protein Metabolism Studies

    DOE R&D Accomplishments Database

    Miller, L. L.; Bale, W. F.; Yuile, C. L.; Masters, R. E.; Tishkoff, G. H.; Whipple,, G. H.

    1950-01-09

    Studies of incorporation of DL-lysine in various body proteins of the dog; the time course of labeled blood proteins; and apparent rate of disappearance of labeled plasma proteins for comparison of behavior of the plasma albumin and globulin fractions; shows more rapid turn over of globulin fraction.

  9. Role of Channel Lysines and the “Push Through a One-Way Valve” Mechanism of the Viral DNA Packaging Motor

    PubMed Central

    Fang, Huaming; Jing, Peng; Haque, Farzin; Guo, Peixuan

    2012-01-01

    Linear double-stranded DNA (dsDNA) viruses package their genomes into preformed protein shells via nanomotors using ATP as an energy source. The central hub of the bacteriophage ϕ29 DNA-packaging motor contains a 3.6-nm channel for dsDNA to enter during packaging and to exit during infection. The negatively charged interior channel wall is decorated with a total of 48 positively charged lysine residues displayed as four 12-lysine rings from the 12 gp10 subunits that enclose the channel. The standard notion derived from many models is that these uniquely arranged, positively charged rings play active roles in DNA translocation through the channel. In this study, we tested this prevailing view by examining the effect of mutating these basic lysines to alanines, and assessing the impact of altering the pH environment. Unexpectedly, mutating these basic lysine residues or changing the pH to 4 or 10, which could alter the charge of lysines, did not measurably impair DNA translocation or affect the one-way traffic property of the channel. The results support our recent findings regarding the dsDNA packaging mechanism known as the “push through a one-way valve”. PMID:22225806

  10. Purine and glycine metabolism by purinolytic clostridia.

    PubMed Central

    Dürre, P; Andreesen, J R

    1983-01-01

    Cell extracts of Clostridium acidiurici, C. cylindrosporum, and C. purinolyticum converted purine, hypoxanthine, 2-hydroxypurine, 6,8-dihydroxypurine, and uric acid into xanthine by the shortest possible route. Adenine was transformed to xanthine only by C. purinolyticum, whereas the other two species formed 6-amino-8-hydroxypurine, which was neither deaminated nor hydroxylated further. 8-Hydroxypurine was formed from purine by all three species. Xanthine dehydrogenase activity was constitutively expressed by C. purinolyticum. Due to the lability of the enzyme activity, comparative studies could not be done with a purified preparation. All enzymes reported to be involved in formiminoglycine metabolism of C. acidiurici and C. cylindrosporum were present in C. purinolyticum. However, glycine was reduced directly to acetate in all three species, as indicated by radiochemical data and by the detection of glycine reductase in cell extracts of C. cylindrosporum and C. purinolyticum. The expression of glycine reductase and the high ratio of glycine fermented to uric acid present points to an energetic advantage for the glycine reductase system, which is expressed when selenium compounds are added to the growth media. PMID:6833177

  11. A Rigorous Attempt to Verify Interstellar Glycine

    NASA Technical Reports Server (NTRS)

    Snyder, L. E.; Lovas, F. J.; Hollis, J. M.; Friedel, D. N.; Jewell, P. R.; Remijan, A.; Ilyushin, V. V.; Alekseev, E. A.; Dyubko, S. F.

    2004-01-01

    In 2003, Kuan, Charnley, and co-workers reported the detection of interstellar glycine (NH2CH2COOH) based on observations of 27 lines in 19 different spectral bands in one or more of the sources Sgr BP(N-LMH), Orion KL, and W51 e1/e2. They supported their detection report with rotational temperature diagrams for all three sources. In this paper, we present essential criteria which can be used in a straightforward analysis technique to confirm the identity of an interstellar asymmetric rotor such as glycine. We use new laboratory measurements of glycine as a basis for applying this analysis technique, both to our previously unpublished 12 m telescope data and to the previously published SEST data of Nummelin and colleagues. We conclude that key lines necessary for an interstellar glycine identification have not yet been found. We identify several common molecular candidates that should be examined further as more likely carriers of the lines reported as glycine. Finally, we illustrate that rotational temperature diagrams used without the support of correct spectroscopic assignments are not a reliable tool for the identification of interstellar molecules. Subject headings: ISM: abundances - ISM: clouds - ISM: individual (Sagittarius B2[N-

  12. Alanine Scanning Mutagenesis Identifies an Asparagine–Arginine–Lysine Triad Essential to Assembly of the Shell of the Pdu Microcompartment

    SciTech Connect

    Sinha, Sharmistha; Cheng, Shouqiang; Sung, Yea Won; McNamara, Dan E.; Sawaya, Michael R.; Yeates, Todd O.; Bobik, Thomas A.

    2014-06-01

    Bacterial microcompartments (MCPs) are the simplest organelles known. They function to enhance metabolic pathways by confining several related enzymes inside an all-protein envelope called the shell. In this study, we investigated the factors that govern MCP assembly by performing scanning mutagenesis on the surface residues of PduA, a major shell protein of the MCP used for 1,2-propanediol degradation. Biochemical, genetic, and structural analysis of 20 mutants allowed us to determine that PduA K26, N29, and R79 are crucial residues that stabilize the shell of the 1,2-propanediol MCP. In addition, we identify two PduA mutants (K37A and K55A) that impair MCP function most likely by altering the permeability of its protein shell. These are the first studies to examine the phenotypic effects of shell protein structural mutations in an MCP system. The findings reported here may be applicable to engineering protein containers with improved stability for biotechnology applications.

  13. Alanine repeats influence protein localization in splicing speckles and paraspeckles.

    PubMed

    Chang, Shuo-Hsiu; Chang, Wei-Lun; Lu, Chia-Chen; Tarn, Woan-Yuh

    2014-12-16

    Mammalian splicing regulatory protein RNA-binding motif protein 4 (RBM4) has an alanine repeat-containing C-terminal domain (CAD) that confers both nuclear- and splicing speckle-targeting activities. Alanine-repeat expansion has pathological potential. Here we show that the alanine-repeat tracts influence the subnuclear targeting properties of the RBM4 CAD in cultured human cells. Notably, truncation of the alanine tracts redistributed a portion of RBM4 to paraspeckles. The alanine-deficient CAD was sufficient for paraspeckle targeting. On the other hand, alanine-repeat expansion reduced the mobility of RBM4 and impaired its splicing activity. We further took advantage of the putative coactivator activator (CoAA)-RBM4 conjoined splicing factor, CoAZ, to investigate the function of the CAD in subnuclear targeting. Transiently expressed CoAZ formed discrete nuclear foci that emerged and subsequently separated-fully or partially-from paraspeckles. Alanine-repeat expansion appeared to prevent CoAZ separation from paraspeckles, resulting in their complete colocalization. CoAZ foci were dynamic but, unlike paraspeckles, were resistant to RNase treatment. Our results indicate that the alanine-rich CAD, in conjunction with its conjoined RNA-binding domain(s), differentially influences the subnuclear localization and biogenesis of RBM4 and CoAZ.

  14. Mechanisms of itch evoked by β-alanine.

    PubMed

    Liu, Qin; Sikand, Parul; Ma, Chao; Tang, Zongxiang; Han, Liang; Li, Zhe; Sun, Shuohao; LaMotte, Robert H; Dong, Xinzhong

    2012-10-17

    β-Alanine, a popular supplement for muscle building, induces itch and tingling after consumption, but the underlying molecular and neural mechanisms are obscure. Here we show that, in mice, β-alanine elicited itch-associated behavior that requires MrgprD, a G-protein-coupled receptor expressed by a subpopulation of primary sensory neurons. These neurons exclusively innervate the skin, respond to β-alanine, heat, and mechanical noxious stimuli but do not respond to histamine. In humans, intradermally injected β-alanine induced itch but neither wheal nor flare, suggesting that the itch was not mediated by histamine. Thus, the primary sensory neurons responsive to β-alanine are likely part of a histamine-independent itch neural circuit and a target for treating clinical itch that is unrelieved by anti-histamines.

  15. Use of β-alanine as an ergogenic aid.

    PubMed

    Derave, Wim

    2013-01-01

    Despite the large variety of so-called ergogenic supplements used by the sporting community, only few of them are effectively supported by scientific proof. One of the recent evidence-based supplements that entered the market is β-alanine. β-Alanine is the rate-limiting precursor for the synthesis of the dipeptide carnosine (β-alanyl-L-histidine) in human muscle. The chronic daily ingestion of β-alanine can markedly elevate muscle carnosine content, which results in improved exercise capacity, especially in sports that include high-intensity exercise episodes. The use of β-alanine is exponentially growing in recent years. This chapter aims to (1) discuss the scientific basis and physiological background of β-alanine and its synthesis product carnosine, and (2) translate these scientific findings to practical applications in sports.

  16. Glycine Ablation during Comet/Meteoroid Impact

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Dateo, Christopher E.; Mckay, Christopher P.; Borucki, William J.

    2004-01-01

    Amino acids and other organic compounds important to the chemistry of life are thought to have been delivered to early Earth by asteroids and comets. The survivability of such compounds upon high speed entry is not well understood. If molecular processing occurs during entry, the nature of the new molecules produced by such processing is also an open question. To address this question, we have initiated a study of the ablation of glycine, the simplest amino acid, upon the high speed entry of a comet or meteoroid into an atmosphere. The study assumes glycine is distributed on the surface of the comet/meteoroid. The high speed impact creates electrons, ions, and radicals in the atmosphere that react with the surface and either desorb glycine or break it up. The ablation process is studied as a function of entry speed and atmospheric composition. The AURORA code from the commercially available software package CHEMKIN is used in the study.

  17. Antidepressants modulate glycine action in rat hippocampus

    PubMed Central

    Chang, Hyun-Kyung; Kim, Khae Hawn; Kang, Ki-Woon; Kang, Yoo-Jin; Kim, Tae-Wook; Park, Hun-Kyung; Kim, Sung-Eun; Kim, Chang-Ju

    2015-01-01

    Antidepressants are drugs that relieve symptoms of depressive disorders. Fluoxetine, tianeptine, and milnacipran are different types of antidepressants, and they have widely been used for relieving of depression symptoms. In the present study, the effects of fluoxetine, tianeptine, and milnacipran on the glycine-induced ion current by nystatin-perforated patch clamp and on the amplitude of field potential in the hippocampal CA1 region by multichannel extracellular recording, MED64, system, were studied. In the present results, fluoxetine, tianeptine, and milnacipran reduced glycine-induced ion current in the hippocampal CA1 neurons in nystatin-perforated patch clamp method. These drugs enhanced the amplitude of the field potential in the hippocampal CA1 region in MED64 system. These results suggest that antidepressants may increase neuronal activity by enhancing field potential through inhibition on glycine-induced ion current. PMID:26730381

  18. Glycine decarboxylase controls photosynthesis and plant growth.

    PubMed

    Timm, Stefan; Florian, Alexandra; Arrivault, Stephanie; Stitt, Mark; Fernie, Alisdair R; Bauwe, Hermann

    2012-10-19

    Photorespiration makes oxygenic photosynthesis possible by scavenging 2-phosphoglycolate. Hence, compromising photorespiration impairs photosynthesis. We examined whether facilitating photorespiratory carbon flow in turn accelerates photosynthesis and found that overexpression of the H-protein of glycine decarboxylase indeed considerably enhanced net-photosynthesis and growth of Arabidopsis thaliana. At the molecular level, lower glycine levels confirmed elevated GDC activity in vivo, and lower levels of the CO(2) acceptor ribulose 1,5-bisphosphate indicated higher drain from CO(2) fixation. Thus, the photorespiratory enzyme glycine decarboxylase appears as an important feed-back signaller that contributes to the control of the Calvin-Benson cycle and hence carbon flow through both photosynthesis and photorespiration.

  19. Antidepressants modulate glycine action in rat hippocampus.

    PubMed

    Chang, Hyun-Kyung; Kim, Khae Hawn; Kang, Ki-Woon; Kang, Yoo-Jin; Kim, Tae-Wook; Park, Hun-Kyung; Kim, Sung-Eun; Kim, Chang-Ju

    2015-12-01

    Antidepressants are drugs that relieve symptoms of depressive disorders. Fluoxetine, tianeptine, and milnacipran are different types of antidepressants, and they have widely been used for relieving of depression symptoms. In the present study, the effects of fluoxetine, tianeptine, and milnacipran on the glycine-induced ion current by nystatin-perforated patch clamp and on the amplitude of field potential in the hippocampal CA1 region by multichannel extracellular recording, MED64, system, were studied. In the present results, fluoxetine, tianeptine, and milnacipran reduced glycine-induced ion current in the hippocampal CA1 neurons in nystatin-perforated patch clamp method. These drugs enhanced the amplitude of the field potential in the hippocampal CA1 region in MED64 system. These results suggest that antidepressants may increase neuronal activity by enhancing field potential through inhibition on glycine-induced ion current. PMID:26730381

  20. Oligo-Glycine Synthesis in an Aqueous Solution of Glycine Under Oxidative Conditions

    NASA Astrophysics Data System (ADS)

    Yamagata, Yukio; Yamashita, Atsunori; Inomata, Katsuhiko

    1980-03-01

    Di-and tri-glycine were synthesized in 1M aqueous solution of glycine by bubbling for 90 hr with oxygen discharged in the path from an oxygen cylinder. The peptides were also produced by an incubation at 37°C of 2M glycine solution prepared with 75% hydrogen peroxide, and the yields were traced for 200 days. The final yields were about 0.25% and 0.01% for di-and tri-glycine, respectively. The solution at 166 days of incubation was applied to a Sephadex G 10 column, and the fractions around the top of the chromatogram were found to increase the intensity of ninhydrin color about 4˜5 times after hydrolysis, indicating an existence of oligo-glycine. The solutions of 1M glycine and 0.5M diglycine prepared with 30% hydrogen peroxide were incubated at 37°C for 38 days, and di-and tetra-glycine were detected in the yields of 0.12% and 0.33%, respectively.

  1. Molecular dynamic and docking interaction study of Heterodera glycines serine proteinase with Vigna mungo proteinase inhibitor.

    PubMed

    Prasad, C V S Siva; Gupta, Saurabh; Gaponenko, Alex; Tiwari, Murlidhar

    2013-08-01

    Many plants do produce various defense proteins like proteinase inhibitors (PIs) to protect them against various pests. PIs function as pseudosubstrates of digestive proteinase, which inhibits proteolysis in pests and leads to amino acid deficiency-based mortality. This work reports the structural interaction studies of serine proteinase of Heterodera glycines (SPHG) with Vigna mungo proteinase inhibitor (VMPI). 3D protein structure modeling, validation of SPHG and VMPI, and their putative protein-protein binding sites were predicted. Protein-protein docking followed by molecular dynamic simulation was performed to find the reliable confirmation of SPHG-VMPI complex. Trajectory analysis of each successive conformation concludes better interaction of first loop in comparison with second loop. Lysine residues of first loop were actively participating in complex formation. Overall, this study discloses the structural aspects and interaction mechanisms of VMPI with SPHG, and it would be helpful in the development of pest-resistant genetically modified crops.

  2. Dependence of the thermodynamic characteristics of the complexation of alanine-18-crown-6 on the composition of water-ethanol solvent

    NASA Astrophysics Data System (ADS)

    Usacheva, T. R.; Sharnin, V. A.; Chernov, I. V.

    2013-02-01

    Standard thermodynamic parameters (Δr G○, Δr H○, TΔr S○) for the complexation reaction of 18-crown-6 ether (18C6) with D,L-alanine (Ala) in mixed water-ethanol (H2O-EtOH) solvents are calculated from the data of calorimetric titrations performed at T = 298.15 K. It is established that an increase in the concentration of EtOH in mixed solvent leads to a rise in stability and an increase in the exothermicity of [Ala18C6] molecular complex formation; changes in the energetics of reaction upon a change in the solvent composition are determined by changes in the solvation state of 18C6, which is typical of the reactions of molecular complex formation of 18C6 with D,L-alanine and glycine in water-organic solvents.

  3. Excess of L-alanine in amino acids synthesized in a plasma torch generated by a hypervelocity meteorite impact reproduced in the laboratory

    NASA Astrophysics Data System (ADS)

    Managadze, George G.; Engel, Michael H.; Getty, Stephanie; Wurz, Peter; Brinckerhoff, William B.; Shokolov, Anatoly G.; Sholin, Gennady V.; Terent'ev, Sergey A.; Chumikov, Alexander E.; Skalkin, Alexander S.; Blank, Vladimir D.; Prokhorov, Vyacheslav M.; Managadze, Nina G.; Luchnikov, Konstantin A.

    2016-10-01

    We present a laboratory reproduction of hypervelocity impacts of a carbon containing meteorite on a mineral substance representative of planetary surfaces. The physical conditions of the resulting impact plasma torch provide favorable conditions for abiogenic synthesis of protein amino acids: We identified glycine and alanine, and in smaller quantities serine, in the produced material. Moreover, we observe breaking of alanine mirror symmetry with L excess, which coincides with the bioorganic world. Therefore the selection of L-amino acids for the formation of proteins for living matter could have been the result from plasma processes occurring during the impact meteorites on the surface. This indicates that the plasma torch from meteorite impacts could play an important role in the formation of biomolecular homochirality. Thus, meteorite impacts possibly were the initial stage of this process and promoted conditions for the emergence of a living matter.

  4. Comparison of EPR response of alanine and Gd₂O₃-alanine dosimeters exposed to TRIGA Mainz reactor.

    PubMed

    Marrale, M; Schmitz, T; Gallo, S; Hampel, G; Longo, A; Panzeca, S; Tranchina, L

    2015-12-01

    In this work we report some preliminary results regarding the analysis of electron paramagnetic resonance (EPR) response of alanine pellets and alanine pellets added with gadolinium used for dosimetry at the TRIGA research reactor in Mainz, Germany. Two set-ups were evaluated: irradiation inside PMMA phantom and irradiation inside boric acid phantom. We observed that the presence of Gd2O3 inside alanine pellets increases the EPR signal by a factor of 3.45 and 1.24 in case of PMMA and boric acid phantoms, respectively. We can conclude that in the case of neutron beam with a predominant thermal neutron component the addition of gadolinium oxide can significantly improve neutron sensitivity of alanine pellets. Monte Carlo (MC) simulations of both response of alanine and Gd-added alanine pellets with FLUKA code were performed and a good agreement was achieved for pure alanine dosimeters. For Gd2O3-alanine deviations between MC simulations and experimental data were observed and discussed. PMID:26315099

  5. Comparison of EPR response of alanine and Gd₂O₃-alanine dosimeters exposed to TRIGA Mainz reactor.

    PubMed

    Marrale, M; Schmitz, T; Gallo, S; Hampel, G; Longo, A; Panzeca, S; Tranchina, L

    2015-12-01

    In this work we report some preliminary results regarding the analysis of electron paramagnetic resonance (EPR) response of alanine pellets and alanine pellets added with gadolinium used for dosimetry at the TRIGA research reactor in Mainz, Germany. Two set-ups were evaluated: irradiation inside PMMA phantom and irradiation inside boric acid phantom. We observed that the presence of Gd2O3 inside alanine pellets increases the EPR signal by a factor of 3.45 and 1.24 in case of PMMA and boric acid phantoms, respectively. We can conclude that in the case of neutron beam with a predominant thermal neutron component the addition of gadolinium oxide can significantly improve neutron sensitivity of alanine pellets. Monte Carlo (MC) simulations of both response of alanine and Gd-added alanine pellets with FLUKA code were performed and a good agreement was achieved for pure alanine dosimeters. For Gd2O3-alanine deviations between MC simulations and experimental data were observed and discussed.

  6. Regulation of Transcription Factor Yin Yang 1 by SET7/9-mediated Lysine Methylation

    PubMed Central

    Zhang, Wen-juan; Wu, Xiao-nan; Shi, Tao-tao; Xu, Huan-teng; Yi, Jia; Shen, Hai-feng; Huang, Ming-feng; Shu, Xing-yi; Wang, Fei-fei; Peng, Bing-ling; Xiao, Rong-quan; Gao, Wei-wei; Ding, Jian-cheng; Liu, Wen

    2016-01-01

    Yin Yang 1 (YY1) is a multifunctional transcription factor shown to be critical in a variety of biological processes. Although it is regulated by multiple types of post-translational modifications (PTMs), whether YY1 is methylated, which enzyme methylates YY1, and hence the functional significance of YY1 methylation remains completely unknown. Here we reported the first methyltransferase, SET7/9 (KMT7), capable of methylating YY1 at two highly conserved lysine (K) residues, K173 and K411, located in two distinct domains, one in the central glycine-rich region and the other in the very carboxyl-terminus. Functional studies revealed that SET7/9-mediated YY1 methylation regulated YY1 DNA-binding activity both in vitro and at specific genomic loci in cultured cells. Consistently, SET7/9-mediated YY1 methylation was shown to involve in YY1-regulated gene transcription and cell proliferation. Our findings revealed a novel regulatory strategy, methylation by lysine methyltransferase, imposed on YY1 protein, and linked YY1 methylation with its biological functions. PMID:26902152

  7. Bacterial Lysine Decarboxylase Influences Human Dental Biofilm Lysine Content, Biofilm Accumulation and Sub-Clinical Gingival Inflammation

    PubMed Central

    Lohinai, Z.; Keremi, B.; Szoko, E.; Tabi, T.; Szabo, C.; Tulassay, Z.; Levine, M.

    2012-01-01

    Background Dental biofilms contain a protein that inhibits mammalian cell growth, possibly lysine decarboxylase from Eikenella corrodens. This enzyme decarboxylates lysine, an essential amino acid for dentally attached cell turnover in gingival sulci. Lysine depletion may stop this turnover, impairing the barrier to bacterial compounds. The aims of this study were to determine biofilm lysine and cadaverine contents before oral hygiene restriction (OHR), and their association with plaque index (PI) and gingival crevicular fluid (GCF) after OHR for a week. Methods Laser-induced fluorescence after capillary electrophoresis was used to determine lysine and cadaverine contents in dental biofilm, tongue biofilm and saliva before OHR and in dental biofilm after OHR. Results Before OHR, lysine and cadaverine contents of dental biofilm were similar and 10-fold greater than in saliva or tongue biofilm. After a week of OHR, the biofilm content of cadaverine increased and that of lysine decreased, consistent with greater biofilm lysine decarboxylase activity. Regression indicated that PI and GCF exudation were positively related to biofilm lysine post-OHR, unless biofilm lysine exceeded the minimal blood plasma content in which case PI was further increased but GCF exudation was reduced. Conclusions After OHR, lysine decarboxylase activity seems to determine biofilm lysine content and biofilm accumulation. When biofilm lysine exceeds minimal blood plasma content after OHR, less GCF appeared despite more biofilm. Lysine appears important for biofilm accumulation and the epithelial barrier to bacterial proinflammatory agents. Clinical Relevance Inhibiting lysine decarboxylase may retard the increased GCF exudation required for microbial development and gingivitis. PMID:22141361

  8. Behavior of peptides combining 1 alanine residue and 8 glycine residues on papain associated with structural fluctuations

    NASA Astrophysics Data System (ADS)

    Nishiyama, Katsuhiko

    2011-12-01

    I investigated the behavior of the peptides combining 1 ALA residue and 8 GLY residues on papain associated with structural fluctuations via molecular dynamics and docking simulations. Although the chance of binding to sites near the active center of papain was reduced by replacing the GLY residue in 9GLY with ALA residue, binding stability was improved by the replacement. Furthermore, both the chance and binding stability were greatly affected by positioning of ALA residue in the peptides. Residue in peptides should be replaced in view of the balance between chance of binding to sites near active center and binding stability.

  9. Synthesis and carbonic anhydrase inhibitory properties of amino acid - coumarin/quinolinone conjugates incorporating glycine, alanine and phenylalanine moieties.

    PubMed

    Küçükbay, F Zehra; Küçükbay, Hasan; Tanc, Muhammet; Supuran, Claudiu T

    2016-12-01

    N-Protected amino acids (Gly, Ala and Phe) were reacted with amino substituted coumarin and quinolinone derivatives, leading to the corresponding N-protected amino acid-coumarin/quinolinone conjugates. The carbonic anhydrase (CA, EC 4.2.1.1) inhibitory activity of the new compounds was assessed against various human (h) isoforms, such as hCA I, hCA II, hCA IV and hCA XII. The quinolinone conjugates were inactive as enzyme inhibitors, whereas the coumarins were ineffective hCA I/II inhibitors (KIs > 50 μM) but were submicromolar hCA IV and XII inhibitors, with inhibition constants ranging between 92 nM and 1.19 μM for hCA IV, and between 0.11 and 0.79 μM for hCA XII. These coumarin derivatives, as many others reported earlier, thus show an interesting selective inhibitory profile for the membrane-bound over the cytosolic CA isoforms.

  10. Isolation and characterization of a novel phage lysin active against Paenibacillus larvae, a honeybee pathogen

    PubMed Central

    LeBlanc, Lucy; Nezami, Sara; Yost, Diane; Tsourkas, Philippos; Amy, Penny S

    2015-01-01

    Paenibacillus larvae is the causative agent of American foulbrood (AFB) disease which affects early larval stages during honeybee development. Due to its virulence, transmissibility, capacity to develop antibiotic resistance, and the inherent resilience of its endospores, Paenibacillus larvae is extremely difficult to eradicate from infected hives which often must be burned. AFB contributes to the worldwide decline of honeybee populations, which are crucial for pollination and the food supply. We have isolated a novel bacteriophage lysin, PlyPalA, from the genome of a novel Paenibacillus larvae bacteriophage originally extracted from an environmental sample. PlyPalA has an N-terminal N-acetylmuramoyl-L-alanine amidase catalytic domain and possesses lytic activity against infectious strains of Paenibacillus larvae without harming commensal bacteria known to compose the honeybee larval microbiota. A single dose of PlyPalA rescued 75% of larvae infected with endospores, showing that it represents a powerful tool for future treatment of AFB. This represents the first time that lysins have been tested for therapeutic use in invertebrates. PMID:26904379

  11. Bioavailability of lysine in Maillard browned protein as determined by plasma lysine response in rainbow trout (Salmo gairdneri).

    PubMed

    Plakas, S M; Lee, T C; Wolke, R E

    1988-01-01

    The bioavailability of lysine in Maillard browned protein was investigated by plasma lysine response in rainbow trout (Salmo gairdneri). The concentrations of free lysine in the plasma were measured after feeding control and browned protein diets supplemented with graded levels of lysine. Bioavailability of lysine was estimated based on the amounts of supplemental lysine in the diets that resulted in rapid increases in plasma lysine. An approximately 80% loss in bioavailable lysine content was determined by this method in a fish protein isolate subjected to the Maillard browning reaction under mild conditions (40 d incubation at 37 degrees C). The nutritional damage to lysine determined by plasma lysine response was similar to that estimated in vitro by enzymatic hydrolysis and fluorodinitrobenzene reagent, but was underestimated by acid hydrolysis and trinitrobenzene sulfonic acid reagent. Rainbow trout are similar to other animals in their inability to utilize the deoxyketosyl (Amadori) compound of lysine formed in early Maillard reaction, and in their plasma response to dietary levels of essential amino acids. PMID:3121813

  12. A defective signal peptide in the maize high-lysine mutant floury 2.

    PubMed Central

    Coleman, C E; Lopes, M A; Gillikin, J W; Boston, R S; Larkins, B A

    1995-01-01

    The maize floury 2 (fl2) mutation enhances the lysine content of the grain, but the soft texture of the endosperm makes it unsuitable for commercial production. The mutant phenotype is linked with the appearance of a 24-kDa alpha-zein protein and increased synthesis of binding protein, both of which are associated with irregularly shaped protein bodies. We have cloned the gene encoding the 24-kDa protein and show that it is expressed as a 22-kDa alpha-zein with an uncleaved signal peptide. Comparison of the deduced N-terminal amino acid sequence of the 24-kDa alpha-zein protein with other alpha-zeins revealed an alanine to valine substitution at the C-terminal position of the signal peptide, a histidine insertion within the seventh alpha-helical repeat, and an alanine to threonine substitution with the same alpha-helical repeat of the protein. Structural defects associated with this alpha-zein explain many of the phenotypic effects of the fl2 mutation. Images Fig. 1 Fig. 2 Fig. 5 PMID:7624327

  13. β-Alanine supplementation for athletic performance: an update.

    PubMed

    Bellinger, Phillip M

    2014-06-01

    β-alanine supplementation has become a common practice among competitive athletes participating in a range of different sports. Although the mechanism by which chronic β-alanine supplementation could have an ergogenic effect is widely debated, the popular view is that β-alanine supplementation augments intramuscular carnosine content, leading to an increase in muscle buffer capacity, a delay in the onset of muscular fatigue, and a facilitated recovery during repeated bouts of high-intensity exercise. β-alanine supplementation appears to be most effective for exercise tasks that rely heavily on ATP synthesis from anaerobic glycolysis. However, research investigating its efficacy as an ergogenic aid remains equivocal, making it difficult to draw conclusions as to its effectiveness for training and competition. The aim of this review was to update, summarize, and critically evaluate the findings associated with β-alanine supplementation and exercise performance with the most recent research available to allow the development of practical recommendations for coaches and athletes. A critical review of the literature reveals that when significant ergogenic effects have been found, they have been generally shown in untrained individuals performing exercise bouts under laboratory conditions. The body of scientific data available concerning highly trained athletes performing single competition-like exercise tasks indicates that this type of population receives modest but potentially worthwhile performance benefits from β-alanine supplementation. Recent data indicate that athletes may not only be using β-alanine supplementation to enhance sports performance but also as a training aid to augment bouts of high-intensity training. β-alanine supplementation has also been shown to increase resistance training performance and training volume in team-sport athletes, which may allow for greater overload and superior adaptations compared with training alone. The ergogenic

  14. A rare case of glycine encephalopathy unveiled by valproate therapy.

    PubMed

    Subramanian, Velusamy; Kadiyala, Pramila; Hariharan, Praveen; Neeraj, E

    2015-01-01

    Glycine encephalopathy (GE) or nonketotic hyperglycinemia is an autosomal recessive disorder due to a primary defect in glycine cleavage enzyme system. It is characterized by elevated levels of glycine in plasma and cerebrospinal fluid usually presenting with seizures, hypotonia, and developmental delay. In our case, paradoxical increase in seizure frequency on starting sodium valproate led us to diagnose GE. PMID:26167219

  15. 21 CFR 520.550 - Glucose/glycine/electrolyte.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Glucose/glycine/electrolyte. 520.550 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.550 Glucose/glycine..., potassium citrate 0.12 gram, aminoacetic acid (glycine) 6.36 grams, and glucose 44.0 grams. (b) Sponsor....

  16. 21 CFR 520.550 - Glucose/glycine/electrolyte.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Glucose/glycine/electrolyte. 520.550 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.550 Glucose/glycine..., potassium citrate 0.12 gram, aminoacetic acid (glycine) 6.36 grams, and glucose 44.0 grams. (b) Sponsor....

  17. 21 CFR 520.550 - Glucose/glycine/electrolyte.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Glucose/glycine/electrolyte. 520.550 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.550 Glucose/glycine..., potassium citrate 0.12 gram, aminoacetic acid (glycine) 6.36 grams, and glucose 44.0 grams. (b) Sponsor....

  18. 21 CFR 520.550 - Glucose/glycine/electrolyte.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Glucose/glycine/electrolyte. 520.550 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.550 Glucose/glycine..., potassium citrate 0.12 gram, aminoacetic acid (glycine) 6.36 grams, and glucose 44.0 grams. (b) Sponsor....

  19. 21 CFR 172.812 - Glycine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Glycine. 172.812 Section 172.812 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN...

  20. Engineering and characterization of fluorogenic glycine riboswitches

    PubMed Central

    Ketterer, Simon; Gladis, Lukas; Kozica, Adnan; Meier, Matthias

    2016-01-01

    A set of 12 fluorogenic glycine riboswitches with different thermodynamic and kinetic response properties was engineered. For the design of functional riboswitches, a three-part RNA approach was applied based on the idea of linking a RNA sensor, transmitter and actuator part together. For the RNA sensor and actuator part, we used the tandem glycine aptamer structure from Bacillus subtillis, and fluorogenic aptamer Spinach, respectively. To achieve optimal signal transduction from the sensor to the actuator, a riboswitch library with variable transmitter was screened with a microfluidic large-scale integration chip. This allowed us to establish the complete thermodynamic binding profiles of the riboswitch library. Glycine dissociation constants of the 12 strong fluorescence response riboswitches varied between 99.7 and 570 μM. Furthermore, the kinetic glycine binding (kon), and dissociation (koff) rates, and corresponding energy barriers of the 10 strongest fluorescence response riboswitches were determined with the same chip platform. kon and koff were in the order of 10−3s−1 and 10−2s−1, respectively. Conclusively, we demonstrate that systematic screening of synthetic and natural linked RNA parts with microfluidic chip technology is an effective approach to rapidly generate fluorogenic metabolite riboswitches with a broad range of biophysical response properties. PMID:27220466

  1. Identification of Rotylenchulus reniformis resistant Glycine lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identification of resistance to reniform nematode (Rotylenchulus reniformis) is the first step in developing resistant soybean (Glycine max) cultivars that will benefit growers in the Mid South. This study was conducted to identify soybean (G. max and G. soja) lines with resistance to this pathogen....

  2. Preparation and Characterisation of Pva Doped with Beta Alanine

    NASA Astrophysics Data System (ADS)

    Bhuvaneshwari, R.; Karthikeyan, S.; Rajeswari, N.; Selvasekarapandian, S.; Sanjeeviraja, C.

    2013-07-01

    Pure PVA has been doped with different amount of β - alanine. Film has been prepared by Solution Casting Technique using water as a solvent. The Complex formation between the PVA and β - alanine has been confirmed by FTIR. The Pure PVA conductivity is in the order 10-10 Scm-1 at ambient temperature. The conductivity has been found to increase to the order 10-6 when doped with 10% β - alanine. In this paper characterization of a PVA doped with β-ala has been studied using XRD, FTIR, AC impedance analysis and the results are reported.

  3. Alanine and proline content modulate global sensitivity to discrete perturbations in disordered proteins.

    PubMed

    Perez, Romel B; Tischer, Alexander; Auton, Matthew; Whitten, Steven T

    2014-12-01

    Molecular transduction of biological signals is understood primarily in terms of the cooperative structural transitions of protein macromolecules, providing a mechanism through which discrete local structure perturbations affect global macromolecular properties. The recognition that proteins lacking tertiary stability, commonly referred to as intrinsically disordered proteins (IDPs), mediate key signaling pathways suggests that protein structures without cooperative intramolecular interactions may also have the ability to couple local and global structure changes. Presented here are results from experiments that measured and tested the ability of disordered proteins to couple local changes in structure to global changes in structure. Using the intrinsically disordered N-terminal region of the p53 protein as an experimental model, a set of proline (PRO) and alanine (ALA) to glycine (GLY) substitution variants were designed to modulate backbone conformational propensities without introducing non-native intramolecular interactions. The hydrodynamic radius (R(h)) was used to monitor changes in global structure. Circular dichroism spectroscopy showed that the GLY substitutions decreased polyproline II (PP(II)) propensities relative to the wild type, as expected, and fluorescence methods indicated that substitution-induced changes in R(h) were not associated with folding. The experiments showed that changes in local PP(II) structure cause changes in R(h) that are variable and that depend on the intrinsic chain propensities of PRO and ALA residues, demonstrating a mechanism for coupling local and global structure changes. Molecular simulations that model our results were used to extend the analysis to other proteins and illustrate the generality of the observed PRO and alanine effects on the structures of IDPs.

  4. Charge and geometry of residues in the loop 2 β hairpin differentially affect agonist and ethanol sensitivity in glycine receptors.

    PubMed

    Perkins, Daya I; Trudell, James R; Asatryan, Liana; Davies, Daryl L; Alkana, Ronald L

    2012-05-01

    Recent studies highlighted the importance of loop 2 of α1 glycine receptors (GlyRs) in the propagation of ligand-binding energy to the channel gate. Mutations that changed polarity at position 52 in the β hairpin of loop 2 significantly affected sensitivity to ethanol. The present study extends the investigation to charged residues. We found that substituting alanine with the negative glutamate at position 52 (A52E) significantly left-shifted the glycine concentration response curve and increased sensitivity to ethanol, whereas the negative aspartate substitution (A52D) significantly right-shifted the glycine EC₅₀ but did not affect ethanol sensitivity. It is noteworthy that the uncharged glutamine at position 52 (A52Q) caused only a small right shift of the glycine EC₅₀ while increasing ethanol sensitivity as much as A52E. In contrast, the shorter uncharged asparagine (A52N) caused the greatest right shift of glycine EC₅₀ and reduced ethanol sensitivity to half of wild type. Collectively, these findings suggest that charge interactions determined by the specific geometry of the amino acid at position 52 (e.g., the 1-Å chain length difference between aspartate and glutamate) play differential roles in receptor sensitivity to agonist and ethanol. We interpret these results in terms of a new homology model of GlyR based on a prokaryotic ion channel and propose that these mutations form salt bridges to residues across the β hairpin (A52E-R59 and A52N-D57). We hypothesize that these electrostatic interactions distort loop 2, thereby changing agonist activation and ethanol modulation. This knowledge will help to define the key physical-chemical parameters that cause the actions of ethanol in GlyRs.

  5. Development of PEGylated Cysteine-Modified Lysine Dendrimers with Multiple Reduced Thiols To Prevent Hepatic Ischemia/Reperfusion Injury.

    PubMed

    Katsumi, Hidemasa; Nishikawa, Makiya; Hirosaki, Rikiya; Okuda, Tatsuya; Kawakami, Shigeru; Yamashita, Fumiyoshi; Hashida, Mitsuru; Sakane, Toshiyasu; Yamamoto, Akira

    2016-08-01

    To inhibit hepatic ischemia/reperfusion injury, we developed polyethylene glycol (PEG) conjugated (PEGylated) cysteine-modified lysine dendrimers with multiple reduced thiols, which function as scavengers of reactive oxygen species (ROS). Second, third, and fourth generation (K2, K3, and K4) highly branched amino acid spherical lysine dendrimers were synthesized, and cysteine (C) was conjugated to the outer layer of these lysine dendrimers to obtain K2C, K3C, and K4C dendrimers. Subsequently, PEG was reacted with the C residues of the dendrimers to obtain PEGylated dendrimers with multiple reduced thiols (K2C-PEG, K3C-PEG, and K4C-PEG). Radiolabeled K4C-PEG ((111)In-K4C-PEG) exhibited prolonged retention in the plasma, whereas (111)In-K2C-PEG and (111)In-K3C-PEG rapidly disappeared from the plasma. K4C-PEG significantly prevented the elevation of plasma alanine aminotransferase (ALT) activity, an index of hepatocyte injury, in a mouse model of hepatic ischemia/reperfusion injury. In contrast, K2C-PEG, K3C-PEG, l-cysteine, and glutathione, the latter two of which are classical reduced thiols, hardly affected the plasma ALT activity. These findings indicate that K4C-PEG with prolonged circulation time is a promising compound to inhibit hepatic ischemia/reperfusion injury. PMID:27336683

  6. Identification in Marinomonas mediterranea of a novel quinoprotein with glycine oxidase activity

    PubMed Central

    Campillo-Brocal, Jonatan Cristian; Lucas-Elio, Patricia; Sanchez-Amat, Antonio

    2013-01-01

    Abstract A novel enzyme with lysine-epsilon oxidase activity was previously described in the marine bacterium Marinomonas mediterranea. This enzyme differs from other l-amino acid oxidases in not being a flavoprotein but containing a quinone cofactor. It is encoded by an operon with two genes lodA and lodB. The first one codes for the oxidase, while the second one encodes a protein required for the expression of the former. Genome sequencing of M. mediterranea has revealed that it contains two additional operons encoding proteins with sequence similarity to LodA. In this study, it is shown that the product of one of such genes, Marme_1655, encodes a protein with glycine oxidase activity. This activity shows important differences in terms of substrate range and sensitivity to inhibitors to other glycine oxidases previously described which are flavoproteins synthesized by Bacillus. The results presented in this study indicate that the products of the genes with different degrees of similarity to lodA detected in bacterial genomes could constitute a reservoir of different oxidases. PMID:23873697

  7. A Novel Glycinate-based Body Wash

    PubMed Central

    Regan, Jamie; Ananthapadmanabhan, K.P.

    2013-01-01

    Objective: To assess the properties of a novel body wash containing the mild surfactant glycinate. Design: Biochemical and clinical assays. Setting: Research laboratories and clinical sites in the United States and Canada. Participants: Women 18 to 65 years of age (cleansing efficacy); male and female subjects 26 to 63 years of age with mild or moderate dryness and erythema (leg-controlled application test); subjects 5 to 65 years of age with mild-to-moderate eczema (eczema compatibility); and women 18 to 64 years of age (home use). Measurements: Assessments across studies included colorimetric dye exclusion to assess skin damage potential (corneosurfametry), efficacy of cosmetic product removal from skin, change from baseline in visual dryness, change from baseline in Eczema Area and Severity Index, and self-perceived eczema attributes and self-reported product preference. Results: The glycinate-based cleanser demonstrated mildness to skin components when evaluated in a corneosurfametry assay. Short-term use under exaggerated wash conditions in subjects with dryness scores <3 and erythema scores <2 (both on a 0-6 scale) indicated an initial reduction in visual dryness. In subjects with eczema, normal use resulted in significant improvements (p<0.05) at Week 4 compared with baseline in skin dryness (change from baseline = −0.73), rash (−0.56), itch (−0.927), tightness (−0.585), and all eczema (−0.756). The glycinate-based body wash removed 56 percent of a long-lasting cosmetic foundation from skin compared with less than 30 percent removed by two competitive products tested. The glycinate-based body wash was preferred over a competitive mild cleansing product overall. Conclusion: The patented glycinate-containing body wash demonstrated better product mildness and patient-preferred attributes and clinical benefits. PMID:23882306

  8. REVERSAL OF d-CYCLOSERINE INHIBITION OF BACTERIAL GROWTH BY ALANINE

    PubMed Central

    Zygmunt, Walter A.

    1962-01-01

    Zygmunt, Walter A. (Mead Johnson & Co., Evansville, Ind.). Reversal of d-cycloserine inhibition of bacterial growth by alanine. J. Bacteriol. 84:154–156. 1962.—Reversal of the antibacterial activity of d-4-amino-3-isoxazolidone by alanine in bacterial cultures actively growing on chemically defined media was compared in cultures requiring exogenous alanine and those capable of its synthesis. dl-Alanine was the most effective reversal agent in Pediococcus cerevisiae, an alanine-requiring organism, and d-alanine was effective in Escherichia coli and Staphylococcus aureus, organisms synthesizing alanine. With all three cultures, l-alanine was the least effective reversal agent. PMID:16561951

  9. Comparative mapping of the wild perennial Glycine latifolia and soybean (G. max) reveals extensive chromosome rearrangements in the genus Glycine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean (Glycine max L. Mer.), like many cultivated crops, has a relatively narrow genetic base and lacks diversity for some economically important traits. Glycine latifolia (Benth.) Newell & Hymowitz, a perennial wild relative of soybean in the subgenus Glycine Willd., shows high levels of resistan...

  10. Lysine fortification: past, present, and future.

    PubMed

    Pellett, Peter L; Ghosh, Shibani

    2004-06-01

    Fortification with lysine to improve the protein value of human diets that are heavily based on cereals has received support from the results of these recent studies [1,2]. Support also comes from examination of average food and nutrient availability data derived from food balance sheets. Whereas nutritional status is influenced by the nutrient content of foods consumed in relation to need, the requirements for protein and amino acids are influenced by many additional factors [10, 12, 14, 28, 29]. These include age, sex, body size, physical activity, growth, pregnancy and lactation, infection, and the efficiency of nutrient utilization. Even if the immune response was influenced by the added lysine, adequate water and basic sanitation would remain essential. Acute and chronic undernutrition and most micronutrient deficiencies primarily affect poor and deprived people who do not have access to food of adequate nutritional value, live in unsanitary environments without access to clean water and basic services, and lack access to appropriate education and information [30]. A further variable is the possible interaction between protein and food energy availability [31]. This could affect the protein value of diets when food energy is limiting to a significant degree. Thus, the additional effects of food energy deficiency on protein utilization could well be superimposed on the very poorest. The improvement of dietary diversity must be the long-term aim, with dietary fortification considered only a short-term solution. The former should take place as wealth improves and the gaps between rich and poor diminish. Although such changes are taking place, they are highly uneven. Over the last several decades, increases have occurred in the availability of food energy, total protein, and animal protein for both developed and developing countries. However, for the very poorest developing countries over the same period, changes have been almost nonexistent, and the values for

  11. Elucidating the effects of arginine and lysine on a monoclonal antibody C-terminal lysine variation in CHO cell cultures.

    PubMed

    Zhang, Xintao; Tang, Hongping; Sun, Ya-Ting; Liu, Xuping; Tan, Wen-Song; Fan, Li

    2015-08-01

    C-terminal lysine variants are commonly observed in monoclonal antibodies (mAbs) and found sensitive to process conditions, especially specific components in culture medium. The potential roles of media arginine (Arg) and lysine (Lys) in mAb heavy chain C-terminal lysine processing were investigated by monitoring the lysine variant levels under various Arg and Lys concentrations. Both Arg and Lys were found to significantly affect lysine variant level. Specifically, lysine variant level increased from 18.7 to 31.8 % when Arg and Lys concentrations were increased from 2 to 10 mM. Since heterogeneity of C-terminal lysine residues is due to the varying degree of proteolysis by basic carboxypeptidases (Cps), enzyme (basic Cps) level, pH conditions, and product (Arg and Lys) inhibition, which potentially affect the enzymatic reaction, were investigated under various Arg and Lys conditions. Enzyme level and pH conditions were found not to account for the different lysine variant levels, which was evident from the minimal variation in transcription level and intracellular pH. On the other hand, product inhibition effect of Arg and Lys on basic Cps was evident from the notable intracellular and extracellular Arg and Lys concentrations comparable with Ki values (inhibition constant) of basic Cps and further confirmed by cell-free assays. Additionally, a kinetic study of lysine variant level during the cell culture process enabled further characterization of the C-terminal lysine processing.

  12. Glycine receptors influence radial migration in the embryonic mouse neocortex.

    PubMed

    Nimmervoll, Birgit; Denter, Denise G; Sava, Irina; Kilb, Werner; Luhmann, Heiko J

    2011-07-13

    To investigate whether glycine receptors influence radial migration in the neocortex, we analyzed the effect of glycine and the glycinergic antagonist strychnine, on the distribution of 5-bromo-2'deoxyuridine-labeled neurons in organotypic slice cultures from embryonic mice cortices. Application of glycine impeded radial migration only in the presence of the glycine-transport blockers, ALX-5407 and ALX-1393. This effect was blocked by the specific glycine receptor antagonist strychnine, whereas application of strychnine in the absence of glycine was without effect. We conclude from these observations that an activation of glycine receptors can impede radial migration, but that the glycinergic system is not directly implicated in the regulation of radial migration in organotypic slice cultures.

  13. Antimicrobial activity of chicken NK-lysin against Eimeria sporozoites.

    PubMed

    Hong, Yeong H; Lillehoj, Hyun S; Siragusa, Gregory R; Bannerman, Douglas D; Lillehoj, Erik P

    2008-06-01

    NK-lysin is an antimicrobial and antitumor polypeptide that is considered to play an important role in innate immunity. Chicken NK-lysin is a member of the saposin-like protein family and exhibits potent antitumor cell activity. To evaluate the antimicrobial properties of chicken NK-lysin, we examined its ability to reduce the viability of various bacterial strains and two species of Eimeria parasites. Culture supernatants from COS7 cells transfected with a chicken NK-lysin cDNA and His-tagged purified NK-lysin from the transfected cells both showed high cytotoxic activity against Eimeria acervulina and Eimeria maxima sporozoites. In contrast, no bactericidal activity was observed. Further studies using synthetic peptides derived from NK-lysin may be useful for pharmaceutical and agricultural uses in the food animal industry.

  14. Dose response of alanine detectors irradiated with carbon ion beams

    SciTech Connect

    Herrmann, Rochus; Jaekel, Oliver; Palmans, Hugo; Sharpe, Peter; Bassler, Niels

    2011-04-15

    Purpose: The dose response of the alanine detector shows a dependence on particle energy and type when irradiated with ion beams. The purpose of this study is to investigate the response behavior of the alanine detector in clinical carbon ion beams and compare the results to model predictions. Methods: Alanine detectors have been irradiated with carbon ions with an energy range of 89-400 MeV/u. The relative effectiveness of alanine has been measured in this regime. Pristine and spread out Bragg peak depth-dose curves have been measured with alanine dosimeters. The track structure based alanine response model developed by Hansen and Olsen has been implemented in the Monte Carlo code FLUKA and calculations were compared to experimental results. Results: Calculations of the relative effectiveness deviate less than 5% from the measured values for monoenergetic beams. Measured depth-dose curves deviate from predictions in the peak region, most pronounced at the distal edge of the peak. Conclusions: The used model and its implementation show a good overall agreement for quasimonoenergetic measurements. Deviations in depth-dose measurements are mainly attributed to uncertainties of the detector geometry implemented in the Monte Carlo simulations.

  15. Global analysis of lysine acetylation in strawberry leaves.

    PubMed

    Fang, Xianping; Chen, Wenyue; Zhao, Yun; Ruan, Songlin; Zhang, Hengmu; Yan, Chengqi; Jin, Liang; Cao, Lingling; Zhu, Jun; Ma, Huasheng; Cheng, Zhongyi

    2015-01-01

    Protein lysine acetylation is a reversible and dynamic post-translational modification. It plays an important role in regulating diverse cellular processes including chromatin dynamic, metabolic pathways, and transcription in both prokaryotes and eukaryotes. Although studies of lysine acetylome in plants have been reported, the throughput was not high enough, hindering the deep understanding of lysine acetylation in plant physiology and pathology. In this study, taking advantages of anti-acetyllysine-based enrichment and high-sensitive-mass spectrometer, we applied an integrated proteomic approach to comprehensively investigate lysine acetylome in strawberry. In total, we identified 1392 acetylation sites in 684 proteins, representing the largest dataset of acetylome in plants to date. To reveal the functional impacts of lysine acetylation in strawberry, intensive bioinformatic analysis was performed. The results significantly expanded our current understanding of plant acetylome and demonstrated that lysine acetylation is involved in multiple cellular metabolism and cellular processes. More interestingly, nearly 50% of all acetylated proteins identified in this work were localized in chloroplast and the vital role of lysine acetylation in photosynthesis was also revealed. Taken together, this study not only established the most extensive lysine acetylome in plants to date, but also systematically suggests the significant and unique roles of lysine acetylation in plants. PMID:26442052

  16. Enzymatic production of 5-aminovalerate from l-lysine using l-lysine monooxygenase and 5-aminovaleramide amidohydrolase

    PubMed Central

    Liu, Pan; Zhang, Haiwei; Lv, Min; Hu, Mandong; Li, Zhong; Gao, Chao; Xu, Ping; Ma, Cuiqing

    2014-01-01

    5-Aminovalerate is a potential C5 platform chemical for synthesis of valerolactam, 5-hydroxyvalerate, glutarate, and 1,5-pentanediol. It is a metabolite of l-lysine catabolism through the aminovalerate pathway in Pseudomonas putida. l-Lysine monooxygenase (DavB) and 5-aminovaleramide amidohydrolase (DavA) play key roles in the biotransformation of l-lysine into 5-aminovalerate. Here, DavB and DavA of P. putida KT2440 were expressed, purified, and coupled for the production of 5-aminovalerate from l-lysine. Under optimal conditions, 20.8 g/L 5-aminovalerate was produced from 30 g/L l-lysine in 12 h. Because l-lysine is an industrial fermentation product, the two-enzyme coupled system presents a promising alternative for the production of 5-aminovalerate. PMID:25012259

  17. Liver peroxisomal alanine:glyoxylate aminotransferase and the effects of mutations associated with Primary Hyperoxaluria Type I: An overview.

    PubMed

    Oppici, Elisa; Montioli, Riccardo; Cellini, Barbara

    2015-09-01

    Liver peroxisomal alanine:glyoxylate aminotransferase (AGT) (EC 2.6.1.44) catalyses the conversion of l-alanine and glyoxylate to pyruvate and glycine, a reaction that allows glyoxylate detoxification. Inherited mutations on the AGXT gene encoding AGT lead to Primary Hyperoxaluria Type I (PH1), a rare disorder characterized by the deposition of calcium oxalate crystals primarily in the urinary tract. Here we describe the results obtained on the biochemical features of AGT as well as on the molecular and cellular effects of polymorphic and pathogenic mutations. A complex scenario on the molecular pathogenesis of PH1 emerges in which the co-inheritance of polymorphic changes and the condition of homozygosis or compound heterozygosis are two important factors that determine the enzymatic phenotype of PH1 patients. All the reported data represent relevant steps toward the understanding of genotype/phenotype correlations, the prediction of the response of the patients to the available therapies, and the development of new therapeutic approaches. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications.

  18. Noncovalent and covalent functionalization of a (5, 0) single-walled carbon nanotube with alanine and alanine radicals.

    PubMed

    Rajarajeswari, Muthusivarajan; Iyakutti, Kombiah; Kawazoe, Yoshiyuki

    2012-02-01

    We have systematically investigated the noncovalent and covalent adsorption of alanine and alanine radicals, respectively, onto a (5, 0) single-walled carbon nanotube using first-principles calculation. It was found that XH···π (X = N, O, C) interactions play a crucial role in the non-ovalent adsorption and that the functional group close to the carbon nanotube exhibits a significant influence on the binding strength. Noncovalent functionalization of the carbon nanotube with alanine enhances the conductivity of the metallic (5, 0) nanotube. In the covalent adsorption of each alanine radical onto a carbon nanotube, the binding energy depends on the adsorption site on CNT and the electronegative atom that binds with the CNT. The strongest complex is formed when the alanine radical interacts with a (5, 0) carbon nanotube through the amine group. In some cases, the covalent interaction of the alanine radical introduces a half-filled band at the Fermi level due to the local sp (3) hybridization, which modifies the conductivity of the tube.

  19. Structure of D-alanine-D-alanine ligase from Yersinia pestis: nucleotide phosphate recognition by the serine loop.

    PubMed

    Tran, Huyen Thi; Hong, Myoung Ki; Ngo, Ho Phuong Thuy; Huynh, Kim Hung; Ahn, Yeh Jin; Wang, Zhong; Kang, Lin Woo

    2016-01-01

    D-Alanyl-D-alanine is an essential precursor of bacterial peptidoglycan and is synthesized by D-alanine-D-alanine ligase (DDL) with hydrolysis of ATP; this reaction makes DDL an important drug target for the development of antibacterial agents. Five crystal structures of DDL from Yersinia pestis (YpDDL) were determined at 1.7-2.5 Å resolution: apo, AMP-bound, ADP-bound, adenosine 5'-(β,γ-imido)triphosphate-bound, and D-alanyl-D-alanine- and ADP-bound structures. YpDDL consists of three domains, in which four loops, loop 1, loop 2 (the serine loop), loop 3 (the ω-loop) and loop 4, constitute the binding sites for two D-alanine molecules and one ATP molecule. Some of them, especially the serine loop and the ω-loop, show flexible conformations, and the serine loop is mainly responsible for the conformational change in substrate nucleotide phosphates. Enzyme-kinetics assays were carried out for both the D-alanine and ATP substrates and a substrate-binding mechanism was proposed for YpDDL involving conformational changes of the loops.

  20. Structure of D-alanine-D-alanine ligase from Yersinia pestis: nucleotide phosphate recognition by the serine loop.

    PubMed

    Tran, Huyen Thi; Hong, Myoung Ki; Ngo, Ho Phuong Thuy; Huynh, Kim Hung; Ahn, Yeh Jin; Wang, Zhong; Kang, Lin Woo

    2016-01-01

    D-Alanyl-D-alanine is an essential precursor of bacterial peptidoglycan and is synthesized by D-alanine-D-alanine ligase (DDL) with hydrolysis of ATP; this reaction makes DDL an important drug target for the development of antibacterial agents. Five crystal structures of DDL from Yersinia pestis (YpDDL) were determined at 1.7-2.5 Å resolution: apo, AMP-bound, ADP-bound, adenosine 5'-(β,γ-imido)triphosphate-bound, and D-alanyl-D-alanine- and ADP-bound structures. YpDDL consists of three domains, in which four loops, loop 1, loop 2 (the serine loop), loop 3 (the ω-loop) and loop 4, constitute the binding sites for two D-alanine molecules and one ATP molecule. Some of them, especially the serine loop and the ω-loop, show flexible conformations, and the serine loop is mainly responsible for the conformational change in substrate nucleotide phosphates. Enzyme-kinetics assays were carried out for both the D-alanine and ATP substrates and a substrate-binding mechanism was proposed for YpDDL involving conformational changes of the loops. PMID:26894530

  1. Compositions containing poly ([gamma]glutamylcysteinyl)glycines

    DOEpatents

    Jackson, P.J.; Delhaize, E.; Robinson, N.J.; Unkefer, C.J.; Furlong, C.

    1992-02-18

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting the removal, and the apparatus used in effecting the removal are described. One or more of the polypeptides, poly ([gamma]glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly ([gamma]glutamylcysteinyl)glycines having a particular number of monomer repeat units for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heavy metals from solution. This also results in the removal of the metals from the column in a concentrated form. 1 figs.

  2. Role of the lysine-rich cluster of the C2 domain in the phosphatidylserine-dependent activation of PKCalpha.

    PubMed

    Rodríguez-Alfaro, Jose A; Gomez-Fernandez, Juan C; Corbalan-Garcia, Senena

    2004-01-23

    The C2 domain of PKCalpha is a Ca(2+)-dependent membrane-targeting module involved in the plasma membrane localization of the enzyme. Recent findings have shown an additional area located in the beta3-beta4 strands, named the lysine-rich cluster, which has been demonstrated to be involved in the PtdIns(4,5)P(2)-dependent activation of the enzyme. Nevertheless, whether other anionic phospholipids can bind to this region and contribute to the regulation of the enzyme's function is not clear. To study other possible roles for this cluster, we generated double and triple mutants that substituted the lysine by alanine residues, and studied their binding and activation properties in a Ca(2+)/phosphatidylserine-dependent manner and compared them with the wild-type protein. It was found that some of the mutants exerted a constitutive activation independently of membrane binding. Furthermore, the constructs were fused to green fluorescent protein and were expressed in fibroblast cells. It was shown that none of the mutants was able to translocate to the plasma membrane, even in saturating conditions of Ca(2+) and diacylglycerol, suggesting that the interactions performed by this lysine-rich cluster are a key event in the subcellular localization of PKCalpha. Taken together, the results obtained showed that these lysine residues might be involved in two functions: one to establish an intramolecular interaction that keeps the enzyme in an inactive conformation; and the second, once the enzyme has been partially activated, to establish further interactions with diacylglycerol and/or acidic phospholipids, leading to the full activation of PKCalpha.

  3. A l-Lysine Transporter of High Stereoselectivity of the Amino Acid-Polyamine-Organocation (APC) Superfamily

    PubMed Central

    Kaur, Jagdeep; Olkhova, Elena; Malviya, Viveka Nand; Grell, Ernst; Michel, Hartmut

    2014-01-01

    Membrane proteins of the amino acid-polyamine-organocation (APC) superfamily transport amino acids and amines across membranes and play an important role in the regulation of cellular processes. We report the heterologous production of the LysP-related transporter STM2200 from Salmonella typhimurium in Escherichia coli, its purification, and functional characterization. STM2200 is assumed to be a proton-dependent APC transporter of l-lysine. The functional interaction between basic amino acids and STM2200 was investigated by thermoanalytical methods, i.e. differential scanning and isothermal titration calorimetry. Binding of l-lysine to STM2200 in its solubilized monomer form is entropy-driven. It is characterized by a dissociation constant of 40 μm at pH 5.9 and is highly selective; no evidence was found for the binding of l-arginine, l-ornithine, l-2,4-diaminobutyric acid, and l-alanine. d-Lysine is bound 45 times more weakly than its l-chiral form. We thus postulate that STM2200 functions as a specific transport protein. Based on the crystal structure of ApcT (Shaffer, P. L., Goehring, A., Shankaranarayanan, A., and Gouaux, E. (2009) Science 325, 1010–1014), a proton-dependent amino acid transporter of the APC superfamily, a homology model of STM2200 was created. Docking studies allowed identification of possible ligand binding sites. The resulting predictions indicated that Glu-222 and Arg-395 of STM2200 are markedly involved in ligand binding, whereas Lys-163 is suggested to be of structural and functional relevance. Selected variants of STM2200 where these three amino acid residues were substituted using single site-directed mutagenesis showed no evidence for l-lysine binding by isothermal titration calorimetry, which confirmed the predictions. Molecular aspects of the observed ligand specificity are discussed. PMID:24257746

  4. Bacteriophage phi11 lysin: physicochemical characterization and comparison with phage phi80a lysin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phage lytic enzymes are promising antimicrobial agents. Lysins of phage phi11 (LysPhi11) and phi80a (LysPhi80a) can lyse (destroy) biofilms and cells of antibiotic-resistant strains of Staphylococcus aureus. Stability of enzymes is one of the parameters making their practical use possible. The obj...

  5. Comprehensive profiling of lysine acetylproteome analysis reveals diverse functions of lysine acetylation in common wheat

    PubMed Central

    Zhang, Yumei; Song, Limin; Liang, Wenxing; Mu, Ping; Wang, Shu; Lin, Qi

    2016-01-01

    Lysine acetylation of proteins, a dynamic and reversible post-translational modification, plays a critical regulatory role in both eukaryotes and prokaryotes. Several researches have been carried out on acetylproteome in plants. However, until now, there have been no data on common wheat, the major cereal crop in the world. In this study, we performed a global acetylproteome analysis of common wheat variety (Triticum aestivum L.), Chinese Spring. In total, 416 lysine modification sites were identified on 277 proteins, which are involved in a wide variety of biological processes. Consistent with previous studies, a large proportion of the acetylated proteins are involved in metabolic process. Interestingly, according to the functional enrichment analysis, 26 acetylated proteins are involved in photosynthesis and Calvin cycle, suggesting an important role of lysine acetylation in these processes. Moreover, protein interaction network analysis reveals that diverse interactions are modulated by protein acetylation. These data represent the first report of acetylome in common wheat and serve as an important resource for exploring the physiological role of lysine acetylation in this organism and likely in all plants. PMID:26875666

  6. EPR/alanine dosimetry for two therapeutic proton beams

    NASA Astrophysics Data System (ADS)

    Marrale, Maurizio; Carlino, Antonio; Gallo, Salvatore; Longo, Anna; Panzeca, Salvatore; Bolsi, Alessandra; Hrbacek, Jan; Lomax, Tony

    2016-02-01

    In this work the analysis of the electron paramagnetic resonance (EPR) response of alanine pellets exposed to two different clinical proton beams employed for radiotherapy is performed. One beam is characterized by a passive delivery technique and is dedicated to the eyes treatment (OPTIS2 beam line). Alanine pellets were irradiated with a 70 MeV proton beam corresponding to 35 mm range in eye tissue. We investigated how collimators with different sizes and shape used to conform the dose to the planned target volume influence the delivered dose. For this purpose we performed measurements with varying the collimator size (Output Factor) and the results were compared with those obtained with other dosimetric techniques (such as Markus chamber and diode detector). This analysis showed that the dosimeter response is independent of collimator diameter if this is larger than or equal to 10 mm. The other beam is characterized by an active spot-scanning technique, the Gantry1 beam line (maximum energy 230 MeV), and is used to treat deep-seated tumors. The dose linearity of alanine response in the clinical dose range was tested and the alanine dose response at selected locations in depth was measured and compared with the TPS planned dose in a quasi-clinical scenario. The alanine response was found to be linear in the dose in the clinical explored range (from 10 to 70 Gy). Furthermore, a depth dose profile in a quasi-clinical scenario was measured and compared to the dose computed by the Treatment Planning System PSIPLAN. The comparison of calibrated proton alanine measurements and TPS dose shows a difference under 1% in the SOBP and a "quenching" effect up to 4% in the distal part of SOBP. The positive dosimetric characteristics of the alanine pellets confirm the feasibility to use these detectors for "in vivo" dosimetry in clinical proton beams.

  7. Differentiation of Malassezia furfur and Malassezia sympodialis by glycine utilization.

    PubMed

    Murai, T; Nakamura, Y; Kano, R; Watanabe, S; Hasegawa, A

    2002-06-01

    The genus Malassezia has been revised to include six lipophilic species and one nonlipophilic species. These Malassezia species have been investigated to differentiate their morphological and physiological characteristics. However, assimilation of amino acids as a nitrogen source by these species was not well elucidated. In the present study, isolates of Malassezia species were examined with a glycine medium (containing 7-266 mmol glycine, 7.4 mmol KH(2)PO(4), 4.1 mmol MgSO(4)7H(2)O, 29.6 mmol thiamine, 0.5% Tween-80 and 2% agar) and a modified Dixon glycine medium (0.6% peptone, 3.6% malt extract, 2% ox-bile, 1% Tween-40, 0.2% glycerol, 0.2% oleic acid, 7 mmol glycine and 2% agar). All M. furfur isolates developed on the glycine medium, assimilating glycine at concentrations of at least 7 mmol l(-1). However, the other six Malassezia species were unable to grow on the glycine medium. Also, many colonies of M. furfur grew rapidly, within 2-3 days on the modified Dixon glycine medium, although the other six species showed slow and poor development. From these results, it was suggested that M. furfur might be able to utilize glycine as a single nitrogen source, which the other Malassezia species could not. Therefore, glycine medium was recommended for the differentiation of M. furfur from other species of Malassezia.

  8. Molecular dynamics simulations of glycine crystal-solution interface

    NASA Astrophysics Data System (ADS)

    Banerjee, Soumik; Briesen, Heiko

    2009-11-01

    Glycine is an amino acid that has several applications in the pharmaceutical industry. Hence, growth of α-glycine crystals through solution crystallization is an important process. To gain a fundamental understanding of the seeded growth of α-glycine from aqueous solution, the (110) face of α-glycine crystal in contact with a solution of glycine in water has been simulated with molecular dynamics. The temporal change in the location of the interface of the α-glycine crystal seed has been characterized by detecting a density gradient. It is found that the α-glycine crystal dissolves with time at a progressively decreasing rate. Diffusion coefficients of glycine adjacent to (110) face of α-glycine crystal have been calculated at various temperatures (280, 285, 290, 295, and 300 K) and concentrations (3.6, 4.5, and 6.0 mol/l) and compared to that in the bulk solution. In order to gain a fundamental insight into the nature of variation in such properties at the interface and the bulk, the formation of hydrogen bonds at various temperatures and concentrations has been investigated. It is found that the nature of interaction between various atoms of glycine molecules, as characterized by radial distribution functions, can provide interesting insight into the formation of hydrogen bonds that in turn affect the diffusion coefficients at the interface.

  9. Resveratrol inhibits glycine receptor-mediated ion currents.

    PubMed

    Lee, Byung-Hwan; Hwang, Sung-Hee; Choi, Sun-Hye; Kim, Hyeon-Joong; Jung, Seok-Won; Kim, Hyun-Sook; Lee, Joon-Hee; Kim, Hyung-Chun; Rhim, Hyewhon; Nah, Seung-Yeol

    2014-01-01

    Resveratrol is found in grapes, red wine, and berries. Resveratrol has been known to have many beneficial health effects, such as anti-cancer, neuroprotective, anti-nociceptive, and life-prolonging effects. However, the single cellular mechanisms by which resveratrol acts are relatively unknown, especially in terms of possible regulation of receptors involved in synaptic transmission. The glycine receptor is an inhibitory ligand-gated ion channel involved in fast synaptic transmission in spinal cord. In the present study, we investigated the effect of resveratrol on human glycine receptor channel activity. Glycine α1 receptors were expressed in Xenopus oocytes and glycine receptor channel activity was measured using a two-electrode voltage clamp technique. Treatment with resveratrol alone had no effect on oocytes injected with H2O or on oocytes injected with glycine α1 receptor cRNA. In the oocytes injected with glycine α1 receptor cRNA, co- or pre-treatment of resveratrol with glycine inhibited the glycine-induced inward peak current (IGly) in a reversible manner. The inhibitory effect of resveratrol on IGly was also concentration dependent, voltage independent, and non-competitive. These results indicate that resveratrol regulates glycine receptor channel activity and that resveratrol-mediated regulation of glycine receptor channel activity is one of several cellular action mechanisms of resveratrol for pain regulation. PMID:24694604

  10. Glycine hydrogen fluoride: Remarkable hydrogen bonding in the dimeric glycine glycinium cation

    NASA Astrophysics Data System (ADS)

    Fleck, M.; Ghazaryan, V. V.; Petrosyan, A. M.

    2010-12-01

    Crystals of glycine hydrogen fluoride (Gly·HF) were prepared from an aqueous solution containing stoichiometric quantities of the components. The crystal structure of Gly·HF was determined, IR and Raman spectra were registered and are discussed. Gly·HF crystallizes in the orthorhombic space group Pbca with Z = 32. The most remarkable feature of the structure is the existence of symmetric dimeric glycine-glycinium cations with short hydrogen bonds (O⋯O distance of 2.446 Å), charge-counterbalanced by hydrogen bifluoride (F sbnd H⋯F) - anions - in addition to the expected glycinium cations and fluoride anions. These results were compared with previously published data on crystals grown in the system glycine-HF-H 2O.

  11. Lysine carboxylation: unveiling a spontaneous post-translational modification

    SciTech Connect

    Jimenez-Morales, David; Adamian, Larisa; Shi, Dashuang; Liang, Jie

    2014-01-01

    A computational method for the prediction of lysine carboxylation (KCX) in protein structures is described. The method accurately identifies misreported KCXs and predicts previously unknown KCX sites. The carboxylation of lysine residues is a post-translational modification (PTM) that plays a critical role in the catalytic mechanisms of several important enzymes. It occurs spontaneously under certain physicochemical conditions, but is difficult to detect experimentally. Its full impact is unknown. In this work, the signature microenvironment of lysine-carboxylation sites has been characterized. In addition, a computational method called Predictor of Lysine Carboxylation (PreLysCar) for the detection of lysine carboxylation in proteins with available three-dimensional structures has been developed. The likely prevalence of lysine carboxylation in the proteome was assessed through large-scale computations. The results suggest that about 1.3% of large proteins may contain a carboxylated lysine residue. This unexpected prevalence of lysine carboxylation implies an enrichment of reactions in which it may play functional roles. The results also suggest that by switching enzymes on and off under appropriate physicochemical conditions spontaneous PTMs may serve as an important and widely used efficient biological machinery for regulation.

  12. 40 CFR 721.10250 - Zirconium lysine complex (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Zirconium lysine complex (generic... Specific Chemical Substances § 721.10250 Zirconium lysine complex (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as...

  13. 40 CFR 721.10250 - Zirconium lysine complex (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Zirconium lysine complex (generic... Specific Chemical Substances § 721.10250 Zirconium lysine complex (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as...

  14. 40 CFR 721.10250 - Zirconium lysine complex (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Zirconium lysine complex (generic... Specific Chemical Substances § 721.10250 Zirconium lysine complex (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as...

  15. Changes of hippocampal beta-alanine and citrulline levels are paralleling early and late phase of retrieval in the Morris Water Maze.

    PubMed

    Sase, Ajinkya; Dahanayaka, Sudath; Höger, Harald; Wu, Guoyao; Lubec, Gert

    2013-07-15

    Although a series of amino acids (AA) have been associated with spatial memory formation, there is limited information on concentrations of beta-alanine and citrulline in rodent brains. Given the importance of AA metabolism in cognitive functions it was the aim of the study to determine hippocampal levels of beta-alanine and citrulline in rats during two different phases of memory retrieval in a spatial memory paradigm. Ten rats were used per group and the first group was trained and sacrificed five min, the second six hours following retrieval in the Morris Water Maze (MWM) and the third and fourth group were untrained, yoked controls. Hippocampi were taken and free AA were determined using a well-established HPLC protocol. Beta-alanine and citrulline levels were higher in trained rat hippocampi, during both, early and late phase of memory retrieval. Taurine, methionine, cysteine, lysine and ornithine levels were higher in yoked rats at the late phase while tyrosine was higher in yoked rats during the early phase. There were no significant correlations between time spent in the target quadrant and any of the AA levels. Herein, an AA pattern, different between yoked and trained animals at early and late phase of memory retrieval is shown, indicating probable involvement of different AA pathways in animals trained and untrained in the MWM. The results may be useful for the interpretation of previous studies and the design of future experiments to identify amino acids as possible targets for modulating spatial memory.

  16. On the existence of "L-threonine formate", "L-alanine lithium chloride" and "bis L-alanine lithium chloride" crystals.

    PubMed

    Petrosyan, A M; Ghazaryan, V V; Fleck, M

    2013-03-15

    We argue that the recently reported crystals "L-threonine formate" as well as "L-alanine lithium chloride" and "bis L-alanine lithium chloride" actually are the well-known crystals L-threonine and L-alanine, respectively.

  17. Evaluation of mechanical properties of some glycine complexes

    SciTech Connect

    Nagaraju, D.; Raja Shekar, P. V.; Chandra, Ch. Sateesh; Rao, K. Kishan; Krishna, N. Gopi

    2014-04-24

    The variation of Vickers hardness with load for (101) glycine zinc chloride (GZC), (001) glycine lithium sulphate (GLS), (001) triglycine sulphate (TGS) and (010) glycine phosphite (GPI) crystals was studied. From the cracks initiated along the corners of the indentation impression, crack lengths were measured and the fracture toughness value and brittle index number were determined. The hardness related parameters viz. yield strength and Young’s modulus were also estimated. The anisotropic nature of the crystals was studied using Knoop indentation technique.

  18. Lysine catabolism in Rhizoctonia leguminicola and related fungi.

    PubMed Central

    Guengerich, F P; Broquist, H P

    1976-01-01

    The catabolism of lysine was studied in several yeasts and fungi. Results with cell-free extracts of Rhizoctonia leguminicola support a proposed pathway involving (D- and L-) EPSILON-N-acetyllysine, alpha-keto-epsilon-acetamidohexanoic acid, delta-acetamidovaleric acid, and delta-aminovaleric acid in the conversion of L-lysine to shortchain organic acids. Label from radioactive L-lysine was found to accumulate in D- and L-epsilon-N-acetyllysine, delta-acetamidovaleric acid, delta-aminovaleric acid, and glutaric acid in cultures of R. leguminicola, Neurospora crassa, Saccharomyces cerevisiae, and Hansenula saturnus, suggesting that the proposed omega-acetyl pathway of lysine catabolism is generalized among yeasts and fungi. In N. crassa, as is the case in R. leguminicola, the major precursor of L-pipecolic acid was the L-isomer of lysine; 15N experiments were consistent with delta1-piperideine-2-carboxylic acid as an intermediate in the transformation. PMID:131119

  19. Role of several histone lysine methyltransferases in tumor development

    PubMed Central

    LI, JIFU; ZHU, SHUNQIN; KE, XIAO-XUE; CUI, HONGJUAN

    2016-01-01

    The field of cancer epigenetics has been evolving rapidly in recent decades. Epigenetic mechanisms include DNA methylation, histone modifications and microRNAs. Histone modifications are important markers of function and chromatin state. Aberrant histone methylation frequently occurs in tumor development and progression. Multiple studies have identified that histone lysine methyltransferases regulate gene transcription through the methylation of histone, which affects cell proliferation and differentiation, cell migration and invasion, and other biological characteristics. Histones have variant lysine sites for different levels of methylation, catalyzed by different lysine methyltransferases, which have numerous effects on human cancers. The present review focused on the most recent advances, described the key function sites of histone lysine methyltransferases, integrated significant quantities of data to introduce several compelling histone lysine methyltransferases in various types of human cancers, summarized their role in tumor development and discussed their potential mechanisms of action. PMID:26998265

  20. Creative lysins: Listeria and the engineering of antimicrobial enzymes.

    PubMed

    Van Tassell, Maxwell L; Angela Daum, M; Kim, Jun-Seob; Miller, Michael J

    2016-02-01

    Cell wall lytic enzymes have been of increasing interest as antimicrobials for targeting Gram-positive spoilage and pathogenic bacteria, largely due to the development of strains resistant to antibiotics and bacteriophage therapy. Such lysins show considerable promise against Listeria monocytogenes, a primary concern in food-processing environments, but there is room for improvement via protein engineering. Advances in antilisterial applications could benefit from recent developments in lysin biotechnology that have largely targeted other organisms. Herein we present various considerations for the future development of lysins, including environmental factors, cell physiology concerns, and dynamics of protein architecture. Our goal is to review key developments in lysin biotechnology to provide a contextual framework for the current models of lysin-cell interactions and highlight key considerations for the characterization and design of novel lytic enzymes. PMID:26710271

  1. Creative lysins: Listeria and the engineering of antimicrobial enzymes.

    PubMed

    Van Tassell, Maxwell L; Angela Daum, M; Kim, Jun-Seob; Miller, Michael J

    2016-02-01

    Cell wall lytic enzymes have been of increasing interest as antimicrobials for targeting Gram-positive spoilage and pathogenic bacteria, largely due to the development of strains resistant to antibiotics and bacteriophage therapy. Such lysins show considerable promise against Listeria monocytogenes, a primary concern in food-processing environments, but there is room for improvement via protein engineering. Advances in antilisterial applications could benefit from recent developments in lysin biotechnology that have largely targeted other organisms. Herein we present various considerations for the future development of lysins, including environmental factors, cell physiology concerns, and dynamics of protein architecture. Our goal is to review key developments in lysin biotechnology to provide a contextual framework for the current models of lysin-cell interactions and highlight key considerations for the characterization and design of novel lytic enzymes.

  2. Post-Irradiation Study of the Alanine Dosimeter

    PubMed Central

    Desrosiers, Marc F.

    2014-01-01

    Post-irradiation stability of high-dose dosimeters has traditionally been an important measurement influence quantity. Though the exceptional stability of the alanine dosimeter response with time has rendered this factor a non-issue for routine work, the archival quality of the alanine dosimeter has not been characterized. Here the alanine pellet dosimeter response is measured up to seven years post-irradiation for a range of absorbed doses. This long-term study is accompanied by an examination of the environmental influence quantities (e.g., ambient light) on the relatively short-term (3–4 month) stability of both pellet and film commercial dosimeters. Both dosimeter types demonstrated exceptional stability in the short term and proved to be relatively insensitive to common influence quantities. The long-term data revealed a complex dose-dependent response trend. PMID:26601033

  3. Morphosynthesis of alanine mesocrystals by pH control.

    PubMed

    Ma, Yurong; Cölfen, Helmut; Antonietti, Markus

    2006-06-01

    Crystallization of DL-alanine is studied as a single polymorph model case to analyze the different modes of crystallization of polar organic molecules in absence of any structure directing additives. Depending on supersaturation, which is controlled either by temperature or by pH, and in the absence of additives, crystallization by mesoscale assembly of nanoparticles is found over a wide range of conditions, leading to so-called mesocrystals. This supplements the classical molecule-based crystallization mechanism, which is identified at lower supersaturations and at pH values away from the isoelectric point (IEP). The resulting alanine crystals are characterized by SEM, XRD, and single-crystal analysis. Time-resolved conductivity measurements and dynamic light scattering of the reaction solutions reveal information about precursor structures and reaction kinetics. A formation mechanism is proposed for the alanine mesocrystals. PMID:16771332

  4. First-principles studies of pure and fluorine substituted alanines

    NASA Astrophysics Data System (ADS)

    Ahmad, Sardar; Vaizie, Hamide; Rahnamaye Aliabad, H. A.; Ahmad, Rashid; Khan, Imad; Ali, Zahid; Jalali-Asadabadi, S.; Ahmad, Iftikhar; Khan, Amir Abdullah

    2016-05-01

    This paper communicates the structural, electronic and optical properties of L-alanine, monofluoro and difluoro substituted alanines using density functional calculations. These compounds exist in orthorhombic crystal structure and the calculated structural parameters such as lattice constants, bond angles and bond lengths are in agreement with the experimental results. L-alanine is an indirect band gap insulator, while its fluorine substituted compounds (monofluoroalanine and difluoroalanine) are direct band gap insulators. The substitution causes reduction in the band gap and hence these optically tailored direct wide band gap materials have enhanced optical properties in the ultraviolet (UV) region of electromagnetic spectrum. Therefore, optical properties like dielectric function, refractive index, reflectivity and energy loss function are also investigated. These compounds have almost isotropic nature in the lower frequency range while at higher energies, they have a significant anisotropic nature.

  5. Tolerance of Arc repressor to multiple-alanine substitutions.

    PubMed

    Brown, B M; Sauer, R T

    1999-03-01

    Arc repressor mutants containing from three to 15 multiple-alanine substitutions have spectral properties expected for native Arc proteins, form heterodimers with wild-type Arc, denature cooperatively with Tms equal to or greater than wild type, and, in some cases, fold as much as 30-fold faster and unfold as much as 50-fold slower than wild type. Two of the mutants, containing a total of 14 different substitutions, also footprint operator DNA in vitro. The stability of some of the proteins with multiple-alanine mutations is significantly greater than that predicted from the sum of the single substitutions, suggesting that a subset of the wild-type residues in Arc may interact in an unfavorable fashion. Overall, these results show that almost half of the residues in Arc can be replaced by alanine en masse without compromising the ability of this small, homodimeric protein to fold into a stable, native-like structure. PMID:10051581

  6. [Effects of ß-alanine supplementation on athletic performance].

    PubMed

    Domínguez, Raúl; Hernández Lougedo, Juan; Maté-Muñoz, José Luis; Garnacho-Castaño, Manuel Vicente

    2014-10-06

    Carnosine, dipeptide formed by amino acids ß-alanine and L-histidine, has important physiological functions among which its antioxidant and related memory and learning. However, in connection with the exercise, the most important functions would be associated with muscle contractility, improving calcium sensitivity in muscle fibers, and the regulatory function of pH. Thus, it is proposed that carnosine is the major intracellular buffer, but could contribute to 7-10% in buffer or buffer capacity. Since carnosine synthesis seems to be limited by the availability of ß-alanine supplementation with this compound has been gaining increasing popularity among the athlete population. Therefore, the objective of this study literature review was to examine all those research works have shown the effect of ß-alanine supplementation on athletic performance. Moreover, it also has attempted to establish a specific dosage that maximizing the potential benefits, minimize paresthesia, the main side effect presented in response to supplementation.

  7. Amino acid transport across the tonoplast of vacuoles isolated from barley mesophyll protoplasts: Uptake of alanine, leucine, and glutamine. [Hordeum vulgare L

    SciTech Connect

    Dietz, K.J.; Jaeger, R.; Kaiser, G.; Martinoia, E. )

    1990-01-01

    Mesophyll protoplasts from leaves of well-fertilized barley (Hordeum vulgare L.) plants contained amino acids at concentrations as high as 120 millimoles per liter. With the exception of glutamic acid, which is predominantly localized in the cytoplasm, a major part of all other amino acids was contained inside the large central vacuole. Alanine, leucine, and glutamine are the dominant vacuolar amino acids in barley. Their transport into isolated vacuoles was studied using {sup 14}C-labeled amino acids. Uptake was slow in the absence of ATP. A three- to sixfold stimulation of uptake was observed after addition of ATP or adenylyl imidodiphosphate an ATP analogue not being hydrolyzed by ATPases. Other nucleotides were ineffective in increasing the rate of uptake. ATP-Stimulated amino acid transport was not dependent on the transtonoplast pH or membrane potential. p-Chloromercuriphenylsulfonic acid and n-ethyl maleimide increased transport independently of ATP. Neutral amino acids such as valine or leucine effectively decreased the rate of alanine transport. Glutamine and glycine were less effective or not effective as competitive inhibitors of alanine transport. The results indicate the existence of a uniport translocator specific for neutral or basic amino acids that is under control of metabolic effectors.

  8. Glycine decarboxylase in Rhodopseudomonas spheroides and in rat liver mitochondria

    PubMed Central

    Tait, G. H.

    1970-01-01

    1. Glycine decarboxylase and glycine–bicarbonate exchange activities were detected in extracts of Rhodopseudomonas spheroides and in rat liver mitochondria and their properties were studied. 2. The glycine decarboxylase activity from both sources is stimulated when glyoxylate is added to the assay system. 3. Several proteins participate in these reactions and a heat-stable low-molecular-weight protein was purified from both sources. 4. These enzyme activities increase markedly when R. spheroides is grown in the presence of glycine, glyoxylate, glycollate, oxalate or serine. 5. All the enzymes required to catalyse the conversion of glycine into acetyl-CoA via serine and pyruvate were detected in extracts of R. spheroides; of these glycine decarboxylase has the lowest activity. 6. The increase in the activity of glycine decarboxylase on illumination of R. spheroides in a medium containing glycine, and the greater increase when ATP is also present in the medium, probably accounts for the increased incorporation of the methylene carbon atom of glycine into fatty acids found previously under these conditions (Gajdos, Gajdos-Török, Gorchein, Neuberger & Tait, 1968). 7. The results are compared with those obtained by other workers on the glycine decarboxylase and glycine–bicarbonate exchange activities in other systems. PMID:5476725

  9. Structural Basis of Cooperative Ligand Binding by the Glycine Riboswitch

    SciTech Connect

    E Butler; J Wang; Y Xiong; S Strobel

    2011-12-31

    The glycine riboswitch regulates gene expression through the cooperative recognition of its amino acid ligand by a tandem pair of aptamers. A 3.6 {angstrom} crystal structure of the tandem riboswitch from the glycine permease operon of Fusobacterium nucleatum reveals the glycine binding sites and an extensive network of interactions, largely mediated by asymmetric A-minor contacts, that serve to communicate ligand binding status between the aptamers. These interactions provide a structural basis for how the glycine riboswitch cooperatively regulates gene expression.

  10. Preparation and pH stability of ferrous glycinate liposomes.

    PubMed

    Ding, Baomiao; Xia, Shuqin; Hayat, Khizar; Zhang, Xiaoming

    2009-04-01

    Ferrous glycinate liposomes were prepared by reverse phase evaporation method. The effects of cholesterol, Tween 80, ferrous glycinate concentration, hydrating medium, pH of hydrating medium, and sonication strength on the encapsulation efficiency of liposomes were investigated. Encapsulation efficiency was significantly influenced by the different technique parameters. Ferrous glycinate liposomes might be obtained with high encapsulation efficiency of 84.80% under the conditions of optimized technique parameters. The zeta potential and average particle size of liposomes in the hydrating medium of pH 7.0 were 9.6 mV and 559.2 nm, respectively. The release property of ferrous glycinate liposomes in vitro was investigated in simulated gastrointestinal juice. A small amount of ferrous glycinate was released from liposomes in the first 4 h in simulated gastrointestinal juice. The mean diameters of liposomes increased from 559.2 to 692.9, 677.8, and 599.3 nm after incubation in simulated gastrointestinal juice of pH 1.3, 7.5, and 7.5 in the presence of bile salts, respectively. Results showed that the stability of ferrous glycinate in strong acid environment was greatly improved by encapsulation in liposomes, which protected ferrous glycinate from disrupting the extracapsular environment by lipid bilayer. The bioavailability of ferrous glycinate, as the iron source for biological activity including hemoglobin formation, may be increased. The ferrous glycinate liposomes may be a kind of promising iron fortifier. PMID:19253959

  11. Claisen-type addition of glycine to pyridoxal in water.

    PubMed

    Toth, Krisztina; Amyes, Tina L; Richard, John P; Malthouse, J Paul G; NíBeilliú, Máire E

    2004-09-01

    The reaction between 5'-deoxypyridoxal and glycine in D2O buffered at pD 7.0 does not result in significant formation of the expected products of pyridoxal-catalyzed transamination or deuterium exchange of the alpha-amino protons of glycine, but rather gives a quantitative yield of the two diastereomeric products of the formal Claisen-type addition of glycine to 5'-deoxypyridoxal. The unexpected extensive formation of these products reflects the extraordinary selectivity of the 5'-deoxypyridoxal-stabilized glycine enolate toward addition to the carbonyl group of 5'-deoxypyridoxal in the protic solvent water.

  12. Carnitine biosynthesis. Hydroxylation of N6-trimethyl-lysine to 3-hydroxy-N6-trimethyl-lysine.

    PubMed

    Sachan, D S; Hoppel, C L

    1980-05-15

    Rat kidney homogenates metabolize N6-trimethyl-lysine to N-trimethylammoniobutyrate, but not to carnitine. The first step in this conversion is the hydroxylation of trimethyl-lysine to form 3-hydroxy-N6-trimethyl-lysine. An assay system was developed in which hydroxylation of trimethyl-lysine is linear with respect to both time and homogenate protein concentration. The rate is 5 nmol of 3-hydroxy-N6-trimethyl-lysine formed/min per mg of homogenate protein. The cofactors required are ascorbate, alpha-oxoglutarate, FeSO4, and O2. Catalase and dithiothreitol give a 20% stimulation. Ca2+ produces a 2-fold increase in specific activity and cannot be replaced by Mg2+, Mn2+ or Zn2+. These last three bivalent cations lead to a decreased activity. Subcellular distribution studies demonstrate that trimethyl-lysine hydroxylase activity parallels the distribution profile of succinate dehydrogenase and citrate synthase. Thus trimethyl-lysine hydroxylase has a mitochondrial localization. Distribution of trimethyl-lysine hydroxylase activity between cortex and medulla of kidney if 67 and 33% respectively, similar to mitochondrial distribution.

  13. Atomic Layer Deposition of L-Alanine Polypeptide

    SciTech Connect

    Fu, Yaqin; Li, Binsong; Jiang, Ying-Bing; Dunphy, Darren R.; Tsai, Andy; Tam, Siu-Yue; Fan, Hongyou Y.; Zhang, Hongxia; Rogers, David; Rempe, Susan; Atanassov, Plamen; Cecchi, Joseph L.; Brinker, C. Jeffrey

    2014-10-30

    L-Alanine polypeptide thin films were synthesized via atomic layer deposition (ALD). Rather, instead of using an amino acid monomer as the precursor, an L-alanine amino acid derivatized with a protecting group was used to prevent self-polymerization, increase the vapor pressure, and allow linear cycle-by-cycle growth emblematic of ALD. Moreover, the successful deposition of a conformal polypeptide film has been confirmed by FTIR, TEM, and Mass Spectrometry, and the ALD process has been extended to polyvaline.

  14. Dual Genetic Encoding of Acetyl-lysine and Non-deacetylatable Thioacetyl-lysine Mediated by Flexizyme.

    PubMed

    Xiong, Hai; Reynolds, Noah M; Fan, Chenguang; Englert, Markus; Hoyer, Denton; Miller, Scott J; Söll, Dieter

    2016-03-14

    Acetylation of lysine residues is an important post-translational protein modification. Lysine acetylation in histones and its crosstalk with other post-translational modifications in histone and non-histone proteins are crucial to DNA replication, DNA repair, and transcriptional regulation. We incorporated acetyl-lysine (AcK) and the non-hydrolyzable thioacetyl-lysine (ThioAcK) into full-length proteins in vitro, mediated by flexizyme. ThioAcK and AcK were site-specifically incorporated at different lysine positions into human histone H3, either individually or in pairs. We demonstrate that the thioacetyl group in histone H3 could not be removed by the histone deacetylase sirtuin type 1. This method provides a powerful tool to study protein acetylation and its role in crosstalk between post-translational modifications. PMID:26914285

  15. New nonlinear optical material: glycine sodium nitrate

    NASA Astrophysics Data System (ADS)

    Bhat, M. Narayan; Dharmaprakash, S. M.

    2002-02-01

    Single crystals of glycine sodium nitrate (GSN), a semiorganic nonlinear optical material has been grown from solution by slow evaporation at ambient temperature. The solubility of GSN has been determined in water. Formation of the new crystal has been confirmed by powder XRD pattern and IR spectra. GSN crystallises in monoclinic system with cell parameters a=14.323(4) Å, b=5.2575(8) Å, c=9.1156(14) Å, β=119.030(18)°, space group Cc. The optical second harmonic generation conversion efficiency of GSN was determined using Kurtz powder technique and found to be two times that of KDP.

  16. Stereoselective aminoacylation of a dinucleoside monophosphate by the imidazolides of DL-alanine and N-(tert-butoxycarbonyl)-DL-alanine

    NASA Technical Reports Server (NTRS)

    Profy, A. T.; Usher, D. A.

    1984-01-01

    The aminoacylation of diinosine monophosphate was studied experimentally. When the acylating agent was the imidazolide of N-(tert-butoxycarbonyl)-DL-alanine, a 40 percent enantiomeric excess of the isomer was incorporated at the 2' site and the positions of equilibrium for the reversible 2'-3' migration reaction differed for the D and L enantiomers. The reactivity of the nucleoside hydroxyl groups was found to decrease on the order 2'(3') less than internal 2' and less than 5', and the extent of the reaction was affected by the concentration of the imidazole buffer. Reaction of IpI with imidazolide of unprotected DL-alanine, by contrast, led to an excess of the D isomer at the internal 2' site. Finally, reaction with the N-carboxy anhydride of DL-alanine occurred without stereoselection. These results are found to be relevant to the study of the evolution of optical chemical activity and the origin of genetically directed protein synthesis.

  17. [Regulation of key enzymes of L-alanine biosynthesis by Brevibacterium flavum producer strains].

    PubMed

    Melkonian, L O; Avetisova, G E; Ambartsumian, A A; Chakhalian, A Kh; Sagian, A S

    2013-01-01

    The mechanisms of L-alanine overproduction by Brevibacterium flavum producer strains were studied. It was shown that beta-CI-L-alanine is an inhibitor of some key enzymes involved in the synthesis of L-alanine, including alanine transaminase and valine-pyruvate transaminase. Two highly active B. flavum GL1 and GL1 8 producer strains, which are resistant to the inhibitory effect of beta-Cl-L-alanine, were obtained using a parental B. flavum AA5 producer strain, characterized by a reduced activity of alanine racemase (>or=98%). It was demonstrated that the increased L-alanine synthesis efficiency observed in the producer strains developed in this work is associated with the absence of inhibition of alanine transaminase by the end product of the biosynthesis reaction, as well as with the effect of derepression of both alanine transaminase and valine-pyruvate transaminase synthesis by the studied compound.

  18. cDNA cloning, primary structure and gene expression for H-protein, a component of the glycine-cleavage system (glycine decarboxylase) of pea (Pisum sativum) leaf mitochondria.

    PubMed Central

    Macherel, D; Lebrun, M; Gagnon, J; Neuburger, M; Douce, R

    1990-01-01

    We have isolated and characterized cDNA clones encoding the H-protein of the glycine-cleavage system of pea (Pisum sativum) leaf mitochondria. The deduced primary structure revealed that the 131-amino-acid polypeptide is cytoplasmically synthesized with a 34-amino-acid mitochondrial targeting peptide. The lipoate-binding site was assigned to be lysine-63, as deduced from a sequence comparison with several lipoate-bearing proteins. The expression of the gene encoding H-protein was shown to occur specifically in the leaf tissue, with light exerting an additional effect by increasing the mRNA levels severalfold. Two polyadenylation sites were found in the mRNA, and a single-copy gene encoding the H-protein was detected in pea genome. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:2363710

  19. The dietary lysine requirement of juvenile hybrid striped bass.

    PubMed

    Griffin, M E; Brown, P B; Grant, A L

    1992-06-01

    Two experiments were conducted to determine the dietary lysine requirement of juvenile hybrid striped bass (Morone saxatilis x M. chrysops). In both experiments the diets contained 35 g crude protein/100 g diet (10 g crude protein supplied by casein and gelatin and 25 g crude protein supplied by crystalline L-amino acids) and contained graded levels of L-lysine.HCl resulting in eight dietary treatments. Diets were fed to triplicate groups of fish and ranged in dietary lysine concentration from 1.2 to 2.6 g/100 g of the dry diet in Experiment 1 and from 0.8 to 2.2 g/100 g of the dry diet in Experiment 2. Weight gain and food efficiency data from Experiment 1 indicated the dietary lysine requirement to be between 1.2 and 1.4 g/100 g of the dry diet. Weight gain, food efficiency and serum lysine data from Experiment 2 confirmed the requirement to be between 1.2 and 1.4 g/100 g of the dry diet. Broken-line analysis of weight gain and food efficiency data from Experiment 2 indicated the dietary lysine requirement to be 1.4 +/- 0.2% of the dry diet, or 4.0 g/100 g of the dietary protein. Changes in the relative proportions of dietary lipid and carbohydrate between the two experiments, although maintaining similar gross energy levels, did not alter the lysine requirement estimate of juvenile hybrid striped bass.

  20. Eating a healthy lunch improves serum alanine aminotransferase activity

    PubMed Central

    2013-01-01

    Background Nutritional guidance and diet control play important roles in the treatment of obesity and non-alcoholic fatty liver. However, in Japan, nutritional guidance is difficult to provide in practice. Therefore, we evaluated the effects of providing the ‘once-a-day’ intervention of a healthy lunch on various metabolic parameters. Methods For a 1-month preparatory period, 10 subjects generally consumed the lunches that were provided by the worksite cafeteria. This was followed by a 1-week washout period, after which, the subjects consumed healthy, low-calorie, well-balanced lunches for a 1-month test period. After the preparatory and test periods, blood samples were obtained from all subjects. The serum levels of indices relevant to metabolic syndrome and fatty liver were measured. Results Serum alanine aminotransferase activity significantly decreased by 20.3% after the healthy intervention. However, the indices of metabolic syndrome did not significantly change. Analysis of the relationship between serum alanine aminotransferase activity and nutrient content indicated that the improvement of serum alanine aminotransferase status was due to the higher vegetable content and lower animal-source protein of the meals provided. Conclusions In summary, the ‘once-a-day’ intervention of providing a healthy lunch improved serum alanine aminotransferase status. A diet high in vegetables and low in animal-based protein is important in maintaining a healthy condition. PMID:24034595

  1. Formation of {gamma}-alumina nanorods in presence of alanine

    SciTech Connect

    Dabbagh, Hossein A.; Rasti, Elham; Yalfani, Mohammad S.; Medina, Francesc

    2011-02-15

    Graphical abstract: Nanorod aluminas with a possible hexagonal symmetry, high surface area and relatively narrow pore size distribution were obtained. Research highlights: {yields} Research highlights {yields} Boehmite was prepared using a green sol-gel process in the presence of alanine. {yields} Nanorod aluminas with a high surface area were obtained. {yields} Addition of alanine would shape the size of the holes and crevices. {yields} The morphologies of the nanorods were revealed by transmission electron microscope. -- Abstract: Boehmite and alumina nanostructures were prepared using a simple green sol-gel process in the presence of alanine in water medium at room temperature. The uncalcined (dried at 200 {sup o}C) and the calcined materials (at 500, 600 and 700 {sup o}C for 4 h) were characterized using XRD, TEM, SEM, N{sub 2} physisorption and TGA. Nanorod aluminas with a possible hexagonal symmetry, high surface area and relatively narrow pore size distribution were obtained. The surface area was enhanced and crystallization was retarded as the alanine content increased. The morphologies of the nanoparticles and nanorods were revealed by a transmission electron microscope (TEM).

  2. Spectrophotometric readout for an alanine dosimeter for food irradiation applications

    NASA Astrophysics Data System (ADS)

    Ebraheem, S.; Beshir, W. B.; Eid, S.; Sobhy, R.; Kovács, A.

    2003-06-01

    The alanine-electron spin resonance (EPR) readout system is well known as a reference and transfer dosimetry system for the evaluation of high doses in radiation processing. The high cost of an EPR/alanine dosimetry system is a serious handicap for large-scale routine application in irradiation facilities. In this study, the use of a complex produced by dissolving irradiated L-alanine in 1,4-phenyl diammonium dichloride solution was investigated for dosimetry purposes. This complex—having a purple colour—has an increasing absorbance with increasing dose in the range of 1-20 kGy. The applicability of spectrophotometric evaluation was studied by measuring the absorbance intensity of this complex at 360 and 505 nm, respectively. Fluorimetric evaluation was also investigated by measuring the emission of the complex at 435 nm as a function of dose. The present method is easy for routine application. The effect of the dye concentration as well as the suitable amount of irradiated alanine has been studied. With respect to routine application, the stability of the product complex after its formation was also investigated.

  3. Genome Duplication in Soybean (Glycine Subgenus Soja)

    PubMed Central

    Shoemaker, R. C.; Polzin, K.; Labate, J.; Specht, J.; Brummer, E. C.; Olson, T.; Young, N.; Concibido, V.; Wilcox, J.; Tamulonis, J. P.; Kochert, G.; Boerma, H. R.

    1996-01-01

    Restriction fragment length polymorphism mapping data from nine populations (Glycine max X G. soja and G. max X G. max) of the Glycine subgenus soja genome led to the identification of many duplicated segments of the genome. Linkage groups contained up to 33 markers that were duplicated on other linkage groups. The size of homoeologous regions ranged from 1.5 to 106.4 cM, with an average size of 45.3 cM. We observed segments in the soybean genome that were present in as many as six copies with an average of 2.55 duplications per segment. The presence of nested duplications suggests that at least one of the original genomes may have undergone an additional round of tetraploidization. Tetraploidization, along with large internal duplications, accounts for the highly duplicated nature of the genome of the subgenus. Quantitative trait loci for seed protein and oil showed correspondence across homoeologous regions, suggesting that the genes or gene families contributing to seed composition have retained similar functions throughout the evolution of the chromosomes. PMID:8878696

  4. Basis for the equilibrium constant in the interconversion of l-lysine and l-beta-lysine by lysine 2,3-aminomutase.

    PubMed

    Chen, Dawei; Tanem, Justinn; Frey, Perry A

    2007-02-01

    l-beta-lysine and beta-glutamate are produced by the actions of lysine 2,3-aminomutase and glutamate 2,3-aminomutase, respectively. The pK(a) values have been titrimetrically measured and are for l-beta-lysine: pK(1)=3.25 (carboxyl), pK(2)=9.30 (beta-aminium), and pK(3)=10.5 (epsilon-aminium). For beta-glutamate the values are pK(1)=3.13 (carboxyl), pK(2)=3.73 (carboxyl), and pK(3)=10.1 (beta-aminium). The equilibrium constants for reactions of 2,3-aminomutases favor the beta-isomers. The pH and temperature dependencies of K(eq) have been measured for the reaction of lysine 2,3-aminomutase to determine the basis for preferential formation of beta-lysine. The value of K(eq) (8.5 at 37 degrees C) is independent of pH between pH 6 and pH 11; ruling out differences in pK-values as the basis for the equilibrium constant. The K(eq)-value is temperature-dependent and ranges from 10.9 at 4 degrees C to 6.8 at 65 degrees C. The linear van't Hoff plot shows the reaction to be enthalpy-driven, with DeltaH degrees =-1.4 kcal mol(-1) and DeltaS degrees =-0.25 cal deg(-1) mol(-1). Exothermicity is attributed to the greater strength of the bond C(beta)-N(beta) in l-beta-lysine than C(alpha)-N(alpha) in l-lysine, and this should hold for other amino acids.

  5. Cadaverine: a lysine catabolite involved in plant growth and development.

    PubMed

    Tomar, Pushpa C; Lakra, Nita; Mishra, S N

    2013-10-01

    The cadaverine (Cad) a diamine, imino compound produced as a lysine catabolite is also implicated in growth and development of plants depending on environmental condition. This lysine catabolism is catalyzed by lysine decarboxylase, which is developmentally regulated. However, the limited role of Cad in plants is reported, this review is tempted to focus the metabolism and its regulation, transport and responses, interaction and cross talks in higher plants. The Cad varied presence in plant parts/products suggests it as a potential candidate for taxonomic marker as well as for commercial exploitation along with growth and development.

  6. Examining the Impact of Gene Variants on Histone Lysine Methylation

    PubMed Central

    Van Rechem, Capucine; Whetstine, Johnathan R.

    2015-01-01

    In recent years, there has been a boom in the amount of genome-wide sequencing data that has uncovered important and unappreciated links between certain genes, families of genes and enzymatic processes and diseases such as cancer. Such studies have highlighted the impact that chromatin modifying enzymes could have in cancer and other genetic diseases. In this review, we summarize characterized mutations and single nucleotide polymorphisms (SNPs) in histone lysine methyltransferases (KMTs), histone lysine demethylases (KDMs) and histones. We primarily focus on variants with strong disease correlations and discuss how they could impact histone lysine methylation dynamics and gene regulation. PMID:24859469

  7. New soybean accessions identified with resistance to Heterodera glycines populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean Cyst Nematode (SCN, Heterodera glycines Ichinohe) is a serious root-parasite of soybean [Glycine max (L.) Merr.], in USA and worldwide. Annual yield losses in USA are estimated to be nearly $1 billion. These losses have remained stable at current levels with the use of resistant cultivars bu...

  8. New soybean accessions evaluated for reaction to Heterodera glycines populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean Cyst Nematode (SCN, Heterodera glycines Ichinohe) is a serious pest of soybean [Glycine max (L.) Merr.] in the USA and worldwide. Annual yield losses in the USA are estimated to be over $1 billion. These losses have remained stable with the use of resistant cultivars but over time nematode...

  9. Glycine receptors are functionally expressed on bullfrog retinal cone photoreceptors.

    PubMed

    Ge, L-H; Lee, S-C; Liu, J; Yang, X-L

    2007-04-25

    Using immunocytochemical and whole cell recording techniques, we examined expression of glycine receptors on bullfrog retinal cone photoreceptors. Immunofluorescence double labeling experiments conducted on retinal sections and isolated cell preparations showed that terminals and inner segments of cones were immunoreactive to both alpha1 and beta subunits of glycine receptors. Moreover, application of glycine induced a sustained inward current from isolated cones, which increased in amplitude in a dose-dependent manner, with an EC50 (concentration of glycine producing half-maximal response) of 67.3+/-4.9 microM, and the current was blocked by the glycine receptor antagonist strychnine, but not 5,7-dichlorokynurenic acid (DCKA) of 200 microM, a blocker of the glycine recognition site at the N-methyl-D-aspartate (NMDA) receptor. The glycine-induced current reversed in polarity at a potential close to the calculated chloride equilibrium potential, and the reversal potential was changed as a function of the extracellular chloride concentration. These results suggest that strychnine-sensitive glycine receptors are functionally expressed in bullfrog cones, which may mediate signal feedback from glycinergic interplexiform cells to cones in the outer retina. PMID:17346892

  10. Photorespiratory Glycine Metabolism in Corn Leaf Discs 1

    PubMed Central

    Marek, Laura F.; Stewart, Cecil R.

    1983-01-01

    The total glycine pool in Zea mays L. Mo17×B73 leaf discs was measured after steady state photosynthesis in 50%, 21% and 1% O2. The glycine pool was a function of O2 concentration; it was largest in 50% O2 and smallest in 1% O2. Incubation of discs with methyl hydroxybutynoic acid in 21% O2 in the light caused an accumulation of carbon in glycolate. This accumulation was O2 sensitive, as subsequent photosynthetic periods in 50%, 21%, and 1% O2 resulted in the largest glycolate pool in 50% O2 and the smallest in 1% O2. At the same time, the O2-dependent increase in the glycine pool was eliminated. After untreated leaf discs reached steady state photosynthesis in 21% O2, measurements made subsequently in darkness, or in 1% O2 in the light, showed that the glycine pool decreased. On the basis of these results, we conclude that a major portion of the total glycine pool in corn is an intermediate in the photorespiratory glycolate pathway. Considering both the rate of decay of the glycine pool in the dark and the rate of decay of the glycine pool after changing from 21% to 1% O2, we conclude that this glycine pool is turning over slowly. PMID:16663158

  11. Biodistribution of 99mTc Tricarbonyl Glycine Oligomers

    PubMed Central

    Jang, Beom-Su; Lee, Joo-Sang; Rho, Jong Kook

    2012-01-01

    99mTc tricarbonyl glycine monomers, trimers, and pentamers were synthesized and evaluated for their radiolabeling and in vivo distribution characteristics. We synthesized a 99mTc-tricarbonyl precursor with a low oxidation state (I). 99mTc(CO)3(H2O)3 + was then made to react with monomeric and oligomeric glycine for the development of bifunctional chelating sequences for biomolecules. Labeling yields of 99mTc-tricarbonyl glycine monomers and oligomers were checked by high-performance liquid chromatography. The labeling yields of 99mTc-tricarbonyl glycine and glycine oligomers were more than 95%. We evaluated the characteristics of 99mTc-tricarbonyl glycine oligomers by carrying out a lipophilicity test and an imaging study. The octanol-water partition coefficient of 99mTc tricarbonyl glycine oligomers indicated hydrophilic properties. Single-photon emission computed tomography imaging of 99mTc-tricarbonyl glycine oligomers showed rapid renal excretion through the kidneys with a low uptake in the liver, especially of 99mTc tricarbonyl triglycine. Furthermore, we verified that the addition of triglycine to prototype biomolecules (AGRGDS and RRPYIL) results in the improvement of radiolabeling yield. From these results, we conclude that triglycine has good characteristics for use as a bifunctional chelating sequence for a 99mTc-tricarbonyl- based biomolecular imaging probe. PMID:24278615

  12. PKC-Dependent GlyT1 Ubiquitination Occurs Independent of Phosphorylation: Inespecificity in Lysine Selection for Ubiquitination

    PubMed Central

    Barrera, Susana P.; Castrejon-Tellez, Vicente; Trinidad, Margarita; Robles-Escajeda, Elisa; Vargas-Medrano, Javier; Varela-Ramirez, Armando; Miranda, Manuel

    2015-01-01

    Neurotransmitter transporter ubiquitination is emerging as the main mechanism for endocytosis and sorting of cargo into lysosomes. In this study, we demonstrate PKC-dependent ubiquitination of three different isoforms of the glycine transporter 1 (GlyT1). Incubation of cells expressing transporter with the PKC activator phorbol ester induced a dramatic, time-dependent increase in GlyT1 ubiquitination, followed by accumulation of GlyT1 in EEA1 positive early endosomes. This occurred via a mechanism that was abolished by inhibition of PKC. GlyT1 endocytosis was confirmed in both retinal sections and primary cultures of mouse amacrine neurons. Replacement of only all lysines in the N-and C-termini to arginines prevented ubiquitination and endocytosis, displaying redundancy in the mechanism of ubiquitination. Interestingly, a 40–50% reduction in glycine uptake was detected in phorbol-ester stimulated cells expressing the WT-GlyT1, whereas no significant change was for the mutant protein, demonstrating that endocytosis participates in the reduction of uptake. Consistent with previous findings for the dopamine transporter DAT, ubiquitination of GlyT1 tails functions as sorting signal to deliver transporter into the lysosome and removal of ubiquitination sites dramatically attenuated the rate of GlyT1 degradation. Finally, we showed for the first time that PKC-dependent GlyT1 phosphorylation was not affected by removal of ubiquitination sites, suggesting separate PKC-dependent signaling events for these posttranslational modifications. PMID:26418248

  13. The unresolved puzzle why alanine extensions cause disease.

    PubMed

    Winter, Reno; Liebold, Jens; Schwarz, Elisabeth

    2013-08-01

    The prospective increase in life expectancy will be accompanied by a rise in the number of elderly people who suffer from ill health caused by old age. Many diseases caused by aging are protein misfolding diseases. The molecular mechanisms underlying these disorders receive constant scientific interest. In addition to old age, mutations also cause congenital protein misfolding disorders. Chorea Huntington, one of the most well-known examples, is caused by triplet extensions that can lead to more than 100 glutamines in the N-terminal region of huntingtin, accompanied by huntingtin aggregation. So far, nine disease-associated triplet extensions have also been described for alanine codons. The extensions lead primarily to skeletal malformations. Eight of these proteins represent transcription factors, while the nuclear poly-adenylate binding protein 1, PABPN1, is an RNA binding protein. Additional alanines in PABPN1 lead to the disease oculopharyngeal muscular dystrophy (OPMD). The alanine extension affects the N-terminal domain of the protein, which has been shown to lack tertiary contacts. Biochemical analyses of the N-terminal domain revealed an alanine-dependent fibril formation. However, fibril formation of full-length protein did not recapitulate the findings of the N-terminal domain. Fibril formation of intact PABPN1 was independent of the alanine segment, and the fibrils displayed biochemical properties that were completely different from those of the N-terminal domain. Although intranuclear inclusions have been shown to represent the histochemical hallmark of OPMD, their role in pathogenesis is currently unclear. Several cell culture and animal models have been generated to study the molecular processes involved in OPMD. These studies revealed a number of promising future therapeutic strategies that could one day improve the quality of life for the patients.

  14. Beta-alanine supplementation in high-intensity exercise.

    PubMed

    Harris, Roger C; Sale, Craig

    2012-01-01

    Glycolysis involves the oxidation of two neutral hydroxyl groups on each glycosyl (or glucosyl) unit metabolised, yielding two carboxylic acid groups. During low-intensity exercise these, along with the remainder of the carbon skeleton, are further oxidised to CO(2) and water. But during high-intensity exercise a major portion (and where blood flow is impaired, then most) is accumulated as lactate anions and H(+). The accumulation of H(+) has deleterious effects on muscle function, ultimately impairing force production and contributing to fatigue. Regulation of intracellular pH is achieved over time by export of H(+) out of the muscle, although physicochemical buffers in the muscle provide the first line of defence against H(+) accumulation. In order to be effective during high-intensity exercise, buffers need to be present in high concentrations in muscle and have pK(a)s within the intracellular exercise pH transit range. Carnosine (β-alanyl-L-histidine) is ideal for this role given that it occurs in millimolar concentrations within the skeletal muscle and has a pK(a) of 6.83. Carnosine is a cytoplasmic dipeptide formed by bonding histidine and β-alanine in a reaction catalysed by carnosine synthase, although it is the availability of β-alanine, obtained in small amounts from hepatic synthesis and potentially in greater amounts from the diet that is limiting to synthesis. Increasing muscle carnosine through increased dietary intake of β-alanine will increase the intracellular buffering capacity, which in turn might be expected to increase high-intensity exercise capacity and performance where this is pH limited. In this study we review the role of muscle carnosine as an H(+) buffer, the regulation of muscle carnosine by β-alanine, and the available evidence relating to the effects of β-alanine supplementation on muscle carnosine synthesis and the subsequent effects of this on high-intensity exercise capacity and performance.

  15. HDAC inhibitors induce global changes in histone lysine and arginine methylation and alter expression of lysine demethylases.

    PubMed

    Lillico, Ryan; Sobral, Marina Gomez; Stesco, Nicholas; Lakowski, Ted M

    2016-02-01

    Histone deacetylase (HDAC) inhibitors are cancer treatments that inhibit the removal of the epigenetic modification acetyllysine on histones, resulting in altered gene expression. Such changes in expression may influence other histone epigenetic modifications. We describe a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantify lysine acetylation and methylation and arginine methylation on histones extracted from cultured cells treated with HDAC inhibitors. The HDAC inhibitors vorinostat, mocetinostat and entinostat induced 400-600% hyperacetylation in HEK 293 and K562 cells. All HDAC inhibitors decreased histone methylarginines in HEK 293 cells but entinostat produced dose dependent reductions in asymmetric dimethylarginine, not observed in K562 cells. Vorinostat produced increases in histone lysine methylation and decreased expression of some lysine demethylases (KDM), measured by quantitative PCR. Entinostat had variable effects on lysine methylation and decreased expression of some KDM while increasing expression of others. Mocetinostat produced dose dependent increases in histone lysine methylation by LC-MS/MS. This was corroborated with a multiplex colorimetric assay showing increases in histone H3 lysine 4, 9, 27, 36 and 79 methylation. Increases in lysine methylation were correlated with dose dependent decreases in the expression of seven KDM. Mocetinostat functions as an HDAC inhibitor and a de facto KDM inhibitor.

  16. Cytochrome c catalyzes the in vitro synthesis of arachidonoyl glycine.

    PubMed

    McCue, Jeffrey M; Driscoll, William J; Mueller, Gregory P

    2008-01-11

    Long chain fatty acyl glycines are an emerging class of biologically active molecules that occur naturally and produce a wide array of physiological effects. Their biosynthetic pathway, however, remains unknown. Here we report that cytochrome c catalyzes the synthesis of N-arachidonoyl glycine (NAGly) from arachidonoyl coenzyme A and glycine in the presence of hydrogen peroxide. The identity of the NAGly product was verified by isotope labeling and mass analysis. Other heme-containing proteins, hemoglobin and myoglobin, were considerably less effective in generating arachidonoyl glycine as compared to cytochrome c. The reaction catalyzed by cytochrome c in vitro points to its potential role in the formation of NAGly and other long chain fatty acyl glycines in vivo.

  17. Cytochrome c catalyzes the in vitro synthesis of arachidonoyl glycine

    SciTech Connect

    McCue, Jeffrey M.; Driscoll, William J.; Mueller, Gregory P.

    2008-01-11

    Long chain fatty acyl glycines are an emerging class of biologically active molecules that occur naturally and produce a wide array of physiological effects. Their biosynthetic pathway, however, remains unknown. Here we report that cytochrome c catalyzes the synthesis of N-arachidonoyl glycine (NAGly) from arachidonoyl coenzyme A and glycine in the presence of hydrogen peroxide. The identity of the NAGly product was verified by isotope labeling and mass analysis. Other heme-containing proteins, hemoglobin and myoglobin, were considerably less effective in generating arachidonoyl glycine as compared to cytochrome c. The reaction catalyzed by cytochrome c in vitro points to its potential role in the formation of NAGly and other long chain fatty acyl glycines in vivo.

  18. Alanine radicals, part 3: properties of the components contributing to the EPR spectrum of X-irradiated alanine dosimeters.

    PubMed

    Malinen, Eirik; Heydari, Mojgan Z; Sagstuen, Einar; Hole, Eli O

    2003-01-01

    The amino acid l-alpha-alanine has attracted considerable interest for use in radiation dosimetry and has been formally accepted as a secondary standard for high-dose and transfer dosimetry. Recent results have shown that the alanine EPR spectrum consists of contributions from three different radicals. A set of benchmark spectra describing the essential spectral features of these three radical components was used for reconstructions of the experimental spectra. In the present work, these basis spectra have been used to investigate the differential effects of variations in radiation doses and microwave power, as well as the dependence upon temperature annealing and UV illumination. The results presented here, based solely on relatively low-energy (60-80 keV) X rays, indicate that the three components behave very similarly with respect to radiation dose at room temperature. However, with respect to the thermal annealing/fading behavior and microwave power saturation properties, the three species behave significantly differently. It is concluded that even if it is now realized that three different radicals contribute to the composite EPR alanine spectrum, this has a minor impact on the established protocols for present-day applications (high-dose) of EPR/alanine dosimetry. However, some care should be exercised when e.g. constructing calibration curves, since fading and power saturation behavior may vary over the dose range in question. New results from UV-illumination experiments suggest a possible procedure for experimental spectral separation of the EPR signals due to the three radicals.

  19. Nitrate and amino acid availability affects glycine betaine and mycosporine-2-glycine in response to changes of salinity in a halotolerant cyanobacterium Aphanothece halophytica.

    PubMed

    Waditee-Sirisattha, Rungaroon; Kageyama, Hakuto; Fukaya, Minoru; Rai, Vandna; Takabe, Teruhiro

    2015-12-01

    A halotolerant cyanobacterium Aphanothece halophytica thrives in extreme salinity with accumulation of a potent osmoprotectant glycine betaine. Recently, this cyanobacterium was shown to accumulate sunscreen molecule mycosporine-2-glycine significantly at high salinity. In this study, we investigated effects of nitrate and amino acid provision on the accumulation of glycine betaine and mycosporine-2-glycine. With elevated nitrate concentrations at high salinity, intracellular levels of both metabolites were enhanced. Six-fold high nitrate concentration increased the relative amounts of glycine betaine and mycosporine-2-glycine to be 1.5 and 2.0 folds compared with control condition : Increased levels were time- and dose-dependent manner. Exogenous supply of glycine/serine at high salinity resulted in the similar trends as observed in excess nitrate experiment. Intracellular level of glycine betaine increased ∼1.6 folds with glycine/serine supplementation. These supplementations also caused the increased level of mycosporine-2-glycine, namely 1.4 and 2 folds by glycine and serine, respectively. The transcription of glycine betaine and mycosporine-2-glycine biosynthetic genes was strongly induced under high-nitrate-salt condition. These results suggest the dependence of glycine betaine and mycosporine-2-glycine productions on substrate availability, and the effect of nitrate was possibly associated with stimulation of osmoprotectant increment in this extremophile. PMID:26474598

  20. Nitrate and amino acid availability affects glycine betaine and mycosporine-2-glycine in response to changes of salinity in a halotolerant cyanobacterium Aphanothece halophytica.

    PubMed

    Waditee-Sirisattha, Rungaroon; Kageyama, Hakuto; Fukaya, Minoru; Rai, Vandna; Takabe, Teruhiro

    2015-12-01

    A halotolerant cyanobacterium Aphanothece halophytica thrives in extreme salinity with accumulation of a potent osmoprotectant glycine betaine. Recently, this cyanobacterium was shown to accumulate sunscreen molecule mycosporine-2-glycine significantly at high salinity. In this study, we investigated effects of nitrate and amino acid provision on the accumulation of glycine betaine and mycosporine-2-glycine. With elevated nitrate concentrations at high salinity, intracellular levels of both metabolites were enhanced. Six-fold high nitrate concentration increased the relative amounts of glycine betaine and mycosporine-2-glycine to be 1.5 and 2.0 folds compared with control condition : Increased levels were time- and dose-dependent manner. Exogenous supply of glycine/serine at high salinity resulted in the similar trends as observed in excess nitrate experiment. Intracellular level of glycine betaine increased ∼1.6 folds with glycine/serine supplementation. These supplementations also caused the increased level of mycosporine-2-glycine, namely 1.4 and 2 folds by glycine and serine, respectively. The transcription of glycine betaine and mycosporine-2-glycine biosynthetic genes was strongly induced under high-nitrate-salt condition. These results suggest the dependence of glycine betaine and mycosporine-2-glycine productions on substrate availability, and the effect of nitrate was possibly associated with stimulation of osmoprotectant increment in this extremophile.

  1. Glycine phases formed from frozen aqueous solutions: Revisited

    SciTech Connect

    Surovtsev, N. V.; Adichtchev, S. V.; Malinovsky, V. K.; Ogienko, A. G.; Manakov, A. Yu.; Drebushchak, V. A.; Ancharov, A. I.; Boldyreva, E. V.; Yunoshev, A. S.

    2012-08-14

    Glycine phases formed when aqueous solutions were frozen and subsequently heated under different conditions were studied by Raman scattering, x-ray diffraction, and differential scanning calorimetry (DSC) techniques. Crystallization of ice I{sub h} was observed in all the cases. On cooling at the rates of 0.5 K/min and 5 K/min, glassy glycine was formed as an intermediate phase which lived about 1 min or less only, and then transformed into {beta}-polymorph of glycine. Quench cooling of glycine solutions (15% w/w) in liquid nitrogen resulted in the formation of a mixture of crystalline water ice I{sub h} and a glassy glycine, which could be preserved at cryogenic temperatures (80 K) for an indefinitely long time. This mixture remained also quite stable for some time after heating above the cryogenic temperature. Subsequent heating under various conditions resulted in the transformation of the glycine glass into an unknown crystalline phase (glycine 'X-phase') at 209-216 K, which at 218-226 K transformed into {beta}-polymorph of glycine. The 'X-phase' was characterized by Raman spectroscopy; it could be obtained in noticeable amounts using a special preparation technique and tentatively characterized by x-ray powder diffraction (P2, a= 6.648 A, b= 25.867 A, c= 5.610 A, {beta}= 113.12 Masculine-Ordinal-Indicator ); the formation of 'X-phase' from the glycine glassy phase and its transformation into {beta}-polymorph were followed by DSC. Raman scattering technique with its power for unambiguous identification of the crystalline and glassy polymorphs without limitation on the crystallite size helped us to follow the phase transformations during quenching, heating, and annealing. The experimental findings are considered in relation to the problem of control of glycine polymorphism on crystallization.

  2. Anti-angiogenic poly-L-lysine dendrimer binds heparin and neutralizes its activity.

    PubMed

    Al-Jamal, Khuloud T; Al-Jamal, Wafa T; Kostarelos, Kostas; Turton, John A; Florence, Alexander T

    2012-01-01

    The interaction between heparin, a polyanion, and a polycationic dendrimer with a glycine core and lysine branches Gly-Lys63(NH2)64 has been investigated. Complexation was assessed by transmission electron microscopy, size and zeta potential measurements, methylene blue spectroscopy, and measuring the anti-coagulant activity of heparin in vitro and in vivo. Complete association between the heparin and the dendrimer occurred a 1:1 mass ratio (2:1 molar ratio or +/-charge ratio) with formation of quasi-spherical complexes in the size range of 99-147 nm with a negative zeta potential (-47 mV). Heparin-dendrimer (dendriplex) formation led to a concentration-dependent neutralization of the anticoagulant activity of heparin in human plasma in vitro, with complete loss of activity at a 1:1 mass ratio. The anticoagulant activity of the dendriplexes in Sprague-Dawley rats was also evaluated after subcutaneous administration with uncomplexed heparin as a comparator. The in vivo anticoagulant activity of heparin in plasma, evaluated using an antifactor Xa assay, was abolished after complexation. Measurement of [(3)H]-heparin showed that both free heparin and dendriplexes were present in plasma and in organs. Such data confirmed stably the formation of dendriplexes, which could be essential in developing novel dendrimer-based anti-angiogenic therapeutics suitable in combinatory therapeutics and theranostics. PMID:25755989

  3. Structure of the Mycobacterium tuberculosis D-Alanine:D-Alanine Ligase, a Target of the Antituberculosis Drug D-Cycloserine

    SciTech Connect

    Bruning, John B.; Murillo, Ana C.; Chacon, Ofelia; Barletta, Raúl G.; Sacchettini, James C.

    2011-09-28

    D-Alanine:D-alanine ligase (EC 6.3.2.4; Ddl) catalyzes the ATP-driven ligation of two D-alanine (D-Ala) molecules to form the D-alanyl:D-alanine dipeptide. This molecule is a key building block in peptidoglycan biosynthesis, making Ddl an attractive target for drug development. D-Cycloserine (DCS), an analog of D-Ala and a prototype Ddl inhibitor, has shown promise for the treatment of tuberculosis. Here, we report the crystal structure of Mycobacterium tuberculosis Ddl at a resolution of 2.1 {angstrom}. This structure indicates that Ddl is a dimer and consists of three discrete domains; the ligand binding cavity is at the intersection of all three domains and conjoined by several loop regions. The M. tuberculosis apo Ddl structure shows a novel conformation that has not yet been observed in Ddl enzymes from other species. The nucleotide and D-alanine binding pockets are flexible, requiring significant structural rearrangement of the bordering regions for entry and binding of both ATP and D-Ala molecules. Solution affinity and kinetic studies showed that DCS interacts with Ddl in a manner similar to that observed for D-Ala. Each ligand binds to two binding sites that have significant differences in affinity, with the first binding site exhibiting high affinity. DCS inhibits the enzyme, with a 50% inhibitory concentration (IC{sub 50}) of 0.37 mM under standard assay conditions, implicating a preferential and weak inhibition at the second, lower-affinity binding site. Moreover, DCS binding is tighter at higher ATP concentrations. The crystal structure illustrates potential drugable sites that may result in the development of more-effective Ddl inhibitors.

  4. Kinetic mechanism and inhibition of Mycobacterium tuberculosis D-alanine:D-alanine ligase by the antibiotic D-cycloserine.

    PubMed

    Prosser, Gareth A; de Carvalho, Luiz Pedro S

    2013-02-01

    D-cycloserine (DCS) is an antibiotic that is currently used in second-line treatment of tuberculosis. DCS is a structural analogue of D-alanine, and targets two enzymes involved in the cytosolic stages of peptidoglycan synthesis: alanine racemase (Alr) and D-alanine:D-alanine ligase (Ddl). The mechanisms of inhibition of DCS have been well-assessed using Alr and Ddl enzymes from various bacterial species, but little is known regarding the interactions of DCS with the mycobacterial orthologues of these enzymes. We have over-expressed and purified recombinant Mycobacterium tuberculosis Ddl (MtDdl; Rv2981c), and report a kinetic examination of the enzyme with both its native substrate and DCS. MtDdl is activated by K(+), follows an ordered ter ter mechanism and displays distinct affinities for D-Ala at each D-Ala binding site (K(m,D-Ala1) = 0.075 mm, K(m,D-Ala2) = 3.6 mm). ATP is the first substrate to bind and is necessary for subsequent binding of D-alanine or DCS. The pH dependence of MtDdl kinetic parameters indicate that general base chemistry is involved in the catalytic step. DCS was found to competitively inhibit D-Ala binding at both MtDdl D-Ala sites with equal affinity (K(i,DCS1) = 14 μm, K(i,DCS2) = 25 μm); however, each enzyme active site can only accommodate a single DCS molecule at a given time. The pH dependence of K(i,DCS2) revealed a loss of DCS binding affinity at high pH (pK(a) = 7.5), suggesting that DCS binds optimally in the zwitterionic form. The results of this study may assist in the design and development of novel Ddl-specific inhibitors for use as anti-mycobacterial agents.

  5. Identification of lysine 153 as a functionally important residue in UDP-galactose 4-epimerase from Escherichia coli.

    PubMed

    Swanson, B A; Frey, P A

    1993-12-01

    The role of lysine 153 in the action of UDP-galactose 4-epimerase from Escherichia coli has been investigated by site specific mutagenesis and kinetic and spectrophotometric analysis of the mutant enzymes. The crystal structure of UDP-galactose 4-epimerase shows that the binding of NAD+ to the coenzyme site includes the hydrogen bonded interaction of the epsilon-ammonium group of lysine 153 with the 2'- and 3'-hydroxyl groups of the nicotinamide riboside. Mutation of this residue to methionine or alanine decreases the catalytic activity of the enzyme by a factor of more than 10(3). The NAD+ associated with the wild type enzyme is subject to UMP-dependent reduction by sugars such as glucose and arabinose, but the mutant proteins K153M and K153A are not reduced by sugars in the presence or absence of UMP. NAD+ associated with the wild type enzyme is also subject to UMP-dependent reduction by sodium cyanoborohydride. However, although the mutant proteins bind UMP very well, the rate at which NAD+ associated with them is reduced by sodium cyanoborohydride is almost insensitive to the presence of UMP. The purified wild type enzyme contains significant amounts of NADH bound to the coenzyme site; however, the purified mutants K153M and K153A contain very little NADH. We conclude that lysine 153 plays an important role in increasing the chemical reactivity of enzyme-bound NAD+ in the uridine nucleotide-dependent conformational change associated with reductive inactivation and the catalytic activity of UDP-galactose 4-epimerase.

  6. Lysine fatty acylation promotes lysosomal targeting of TNF-α

    PubMed Central

    Jiang, Hong; Zhang, Xiaoyu; Lin, Hening

    2016-01-01

    Tumor necrosis factor-α (TNF-α) is a proinflammation cytokine secreted by various cells. Understanding its secretive pathway is important to understand the biological functions of TNF-α and diseases associated with TNF-α. TNF-α is one of the first proteins known be modified by lysine fatty acylation (e.g. myristoylation). We previously demonstrated that SIRT6, a member of the mammalian sirtuin family of enzymes, can remove the fatty acyl modification on TNF-α and promote its secretion. However, the mechanistic details about how lysine fatty acylation regulates TNF-α secretion have been unknown. Here we present experimental data supporting that lysine fatty acylation promotes lysosomal targeting of TNF-α. The result is an important first step toward understanding the biological functions of lysine fatty acylation. PMID:27079798

  7. Data detailing the platelet acetyl-lysine proteome

    PubMed Central

    Aslan, Joseph E.; David, Larry L.; McCarty, Owen J.T.

    2015-01-01

    Here we detail proteomics data that describe the acetyl-lysine proteome of blood platelets (Aslan et al., 2015 [1]). An affinity purification – mass spectrometry (AP-MS) approach was used to identify proteins modified by Nε-lysine acetylation in quiescent, washed human platelets. The data provide insights into potential regulatory mechanisms of platelet function mediated by protein lysine acetylation. Additionally, as platelets are anucleate and lack histone proteins, they offer a unique and valuable system to study the regulation of cytosolic proteins by lysine acetylation. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (Vizcaino et al., 2014 [2]) via with PRIDE partner repository with the dataset identifier PXD002332. PMID:26904711

  8. Data detailing the platelet acetyl-lysine proteome.

    PubMed

    Aslan, Joseph E; David, Larry L; McCarty, Owen J T

    2015-12-01

    Here we detail proteomics data that describe the acetyl-lysine proteome of blood platelets (Aslan et al., 2015 [1]). An affinity purification - mass spectrometry (AP-MS) approach was used to identify proteins modified by Nε-lysine acetylation in quiescent, washed human platelets. The data provide insights into potential regulatory mechanisms of platelet function mediated by protein lysine acetylation. Additionally, as platelets are anucleate and lack histone proteins, they offer a unique and valuable system to study the regulation of cytosolic proteins by lysine acetylation. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (Vizcaino et al., 2014 [2]) via with PRIDE partner repository with the dataset identifier PXD002332. PMID:26904711

  9. A common molecular basis for exogenous and endogenous cannabinoid potentiation of glycine receptors.

    PubMed

    Xiong, Wei; Wu, Xiongwu; Li, Fuying; Cheng, Kejun; Rice, Kenner C; Lovinger, David M; Zhang, Li

    2012-04-11

    Both exogenous and endogenous cannabinoids can allosterically modulate glycine receptors (GlyRs). However, little is known about the molecular basis of cannabinoid-GlyR interactions. Here we report that sustained incubation with the endocannabinoid anandamide (AEA) substantially increased the amplitude of glycine-activated current in both rat cultured spinal neurons and in HEK-293 cells expressing human α1, rat α2 and α3 GlyRs. While the α1 and α3 subunits were highly sensitive to AEA-induced potentiation, the α2 subunit was relatively insensitive to AEA. Switching a serine at 296 and 307 in the TM3 (transmembrane domain 3) of the α1 and α3 subunits with an alanine (A) at the equivalent position in the α2 subunit converted the α1/α3 AEA-sensitive receptors to sensitivity resembling that of α2. The S296 residue is also critical for exogenous cannabinoid-induced potentiation of I(Gly). The magnitude of AEA potentiation decreased with removal of either the hydroxyl or oxygen groups on AEA. While desoxy-AEA was significantly less efficacious in potentiating I(Gly), desoxy-AEA inhibited potentiation produced by both Δ(9)-tetrahydrocannabinol (THC), a major psychoactive component of marijuana, and AEA. Similarly, didesoxy-THC, a modified THC with removal of both hydroxyl/oxygen groups, did not affect I(Gly) when applied alone but inhibited the potentiation of I(Gly) induced by AEA and THC. These findings suggest that exogenous and endogenous cannabinoids potentiate GlyRs via a hydrogen bonding-like interaction. Such a specific interaction likely stems from a common molecular basis involving the S296 residue in the TM3 of the α1 and α3 subunits. PMID:22496565

  10. Insights into the regulatory landscape of the lysine riboswitch

    PubMed Central

    Garst, Andrew D.; Porter, Ely B.; Batey, Robert T.

    2012-01-01

    A prevalent means of regulating gene expression in bacteria is by riboswitches found within mRNA leader sequences. Like protein repressors these RNA elements must bind an effector molecule with high specificity against a background of other cellular metabolites of similar chemical structure to elicit the appropriate regulatory response. Current crystal structures of the lysine riboswitch do not provide a complete understanding of selectivity as recognition is substantially mediated through main chain atoms of the amino acid. Using a directed set of lysine analogs and other amino acids, the relative contributions of the polar functional groups to binding affinity and the regulatory response have been determined. Our results reveal that the lysine riboswitch has >1,000-fold specificity for lysine over other amino acids. To achieve this specificity, the aptamer is highly sensitive to the precise placement of the ε-amino group and relatively tolerant of alterations to the main chain functional groups. At low NTP concentrations, we observe good agreement between the half-maximal regulatory activity (T50) and the affinity of the receptor for lysine (KD) as well many of its analogs. However, above 400 µM [NTP] the concentration of lysine required to elicit transcription termination rises, moving into the riboswitch into a kinetic control regime. These data demonstrate that under physiologically relevant conditions riboswitches can integrate both effector and NTP concentrations to generate a regulatory response appropriate for global metabolic state of the cell. PMID:22771573

  11. Insights into the regulatory landscape of the lysine riboswitch.

    PubMed

    Garst, Andrew D; Porter, Ely B; Batey, Robert T

    2012-10-12

    A prevalent means of regulating gene expression in bacteria is by riboswitches found within mRNA leader sequences. Like protein repressors, these RNA elements must bind an effector molecule with high specificity against a background of other cellular metabolites of similar chemical structure to elicit the appropriate regulatory response. Current crystal structures of the lysine riboswitch do not provide a complete understanding of selectivity as recognition is substantially mediated through main-chain atoms of the amino acid. Using a directed set of lysine analogs and other amino acids, we have determined the relative contributions of the polar functional groups to binding affinity and the regulatory response. Our results reveal that the lysine riboswitch has >1000-fold specificity for lysine over other amino acids. The aptamer is highly sensitive to the precise placement of the ε-amino group and relatively tolerant of alterations to the main-chain functional groups in order to achieve this specificity. At low nucleotide triphosphate (NTP) concentrations, we observe good agreement between the half-maximal regulatory activity (T(50)) and the affinity of the receptor for lysine (K(d)), as well as many of its analogs. However, above 400 μM [NTP], the concentration of lysine required to elicit transcription termination rises, moving into the riboswitch into a kinetic control regime. These data demonstrate that, under physiologically relevant conditions, riboswitches can integrate both effector and NTP concentrations to generate a regulatory response appropriate for global metabolic state of the cell. PMID:22771573

  12. Degradation signals in the lysine-asparagine sequence space.

    PubMed

    Suzuki, T; Varshavsky, A

    1999-11-01

    The N-degrons, a set of degradation signals recognized by the N-end rule pathway, comprise a protein's destabilizing N-terminal residue and an internal lysine residue. We show that the strength of an N-degron can be markedly increased, without loss of specificity, through the addition of lysine residues. A nearly exhaustive screen was carried out for N-degrons in the lysine (K)-asparagine (N) sequence space of the 14-residue peptides containing either K or N (16 384 different sequences). Of these sequences, 68 were found to function as N-degrons, and three of them were at least as active and specific as any of the previously known N-degrons. All 68 K/N-based N-degrons lacked the lysine at position 2, and all three of the strongest N-degrons contained lysines at positions 3 and 15. The results support a model of the targeting mechanism in which the binding of the E3-E2 complex to the substrate's destabilizing N-terminal residue is followed by a stochastic search for a sterically suitable lysine residue. Our strategy of screening a small library that encompasses the entire sequence space of two amino acids should be of use in many settings, including studies of protein targeting and folding. PMID:10545113

  13. Water reuse in the L-lysine fermentation process.

    PubMed

    Hsiao, T Y; Glatz, C E

    1996-02-01

    L-Lysine is produced commercially by fermentation. As is typical for fermentation processes, a large amount of liquid waste is generated. To minimize the waste, which is mostly the broth effluent from the cation exchange column used for l-lysine recovery, we investigated a strategy of recycling a large fraction of this broth effluent to the subsequent fermentation. This was done on a labscale process with Corynebacterium glutamicum ATCC 21253 as the l-lysine-producing organism. Broth effluent from a fermentation in a defined medium was able to replace 75% of the water for the subsequent batch; this recycle ratio was maintained for three sequential batches without affecting cell mass and l-lysine production. Broth effluent was recycled at 50% recycle ratio in a fermentation in a complex medium containing beet molasses. The first recycle batch had an 8% lower final l-lysine level, but 8% higher maximum cell mass. In addition to reducing the volume of liquid waste, this recycle strategy has the additional advantage of utilizing the ammonium desorbed from the ion-exchange column as a nitrogen source in the recycle fermentation. The major problem of recycling the effluent from the complex medium was in the cation-exchange operation, where column capacity was 17% lower for the recycle batch. The loss of column capacity probably results from the buildup of cations competing with l-lysine for binding. (c) 1996 John Wiley & Sons, Inc.

  14. Biofortification of rice with lysine using endogenous histones.

    PubMed

    Wong, H W; Liu, Q; Sun, S S M

    2015-02-01

    Rice is the most consumed cereal grain in the world, but deficient in the essential amino acid lysine. Therefore, people in developing countries with limited food diversity who rely on rice as their major food source may suffer from malnutrition. Biofortification of stable crops by genetic engineering provides a fast and sustainable method to solve this problem. In this study, two endogenous rice lysine-rich histone proteins, RLRH1 and RLRH2, were over-expressed in rice seeds to achieve lysine biofortification. Their protein sequences passed an allergic sequence-based homology test. Their accumulations in rice seeds were raised to a moderate level by the use of a modified rice glutelin 1 promoter with lowered expression strength to avoid the occurrence of physiological abnormalities like unfolded protein response. The expressed proteins were further targeted to protein storage vacuoles for stable storage using a glutelin 1 signal peptide. The lysine content in the transgenic rice seeds was enhanced by up to 35 %, while other essential amino acids remained balanced, meeting the nutritional standards of the World Health Organization. No obvious unfolded protein response was detected. Different degrees of chalkiness, however, were detected in the transgenic seeds, and were positively correlated with both the levels of accumulated protein and lysine enhancement. This study offered a solution to the lysine deficiency in rice, while at the same time addressing concerns about food safety and physiological abnormalities in biofortified crops.

  15. Study on the EPR/dosimetric properties of some substituted alanines

    NASA Astrophysics Data System (ADS)

    Gancheva, Veselka; Sagstuen, Einar; Yordanov, Nicola D.

    2006-02-01

    Polycrystalline phenyl-alanine and perdeuterated L- α-alanine ( L- α-alanine-d 4) were studied as potential high-energy radiation-sensitive materials (RSM) for solid state/EPR dosimetry. It was found that phenyl-alanine exhibits a linear dose response in the dose region 0.1-17 kGy. However, phenyl-alanine is about 10 times less sensitive to γ-irradiation than standard L- α-alanine irradiated at the same doses. Moreover, the EPR response from phenyl-alanine is unstable and, independent of the absorbed dose, decreases by about 50% within 20 days after irradiation upon storage at room temperature. γ-irradiated polycrystalline perdeuterated L- α-alanine (CD 3CD(NH 2)COOH) has not previously been studied at room temperature by EPR spectroscopy. The first part of the present analysis was with respect to the structure of the EPR spectrum. By spectrum simulations, the presence of at least two radiation induced free radicals, R 1=CH 3C •(H)COOH and R 2=H 3N +-C •(CH 3)COO -, was confirmed very clearly. Both these radicals were suggested previously from EPR and ENDOR studies of standard alanine crystals. The further investigations into the potential use of alanine-d 4 as RSM, after choosing optimal EPR spectrometer settings parameters for this purpose, show that it is ca. two times more sensitive than standard L- α-alanine.

  16. Topological dispositions of lysine. alpha. 380 and lysine. gamma. 486 in the acetylcholine receptor from Torpedo californica

    SciTech Connect

    Dwyer, B.P. )

    1991-04-23

    The locations have been determined, with respect to the plasma membrane, of lysine {alpha}380 and lysine {gamma}486 in the {alpha} subunit and the {gamma} subunit, respectively, of the nicotinic acetylcholine receptor from Torpedo californica. Immunoadsorbents were constructed that recognize the carboxy terminus of the peptide GVKYIAE released by proteolytic digestion from positions 378-384 in the amino acid sequence of the {alpha} subunit of the acetylcholine receptor and the carboxy terminus of the peptide KYVP released by proteolytic digestion from positions 486-489 in the amino acid sequence of the {gamma} subunit. They were used to isolate these peptides from proteolytic digests of polypeptides from the acetylcholine receptor. Sealed vesicles containing the native acetylcholine receptor were labeled with pyridoxal phosphate and sodium ({sup 3}H)-borohydride. The effect of saponin on the incorporation of pyridoxamine phosphate into lysine {alpha}380 and lysine {gamma}486 from the acetylcholine receptor in these vesicles was assessed with the immunoadsorbents. The conclusions that follow from these results are that lysine {alpha}380 is on the inside surface of a vesicle and lysine {gamma}486 is on the outside surface. Because a majority (85%) of the total binding sites for {alpha}-bungarotoxin bind the toxin in the absence of saponin, the majority of the vesicles are right side out with the inside of the vesicle corresponding to the cytoplasmic surface and the outside of the vesicle corresponding to the extracytoplasmic, synaptic surface. Because lysine {alpha}380 and lysine {gamma}486 lie on opposite sides of the membrane, a membrane-spanning segment must be located between the two positions occupied by these two amino acids in the common sequence of a polypeptide of the acetylcholine receptor.

  17. Glycine and Folate Ameliorate Models of Congenital Sideroblastic Anemia

    PubMed Central

    Dufay, J. Noelia; Steele, Shelby L.; Gaston, Daniel; Nasrallah, Gheyath K.; Coombs, Andrew J.; Liwski, Robert S.; Fernandez, Conrad V.; Berman, Jason N.; McMaster, Christopher R.

    2016-01-01

    Sideroblastic anemias are acquired or inherited anemias that result in a decreased ability to synthesize hemoglobin in red blood cells and result in the presence of iron deposits in the mitochondria of red blood cell precursors. A common subtype of congenital sideroblastic anemia is due to autosomal recessive mutations in the SLC25A38 gene. The current treatment for SLC25A38 congenital sideroblastic anemia is chronic blood transfusion coupled with iron chelation. The function of SLC25A38 is not known. Here we report that the SLC25A38 protein, and its yeast homolog Hem25, are mitochondrial glycine transporters required for the initiation of heme synthesis. To do so, we took advantage of the fact that mitochondrial glycine has several roles beyond the synthesis of heme, including the synthesis of folate derivatives through the glycine cleavage system. The data were consistent with Hem25 not being the sole mitochondrial glycine importer, and we identify a second SLC25 family member Ymc1, as a potential secondary mitochondrial glycine importer. Based on these findings, we observed that high levels of exogenous glycine, or 5-aminolevulinic acid (5-Ala) a metabolite downstream of Hem25 in heme biosynthetic pathway, were able to restore heme levels to normal in yeast cells lacking Hem25 function. While neither glycine nor 5-Ala could ameliorate SLC25A38 congenital sideroblastic anemia in a zebrafish model, we determined that the addition of folate with glycine was able to restore hemoglobin levels. This difference is likely due to the fact that yeast can synthesize folate, whereas in zebrafish folate is an essential vitamin that must be obtained exogenously. Given the tolerability of glycine and folate in humans, this study points to a potential novel treatment for SLC25A38 congenital sideroblastic anemia. PMID:26821380

  18. Glycine and Folate Ameliorate Models of Congenital Sideroblastic Anemia.

    PubMed

    Fernández-Murray, J Pedro; Prykhozhij, Sergey V; Dufay, J Noelia; Steele, Shelby L; Gaston, Daniel; Nasrallah, Gheyath K; Coombs, Andrew J; Liwski, Robert S; Fernandez, Conrad V; Berman, Jason N; McMaster, Christopher R

    2016-01-01

    Sideroblastic anemias are acquired or inherited anemias that result in a decreased ability to synthesize hemoglobin in red blood cells and result in the presence of iron deposits in the mitochondria of red blood cell precursors. A common subtype of congenital sideroblastic anemia is due to autosomal recessive mutations in the SLC25A38 gene. The current treatment for SLC25A38 congenital sideroblastic anemia is chronic blood transfusion coupled with iron chelation. The function of SLC25A38 is not known. Here we report that the SLC25A38 protein, and its yeast homolog Hem25, are mitochondrial glycine transporters required for the initiation of heme synthesis. To do so, we took advantage of the fact that mitochondrial glycine has several roles beyond the synthesis of heme, including the synthesis of folate derivatives through the glycine cleavage system. The data were consistent with Hem25 not being the sole mitochondrial glycine importer, and we identify a second SLC25 family member Ymc1, as a potential secondary mitochondrial glycine importer. Based on these findings, we observed that high levels of exogenous glycine, or 5-aminolevulinic acid (5-Ala) a metabolite downstream of Hem25 in heme biosynthetic pathway, were able to restore heme levels to normal in yeast cells lacking Hem25 function. While neither glycine nor 5-Ala could ameliorate SLC25A38 congenital sideroblastic anemia in a zebrafish model, we determined that the addition of folate with glycine was able to restore hemoglobin levels. This difference is likely due to the fact that yeast can synthesize folate, whereas in zebrafish folate is an essential vitamin that must be obtained exogenously. Given the tolerability of glycine and folate in humans, this study points to a potential novel treatment for SLC25A38 congenital sideroblastic anemia.

  19. DETECTABILITY OF GLYCINE IN SOLAR-TYPE SYSTEM PRECURSORS

    SciTech Connect

    Jiménez-Serra, Izaskun; Testi, Leonardo; Caselli, Paola; Viti, Serena E-mail: ltesti@eso.org E-mail: sv@star.ucl.ac.uk

    2014-06-01

    Glycine (NH{sub 2}CH{sub 2}COOH) is the simplest amino acid relevant to life. Its detection in the interstellar medium is key to understanding the formation mechanisms of pre-biotic molecules and their subsequent delivery onto planetary systems. Glycine has been extensively searched for toward hot molecular cores, although these studies did not yield any firm detection. In contrast to hot cores, low-mass star forming regions, in particular their earliest stages represented by cold pre-stellar cores, may be better suited for the detection of glycine as well as more relevant to the study of pre-biotic chemistry in young solar system analogs. We present one-dimensional spherically symmetric radiative transfer calculations of the glycine emission expected to arise from the low-mass pre-stellar core L1544. Water vapor has recently been reported toward this core, indicating that a small fraction of the grain mantles in L1544 (∼0.5%) has been injected into the gas phase. Assuming that glycine is photo-desorbed together with water in L1544, and considering a solid abundance of glycine on ices of ∼10{sup –4} with respect to water, our calculations reveal that several glycine lines between 67 GHz and 80 GHz have peak intensities larger than 10 mK. These results show for the first time that glycine could reach detectable levels in cold objects such as L1544. This opens up the possibility of detecting glycine, and other pre-biotic species, at the coldest and earliest stages in the formation of solar-type systems with near-future instrumentation such as the Band 2 receivers of ALMA.

  20. Identification of dietary alanine toxicity and trafficking dysfunction in a Drosophila model of hereditary sensory and autonomic neuropathy type 1.

    PubMed

    Oswald, Matthew C W; West, Ryan J H; Lloyd-Evans, Emyr; Sweeney, Sean T

    2015-12-15

    Hereditary sensory and autonomic neuropathy type 1 (HSAN1) is characterized by a loss of distal peripheral sensory and motorneuronal function, neuropathic pain and tissue necrosis. The most common cause of HSAN1 is due to dominant mutations in serine palmitoyl-transferase subunit 1 (SPT1). SPT catalyses the condensation of serine with palmitoyl-CoA, the initial step in sphingolipid biogenesis. Identified mutations in SPT1 are known to both reduce sphingolipid synthesis and generate catalytic promiscuity, incorporating alanine or glycine into the precursor sphingolipid to generate a deoxysphingoid base (DSB). Why either loss of function in SPT1, or generation of DSBs should generate deficits in distal sensory function remains unclear. To address these questions, we generated a Drosophila model of HSAN1. Expression of dSpt1 bearing a disease-related mutation induced morphological deficits in synapse growth at the larval neuromuscular junction consistent with a dominant-negative action. Expression of mutant dSpt1 globally was found to be mildly toxic, but was completely toxic when the diet was supplemented with alanine, when DSBs were observed in abundance. Expression of mutant dSpt1 in sensory neurons generated developmental deficits in dendritic arborization with concomitant sensory deficits. A membrane trafficking defect was observed in soma of sensory neurons expressing mutant dSpt1, consistent with endoplasmic reticulum (ER) to Golgi block. We found that we could rescue sensory function in neurons expressing mutant dSpt1 by co-expressing an effector of ER-Golgi function, Rab1 suggesting compromised ER function in HSAN1 affected dendritic neurons. Our Drosophila model identifies a novel strategy to explore the pathological mechanisms of HSAN1.

  1. Identification of dietary alanine toxicity and trafficking dysfunction in a Drosophila model of hereditary sensory and autonomic neuropathy type 1

    PubMed Central

    Oswald, Matthew C. W.; West, Ryan J. H.; Lloyd-Evans, Emyr; Sweeney, Sean T.

    2015-01-01

    Hereditary sensory and autonomic neuropathy type 1 (HSAN1) is characterized by a loss of distal peripheral sensory and motorneuronal function, neuropathic pain and tissue necrosis. The most common cause of HSAN1 is due to dominant mutations in serine palmitoyl-transferase subunit 1 (SPT1). SPT catalyses the condensation of serine with palmitoyl-CoA, the initial step in sphingolipid biogenesis. Identified mutations in SPT1 are known to both reduce sphingolipid synthesis and generate catalytic promiscuity, incorporating alanine or glycine into the precursor sphingolipid to generate a deoxysphingoid base (DSB). Why either loss of function in SPT1, or generation of DSBs should generate deficits in distal sensory function remains unclear. To address these questions, we generated a Drosophila model of HSAN1. Expression of dSpt1 bearing a disease-related mutation induced morphological deficits in synapse growth at the larval neuromuscular junction consistent with a dominant-negative action. Expression of mutant dSpt1 globally was found to be mildly toxic, but was completely toxic when the diet was supplemented with alanine, when DSBs were observed in abundance. Expression of mutant dSpt1 in sensory neurons generated developmental deficits in dendritic arborization with concomitant sensory deficits. A membrane trafficking defect was observed in soma of sensory neurons expressing mutant dSpt1, consistent with endoplasmic reticulum (ER) to Golgi block. We found that we could rescue sensory function in neurons expressing mutant dSpt1 by co-expressing an effector of ER–Golgi function, Rab1 suggesting compromised ER function in HSAN1 affected dendritic neurons. Our Drosophila model identifies a novel strategy to explore the pathological mechanisms of HSAN1. PMID:26395456

  2. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion.

    PubMed

    Sousa, Cristovão M; Biancur, Douglas E; Wang, Xiaoxu; Halbrook, Christopher J; Sherman, Mara H; Zhang, Li; Kremer, Daniel; Hwang, Rosa F; Witkiewicz, Agnes K; Ying, Haoqiang; Asara, John M; Evans, Ronald M; Cantley, Lewis C; Lyssiotis, Costas A; Kimmelman, Alec C

    2016-08-25

    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease characterized by an intense fibrotic stromal response and deregulated metabolism. The role of the stroma in PDAC biology is complex and it has been shown to play critical roles that differ depending on the biological context. The stromal reaction also impairs the vasculature, leading to a highly hypoxic, nutrient-poor environment. As such, these tumours must alter how they capture and use nutrients to support their metabolic needs. Here we show that stroma-associated pancreatic stellate cells (PSCs) are critical for PDAC metabolism through the secretion of non-essential amino acids (NEAA). Specifically, we uncover a previously undescribed role for alanine, which outcompetes glucose and glutamine-derived carbon in PDAC to fuel the tricarboxylic acid (TCA) cycle, and thus NEAA and lipid biosynthesis. This shift in fuel source decreases the tumour’s dependence on glucose and serum-derived nutrients, which are limited in the pancreatic tumour microenvironment. Moreover, we demonstrate that alanine secretion by PSCs is dependent on PSC autophagy, a process that is stimulated by cancer cells. Thus, our results demonstrate a novel metabolic interaction between PSCs and cancer cells, in which PSC-derived alanine acts as an alternative carbon source. This finding highlights a previously unappreciated metabolic network within pancreatic tumours in which diverse fuel sources are used to promote growth in an austere tumour microenvironment. PMID:27509858

  3. Characterization of psychrophilic alanine racemase from Bacillus psychrosaccharolyticus.

    PubMed

    Okubo, Y; Yokoigawa, K; Esaki, N; Soda, K; Kawai, H

    1999-03-16

    A psychrophilic alanine racemase gene from Bacillus psychrosaccharolyticus was cloned and expressed in Escherichia coli SOLR with a plasmid pYOK3. The gene starting with the unusual initiation codon GTG showed higher preference for codons ending in A or T. The enzyme purified to homogeneity showed the high catalytic activity even at 0 degrees C and was extremely labile over 35 degrees C. The enzyme was found to have a markedly large Km value (5.0 microM) for the pyridoxal 5'-phosphate (PLP) cofactor in comparison with other reported alanine racemases, and was stabilized up to 50 degrees C in the presence of excess amounts of PLP. The low affinity of the enzyme for PLP may be related to the thermolability, and may be related to the high catalytic activity, initiated by the transaldimination reaction, at low temperature. The enzyme has a distinguishing hydrophilic region around the residue no. 150 in the deduced amino acid sequence (383 residues), whereas the corresponding regions of other Bacillus alanine racemases are hydrophobic. The position of the region in the three dimensional structure of C atoms of the enzyme was predicted to be in a surface loop surrounding the active site. The region may interact with solvent and reduce the compactness of the active site. PMID:10080917

  4. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion.

    PubMed

    Sousa, Cristovão M; Biancur, Douglas E; Wang, Xiaoxu; Halbrook, Christopher J; Sherman, Mara H; Zhang, Li; Kremer, Daniel; Hwang, Rosa F; Witkiewicz, Agnes K; Ying, Haoqiang; Asara, John M; Evans, Ronald M; Cantley, Lewis C; Lyssiotis, Costas A; Kimmelman, Alec C

    2016-08-25

    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease characterized by an intense fibrotic stromal response and deregulated metabolism. The role of the stroma in PDAC biology is complex and it has been shown to play critical roles that differ depending on the biological context. The stromal reaction also impairs the vasculature, leading to a highly hypoxic, nutrient-poor environment. As such, these tumours must alter how they capture and use nutrients to support their metabolic needs. Here we show that stroma-associated pancreatic stellate cells (PSCs) are critical for PDAC metabolism through the secretion of non-essential amino acids (NEAA). Specifically, we uncover a previously undescribed role for alanine, which outcompetes glucose and glutamine-derived carbon in PDAC to fuel the tricarboxylic acid (TCA) cycle, and thus NEAA and lipid biosynthesis. This shift in fuel source decreases the tumour’s dependence on glucose and serum-derived nutrients, which are limited in the pancreatic tumour microenvironment. Moreover, we demonstrate that alanine secretion by PSCs is dependent on PSC autophagy, a process that is stimulated by cancer cells. Thus, our results demonstrate a novel metabolic interaction between PSCs and cancer cells, in which PSC-derived alanine acts as an alternative carbon source. This finding highlights a previously unappreciated metabolic network within pancreatic tumours in which diverse fuel sources are used to promote growth in an austere tumour microenvironment.

  5. Probing alanine transaminase catalysis with hyperpolarized 13CD3-pyruvate

    NASA Astrophysics Data System (ADS)

    Barb, A. W.; Hekmatyar, S. K.; Glushka, J. N.; Prestegard, J. H.

    2013-03-01

    Hyperpolarized metabolites offer a tremendous sensitivity advantage (>104 fold) when measuring flux and enzyme activity in living tissues by magnetic resonance methods. These sensitivity gains can also be applied to mechanistic studies that impose time and metabolite concentration limitations. Here we explore the use of hyperpolarization by dissolution dynamic nuclear polarization (DNP) in mechanistic studies of alanine transaminase (ALT), a well-established biomarker of liver disease and cancer that converts pyruvate to alanine using glutamate as a nitrogen donor. A specific deuterated, 13C-enriched analog of pyruvic acid, 13C3D3-pyruvic acid, is demonstrated to have advantages in terms of detection by both direct 13C observation and indirect observation through methyl protons introduced by ALT-catalyzed H-D exchange. Exchange on injecting hyperpolarized 13C3D3-pyruvate into ALT dissolved in buffered 1H2O, combined with an experimental approach to measure proton incorporation, provided information on mechanistic details of transaminase action on a 1.5 s timescale. ALT introduced, on average, 0.8 new protons into the methyl group of the alanine produced, indicating the presence of an off-pathway enamine intermediate. The opportunities for exploiting mechanism-dependent molecular signatures as well as indirect detection of hyperpolarized 13C3-pyruvate and products in imaging applications are discussed.

  6. Role of Charge and Solvation in the Structure and Dynamics of Alanine-Rich Peptide AKA2 in AOT Reverse Micelles.

    PubMed

    Martinez, Anna Victoria; Małolepsza, Edyta; Domínguez, Laura; Lu, Qing; Straub, John E

    2015-07-23

    The propensity of peptides to form α-helices has been intensely studied using theory, computation, and experiment. Important model peptides for the study of the coil-to-helix transition have been alanine-lysine (AKA) peptides in which the lysine residues are placed on opposite sides of the helix avoiding charge repulsion while enhancing solubility. In this study, the effects of capped versus zwitterionic peptide termini on the secondary structure of alanine-rich peptides in reverse micelles are explored. The reverse micelles are found to undergo substantial shape fluctuations, a property observed in previous studies of AOT reverse micelles in the absence of solvated peptide. The peptides are observed to interact with water, as well as the AOT surfactant, including interactions between the nonpolar residues and the aliphatic surfactant tails. Computation of IR spectra for the amide I band of the peptide allows for direct comparison with experimental spectra. The results demonstrate that capped AKA2 peptides form more stable α helices than zwitterionic AKA2 peptides in reverse micelles. The rotational anisotropy decay of water is found to be distinctly different in the presence or absence of peptide within the reverse micelle, suggesting that the introduction of peptide significantly alters the number of free waters within the reverse micelle nanopool. However, neither the nature of the peptide termini (capped or charged) nor the degree of peptide helicity is found to significantly alter the balance of interactions between the peptides and the environment. Observed changes in the degree of helicity in AKA2 peptides in bulk solution and in reverse micelle environments result from changes in peptide confinement and hydration as well as direct nonpolar and polar interactions with the water-surfactant interface.

  7. Role of Charge and Solvation in the Structure and Dynamics of Alanine-Rich Peptide AKA2 in AOT Reverse Micelles.

    PubMed

    Martinez, Anna Victoria; Małolepsza, Edyta; Domínguez, Laura; Lu, Qing; Straub, John E

    2015-07-23

    The propensity of peptides to form α-helices has been intensely studied using theory, computation, and experiment. Important model peptides for the study of the coil-to-helix transition have been alanine-lysine (AKA) peptides in which the lysine residues are placed on opposite sides of the helix avoiding charge repulsion while enhancing solubility. In this study, the effects of capped versus zwitterionic peptide termini on the secondary structure of alanine-rich peptides in reverse micelles are explored. The reverse micelles are found to undergo substantial shape fluctuations, a property observed in previous studies of AOT reverse micelles in the absence of solvated peptide. The peptides are observed to interact with water, as well as the AOT surfactant, including interactions between the nonpolar residues and the aliphatic surfactant tails. Computation of IR spectra for the amide I band of the peptide allows for direct comparison with experimental spectra. The results demonstrate that capped AKA2 peptides form more stable α helices than zwitterionic AKA2 peptides in reverse micelles. The rotational anisotropy decay of water is found to be distinctly different in the presence or absence of peptide within the reverse micelle, suggesting that the introduction of peptide significantly alters the number of free waters within the reverse micelle nanopool. However, neither the nature of the peptide termini (capped or charged) nor the degree of peptide helicity is found to significantly alter the balance of interactions between the peptides and the environment. Observed changes in the degree of helicity in AKA2 peptides in bulk solution and in reverse micelle environments result from changes in peptide confinement and hydration as well as direct nonpolar and polar interactions with the water-surfactant interface. PMID:25337983

  8. Serine Biosynthesis with One Carbon Catabolism and the Glycine Cleavage System Represents a Novel Pathway for ATP Generation

    PubMed Central

    Vazquez, Alexei; Markert, Elke K.; Oltvai, Zoltán N.

    2011-01-01

    Previous experimental evidence indicates that some cancer cells have an alternative glycolysis pathway with net zero ATP production, implying that upregulation of glycolysis in these cells may not be related to the generation of ATP. Here we use a genome-scale model of human cell metabolism to investigate the potential metabolic alterations in cells using net zero ATP glycolysis. We uncover a novel pathway for ATP generation that involves reactions from serine biosynthesis, one-carbon metabolism and the glycine cleavage system, and show that the pathway is transcriptionally upregulated in an inducible murine model of Myc-driven liver tumorigenesis. This pathway has a predicted two-fold higher flux rate in cells using net zero ATP glycolysis than those using standard glycolysis and generates twice as much ATP with significantly lower rate of lactate - but higher rate of alanine secretion. Thus, in cells using the standard - or the net zero ATP glycolysis pathways a significant portion of the glycolysis flux is always associated with ATP generation, and the ratio between the flux rates of the two pathways determines the rate of ATP generation and lactate and alanine secretion during glycolysis. PMID:22073143

  9. Targeting Lysine Deacetylases (KDACs) in Parasites.

    PubMed

    Wang, Qi; Rosa, Bruce A; Nare, Bakela; Powell, Kerrie; Valente, Sergio; Rotili, Dante; Mai, Antonello; Marshall, Garland R; Mitreva, Makedonka

    2015-01-01

    Due to an increasing problem of drug resistance among almost all parasites species ranging from protists to worms, there is an urgent need to explore new drug targets and their inhibitors to provide new and effective parasitic therapeutics. In this regard, there is growing interest in exploring known drug leads of human epigenetic enzymes as potential starting points to develop novel treatments for parasitic diseases. This approach of repurposing (starting with validated targets and inhibitors) is quite attractive since it has the potential to reduce the expense of drug development and accelerate the process of developing novel drug candidates for parasite control. Lysine deacetylases (KDACs) are among the most studied epigenetic drug targets of humans, and a broad range of small-molecule inhibitors for these enzymes have been reported. In this work, we identify the KDAC protein families in representative species across important classes of parasites, screen a compound library of 23 hydroxamate- or benzamide-based small molecules KDAC inhibitors, and report their activities against a range of parasitic species, including the pathogen of malaria (Plasmodium falciparum), kinetoplastids (Trypanosoma brucei and Leishmania donovani), and nematodes (Brugia malayi, Dirofilaria immitis and Haemonchus contortus). Compound activity against parasites is compared to that observed against the mammalian cell line (L929 mouse fibroblast) in order to determine potential parasite-versus-host selectivity). The compounds showed nanomolar to sub-nanomolar potency against various parasites, and some selectivity was observed within the small panel of compounds tested. The possible binding modes of the active compounds at the different protein target sites within different species were explored by docking to homology models to help guide the discovery of more selective, parasite-specific inhibitors. This current work supports previous studies that explored the use of KDAC inhibitors in

  10. Benzyl isothiocyanate affects development, hatching and reproduction of the soybean cyst nematode Heterodera glycines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Benzyl isothiocyanate (BITC) applied at micromolar doses decreased Heterodera glycines J2 movement, H. glycines hatching, and reproduction of H. glycines on soybean, Glycine max. Direct exposure of J2 to 30 microM BITC caused an immediate decrease (17%; P < 0.05) in J2 movement relative to 1% methan...

  11. High Affinity Binding of the Receptor-associated Protein D1D2 Domains with the Low Density Lipoprotein Receptor-related Protein (LRP1) Involves Bivalent Complex Formation: CRITICAL ROLES OF LYSINES 60 AND 191.

    PubMed

    Prasad, Joni M; Young, Patricia A; Strickland, Dudley K

    2016-08-26

    The LDL receptor-related protein 1 (LRP1) is a large endocytic receptor that binds and mediates the endocytosis of numerous structurally diverse ligands. Currently, the basis for ligand recognition by LRP1 is not well understood. LRP1 requires a molecular chaperone, termed the receptor-associated protein (RAP), to escort the newly synthesized receptor from the endoplasmic reticulum to the Golgi. RAP is a three-domain protein that contains the following two high affinity binding sites for LRP1: one is located within domains 1 and 2, and one is located in its third domain. Studies on the interaction of the RAP third domain with LRP1 reveal critical contributions by lysine 256 and lysine 270 for this interaction. From these studies, a model for ligand recognition by this class of receptors has been proposed. Here, we employed surface plasmon resonance to investigate the binding of RAP D1D2 to LRP1. Our results reveal that the high affinity of D1D2 for LRP1 results from avidity effects mediated by the simultaneous interactions of lysine 60 in D1 and lysine 191 in D2 with sites on LRP1 to form a bivalent D1D2-LRP1 complex. When lysine 60 and 191 are both mutated to alanine, the binding of D1D2 to LRP1 is ablated. Our data also reveal that D1D2 is able to bind to a second distinct site on LRP1 to form a monovalent complex. The studies confirm the canonical model for ligand recognition by this class of receptors, which is initiated by pairs of lysine residues that dock into acidic pockets on the receptor. PMID:27402839

  12. Crystal Structure of the Lysine Riboswitch Regulatory mRNA Element*S⃞

    PubMed Central

    Garst, Andrew D.; Héroux, Annie; Rambo, Robert P.; Batey, Robert T.

    2008-01-01

    Riboswitches are metabolite-sensitive elements found in mRNAs that control gene expression through a regulatory secondary structural switch. Along with regulation of lysine biosynthetic genes, mutations within the lysine-responsive riboswitch (L-box) play a role in the acquisition of resistance to antimicrobial lysine analogs. To understand the structural basis for lysine binding, we have determined the 2.8Å resolution crystal structure of lysine bound to the Thermotoga maritima asd lysine riboswitch ligand-binding domain. The structure reveals a complex architecture scaffolding a binding pocket completely enveloping lysine. Mutations conferring antimicrobial resistance cluster around this site as well as highly conserved long range interactions, indicating that they disrupt lysine binding or proper folding of the RNA. Comparison of the free and bound forms by x-ray crystallography, small angle x-ray scattering, and chemical probing reveals almost identical structures, indicating that lysine induces only limited and local conformational changes upon binding. PMID:18593706

  13. Crystal structure of the lysine riboswitch regulatory mRNA element.

    PubMed

    Garst, Andrew D; Héroux, Annie; Rambo, Robert P; Batey, Robert T

    2008-08-15

    Riboswitches are metabolite-sensitive elements found in mRNAs that control gene expression through a regulatory secondary structural switch. Along with regulation of lysine biosynthetic genes, mutations within the lysine-responsive riboswitch (L-box) play a role in the acquisition of resistance to antimicrobial lysine analogs. To understand the structural basis for lysine binding, we have determined the 2.8 angstroms resolution crystal structure of lysine bound to the Thermotoga maritima asd lysine riboswitch ligand-binding domain. The structure reveals a complex architecture scaffolding a binding pocket completely enveloping lysine. Mutations conferring antimicrobial resistance cluster around this site as well as highly conserved long range interactions, indicating that they disrupt lysine binding or proper folding of the RNA. Comparison of the free and bound forms by x-ray crystallography, small angle x-ray scattering, and chemical probing reveals almost identical structures, indicating that lysine induces only limited and local conformational changes upon binding. PMID:18593706

  14. Crystal Structure of the Lysine Riboswitch Regulatory mRNA Element

    SciTech Connect

    Garst, A.; Heroux, A; Rambo, R; Batey, R

    2008-01-01

    Riboswitches are metabolite-sensitive elements found in mRNAs that control gene expression through a regulatory secondary structural switch. Along with regulation of lysine biosynthetic genes, mutations within the lysine-responsive riboswitch (L-box) play a role in the acquisition of resistance to antimicrobial lysine analogs. To understand the structural basis for lysine binding, we have determined the 2.8{angstrom} resolution crystal structure of lysine bound to the Thermotoga maritima asd lysine riboswitch ligand-binding domain. The structure reveals a complex architecture scaffolding a binding pocket completely enveloping lysine. Mutations conferring antimicrobial resistance cluster around this site as well as highly conserved long range interactions, indicating that they disrupt lysine binding or proper folding of the RNA. Comparison of the free and bound forms by x-ray crystallography, small angle x-ray scattering, and chemical probing reveals almost identical structures, indicating that lysine induces only limited and local conformational changes upon binding.

  15. 21 CFR 520.550 - Dextrose/glycine/electrolyte.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ingredients: sodium chloride 8.82 grams, potassium phosphate 4.20 grams, citric acid anhydrous 0.5 gram, potassium citrate 0.12 gram, aminoacetic acid (glycine) 6.36 grams, and dextrose 44.0 grams. (b)...

  16. Growth and Characterization of Glycine Potassium Nitrate NLO crystals

    NASA Astrophysics Data System (ADS)

    Tobin, S.; Bubbly, S. G.; Gudennavar, S. B.

    2011-07-01

    Single crystals of glycine potassium nitrate were grown using slow evaporation technique. The solutions were prepared mixing glycine with potassium nitrate in different ratios stirring continuously for an hour to get a saturated solution. It was then kept at room temperature for controlled evaporation. Optically clear and well shaped crystals were obtained and these were characterized by (FTIR) studies, EDAX and X-ray powder diffraction.

  17. Spectral Luminescent Properties of the Glycine Molecule in a Gas Discharge

    NASA Astrophysics Data System (ADS)

    General, A. A.; Migovich, M. I.; Kelman, V. A.; Zhmenyak, Yu. V.; Zvenigorodsky, V. V.

    2016-01-01

    We have experimentally studied the luminescence spectra of glycine powder in the plasma of a repetitively pulsed longitudinal discharge in argon-glycine and helium-glycine mixtures. We have identified the main fragments of the glycine molecule emitting in the 200-1000 nm region. The emitting molecules due to fragmentation of glycine and dissociation of the carboxyl (-COOH) and amino (-NH2) groups are nitrogen, carbon monoxide, and cyanogen molecules.

  18. Syntaxin 31 functions in Glycine max resistance to the plant parasitic nematode Heterodera glycines.

    PubMed

    Pant, Shankar R; Matsye, Prachi D; McNeece, Brant T; Sharma, Keshav; Krishnavajhala, Aparna; Lawrence, Gary W; Klink, Vincent P

    2014-05-01

    A Glycine max syntaxin 31 homolog (Gm-SYP38) was identified as being expressed in nematode-induced feeding structures known as syncytia undergoing an incompatible interaction with the plant parasitic nematode Heterodera glycines. The observed Gm-SYP38 expression was consistent with prior gene expression analyses that identified the alpha soluble NSF attachment protein (Gm-α-SNAP) resistance gene because homologs of these genes physically interact and function together in other genetic systems. Syntaxin 31 is a protein that resides on the cis face of the Golgi apparatus and binds α-SNAP-like proteins, but has no known role in resistance. Experiments presented here show Gm-α-SNAP overexpression induces Gm-SYP38 transcription. Overexpression of Gm-SYP38 rescues G. max [Williams 82/PI 518671], genetically rhg1 (-/-), by suppressing H. glycines parasitism. In contrast, Gm-SYP38 RNAi in the rhg1 (+/+) genotype G. max [Peking/PI 548402] increases susceptibility. Gm-α-SNAP and Gm-SYP38 overexpression induce the transcriptional activity of the cytoplasmic receptor-like kinase BOTRYTIS INDUCED KINASE 1 (Gm-BIK1-6) which is a family of defense proteins known to anchor to membranes through a 5' MGXXXS/T(R) N-myristoylation sequence. Gm-BIK1-6 had been identified previously by RNA-seq experiments as expressed in syncytia undergoing an incompatible reaction. Gm-BIK1-6 overexpression rescues the resistant phenotype. In contrast, Gm-BIK1-6 RNAi increases parasitism. The analysis demonstrates a role for syntaxin 31-like genes in resistance that until now was not known.

  19. Detection of serum AFB1-lysine adduct in Malaysia and its association with liver and kidney functions.

    PubMed

    Mohd Redzwan, S; Rosita, Jamaluddin; Mohd Sokhini, A M; Nurul 'Aqilah, A R; Wang, Jia-Sheng; Kang, Min-Su; Zuraini, Ahmad

    2014-01-01

    Aflatoxin is ubiquitously found in many foodstuffs and produced by Aspergillus species of fungi. Of many aflatoxin metabolites, AFB1 is classified by the International Agency for Research on Cancer (IARC) as group one carcinogen and linked to the development of hepatocellular carcinoma (HCC). The study on molecular biomarker of aflatoxin provides a better assessment on the extent of human exposure to aflatoxin. In Malaysia, the occurrences of aflatoxin-contaminated foods have been documented, but there is a lack of data on human exposure to aflatoxin. Hence, this study investigated the occurrence of AFB1-lysine adduct in serum samples and its association with liver and kidney functions. 5ml fasting blood samples were collected from seventy-one subjects (n=71) for the measurement of AFB1-lysine adduct, albumin, total bilirubin, AST (aspartate aminotransferase), ALT (alanine transaminase), ALP (alkaline phosphatase), GGT (gamma-glutamyl transpeptidase), creatinine and BUN (blood urea nitrogen). The AFB1-lysine adduct was detected in all serum samples (100% detection rate) with a mean of 6.85±3.20pg/mg albumin (range: 1.13-18.85pg/mg albumin). Male subjects (mean: 8.03±3.41pg/mg albumin) had significantly higher adduct levels than female subjects (mean: 5.64±2.46pg/mg albumin) (p<0.01). It was noteworthy that subjects with adduct levels greater than average (>6.85pg/mg albumin) had significantly elevated level of total bilirubin (p<0.01), GGT (p<0.05) and creatinine (p<0.01). Nevertheless, only the level of total bilirubin, (r=0.347, p-value=0.003) and creatinine (r=0.318, p-value=0.007) showed significant and positive correlation with the level of AFB1-lysine adduct. This study provides a valuable insight on human exposure to aflatoxin in Malaysia. Given that aflatoxin can pose serious problem to the health, intervention strategies should be implemented to limit/reduce human exposure to aflatoxin. Besides, a study with a big sample size should be warranted in

  20. An Alternative Strategy for Pan-acetyl-lysine Antibody Generation

    PubMed Central

    Zhang, Qiongyi; Tang, Hui; Brunmeir, Reinhard; Pan, Hong; Karnani, Neerja; Han, Weiping; Zhang, Kangling; Xu, Feng

    2016-01-01

    Lysine acetylation is an important post-translational modification in cell signaling. In acetylome studies, a high-quality pan-acetyl-lysine antibody is key to successful enrichment of acetylated peptides for subsequent mass spectrometry analysis. Here we show an alternative method to generate polyclonal pan-acetyl-lysine antibodies using a synthesized random library of acetylated peptides as the antigen. Our antibodies are tested to be specific for acetyl-lysine peptides/proteins via ELISA and dot blot. When pooled, five of our antibodies show broad reactivity to acetyl-lysine peptides, complementing a commercial antibody in terms of peptide coverage. The consensus sequence of peptides bound by our antibody cocktail differs slightly from that of the commercial antibody. Lastly, our antibodies are tested in a proof-of-concept to analyze the acetylome of HEK293 cells. In total we identified 1557 acetylated peptides from 416 proteins. We thus demonstrated that our antibodies are well-qualified for acetylome studies and can complement existing commercial antibodies. PMID:27606599

  1. An Alternative Strategy for Pan-acetyl-lysine Antibody Generation.

    PubMed

    Kim, Sun-Yee; Sim, Choon Kiat; Zhang, Qiongyi; Tang, Hui; Brunmeir, Reinhard; Pan, Hong; Karnani, Neerja; Han, Weiping; Zhang, Kangling; Xu, Feng

    2016-01-01

    Lysine acetylation is an important post-translational modification in cell signaling. In acetylome studies, a high-quality pan-acetyl-lysine antibody is key to successful enrichment of acetylated peptides for subsequent mass spectrometry analysis. Here we show an alternative method to generate polyclonal pan-acetyl-lysine antibodies using a synthesized random library of acetylated peptides as the antigen. Our antibodies are tested to be specific for acetyl-lysine peptides/proteins via ELISA and dot blot. When pooled, five of our antibodies show broad reactivity to acetyl-lysine peptides, complementing a commercial antibody in terms of peptide coverage. The consensus sequence of peptides bound by our antibody cocktail differs slightly from that of the commercial antibody. Lastly, our antibodies are tested in a proof-of-concept to analyze the acetylome of HEK293 cells. In total we identified 1557 acetylated peptides from 416 proteins. We thus demonstrated that our antibodies are well-qualified for acetylome studies and can complement existing commercial antibodies.

  2. An Alternative Strategy for Pan-acetyl-lysine Antibody Generation.

    PubMed

    Kim, Sun-Yee; Sim, Choon Kiat; Zhang, Qiongyi; Tang, Hui; Brunmeir, Reinhard; Pan, Hong; Karnani, Neerja; Han, Weiping; Zhang, Kangling; Xu, Feng

    2016-01-01

    Lysine acetylation is an important post-translational modification in cell signaling. In acetylome studies, a high-quality pan-acetyl-lysine antibody is key to successful enrichment of acetylated peptides for subsequent mass spectrometry analysis. Here we show an alternative method to generate polyclonal pan-acetyl-lysine antibodies using a synthesized random library of acetylated peptides as the antigen. Our antibodies are tested to be specific for acetyl-lysine peptides/proteins via ELISA and dot blot. When pooled, five of our antibodies show broad reactivity to acetyl-lysine peptides, complementing a commercial antibody in terms of peptide coverage. The consensus sequence of peptides bound by our antibody cocktail differs slightly from that of the commercial antibody. Lastly, our antibodies are tested in a proof-of-concept to analyze the acetylome of HEK293 cells. In total we identified 1557 acetylated peptides from 416 proteins. We thus demonstrated that our antibodies are well-qualified for acetylome studies and can complement existing commercial antibodies. PMID:27606599

  3. Nutritional consequences of interspecies differences in arginine and lysine metabolism.

    PubMed

    Ball, Ronald O; Urschel, Kristine L; Pencharz, Paul B

    2007-06-01

    Differences in lysine and arginine requirements among various species such as omnivores (humans, pigs, rats, dogs), carnivores (cats), herbivores (rabbits, horses), ruminants (cattle), poultry, and fish, are covered in detail in this article. Although lysine is classified as an indispensable amino acid across species, the classification of arginine as either an indispensable or dispensable amino acid is more ambiguous because of differences among species in rates of de novo arginine synthesis. Because lysine is most often the limiting amino acid in the diet, its requirement has been extensively studied. By use of the ideal protein concept, the requirements of the other indispensable amino acids can be extrapolated from the lysine requirement. The successful use of this concept in pigs is compared with potential application of the ideal protein concept in humans. The current dietary arginine requirement varies widely among species, with ruminants, rabbits, and rats having relatively low requirements and carnivores, fish, and poultry having high requirements. Interspecies differences in metabolic arginine utilization and reasons for different rates of de novo arginine synthesis are reviewed in detail, as these are the primary determinants of the dietary arginine requirement. There is presently no dietary requirement for humans of any age, although this needs to be reassessed, particularly in neonates. A thorough understanding of the factors contributing to the lysine and arginine requirements in different species will be useful in our understanding of human amino acid requirements.

  4. Intramuscular bioavailability of ketoprofen lysine salt in horses.

    PubMed

    Anfossi, P; Villa, R; Montesissa, C; Carli, S

    1997-06-01

    Lysine salts are often used in human pharmaceuticals to increase the solubility and absorption of acidic drugs when these are administered parenterally. In this study the intramuscular bioavailability of ketoprofen administered as the lysine salt was evaluated in horses (n = 5) treated intravenously and intramuscularly (2.2 mg/kg active substance) in a cross-over study. The absorption rate of ketoprofen administered as the lysine salt was rather low: the mean residence time increased from 31.7 min after IV injection to 128.9 min (after IM injection), and the bioavailability was high (mean 92.4%). The calculated steady state plasma concentrations of ketoprofen during multiple dosage were much higher after intramuscular (0.106 g/ml) than after intravenous (0.066 microgram/ml) administration. Intramuscular injections of the ketoprofen lysine salt can therefore be given to horses, which are particularly prone to develop soft tissue reactions, since use of the lysine salt markedly reduced local irritation at the injection site.

  5. Growth of gamma glycine crystal and its characterisation

    NASA Astrophysics Data System (ADS)

    Peter, M. Esthaku; Ramasamy, P.

    2010-05-01

    Single crystal of γ-glycine, an organic nonlinear optical material, has been grown by solvent evaporation technique from a mixture of aqueous solutions of glycine and potassium nitrate, lithium nitrate at room temperature. Gamma glycine crystals have been grown up to the dimension of 20 mm × 15 mm × 12 mm. Powder X-ray diffraction of the grown crystal was recorded and indexed. Single crystal X-ray diffraction studies were carried out and the unit cell parameters were compared with the literature values. The γ-phase of glycine is confirmed by single crystal XRD and FTIR spectral analysis. The crystals were characterised by UV-vis-NIR transmission spectrum in the range 200-1100 nm. The second harmonic generation conversion efficiency of γ-glycine crystal was twice the efficiency of KDP crystal. Thermal characteristics of γ-glycine crystals were determined by thermogravimetric analysis (TGA) and differential thermal analysis, which shows the thermal stability of the grown crystals. Dielectric constant and dielectric loss measurements were carried out at different temperatures and frequencies. The microhardness of the grown crystals has been studied using Vicker's microhardness tester.

  6. Growth of gamma glycine crystal and its characterisation.

    PubMed

    Peter, M Esthaku; Ramasamy, P

    2010-05-01

    Single crystal of gamma-glycine, an organic nonlinear optical material, has been grown by solvent evaporation technique from a mixture of aqueous solutions of glycine and potassium nitrate, lithium nitrate at room temperature. Gamma glycine crystals have been grown up to the dimension of 20mmx15mmx12mm. Powder X-ray diffraction of the grown crystal was recorded and indexed. Single crystal X-ray diffraction studies were carried out and the unit cell parameters were compared with the literature values. The gamma-phase of glycine is confirmed by single crystal XRD and FTIR spectral analysis. The crystals were characterised by UV-vis-NIR transmission spectrum in the range 200-1100nm. The second harmonic generation conversion efficiency of gamma-glycine crystal was twice the efficiency of KDP crystal. Thermal characteristics of gamma-glycine crystals were determined by thermogravimetric analysis (TGA) and differential thermal analysis, which shows the thermal stability of the grown crystals. Dielectric constant and dielectric loss measurements were carried out at different temperatures and frequencies. The microhardness of the grown crystals has been studied using Vicker's microhardness tester. PMID:20299279

  7. Glycine receptor mechanism illuminated by electron cryo-microscopy

    PubMed Central

    Du, Juan; Lü, Wei; Wu, Shenping; Cheng, Yifan; Gouaux, Eric

    2015-01-01

    Summary The strychnine-sensitive glycine receptor (GlyR) mediates inhibitory synaptic transmission in the spinal cord and brainstem and is linked to neurological disorders including autism and hyperekplexia. Understanding of molecular mechanisms and pharmacology of GlyRs has been hindered by a dearth of high-resolution structures. Here we report electron cryo-microscopy structures of the α1 GlyR with strychnine, glycine, or glycine/ivermectin. Strychnine arrests the receptor in an antagonist-bound, closed ion channel state, glycine stabilizes the receptor in an agonist-bound open channel state, and the glycine/ivermectin complex adopts a potentially desensitized or partially open state. Relative to the glycine-bound state, strychnine expands the agonist-binding pocket via outward movement of the C loop, promotes rearrangement of the extracellular and transmembrane domain ‘wrist’ interface, and leads to rotation of the transmembrane domain toward the pore axis, occluding the ion conduction pathway. These structures illuminate GlyR mechanism and define a rubric to interpret structures of Cys-loop receptors. PMID:26344198

  8. Calorimetric determination of the enthalpy change for the alpha-helix to coil transition of an alanine peptide in water.

    PubMed Central

    Scholtz, J M; Marqusee, S; Baldwin, R L; York, E J; Stewart, J M; Santoro, M; Bolen, D W

    1991-01-01

    The enthalpy change (delta H) accompanying the alpha-helix to random coil transition in water has been determined calorimetrically for a 50-residue peptide of defined sequence that contains primarily alanine. The enthalpy of helix formation is one of the basic parameters needed to predict thermal unfolding curves for peptide helices and it provides a starting point for analysis of the peptide hydrogen bond. The experimental uncertainty in delta H reflects the fact that the transition curve is too broad to measure in its entirety, which precludes fitting the baselines directly. A lower limit for delta H of unfolding, 0.9 kcal/mol per residue, is given by assuming that the change in heat capacity (delta Cp) is zero, and allowing the baseline to intersect the transition curve at the lowest measured Cp value. Use of the van't Hoff equation plus least-squares fitting to determine a more probable baseline gives delta H = 1.3 kcal/mol per residue. Earlier studies of poly(L-lysine) and poly(L-glutamate) have given 1.1 kcal/mol per residue. Those investigations, along with our present result, suggest that the side chain has little effect on delta H. The possibility that the peptide hydrogen bond shows a correspondingly large delta H, and the implications for protein stability, are discussed. PMID:2011594

  9. Identification of Rotylenchulus reniformis Resistant Glycine Lines

    PubMed Central

    Stetina, Salliana R.; Smith, James R.; Ray, Jeffery D.

    2014-01-01

    Identification of resistance to reniform nematode (Rotylenchulus reniformis) is the first step in developing resistant soybean (Glycine max) cultivars that will benefit growers in the mid-South region of the United States. This study was conducted to identify soybean (G. max and G. soja) lines with resistance to this pathogen. Sixty-one wild and domestic soybean lines were evaluated in replicated growth chamber tests. Six previously untested soybean lines with useful levels of resistance to reniform nematode were identified in both initial screening and subsequent confirmation tests: released germplasm lines DS4-SCN05 (PI 656647) and DS-880 (PI 659348); accession PI 567516 C; and breeding lines DS97-84-1, 02011-126-1-1-2-1 and 02011-126-1-1-5-1. Eleven previously untested moderately susceptible or susceptible lines were also identified: released germplasm lines D68-0099 (PI 573285) and LG01-5087-5; accessions PI 200538, PI 416937, PI 423941, PI 437697, PI 467312, PI 468916, PI 594692, and PI 603751 A; and cultivar Stafford (PI 508269). Results of previously tested lines evaluated in the current study agreed with published reports 69.6% of the time for resistant lines and 87.5% of the time for susceptible lines. Soybean breeders may benefit from incorporating the newly identified resistant lines into their breeding programs. PMID:24643425

  10. Targeting Lysine Deacetylases (KDACs) in Parasites

    PubMed Central

    Wang, Qi; Rosa, Bruce A.; Nare, Bakela; Powell, Kerrie; Valente, Sergio; Rotili, Dante; Mai, Antonello; Marshall, Garland R.; Mitreva, Makedonka

    2015-01-01

    Due to an increasing problem of drug resistance among almost all parasites species ranging from protists to worms, there is an urgent need to explore new drug targets and their inhibitors to provide new and effective parasitic therapeutics. In this regard, there is growing interest in exploring known drug leads of human epigenetic enzymes as potential starting points to develop novel treatments for parasitic diseases. This approach of repurposing (starting with validated targets and inhibitors) is quite attractive since it has the potential to reduce the expense of drug development and accelerate the process of developing novel drug candidates for parasite control. Lysine deacetylases (KDACs) are among the most studied epigenetic drug targets of humans, and a broad range of small-molecule inhibitors for these enzymes have been reported. In this work, we identify the KDAC protein families in representative species across important classes of parasites, screen a compound library of 23 hydroxamate- or benzamide-based small molecules KDAC inhibitors, and report their activities against a range of parasitic species, including the pathogen of malaria (Plasmodium falciparum), kinetoplastids (Trypanosoma brucei and Leishmania donovani), and nematodes (Brugia malayi, Dirofilaria immitis and Haemonchus contortus). Compound activity against parasites is compared to that observed against the mammalian cell line (L929 mouse fibroblast) in order to determine potential parasite-versus-host selectivity). The compounds showed nanomolar to sub-nanomolar potency against various parasites, and some selectivity was observed within the small panel of compounds tested. The possible binding modes of the active compounds at the different protein target sites within different species were explored by docking to homology models to help guide the discovery of more selective, parasite-specific inhibitors. This current work supports previous studies that explored the use of KDAC inhibitors in

  11. Targeting Lysine Deacetylases (KDACs) in Parasites.

    PubMed

    Wang, Qi; Rosa, Bruce A; Nare, Bakela; Powell, Kerrie; Valente, Sergio; Rotili, Dante; Mai, Antonello; Marshall, Garland R; Mitreva, Makedonka

    2015-01-01

    Due to an increasing problem of drug resistance among almost all parasites species ranging from protists to worms, there is an urgent need to explore new drug targets and their inhibitors to provide new and effective parasitic therapeutics. In this regard, there is growing interest in exploring known drug leads of human epigenetic enzymes as potential starting points to develop novel treatments for parasitic diseases. This approach of repurposing (starting with validated targets and inhibitors) is quite attractive since it has the potential to reduce the expense of drug development and accelerate the process of developing novel drug candidates for parasite control. Lysine deacetylases (KDACs) are among the most studied epigenetic drug targets of humans, and a broad range of small-molecule inhibitors for these enzymes have been reported. In this work, we identify the KDAC protein families in representative species across important classes of parasites, screen a compound library of 23 hydroxamate- or benzamide-based small molecules KDAC inhibitors, and report their activities against a range of parasitic species, including the pathogen of malaria (Plasmodium falciparum), kinetoplastids (Trypanosoma brucei and Leishmania donovani), and nematodes (Brugia malayi, Dirofilaria immitis and Haemonchus contortus). Compound activity against parasites is compared to that observed against the mammalian cell line (L929 mouse fibroblast) in order to determine potential parasite-versus-host selectivity). The compounds showed nanomolar to sub-nanomolar potency against various parasites, and some selectivity was observed within the small panel of compounds tested. The possible binding modes of the active compounds at the different protein target sites within different species were explored by docking to homology models to help guide the discovery of more selective, parasite-specific inhibitors. This current work supports previous studies that explored the use of KDAC inhibitors in

  12. Comparative mapping of the wild perennial Glycine latifolia and soybean (G. max) reveals extensive chromosome rearrangements in the genus Glycine.

    PubMed

    Chang, Sungyul; Thurber, Carrie S; Brown, Patrick J; Hartman, Glen L; Lambert, Kris N; Domier, Leslie L

    2014-01-01

    Soybean (Glycine max L. Mer.), like many cultivated crops, has a relatively narrow genetic base and lacks diversity for some economically important traits. Glycine latifolia (Benth.) Newell & Hymowitz, one of the 26 perennial wild Glycine species related to soybean in the subgenus Glycine Willd., shows high levels of resistance to multiple soybean pathogens and pests including Alfalfa mosaic virus, Heterodera glycines Ichinohe and Sclerotinia sclerotiorum (Lib.) de Bary. However, limited information is available on the genomes of these perennial Glycine species. To generate molecular resources for gene mapping and identification, high-density linkage maps were constructed for G. latifolia using single nucleotide polymorphism (SNP) markers generated by genotyping by sequencing and evaluated in an F2 population and confirmed in an F5 population. In each population, greater than 2,300 SNP markers were selected for analysis and segregated to form 20 large linkage groups. Marker orders were similar in the F2 and F5 populations. The relationships between G. latifolia linkage groups and G. max and common bean (Phaseolus vulgaris L.) chromosomes were examined by aligning SNP-containing sequences from G. latifolia to the genome sequences of G. max and P. vulgaris. Twelve of the 20 G. latifolia linkage groups were nearly collinear with G. max chromosomes. The remaining eight G. latifolia linkage groups appeared to be products of multiple interchromosomal translocations relative to G. max. Large syntenic blocks also were observed between G. latifolia and P. vulgaris. These experiments are the first to compare genome organizations among annual and perennial Glycine species and common bean. The development of molecular resources for species closely related to G. max provides information into the evolution of genomes within the genus Glycine and tools to identify genes within perennial wild relatives of cultivated soybean that could be beneficial to soybean production.

  13. Comparative Mapping of the Wild Perennial Glycine latifolia and Soybean (G. max) Reveals Extensive Chromosome Rearrangements in the Genus Glycine

    PubMed Central

    Chang, Sungyul; Thurber, Carrie S.; Brown, Patrick J.; Hartman, Glen L.; Lambert, Kris N.; Domier, Leslie L.

    2014-01-01

    Soybean (Glycine max L. Mer.), like many cultivated crops, has a relatively narrow genetic base and lacks diversity for some economically important traits. Glycine latifolia (Benth.) Newell & Hymowitz, one of the 26 perennial wild Glycine species related to soybean in the subgenus Glycine Willd., shows high levels of resistance to multiple soybean pathogens and pests including Alfalfa mosaic virus, Heterodera glycines Ichinohe and Sclerotinia sclerotiorum (Lib.) de Bary. However, limited information is available on the genomes of these perennial Glycine species. To generate molecular resources for gene mapping and identification, high-density linkage maps were constructed for G. latifolia using single nucleotide polymorphism (SNP) markers generated by genotyping by sequencing and evaluated in an F2 population and confirmed in an F5 population. In each population, greater than 2,300 SNP markers were selected for analysis and segregated to form 20 large linkage groups. Marker orders were similar in the F2 and F5 populations. The relationships between G. latifolia linkage groups and G. max and common bean (Phaseolus vulgaris L.) chromosomes were examined by aligning SNP-containing sequences from G. latifolia to the genome sequences of G. max and P. vulgaris. Twelve of the 20 G. latifolia linkage groups were nearly collinear with G. max chromosomes. The remaining eight G. latifolia linkage groups appeared to be products of multiple interchromosomal translocations relative to G. max. Large syntenic blocks also were observed between G. latifolia and P. vulgaris. These experiments are the first to compare genome organizations among annual and perennial Glycine species and common bean. The development of molecular resources for species closely related to G. max provides information into the evolution of genomes within the genus Glycine and tools to identify genes within perennial wild relatives of cultivated soybean that could be beneficial to soybean production. PMID

  14. Comparative mapping of the wild perennial Glycine latifolia and soybean (G. max) reveals extensive chromosome rearrangements in the genus Glycine.

    PubMed

    Chang, Sungyul; Thurber, Carrie S; Brown, Patrick J; Hartman, Glen L; Lambert, Kris N; Domier, Leslie L

    2014-01-01

    Soybean (Glycine max L. Mer.), like many cultivated crops, has a relatively narrow genetic base and lacks diversity for some economically important traits. Glycine latifolia (Benth.) Newell & Hymowitz, one of the 26 perennial wild Glycine species related to soybean in the subgenus Glycine Willd., shows high levels of resistance to multiple soybean pathogens and pests including Alfalfa mosaic virus, Heterodera glycines Ichinohe and Sclerotinia sclerotiorum (Lib.) de Bary. However, limited information is available on the genomes of these perennial Glycine species. To generate molecular resources for gene mapping and identification, high-density linkage maps were constructed for G. latifolia using single nucleotide polymorphism (SNP) markers generated by genotyping by sequencing and evaluated in an F2 population and confirmed in an F5 population. In each population, greater than 2,300 SNP markers were selected for analysis and segregated to form 20 large linkage groups. Marker orders were similar in the F2 and F5 populations. The relationships between G. latifolia linkage groups and G. max and common bean (Phaseolus vulgaris L.) chromosomes were examined by aligning SNP-containing sequences from G. latifolia to the genome sequences of G. max and P. vulgaris. Twelve of the 20 G. latifolia linkage groups were nearly collinear with G. max chromosomes. The remaining eight G. latifolia linkage groups appeared to be products of multiple interchromosomal translocations relative to G. max. Large syntenic blocks also were observed between G. latifolia and P. vulgaris. These experiments are the first to compare genome organizations among annual and perennial Glycine species and common bean. The development of molecular resources for species closely related to G. max provides information into the evolution of genomes within the genus Glycine and tools to identify genes within perennial wild relatives of cultivated soybean that could be beneficial to soybean production. PMID

  15. Understanding the relationship between DNA methylation and histone lysine methylation☆

    PubMed Central

    Rose, Nathan R.; Klose, Robert J.

    2014-01-01

    DNA methylation acts as an epigenetic modification in vertebrate DNA. Recently it has become clear that the DNA and histone lysine methylation systems are highly interrelated and rely mechanistically on each other for normal chromatin function in vivo. Here we examine some of the functional links between these systems, with a particular focus on several recent discoveries suggesting how lysine methylation may help to target DNA methylation during development, and vice versa. In addition, the emerging role of non-methylated DNA found in CpG islands in defining histone lysine methylation profiles at gene regulatory elements will be discussed in the context of gene regulation. This article is part of a Special Issue entitled: Methylation: A Multifaceted Modification — looking at transcription and beyond. PMID:24560929

  16. Anabaena sp. PCC7120 transformed with glycine methylation genes from Aphanothece halophytica synthesized glycine betaine showing increased tolerance to salt.

    PubMed

    Waditee-Sirisattha, Rungaroon; Singh, Meenakshi; Kageyama, Hakuto; Sittipol, Daungjai; Rai, Ashwani K; Takabe, Teruhiro

    2012-11-01

    Photosynthetic, nitrogen-fixing Anabaena strains play an important role in the carbon and nitrogen cycles in tropical paddy fields although they are salt sensitive. Improvement in salt tolerance of Anabaena cells by expressing glycine betaine-synthesizing genes is an interesting subject. Due to the absence of choline in cyanobacteria, choline-oxidizing enzyme could not be used for the synthesis of glycine betaine. Here, the genes encoding glycine-sarcosine and dimethylglycine methyltransferases (ApGSMT-DMT) from a halotolerant cyanobacterium Aphanothece halophytica were expressed in Anabaena sp. strain PCC7120. The ApGSMT-DMT-expressing Anabaena cells were capable of synthesizing glycine betaine without the addition of any substance. The accumulation level of glycine betaine in Anabaena increased with rise of salt concentration. The transformed cells exhibited an improved growth and more tolerance to salinity than the control cells. The present work provides a prospect to engineer a nitrogen-fixing cyanobacterium having enhanced tolerance to stress by manipulating de novo synthesis of glycine betaine.

  17. Reactive lysine content in commercially available pet foods.

    PubMed

    van Rooijen, Charlotte; Bosch, Guido; van der Poel, Antonius F B; Wierenga, Peter A; Alexander, Lucille; Hendriks, Wouter H

    2014-01-01

    The Maillard reaction can occur during processing of pet foods. During this reaction, the ε-amino group of lysine reacts with reducing sugars to become unavailable for metabolism. The aim of the present study was to determine the reactive lysine (RL; the remaining available lysine) to total lysine (TL) ratio of commercial pet foods and to evaluate whether RL levels meet minimal lysine requirements (MLR). Sixty-seven extruded, canned and pelleted commercially available dog and cat foods for growth and maintenance were analysed for proximate nutrient composition, TL and RL. RL was expressed on a metabolisable energy basis and compared with the MLR for maintenance and growth. In dog foods, average RL:TL ratios were 0·87 (se 0·02) for extruded, 0·97 (se 0·02) for canned and 0·85 (se 0·01) for pelleted foods, with the lowest ratio of 0·77 in an extruded diet for growing dogs. In extruded and canned cat foods, the average ratio was 0·91 (se 0·02) and 0·90 (se 0·03), respectively, with the lowest ratio being 0·67 in an extruded diet for growing cats. Variation in the RL:TL ratio between and within processing type indicate that ingredients rather than processing might be the key factor influencing RL content in pet foods. Eight dry foods for growing dogs had RL contents between 96 and 138 % of MLR, indicating that RL has to be between 62 and 104 % digestible to meet the MLR. Considering the variability in RL digestibility, these foods could be at risk of not meeting the MLR for growing dogs. Ingredients and pet foods should be characterised with respect to the RL content and digestibility, to avoid limitations in the lysine supply to growing dogs. PMID:26101604

  18. Lysine carboxylation in proteins: OXA-10 beta-lactamase.

    PubMed

    Li, Jie; Cross, Jason B; Vreven, Thom; Meroueh, Samy O; Mobashery, Shahriar; Schlegel, H Bernhard

    2005-11-01

    An increasing number of proteins are being shown to have an N(zeta)-carboxylated lysine in their structures, a posttranslational modification of proteins that proceeds without the intervention of a specific enzyme. The role of the carboxylated lysine in these proteins is typically structural (hydrogen bonding or metal coordination). However, carboxylated lysines in the active sites of OXA-10 and OXA-1 beta-lactamases and the sensor domain of BlaR signal-transducer protein serve in proton transfer events required for the functions of these proteins. These examples demonstrate the utility of this unusual amino acid in acid-base chemistry, in expansion of function beyond those of the 20 standard amino acids. In this study, the ONIOM quantum-mechanical/molecular-mechanical (QM/MM) method is used to study the carboxylation of lysine in the OXA-10 beta-lactamase. Lys-70 and the active site of the OXA-10 beta-lactamase were treated with B3LYP/6-31G(d,p) density functional calculations and the remainder of the enzyme with the AMBER molecular mechanics force field. The barriers for unassisted carboxylation of neutral lysine by carbon dioxide or bicarbonate are high. However, when the reaction with CO2 is catalyzed by a molecule of water in the active site, it is exothermic by about 13 kcal/mol, with a barrier of approximately 14 kcal/mol. The calculations show that the carboxylation and decarboxylation of Lys-70 are likely to be accompanied by deprotonation and protonation of the carbamate, respectively. The analysis may also be relevant for other proteins with carboxylated lysines, a feature that may be more common in nature than previously appreciated.

  19. [Relationship between chloride tolerance and polyamine accumulation in Glycine max, Glycine soja, and their hybrid seedlings].

    PubMed

    Chen, Xuan-Qin; Yu, Bing-Jun; Liu, You-Liang

    2007-02-01

    The seedlings of the F4 hybrid strain 'JB185' selected for salt tolerance generation by generation, their parents Glycine max cv. Jackson and Glycine soja population 'BB52' were treated with different NaCl concentrations and iso-osmotic (-0.53 MPa) PEG-6000, NaCl, Na+ (without Cl-) and Cl- (without Na+) solutions for 6 d. The results showed that: (1) The relative electrolyte leakage and malondialdehyde (MDA) content in leaves of the above three soybean seedlings showed an increase trend when the NaCl concentration was elevated, but chlorophyll contents decreased except the significant increase in 'BB52' and 'JB185' under NaCl 50 mmol/L stress. The change in 'JB185' was between its parents. (2) Under different iso-osmotic stresses, the relative electrolyte leakage and MDA contents in leaves of three soybean seedlings also increased mostly, the changes in 'BB52' and 'JB185' under Na+ (without Cl-) stress were more than those under Cl- (without Na+) stress. The free and bound Put, Spd and Spm contents in leaves all increased when compared with the control, the ratios of free (Spd+Spm)/Put and total bound polyamines in 'BB52' and 'JB185' seedlings under Na+ (without Cl-) treatment were the lowest one among three iso-osmotic salt stresses. The results indicate that the F4 hybrid strain 'JB185' is more sensitive to Na+ than Cl- as its wild parent 'BB52' population.

  20. Ergogenic effects of β-alanine and carnosine: proposed future research to quantify their efficacy.

    PubMed

    Caruso, John; Charles, Jessica; Unruh, Kayla; Giebel, Rachel; Learmonth, Lexis; Potter, William

    2012-07-01

    β-alanine is an amino acid that, when combined with histidine, forms the dipeptide carnosine within skeletal muscle. Carnosine and β-alanine each have multiple purposes within the human body; this review focuses on their roles as ergogenic aids to exercise performance and suggests how to best quantify the former's merits as a buffer. Carnosine normally makes a small contribution to a cell's total buffer capacity; yet β-alanine supplementation raises intracellular carnosine concentrations that in turn improve a muscle's ability to buffer protons. Numerous studies assessed the impact of oral β-alanine intake on muscle carnosine levels and exercise performance. β-alanine may best act as an ergogenic aid when metabolic acidosis is the primary factor for compromised exercise performance. Blood lactate kinetics, whereby the concentration of the metabolite is measured as it enters and leaves the vasculature over time, affords the best opportunity to assess the merits of β-alanine supplementation's ergogenic effect. Optimal β-alanine dosages have not been determined for persons of different ages, genders and nutritional/health conditions. Doses as high as 6.4 g day(-1), for ten weeks have been administered to healthy subjects. Paraesthesia is to date the only side effect from oral β-alanine ingestion. The severity and duration of paraesthesia episodes are dose-dependent. It may be unwise for persons with a history of paraesthesia to ingest β-alanine. As for any supplement, caution should be exercised with β-alanine supplementation.

  1. Effects of inhalational general anaesthetics on native glycine receptors in rat medullary neurones and recombinant glycine receptors in Xenopus oocytes.

    PubMed Central

    Downie, D. L.; Hall, A. C.; Lieb, W. R.; Franks, N. P.

    1996-01-01

    1. Glycine responses were studied under voltage clamp in Xenopus oocytes injected with cDNA encoding mammalian glycine receptor subunits and in rat medullary neurones. Bath application of glycine gave strychnine-sensitive currents which reversed close to the expected equilibrium potentials for chloride ions. The peak currents for the receptors expressed in oocytes fitted a Hill equation with EC50 = 215 +/- 5 microM and Hill coefficient nH = 1.70 +/- 0.05 (means +/- s.e. means). The peak currents from the receptors in medullary neurones fitted a Hill equation with EC50 = 30 +/- 1 microM and Hill coefficient nH = 1.76 +/- 0.08. The current-voltage relationship for the receptors expressed in oocytes showed strong outward rectification (with Vrev = -21 +/- 2 mV), while that for the glycine responses from the medullary neurones in symmetrical Cl- was linear (with Vrev = 3.2 +/- 0.6 mV). 2. Inhalational general anaesthetics, at concentrations close to their human minimum alveolar concentrations (MACs), potentiated responses to low concentrations of glycine. The potentiation observed with the recombinant receptors (between 60-22%) was approximately twice that found with the medullary neurones (between 40-80%). For both the recombinant receptors and the receptors in medullary neurones, the degree of potentiation increased in the order of methoxyflurane approximately sevoflurane < halothane approximately isoflurane approximately enflurane. There was no significant difference between the potentiations observed for the two optical isomers of isoflurane. 3. For both the recombinant and native receptors, isoflurane potentiated the currents in a dose-dependent manner at low concentrations of glycine, although at high glycine concentrations the anaesthetic had no significant effect on the glycine-activated responses. The major effect of isoflurane was to cause a parallel leftward shift in the glycine concentration-response curves. The glycine EC50 concentration for the

  2. Performance effects of acute β-alanine induced paresthesia in competitive cyclists.

    PubMed

    Bellinger, Phillip M; Minahan, Clare L

    2016-01-01

    β-alanine is a common ingredient in supplements consumed by athletes. Indeed, athletes may believe that the β-alanine induced paresthesia, experienced shortly after ingestion, is associated with its ergogenic effect despite no scientific mechanism supporting this notion. The present study examined changes in cycling performance under conditions of β-alanine induced paresthesia. Eight competitive cyclists (VO2max = 61.8 ± 4.2 mL·kg·min(-1)) performed three practices, one baseline and four experimental trials. The experimental trials comprised a 1-km cycling time trial under four conditions with varying information (i.e., athlete informed β-alanine or placebo) and supplement content (athlete received β-alanine or placebo) delivered to the cyclist: informed β-alanine/received β-alanine, informed placebo/received β-alanine, informed β-alanine/received placebo and informed placebo/received placebo. Questionnaires were undertaken exploring the cyclists' experience of the effects of the experimental conditions. A possibly likely increase in mean power was associated with conditions in which β-alanine was administered (±95% CL: 2.2% ± 4.0%), but these results were inconclusive for performance enhancement (p = 0.32, effect size = 0.18, smallest worthwhile change = 56% beneficial). A possibly harmful effect was observed when cyclists were correctly informed that they had ingested a placebo (-1.0% ± 1.9%). Questionnaire data suggested that β-alanine ingestion resulted in evident sensory side effects and six cyclists reported placebo effects. Acute ingestion of β-alanine is not associated with improved 1-km TT performance in competitive cyclists. These findings are in contrast to the athlete's "belief" as cyclists reported improved energy and the ability to sustain a higher power output under conditions of β-alanine induced paresthesia.

  3. Diversity of endophytic fungi in Glycine max.

    PubMed

    Fernandes, Elio Gomes; Pereira, Olinto Liparini; da Silva, Cynthia Cânedo; Bento, Claudia Braga Pereira; de Queiroz, Marisa Vieira

    2015-12-01

    Endophytic fungi are microorganisms that live within plant tissues without causing disease during part of their life cycle. With the isolation and identification of these fungi, new species are being discovered, and ecological relationships with their hosts have also been studied. In Glycine max, limited studies have investigated the isolation and distribution of endophytic fungi throughout leaves and roots. The distribution of these fungi in various plant organs differs in diversity and abundance, even when analyzed using molecular techniques that can evaluate fungal communities in different parts of the plants, such as denaturing gradient gel electrophoresis (DGGE). Our results show there is greater species richness of culturable endophytic filamentous fungi in the leaves G. max as compared to roots. Additionally, the leaves had high values for diversity indices, i.e. Simpsons, Shannon and Equitability. Conversely, dominance index was higher in roots as compared to leaves. The fungi Ampelomyces sp., Cladosporium cladosporioides, Colletotrichum gloeosporioides, Diaporthe helianthi, Guignardia mangiferae and Phoma sp. were more frequently isolated from the leaves, whereas the fungi Fusarium oxysporum, Fusarium solani and Fusarium sp. were prevalent in the roots. However, by evaluating the two communities by DGGE, we concluded that the species richness was higher in the roots than in the leaves. UPGMA analysis showed consistent clustering of isolates; however, the fungus Leptospora rubella, which belongs to the order Dothideales, was grouped among species of the order Pleosporales. The presence of endophytic Fusarium species in G. max roots is unsurprising, since Fusarium spp. isolates have been previously described as endophyte in other reports. However, it remains to be determined whether the G. max Fusarium endophytes are latent pathogens or non-pathogenic forms that benefit the plant. This study provides a broader knowledge of the distribution of the fungal

  4. Diversity of endophytic fungi in Glycine max.

    PubMed

    Fernandes, Elio Gomes; Pereira, Olinto Liparini; da Silva, Cynthia Cânedo; Bento, Claudia Braga Pereira; de Queiroz, Marisa Vieira

    2015-12-01

    Endophytic fungi are microorganisms that live within plant tissues without causing disease during part of their life cycle. With the isolation and identification of these fungi, new species are being discovered, and ecological relationships with their hosts have also been studied. In Glycine max, limited studies have investigated the isolation and distribution of endophytic fungi throughout leaves and roots. The distribution of these fungi in various plant organs differs in diversity and abundance, even when analyzed using molecular techniques that can evaluate fungal communities in different parts of the plants, such as denaturing gradient gel electrophoresis (DGGE). Our results show there is greater species richness of culturable endophytic filamentous fungi in the leaves G. max as compared to roots. Additionally, the leaves had high values for diversity indices, i.e. Simpsons, Shannon and Equitability. Conversely, dominance index was higher in roots as compared to leaves. The fungi Ampelomyces sp., Cladosporium cladosporioides, Colletotrichum gloeosporioides, Diaporthe helianthi, Guignardia mangiferae and Phoma sp. were more frequently isolated from the leaves, whereas the fungi Fusarium oxysporum, Fusarium solani and Fusarium sp. were prevalent in the roots. However, by evaluating the two communities by DGGE, we concluded that the species richness was higher in the roots than in the leaves. UPGMA analysis showed consistent clustering of isolates; however, the fungus Leptospora rubella, which belongs to the order Dothideales, was grouped among species of the order Pleosporales. The presence of endophytic Fusarium species in G. max roots is unsurprising, since Fusarium spp. isolates have been previously described as endophyte in other reports. However, it remains to be determined whether the G. max Fusarium endophytes are latent pathogens or non-pathogenic forms that benefit the plant. This study provides a broader knowledge of the distribution of the fungal

  5. Structural aspects of the solvation shell of lysine and acetylated lysine: A Car-Parrinello and classical molecular dynamics investigation

    SciTech Connect

    Carnevale, V.; Raugei, S.

    2009-12-14

    Lysine acetylation is a post-translational modification, which modulates the affinity of protein-protein and/or protein-DNA complexes. Its crucial role as a switch in signaling pathways highlights the relevance of charged chemical groups in determining the interactions between water and biomolecules. A great effort has been recently devoted to assess the reliability of classical molecular dynamics simulations in describing the solvation properties of charged moieties. In the spirit of these investigations, we performed classical and Car-Parrinello molecular dynamics simulations on lysine and acetylated-lysine in aqueous solution. A comparative analysis between the two computational schemes is presented with a focus on the first solvation shell of the charged groups. An accurate structural analysis unveils subtle, yet statistically significant, differences which are discussed in connection to the significant electronic density charge transfer occurring between the solute and the surrounding water molecules.

  6. A chemical proteomics approach for global analysis of lysine monomethylome profiling.

    PubMed

    Wu, Zhixiang; Cheng, Zhongyi; Sun, Mingwei; Wan, Xuelian; Liu, Ping; He, Tieming; Tan, Minjia; Zhao, Yingming

    2015-02-01

    Methylation of lysine residues on histone proteins is known to play an important role in chromatin structure and function. However, non-histone protein substrates of this modification remain largely unknown. An effective approach for system-wide analysis of protein lysine methylation, particularly lysine monomethylation, is lacking. Here we describe a chemical proteomics approach for global screening for monomethyllysine substrates, involving chemical propionylation of monomethylated lysine, affinity enrichment of the modified monomethylated peptides, and HPLC/MS/MS analysis. Using this approach, we identified with high confidence 446 lysine monomethylation sites in 398 proteins, including three previously unknown histone monomethylation marks, representing the largest data set of protein lysine monomethylation described to date. Our data not only confirms previously discovered lysine methylation substrates in the nucleus and spliceosome, but also reveals new substrates associated with diverse biological processes. This method hence offers a powerful approach for dynamic study of protein lysine monomethylation under diverse cellular conditions and in human diseases. PMID:25505155

  7. Use of the entire spectrum of irradiated alanine for dosimetry.

    PubMed

    Dolo, J M; Moignau, F

    2005-02-01

    Alanine is an amino acid commonly used in ESR dosimetry as a reference detector. The classic approach for the measurement of irradiated samples is to determine the amplitude of the central peak of the first derivative spectrum. It is generally considered that this technique represents the best and most reproducible solution for achieving an accurate proportionality between the concentration of free radicals inside the resonant cavity, characterized by the amplitude, and the dose. It is also accepted that this central peak corresponds to the free radical CH3CHCOO-. The hyperfine structure of this radical in the spectrum shows five main peaks with the approximate ratios 1:4:6:4:1 as regards coupling. This paper presents another approach featuring analysis of the entire spectrum: (i) ratios of identified peaks, (ii) ratio variation vs time with regard to several parameters affecting fading. These variations in the alanine spectrum are probably correlated with the variation of the concentrations of different free radical species. These variations and their positions in the spectrum are very important constraints that increase the uncertainty of this type of measurement.

  8. The effect of immunonutrition (glutamine, alanine) on fracture healing

    PubMed Central

    Küçükalp, Abdullah; Durak, Kemal; Bayyurt, Sarp; Sönmez, Gürsel; Bilgen, Muhammed S.

    2014-01-01

    Background There have been various studies related to fracture healing. Glutamine is an amino acid with an important role in many cell and organ functions. This study aimed to make a clinical, radiological, and histopathological evaluation of the effects of glutamine on fracture healing. Methods Twenty rabbits were randomly allocated into two groups of control and immunonutrition. A fracture of the fibula was made to the right hind leg. All rabbits received standard food and water. From post-operative first day for 30 days, the study group received an additional 2 ml/kg/day 20% L-alanine L-glutamine solution via a gastric catheter, and the control group received 2 ml/kg/day isotonic via gastric catheter. At the end of 30 days, the rabbits were sacrificed and the fractures were examined clinically, radiologically, and histopathologically in respect to the degree of union. Results Radiological evaluation of the control group determined a mean score of 2.5 according to the orthopaedists and 2.65 according to the radiologists. In the clinical evaluation, the mean score was 1.875 for the control group and 2.0 for the study group. Histopathological evaluation determined a mean score of 8.5 for the control group and 9.0 for the study group. Conclusion One month after orally administered glutamine–alanine, positive effects were observed on fracture healing radiologically, clinically, and histopathologically, although no statistically significant difference was determined.

  9. Formation of chloroform during chlorination of alanine in drinking water.

    PubMed

    Chu, Wen-Hai; Gao, Nai-Yun; Deng, Yang; Dong, Bing-Zhi

    2009-11-01

    Currently, dissolved nitrogenous organic matters in water, important precursors of disinfection by-products (DBPs), are of significant concern. This study was to explore the formation of chloroform (CF) during chlorination of alanine (Ala), an important nitrogenous organic compound commonly present in water sources. Our results indicated that the CF yield reached a maximum value of 0.143% at the molar ratio of chlorine atom to nitrogen atom (Cl/N)=1.0 over a Cl/N range of 0.2-5.0 (pH=7.0, reaction time=5d, and initial Ala=0.1mM). At an acidic-neutral condition (pH 4-7), the formation of CF was suppressed. However, the highest CF yield (0.227%) occurred at weakly alkaline condition (pH 8.0) (initial Ala=0.1mM, and Cl/N=1.0). The increase of Br(-) in water can increase total trihalomethanes (THMs) and bromo-THMs. However, the bromo-THMs level reached a plateau at Br(-)/Cl>0.04. Finally, based on the computation of frontier electron density and identification and measurement of key intermediates during Ala chlorination, we proposed a formation pathway of CF from Ala chlorination: Ala-->monochloro-N-alanine (MC-N-Ala)-->acetaldehyde (AAld)-->monochloroacetaldehyde acetaldehyde (MCAld)-->dichloroacetaldehyde (DCAld)-->trichloroacetaldehyde (TCAld)-->CF.

  10. Trapping of glutamate and glycine during open channel block of rat hippocampal neuron NMDA receptors by 9-aminoacridine.

    PubMed Central

    Benveniste, M; Mayer, M L

    1995-01-01

    1. N-methyl-D-aspartate (NMDA) receptor responses were recorded from rat hippocampal neurons grown in dissociated culture, using whole-cell, outside-out and nucleated patch recording techniques. Rapid perfusion was used to study voltage-dependent block of NMDA receptors by 9-aminoacridine (9-AA) and by Mg2+. 2. Large amplitude tail currents were evoked on depolarization to +60 mV after application at -100 mV of NMDA and 9-AA but not NMDA and Mg2+. These tail currents were resistant to block by competitive antagonists to the glutamate and glycine binding sites on NMDA receptors and were not evoked when either NMDA or 9-AA were applied alone. 3. The decay kinetics of the tail current were dependent on agonist affinity; the time required for 80% charge transfer was 10-fold briefer for NMDA than for glutamate and 7-fold briefer for L-alanine than for glycine. These results are in accord with a sequential model for block of NMDA receptors by 9-AA, in which neither glutamate nor glycine can dissociate from the open-blocked state of the receptor. 4. Tail current responses had amplitudes 2- to 4-fold larger than responses to maximally effective concentrations of glutamate and glycine, indicating that NMDA receptor channels accumulate in the open-blocked state during co-application of agonist and 9-AA. The rise time and decay kinetics of tail current responses were faster than the response to brief applications of a maximally effective concentration of glutamate. Together, these results suggest that at +60 mV recovery from block by 9-AA occurs faster than the rate of opening of NMDA receptors in response to glutamate. 5. Our experiments suggest that open channel block of NMDA receptors can provide a novel approach for measurement of both open probability and the first latency distribution for ion channel opening in response to the binding of agonists, and provide additional evidence suggesting that the delayed opening of NMDA receptor channels underlies slow activation and

  11. Involvement of alanine racemase in germination of Bacillus cereus spores lacking an intact exosporium.

    PubMed

    Venir, Elena; Del Torre, Manuela; Cunsolo, Vincenzo; Saletti, Rosaria; Musetti, Rita; Stecchini, Mara Lucia

    2014-02-01

    The L-alanine mediated germination of food isolated Bacillus cereus DSA 1 spores, which lacked an intact exosporium, increased in the presence of D-cycloserine (DCS), which is an alanine racemase (Alr) inhibitor, reflecting the activity of the Alr enzyme, capable of converting L-alanine to the germination inhibitor D-alanine. Proteomic analysis of the alkaline extracts of the spore proteins, which include exosporium and coat proteins, confirmed that Alr was present in the B. cereus DSA 1 spores and matched to that encoded by B. cereus ATCC 14579, whose spore germination was strongly affected by the block of conversion of L- to D-alanine. Unlike ATCC 14579 spores, L-alanine germination of B. cereus DSA 1 spores was not affected by the preincubation with DCS, suggesting a lack of restriction in the reactant accessibility.

  12. The role of lysine 55 in determining the specificity of the purine repressor for its operators through minor groove interactions.

    PubMed

    Glasfeld, A; Koehler, A N; Schumacher, M A; Brennan, R G

    1999-08-13

    The interaction of the dimeric Escherichia coli purine repressor (PurR) with its cognate sequences leads to a 45 degrees to 50 degrees kink at a central CpG base step towards the major groove, as dyad-related leucine side-chains interdigitate between these bases from the minor groove. The resulting broadening of the minor groove increases the accessibility of the six central base-pairs towards minor groove interactions with residues from PurR. It has been shown that lysine 55 of PurR makes a direct contact with the adenine base (Ade8) directly 5' to the central CpG base-pair step in the high-affinity purF operator sequence. We have investigated the importance of this interaction in the specificity and affinity of wild-type PurR (WT) for its operators and we have studied a mutant of PurR in which Lys55 is replaced with alanine (K55A). Complexes of WT and K55A with duplex DNA containing pur operator sequences varied at position 8 were investigated crystallographically, and binding studies were performed using fluorescence anisotropy. The structures of the protein-DNA complexes reveal a relatively unperturbed global conformation regardless of the identity of the base-pair at position 8 or residue 55. In all structures the combination of higher resolution and a palindromic purF operator site allowed several new PurR.DNA interactions to be observed, including contacts by Thr15, Thr16 and His20. The side-chain of Lys55 makes productive, though varying, interactions with the adenine, thymine or cytosine base at position 8 that result in equilibrium dissociation constants of 2.6 nM, 10 nM and 35 nM, respectively. However, the bulk of the lysine side-chain apparently blocks high-affinity binding of operators with guanine at position 8 (Kd620 nM). Also, the high-affinity binding conformation appears blocked, as crystals of WT bound to DNA with guanine at position 8 could not be grown. In complexes containing K55A, the alanine side-chain is too far removed to engage in van

  13. Glycine reduces cadmium-induced teratogenic damage in mice.

    PubMed

    Paniagua-Castro, Norma; Escalona-Cardoso, Gerardo; Chamorro-Cevallos, Germán

    2007-01-01

    The effect of glycine in preventing cadmium (Cd) teratogenicity in mice was studied. Cadmium chloride (CdCl2) was administered subcutaneously at 1, 2 or 4 mg/kg doses on gestation days (GD) 7, 8 and 9. Glycine was given ad libitum (in the drinking water) from GD0 through GD18 (the day when animals were killed), as a 1% and 2% drinking water solution. Cd and nucleic acid concentrations in embryos were determined. The most common finding seen after CdCl2 4 mg/kg exposure was exencephaly. The incidence of this malformation was significantly reduced in mice receiving 2% glycine while fetal Cd significantly decreased as compared to cadmium-treated positive control animals. Increased nucleic acid levels were seen in the same embryos. In glycine non-supplemented mice given CdCl2 4 mg/kg, embryonic lipid peroxidation proved to be increased. In conclusion, lipid peroxidation was associated with cadmium-induced teratogenicity, and glycine inhibited the cadmium-induced effect by inhibiting placental transport of cadmium. However, further detailed studies are needed to establish the mechanism(s) of action.

  14. Protein Footprinting by the Combined Use of Reversible and Irreversible Lysine Modifications

    NASA Astrophysics Data System (ADS)

    Hanai, Ryo; Wang, James C.

    1994-12-01

    A two-step lysine-modification procedure has been devised to chemically footprint protein surfaces involved in macromolecular interactions. A protein tagged at one particular end, in the free state or in a complex, is first treated lightly with a reversible lysine-modifying reagent. The protein is then unfolded and treated extensively with an irreversible lysine reagent to block those lysines that did not react previously; next, the first lysine modification is reversed, and a lysine-specific endoproteinase is used to cleave the tagged polypeptide at the deblocked lysines. Separation of the proteolytic products by size and identification of the tagged fragments map the positions of these lysines. In this procedure, the reversible lysine reagent serves as the chemical footprinting agent, as cleavage of the polypeptide ensues only at the sites of reaction with this reagent. Lysines involved in macromolecular contacts are identified from differences in proteolytic patterns of the tagged protein when the first lysine modification is done with the protein in the free form and in a complex. Application of the method to vaccinia virus topoisomerase identifies a number of lysines that are involved in its binding to DNA.

  15. Investigation of Lysine-Functionalized Dendrimers as Dichlorvos Detoxification Agents.

    PubMed

    Durán-Lara, Esteban F; Marple, Jennifer L; Giesen, Joseph A; Fang, Yunlan; Jordan, Jacobs H; Godbey, W Terrence; Marican, Adolfo; Santos, Leonardo S; Grayson, Scott M

    2015-11-01

    Lysine-containing polymers have seen broad application due to their amines' inherent ability to bind to a range of biologically relevant molecules. The synthesis of multiple generations of polyester dendrimers bearing lysine groups on their periphery is described in this report. Their hydrolytic stabilities with respect to pH and time, their toxicity to a range of cell lines, and their possible application as nano-detoxification agents of organophosphate compounds are all investigated. These zeroth-, first-, and second-generation water-soluble dendrimers have been designed to bear exactly 4, 8, and 16 lysine groups, respectively, on their dendritic periphery. Such monodisperse bioactive polymers show potential for a range of applications including drug delivery, gene delivery, heavy metal binding, and the sequestration of organic toxins. These monodisperse bioactive dendrimers were synthesized using an aliphatic ester dendritic core (prepared from pentaerythritol) and protected amino acid moieties. This library of lysine-conjugated dendrimers showed the ability to efficiently capture the pesticide dichlorvos, confirming the potential of dendrimer-based antidotes to maintain acetylcholinesterase activity in response to poisoning events. PMID:26460283

  16. Bioavailability of lysine in selected foods by rat growth assay.

    PubMed

    McDonough, F E; Bodwell, C E; Hitchins, A D; Staples, R S

    1989-01-01

    Lysine bioavailabilities in reference protein and 16 test protein diets were estimated using 10 day rat growth assays. A standard growth curve was obtained by feeding 5 diets containing casein, zein and synthetic amino acids ranging in total lysine concentration from 0.3 to 0.7%. Experimental foods were added to the basal diet at the expense of zein and/or synthetic amino acids to provide 2 specific lysine concentrations, i.e., 0.4 and 0.6%. Availabilities were established by comparing growth responses from the test food diets to the regression line of the standard growth data. Availabilities were over 88% for 13 of 16 products. Utilization was poor in pinto beans (73%), rice-wheat gluten cereal (70%), and skim milk powder heated to 100 degrees C for 12 h (66%). Addition of excess lysine (700 mg/100 g diet) to the pinto bean diet did not improve growth response; thus poor digestibility or some unidentified growth inhibitor is indicated. PMID:2496403

  17. Bovine NK-lysin: Copy number variation and functional diversification.

    PubMed

    Chen, Junfeng; Huddleston, John; Buckley, Reuben M; Malig, Maika; Lawhon, Sara D; Skow, Loren C; Lee, Mi Ok; Eichler, Evan E; Andersson, Leif; Womack, James E

    2015-12-29

    NK-lysin is an antimicrobial peptide and effector protein in the host innate immune system. It is coded by a single gene in humans and most other mammalian species. In this study, we provide evidence for the existence of four NK-lysin genes in a repetitive region on cattle chromosome 11. The NK2A, NK2B, and NK2C genes are tandemly arrayed as three copies in ∼30-35-kb segments, located 41.8 kb upstream of NK1. All four genes are functional, albeit with differential tissue expression. NK1, NK2A, and NK2B exhibited the highest expression in intestine Peyer's patch, whereas NK2C was expressed almost exclusively in lung. The four peptide products were synthesized ex vivo, and their antimicrobial effects against both Gram-positive and Gram-negative bacteria were confirmed with a bacteria-killing assay. Transmission electron microcopy indicated that bovine NK-lysins exhibited their antimicrobial activities by lytic action in the cell membranes. In summary, the single NK-lysin gene in other mammals has expanded to a four-member gene family by tandem duplications in cattle; all four genes are transcribed, and the synthetic peptides corresponding to the core regions are biologically active and likely contribute to innate immunity in ruminants. PMID:26668394

  18. Identification and functional characterization of lysine methyltransferases of Entamoeba histolytica.

    PubMed

    Borbolla-Vázquez, Jessica; Orozco, Esther; Medina-Gómez, Christian; Martínez-Higuera, Aarón; Javier-Reyna, Rosario; Chávez, Bibiana; Betanzos, Abigail; Rodríguez, Mario A

    2016-07-01

    Lysine methylation of histones, a posttranslational modification catalyzed by lysine methyltransferases (HKMTs), plays an important role in the epigenetic regulation of transcription. Lysine methylation of non-histone proteins also impacts the biological function of proteins. Previously it has been shown that lysine methylation of histones of Entamoeba histolytica, the protozoan parasite that infects 50 million people worldwide each year and causing up to 100,000 deaths annually, is implicated in the epigenetic machinery of this microorganism. However, the identification and characterization of HKMTs in this parasite had not yet been determined. In this work we identified four HKMTs in E. histolytica (EhHKMT1 to EhHKMT4) that are expressed by trophozoites. Enzymatic assays indicated that all of them are able to transfer methyl groups to commercial histones. EhHKMT1, EhHKMT2 and EhHKMT4 were detected in nucleus and cytoplasm of trophozoites. In addition EhHKMT2 and EhHKMT4 were located in vesicles containing ingested cells during phagocytosis, and they co-immunoprecipitated with EhADH, a protein involved in the phagocytosis of this parasite. Results suggest that E. histolytica uses its HKMTs to regulate transcription by epigenetic mechanisms, and at least two of them could also be implicated in methylation of proteins that participate in phagocytosis. PMID:27062489

  19. Protein lysine methylation by seven-β-strand methyltransferases.

    PubMed

    Falnes, Pål Ø; Jakobsson, Magnus E; Davydova, Erna; Ho, Angela; Małecki, Jędrzej

    2016-07-15

    Methylation of biomolecules is a frequent biochemical reaction within the cell, and a plethora of highly specific methyltransferases (MTases) catalyse the transfer of a methyl group from S-adenosylmethionine (AdoMet) to various substrates. The posttranslational methylation of lysine residues, catalysed by numerous lysine (K)-specific protein MTases (KMTs), is a very common and important protein modification, which recently has been subject to intense studies, particularly in the case of histone proteins. The majority of KMTs belong to a class of MTases that share a defining 'SET domain', and these enzymes mostly target lysines in the flexible tails of histones. However, the so-called seven-β-strand (7BS) MTases, characterized by a twisted beta-sheet structure and certain conserved sequence motifs, represent the largest MTase class, and these enzymes methylate a wide range of substrates, including small metabolites, lipids, nucleic acids and proteins. Until recently, the histone-specific Dot1/DOT1L was the only identified eukaryotic 7BS KMT. However, a number of novel 7BS KMTs have now been discovered, and, in particular, several recently characterized human and yeast members of MTase family 16 (MTF16) have been found to methylate lysines in non-histone proteins. Here, we review the status and recent progress on the 7BS KMTs, and discuss these enzymes at the levels of sequence/structure, catalytic mechanism, substrate recognition and biological significance. PMID:27407169

  20. Bovine NK-lysin: Copy number variation and functional diversification

    PubMed Central

    Chen, Junfeng; Huddleston, John; Buckley, Reuben M.; Malig, Maika; Lawhon, Sara D.; Skow, Loren C.; Lee, Mi Ok; Eichler, Evan E.; Andersson, Leif; Womack, James E.

    2015-01-01

    NK-lysin is an antimicrobial peptide and effector protein in the host innate immune system. It is coded by a single gene in humans and most other mammalian species. In this study, we provide evidence for the existence of four NK-lysin genes in a repetitive region on cattle chromosome 11. The NK2A, NK2B, and NK2C genes are tandemly arrayed as three copies in ∼30–35-kb segments, located 41.8 kb upstream of NK1. All four genes are functional, albeit with differential tissue expression. NK1, NK2A, and NK2B exhibited the highest expression in intestine Peyer’s patch, whereas NK2C was expressed almost exclusively in lung. The four peptide products were synthesized ex vivo, and their antimicrobial effects against both Gram-positive and Gram-negative bacteria were confirmed with a bacteria-killing assay. Transmission electron microcopy indicated that bovine NK-lysins exhibited their antimicrobial activities by lytic action in the cell membranes. In summary, the single NK-lysin gene in other mammals has expanded to a four-member gene family by tandem duplications in cattle; all four genes are transcribed, and the synthetic peptides corresponding to the core regions are biologically active and likely contribute to innate immunity in ruminants. PMID:26668394

  1. Therapeutic use of chimeric bacteriophage (phage) lysins in staphylococcal endophthalmitis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose: Phage endolysins are peptidoglycan hydrolases that are produced at the end of the phage lytic cycle to digest the host bacterial cell wall, facilitating the release of mature phage progeny. The aim of this study is to determine the antimicrobial activity of chimeric phage lysins against cli...

  2. Use of alanine-silicone pellets for electron paramagnetic resonance gamma dosimetry

    SciTech Connect

    Flores, J.; Galindo, S. )

    1991-03-01

    Silicone is proposed as an alternative binding substance in the production of D-L alanine pellets used in electron paramagnetic resonance (EPR) dosimetry of gamma rays. The dosimeters are manufactured at room temperature, making the production simple. Examination by EPR silicone-alanine pellets irradiated with 60Co gamma rays in the dose range 10 to 10(6) Gy shows that the proposed silicone binder does not affect typical alanine dose-response curves. Thermal stability of the pellets below 40 degrees C is good, but their pre-dose EPR signal amplitude is slightly higher than for nonirradiated alanine.

  3. Effect of β-alanine supplementation on high-intensity exercise performance.

    PubMed

    Harris, Roger C; Stellingwerff, Trent

    2013-01-01

    Carnosine is a dipeptide of β-alanine and L-histidine found in high concentrations in skeletal muscle. Combined with β-alanine, the pKa of the histidine imidazole ring is raised to ∼6.8, placing it within the muscle intracellular pH high-intensity exercise transit range. Combination with β-alanine renders the dipeptide inert to intracellular enzymic hydrolysis and blocks the histidinyl residue from participation in proteogenesis, thus making it an ideal, stable intracellular buffer. For vegetarians, synthesis is limited by β-alanine availability; for meat-eaters, hepatic synthesis is supplemented with β-alanine from the hydrolysis of dietary carnosine. Direct oral β-alanine supplementation will compensate for low meat and fish intake, significantly raising the muscle carnosine concentration. This is best achieved with a sustained-release formulation of β-alanine to avoid paresthesia symptoms and decreasing urinary spillover. In humans, increased levels of carnosine through β-alanine supplementation have been shown to increase exercise capacity and performance of several types, particularly where the high-intensity exercise range is 1-4 min. β-Alanine supplementation is used by athletes competing in high-intensity track and field cycling, rowing, swimming events and other competitions.

  4. Effect of β-alanine supplementation on high-intensity exercise performance.

    PubMed

    Harris, Roger C; Stellingwerff, Trent

    2013-01-01

    Carnosine is a dipeptide of β-alanine and L-histidine found in high concentrations in skeletal muscle. Combined with β-alanine, the pKa of the histidine imidazole ring is raised to ∼6.8, placing it within the muscle intracellular pH high-intensity exercise transit range. Combination with β-alanine renders the dipeptide inert to intracellular enzymic hydrolysis and blocks the histidinyl residue from participation in proteogenesis, thus making it an ideal, stable intracellular buffer. For vegetarians, synthesis is limited by β-alanine availability; for meat-eaters, hepatic synthesis is supplemented with β-alanine from the hydrolysis of dietary carnosine. Direct oral β-alanine supplementation will compensate for low meat and fish intake, significantly raising the muscle carnosine concentration. This is best achieved with a sustained-release formulation of β-alanine to avoid paresthesia symptoms and decreasing urinary spillover. In humans, increased levels of carnosine through β-alanine supplementation have been shown to increase exercise capacity and performance of several types, particularly where the high-intensity exercise range is 1-4 min. β-Alanine supplementation is used by athletes competing in high-intensity track and field cycling, rowing, swimming events and other competitions. PMID:23899755

  5. Correlation of carnitine levels to methionine and lysine intake.

    PubMed

    Krajcovicová-Kudlácková, M; Simoncic, R; Béderová, A; Babinská, K; Béder, I

    2000-01-01

    Plasma carnitine levels were measured in two alternative nutrition groups--strict vegetarians (vegans) and lactoovovegetarians (vegetarians consuming limited amounts of animal products such as milk products and eggs). The results were compared to an average sample of probands on mixed nutrition (omnivores). Carnitine levels were correlated with the intake of essential amino acids, methionine and lysine (as substrates of its endogenous synthesis), since the intake of carnitine in food is negligible in the alternative nutrition groups (the highest carnitine content is in meat, lower is in milk products, while fruit, cereals and vegetables contain low or no carnitine at all). An average carnitine level in vegans was significantly reduced with hypocarnitinemia present in 52.9% of probands. Similarly, the intake of methionine and lysine was significantly lower in this group due to the exclusive consumption of plant proteins with reduced content of these amino acids. Carnitine level in lactoovovegetarians was also significantly reduced, but the incidence of values below 30 micromol/l was lower than in vegans representing 17.8% vs. 3.3% in omnivores. Intake of methionine and lysine was also significantly reduced in this group, but still higher compared to vegans (73% of protein intake covered by plant proteins). Significant positive correlation of carnitine levels with methionine and lysine intake in alternative nutrition groups indicates that a significant portion of carnitine requirement is covered by endogenous synthesis. Approximately two thirds of carnitine requirement in omnivores comes from exogenous sources. The results demonstrate the risks of alternative nutrition with respect to the intake of essential amino acids, methionine and lysine, and with respect to the intake and biosynthesis of carnitine. PMID:11043928

  6. Correlation of carnitine levels to methionine and lysine intake.

    PubMed

    Krajcovicová-Kudlácková, M; Simoncic, R; Béderová, A; Babinská, K; Béder, I

    2000-01-01

    Plasma carnitine levels were measured in two alternative nutrition groups--strict vegetarians (vegans) and lactoovovegetarians (vegetarians consuming limited amounts of animal products such as milk products and eggs). The results were compared to an average sample of probands on mixed nutrition (omnivores). Carnitine levels were correlated with the intake of essential amino acids, methionine and lysine (as substrates of its endogenous synthesis), since the intake of carnitine in food is negligible in the alternative nutrition groups (the highest carnitine content is in meat, lower is in milk products, while fruit, cereals and vegetables contain low or no carnitine at all). An average carnitine level in vegans was significantly reduced with hypocarnitinemia present in 52.9% of probands. Similarly, the intake of methionine and lysine was significantly lower in this group due to the exclusive consumption of plant proteins with reduced content of these amino acids. Carnitine level in lactoovovegetarians was also significantly reduced, but the incidence of values below 30 micromol/l was lower than in vegans representing 17.8% vs. 3.3% in omnivores. Intake of methionine and lysine was also significantly reduced in this group, but still higher compared to vegans (73% of protein intake covered by plant proteins). Significant positive correlation of carnitine levels with methionine and lysine intake in alternative nutrition groups indicates that a significant portion of carnitine requirement is covered by endogenous synthesis. Approximately two thirds of carnitine requirement in omnivores comes from exogenous sources. The results demonstrate the risks of alternative nutrition with respect to the intake of essential amino acids, methionine and lysine, and with respect to the intake and biosynthesis of carnitine.

  7. Cometary Glycine Detected in Samples Returned by Stardust

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie E.; Glavin, Daniel P.; Dworkin, Jason P.

    2009-01-01

    Our previous analysis of cometary samples returned to Earth by NASA's Stardust spacecraft showed several amines and amino acids, but the or igin of these compounds could not be firmly established. Here, we pre sent the stable carbon isotopic ratios of glycine and E-amino-n-caproic acid (EACA), the two most abundant amino acids identified in Stardu st-returned foil samples measured by gas chromatography-mass spectrom etry coupled with isotope ratio mass spectrometry. The Delta C-13 value for glycine of +29 +/- ? 6%: strongly suggests an extraterrestrial origin For glycine, while the Delta C-13 value for EACA of -25 +/-2 % indicates terrestrial contamination by Nylon-6 during curation. This represents the first detection of a cometary amino acid.

  8. Structural phase transition in ferroelectric glycine silver nitrate

    NASA Astrophysics Data System (ADS)

    Choudhury, Rajul Ranjan; Panicker, Lata; Chitra, R.; Sakuntala, T.

    2008-02-01

    The structural investigation of the ferroelectric phase transition in glycine silver nitrate has revealed that the transition at Tc=218 K is due to the displacement of the Ag + ions from the plane made by the carboxyl oxygens of glycine zwitterions coordinated to it. Since the transition takes place between two ordered structures the thermal anomaly at Tc is very weak, the transition enthalpy and transition entropy were found to be ΔH=6.6 J/mol and the transition entropy ΔS=0.03 J K mol respectively. These crystals are held together by a network of hydrogen bonds. In order to study these interactions the Raman spectrum of GSN was recorded and discussed in the light of ferroelectricity in glycine complexes in general.

  9. Nanocrystalline thoria powders via glycine-nitrate combustion

    NASA Astrophysics Data System (ADS)

    Purohit, R. D.; Saha, S.; Tyagi, A. K.

    2001-01-01

    Nanocrystalline thoria powders were prepared by the combustion technique using glycine as a fuel and nitrate as an oxidizer. The technique involves the exothermic decomposition of viscous liquid prepared by thermal dehydration of the aqueous solution containing thorium nitrate and glycine. Thoria powders of different crystallite sizes, surface areas and sinterabilities were prepared by starting with two different fuel-to-oxidant molar ratios. The exothermic decomposition of viscous liquid, at about 200°C, containing thorium nitrate-to-glycine in molar ratio 1:1.2 yielded the well-crystalline nano-sized ThO 2 powder. Thoria powders prepared by this technique were shown to have a higher surface area ( >50 m2/ g) and could be sintered to highly dense pellets (⩾93% th.d.) at relatively low sintering temperature of 1300°C for 3 h.

  10. Relative utilization of serine and glycine by chicks.

    PubMed

    Featherston, W R

    1975-01-01

    Studies were conducted on the relative utilizaiton of glycine and serine by chicks fed basal crystalline amino acid diets devoid of these amino acids. The crystalline amino acid mixture was fed at one and three times the requirement levels, thereby stimulating uric acid synthesis at differing rates. In addition, 5 per cent L-glutamine replaced L-glutamic acid on an isonitrogenous basis in three diets containing normal levels of amino acids in the second study. Chicks fed diets devoid of glycine and serine grew less rapidly and less efficiently than chicks fed diets containing either serine or glycine plus serine. These decreases were roughly the same whether the diet contained normal or high levels of amino acids. Serine was as efficient as glycine in supporting chick growth and feed efficiency regardless of whether diets containing normal or high levels of amino acids were fed. Chicks fed diets containing high levels of amino acids grew approximately 81 per cent as rapidly, but 24 per cent more efficiently, than chicks fed normal levels of amino acids, and excreted approximately twice the amount of uric acid per gram of nitrogen consumed. In spite of increased uric acid excretion by chicks fed the high amino acid diets, the dietary void in glycine and serine was no more detrimental to chick growth or feed efficiency than that noted when normal levels of amino acids were fed. Feeding 5 per cent L-glutamine rather than L-glutamic acid in the diet containing normal levels of amino acids had little effect on weight gain, feed efficiency or uric acid excretion. The absence of cystine from the amino acid mixture used in the third study did not have a marked influence on the relative utilization of glycine and serine by the chick. PMID:1169769

  11. Alanine Aminotransferase-Old Biomarker and New Concept: A Review

    PubMed Central

    Liu, Zhengtao; Que, Shuping; Xu, Jing; Peng, Tao

    2014-01-01

    Measurement of serum alanine aminotransferase (ALT) is a common, readily available, and inexpensive laboratory assay in clinical practice. ALT activity is not only measured to detect liver disease, but also to monitor overall health. ALT activity is influenced by various factors, including viral hepatitis, alcohol consumption, and medication. Recently, the impact of metabolic abnormalities on ALT variation has raised concern due to the worldwide obesity epidemic. The normal ranges for ALT have been updated and validated considering the metabolic covariates in the various ethnic districts. The interaction between metabolic and demographic factors on ALT variation has also been discussed in previous studies. In addition, an extremely low ALT value might reflect the process of aging, and frailty in older adults has been raised as another clinically significant feature of this enzyme, to be followed with additional epidemiologic investigation. Timely updated, comprehensive, and systematic introduction of ALT activity is necessary to aid clinicians make better use of this enzyme. PMID:25013373

  12. Charge dependent photodynamic activity of alanine based zinc phthalocyanines.

    PubMed

    Wang, Ao; Li, Yejing; Zhou, Lin; Yuan, Linxin; Lu, Shan; Lin, Yun; Zhou, Jiahong; Wei, Shaohua

    2014-12-01

    In this paper, to minimize the effects of different structure, three alanine-based zinc phthalocyanines (Pcs) of differing charges were engineered and synthesized with the same basic structure. On this premise, the relationship between nature of charge and photodynamic activity was studied. Besides, further verification and explanation of some inconsistent results were also carried out. The results showed that charge can influence the aggregation state, singlet oxygen generation ability and cellular uptake of Pcs, thereby affecting their photodynamic activity. In addition, the biomolecules inside cells may interact with Pcs of differing charges, which can also influence the aggregation state and singlet oxygen generation of the Pcs, and then influence the relationship between nature of charge and photodynamic activity.

  13. Radiolysis of alanine adsorbed in a clay mineral

    SciTech Connect

    Aguilar-Ovando, Ellen Y.; Negron-Mendoza, Alicia

    2013-07-03

    Optical activity in molecules is a chemical characteristic of living beings. In this work, we examine the hypothesis of the influence of different mineral surfaces on the development of a specific chirality in organic molecules when subjected to conditions simulating the primitive Earth during the period of chemical evolution. By using X-ray diffraction techniques and HPLC/ELSD to analyze aqueous suspensions of amino acids adsorbed on minerals irradiated in different doses with a cobalt-60 gamma source, the experiments attempt to prove the hypothesis that some solid surfaces (like clays and meteorite rocks) may have a concentration capacity and protective role against external sources of ionizing radiation (specifically {gamma}-ray) for some organic compounds (like some amino acids) adsorbed on them. Preliminary results show a slight difference in the adsorption and radiolysis of the D-and L-alanine.

  14. Alanine aminotransferase variants conferring diverse NUE phenotypes in Arabidopsis thaliana.

    PubMed

    McAllister, Chandra H; Good, Allen G

    2015-01-01

    Alanine aminotransferase (AlaAT, E.C. 2.6.1.2), is a pyridoxal-5'-phosphate-dependent (PLP) enzyme that catalyzes the reversible transfer of an amino group from alanine to 2-oxoglutarate to produce glutamate and pyruvate, or vice versa. It has been well documented in both greenhouse and field studies that tissue-specific over-expression of AlaAT from barley (Hordeum vulgare, HvAlaAT) results in a significant increase in plant NUE in both canola and rice. While the physical phenotypes associated with over-expression of HvAlaAT have been well characterized, the role this enzyme plays in vivo to create a more N efficient plant remains unknown. Furthermore, the importance of HvAlaAT, in contrast to other AlaAT enzyme homologues in creating this phenotype has not yet been explored. To address the role of AlaAT in NUE, AlaAT variants from diverse sources and different subcellular locations, were expressed in the wild-type Arabidopsis thaliana Col-0 background and alaat1;2 (alaat1-1;alaat2-1) knockout background in various N environments. The analysis and comparison of both the physical and physiological properties of AlaAT over-expressing transgenic plants demonstrated significant differences between plants expressing the different AlaAT enzymes under different external conditions. This analysis indicates that the over-expression of AlaAT variants other than HvAlaAT in crop plants could further increase the NUE phenotype(s) previously observed.

  15. Effects of beta-alanine supplementation on sprint endurance.

    PubMed

    Jagim, Andrew R; Wright, Glenn A; Brice, A Glenn; Doberstein, Scott T

    2013-02-01

    Recent research has shown that beta-alanine (BA) supplementation can increase intramuscular carnosine levels. Carnosine is an intramuscular buffer, and it has been linked to improvements in performance, specifically during bouts of high-intensity exercise that are likely limited by muscle acidosis. Therefore, the purpose of this study was to examine the effect of BA supplementation on sprint endurance at 2 different supramaximal intensities. Twenty-one anaerobically trained (rugby players [n = 4], wrestlers [n = 11], and recreationally strength trained athletes [n = 6]) college-aged men participated in a double-blind, placebo controlled study. The subjects performed an incremental VO2max test and 2 sprint to exhaustion tests set at 115 and 140% of their VO2max on a motorized treadmill before (PRE) and after (POST) a 5-week supplementation period. During this time, the subjects ingested either a BA supplement or placebo (PLA) with meals. The subjects ingested 4 g·d(-1) of BA or PLA during the first week and 6 g·d(-1) the following 4 weeks. Capillary blood samples were taken before and after each sprint to determine blood lactate response to the sprint exercise. No significant group (BA, PLA) × intensity (115%, 140%; p = 0.60), group by time (PRE, POST; p = 0.72), or group × intensity × time (p = 0.74) interactions were observed for time to exhaustion. In addition, similar nonsignificant observations were made for lactate response to the sprints (group × intensity, p = 0.43; group × time, p = 0.33, group × intensity × time, p = 0.56). From the results of this study, it was concluded that beta-alanine supplementation did not have a significant effect on sprint endurance at supramaximal intensities.

  16. Characterization and expression profile of complete functional domain of granulysin/NK-lysin homologue (buffalo-lysin) gene of water buffalo (Bubalus bubalis).

    PubMed

    Kandasamy, Sukumar; Mitra, Abhijit

    2009-04-15

    Granulysin (GNLY)/NK-lysin (NKL) is an effector antimicrobial cationic peptide expressed in the cytotoxic and natural killer lymphocytes. We report here cDNA sequence (405bp) encoding the complete functional domain of buffalo-lysin (bu-lysin), and its expression profile in the various tissues. The nucleotide sequence of bu-lysin exhibited >85% identity with the bovine lysin. Comparison of the deduced amino acid sequence of bu-lysin with those of GNLY/NKL of different species revealed the conservation of six cysteine (Cys) residues and five alpha helices. Unlike the homologues in other species, bu-lysin composed of 11 positively charged Lys residues as in equine. The expression of bu-lysin mRNA in the in vitro cultured lymphocytes was inducible and increased markedly (p<0.05) in a dose dependant manner when incubated with Concanavalin A (ConA). The expression of bu-lysin mRNA in the different tissues was variable: comparatively higher in the spleen and lymph node, moderate in the uterine endometrium and low in the liver and kidney. These results indicate the existence and active expression of GNLY/NKL homologue in water buffalo having a significant influence in immune response.

  17. Radiation dose measurements with alanine/agarose gel and thin alanine films around a 192Ir brachytherapy source, using ESR spectroscopy.

    PubMed

    Olsson, S; Bergstrand, E S; Carlsson, A K; Hole, E O; Lund, E

    2002-04-21

    Alanine/agarose gel and alanine films in stacks have been used for measurements of absorbed dose around an HDR 192Ir source in a vaginal cylinder-applicator, with and without a 180 degrees tungsten shield. The gel and the films were analysed by means of ESR spectroscopy and calibrated against an ion chamber in a 4 MV photon beam to obtain absolute dose values. The gel serves as both dosimeter and phantom material, and the thin (130 microm) films are used to achieve an improved spatial resolution in the dose estimations. Experimental values were compared with Monte Carlo simulations using two different codes. Results from the measurements generally agree with the simulations to within 5%, for both the alanine/agarose gel and the alanine films.

  18. Efficient L-Alanine Production by a Thermo-Regulated Switch in Escherichia coli.

    PubMed

    Zhou, Li; Deng, Can; Cui, Wen-Jing; Liu, Zhong-Mei; Zhou, Zhe-Min

    2016-01-01

    L-Alanine has important applications in food, pharmaceutical and veterinary and is used as a substrate for production of engineered thermoplastics. Microbial fermentation could reduce the production cost and promote the application of L-alanine. However, the presence of L-alanine significantly inhibit cell growth rate and cause a decrease in the ultimate L-alanine productivity. For efficient L-alanine production, a thermo-regulated genetic switch was designed to dynamically control the expression of L-alanine dehydrogenase (alaD) from Geobacillus stearothermophilus on the Escherichia coli B0016-060BC chromosome. The optimal cultivation conditions for the genetically switched alanine production using B0016-060BC were the following: an aerobic growth phase at 33 °C with a 1-h thermo-induction at 42 °C followed by an oxygen-limited phase at 42 °C. In a bioreactor experiment using the scaled-up conditions optimized in a shake flask, B0016-060BC accumulated 50.3 g biomass/100 g glucose during the aerobic growth phase and 96 g alanine/100 g glucose during the oxygen-limited phase, respectively. The L-alanine titer reached 120.8 g/l with higher overall and oxygen-limited volumetric productivities of 3.09 and 4.18 g/l h, respectively, using glucose as the sole carbon source. Efficient cell growth and L-alanine production were reached separately, by switching cultivation temperature. The results revealed the application of a thermo-regulated strategy for heterologous metabolic production and pointed to strategies for improving L-alanine production.

  19. Synthesis Of Nanosized CGYO Powders Via Glycine Nitrate Methods As Precursors For Dense Ceramic Membranes

    NASA Astrophysics Data System (ADS)

    Kochhar, Savinder P.; Singh, Anirudh P.

    2011-12-01

    Glycine nitrate combustion method was used to synthesize Ce0.8Gd0.1Y0.1O1.9 powders. Soluble metal-glycine complexes, detected by infrared spectroscopy, were formed by atomic level mixing of metal cations with glycine. The concentration of glycine has been varied in order to change the fuel to oxidant ratio i.e. of glycine to nitrate (g/n) with the purpose to study the effect of concentration of glycine on the parameters of resulting CGYO powder. The ratio of glycine to nitrate per mole is 0.5, 0.7, 0.8, 0.9, 1.0, 1.2, and 1.4. Increasing the glycine increases the temperatures reached during combustion. Powders prepared from GNP method demonstrated that combustion synthesized powders have large surface area as shown by SEM.

  20. Calculating chemical equilibria in the heparin-Co2+ ion-glycine system

    NASA Astrophysics Data System (ADS)

    Feofanova, M. A.; Frantseva, Yu. V.; Zhuravlev, E. V.; Ryasensky, S. S.; Baranova, N. V.

    2013-08-01

    Results from investigating interactions in the heparin-Co2+ ion-glycine system are presented. The stoichiometry of cobalt complexes with heparin and glycine compositions CoOHHtpGly4- and CoHepGly3- is established.

  1. Infrared laser induced conformational and structural changes of glycine and glycine·water complex in low-temperature matrices

    NASA Astrophysics Data System (ADS)

    Coussan, Stéphane; Tarczay, György

    2016-01-01

    Conformational and structural changes of matrix-isolated glycine and glycine·water complexes induced by the selective MIR excitation of the fundamental OH and NH stretching vibrational modes were studied. The observed spectral changes are consistent with the former assignments based on matrix-isolation IR spectroscopy combined with NIR laser irradiation. Since fewer conformational barriers can be reached by MIR than by NIR excitations, fewer processes are promoted effectively by MIR radiation. The comparison of spectral changes induced by selective MIR and NIR excitations can facilitate the conformational analysis of complex molecular systems and it can also yield information on the barrier heights.

  2. A single amino acid change (substitution of the conserved Glu-590 with alanine) in the C-terminal domain of rat liver carnitine palmitoyltransferase I increases its malonyl-CoA sensitivity close to that observed with the muscle isoform of the enzyme.

    PubMed

    Napal, Laura; Dai, Jia; Treber, Michelle; Haro, Diego; Marrero, Pedro F; Woldegiorgis, Gebre

    2003-09-01

    Carnitine palmitoyltransferase I (CPTI) catalyzes the conversion of long-chain fatty acyl-CoAs to acylcarnitines in the presence of l-carnitine. To determine the role of the highly conserved C-terminal glutamate residue, Glu-590, on catalysis and malonyl-CoA sensitivity, we separately changed the residue to alanine, lysine, glutamine, and aspartate. Substitution of Glu-590 with aspartate, a negatively charged amino acid with only one methyl group less than the glutamate residue in the wild-type enzyme, resulted in complete loss in the activity of the liver isoform of CPTI (L-CPTI). A change of Glu-590 to alanine, glutamine, and lysine caused a significant 9- to 16-fold increase in malonyl-CoA sensitivity but only a partial decrease in catalytic activity. Substitution of Glu-590 with neutral uncharged residues (alanine and glutamine) and/or a basic positively charged residue (lysine) significantly increased L-CPTI malonyl-CoA sensitivity to the level observed with the muscle isoform of the enzyme, suggesting the importance of neutral and/or positive charges in the switch of the kinetic properties of L-CPTI to the muscle isoform of CPTI. Since a conservative substitution of Glu-590 to aspartate but not glutamine resulted in complete loss in activity, we suggest that the longer side chain of glutamate is essential for catalysis and malonyl-CoA sensitivity. This is the first demonstration whereby a single residue mutation in the C-terminal region of the liver isoform of CPTI resulted in a change of its kinetic properties close to that observed with the muscle isoform of the enzyme and provides the rationale for the high malonyl-CoA sensitivity of muscle CPTI compared with the liver isoform of the enzyme. PMID:12826662

  3. Regulation of the ald gene encoding alanine dehydrogenase by AldR in Mycobacterium smegmatis.

    PubMed

    Jeong, Ji-A; Baek, Eun-Young; Kim, Si Wouk; Choi, Jong-Soon; Oh, Jeong-Il

    2013-08-01

    The regulatory gene aldR was identified 95 bp upstream of the ald gene encoding L-alanine dehydrogenase in Mycobacterium smegmatis. The AldR protein shows sequence similarity to the regulatory proteins of the Lrp/AsnC family. Using an aldR deletion mutant, we demonstrated that AldR serves as both activator and repressor for the regulation of ald gene expression, depending on the presence or absence of L-alanine. The purified AldR protein exists as a homodimer in the absence of L-alanine, while it adopts the quaternary structure of a homohexamer in the presence of L-alanine. The binding affinity of AldR for the ald control region was shown to be increased significantly by L-alanine. Two AldR binding sites (O1 and O2) with the consensus sequence GA-N₂-ATC-N₂-TC and one putative AldR binding site with the sequence GA-N₂-GTT-N₂-TC were identified upstream of the ald gene. Alanine and cysteine were demonstrated to be the effector molecules directly involved in the induction of ald expression. The cellular level of L-alanine was shown to be increased in M. smegmatis cells grown under hypoxic conditions, and the hypoxic induction of ald expression appears to be mediated by AldR, which senses the intracellular level of alanine.

  4. Polymerization of alanine in the presence of a non-swelling montmorillonite

    NASA Technical Reports Server (NTRS)

    Paecht-Horowitz, M.; Lahav, N.

    1977-01-01

    Alanine, starting from alanine-adenylate, has been polymerized in the presence of non-swelling Al-montmorillonite. The yield of polymerization is much lower than that obtained in the presence of swelling Na-montmorillonite. The possibility that the changing interlayer spacing in Na-montmorillonite might be responsible for its catalytic properties, is discussed.

  5. 40 CFR 721.520 - Alanine, N-(2-carboxyethyl)-N-alkyl-, salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...)(4), (c)(4) (where N = 100). The requirement of 40 CFR 721.91(a)(4) that the amount of the substance... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alanine, N-(2-carboxyethyl)-N-alkyl... Specific Chemical Substances § 721.520 Alanine, N-(2-carboxyethyl)-N-alkyl-, salt. (a) Chemical...

  6. 40 CFR 721.520 - Alanine, N-(2-carboxyethyl)-N-alkyl-, salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...)(4), (c)(4) (where N = 100). The requirement of 40 CFR 721.91(a)(4) that the amount of the substance... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alanine, N-(2-carboxyethyl)-N-alkyl... Specific Chemical Substances § 721.520 Alanine, N-(2-carboxyethyl)-N-alkyl-, salt. (a) Chemical...

  7. 40 CFR 721.520 - Alanine, N-(2-carboxyethyl)-N-alkyl-, salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...)(4), (c)(4) (where N = 100). The requirement of 40 CFR 721.91(a)(4) that the amount of the substance... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alanine, N-(2-carboxyethyl)-N-alkyl... Specific Chemical Substances § 721.520 Alanine, N-(2-carboxyethyl)-N-alkyl-, salt. (a) Chemical...

  8. 40 CFR 721.520 - Alanine, N-(2-carboxyethyl)-N-alkyl-, salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...)(4), (c)(4) (where N = 100). The requirement of 40 CFR 721.91(a)(4) that the amount of the substance... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alanine, N-(2-carboxyethyl)-N-alkyl... Specific Chemical Substances § 721.520 Alanine, N-(2-carboxyethyl)-N-alkyl-, salt. (a) Chemical...

  9. 40 CFR 721.520 - Alanine, N-(2-carboxyethyl)-N-alkyl-, salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...)(4), (c)(4) (where N = 100). The requirement of 40 CFR 721.91(a)(4) that the amount of the substance... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alanine, N-(2-carboxyethyl)-N-alkyl... Specific Chemical Substances § 721.520 Alanine, N-(2-carboxyethyl)-N-alkyl-, salt. (a) Chemical...

  10. An energetically beneficial leader-linker interaction abolishes ligand-binding cooperativity in glycine riboswitches.

    PubMed

    Sherman, Eileen M; Esquiaqui, Jackie; Elsayed, Galal; Ye, Jing-Dong

    2012-03-01

    Comprised of two aptamers connected by a short nucleotide linker, the glycine riboswitch was the first example of naturally occurring RNA elements reported to bind small organic molecules cooperatively. Earlier works have shown binding of glycine to the second aptamer allows tertiary interactions to be made between the two aptamers, which facilitates binding of a separate glycine molecule to the first aptamer, leading to glycine-binding cooperativity. Prompted by a distinctive protection pattern in the linker region of a minimal glycine riboswitch construct, we have identified a highly conserved (>90%) leader-linker duplex involving leader nucleotides upstream of the previously reported consensus glycine riboswitch sequences. In >50% of the glycine riboswitches, the leader-linker interaction forms a kink-turn motif. Characterization of three glycine ribsowitches showed that the leader-linker interaction improved the glycine-binding affinities by 4.5- to 86-fold. In-line probing and native gel assays with two aptamers in trans suggested synergistic action between glycine-binding and interaptamer interaction during global folding of the glycine riboswitch. Mutational analysis showed that there appeared to be no ligand-binding cooperativity in the glycine riboswitch when the leader-linker interaction is present, and the previously measured cooperativity is simply an artifact of a truncated construct missing the leader sequence.

  11. Raman study of poly(alanine-glycine)-based peptides containing tyrosine, valine, and serine as model for the semicrystalline domains of Bombyx mori silk fibroin.

    PubMed

    Taddei, Paola; Asakura, Tetsuo; Yao, Juming; Monti, Patrizia

    2004-11-01

    For a deeper insight into the structure of Bombyx mori silk fibroin, some model peptides containing tyrosine (Y), valine (V), and serine (S) in the basic (AG)n sequence were synthesized by the solid-phase method and analyzed by Raman spectroscopy in order to clarify their conformation and to evaluate the formation and/or disruption of the ordered structure typical of B. mori silk fibroin upon incorporation of Y, V, and S residues into the basic (AG)n sequence. The Raman results indicated that the silk I structure remains stable only when the Y residue is positioned near the chain terminus; otherwise, a silk I --> silk II conformational transition occurs. The peptides AGVGAGYGAGVGAGYGAGVGAGYG(AG)3 and (AG)3YG(AG)2VGYG(AG)3YG(AG)3 treated with LiBr revealed a prevalent silk II conformation; moreover, the former contained a higher amount of random coil than the latter. This result was explained in relation to the different degrees of interruption of the (AG)n sequence. The Raman analysis of the AGSGAG-containing samples confirmed that the AGSGAG hexapeptide is a good model for the silk II crystalline domain. As the number of AGSGAG repeating units decreased, the random coil content increased. The study of the Y domain (I850/I830 intensity ratio) allowed us to hypothesize that in the packing characteristic of Silk I and Silk II conformations the Y residues experience different environments and hydrogen-bonding arrangements; the packing typical of silk I structure traps the tyrosyl side chains in environments more unfavorable to phenoxyl hydrogen-bonding interactions.

  12. Reversible intramolecular hydrogen transfer between cysteine thiyl radicals and glycine and alanine in model peptides: absolute rate constants derived from pulse radiolysis and laser flash photolysis

    PubMed Central

    Nauser, Thomas; Casi, Giulio; Koppenol, Willem H.; Schöneich, Christian

    2008-01-01

    The intramolecular reaction of cysteine thiyl radicals with peptide and protein αC-H bonds represents a potential mechanism for irreversible protein oxidation. Here, we have measured absolute rate constants for these reversible hydrogen transfer reactions by means of pulse radiolysis and laser flash photolysis of model peptides. For N-Ac-CysGly6 and N-Ac-CysGly2AspGly3, Cys thiyl radicals abstract hydrogen atoms from Gly with kf = (1.0-1.1)×105 s-1, generating carbon-centered radicals, while the reverse reaction proceeds with kr = (8.0-8.9)×105 s-1. The forward reaction shows a normal kinetic isotope effect of kH/kD = 6.9, while the reverse reaction shows a significantly higher normal kinetic isotope effect of 17.6, suggesting a contribution of tunneling. For N-Ac-CysAla2AspAla3, cysteine thiyl radicals abstract hydrogen atoms from Ala with kf =(0.9-1.0)×104 s-1, while the reverse reaction proceeds with kr = 1.0×105 s-1. The order of reactivity, Gly > Ala, is in accord with previous studies on intermolecular reactions of thiyl radicals with these amino acids. The fact that kf < kr suggests some secondary structure of the model peptides, which prevents the adoption of extended conformations, for which calculations of homolytic bond dissociation energies would have predicted kf > kr. Despite kf < kr, model calculations show that intramolecular hydrogen abstraction by Cys thiyl radicals can lead to significant oxidation of other amino acids in the presence of physiologic oxygen concentrations. PMID:18973367

  13. The Glycine-Alanine Dipeptide Repeat from C9orf72 Hexanucleotide Expansions Forms Toxic Amyloids Possessing Cell-to-Cell Transmission Properties.

    PubMed

    Chang, Yu-Jen; Jeng, U-Ser; Chiang, Ya-Ling; Hwang, Ing-Shouh; Chen, Yun-Ru

    2016-03-01

    Hexanucleotide expansions, GGGGCC, in the non-coding regions of the C9orf72 gene were found in major frontotemporal lobar dementia and amyotrophic lateral sclerosis patients (C9FTD/ALS). In addition to possible RNA toxicity, several dipeptide repeats (DPRs) are translated through repeat-associated non-ATG-initiated translation. The DPRs, including poly(GA), poly(GR), poly(GP), poly(PR), and poly(PA), were found in the brains and spinal cords of C9FTD/ALS patients. Among the DPRs, poly(GA) is highly susceptible to form cytoplasmic inclusions, which is a characteristic of C9FTD/ALS. To elucidate DPR aggregation, we used synthetic (GA)15 DPR as a model system to examine the aggregation and structural properties in vitro. We found that (GA)15 with 15 repeats fibrillates rapidly and ultimately forms flat, ribbon-type fibrils evidenced by transmission electron microscopy and atomic force microscopy. The fibrils are capable of amyloid dye binding and contain a characteristic cross-β sheet structure, as revealed by x-ray scattering. Furthermore, using neuroblastoma cells, we demonstrated the neurotoxicity and cell-to-cell transmission property of (GA)15 DPR. Overall, our results show the structural and toxicity properties of GA DPR to facilitate future DPR-related therapeutic development. PMID:26769963

  14. Identification of valine/leucine/isoleucine and threonine/alanine/glycine proton-spin systems of Escherichia coli adenylate kinase by selective deuteration and selective protonation.

    PubMed Central

    Bock-Möbius, I; Brune, M; Wittinghofer, A; Zimmermann, H; Leberman, R; Dauvergne, M T; Zimmermann, S; Brandmeier, B; Rösch, P

    1991-01-01

    Adenylate kinase from two types of Escherichia coli strains, a wild-type and a leucine-auxotrophic strain, was purified. On the one hand, growing the leucine-auxotrophic bacteria on a medium containing deuterated leucine yielded E. coli adenylate kinase with all leucine residues deuterated. On the other hand, by growing the wild-type bacteria on deuterated medium with phenylalanine, threonine and isoleucine present as protonated specimens, 80% randomly deuterated enzyme with protonated phenylalanine, threonine and isoleucine residues could be prepared. Use of these proteins enabled identification of the spin systems of these amino acid residues in the n.m.r. spectra of the protein. PMID:1991031

  15. Analytical continuation in coupling constant method; application to the calculation of resonance energies and widths for organic molecules: Glycine, alanine and valine and dimer of formic acid

    NASA Astrophysics Data System (ADS)

    Papp, P.; Matejčík, Š.; Mach, P.; Urban, J.; Paidarová, I.; Horáček, J.

    2013-06-01

    The method of analytic continuation in the coupling constant (ACCC) in combination with use of the statistical Padé approximation is applied to the determination of resonance energy and width of some amino acids and formic acid dimer. Standard quantum chemistry codes provide accurate data which can be used for analytic continuation in the coupling constant to obtain the resonance energy and width of organic molecules with a good accuracy. The obtained results are compared with the existing experimental ones.

  16. Effects of Rhizobacteria on Soybean Cyst Nematode, Heterodera glycines

    PubMed Central

    Tian, Honglin; Riggs, Robert D.

    2000-01-01

    Rhizobacteria were isolated from the rhizoplane and rhizosphere of soybean plants from fields in Arkansas and tested for their effect on numbers of soybean cyst nematode (Heterodera glycines). In initial greenhouse tests in heat-treated silt loam soil, 138 of the 201 bacterial isolates tested had no influence on numbers of cysts and eggs + second-stage juveniles (J2) of H. glycines, 36 reduced (suppressive isolates) and 27 increased (enhancing isolates) numbers of cysts and (or) eggs + J2 when compared to the controls (P ≤ 0.05). When 20 suppressive and five enhancing isolates were retested in the same soil, the results were highly variable and inconclusive. The 25 isolates were then evaluated in vitro for their effects on eggs and J2 of H. glycines. No clear relationship was detected between the inhibition of egg hatch or immobilization of J2 in vitro and antagonistic activity toward nematodes in vivo. Amendment of the soil with 0.1% (w/w) peptone or casein hydrolysate did not improve the effects of suppressive isolates on numbers of H. glycines. Nineteen of the 25 isolates were identified based on analysis of fatty acid methyl esters, and they are in 11 different genera. PMID:19270992

  17. Genome Sequence of the Paleopolyploid Soybean (Glycine max (L.) Merr.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report the genome sequence for soybean (Glycine max var. Williams 82), one of the most important crop plants worldwide because of its ability to produce both protein and oil. Soybean is a recently domesticated legume that plays a vital role in crop rotation as it fixes atmospheric nitrogen via s...

  18. How the Glycine and GABA Receptors Were Purified

    PubMed Central

    2012-01-01

    Purification by Affinity Chromatography of the Glycine Receptor of Rat Spinal Cord (Pfeiffer, F., Graham, D., and Betz, H. (1982) J. Biol. Chem. 257, 9389–9393) A γ-Aminobutyric Acid/Benzodiazepine Receptor Complex of Bovine Cerebral Cortex (Sigel, E., Stephenson, F. A., Mamalaki, C., and Barnard, E. A. (1983) J. Biol. Chem. 258, 6965–6971) PMID:23180805

  19. Dietary glycine and threonine interactive effects in broilers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is little information regarding the interaction of dietary threonine and glycine on potential metabolic sparing effects, live production, or breast meat yield of broilers. To test these potential interactions, 432 one-day-old Ross 308 male broilers were fed a common diet up to 21 days of age a...

  20. How similar is the electronic structures of β-lactam and alanine?

    NASA Astrophysics Data System (ADS)

    Chatterjee, Subhojyoti; Ahmed, Marawan; Wang, Feng

    2016-02-01

    The C1s spectra of β-lactam i.e. 2-azetidinone (C3H5NO), a drug and L-alanine (C3H7NO2), an amino acid, exhibit striking similarities, which may be responsible for the competition between 2-azetidinone and the alanyl-alanine moiety in biochemistry. The present study is to reveal the degree of similarities and differences between their electronic structures of the two model molecular pairs. It is found that the similarities in C1s and inner valence binding energy spectra are due to their bonding connections but other properties such as ring structure (in 2-azetidinone) and chiral carbon (alanine) can be very different. Further, the inner valence region of ionization potential greater than 18 eV for 2-azetidinone and alanine is also significantly similar. Finally the strained lactam ring exhibits more chemical reactivity measured at all non-hydrogen atoms by Fukui functions with respect to alanine.

  1. Thermal decomposition behavior of potassium and sodium jarosite synthesized in the presence of methylamine and alanine

    SciTech Connect

    J. Michelle Kotler; Nancy W. Hinman; C. Doc Richardson; Jill R. Scott

    2010-10-01

    Biomolecules, methylamine and alanine, found associated with natural jarosite samples peaked the interest of astrobiologists and planetary geologists. How the biomolecules are associated with jarosite remains unclear although the mechanism could be important for detecting biosignatures in the rock record on Earth and other planets. A series of thermal gravimetric experiments using synthetic K-jarosite and Na-jarosite were conducted to determine if thermal analysis could differentiate physical mixtures of alanine and methylamine with jarosite from samples where the methylamine or alanine was incorporated into the synthesis procedure. Physical mixtures and synthetic experiments with methylamine and alanine could be differentiated from one another and from the standards by thermal analysis for both the K-jarosite and Na-jarosite end-member suites. Changes included shifts in on-set temperatures, total temperature changes from on-set to final, and the presence of indicator peaks for methylamine and alanine in the physical mixture experiments.

  2. Coacervate-like microspheres from lysine-rich proteinoid

    NASA Technical Reports Server (NTRS)

    Rohlfing, D. L.

    1975-01-01

    Microspheres form isothermally from lysine-rich proteinoid when the ionic strength of the solution is increased with NaCl or other salts. Studies with different monovalent anions and with polymers of different amino acid composition indicate that charge neutralization and hydrophobic bonding contribute to microsphere formation. The particles also form in sea water, especially if heated or made slightly alkaline. The microspheres differ from those made from acidic proteinoid but resemble coacervate droplets in some ways (isothermal formation, limited stability, stabilization by quinone, uptake of dyes). Because the constituent lysine-rich proteinoid is of simulated prebiotic origin, the study is interpreted to add emphasis to and suggest an evolutionary continuity for coacervation phenomena.

  3. About the detectability of glycine in the interstellar medium

    NASA Astrophysics Data System (ADS)

    Lattelais, M.; Pauzat, F.; Pilmé, J.; Ellinger, Y.; Ceccarelli, C.

    2011-08-01

    Context. Glycine, the simplest of aminoacids, has been found in several carbonaceous meteorites. It remains unclear, however, wether glycine is formed in the interstellar medium (ISM) and therefore available everywhere in the Universe. For this reason, radioastronomers have searched for many years unsuccessfully to detect glycine in the ISM. Aims: We provide possible guidelines to optimize the return of these searches. Since, for most of the species observed so far in the ISM, the most abundant isomer of a given generic chemical formula is the most stable one (minimum energy principle (MEP)), we assess whether neutral glycine is the best molecule to search for or whether one of its isomers/conformers or ionic, protonated, or zwitterionic derivatives would have a higher probability of being detected. Methods: The question of the relative stability of these different species is addressed by means of quantum density functional theory (DFT) simulations within the hybrid B3LYP formalism. Each fully optimized structure is verified as a stationary point by means of a vibrational analysis. A comprehensive screening of 32 isomers/conformers of the C2H5O2N chemical formula (neutral, negative, and positive ions together with the corresponding protonated species and the possible zwitterionic structures) is carried out. In the sensitive case of the neutral compounds, more accurate relative energies were obtained by means of high level post Hartree-Fock coupled cluster calculations with large basis sets (CCSD(T)/cc-pVQZ). Results: We find that neutral glycine is not the most stable isomer and, therefore, probably not the most abundant one, which might explain why it has escaped detection so far. We find instead that N-methyl carbamic acid and methyl carbamate are the two most stable isomers and, therefore, probably the two most abundant ones. Among the non-neutral forms, we found that glycine is the most stable isomer only if protonated or zwitterionic if present in interstellar

  4. Accessibility and mobility of lysine residues in. beta. -lactoglobulin

    SciTech Connect

    Brown, E.M.; Pfeffer, P.E.; Kumosinski, T.F.; Greenberg, R.

    1988-07-26

    N/sup epsilon/-(/sup 2/H/sub 6/)Isopropyllysyl-..beta..-lactoglobulin was prepared by reductive alkylation of ..beta..-lactoglobulin with (/sup 2/H/sub 6/)acetone and NaBH/sub 4/ to provide a /sup 2/H (NMR) probe for the study of lysine involvement in lipid-protein interactions. Amino acid analysis showed 80% of the protein's 15 lysine residues to be labeled. Unmodified lysine residues were located through peptide maps produced from CNBr, tryptic, and chymotryptic digests of the labeled protein. Average correlation times calculated from /sup 2/H NMR spectra were 20 and 320 ps for 8.7 and 3.3 residues, respectively, in 6 M guanidine hydrochloride; in nondenaturing solution, values of 70 and 320 ps were obtained for 6.5 and 3.2 residues, respectively, with the remaining 2.3 modified residues not observed, suggesting that side chains of lysine residues in unordered or flexible regions were more mobile than those in stable periodic structures. /sup 2/H NMR spectra of the protein complexed with dipalmitoylphosphatidylcholine confirmed the extrinsic membrane protein type behavior of ..beta..-lactoglobulin previously reported from /sup 31/P NMR studies of the phospholipids complexed with ..beta..-lactoglobulin. Although no physiological function has yet been identified, comparison of these results with the X-ray structure supports the hypothesis that residues not accessible for modification may help to stabilize the cone-shaped ..beta..-barrel thought to contain binding sites for small lipid-soluble molecules.

  5. An active-site lysine in avian liver phosphoenolpyruvate carboxykinase

    SciTech Connect

    Guidinger, P.F.; Nowak, T. )

    1991-09-10

    The participation of lysine in the catalysis by avian liver phosphoenolpyruvate carboxykinase was studied by chemical modification and by a characterization of the modified enzyme. The rate of inactivation by 2,4-pentanedione is pseudo-first-order and linearly dependent on reagent concentration with a second-order rate constant of 0.36 {plus minus} 0.025 M{sup {minus}1} min{sup {minus}1}. Inactivation by pyridoxal 5{prime}-phosphate of the reversible reaction catalyzed by phosphoenolpyruvate carboxykinase follows bimolecular kinetics with a second-order rate constant of 7,700 {plus minus} 860 m{sup {minus}1} min{sup {minus}1}. Treatment of the enzyme or one lysine residue modified concomitant with 100% loss in activity. A stoichiometry of 1:1 is observed when either the reversible or the irreversible reactions catalyzed by the enzyme are monitored. A study of k{sub obs} vs pH suggests this active-site lysine has a pK{sub a} of 8.1 and a pH-independent rate constant of inactivation of 47,700 m{sup {minus}1} min{sup {minus}1}. Proton relaxation rate measurements suggest that pyridoxal 5{prime}-phosphate modification alters binding of the phosphate-containing substrates. {sup 31}P NMR relaxation rate measurements show altered binding of the substrates in the ternary enzyme {center dot}Mn{sup 2+}{center dot}substrate complex. Circular dichroism studies show little change in secondary structure of pyridoxal 5{prime}-phosphate modified phosphoenolpyruvate carboxykinase. These results indicate that avian liver phosphoenolpyruvate carboxykinase has one reactive lysine at the active site and it is involved in the binding and activation of the phosphate-containing substrates.

  6. Endopeptidase and Glycosidase Activities of the Bacteriophage B30 Lysin

    PubMed Central

    Baker, John R.; Liu, Chengbao; Dong, Shengli; Pritchard, David G.

    2006-01-01

    Synthetic peptides corresponding to portions of group B streptococcal peptidoglycan were used to show that the endopeptidase activity of bacteriophage B30 lysin cleaves between d-Ala in the stem peptide and l-Ala in the cross bridge and that the minimal peptide sequence cleaved is dl-γ-Glu-Lys-d-Ala-Ala-Ala. The only glycosidase activity present is that of N-acetyl-β-d-muramidase. PMID:17021237

  7. PKCβ-dependent phosphorylation of the glycine transporter 1.

    PubMed

    Vargas-Medrano, Javier; Castrejon-Tellez, Vicente; Plenge, Fernando; Ramirez, Ivan; Miranda, Manuel

    2011-12-01

    The extracellular levels of the neurotransmitter glycine in the brain are tightly regulated by the glycine transporter 1 (GlyT1) and the clearance rate for glycine depends on its rate of transport and the levels of cell surface GlyT1. Over the years, it has been shown that PKC tightly regulates the activity of several neurotransmitter transporters. In the present work, by stably expressing three N-terminus GlyT1 isoforms in porcine aortic endothelial cells and assaying for [(32)P]-orthophosphate metabolic labeling, we demonstrated that the isoforms GlyT1a, GlyT1b, and GlyT1c were constitutively phosphorylated, and that phosphorylation was dramatically enhanced, in a time dependent fashion, after PKC activation by phorbol ester. The phosphorylation was PKC-dependent, since pre-incubation of the cells with bisindolylmaleimide I, a selective PKC inhibitor, abolished the phorbol ester-induced phosphorylation. Blotting with specific anti-phospho-tyrosine antibodies did not yield any signal that could correspond to GlyT1 tyrosine phosphorylation, suggesting that the phosphorylation occurs at serine and/or threonine residues. In addition, a 23-40%-inhibition on V(max) was obtained by incubation with phorbol ester without a significant change on the apparent Km value. Furthermore, pre-incubation of the cells with the selective PKCα/β inhibitor Gö6976 abolished the downregulation effect of phorbol ester on uptake and phosphorylation, whereas the selective PKCβ inhibitors (PKCβ inhibitor or LY333531) prevented the phosphorylation without affecting glycine uptake, defining a specific role of classical PKC on GlyT1 uptake and phosphorylation. Taken together, these data suggest that conventional PKCα/β regulates the uptake of glycine, whereas PKCβ is responsible for GlyT1 phosphorylation.

  8. Calibration of helical tomotherapy machine using EPR/alanine dosimetry

    SciTech Connect

    Perichon, Nicolas; Garcia, Tristan; Francois, Pascal; Lourenco, Valerie; Lesven, Caroline; Bordy, Jean-Marc

    2011-03-15

    Purpose: Current codes of practice for clinical reference dosimetry of high-energy photon beams in conventional radiotherapy recommend using a 10x10 cm{sup 2} square field, with the detector at a reference depth of 10 cm in water and 100 cm source to surface distance (SSD) (AAPM TG-51) or 100 cm source-to-axis distance (SAD) (IAEA TRS-398). However, the maximum field size of a helical tomotherapy (HT) machine is 40x5 cm{sup 2} defined at 85 cm SAD. These nonstandard conditions prevent a direct implementation of these protocols. The purpose of this study is twofold: To check the absorbed dose in water and dose rate calibration of a tomotherapy unit as well as the accuracy of the tomotherapy treatment planning system (TPS) calculations for a specific test case. Method: Both topics are based on the use of electron paramagnetic resonance (EPR) using alanine as transfer dosimeter between the Laboratoire National Henri Becquerel (LNHB) {sup 60}Co-{gamma}-ray reference beam and the Institut Curie's HT beam. Irradiations performed in the LNHB reference {sup 60}Co-{gamma}-ray beam allowed setting up the calibration method, which was then implemented and tested at the LNHB 6 MV linac x-ray beam, resulting in a deviation of 1.6% (at a 1% standard uncertainty) relative to the reference value determined with the standard IAEA TRS-398 protocol. Results: HT beam dose rate estimation shows a difference of 2% with the value stated by the manufacturer at a 2% standard uncertainty. A 4% deviation between measured dose and the calculation from the tomotherapy TPS was found. The latter was originated by an inadequate representation of the phantom CT-scan values and, consequently, mass densities within the phantom. This difference has been explained by the mass density values given by the CT-scan and used by the TPS which were not the true ones. Once corrected using Monte Carlo N-Particle simulations to validate the accuracy of this process, the difference between corrected TPS

  9. Alanine racemase mutants of Mycobacterium tuberculosis require D-alanine for growth and are defective for survival in macrophages and mice.

    PubMed

    Awasthy, Disha; Bharath, Sowmya; Subbulakshmi, Venkita; Sharma, Umender

    2012-02-01

    Alanine racemase (Alr) is an essential enzyme in most bacteria; however, some species (e.g. Listeria monocytogenes) can utilize d-amino acid transaminase (Dat) to generate d-alanine, which renders Alr non-essential. In addition to the conflicting reports on gene knockout of alr in Mycobacterium smegmatis, a recent study concluded that depletion of Alr does not affect the growth of M. smegmatis. In order to get an unambiguous answer on the essentiality of Alr in Mycobacterium tuberculosis and validate it as a drug target in vitro and in vivo, we have inactivated the alr gene of M. tuberculosis and found that it was not possible to generate an alr knockout in the absence of a complementing gene copy or d-alanine in the growth medium. The growth kinetics of the alr mutant revealed that M. tuberculosis requires very low amounts of d-alanine (5-10 µg ml(-1)) for optimum growth. Survival kinetics of the mutant in the absence of d-alanine indicated that depletion of this amino acid results in rapid loss of viability. The alr mutant was found to be defective for growth in macrophages. Analysis of phenotype in mice suggested that non-availability of d-alanine in mice leads to clearance of bacteria followed by stabilization of bacterial number in lungs and spleen. Additionally, reversal of d-cycloserine inhibition in the presence of d-alanine in M. tuberculosis suggested that Alr is the primary target of d-cycloserine. Thus, Alr of M. tuberculosis is a valid drug target and inhibition of Alr alone should result in loss of viability in vitro and in vivo.

  10. Compound-specific nitrogen isotope analysis of D-alanine, L-alanine, and valine: application of diastereomer separation to delta15N and microbial peptidoglycan studies.

    PubMed

    Takano, Yoshinori; Chikaraishi, Yoshito; Ogawa, Nanako O; Kitazato, Hiroshi; Ohkouchi, Naohiko

    2009-01-01

    We have developed an analytical method to determine the compound-specific nitrogen isotope compositions of individual amino acid enantiomers using gas chromatography/combustion/isotope ratio mass spectrometry. A novel derivatization of amino acid diastereomers by optically active (R)-(-)-2-butanol or (S)-(+)-2-butanol offers two advantages for nitrogen isotope analysis. First, chromatographic chiral separation can be achieved without the use of chiral stationary-phase columns. Second, the elution order of these compounds on the chromatogram can be switched by a designated esterification reaction. We applied the method to the compound-specific nitrogen isotope analysis of D- and L-alanine in a peptidoglycan derived from the cell walls of cultured bacteria (Firmicutes and Actinobacteria; Enterococcus faecalis, Staphylococcus aureus, Staphylococcus staphylolyticus, Lactobacillus acidophilus, Bacillus subtilis, Micrococcus luteus, and Streptomyces sp.), natural whole bacterial cells (Bacillus subtilis var. natto), (pseudo)-peptidoglycan from archaea (Methanobacterium sp.), and cell wall from eukaryota (Saccharomyces cerevisiae). We observed statistically significant differences in nitrogen isotopic compositions; e.g., delta15N ( per thousand vs air) in Staphylococcus staphylolyticus for d-alanine (19.2 +/- 0.5 per thousand, n = 4) and L-alanine (21.3 +/- 0.8 per thousand, n = 4) and in Bacillus subtilis for D-alanine (6.2 +/- 0.2 per thousand, n = 3) and L-alanine (8.2 +/- 0.4 per thousand, n = 3). These results suggest that enzymatic reaction pathways, including the alanine racemase reaction, produce a nitrogen isotopic difference in amino acid enantiomers, resulting in 15N-depleted D-alanine. This method is expected to facilitate compound-specific nitrogen isotope studies of amino acid stereoisomers.

  11. The effect of exogenous β-N-methylamino-L: -alanine on the growth of Synechocystis PCC6803.

    PubMed

    Downing, Simoné; van de Venter, Maryna; Downing, Timothy G

    2012-01-01

    β-N-Methylamino-L: -alanine (BMAA), a non-proteinogenic amino acid, has been detected in a range of cyanobacteria, including terrestrial, aquatic, free living and endosymbiotic species. The widespread occurrence of cyanobacteria in the environment raises concerns regarding the ecological and toxicological impact of BMAA, and consequently, studies have focussed extensively on the toxicity and environmental impact of BMAA, while no research has addressed the ecophysiological or metabolic role of the compound in cyanobacteria. In this study, both the uptake of exogenous BMAA by and the effect of exogenous BMAA on the growth of Synechocystis PCC6803 were investigated. BMAA was rapidly taken up by the non-diazotrophic cyanobacterium Synechocystis PCC6803 in a concentration dependent manner. The presence of exogenous BMAA resulted in a substantial and concentration-dependent decrease in cell growth and the substantial loss of photosynthetic pigmentation. Similar effects were seen in the presence of the non-proteinogenic amino acid, 2,4-diaminobutyric acid but to a lesser degree than that of BMAA. The effects were reversed when light was decreased from 16 to 10 μmol m(-2) s(-1). Control cultures grown in the presence of L: -arginine, L: -asparagine, L: -glutamate and glycine showed normal or slightly increased growth with no change in pigmentation. The decrease in growth rate coupled to bleaching indicates that BMAA may induce chlorosis in the presence of adequate photosynthetic radiation suggesting a connection between BMAA and the induction of conditions, such as nitrogen or sulphur depletion, that result in growth arrest and the induction of chlorosis. PMID:21994035

  12. Selective Deletion of the Internal Lysine Residue from the Peptide Sequence by Collisional Activation

    NASA Astrophysics Data System (ADS)

    Banerjee, Shibdas; Mazumdar, Shyamalava

    2012-11-01

    The gas-phase peptide ion fragmentation chemistry is always the center of attraction in proteomics to analyze the amino acid sequence of peptides and proteins. In this work, we describe the formation of an anomalous fragment ion, which corresponds to the selective deletion of the internal lysine residue from a series of lysine containing peptides upon collisional activation in the ion trap. We detected several water-loss fragment ions and the maximum number of water molecules lost from a particular fragment ion was equal to the number of lysine residues in that fragment. As a consequence of this water-loss phenomenon, internal lysine residues were found to be deleted from the peptide ion. The N,N-dimethylation of all the amine functional groups of the peptide stopped the internal lysine deletion reaction, but selective N-terminal α-amino acetylation had no effect on this process indicating involvement of the side chains of the lysine residues. The detailed mechanism of the lysine deletion was investigated by multistage CID of the modified and unmodified peptides, by isotope labeling and by energy resolved CID studies. The results suggest that the lysine deletion might occur through a unimolecular multistep mechanism involving a seven-membered cyclic imine intermediate formed by the loss of water from a lysine residue in the protonated peptide. This intermediate subsequently undergoes degradation reaction to deplete the interior imine ring from the peptide backbone leading to the deletion of an internal lysine residue.

  13. Lysine nutrition in swine and the related monogastric animals: muscle protein biosynthesis and beyond.

    PubMed

    Liao, Shengfa F; Wang, Taiji; Regmi, Naresh

    2015-01-01

    Improving feed efficiency of pigs with dietary application of amino acids (AAs) is becoming increasingly important because this practice can not only secure the plasma AA supply for muscle growth but also protect the environment from nitrogen discharge with feces and urine. Lysine, the first limiting AA in typical swine diets, is a substrate for generating body proteins, peptides, and non-peptide molecules, while excess lysine is catabolized as an energy source. From a regulatory standpoint, lysine is at the top level in controlling AA metabolism, and lysine can also affect the metabolism of other nutrients. The effect of lysine on hormone production and activities is reflected by the change of plasma concentrations of insulin and insulin-like growth factor 1. Lysine residues in peptides are important sites for protein post-translational modification involved in epigenetic regulation of gene expression. An inborn error of a cationic AA transporter in humans can lead to a lysinuric protein intolerance condition. Dietary deficiency of lysine will impair animal immunity and elevate animal susceptibility to infectious diseases. Because lysine deficiency has negative impact on animal health and growth performance and it appears that dietary lysine is non-toxic even at a high dose of supplementation, nutritional emphasis should be put on lysine supplementation to avoid its deficiency rather than toxicity. Improvement of muscle growth of monogastric animals such as pigs via dietary lysine supply may be due to a greater increase in protein synthesis rather than a decrease in protein degradation. Nevertheless, the underlying metabolic and molecular mechanisms regarding lysine effect on muscle protein accretion merits further clarification. Future research undertaken to fully elucidate the metabolic and regulatory mechanisms of lysine nutrition could provide a sound scientific foundation necessary for developing novel nutritional strategies to enhance the muscle growth and

  14. Tb(3+)-triggered luminescence in a supramolecular gel and its use as a fluorescent chemoprobe for proteins containing alanine.

    PubMed

    Jung, Sung Ho; Kim, Ka Young; Woo, Dong Kyun; Lee, Shim Sung; Jung, Jong Hwa

    2014-11-01

    A tetracarboxylic acid-appended thiacalix[4]arene-based ligand with Tb(3+) formed a supramolecular gel which showed novel fluorogenic sensor capability for probing alanine and proteins containing alanine.

  15. Energy landscapes and global thermodynamics for alanine peptides

    NASA Astrophysics Data System (ADS)

    Somani, Sandeep; Wales, David J.

    2013-09-01

    We compare different approaches for computing the thermodynamics of biomolecular systems. Techniques based on parallel replicas evolving via molecular dynamics or Monte Carlo simulations produce overlapping histograms for the densities of states. In contrast, energy landscape methods employ a superposition partition function constructed from local minima of the potential energy surface. The latter approach is particularly powerful for systems exhibiting broken ergodicity, and it is usually implemented using a harmonic normal mode approximation, which has not been extensively tested for biomolecules. The present contribution compares these alternative approaches for small alanine peptides modelled using the CHARMM and AMBER force fields. Densities of states produced from canonical sampling using multiple temperature replicas provide accurate reference data to evaluate the effect of the harmonic normal mode approximation in the superposition calculations. This benchmarking lays foundations for the application of energy landscape methods to larger biomolecules. It will also provide well characterised model systems for developing enhanced sampling methods, and for the treatment of anharmonicity corresponding to individual local minima.

  16. Alanine synthesis from glyceraldehyde and ammonium ion in aqueous solution

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    1985-01-01

    The formation of alanine (ala) form C(14)-glyceraldehyde and ammonium phosphate in the presence or absence of a thiol is reported. At ambient temperature, ala synthesis was six times more rapid in the presence of 3-mercaptopropionic acid than in its absence (0.6 and 0.1 percent, respectively, after 60 days). Similarly, the presence of another thiol, N-acetylcysteinate, increased the production of ala, as well as of lactate. The reaction pathway of thiol-catalyzed synthesis of ala, with the lactic acid formed in a bypath, is suggested. In this, dehydration of glyceraldehyde is followed by the formation of hemithioacetal. In the presence of ammonia, an imine is formed, which eventually yields ala. This pathway is consistent with the observation that the rate ratio of ala/lactate remains constant throughout the process. The fact that the reaction takes place under anaerobic conditions in the presence of H2O and with the low concentrations of simple substrates and catalysts makes it an attractive model prebiotic reaction in the process of molecular evolution.

  17. Distance Restraints from Crosslinking Mass Spectrometry: Mining a Molecular Dynamics Simulation Database to Evaluate Lysine-Lysine Distances

    SciTech Connect

    Merkley, Eric D.; Rysavy, Steven; Kahraman, Abdullah; Hafen, Ryan P.; Daggett, Valerie; Adkins, Joshua N.

    2014-03-18

    Integrative structural biology models the structures of protein complexes that are intractable by classical structural methods (because of extreme size, dynamics, or heterogeneity) by combining computational structural modeling with data from experimental methods. One such method is chemical cross-linking mass spectrometry (XL-MS), in which cross-linked peptides, derived from a covalently cross-linked protein complex and identified by liquid chromatography-mass spectrometry, pinpoint protein residues close in three-dimensional space. The commonly used lysine-reactive N-hydroxysuccinimide ester reagents disuccinimidylsuberate (DSS) and bis(sulfosuccinimidyl)suberate (BS3) have a linker arm that is 11.4 Å long when fully extended. However, XL-MS studies on proteins of known structure frequently report cross-links that exceed this distance. Typically, a tolerance of ~3 Å is added to the theoretical maximum to account for this observation, with little justification for the value chosen. We used the Dynameomics database, a repository of high-quality molecular dynamics simulations of 807 proteins representative of all protein folds, to investigate the change in lysine-lysine distances resulting from native-state dynamics on the time-scale of tens of nanoseconds. We conclude that observed cross-links are consistent with a protein structure if the distance between cross-linked lysine Nζ atoms is less than the cross-linker length plus 11.3 Å. For DSS or BS3, this corresponds to a Cα to Cα distance of 30.4 Å. This analysis provides a theoretical basis for the widespread practice of adding a tolerance to the crosslinker length when comparing XL-MS results to structures, and indicates the appropriate values of an XLMS derived distance constraint to use in structural modeling.

  18. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases; Part 1: alkyl halide alkylations.

    PubMed

    Sorochinsky, Alexander E; Aceña, José Luis; Moriwaki, Hiroki; Sato, Tatsunori; Soloshonok, Vadim A

    2013-10-01

    Alkylations of chiral or achiral Ni(II) complexes of glycine Schiff bases constitute a landmark in the development of practical methodology for asymmetric synthesis of α-amino acids. Straightforward, easy preparation as well as high reactivity of these Ni(II) complexes render them ready available and inexpensive glycine equivalents for preparing a wide variety of α-amino acids, in particular on a relatively large scale. In the case of Ni(II) complexes containing benzylproline moiety as a chiral auxiliary, their alkylation proceeds with high thermodynamically controlled diastereoselectivity. Similar type of Ni(II) complexes derived from alanine can also be used for alkylation providing convenient access to quaternary, α,α-disubstituted α-amino acids. Achiral type of Ni(II) complexes can be prepared from picolinic acid or via recently developed modular approach using simple secondary or primary amines. These Ni(II) complexes can be easily mono/bis-alkylated under homogeneous or phase-transfer catalysis conditions. Origin of diastereo-/enantioselectivity in the alkylations reactions, aspects of practicality, generality and limitations of this methodology is critically discussed.

  19. Ligand binding by the tandem glycine riboswitch depends on aptamer dimerization but not double ligand occupancy

    PubMed Central

    Ruff, Karen M.

    2014-01-01

    The glycine riboswitch predominantly exists as a tandem structure, with two adjacent, homologous ligand-binding domains (aptamers), followed by a single expression platform. The recent identification of a leader helix, the inclusion of which eliminates cooperativity between the aptamers, has reopened the debate over the purpose of the tandem structure of the glycine riboswitch. An equilibrium dialysis-based assay was combined with binding-site mutations to monitor glycine binding in each ligand-binding site independently to understand the role of each aptamer in glycine binding and riboswitch tertiary interactions. A series of mutations disrupting the dimer interface was used to probe how dimerization impacts ligand binding by the tandem glycine riboswitch. While the wild-type tandem riboswitch binds two glycine equivalents, one for each aptamer, both individual aptamers are capable of binding glycine when the other aptamer is unoccupied. Intriguingly, glycine binding by aptamer-1 is more sensitive to dimerization than glycine binding by aptamer-2 in the context of the tandem riboswitch. However, monomeric aptamer-2 shows dramatically weakened glycine-binding affinity. In addition, dimerization of the two aptamers in trans is dependent on glycine binding in at least one aptamer. We propose a revised model for tandem riboswitch function that is consistent with these results, wherein ligand binding in aptamer-1 is linked to aptamer dimerization and stabilizes the P1 stem of aptamer-2, which controls the expression platform. PMID:25246650

  20. Role of Charge and Solvation in the Structure and Dynamics of Alanine-Rich Peptide AKA2 in AOT Reverse Micelles

    PubMed Central

    2015-01-01

    The propensity of peptides to form α-helices has been intensely studied using theory, computation, and experiment. Important model peptides for the study of the coil-to-helix transition have been alanine–lysine (AKA) peptides in which the lysine residues are placed on opposite sides of the helix avoiding charge repulsion while enhancing solubility. In this study, the effects of capped versus zwitterionic peptide termini on the secondary structure of alanine-rich peptides in reverse micelles are explored. The reverse micelles are found to undergo substantial shape fluctuations, a property observed in previous studies of AOT reverse micelles in the absence of solvated peptide. The peptides are observed to interact with water, as well as the AOT surfactant, including interactions between the nonpolar residues and the aliphatic surfactant tails. Computation of IR spectra for the amide I band of the peptide allows for direct comparison with experimental spectra. The results demonstrate that capped AKA2 peptides form more stable α helices than zwitterionic AKA2 peptides in reverse micelles. The rotational anisotropy decay of water is found to be distinctly different in the presence or absence of peptide within the reverse micelle, suggesting that the introduction of peptide significantly alters the number of free waters within the reverse micelle nanopool. However, neither the nature of the peptide termini (capped or charged) nor the degree of peptide helicity is found to significantly alter the balance of interactions between the peptides and the environment. Observed changes in the degree of helicity in AKA2 peptides in bulk solution and in reverse micelle environments result from changes in peptide confinement and hydration as well as direct nonpolar and polar interactions with the water–surfactant interface. PMID:25337983

  1. Alanine-EPR as a transfer standard dosimetry system for low energy X radiation

    NASA Astrophysics Data System (ADS)

    Khoury, H. J.; da Silva, E. J.; Mehta, K.; de Barros, V. S.; Asfora, V. K.; Guzzo, P. L.; Parker, A. G.

    2015-11-01

    The purpose of this paper is to evaluate the use of alanine-EPR as a transfer standard dosimetry system for low energy X radiation, such as that in RS-2400, which operates in the range from 25 to 150 kV and 2 to 45 mA. Two types of alanine dosimeters were investigated. One is a commercial alanine pellets from Aérial-Centre de Ressources Technologiques, France and one was prepared in our laboratory (LMRI-DEN/UFPE). The EPR spectra of the irradiated dosimeters were recorded in the Nuclear Energy Department of UFPE, using a Bruker EMX10 EPR spectrometer operating in the X-band. The alanine-EPR dosimetry system was calibrated in the range of 20-220 Gy in this X-ray field, against an ionization chamber calibrated at the relevant X-ray energy with traceability to PTB. The results showed that both alanine dosimeters presented a linear dose response the same sensitivity, when the EPR signal was normalized to alanine mass. The total uncertainty in the measured dose was estimated to be about 3%. The results indicate that it is possible to use the alanine-EPR dosimetry system for validation of a low-energy X ray irradiator, such as RS-2400.

  2. Revised mechanism of D-alanine incorporation into cell wall polymers in Gram-positive bacteria.

    PubMed

    Reichmann, Nathalie T; Cassona, Carolina Picarra; Gründling, Angelika

    2013-09-01

    Teichoic acids (TAs) are important for growth, biofilm formation, adhesion and virulence of Gram-positive bacterial pathogens. The chemical structures of the TAs vary between bacteria, though they typically consist of zwitterionic polymers that are anchored to either the peptidoglycan layer as in the case of wall teichoic acid (WTA) or the cell membrane and named lipoteichoic acid (LTA). The polymers are modified with D-alanines and a lack of this decoration leads to increased susceptibility to cationic antimicrobial peptides. Four proteins, DltA-D, are essential for the incorporation of d-alanines into cell wall polymers and it has been established that DltA transfers D-alanines in the cytoplasm of the cell onto the carrier protein DltC. However, two conflicting models have been proposed for the remainder of the mechanism. Using a cellular protein localization and membrane topology analysis, we show here that DltC does not traverse the membrane and that DltD is anchored to the outside of the cell. These data are in agreement with the originally proposed model for D-alanine incorporation through a process that has been proposed to proceed via a D-alanine undecaprenyl phosphate membrane intermediate. Furthermore, we found that WTA isolated from a Staphylococcus aureus strain lacking LTA contains only a small amount of D-alanine, indicating that LTA has a role, either direct or indirect, in the efficient D-alanine incorporation into WTA in living cells.

  3. Importance of intrahepatic mechanisms to gluconeogenesis from alanine during exercise and recovery

    SciTech Connect

    Wasserman, D.H.; Williams, P.E.; Lacy, D.B.; Green, D.R.; Cherrington, A.D.

    1988-04-01

    These studies were performed to assess the importance of intrahepatic mechanisms to gluconeogenesis in the dog during 150 min of treadmill exercise and 90 min of recovery. Sampling catheters were implanted in an artery and portal and hepatic veins 16 days before experimentation. Infusions of (U-/sup 14/C)alanine, (3-/sup 3/H)glucose, and indocyanine green were used to assess gluconeogenesis. During exercise, a decline in arterial and portal vein plasma alanine and in hepatic blood flow led to a decrease in hepatic alanine delivery. During recovery, hepatic blood flow was restored to basal, causing an increase in hepatic alanine delivery beyond exercise rates but still below resting rates. Hepatic fractional alanine extraction increased from 0.26 +/- 0.02 at rest to 0.64 +/- 0.03 during exercise and remained elevated during recovery. Net hepatic alanine uptake was 2.5 +/- 0.2 mumol.kg-1.min-1 at rest and remained unchanged during exercise but was increased during recovery. The conversion rate of (/sup 14/C)alanine to glucose had increased by 248 +/- 38% by 150 min of exercise and had increased further during recovery. The efficiency with which alanine was channeled into glucose in the liver was accelerated to a rate of 338 +/- 55% above basal by 150 min of exercise but declined slightly during recovery. In conclusion, 1) gluconeogenesis from alanine is accelerated during exercise, due to an increase in the hepatic fractional extraction of the amino acid and through intrahepatic mechanisms that more efficiently channel it into glucose.

  4. Characterization of the l-alanine exporter AlaE of Escherichia coli and its potential role in protecting cells from a toxic-level accumulation of l-alanine and its derivatives.

    PubMed

    Kim, Seryoung; Ihara, Kohei; Katsube, Satoshi; Hori, Hatsuhiro; Ando, Tasuke; Isogai, Emiko; Yoneyama, Hiroshi

    2015-08-01

    We previously reported that the alaE gene of Escherichia coli encodes the l-alanine exporter AlaE. The objective of this study was to elucidate the mechanism of the AlaE exporter. The minimum inhibitory concentration of l-alanine and l-alanyl-l-alanine in alaE-deficient l-alanine-nonmetabolizing cells MLA301ΔalaE was 4- and >4000-fold lower, respectively, than in the alaE-positive parent cells MLA301, suggesting that AlaE functions as an efflux pump to avoid a toxic-level accumulation of intracellular l-alanine and its derivatives. Furthermore, the growth of the alaE-deficient mutant derived from the l-alanine-metabolizing strain was strongly inhibited in the presence of a physiological level of l-alanyl-l-alanine. Intact MLA301ΔalaE and MLA301ΔalaE/pAlaE cells producing plasmid-borne AlaE, accumulated approximately 200% and 50%, respectively, of the [(3) H]l-alanine detected in MLA301 cells, suggesting that AlaE exports l-alanine. When 200 mmol/L l-alanine-loaded inverted membrane vesicles prepared from MLA301ΔalaE/pAlaE were placed in a solution containing 200 mmol/L or 0.34 μmol/L l-alanine, energy-dependent [(3) H]l-alanine accumulation occurred under either condition. This energy-dependent uphill accumulation of [(3) H]l-alanine was strongly inhibited in the presence of carbonyl cyanide m-chlorophenylhydrazone but not by dicyclohexylcarbodiimide, suggesting that the AlaE-mediated l-alanine extrusion was driven by proton motive force. Based on these results, physiological roles of the l-alanine exporter are discussed.

  5. Characterization and crystal structure of lysine insensitive Corynebacterium glutamicum dihydrodipicolinate synthase (cDHDPS) protein

    SciTech Connect

    Rice, E.A.; Bannon, G.A.; Glenn, K.C.; Jeong, S.S.; Sturman, E.J.; Rydel, T.J.

    2008-11-21

    The lysine insensitive Corynebacterium glutamicum dihydrodipicolinate synthase enzyme (cDHDPS) was recently successfully introduced into maize plants to enhance the level of lysine in the grain. To better understand lysine insensitivity of the cDHDPS, we expressed, purified, kinetically characterized the protein, and solved its X-ray crystal structure. The cDHDPS enzyme has a fold and overall structure that is highly similar to other DHDPS proteins. A noteworthy feature of the active site is the evidence that the catalytic lysine residue forms a Schiff base adduct with pyruvate. Analyses of the cDHDPS structure in the vicinity of the putative binding site for S-lysine revealed that the allosteric binding site in the Escherichia coli DHDPS protein does not exist in cDHDPS due to three non-conservative amino acids substitutions, and this is likely why cDHDPS is not feedback inhibited by lysine.

  6. Applicability of EPR/alanine dosimetry for quality assurance in proton eye radiotherapy.

    PubMed

    Michalec, B; Mierzwinska, G; Ptaszkiewicz, M; Sowa, U; Stolarczyk, L; Weber, A

    2014-06-01

    A new quality assurance and quality control method for proton eye radiotherapy based on electron paramagnetic resonance (EPR)/alanine dosimetry has been developed. It is based on Spread-Out Bragg Peak entrance dose measurement with alanine detectors. The entrance dose is well correlated with the dose at the facility isocenter, where, during the therapeutic irradiation, the tumour is placed. The unique alanine detector features namely keeping the dose record in a form of stable radiation-induced free radicals trapped in the material structure, and the non-destructive read-out makes this type of detector a good candidate for additional documentation of the patient's exposure over the therapy course.

  7. Progress towards an alanine/ESR therapy level reference dosimetry service at NPL.

    PubMed

    Sharpe, P H; Rajendran, K; Sephton, J P

    1996-01-01

    This paper describes work being carried out at the National Physical Laboratory towards the establishment of an alanine reference dosimetry service for radiotherapy applications. A precision fused quartz holder has been constructed to allow precise positioning of alanine dosimeters in the ESR cavity. A novel method of signal analysis based on spectrum fitting has been developed to minimize the effect of baseline distortions. Data are also presented on the relative response of alanine to 60Co gamma rays and high energy photons (4-12 MeV).

  8. Optical and Spectral Studies on β Alanine Metal Halide Hybrid Crystals

    NASA Astrophysics Data System (ADS)

    Sweetlin, M. Daniel; Selvarajan, P.; Perumal, S.; Ramalingom, S.

    2011-10-01

    We have synthesized and grown β alanine metal halide hybrid crystals viz. β alanine cadmium chloride (BACC), an amino acid transition metal halide complex crystal and β alanine potassium chloride (BAPC), an amino acid alkali metal halide complex crystal by slow evaporation method. The grown crystals were found to be transparent and have well defined morphology. The optical characteristics of the grown crystals were carried out with the help of UV-Vis Spectroscopy. The optical transmittances of the spectrums show that BAPC is more transparent than BACC. The Photoluminescence of the materials were determined by the Photoluminescent Spectroscopy

  9. Treponema denticola cystalysin exhibits significant alanine racemase activity accompanied by transamination: mechanistic implications.

    PubMed Central

    Bertoldi, Mariarita; Cellini, Barbara; Paiardini, Alessandro; Di Salvo, Martino; Borri Voltattorni, Carla

    2003-01-01

    To obtain information on the reaction specificity of cystalysin from the spirochaete bacterium Treponema denticola, the interaction with L- and D-alanine has been investigated. Binding of both alanine enantiomers leads to the appearance of an external aldimine absorbing at 429 nm and of a band absorbing at 498 nm, indicative of a quinonoid species. Racemization and transamination reactions were observed to occur with both alanine isomers as substrates. The steady-state kinetic parameters for racemization, k (cat) and K (m), for L-alanine are 1.05+/-0.03 s(-1) and 10+/-1 mM respectively, whereas those for D-alanine are 1.4+/-0.1 s(-1) and 10+/-1 mM. During the reaction of cystalysin with L- or D-alanine, a time-dependent loss of beta-elimination activity occurs concomitantly with the conversion of the pyridoxal 5'-phosphate (PLP) coenzyme into pyridoxamine 5'-phosphate (PMP). The catalytic efficiency of the half-transamination of L-alanine is found to be 5.3x10(-5) mM(-1) x s(-1), 5-fold higher when compared with that of D-alanine. The partition ratio between racemization and half-transamination reactions is 2.3x10(3) for L-alanine and 1.4x10(4) for D-alanine. The pH dependence of the kinetic parameters for both the reactions shows that the enzyme possesses a single ionizing residue with p K values of 6.5-6.6, which must be unprotonated for catalysis. Addition of pyruvate converts the PMP form of the enzyme back into the PLP form and causes the concomitant recovery of beta-elimination activity. In contrast with other PLP enzymes studied so far, but similar to alanine racemases, the apoform of the enzyme abstracted tritium from C4' of both (4' S)- and (4' R)-[4'-(3)H]PMP in the presence of pyruvate. Together with molecular modelling of the putative binding sites of L- and D-alanine at the active site of the enzyme, the implications of these studies for the mechanisms of the side reactions catalysed by cystalysin are discussed. PMID:12519070

  10. Characterization of the fibrinogen binding domain of bacteriophage lysin from Streptococcus mitis.

    PubMed

    Seo, Ho Seong; Sullam, Paul M

    2011-09-01

    The binding of bacteria to human platelets is a likely central mechanism in the pathogenesis of infective endocarditis. Platelet binding by Streptococcus mitis SF100 is mediated in part by a lysin encoded by the lysogenic bacteriophage SM1. In addition to its role in the phage life cycle, lysin mediates the binding of S. mitis to human platelets via its interaction with fibrinogen on the platelet surface. To better define the region of lysin mediating fibrinogen binding, we tested a series of purified lysin truncation variants for their abilities to bind this protein. These studies revealed that the fibrinogen binding domain of lysin is contained within the region spanned by amino acid residues 102 to 198 (lysin(102-198)). This region has no sequence homology to other known fibrinogen binding proteins. Lysin(102-198) bound fibrinogen comparably to full-length lysin and with the same selectivity for the fibrinogen Aα and Bβ chains. Lysin(102-198) also inhibited the binding in vitro of S. mitis to human fibrinogen and platelets. When assessed by platelet aggregometry, the disruption of the lysin gene in SF100 resulted in a significantly longer time to the onset of aggregation of human platelets than that of the parent strain. The preincubation of platelets with purified lysin(102-198) also delayed the onset of aggregation by SF100. These results indicate that the binding of lysin to fibrinogen is mediated by a specific domain of the phage protein and that this interaction is important for both platelet binding and aggregation by S. mitis. PMID:21690235

  11. Alanine-aminotransferase: an early marker for insulin resistance?

    PubMed

    Salazar, Martin R; Carbajal, Horacio A; Curciarello, Jose O; Aizpurua, Marcelo; Adrover, Raul E; Riondet, Beatriz

    2007-01-01

    In a population-based sample, after excluding alcohol consumption, hepatotoxic drugs and hepatitis B and C infected, we investigated if alanine-aminotransferase (ALT) was associated with metabolic syndrome and insulin resistance, and if this association was caused by non-alcoholic fatty liver disease (NAFLD). The sample (432 female and 119 male) was divided into two ALT thresholds corresponding to the 50th and 75th percentiles (P) (female > or = 15 and > or = 19 U/L; male > or = 17 and > or = 23 U/I, respectively). Blood pressure, body mass index, waist circumference, cholesterol, HDL cholesterol (HDLc), triglyceride (TG), TG/HDLc ratio, glycemia and homeostasis model assessment of insulin resistance (HOMA-IR) were compared between those above and below each ALT threshold. Female placed above the 50th P of ALT had higher levels of TG/HDLc ratio (p=0.029), glycemia (p=0.028), and homeostasis model assessment of insulin resistance, (p=0.045), and above the 75th P had higher SBP (p=0.036), DBP (p=0.018), TG (p=0.024), TG/HDLc ratio (p=0.028), glycemia (p=0.004) and HOMA-IR (p=0.0014). Male placed above the 50th P of ALT had higher BMI (p=0.017) and TG/HDLc ratio (p=0.048), and above the 75th P had lower values of HDLc (p=0.042). Only 16.5% of women and 14.5% of men, above the 75th P of ALT, showed an increase in liver brightness in the echography. This work shows in woman an early association of ALT with TG/HDLc ratio and HOMA-IR. Since the last two are independent predictors of cardiovascular risk, attention should be drawn to ALT values near the upper limit of the normal range even in the absence of NAFLD and obesity. PMID:17593595

  12. Solvation Free Energies of Alanine Peptides: The Effect of Flexibility

    SciTech Connect

    Kokubo, Hironori; Harris, Robert C.; Asthagiri, Dilip; Pettitt, Bernard M.

    2013-12-03

    The electrostatic (?Gel), cavity-formation (?Gvdw), and total (?G) solvation free energies for 10 alanine peptides ranging in length (n) from 1 to 10 monomers were calculated. The free energies were computed both with xed, extended conformations of the peptides and again for some of the peptides without constraints. The solvation free energies, ?Gel, ?Gvdw, and ?G, were found to be linear in n, with the slopes of the best-fit lines being gamma_el, gamma_vdw, and gamma, respectively. Both gamma_el and gamma were negative for fixed and flexible peptides, and gamma_vdw was negative for fixed peptides. That gamma_vdw was negative was surprising, as experimental data on alkanes, theoretical models, and MD computations on small molecules and model systems generally suggest that gamma_vdw should be positive. A negative gamma_vdw seemingly contradicts the notion that ?Gvdw drives the initial collapse of the protein when it folds by favoring conformations with small surface areas, but when we computed ?Gvdw for the flexible peptides, thereby allowing the peptides to assume natural ensembles of more compact conformations, gamma-vdw was positive. Because most proteins do not assume extended conformations, a ?Gvdw that increases with increasing surface area may be typical for globular proteins. An alternative hypothesis is that the collapse is driven by intramolecular interactions. We show that the intramolecular van der Waal's interaction energy is more favorable for the flexible than for the extended peptides, seemingly favoring this hypothesis, but the large fluctuations in this energy may make attributing the collapse of the peptide to this intramolecular energy difficult.

  13. NBQX suppresses inhibitory glycine currents in retinal ganglion cells.

    PubMed

    Yu, W; Miller, R F

    1994-08-15

    The quinoxaline NBQX (2,3-dihydroxy-6-nitro-7-sulfamoylbenzo (F) quinoxaline) is a potent non-NMDA receptor antagonist, which appears to be relatively free of antagonistic action at the glycine binding site of the NMDA receptor. However, we report here that at 50 microM, NBQX significantly attenuated the inhibitory currents induced by the exogenous application of 100 microM glycine as observed using whole-cell recordings from ganglion cells in a slice preparation of the tiger salamander retina. In contrast, NBQX had no effect on GABA-mediated inhibition. This observation suggests that care should be taken when attributing the action of NBQX solely to its antagonism of non-NMDA glutamate receptors, particularly when higher concentrations are used.

  14. Soft x-ray ionization induced fragmentation of glycine

    SciTech Connect

    Itälä, E.; Kooser, K.; Rachlew, E.; Huels, M. A.; Kukk, E.

    2014-06-21

    X-ray absorption commonly involves dissociative core ionization producing not only momentum correlated charged fragments but also low- and high-energy electrons capable of inducing damage in living tissue. This gives a natural motivation for studying the core ionization induced fragmentation processes in biologically important molecules such as amino acids. Here the fragmentation of amino acid glycine following carbon 1s core ionization has been studied. Using photoelectron-photoion-photoion coincidence technique, a detailed analysis on fragmentation of the sample molecule into pairs of momentum correlated cations has been carried out. The main characteristics of core ionization induced fragmentation of glycine were found to be the rupture of the C–C{sub α} bond and the presence of the CNH{sub 2}{sup +} fragment.

  15. Rapid Ti(III) reduction of perchlorate in the presence of beta-alanine: kinetics, pH effect, complex formation, and beta-alanine effect.

    PubMed

    Wang, Chao; Huang, Zhengdao; Lippincott, Lee; Meng, Xiaoguang

    2010-03-15

    Ti(III) reduction of perchlorate might be a useful method for the treatment of highly perchlorate-contaminated water. Though the reaction rate was usually low, we observed that beta-alanine (HOOCCH(2)CH(2)NH(2)) could significantly promote the reaction. A complete (>99.9%) perchlorate removal was obtained in a solution containing [ClO(4)(-)]=1.0mM, [Ti(III)]=40 mM, and [beta-alanine]=120 mM after 2.5h of reaction under 50 degrees C. The effects of both pH and complex formation on the reaction were then studied. The results showed that without beta-alanine the optimal pH was 2.3. When pH increased from 1.6 to 2.3, the reduction rate increased remarkably. In the pH range >2.3, however, the reduction was significantly inhibited, attributed to the formation of Ti(III) precipitate. The presence of beta-alanine at a molar ratio of [beta-alanine]:[Ti(III)]=3:1 significantly increased the reduction rate of perchlorate even at near neutral pH. This is because beta-alanine formed complexes with Ti(III), which greatly improved the total soluble [Ti(III)] in the pH range between 3.5 and 6. The findings may lead to the development of rapid treatment methods for intermittent and small stream of highly perchlorate-contaminated water, which are resulted from the manufacturing, storage, handling, use and/or disposal of large quantities of perchlorate salts. PMID:19864064

  16. Rapid Ti(III) reduction of perchlorate in the presence of beta-alanine: kinetics, pH effect, complex formation, and beta-alanine effect.

    PubMed

    Wang, Chao; Huang, Zhengdao; Lippincott, Lee; Meng, Xiaoguang

    2010-03-15

    Ti(III) reduction of perchlorate might be a useful method for the treatment of highly perchlorate-contaminated water. Though the reaction rate was usually low, we observed that beta-alanine (HOOCCH(2)CH(2)NH(2)) could significantly promote the reaction. A complete (>99.9%) perchlorate removal was obtained in a solution containing [ClO(4)(-)]=1.0mM, [Ti(III)]=40 mM, and [beta-alanine]=120 mM after 2.5h of reaction under 50 degrees C. The effects of both pH and complex formation on the reaction were then studied. The results showed that without beta-alanine the optimal pH was 2.3. When pH increased from 1.6 to 2.3, the reduction rate increased remarkably. In the pH range >2.3, however, the reduction was significantly inhibited, attributed to the formation of Ti(III) precipitate. The presence of beta-alanine at a molar ratio of [beta-alanine]:[Ti(III)]=3:1 significantly increased the reduction rate of perchlorate even at near neutral pH. This is because beta-alanine formed complexes with Ti(III), which greatly improved the total soluble [Ti(III)] in the pH range between 3.5 and 6. The findings may lead to the development of rapid treatment methods for intermittent and small stream of highly perchlorate-contaminated water, which are resulted from the manufacturing, storage, handling, use and/or disposal of large quantities of perchlorate salts.

  17. Seed-specific expression of the lysine-rich protein gene sb401 significantly increases both lysine and total protein content in maize seeds.

    PubMed

    Yu, Jingjuan; Peng, Peng; Zhang, Xiujun; Zhao, Qian; Zhu, Dengyun; Sun, Xuehui; Liu, Junqi; Ao, Guangming

    2005-12-01

    The sb401 gene from potato (Solanum berthaultii) encoding a pollen-specific protein with high lysine content was successfully integrated into the genome of maize plants, and its expression was correlated with increased levels of lysine and total protein content in maize seeds. A plasmid vector containing the sb401 gene under the control of a maize seed-specific expression storage protein promoter (P19z) was constructed and introduced into maize calli by microprojectile bombardment. The integration of the sb401 gene into the maize genome was confirmed by Southern blot analysis, and its expression was confirmed by Western blot analysis. Quantification of the lysine and protein contents in R1 maize seeds showed that, compared with the nontransgenic maize control, the lysine content increased by 16.1% to 54.8% and the total protein content increased by 11.6% to 39.0%. There were no visible morphological changes in the vegetative parts and seeds of the transgenic maize plants. Lysine and protein analysis of the transgenic maize grains showed that the levels of lysine and total protein remained high for six continuous generations, indicating that the elevated lysine and total protein levels were heritable. These results indicate that the sb401 gene could be successfully employed in breeding programs aimed at improving the nutritional value of maize.

  18. Systematic identification of the lysine succinylation in the protozoan parasite Toxoplasma gondii.

    PubMed

    Li, Xiaolong; Hu, Xin; Wan, Yujing; Xie, Guizhen; Li, Xiangzhi; Chen, Di; Cheng, Zhongyi; Yi, Xingling; Liang, Shaohui; Tan, Feng

    2014-12-01

    Lysine succinylation is a new posttranslational modification identified in histone proteins of Toxoplasma gondii, an obligate intracellular parasite of the phylum Apicomplexa. However, very little is known about their scope and cellular distribution. Here, using LC-MS/MS to identify parasite peptides enriched by immunopurification with succinyl lysine antibody, we produced the first lysine succinylome in this parasite. Overall, a total of 425 lysine succinylation sites that occurred on 147 succinylated proteins were identified in extracellular Toxoplasma tachyzoites, which is a proliferative stage that results in acute toxoplasmosis. With the bioinformatics analysis, it is shown that these succinylated proteins are evolutionarily conserved and involved in a wide variety of cellular functions such as metabolism and epigenetic gene regulation and exhibit diverse subcellular localizations. Moreover, we defined five types of definitively conserved succinylation site motifs, and the results imply that lysine residue of a polypeptide with lysine on the +3 position and without lysine at the -1 to +2 position is a preferred substrate of lysine succinyltransferase. In conclusion, our findings suggest that lysine succinylation in Toxoplasma involves a diverse array of cellular functions, although the succinylation occurs at a low level.

  19. The effect of dietary lysine levels on performance and meat yields of White Pekin ducks.

    PubMed

    Adams, R L; Hester, P Y; Stadelman, W J

    1983-04-01

    Four trials were conducted to determine the effects of dietary lysine levels ranging from .70 to 1.00% on performance and yield of different carcass components of male and female White Pekin ducks. Dietary lysine had no significant effect on weights or feed efficiencies at market age of 48 or 49 days; however, significant differences were obtained with yields of component parts for the males in Trial 2 and the females in Trial 3. In these trials, overall meat yields were significantly better for males fed levels of lysine between .80 and .95% and for females fed a lysine level of .90%.

  20. Investigations on the nucleation kinetics of bis glycine sodium nitrate

    NASA Astrophysics Data System (ADS)

    Selvaraju, K.; Kirubavathi, K.; Vijayan, N.; Kumararaman, S.

    2008-05-01

    The nucleation parameters such as, energy per unit volume, radius of critical nucleus, critical free energy barrier, number of molecules in the critical nucleus and nucleation rate have been evaluated for bis glycine sodium nitrate single crystals. The interfacial energy of the solution at various temperatures has been estimated from existing solubility data. The metastable zone width and induction period measurements have been carried out experimentally.

  1. Ferroelectric films of deuterated glycine phosphite: Structure and dielectric properties

    NASA Astrophysics Data System (ADS)

    Balashova, E. V.; Krichevtsov, B. B.; Svinarev, F. B.; Lemanov, V. V.

    2013-05-01

    Polycrystalline textured films of deuterated glycine phosphite consisting of single-crystal blocks with lateral dimensions ˜(50-100) μm and a thickness d ˜ (1-5) μm have been grown by evaporation on NdGaO3(100) and α-Al2O3 substrates with preliminarily deposited interdigitated electrodes, as well as on Al substrates. The c* ( Z) crystallographic axis in the blocks is normal to the film plane, and the a ( X) axis and the polar axis b ( Y) are oriented in the film plane. The temperature dependences of the capacitance of the structures measured with the interdigitated electrode system reveal a strong dielectric anomaly at the film transition to the ferroelectric state. The phase transition temperature T c depends on the degree of deuteration D of the glycine phosphite. The maximum value T c = 275 K obtained in the structures studied corresponds to a degree of deuteration of the glycine phosphite D ˜ 50%. The frequency behavior of the dielectric hysteresis loops in glycine phosphite films differs radically from that of the previously studied films of deuterated betaine phosphite, which evidences that polarization switching in these structures proceeds by different mechanisms. It has been that application of a dc bias to the electrodes changes the shape of the dielectric hysteresis loops and shifts them along the electric field axis. The shift of the loops depends on the sign, magnitude, and time of application of the bias. Possible mechanisms underlying the induced unipolarity are discussed.

  2. Two-Dimensional Protein Patterns in Heterodera glycines

    PubMed Central

    Ferris, V. R.; Ferris, J. M.; Murdock, L. L.

    1985-01-01

    Two-dimensional polyacrylamide gel electrophoretic protein patterns of H. glycines from southern Indiana (Posey County) and northern Indiana (Pulaski County) were largely similar, but many differences existed. The pattern of the Posey isolate was similar to patterns from isolates collected in other areas of the United States. Unique dense protein spots in the pattern of an isolate from Hokkaido, Japan, distinguished it from patterns of six U.S. isolates. PMID:19294120

  3. Glycine receptor mouse mutants: model systems for human hyperekplexia

    PubMed Central

    Schaefer, Natascha; Langlhofer, Georg; Kluck, Christoph J; Villmann, Carmen

    2013-01-01

    Human hyperekplexia is a neuromotor disorder caused by disturbances in inhibitory glycine-mediated neurotransmission. Mutations in genes encoding for glycine receptor subunits or associated proteins, such as GLRA1, GLRB, GPHN and ARHGEF9, have been detected in patients suffering from hyperekplexia. Classical symptoms are exaggerated startle attacks upon unexpected acoustic or tactile stimuli, massive tremor, loss of postural control during startle and apnoea. Usually patients are treated with clonazepam, this helps to dampen the severe symptoms most probably by up-regulating GABAergic responses. However, the mechanism is not completely understood. Similar neuromotor phenotypes have been observed in mouse models that carry glycine receptor mutations. These mouse models serve as excellent tools for analysing the underlying pathomechanisms. Yet, studies in mutant mice looking for postsynaptic compensation of glycinergic dysfunction via an up-regulation in GABAA receptor numbers have failed, as expression levels were similar to those in wild-type mice. However, presynaptic adaptation mechanisms with an unusual switch from mixed GABA/glycinergic to GABAergic presynaptic terminals have been observed. Whether this presynaptic adaptation explains the improvement in symptoms or other compensation mechanisms exist is still under investigation. With the help of spontaneous glycine receptor mouse mutants, knock-in and knock-out studies, it is possible to associate behavioural changes with pharmacological differences in glycinergic inhibition. This review focuses on the structural and functional characteristics of the various mouse models used to elucidate the underlying signal transduction pathways and adaptation processes and describes a novel route that uses gene-therapeutic modulation of mutated receptors to overcome loss of function mutations. PMID:23941355

  4. Microbial Community Responses to Glycine Addition in Kansas Prairie Soils

    NASA Astrophysics Data System (ADS)

    Bottos, E.; Roy Chowdhury, T.; White, R. A., III; Brislawn, C.; Fansler, S.; Kim, Y. M.; Metz, T. O.; McCue, L. A.; Jansson, J.

    2015-12-01

    Advances in sequencing technologies are rapidly expanding our abilities to unravel aspects of microbial community structure and function in complex systems like soil; however, characterizing the highly diverse communities is problematic, due primarily to challenges in data analysis. To tackle this problem, we aimed to constrain the microbial diversity in a soil by enriching for particular functional groups within a community through addition of "trigger substrates". Such trigger substrates, characterized by low molecular weight, readily soluble and diffusible in soil solution, representative of soil organic matter derivatives, would also be rapidly degradable. A relatively small energy investment to maintain the cell in a state of metabolic alertness for such substrates would be a better evolutionary strategy and presumably select for a cohort of microorganisms with the energetics and cellular machinery for utilization and growth. We chose glycine, a free amino acid (AA) known to have short turnover times (in the range of hours) in soil. As such, AAs are a good source of nitrogen and easily degradable, and can serve as building blocks for microbial proteins and other biomass components. We hypothesized that the addition of glycine as a trigger substrate will decrease microbial diversity and evenness, as taxa capable of metabolizing it are enriched in relation to those that are not. We tested this hypothesis by incubating three Kansas native prairie soils with glycine for 24 hours at 21 degree Celsius, and measured community level responses by 16S rRNA gene sequencing, metagenomics, and metatranscriptomics. Preliminary evaluation of 16S rRNA gene sequences revealed minor changes in bacterial community composition in response to glycine addition. We will also present data on functional gene abundance and expression. The results of these analyses will be useful in designing sequencing strategies aimed at dissecting and deciphering complex microbial communities.

  5. Determination of the carbon, hydrogen and nitrogen contents of alanine and their uncertainties using the certified reference material L-alanine (NMIJ CRM 6011-a).

    PubMed

    Itoh, Nobuyasu; Sato, Ayako; Yamazaki, Taichi; Numata, Masahiko; Takatsu, Akiko

    2013-01-01

    The carbon, hydrogen, and nitrogen (CHN) contents of alanine and their uncertainties were estimated using a CHN analyzer and the certified reference material (CRM) L-alanine. The CHN contents and their uncertainties, as measured using the single-point calibration method, were 40.36 ± 0.20% for C, 7.86 ± 0.13% for H, and 15.66 ± 0.09% for N; the results obtained using the bracket calibration method were also comparable. The method described in this study is reasonable, convenient, and meets the general requirement of having uncertainties ≤ 0.4%.

  6. Heterodera glycines cysts contain an extensive array of endoproteases as well as inhibitors of proteases in H. glycines and Meloidogyne incognita infective juvenile stages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heterodera glycines cysts contain proteases, and inhibitors of protease activities in various nematode species. In this investigation, proteases in H. glycines cysts were identified using a commercially available FRET-peptide library comprising 512 peptide pools qualified to detect up to 4 endoprot...

  7. Glycine induced culture-harvesting strategy for Botryococcus braunii.

    PubMed

    Shen, Ying; Zhu, Wenzhe; Chen, Chaozhou; Nie, Yilei

    2016-04-01

    The objective of this study was to investigate the effects of culture conditions, including carbon sources and concentration, culture period, and precondition time, on the production of extracellular polymeric substances (EPS) and its influence on microalgal flocculation. EPS are natural high molecule polymer, excreted by microalgae themselves. EPS can accelerate the formation of microbial aggregates through binding cells closely. Organic carbon sources, such as glucose, glycerol, acetate and glycine were compared to select the optimal source to stimulate EPS accumulation. Subsequently, the effect of culture period, glycine dose and precondition time on EPS production and its influence on biomass growth and flocculation efficiency were investigated. As the main parts of EPS, tightly bound EPS were found positively related to suspended solids concentration. However, the loosely bound EPS may weaken the floc structure, leading to poor water-cells separation. Under the optimal condition with culture period of 16 days, glycine dose of 0.5 g l(-1) and precondition time of 5 days, the biomass concentration increased from 1.49 to 2 g l(-1), and the maximum suspended solids concentration of 7.06% with biomass recovery rate of 70.6% was achieved. PMID:26553477

  8. Cometary Glycine Detected in Stardust-Returned Samples

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie E.; Glavin, D. P.; Dworkin, J. P.

    2010-01-01

    In January 2006, NASA's Stardust spacecraft returned samples from comet 81P/Wild 2 to Earth. The Stardust cometary collector consisted of aerogel cells lined with aluminum foils designed to capture impacting particles and facilitate removal of the aerogel. Preliminary examinations of these comet-exposed materials revealed a suite of organic compounds, including several amines and amino acids which were later examined in more detail. Methylamine (NH2CH3) and ethylamine (NH2C2H5) were detected in the exposed aerogel at concentrations greatly exceeding those found in control samples, while the amino acid glycine (NH2CH2COOH) was detected in several foil samples as well as in the comet-exposed aerogel. None of these three compounds had been previously detected in comets, although methylamine had been observed in the interstellar medium. Although comparison with control samples suggested that the detected glycine was cometary. the previous work was not able to conclusively identify its origin. Here, we present the results of compound-specific carbon isotopic analysis of glycine in Stardust cometary collector foils. Several foils from the interstellar side of the Stardust collector were also analyzed for amino acid abundance, but concentrations were too low to perform isotopic ana!ysis.

  9. Interaction between ATP, metal ions, glycine, and several minerals

    NASA Technical Reports Server (NTRS)

    Rishpon, J.; Ohara, P. J.; Lawless, J. G.; Lahav, N.

    1982-01-01

    Interactions between ATP, glycine and montmorillonite and kaolinite clay minerals in the presence of various metal cations are investigated. The adsorption of adenine nucleotides on clays and Al(OH)3 was measured as a function of pH, and glycine condensation was followed in the presence of ATP, ZnCl2, MgCl2 and either kaolinite or montmorillonite. The amounts of ATP and ADP adsorbed are found to decrease with increasing Ph, and to be considerably enhanced in experiments with Mg(2+)- and Zn(2+)-montmorillonite with respect to Na(+)-montmorillonite. The effects of divalent cations are less marked in kaolinite. Results for Al(OH)3 show the importance of adsorption at clay platelet edges at high pH. The decomposition of ATP during drying at high temperature is observed to be inhibited by small amounts of clay, vacuum, or Mg(2+) or Zn(2+) ions, and to be accompanied by peptide formation in the presence of glycine. Results suggest the importance of Zn(2+) and Mg(2+) in chemical evolution.

  10. The mitochondrial genome of the soybean cyst nematode, Heterodera glycines.

    PubMed

    Gibson, Tracey; Farrugia, Daniel; Barrett, Jeff; Chitwood, David J; Rowe, Janet; Subbotin, Sergei; Dowton, Mark

    2011-07-01

    We sequenced the entire coding region of the mitochondrial genome of Heterodera glycines. The sequence obtained comprised 14.9 kb, with PCR evidence indicating that the entire genome comprised a single, circular molecule of approximately 21-22 kb. The genome is the most T-rich nematode mitochondrial genome reported to date, with T representing over half of all nucleotides on the coding strand. The genome also contains the highest number of poly(T) tracts so far reported (to our knowledge), with 60 poly(T) tracts ≥ 12 Ts. All genes are transcribed from the same mitochondrial strand. The organization of the mitochondrial genome of H. glycines shows a number of similarities compared with Radopholus similis, but fewer similarities when compared with Meloidogyne javanica. Very few gene boundaries are shared with Globodera pallida or Globodera rostochiensis. Partial mitochondrial genome sequences were also obtained for Heterodera cardiolata (5.3 kb) and Punctodera chalcoensis (6.8 kb), and these had identical organizations compared with H. glycines. We found PCR evidence of a minicircular mitochondrial genome in P. chalcoensis, but at low levels and lacking a noncoding region. Such circularised genome fragments may be present at low levels in a range of nematodes, with multipartite mitochondrial genomes representing a shift to a condition in which these subgenomic circles predominate.

  11. Class I Lysine Deacetylases Facilitate Glucocorticoid-induced Transcription*

    PubMed Central

    Kadiyala, Vineela; Patrick, Nina M.; Mathieu, Wana; Jaime-Frias, Rosa; Pookhao, Naruekamol; An, Lingling; Smith, Catharine L.

    2013-01-01

    Nuclear receptors use lysine acetyltransferases and lysine deacetylases (KDACs) in regulating transcription through histone acetylation. Lysine acetyltransferases interact with steroid receptors upon binding of an agonist and are recruited to target genes. KDACs have been shown to interact with steroid receptors upon binding to an antagonist. We have shown previously that KDAC inhibitors (KDACis) potently repress the mouse mammary tumor virus promoter through transcriptional mechanisms and impair the ability of the glucocorticoid receptor (GR) to activate it, suggesting that KDACs can play a positive role in GR transactivation. In the current study, we extended this analysis to the entire GR transcriptome and found that the KDACi valproic acid impairs the ability of agonist-bound GR to activate about 50% of its target genes. This inhibition is largely due to impaired transcription rather than defective GR processing and was also observed using a structurally distinct KDACi. Depletion of KDAC1 expression mimicked the effects of KDACi in over half of the genes found to be impaired in GR transactivation. Simultaneous depletion of KDACs 1 and 2 caused full or partial impairment of several more GR target genes. Altogether we found that Class I KDAC activity facilitates GR-mediated activation at a sizable fraction of GR-activated target genes and that KDAC1 alone or in coordination with KDAC2 is required for efficient GR transactivation at many of these target genes. Finally, our work demonstrates that KDACi exposure has a significant impact on GR signaling and thus has ramifications for the clinical use of these drugs. PMID:23946490

  12. Histidine-lysine peptides as carriers of nucleic acids.

    PubMed

    Leng, Qixin; Goldgeier, Lisa; Zhu, Jingsong; Cambell, Patricia; Ambulos, Nicholas; Mixson, A James

    2007-03-01

    With their biodegradability and diversity of permutations, peptides have significant potential as carriers of nucleic acids. This review will focus on the sequence and branching patterns of peptide carriers composed primarily of histidines and lysines. While lysines within peptides are important for binding to the negatively charged phosphates, histidines are critical for endosomal lysis enabling nucleic acids to reach the cytosol. Histidine-lysine (HK) polymers by either covalent or ionic bonds with liposomes augment transfection compared to liposome carriers alone. More recently, we have examined peptides as sole carriers of nucleic acids because of their intrinsic advantages compared to the bipartite HK/liposome carriers. With a protocol change and addition of a histidine-rich tail, HK peptides as sole carriers were more effective than liposomes alone in several cell lines. While four-branched polymers with a primary repeating sequence pattern of -HHK- were more effective as carriers of plasmids, eight-branched polymers with a sequence pattern of -HHHK- were more effective as carriers of siRNA. Compared to polyethylenimine, HK carriers of siRNA and plasmids had reduced toxicity. When injected intravenously, HK polymers in complex with plasmids encoding antiangiogenic proteins significantly decreased tumor growth. Furthermore, modification of HK polymers with polyethylene glycol and vascular-specific ligands increased specificity of the polyplex to the tumor by more than 40-fold. Together with further development and insight on the structure of HK polyplexes, HK peptides may prove to be useful as carriers of different forms of nucleic acids both in vitro and in vivo. PMID:17440630

  13. Growth medium-dependent glycine incorporation into the peptidoglycan of Caulobacter crescentus.

    PubMed

    Takacs, Constantin N; Hocking, Jason; Cabeen, Matthew T; Bui, Nhat Khai; Poggio, Sebastian; Vollmer, Waldemar; Jacobs-Wagner, Christine

    2013-01-01

    The peptidoglycan (PG) is a macromolecular component of the bacterial cell wall that maintains the shape and integrity of the cell. The PG of Caulobacter crescentus, unlike that of many other Gram-negative bacteria, has repeatedly been shown to contain significant amounts of glycine. This compositional peculiarity has been deemed an intrinsic characteristic of this species. By performing a comprehensive qualitative and quantitative analysis of the C. crescentus PG by high-performance liquid chromatography (HPLC) and mass spectrometry (MS), we show here that glycine incorporation into the C. crescentus PG depends on the presence of exogenous glycine in the growth medium. High levels of glycine were detected at the fifth position of the peptide side chains of PG isolated from C. crescentus cells grown in the complex laboratory medium PYE or in defined medium (M2G) supplemented with casamino acids or glycine alone. In contrast, glycine incorporation was undetectable when cells were grown in M2G medium lacking glycine. Remarkably, glycine incorporation into C. crescentus peptidoglycan occurred even in the presence of low millimolar to sub-millimolar concentrations of free glycine. High glycine content in the PG had no obvious effects on growth rates, mode of PG incorporation or cell morphology. Hence, the C. crescentus PG is able to retain its physiological functions in cell growth and morphogenesis despite significant alterations in its composition, in what we deem to be unprecedented plasticity.

  14. Glycine blocks long-term potentiation of GABAergic synapses in the ventral tegmental area.

    PubMed

    Guan, Y-Z; Ye, J-H

    2016-03-24

    The mesocorticolimbic dopamine system, originating in the ventral tegmental area (VTA) is normally constrained by GABA-mediated synaptic inhibition. Accumulating evidence indicates that long-term potentiation of GABAergic synapses (LTPGABA) in VTA dopamine neurons plays an important role in the actions of drugs of abuse, including ethanol. We previously showed that a single infusion of glycine into the VTA of rats strongly reduces ethanol intake for 24h. In the current study, we examined the effect of glycine on the electrophysiological activities of putative dopamine VTA neurons in midbrain slices from ethanol-naïve rats. We report here that a 15-min exposure to 10 μM glycine prevented trains of high-frequency stimulation (HFS) from producing LTPGABA, which was rescued by the glycine receptor (GlyR) antagonist strychnine. Glycine also concentration-dependently decreased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs). By contrast, glycine pretreatment did not prevent potentiation of inhibitory postsynaptic currents (IPSCs) during a continuous exposure to the nitric oxide (NO) donor, SNAP (S-nitroso-N-acetylpenicillamine), or a brief exposure to 10 μM glycine and 10 μM NMDA (N-methyl-D-aspartate), an agonist of NMDA-type glutamate receptors. Thus, the blockade of LTPGABA by glycine is probably resulted from suppressing glutamate release by activating the GlyRs on the glutamatergic terminals. This effect of glycine may contribute to the reduction in ethanol intake induced by intra-VTA glycine observed in vivo.

  15. A novel low molecular weight alanine aminotransferase from fasted rat liver.

    PubMed

    Vedavathi, M; Girish, K S; Kumar, M Karuna

    2006-01-01

    Alanine is the most effective precursor for gluconeogenesis among amino acids, and the initial reaction is catalyzed by alanine aminotransferase (AlaAT). Although the enzyme activity increases during fasting, this effect has not been studied extensively. The present study describes the purification and characterization of an isoform of AlaAT from rat liver under fasting. The molecular mass of the enzyme is 17.7 kD with an isoelectric point of 4.2; glutamine is the N-terminal residue. The enzyme showed narrow substrate specificity for L-alanine with Km values for alanine of 0.51 mM and for 2-oxoglutarate of 0.12 mM. The enzyme is a glycoprotein. Spectroscopic and inhibition studies showed that pyridoxal phosphate (PLP) and free -SH groups are involved in the enzymatic catalysis. PLP activated the enzyme with a Km of 0.057 mM. PMID:16487061

  16. Effect of beta-alanine supplementation on repeated sprint performance during the Loughborough Intermittent Shuttle Test.

    PubMed

    Saunders, Bryan; Sale, Craig; Harris, Roger C; Sunderland, Caroline

    2012-07-01

    The aim of this study was to examine the effect of β-alanine supplementation on repeated sprint performance during an intermittent exercise protocol designed to replicate games play. Sixteen elite and twenty non-elite game players performed the Loughborough Intermittent Shuttle Test (LIST) on two separate occasions. Trials were separated by 4 weeks of supplementation with either β-alanine (BA) or maltodextrin (MD). There was no deterioration in sprint times from Set 1 to Set 6 of the LIST in either group prior to supplementation (elite: P=0.92; non-elite: P=0.12). Neither BA nor MD supplementation affected sprint times. Blood lactate concentrations were elevated during exercise in both groups, with no effect of supplementation. β-Alanine supplementation did not significantly improve sprint performance during the LIST. Neither group showed a performance decrement prior to supplementation, which might have masked any benefit from increased muscle buffering capacity due to β-alanine supplementation.

  17. Titration of Alanine Monitored by NMR Spectroscopy: A Biochemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Waller, Francis J.; And Others

    1977-01-01

    The experiment described here involves simultaneous monitoring of pH and NMR chemical shifts during an aqueous titration of alpha- and beta-alanine. This experiment is designed for use in an undergraduate biochemistry course. (MR)

  18. Alanine blends for ESR measurements of thermal neutron fluence in a mixed radiation field.

    PubMed

    Marrale, M; Brai, M; Gennaro, G; Triolo, A; Bartolotta, A; D'Oca, M C; Rosi, G

    2007-01-01

    In this paper, the results of a study on the electron spin resonance (ESR) dosimetry to measure thermal neutron fluence in a mixed radiation field (neutron and photons) are presented. The ESR responses of alanine dosemeters with different additives are compared. In particular, the (10)B-acid boric and the Gd-oxide were chosen to enhance the sensitivity of alanine dosemeters to thermal neutrons. Irradiations were carried out inside the thermal column of the TAPIRO reactor of the ENEA center, Casaccia Rome. The main results are a greater neutron sensitivity and a smaller lowest detectable fluence for the dosemeters with gadolinium than for dosemeters of alanine with (10)B, which is well known to be much more sensitive to thermal neutrons than simple alanine.

  19. An automated system for the measurement of alanine/EPR dosimeters

    PubMed

    Sharpe; Sephton

    2000-05-01

    NPL for several years has offered mailed reference dosimetry services based on alanine/EPR dosimeters, both at industrial and therapy dose levels. Compared to other methods of reference dosimetry, operator involvement in alanine/EPR has been found to be relatively high, and contributes significantly to the overall economics of the process. Commercially available sample changers are not suitable for high accuracy applications, and it has proved necessary to develop a dedicated automation system to handle NPL alanine dosimeter pellets. In this paper we describe an automatic sample changer for placing and retrieving alanine pellets into and out of the cavity of a standard research grade EPR spectrometer. Up to 32 pellets can be held in each removable sample tray. The sample changer software has been interfaced into the spectrometer control software to enable complete automation of the measurement process, including the optimization of spectrometer settings and rotation of the sample within the cavity.

  20. Alanine as an end product during fermentation of monosaccharides by Clostridium strain P2.

    PubMed

    Orlygsson, J; Anderson, R; Svensson, B H

    1995-11-01

    The thermophilic Clostridium P2 was isolated from a semi-continuously fed reactor with high ammonium concentration. This bacterium formed substantial amounts of L-alanine as a major fermentation product from glucose, fructose and mannose. Low amounts of acetate, butyrate, carbon dioxide and hydrogen were also formed. A high partial pressure of hydrogen inhibited the degradation of the monosaccharides, whereas hydrogen removal, in the form of methanogenesis was found to be stimulatory. However, the amount of alanine produced per mole of hexose degraded did not change. Hexose degradation and alanine production were favoured by high ammonium concentrations. Nuclear magnetic resonance spectroscopy studies provided strong evidence that an active Embden-Meyerhof-Parnas pathway existed and that alanine was produced via an amination of pyruvate.

  1. High-throughput screening to identify inhibitors of lysine demethylases.

    PubMed

    Gale, Molly; Yan, Qin

    2015-01-01

    Lysine demethylases (KDMs) are epigenetic regulators whose dysfunction is implicated in the pathology of many human diseases including various types of cancer, inflammation and X-linked intellectual disability. Particular demethylases have been identified as promising therapeutic targets, and tremendous efforts are being devoted toward developing suitable small-molecule inhibitors for clinical and research use. Several High-throughput screening strategies have been developed to screen for small-molecule inhibitors of KDMs, each with advantages and disadvantages in terms of time, cost, effort, reliability and sensitivity. In this Special Report, we review and evaluate the High-throughput screening methods utilized for discovery of novel small-molecule KDM inhibitors.

  2. Protein (lysine) restriction in primiparous lactating sows: effects on metabolic state, somatotropic axis, and reproductive performance after weaning.

    PubMed

    Mejia-Guadarrama, C A; Pasquier, A; Dourmad, J Y; Prunier, A; Quesnel, H

    2002-12-01

    Low protein intake during lactation has been demonstrated to increase the loss of body protein and to reduce the reproductive performance of female pigs. The objectives of the current experiment were 1) to determine whether protein (lysine) restriction alters levels of somatotropic hormones, insulin, follicle-stimulating hormone, and leptin around weaning, and 2) to evaluate the relationships between these eventual alterations and postweaning reproductive performance. One day after farrowing, crossbred primiparous sows were randomly allocated to one of two diets containing 20% crude protein and 1.08% lysine (C, n = 12) or 10% crude protein and 0.50% lysine (L, n = 14) during a 28-d lactation. Diets provided similar amounts of metabolizable energy (3.1 Mcal/kg). Feed allowance was restricted to 4.2 kg/d throughout lactation, and litter size was standardized to 10 per sow within 5 d after farrowing. Catheters were fitted in the jugular vein of 21 sows around d 22 of lactation. Serial blood samples were collected 1 d before (day W - 1) and 1 d after (day W + 1) weaning, and single blood samples were collected daily from weaning until d 6 postweaning (day W + 6). Sows were monitored for estrus and inseminated. They were slaughtered at d 30 of gestation. During lactation, litter weight gain was similar among treatment groups. Reduced protein intake increased (P < 0.001) sow weight loss (-30 vs -19 kg) and estimated protein mobilization throughout lactation (-4.1 vs -2.0 kg). On day W - 1, L sows had higher (P < 0.02) plasma glutamine and alanine concentrations, but lower (P < 0.05) plasma tryptophan and urea than C sows. Mean and basal plasma GH were higher (P < 0.001), whereas plasma IGF-I and mean insulin were lower in L than in C sows on day W - 1. Preprandial leptin did not differ between treatments on day W - 1, but was higher (P < 0.01) in L sows than in C sows on day W + 1. Mean FSH concentrations were similar in both treatments on day W - 1 (1.3 ng/mL), but L

  3. Structurally imperfect glycine-containing ferroelectrics and their physical properties

    NASA Astrophysics Data System (ADS)

    Khasinevich, N. I.; Chesnokov, E. D.; Tarasevich, E. V.; Rodin, S. V.

    The study is concerned with the effect of substitutional and growth defects on the physical properties of diglycine nitrate crystals, which belong to the triglycine sulfate group of ferroelectric crystals. In particular, experimental data are presented on the temperature dependences of the piezoelectric moduli, elastic compliances, electromechanical coupling coefficients, and electrostriction coefficients of pure and alanine-alloyed crystals. The permittivity and the nuclear spin-lattice relaxation time of the crystals are also determined.

  4. Repeated Supramaximal Exercise-Induced Oxidative Stress: Effect of β-Alanine Plus Creatine Supplementation

    PubMed Central

    Belviranli, Muaz; Okudan, Nilsel; Revan, Serkan; Balci, Serdar; Gokbel, Hakki

    2016-01-01

    Background: Carnosine is a dipeptide formed from the β-alanine and histidine amino acids and found in mainly in the brain and muscle, especially fast twitch muscle. Carnosine and creatine has an antioxidant effect and carnosine accounts for about 10% of the muscle's ability to buffer the H+ ions produced by exercise. Objectives: The aim of the study was to investigate the effects of beta alanine and/or creatine supplementation on oxidant and antioxidant status during repeated Wingate tests (WTs). Patients and Methods: Forty four sedentary males participated in the study. Participants performed three 30s WTs with 2 minutes rest between exercise bouts. After the first exercise session, the subjects were assigned to one of four groups: Placebo, Creatine, Beta-alanine and Beta-alanine plus creatine. Participants ingested twice per day for 22 consecutive days, then four times per day for the following 6 days. After the supplementation period the second exercise session was applied. Blood samples were taken before and immediately after the each exercise session for the analysis of oxidative stress and antioxidant markers. Results: Malondialdehyde levels and superoxide dismutase activities were affected by neither supplementation nor exercise. During the pre-supplementation session, protein carbonyl reduced and oxidized glutathione (GSH and GSSG) levels increased immediately after the exercise. However, during the post-supplementation session GSH and GSSG levels increased in beta-alanine and beta-alanine plus creatine groups immediately after the exercise compared to pre-exercise. In addition, during the post-supplementation session total antioxidant capacity increased in beta-alanine group immediately after the exercise. Conclusions: Beta-alanine supplementation has limited antioxidant effect during the repeated WTs. PMID:27217925

  5. EPR dosimetry of radiotherapy photon beams in inhomogeneous media using alanine films

    NASA Astrophysics Data System (ADS)

    Helge Østerås, Bjørn; Olaug Hole, Eli; Rune Olsen, Dag; Malinen, Eirik

    2006-12-01

    In the current work, EPR (electron paramagnetic resonance) dosimetry using alanine films (134 µm thick) was utilized for dose measurements in inhomogeneous phantoms irradiated with radiotherapy photon beams. The main phantom material was PMMA, while either Styrofoam or aluminium was introduced as an inhomogeneity. The phantoms were irradiated to a maximum dose of about 30 Gy with 6 or 15 MV photons. The performance of the alanine film dosimeters was investigated and compared to results from ion chamber dosimetry, Monte Carlo simulations and radiotherapy treatment planning calculations. It was found that the alanine film dosimeters had a linear dose response above approximately 5 Gy, while a background signal obscured the response at lower dose levels. For doses between 5 and 60 Gy, the standard deviation of single alanine film dose estimates was about 2%. The alanine film dose estimates yielded results comparable to those from the Monte Carlo simulations and the ion chamber measurements, with absolute differences between estimates in the order of 1 15%. The treatment planning calculations exhibited limited applicability. The current work shows that alanine film dosimetry is a method suitable for estimating radiotherapeutical doses and for dose measurements in inhomogeneous media.

  6. EPR dosimetry of radiotherapy photon beams in inhomogeneous media using alanine films.

    PubMed

    Osterås, Bjørn Helge; Hole, Eli Olaug; Olsen, Dag Rune; Malinen, Eirik

    2006-12-21

    In the current work, EPR (electron paramagnetic resonance) dosimetry using alanine films (134 microm thick) was utilized for dose measurements in inhomogeneous phantoms irradiated with radiotherapy photon beams. The main phantom material was PMMA, while either Styrofoam or aluminium was introduced as an inhomogeneity. The phantoms were irradiated to a maximum dose of about 30 Gy with 6 or 15 MV photons. The performance of the alanine film dosimeters was investigated and compared to results from ion chamber dosimetry, Monte Carlo simulations and radiotherapy treatment planning calculations. It was found that the alanine film dosimeters had a linear dose response above approximately 5 Gy, while a background signal obscured the response at lower dose levels. For doses between 5 and 60 Gy, the standard deviation of single alanine film dose estimates was about 2%. The alanine film dose estimates yielded results comparable to those from the Monte Carlo simulations and the ion chamber measurements, with absolute differences between estimates in the order of 1-15%. The treatment planning calculations exhibited limited applicability. The current work shows that alanine film dosimetry is a method suitable for estimating radiotherapeutical doses and for dose measurements in inhomogeneous media. PMID:17148820

  7. Bacteriophage lysin mediates the binding of streptococcus mitis to human platelets through interaction with fibrinogen.

    PubMed

    Seo, Ho Seong; Xiong, Yan Q; Mitchell, Jennifer; Seepersaud, Ravin; Bayer, Arnold S; Sullam, Paul M

    2010-01-01

    The binding of bacteria to human platelets is a likely central mechanism in the pathogenesis of infective endocarditis. We have previously found that platelet binding by Streptococcus mitis SF100 is mediated by surface components encoded by a lysogenic bacteriophage, SM1. We now demonstrate that SM1-encoded lysin contributes to platelet binding via its direct interaction with fibrinogen. Far Western blotting of platelets revealed that fibrinogen was the major membrane-associated protein bound by lysin. Analysis of lysin binding with purified fibrinogen in vitro confirmed that these proteins could bind directly, and that this interaction was both saturable and inhibitable. Lysin bound both the Aalpha and Bbeta chains of fibrinogen, but not the gamma subunit. Binding of lysin to the Bbeta chain was further localized to a region within the fibrinogen D fragment. Disruption of the SF100 lysin gene resulted in an 83+/-3.1% reduction (mean +/- SD) in binding to immobilized fibrinogen by this mutant strain (PS1006). Preincubation of this isogenic mutant with purified lysin restored fibrinogen binding to wild type levels. When tested in a co-infection model of endocarditis, loss of lysin expression resulted in a significant reduction in virulence, as measured by achievable bacterial densities (CFU/g) within vegetations, kidneys, and spleens. These results indicate that bacteriophage-encoded lysin is a multifunctional protein, representing a new class of fibrinogen-binding proteins. Lysin appears to be cell wall-associated through its interaction with choline. Once on the bacterial surface, lysin can bind fibrinogen directly, which appears to be an important interaction for the pathogenesis of endocarditis. PMID:20714354

  8. Bacteriophage lysin mediates the binding of streptococcus mitis to human platelets through interaction with fibrinogen.

    PubMed

    Seo, Ho Seong; Xiong, Yan Q; Mitchell, Jennifer; Seepersaud, Ravin; Bayer, Arnold S; Sullam, Paul M

    2010-08-12

    The binding of bacteria to human platelets is a likely central mechanism in the pathogenesis of infective endocarditis. We have previously found that platelet binding by Streptococcus mitis SF100 is mediated by surface components encoded by a lysogenic bacteriophage, SM1. We now demonstrate that SM1-encoded lysin contributes to platelet binding via its direct interaction with fibrinogen. Far Western blotting of platelets revealed that fibrinogen was the major membrane-associated protein bound by lysin. Analysis of lysin binding with purified fibrinogen in vitro confirmed that these proteins could bind directly, and that this interaction was both saturable and inhibitable. Lysin bound both the Aalpha and Bbeta chains of fibrinogen, but not the gamma subunit. Binding of lysin to the Bbeta chain was further localized to a region within the fibrinogen D fragment. Disruption of the SF100 lysin gene resulted in an 83+/-3.1% reduction (mean +/- SD) in binding to immobilized fibrinogen by this mutant strain (PS1006). Preincubation of this isogenic mutant with purified lysin restored fibrinogen binding to wild type levels. When tested in a co-infection model of endocarditis, loss of lysin expression resulted in a significant reduction in virulence, as measured by achievable bacterial densities (CFU/g) within vegetations, kidneys, and spleens. These results indicate that bacteriophage-encoded lysin is a multifunctional protein, representing a new class of fibrinogen-binding proteins. Lysin appears to be cell wall-associated through its interaction with choline. Once on the bacterial surface, lysin can bind fibrinogen directly, which appears to be an important interaction for the pathogenesis of endocarditis.

  9. Bacteriophage Lysin Mediates the Binding of Streptococcus mitis to Human Platelets through Interaction with Fibrinogen

    PubMed Central

    Seo, Ho Seong; Xiong, Yan Q.; Mitchell, Jennifer; Seepersaud, Ravin; Bayer, Arnold S.; Sullam, Paul M.

    2010-01-01

    The binding of bacteria to human platelets is a likely central mechanism in the pathogenesis of infective endocarditis. We have previously found that platelet binding by Streptococcus mitis SF100 is mediated by surface components encoded by a lysogenic bacteriophage, SM1. We now demonstrate that SM1-encoded lysin contributes to platelet binding via its direct interaction with fibrinogen. Far Western blotting of platelets revealed that fibrinogen was the major membrane-associated protein bound by lysin. Analysis of lysin binding with purified fibrinogen in vitro confirmed that these proteins could bind directly, and that this interaction was both saturable and inhibitable. Lysin bound both the Aα and Bβ chains of fibrinogen, but not the γ subunit. Binding of lysin to the Bβ chain was further localized to a region within the fibrinogen D fragment. Disruption of the SF100 lysin gene resulted in an 83±3.1% reduction (mean ± SD) in binding to immobilized fibrinogen by this mutant strain (PS1006). Preincubation of this isogenic mutant with purified lysin restored fibrinogen binding to wild type levels. When tested in a co-infection model of endocarditis, loss of lysin expression resulted in a significant reduction in virulence, as measured by achievable bacterial densities (CFU/g) within vegetations, kidneys, and spleens. These results indicate that bacteriophage-encoded lysin is a multifunctional protein, representing a new class of fibrinogen-binding proteins. Lysin appears to be cell wall-associated through its interaction with choline. Once on the bacterial surface, lysin can bind fibrinogen directly, which appears to be an important interaction for the pathogenesis of endocarditis. PMID:20714354

  10. Lysine methylation represses p53 activity in teratocarcinoma cancer cells.

    PubMed

    Zhu, Jiajun; Dou, Zhixun; Sammons, Morgan A; Levine, Arnold J; Berger, Shelley L

    2016-08-30

    TP53 (which encodes the p53 protein) is the most frequently mutated gene among all human cancers, whereas tumors that retain the wild-type TP53 gene often use alternative mechanisms to repress the p53 tumor-suppressive function. Testicular teratocarcinoma cells rarely contain mutations in TP53, yet the transcriptional activity of wild-type p53 is compromised, despite its high expression level. Here we report that in the teratocarcinoma cell line NTera2, p53 is subject to lysine methylation at its carboxyl terminus, which has been shown to repress p53's transcriptional activity. We show that reduction of the cognate methyltransferases reactivates p53 and promotes differentiation of the NTera2 cells. Furthermore, reconstitution of methylation-deficient p53 mutants into p53-depleted NTera2 cells results in elevated expression of p53 downstream targets and precocious loss of pluripotent gene expression compared with re-expression of wild-type p53. Our results provide evidence that lysine methylation of endogenous wild-type p53 represses its activity in cancer cells and suggest new therapeutic possibilities of targeting testicular teratocarcinoma. PMID:27535933

  11. SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks

    PubMed Central

    Rardin, Matthew J.; He, Wenjuan; Nishida, Yuya; Newman, John C.; Carrico, Chris; Danielson, Steven R.; Guo, Ailan; Gut, Philipp; Sahu, Alexandria K.; Li, Biao; Uppala, Radha; Fitch, Mark; Riiff, Timothy; Zhu, Lei; Zhou, Jing; Mulhern, Daniel; Stevens, Robert D.; Ilkayeva, Olga R.; Newgard, Christopher B.; Jacobson, Matthew P.; Hellerstein, Marc; Goetzman, Eric S.; Gibson, Bradford W.; Verdin, Eric

    2014-01-01

    Summary Reversible posttranslational modifications are emerging as critical regulators of mitochondrial proteins and metabolism. Here, we use a label-free quantitative proteomic approach to characterize the lysine succinylome in liver mitochondria and its regulation by the desuccinylase SIRT5. A total of 1190 unique sites were identified as succinylated, and 386 sites across 140 proteins representing several metabolic pathways including β-oxidation and ketogenesis were significantly hypersuccinylated in Sirt5−/− animals. Loss of SIRT5 leads to accumulation of medium- and long-chain acylcarnitines and decreased β-hydroxybutyrate production in vivo. In addition, we demonstrate that SIRT5 regulates succinylation of the rate-limiting ketogenic enzyme 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) both in vivo and in vitro. Finally, mutation of hypersuccinylated residues K83 and K310 on HMGCS2 to glutamic acid strongly inhibits enzymatic activity. Taken together, these findings establish SIRT5 as a global regulator of lysine succinylation in mitochondria and present a mechanism for inhibition of ketogenesis through HMGCS2. PMID:24315375

  12. Determination of Solubility Parameters of Ibuprofen and Ibuprofen Lysinate.

    PubMed

    Kitak, Teja; Dumičić, Aleksandra; Planinšek, Odon; Šibanc, Rok; Srčič, Stanko

    2015-01-01

    In recent years there has been a growing interest in formulating solid dispersions, which purposes mainly include solubility enhancement, sustained drug release and taste masking. The most notable problem by these dispersions is drug-carrier (in)solubility. Here we focus on solubility parameters as a tool for predicting the solubility of a drug in certain carriers. Solubility parameters were determined in two different ways: solely by using calculation methods, and by experimental approaches. Six different calculation methods were applied in order to calculate the solubility parameters of the drug ibuprofen and several excipients. However, we were not able to do so in the case of ibuprofen lysinate, as calculation models for salts are still not defined. Therefore, the extended Hansen's approach and inverse gas chromatography (IGC) were used for evaluating of solubility parameters for ibuprofen lysinate. The obtained values of the total solubility parameter did not differ much between the two methods: by the extended Hansen's approach it was δt = 31.15 MPa(0.5) and with IGC it was δt = 35.17 MPa(0.5). However, the values of partial solubility parameters, i.e., δd, δp and δh, did differ from each other, what might be due to the complex behaviour of a salt in the presence of various solvents.

  13. Lysine Acetylation Facilitates Spontaneous DNA Dynamics in the Nucleosome.

    PubMed

    Kim, Jongseong; Lee, Jaehyoun; Lee, Tae-Hee

    2015-12-01

    The nucleosome, comprising a histone protein core wrapped around by DNA, is the fundamental packing unit of DNA in cells. Lysine acetylation at the histone core elevates DNA accessibility in the nucleosome, the mechanism of which remains largely unknown. By employing our recently developed hybrid single molecule approach, here we report how the structural dynamics of DNA in the nucleosome is altered upon acetylation at histone H3 lysine 56 (H3K56) that is critical for elevated DNA accessibility. Our results indicate that H3K56 acetylation facilitates the structural dynamics of the DNA at the nucleosome termini that spontaneously and repeatedly open and close on a ms time scale. The results support a molecular mechanism of histone acetylation in catalyzing DNA unpacking whose efficiency is ultimately limited by the spontaneous DNA dynamics at the nucleosome temini. This study provides the first and unique experimental evidence revealing a role of protein chemical modification in directly regulating the kinetic stability of the DNA packing unit.

  14. SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks.

    PubMed

    Rardin, Matthew J; He, Wenjuan; Nishida, Yuya; Newman, John C; Carrico, Chris; Danielson, Steven R; Guo, Ailan; Gut, Philipp; Sahu, Alexandria K; Li, Biao; Uppala, Radha; Fitch, Mark; Riiff, Timothy; Zhu, Lei; Zhou, Jing; Mulhern, Daniel; Stevens, Robert D; Ilkayeva, Olga R; Newgard, Christopher B; Jacobson, Matthew P; Hellerstein, Marc; Goetzman, Eric S; Gibson, Bradford W; Verdin, Eric

    2013-12-01

    Reversible posttranslational modifications are emerging as critical regulators of mitochondrial proteins and metabolism. Here, we use a label-free quantitative proteomic approach to characterize the lysine succinylome in liver mitochondria and its regulation by the desuccinylase SIRT5. A total of 1,190 unique sites were identified as succinylated, and 386 sites across 140 proteins representing several metabolic pathways including β-oxidation and ketogenesis were significantly hypersuccinylated in Sirt5(-/-) animals. Loss of SIRT5 leads to accumulation of medium- and long-chain acylcarnitines and decreased β-hydroxybutyrate production in vivo. In addition, we demonstrate that SIRT5 regulates succinylation of the rate-limiting ketogenic enzyme 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) both in vivo and in vitro. Finally, mutation of hypersuccinylated residues K83 and K310 on HMGCS2 to glutamic acid strongly inhibits enzymatic activity. Taken together, these findings establish SIRT5 as a global regulator of lysine succinylation in mitochondria and present a mechanism for inhibition of ketogenesis through HMGCS2.

  15. SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks.

    PubMed

    Rardin, Matthew J; He, Wenjuan; Nishida, Yuya; Newman, John C; Carrico, Chris; Danielson, Steven R; Guo, Ailan; Gut, Philipp; Sahu, Alexandria K; Li, Biao; Uppala, Radha; Fitch, Mark; Riiff, Timothy; Zhu, Lei; Zhou, Jing; Mulhern, Daniel; Stevens, Robert D; Ilkayeva, Olga R; Newgard, Christopher B; Jacobson, Matthew P; Hellerstein, Marc; Goetzman, Eric S; Gibson, Bradford W; Verdin, Eric

    2013-12-01

    Reversible posttranslational modifications are emerging as critical regulators of mitochondrial proteins and metabolism. Here, we use a label-free quantitative proteomic approach to characterize the lysine succinylome in liver mitochondria and its regulation by the desuccinylase SIRT5. A total of 1,190 unique sites were identified as succinylated, and 386 sites across 140 proteins representing several metabolic pathways including β-oxidation and ketogenesis were significantly hypersuccinylated in Sirt5(-/-) animals. Loss of SIRT5 leads to accumulation of medium- and long-chain acylcarnitines and decreased β-hydroxybutyrate production in vivo. In addition, we demonstrate that SIRT5 regulates succinylation of the rate-limiting ketogenic enzyme 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) both in vivo and in vitro. Finally, mutation of hypersuccinylated residues K83 and K310 on HMGCS2 to glutamic acid strongly inhibits enzymatic activity. Taken together, these findings establish SIRT5 as a global regulator of lysine succinylation in mitochondria and present a mechanism for inhibition of ketogenesis through HMGCS2. PMID:24315375

  16. Ribosomes slide on lysine-encoding homopolymeric A stretches.

    PubMed

    Koutmou, Kristin S; Schuller, Anthony P; Brunelle, Julie L; Radhakrishnan, Aditya; Djuranovic, Sergej; Green, Rachel

    2015-01-01

    Protein output from synonymous codons is thought to be equivalent if appropriate tRNAs are sufficiently abundant. Here we show that mRNAs encoding iterated lysine codons, AAA or AAG, differentially impact protein synthesis: insertion of iterated AAA codons into an ORF diminishes protein expression more than insertion of synonymous AAG codons. Kinetic studies in E. coli reveal that differential protein production results from pausing on consecutive AAA-lysines followed by ribosome sliding on homopolymeric A sequence. Translation in a cell-free expression system demonstrates that diminished output from AAA-codon-containing reporters results from premature translation termination on out of frame stop codons following ribosome sliding. In eukaryotes, these premature termination events target the mRNAs for Nonsense-Mediated-Decay (NMD). The finding that ribosomes slide on homopolymeric A sequences explains bioinformatic analyses indicating that consecutive AAA codons are under-represented in gene-coding sequences. Ribosome 'sliding' represents an unexpected type of ribosome movement possible during translation.

  17. Lysine methylation represses p53 activity in teratocarcinoma cancer cells.

    PubMed

    Zhu, Jiajun; Dou, Zhixun; Sammons, Morgan A; Levine, Arnold J; Berger, Shelley L

    2016-08-30

    TP53 (which encodes the p53 protein) is the most frequently mutated gene among all human cancers, whereas tumors that retain the wild-type TP53 gene often use alternative mechanisms to repress the p53 tumor-suppressive function. Testicular teratocarcinoma cells rarely contain mutations in TP53, yet the transcriptional activity of wild-type p53 is compromised, despite its high expression level. Here we report that in the teratocarcinoma cell line NTera2, p53 is subject to lysine methylation at its carboxyl terminus, which has been shown to repress p53's transcriptional activity. We show that reduction of the cognate methyltransferases reactivates p53 and promotes differentiation of the NTera2 cells. Furthermore, reconstitution of methylation-deficient p53 mutants into p53-depleted NTera2 cells results in elevated expression of p53 downstream targets and precocious loss of pluripotent gene expression compared with re-expression of wild-type p53. Our results provide evidence that lysine methylation of endogenous wild-type p53 represses its activity in cancer cells and suggest new therapeutic possibilities of targeting testicular teratocarcinoma.

  18. Brain uptake of ketoprofen-lysine prodrug in rats.

    PubMed

    Gynther, Mikko; Jalkanen, Aaro; Lehtonen, Marko; Forsberg, Markus; Laine, Krista; Ropponen, Jarmo; Leppänen, Jukka; Knuuti, Johanna; Rautio, Jarkko

    2010-10-31

    The blood-brain barrier (BBB) controls the entry of xenobiotics into the brain. Often the development of central nervous system drugs needs to be terminated because of their poor brain uptake. We describe a way to achieve large neutral amino acid transporter (LAT1)-mediated drug transport into the rat brain. We conjugated ketoprofen to an amino acid l-lysine so that the prodrug could access LAT1. The LAT1-mediated brain uptake of the prodrug was demonstrated with in situ rat brain perfusion technique. The ability of the prodrug to deliver ketoprofen into the site of action, the brain intracellular fluid, was determined combining in vivo and in vitro experiments. A rapid brain uptake from blood and cell uptake was seen both in in situ and in vivo experiments. Therefore, our results show that a prodrug approach can achieve uptake of drugs via LAT1 into the brain intracellular fluid. The distribution of the prodrug in the brain parenchyma and the site of parent drug release in the brain were shown with in vivo and in vitro studies. In addition, our results show that although lysine or ketoprofen are not LAT1-substrates themselves, by combining these molecules, the formed prodrug has affinity for LAT1. PMID:20727958

  19. Mycobacteriophage Lysin B is a novel mycolylarabinogalactan esterase

    SciTech Connect

    Payne, K.; Sun, Q.; Sacchettini, J.; Hatfull, G.F.

    2010-08-27

    Mycobacteriophages encounter a unique problem among phages of Gram-positive bacteria, in that lysis must not only degrade the peptidoglycan layer but also circumvent a mycolic acid-rich outer membrane covalently attached to the arabinogalactan-peptidoglycan complex. Mycobacteriophages accomplish this by producing two lysis enzymes, Lysin A (LysA) that hydrolyses peptidoglycan, and Lysin B (LysB), a novel mycolylarabinogalactan esterase, that cleaves the mycolylarabinogalactan bond to release free mycolic acids. The D29 LysB structure shows an {alpha}/{beta} hydrolase organization with a catalytic triad common to cutinases, but which contains an additional four-helix domain implicated in the binding of lipid substrates. Whereas LysA is essential for mycobacterial lysis, a Giles {Delta}lysB mutant mycobacteriophage is viable, but defective in the normal timing, progression and completion of host cell lysis. We propose that LysB facilitates lysis by compromising the integrity of the mycobacterial outer membrane linkage to the arabinogalactan-peptidoglycan layer.

  20. Oxidation of glycine by Phaseolus leghaemoglobin with associated catabolic reactions at the haem.

    PubMed Central

    Lehtovaara, P

    1978-01-01

    Leghaemoglobin from the root nodules of kidney bean (Phaseolus vulgaris) reacts in alkaline glycine solutions as a glycine oxidase in a reaction that may also be regarded as a coupled oxidation. Leghaemoglobin is reduced to the ferrous form by glycinate, the oxygen complex is formed, and finally the haem is attacked to yield a green reaction product. Glycine is simultaneously oxidized to glyoxylate, and hydrogen peroxide is generated. The initial velocity of the formation of the green product is proportional to the concentrations of leghaemoglobin and glycine, and the optimum pH for the reaction is 10.2. The green product is not formed if carbon monoxide, azide of imidazole is bound to the haem, whereas oxidation of glycine to glyoxylate is not inhibited by azide and not essentially by carbon monoxide. Haem breakdown is activated by digestion of leghaemoglobin by carboxypeptidase, and partly inhibited by catalase and superoxide dismutase. PMID:743243

  1. Glycine's radiolytic destruction in ices: first in situ laboratory measurements for Mars.

    PubMed

    Gerakines, Perry A; Hudson, Reggie L

    2013-07-01

    We report new laboratory studies of the radiation-induced destruction of glycine-containing ices for a range of temperatures and compositions that allow extrapolation to martian conditions. In situ infrared spectroscopy was used to study glycine decay rates as a function of temperature (from 15 to 280 K) and initial glycine concentrations in six mixtures whose compositions ranged from dry glycine to H2O+glycine (300:1). Results are presented in several systems of units, with cautions concerning their use. The half-life of glycine under the surface of Mars is estimated as an extrapolation of this data set to martian conditions, and trends in decay rates are described as are applications to Mars' near-surface chemistry.

  2. Glycine's radiolytic destruction in ices: first in situ laboratory measurements for Mars.

    PubMed

    Gerakines, Perry A; Hudson, Reggie L

    2013-07-01

    We report new laboratory studies of the radiation-induced destruction of glycine-containing ices for a range of temperatures and compositions that allow extrapolation to martian conditions. In situ infrared spectroscopy was used to study glycine decay rates as a function of temperature (from 15 to 280 K) and initial glycine concentrations in six mixtures whose compositions ranged from dry glycine to H2O+glycine (300:1). Results are presented in several systems of units, with cautions concerning their use. The half-life of glycine under the surface of Mars is estimated as an extrapolation of this data set to martian conditions, and trends in decay rates are described as are applications to Mars' near-surface chemistry. PMID:23848469

  3. A DFT study of adsorption of glycine onto the surface of BC2N nanotube

    NASA Astrophysics Data System (ADS)

    Soltani, Alireza; Azmoodeh, Zivar; Javan, Masoud Bezi; Lemeski, E. Tazikeh; Karami, Leila

    2016-10-01

    A theoretical study of structure and the energy interaction of amino acid glycine (NH2CH2COOH) with BC2N nanotube is crucial for apperception behavior occurring at the nanobiointerface. Herein, we studied the adsorption of glycine in their radical and zwitterionic forms upon the surface of BC2N nanotube using M06 functional and 6-311G** standard basis set. We also considered the different orientations of the glycine amino acid on the surface of adsorbent. Further, we found out that the stability of glycine from its carbonyl group is higher than hydroxyl and amine groups. Our results also indicated that the electronic structure of BC2N nanotube on the adsorption of glycine from its amine group is more altered than the other groups. Our study exhibits that opto-electronic property of adsorbent is changed after the glycine adsorption.

  4. Branch-point stoichiometry can generate weak links in metabolism: the case of glycine biosynthesis.

    PubMed

    Melendez-Hevia, Enrique; Paz-Lugo, Patricia De

    2008-12-01

    Although the metabolic network permits conversion between almost any pair of metabolites,this versatility fails at certain sites because of chemical constraints (kinetic,thermodynamic and stoichiometric) that seriously restrict particular conversions. We call these sites weak links in metabolism,as they can interfere harmfully with management of matter and energy if the network as a whole does not include adequate safeguards. A critical weak link is created in glycine biosynthesis by the stoichiometry of the reaction catalyzed by glycine hydroxymethyltransferase (EC 2.1.2.1), which converts serine into glycine plus one C1 unit: this produces an absolute dependence of the glycine production flux on the utilization of C1 units for other metabolic pathways that do not work coordinately with glycine use. It may not be possible,therefore,to ensure that glycine is always synthesized in sufficient quantities to meet optimal metabolic requirements. PMID:19179765

  5. Detection of Cyanotoxins, β-N-methylamino-l-alanine and Microcystins, from a Lake Surrounded by Cases of Amyotrophic Lateral Sclerosis

    PubMed Central

    Banack, Sandra Anne; Caller, Tracie; Henegan, Patricia; Haney, James; Murby, Amanda; Metcalf, James S.; Powell, James; Cox, Paul Alan; Stommel, Elijah

    2015-01-01

    A cluster of amyotrophic lateral sclerosis (ALS) has been previously described to border Lake Mascoma in Enfield, NH, with an incidence of ALS approximating 25 times expected. We hypothesize a possible association with cyanobacterial blooms that can produce β-N-methylamino-l-alanine (BMAA), a neurotoxic amino acid implicated as a possible cause of ALS/PDC in Guam. Muscle, liver, and brain tissue samples from a Lake Mascoma carp, as well as filtered aerosol samples, were analyzed for microcystins (MC), free and protein-bound BMAA, and the BMAA isomers 2,4-diaminobutyric acid (DAB) and N-(2-aminoethyl)glycine (AEG). In carp brain, BMAA and DAB concentrations were 0.043 μg/g ± 0.02 SD and 0.01 μg/g ± 0.002 SD respectively. In carp liver and muscle, the BMAA concentrations were 1.28 μg/g and 1.27 μg/g respectively, and DAB was not detected. BMAA was detected in the air filters, as were the isomers DAB and AEG. These results demonstrate that a putative cause for ALS, BMAA, exists in an environment that has a documented cluster of ALS. Although cause and effect have not been demonstrated, our observations and measurements strengthen the association. PMID:25643180

  6. Glial cells transform glucose to alanine, which fuels the neurons in the honeybee retina.

    PubMed

    Tsacopoulos, M; Veuthey, A L; Saravelos, S G; Perrottet, P; Tsoupras, G

    1994-03-01

    The retina of honeybee drone is a nervous tissue with a crystal-like structure in which glial cells and photoreceptor neurons constitute two distinct metabolic compartments. The phosphorylation of glucose and its subsequent incorporation into glycogen occur in glia, whereas O2 consumption (QO2) occurs in the photoreceptors. Experimental evidence showed that glia phosphorylate glucose and supply the photoreceptors with metabolic substrates. We aimed to identify these transferred substrates. Using ion-exchange and reversed-phase HPLC and gas chromatography-mass spectrometry, we demonstrated that more than 50% of 14C(U)-glucose entering the glia is transformed to alanine by transamination of pyruvate with glutamate. In the absence of extracellular glucose, glycogen is used to make alanine; thus, its pool size in isolated retinas is maintained stable or even increased. Our model proposes that the formation of alanine occurs in the glia, thereby maintaining the redox potential of this cell and contributing to NH3 homeostasis. Alanine is released into the extracellular space and is then transported into photoreceptors using an Na(+)-dependent transport system. Purified suspensions of photoreceptors have similar alanine aminotransferase activity as glial cells and transform 14C-alanine to glutamate, aspartate, and CO2. Therefore, the alanine entering photoreceptors is transaminated to pyruvate, which in turn enters the Krebs cycle. Proline also supplies the Krebs cycle by making glutamate and, in turn, the intermediate alpha-ketoglutarate. Light stimulation caused a 200% increase of QO2 and a 50% decrease of proline and of glutamate. Also, the production of 14CO2 from 14C-proline was increased. The use of these amino acids would sustain about half of the light-induced delta QO2, the other half being sustained by glycogen via alanine formation. The use of proline meets a necessary anaplerotic function in the Krebs cycle, but implies high NH3 production. The results showed

  7. Mapping and genotypic analysis of NK-lysin gene in chicken

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Antimicrobial peptides (AMP) are important elements of the first line of defence against pathogens in animals. NK-lysin is a cationic AMP that plays a critical role in innate immunity. The chicken NK-lysin gene has been cloned and its antimicrobial and anticancer activity has been descri...

  8. Widespread occurrence of lysine methylation in Plasmodium falciparum proteins at asexual blood stages

    PubMed Central

    Kaur, Inderjeet; Zeeshan, Mohammad; Saini, Ekta; Kaushik, Abhinav; Mohmmed, Asif; Gupta, Dinesh; Malhotra, Pawan

    2016-01-01

    Post-transcriptional and post-translational modifications play a major role in Plasmodium life cycle regulation. Lysine methylation of histone proteins is well documented in several organisms, however in recent years lysine methylation of proteins outside histone code is emerging out as an important post-translational modification (PTM). In the present study we have performed global analysis of lysine methylation of proteins in asexual blood stages of Plasmodium falciparum development. We immunoprecipitated stage specific Plasmodium lysates using anti-methyl lysine specific antibodies that immunostained the asexual blood stage parasites. Using liquid chromatography and tandem mass spectrometry analysis, 570 lysine methylated proteins at three different blood stages were identified. Analysis of the peptide sequences identified 605 methylated sites within 422 proteins. Functional classification of the methylated proteins revealed that the proteins are mainly involved in nucleotide metabolic processes, chromatin organization, transport, homeostatic processes and protein folding. The motif analysis of the methylated lysine peptides reveals novel motifs. Many of the identified lysine methylated proteins are also interacting partners/substrates of PfSET domain proteins as revealed by STRING database analysis. Our findings suggest that the protein methylation at lysine residues is widespread in Plasmodium and plays an important regulatory role in diverse set of the parasite pathways. PMID:27762281

  9. Differential lysine acetylation profiles of Erwinia amylovora strains revealed by proteomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protein lysine acetylation (LysAc) in bacteria has recently been demonstrated to be widespread in E. coli and Salmonella and to broadly regulate bacterial physiology and metabolism. However, LysAc in plant pathogenic bacteria is largely unknown. Here we report the lysine acetylome of Erwinia amylovo...

  10. Global Profiling of Protein Lysine Malonylation in Escherichia coli Reveals Its Role in Energy Metabolism.

    PubMed

    Qian, Lili; Nie, Litong; Chen, Ming; Liu, Ping; Zhu, Jun; Zhai, Linhui; Tao, Sheng-Ce; Cheng, Zhongyi; Zhao, Yingming; Tan, Minjia

    2016-06-01

    Protein lysine malonylation is a recently identified post-translational modification (PTM), which is evolutionarily conserved from bacteria to mammals. Although analysis of lysine malonylome in mammalians suggested that this modification was related to energy metabolism, the substrates and biological roles of malonylation in prokaryotes are still poorly understood. In this study, we performed qualitative and quantitative analyses to globally identify lysine malonylation substrates in Escherichia coli. We identified 1745 malonylation sites in 594 proteins in E. coli, representing the first and largest malonylome data set in prokaryotes up to date. Bioinformatic analyses showed that lysine malonylation was significantly enriched in protein translation, energy metabolism pathways and fatty acid biosynthesis, implying the potential roles of protein malonylation in bacterial physiology. Quantitative proteomics by fatty acid synthase inhibition in both auxotrophic and prototrophic E. coli strains revealed that lysine malonylation is closely associated with E. coli fatty acid metabolism. Protein structural analysis and mutagenesis experiment suggested malonylation could impact enzymatic activity of citrate synthase, a key enzyme in citric acid (TCA) cycle. Further comparative analysis among lysine malonylome, succinylome and acetylome data showed that these three modifications could participate in some similar enriched metabolism pathways, but they could also possibly play distinct roles such as in fatty acid synthesis. These data expanded our knowledge of lysine malonylation in prokaryotes, providing a resource for functional study of lysine malonylation in bacteria. PMID:27183143

  11. Active transport of. gamma. -aminobutyric acid and glycine into synaptic vesicles

    SciTech Connect

    Kish, P.E.; Fischer-Bovenkerk, C.; Ueda, T. )

    1989-05-01

    Although {gamma}-aminobutyric acid (GABA) and glycine are recognized as major amino acid inhibitory neurotransmitters in the central nervous system, their storage is poorly understood. In this study the authors have characterized vesicular GABA and glycine uptakes in the cerebrum and spinal cord, respectively. They present evidence that GABA and glycine are each taken up into isolated synaptic vesicles in an ATP-dependent manner and that the uptake is driven by an electrochemical proton gradient. Uptake for both amino acids exhibited kinetics with low affinity similar to a vesicular glutamate uptake. The ATP-dependent GABA uptake was not inhibited by the putative amino acid neurotransmitters glycine, taurine, glutamate, or aspartate or by GABA analogs, agonists, and antagonists. Similarly, ATP-dependent glycine uptake was hardly affected by GABA, taurine, glutamate, or aspartate or by glycine analogs or antagonists. The GABA uptake was not affected by chloride, which is in contrast to the uptake of the excitatory neurotransmitter glutamate, whereas the glycine uptake was slightly stimulated by low concentrations of chloride. Tissue distribution studies indicate that the vesicular uptake systems for GABA, glycine, and glutamate are distributed in different proportions in the cerebrum and spinal cord. These results suggest that the vesicular uptake systems for GABA, glycine, and glutamate are distinct from each other.

  12. Converting enzyme inhibition and the glomerular hemodynamic response to glycine in diabetic rats.

    PubMed

    Slomowitz, L A; Peterson, O W; Thomson, S C

    1999-07-01

    GFR normally increases during glycine infusion. This response is absent in humans and rats with established diabetes mellitus. In diabetic patients, angiotensin-converting enzyme inhibition (ACEI) restores the effect of glycine on GFR. To ascertain the glomerular hemodynamic basis for this effect of ACEI, micropuncture studies were performed in male Wistar-Froemter rats after 5 to 6 wk of insulin-treated streptozotocin diabetes. The determinants of single-nephron GFR (SNGFR) were assessed in each rat before and during glycine infusion. Studies were performed in diabetics, diabetics after 5 d of ACEI (enalapril in the drinking water), and weight-matched controls. Diabetic rats manifest renal hypertrophy and glomerular hyperfiltration but not glomerular capillary hypertension. ACEI reduced glomerular capillary pressure, increased glomerular ultrafiltration coefficient, and did not mitigate hyperfiltration. In controls, glycine increased SNGFR by 30% due to increased nephron plasma flow. In diabetics, glycine had no effect on any determinant of SNGFR. In ACEI-treated diabetics, the SNGFR response to glycine was indistinguishable from nondiabetics, but the effect of glycine was mediated by greater ultrafiltration pressure rather than by greater plasma flow. These findings demonstrate that: (1) The absent response to glycine in established diabetes does not indicate that renal functional reserve is exhausted by hyperfiltration; and (2) ACEI restores the GFR response to glycine in established diabetes, but this response is mediated by increased ultrafiltration pressure rather than by increased nephron plasma flow.

  13. Modulation of N-methyl-d-aspartate receptor function by glycine transport

    PubMed Central

    Bergeron, Richard; Meyer, Torsten M.; Coyle, Joseph T.; Greene, Robert W.

    1998-01-01

    The recent discovery of glycine transporters in both the central nervous system and the periphery suggests that glycine transport may be critical to N-methyl-d-aspartate receptor (NMDAR) function by controlling glycine concentration at the NMDAR modulatory glycine site. Data obtained from whole-cell patch–clamp recordings of hippocampal pyramidal neurons, in vitro, demonstrated that exogenous glycine and glycine transporter type 1 (GLYT1) antagonist selectively enhanced the amplitude of the NMDA component of a glutamatergic excitatory postsynaptic current. The effect was blocked by 2-amino-5-phosphonovaleric acid and 7-chloro-kynurenic acid but not by strychnine. Thus, the glycine-binding site was not saturated under the control conditions. Furthermore, GLYT1 antagonist enhanced NMDAR function during perfusion with medium containing 10 μM glycine, a concentration similar to that in the cerebrospinal fluid in vivo, thereby supporting the hypothesis that the GLYT1 maintains subsaturating concentration of glycine at synaptically activated NMDAR. The enhancement of NMDAR function by specific GLYT1 antagonism may be a feasible target for therapeutic agents directed toward diseases related to hypofunction of NMDAR. PMID:9861038

  14. Synthesis of water soluble glycine capped silver nanoparticles and their surface selective interaction

    SciTech Connect

    Agasti, Nityananda; Singh, Vinay K.; Kaushik, N.K.

    2015-04-15

    Highlights: • Synthesis of water soluble silver nanoparticles at ambient reaction conditions. • Glycine as stabilizing agent for silver nanoparticles. • Surface selective interaction of glycine with silver nanoparticles. • Glycine concentration influences crystalinity and optical property of silver nanoparticles. - Abstract: Synthesis of biocompatible metal nanoparticles has been an area of significant interest because of their wide range of applications. In the present study, we have successfully synthesized water soluble silver nanoparticles assisted by small amino acid glycine. The method is primarily based on reduction of AgNO{sub 3} with NaBH{sub 4} in aqueous solution under atmospheric air in the presence of glycine. UV–vis spectroscopy, transmission electron microscopy (TEM), X–ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetry (TG) and differential thermal analysis (DTA) techniques used for characterization of resulting silver nanoparticles demonstrated that, glycine is an effective capping agent to stabilize silver nanoparticles. Surface selective interaction of glycine on (1 1 1) face of silver nanoparticles has been investigated. The optical property and crystalline behavior of silver nanoparticles were found to be sensitive to concentration of glycine. X–ray diffraction studies ascertained the phase specific interaction of glycine on silver nanoparticles. Silver nanoparticles synthesized were of diameter 60 nm. We thus demonstrated an efficient synthetic method for synthesis of water soluble silver nanoparticles capped by amino acid under mild reaction conditions with excellent reproducibility.

  15. Effect of irradiation on Nε-carboxymethyl-lysine and Nε-carboxyethyl-lysine formation in cooked meat products during storage

    NASA Astrophysics Data System (ADS)

    Yu, Ligang; He, Zhiyong; Zeng, Maomao; Zheng, Zongping; Chen, Jie

    2016-03-01

    This study investigated the effects of irradiation on Nε-carboxymethyl-lysine (CML) and Nε-carboxyethyl-lysine (CEL) formation in cooked red and white meats during storage. The results showed that irradiation did not affect CML/CEL formation (0 weeks). After 6 weeks, CML/CEL contents in the irradiated samples exhibited a higher growth rate than the non-irradiated samples, especially the red meat. The results of electron spin resonance spectrometry and 2-Thiobarbituric acid-reactive substances suggested irradiation had induced free-radical reactions and accelerated lipid oxidation during storage. A linear correlation (r=0.810-0.906, p<0.01) was found between the loss of polyunsaturated fatty acids content and increase of CML/CEL content in the irradiated samples after 0 and 6 weeks of storage. The results indicate that irradiation-induced lipid oxidation promotes CML/CEL formation, and CML/CEL formation by the lipid oxidation pathways may be an important pathway for CML/CEL accumulation in irradiated meat products during storage.

  16. Total chemically available (free and intrachain) lysine and furosine in pea, bean, and lentil sprouts.

    PubMed

    Rodríguez, Carmen; Frías, Juana; Vidal-Valverde, Concepción; Hernández, Amelia

    2007-12-12

    The effect of the germination of peas, beans, and lentils under differing conditions of illumination for different times on parameters linked to the Maillard reaction (chemically available free and intrachain lysine, lysine availability, and furosine) was evaluated. The chemically available free lysine content in the raw seeds of the three legumes was quite small compared to the chemically available intrachain lysine content, and furosine was detectable only in the beans and the lentils. The effect of germination was to increase lysine availability compared with levels in the raw seeds in all of the germinated samples, the smallest increase taking place in the lentils. In addition, furosine became detectable in all of the germinated samples. Quantities varied depending on the germination conditions but in all cases were higher than the quantities observed in the raw seeds. Linear correlations were observed to exist between some of the parameters considered in the three legumes tested.

  17. Acetylome analysis reveals the involvement of lysine acetylation in diverse biological processes in Phytophthora sojae

    PubMed Central

    Li, Delong; Lv, Binna; Tan, Lingling; Yang, Qianqian; Liang, Wenxing

    2016-01-01

    Lysine acetylation is a dynamic and highly conserved post-translational modification that plays an important regulatory role in almost every aspects of cell metabolism in both eukaryotes and prokaryotes. Phytophthora sojae is one of the most important plant pathogens due to its huge economic impact. However, to date, little is known about the functions of lysine acetylation in this Phytopthora. Here, we conducted a lysine acetylome in P. sojae. Overall, 2197 lysine acetylation sites in 1150 proteins were identified. The modified proteins are involved in diverse biological processes and are localized to multiple cellular compartments. Importantly, 7 proteins involved in the pathogenicity or the secretion pathway of P. sojae were found to be acetylated. These data provide the first comprehensive view of the acetylome of P. sojae and serve as an important resource for functional analysis of lysine acetylation in plant pathogens. PMID:27412925

  18. The metabolism of histamine in the Drosophila optic lobe involves an ommatidial pathway: β-alanine recycles through the retina.

    PubMed

    Borycz, Janusz; Borycz, Jolanta A; Edwards, Tara N; Boulianne, Gabrielle L; Meinertzhagen, Ian A

    2012-04-15

    Flies recycle the photoreceptor neurotransmitter histamine by conjugating it to β-alanine to form β-alanyl-histamine (carcinine). The conjugation is regulated by Ebony, while Tan hydrolyses carcinine, releasing histamine and β-alanine. In Drosophila, β-alanine synthesis occurs either from uracil or from the decarboxylation of aspartate but detailed roles for the enzymes responsible remain unclear. Immunohistochemically detected β-alanine is present throughout the fly's entire brain, and is enhanced in the retina especially in the pseudocone, pigment and photoreceptor cells of the ommatidia. HPLC determinations reveal 10.7 ng of β-alanine in the wild-type head, roughly five times more than histamine. When wild-type flies drink uracil their head β-alanine increases more than after drinking l-aspartic acid, indicating the effectiveness of the uracil pathway. Mutants of black, which lack aspartate decarboxylase, cannot synthesize β-alanine from l-aspartate but can still synthesize it efficiently from uracil. Our findings demonstrate a novel function for pigment cells, which not only screen ommatidia from stray light but also store and transport β-alanine and carcinine. This role is consistent with a β-alanine-dependent histamine recycling pathway occurring not only in the photoreceptor terminals in the lamina neuropile, where carcinine occurs in marginal glia, but vertically via a long pathway that involves the retina. The lamina's marginal glia are also a hub involved in the storage and/or disposal of carcinine and β-alanine.

  19. β-alanine improves punch force and frequency in amateur boxers during a simulated contest.

    PubMed

    Donovan, Tim; Ballam, Tim; Morton, James P; Close, Graeme L

    2012-10-01

    The aim of this study was to test the hypothesis that ß-alanine supplementation improves punch power and frequency in amateur boxers during a simulated contest. Sixteen amateur boxers (each approximately 6 yr experience) were assigned to ß-alanine (n = 8; 1.5 g 4 times/d for 4 wk) or placebo supplementation (n = 8) after initially being assessed for baseline punch performance. Before and after the supplementation period, all boxers completed a simulated contest consisting of 3 × 3-min rounds (interspersed with 60-s rests) on a punching bag (with a force transducer attached). Each round involved performing 2 min 50 s standardized punching (standardized jab, cross combination) based on notation analysis, whereas the last 10 s involved maximal-output punching (standardized jab, cross combination), during which time punch force and frequency were recorded. Postcontest blood lactate was significantly increased in the ß-alanine group (presupplementation 9.5 ± 0.9 mmol/L, postsupplementation 12.6 ± 0.5 mmol/L, p < .05), whereas the placebo group showed no change (presupplementation 8 ± 2.8 mmol/L, postsupplementation 7.0 ± 2.7 mmol/L; p > .05). During the 10-s maximal-output punching, changes in mean punch force (ß-alanine 20 ± 1.01 kg, placebo 1 ± 1 kg) and punch frequency (ß-alanine 5 ± 4, placebo -2 ± 3) were greater (p < .05) in the ß-alanine-supplemented group. The authors conclude that ß-alanine supplementation improves punching performance in amateur boxers and suggest that this supplementation protocol may also prove ergogenic for other combat-related sports.

  20. Effects of β-alanine supplementation on exercise performance: a meta-analysis.

    PubMed

    Hobson, R M; Saunders, B; Ball, G; Harris, R C; Sale, C

    2012-07-01

    Due to the well-defined role of β-alanine as a substrate of carnosine (a major contributor to H+ buffering during high-intensity exercise), β-alanine is fast becoming a popular ergogenic aid to sports performance. There have been several recent qualitative review articles published on the topic, and here we present a preliminary quantitative review of the literature through a meta-analysis. A comprehensive search of the literature was employed to identify all studies suitable for inclusion in the analysis; strict exclusion criteria were also applied. Fifteen published manuscripts were included in the analysis, which reported the results of 57 measures within 23 exercise tests, using 18 supplementation regimes and a total of 360 participants [174, β-alanine supplementation group (BA) and 186, placebo supplementation group (Pla)]. BA improved (P=0.002) the outcome of exercise measures to a greater extent than Pla [median effect size (IQR): BA 0.374 (0.140-0.747), Pla 0.108 (-0.019 to 0.487)]. Some of that effect might be explained by the improvement (P=0.013) in exercise capacity with BA compared to Pla; no improvement was seen for exercise performance (P=0.204). In line with the purported mechanisms for an ergogenic effect of β-alanine supplementation, exercise lasting 60-240 s was improved (P=0.001) in BA compared to Pla, as was exercise of >240 s (P=0.046). In contrast, there was no benefit of β-alanine on exercise lasting <60 s (P=0.312). The median effect of β-alanine supplementation is a 2.85% (-0.37 to 10.49%) improvement in the outcome of an exercise measure, when a median total of 179 g of β-alanine is supplemented.