Science.gov

Sample records for alanine substitution mutants

  1. First-principles studies of pure and fluorine substituted alanines

    NASA Astrophysics Data System (ADS)

    Ahmad, Sardar; Vaizie, Hamide; Rahnamaye Aliabad, H. A.; Ahmad, Rashid; Khan, Imad; Ali, Zahid; Jalali-Asadabadi, S.; Ahmad, Iftikhar; Khan, Amir Abdullah

    2016-05-01

    This paper communicates the structural, electronic and optical properties of L-alanine, monofluoro and difluoro substituted alanines using density functional calculations. These compounds exist in orthorhombic crystal structure and the calculated structural parameters such as lattice constants, bond angles and bond lengths are in agreement with the experimental results. L-alanine is an indirect band gap insulator, while its fluorine substituted compounds (monofluoroalanine and difluoroalanine) are direct band gap insulators. The substitution causes reduction in the band gap and hence these optically tailored direct wide band gap materials have enhanced optical properties in the ultraviolet (UV) region of electromagnetic spectrum. Therefore, optical properties like dielectric function, refractive index, reflectivity and energy loss function are also investigated. These compounds have almost isotropic nature in the lower frequency range while at higher energies, they have a significant anisotropic nature.

  2. Bacteriorhodopsin mutants containing single substitutions of serine or threonine residues are all active in proton translocation

    SciTech Connect

    Marti, T.; Otto, H.; Mogi, T.; Roesselet, S.J.H.; Heyn, M.P.; Khorana, H.G. )

    1991-04-15

    To study their role in proton translocation by bacteriorhodopsin, 22 serine and threonine residues presumed to be located within and near the border of the transmembrane segments have been individually replaced by alanine or valine, respectively. Thr-89 was substituted by alanine, valine, and aspartic acid, and Ser-141 by alanine and cysteine. Most of the mutants showed essentially wild-type phenotype with regard to chromophore regeneration and absorption spectrum. However, replacement of Thr-89 by Val and of Ser-141 by Cys caused striking blue shifts of the chromophore by 100 and 80 nm, respectively. All substitutions of Thr-89 regenerated the chromophore at least 10-fold faster with 13-cis retinal than with all-trans retinal. The substitutions at positions 89, 90, and 141 also showed abnormal dark-light adaptation, suggesting interactions between these residues and the retinylidene chromophore. Proton pumping measurements revealed 60-75% activity for mutants of Thr-46, -89, -90, -205, and Ser-226, and about 20% for Ser-141----Cys, whereas the remaining mutants showed normal pumping. Kinetic studies of the photocycle and of proton release and uptake for mutants in which proton pumping was reduced revealed generally little alterations. The reduced activity in several of these mutants is most likely due to a lower percentage of all-trans retinal in the light-adapted state. In the mutants Thr-46----Val and Ser-226----Ala the decay of the photointer-mediate M was significantly accelerated, indicating an interaction between these residues and Asp-96 which reprotonates the Schiff base. Our results show that no single serine or threonine residue is obligatory for proton pumping.

  3. Selection of tRNA(Asp) amber suppressor mutants having alanine, arginine, glutamine, and lysine identity.

    PubMed Central

    Martin, F; Reinbolt, J; Dirheimer, G; Gangloff, J; Eriani, G

    1996-01-01

    Elements that confer identity to a tRNA in the cellular environment, where all aminoacyl-tRNA synthetases are competing for substrates, may be delineated by in vivo experiments using suppressor tRNAs. Here we describe the selection of active Escherichia coli tRNAAsp amber mutants and analyze their identity. Starting from a library containing randomly mutated tRNA(CUA)Asp genes, we isolated four amber suppressors presenting either lysine, alanine, or glutamine activity. Two of them, presenting mainly alanine or lysine activity, were further submitted to a second round of mutagenesis selection in order to improve their efficiency of suppression. Eleven suppressors were isolated, each containing two or three mutations. Ten presented identities of the two parental mutants, whereas one had switched from lysine to arginine identity. Analysis of the different mutants revealed (or confirmed for some nucleotides) their role as positive and/or negative determinants in AlaRS, LysRS, and ArgRS recognition. More generally, it appears that tRNAAsp presents identity characteristics closely related to those of tRNALys, as well as a structural basis for acquiring alanine or arginine identity upon moderate mutational changes; these consist of addition or suppression of the corresponding positive or negative determinants, as well as tertiary interactions. Failure to isolate aspartic acid-inserting suppressors is probably due to elimination of the important G34 identity element and its replacement by an antideterminant when changing the anticodon of the tRNAAsp to the CUA triplet. PMID:8809018

  4. Temperature-sensitive mutants of Escherichia coli K-12 with low activities of the L-alanine adding enzyme and the D-alanyl-D-alanine adding enzyme.

    PubMed

    Lugtenberg, E J; v Schijndel-van Dam, A

    1972-04-01

    A number of properties of temperature-sensitive mutants in murein synthesis are described. The mutants grow at 30 C but lyse at 42 C. One mutant possesses a temperature-sensitive d-alanyl-d-alanine adding enzyme, has an impaired rate of murein synthesis in vivo at both 30 and 42 C, and contains elevated levels of uridine diphosphate-N-acetyl-muramyl-tripeptide (UDP-MurNAc-l-Ala-d-Glu-m-diaminopimelic acid) at 42 C. The other mutant possesses an l-alanine adding enzyme with a very low in vitro activity at both 30 and 42 C. Its in vivo rate of murein synthesis is almost normal at 30 C but is much less at 42 C. When the murein precursors were isolated after incubation of the cells in the presence of (14)C-l-alanine, they contained only a fraction of the radioactivity that could be obtained from a wild-type strain. A genetic nomenclature for genes concerned with murein synthesis is proposed. PMID:4552998

  5. Alanine substitution of conserved residues in the cytoplasmic tail of herpes simplex virus gB can enhance or abolish cell fusion activity and viral entry

    SciTech Connect

    Ruel, Nancy . E-mail: n-ruel@northwestern.edu; Zago, Anna . E-mail: anna_zago@acgtinc.com; Spear, Patricia G. . E-mail: p-spear@northwestern.edu

    2006-03-01

    Herpes simplex virus (HSV) glycoprotein B (gB) is one of the four viral glycoproteins required for viral entry and cell fusion and is highly conserved among herpesviruses. Mutants of HSV type 2 gB were generated by substituting conserved residues in the cytoplasmic tail with alanine or by deleting 41 amino acids from the C-terminus. Some of the mutations abolished cell fusion activity and also prevented transport of gB to the cell surface, identifying residues in the gB cytoplasmic tail that are critical for intracellular transport of this glycoprotein. These mutations also prevented production of infectious virus, possibly because the mutant forms of gB were not transported to the site of envelopment. Other mutations, particularly the deletion, significantly enhanced cell fusion activity. These mutations, as well as others described previously, identify regions of the gB cytoplasmic domain that modulate cell fusion activity.

  6. Modulation of DNA-polyamide interaction by β-alanine substitutions: a study of positional effects on binding affinity, kinetics and thermodynamics.

    PubMed

    Wang, Shuo; Aston, Karl; Koeller, Kevin J; Harris, G Davis; Rath, Nigam P; Bashkin, James K; Wilson, W David

    2014-10-14

    Hairpin polyamides (PAs) are an important class of sequence-specific DNA minor groove binders, and frequently employ a flexible motif, β-alanine (β), to reduce the molecular rigidity to maintain the DNA recognition register. To better understand the diverse effects that β can have on DNA-PA binding affinity, selectivity, and especially kinetics, which have rarely been reported, we have initiated a detailed study for an eight-heterocyclic hairpin PA and its β derivatives with their cognate and mutant sequences. With these derivatives, all internal pyrroles of the parent PA are systematically substituted with single or double βs. A set of complementary experiments have been conducted to evaluate the molecular interactions in detail: UV-melting, biosensor-surface plasmon resonance, circular dichroism and isothermal titration calorimetry. The β substitutions generally weaken the binding affinities of these PAs with cognate DNA, and have large and diverse influences on PA binding kinetics in a position- and number-dependent manner. The DNA base mutations have also shown positional effects on the binding of a single PA. Besides the β substitutions, the monocationic Dp group [3-(dimethylamino)propylamine] in parent PA has been modified into a dicationic Ta group (3,3'-diamino-N-methyldipropylamine) to minimize the frequently observed PA aggregation with ITC experiments. The results clearly show that the Ta modification not only maintains the DNA binding mode and affinity of PA, but also significantly reduces PA aggregation and allows the complete thermodynamic signature of eight-ring hairpin PA to be determined for the first time. This combined set of results significantly extends our understanding of the energetic basis of specific DNA recognition by PAs. PMID:25141096

  7. Modulation of DNA-Polyamide Interaction by β-alanine Substitutions: A Study of Positional Effects on Binding Affinity, Kinetics and Thermodynamics

    PubMed Central

    Wang, Shuo; Aston, Karl; Koeller, Kevin J.; Harris, G. Davis; Rath, Nigam P.

    2014-01-01

    Hairpin polyamides (PAs) are an important class of sequence-specific DNA minor groove binders, and frequently employ a flexible motif, β-alanine (β), to reduce the molecular rigidity to maintain the DNA recognition register. To better understand the diverse effects β can have on DNA-PA binding affinity, selectivity, and especially kinetics, which have rarely been reported, we have initiated a detailed study for an eight-heterocyclic hairpin PA and its β derivatives with their cognate and mutant sequences. With these derivatives, all internal pyrroles of the parent PA are systematically substituted with single or double βs. A set of complementary experiments have been conducted to evaluate the molecular interactions in detail: UV-melting, biosensor-surface plasmon resonance, circular dichroism and isothermal titration calorimetry. The β substitutions generally weaken the binding affinities of these PAs with cognate DNA, and have large and diverse influences on PA binding kinetics in a position- and number-dependent manner. The DNA base mutations have also shown positional effects on binding of a single PA. Besides the β substitutions, the monocationic Dp group [3-(dimethylamino) propylamine] in parent PA has been modified into a dicationic Ta group (3, 3'-Diamino-N-methyldipropylamine) to minimize the frequently observed PA aggregation with ITC experiments. The results clearly show that the Ta modification not only maintains the DNA binding mode and affinity of PA, but also significantly reduces PA aggregation and allows the complete thermodynamic signature of eight-ring hairpin PA to be determined for the first time. This combined set of results significantly extends our understanding of the energetic basis of specific DNA recognition by PAs. PMID:25141096

  8. Identical substitutions in magnesium chelatase paralogs result in chlorophyll deficient soybean mutants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The soybean (Glycine max (L.) Merr.) chlorophyll deficient line MinnGold is a spontaneous mutant characterized by yellow foliage. Map-based cloning and transgenic complementation revealed that the mutant phenotype is caused by a non-synonymous nucleotide substitution in the third exon of a Mg-chelat...

  9. Role of alanine-valine transaminase in Salmonella typhimurium and analysis of an avtA::Tn5 mutant.

    PubMed Central

    Berg, C M; Whalen, W A; Archambault, L B

    1983-01-01

    In Salmonella typhimurium, as in Escherichia coli, mutations in avtA, the gene encoding the alanine-valine transaminase (transaminase C), are silent unless they are combined with mutations involved in isoleucine-valine biosynthesis. avtA is repressed by leucine or alanine but not by valine. Transaminase C is found at reduced levels upon starvation for any one of several amino acids. We hypothesize that this is due to repression of avtA by the elevated alanine and leucine pools found in amino acid-starved cells. PMID:6309735

  10. Role of alanine-valine transaminase in Salmonella typhimurium and analysis of an avtA::Tn5 mutant.

    PubMed

    Berg, C M; Whalen, W A; Archambault, L B

    1983-09-01

    In Salmonella typhimurium, as in Escherichia coli, mutations in avtA, the gene encoding the alanine-valine transaminase (transaminase C), are silent unless they are combined with mutations involved in isoleucine-valine biosynthesis. avtA is repressed by leucine or alanine but not by valine. Transaminase C is found at reduced levels upon starvation for any one of several amino acids. We hypothesize that this is due to repression of avtA by the elevated alanine and leucine pools found in amino acid-starved cells. PMID:6309735

  11. Apolipoprotein A-I mutant proteins having cysteine substitutions and polynucleotides encoding same

    DOEpatents

    Oda, Michael N.; Forte, Trudy M.

    2007-05-29

    Functional Apolipoprotein A-I mutant proteins, having one or more cysteine substitutions and polynucleotides encoding same, can be used to modulate paraoxonase's arylesterase activity. These ApoA-I mutant proteins can be used as therapeutic agents to combat cardiovascular disease, atherosclerosis, acute phase response and other inflammatory related diseases. The invention also includes modifications and optimizations of the ApoA-I nucleotide sequence for purposes of increasing protein expression and optimization.

  12. Active site substitution A82W improves the regioselectivity of steroid hydroxylation by cytochrome P450 BM3 mutants as rationalized by spin relaxation nuclear magnetic resonance studies.

    PubMed

    Rea, V; Kolkman, A J; Vottero, E; Stronks, E J; Ampt, K A M; Honing, M; Vermeulen, N P E; Wijmenga, S S; Commandeur, J N M

    2012-01-24

    Cytochrome P450 BM3 from Bacillus megaterium is a monooxygenase with great potential for biotechnological applications. In this paper, we present engineered drug-metabolizing P450 BM3 mutants as a novel tool for regioselective hydroxylation of steroids at position 16β. In particular, we show that by replacing alanine at position 82 with a tryptophan in P450 BM3 mutants M01 and M11, the selectivity toward 16β-hydroxylation for both testosterone and norethisterone was strongly increased. The A82W mutation led to a ≤42-fold increase in V(max) for 16β-hydroxylation of these steroids. Moreover, this mutation improves the coupling efficiency of the enzyme, which might be explained by a more efficient exclusion of water from the active site. The substrate affinity for testosterone increased at least 9-fold in M11 with tryptophan at position 82. A change in the orientation of testosterone in the M11 A82W mutant as compared to the orientation in M11 was observed by T(1) paramagnetic relaxation nuclear magnetic resonance. Testosterone is oriented in M11 with both the A- and D-ring protons closest to the heme iron. Substituting alanine at position 82 with tryptophan results in increased A-ring proton-iron distances, consistent with the relative decrease in the level of A-ring hydroxylation at position 2β. PMID:22208729

  13. Effective production of 3,4-dihydroxyphenyl-L-alanine (L-DOPA) with Erwinia herbicola cells carrying a mutant transcriptional regulator TyrR.

    PubMed

    Koyanagi, Takashi; Katayama, Takane; Suzuki, Hideyuki; Nakazawa, Hidetsugu; Yokozeki, Kenzo; Kumagai, Hidehiko

    2005-02-01

    The enzymatic production of 3,4-dihydroxyphenyl-L-alanine (L-DOPA) using Erwinia herbicola cells involves the action of tyrosine phenol-lyase (Tpl, EC 4.1.99.2). Since Tpl is only synthesized under L-tyrosine-induced conditions, the addition of L-tyrosine to the medium is unavoidable when preparing cells (the enzyme source), but severely impedes the pure preparation of the final product L-DOPA. We circumvented this problem by using recombinant E. herbicola cells carrying a mutant transcriptional regulator TyrR, which is capable of activating the tpl promoter in the absence of L-tyrosine. PMID:15639092

  14. Hyperproduction of 3,4-dihydroxyphenyl-L-alanine (L-Dopa) using Erwinia herbicola cells carrying a mutant transcriptional regulator TyrR.

    PubMed

    Koyanagi, Takashi; Katayama, Takane; Suzuki, Hideyuki; Onishi, Akiko; Yokozeki, Kenzo; Kumagai, Hidehiko

    2009-05-01

    In the last few decades, enzymatic production of 3,4-dihydroxyphenyl-L-alanine (L-dopa) using tyrosine phenol-lyase (Tpl) has been industrialized. This method has an intrinsic problem of tyrosine contamination because Tpl is synthesized under tyrosine-induced conditions. Herein, we constructed a hyper-L-dopa-producing strain by exploiting a mutant TyrR, an activator of tpl. The highest productivity was obtained for the strain grown under non-induced conditions. It was 30-fold higher than that obtained for tyrosine-induced wild-type cells. PMID:19420686

  15. Pleiotropic effects of hemagglutinin amino acid substitutions of H5 influenza escape mutants

    SciTech Connect

    Rudneva, Irina A.; Timofeeva, Tatiana A.; Ignatieva, Anna V.; Shilov, Aleksandr A.; Krylov, Petr S.; Ilyushina, Natalia A.; Kaverin, Nikolai V.

    2013-12-15

    In the present study we assessed pleiotropic characteristics of the antibody-selected mutations. We examined pH optimum of fusion, temperatures of HA heat inactivation, and in vitro and in vivo replication kinetics of the previously obtained influenza H5 escape mutants. Our results showed that HA1 N142K mutation significantly lowered the pH of fusion optimum. Mutations of the escape mutants located in the HA lateral loop significantly affected H5 HA thermostability (P<0.05). HA changes at positions 131, 144, 145, and 156 and substitutions at positions 131, 142, 145, and 156 affected the replicative ability of H5 escape mutants in vitro and in vivo, respectively. Overall, a co-variation between antigenic specificity and different HA phenotypic properties has been demonstrated. We believe that the monitoring of pleiotropic effects of the HA mutations found in H5 escape mutants is essential for accurate prediction of mutants with pandemic potential. - Highlights: • HA1 N142K mutation significantly lowered the pH of fusion optimum. • Mutations located in the HA lateral loop significantly affected H5 HA thermostability. • HA changes at positions 131, 142, 144, 145, and 156 affected the replicative ability of H5 mutants. • Acquisition of glycosylation site could lead to the emergence of multiple pleiotropic effects.

  16. Helix propensities of conformationally restricted amino acids. Non-natural substitutes for helix breaking proline and helix forming alanine.

    PubMed

    Alías, Miriam; Ayuso-Tejedor, Sara; Fernández-Recio, Juan; Cativiela, Carlos; Sancho, Javier

    2010-02-21

    Alpha helices are useful scaffolds to build biologically active peptides. The intrinsic stability of an alpha-helix is a key feature that can be successfully designed, and it is governed by the constituting amino acid residues. Their individual contributions to helix stability are given, according to Lifson-Roig theory, by their w parameters, which are known for all proteinogenic amino acids, but not for non-natural ones. On the other hand, non-natural, conformationally-restricted amino acids can be used to impart biochemical stability to peptides intended for in vivo administration. Efficient design of peptides based on these amino acids requires the previous determination of their w parameters. We begin here this task by determining the w parameters of two restricted analogs of alanine: (alpha-methyl)alanine and 1-aminocyclopropanecarboxylic acid. According to their w values (alpha-methyl)alanine is almost as good a helix forming residue as alanine, while 1-aminocyclopropanecarboxylic acid is, similarly to proline, a helix breaker. PMID:20135035

  17. Identical Substitutions in Magnesium Chelatase Paralogs Result in Chlorophyll-Deficient Soybean Mutants

    PubMed Central

    Campbell, Benjamin W.; Mani, Dhananjay; Curtin, Shaun J.; Slattery, Rebecca A.; Michno, Jean-Michel; Ort, Donald R.; Schaus, Philip J.; Palmer, Reid G.; Orf, James H.; Stupar, Robert M.

    2014-01-01

    The soybean [Glycine max (L.) Merr.] chlorophyll-deficient line MinnGold is a spontaneous mutant characterized by yellow foliage. Map-based cloning and transgenic complementation revealed that the mutant phenotype is caused by a nonsynonymous nucleotide substitution in the third exon of a Mg-chelatase subunit gene (ChlI1a) on chromosome 13. This gene was selected as a candidate for a different yellow foliage mutant, T219H (Y11y11), that had been previously mapped to chromosome 13. Although the phenotypes of MinnGold and T219H are clearly distinct, sequencing of ChlI1a in T219H identified a different nonsynonymous mutation in the third exon, only six base pairs from the MinnGold mutation. This information, along with previously published allelic tests, were used to identify and clone a third yellow foliage mutation, CD-5, which was previously mapped to chromosome 15. This mutation was identified in the ChlI1b gene, a paralog of ChlI1a. Sequencing of the ChlI1b allele in CD-5 identified a nonsynonymous substitution in the third exon that confers an identical amino acid change as the T219H substitution at ChlI1a. Protein sequence alignments of the two Mg-chelatase subunits indicated that the sites of amino acid modification in MinnGold, T219H, and CD-5 are highly conserved among photosynthetic species. These results suggest that amino acid alterations in this critical domain may create competitive inhibitory interactions between the mutant and wild-type ChlI1a and ChlI1b proteins. PMID:25452420

  18. [Development of Triticum aestivum-Haynaldia villosa 6VS ditelosomic substitution line via phlb mutant].

    PubMed

    Chen, J F; Ying, J; Wang, S L; Liu, Z H; Qi, L L; Chen, P D

    2001-01-01

    Chinese Spring phlb mutant (C S phlbphlb) was crossed to Triticum aestivum-Haynaldia villosa 6V (6A) alien substitution line and F1 back was crossed with C. S phlbphlb. One LV 02 with varied H. villosa 6V chromosome and one LV 02-01 with 40 T. aestivum chromosome, one H. villosa 6V and 6VS chromosome were screened in BC1F1 and BC1F2 respectively by C-banding and the fluorescence in situ hybridization (FISH). In segregated generation of LV 02-01, eight T. aestivum-H. villosa 6VS ditelosomic substitution lines were screened by FISH and C-banding. PMID:11209712

  19. Identification of antigenic epitopes in an alanine-rich repeating region of a surface protein antigen of Streptococcus mutants.

    PubMed Central

    Okahashi, N; Takahashi, I; Nakai, M; Senpuku, H; Nisizawa, T; Koga, T

    1993-01-01

    A surface protein antigen (PAc) of Streptococcus mutans with a molecular mass of 190 kDa is considered to play an important role in the initial attachment of this streptococcus to the tooth surface. Two internal repeating amino acid sequences are present in the PAc molecule. One repeating region located in the N-terminal region is rich in alanine (A-region), and the other, located in the central region, is rich in proline (P-region). To identify antigenic epitopes on the A-region of the PAc protein, 82 sequential overlapping synthetic decapeptides covering one of the repetitive units of the A-region were synthesized. In the epitope scanning analyses using murine antisera raised against recombinant PAc (rPAc), multiple antigenic epitopes were found in the repetitive unit of the A-region, and some of them reacted with antisera to rPAc from BALB/c, B10, B10.D2, and B10.BR mice. In particular, a peptide YEAALKQY (residues 366 to 373) was recognized by anti-rPAc sera from all four strains of mice. The reactivities of anti-rPAc sera in the epitope scanning were confirmed by using a purified synthetic peptide, NAKATYEAALKQYEADLAA (corresponding to residues 361 to 379). Furthermore, antisera against a surface protein antigen PAg (SpaA) of Streptococcus sobrinus from BALB/c mice reacted strongly to residues 330 to 337, 362 to 369, and 366 to 373 of the PAc protein by the epitope scanning analysis. An AKATYEAALKQY (residues 362 to 373 of the PAc protein)-like sequence, AKANYEAKLAQY, was found within the A-region of S. sobrinus PAg, suggesting that the amino acid sequences AKA-YEA and YEA-L-QY may be major cross-reactive epitopes of the S. mutans PAc protein and the S. sobrinus PAg protein. PMID:7681043

  20. Peptide binding to HLA-DR1: a peptide with most residues substituted to alanine retains MHC binding.

    PubMed Central

    Jardetzky, T S; Gorga, J C; Busch, R; Rothbard, J; Strominger, J L; Wiley, D C

    1990-01-01

    Major histocompatibility complex (MHC) glycoproteins play an important role in the development of an effective immune response. An important MHC function is the ability to bind and present 'processed antigens' (peptides) to T cells. We show here that the purified human class II MHC molecule, HLA-DR1, binds peptides that have been shown to be immunogenic in vivo. Detergent-solubilized HLA-DR1 and a papain-cleaved form of the protein lacking the transmembrane and intracellular regions have similar peptide binding properties. A total of 39 single substitutions were made throughout an HLA-DR1 restricted hemagglutinin epitope and the results determine one amino acid in this peptide which is crucial to binding. Based on this analysis, a synthetic peptide was designed containing two residues from the original hemagglutinin epitope embedded in a chain of polyalanine. This peptide binds to HLA-DR1, indicating that the majority of peptide side chains are not required for high affinity peptide binding. Images Fig. 3. PMID:2189723

  1. 3-hydroxypyruvate substitutes for pyridoxine in serC mutants of Escherichia coli K-12.

    PubMed Central

    Shimizu, S; Dempsey, W B

    1978-01-01

    Escherichia coli K-12 mutants with serC genotype required pyridoxine and serine for normal growth, as do E. coli B mutants of this type. Mutants of the K-12 strain, however, reverted easily to pyridoxine independence without regaining activity in the 3-phosphoserine oxoglutarate transaminase coded for by the serC gene. Both these revertants and the parental type synthesized pyridoxine in normal amounts when 3-hydroxypyruvate was used as a supplement, although neither of these mutants could use this compound to satisfy their serine requirement. Since serine alone was inadequate to provide the nutritional requirement of serC mutants, these mutants must have been unable to synthesize 3-hydroxypyruvate from serine. We suggest that 3-phosphoserine oxoglutarate transaminase in normal E. coli serves as a catalyst for transaminating small amounts of serine to 3-hydroxypyruvate, which is then used in pyridoxine biosynthesis. In serC mutants, this activity is blocked, and these mutants then show a double requirement for serine and pyridoxine. PMID:350858

  2. UDP-N-Acetylmuramic Acid l-Alanine Ligase (MurC) Inhibition in a tolC Mutant Escherichia coli Strain Leads to Cell Death

    PubMed Central

    Humnabadkar, Vaishali; Prabhakar, K. R.; Narayan, Ashwini; Sharma, Sreevalli; Guptha, Supreeth; Manjrekar, Praveena; Chinnapattu, Murugan; Ramachandran, Vasanthi; Hameed, Shahul P.; Ravishankar, Sudha

    2014-01-01

    The Mur ligases play an essential role in the biosynthesis of bacterial peptidoglycan and hence are attractive antibacterial targets. A screen of the AstraZeneca compound library led to the identification of compound A, a pyrazolopyrimidine, as a potent inhibitor of Escherichia coli and Pseudomonas aeruginosa MurC. However, cellular activity against E. coli or P. aeruginosa was not observed. Compound A was active against efflux pump mutants of both strains. Experiments using an E. coli tolC mutant revealed accumulation of the MurC substrate and a decrease in the level of product upon treatment with compound A, indicating inhibition of MurC enzyme in these cells. Such a modulation was not observed in the E. coli wild-type cells. Further, overexpression of MurC in the E. coli tolC mutant led to an increase in the compound A MIC by ≥16-fold, establishing a correlation between MurC inhibition and cellular activity. In addition, estimation of the intracellular compound A level showed an accumulation of the compound over time in the tolC mutant strain. A significant compound A level was not detected in the wild-type E. coli strain even upon treatment with high concentrations of the compound. Therefore, the lack of MIC and absence of MurC inhibition in wild-type E. coli were possibly due to suboptimal compound concentration as a consequence of a high efflux level and/or poor permeativity of compound A. PMID:25114134

  3. Substituted tetrahydroquinolines as potent allosteric inhibitors of reverse transcriptase and its key mutants

    SciTech Connect

    Su, Dai-Shi; Lim, John J.; Tinney, Elizabeth; Wan, Bang-Lin; Young, Mary Beth; Anderson, Kenneth D.; Rudd, Deanne; Munshi, Vandna; Bahnck, Carolyn; Felock, Peter J.; Lu, Meiqing; Lai, Ming-Tain; Touch, Sinoeun; Moyer, Gregory; DiStefano, Daniel J.; Flynn, Jessica A.; Liang, Yuexia; Sanchez, Rosa; Prasad, Sridhar; Yan, Youwei; Perlow-Poehnelt, Rebecca; Torrent, Maricel; Miller, Mike; Vacca, Joe P.; Williams, Theresa M.; Anthony, Neville J.; Merck

    2010-09-27

    Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are key elements of multidrug regimens, called HAART (Highly Active Antiretroviral Therapy), that are used to treat HIV-1 infections. Elucidation of the structure-activity relationships of the thiocarbamate moiety of the previous published lead compound 2 provided a series of novel tetrahydroquinoline derivatives as potent inhibitors of HIV-1 RT with nanomolar intrinsic activity on the WT and key mutant enzymes and potent antiviral activity in infected cells. The SAR optimization, mutation profiles, preparation of compounds, and pharmacokinetic profile of compounds are described.

  4. Citrate substitutes for homocitrate in nitrogenase of a nifV mutant of Klebsiella pneumoniae

    SciTech Connect

    Liang, Jihong; Madden, M.; Shah, V.K.; Burris, R.H. )

    1990-09-18

    An organic acid extracted from purified dinitrogenase isolated from a nifV mutant of Klebsiella pneumoniae has been identified as citric acid. H{sub 2} evolution by the citrate-containing dinitrogenase is partially inhibited by CO, and by some substrates for nitrogenase. The response of maximum velocities to changes in pH for both the wild-type and the NifV{sup {minus}} dinitrogenase was compared. No substantial differences between the enzymes were observed, but there are minor differences. Both enzymes are stable in the pH range 4.8-10, but the enzyme activities dropped dramatically below pH 6.2.

  5. Functional interaction of transmembrane helices 3 and 6 in rhodopsin. Replacement of phenylalanine 261 by alanine causes reversion of phenotype of a glycine 121 replacement mutant.

    PubMed

    Han, M; Lin, S W; Minkova, M; Smith, S O; Sakmar, T P

    1996-12-13

    Replacement of a highly conserved glycine residue on transmembrane (TM) helix 3 of bovine rhodopsin (Gly121) by amino acid residues with larger side chains causes a progressive blue-shift in the lambdamax value of the pigment, a decrease in thermal stability, and an increase in reactivity with hydroxylamine. In addition, mutation of Gly121 causes a relative reversal in the selectivity of opsin for 11-cis-retinal over all-trans-retinal. It was suggested that Gly121 plays an important role in defining the 11-cis-retinal binding pocket of rhodopsin (Han, M., Lin, S. W., Smith, S. O., and Sakmar, T. P. (1996) J. Biol. Chem. 271, 32330-32336). Here, we combined the mutant opsin G121L with second site replacements of four different amino acid residues on TM helix 6: Met257, Val258, Phe261, or Trp265. We show that the loss of function phenotypes of the G121L mutant described above can be partially reverted specifically by the mutation of Phe261, a residue highly conserved in all G protein-coupled receptors. For example, the double-replacement mutant G121L/F261A has spectral, chromophore-binding, and transducin-activating properties intermediate between those of G121L and rhodopsin. This rescue of the G121L defects did not occur with the other second site mutations tested. We conclude that specific portions of TM helices 3 and 6, which include Gly121 and Phe261, respectively, define the chromophore-binding pocket in rhodopsin. Finally, the results are placed in the context of a molecular graphics model of the TM domain of rhodopsin, which includes the retinal-binding pocket. PMID:8943296

  6. Stereospecific suppression of active site mutants by methylphosphonate substituted substrates reveals the stereochemical course of site-specific DNA recombination

    PubMed Central

    Rowley, Paul A.; Kachroo, Aashiq H.; Ma, Chien-Hui; Maciaszek, Anna D.; Guga, Piotr; Jayaram, Makkuni

    2015-01-01

    Tyrosine site-specific recombinases, which promote one class of biologically important phosphoryl transfer reactions in DNA, exemplify active site mechanisms for stabilizing the phosphate transition state. A highly conserved arginine duo (Arg-I; Arg-II) of the recombinase active site plays a crucial role in this function. Cre and Flp recombinase mutants lacking either arginine can be rescued by compensatory charge neutralization of the scissile phosphate via methylphosphonate (MeP) modification. The chemical chirality of MeP, in conjunction with mutant recombinases, reveals the stereochemical contributions of Arg-I and Arg-II. The SP preference of the native reaction is specified primarily by Arg-I. MeP reaction supported by Arg-II is nearly bias-free or RP-biased, depending on the Arg-I substituent. Positional conservation of the arginines does not translate into strict functional conservation. Charge reversal by glutamic acid substitution at Arg-I or Arg-II has opposite effects on Cre and Flp in MeP reactions. In Flp, the base immediately 5′ to the scissile MeP strongly influences the choice between the catalytic tyrosine and water as the nucleophile for strand scission, thus between productive recombination and futile hydrolysis. The recombinase active site embodies the evolutionary optimization of interactions that not only favor the normal reaction but also proscribe antithetical side reactions. PMID:25999343

  7. Stereospecific suppression of active site mutants by methylphosphonate substituted substrates reveals the stereochemical course of site-specific DNA recombination.

    PubMed

    Rowley, Paul A; Kachroo, Aashiq H; Ma, Chien-Hui; Maciaszek, Anna D; Guga, Piotr; Jayaram, Makkuni

    2015-07-13

    Tyrosine site-specific recombinases, which promote one class of biologically important phosphoryl transfer reactions in DNA, exemplify active site mechanisms for stabilizing the phosphate transition state. A highly conserved arginine duo (Arg-I; Arg-II) of the recombinase active site plays a crucial role in this function. Cre and Flp recombinase mutants lacking either arginine can be rescued by compensatory charge neutralization of the scissile phosphate via methylphosphonate (MeP) modification. The chemical chirality of MeP, in conjunction with mutant recombinases, reveals the stereochemical contributions of Arg-I and Arg-II. The SP preference of the native reaction is specified primarily by Arg-I. MeP reaction supported by Arg-II is nearly bias-free or RP-biased, depending on the Arg-I substituent. Positional conservation of the arginines does not translate into strict functional conservation. Charge reversal by glutamic acid substitution at Arg-I or Arg-II has opposite effects on Cre and Flp in MeP reactions. In Flp, the base immediately 5' to the scissile MeP strongly influences the choice between the catalytic tyrosine and water as the nucleophile for strand scission, thus between productive recombination and futile hydrolysis. The recombinase active site embodies the evolutionary optimization of interactions that not only favor the normal reaction but also proscribe antithetical side reactions. PMID:25999343

  8. The role of herpes simplex virus-1 thymidine kinase alanine 168 in substrate specificity.

    PubMed

    Candice L, Willmon; Django, Sussman; Margaret E, Black

    2008-01-01

    Herpes simplex virus type 1 (HSV) thymidine kinase (TK) has been widely used in suicide gene therapy for the treatment of cancer due to its broad substrate specificity and the inability of the endogenous human TK to phosphorylate guanosine analogs such as ganciclovir (GCV). The basis of suicide gene therapy is the introduction of a gene that encodes a prodrug-activating enzyme into tumor cells. After administration, the prodrug is selectively converted to a toxic drug by the suicide gene product thereby bringing about the eradication of the cancer cells. A major drawback to this therapy is the low activity the enzyme displays towards the prodrugs, requiring high prodrug doses that result in adverse side effects. Earlier studies revealed two HSV TK variants (SR39 and mutant 30) derived by random mutagenesis with enhanced activities towards GCV in vitro and in vivo. While these mutants contain multiple amino acid substitutions, molecular modeling suggests that substitutions at alanine 168 (A168) may be responsible for the observed increase in prodrug sensitivity. To evaluate this, site-directed mutagenesis was used to individually substitute A168 with phenylalanine or tyrosine to reflect the mutations found in SR39 and mutant 30, respectively. Additionally, kinetic parameters and the ability of these mutants to sensitize tumor cells to GCV in comparison to wild-type thymidine kinase were determined. PMID:18949076

  9. Thermodynamics of protein denaturation at temperatures over 100 °C: CutA1 mutant proteins substituted with hydrophobic and charged residues

    PubMed Central

    Matsuura, Yoshinori; Takehira, Michiyo; Joti, Yasumasa; Ogasahara, Kyoko; Tanaka, Tomoyuki; Ono, Naoko; Kunishima, Naoki; Yutani, Katsuhide

    2015-01-01

    Although the thermodynamics of protein denaturation at temperatures over 100 °C is essential for the rational design of highly stable proteins, it is not understood well because of the associated technical difficulties. We designed certain hydrophobic mutant proteins of CutA1 from Escherichia coli, which have denaturation temperatures (Td) ranging from 101 to 113 °C and show a reversible heat denaturation. Using a hydrophobic mutant as a template, we successfully designed a hyperthermostable mutant protein (Td = 137 °C) by substituting six residues with charged ones. Thermodynamic analyses of these mutant proteins indicated that the hydrophobic mutants were stabilized by the accumulation of denaturation enthalpy (ΔH) with no entropic gain from hydrophobic solvation around 100 °C, and that the stabilization due to salt bridges resulted from both the increase in ΔH from ion-ion interactions and the entropic effect of the electrostatic solvation over 113 °C. This is the first experimental evidence that has successfully overcome the typical technical difficulties. PMID:26497062

  10. Thermodynamics of protein denaturation at temperatures over 100 °C: CutA1 mutant proteins substituted with hydrophobic and charged residues

    NASA Astrophysics Data System (ADS)

    Matsuura, Yoshinori; Takehira, Michiyo; Joti, Yasumasa; Ogasahara, Kyoko; Tanaka, Tomoyuki; Ono, Naoko; Kunishima, Naoki; Yutani, Katsuhide

    2015-10-01

    Although the thermodynamics of protein denaturation at temperatures over 100 °C is essential for the rational design of highly stable proteins, it is not understood well because of the associated technical difficulties. We designed certain hydrophobic mutant proteins of CutA1 from Escherichia coli, which have denaturation temperatures (Td) ranging from 101 to 113 °C and show a reversible heat denaturation. Using a hydrophobic mutant as a template, we successfully designed a hyperthermostable mutant protein (Td = 137 °C) by substituting six residues with charged ones. Thermodynamic analyses of these mutant proteins indicated that the hydrophobic mutants were stabilized by the accumulation of denaturation enthalpy (ΔH) with no entropic gain from hydrophobic solvation around 100 °C, and that the stabilization due to salt bridges resulted from both the increase in ΔH from ion-ion interactions and the entropic effect of the electrostatic solvation over 113 °C. This is the first experimental evidence that has successfully overcome the typical technical difficulties.

  11. A porcine circovirus-2 mutant isolated in Brazil contains low-frequency substitutions in regions of immunoprotective epitopes in the capsid protein.

    PubMed

    Salgado, Rafael Locatelli; Vidigal, Pedro Marcus Pereira; Gonzaga, Natalia F; de Souza, Luiz F L; Polêto, Marcelo D; Onofre, Thiago Souza; Eller, Monique R; Pereira, Carlos Eduardo Real; Fietto, Juliana L R; Bressan, Gustavo C; Guedes, Roberto M C; Almeida, Márcia R; Silva Júnior, Abelardo

    2015-11-01

    Porcine circovirus-2 (PCV2) is the etiologic agent of several diseases in pigs, including multi-systemic wasting syndrome (PMWS). In this work, a new mutant PCV2b was isolated from PMWS-affected pigs on a Brazilian farm. Its genome showed high sequence similarity (>99% identity) to those from a group of emerging mutants isolated from cases of PMWS outbreaks in vaccinated pigs in China, the USA and South Korea. Here, we show that these isolates share a combination of low-frequency substitutions (single amino acid polymorphisms with a frequency of ≤25%) in the viral capsid protein, mainly in regions of immunoprotective epitopes, and an additional lysine residue at position 234. These isolates were phylogenetically grouped in the PCV2b clade, reinforcing the idea of the emergence of a new group of mutants PCV2b associated with outbreaks worldwide. The identification of these polymorphisms in the viral capsid highlights the importance of considering these isolates for the development of more-effective vaccines. PMID:26271152

  12. -aminobutyric acid as a required germinant for mutant spores of Bacillus megaterium.

    PubMed

    Foerster, H F

    1971-11-01

    Germinated spores of Bacillus megaterium QM B1551 were irradiated with ultraviolet light, and spore-forming survivors were screened for germination requirements. Spore strains which failed to germinate in a variety of defined solutions germinative for spores of the parent strain were obtained. Mutant spores germinated readily in solutions containing yeast extract or one of numerous complex preparations. gamma-Aminobutyric acid, obtained from yeast extract by column chromatography, was shown to be required for germination by the mutant spores. gamma-Aminobutyric acid and l-alanine at final concentrations of 1 mm each, in solutions of KI (40 mm), equaled the potency of yeast extract (1 mg/ml) in the germination of the mutant spores. One of several other amino acids could be substituted, though less effectively, for l-alanine. alpha-Aminobutyric acid, beta-aminobutyric acid, beta-alanine, and 5-aminovaleric acid were ineffective substitutes for gamma-aminobutyric acid in mutant spore germination. PMID:5001872

  13. Alanine scan of core positions in ubiquitin reveals links between dynamics, stability, and function.

    PubMed

    Lee, Shirley Y; Pullen, Lester; Virgil, Daniel J; Castañeda, Carlos A; Abeykoon, Dulith; Bolon, Daniel N A; Fushman, David

    2014-04-01

    Mutations at solvent-inaccessible core positions in proteins can impact function through many biophysical mechanisms including alterations to thermodynamic stability and protein dynamics. As these properties of proteins are difficult to investigate, the impacts of core mutations on protein function are poorly understood for most systems. Here, we determined the effects of alanine mutations at all 15 core positions in ubiquitin on function in yeast. The majority (13 of 15) of alanine substitutions supported yeast growth as the sole ubiquitin. Both the two null mutants (I30A and L43A) were less stable to temperature-induced unfolding in vitro than wild type (WT) but were well folded at physiological temperatures. Heteronuclear NMR studies indicated that the L43A mutation reduces temperature stability while retaining a ground-state structure similar to WT. This structure enables L43A to bind to common ubiquitin receptors in vitro. Many of the core alanine ubiquitin mutants, including one of the null variants (I30A), exhibited an increased accumulation of high-molecular-weight species, suggesting that these mutants caused a defect in the processing of ubiquitin-substrate conjugates. In contrast, L43A exhibited a unique accumulation pattern with reduced levels of high-molecular-weight species and undetectable levels of free ubiquitin. When conjugation to other proteins was blocked, L43A ubiquitin accumulated as free ubiquitin in yeast. Based on these findings, we speculate that ubiquitin's stability to unfolding may be required for efficient recycling during proteasome-mediated substrate degradation. PMID:24361330

  14. A single amino acid change (substitution of the conserved Glu-590 with alanine) in the C-terminal domain of rat liver carnitine palmitoyltransferase I increases its malonyl-CoA sensitivity close to that observed with the muscle isoform of the enzyme.

    PubMed

    Napal, Laura; Dai, Jia; Treber, Michelle; Haro, Diego; Marrero, Pedro F; Woldegiorgis, Gebre

    2003-09-01

    Carnitine palmitoyltransferase I (CPTI) catalyzes the conversion of long-chain fatty acyl-CoAs to acylcarnitines in the presence of l-carnitine. To determine the role of the highly conserved C-terminal glutamate residue, Glu-590, on catalysis and malonyl-CoA sensitivity, we separately changed the residue to alanine, lysine, glutamine, and aspartate. Substitution of Glu-590 with aspartate, a negatively charged amino acid with only one methyl group less than the glutamate residue in the wild-type enzyme, resulted in complete loss in the activity of the liver isoform of CPTI (L-CPTI). A change of Glu-590 to alanine, glutamine, and lysine caused a significant 9- to 16-fold increase in malonyl-CoA sensitivity but only a partial decrease in catalytic activity. Substitution of Glu-590 with neutral uncharged residues (alanine and glutamine) and/or a basic positively charged residue (lysine) significantly increased L-CPTI malonyl-CoA sensitivity to the level observed with the muscle isoform of the enzyme, suggesting the importance of neutral and/or positive charges in the switch of the kinetic properties of L-CPTI to the muscle isoform of CPTI. Since a conservative substitution of Glu-590 to aspartate but not glutamine resulted in complete loss in activity, we suggest that the longer side chain of glutamate is essential for catalysis and malonyl-CoA sensitivity. This is the first demonstration whereby a single residue mutation in the C-terminal region of the liver isoform of CPTI resulted in a change of its kinetic properties close to that observed with the muscle isoform of the enzyme and provides the rationale for the high malonyl-CoA sensitivity of muscle CPTI compared with the liver isoform of the enzyme. PMID:12826662

  15. In vitro characterization of the fibroin gene promoter by the use of single-base substitution mutants.

    PubMed Central

    Hirose, S; Takeuchi, K; Suzuki, Y

    1982-01-01

    A highly efficient method for segment-directed mutagenesis has been developed. The method relies on the deamination by sodium nitrite of the bases in the separated strands of a small DNA restriction fragment. The mutagen-treated strands produce transition mutations by the following sequence: (i) hybridization with the complementary strand of the wild-type DNA that had been cloned into a phage fl vector, (ii) repair synthesis in vitro, and (iii) transfection of Escherichia coli. Using this method, we have isolated 14 single-point mutants within a 31-base-pair stretch of the fibroin gene (from the T-A-T-A box at the nucleotide position -30 to the cap site at +1). In vitro transcription experiments with the HeLa cell or the silk gland cell extract show that single-base transitions at the T-A-T-A box (T to C at -30, A to G at -29, and T to C at -28) and at the -20 region (G to A at -21, T to C at -20, and A to G at -17) result in decreased promoter activities, whereas those at the cap site and the -10 regions have no effect. The initiation site of transcription is the same for five "down" (reduced activity) mutants (T to C at -30, T to C at -28, G to A at -21, T to C at -20, and A to G at -17), the cap site mutant (A to G at +1), and the wild-type genes--position +1. However, the A-to-G transition at -29 (the second base of the T-A-T-A box) induces an additional transcription start from position +4. Functions of the T-A-T-A box and the -20 regions are discussed. Images PMID:6961405

  16. Inducible l-Alanine Exporter Encoded by the Novel Gene ygaW (alaE) in Escherichia coli ▿

    PubMed Central

    Hori, Hatsuhiro; Yoneyama, Hiroshi; Tobe, Ryuta; Ando, Tasuke; Isogai, Emiko; Katsumata, Ryoichi

    2011-01-01

    We previously isolated a mutant hypersensitive to l-alanyl-l-alanine from a non-l-alanine-metabolizing Escherichia coli strain and found that it lacked an inducible l-alanine export system. Consequently, this mutant showed a significant accumulation of intracellular l-alanine and a reduction in the l-alanine export rate compared to the parent strain. When the mutant was used as a host to clone a gene(s) that complements the dipeptide-hypersensitive phenotype, two uncharacterized genes, ygaW and ytfF, and two characterized genes, yddG and yeaS, were identified. Overexpression of each gene in the mutant resulted in a decrease in the intracellular l-alanine level and enhancement of the l-alanine export rate in the presence of the dipeptide, suggesting that their products function as exporters of l-alanine. Since ygaW exhibited the most striking impact on both the intra- and the extracellular l-alanine levels among the four genes identified, we disrupted the ygaW gene in the non-l-alanine-metabolizing strain. The resulting isogenic mutant showed the same intra- and extracellular l-alanine levels as observed in the dipeptide-hypersensitive mutant obtained by chemical mutagenesis. When each gene was overexpressed in the wild-type strain, which does not intrinsically excrete alanine, only the ygaW gene conferred on the cells the ability to excrete alanine. In addition, expression of the ygaW gene was induced in the presence of the dipeptide. On the basis of these results, we concluded that YgaW is likely to be the physiologically most relevant exporter for l-alanine in E. coli and proposed that the gene be redesignated alaE for alanine export. PMID:21531828

  17. Toxicology studies with recombinant staphylokinase and with SY 161-P5, a polyethylene glycol-derivatized cysteine-substitution mutant.

    PubMed

    Moons, L; Vanlinthout, I; Roelants, I; Moreadith, R; Collen, D; Rapold, H J

    2001-01-01

    SY 161-P5, a polyethylene glycol derivatized (PEGylated) mutant of the recombinant Staphylokinase (rSak) variant SakSTAR, exhibiting reduced antigenicity is in clinical development for treatment of acute myocardial infarction as a single bolus injection. A series of safety studies were performed in vivo as a routine toxicology program with SY 161-P5 (PEG-rSakSTAR) and with the recombinant Staphylokinase variant Sak42D (rSak42D). For both compounds, intravenous single bolus injections of up to 100-fold therapeutic equivalent, as well as repeated injections during 7 to 28 days revealed no significant pathological findings in mice, rats or hamsters. However, New Zealand white rabbits developed clinically silent, multifocal myocarditis following single or repeat doses of SY 161-P5 or of Sak42D. These findings were dose-independent and reversible. A similar species-specific cardiotoxic effect has previously been described for other proteolytic proteins, including the approved drugs Streptokinase and Acetylated Plasminogen Streptokinase Complex (APSAC). The large experience with these drugs, as well as the clinical data accumulated both with PEGylated and non-PEGylated rSak variants to date, do not indicate cardiotoxic hazards associated with the use of these drugs in humans. PMID:11442014

  18. Alteration of substrate specificity of alanine dehydrogenase

    PubMed Central

    Fernandes, Puja; Aldeborgh, Hannah; Carlucci, Lauren; Walsh, Lauren; Wasserman, Jordan; Zhou, Edward; Lefurgy, Scott T.; Mundorff, Emily C.

    2015-01-01

    The l-alanine dehydrogenase (AlaDH) has a natural history that suggests it would not be a promising candidate for expansion of substrate specificity by protein engineering: it is the only amino acid dehydrogenase in its fold family, it has no sequence or structural similarity to any known amino acid dehydrogenase, and it has a strong preference for l-alanine over all other substrates. By contrast, engineering of the amino acid dehydrogenase superfamily members has produced catalysts with expanded substrate specificity; yet, this enzyme family already contains members that accept a broad range of substrates. To test whether the natural history of an enzyme is a predictor of its innate evolvability, directed evolution was carried out on AlaDH. A single mutation identified through molecular modeling, F94S, introduced into the AlaDH from Mycobacterium tuberculosis (MtAlaDH) completely alters its substrate specificity pattern, enabling activity toward a range of larger amino acids. Saturation mutagenesis libraries in this mutant background additionally identified a double mutant (F94S/Y117L) showing improved activity toward hydrophobic amino acids. The catalytic efficiencies achieved in AlaDH are comparable with those that resulted from similar efforts in the amino acid dehydrogenase superfamily and demonstrate the evolvability of MtAlaDH specificity toward other amino acid substrates. PMID:25538307

  19. Expression of an L-alanine dehydrogenase gene in Zymomonas mobilis and excretion of L-alanine

    SciTech Connect

    Uhlenbusch, I.; Sahm, H.; Sprenger, G.A. )

    1991-05-01

    Gene alaD for L-alanine dehydrogenase from Bacillus sphaericus was cloned and introduced into Z. mobilis. Under the control of the strong promoter of the pyruvate decarboxylase (pdc) gene, the enzyme was expressed up to a specific activity of nearly 1 {mu}mol {center dot} min{sup {minus}1} {center dot} mg of protein{sup {minus}1} in recombinant cells. As a result of this high L-alanine dehydrogenase activity, growing cells excreted up to 10 mmol of alanine per 280 mmol of glucose utilized into a mineral salts medium. By the addition of 85 mM NH{sub 4}{sup +} to the medium, growth of the recombinant cells stopped, and up to 41 mmol of alanine was secreted. As alanine dehydrogenase competed with pyruvate decarboxylase (PDC) for the same substrate (pyruvate), PDC activity was reduced by starvation for the essential PDC cofactor thiamine PP{sub i}. A thiamine auxotrophy mutant of Z. mobilis which carried the alaD gene was starved for 40 h in glucose-supplemented mineral salts medium and then shifted to mineral salts medium with 85 mM NH {sub 4}{sup +} and 280 mmol of glucose. The recombinants excreted up to 84 mmol of alanine over 25 h. Alanine excretion proceeded at an initial velocity of 238 nmol {center dot} min{sup {minus}1} {center dot} mg(dry weight){sup {minus}1}. Despite this high activity, the excretion rate seemed to be a limiting factor, as the intracellular concentration of alanine was as high as 260 mM at the beginning of the excretion phase and decreased to 80 to 90 mM over 24 h.

  20. Characterization of the l-alanine exporter AlaE of Escherichia coli and its potential role in protecting cells from a toxic-level accumulation of l-alanine and its derivatives

    PubMed Central

    Kim, Seryoung; Ihara, Kohei; Katsube, Satoshi; Hori, Hatsuhiro; Ando, Tasuke; Isogai, Emiko; Yoneyama, Hiroshi

    2015-01-01

    We previously reported that the alaE gene of Escherichia coli encodes the l-alanine exporter AlaE. The objective of this study was to elucidate the mechanism of the AlaE exporter. The minimum inhibitory concentration of l-alanine and l-alanyl-l-alanine in alaE-deficient l-alanine-nonmetabolizing cells MLA301ΔalaE was 4- and >4000-fold lower, respectively, than in the alaE-positive parent cells MLA301, suggesting that AlaE functions as an efflux pump to avoid a toxic-level accumulation of intracellular l-alanine and its derivatives. Furthermore, the growth of the alaE-deficient mutant derived from the l-alanine-metabolizing strain was strongly inhibited in the presence of a physiological level of l-alanyl-l-alanine. Intact MLA301ΔalaE and MLA301ΔalaE/pAlaE cells producing plasmid-borne AlaE, accumulated approximately 200% and 50%, respectively, of the [3H]l-alanine detected in MLA301 cells, suggesting that AlaE exports l-alanine. When 200 mmol/L l-alanine-loaded inverted membrane vesicles prepared from MLA301ΔalaE/pAlaE were placed in a solution containing 200 mmol/L or 0.34 μmol/L l-alanine, energy-dependent [3H]l-alanine accumulation occurred under either condition. This energy-dependent uphill accumulation of [3H]l-alanine was strongly inhibited in the presence of carbonyl cyanide m-chlorophenylhydrazone but not by dicyclohexylcarbodiimide, suggesting that the AlaE-mediated l-alanine extrusion was driven by proton motive force. Based on these results, physiological roles of the l-alanine exporter are discussed. PMID:26073055

  1. Characterization of the l-alanine exporter AlaE of Escherichia coli and its potential role in protecting cells from a toxic-level accumulation of l-alanine and its derivatives.

    PubMed

    Kim, Seryoung; Ihara, Kohei; Katsube, Satoshi; Hori, Hatsuhiro; Ando, Tasuke; Isogai, Emiko; Yoneyama, Hiroshi

    2015-08-01

    We previously reported that the alaE gene of Escherichia coli encodes the l-alanine exporter AlaE. The objective of this study was to elucidate the mechanism of the AlaE exporter. The minimum inhibitory concentration of l-alanine and l-alanyl-l-alanine in alaE-deficient l-alanine-nonmetabolizing cells MLA301ΔalaE was 4- and >4000-fold lower, respectively, than in the alaE-positive parent cells MLA301, suggesting that AlaE functions as an efflux pump to avoid a toxic-level accumulation of intracellular l-alanine and its derivatives. Furthermore, the growth of the alaE-deficient mutant derived from the l-alanine-metabolizing strain was strongly inhibited in the presence of a physiological level of l-alanyl-l-alanine. Intact MLA301ΔalaE and MLA301ΔalaE/pAlaE cells producing plasmid-borne AlaE, accumulated approximately 200% and 50%, respectively, of the [(3) H]l-alanine detected in MLA301 cells, suggesting that AlaE exports l-alanine. When 200 mmol/L l-alanine-loaded inverted membrane vesicles prepared from MLA301ΔalaE/pAlaE were placed in a solution containing 200 mmol/L or 0.34 μmol/L l-alanine, energy-dependent [(3) H]l-alanine accumulation occurred under either condition. This energy-dependent uphill accumulation of [(3) H]l-alanine was strongly inhibited in the presence of carbonyl cyanide m-chlorophenylhydrazone but not by dicyclohexylcarbodiimide, suggesting that the AlaE-mediated l-alanine extrusion was driven by proton motive force. Based on these results, physiological roles of the l-alanine exporter are discussed. PMID:26073055

  2. Preparation, characterization and refolding in vitro of a recombinant human cyclophilin A mutant: effect of a single Pro/Ser substitution on cyclophilin A structure and properties.

    PubMed

    Xu, Li-Ren; Yan, Xiao; Luo, Man; Guan, Yi-Xin; Yao, Shan-Jing

    2008-01-01

    A recombinant cyclophilin A (CypA) mutant, which carries a serine instead of proline at sequence 16, was prepared for structural and functional assessment for human CypA. Soluble expression of the recombinant CypA mutant in E. coli was obtained under 30 degrees C, 180 rpm culture condition after being induced by IPTG. Ion exchange chromatography was used to purify the CypA mutant in a single step, and a high activity recovery of target protein with a high purity was achieved. Peptide fragments produced by trypsin proteolysis were applied to MALDI-TOF-MS, and searching results from the NCBI protein databank confirmed the protein attribution as well as the mutation sequence. Peptidyl-prolyl cis-trans isomerase activity was assayed for the CypA mutant using tetrapeptide substrate Suc-Ala-Ala-Pro-Phe-p-nitroanilide, and the calculated kcat/Km value was 1.5 x 106 M-1 s-1 at 10 degrees C, which was 10-fold lower than the previously reported constant for wild-type CypA. An Eyring plot was also carried out. Inhibition by cyclosporine A demonstrated that the IC50 value was 26.5 nM. Meanwhile the expected enhancement of intrinsic tryptophan fluorescence was quenched by the mutation. The effect of CypA mutant on accelerating protein refolding in vitro was investigated in ribonuclease A refolding process, and it was found that 10% slow phase could be catalyzed by CypA. The protein was subject to urea and GdmCl denaturation, where both activity and fluorescence served as structural probes. Activity recovery indicated this CypA mutant was extremely sensitive to GdmCl and the susceptibility to urea was increased. Low pH could also destabilize CypA. Furthermore the refolding of this CypA mutant itself was studied. Although the activity yield was nearly unchanged, the former proposed folding/assembly pathway might be altered. Fluorescence chart also demonstrated that the folding time was extended, and fast-folding and slow-folding analysis indicated the slow-folding rate constant

  3. Initiation of Spore Germination in Bacillus subtilis: Relationship to Inhibition of l-Alanine Metabolism

    PubMed Central

    Prasad, Chandan

    1974-01-01

    The inhibitory effects of anthranilic acid esters (methyl anthranilate and N-methyl anthranilate) on the l-alanine-induced initiation of spore germination was examined in Bacillus subtilis 168. Methyl anthranilate irreversibly inhibited alanine initiation by a competitive mechanism. In its presence, the inhibition could be reversed only by the combined addition of d-glucose, d-fructose, and K+. Both l-alanine dehydrogenase and l-glutamate-pyruvate transaminase, enzymes which catalyze the first reaction in l-alanine metabolism, were competitively inhibited by methyl anthranilate. The Ki values for germination initiation (0.053 mM) and of l-glutamate-pyruvate transaminase (0.068 mM) were similar, whereas that for l-alanine dehydrogenase (0.4 mM) was six to seven times higher. Since a mutant lacking l-alanine dehydrogenase activity germinated normally in l-alanine alone, it is speculated that the major pathway of l-alanine metabolism during initiation may be via transmination reaction. PMID:4212093

  4. 21 CFR 582.5118 - Alanine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Alanine. 582.5118 Section 582.5118 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5118 Alanine. (a) Product. Alanine...

  5. Inhibitors of alanine racemase enzyme: a review.

    PubMed

    Azam, Mohammed Afzal; Jayaram, Unni

    2016-08-01

    Alanine racemase is a fold type III PLP-dependent amino acid racemase enzyme catalysing the conversion of l-alanine to d-alanine utilised by bacterial cell wall for peptidoglycan synthesis. As there are no known homologs in humans, it is considered as an excellent antibacterial drug target. The standard inhibitors of this enzyme include O-carbamyl-d-serine, d-cycloserine, chlorovinyl glycine, alaphosphin, etc. d-Cycloserine is indicated for pulmonary and extra pulmonary tuberculosis but therapeutic use of drug is limited due to its severe toxic effects. Toxic effects due to off-target affinities of cycloserine and other substrate analogs have prompted new research efforts to identify alanine racemase inhibitors that are not substrate analogs. In this review, an updated status of known inhibitors of alanine racemase enzyme has been provided which will serve as a rich source of structural information and will be helpful in generating selective and potent inhibitor of alanine racemase. PMID:26024289

  6. Vibrational dynamics of crystalline L-alanine

    SciTech Connect

    Bordallo, H.N.; Eckert, J.; Barthes, M.

    1997-11-01

    The authors report a new, complete vibrational analysis of L-alanine and L-alanine-d{sub 4} which utilizes IINS intensities in addition to frequency information. The use of both isotopomers resulted in a self-consistent force field for and assignment of the molecular vibrations in L-alanine. Some details of the calculation as well as a comparison of calculated and observed IINS spectra are presented. The study clarifies a number of important issues on the vibrational dynamics of this molecule and presents a self-consistent force field for the molecular vibrations in crystalline L-alanine.

  7. In vivo and in vitro studies of transmembrane beta-strand deletion, insertion or substitution mutants of the Escherichia coli K-12 maltoporin.

    PubMed

    Charbit, A; Andersen, C; Wang, J; Schiffler, B; Michel, V; Benz, R; Hofnung, M

    2000-02-01

    LamB of Escherichia coli K12, also called maltoporin, is an outer membrane protein, which specifically facilitates the diffusion of maltose and maltodextrin through the bacterial outer membrane. Each monomer is composed of an 18-stranded antiparallel beta-barrel. In the present work, on the basis of the known X-ray structure of LamB, the effects of modifications of the beta-barrel domain of maltoporin were studied in vivo and in vitro. We show that: (i) the substitution of the pair of strands beta13-beta14 of the E. coli maltoporin with the corresponding pair of strands from the functionally related maltoporin of Salmonella typhimurium yielded a protein active in vivo and in vitro; and (ii) the removal of one pair of beta-strands (deletion beta13-beta14) from the E. coli maltoporin, or its replacement by a pair of strands from the general porin OmpF of E. coli, leads to recombinant proteins that lost in vivo maltoporin activities but still kept channel formation and carbohydrate binding in vitro. We also inserted into deletion beta13-beta14 the portion of the E. coli LamB protein comprising strands beta13 to beta16. This resulted in a protein expected to have 20 beta-strands and which completely lost all LamB-specific activities in vivo and in vitro. PMID:10692155

  8. Catalytic Stereoinversion of L-Alanine to Deuterated D-Alanine.

    PubMed

    Moozeh, Kimia; So, Soon Mog; Chin, Jik

    2015-08-01

    A combination of an achiral pyridoxal analogue and a chiral base has been developed for catalytic deuteration of L-alanine with inversion of stereochemistry to give deuterated D-alanine under mild conditions (neutral pD and 25 °C) without the use of any protecting groups. This system can also be used for catalytic deuteration of D-alanine with retention of stereochemistry to give deuterated D-alanine. Thus a racemic mixture of alanine can be catalytically deuterated to give an enantiomeric excess of deuterated D-alanine. While catalytic deracemization of alanine is forbidden by the second law of thermodynamics, this system can be used for catalytic deracemization of alanine with deuteration. Such green and biomimetic approach to catalytic stereocontrol provides insights into efficient amino acid transformations. PMID:26119066

  9. Interferon sensitivity-determining region of nonstructural region 5A of hepatitis C virus genotype 1b correlates with serum alanine aminotransferase levels in chronic infection.

    PubMed

    Yoshioka, K; Ito, H; Watanabe, K; Yano, M; Ishigami, M; Mizutani, T; Sasaki, Y; Goto, H

    2005-03-01

    The mutations in the interferon (IFN) sensitivity-determining region (ISDR) of nonstructural region 5A (NS5A) of hepatitis C virus (HCV) have been correlated with response to IFN therapy. NS5A appears to disrupt a host antiviral pathway that plays a role in suppressing virus replication and protects hepatocytes from apoptosis. We assessed whether ISDR correlates with viral load and serum alanine aminotransferase (ALT) levels. Serum viral load and ALT levels were prospectively measured bimonthly by HCV core protein assay and monthly, respectively, for 22 months in 87 patients chronically infected with HCV genotype 1b. ISDR of HCV was directly sequenced from the products of reverse transcription and polymerase chain reaction of HCV RNA. Five patients had four or more substitutions (mutant type), 33 had 1-3 (intermediate type), and 49 had no substitutions (wild type) in ISDR. The numbers of substitutions in ISDR were inversely correlated with mean viral load over a 22-month period (r = 0.292, P = 0.0060) and directly with mean serum ALT levels (r = 0.360, P = 0.0006). The numbers of substitutions in ISDR was significantly larger in the patients with changes of viral load more than fivefold during the 22 months (1.4 +/- 2.4) than in those without changes (0.6 +/- 0.8) (P = 0.0188). The present study demonstrates that the patients with more substitutions in ISDR had significantly higher serum ALT levels and smaller viral load. These results suggest that NS5A with more substitutions in ISDR may lose the ability to block host antiviral pathways and to protect hepatocytes from apoptosis. PMID:15720528

  10. Diminished but Not Abolished Effect of Two His351 Mutants of Anthrax Edema Factor in a Murine Model

    PubMed Central

    Zhao, Taoran; Zhao, Xinghui; Liu, Ju; Meng, Yingying; Feng, Yingying; Fang, Ting; Zhang, Jinlong; Yang, Xiuxu; Li, Jianmin; Xu, Junjie; Chen, Wei

    2016-01-01

    Edema toxin (ET), which is composed of a potent adenylate cyclase (AC), edema factor (EF), and protective antigen (PA), is one of the major toxicity factors of Bacillus anthracis. In this study, we introduced mutations in full-length EF to generate alanine EF(H351A) and arginine EF(H351R) variants. In vitro activity analysis displayed that the adenylyl cyclase activity of both the mutants was significantly diminished compared with the wild-type EF. When the native and mutant toxins were administered subcutaneously in a mouse footpad edema model, severe acute swelling was evoked by wild-type ET, while the symptoms induced by mutant toxins were very minor. Systemic administration of these EF variants caused non-lethal hepatotoxicity. In addition, EF(H351R) exhibited slightly higher activity in causing more severe edema than EF(H351A). Our findings demonstrate that the toxicity of ET is not abolished by substitution of EF residue His351 by alanine or arginine. These results also indicate the potential of the mouse footpad edema model as a sensitive method for evaluating both ET toxicity and the efficacy of candidate therapeutic agents. PMID:26848687

  11. Diminished but Not Abolished Effect of Two His351 Mutants of Anthrax Edema Factor in a Murine Model.

    PubMed

    Zhao, Taoran; Zhao, Xinghui; Liu, Ju; Meng, Yingying; Feng, Yingying; Fang, Ting; Zhang, Jinlong; Yang, Xiuxu; Li, Jianmin; Xu, Junjie; Chen, Wei

    2016-02-01

    Edema toxin (ET), which is composed of a potent adenylate cyclase (AC), edema factor (EF), and protective antigen (PA), is one of the major toxicity factors of Bacillus anthracis. In this study, we introduced mutations in full-length EF to generate alanine EF(H351A) and arginine EF(H351R) variants. In vitro activity analysis displayed that the adenylyl cyclase activity of both the mutants was significantly diminished compared with the wild-type EF. When the native and mutant toxins were administered subcutaneously in a mouse footpad edema model, severe acute swelling was evoked by wild-type ET, while the symptoms induced by mutant toxins were very minor. Systemic administration of these EF variants caused non-lethal hepatotoxicity. In addition, EF(H351R) exhibited slightly higher activity in causing more severe edema than EF(H351A). Our findings demonstrate that the toxicity of ET is not abolished by substitution of EF residue His351 by alanine or arginine. These results also indicate the potential of the mouse footpad edema model as a sensitive method for evaluating both ET toxicity and the efficacy of candidate therapeutic agents. PMID:26848687

  12. Role of Alanine Dehydrogenase of Mycobacterium tuberculosis during Recovery from Hypoxic Nonreplicating Persistence

    PubMed Central

    Giffin, Michelle M.; Shi, Lanbo; Gennaro, Maria L.; Sohaskey, Charles D.

    2016-01-01

    Mycobacterium tuberculosis can maintain a nonreplicating persistent state in the host for decades, but must maintain the ability to efficiently reactivate and produce active disease to survive and spread in a population. Among the enzymes expressed during this dormancy is alanine dehydrogenase, which converts pyruvate to alanine, and glyoxylate to glycine concurrent with the oxidation of NADH to NAD. It is involved in the metabolic remodeling of M. tuberculosis through its possible interactions with both the glyoxylate and methylcitrate cycle. Both mRNA levels and enzymatic activities of isocitrate lyase, the first enzyme of the glyoxylate cycle, and alanine dehydrogenase increased during entry into nonreplicating persistence, while the gene and activity for the second enzyme of the glyoxylate cycle, malate synthase were not. This could suggest a shift in carbon flow away from the glyoxylate cycle and instead through alanine dehydrogenase. Expression of ald was also induced in vitro by other persistence-inducing stresses such as nitric oxide, and was expressed at high levels in vivo during the initial lung infection in mice. Enzyme activity was maintained during extended hypoxia even after transcription levels decreased. An ald knockout mutant of M. tuberculosis showed no reduction in anaerobic survival in vitro, but resulted in a significant lag in the resumption of growth after reoxygenation. During reactivation the ald mutant had an altered NADH/NAD ratio, and alanine dehydrogenase is proposed to maintain the optimal NADH/NAD ratio during anaerobiosis in preparation of eventual regrowth, and during the initial response during reoxygenation. PMID:27203084

  13. Role of Alanine Dehydrogenase of Mycobacterium tuberculosis during Recovery from Hypoxic Nonreplicating Persistence.

    PubMed

    Giffin, Michelle M; Shi, Lanbo; Gennaro, Maria L; Sohaskey, Charles D

    2016-01-01

    Mycobacterium tuberculosis can maintain a nonreplicating persistent state in the host for decades, but must maintain the ability to efficiently reactivate and produce active disease to survive and spread in a population. Among the enzymes expressed during this dormancy is alanine dehydrogenase, which converts pyruvate to alanine, and glyoxylate to glycine concurrent with the oxidation of NADH to NAD. It is involved in the metabolic remodeling of M. tuberculosis through its possible interactions with both the glyoxylate and methylcitrate cycle. Both mRNA levels and enzymatic activities of isocitrate lyase, the first enzyme of the glyoxylate cycle, and alanine dehydrogenase increased during entry into nonreplicating persistence, while the gene and activity for the second enzyme of the glyoxylate cycle, malate synthase were not. This could suggest a shift in carbon flow away from the glyoxylate cycle and instead through alanine dehydrogenase. Expression of ald was also induced in vitro by other persistence-inducing stresses such as nitric oxide, and was expressed at high levels in vivo during the initial lung infection in mice. Enzyme activity was maintained during extended hypoxia even after transcription levels decreased. An ald knockout mutant of M. tuberculosis showed no reduction in anaerobic survival in vitro, but resulted in a significant lag in the resumption of growth after reoxygenation. During reactivation the ald mutant had an altered NADH/NAD ratio, and alanine dehydrogenase is proposed to maintain the optimal NADH/NAD ratio during anaerobiosis in preparation of eventual regrowth, and during the initial response during reoxygenation. PMID:27203084

  14. Activation loop phosphorylation regulates B-Raf in vivo and transformation by B-Raf mutants.

    PubMed

    Köhler, Martin; Röring, Michael; Schorch, Björn; Heilmann, Katharina; Stickel, Natalie; Fiala, Gina J; Schmitt, Lisa C; Braun, Sandra; Ehrenfeld, Sophia; Uhl, Franziska M; Kaltenbacher, Thorsten; Weinberg, Florian; Herzog, Sebastian; Zeiser, Robert; Schamel, Wolfgang W; Jumaa, Hassan; Brummer, Tilman

    2016-01-18

    Despite being mutated in cancer and RASopathies, the role of the activation segment (AS) has not been addressed for B-Raf signaling in vivo. Here, we generated a conditional knock-in mouse allowing the expression of the B-Raf(AVKA) mutant in which the AS phosphoacceptor sites T599 and S602 are replaced by alanine residues. Surprisingly, despite producing a kinase-impaired protein, the Braf(AVKA) allele does not phenocopy the lethality of Braf-knockout or paradoxically acting knock-in alleles. However, Braf(AVKA) mice display abnormalities in the hematopoietic system, a distinct facial morphology, reduced ERK pathway activity in the brain, and an abnormal gait. This phenotype suggests that maximum B-Raf activity is required for the proper development, function, and maintenance of certain cell populations. By establishing conditional murine embryonic fibroblast cultures, we further show that MEK/ERK phosphorylation and the immediate early gene response toward growth factors are impaired in the presence of B-Raf(AVKA). Importantly, alanine substitution of T599/S602 impairs the transformation potential of oncogenic non-V600E B-Raf mutants and a fusion protein, suggesting that blocking their phosphorylation could represent an alternative strategy to ATP-competitive inhibitors. PMID:26657898

  15. Functional Characterization of Alanine Racemase from Schizosaccharomyces pombe: a Eucaryotic Counterpart to Bacterial Alanine Racemase

    PubMed Central

    Uo, Takuma; Yoshimura, Tohru; Tanaka, Naotaka; Takegawa, Kaoru; Esaki, Nobuyoshi

    2001-01-01

    Schizosaccharomyces pombe has an open reading frame, which we named alr1+, encoding a putative protein similar to bacterial alanine racemase. We cloned the alr1+ gene in Escherichia coli and purified the gene product (Alr1p), with an Mr of 41,590, to homogeneity. Alr1p contains pyridoxal 5′-phosphate as a coenzyme and catalyzes the racemization of alanine with apparent Km and Vmax values as follows: for l-alanine, 5.0 mM and 670 μmol/min/mg, respectively, and for d-alanine, 2.4 mM and 350 μmol/min/mg, respectively. The enzyme is almost specific to alanine, but l-serine and l-2-aminobutyrate are racemized slowly at rates 3.7 and 0.37% of that of l-alanine, respectively. S. pombe uses d-alanine as a sole nitrogen source, but deletion of the alr1+ gene resulted in retarded growth on the same medium. This indicates that S. pombe has catabolic pathways for both enantiomers of alanine and that the pathway for l-alanine coupled with racemization plays a major role in the catabolism of d-alanine. Saccharomyces cerevisiae differs markedly from S. pombe: S. cerevisiae uses l-alanine but not d-alanine as a sole nitrogen source. Moreover, d-alanine is toxic to S. cerevisiae. However, heterologous expression of the alr1+ gene enabled S. cerevisiae to grow efficiently on d-alanine as a sole nitrogen source. The recombinant yeast was relieved from the toxicity of d-alanine. PMID:11244061

  16. A Mutation in Alpha Helix 3 of CA Renders Human Immunodeficiency Virus Type 1 Cyclosporin A Resistant and Dependent: Rescue by a Second-Site Substitution in a Distal Region of CA▿

    PubMed Central

    Yang, Ruifeng; Aiken, Christopher

    2007-01-01

    The replication of many isolates of human immunodeficiency virus type 1 (HIV-1) is enhanced by binding of the host cell protein cyclophilin A (CypA) to the viral capsid protein (CA). The immunosuppressive drug cyclosporine A (CsA) and its nonimmunosuppressive analogs bind with high affinity to CypA and inhibit HIV-1 replication. Previous studies have identified two mutations, A92E and G94D, in the CypA-binding loop of CA that confer the ability of HIV-1 to replicate in the presence of CsA. Interestingly, CsA stimulates the replication of HIV-1 mutants containing either the A92E or G94D substitution in some human cell lines. Here, we show that substitution of alanine for threonine at position 54 of CA (T54A) also confers HIV-1 resistance to and dependence on CsA. Like the previously identified CsA-resistant/dependent mutants, infection by the T54A mutant was stimulated by CsA in a target cell-specific manner. RNA interference-mediated reduction of CypA expression enhanced the permissiveness of HeLa cells to infection by the T54A mutant. A suppressor mutation, encoding a substitution of threonine for alanine at position 105 of CA (A105T), was identified through adaptation of the T54A mutant virus for growth in CEM cells. A105T rescued the impaired single-cycle infectivity and replication defects of both T54A and A92E mutants. These results indicate that CA determinants outside the CypA-binding loop can modulate the dependence of HIV-1 infection on CypA. PMID:17267487

  17. Sequestosome 1/p62 links familial ALS mutant SOD1 to LC3 via an ubiquitin-independent mechanism

    PubMed Central

    Gal, Jozsef; Strom, Anna-Lena; Kwinter, David M.; Kilty, Renee; Zhang, Jiayu; Shi, Ping; Fu, Weisi; Wooten, Marie W.; Zhu, Haining

    2009-01-01

    The p62/sequestosome 1 protein has been identified as a component of pathological protein inclusions in neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). P62 has also been implicated in autophagy, a process of mass degradation of intracellular proteins and organelles. Autophagy is a critical pathway for degrading misfolded and/or damaged proteins, including the copper-zinc superoxide dismutase (SOD1) mutants linked to familial ALS. We previously reported that p62 interacted with ALS mutants of SOD1 and that the ubiquitin-association (UBA) domain of p62 was dispensable for the interaction. In this study, we identified two distinct regions of p62 that were essential to its binding to mutant SOD1: the N-terminal PB1 domain (residues 1-104) and a separate internal region (residues 178–224) termed here as SOD1 mutant interaction region (SMIR). The PB1 domain is required for appropriate oligomeric status of p62 and the SMIR is the actual region interacting with mutant SOD1. Within the SMIR, the conserved W184, H190 and positively charged R183, R186, K187 and K189 residues are critical to the p62-mutant SOD1 interaction since substitution of these residues with alanine resulted in significantly abolished binding. In addition, SMIR and the p62 sequence responsible for the interaction with LC3, a protein essential for autophagy activation, are independent of each other. In cells lacking p62, the existence of mutant SOD1 in acidic autolysosomes decreased, suggesting that p62 can function as an adaptor between mutant SOD1 and the autophagy machinery. This study provides a novel molecular mechanism by which mutant SOD1 can be recognized by p62 in an ubiquitin-independent fashion and targeted for the autophagy-lysosome degradation pathway. PMID:19765191

  18. Free energy simulations of active-site mutants of dihydrofolate reductase.

    PubMed

    Doron, Dvir; Stojković, Vanja; Gakhar, Lokesh; Vardi-Kilshtain, Alexandra; Kohen, Amnon; Major, Dan Thomas

    2015-01-22

    This study employs hybrid quantum mechanics-molecular mechanics (QM/MM) simulations to investigate the effect of mutations of the active-site residue I14 of E. coli dihydrofolate reductase (DHFR) on the hydride transfer. Recent kinetic measurements of the I14X mutants (X = V, A, and G) indicated slower hydride transfer rates and increasingly temperature-dependent kinetic isotope effects (KIEs) with systematic reduction of the I14 side chain. The QM/MM simulations show that when the original isoleucine residue is substituted in silico by valine, alanine, or glycine (I14V, I14A, and I14G DHFR, respectively), the free energy barrier height of the hydride transfer reaction increases relative to the wild-type enzyme. These trends are in line with the single-turnover rate measurements reported for these systems. In addition, extended dynamics simulations of the reactive Michaelis complex reveal enhanced flexibility in the mutants, and in particular for the I14G mutant, including considerable fluctuations of the donor-acceptor distance (DAD) and the active-site hydrogen bonding network compared with those detected in the native enzyme. These observations suggest that the perturbations induced by the mutations partly impair the active-site environment in the reactant state. On the other hand, the average DADs at the transition state of all DHFR variants are similar. Crystal structures of I14 mutants (V, A, and G) confirmed the trend of increased flexibility of the M20 and other loops. PMID:25382260

  19. Substitution of conserved cysteine residues in Wheat streak mosaic virus HC-Pro abolishes virus transmission by the wheat curl mite

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Substitutions in the amino-terminal region of Wheat streak mosaic virus (WSMV) HC-Pro were evaluated for effects on transmission by the wheat curl mite (Aceria tosichella Keifer). Alanine substitution at cysteine residues 16, 46 and 49 abolished vector transmission. Although alanine substitution a...

  20. FeMo cofactor synthesis by a nifH mutant with altered MgATP reactivity.

    PubMed

    Gavini, N; Burgess, B K

    1992-10-15

    We have characterized a Nif- mutant of Azotobacter vinelandii, designated UW91 (Shah, V. K., Davis, L. C., Gordon, J. K., Orme-Johnson, W. H., and Brill, W. J. (1973) Biochim. Biophys. Acta 292, 246-255). The specific Fe protein mutation giving rise to the Nif- phenotype was shown by DNA sequencing and site-directed mutagenesis to be the substitution of a conserved alanine at position 157 by a serine. The UW91 Fe protein was purified and shown to have a normal [4Fe-4S] cluster and normal MgATP binding activity. The substitution of alanine 157 by serine, however, prevents the MgATP-induced conformational change that occurs for the wild-type Fe protein, prevents MgATP hydrolysis, and prevents productive electron transfer to the MoFe protein. The UW91 Fe protein does bind to the MoFe protein to give a normal cross-linking pattern; however, it does not compete very successfully with wild-type Fe protein in an activity assay. The UW91 MoFe protein was also purified and characterized and shown to be indistinguishable from the wild-type protein. Thus, the substitution of Fe protein residue alanine 157 by serine does not change the Fe protein's ability to function in FeMo cofactor biosynthesis or insertion. This demonstrates that these events do not require the MgATP-induced conformational change, MgATP hydrolysis, or productive electron transfer to the MoFe protein. PMID:1400428

  1. Amino acid residues in the GerAB protein important in the function and assembly of the alanine spore germination receptor of Bacillus subtilis 168.

    PubMed

    Cooper, Gareth R; Moir, Anne

    2011-05-01

    The paradigm gerA operon is required for endospore germination in response to c-alanine as the sole germinant, and the three protein products, GerAA, GerAB, and GerAC are predicted to form a receptor complex in the spore inner membrane. GerAB shows homology to the amino acid-polyamine-organocation (APC) family of single-component transporters and is predicted to be an integral membrane protein with 10 membrane-spanning helices. Site-directed mutations were introduced into the gerAB gene at its natural location on the chromosome. Alterations to some charged or potential helix-breaking residues within membrane spans affected receptor function dramatically. In some cases, this is likely to reflect the complete loss of the GerA receptor complex, as judged by the absence of the germinant receptor protein GerAC, which suggests that the altered GerAB protein itself may be unstable or that the altered structure destabilizes the complex. Mutants that have a null phenotype for Instituto de Biotecnología de León, INBIOTEC, Parque Científico de León, Av. Real, 1, 24006 León, Spain-alanine germination but retain GerAC protein at near-normal levels are more likely to define amino acid residues of functional, rather than structural, importance. Single-amino-acid substitutions in each of the GerAB and GerAA proteins can prevent incorporation of GerAC protein into the spore; this provides strong evidence that the proteins within a specific receptor interact and that these interactions are required for receptor assembly. The lipoprotein nature of the GerAC receptor subunit is also important; an amino acid change in the prelipoprotein signal sequence in the gerAC1 mutant results in the absence of GerAC protein from the spore. PMID:21378181

  2. The metabolism of histamine in the Drosophila optic lobe involves an ommatidial pathway: β-alanine recycles through the retina

    PubMed Central

    Borycz, Janusz; Borycz, Jolanta A.; Edwards, Tara N.; Boulianne, Gabrielle L.; Meinertzhagen, Ian A.

    2012-01-01

    SUMMARY Flies recycle the photoreceptor neurotransmitter histamine by conjugating it to β-alanine to form β-alanyl-histamine (carcinine). The conjugation is regulated by Ebony, while Tan hydrolyses carcinine, releasing histamine and β-alanine. In Drosophila, β-alanine synthesis occurs either from uracil or from the decarboxylation of aspartate but detailed roles for the enzymes responsible remain unclear. Immunohistochemically detected β-alanine is present throughout the fly’s entire brain, and is enhanced in the retina especially in the pseudocone, pigment and photoreceptor cells of the ommatidia. HPLC determinations reveal 10.7 ng of β-alanine in the wild-type head, roughly five times more than histamine. When wild-type flies drink uracil their head β-alanine increases more than after drinking l-aspartic acid, indicating the effectiveness of the uracil pathway. Mutants of black, which lack aspartate decarboxylase, cannot synthesize β-alanine from l-aspartate but can still synthesize it efficiently from uracil. Our findings demonstrate a novel function for pigment cells, which not only screen ommatidia from stray light but also store and transport β-alanine and carcinine. This role is consistent with a β-alanine-dependent histamine recycling pathway occurring not only in the photoreceptor terminals in the lamina neuropile, where carcinine occurs in marginal glia, but vertically via a long pathway that involves the retina. The lamina’s marginal glia are also a hub involved in the storage and/or disposal of carcinine and β-alanine. PMID:22442379

  3. Directed evolution of P-glycoprotein cysteines reveals site-specific, non-conservative substitutions that preserve multidrug resistance.

    PubMed

    Swartz, Douglas J; Mok, Leo; Botta, Sri K; Singh, Anukriti; Altenberg, Guillermo A; Urbatsch, Ina L

    2014-01-01

    Pgp (P-glycoprotein) is a prototype ABC (ATP-binding-cassette) transporter involved in multidrug resistance of cancer. We used directed evolution to replace six cytoplasmic Cys (cysteine) residues in Pgp with all 20 standard amino acids and selected for active mutants. From a pool of 75000 transformants for each block of three Cys, we identified multiple mutants that preserved drug resistance and yeast mating activity. The most frequent substitutions were glycine and serine for Cys427 (24 and 20%, respectively) and Cys1070 (37 and 25%) of the Walker A motifs in the NBDs (nucleotide-binding domains), Cys1223 in NBD2 (25 and 8%) and Cys638 in the linker region (24 and 16%), whereas close-by Cys669 tolerated glycine (16%) and alanine (14%), but not serine (absent). Cys1121 in NBD2 showed a clear preference for positively charged arginine (38%) suggesting a salt bridge with Glu269 in the ICL2 (intracellular loop 2) may stabilize domain interactions. In contrast, three Cys residues in transmembrane α-helices could be successfully replaced by alanine. The resulting CL (Cys-less) Pgp was fully active in yeast cells, and purified proteins displayed drug-stimulated ATPase activities indistinguishable from WT (wild-type) Pgp. Overall, directed evolution identified site-specific, non-conservative Cys substitutions that allowed building of a robust CL Pgp, an invaluable new tool for future functional and structural studies, and that may guide the construction of other CL proteins where alanine and serine have proven unsuccessful. PMID:24825346

  4. Biosynthesis of d-Alanyl-Lipoteichoic Acid: Characterization of Ester-Linked d-Alanine in the In Vitro-Synthesized Product

    PubMed Central

    Childs, Warren C.; Neuhaus, Francis C.

    1980-01-01

    d-Alanyl-lipoteichoic acid (d-alanyl-LTA) contains d-alanine ester residues which control the ability of this polyer to chelate Mg2+. In Lactobacillus casei a two-step in vitro reaction sequence catalyzed by the d-alanine-activating enzyme and d-alanine:membrane acceptor ligase incorporates d-alanine into membrane acceptor. In this paper we provide additional evidence that the in vitro system catalyzes the covalent incorporation of d-[14C]alanine into membrane acceptor which is the poly([3H]glycerol phosphate) moiety of d-alanyl-LTA. This conclusion was supported by the observation that the d-[14C]alanine and [3H]glycerol labels of the partially purified product were co-precipitated by antiserum containing globulins specific for poly(glycerol phosphate). The isolation of d-[14C]alanyl-[3H]glycerol from d-[14C]alanine·[3H]glycerol-labeled d-alanyl-LTA synthesized in the in vitro system indicated that the d-alanine was linked to the poly(glycerol phosphate) chain of the LTA. A comparison of the reactivities of the d-alanine residues of d-alanyl-glycerol and d-alanyl-LTA supported the conclusion that the incorporated residue of d-alanine was attached by an ester linkage. Thus, the data indicated that the in vitro system catalyzes the incorporation of d-alanine covalently linked by ester linkages to the glycerol moieties of the poly(glycerol phosphate) chains of d-alanyl-LTA. New procedures are presented for the partial purification of d-alanyl-LTA with a high yield of ester-linked d-alanine and for the sequential degradation of the poly(glycerol phosphate) moiety substituted with d-alanine of d-alanyl-LTA with phosphodiesterase II/phosphatase from Aspergillus niger. PMID:6772629

  5. Active-site Arg --> Lys substitutions alter reaction and substrate specificity of aspartate aminotransferase.

    PubMed

    Vacca, R A; Giannattasio, S; Graber, R; Sandmeier, E; Marra, E; Christen, P

    1997-08-29

    Arg386 and Arg292 of aspartate aminotransferase bind the alpha and the distal carboxylate group, respectively, of dicarboxylic substrates. Their substitution with lysine residues markedly decreased aminotransferase activity. The kcat values with L-aspartate and 2-oxoglutarate as substrates under steady-state conditions at 25 degrees C were 0.5, 2.0, and 0.03 s-1 for the R292K, R386K, and R292K/R386K mutations, respectively, kcat of the wild-type enzyme being 220 s-1. Longer dicarboxylic substrates did not compensate for the shorter side chain of the lysine residues. Consistent with the different roles of Arg292 and Arg386 in substrate binding, the effects of their substitution on the activity toward long chain monocarboxylic (norleucine/2-oxocaproic acid) and aromatic substrates diverged. Whereas the R292K mutation did not impair the aminotransferase activity toward these substrates, the effect of the R386K substitution was similar to that on the activity toward dicarboxylic substrates. All three mutant enzymes catalyzed as side reactions the beta-decarboxylation of L-aspartate and the racemization of amino acids at faster rates than the wild-type enzyme. The changes in reaction specificity were most pronounced in aspartate aminotransferase R292K, which decarboxylated L-aspartate to L-alanine 15 times faster (kcat = 0.002 s-1) than the wild-type enzyme. The rates of racemization of L-aspartate, L-glutamate, and L-alanine were 3, 5, and 2 times, respectively, faster than with the wild-type enzyme. Thus, Arg --> Lys substitutions in the active site of aspartate aminotransferase decrease aminotransferase activity but increase other pyridoxal 5'-phosphate-dependent catalytic activities. Apparently, the reaction specificity of pyridoxal 5'-phosphate-dependent enzymes is not only achieved by accelerating the specific reaction but also by preventing potential side reactions of the coenzyme substrate adduct. PMID:9268327

  6. Propofol restores the function of "hyperekplexic" mutant glycine receptors in Xenopus oocytes and mice.

    PubMed

    O'Shea, Sean Michael; Becker, Lore; Weiher, Hans; Betz, Heinrich; Laube, Bodo

    2004-03-01

    Human hereditary hyperekplexia ("startle disease") is a neurological disorder characterized by exaggerated, convulsive movements in response to unexpected stimuli. Molecular genetic studies have shown that this disease is often caused by amino acid substitutions at arginine 271 to glutamine or leucine of the alpha1 subunit of the inhibitory glycine receptor (GlyR). When exogenously expressed in Xenopus oocytes, agonist responses of mutant alpha1(R271Q) and alpha1(R271L) GlyRs show higher EC50 values and lower maximal inducible responses (relative efficacies) compared with oocytes expressing wild-type alpha1 GlyR subunits. Here, we report that the maximal glycine-induced currents (I(max)) of mutant alpha1(R271Q) and alpha1(R271L) GlyRs were dramatically potentiated in the presence of the anesthetic propofol (PRO), whereas the I(max) of wild-type alpha(1) receptors was not affected. Quantitative analysis of the agonist responses of the isofunctionally substituted alpha1(R271K) mutant GlyR revealed that saturating concentrations of PRO decreased the EC50 values of both glycine and the partial agonist beta-alanine by >10-fold, with relative efficacies increasing by 4- and 16-fold, respectively. Transgenic (tg) mice carrying the alpha1(R271Q) mutation (tg271Q-300) have both spontaneous and induced tremor episodes that closely resemble the movements of startled hyperekplexic patients. After treatment with subanesthetic doses of PRO, the tg271Q-300 mutant mice showed temporary reflexive and locomotor improvements that made them indistinguishable from wild-type mice. Together, these results demonstrate that the functional and behavioral effects of hyperekplexia mutations can be effectively reversed by drugs that potentiate GlyR responses. PMID:14999083

  7. Comparative Physiological Evidence that β-Alanine Betaine and Choline-O-Sulfate Act as Compatible Osmolytes in Halophytic Limonium Species 1

    PubMed Central

    Hanson, Andrew D.; Rathinasabapathi, Bala; Chamberlin, Beverly; Gage, Douglas A.

    1991-01-01

    The quaternary ammonium compounds accumulated in saline conditions by five salt-tolerant species of Limonium (Plumbaginaceae) were analyzed by fast atom bombardment mass spectrometry. Three species accumulated β-alanine betaine and choline-O-sulfate; the others accumulated glycine betaine and choline-O-sulfate. Three lines of evidence indicated that β-alanine betaine and choline-O-sulfate replace glycine betaine as osmo-regulatory solutes. First, tests with bacteria showed that β-alanine betaine and choline-O-sulfate have osmoprotective properties comparable to glycine betaine. Second, when β-alanine betaine and glycine betaine accumulators were salinized, the levels of their respective betaines, plus that of choline-O-sulfate, were closely correlated with leaf solute potential. Third, substitution of sulfate for chloride salinity caused an increase in the level of choline-O-sulfate and a matching decrease in glycine betaine level. Experiments with 14C-labeled precursors established that β-alanine betaine accumulators did not synthesize glycine betaine and vice versa. These experiments also showed that β-alanine betaine synthesis occurs in roots as well as leaves of β-alanine betaine accumulators and that choline-O-sulfate and glycine betaine share choline as a precursor. Unlike glycine betaine, β-alanine betaine synthesis cannot interfere with conjugation of sulfate to choline by competing for choline and does not require oxygen. These features of β-alanine betaine may be advantageous in sulfate-rich salt marsh environments. PMID:16668509

  8. Deciphering the Dynamics of Non-Covalent Interactions Affecting Thermal Stability of a Protein: Molecular Dynamics Study on Point Mutant of Thermus thermophilus Isopropylmalate Dehydrogenase.

    PubMed

    Sharma, Reetu; Sastry, G Narahari

    2015-01-01

    Thermus thermophilius isopropylmalate dehydrogenase catalyzes oxidative decarboxylation and dehydrogenation of isopropylmalate. Substitution of leucine to alanine at position 172 enhances the thermal stability among the known point mutants. Exploring the dynamic properties of non-covalent interactions such as saltbridges, hydrogen bonds and hydrophobic interactions to explain thermal stability of a protein is interesting in its own right. In this study dynamic changes in the non-covalent interactions are studied to decipher the deterministic features of thermal stability of a protein considering a case study of a point mutant in Thermus thermophilus isopropylmalate dehydrogenase. A total of four molecular dynamic simulations of 0.2 μs were carried out on wild type and mutant's functional dimers at 300 K and 337 K. Higher thermal stability of the mutant as compared to wild type is revealed by root mean square deviation, root mean square fluctuations and Cα-Cα distance with an increase in temperature from 300 K to 337 K. Most of the regions of wild type fluctuate higher than the corresponding regions of mutant with an increase in temperature. Cα-Cα distance analysis suggests that long distance networks are significantly affected in wild type as compared to the mutant. Short lived contacts are higher in wild type, while long lived contacts are lost at 337 K. The mutant forms less hydrogen bonds with water as compared to wild type at 337 K. In contrast to wild type, the mutant shows significant increase in unique saltbridges, hydrogen bonds and hydrophobic contacts at 337 K. The current study indicates that there is a strong inter-dependence of thermal stability on the way in which non-covalent interactions reorganize, and it is rewarding to explore this connection in single mutant studies. PMID:26657745

  9. Vibrational spectroscopy of bacteriorhodopsin mutants: Evidence for the interaction of proline-186 with the retinylidene chromophore

    SciTech Connect

    Rothschild, K.J.; He, Y.W.; Mogi, T.; Marti, T.; Stern, L.J.; Khorana, H.G. )

    1990-06-26

    Fourier-transform infrared difference spectroscopy has been used to study the role of the three membrane-embedded proline residues, Pro-50, Pro-91, and Pro-186, in the structure and function of bacteriorhodopsin. All three prolines were replaced by alanine and glycine; in addition, Pro-186 was changed to valine. Difference spectra were recorded for the bR----K and bR----M photoreactions of each of these mutants and compared to those of wild-type bacteriorhodopsin. Only substitutions of Pro-186 caused significant perturbations in the frequency of the C = C and C - C stretching modes of the retinylidene chromophore. In addition, these substitutions reduced bands in the amide I and II region associated with secondary structural changes and altered signals assigned to the adjacent Tyr-185. Pro-186----Val caused the largest alterations, producing a second species similar to bR548 and nearly blocking chromophore isomerization at 78 K but not at 250 K. These results are consistent with a model of the retinal binding site in which Pro-186 and Tyr-185 are located in direct proximity to the chromophore and may be involved in linking chromophore isomerization to protein structural changes. Evidence is also found that Pro-50 may be structurally active during the bR----K transition and that substitution of this residue by glycine preserves the normal protein structural changes during the photocycle.

  10. Structures of the G81A mutant form of the active chimera of (S)-mandelate dehydrogenase and its complex with two of its substrates

    SciTech Connect

    Sukumar, Narayanasami; Dewanti, Asteriani; Merli, Angelo; Rossi, Gian Luigi; Mitra, Bharati; Mathews, F. Scott

    2009-06-12

    (S)-Mandelate dehydrogenase (MDH) from Pseudomonas putida, a membrane-associated flavoenzyme, catalyzes the oxidation of (S)-mandelate to benzoylformate. Previously, the structure of a catalytically similar chimera, MDH-GOX2, rendered soluble by the replacement of its membrane-binding segment with the corresponding segment of glycolate oxidase (GOX), was determined and found to be highly similar to that of GOX except within the substituted segments. Subsequent attempts to cocrystallize MDH-GOX2 with substrate proved unsuccessful. However, the G81A mutants of MDH and of MDH-GOX2 displayed {approx}100-fold lower reactivity with substrate and a modestly higher reactivity towards molecular oxygen. In order to understand the effect of the mutation and to identify the mode of substrate binding in MDH-GOX2, a crystallographic investigation of the G81A mutant of the MDH-GOX2 enzyme was initiated. The structures of ligand-free G81A mutant MDH-GOX2 and of its complexes with the substrates 2-hydroxyoctanoate and 2-hydroxy-3-indolelactate were determined at 1.6, 2.5 and 2.2 {angstrom} resolution, respectively. In the ligand-free G81A mutant protein, a sulfate anion previously found at the active site is displaced by the alanine side chain introduced by the mutation. 2-Hydroxyoctanoate binds in an apparently productive mode for subsequent reaction, while 2-hydroxy-3-indolelactate is bound to the enzyme in an apparently unproductive mode. The results of this investigation suggest that a lowering of the polarity of the flavin environment resulting from the displacement of nearby water molecules caused by the glycine-to-alanine mutation may account for the lowered catalytic activity of the mutant enzyme, which is consistent with the 30 mV lower flavin redox potential. Furthermore, the altered binding mode of the indolelactate substrate may account for its reduced activity compared with octanoate, as observed in the crystalline state.

  11. 21 CFR 582.5118 - Alanine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Alanine. 582.5118 Section 582.5118 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  12. 21 CFR 582.5118 - Alanine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Alanine. 582.5118 Section 582.5118 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  13. 21 CFR 582.5118 - Alanine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Alanine. 582.5118 Section 582.5118 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  14. 21 CFR 582.5118 - Alanine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Alanine. 582.5118 Section 582.5118 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  15. Substitution of apolar residues in the active site of aspartate aminotransferase by histidine. Effects on reaction and substrate specificity.

    PubMed

    Vacca, R A; Christen, P; Malashkevich, V N; Jansonius, J N; Sandmeier, E

    1995-01-15

    In an attempt to change the reaction and substrate specificity of aspartate aminotransferase, several apolar active-site residues were substituted in turn with a histidine residue. Aspartate aminotransferase W140H (of Escherichia coli) racemizes alanine seven times faster (Kcat' = 2.2 x 10(-4) s-1) than the wild-type enzyme, while the aminotransferase activity toward L-alanine was sixfold decreased. X-ray crystallographic analysis showed that the structural changes brought about by the mutation are limited to the immediate environment of H140. In contrast to the tryptophan side chain in the wild-type structure, the imidazole ring of H140 does not form a stacking interaction with the coenzyme pyridine ring. The angle between the two ring planes is about 50 degrees. Pyridoxamine 5'-phosphate dissociates 50 times more rapidly from the W140H mutant than from the wild-type enzyme. A model of the structure of the quinonoid enzyme substrate intermediate indicates that H140 might assist in the reprotonation of C alpha of the amino acid substrate from the re side of the deprotonated coenzyme-substrate adduct in competition with si-side reprotonation by K258. In aspartate aminotransferase I17H (of chicken mitochondria), the substituted residue also lies on the re side of the coenzyme. This mutant enzyme slowly decarboxylates L-aspartate to L-alanine (Kcat' = 8 x 10(-5) s-1). No beta-decarboxylase activity is detectable in the wild-type enzyme. In aspartate aminotransferase V37H (of chicken mitochondria), the mutated residue lies besides the coenzyme in the plane of the pyridine ring; no change in reaction specificity was observed. All three mutations, i.e. W140-->H, I17-->H and V37--H, decreased the aminotransferase activity toward aromatic amino acids by 10-100-fold, while decreasing the activity toward dicarboxylic substrates only moderately to 20%, 20% and 60% of the activity of the wild-type enzymes, respectively. In all three mutant enzymes, the decrease in aspartate

  16. Requirement for alanine in the amino acid control of deprivation-induced protein degradation in liver.

    PubMed Central

    Pösö, A R; Mortimore, G E

    1984-01-01

    Protein degradation in liver is actively controlled by a small group of inhibitory amino acids--leucine, tyrosine (or phenylalanine), glutamine, proline, histidine, tryptophan, and methionine. Other evidence, however, suggests that one or more of the remaining 12 noninhibitory amino acids is also required for suppression of proteolysis at normal concentrations. This question was investigated in livers of fed rats perfused in the single-pass mode. The deletion of alanine at normal (1x), but not at 4x or 10x normal, plasma amino acid concentrations evoked a near-maximal acceleration of protein degradation. No other noninhibitory amino acid was effective. Because alanine alone was not directly inhibitory and its omission was not associated with a decrease in inhibitory amino acid pools, alanine was presumed to act as a coregulator in the expression of inhibitory activity. When tested alone, the inhibitory group was as effective as the complete mixture at 0.5x and 4x levels, but it lost its suppressive ability within a narrow zone of concentration centered slightly above 1x. The addition of 1x (0.48 mM) alanine completely restored the inhibition. Pyruvate and lactate could be effectively substituted, but only at concentrations 10-20 times greater than that of alanine. These, together with earlier findings, indicate the existence of a regulatory complex that recognizes specific amino acids and transmits positive and negative signals to proteolytic sites. The results also suggest that alanine can provide an important regulatory link between energy demands and protein degradation. PMID:6589593

  17. Monopeptide versus Monopeptoid: Insights on Structure and Hydration of Aqueous Alanine and Sarcosine via X-ray Absorption Spectroscopy

    SciTech Connect

    Uejio, Janel S.; Schwartz, Craig P.; Duffin, Andrew M.; England, Alice; Prendergast, David; Saykally, Richard J.

    2009-11-19

    Despite the obvious significance, the aqueous interactions of peptides remain incompletely understood. Their synthetic analogues called peptoids (poly-N-substituted glycines), have recently emerged as a promising biomimetic material, particularly due to their robust secondary structure and resistance to denaturation. We describe comparative near-edge x-ray absorption fine structure (NEXAFS) spectroscopy studies of aqueous sarcosine, the simplest peptoid, and alanine, its peptide isomer, interpreted by density functional theory calculations. The sarcosine nitrogen K-edge spectrum is blue-shifted with respect to that of alanine, in agreement with our calculations; we conclude that this shift results primarily from the methyl group substitution on the nitrogen of sarcosine. Our calculations indicate that the nitrogen K-edge spectrum of alanine differs significantly between dehydrated and hydrated scenarios, while that of the sarcosine zwitterion is less affected by hydration. In contrast, the computed sarcosine spectrum is greatly impacted by conformational variations, while the alanine spectrum is not. This relates to a predicted solvent dependence for alanine, as compared to sarcosine. Additionally, we show the theoretical nitrogen K-edge spectra to be sensitive to the degree of hydration, indicating that experimental X-ray spectroscopy may be able to distinguish between bulk and partial hydration, such as found in confined environments near proteins and in reverse micelles.

  18. Deciphering the Dynamics of Non-Covalent Interactions Affecting Thermal Stability of a Protein: Molecular Dynamics Study on Point Mutant of Thermus thermophilus Isopropylmalate Dehydrogenase

    PubMed Central

    Sharma, Reetu; Sastry, G. Narahari

    2015-01-01

    Thermus thermophilius isopropylmalate dehydrogenase catalyzes oxidative decarboxylation and dehydrogenation of isopropylmalate. Substitution of leucine to alanine at position 172 enhances the thermal stability among the known point mutants. Exploring the dynamic properties of non-covalent interactions such as saltbridges, hydrogen bonds and hydrophobic interactions to explain thermal stability of a protein is interesting in its own right. In this study dynamic changes in the non-covalent interactions are studied to decipher the deterministic features of thermal stability of a protein considering a case study of a point mutant in Thermus thermophilus isopropylmalate dehydrogenase. A total of four molecular dynamic simulations of 0.2 μs were carried out on wild type and mutant’s functional dimers at 300 K and 337 K. Higher thermal stability of the mutant as compared to wild type is revealed by root mean square deviation, root mean square fluctuations and Cα-Cα distance with an increase in temperature from 300 K to 337 K. Most of the regions of wild type fluctuate higher than the corresponding regions of mutant with an increase in temperature. Cα-Cα distance analysis suggests that long distance networks are significantly affected in wild type as compared to the mutant. Short lived contacts are higher in wild type, while long lived contacts are lost at 337 K. The mutant forms less hydrogen bonds with water as compared to wild type at 337 K. In contrast to wild type, the mutant shows significant increase in unique saltbridges, hydrogen bonds and hydrophobic contacts at 337 K. The current study indicates that there is a strong inter-dependence of thermal stability on the way in which non-covalent interactions reorganize, and it is rewarding to explore this connection in single mutant studies. PMID:26657745

  19. I86A/C295A mutant secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus has broadened substrate specificity for aryl ketones.

    PubMed

    Nealon, Christopher M; Welsh, Travis P; Kim, Chang Sup; Phillips, Robert S

    2016-09-15

    Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase (SADH) reduces aliphatic ketones according to Prelog's Rule, with binding pockets for small and large substituents. It was shown previously that the I86A mutant SADH reduces acetophenone, which is not a substrate of wild-type SADH, to give the anti-Prelog R-product (Musa, M. M.; Lott, N.; Laivenieks, M.; Watanabe, L.; Vieille, C.; Phillips, R. S. ChemCatChem2009, 1, 89-93.). However, I86A SADH did not reduce aryl ketones with substituents larger than fluorine. We have now expanded the small pocket of the active site of I86A SADH by mutation of Cys-295 to alanine to allow reaction of substituted acetophenones. As predicted, the double mutant I86A/C295A SADH has broadened substrate specificity for meta-substituted, but not para-substituted, acetophenones. However, the increase of the substrate specificity of I86A/C295A SADH is accompanied by a decrease in the kcat/Km values of acetophenones, possibly due to the substrates fitting loosely inside the more open active site. Nevertheless, I86A/C295A SADH gives high conversions and very high enantiomeric excess of the anti-Prelog R-alcohols from the tested substrates. PMID:27495738

  20. Molecular characterization of the AdeI mutant of Chinese hamster ovary Cells: a cellular model of adenylosuccinate lyase deficiency

    PubMed Central

    Vliet, Lydia K.; Wilkinson, Terry G.; Duval, Nathan; Vacano, Guido; Graham, Christine; Zikánová, Marie; Skopova, Vaclava; Baresova, Veronika; Hnízda, Aleš; Kmoch, Stanislav; Patterson, David

    2010-01-01

    Adenylosuccinate lyase (ADSL, E. C. 4.3.2.2) carries out two non-sequential steps in de novo AMP synthesis, the conversion of succinylaminoimidazole carboxamide ribotide (SAICAR) to aminoimidazolecarboxamide ribotide (AICAR) and the conversion of succinyl AMP (AMPS) to AMP. In humans, mutations in ADSL lead to an inborn error of metabolism originally characterized by developmental delay, often with autistic features. There is no effective treatment for ADSL deficiency. Hypotheses regarding the pathogenesis include toxicity of high levels of SAICAR, AMPS, or their metabolites, deficiency of the de novo purine biosynthetic pathway, or lack of a completely functional purine cycle in muscle and brain. One important approach to understand ADSL deficiency is to develop cell culture models that allow investigation of the properties of ADSL mutants and the consequences of ADSL deficiency at the cellular level. We previously reported the isolation and initial characterization of mutants of Chinese hamster ovary (CHO-K1) cells (Ade I) that lack detectable ADSL activity, accumulate SAICAR and AMPS, and require adenine for growth. Here we report the cDNA sequences of ADSL from CHO-K1 and Ade I cells and describe a mutation resulting in an alanine to valine amino acid substitution at position 291 (A291V) in Ade I ADSL. This substitution lies in the “signature sequence” of ADSL, inactivates the enzyme, and validates Ade I as a cellular model of ADSL deficiency. PMID:20884265

  1. Molecular characterization of the AdeI mutant of Chinese hamster ovary cells: a cellular model of adenylosuccinate lyase deficiency.

    PubMed

    Vliet, Lydia K; Wilkinson, Terry G; Duval, Nathan; Vacano, Guido; Graham, Christine; Zikánová, Marie; Skopova, Vaclava; Baresova, Veronika; Hnízda, Aleš; Kmoch, Stanislav; Patterson, David

    2011-01-01

    Adenylosuccinate lyase (ADSL, E. C. 4.3.2.2) carries out two non-sequential steps in de novo AMP synthesis, the conversion of succinylaminoimidazole carboxamide ribotide (SAICAR) to aminoimidazolecarboxamide ribotide (AICAR) and the conversion of succinyl AMP (AMPS) to AMP. In humans, mutations in ADSL lead to an inborn error of metabolism originally characterized by developmental delay, often with autistic features. There is no effective treatment for ADSL deficiency. Hypotheses regarding the pathogenesis include toxicity of high levels of SAICAR, AMPS, or their metabolites, deficiency of the de novo purine biosynthetic pathway, or lack of a completely functional purine cycle in muscle and brain. One important approach to understand ADSL deficiency is to develop cell culture models that allow investigation of the properties of ADSL mutants and the consequences of ADSL deficiency at the cellular level. We previously reported the isolation and initial characterization of mutants of Chinese hamster ovary (CHO-K1) cells (AdeI) that lack detectable ADSL activity, accumulate SAICAR and AMPS, and require adenine for growth. Here we report the cDNA sequences of ADSL from CHO-K1 and AdeI cells and describe a mutation resulting in an alanine to valine amino acid substitution at position 291 (A291V) in AdeI ADSL. This substitution lies in the "signature sequence" of ADSL, inactivates the enzyme, and validates AdeI as a cellular model of ADSL deficiency. PMID:20884265

  2. Alanine transport across in vitro rabbit vagina.

    PubMed

    Hajjar, J J; Mroueh, A M

    1979-04-01

    Transmural flux of alanine across the vaginal epithelium of the rabbit is a specialized mechanism. There is a net serosal to mucosal translocation of the amino acid in the absence of a concentration gradient. Changes in reproductive cycle do not influence this mechanism but, in castrated animals, it is abolished. Transport properties of vaginal epithelium is important because of increasing utilization of intravaginal contraceptives. PMID:455986

  3. Earthworms accumulate alanine in response to drought.

    PubMed

    Holmstrup, Martin; Slotsbo, Stine; Henriksen, Per G; Bayley, Mark

    2016-09-01

    Earthworms have ecologically significant functions in tropical and temperate ecosystems and it is therefore important to understand how these animals survive during drought. In order to explore the physiological responses to dry conditions, we simulated a natural drought incident in a laboratory trial exposing worms in slowly drying soil for about one month, and then analyzed the whole-body contents of free amino acids (FAAs). We investigated three species forming estivation chambers when soils dry out (Aporrectodea tuberculata, Aporrectodea icterica and Aporrectodea longa) and one species that does not estivate during drought (Lumbricus rubellus). Worms subjected to drought conditions (< -2MPa) substantially increased the concentration of FAAs and in particular alanine that was significantly upregulated in all tested species. Alanine was the most important FAA reaching 250-650μmolg(-1) dry weight in dehydrated Aporrectodea species and 300μmolg(-1) dry weight in L. rubellus. Proline was only weakly upregulated in some species as were a few other FAAs. Species forming estivation chambers (Aporrectodea spp.) did not show a better ability to conserve body water than the non-estivating species (L. rubellus) at the same drought level. These results suggest that the accumulation of alanine is an important adaptive trait in drought tolerance of earthworms in general. PMID:27107492

  4. Synthesis of beta-hydroxy-alpha-amino acids with a reengineered alanine racemase.

    PubMed

    Fesko, Kateryna; Giger, Lars; Hilvert, Donald

    2008-11-15

    The Y265A mutant of alanine racemase (alrY265A) was evaluated as a catalyst for the synthesis of beta-hydroxy-alpha-amino acids. It promotes the PLP-dependent aldol condensation of glycine with a range of aromatic aldehydes. The desired products were obtained with complete stereocontrol at C(alpha) (ee>99%, D) and moderate to high selectivity at C(beta) (up to 97% de). The designed enzyme is thus similar to natural d-threonine aldolases in its substrate specificity and stereoselectivity. Moreover, its ability to utilize alanine as an alternative donor suggests an expanded scope of potential utility for the production of biologically active compounds. PMID:18760921

  5. A leucine-to-proline substitution causes a defective [alpha]-antichymotrypsin allele associated with familial obstructive lung disease

    SciTech Connect

    Poller, W.; Scholz, S.; Fischer, M. ); Faber, J.P.; Tief, K.; Olek, K.; Kirchgesser, M. ); Weidinger, S. ); Heidtmann, H.H. )

    1993-09-01

    Using denaturing gradient gel electrophoresis and direct sequencing of amplified genomic DNA, the authors have identified two defective mutants of the human [alpha][sub 1]-antichymotrypsin (ACT) gene associated with chronic obstructive pulmonary disease (COPD). A leucine 55-to-proline substitution causing a defective ACT allele (Bochum-1) was observed in a family with COPD in three subsequent generations. Another mutation, proline 229-to-alanine (Bonn-1), was associated with ACT serum deficiency in four patients with a positive family history. These mutations were not detected among 100 healthy control subjects, suggesting a possible pathogenetic role of ACT gene defects in a subset of patients with COPD. 14 refs., 1 fig., 1 tab.

  6. Characterization of Escherichia coli lactose carrier mutants that transport protons without a cosubstrate. Probes for the energy barrier to uncoupled transport.

    PubMed

    King, S C; Wilson, T H

    1990-06-15

    The Escherichia coli lactose carrier is an energy-transducing H+/galactoside cotransport protein which strictly couples sugar and proton transport in 1:1 stoichiometry. Here we describe five lactose carrier mutants which catalyze "uncoupled" sugar-independent H+ transport. Symptoms similar to uncoupling by a proton ionophore have been observed in cells expressing these mutant carriers. The mutations occur at two separate loci, encoding substitutions either for alanine 177 (valine) or tyrosine 236 (histidine, asparagine, phenylalanine, or serine). Compared to the parent, cells expressing the valine 177 carrier grew slowly on minimal media with glucose as carbon source. When washed cells were incubated in the absence of added sugars the mutant showed a reduced protonmotive force compared with the parent. Addition of either thiodigalactoside or alpha-p-nitrophenylgalactoside reduced the defect in protonmotive force. Sugar-independent H+ entry rate into cells expressing either the normal carrier or the Val-177 mutant were measured directly using the pH electrode. Following sudden acidification of the external medium (by either oxygen-pulse or acid-pulse) protons entered more rapidly into cells expressing the Val-177 carrier. This novel sugar-independent mode of H+ transport probably depends on an acquired capacity of the Val-177 carrier to bind the transported proton with higher than normal affinity in a transition state involving the binary carrier/H+ complex. PMID:2161839

  7. Skin Substitutes

    PubMed Central

    Howe, Nicole; Cohen, George

    2014-01-01

    In a relatively short timespan, a wealth of new skin substitutes made of synthetic and biologically derived materials have arisen for the purpose of wound healing of various etiologies. This review article focuses on providing an overview of skin substitutes including their indications, contraindications, benefits, and limitations. The result of this overview was an appreciation of the vast array of options available for clinicians, many of which did not exist a short time ago. Yet, despite the rapid expansion this field has undergone, no ideal skin substitute is currently available. More research in the field of skin substitutes and wound healing is required not only for the development of new products made of increasingly complex biomolecular material, but also to compare the existing skin substitutes. PMID:25371771

  8. Crystallization and preliminary crystallographic analysis of d-alanine-d-alanine ligase from Streptococcus mutans

    SciTech Connect

    Lu, Yong-Zhi; Sheng, Yu; Li, Lan-Fen; Tang, De-Wei; Liu, Xiang-Yu; Zhao, Xiaojun; Liang, Yu-He Su, Xiao-Dong

    2007-09-01

    A potential target for antibiotic drug design, d-alanine-d-alanine ligase from S. mutans, was expressed in E. coli, purified and crystallized. Diffraction data were collected to 2.4 Å resolution. d-Alanine-d-alanine ligase is encoded by the gene ddl (SMU-599) in Streptococcus mutans. This ligase plays a very important role in cell-wall biosynthesis and may be a potential target for drug design. To study the structure and function of this ligase, the gene ddl was amplified from S. mutans genomic DNA and cloned into the expression vector pET28a. The protein was expressed in soluble form in Escherichia coli strain BL21 (DE3). Homogeneous protein was obtained using a two-step procedure consisting of Ni{sup 2+}-chelating and size-exclusion chromatography. Purified protein was crystallized and the cube-shaped crystal diffracted to 2.4 Å. The crystal belongs to space group P3{sub 1}21 or P3{sub 2}21, with unit-cell parameters a = b = 79.50, c = 108.97 Å. There is one molecule per asymmetric unit.

  9. Racemization of alanine by the alanine racemases from Salmonella typhimurium and Bacillus stearothermophilus: energetic reaction profiles

    SciTech Connect

    Faraci, W.S.; Walsh, C.T.

    1988-05-03

    Alanine racemases are bacterial pyridoxal 5'-phosphate (PLP) dependent enzymes providing D-alanine as an essential building block for biosynthesis of the peptidoglycan layer of the cell wall. Two isozymic alanine racemases, encoded by the dadB gene and the alr gene, from the Gram-negative mesophilic Salmonella typhimurium and one from the Gram-positive thermophilic Bacillus stearothermophilus have been examined for the racemization mechanism. Substrate deuterium isotope effects and solvent deuterium isotope effects have been measured in both L ..-->.. D and D..-->.. L directions for all three enzymes to assess the degree to which abstraction of the ..cap alpha..-proton or protonation of substrate PLP carbanion is limiting in catalysis. Additionally, experiments measuring internal return of ..cap alpha..-/sup 3/H from substrate to product and solvent exchange/substrate conversion experiments in /sup 3/H/sub 2/O have been used with each enzyme to examine the partitioning of substrate PLP carbanion intermediates and to obtain the relative heights of kinetically significant energy barriers in alanine racemase catalysis.

  10. R76 in transmembrane domain 3 of the aspartate:alanine transporter AspT is involved in substrate transport.

    PubMed

    Suzuki, Satomi; Nanatani, Kei; Abe, Keietsu

    2016-01-01

    The L-aspartate:L-alanine antiporter of Tetragenococcus halophilus (AspT) possesses an arginine residue (R76) within the GxxxG motif in the central part of transmembrane domain 3 (TM3)-a residue that has been estimated to transport function. In this study, we carried out amino acid substitutions of R76 and used proteoliposome reconstitution for analyzing the transport function of each substitution. Both l-aspartate and l-alanine transport assays showed that R76K has higher activity than the AspT-WT (R76), whereas R76D and R76E have lower activity than the AspT-WT. These results suggest that R76 is involved in AspT substrate transport. PMID:26849958

  11. An Anhydro-N-Acetylmuramyl-l-Alanine Amidase with Broad Specificity Tethered to the Outer Membrane of Escherichia coli▿

    PubMed Central

    Uehara, Tsuyoshi; Park, James T.

    2007-01-01

    From its amino acid sequence homology with AmpD, we recognized YbjR, now renamed AmiD, as a possible second 1,6-anhydro-N-acetylmuramic acid (anhMurNAc)-l-alanine amidase in Escherichia coli. We have now confirmed that AmiD is an anhMurNAc-l-Ala amidase and demonstrated that AmpD and AmiD are the only enzymes present in E. coli that are able to cleave the anhMurNAc-l-Ala bond. The activity was present only in the outer membrane fraction obtained from an ampD mutant. In contrast to AmpD, which is specific for the anhMurNAc-l-alanine bond, AmiD also cleaved the bond between MurNAc and l-alanine in both muropeptides and murein sacculi. Unlike the periplasmic murein amidases, AmiD did not participate in cell separation. ampG mutants, which are unable to import GlcNAc-anhMurNAc-peptides into the cytoplasm, released mainly peptides into the medium due to AmiD activity, whereas an ampG amiD double mutant released a large amount of intact GlcNAc-anhMurNAc-peptides into the medium. PMID:17526703

  12. International society of sports nutrition position stand: Beta-Alanine.

    PubMed

    Trexler, Eric T; Smith-Ryan, Abbie E; Stout, Jeffrey R; Hoffman, Jay R; Wilborn, Colin D; Sale, Craig; Kreider, Richard B; Jäger, Ralf; Earnest, Conrad P; Bannock, Laurent; Campbell, Bill; Kalman, Douglas; Ziegenfuss, Tim N; Antonio, Jose

    2015-01-01

    The International Society of Sports Nutrition (ISSN) provides an objective and critical review of the mechanisms and use of beta-alanine supplementation. Based on the current available literature, the conclusions of the ISSN are as follows: 1) Four weeks of beta-alanine supplementation (4-6 g daily) significantly augments muscle carnosine concentrations, thereby acting as an intracellular pH buffer; 2) Beta-alanine supplementation currently appears to be safe in healthy populations at recommended doses; 3) The only reported side effect is paraesthesia (tingling), but studies indicate this can be attenuated by using divided lower doses (1.6 g) or using a sustained-release formula; 4) Daily supplementation with 4 to 6 g of beta-alanine for at least 2 to 4 weeks has been shown to improve exercise performance, with more pronounced effects in open end-point tasks/time trials lasting 1 to 4 min in duration; 5) Beta-alanine attenuates neuromuscular fatigue, particularly in older subjects, and preliminary evidence indicates that beta-alanine may improve tactical performance; 6) Combining beta-alanine with other single or multi-ingredient supplements may be advantageous when supplementation of beta-alanine is high enough (4-6 g daily) and long enough (minimum 4 weeks); 7) More research is needed to determine the effects of beta-alanine on strength, endurance performance beyond 25 min in duration, and other health-related benefits associated with carnosine. PMID:26175657

  13. Ring Substituents on Substituted Benzamide Ligands Indirectly Mediate Interactions with Position 7.39 of Transmembrane Helix 7 of the D4 Dopamine Receptor

    PubMed Central

    Ericksen, Spencer S.; Cummings, David F.; Teer, Michael E.; Amdani, Shahnawaz

    2012-01-01

    In an effort to delineate how specific molecular interactions of dopamine receptor ligand classes vary between D2-like dopamine receptor subtypes, a conserved threonine in transmembrane (TM) helix 7 (Thr7.39), implicated as a key ligand interaction site with biogenic amine G protein-coupled receptors, was substituted with alanine in D2 and D4 receptors. Interrogation of different ligand chemotypes for sensitivity to this substitution revealed enhanced affinity in the D4, but not the D2 receptor, specifically for substituted benzamides (SBAs) having polar 4- (para) and/or 5- (meta) benzamide ring substituents. D4-T7.39A was fully functional, and the mutation did not alter the sodium-mediated positive and negative allostery observed with SBAs and agonists, respectively. With the exception of the non-SBA ligand (+)-butaclamol, which, in contrast to certain SBAs, had decreased affinity for the D4-T7.39A mutant, the interactions of numerous other ligands were unaffected by this mutation. SBAs were docked into D4 models in the same mode as observed for eticlopride in the D3 crystal structure. In this mode, interactions with TM5 and TM6 residues constrain the SBA ring position that produces distal steric crowding between pyrrolidinyl/diethylamine moieties and D4-Thr7.39. Ligand-residue interaction energy profiles suggest this crowding is mitigated by substitution with a smaller alanine. The profiles indicate sites that contribute to the SBA binding interaction and site-specific energy changes imparted by the D4-T7.39A mutation. Substantial interaction energy changes are observed at only a few positions, some of which are not conserved among the dopamine receptor subtypes and thus seem to account for this D4 subtype-specific structure-activity relationship. PMID:22588261

  14. Alanine-Scanning Mutational Analysis of Durancin GL Reveals Residues Important for Its Antimicrobial Activity.

    PubMed

    Ju, Xingrong; Chen, Xinquan; Du, Lihui; Wu, Xueyou; Liu, Fang; Yuan, Jian

    2015-07-22

    Durancin GL is a novel class IIa bacteriocin with 43 residues produced by Enterococcus durans 41D. This bacteriocin demonstrates narrow inhibition spectrum and potent antimicrobial activity against several Listeria monocytogenes strains, including nisin-resistant L. monocytogenes NR30. A systematic alanine-scanning mutational analysis with site-directed mutagenesis was performed to analyze durancin GL residues important for antimicrobial activity and specificity. Results showed that three mutations lost their antimicrobial activity, ten mutations demonstrated a decreased effect on the activity, and seven mutations exhibited relatively high activity. With regard to inhibitory spectrum, four mutants demonstrated a narrower antimicrobial spectrum than wild-type durancin GL. Another four mutants displayed a broader target cell spectrum and increased potency relative to wild-type durancin GL. These findings broaden our understanding of durancin GL residues important for its antimicrobial activity and contribute to future rational design of variants with increased potency. PMID:26168032

  15. Alanine aminotransferase controls seed dormancy in barley.

    PubMed

    Sato, Kazuhiro; Yamane, Miki; Yamaji, Nami; Kanamori, Hiroyuki; Tagiri, Akemi; Schwerdt, Julian G; Fincher, Geoffrey B; Matsumoto, Takashi; Takeda, Kazuyoshi; Komatsuda, Takao

    2016-01-01

    Dormancy allows wild barley grains to survive dry summers in the Near East. After domestication, barley was selected for shorter dormancy periods. Here we isolate the major seed dormancy gene qsd1 from wild barley, which encodes an alanine aminotransferase (AlaAT). The seed dormancy gene is expressed specifically in the embryo. The AlaAT isoenzymes encoded by the long and short dormancy alleles differ in a single amino acid residue. The reduced dormancy allele Qsd1 evolved from barleys that were first domesticated in the southern Levant and had the long dormancy qsd1 allele that can be traced back to wild barleys. The reduced dormancy mutation likely contributed to the enhanced performance of barley in industrial applications such as beer and whisky production, which involve controlled germination. In contrast, the long dormancy allele might be used to control pre-harvest sprouting in higher rainfall areas to enhance global adaptation of barley. PMID:27188711

  16. Alanine aminotransferase controls seed dormancy in barley

    PubMed Central

    Sato, Kazuhiro; Yamane, Miki; Yamaji, Nami; Kanamori, Hiroyuki; Tagiri, Akemi; Schwerdt, Julian G.; Fincher, Geoffrey B.; Matsumoto, Takashi; Takeda, Kazuyoshi; Komatsuda, Takao

    2016-01-01

    Dormancy allows wild barley grains to survive dry summers in the Near East. After domestication, barley was selected for shorter dormancy periods. Here we isolate the major seed dormancy gene qsd1 from wild barley, which encodes an alanine aminotransferase (AlaAT). The seed dormancy gene is expressed specifically in the embryo. The AlaAT isoenzymes encoded by the long and short dormancy alleles differ in a single amino acid residue. The reduced dormancy allele Qsd1 evolved from barleys that were first domesticated in the southern Levant and had the long dormancy qsd1 allele that can be traced back to wild barleys. The reduced dormancy mutation likely contributed to the enhanced performance of barley in industrial applications such as beer and whisky production, which involve controlled germination. In contrast, the long dormancy allele might be used to control pre-harvest sprouting in higher rainfall areas to enhance global adaptation of barley. PMID:27188711

  17. Incorporation of D-alanine into lipoteichoic acid and wall teichoic acid in Bacillus subtilis. Identification of genes and regulation.

    PubMed

    Perego, M; Glaser, P; Minutello, A; Strauch, M A; Leopold, K; Fischer, W

    1995-06-30

    The Bacillus subtilis dlt operon (D-alanyl-lipoteichoic acid) is responsible for D-alanine esterification of both lipoteichoic acid (LTA) and wall teichoic acid (WTA). The dlt operon contains five genes, dltA-dltE. Insertional inactivation of dltA-dltD results in complete absence of D-alanine from both LTA and WTA. Based on protein sequence similarity with the Lactobacillus casei dlt gene products (Heaton, M. P., and Neuhaus, F. C. (1992) J. Bacteriol. 174, 4707-4717), we propose that dltA encodes the D-alanine-D-alanyl carrier protein ligase (Dcl) and dltC the D-alanyl carrier protein (Dcp). We further hypothesize that the products of dltB and dltD are concerned with the transport of activated D-alanine through the membrane and the final incorporation of D-alanine into LTA. The hydropathy profiles of the dltB and dltD gene products suggest a transmembrane location for the former and an amino-terminal signal peptide for the latter. The incorporation of D-alanine into LTA and WTA did not separate in any of the mutants studied which indicates that either one and the same enzyme is responsible for D-alanine incorporation into both polymers or a separate enzyme, encoded outside the dlt operon, transfers the D-alanyl residues from LTA to WTA (Haas, R., Koch, H.-U., and Fischer, W. (1984) FEMS Microbiol. Lett. 21, 27-31). Inactivation of dltE has no effect on D-alanine ester content of both LTA and WTA, and at present we cannot propose any function for its gene product. Transcription analysis shows that the dlt operon is transcribed from a sigma D-dependent promoter and follows the pattern of transcription of genes belonging to the sigma D regulon. However, the turn off of transcription observed before sporulation starts seems to be dependent on the Spo0A and AbrB sporulation proteins and results in a D-alanine-free purely anionic LTA in the spore membrane. The dlt operon is dispensable for cell growth; its inactivation does not affect cell growth or morphology as

  18. Structural and biochemical analyses of alanine racemase from the multidrug-resistant Clostridium difficile strain 630

    PubMed Central

    Asojo, Oluwatoyin A.; Nelson, Sarah K.; Mootien, Sara; Lee, Yashang; Rezende, Wanderson C.; Hyman, Daniel A.; Matsumoto, Monica M.; Reiling, Scott; Kelleher, Alan; Ledizet, Michel; Koski, Raymond A.; Anthony, Karen G.

    2014-01-01

    Clostridium difficile, a Gram-positive, spore-forming anaerobic bacterium, is the leading cause of infectious diarrhea among hospitalized patients. C. difficile is frequently associated with antibiotic treatment, and causes diseases ranging from antibiotic-associated diarrhea to life-threatening pseudo­membranous colitis. The severity of C. difficile infections is exacerbated by the emergence of hypervirulent and multidrug-resistant strains, which are difficult to treat and are often associated with increased mortality rates. Alanine racemase (Alr) is a pyridoxal-5′-phosphate (PLP)-dependent enzyme that catalyzes the reversible racemization of l- and d-alanine. Since d-alanine is an essential component of the bacterial cell-wall peptidoglycan, and there are no known Alr homologs in humans, this enzyme is being tested as an antibiotic target. Cycloserine is an antibiotic that inhibits Alr. In this study, the catalytic properties and crystal structures of recombinant Alr from the virulent and multidrug-resistant C. difficile strain 630 are presented. Three crystal structures of C. difficile Alr (CdAlr), corresponding to the complex with PLP, the complex with cycloserine and a K271T mutant form of the enzyme with bound PLP, are presented. The structures are prototypical Alr homodimers with two active sites in which the cofactor PLP and cycloserine are localized. Kinetic analyses reveal that the K271T mutant CdAlr has the highest catalytic constants reported to date for any Alr. Additional studies are needed to identify the basis for the high catalytic activity. The structural and activity data presented are first steps towards using CdAlr for the development of structure-based therapeutics for C. difficile infections. PMID:25004969

  19. In vitro enzymatic activity of human immunodeficiency virus type 1 reverse transcriptase mutants in the highly conserved YMDD amino acid motif correlates with the infectious potential of the proviral genome.

    PubMed Central

    Wakefield, J K; Jablonski, S A; Morrow, C D

    1992-01-01

    Reverse transcriptases contain a highly conserved YXDD amino acid motif believed to be important in enzyme function. The second amino acid is not strictly conserved, with a methionine, valine or alanine occupying the second position in reverse transcriptases from various retroviruses and retroelements. Recently, a 3.5-A (0.35-nm) resolution electron density map of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase positioned the YMDD motif within an antiparallel beta-hairpin structure which forms a portion of its catalytic site. To further explore the role of methionine of the conserved YMDD motif in HIV-1 reverse transcriptase function, we have substituted methionine with a valine, alanine, serine, glycine, or proline, reflecting in some cases sequence motifs of other related reverse transcriptases. Wild-type and mutant enzymes were expressed in Escherichia coli, partially purified by phosphocellulose chromatography, and assayed for the capacity to polymerize TTP by using a homopolymeric template [poly(rA)] with either a DNA [oligo(dT)] or an RNA [oligo(U)] primer. With a poly(rA).oligo(dT) template-primer, reverse transcriptases with the methionine replaced by valine (YVDD), serine (YSDD), or alanine (YADD) were 70 to 100% as active as the wild type, while those with the glycine substitution (YGDD) were approximately 5 to 10% as active. A proline substitution (YPDD) completely inactivated the enzyme. With a poly(rA).oligo(U) template-primer, only the activity of mutants with YVDD was similar to that of the wild type, while mutants with YADD and YSDD were approximately 5 to 10% as active as the wild-type enzyme. The reverse transcriptases with the YGDD and YPDD mutations demonstrated no activity above background. Proviruses containing the reverse transcriptase with the valine mutation (YVDD) produced viruses with infectivities similar to that of the wild type, as determined by measurement of p24 antigen in culture supernatants and visual inspection

  20. A single glycine-alanine exchange directs ligand specificity of the elephant progestin receptor.

    PubMed

    Wierer, Michael; Schrey, Anna K; Kühne, Ronald; Ulbrich, Susanne E; Meyer, Heinrich H D

    2012-01-01

    The primary gestagen of elephants is 5α-dihydroprogesterone (DHP), which is unlike all other mammals studied until now. The level of DHP in elephants equals that of progesterone in other mammals, and elephants are able to bind DHP with similar affinity to progesterone indicating a unique ligand-binding specificity of the elephant progestin receptor (PR). Using site-directed mutagenesis in combination with in vitro binding studies we here report that this change in specificity is due to a single glycine to alanine exchange at position 722 (G722A) of PR, which specifically increases DHP affinity while not affecting binding of progesterone. By conducting molecular dynamics simulations comparing human and elephant PR ligand-binding domains (LBD), we observed that the alanine methyl group at position 722 is able to push the DHP A-ring into a position similar to progesterone. In the human PR, the DHP A-ring position is twisted towards helix 3 of PR thereby disturbing the hydrogen bond pattern around the C3-keto group, resulting in a lower binding affinity. Furthermore, we observed that the elephant PR ligand-binding pocket is more rigid than the human analogue, which probably explains the higher affinity towards both progesterone and DHP. Interestingly, the G722A substitution is not elephant-specific, rather it is also present in five independent lineages of mammalian evolution, suggesting a special role of the substitution for the development of distinct mammalian gestagen systems. PMID:23209719

  1. Activation of c-Jun transcription factor by substitution of a charged residue in its N-terminal domain.

    PubMed Central

    Hoeffler, W K; Levinson, A D; Bauer, E A

    1994-01-01

    C-Jun is a cellular transcription factor that can control gene expression in response to treatment of cells with phorbol esters, growth factors, and expression of some oncogenes. The ability of c-Jun to catalyze the transcription of certain genes is controlled, in part, by changes in the phosphorylation state of specific amino acids in c-Jun. One of the major sites that is phosphorylated during signal response is Ser73. Here we show that substitution of a negatively charged aspartic acid residue at 73 constitutively increased transcriptional activity of c-Jun. The Asp73 substitution also enhanced its availability to bind to DNA in a whole cell extract without altering its intrinsic DNA binding activity since the intrinsic activity was unaltered for the c-Jun mutant proteins expressed in a bacterial system. The negatively charged Asp substitution may mimic the negative charge of a phosphorylated serine at 73. The substitution of an uncharged alanine at 73 resulted in lowered activities. The N-terminal end of c-Jun containing these substitutions was fused to the DNA-binding region of the bovine papilloma virus E2 protein, and was able to confer the same activation properties to the fusion protein at the heterologous E2 DNA-binding site. Ser73 lies in a region of c-Jun previously proposed to bind an uncharacterized inhibitor, perhaps related to a protein of approximately 17.5 kD that coprecipitates along with our c-Jun or the JunE2 fusion products. Images PMID:8165146

  2. Solvent substitution

    SciTech Connect

    Not Available

    1990-01-01

    The DOE Environmental Restoration and Waste Management Office of Technology Development and the Air Force Engineering and Services Center convened the First Annual International Workshop on Solvent Substitution on December 4--7, 1990. The primary objectives of this joint effort were to share information and ideas among attendees in order to enhance the development and implementation of required new technologies for the elimination of pollutants associated with industrial use of hazardous and toxic solvents; and to aid in accelerating collaborative efforts and technology transfer between government and industry for solvent substitution. There were workshop sessions focusing on Alternative Technologies, Alternative Solvents, Recovery/Recycling, Low VOC Materials and Treatment for Environmentally Safe Disposal. The 35 invited papers presented covered a wide range of solvent substitution activities including: hardware and weapons production and maintenance, paint stripping, coating applications, printed circuit boards, metal cleaning, metal finishing, manufacturing, compliance monitoring and process control monitoring. This publication includes the majority of these presentations. In addition, in order to further facilitate information exchange and technology transfer, the US Air Force and DOE solicited additional papers under a general Call for Papers.'' These papers, which underwent review and final selection by a peer review committee, are also included in this combined Proceedings/Compendium. For those involved in handling, using or managing hazardous and toxic solvents, this document should prove to be a valuable resource, providing the most up-to-date information on current technologies and practices in solvent substitution. Individual papers are abstracted separated.

  3. Comparison of EPR response of alanine and Gd₂O₃-alanine dosimeters exposed to TRIGA Mainz reactor.

    PubMed

    Marrale, M; Schmitz, T; Gallo, S; Hampel, G; Longo, A; Panzeca, S; Tranchina, L

    2015-12-01

    In this work we report some preliminary results regarding the analysis of electron paramagnetic resonance (EPR) response of alanine pellets and alanine pellets added with gadolinium used for dosimetry at the TRIGA research reactor in Mainz, Germany. Two set-ups were evaluated: irradiation inside PMMA phantom and irradiation inside boric acid phantom. We observed that the presence of Gd2O3 inside alanine pellets increases the EPR signal by a factor of 3.45 and 1.24 in case of PMMA and boric acid phantoms, respectively. We can conclude that in the case of neutron beam with a predominant thermal neutron component the addition of gadolinium oxide can significantly improve neutron sensitivity of alanine pellets. Monte Carlo (MC) simulations of both response of alanine and Gd-added alanine pellets with FLUKA code were performed and a good agreement was achieved for pure alanine dosimeters. For Gd2O3-alanine deviations between MC simulations and experimental data were observed and discussed. PMID:26315099

  4. Structures of the G81A mutant form of the active chimera of (S)-mandelate dehydrogenase and its complex with two of its substrates

    SciTech Connect

    Sukumar, Narayanasami; Dewanti, Asteriani; Merli, Angelo; Rossi, Gian Luigi; Mitra, Bharati; Mathews, F. Scott

    2009-06-01

    The crystal structure of the G81A mutant form of the chimera of (S)-mandelate dehydrogenase and of its complexes with two of its substrates reveal productive and non-productive modes of binding for the catalytic reaction. The structure also indicates the role of G81A in lowering the redox potential of the flavin co-factor leading to an ∼200-fold slower catalytic rate of substrate oxidation. (S)-Mandelate dehydrogenase (MDH) from Pseudomonas putida, a membrane-associated flavoenzyme, catalyzes the oxidation of (S)-mandelate to benzoylformate. Previously, the structure of a catalytically similar chimera, MDH-GOX2, rendered soluble by the replacement of its membrane-binding segment with the corresponding segment of glycolate oxidase (GOX), was determined and found to be highly similar to that of GOX except within the substituted segments. Subsequent attempts to cocrystallize MDH-GOX2 with substrate proved unsuccessful. However, the G81A mutants of MDH and of MDH-GOX2 displayed ∼100-fold lower reactivity with substrate and a modestly higher reactivity towards molecular oxygen. In order to understand the effect of the mutation and to identify the mode of substrate binding in MDH-GOX2, a crystallographic investigation of the G81A mutant of the MDH-GOX2 enzyme was initiated. The structures of ligand-free G81A mutant MDH-GOX2 and of its complexes with the substrates 2-hydroxyoctanoate and 2-hydroxy-3-indolelactate were determined at 1.6, 2.5 and 2.2 Å resolution, respectively. In the ligand-free G81A mutant protein, a sulfate anion previously found at the active site is displaced by the alanine side chain introduced by the mutation. 2-Hydroxyoctanoate binds in an apparently productive mode for subsequent reaction, while 2-hydroxy-3-indolelactate is bound to the enzyme in an apparently unproductive mode. The results of this investigation suggest that a lowering of the polarity of the flavin environment resulting from the displacement of nearby water molecules caused by

  5. Sensory Substitution

    NASA Astrophysics Data System (ADS)

    Verrillo, Ronald T.

    The idea that the cutaneous surface may be employed as a substitute for the eyes and ears is by no means a modern notion. Although the sense of touch has long been considered as a surrogate for both the visual and auditory modalities, the focus of this chapter will be on the efforts to develop a tactile substitute for hearing, especially that of human speech. The visual system is our primary means of processing information about environmental space such as orientation, distance, direction and size. It is much less effective in making temporal discriminations. The auditory system is unparalleled in processing information that involves rapid sequences of temporal events, such as speech and music. The tactile sense is capable of processing both spatial and temporal information although not as effective in either domain as the eye or the ear.

  6. GMXPBSA 2.1: A GROMACS tool to perform MM/PBSA and computational alanine scanning

    NASA Astrophysics Data System (ADS)

    Paissoni, C.; Spiliotopoulos, D.; Musco, G.; Spitaleri, A.

    2015-01-01

    GMXPBSA 2.1 is a user-friendly suite of Bash/Perl scripts for streamlining MM/PBSA calculations on structural ensembles derived from GROMACS trajectories, to automatically calculate binding free energies for protein-protein or ligand-protein complexes [R.T. Bradshaw et al., Protein Eng. Des. Sel. 24 (2011) 197-207]. GMXPBSA 2.1 is flexible and can easily be customized to specific needs and it is an improvement of the previous GMXPBSA 2.0 [C. Paissoni et al., Comput. Phys. Commun. (2014), 185, 2920-2929]. Additionally, it performs computational alanine scanning (CAS) to study the effects of ligand and/or receptor alanine mutations on the free energy of binding. Calculations require only for protein-protein or protein-ligand MD simulations. GMXPBSA 2.1 performs different comparative analyses, including a posteriori generation of alanine mutants of the wild-type complex, calculation of the binding free energy values of the mutant complexes and comparison of the results with the wild-type system. Moreover, it compares the binding free energy of different complex trajectories, allowing the study of the effects of non-alanine mutations, post-translational modifications or unnatural amino acids on the binding free energy of the system under investigation. Finally, it can calculate and rank relative affinity to the same receptor utilizing MD simulations of proteins in complex with different ligands. In order to dissect the different MM/PBSA energy contributions, including molecular mechanic (MM), electrostatic contribution to solvation (PB) and nonpolar contribution to solvation (SA), the tool combines two freely available programs: the MD simulations software GROMACS [S. Pronk et al., Bioinformatics 29 (2013) 845-854] and the Poisson-Boltzmann equation solver APBS [N.A. Baker et al., Proc. Natl. Acad. Sci. U.S.A 98 (2001) 10037-10041]. All the calculations can be performed in single or distributed automatic fashion on a cluster facility in order to increase the

  7. Active-Site Residues of Escherichia coli DNA Gyrase Required in Coupling ATP Hydrolysis to DNA Supercoiling and Amino Acid Substitutions Leading to Novobiocin Resistance

    PubMed Central

    Gross, Christian H.; Parsons, Jonathan D.; Grossman, Trudy H.; Charifson, Paul S.; Bellon, Steven; Jernee, James; Dwyer, Maureen; Chambers, Stephen P.; Markland, William; Botfield, Martyn; Raybuck, Scott A.

    2003-01-01

    DNA gyrase is a bacterial type II topoisomerase which couples the free energy of ATP hydrolysis to the introduction of negative supercoils into DNA. Amino acids in proximity to bound nonhydrolyzable ATP analog (AMP · PNP) or novobiocin in the gyrase B (GyrB) subunit crystal structures were examined for their roles in enzyme function and novobiocin resistance by site-directed mutagenesis. Purified Escherichia coli GyrB mutant proteins were complexed with the gyrase A subunit to form the functional A2B2 gyrase enzyme. Mutant proteins with alanine substitutions at residues E42, N46, E50, D73, R76, G77, and I78 had reduced or no detectable ATPase activity, indicating a role for these residues in ATP hydrolysis. Interestingly, GyrB proteins with P79A and K103A substitutions retained significant levels of ATPase activity yet demonstrated no DNA supercoiling activity, even with 40-fold more enzyme than the wild-type enzyme, suggesting that these amino acid side chains have a role in the coupling of the two activities. All enzymes relaxed supercoiled DNA to the same extent as the wild-type enzyme did, implying that only ATP-dependent reactions were affected. Mutant genes were examined in vivo for their abilities to complement a temperature-sensitive E. coli gyrB mutant, and the activities correlated well with the in vitro activities. We show that the known R136 novobiocin resistance mutations bestow a significant loss of inhibitor potency in the ATPase assay. Four new residues (D73, G77, I78, and T165) that, when changed to the appropriate amino acid, result in both significant levels of novobiocin resistance and maintain in vivo function were identified in E. coli. PMID:12604539

  8. Inverted Solubility of the Pro 23 to Val Mutant of Human γD Crystallin-- Altered Phase Diagram from a Single Amino Acid Substitution and the Effect of PEG

    NASA Astrophysics Data System (ADS)

    McManus, J. J.; Lomakin, A.; Basan, M.; Ogun, O.; Pande, A.; Pande, J.; Benedek, G. B.

    2007-03-01

    Many genetic cataracts are the result of single point mutations in the amino acid sequence of lens crystallin proteins. The P23T mutation in human γD-crystallin (HGD) is associated with several different cataract phenotypes. The solubility of the protein shows an inverse temperature dependence. This is in contrast with the native protein. The replacement of Thr23 with a Ser or a Val residue shifts the location of the inverted solubility line to higher concentrations [1]. We describe the phase diagram of the P23V mutant of HGD, which exhibits aggregation, crystallization and liquid-liquid phase separation (LLPS). We have used QLS to probe the interactions of the protein in the soluble region of the phase diagram. We have developed a model to describe the observed retrograde solubility of the protein. Using PEG we introduce a so-called ``depletion interaction'' to further investigate the origin of the retrograde solubility. [1] A. Pande, O. Anunziata, N. Asherie, O. Ogun, G.B. Benedek, J. Pande, Biochemistry 44, 2491-2500 (2005).

  9. Production of amino acids by analog-resistant mutants of the cyanobacterium Spirulina platensis.

    PubMed Central

    Riccardi, G; Sora, S; Ciferri, O

    1981-01-01

    Mutants of Spirulina platensis resistant to 5-fluorotryptophan, beta-3-thienyl-alanine, ethionine, p-fluorophenylalanine, or azetidine-2-carboxylic acid were isolated. Some of these mutants appeared to be resistant to more than one analog and to overproduce the corresponding amino acids. A second group was composed of mutants that were resistant to one analog only. Of the latter mutants, one resistant to azetidine-2-carboxylic acid was found to overproduce proline only, whereas one resistant to fluorotryptophan and one resistant to ethionine did not overproduce any of the tested amino acids. PMID:6792182

  10. REVERSAL OF d-CYCLOSERINE INHIBITION OF BACTERIAL GROWTH BY ALANINE

    PubMed Central

    Zygmunt, Walter A.

    1962-01-01

    Zygmunt, Walter A. (Mead Johnson & Co., Evansville, Ind.). Reversal of d-cycloserine inhibition of bacterial growth by alanine. J. Bacteriol. 84:154–156. 1962.—Reversal of the antibacterial activity of d-4-amino-3-isoxazolidone by alanine in bacterial cultures actively growing on chemically defined media was compared in cultures requiring exogenous alanine and those capable of its synthesis. dl-Alanine was the most effective reversal agent in Pediococcus cerevisiae, an alanine-requiring organism, and d-alanine was effective in Escherichia coli and Staphylococcus aureus, organisms synthesizing alanine. With all three cultures, l-alanine was the least effective reversal agent. PMID:16561951

  11. 4-amino-substituted benzenesulfonamides as inhibitors of human carbonic anhydrases.

    PubMed

    Rutkauskas, Kęstutis; Zubrienė, Asta; Tumosienė, Ingrida; Kantminienė, Kristina; Kažemėkaitė, Marytė; Smirnov, Alexey; Kazokaitė, Justina; Morkūnaitė, Vaida; Čapkauskaitė, Edita; Manakova, Elena; Gražulis, Saulius; Beresnevičius, Zigmuntas J; Matulis, Daumantas

    2014-01-01

    A series of N-aryl-β-alanine derivatives and diazobenzenesulfonamides containing aliphatic rings were designed, synthesized, and their binding to carbonic anhydrases (CA) I, II, VI, VII, XII, and XIII was studied by the fluorescent thermal shift assay and isothermal titration calorimetry. The results showed that 4-substituted diazobenzenesulfonamides were more potent CA binders than N-aryl-β-alanine derivatives. Most of the N-aryl-β-alanine derivatives showed better affinity for CA II while diazobenzenesulfonamides possessed nanomolar affinities towards CA I isozyme. X-ray crystallographic structures showed the modes of binding of both compound groups. PMID:25353386

  12. Metabolomics Analysis Identifies D-Alanine-D-alanine Ligase as the Primary Lethal Target of D-cycloserine in Mycobacteria

    PubMed Central

    Halouska, Steven; Fenton, Robert J.; Zinniel, Denise K.; Marshall, Darrell D.; Barletta, Raúl G.; Powers, Robert

    2014-01-01

    D-cycloserine is an effective second line antibiotic used as a last resort to treat multi (MDR)- and extensively (XDR)- drug resistant strains of Mycobacterium tuberculosis. D-cycloserine interferes with the formation of peptidoglycan biosynthesis by competitive inhibition of Alanine racemase (Alr) and D-Alanine-D-alanine ligase (Ddl). Although, the two enzymes are known to be inhibited, the in vivo lethal target is still unknown. Our NMR metabolomics work has revealed that Ddl is the primary target of DCS, as cell growth is inhibited when the production of D-alanyl-D-alanine is halted. It is shown that inhibition of Alr may contribute indirectly by lowering the levels of D-alanine thus allowing DCS to outcompete D-alanine for Ddl binding. The NMR data also supports the possibility of a transamination reaction to produce D-alanine from pyruvate and glutamate, thereby bypassing Alr inhibition. Furthermore, the inhibition of peptidoglycan synthesis results in a cascading effect on cellular metabolism as there is a shift toward the catabolic routes to compensate for accumulation of peptidoglycan precursors. PMID:24303782

  13. Selectivity for d-Lactate Incorporation into the Peptidoglycan Precursors of Lactobacillus plantarum: Role of Aad, a VanX-Like d-Alanyl-d-Alanine Dipeptidase▿ †

    PubMed Central

    Deghorain, Marie; Goffin, Philippe; Fontaine, Laetitia; Mainardi, Jean-Luc; Daniel, Richard; Errington, Jeff; Hallet, Bernard; Hols, Pascal

    2007-01-01

    Lactobacillus plantarum produces peptidoglycan precursors ending in d-lactate instead of d-alanine, making the bacterium intrinsically resistant to vancomycin. The ligase Ddl of L. plantarum plays a central role in this specificity by synthesizing d-alanyl-d-lactate depsipeptides that are added to the precursor peptide chain by the enzyme MurF. Here we show that L. plantarum also encodes a d-Ala-d-Ala dipeptidase, Aad, which eliminates d-alanyl-d-alanine dipeptides that are produced by the Ddl ligase, thereby preventing their incorporation into the precursors. Although d-alanine-ended precursors can be incorporated into the cell wall, inactivation of Aad failed to suppress growth defects of L. plantarum mutants deficient in d-lactate-ended precursor synthesis. PMID:17400741

  14. Postirradiation effects in alanine dosimeter probes of two different suppliers.

    PubMed

    Anton, Mathias

    2008-03-01

    The measurand relevant for the dosimetry for radiation therapy is the absorbed dose to water, DW. The Physikalisch-Technische Bundesanstalt (PTB) is establishing a secondary standard for DW for high-energy photon and electron radiation based on electron spin resonance (ESR) of the amino acid alanine. For practical applications, like, for example, intercomparison measurements using the ESR/alanine dosimetry system, the temporal evolution of the ESR signal of irradiated probes is an important issue. This postirradiation behaviour is investigated for alanine pellets of two different suppliers for different storage conditions. The influence of the storage conditions on the temporal evolution may be dependent on the type of probes used. The measurement and analysis method developed at the PTB is able to circumvent the apparent difficulties in the case of alanine/paraffin probes. Care has to be taken in case this method cannot be applied. PMID:18296760

  15. GMXPBSA 2.0: A GROMACS tool to perform MM/PBSA and computational alanine scanning

    NASA Astrophysics Data System (ADS)

    Paissoni, C.; Spiliotopoulos, D.; Musco, G.; Spitaleri, A.

    2014-11-01

    GMXPBSA 2.0 is a user-friendly suite of Bash/Perl scripts for streamlining MM/PBSA calculations on structural ensembles derived from GROMACS trajectories, to automatically calculate binding free energies for protein-protein or ligand-protein complexes. GMXPBSA 2.0 is flexible and can easily be customized to specific needs. Additionally, it performs computational alanine scanning (CAS) to study the effects of ligand and/or receptor alanine mutations on the free energy of binding. Calculations require only for protein-protein or protein-ligand MD simulations. GMXPBSA 2.0 performs different comparative analysis, including a posteriori generation of alanine mutants of the wild-type complex, calculation of the binding free energy values of the mutant complexes and comparison of the results with the wild-type system. Moreover, it compares the binding free energy of different complexes trajectories, allowing the study the effects of non-alanine mutations, post-translational modifications or unnatural amino acids on the binding free energy of the system under investigation. Finally, it can calculate and rank relative affinity to the same receptor utilizing MD simulations of proteins in complex with different ligands. In order to dissect the different MM/PBSA energy contributions, including molecular mechanic (MM), electrostatic contribution to solvation (PB) and nonpolar contribution to solvation (SA), the tool combines two freely available programs: the MD simulations software GROMACS and the Poisson-Boltzmann equation solver APBS. All the calculations can be performed in single or distributed automatic fashion on a cluster facility in order to increase the calculation by dividing frames across the available processors. The program is freely available under the GPL license. Catalogue identifier: AETQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETQ_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing

  16. Characterization of lipoteichoic acid structures from three probiotic Bacillus strains: involvement of D-alanine in their biological activity.

    PubMed

    Villéger, Romain; Saad, Naima; Grenier, Karine; Falourd, Xavier; Foucat, Loïc; Urdaci, Maria C; Bressollier, Philippe; Ouk, Tan-Sothea

    2014-10-01

    Probiotics represent a potential strategy to influence the host's immune system thereby modulating immune response. Lipoteichoic Acid (LTA) is a major immune-stimulating component of Gram-positive cell envelopes. This amphiphilic polymer, anchored in the cytoplasmic membrane by means of its glycolipid component, typically consists of a poly (glycerol-phosphate) chain with D-alanine and/or glycosyl substitutions. LTA is known to stimulate macrophages in vitro, leading to secretion of inflammatory mediators such as Nitric Oxide (NO). This study investigates the structure-activity relationship of purified LTA from three probiotic Bacillus strains (Bacillus cereus CH, Bacillus subtilis CU1 and Bacillus clausii O/C). LTAs were extracted from bacterial cultures and purified. Chemical modification by means of hydrolysis at pH 8.5 was performed to remove D-alanine. The molecular structure of native and modified LTAs was determined by (1)H NMR and GC-MS, and their inflammatory potential investigated by measuring NO production by RAW 264.7 macrophages. Structural analysis revealed several differences between the newly characterized LTAs, mainly relating to their D-alanylation rates and poly (glycerol-phosphate) chain length. We observed induction of NO production by LTAs from B. subtilis and B. clausii, whereas weaker NO production was observed with B. cereus. LTA dealanylation abrogated NO production independently of the glycolipid component, suggesting that immunomodulatory potential depends on D-alanine substitutions. D-alanine may control the spatial configuration of LTAs and their recognition by cell receptors. Knowledge of molecular mechanisms behind the immunomodulatory abilities of probiotics is essential to optimize their use. PMID:25090957

  17. Characterization of Lactobacillus salivarius alanine racemase: short-chain carboxylate-activation and the role of A131.

    PubMed

    Kobayashi, Jyumpei; Yukimoto, Jotaro; Shimizu, Yasuhiro; Ohmori, Taketo; Suzuki, Hirokazu; Doi, Katsumi; Ohshima, Toshihisa

    2015-01-01

    Many strains of lactic acid bacteria produce high concentrations of d-amino acids. Among them, Lactobacillus salivarius UCC 118 produces d-alanine at a relative concentration much greater than 50 % of the total d, l-alanine (100d/d, l-alanine). We characterized the L. salivarius alanine racemase (ALR) likely responsible for this d-alanine production and found that the enzyme was activated by carboxylates, which is an unique characteristic among ALRs. In addition, alignment of the amino acid sequences of several ALRs revealed that A131 of L. salivarius ALR is likely involved in the activation. To confirm that finding, an L. salivarius ALR variant with an A131K (ALR(A131K)) substitution was prepared, and its properties were compared with those of ALR. The activity of ALR(A131K) was about three times greater than that of ALR. In addition, whereas L. salivarius ALR was strongly activated by low concentrations (e.g., 1 mM) of short chain carboxylates, and was inhibited at higher concentrations (e.g., 10 mM), ALR(A131K) was clearly inhibited at all carboxylate concentrations tested (1-40 mM). Acetate also increased the stability of ALR such that maximum activity was observed at 35 °C and pH 8.0 without acetate, but at 50 °C in the presence of 1 mM acetate. On the other hand, maximum ALR(A131K) activity was observed at 45 °C and around pH 9.0 with or without acetate. It thus appears that A131 mediates the activation and stabilization of L. salivarius ALR by short chain carboxylates. PMID:26543773

  18. Autolysis of Lactococcus lactis Is Increased upon d-Alanine Depletion of Peptidoglycan and Lipoteichoic Acids

    PubMed Central

    Steen, Anton; Palumbo, Emmanuelle; Deghorain, Marie; Cocconcelli, Pier Sandro; Delcour, Jean; Kuipers, Oscar P.; Kok, Jan; Buist, Girbe; Hols, Pascal

    2005-01-01

    Mutations in the genes encoding enzymes responsible for the incorporation of d-Ala into the cell wall of Lactococcus lactis affect autolysis. An L. lactis alanine racemase (alr) mutant is strictly dependent on an external supply of d-Ala to be able to synthesize peptidoglycan and to incorporate d-Ala in the lipoteichoic acids (LTA). The mutant lyses rapidly when d-Ala is removed at mid-exponential growth. AcmA, the major lactococcal autolysin, is partially involved in the increased lysis since an alr acmA double mutant still lyses, albeit to a lesser extent. To investigate the role of d-Ala on LTA in the increased cell lysis, a dltD mutant of L. lactis was investigated, since this mutant is only affected in the d-alanylation of LTA and not the synthesis of peptidoglycan. Mutation of dltD results in increased lysis, showing that d-alanylation of LTA also influences autolysis. Since a dltD acmA double mutant does not lyse, the lysis of the dltD mutant is totally AcmA dependent. Zymographic analysis shows that no degradation of AcmA takes place in the dltD mutant, whereas AcmA is degraded by the extracellular protease HtrA in the wild-type strain. In L. lactis, LTA has been shown to be involved in controlled (directed) binding of AcmA. LTA lacking d-Ala has been reported in other bacterial species to have an improved capacity for autolysin binding. Mutation of dltD in L. lactis, however, does not affect peptidoglycan binding of AcmA; neither the amount of AcmA binding to the cells nor the binding to specific loci is altered. In conclusion, d-Ala depletion of the cell wall causes lysis by two distinct mechanisms. First, it results in an altered peptidoglycan that is more susceptible to lysis by AcmA and also by other factors, e.g., one or more of the other (putative) cell wall hydrolases expressed by L. lactis. Second, reduced amounts of d-Ala on LTA result in decreased degradation of AcmA by HtrA, which results in increased lytic activity. PMID:15601695

  19. Structure of D-alanine-D-alanine ligase from Yersinia pestis: nucleotide phosphate recognition by the serine loop.

    PubMed

    Tran, Huyen Thi; Hong, Myoung Ki; Ngo, Ho Phuong Thuy; Huynh, Kim Hung; Ahn, Yeh Jin; Wang, Zhong; Kang, Lin Woo

    2016-01-01

    D-Alanyl-D-alanine is an essential precursor of bacterial peptidoglycan and is synthesized by D-alanine-D-alanine ligase (DDL) with hydrolysis of ATP; this reaction makes DDL an important drug target for the development of antibacterial agents. Five crystal structures of DDL from Yersinia pestis (YpDDL) were determined at 1.7-2.5 Å resolution: apo, AMP-bound, ADP-bound, adenosine 5'-(β,γ-imido)triphosphate-bound, and D-alanyl-D-alanine- and ADP-bound structures. YpDDL consists of three domains, in which four loops, loop 1, loop 2 (the serine loop), loop 3 (the ω-loop) and loop 4, constitute the binding sites for two D-alanine molecules and one ATP molecule. Some of them, especially the serine loop and the ω-loop, show flexible conformations, and the serine loop is mainly responsible for the conformational change in substrate nucleotide phosphates. Enzyme-kinetics assays were carried out for both the D-alanine and ATP substrates and a substrate-binding mechanism was proposed for YpDDL involving conformational changes of the loops. PMID:26894530

  20. Vitreous Substitutes.

    PubMed

    Foster, William Joseph

    2008-04-01

    Modern vitreoretinal surgery is a young science. While tremendous developments have occurred in instrument design and technique since Machemer first described vitrectomy surgery in 1973[1], the application of advanced materials concepts to the development of intra-ocular compounds is a particularly exciting area of research. To date, the development of vitreous substitutes has played a significant role in enabling the dramatic and progressive improvement in surgical outcome, but perhaps no other area of research has the potential to further improve the treatment of retinal detachment and other retinal disorders. While prior research has focused solely upon the ability of a compound to re-attach the retina, future research should seek to enable the surgeon to inhibit the development of proliferative vitreoretinopathy and re-detachment, the integration of stem-cell therapies with surgical retina, long-term delivery of medications to the posterior segment, and the promotion of more rapid and complete visual rehabilitation. PMID:19343097

  1. Whole genome sequencing of phage resistant Bacillus anthracis mutants reveals an essential role for cell surface anchoring protein CsaB in phage AP50c adsorption

    PubMed Central

    2012-01-01

    Background Spontaneous Bacillus anthracis mutants resistant to infection by phage AP50c (AP50R) exhibit a mucoid colony phenotype and secrete an extracellular matrix. Methods Here we utilized a Roche/454-based whole genome sequencing approach to identify mutations that are candidates for conferring AP50c phage resistance, followed by genetic deletion and complementation studies to validate the whole genome sequence data and demonstrate that the implicated gene is necessary for AP50c phage infection. Results Using whole genome sequence data, we mapped the relevant mutations in six AP50R strains to csaB. Eleven additional spontaneous mutants, isolated in two different genetic backgrounds, were screened by PCR followed by Sanger sequencing of the csaB gene. In each spontaneous mutant, we found either a non-synonymous substitution, a nonsense mutation, or a frame-shift mutation caused by single nucleotide polymorphisms or a 5 base pair insertion in csaB. All together, 5 and 12 of the 17 spontaneous mutations are predicted to yield altered full length and truncated CsaB proteins respectively. As expected from these results, a targeted deletion or frame-shift mutations introduced into csaB in a different genetic background, in a strain not exposed to AP50c, resulted in a phage resistant phenotype. Also, substitution of a highly conserved histidine residue with an alanine residue (H270A) in CsaB resulted in phage resistance, suggesting that a functional CsaB is necessary for phage sensitivity. Conversely, introduction of the wild type allele of csaB in cis into the csaB deletion mutant by homologous recombination or supplying the wild type CsaB protein in trans from a plasmid restored phage sensitivity. The csaB mutants accumulated cell wall material and appeared to have a defective S-layer, whereas these phenotypes were reverted in the complemented strains. Conclusions Taken together, these data suggest an essential role for csaB in AP50c phage infection, most likely in

  2. EPR/alanine dosimetry for two therapeutic proton beams

    NASA Astrophysics Data System (ADS)

    Marrale, Maurizio; Carlino, Antonio; Gallo, Salvatore; Longo, Anna; Panzeca, Salvatore; Bolsi, Alessandra; Hrbacek, Jan; Lomax, Tony

    2016-02-01

    In this work the analysis of the electron paramagnetic resonance (EPR) response of alanine pellets exposed to two different clinical proton beams employed for radiotherapy is performed. One beam is characterized by a passive delivery technique and is dedicated to the eyes treatment (OPTIS2 beam line). Alanine pellets were irradiated with a 70 MeV proton beam corresponding to 35 mm range in eye tissue. We investigated how collimators with different sizes and shape used to conform the dose to the planned target volume influence the delivered dose. For this purpose we performed measurements with varying the collimator size (Output Factor) and the results were compared with those obtained with other dosimetric techniques (such as Markus chamber and diode detector). This analysis showed that the dosimeter response is independent of collimator diameter if this is larger than or equal to 10 mm. The other beam is characterized by an active spot-scanning technique, the Gantry1 beam line (maximum energy 230 MeV), and is used to treat deep-seated tumors. The dose linearity of alanine response in the clinical dose range was tested and the alanine dose response at selected locations in depth was measured and compared with the TPS planned dose in a quasi-clinical scenario. The alanine response was found to be linear in the dose in the clinical explored range (from 10 to 70 Gy). Furthermore, a depth dose profile in a quasi-clinical scenario was measured and compared to the dose computed by the Treatment Planning System PSIPLAN. The comparison of calibrated proton alanine measurements and TPS dose shows a difference under 1% in the SOBP and a "quenching" effect up to 4% in the distal part of SOBP. The positive dosimetric characteristics of the alanine pellets confirm the feasibility to use these detectors for "in vivo" dosimetry in clinical proton beams.

  3. Molecular self-assembly in substituted alanine derivatives: XRD, Hirshfeld surfaces and DFT studies

    NASA Astrophysics Data System (ADS)

    Rajalakshmi, Periasamy; Srinivasan, Navaneethakrishnan; Sivaraman, Gandhi; Razak, Ibrahim Abdul; Rosli, Mohd Mustaqim; Krishnakumar, Rajaputi Venkatraman

    2014-06-01

    The molecular assemblage in the crystal structures of three modified chiral amino acids, two of which are isomeric D- and L-pairs boc-L-benzothienylalanine (BLA), boc-D-benzothienylalanine (BDA) and the other boc-D-naphthylalanine (NDA) differing from this pair very slightly in the chemical modification introduced, is accurately described. The aggregation of amino acid molecules is similar in all the crystals and may be described as a twisted double helical ladder in which two complementary long helical chains formed through O-H⋯O hydrogen bonds are interconnected through the characteristic head-to-tail N-H⋯O hydrogen bonds. Thus the molecular aggregation enabled through classical hydrogen bonds may be regarded as a mimic of the characteristic double helical structure of DNA. Also, precise structural information involving these amino acid molecules with lower symmetry exhibiting higher trigonal symmetry in their self-assembly is expected to throw light on the nature and strength of intermolecular interactions and their role in self-assembly of molecular aggregates, which are crucial in developing new or at least supplement existing crystal engineering strategies. Single crystal X-ray analysis and their electronic structures were calculated at the DFT level with a detailed analysis of Hirshfeld surfaces and fingerprint plots facilitating a comparison of intermolecular interactions in building different supramolecular architectures.

  4. The structure of alanine racemase from Acinetobacter baumannii

    PubMed Central

    Davis, Emily; Scaletti-Hutchinson, Emma; Opel-Reading, Helen; Nakatani, Yoshio; Krause, Kurt L.

    2014-01-01

    Acinetobacter baumannii is an opportunistic Gram-negative bacterium which is a common cause of hospital-acquired infections. Numerous antibiotic-resistant strains exist, emphasizing the need for the development of new antimicrobials. Alanine racemase (Alr) is a pyridoxal 5′-phosphate dependent enzyme that is responsible for racemization between enantiomers of alanine. As d-alanine is an essential component of the bacterial cell wall, its inhibition is lethal to prokaryotes, making it an excellent antibiotic drug target. The crystal structure of A. baumannii alanine racemase (AlrAba) from the highly antibiotic-resistant NCTC13302 strain has been solved to 1.9 Å resolution. Comparison of AlrAba with alanine racemases from closely related bacteria demonstrates a conserved overall fold. The substrate entryway and active site of the enzymes were shown to be highly conserved. The structure of AlrAba will provide the template required for future structure-based drug-design studies. PMID:25195891

  5. Caramelization of maltose solution in presence of alanine.

    PubMed

    Fadel, H H M; Farouk, A

    2002-01-01

    Two solutions of maltose in water were used to prepare caramels. Alanine as a catalyst was added to one of these solutions. The caramelization was conducted at 130 degrees C for total time period 90 minutes. Convenient samples were taken of each caramel solution every 30 min and subjected to sensory analysis and isolation of volatile components. The odour and colour sensory tests were evaluated according to the international standard methods (ISO). The results showed that, the presence of alanine gave rise to a high significant (P < 0.01) decrease in acid attributes and remarkable increase in the sweet and caramel attributes, which are the most important caramel notes. On the other hand the increase in heating time in presence of alanine as a catalyst resulted in a high significant (P < 0.01) increase in the browning rate of caramel solution. The new technique Solid Phase Micro Extraction (SPME) was used for trapping the volatile components in the headspace of each caramel samples followed by thermal desorption and GC and GC - MS analysis. The 5-hydroxymethyl-2-furfural (HMF), the main characteristic caramel product, showed its highest value in sample containing alanine after heating for 60 minutes. The best sensory results of the sample contains alanine were confirmed by the presence of high concentrations of the most potent odorants of caramel besides to the formation of some volatile compounds have caramel like flavours such as 2-acetyl pyrrole, 2-furanones and 1-(2-furanyl)1,2-propandione. PMID:12395187

  6. Alanine aminotransferase 1 (OsAlaAT1) plays an essential role in the regulation of starch storage in rice endosperm.

    PubMed

    Yang, Jungil; Kim, Sung-Ryul; Lee, Sang-Kyu; Choi, Heebak; Jeon, Jong-Seong; An, Gynheung

    2015-11-01

    Alteration of storage substances, in particular the major storage form starch, leads to floury endosperm. Because floury mutants have physical attributes for milling processes, identification and characterization of those mutants are valuable. In this study we identified a floury endosperm mutant caused by a T-DNA insertion in Oryza sativa alanine-aminotransferase1 (OsAlaAT1). OsAlaAT1 is localized in the cytosol and has aminotransferase enzyme activity. The osalaat1 mutant has less amylose and its amylopectin is structurally altered. OsAlaAT1 is predominantly expressed in developing seeds during active starch synthesis. AlaAT catalyzes the interconversion of pyruvate to alanine, and this pathway is activated under low-oxygen conditions. Consistently, OsAlaAT1 is induced by such conditions. Expression of the starch synthesis genes AGPases, OsSSI, OsSSIIa, and OsPPDKB is decreased in the mutant. Thus, our observations suggest that OsAlaAT1 plays an essential role in starch synthesis in developing seeds that are exposed to low concentrations of oxygen. PMID:26475189

  7. Morphosynthesis of alanine mesocrystals by pH control.

    PubMed

    Ma, Yurong; Cölfen, Helmut; Antonietti, Markus

    2006-06-01

    Crystallization of DL-alanine is studied as a single polymorph model case to analyze the different modes of crystallization of polar organic molecules in absence of any structure directing additives. Depending on supersaturation, which is controlled either by temperature or by pH, and in the absence of additives, crystallization by mesoscale assembly of nanoparticles is found over a wide range of conditions, leading to so-called mesocrystals. This supplements the classical molecule-based crystallization mechanism, which is identified at lower supersaturations and at pH values away from the isoelectric point (IEP). The resulting alanine crystals are characterized by SEM, XRD, and single-crystal analysis. Time-resolved conductivity measurements and dynamic light scattering of the reaction solutions reveal information about precursor structures and reaction kinetics. A formation mechanism is proposed for the alanine mesocrystals. PMID:16771332

  8. Potent Antiviral HIV-1 Protease Inhibitor GRL-02031 Adapts to the Structures of Drug Resistant Mutants with Its P1;#8242;-Pyrrolidinone Ring

    SciTech Connect

    Chang, Yu-Chung E.; Yu, XiaXia; Zhang, Ying; Tie, Yunfeng; Wang, Yuan-Fang; Yashchuk, Sofiya; Ghosh, Arun K.; Harrison, Robert W.; Weber, Irene T.

    2012-11-14

    GRL-02031 (1) is an HIV-1 protease (PR) inhibitor containing a novel P1' (R)-aminomethyl-2-pyrrolidinone group. Crystal structures at resolutions of 1.25-1.55 {angstrom} were analyzed for complexes of 1 with the PR containing major drug resistant mutations, PR{sub I47V}, PR{sub L76V}, PR{sub V82A}, and PR{sub N88D}. Mutations of I47V and V82A alter residues in the inhibitor-binding site, while L76V and N88D are distal mutations having no direct contact with the inhibitor. Substitution of a smaller amino acid in PR{sub I47V} and PR{sub L76V} and the altered charge of PR{sub N88D} are associated with significant local structural changes compared to the wild-type PR{sub WT}, while substitution of alanine in PR{sub V82A} increases the size of the S1' subsite. The P1' pyrrolidinone group of 1 accommodates to these local changes by assuming two different conformations. Overall, the conformation and interactions of 1 with PR mutants resemble those of PR{sub WT} with similar inhibition constants in good agreement with the antiviral potency on multidrug resistant HIV-1.

  9. Atomic Layer Deposition of L-Alanine Polypeptide

    DOE PAGESBeta

    Fu, Yaqin; Li, Binsong; Jiang, Ying-Bing; Dunphy, Darren R.; Tsai, Andy; Tam, Siu-Yue; Fan, Hongyou Y.; Zhang, Hongxia; Rogers, David; Rempe, Susan; et al

    2014-10-30

    L-Alanine polypeptide thin films were synthesized via atomic layer deposition (ALD). Rather, instead of using an amino acid monomer as the precursor, an L-alanine amino acid derivatized with a protecting group was used to prevent self-polymerization, increase the vapor pressure, and allow linear cycle-by-cycle growth emblematic of ALD. Moreover, the successful deposition of a conformal polypeptide film has been confirmed by FTIR, TEM, and Mass Spectrometry, and the ALD process has been extended to polyvaline.

  10. Stereoselective aminoacylation of a dinucleoside monophosphate by the imidazolides of DL-alanine and N-(tert-butoxycarbonyl)-DL-alanine

    NASA Technical Reports Server (NTRS)

    Profy, A. T.; Usher, D. A.

    1984-01-01

    The aminoacylation of diinosine monophosphate was studied experimentally. When the acylating agent was the imidazolide of N-(tert-butoxycarbonyl)-DL-alanine, a 40 percent enantiomeric excess of the isomer was incorporated at the 2' site and the positions of equilibrium for the reversible 2'-3' migration reaction differed for the D and L enantiomers. The reactivity of the nucleoside hydroxyl groups was found to decrease on the order 2'(3') less than internal 2' and less than 5', and the extent of the reaction was affected by the concentration of the imidazole buffer. Reaction of IpI with imidazolide of unprotected DL-alanine, by contrast, led to an excess of the D isomer at the internal 2' site. Finally, reaction with the N-carboxy anhydride of DL-alanine occurred without stereoselection. These results are found to be relevant to the study of the evolution of optical chemical activity and the origin of genetically directed protein synthesis.

  11. Biochemical and biological analysis of Mek1 phosphorylation site mutants.

    PubMed Central

    Huang, W; Kessler, D S; Erikson, R L

    1995-01-01

    Recently, we described the constitutive activation of Mek1 by mutation of its two serine phosphorylation sites. We have now characterized the biochemical properties of these Mek1 mutants and performed microinjection experiments to investigate the effect of an activated Mek on oocyte maturation. Single acidic substitution of either serine 218 or 222 activated Mek1 by 10-50 fold. The double acidic substitutions, [Asp218, Asp222] and [Asp218, Glu222], activated Mek1 over 6000-fold. The specific activity of the [Asp218, Asp222] and [Asp218, Glu222] Mek1 mutants, 29 nanomole phosphate per minute per milligram, is similar to that of wild-type Mek1 activated by Raf-1 in vitro. Although the mutants with double acidic substitutions could not be further activated by Raf-1, three of those with single acidic substitution were activated by Raf-1 to the specific activity of activated wild-type Mek1. Injection of the [Asp218, Asp222] Mek1 mutant into Xenopus oocytes activated both MAP kinase and histone H1 kinase and induced germinal vesicle breakdown, an effect that was only partially blocked by inhibition of protein synthesis. These data provide a measure of Mek's potential to influence cell functions and a quantitative basis to assess the biological effects of Mek1 mutants in a variety of circumstances. Images PMID:7612960

  12. Respiration of [14C]alanine by the ectomycorrhizal fungus Paxillus involutus.

    PubMed

    Chalot, M; Brun, A; Finlay, R D; Söderström, B

    1994-08-01

    The ectomycorrhizal fungus Paxillus involutus efficiently took up exogenously supplied [14C]alanine and rapidly converted it to pyruvate, citrate, succinate, fumarate and to CO2, thus providing direct evidence for the utilisation of alanine as a respiratory substrate. [14C]alanine was further actively metabolised to glutamate, glutamine and aspartate. Exposure to aminooxyacetate completely suppressed 14CO2 evolution and greatly reduced the flow of carbon from [14C]alanine to tricarboxylic acid cycle intermediates and amino acids, suggesting that alanine aminotransferase plays a pivotal role in alanine metabolism in Paxillus involutus. PMID:8082830

  13. Spectrophotometric readout for an alanine dosimeter for food irradiation applications

    NASA Astrophysics Data System (ADS)

    Ebraheem, S.; Beshir, W. B.; Eid, S.; Sobhy, R.; Kovács, A.

    2003-06-01

    The alanine-electron spin resonance (EPR) readout system is well known as a reference and transfer dosimetry system for the evaluation of high doses in radiation processing. The high cost of an EPR/alanine dosimetry system is a serious handicap for large-scale routine application in irradiation facilities. In this study, the use of a complex produced by dissolving irradiated L-alanine in 1,4-phenyl diammonium dichloride solution was investigated for dosimetry purposes. This complex—having a purple colour—has an increasing absorbance with increasing dose in the range of 1-20 kGy. The applicability of spectrophotometric evaluation was studied by measuring the absorbance intensity of this complex at 360 and 505 nm, respectively. Fluorimetric evaluation was also investigated by measuring the emission of the complex at 435 nm as a function of dose. The present method is easy for routine application. The effect of the dye concentration as well as the suitable amount of irradiated alanine has been studied. With respect to routine application, the stability of the product complex after its formation was also investigated.

  14. Formation of {gamma}-alumina nanorods in presence of alanine

    SciTech Connect

    Dabbagh, Hossein A.; Rasti, Elham; Yalfani, Mohammad S.; Medina, Francesc

    2011-02-15

    Graphical abstract: Nanorod aluminas with a possible hexagonal symmetry, high surface area and relatively narrow pore size distribution were obtained. Research highlights: {yields} Research highlights {yields} Boehmite was prepared using a green sol-gel process in the presence of alanine. {yields} Nanorod aluminas with a high surface area were obtained. {yields} Addition of alanine would shape the size of the holes and crevices. {yields} The morphologies of the nanorods were revealed by transmission electron microscope. -- Abstract: Boehmite and alumina nanostructures were prepared using a simple green sol-gel process in the presence of alanine in water medium at room temperature. The uncalcined (dried at 200 {sup o}C) and the calcined materials (at 500, 600 and 700 {sup o}C for 4 h) were characterized using XRD, TEM, SEM, N{sub 2} physisorption and TGA. Nanorod aluminas with a possible hexagonal symmetry, high surface area and relatively narrow pore size distribution were obtained. The surface area was enhanced and crystallization was retarded as the alanine content increased. The morphologies of the nanoparticles and nanorods were revealed by a transmission electron microscope (TEM).

  15. Beta-alanine supplementation in high-intensity exercise.

    PubMed

    Harris, Roger C; Sale, Craig

    2012-01-01

    Glycolysis involves the oxidation of two neutral hydroxyl groups on each glycosyl (or glucosyl) unit metabolised, yielding two carboxylic acid groups. During low-intensity exercise these, along with the remainder of the carbon skeleton, are further oxidised to CO(2) and water. But during high-intensity exercise a major portion (and where blood flow is impaired, then most) is accumulated as lactate anions and H(+). The accumulation of H(+) has deleterious effects on muscle function, ultimately impairing force production and contributing to fatigue. Regulation of intracellular pH is achieved over time by export of H(+) out of the muscle, although physicochemical buffers in the muscle provide the first line of defence against H(+) accumulation. In order to be effective during high-intensity exercise, buffers need to be present in high concentrations in muscle and have pK(a)s within the intracellular exercise pH transit range. Carnosine (β-alanyl-L-histidine) is ideal for this role given that it occurs in millimolar concentrations within the skeletal muscle and has a pK(a) of 6.83. Carnosine is a cytoplasmic dipeptide formed by bonding histidine and β-alanine in a reaction catalysed by carnosine synthase, although it is the availability of β-alanine, obtained in small amounts from hepatic synthesis and potentially in greater amounts from the diet that is limiting to synthesis. Increasing muscle carnosine through increased dietary intake of β-alanine will increase the intracellular buffering capacity, which in turn might be expected to increase high-intensity exercise capacity and performance where this is pH limited. In this study we review the role of muscle carnosine as an H(+) buffer, the regulation of muscle carnosine by β-alanine, and the available evidence relating to the effects of β-alanine supplementation on muscle carnosine synthesis and the subsequent effects of this on high-intensity exercise capacity and performance. PMID:23075550

  16. The unresolved puzzle why alanine extensions cause disease.

    PubMed

    Winter, Reno; Liebold, Jens; Schwarz, Elisabeth

    2013-08-01

    The prospective increase in life expectancy will be accompanied by a rise in the number of elderly people who suffer from ill health caused by old age. Many diseases caused by aging are protein misfolding diseases. The molecular mechanisms underlying these disorders receive constant scientific interest. In addition to old age, mutations also cause congenital protein misfolding disorders. Chorea Huntington, one of the most well-known examples, is caused by triplet extensions that can lead to more than 100 glutamines in the N-terminal region of huntingtin, accompanied by huntingtin aggregation. So far, nine disease-associated triplet extensions have also been described for alanine codons. The extensions lead primarily to skeletal malformations. Eight of these proteins represent transcription factors, while the nuclear poly-adenylate binding protein 1, PABPN1, is an RNA binding protein. Additional alanines in PABPN1 lead to the disease oculopharyngeal muscular dystrophy (OPMD). The alanine extension affects the N-terminal domain of the protein, which has been shown to lack tertiary contacts. Biochemical analyses of the N-terminal domain revealed an alanine-dependent fibril formation. However, fibril formation of full-length protein did not recapitulate the findings of the N-terminal domain. Fibril formation of intact PABPN1 was independent of the alanine segment, and the fibrils displayed biochemical properties that were completely different from those of the N-terminal domain. Although intranuclear inclusions have been shown to represent the histochemical hallmark of OPMD, their role in pathogenesis is currently unclear. Several cell culture and animal models have been generated to study the molecular processes involved in OPMD. These studies revealed a number of promising future therapeutic strategies that could one day improve the quality of life for the patients. PMID:23612654

  17. Cross-Link Formation and Peptidoglycan Lattice Assembly in the FemA Mutant of Staphylococcus aureus

    PubMed Central

    2015-01-01

    Staphylococcus aureus FemA mutant grown in the presence of an alanine-racemase inhibitor was labeled with d-[1-13C]alanine, l-[3-13C]alanine, [2-13C]glycine, and l-[5-19F]lysine to characterize some details of the peptidoglycan tertiary structure. Rotational-echo double-resonance (REDOR) NMR of isolated cell walls was used to measure internuclear distances between 13C-labeled alanines and 19F-labeled lysine incorporated in the peptidoglycan. The alanyl 13C labels were preselected for REDOR measurement by their proximity to the glycine label using 13C–13C spin diffusion. The observed 13C–13C and 13C–19F distances are consistent with a tightly packed, hybrid architecture containing both parallel and perpendicular stems in a repeating structural motif within the peptidoglycan. PMID:24517508

  18. Formation of simple biomolecules from alanine in ocean by impacts

    NASA Astrophysics Data System (ADS)

    Umeda, Y.; Sekine, T.; Furukawa, Y.; Kakegawa, T.; Kobayashi, T.

    2013-12-01

    The biomolecules on the Earth are thought either to have originated from the extraterrestrial parts carried with flying meteorites or to have been formed from the inorganic materials on the Earth through given energy. From the standpoint to address the importance of impact energy, it is required to simulate experimentally the chemical reactions during impacts, because violent impacts may have occurred 3.8-4.0 Gyr ago to create biomolecules initially. It has been demonstrated that shock reactions among ocean (H2O), atmospheric nitrogen, and meteoritic constitution (Fe) can induce locally reduction environment to form simple bioorganic molecules such as ammonia and amino acid (Nakazawa et al., 2005; Furukawa et al., 2009). We need to know possible processes for alanine how chemical reactions proceed during repeated impacts and how complicated biomolecules are formed. Alanine can be formed from glycine (Umeda et al., in preparation). In this study, we carried out shock recovery experiments at pressures of 4.4-5.7 GPa to investigate the chemical reactions of alanine. Experiments were carried out with a propellant gun. Stainless steel containers (30 mm in diameter, 30 mm long) with 13C-labeled alanine aqueous solution immersed in olivine or hematite powders were used as targets. Air gap was present in the sample room (18 mm in diameter, 2 mm thick) behind the sample. The powder, solution, and air represent meteorite, ocean, and atmosphere on early Earth, respectively. Two powders of olivine and hematite help to keep the oxygen fugacity low and high during experiments, respectively in order to investigate the effect of oxygen fugacity on chemical processes of alanine. The recovered containers, after cleaned completely, were immersed into liquid nitrogen to freeze sample solution and then we drilled on the impact surface to extract water-soluble run products using pure water. Thus obtained products were analyzed by LC/MS for four amino acids (glycine, alanine, valine, and

  19. Structure of the Mycobacterium tuberculosis D-Alanine:D-Alanine Ligase, a Target of the Antituberculosis Drug D-Cycloserine

    SciTech Connect

    Bruning, John B.; Murillo, Ana C.; Chacon, Ofelia; Barletta, Raúl G.; Sacchettini, James C.

    2011-09-28

    D-Alanine:D-alanine ligase (EC 6.3.2.4; Ddl) catalyzes the ATP-driven ligation of two D-alanine (D-Ala) molecules to form the D-alanyl:D-alanine dipeptide. This molecule is a key building block in peptidoglycan biosynthesis, making Ddl an attractive target for drug development. D-Cycloserine (DCS), an analog of D-Ala and a prototype Ddl inhibitor, has shown promise for the treatment of tuberculosis. Here, we report the crystal structure of Mycobacterium tuberculosis Ddl at a resolution of 2.1 {angstrom}. This structure indicates that Ddl is a dimer and consists of three discrete domains; the ligand binding cavity is at the intersection of all three domains and conjoined by several loop regions. The M. tuberculosis apo Ddl structure shows a novel conformation that has not yet been observed in Ddl enzymes from other species. The nucleotide and D-alanine binding pockets are flexible, requiring significant structural rearrangement of the bordering regions for entry and binding of both ATP and D-Ala molecules. Solution affinity and kinetic studies showed that DCS interacts with Ddl in a manner similar to that observed for D-Ala. Each ligand binds to two binding sites that have significant differences in affinity, with the first binding site exhibiting high affinity. DCS inhibits the enzyme, with a 50% inhibitory concentration (IC{sub 50}) of 0.37 mM under standard assay conditions, implicating a preferential and weak inhibition at the second, lower-affinity binding site. Moreover, DCS binding is tighter at higher ATP concentrations. The crystal structure illustrates potential drugable sites that may result in the development of more-effective Ddl inhibitors.

  20. Alanine screening mutagenesis establishes the critical inactivating damage of irradiated E. coli lactose repressor.

    PubMed

    Goffinont, Stephane; Villette, Sandrine; Spotheim-Maurizot, Melanie

    2012-06-01

    The function of the E. coli lactose operon requires the binding of lactose repressor to operator DNA. We have previously shown that γ rradiation destabilizes the repressor-operator complex because the repressor loses its DNA-binding ability. It was suggested that the observed oxidation of the four tyrosines (Y7, Y12, Y17, Y47) and the concomitant structural changes of the irradiated DNA-binding domains (headpieces) could be responsible for the inactivation. To pinpoint the tyrosine whose oxidation has the strongest effect, four headpieces containing the product of tyrosine oxidation, 3,4-dihydroxyphenylalanine (DOPA), were simulated by molecular dynamics. We have observed that replacing Y47 by DOPA triggers the largest change of structure and stability of the headpiece and have concluded that Y47 oxidation is the greatest contributor to the decrease of repressor binding to DNA. To experimentally verify this conclusion, we applied the alanine screening mutagenesis approach. Tetrameric mutated repressors bearing an alanine instead of each one of the tyrosines were prepared and their binding to operator DNA was checked. Their binding ability is quite similar to that of the wild-type repressor, except for the Y47A mutant whose binding is strongly reduced. Circular dichroism determinations revealed small reductions of the proportion of α helices and of the melting temperature for Y7A, Y12A and Y17A headpieces, but much larger ones were revealed for Y47A headpiece. These results established the critical role of Y47 oxidation in modifying the structure and stability of the headpiece, and in reduction of the binding ability of the whole lactose repressor. PMID:22551504

  1. Rescue of Na+ Affinity in Aspartate 928 Mutants of Na+,K+-ATPase by Secondary Mutation of Glutamate 314*

    PubMed Central

    Holm, Rikke; Einholm, Anja P.; Andersen, Jens P.; Vilsen, Bente

    2015-01-01

    The Na+,K+-ATPase binds Na+ at three transport sites denoted I, II, and III, of which site III is Na+-specific and suggested to be the first occupied in the cooperative binding process activating phosphorylation from ATP. Here we demonstrate that the asparagine substitution of the aspartate associated with site III found in patients with rapid-onset dystonia parkinsonism or alternating hemiplegia of childhood causes a dramatic reduction of Na+ affinity in the α1-, α2-, and α3-isoforms of Na+,K+-ATPase, whereas other substitutions of this aspartate are much less disruptive. This is likely due to interference by the amide function of the asparagine side chain with Na+-coordinating residues in site III. Remarkably, the Na+ affinity of site III aspartate to asparagine and alanine mutants is rescued by second-site mutation of a glutamate in the extracellular part of the fourth transmembrane helix, distant to site III. This gain-of-function mutation works without recovery of the lost cooperativity and selectivity of Na+ binding and does not affect the E1-E2 conformational equilibrium or the maximum phosphorylation rate. Hence, the rescue of Na+ affinity is likely intrinsic to the Na+ binding pocket, and the underlying mechanism could be a tightening of Na+ binding at Na+ site II, possibly via movement of transmembrane helix four. The second-site mutation also improves Na+,K+ pump function in intact cells. Rescue of Na+ affinity and Na+ and K+ transport by second-site mutation is unique in the history of Na+,K+-ATPase and points to new possibilities for treatment of neurological patients carrying Na+,K+-ATPase mutations. PMID:25713066

  2. Degradation of Glycine and Alanine on Irradiated Quartz

    NASA Astrophysics Data System (ADS)

    Pawlikowski, Maciej; Benko, Aleksandra; Wróbel, Tomasz P.

    2013-04-01

    Recent researches suggest participation of minerals in the formation of life under primordial conditions. Among all of the minerals, quartz seems to be one of the most probable to take part in such processes. However, an external source of energy is needed, e.g. electric discharge. A device simulating the proposed conditions was designed and was used to simulate prebiotic conditions. Investigation of processes occurring during the stimulation of quartz with electric discharge was studied by means of Ultraviolet-visible (UV-VIS) spectroscopy, in order to monitor the generation kinetics of free radicals. Additionally, infrared spectroscopy was applied to identify chemical reaction products created in a solution of alanine or glycine, in the presence of quartz treated with electric discharge. Formation of increased amounts of free radicals, compared to experiments performed without quartz and/or amino acid, is reported, along with identification of possible degradation products of alanine. No synthetic reactions were observed.

  3. Physiological hypercortisolemia increases proteolysis, glutamine, and alanine production

    SciTech Connect

    Darmaun, D.; Matthews, D.E.; Bier, D.M. Cornell Univ. Medical College, New York, NY )

    1988-09-01

    Physiological elevations of plasma cortisol levels, as are encountered in stress and severe trauma, were produced in six normal subjects by infusing them with hydrocortisone for 64 h. Amino acid kinetics were measured in the postabsorptive state using three 4-h infusions of L-(1-{sup 13}C)leucine, L-phenyl({sup 2}H{sub 5})phenylalanine, L-(2-{sup 15}N)glutamine, and L-(1-{sup 13}C)alanine tracers (1) before, (2) at 12 h, and (3) at 60 h of cortisol infusion. Before and throughout the study, the subjects ate a normal diet of adequate protein and energy intake. The cortisol infusion raised plasma cortisol levels significantly from 10 {plus minus} 1 to 32 {plus minus} 4 {mu}g/dl, leucine flux from 83 {plus minus} 3 to 97 {plus minus} 3 {mu}mol{center dot}kg{sup {minus}1}{center dot}h{sup {minus}1}, and phenylalanine flux from 34 {plus minus} 1 to 39 {plus minus} 1 (SE) {mu}mol{center dot}kg{sup {minus}1}{center dot}h{sup {minus}1} after 12 h of cortisol infusion. These increases were maintained until the cortisol infusion was terminated. These nearly identical 15% increases in two different essential amino acid appearance rates are reflective of increased whole body protein breakdown. Glutamine flux rose by 12 h of cortisol infusion and remained elevated at the same level at 64 h. The increase in flux was primarily due to a 55% increase in glutamine de novo synthesis. Alanine flux increased with acute hypercortisolemia and increased further at 60 h of cortisol infusion, a result primarily of increased alanine de novo synthesis. Insulin, alanine, and lactate plasma levels responded similarly with significant rises between the acute and chronic periods of cortisol infusion. Thus hypercortisolemia increases both protein breakdown and the turnover of important nonessential amino acids for periods of up to 64 h.

  4. Crystal Structures of Aedes Aegypt Alanine Glyoxylate Aminotransferase

    SciTech Connect

    Han,Q.; Robinson, H.; Gao, Y.; Vogelaar, N.; Wilson, S.; Rizzi, M.; Li, J.

    2006-01-01

    Mosquitoes are unique in having evolved two alanine glyoxylate aminotransferases (AGTs). One is 3-hydroxykynurenine transaminase (HKT), which is primarily responsible for catalyzing the transamination of 3-hydroxykynurenine (3-HK) to xanthurenic acid (XA). Interestingly, XA is used by malaria parasites as a chemical trigger for their development within the mosquito. This 3-HK to XA conversion is considered the major mechanism mosquitoes use to detoxify the chemically reactive and potentially toxic 3-HK. The other AGT is a typical dipteran insect AGT and is specific for converting glyoxylic acid to glycine. Here we report the 1.75{angstrom} high-resolution three-dimensional crystal structure of AGT from the mosquito Aedes aegypti (AeAGT) and structures of its complexes with reactants glyoxylic acid and alanine at 1.75 and 2.1{angstrom} resolution, respectively. This is the first time that the three-dimensional crystal structures of an AGT with its amino acceptor, glyoxylic acid, and amino donor, alanine, have been determined. The protein is dimeric and adopts the type I-fold of pyridoxal 5-phosphate (PLP)-dependent aminotransferases. The PLP co-factor is covalently bound to the active site in the crystal structure, and its binding site is similar to those of other AGTs. The comparison of the AeAGT-glyoxylic acid structure with other AGT structures revealed that these glyoxylic acid binding residues are conserved in most AGTs. Comparison of the AeAGT-alanine structure with that of the Anopheles HKT-inhibitor complex suggests that a Ser-Asn-Phe motif in the latter may be responsible for the substrate specificity of HKT enzymes for 3-HK.

  5. Characterization of psychrophilic alanine racemase from Bacillus psychrosaccharolyticus.

    PubMed

    Okubo, Y; Yokoigawa, K; Esaki, N; Soda, K; Kawai, H

    1999-03-16

    A psychrophilic alanine racemase gene from Bacillus psychrosaccharolyticus was cloned and expressed in Escherichia coli SOLR with a plasmid pYOK3. The gene starting with the unusual initiation codon GTG showed higher preference for codons ending in A or T. The enzyme purified to homogeneity showed the high catalytic activity even at 0 degrees C and was extremely labile over 35 degrees C. The enzyme was found to have a markedly large Km value (5.0 microM) for the pyridoxal 5'-phosphate (PLP) cofactor in comparison with other reported alanine racemases, and was stabilized up to 50 degrees C in the presence of excess amounts of PLP. The low affinity of the enzyme for PLP may be related to the thermolability, and may be related to the high catalytic activity, initiated by the transaldimination reaction, at low temperature. The enzyme has a distinguishing hydrophilic region around the residue no. 150 in the deduced amino acid sequence (383 residues), whereas the corresponding regions of other Bacillus alanine racemases are hydrophobic. The position of the region in the three dimensional structure of C atoms of the enzyme was predicted to be in a surface loop surrounding the active site. The region may interact with solvent and reduce the compactness of the active site. PMID:10080917

  6. ESR/alanine dosimetry applied to radiation processing

    NASA Astrophysics Data System (ADS)

    Mosse, D. C.

    The radiation processing of food products is specified in terms of absorbed dose, and processing quality is assessed on the basis of absorbed dose measurements. The validity of process quality control is highly dependent on the quality of the measurements and associated instrumentation; in this respect, dosimetry calibration by an Organization with official status provides an essential guarantee of validity to the quality control steps taken. The Laboratoire de Métrologie des Rayonnements Ionisants (L.M.R.I.) is the primary standards and evaluation laboratory approved by the Bureau National de Métrologie (B.N.M.), which is the French National Bureau of Standards. The LMRI implements correlation procedures in response to the various requirements which arise in connection with high doses and doserates. Such procedures are mainly based on ESR/alanine spectrometry, a dosimetry technique ideally suited to that purpose. Dosemeter geometry and design are tailored to operating conditions. "Photon" dosemeters consist of a detector material in powder or compacted form, and a wall with thickness and chemical composition consistent with the application. "Electron" dosemeters have a detector core of compacted alanine with thickness down to a few tenths of a millimeter. The ESR/alanine dosimetry technique, developed at LMRI is a flexible, reliable and accurate tool which effectively meets the various requirements arising in the field of reference dosimetry, where high doses and doserates are involved.

  7. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion.

    PubMed

    Sousa, Cristovão M; Biancur, Douglas E; Wang, Xiaoxu; Halbrook, Christopher J; Sherman, Mara H; Zhang, Li; Kremer, Daniel; Hwang, Rosa F; Witkiewicz, Agnes K; Ying, Haoqiang; Asara, John M; Evans, Ronald M; Cantley, Lewis C; Lyssiotis, Costas A; Kimmelman, Alec C

    2016-08-25

    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease characterized by an intense fibrotic stromal response and deregulated metabolism. The role of the stroma in PDAC biology is complex and it has been shown to play critical roles that differ depending on the biological context. The stromal reaction also impairs the vasculature, leading to a highly hypoxic, nutrient-poor environment. As such, these tumours must alter how they capture and use nutrients to support their metabolic needs. Here we show that stroma-associated pancreatic stellate cells (PSCs) are critical for PDAC metabolism through the secretion of non-essential amino acids (NEAA). Specifically, we uncover a previously undescribed role for alanine, which outcompetes glucose and glutamine-derived carbon in PDAC to fuel the tricarboxylic acid (TCA) cycle, and thus NEAA and lipid biosynthesis. This shift in fuel source decreases the tumour’s dependence on glucose and serum-derived nutrients, which are limited in the pancreatic tumour microenvironment. Moreover, we demonstrate that alanine secretion by PSCs is dependent on PSC autophagy, a process that is stimulated by cancer cells. Thus, our results demonstrate a novel metabolic interaction between PSCs and cancer cells, in which PSC-derived alanine acts as an alternative carbon source. This finding highlights a previously unappreciated metabolic network within pancreatic tumours in which diverse fuel sources are used to promote growth in an austere tumour microenvironment. PMID:27509858

  8. A nutritional conditional lethal mutant due to pyridoxine 5'-phosphate oxidase deficiency in Drosophila melanogaster.

    PubMed

    Chi, Wanhao; Zhang, Li; Du, Wei; Zhuang, Xiaoxi

    2014-06-01

    The concept of auxotrophic complementation has been proposed as an approach to identify genes in essential metabolic pathways in Drosophila melanogaster. However, it has achieved limited success to date, possibly due to the low probability of finding mutations fit with the chemically defined profile. Instead of using the chemically defined culture media lacking specific nutrients, we used bare minimum culture medium, i.e., 4% sucrose, for adult Drosophila. We identified a nutritional conditional lethal mutant and localized a c.95C > A mutation in the Drosophila pyridoxine 5'-phosphate oxidase gene [dPNPO or sugarlethal (sgll)] using meiotic recombination mapping, deficiency mapping, and whole genome sequencing. PNPO converts dietary vitamin B6 such as pyridoxine to its active form pyridoxal 5'-phosphate (PLP). The missense mutation (sgll(95)) results in the substitution of alanine to aspartate (p.Ala32Asp). The sgll(95) flies survive well on complete medium but all die within 6 d on 4% sucrose only diet, which can be rescued by pyridoxine or PLP supplement, suggesting that the mutation does not cause the complete loss of PNPO activity. The sgll knockdown further confirms its function as the Drosophila PNPO. Because better tools for positional cloning and cheaper whole genome sequencing have made the identification of point mutations much easier than before, alleviating the necessity to pinpoint specific metabolic pathways before gene identification, we propose that nutritional conditional screens based on bare minimum growth media like ours represent promising approaches for discovering important genes and mutations in metabolic pathways, thereby accelerating the establishment of in vivo models that recapitulate human metabolic diseases. PMID:24739647

  9. Oxygen sensitivity of an Escherichia coli mutant.

    PubMed

    Adler, H; Mural, R; Suttle, B

    1992-04-01

    Genetic evidence indicates that Oxys-6, an oxygen-sensitive mutant of Escherichia coli AB1157, is defective in the region of the hemB locus. Oxys-6 is capable of growth under aerobic conditions only if cultures are initiated at low-inoculum levels. Aerobic liquid cultures are limited to a cell density of 10(7) cells per ml by the accumulation of a metabolically produced, low-molecular-weight, heat-stable material in complex organic media. Both Oxys-6 and AB1157 cells produce the material, but only aerobic cultures of the mutant are inhibited by it. The material is produced by both intact cells and cell extracts in complex media. This reaction also occurs when the amino acid L-lysine is substituted for complex media. PMID:1551829

  10. Oxygen sensitivity of an Escherichia coli mutant.

    PubMed Central

    Adler, H; Mural, R; Suttle, B

    1992-01-01

    Genetic evidence indicates that Oxys-6, an oxygen-sensitive mutant of Escherichia coli AB1157, is defective in the region of the hemB locus. Oxys-6 is capable of growth under aerobic conditions only if cultures are initiated at low-inoculum levels. Aerobic liquid cultures are limited to a cell density of 10(7) cells per ml by the accumulation of a metabolically produced, low-molecular-weight, heat-stable material in complex organic media. Both Oxys-6 and AB1157 cells produce the material, but only aerobic cultures of the mutant are inhibited by it. The material is produced by both intact cells and cell extracts in complex media. This reaction also occurs when the amino acid L-lysine is substituted for complex media. Images PMID:1551829

  11. Nucleophilic Aromatic Substitution.

    ERIC Educational Resources Information Center

    Avila, Walter B.; And Others

    1990-01-01

    Described is a microscale organic chemistry experiment which demonstrates one feasible route in preparing ortho-substituted benzoic acids and provides an example of nucleophilic aromatic substitution chemistry. Experimental procedures and instructor notes for this activity are provided. (CW)

  12. GMXPBSA 2.0: A GROMACS tool to perform MM/PBSA and computational alanine scanning

    NASA Astrophysics Data System (ADS)

    Paissoni, C.; Spiliotopoulos, D.; Musco, G.; Spitaleri, A.

    2014-11-01

    GMXPBSA 2.0 is a user-friendly suite of Bash/Perl scripts for streamlining MM/PBSA calculations on structural ensembles derived from GROMACS trajectories, to automatically calculate binding free energies for protein-protein or ligand-protein complexes. GMXPBSA 2.0 is flexible and can easily be customized to specific needs. Additionally, it performs computational alanine scanning (CAS) to study the effects of ligand and/or receptor alanine mutations on the free energy of binding. Calculations require only for protein-protein or protein-ligand MD simulations. GMXPBSA 2.0 performs different comparative analysis, including a posteriori generation of alanine mutants of the wild-type complex, calculation of the binding free energy values of the mutant complexes and comparison of the results with the wild-type system. Moreover, it compares the binding free energy of different complexes trajectories, allowing the study the effects of non-alanine mutations, post-translational modifications or unnatural amino acids on the binding free energy of the system under investigation. Finally, it can calculate and rank relative affinity to the same receptor utilizing MD simulations of proteins in complex with different ligands. In order to dissect the different MM/PBSA energy contributions, including molecular mechanic (MM), electrostatic contribution to solvation (PB) and nonpolar contribution to solvation (SA), the tool combines two freely available programs: the MD simulations software GROMACS and the Poisson-Boltzmann equation solver APBS. All the calculations can be performed in single or distributed automatic fashion on a cluster facility in order to increase the calculation by dividing frames across the available processors. The program is freely available under the GPL license. Catalogue identifier: AETQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETQ_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing

  13. Synthesis and sweetness characteristics of L-aspartyl-D-alanine fenchyl esters.

    PubMed

    Yuasa, Y; Nagakura, A; Tsuruta, H

    2001-10-01

    Four isomers of the L-aspartyl-D-alanine fenchyl esters were prepared as potential peptide sweeteners. L-Aspartyl-D-alanine (+)-alpha-fenchyl ester and L-aspartyl-D-alanine (-)-beta-fenchyl ester showed sweetness with potencies 250 and 160 times higher than that of sucrose, respectively. In contrast, L-aspartyl-D-alanine (+)-beta-fenchyl ester and L-aspartyl-D-alanine (-)-alpha-fenchyl ester had the highest sweetness potencies at 5700 and 1100 times that of sucrose, respectively. In particular, L-aspartyl-D-alanine (-)-alpha-fenchyl ester had an excellent sweetness quality; but L-aspartyl-D-alanine (+)-beta-fenchyl ester did not have an excellent quality of sweetness because it displayed an aftertaste caused by the strong sweetness. PMID:11600060

  14. Isolation of Mutants of the Nitrogen-Fixing Actinomycete Frankia

    PubMed Central

    Kakoi, Kentaro; Yamaura, Masatoshi; Kamiharai, Toshihito; Tamari, Daiki; Abe, Mikiko; Uchiumi, Toshiki; Kucho, Ken-Ichi

    2014-01-01

    Frankia is a nitrogen (N)-fixing multicellular actinomycete which establishes root-nodule symbiosis with actinorhizal plants. Several aspects of Frankia N fixation and symbiosis are distinct, but genes involved in the specific features are largely unknown because of the lack of an efficient mutant screening method. In this study, we isolated mutants of Frankia sp. strain CcI3 using hyphae fragments mutagenized by chemical mutagens. Firstly, we isolated uracil auxotrophs as gain-of-function mutants resistant to 5-fluoroorotic acid (5-FOA). We obtained seven 5-FOA resistant mutants, all of which required uracil for growth. Five strains carried a frame shift mutation in orotidine-5′-phosphate decarboxylase gene and two carried an amino acid substitution in the orotate phosphoribosyltransferase gene. Secondly, we isolated mutants showing loss-of-function phenotypes. Mutagenized hyphae were fragmented by ultrasound and allowed to multiply at their tips. Hyphae were fragmented again and short fragments were enriched by filtration through 5 μm pores filters. Next-generation and Sanger sequencing revealed that colonies formed from the short hyphae fragments consisted of cells with an identical genotype. From the mutagenized colony population, we isolated three pigmentation mutants and a mutant with reduced N-fixation activity. These results indicate that our procedure is useful for the isolation of loss-of-function mutants using hyphae of Frankia. PMID:24389412

  15. Isolation of mutants of the nitrogen-fixing actinomycete Frankia.

    PubMed

    Kakoi, Kentaro; Yamaura, Masatoshi; Kamiharai, Toshihito; Tamari, Daiki; Abe, Mikiko; Uchiumi, Toshiki; Kucho, Ken-Ichi

    2014-01-01

    Frankia is a nitrogen (N)-fixing multicellular actinomycete which establishes root-nodule symbiosis with actinorhizal plants. Several aspects of Frankia N fixation and symbiosis are distinct, but genes involved in the specific features are largely unknown because of the lack of an efficient mutant screening method. In this study, we isolated mutants of Frankia sp. strain CcI3 using hyphae fragments mutagenized by chemical mutagens. Firstly, we isolated uracil auxotrophs as gain-of-function mutants resistant to 5-fluoroorotic acid (5-FOA). We obtained seven 5-FOA resistant mutants, all of which required uracil for growth. Five strains carried a frame shift mutation in orotidine-5'-phosphate decarboxylase gene and two carried an amino acid substitution in the orotate phosphoribosyltransferase gene. Secondly, we isolated mutants showing loss-of-function phenotypes. Mutagenized hyphae were fragmented by ultrasound and allowed to multiply at their tips. Hyphae were fragmented again and short fragments were enriched by filtration through 5 μm pores filters. Next-generation and Sanger sequencing revealed that colonies formed from the short hyphae fragments consisted of cells with an identical genotype. From the mutagenized colony population, we isolated three pigmentation mutants and a mutant with reduced N-fixation activity. These results indicate that our procedure is useful for the isolation of loss-of-function mutants using hyphae of Frankia. PMID:24389412

  16. Alanine-glyoxylate aminotransferase-deficient mice, a model for primary hyperoxaluria that responds to adenoviral gene transfer.

    PubMed

    Salido, Eduardo C; Li, Xiao M; Lu, Yang; Wang, Xia; Santana, Alfredo; Roy-Chowdhury, Namita; Torres, Armando; Shapiro, Larry J; Roy-Chowdhury, Jayanta

    2006-11-28

    Mutations in the alanine-glyoxylate amino transferase gene (AGXT) are responsible for primary hyperoxaluria type I, a rare disease characterized by excessive hepatic oxalate production that leads to renal failure. We generated a null mutant mouse by targeted mutagenesis of the homologous gene, Agxt, in embryonic stem cells. Mutant mice developed normally, and they exhibited hyperoxaluria and crystalluria. Approximately half of the male mice in mixed genetic background developed calcium oxalate urinary stones. Severe nephrocalcinosis and renal failure developed after enhancement of oxalate production by ethylene glycol administration. Hepatic expression of human AGT1, the protein encoded by AGXT, by adenoviral vector-mediated gene transfer in Agxt(-/-) mice normalized urinary oxalate excretion and prevented oxalate crystalluria. Subcellular fractionation and immunofluorescence studies revealed that, as in the human liver, the expressed wild-type human AGT1 was predominantly localized in mouse hepatocellular peroxisomes, whereas the most common mutant form of AGT1 (G170R) was localized predominantly in the mitochondria. PMID:17110443

  17. Characterization of serine hydroxymethyltransferase GlyA as a potential source of D-alanine in Chlamydia pneumoniae

    PubMed Central

    De Benedetti, Stefania; Bühl, Henrike; Gaballah, Ahmed; Klöckner, Anna; Otten, Christian; Schneider, Tanja; Sahl, Hans-Georg; Henrichfreise, Beate

    2014-01-01

    For intracellular Chlamydiaceae, there is no need to withstand osmotic challenges, and a functional cell wall has not been detected in these pathogens so far. Nevertheless, penicillin inhibits cell division in Chlamydiaceae resulting in enlarged aberrant bodies, a phenomenon known as chlamydial anomaly. D-alanine is a unique and essential component in the biosynthesis of bacterial cell walls. In free-living bacteria like Escherichia coli, penicillin-binding proteins such as monofunctional transpeptidases PBP2 and PBP3, the putative targets of penicillin in Chlamydiaceae, cross-link adjacent peptidoglycan strands via meso-diaminopimelic acid and D-Ala-D-Ala moieties of pentapeptide side chains. In the absence of genes coding for alanine racemase Alr and DadX homologs, the source of D-Ala and thus the presence of substrates for PBP2 and PBP3 activity in Chlamydiaceae has puzzled researchers for years. Interestingly, Chlamydiaceae genomes encode GlyA, a serine hydroxymethyltransferase that has been shown to exhibit slow racemization of D- and L-alanine as a side reaction in E. coli. We show that GlyA from Chlamydia pneumoniae can serve as a source of D-Ala. GlyA partially reversed the D-Ala auxotrophic phenotype of an E. coli racemase double mutant. Moreover, purified chlamydial GlyA had racemase activity on L-Ala in vitro and was inhibited by D-cycloserine, identifying GlyA, besides D-Ala ligase MurC/Ddl, as an additional target of this competitive inhibitor in Chlamydiaceae. Proof of D-Ala biosynthesis in Chlamydiaceae helps to clarify the structure of cell wall precursor lipid II and the role of chlamydial penicillin-binding proteins in the development of non-dividing aberrant chlamydial bodies and persistence in the presence of penicillin. PMID:24616885

  18. Transcription and genetic analyses of a putative N-acetylmuramyl-L-alanine amidase in Borrelia burgdorferi

    PubMed Central

    Yang, Yu; Li, Chunhao

    2010-01-01

    In this study, a putative N-acetylmuramyl-L-alanine amidase gene (bb0666) was identified in the genome of the Lyme disease spirochete Borrelia burgdorferi. This protein shares c. 30% identity with its counterparts from other bacteria. Reverse transcriptase-PCR analysis showed that bb0666 along with two other genes (bb0665 and bb0667) are cotranscribed with the motility and chemotaxis genes. This newly identified operon is termed as pami. Sequence and primer extension analyses showed that pami was regulated by a σ70-like promoter, which is designated as Pami. Transcriptional analysis using a gene encoding green fluorescence protein as a reporter demonstrated that Pami functions in both Escherichia coli and B. burgdorferi. Genetic studies showed that the Δbb0666 mutant grows in long chains of unseparated cells, whose phenotype is similar to its counterparts in E. coli. Taken together, these results demonstrate that bb0666 is a homolog of MurNac-LAAs that contributes to the cell division of B. burgdorferi. PMID:19025570

  19. Topology of AspT, the aspartate:alanine antiporter of Tetragenococcus halophilus, determined by site-directed fluorescence labeling.

    PubMed

    Nanatani, Kei; Fujiki, Takashi; Kanou, Kazuhiko; Takeda-Shitaka, Mayuko; Umeyama, Hideaki; Ye, Liwen; Wang, Xicheng; Nakajima, Tasuku; Uchida, Takafumi; Maloney, Peter C; Abe, Keietsu

    2007-10-01

    The gram-positive lactic acid bacterium Tetragenococcus halophilus catalyzes the decarboxylation of L-aspartate (Asp) with release of L-alanine (Ala) and CO(2). The decarboxylation reaction consists of two steps: electrogenic exchange of Asp for Ala catalyzed by an aspartate:alanine antiporter (AspT) and intracellular decarboxylation of the transported Asp catalyzed by an L-aspartate-beta-decarboxylase (AspD). AspT belongs to the newly classified aspartate:alanine exchanger family (transporter classification no. 2.A.81) of transporters. In this study, we were interested in the relationship between the structure and function of AspT and thus analyzed the topology by means of the substituted-cysteine accessibility method using the impermeant, fluorescent, thiol-specific probe Oregon Green 488 maleimide (OGM) and the impermeant, nonfluorescent, thiol-specific probe [2-(trimethylammonium)ethyl]methanethiosulfonate bromide. We generated 23 single-cysteine variants from a six-histidine-tagged cysteineless AspT template. A cysteine position was assigned an external location if the corresponding single-cysteine variant reacted with OGM added to intact cells, and a position was assigned an internal location if OGM labeling required cell lysis. The topology analyses revealed that AspT has a unique topology; the protein has 10 transmembrane helices (TMs), a large hydrophilic cytoplasmic loop (about 180 amino acids) between TM5 and TM6, N and C termini that face the periplasm, and a positively charged residue (arginine 76) within TM3. Moreover, the three-dimensional structure constructed by means of the full automatic modeling system indicates that the large hydrophilic cytoplasmic loop of AspT possesses a TrkA_C domain and a TrkA_C-like domain and that the three-dimensional structures of these domains are similar to each other even though their amino acid sequences show low similarity. PMID:17660287

  20. ABS–Scan: In silico alanine scanning mutagenesis for binding site residues in protein–ligand complex

    PubMed Central

    Anand, Praveen; Nagarajan, Deepesh; Mukherjee, Sumanta; Chandra, Nagasuma

    2014-01-01

    Most physiological processes in living systems are fundamentally regulated by protein–ligand interactions. Understanding the process of ligand recognition by proteins is a vital activity in molecular biology and biochemistry. It is well known that the residues present at the binding site of the protein form pockets that provide a conducive environment for recognition of specific ligands. In many cases, the boundaries of these sites are not well defined. Here, we provide a web-server to systematically evaluate important residues in the binding site of the protein that contribute towards the ligand recognition through in silico alanine-scanning mutagenesis experiments. Each of the residues present at the binding site is computationally mutated to alanine. The ligand interaction energy is computed for each mutant and the corresponding ΔΔG values are calculated by comparing it to the wild type protein, thus evaluating individual residue contributions towards ligand interaction. The server will thus provide a ranked list of residues to the user in order to obtain loss-of-function mutations. This web-tool can be freely accessed through the following address: http://proline.biochem.iisc.ernet.in/abscan/. PMID:25685322

  1. 40 CFR 721.8780 - Substituted pyridine azo substituted phenyl.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Substituted pyridine azo substituted... Specific Chemical Substances § 721.8780 Substituted pyridine azo substituted phenyl. (a) Chemical substance... substituted pyridine azo substituted phenyl (PMNs P-96-767 and P-96-773) are subject to reporting under...

  2. 40 CFR 721.8780 - Substituted pyridine azo substituted phenyl.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted pyridine azo substituted... Specific Chemical Substances § 721.8780 Substituted pyridine azo substituted phenyl. (a) Chemical substance... substituted pyridine azo substituted phenyl (PMNs P-96-767 and P-96-773) are subject to reporting under...

  3. 40 CFR 721.8780 - Substituted pyridine azo substituted phenyl.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted pyridine azo substituted... Specific Chemical Substances § 721.8780 Substituted pyridine azo substituted phenyl. (a) Chemical substance... substituted pyridine azo substituted phenyl (PMNs P-96-767 and P-96-773) are subject to reporting under...

  4. 40 CFR 721.8780 - Substituted pyridine azo substituted phenyl.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted pyridine azo substituted... Specific Chemical Substances § 721.8780 Substituted pyridine azo substituted phenyl. (a) Chemical substance... substituted pyridine azo substituted phenyl (PMNs P-96-767 and P-96-773) are subject to reporting under...

  5. 40 CFR 721.8780 - Substituted pyridine azo substituted phenyl.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Substituted pyridine azo substituted... Specific Chemical Substances § 721.8780 Substituted pyridine azo substituted phenyl. (a) Chemical substance... substituted pyridine azo substituted phenyl (PMNs P-96-767 and P-96-773) are subject to reporting under...

  6. A food-grade system for inducible gene expression in Lactobacillus plantarum using an alanine racemase-encoding selection marker.

    PubMed

    Nguyen, Tien-Thanh; Mathiesen, Geir; Fredriksen, Lasse; Kittl, Roman; Nguyen, Thu-Ha; Eijsink, Vincent G H; Haltrich, Dietmar; Peterbauer, Clemens K

    2011-05-25

    Food-grade gene expression systems for lactic acid bacteria are useful for applications in the food industry. We describe a new food-grade host/vector system for Lactobacillus plantarum based on pSIP expression vectors and the use of the homologous alanine racemase gene (alr) as selection marker. A new series of expression vectors were constructed by exchanging the erythromycin resistance gene (erm) in pSIP vectors by the L. plantarum WCFS1 alr gene. The vectors were applied for the overexpression of β-galactosidase genes from L. reuteri L103 and L. plantarum WCFS1 in an alr deletion mutant of L. plantarum WCFS1. The expression levels obtained in this way, i.e. without the use of antibiotics, were comparable to the levels obtained with the conventional system based on selection for erythromycin resistance. The new system is suitable for the production of ingredients and additives for the food industry. PMID:21504147

  7. Enhanced Mucosal Delivery of Antigen with Cell Wall Mutants of Lactic Acid Bacteria

    PubMed Central

    Grangette, Corinne; Müller-Alouf, Heide; Hols, Pascal; Goudercourt, Denise; Delcour, Jean; Turneer, Mireille; Mercenier, Annick

    2004-01-01

    The potential of recombinant lactic acid bacteria (LAB) to deliver heterologous antigens to the immune system and to induce protective immunity has been best demonstrated by using the C subunit of tetanus toxin (TTFC) as a model antigen. Two types of LAB carriers have mainly been used, Lactobacillus plantarum and Lactococcus lactis, which differ substantially in their abilities to resist passage through the stomach and to persist in the mouse gastrointestinal tract. Here we analyzed the effect of a deficiency in alanine racemase, an enzyme that participates in cell wall synthesis, in each of these bacterial carriers. Recombinant wild-type and mutant strains of L. plantarum NCIMB8826 and L. lactis MG1363 producing TTFC intracellularly were constructed and used in mouse immunization experiments. Remarkably, we observed that the two cell wall mutant strains were far more immunogenic than their wild-type counterparts when the intragastric route was used. However, intestinal TTFC-specific immunoglobulin A was induced only after immunization with the recombinant L. plantarum mutant strain. Moreover, the alanine racemase mutant of either LAB strain allowed induction of a much stronger serum TTFC-specific immune response after immunization via the vagina, which is a quite different ecosystem than the gastrointestinal tract. The design and use of these mutants thus resulted in a major improvement in the mucosal delivery of antigens exhibiting vaccine properties. PMID:15102782

  8. Performance effects of acute β-alanine induced paresthesia in competitive cyclists.

    PubMed

    Bellinger, Phillip M; Minahan, Clare L

    2016-01-01

    β-alanine is a common ingredient in supplements consumed by athletes. Indeed, athletes may believe that the β-alanine induced paresthesia, experienced shortly after ingestion, is associated with its ergogenic effect despite no scientific mechanism supporting this notion. The present study examined changes in cycling performance under conditions of β-alanine induced paresthesia. Eight competitive cyclists (VO2max = 61.8 ± 4.2 mL·kg·min(-1)) performed three practices, one baseline and four experimental trials. The experimental trials comprised a 1-km cycling time trial under four conditions with varying information (i.e., athlete informed β-alanine or placebo) and supplement content (athlete received β-alanine or placebo) delivered to the cyclist: informed β-alanine/received β-alanine, informed placebo/received β-alanine, informed β-alanine/received placebo and informed placebo/received placebo. Questionnaires were undertaken exploring the cyclists' experience of the effects of the experimental conditions. A possibly likely increase in mean power was associated with conditions in which β-alanine was administered (±95% CL: 2.2% ± 4.0%), but these results were inconclusive for performance enhancement (p = 0.32, effect size = 0.18, smallest worthwhile change = 56% beneficial). A possibly harmful effect was observed when cyclists were correctly informed that they had ingested a placebo (-1.0% ± 1.9%). Questionnaire data suggested that β-alanine ingestion resulted in evident sensory side effects and six cyclists reported placebo effects. Acute ingestion of β-alanine is not associated with improved 1-km TT performance in competitive cyclists. These findings are in contrast to the athlete's "belief" as cyclists reported improved energy and the ability to sustain a higher power output under conditions of β-alanine induced paresthesia. PMID:25636080

  9. Mutant fatty acid desaturase

    DOEpatents

    Shanklin, John; Cahoon, Edgar B.

    2004-02-03

    The present invention relates to a method for producing mutants of a fatty acid desaturase having a substantially increased activity towards fatty acid substrates with chains containing fewer than 18 carbons relative to an unmutagenized precursor desaturase having an 18 carbon atom chain length substrate specificity. The method involves inducing one or more mutations in the nucleic acid sequence encoding the precursor desaturase, transforming the mutated sequence into an unsaturated fatty acid auxotroph cell such as MH13 E. coli, culturing the cells in the absence of supplemental unsaturated fatty acids, thereby selecting for recipient cells which have received and which express a mutant fatty acid desaturase with an elevated specificity for fatty acid substrates having chain lengths of less than 18 carbon atoms. A variety of mutants having 16 or fewer carbon atom chain length substrate specificities are produced by this method. Mutant desaturases produced by this method can be introduced via expression vectors into prokaryotic and eukaryotic cells and can also be used in the production of transgenic plants which may be used to produce specific fatty acid products.

  10. Caffeine–N-phthaloyl-β-alanine (1/1)

    PubMed Central

    Bhatti, Moazzam H.; Yunus, Uzma; Shah, Syed Raza; Flörke, Ulrich

    2012-01-01

    The title co-crystal [systematic name: 3-(1,3-dioxoisoindolin-2-yl)propanoic acid–1,3,7-trimethyl-1H-purine-2,6(3H,7H)-dione (1/1)], C8H10N4O2·C11H9NO4, is the combination of 1:1 adduct of N-phthaloyl-β-alanine with caffeine. The phthalimide and purine rings in the N-phthaloyl-β-alanine and caffeine mol­ecules are essentially planar, with r.m.s. deviations of the fitted atoms of 0.0078 and 0.0118 Å, respectively. In the crystal, the two mol­ecules are linked via an O—H⋯N hydrogen bond involving the intact carb­oxy­lic acid (COOH) group. The crystal structure is consolidated by C—H⋯O inter­actions. The H atoms of a methyl group of the caffeine mol­ecule are disordered over two sets of sites of equal occupancy. PMID:22719646

  11. The effect of immunonutrition (glutamine, alanine) on fracture healing

    PubMed Central

    Küçükalp, Abdullah; Durak, Kemal; Bayyurt, Sarp; Sönmez, Gürsel; Bilgen, Muhammed S.

    2014-01-01

    Background There have been various studies related to fracture healing. Glutamine is an amino acid with an important role in many cell and organ functions. This study aimed to make a clinical, radiological, and histopathological evaluation of the effects of glutamine on fracture healing. Methods Twenty rabbits were randomly allocated into two groups of control and immunonutrition. A fracture of the fibula was made to the right hind leg. All rabbits received standard food and water. From post-operative first day for 30 days, the study group received an additional 2 ml/kg/day 20% L-alanine L-glutamine solution via a gastric catheter, and the control group received 2 ml/kg/day isotonic via gastric catheter. At the end of 30 days, the rabbits were sacrificed and the fractures were examined clinically, radiologically, and histopathologically in respect to the degree of union. Results Radiological evaluation of the control group determined a mean score of 2.5 according to the orthopaedists and 2.65 according to the radiologists. In the clinical evaluation, the mean score was 1.875 for the control group and 2.0 for the study group. Histopathological evaluation determined a mean score of 8.5 for the control group and 9.0 for the study group. Conclusion One month after orally administered glutamine–alanine, positive effects were observed on fracture healing radiologically, clinically, and histopathologically, although no statistically significant difference was determined.

  12. Structure–activity relationships of the N-terminus of calcitonin gene-related peptide: key roles of alanine-5 and threonine-6 in receptor activation

    PubMed Central

    Hay, Debbie L; Harris, Paul WR; Kowalczyk, Renata; Brimble, Margaret A; Rathbone, Dan L; Barwell, James; Conner, Alex C; Poyner, David R

    2014-01-01

    Background and Purpose: The N-terminus of calcitonin gene-related peptide (CGRP) is important for receptor activation, especially the disulphide-bonded ring (residues 1–7). However, the roles of individual amino acids within this region have not been examined and so the molecular determinants of agonism are unknown. This study has examined the role of residues 1, 3–6 and 8–9, excluding Cys-2 and Cys-7. Experimental Approach: CGRP derivatives were substituted with either cysteine or alanine; further residues were introduced at position 6. Their affinity was measured by radioligand binding and their efficacy by measuring cAMP production in SK-N-MC cells and β-arrestin 2 translocation in CHO-K1 cells at the CGRP receptor. Key Results: Substitution of Ala-5 by cysteine reduced affinity 270-fold and reduced efficacy for production of cAMP in SK-N-MCs. Potency at β-arrestin translocation was reduced by ninefold. Substitution of Thr-6 by cysteine destroyed all measurable efficacy of both cAMP and β-arrestin responses; substitution with either alanine or serine impaired potency. Substitutions at positions 1, 4, 8 and 9 resulted in approximately 10-fold reductions in potency at both responses. Similar observations were made at a second CGRP-activated receptor, the AMY1(a) receptor. Conclusions and Implications: Ala-5 and Thr-6 are key determinants of agonist activity for CGRP. Ala-5 is also very important for receptor binding. Residues outside of the 1–7 ring also contribute to agonist activity. PMID:24125506

  13. Changing serine-485 to alanine in the opossum parathyroid hormone (PTH)/PTH-related peptide receptor enhances PTH stimulation of phospholipase C in a stably transfected human kidney cell line: a useful model for PTH-analog screening?

    PubMed

    John, M R; Bösel, J; Breit, S; Wickert, H; Ziegler, R; Blind, E

    2001-02-01

    Using site-directed mutagenesis, we have introduced a serine-485-to-alanine mutation in the opossum parathyroid hormone (PTH) receptor. This amino acid is considered to be phosphorylated by protein kinase A upon ligand binding. Both wild-type (WT) and mutant receptor were stably expressed in 293-EBNA HEK cells. The mutant receptor showed comparable binding characteristics and only a slight increase in cAMP production compared with WT. However, the PTH dose-dependent increase in inositol phosphate production was 24-fold for the mutant receptor vs. 6-fold for the WT receptor. This mutant might prove useful in the sensitive detection of phospholipase C activation through various ligands, as the PTH receptor becomes a target of therapeutic intervention in osteoporosis. PMID:11182376

  14. Decreased alanine aminotransferase activity in serum of man during gamma-acetylenic-GABA treatment.

    PubMed

    Olsen, R; Hørder, M

    1980-06-01

    Decreasing concentrations of alanine aminotransferase were observed in nine patients receiving gamma-acetylenic-GABA, an inhibitor of GABA aminotransferase. In vitro studies showed that preincubation at 37 degrees C of serum with gamma-acetylenic-GABA and with urine from a patient receiving the drug led to inhibition of alanine aminotransferase. This inhibition of alanine aminotransferase by gamma-acetylenic-GABA was neutralized by 1-analine, the natural substrate for the enzyme. The mechanism of inhibition may be a competition between the drug and 1-alanine for the substrate binding site of the enzyme. PMID:7414257

  15. Effect of β-alanine supplementation on high-intensity exercise performance.

    PubMed

    Harris, Roger C; Stellingwerff, Trent

    2013-01-01

    Carnosine is a dipeptide of β-alanine and L-histidine found in high concentrations in skeletal muscle. Combined with β-alanine, the pKa of the histidine imidazole ring is raised to ∼6.8, placing it within the muscle intracellular pH high-intensity exercise transit range. Combination with β-alanine renders the dipeptide inert to intracellular enzymic hydrolysis and blocks the histidinyl residue from participation in proteogenesis, thus making it an ideal, stable intracellular buffer. For vegetarians, synthesis is limited by β-alanine availability; for meat-eaters, hepatic synthesis is supplemented with β-alanine from the hydrolysis of dietary carnosine. Direct oral β-alanine supplementation will compensate for low meat and fish intake, significantly raising the muscle carnosine concentration. This is best achieved with a sustained-release formulation of β-alanine to avoid paresthesia symptoms and decreasing urinary spillover. In humans, increased levels of carnosine through β-alanine supplementation have been shown to increase exercise capacity and performance of several types, particularly where the high-intensity exercise range is 1-4 min. β-Alanine supplementation is used by athletes competing in high-intensity track and field cycling, rowing, swimming events and other competitions. PMID:23899755

  16. Removal of the Side Chain at the Active-Site Serine by a Glycine Substitution Increases the Stability of a Wide Range of Serine β-Lactamases by Relieving Steric Strain.

    PubMed

    Stojanoski, Vlatko; Adamski, Carolyn J; Hu, Liya; Mehta, Shrenik C; Sankaran, Banumathi; Zwart, Peter; Prasad, B V Venkataram; Palzkill, Timothy

    2016-05-01

    Serine β-lactamases are bacterial enzymes that hydrolyze β-lactam antibiotics. They utilize an active-site serine residue as a nucleophile, forming an acyl-enzyme intermediate during hydrolysis. In this study, thermal denaturation experiments as well as X-ray crystallography were performed to test the effect of substitution of the catalytic serine with glycine on protein stability in serine β-lactamases. Six different enzymes comprising representatives from each of the three classes of serine β-lactamases were examined, including TEM-1, CTX-M-14, and KPC-2 of class A, P99 of class C, and OXA-48 and OXA-163 of class D. For each enzyme, the wild type and a serine-to-glycine mutant were evaluated for stability. The glycine mutants all exhibited enhanced thermostability compared to that of the wild type. In contrast, alanine substitutions of the catalytic serine in TEM-1, OXA-48, and OXA-163 did not alter stability, suggesting removal of the Cβ atom is key to the stability increase associated with the glycine mutants. The X-ray crystal structures of P99 S64G, OXA-48 S70G and S70A, and OXA-163 S70G suggest that removal of the side chain of the catalytic serine releases steric strain to improve enzyme stability. Additionally, analysis of the torsion angles at the nucleophile position indicates that the glycine mutants exhibit improved distance and angular parameters of the intrahelical hydrogen bond network compared to those of the wild-type enzymes, which is also consistent with increased stability. The increased stability of the mutants indicates that the enzyme pays a price in stability for the presence of a side chain at the catalytic serine position but that the cost is necessary in that removal of the serine drastically impairs function. These findings support the stability-function hypothesis, which states that active-site residues are optimized for substrate binding and catalysis but that the requirements for catalysis are often not consistent with the

  17. Connexin Mutants and Cataracts

    PubMed Central

    Beyer, Eric C.; Ebihara, Lisa; Berthoud, Viviana M.

    2013-01-01

    The lens is a multicellular, but avascular tissue that must stay transparent to allow normal transmission of light and focusing of it on the retina. Damage to lens cells and/or proteins can cause cataracts, opacities that disrupt these processes. The normal survival of the lens is facilitated by an extensive network of gap junctions formed predominantly of connexin46 and connexin50. Mutations of the genes that encode these connexins (GJA3 and GJA8) have been identified and linked to inheritance of cataracts in human families and mouse lines. In vitro expression studies of several of these mutants have shown that they exhibit abnormalities that may lead to disease. Many of the mutants reduce or modify intercellular communication due to channel alterations (including loss of function or altered gating) or due to impaired cellular trafficking which reduces the number of gap junction channels within the plasma membrane. However, the abnormalities detected in studies of other mutants suggest that they cause cataracts through other mechanisms including gain of hemichannel function (leading to cell injury and death) and formation of cytoplasmic accumulations (that may act as light scattering particles). These observations and the anticipated results of ongoing studies should elucidate the mechanisms of cataract development due to mutations of lens connexins and abnormalities of other lens proteins. They may also contribute to our understanding of the mechanisms of disease due to connexin mutations in other tissues. PMID:23596416

  18. Identification of two DNA helicases UvrD and DinG as suppressors for lethality caused by mutant cspA mRNAs.

    PubMed

    Hwang, Jihwan; Lee, Kangseok; Phadtare, Sangita; Inouye, Masayori

    2012-01-01

    CspA is a major cold shock-inducible protein (70 aa), and its major role in the cold shock response was shown to be as an RNA chaperone destabilizing secondary structure of mRNAs at low temperature. Previously, we showed that the overexpression of mutant cspA containing premature non-sense codons at various positions led to stalled ribosomes on mutant cspA transcripts, ultimately leading to cell death. This lethality is primarily due to the highly translatable cspA 5'-UTR that recruits most of the ribosomes from other mRNAs, which are then stalled at the abnormal stop codon. This was called the 'LACE' effect. We show here that non-sense mutation even at the 67th position as well as substitutions of aromatic amino acid residues present on the RNA-binding surface of CspA protein to alanine caused the LACE effect by trapping a substantial amount of ribosomes on cspA mRNAs. In an attempt to identify a suppressor(s), which may help the cells to recover from the inhibitory LACE effect, genetic screening of an Escherichia coli genomic library was performed. We isolated suppressors that contained the genomic fragments encoding uvrD and dinG, respectively, whose gene products are ATP-dependent DNA helicases. The nucleic acid-binding and ATPase activities of these two helicases were found to be essential for their suppression activity. This genomic screening offers an approach to shed light on the mechanistic of 5'-UTR of cspA mRNA and novel roles of E. coli helicases that function in DNA repair. PMID:22832783

  19. Identification of two DNA helicases UvrD and DinG as suppressors for lethality caused by mutant cspA mRNAs

    PubMed Central

    Hwang, Jihwan; Lee, Kangseok; Phadtare, Sangita; Inouye, Masayori

    2012-01-01

    CspA is a major cold-shock inducible protein (70 aa), and its major role in the cold-shock response was shown to be as an RNA chaperone destabilizing secondary structure of mRNAs at low temperature. Previously, we showed that the overexpression of mutant cspA containing premature nonsense codons at various positions led to stalled ribosomes on mutant cspA transcripts, ultimately leading to cell death. This lethality is primarily due to the highly translatable cspA 5′-UTR that recruits most of the ribosomes from other mRNAs, which are then stalled at the abnormal stop codon. This was called the ‘LACE’ effect. We show here that nonsense mutation even at 67th position as well as substitutions of aromatic amino acid residues present on the RNA-binding surface of CspA protein to alanine caused the LACE effect by trapping a substantial amount of ribosomes on cspA mRNAs. In an attempt to identify a suppressor(s), which may help the cells to recover from the inhibitory LACE effect, genetic screening of an E. coli genomic library was performed. We isolated suppressors that contained the genomic fragments encoding uvrD and dinG, respectively, whose gene products are ATP-dependent DNA helicases. The nucleic acid-binding and ATPase activities of these two helicases were found to be essential for their suppression activity. This genomic screening offers an approach to shed light on the mechanistic of 5′-UTR of cspA mRNA and novel roles of E. coli helicases that function in DNA repair. PMID:22832783

  20. Managing Substitute Teaching.

    ERIC Educational Resources Information Center

    Jones, Kevin R.

    1999-01-01

    This news brief presents information on managing substitute teaching. The information is based on issues discussed at a summit meeting which included public school administrators and personnel directors from around the nation. The main topics of concern focused around four core components related to the management of substitute teaching:…

  1. Radiolysis of alanine adsorbed in a clay mineral

    NASA Astrophysics Data System (ADS)

    Aguilar-Ovando, Ellen Y.; Negrón-Mendoza, Alicia

    2013-07-01

    Optical activity in molecules is a chemical characteristic of living beings. In this work, we examine the hypothesis of the influence of different mineral surfaces on the development of a specific chirality in organic molecules when subjected to conditions simulating the primitive Earth during the period of chemical evolution. By using X-ray diffraction techniques and HPLC/ELSD to analyze aqueous suspensions of amino acids adsorbed on minerals irradiated in different doses with a cobalt-60 gamma source, the experiments attempt to prove the hypothesis that some solid surfaces (like clays and meteorite rocks) may have a concentration capacity and protective role against external sources of ionizing radiation (specifically γ-ray) for some organic compounds (like some amino acids) adsorbed on them. Preliminary results show a slight difference in the adsorption and radiolysis of the D-and L-alanine.

  2. Radiolysis of alanine adsorbed in a clay mineral

    SciTech Connect

    Aguilar-Ovando, Ellen Y.; Negron-Mendoza, Alicia

    2013-07-03

    Optical activity in molecules is a chemical characteristic of living beings. In this work, we examine the hypothesis of the influence of different mineral surfaces on the development of a specific chirality in organic molecules when subjected to conditions simulating the primitive Earth during the period of chemical evolution. By using X-ray diffraction techniques and HPLC/ELSD to analyze aqueous suspensions of amino acids adsorbed on minerals irradiated in different doses with a cobalt-60 gamma source, the experiments attempt to prove the hypothesis that some solid surfaces (like clays and meteorite rocks) may have a concentration capacity and protective role against external sources of ionizing radiation (specifically {gamma}-ray) for some organic compounds (like some amino acids) adsorbed on them. Preliminary results show a slight difference in the adsorption and radiolysis of the D-and L-alanine.

  3. Efficient L-Alanine Production by a Thermo-Regulated Switch in Escherichia coli.

    PubMed

    Zhou, Li; Deng, Can; Cui, Wen-Jing; Liu, Zhong-Mei; Zhou, Zhe-Min

    2016-01-01

    L-Alanine has important applications in food, pharmaceutical and veterinary and is used as a substrate for production of engineered thermoplastics. Microbial fermentation could reduce the production cost and promote the application of L-alanine. However, the presence of L-alanine significantly inhibit cell growth rate and cause a decrease in the ultimate L-alanine productivity. For efficient L-alanine production, a thermo-regulated genetic switch was designed to dynamically control the expression of L-alanine dehydrogenase (alaD) from Geobacillus stearothermophilus on the Escherichia coli B0016-060BC chromosome. The optimal cultivation conditions for the genetically switched alanine production using B0016-060BC were the following: an aerobic growth phase at 33 °C with a 1-h thermo-induction at 42 °C followed by an oxygen-limited phase at 42 °C. In a bioreactor experiment using the scaled-up conditions optimized in a shake flask, B0016-060BC accumulated 50.3 g biomass/100 g glucose during the aerobic growth phase and 96 g alanine/100 g glucose during the oxygen-limited phase, respectively. The L-alanine titer reached 120.8 g/l with higher overall and oxygen-limited volumetric productivities of 3.09 and 4.18 g/l h, respectively, using glucose as the sole carbon source. Efficient cell growth and L-alanine production were reached separately, by switching cultivation temperature. The results revealed the application of a thermo-regulated strategy for heterologous metabolic production and pointed to strategies for improving L-alanine production. PMID:26453031

  4. Analysis of Constructed E Gene Mutants of Mouse Hepatitis Virus Confirms a Pivotal Role for E Protein in Coronavirus Assembly

    PubMed Central

    Fischer, Françoise; Stegen, Carola F.; Masters, Paul S.; Samsonoff, William A.

    1998-01-01

    Expression studies have shown that the coronavirus small envelope protein E and the much more abundant membrane glycoprotein M are both necessary and sufficient for the assembly of virus-like particles in cells. As a step toward understanding the function of the mouse hepatitis virus (MHV) E protein, we carried out clustered charged-to-alanine mutagenesis on the E gene and incorporated the resulting mutations into the MHV genome by targeted recombination. Of the four possible clustered charged-to-alanine E gene mutants, one was apparently lethal and one had a wild-type phenotype. The two other mutants were partially temperature sensitive, forming small plaques at the nonpermissive temperature. Revertant analyses of these two mutants demonstrated that the created mutations were responsible for the temperature-sensitive phenotype of each and provided support for possible interactions among E protein monomers. Both temperature-sensitive mutants were also found to be markedly thermolabile when grown at the permissive temperature, suggesting that there was a flaw in their assembly. Most significantly, when virions of one of the mutants were examined by electron microscopy, they were found to have strikingly aberrant morphology in comparison to the wild type: most mutant virions had pinched and elongated shapes that were rarely seen among wild-type virions. These results demonstrate an important, probably essential, role for the E protein in coronavirus morphogenesis. PMID:9733825

  5. Vertebrate Acyl CoA synthetase family member 4 (ACSF4-U26) is a β-alanine-activating enzyme homologous to bacterial non-ribosomal peptide synthetase.

    PubMed

    Drozak, Jakub; Veiga-da-Cunha, Maria; Kadziolka, Beata; Van Schaftingen, Emile

    2014-03-01

    Mammalian ACSF4-U26 (Acyl CoA synthetase family member 4), a protein of unknown function, comprises a putative adenylation domain (AMP-binding domain) similar to those of bacterial non-ribosomal peptide synthetases, a putative phosphopantetheine attachment site, and a C-terminal PQQDH (pyrroloquinoline quinone dehydrogenase)-related domain. Orthologues comprising these three domains are present in many eukaryotes including plants. Remarkably, the adenylation domain of plant ACSF4-U26 show greater identity with Ebony, the insect enzyme that ligates β-alanine to several amines, than with vertebrate or insect ACSF4-U26, and prediction of its specificity suggests that it activates β-alanine. In the presence of ATP, purified mouse recombinant ACSF4-U26 progressively formed a covalent bond with radiolabelled β-alanine. The bond was not formed in a point mutant lacking the phosphopantetheine attachment site. Competition experiments with various amino acids indicated that the reaction was almost specific for β-alanine, and a KM of ~ 5 μm was calculated for this reaction. The loaded enzyme was used to study the formation of a potential end product. Among the 20 standard amino acids, only cysteine stimulated unloading of the enzyme. This effect was mimicked by cysteamine and dithiothreitol, and was unaffected by absence of the PQQDH-related domain, suggesting that β-alanine transfer onto thiols is catalysed by the ACSF4-U26 adenylation domain, but is physiologically irrelevant. We conclude that ACSF4-U26 is a β-alanine-activating enzyme, and hypothesize that it is involved in a rare intracellular reaction, possibly an infrequent post-translational or post-transcriptional modification. PMID:24467666

  6. The zebrafish early arrest mutants.

    PubMed

    Kane, D A; Maischein, H M; Brand, M; van Eeden, F J; Furutani-Seiki, M; Granato, M; Haffter, P; Hammerschmidt, M; Heisenberg, C P; Jiang, Y J; Kelsh, R N; Mullins, M C; Odenthal, J; Warga, R M; Nüsslein-Volhard, C

    1996-12-01

    This report describes mutants of the zebrafish having phenotypes causing a general arrest in early morphogenesis. These mutants identify a group of loci making up about 20% of the loci identified by mutants with visible morphological phenotypes within the first day of development. There are 12 Class I mutants, which fall into 5 complementation groups and have cells that lyse before morphological defects are observed. Mutants at three loci, speed bump, ogre and zombie, display abnormal nuclei. The 8 Class II mutants, which fall into 6 complementation groups, arrest development before cell lysis is observed. These mutants seemingly stop development in the late segmentation stages, and maintain a body shape similar to a 20 hour embryo. Mutations in speed bump, ogre, zombie, specter, poltergeist and troll were tested for cell lethality by transplanting mutant cells into wild-type hosts. With poltergeist, transplanted mutant cells all survive. The remainder of the mutants tested were autonomously but conditionally lethal: mutant cells, most of which lyse, sometimes survive to become notochord, muscles, or, in rare cases, large neurons, all cell types which become postmitotic in the gastrula. Some of the genes of the early arrest group may be necessary for progression though the cell cycle; if so, the survival of early differentiating cells may be based on having their terminal mitosis before the zygotic requirement for these genes. PMID:9007229

  7. Inactivation of 3-(3,4-dihydroxyphenyl)alanine decarboxylase by 2-(fluoromethyl)-3-(3,4-dihydroxyphenyl)alanine.

    PubMed

    Maycock, A L; Aster, S D; Patchett, A A

    1980-02-19

    2-(Fluoromethyl)-3-(3,4-dihydroxyphenyl)alanine [alpha-FM-Dopa (I)] causes rapid, time-dependent, stereospecific, and irreversible inhibition of hog kidney aromatic amino acid (Dopa) decarboxylase. The inactivation occurs with loss of both the carboxyl carbon and fluoride from I and results in the stoichimetric formation of a covalent enzyme-inhibitor adduct. The data are consistent with I being a suicide inactivator of the enzyme, and a plausible mechanism for the inactivation process is presented. The inactivation is highly efficient in that there is essentially no enzymatic turnover of I to produce the corresponding amine, 1-(fluoromethyl)-2-(3,4-dihydroxyphenyl)ethylamine [alpha-FM-dopamine (II)]. Amine II is also a potent inactivator of the enzyme. In vivo compound I is found to inactivate both brain and peripheral (liver) Dopa decarboxylase activity. The possible significance of these data with respect to the known antihypertensive effect of I is discussed. PMID:7356954

  8. Catalytic properties of Sepharose-bound L-alanine dehydrogenase from Bacillus cereus.

    PubMed

    Mureşan, L; Vancea, D; Presecan, E; Porumb, H; Lascu, I; Oargă, M; Matinca, D; Abrudan, I; Bârzu, O

    1983-02-15

    (1) L-Alanine dehydrogenase from Bacillus cereus was purified by a two-step chromatographic procedure involving Cibacron-Blue 3G-A Sepharose 4B-CL, and Sepharose 6B-CL, and immobilized on CNBr-activated Sepharose 4B. (2) Following immobilization via two of the six subunits, L-alanine dehydrogenase retained 66% of the specific activity of the soluble enzyme. The affinity of the immobilized enzyme for NH4+, pyruvate and L-alanine, was not different to that of the soluble form. The Km of the Sepharose-bound L-alanine dehydrogenase for pyridine coenzymes was 6-8-times higher than in the soluble case. (3) The stability of L-alanine dehydrogenase towards urea or thermal denaturation was increased by immobilization. (4) The incubation at 37 degrees C for 24 h of the immobilized L-alanine dehydrogenase with 3 M NH4Cl/NH4OH buffer (pH 9) released 70% of the enzyme. The specific activity and the affinity of the 'solubilized' L-alanine dehydrogenase for the pyridine coenzymes was the same as that obtained with the original, soluble L-alanine dehydrogenase. PMID:6404304

  9. Polymerization of alanine in the presence of a non-swelling montmorillonite

    NASA Technical Reports Server (NTRS)

    Paecht-Horowitz, M.; Lahav, N.

    1977-01-01

    Alanine, starting from alanine-adenylate, has been polymerized in the presence of non-swelling Al-montmorillonite. The yield of polymerization is much lower than that obtained in the presence of swelling Na-montmorillonite. The possibility that the changing interlayer spacing in Na-montmorillonite might be responsible for its catalytic properties, is discussed.

  10. 40 CFR 721.981 - Substituted naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... naphthalenyl-substituted azonaphthol chromium complex. 721.981 Section 721.981 Protection of Environment...-substituted naphthalenyl-substituted azonaphthol chromium complex. (a) Chemical substance and significant new... naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex (PMN P-93-1631) is subject...

  11. 40 CFR 721.981 - Substituted naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... naphthalenyl-substituted azonaphthol chromium complex. 721.981 Section 721.981 Protection of Environment...-substituted naphthalenyl-substituted azonaphthol chromium complex. (a) Chemical substance and significant new... naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex (PMN P-93-1631) is subject...

  12. 40 CFR 721.981 - Substituted naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... naphthalenyl-substituted azonaphthol chromium complex. 721.981 Section 721.981 Protection of Environment...-substituted naphthalenyl-substituted azonaphthol chromium complex. (a) Chemical substance and significant new... naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex (PMN P-93-1631) is subject...

  13. 40 CFR 721.981 - Substituted naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... naphthalenyl-substituted azonaphthol chromium complex. 721.981 Section 721.981 Protection of Environment...-substituted naphthalenyl-substituted azonaphthol chromium complex. (a) Chemical substance and significant new... naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex (PMN P-93-1631) is subject...

  14. 40 CFR 721.981 - Substituted naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... naphthalenyl-substituted azonaphthol chromium complex. 721.981 Section 721.981 Protection of Environment...-substituted naphthalenyl-substituted azonaphthol chromium complex. (a) Chemical substance and significant new... naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex (PMN P-93-1631) is subject...

  15. Thermal decomposition behavior of potassium and sodium jarosite synthesized in the presence of methylamine and alanine

    SciTech Connect

    J. Michelle Kotler; Nancy W. Hinman; C. Doc Richardson; Jill R. Scott

    2010-10-01

    Biomolecules, methylamine and alanine, found associated with natural jarosite samples peaked the interest of astrobiologists and planetary geologists. How the biomolecules are associated with jarosite remains unclear although the mechanism could be important for detecting biosignatures in the rock record on Earth and other planets. A series of thermal gravimetric experiments using synthetic K-jarosite and Na-jarosite were conducted to determine if thermal analysis could differentiate physical mixtures of alanine and methylamine with jarosite from samples where the methylamine or alanine was incorporated into the synthesis procedure. Physical mixtures and synthetic experiments with methylamine and alanine could be differentiated from one another and from the standards by thermal analysis for both the K-jarosite and Na-jarosite end-member suites. Changes included shifts in on-set temperatures, total temperature changes from on-set to final, and the presence of indicator peaks for methylamine and alanine in the physical mixture experiments.

  16. How similar is the electronic structures of β-lactam and alanine?

    NASA Astrophysics Data System (ADS)

    Chatterjee, Subhojyoti; Ahmed, Marawan; Wang, Feng

    2016-02-01

    The C1s spectra of β-lactam i.e. 2-azetidinone (C3H5NO), a drug and L-alanine (C3H7NO2), an amino acid, exhibit striking similarities, which may be responsible for the competition between 2-azetidinone and the alanyl-alanine moiety in biochemistry. The present study is to reveal the degree of similarities and differences between their electronic structures of the two model molecular pairs. It is found that the similarities in C1s and inner valence binding energy spectra are due to their bonding connections but other properties such as ring structure (in 2-azetidinone) and chiral carbon (alanine) can be very different. Further, the inner valence region of ionization potential greater than 18 eV for 2-azetidinone and alanine is also significantly similar. Finally the strained lactam ring exhibits more chemical reactivity measured at all non-hydrogen atoms by Fukui functions with respect to alanine.

  17. Sugar substitutes during pregnancy

    PubMed Central

    Pope, Eliza; Koren, Gideon; Bozzo, Pina

    2014-01-01

    Abstract Question I have a pregnant patient who regularly consumes sugar substitutes and she asked me if continuing their use would affect her pregnancy or child. What should I tell her, and are there certain options that are better for use during pregnancy? Answer Although more research is required to fully determine the effects of in utero exposure to sugar substitutes, the available data do not suggest adverse effects in pregnancy. However, it is recommended that sugar substitutes be consumed in moderate amounts, adhering to the acceptable daily intake standards set by regulatory agencies. PMID:25392440

  18. Temperature-sensitive mutants identify crucial structural regions of simian virus 40 large T antigen.

    PubMed Central

    Loeber, G; Tevethia, M J; Schwedes, J F; Tegtmeyer, P

    1989-01-01

    We have completed the cloning and sequencing of all known temperature-sensitive, amino acid substitution mutants of simian virus 40 large T antigen (tsA mutants). Surprisingly, many of the mutants isolated from distinct viral strains by different laboratories are identical. Thus, 17 independently isolated mutants represent only eight distinct genotypes. This remarkable clustering of tsA mutations in a few "hot spots" in the amino acid sequence of T antigen and the temperature-sensitive phenotypes of the mutations strongly suggest that these amino acids play crucial roles in organizing the structure of one or more functional domains. Most of the mutations are located in highly conserved regions of T antigen that correlate with DNA binding, protein-protein interactions, or ATP binding. With the exception of one mutant with a lesion in the putative ATP-binding region, all the mutants are temperature sensitive for DNA replication. PMID:2778883

  19. Expression, purification, and characterization of alanine racemase from Pseudomonas putida YZ-26.

    PubMed

    Liu, Jun-Lin; Liu, Xiao-Qin; Shi, Ya-Wei

    2012-01-01

    Alanine racemase catalyzes the interconversion of D: - and L: -alanine and plays an important role in supplying D: -alanine, a component of peptidoglycan biosynthesis, to most bacteria. Alanine racemase exists mostly in prokaryotes and is generally absent in higher eukaryotes; this makes it an attractive target for the design of new antibacterial drugs. Here, we present the cloning and characterization of a new gene-encoding alanine racemase from Pseudomonas putida YZ-26. An open reading frame (ORF) of 1,230 bp, encoding a protein of 410 amino acids with a calculated molecular weight of 44,217.3 Da, was cloned into modified vector pET32M to form the recombinant plasmid pET-alr. After introduction into E.coli BL21, the strain pET-alr/E.coli BL21 expressed His(6)-tagged alanine racemase. The recombinant alanine racemase was efficiently purified to homogeneity using Ni(2+)-NTA and a gel filtration column, with 82.5% activity recovery. The amino acid sequence deduced from the alanine racemase gene revealed identity similarities of 97.0, 93, 23, and 22.0% with from P. putida F1, P. putida200, P. aeruginosa, and Salmonella typhimurium, respectively. The recombinant alanine racemase is a monomeric protein with a molecular mass of 43 kDa. The enzyme exhibited activity with L: -alanine and L: -isoleucine, and showed higher specificity for the former compared with the latter. The enzyme was stable from pH 7.0-11.0; its optimum pH was at 9.0. The optimum temperature for the enzyme was 37°C, and its activity was rapidly lost at temperatures above 40°C. Divalent metals, including Sr(2+), Mn(2+), Co(2+), and Ni(2+) obviously enhanced enzymatic activity, while the Cu(2+) ion showed inhibitory effects. PMID:22806802

  20. Effects of alanine:glyoxylate aminotransferase variants and pyridoxine sensitivity on oxalate metabolism in a cell-based cytotoxicity assay.

    PubMed

    Fargue, Sonia; Knight, John; Holmes, Ross P; Rumsby, Gill; Danpure, Christopher J

    2016-06-01

    The hereditary kidney stone disease primary hyperoxaluria type 1 (PH1) is caused by a functional deficiency of the liver-specific, peroxisomal, pyridoxal-phosphate-dependent enzyme, alanine:glyoxylate aminotransferase (AGT). One third of PH1 patients, particularly those expressing the p.[(Pro11Leu; Gly170Arg; Ile340Met)] mutant allele, respond clinically to pharmacological doses of pyridoxine. To gain further insight into the metabolic effects of AGT dysfunction in PH1 and the effect of pyridoxine, we established an "indirect" glycolate cytotoxicity assay using CHO cells expressing glycolate oxidase (GO) and various normal and mutant forms of AGT. In cells expressing GO the great majority of glycolate was converted to oxalate and glyoxylate, with the latter causing the greater decrease in cell survival. Co-expression of normal AGTs and some, but not all, mutant AGT variants partially counteracted this cytotoxicity and led to decreased synthesis of oxalate and glyoxylate. Increasing the extracellular pyridoxine up to 0.3μM led to an increased metabolic effectiveness of normal AGTs and the AGT-Gly170Arg variant. The increased survival seen with AGT-Gly170Arg was paralleled by a 40% decrease in oxalate and glyoxylate levels. These data support the suggestion that the effectiveness of pharmacological doses of pyridoxine results from an improved metabolic effectiveness of AGT; that is the increased rate of transamination of glyoxylate to glycine. The indirect glycolate toxicity assay used in the present study has potential to be used in cell-based drug screening protocols to identify chemotherapeutics that might enhance or decrease the activity and metabolic effectiveness of AGT and GO, respectively, and be useful in the treatment of PH1. PMID:26854734

  1. Calibration of helical tomotherapy machine using EPR/alanine dosimetry

    SciTech Connect

    Perichon, Nicolas; Garcia, Tristan; Francois, Pascal; Lourenco, Valerie; Lesven, Caroline; Bordy, Jean-Marc

    2011-03-15

    Purpose: Current codes of practice for clinical reference dosimetry of high-energy photon beams in conventional radiotherapy recommend using a 10x10 cm{sup 2} square field, with the detector at a reference depth of 10 cm in water and 100 cm source to surface distance (SSD) (AAPM TG-51) or 100 cm source-to-axis distance (SAD) (IAEA TRS-398). However, the maximum field size of a helical tomotherapy (HT) machine is 40x5 cm{sup 2} defined at 85 cm SAD. These nonstandard conditions prevent a direct implementation of these protocols. The purpose of this study is twofold: To check the absorbed dose in water and dose rate calibration of a tomotherapy unit as well as the accuracy of the tomotherapy treatment planning system (TPS) calculations for a specific test case. Method: Both topics are based on the use of electron paramagnetic resonance (EPR) using alanine as transfer dosimeter between the Laboratoire National Henri Becquerel (LNHB) {sup 60}Co-{gamma}-ray reference beam and the Institut Curie's HT beam. Irradiations performed in the LNHB reference {sup 60}Co-{gamma}-ray beam allowed setting up the calibration method, which was then implemented and tested at the LNHB 6 MV linac x-ray beam, resulting in a deviation of 1.6% (at a 1% standard uncertainty) relative to the reference value determined with the standard IAEA TRS-398 protocol. Results: HT beam dose rate estimation shows a difference of 2% with the value stated by the manufacturer at a 2% standard uncertainty. A 4% deviation between measured dose and the calculation from the tomotherapy TPS was found. The latter was originated by an inadequate representation of the phantom CT-scan values and, consequently, mass densities within the phantom. This difference has been explained by the mass density values given by the CT-scan and used by the TPS which were not the true ones. Once corrected using Monte Carlo N-Particle simulations to validate the accuracy of this process, the difference between corrected TPS

  2. Computational approaches for predicting mutant protein stability.

    PubMed

    Kulshreshtha, Shweta; Chaudhary, Vigi; Goswami, Girish K; Mathur, Nidhi

    2016-05-01

    Mutations in the protein affect not only the structure of protein, but also its function and stability. Prediction of mutant protein stability with accuracy is desired for uncovering the molecular aspects of diseases and design of novel proteins. Many advanced computational approaches have been developed over the years, to predict the stability and function of a mutated protein. These approaches based on structure, sequence features and combined features (both structure and sequence features) provide reasonably accurate estimation of the impact of amino acid substitution on stability and function of protein. Recently, consensus tools have been developed by incorporating many tools together, which provide single window results for comparison purpose. In this review, a useful guide for the selection of tools that can be employed in predicting mutated proteins' stability and disease causing capability is provided. PMID:27160393

  3. Identification of a mutation affecting an alanine-alpha-ketoisovalerate transaminase activity in Escherichia coli K-12.

    PubMed

    Falkinham, J O

    1979-10-01

    A mutation affecting alanine-alpha-ketoisovalerate transaminase activity has been shown to be cotransducible with ilv gene cluster. The transaminase deficiency results in conditional isoleucine auxotrophy in the presence of alanine. PMID:396446

  4. Substitution of anticonvulsant drugs

    PubMed Central

    Steinhoff, Bernhard J; Runge, Uwe; Witte, Otto W; Stefan, Hermann; Hufnagel, Andreas; Mayer, Thomas; Krämer, Günter

    2009-01-01

    Changing from branded drugs to generic alternatives, or between different generic formulations, is common practice aiming at reducing health care costs. It has been suggested that antiepileptic drugs (AEDs) should be exempt from substitution because of the potential negative consequences of adverse events and breakthrough seizures. Controlled data are lacking on the risk of substitution. However, retrospective data from large medical claims databases suggest that switching might be associated with increased use of AED and non-AED medications, and health care resources (including hospitalization). In addition, some anecdotal evidence from patients and health care providers’ surveys suggest a potentially negative impact of substitution. Well-controlled data are needed to assess the real risk associated with substitution, allowing health care professionals involved in the care of patients with epilepsy to make informed decisions. This paper reviews currently available literature, based on which the authors suggest that the decision to substitute should be made on an individual basis by the physician and an informed patient. Unendorsed or undisclosed substitution at the pharmacy level should be discouraged. PMID:19707254

  5. Characterization of Escherichia coli d-Cycloserine Transport and Resistant Mutants

    PubMed Central

    Baisa, Gary; Stabo, Nicholas J.

    2013-01-01

    d-Cycloserine (DCS) is a broad-spectrum antibiotic that inhibits d-alanine ligase and alanine racemase activity. When Escherichia coli K-12 or CFT073 is grown in minimal glucose or glycerol medium, CycA transports DCS into the cell. E. coli K-12 cycA and CFT073 cycA mutant strains display increased DCS resistance when grown in minimal medium. However, the cycA mutants exhibit no change in DCS sensitivity compared to their parental strains when grown in LB (CFT073 and K-12) or human urine (CFT073 only). These data suggest that cycA does not participate in DCS sensitivity when strains are grown in a non-minimal medium. The small RNA GvcB acts as a negative regulator of E. coli K-12 cycA expression when grown in LB. Three E. coli K-12 gcvB mutant strains failed to demonstrate a change in DCS sensitivity when grown in LB. This further suggests a limited role for cycA in DCS sensitivity. To aid in the identification of E. coli genes involved in DCS sensitivity when grown on complex media, the Keio K-12 mutant collection was screened for DCS-resistant strains. dadA, pnp, ubiE, ubiF, ubiG, ubiH, and ubiX mutant strains showed elevated DCS resistance. The phenotypes associated with these mutants were used to further define three previously characterized E. coli DCS-resistant strains (χ316, χ444, and χ453) isolated by Curtiss and colleagues (R. Curtiss, III, L. J. Charamella, C. M. Berg, and P. E. Harris, J. Bacteriol. 90:1238–1250, 1965). A dadA mutation was identified in both χ444 and χ453. In addition, results are presented that indicate for the first time that DCS can antagonize d-amino acid dehydrogenase (DadA) activity. PMID:23316042

  6. A comprehensive alanine-scanning mutagenesis study reveals roles for salt bridges in the structure and activity of Pseudomonas aeruginosa elastase.

    PubMed

    Bian, Fei; Yue, Shousong; Peng, Zhenying; Zhang, Xiaowei; Chen, Gao; Yu, Jinhui; Xuan, Ning; Bi, Yuping

    2015-01-01

    The relationship between salt bridges and stability/enzymatic activity is unclear. We studied this relationship by systematic alanine-scanning mutation analysis using the typical M4 family metalloprotease Pseudomonas aeruginosa elastase (PAE, also known as pseudolysin) as a model. Structural analysis revealed seven salt bridges in the PAE structure. We constructed ten mutants for six salt bridges. Among these mutants, six (Asp189Ala, Arg179Ala, Asp201Ala, Arg205Ala, Arg245Ala and Glu249Ala) were active and four (Asp168Ala, Arg198Ala, Arg253Ala, and Arg279Ala) were inactive. Five mutants were purified, and their catalytic efficiencies (kcat/Km), half-lives (t1/2) and thermal unfolding curves were compared with those of PAE. Mutants Asp189Ala and Arg179Ala both showed decreased thermal stabilities and increased activities, suggesting that the salt bridge Asp189-Arg179 stabilizes the protein at the expense of catalytic efficiency. In contrast, mutants Asp201Ala and Arg205Ala both showed slightly increased thermal stability and slightly decreased activity, suggesting that the salt bridge Asp201-Arg205 destabilizes the protein. Mutant Glu249Ala is related to a C-terminal salt bridge network and showed both decreased thermal stability and decreased activity. Furthermore, Glu249Ala showed a thermal unfolding curve with three discernable states [the native state (N), the partially unfolded state (I) and the unfolded state (U)]. In comparison, there were only two discernable states (N and U) in the thermal unfolding curve of PAE. These results suggest that Glu249 is important for catalytic efficiency, stability and unfolding cooperativity. This study represents a systematic mutational analyses of salt bridges in the model metalloprotease PAE and provides important insights into the structure-function relationship of enzymes. PMID:25815820

  7. Folding simulations of alanine-based peptides with lysine residues.

    PubMed Central

    Sung, S S

    1995-01-01

    The folding of short alanine-based peptides with different numbers of lysine residues is simulated at constant temperature (274 K) using the rigid-element Monte Carlo method. The solvent-referenced potential has prevented the multiple-minima problem in helix folding. From various initial structures, the peptides with three lysine residues fold into helix-dominated conformations with the calculated average helicity in the range of 60-80%. The peptide with six lysine residues shows only 8-14% helicity. These results agree well with experimental observations. The intramolecular electrostatic interaction of the charged lysine side chains and their electrostatic hydration destabilize the helical conformations of the peptide with six lysine residues, whereas these effects on the peptides with three lysine residues are small. The simulations provide insight into the helix-folding mechanism, including the beta-bend intermediate in helix initiation, the (i, i + 3) hydrogen bonds, the asymmetrical helix propagation, and the asymmetrical helicities in the N- and C-terminal regions. These findings are consistent with previous studies. PMID:7756550

  8. Alanine synthesis from glyceraldehyde and ammonium ion in aqueous solution

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    1985-01-01

    The formation of alanine (ala) form C(14)-glyceraldehyde and ammonium phosphate in the presence or absence of a thiol is reported. At ambient temperature, ala synthesis was six times more rapid in the presence of 3-mercaptopropionic acid than in its absence (0.6 and 0.1 percent, respectively, after 60 days). Similarly, the presence of another thiol, N-acetylcysteinate, increased the production of ala, as well as of lactate. The reaction pathway of thiol-catalyzed synthesis of ala, with the lactic acid formed in a bypath, is suggested. In this, dehydration of glyceraldehyde is followed by the formation of hemithioacetal. In the presence of ammonia, an imine is formed, which eventually yields ala. This pathway is consistent with the observation that the rate ratio of ala/lactate remains constant throughout the process. The fact that the reaction takes place under anaerobic conditions in the presence of H2O and with the low concentrations of simple substrates and catalysts makes it an attractive model prebiotic reaction in the process of molecular evolution.

  9. Energy landscapes and global thermodynamics for alanine peptides

    NASA Astrophysics Data System (ADS)

    Somani, Sandeep; Wales, David J.

    2013-09-01

    We compare different approaches for computing the thermodynamics of biomolecular systems. Techniques based on parallel replicas evolving via molecular dynamics or Monte Carlo simulations produce overlapping histograms for the densities of states. In contrast, energy landscape methods employ a superposition partition function constructed from local minima of the potential energy surface. The latter approach is particularly powerful for systems exhibiting broken ergodicity, and it is usually implemented using a harmonic normal mode approximation, which has not been extensively tested for biomolecules. The present contribution compares these alternative approaches for small alanine peptides modelled using the CHARMM and AMBER force fields. Densities of states produced from canonical sampling using multiple temperature replicas provide accurate reference data to evaluate the effect of the harmonic normal mode approximation in the superposition calculations. This benchmarking lays foundations for the application of energy landscape methods to larger biomolecules. It will also provide well characterised model systems for developing enhanced sampling methods, and for the treatment of anharmonicity corresponding to individual local minima.

  10. ECB deacylase mutants

    DOEpatents

    Arnold, Frances H.; Shao, Zhixin; Zhao, Huimin; Giver, Lorraine J.

    2002-01-01

    A method for in vitro mutagenesis and recombination of polynucleotide sequences based on polymerase-catalyzed extension of primer oligonucleotides is disclosed. The method involves priming template polynucleotide(s) with random-sequences or defined-sequence primers to generate a pool of short DNA fragments with a low level of point mutations. The DNA fragments are subjected to denaturization followed by annealing and further enzyme-catalyzed DNA polymerization. This procedure is repeated a sufficient number of times to produce full-length genes which comprise mutants of the original template polynucleotides. These genes can be further amplified by the polymerase chain reaction and cloned into a vector for expression of the encoded proteins.

  11. The natural non-protein amino acid N-β-methylamino-L-alanine (BMAA) is incorporated into protein during synthesis.

    PubMed

    Glover, W Broc; Mash, Deborah C; Murch, Susan J

    2014-11-01

    N-β-methylamino-L-alanine (BMAA) is an amino acid produced by cyanobacteria and accumulated through trophic levels in the environment and natural food webs. Human exposure to BMAA has been linked to progressive neurodegenerative diseases, potentially due to incorporation of BMAA into protein. The insertion of BMAA and other non-protein amino acids into proteins may trigger protein misfunction, misfolding and/or aggregation. However, the specific mechanism by which BMAA is associated with proteins remained unidentified. Such studies are challenging because of the complexity of biological systems and samples. A cell-free in vitro protein synthesis system offers an excellent approach for investigation of changing amino acid composition in protein. In this study, we report that BMAA incorporates into protein as an error in synthesis when a template DNA sequence is used. Bicinchoninic acid assay of total protein synthesis determined that BMAA effectively substituted for alanine and serine in protein product. LC-MS/MS confirmed that BMAA was selectively inserted into proteins in place of other amino acids, but isomers N-(2-aminoethyl)glycine (AEG) and 2,4-diaminobutyric acid (DAB) did not share this characteristic. Incorporation of BMAA into proteins was significantly higher when genomic DNA from post-mortem brain was the template. About half of BMAA in the synthetic proteins was released with denaturation with sodium dodecylsulfonate and dithiothreitol, but the remaining BMAA could only be released by acid hydrolysis. Together these data demonstrate that BMAA is incorporated into the amino acid backbone of proteins during synthesis and also associated with proteins through non-covalent bonding. PMID:25096519

  12. Alanine-EPR as a transfer standard dosimetry system for low energy X radiation

    NASA Astrophysics Data System (ADS)

    Khoury, H. J.; da Silva, E. J.; Mehta, K.; de Barros, V. S.; Asfora, V. K.; Guzzo, P. L.; Parker, A. G.

    2015-11-01

    The purpose of this paper is to evaluate the use of alanine-EPR as a transfer standard dosimetry system for low energy X radiation, such as that in RS-2400, which operates in the range from 25 to 150 kV and 2 to 45 mA. Two types of alanine dosimeters were investigated. One is a commercial alanine pellets from Aérial-Centre de Ressources Technologiques, France and one was prepared in our laboratory (LMRI-DEN/UFPE). The EPR spectra of the irradiated dosimeters were recorded in the Nuclear Energy Department of UFPE, using a Bruker EMX10 EPR spectrometer operating in the X-band. The alanine-EPR dosimetry system was calibrated in the range of 20-220 Gy in this X-ray field, against an ionization chamber calibrated at the relevant X-ray energy with traceability to PTB. The results showed that both alanine dosimeters presented a linear dose response the same sensitivity, when the EPR signal was normalized to alanine mass. The total uncertainty in the measured dose was estimated to be about 3%. The results indicate that it is possible to use the alanine-EPR dosimetry system for validation of a low-energy X ray irradiator, such as RS-2400.

  13. Sodium dependency of L-alanine absorption in canine Thiry-Vella loops.

    PubMed

    Fleshler, B; Nelson, R A

    1970-03-01

    The effect of sodium on the absorption of L-alanine in vivo was tested by measuring the absorption of L-alanine from Thiry-Vella loops in dogs. Solutions containing L-alanine (10 or 50 mM) sodium at concentrations of 0, 74, or 145 m-equiv/1 and mannitol, as needed to maintain isotonicity were instilled into the loops for 10 minutes. Similar studies were done with L-alanine 50 mM and either 0 or 145 m-equiv/1 of sodium for five minutes. Under all conditions absorption of alanine was significantly less from the solution initially free of sodium. Although these differences were statistically significant, the physiological significance was not great since the actual differences in amounts of L-alanine absorbed were small. Insorption of sodium was low from the fluid which initially had no sodium, but exsorption proceeded rapidly and was unaffected by the luminal sodium concentration. This resulted in a rapid rise of intraluminal sodium concentration when no sodium was initially present. This persistent exsorption of sodium was, therefore, adequate to provide sodium in the lumen to activate the sodium-dependent carrier, postulated on the basis of studies in vitro. These data in vivo are consistent with the view that sodium at the intraluminal surface is important in accelerating amino acid transport, but indicate that in the absence of added intraluminal sodium the gut mucosa itself, under normal circumstances, provides the sodium needed for L-alanine absorption. PMID:5423904

  14. Mitochondrial defects associated with β-alanine toxicity: relevance to hyper-beta-alaninemia.

    PubMed

    Shetewy, Aza; Shimada-Takaura, Kayoko; Warner, Danielle; Jong, Chian Ju; Mehdi, Abu-Bakr Al; Alexeyev, Mikhail; Takahashi, Kyoko; Schaffer, Stephen W

    2016-05-01

    Hyper-beta-alaninemia is a rare metabolic condition that results in elevated plasma and urinary β-alanine levels and is characterized by neurotoxicity, hypotonia, and respiratory distress. It has been proposed that at least some of the symptoms are caused by oxidative stress; however, only limited information is available on the mechanism of reactive oxygen species generation. The present study examines the hypothesis that β-alanine reduces cellular levels of taurine, which are required for normal respiratory chain function; cellular taurine depletion is known to reduce respiratory function and elevate mitochondrial superoxide generation. To test the taurine hypothesis, isolated neonatal rat cardiomyocytes and mouse embryonic fibroblasts were incubated with medium lacking or containing β-alanine. β-alanine treatment led to mitochondrial superoxide accumulation in conjunction with a decrease in oxygen consumption. The defect in β-alanine-mediated respiratory function was detected in permeabilized cells exposed to glutamate/malate but not in cells utilizing succinate, suggesting that β-alanine leads to impaired complex I activity. Taurine treatment limited mitochondrial superoxide generation, supporting a role for taurine in maintaining complex I activity. Also affected by taurine is mitochondrial morphology, as β-alanine-treated fibroblasts undergo fragmentation, a sign of unhealthy mitochondria that is reversed by taurine treatment. If left unaltered, β-alanine-treated fibroblasts also undergo mitochondrial apoptosis, as evidenced by activation of caspases 3 and 9 and the initiation of the mitochondrial permeability transition. Together, these data show that β-alanine mediates changes that reduce ATP generation and enhance oxidative stress, factors that contribute to heart failure. PMID:27023909

  15. The substitutability of reinforcers

    PubMed Central

    Green, Leonard; Freed, Debra E.

    1993-01-01

    Substitutability is a construct borrowed from microeconomics that describes a continuum of possible interactions among the reinforcers in a given situation. Highly substitutable reinforcers, which occupy one end of the continuum, are readily traded for each other due to their functional similarity. Complementary reinforcers, at the other end of the continuum, tend to be consumed jointly in fairly rigid proportion, and therefore cannot be traded for one another except to achieve that proportion. At the center of the continuum are reinforcers that are independent with respect to each other; consumption of one has no influence on consumption of another. Psychological research and analyses in terms of substitutability employ standard operant conditioning paradigms in which humans and nonhumans choose between alternative reinforcers. The range of reinforcer interactions found in these studies is more readily accommodated and predicted when behavior-analytic models of choice consider issues of substitutability. New insights are gained into such areas as eating and drinking, electrical brain stimulation, temporal separation of choice alternatives, behavior therapy, drug use, and addictions. Moreover, the generalized matching law (Baum, 1974) gains greater explanatory power and comprehensiveness when measures of substitutability are included. PMID:16812696

  16. The substitutability of reinforcers.

    PubMed

    Green, Leonard; Freed, Debra E

    1993-07-01

    Substitutability is a construct borrowed from microeconomics that describes a continuum of possible interactions among the reinforcers in a given situation. Highly substitutable reinforcers, which occupy one end of the continuum, are readily traded for each other due to their functional similarity. Complementary reinforcers, at the other end of the continuum, tend to be consumed jointly in fairly rigid proportion, and therefore cannot be traded for one another except to achieve that proportion. At the center of the continuum are reinforcers that are independent with respect to each other; consumption of one has no influence on consumption of another. Psychological research and analyses in terms of substitutability employ standard operant conditioning paradigms in which humans and nonhumans choose between alternative reinforcers. The range of reinforcer interactions found in these studies is more readily accommodated and predicted when behavior-analytic models of choice consider issues of substitutability. New insights are gained into such areas as eating and drinking, electrical brain stimulation, temporal separation of choice alternatives, behavior therapy, drug use, and addictions. Moreover, the generalized matching law (Baum, 1974) gains greater explanatory power and comprehensiveness when measures of substitutability are included. PMID:16812696

  17. ALS-linked SOD1 in glial cells enhances ß-N-Methylamino L-Alanine (BMAA)-induced toxicity in Drosophila

    PubMed Central

    Islam, Rafique; Zhang, Bing

    2012-01-01

    Environmental factors have been implicated in the etiology of a number of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). However, the role of environmental agents in ALS remains poorly understood. To this end, we used transgenic fruit flies (Drosophila melanogaster) to explore the interaction between mutant superoxide dismutase 1 (SOD1) and chemicals such as ß-N-methylamino L-alanine (BMAA), the herbicide agent paraquat, and superoxide species. We expressed ALS-linked human SOD1 (hSOD1A4V, and hSOD1G85R), hSOD1wt as well as the Drosophila native SOD1 (dSOD1) in motoneurons (MNs) or in glial cells alone and simultaneously in both types of cells. We then examined the effect of BMAA (3 mM), paraquat (20 mM), and hydrogen peroxide (H2O2, 1%) on the lifespan of SOD1-expressing flies. Our data show that glial expression of mutant and wild type hSOD1s reduces the ability of flies to climb. Further, we show that while all three chemicals significantly shorten the lifespan of flies, mutant SOD1 does not have a significant additional effect on the lifespan of flies fed on paraquat, but further shortens the lifespan of flies fed on H2O2. Finally, we show that BMAA shows a dramatic cell-type specific effect with mutant SOD1. Flies with expression of mutant hSOD1 in MNs survived longer on BMAA compared to control flies. In contrast, BMAA significantly shortened the lifespan of flies expressing mutant hSOD1 in glia. Consistent with a neuronal protection role, flies expressing these mutant hSOD1s in both MNs and glia also lived longer. Hence, our studies reveal a synergistic effect of mutant SOD1 with H2O2 and novel roles for mutant hSOD1s in neurons to reduce BMAA toxicity and in glia to enhance the toxicity of BMAA in flies. PMID:24627764

  18. Hepatitis B escape mutants in Scottish blood donors.

    PubMed

    Larralde, Osmany; Dow, Brian; Jarvis, Lisa; Davidson, Fiona; Petrik, Juraj

    2013-06-01

    Hepatitis B virus (HBV) remains as the viral infection with the highest risk of transmission by transfusion. This risk is associated with window period donations, occult HBV infection (OBI) and the emergence of escape mutants, which render blood donations false negative for hepatitis B surface antigen (HBsAg) serological testing. A retrospective study was conducted to gain insights into the molecular epidemiology of HBV escape mutants in Scottish blood donors. The criterion for selection was HBV positivity either by serology or nucleic acid testing (NAT). HBsAg detection was compared across several commercial immunoassays. The full length S gene from plasma samples was PCR amplified, cloned and expressed in HepG2 cells. Eight samples showed HBsAg discordant results, while 5 OBI samples were found. Four escape mutants, containing missense mutations in the S gene, are described here. These mutations impaired HBsAg detection both from HBV infected plasma samples and from recombinant proteins derived from its infected donors. Phylogenetic analysis showed that most of the mutants were clustered in the genotype D and were closely related to strains from Asia and the Middle East. We report here a proline substitution, outside the major hydrophilic region, that impaired HBsAg detection in vivo and in vitro, warning about the risk for the emergence of vaccine escape mutants with mutations outside the major neutralisation site. PMID:23274404

  19. Substitution of glutamine for lysine at the pyridoxal phosphate binding site of bacterial D-amino acid transaminase. Effects of exogenous amines on the slow formation of intermediates.

    PubMed

    Futaki, S; Ueno, H; Martinez del Pozo, A; Pospischil, M A; Manning, J M; Ringe, D; Stoddard, B; Tanizawa, K; Yoshimura, T; Soda, K

    1990-12-25

    In bacterial D-amino acid transaminase, Lys-145, which binds the coenzyme pyridoxal 5'-phosphate in Schiff base linkage, was changed to Gln-145 by site-directed mutagenesis (K145Q). The mutant enzyme had 0.015% the activity of the wild-type enzyme and was capable of forming a Schiff base with D-alanine; this external aldimine was formed over a period of minutes depending upon the D-alanine concentration. The transformation of the pyridoxal-5'-phosphate form of the enzyme to the pyridoxamine-5'-phosphate form (i.e. the half-reaction of transamination) occurred over a period of hours with this mutant enzyme. Thus, information on these two steps in the reaction and on the factors that influence them can readily be obtained with this mutant enzyme. In contrast, these reactions with the wild-type enzyme occur at much faster rates and are not easily studied separately. The mutant enzyme shows distinct preference for D- over L-alanine as substrates but it does so about 50-fold less effectively than the wild-type enzyme. Thus, Lys-145 probably acts in concert with the coenzyme and other functional side chain(s) to lead to efficient and stereochemically precise transamination in the wild-type enzyme. The addition of exogenous amines, ethanolamine or methyl amine, increased the rate of external aldimine formation with D-alanine and the mutant enzyme but the subsequent transformation to the pyridoxamine-5'-phosphate form of the enzyme was unaffected by exogenous amines. The wild-type enzyme displayed a large negative trough in the circular dichroic spectrum at 420 nm, which was practically absent in the mutant enzyme. However, addition of D-alanine to the mutant enzyme generated this negative Cotton effect (due to formation of the external aldimine with D-alanine). This circular dichroism band gradually collapsed in parallel with the transformation to the pyridoxamine-5'-phosphate enzyme. Further studies on this mutant enzyme, which displays the characteristics of the wild

  20. Solvation free energies of alanine peptides: the effect of flexibility.

    PubMed

    Kokubo, Hironori; Harris, Robert C; Asthagiri, Dilipkumar; Pettitt, B Montgomery

    2013-12-27

    The electrostatic (ΔGel), van der Waals cavity-formation (ΔGvdw), and total (ΔG) solvation free energies for 10 alanine peptides ranging in length (n) from 1 to 10 monomers were calculated. The free energies were computed both with fixed, extended conformations of the peptides and again for some of the peptides without constraints. The solvation free energies, ΔGel, and components ΔGvdw, and ΔG, were found to be linear in n, with the slopes of the best-fit lines being γel, γvdw, and γ, respectively. Both γel and γ were negative for fixed and flexible peptides, and γvdw was negative for fixed peptides. That γvdw was negative was surprising, as experimental data on alkanes, theoretical models, and MD computations on small molecules and model systems generally suggest that γvdw should be positive. A negative γvdw seemingly contradicts the notion that ΔGvdw drives the initial collapse of the protein when it folds by favoring conformations with small surface areas. When we computed ΔGvdw for the flexible peptides, thereby allowing the peptides to assume natural ensembles of more compact conformations, γvdw was positive. Because most proteins do not assume extended conformations, a ΔGvdw that increases with increasing surface area may be typical for globular proteins. An alternative hypothesis is that the collapse is driven by intramolecular interactions. We find few intramolecular H-bonds but show that the intramolecular van der Waals interaction energy is more favorable for the flexible than for the extended peptides, seemingly favoring this hypothesis. The large fluctuations in the vdw energy may make attributing the collapse of the peptide to this intramolecular energy difficult. PMID:24328358

  1. Solvation Free Energies of Alanine Peptides: The Effect of Flexibility

    PubMed Central

    Kokubo, Hironori; Harris, Robert C.; Asthigiri, Dilipkumar; Pettitt, B. Montgomery

    2014-01-01

    The electrostatic (ΔGel), van der Waals cavity-formation (ΔGvdw), and total (ΔG) solvation free energies for 10 alanine peptides ranging in length (n) from 1 to 10 monomers were calculated. The free energies were computed both with fixed, extended conformations of the peptides and again for some of the peptides without constraints. The solvation free energies, ΔGel, and components ΔGvdw, and ΔG, were found to be linear in n, with the slopes of the best-fit lines being γel, γvdw, and γ, respectively. Both γel and γ were negative for fixed and flexible peptides, and γvdw was negative for fixed peptides. That γvdw was negative was surprising, as experimental data on alkanes, theoretical models, and MD computations on small molecules and model systems generally suggest that γvdw should be positive. A negative γvdw seemingly contradicts the notion that ΔGvdw drives the initial collapse of the protein when it folds by favoring conformations with small surface areas. When we computed ΔGvdw for the flexible peptides, thereby allowing the peptides to assume natural ensembles of more compact conformations, γvdw was positive. Because most proteins do not assume extended conformations, a ΔGvdw that increases with increasing surface area may be typical for globular proteins. An alternative hypothesis is that the collapse is driven by intramolecular interactions. We find few intramolecular h-bonds but show that the intramolecular van der Waal’s interaction energy is more favorable for the flexible than for the extended peptides, seemingly favoring this hypothesis. The large fluctuations in the vdw energy may make attributing the collapse of the peptide to this intramolecular energy difficult. PMID:24328358

  2. Solvation Free Energies of Alanine Peptides: The Effect of Flexibility

    SciTech Connect

    Kokubo, Hironori; Harris, Robert C.; Asthagiri, Dilip; Pettitt, Bernard M.

    2013-12-03

    The electrostatic (?Gel), cavity-formation (?Gvdw), and total (?G) solvation free energies for 10 alanine peptides ranging in length (n) from 1 to 10 monomers were calculated. The free energies were computed both with xed, extended conformations of the peptides and again for some of the peptides without constraints. The solvation free energies, ?Gel, ?Gvdw, and ?G, were found to be linear in n, with the slopes of the best-fit lines being gamma_el, gamma_vdw, and gamma, respectively. Both gamma_el and gamma were negative for fixed and flexible peptides, and gamma_vdw was negative for fixed peptides. That gamma_vdw was negative was surprising, as experimental data on alkanes, theoretical models, and MD computations on small molecules and model systems generally suggest that gamma_vdw should be positive. A negative gamma_vdw seemingly contradicts the notion that ?Gvdw drives the initial collapse of the protein when it folds by favoring conformations with small surface areas, but when we computed ?Gvdw for the flexible peptides, thereby allowing the peptides to assume natural ensembles of more compact conformations, gamma-vdw was positive. Because most proteins do not assume extended conformations, a ?Gvdw that increases with increasing surface area may be typical for globular proteins. An alternative hypothesis is that the collapse is driven by intramolecular interactions. We show that the intramolecular van der Waal's interaction energy is more favorable for the flexible than for the extended peptides, seemingly favoring this hypothesis, but the large fluctuations in this energy may make attributing the collapse of the peptide to this intramolecular energy difficult.

  3. Aryl substitution of pentacenes

    PubMed Central

    Waterloo, Andreas R; Sale, Anna-Chiara; Lehnherr, Dan; Hampel, Frank

    2014-01-01

    Summary A series of 11 new pentacene derivatives has been synthesized, with unsymmetrical substitution based on a trialkylsilylethynyl group at the 6-position and various aryl groups appended to the 13-position. The electronic and physical properties of the new pentacene chromophores have been analyzed by UV–vis spectroscopy (solution and thin films), thermoanalytical methods (DSC and TGA), cyclic voltammetry, as well as X-ray crystallography (for 8 derivatives). X-ray crystallography has been specifically used to study the influence of unsymmetrical substitution on the solid-state packing of the pentacene derivatives. The obtained results add to our ability to better predict substitution patterns that might be helpful for designing new semiconductors for use in solid-state devices. PMID:25161729

  4. [Delegation yes, substitution no!].

    PubMed

    Schroeder, A

    2014-08-01

    The aging of society leads on the one hand to increasing case numbers and on the other hand to a reduction in the number of physicians available for patient treatment. The delegation and substitution of medical duties as a tried and tested method is increasingly being recommended in order to compensate for the lack of physicians. The Berufsverband der Deutschen Urologen (BDU, Professional Association of German Urologists) supports the guiding principle of the Bundesärztekammer (Federal Medical Council) of "delegation yes, substitution no" and rejects a substitution of medical duties by non-medical academic health personnel. Against the background of the demographic changes, the increasing need for treatment and the current deficiency of junior physicians, a more extensive inclusion of well-qualified and experienced non-medical personnel by the delegation of medically responsible duties (medical scope of practice) can be an appropriate measure to maintain a good medical service in practices, hospitals and nursing homes. PMID:25047595

  5. [Substitution therapy with diamorphine].

    PubMed

    Roy, Mandy; Bleich, Stefan; Hillemacher, Thomas

    2016-03-01

    After a long lead time the substitution with diamorphine was taken into the German catalogue of statutory health insurance in 2010. Currently about 570 patients are treated this way in 9 ambulances in Germany. The study phase as well as the clinical practice are showing the success of this therapy concerning physical and mental health of patients and their circumstances of social life. Thereby substitution with diamorphine is underlying very strict admission criteria regarding patients on the one hand and particular organizational requirements of the medical institution on the other hand. This article explains these criteria in detail as well as neurobiological information and clinical workflow is presented. Improvement of mandatory requirements could lead to a better reaching of patients who benefit from substitution with diamorphine. PMID:27029045

  6. A novel low molecular weight alanine aminotransferase from fasted rat liver.

    PubMed

    Vedavathi, M; Girish, K S; Kumar, M Karuna

    2006-01-01

    Alanine is the most effective precursor for gluconeogenesis among amino acids, and the initial reaction is catalyzed by alanine aminotransferase (AlaAT). Although the enzyme activity increases during fasting, this effect has not been studied extensively. The present study describes the purification and characterization of an isoform of AlaAT from rat liver under fasting. The molecular mass of the enzyme is 17.7 kD with an isoelectric point of 4.2; glutamine is the N-terminal residue. The enzyme showed narrow substrate specificity for L-alanine with Km values for alanine of 0.51 mM and for 2-oxoglutarate of 0.12 mM. The enzyme is a glycoprotein. Spectroscopic and inhibition studies showed that pyridoxal phosphate (PLP) and free -SH groups are involved in the enzymatic catalysis. PLP activated the enzyme with a Km of 0.057 mM. PMID:16487061

  7. Titration of Alanine Monitored by NMR Spectroscopy: A Biochemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Waller, Francis J.; And Others

    1977-01-01

    The experiment described here involves simultaneous monitoring of pH and NMR chemical shifts during an aqueous titration of alpha- and beta-alanine. This experiment is designed for use in an undergraduate biochemistry course. (MR)

  8. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... substituted methyl styrene, methyl methacrylate, and substituted silane. 721.6920 Section 721.6920 Protection... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  9. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... substituted methyl styrene, methyl methacrylate, and substituted silane. 721.6920 Section 721.6920 Protection... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  10. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... substituted methyl styrene, methyl methacrylate, and substituted silane. 721.6920 Section 721.6920 Protection... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  11. Repeated Supramaximal Exercise-Induced Oxidative Stress: Effect of β-Alanine Plus Creatine Supplementation

    PubMed Central

    Belviranli, Muaz; Okudan, Nilsel; Revan, Serkan; Balci, Serdar; Gokbel, Hakki

    2016-01-01

    Background: Carnosine is a dipeptide formed from the β-alanine and histidine amino acids and found in mainly in the brain and muscle, especially fast twitch muscle. Carnosine and creatine has an antioxidant effect and carnosine accounts for about 10% of the muscle's ability to buffer the H+ ions produced by exercise. Objectives: The aim of the study was to investigate the effects of beta alanine and/or creatine supplementation on oxidant and antioxidant status during repeated Wingate tests (WTs). Patients and Methods: Forty four sedentary males participated in the study. Participants performed three 30s WTs with 2 minutes rest between exercise bouts. After the first exercise session, the subjects were assigned to one of four groups: Placebo, Creatine, Beta-alanine and Beta-alanine plus creatine. Participants ingested twice per day for 22 consecutive days, then four times per day for the following 6 days. After the supplementation period the second exercise session was applied. Blood samples were taken before and immediately after the each exercise session for the analysis of oxidative stress and antioxidant markers. Results: Malondialdehyde levels and superoxide dismutase activities were affected by neither supplementation nor exercise. During the pre-supplementation session, protein carbonyl reduced and oxidized glutathione (GSH and GSSG) levels increased immediately after the exercise. However, during the post-supplementation session GSH and GSSG levels increased in beta-alanine and beta-alanine plus creatine groups immediately after the exercise compared to pre-exercise. In addition, during the post-supplementation session total antioxidant capacity increased in beta-alanine group immediately after the exercise. Conclusions: Beta-alanine supplementation has limited antioxidant effect during the repeated WTs. PMID:27217925

  12. Internal bias field in triglycine sulphate crystals with L-, α-alanine grown at negative temperatures

    NASA Astrophysics Data System (ADS)

    Milovidova, S. D.; Rogazinskaya, O. V.; Sidorkin, A. S.; Ionova, E. V.; Kirichenko, A. P.; Bavykin, S. A.

    2010-09-01

    The dielectric and pyroelectric properties of triglycine sulphate (TGS) crystals with L, α-alanine impurities grown at negative temperatures have been investigated. It is shown that a lower impurity concentration (2 mol % in solution) in this temperature range leads to the formation of internal bias fields of the same order of magnitude (˜800 V/cm) as for TGS crystals grown at T ⩽ 50°C but with an L, α-alanine concentration of 20 mol % in solution.

  13. IR spectroscopic signatures of solid glycine and alanine in astrophysical ices

    NASA Astrophysics Data System (ADS)

    Rodriguez-Lazcano, Y.; Maté, B.; Tanarro, I.; Herrero, V.; Escribano, R.

    2012-09-01

    The conversion from solid neutral to zwitterionic glycine (or alanine) is studied using infrared spectroscopy from the point of view of the interactions of this molecule with polar (water) and non-polar (CO2, CH4) surroundings. Such environments could be found on astrophysical matter. Different spectral features are suggested as suitable probes for the presence of glycine (or alanine) in astrophysical media, depending on their form (normal or zwitterionic), temperature, and composition.

  14. Tolerance of a protein to multiple polar-to-hydrophobic surface substitutions.

    PubMed Central

    Cordes, M. H.; Sauer, R. T.

    1999-01-01

    Hydrophobic substitutions at solvent-exposed positions in two alpha-helical regions of the bacteriophage P22 Arc repressor were introduced by combinatorial mutagenesis. In helix A, hydrophobic residues were tolerated individually at each of the five positions examined, but multiple substitutions were poorly tolerated as shown by the finding that mutants with more than two additional hydrophobic residues were biologically inactive. Several inactive helix A variants were purified and found to have reduced thermal stability relative to wild-type Arc, with a rough correlation between the number of polar-to-hydrophobic substitutions and the magnitude of the stability defect. Quite different results were obtained in helix B, where variants with as many as five polar-to-hydrophobic substitutions were found to be biologically active and one variant with three hydrophobic substitutions had a t(m) 6 degrees C higher than wild-type. By contrast, a helix A mutant with three similar polar-to-hydrophobic substitutions was 23 degrees C less stable than wild-type. Also, one set of three polar-to-hydrophobic substitutions in helix B was tolerated when introduced into the wild-type background but not when introduced into an equally active mutant having a nearly identical structure. Context effects occur both when comparing different regions of the same protein and when comparing the same region in two different homologues. PMID:10048325

  15. Characterization of epitopes on the rabies virus glycoprotein by selection and analysis of escape mutants.

    PubMed

    Fallahi, Firouzeh; Wandeler, Alexander I; Nadin-Davis, Susan A

    2016-07-15

    The glycoprotein (G) is the only surface protein of the lyssavirus particle and the only viral product known to be capable of eliciting the production of neutralizing antibodies. In this study, the isolation of escape mutants resistant to monoclonal antibody (Mab) neutralization was attempted by a selection strategy employing four distinct rabies virus strains: the extensively passaged Evelyn Rokitnicki Abelseth (ERA) strain and three field isolates representing two bat-associated variants and the Western Canada skunk variant (WSKV). No escape mutants were generated from either of the bat-associated viral variants but two neutralization mutants were derived from the WSKV isolate. Seven independent ERA mutants were recovered using Mabs directed against antigenic sites I (four mutants) and IIIa (three mutants) of the glycoprotein. The cross-neutralization patterns of these viral mutants were used to determine the precise location and nature of the G protein epitopes recognized by these Mabs. Nucleotide sequencing of the G gene indicated that those mutants derived using Mabs directed to antigenic site (AS) III all contained amino acid substitutions in this site. However, of the four mutants selected with AS I Mabs, two bore mutations within AS I as expected while the remaining two carried mutations in AS II. WSKV mutants exhibited mutations at the sites appropriate for the Mabs used in their selection. All ERA mutant preparations were more cytopathogenic than the parental virus when propagated in cell culture; when in vivo pathogenicity in mice was examined, three of these mutants exhibited reduced pathogenicity while the remaining four mutants exhibited comparable pathogenic properties to those of the parent virus. PMID:27132040

  16. [Alanine solution as enzyme reaction buffer used in A to O blood group conversion].

    PubMed

    Li, Su-Bo; Zhang, Xue; Zhang, Yin-Ze; Tan, Ying-Xia; Bao, Guo-Qiang; Wang, Ying-Li; Ji, Shou-Ping; Gong, Feng; Gao, Hong-Wei

    2014-06-01

    The aim of this study was to investigate the effect of alanine solution as α-N-acetylgalactosaminidase enzyme reaction buffer on the enzymatic activity of A antigen. The binding ability of α-N-acetylgalactosaminidase with RBC in different reaction buffer such as alanine solution, glycine solution, normal saline (0.9% NaCl), PBS, PCS was detected by Western blot. The results showed that the efficiency of A to O conversion in alanine solution was similar to that in glycine solution, and Western blot confirmed that most of enzymes blinded with RBC in glycine or alanine solution, but few enzymes blinded with RBC in PBS, PCS or normal saline. The evidences indicated that binding of enzyme with RBC was a key element for A to O blood group conversion, while the binding ability of α-N-acetylgalactosaminidase with RBC in alanine or glycine solution was similar. It is concluded that alanine solution can be used as enzyme reaction buffer in A to O blood group conversion. In this buffer, the α-N-acetylgalactosaminidase is closely blinded with RBC and α-N-acetylgalactosaminidase plays efficient enzymatic activity of A antigen. PMID:24989301

  17. EPR dosimetry of radiotherapy photon beams in inhomogeneous media using alanine films

    NASA Astrophysics Data System (ADS)

    Helge Østerås, Bjørn; Olaug Hole, Eli; Rune Olsen, Dag; Malinen, Eirik

    2006-12-01

    In the current work, EPR (electron paramagnetic resonance) dosimetry using alanine films (134 µm thick) was utilized for dose measurements in inhomogeneous phantoms irradiated with radiotherapy photon beams. The main phantom material was PMMA, while either Styrofoam or aluminium was introduced as an inhomogeneity. The phantoms were irradiated to a maximum dose of about 30 Gy with 6 or 15 MV photons. The performance of the alanine film dosimeters was investigated and compared to results from ion chamber dosimetry, Monte Carlo simulations and radiotherapy treatment planning calculations. It was found that the alanine film dosimeters had a linear dose response above approximately 5 Gy, while a background signal obscured the response at lower dose levels. For doses between 5 and 60 Gy, the standard deviation of single alanine film dose estimates was about 2%. The alanine film dose estimates yielded results comparable to those from the Monte Carlo simulations and the ion chamber measurements, with absolute differences between estimates in the order of 1 15%. The treatment planning calculations exhibited limited applicability. The current work shows that alanine film dosimetry is a method suitable for estimating radiotherapeutical doses and for dose measurements in inhomogeneous media.

  18. Association of Alanine Aminotransferase and Periodontitis: A Cross-Sectional Analysis—NHANES 2009–2012

    PubMed Central

    Wiener, R. Constance; Sambamoorthi, Usha; Jurevic, Richard J.

    2016-01-01

    Objective. Alanine Aminotransferase is an enzyme associated with not only liver diseases, liver conditions, and metabolic syndrome, but also inflammation. Periodontitis is associated with increased cytokines and other markers of inflammation. The purpose of this study is to determine if an independent association between Alanine Aminotransferase and periodontitis exists. Methods. Data from the 2009-2010 and 2011-2012 National Health and Nutrition Surveys (NHANES) were combined. Data concerning periodontitis and Alanine Aminotransferase were extracted and analyzed with Rao Scott Chi-square and logistic regressions. Serum Alanine Aminotransferase was dichotomized at 40 units/liter, and periodontitis was dichotomized to the presence or absence of periodontitis. Results. In bivariate Chi-square analyses, periodontitis and Alanine Aminotransferase were associated (p = 0.0360) and remained significant in unadjusted logistic regression (OR = 1.30 [95% CI: 1.02, 1.65]). However, when other known risk factors of periodontitis were included in the analyses, the relationship attenuated and failed to reach significance (adjusted OR = 1.17 [95% CI: 0.85, 1.60]). Conclusion. Our study adds to the literature a positive but attenuated association of serum Alanine Aminotransferase with periodontitis which failed to reach significance when other known, strong risk factors of periodontitis were included in the analysis. PMID:26981311

  19. No cheap substitutes.

    PubMed

    Griffiths, Peter

    2016-06-15

    The Nuffield Trust report on reshaping the healthcare workforce was published last month. Its conclusions were widely reported as a recommendation to 'train up' nurses as a solution to junior doctor shortages, with support workers, in turn, substituting for registered nurses. PMID:27305238

  20. The Age of Substitutability

    ERIC Educational Resources Information Center

    Goeller, H. E.; Weinberg, Alvin M.

    1976-01-01

    Dwindling mineral resources might cause a shift from nonrenewable resources to renewable resources and inexhaustible elements such as iron and aluminum. Alternative energy sources such as breeder, fusion, solar, and geothermal power must be developed for production and recycling of materials. Substitution and, hence, living standards ultimately…

  1. Performing Substitute Teaching

    ERIC Educational Resources Information Center

    Bletzer, Keith V.

    2010-01-01

    Formal education is both a right and an obligation bestowed on young people in most all nations of the world. Teachers (adults) and students (youth) form a co-present dyadic contract that must be maintained within the classroom. Substitute teachers fill a role in sustaining the integrity of this teacher-student link, whenever teachers are absent.…

  2. Characterization of SCO4439, a D-alanyl-D-alanine carboxypeptidase involved in spore cell wall maturation, resistance, and germination in Streptomyces coelicolor.

    PubMed

    Rioseras, Beatriz; Yagüe, Paula; López-García, María Teresa; Gonzalez-Quiñonez, Nathaly; Binda, Elisa; Marinelli, Flavia; Manteca, Angel

    2016-01-01

    This work contributes to the understanding of cell wall modifications during sporulation and germination in Streptomyces by assessing the biological function and biochemical properties of SCO4439, a D-alanyl-D-alanine carboxypeptidase (DD-CPase) constitutively expressed during development. SCO4439 harbors a DD-CPase domain and a putative transcriptional regulator domain, separated by a putative transmembrane region. The recombinant protein shows that DD-CPase activity is inhibited by penicillin G. The spores of the SCO4439::Tn5062 mutant are affected in their resistance to heat and acid and showed a dramatic increase in swelling during germination. The mycelium of the SCO4439::Tn5062 mutant is more sensitive to glycopeptide antibiotics (vancomycin and teicoplanin). The DD-CPase domain and the hydrophobic transmembrane region are highly conserved in Streptomyces, and both are essential for complementing the wild type phenotypes in the mutant. A model for the biological mechanism behind the observed phenotypes is proposed, in which SCO4439 DD-CPase releases D-Ala from peptidoglycan (PG) precursors, thereby reducing the substrate pool for PG crosslinking (transpeptidation). PG crosslinking regulates spore physical resistance and germination, and modulates mycelium resistance to glycopeptides. This study is the first demonstration of the role of a DD-CPase in the maturation of the spore cell wall. PMID:26867711

  3. Characterization of SCO4439, a D-alanyl-D-alanine carboxypeptidase involved in spore cell wall maturation, resistance, and germination in Streptomyces coelicolor

    PubMed Central

    Rioseras, Beatriz; Yagüe, Paula; López-García, María Teresa; Gonzalez-Quiñonez, Nathaly; Binda, Elisa; Marinelli, Flavia; Manteca, Angel

    2016-01-01

    This work contributes to the understanding of cell wall modifications during sporulation and germination in Streptomyces by assessing the biological function and biochemical properties of SCO4439, a D-alanyl-D-alanine carboxypeptidase (DD-CPase) constitutively expressed during development. SCO4439 harbors a DD-CPase domain and a putative transcriptional regulator domain, separated by a putative transmembrane region. The recombinant protein shows that DD-CPase activity is inhibited by penicillin G. The spores of the SCO4439::Tn5062 mutant are affected in their resistance to heat and acid and showed a dramatic increase in swelling during germination. The mycelium of the SCO4439::Tn5062 mutant is more sensitive to glycopeptide antibiotics (vancomycin and teicoplanin). The DD-CPase domain and the hydrophobic transmembrane region are highly conserved in Streptomyces, and both are essential for complementing the wild type phenotypes in the mutant. A model for the biological mechanism behind the observed phenotypes is proposed, in which SCO4439 DD-CPase releases D-Ala from peptidoglycan (PG) precursors, thereby reducing the substrate pool for PG crosslinking (transpeptidation). PG crosslinking regulates spore physical resistance and germination, and modulates mycelium resistance to glycopeptides. This study is the first demonstration of the role of a DD-CPase in the maturation of the spore cell wall. PMID:26867711

  4. Identification and Partial Characterization of a Novel UDP-N-Acetylenolpyruvoylglucosamine Reductase/UDP-N-Acetylmuramate:l-Alanine Ligase Fusion Enzyme from Verrucomicrobium spinosum DSM 4136T

    PubMed Central

    Naqvi, Kubra F.; Patin, Delphine; Wheatley, Matthew S.; Savka, Michael A.; Dobson, Renwick C. J.; Gan, Han Ming; Barreteau, Hélène; Blanot, Didier; Mengin-Lecreulx, Dominique; Hudson, André O.

    2016-01-01

    The enzymes involved in synthesizing the bacterial cell wall are attractive targets for the design of antibacterial compounds, since this pathway is essential for bacteria and is absent in animals, particularly humans. A survey of the genome of a bacterium that belongs to the phylum Verrucomicrobia, the closest free-living relative to bacteria from the Chlamydiales phylum, shows genetic evidence that Verrucomicrobium spinosum possesses a novel fusion open reading frame (ORF) annotated by the locus tag (VspiD_010100018130). The ORF, which is predicted to encode the enzymes UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) and UDP-N-acetylmuramate:l-alanine ligase (MurC) that are involved in the cytoplasmic steps of peptidoglycan biosynthesis, was cloned. In vivo analyses using functional complementation showed that the fusion gene was able to complement Escherichia coli murB and murC temperature sensitive mutants. The purified recombinant fusion enzyme (MurB/CVs) was shown to be endowed with UDP-N-acetylmuramate:l-alanine ligase activity. In vitro analyses demonstrated that the latter enzyme had a pH optimum of 9.0, a magnesium optimum of 10 mM and a temperature optimum of 44–46°C. Its apparent Km values for ATP, UDP-MurNAc, and l-alanine were 470, 90, and 25 μM, respectively. However, all attempts to demonstrate an in vitro UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) activity were unsuccessful. Lastly, Hidden Markov Model-based similarity search and phylogenetic analysis revealed that this fusion enzyme could only be identified in specific lineages within the Verrucomicrobia phylum. PMID:27047475

  5. Topology of AspT, the Aspartate:Alanine Antiporter of Tetragenococcus halophilus, Determined by Site-Directed Fluorescence Labeling▿ †

    PubMed Central

    Nanatani, Kei; Fujiki, Takashi; Kanou, Kazuhiko; Takeda-Shitaka, Mayuko; Umeyama, Hideaki; Ye, Liwen; Wang, Xicheng; Nakajima, Tasuku; Uchida, Takafumi; Maloney, Peter C.; Abe, Keietsu

    2007-01-01

    The gram-positive lactic acid bacterium Tetragenococcus halophilus catalyzes the decarboxylation of l-aspartate (Asp) with release of l-alanine (Ala) and CO2. The decarboxylation reaction consists of two steps: electrogenic exchange of Asp for Ala catalyzed by an aspartate:alanine antiporter (AspT) and intracellular decarboxylation of the transported Asp catalyzed by an l-aspartate-β-decarboxylase (AspD). AspT belongs to the newly classified aspartate:alanine exchanger family (transporter classification no. 2.A.81) of transporters. In this study, we were interested in the relationship between the structure and function of AspT and thus analyzed the topology by means of the substituted-cysteine accessibility method using the impermeant, fluorescent, thiol-specific probe Oregon Green 488 maleimide (OGM) and the impermeant, nonfluorescent, thiol-specific probe [2-(trimethylammonium)ethyl]methanethiosulfonate bromide. We generated 23 single-cysteine variants from a six-histidine-tagged cysteineless AspT template. A cysteine position was assigned an external location if the corresponding single-cysteine variant reacted with OGM added to intact cells, and a position was assigned an internal location if OGM labeling required cell lysis. The topology analyses revealed that AspT has a unique topology; the protein has 10 transmembrane helices (TMs), a large hydrophilic cytoplasmic loop (about 180 amino acids) between TM5 and TM6, N and C termini that face the periplasm, and a positively charged residue (arginine 76) within TM3. Moreover, the three-dimensional structure constructed by means of the full automatic modeling system indicates that the large hydrophilic cytoplasmic loop of AspT possesses a TrkA_C domain and a TrkA_C-like domain and that the three-dimensional structures of these domains are similar to each other even though their amino acid sequences show low similarity. PMID:17660287

  6. Molecular dynamics simulations of the intramolecular proton transfer and carbanion stabilization in the pyridoxal 5′-phosphate dependent enzymes l-dopa decarboxylase and alanine racemase☆

    PubMed Central

    Lin, Yen-Lin; Gao, Jiali; Rubinstein, Amir; Major, Dan Thomas

    2013-01-01

    Molecular dynamics simulations using a combined quantum mechanical and molecular mechanical (QM/MM) potential have been carried out to investigate the internal proton transfer equilibrium of the external aldimine species in l-dopa decarboxylase, and carbanion stabilization by the enzyme cofactor in the active site of alanine racemase. Solvent effects lower the free energy of the O-protonated PLP tautomer both in aqueous solution and in the active site, resulting a free energy difference of about – 1 kcal/mol relative to the N-protonated Schiff base in the enzyme. The external aldimine provides the dominant contribution to lowering the free energy barrier for the spontaneous decarboxylation of l-dopa in water, by a remarkable 16 kcal/mol, while the enzyme l-dopa decarboxylase further lowers the barrier by 8 kcal/mol. Kinetic isotope effects were also determined using a path integral free energy perturbation theory on the primary 13C and the secondary 2H substitutions. In the case of alanine racemase, if the pyridine ring is unprotonated as that in the active site, there is destabilizing contribution to the formation of the α-carbanion in the gas phase, although when the pyridine ring is protonated the contribution is stabilizing. In aqueous solution and in alanine racemase, the α-carbanion is stabilized both when the pyridine ring is protonated and unprotonated. The computational studies illustrated in this article show that combined QM/MM simulations can help provide a deeper understanding of the mechanisms of PLP-dependent enzymes. This article is part of a Special Issue entitled: Pyridoxal Phosphate Enzymology. PMID:21600315

  7. Nonchemotactic Mutants of Escherichia coli

    PubMed Central

    Armstrong, John B.; Adler, Julius; Dahl, Margaret M.

    1967-01-01

    We have isolated 40 mutants of Escherichia coli which are nonchemotactic as judged by their failure to swarm on semisolid tryptone plates or to make bands in capillary tubes containing tryptone broth. All the mutants have normal flagella, a fact shown by their shape and reaction with antiflagella serum. All are fully motile under the microscope and all are sensitive to the phage chi. Unlike its parent, one of the mutants, studied in greater detail, failed to show chemotaxis toward oxygen, glucose, serine, threonine, or aspartic acid. The failure to exhibit chemotaxis does not result from a failure to use the chemicals. The swimming of this mutant was shown to be random. The growth rate was normal under several conditions, and the growth requirements were unchanged. Images PMID:5335897

  8. Alterations of the degree of xylan acetylation in Arabidopsis xylan mutants

    PubMed Central

    Lee, Chanhui; Teng, Quincy; Zhong, Ruiqin; Ye, Zheng-Hua

    2014-01-01

    Xylan is the second most abundant polysaccharide in secondary walls of dicot plants and one of its structural features is the high degree of acetylation of xylosyl residues. In Arabidopsis, about 60% of xylosyl residues in xylan are acetylated and the biochemical mechanisms controlling xylan acetylation are largely unknown. A recent report by Yuan et al. (2013) revealed the essential role of a DUF231 domain-containing protein, ESKIMO1 (ESK1), in xylan acetylation in Arabidopsis as the esk1 mutation caused specific reductions in the degree of xylan 2-O or 3-O-monoacetylation and in the activity of xylan acetyltransferase. Interestingly, the esk1 mutation also resulted in an elevation of glucuronic acid (GlcA) substitutions in xylan. Since GlcA substitutions in xylan occur at the O-2 position of xylosyl residues, it is plausible that the increase in GlcA substitutions in the esk1 mutant is attributed to the reduction in acetylation at O-2 of xylosyl residues, which renders more O-2 positions available for GlcA substitutions. Here, we investigated the effect of removal of GlcA substitutions on the degree of xylan acetylation. We found that a complete loss of GlcA substitutions in the xylan of the gux1/2/3 triple mutant led to a significant increase in the degree of xylan acetylation, indicating that xylan acetyltransferases and glucuronyltransferases compete with each other for xylosyl residues for their acetylation or GlcA substitutions in planta. In addition, detailed structure analysis of xylan from the rwa1/2/3/4 quadruple mutant revealed that it had a uniform reduction of acetyl substitutions at different positions of the xylosyl residues, which is consistent with the proposed role of RWAs as acetyl coenzyme A transporters. The significance of these findings is discussed. PMID:24518588

  9. Motility mutants of Dictyostelium discoideum

    PubMed Central

    1982-01-01

    We describe six motility mutants of Dictyostelium discoideum in this report. They were identified among a group of temperature-sensitive growth (Tsg) mutants that had been previously isolated using an enrichment for phagocytosis-defective cells. The Tsg mutants were screened for their ability to produce tracks on gold-coated cover slips, and several strains were found that were temperature-sensitive for migration in this assay. Analysis of spontaneous Tsg+ revertants of 10 migration-defective strains identified six strains that co-reverted the Tsg and track formation phenotypes. Characterization of these six strains indicated that they were defective at restrictive temperature in track formation, phagocytosis of bacteria, and pseudopodial and filopodial activity, while retaining normal rates of oxygen consumption and viability. Because they had lost this group of motile capabilities, these strains were designated motility mutants. The Tsg+ revertants of these mutants, which coordinately recovered all of the motile activities, were found at frequencies consistent with single genetic events. Analysis of the motility mutants and their revertants suggests a relationship between the motility mutations in some of these strains and genes affecting axenic growth. PMID:7118999

  10. Glucose and Alanine Metabolism in Children with Maple Syrup Urine Disease

    PubMed Central

    Haymond, Morey W.; Ben-Galim, Ehud; Strobel, Karen E.

    1978-01-01

    In vitro studies have suggested that catabolism of branched chain amino acids is linked with alanine and glutamine formed in, and released from, muscle. To explore this possibility in vivo, static and kinetic studies were performed in three patients with classical, and one patient with partial, branched chain α-ketoacid decarboxylase deficiency (maple syrup urine disease, MSUD) and compared to similar studies in eight age-matched controls. The subjects underwent a 24-30-h fast, and a glucose-alanine flux study using stable isotopes. Basal plasma leucine concentrations were elevated (P <0.001) in patients with MSUD (1,140±125 μM vs. 155±18 μM in controls); and in contrast to the controls, branched chain amino acid concentrations in plasma increased during the fast in the MSUD patients. Basal plasma alanine concentrations were lower (P <0.01) in patients with classical MSUD (153±8 μM vs. 495±27 μM in controls). This discrepancy was maintained throughout the fast despite a decrease in alanine concentrations in both groups. Plasma alanine and leucine concentrations in the patient with partial MSUD were intermediate between those of the controls and the subjects with the classical form of the disease. Circulating ketone bodies and glucoregulatory hormones concentrations were similar in the MSUD and normal subjects during the fast. Alanine flux rates in two patients with classical MSUD (3.76 and 4.00 μmol/Kg per min) and the patient with partial MSUD (5.76 μmol/Kg per min) were clearly lower than those of the controls (11.72±2.53 [SD] μmol/Kg per min). After short-term starvation, glucose flux and fasting concentrations were similar in the MSUD patients and normal subjects. These data indicate that branched chain amino acid catabolism is an important rate limiting event for alanine production in vivo. PMID:670400

  11. Exchange interactions and magnetic dimension in Cu(L-alanine)2

    NASA Astrophysics Data System (ADS)

    Calvo, R.; Passeggi, M. C. G.; Novak, M. A.; Symko, O. G.; Oseroff, S. B.; Nascimento, O. R.; Terrile, M. C.

    1991-01-01

    A study of the magnetic properties of the copper (II) complex of the amino acid l-alanine [Cu(l-alanine)2] is reported. The susceptibility of a powder sample has been measured between 0.013 and 240 K. A linear-spin-chain model with antiferromagnetic exchange coupling J=-0.52 K fits well the susceptibility data above 0.3 K. Room-temperature electron paramagnetic resonance (EPR) spectra of single crystals of Cu(l-alanine)2 at 9 and 35 GHz show a single, exchange-narrowed resonance. The g tensor, with principal values g1=2.0554+/-0.0005, g2=2.1064+/-0.0005, and g3=2.2056+/-0.0005, reflects the crystal structure of Cu(l-alanine)2 and the electronic properties of the copper ions. The observed angular variation of the linewidth is attributed to the magnetic interactions, narrowed by the exchange coupling between copper ions, and shows a contribution characteristic of the dipole-dipole interaction in a spin system with a predominant two-dimensional spin dynamics. Considering the exchange-collapsed resonance corresponding to the two lattice sites for copper in Cu(l-alanine)2, we evaluate an exchange constant ||J(AB1)||=0.47 K between nonequivalent copper neighbors in a spin chain, similar to the value obtained from the susceptibility data. The one-dimensional magnetic behavior suggested by the susceptibility data in Cu(l-alanine)2, where the metal ions are distributed in layers, is explained by proposing that carboxylate bridges provide electronic paths for superexchange interactions between coppers. Considering the characteristics of the molecular structure of Cu(l-alanine)2, the layers seem to be magnetically split off into one-dimensional zigzag ribbons. The apparent disagreement between the one-dimensional behavior suggested by the susceptibility data and the two-dimensional behavior of the spin dynamics suggested by the EPR linewidth is analyzed.

  12. FTIR spectra and conformational structure of deutero-β-alanine isolated in argon matrices

    NASA Astrophysics Data System (ADS)

    Stepanian, Stepan G.; Ivanov, Alexander Yu; Adamowicz, Ludwik

    2016-02-01

    Low temperature FTIR spectra of β-alanine-d3 isolated in argon matrices are used to determine the conformational composition of this compound. UV irradiation of the matrix samples is found to change the relative populations of the β-alanine-d3 conformers. The populations of conformers I and II with an Nsbnd D⋯O intramolecular H-bond decrease after the UV irradiation while the populations of conformer V with an N⋯Dsbnd O H-bond and conformer IV which has no intramolecular H-bonds increase. This behavior of the β-alanine-d3 conformers are used to separate the bands of the different conformers. The analysis of the experimental FTIR spectra is based on the calculated harmonic B3LYP/6-311++G(df,pd) frequencies and on the MP2/aug-cc-pVDZ frequencies calculated with a method that includes anharmonic effects. Polynomial scaling of the calculated frequencies is used to achieve better agreement with the experimental data. The observation of the wide band of the OD stretching vibration at 2201 cm-1 is a direct evidence of the presence of the β-alanine-d3 conformer V in the Ar matrix. In total ten bands of conformer V are detected. The influence of the matrix environment on the structures and the IR spectra of the β-alanine and β-alanine-d3 conformers is investigated. This involves performing calculations of the β-alanine conformers embedded in argon clusters containing from 163 to 166 argon atoms using the M06-2X and B3LYP(GD3BJ) density-functional methods. Good agreement between the calculated and the experimental matrix splitting is demonstrated.

  13. Altered Fermentative Metabolism in Chlamydomonas reinhardtii Mutants Lacking Pyruvate Formate Lyase and Both Pyruvate Formate Lyase and Alcohol Dehydrogenase

    SciTech Connect

    Catalanotti, C.; Dubini, A.; Subramanian, V.; Yang, W. Q.; Magneschi, L.; Mus, F.; Seibert, M.; Posewitz, M. C.; Grossman, A. R.

    2012-02-01

    Chlamydomonas reinhardtii, a unicellular green alga, often experiences hypoxic/anoxic soil conditions that activate fermentation metabolism. We isolated three Chlamydomonas mutants disrupted for the pyruvate formate lyase (PFL1) gene; the encoded PFL1 protein catalyzes a major fermentative pathway in wild-type Chlamydomonas cells. When the pfl1 mutants were subjected to dark fermentative conditions, they displayed an increased flux of pyruvate to lactate, elevated pyruvate decarboxylation, ethanol accumulation, diminished pyruvate oxidation by pyruvate ferredoxin oxidoreductase, and lowered H2 production. The pfl1-1 mutant also accumulated high intracellular levels of lactate, succinate, alanine, malate, and fumarate. To further probe the system, we generated a double mutant (pfl1-1 adh1) that is unable to synthesize both formate and ethanol. This strain, like the pfl1 mutants, secreted lactate, but it also exhibited a significant increase in the levels of extracellular glycerol, acetate, and intracellular reduced sugars and a decrease in dark, fermentative H2 production. Whereas wild-type Chlamydomonas fermentation primarily produces formate and ethanol, the double mutant reroutes glycolytic carbon to lactate and glycerol. Although the metabolic adjustments observed in the mutants facilitate NADH reoxidation and sustained glycolysis under dark, anoxic conditions, the observed changes could not have been predicted given our current knowledge of the regulation of fermentation metabolism.

  14. Isolation and characterization of cytosolic alanine aminotransferase isoforms from starved rat liver.

    PubMed

    Vedavathi, M; Girish, K S; Kumar, M Karuna

    2004-12-01

    Alanine is the most effective precursor for gluconeogenesis among amino acids and the initial reaction is catalyzed by alanine aminotransferases (AlaATs). It is a less extensively studied enzyme under starvation and known to that the enzyme activity increases in liver under starvation. The present study describes the purification and characterization of two isoforms of alanine aminotransferases from starved male rat liver under starvation. The molecular mass of isoforms was found to be 17.7 and 112.2 kDa with isoelectric points of 4.2 and 5.3 respectively for AlaAT I and AlaAT II. Both the enzymes showed narrow substrate specificity for L-alanine with different Km for alanine and 2-oxoglutarate. Both the enzymes were glycoprotein in nature. Inhibition, modification and spectroscopic studies showed that both PLP and free-SH groups are directly involved in the enzymatic catalysis. PLP activated both the enzymes with a Km 0.057 mM and 0.2 mM for AlaAT I and II respectively. PMID:15663181

  15. Purification and characterization of alanine dehydrogenase from a cyanobacterium, Phormidium lapideum.

    PubMed

    Sawa, Y; Tani, M; Murata, K; Shibata, H; Ochiai, H

    1994-11-01

    Alanine dehydrogenase (AlaDH) was purified to homogeneity from cell-free extracts of a non-N2-fixing filamentous cyanobacterium, Phormidium lapideum. The molecular mass of the native enzyme was 240 kDa, and SDS-PAGE revealed a minimum molecular mass of 41 kDa, suggesting a six-subunit structure. The NH2 terminal amino acid residues of the purified AlaDH revealed marked similarity with that of other AlaDHs. The enzyme was highly specific for L-alanine and NAD+, but showed relatively low amino-acceptor specificity. The pH optimum was 8.4 for reductive amination of pyruvate and 9.2 for oxidative deamination of L-alanine. The Km values were 5.0 mM for L-alanine and 0.04 mM for NAD+, 0.33 mM for pyruvate, 60.6 mM for NH4+ (pH 8.7), and 0.02 mM for NADH. Various L-amino acids including alanine, serine, threonine, and aromatic amino acids, inhibited the aminating reaction. The enzyme was inactivated upon incubation with pyridoxal 5'-phosphate (PLP) followed by reduction with sodium borohydride. The copresence of NADH and pyruvate largely protected the enzyme against the inactivation by PLP. PMID:7896761

  16. L-alanine in a droplet of water: a density-functional molecular dynamics study.

    PubMed

    Degtyarenko, Ivan M; Jalkanen, Karl J; Gurtovenko, Andrey A; Nieminen, Risto M

    2007-04-26

    We report the results of a Born-Oppenheimer molecular dynamics study on an L-alanine amino acid in neutral aqueous solution. The whole system, the L-alanine zwitterion and 50 water molecules, was treated quantum mechanically. We found that the hydrophobic side chain (R = CH3) defines the trajectory path of the molecule. Initially fully hydrated in an isolated droplet of water, the amino acid moves to the droplet's surface, exposing its hydrophobic methyl group and alpha-hydrogen out of the water. The structure of an L-alanine with the methyl group exposed to the water surface was found to be energetically favorable compared to a fully hydrated molecule. The dynamic behavior of the system suggests that the first hydration shell of the amino acid is localized around carboxylate (CO2-) and ammonium (NH3+) functional groups; it is highly ordered and quite rigid. In contrast, the hydration shell around the side chain is much less structured, suggesting a modest influence of the methyl group on the structure of water. The number of water molecules in the first hydration shell of an alanine molecule is constantly changing; the average number was found to equal 7. The molecular dynamics results show that L-alanine in water does not have a preferred conformation, as all three of the molecule's functional sites (i.e., CH3, NH3+, CO2-) perform rotational movements around the C(alpha)-site bond. PMID:17407339

  17. Perturbation correction for alanine dosimeters in different phantom materials in high-energy photon beams

    NASA Astrophysics Data System (ADS)

    von Voigts-Rhetz, P.; Anton, M.; Vorwerk, H.; Zink, K.

    2016-02-01

    In modern radiotherapy the verification of complex treatments plans is often performed in inhomogeneous or even anthropomorphic phantoms. For dose verification small detectors are necessary and therefore alanine detectors are most suitable. Though the response of alanine for a wide range of clinical photon energies in water is well know, the knowledge about the influence of the surrounding phantom material on the response of alanine is sparse. Therefore we investigated the influence of twenty different surrounding/phantom materials for alanine dosimeters in clinical photon fields via Monte Carlo simulations. The relative electron density of the used materials was in the range {{n}e}/{{n}e,\\text{w}}=0.20 up to 1.69, covering almost all materials appearing in inhomogeneous or anthropomorphic phantoms used in radiotherapy. The investigations were performed for three different clinical photon spectra ranging from 6 to 25 MV-X and Co-60 and as a result a perturbation correction {{k}\\text{env}} depending on the environmental material was established. The Monte Carlo simulation show, that there is only a small dependence of {{k}\\text{env}} on the phantom material and the photon energy, which is below  ±0.6%. The results confirm the good suitability of alanine detectors for in-vivo dosimetry.

  18. Perturbation correction for alanine dosimeters in different phantom materials in high-energy photon beams.

    PubMed

    von Voigts-Rhetz, P; Anton, M; Vorwerk, H; Zink, K

    2016-02-01

    In modern radiotherapy the verification of complex treatments plans is often performed in inhomogeneous or even anthropomorphic phantoms. For dose verification small detectors are necessary and therefore alanine detectors are most suitable. Though the response of alanine for a wide range of clinical photon energies in water is well know, the knowledge about the influence of the surrounding phantom material on the response of alanine is sparse. Therefore we investigated the influence of twenty different surrounding/phantom materials for alanine dosimeters in clinical photon fields via Monte Carlo simulations. The relative electron density of the used materials was in the range [Formula: see text] up to 1.69, covering almost all materials appearing in inhomogeneous or anthropomorphic phantoms used in radiotherapy. The investigations were performed for three different clinical photon spectra ranging from 6 to 25 MV-X and Co-60 and as a result a perturbation correction [Formula: see text] depending on the environmental material was established. The Monte Carlo simulation show, that there is only a small dependence of [Formula: see text] on the phantom material and the photon energy, which is below  ±0.6%. The results confirm the good suitability of alanine detectors for in-vivo dosimetry. PMID:26758810

  19. Clinical applications of skin substitutes.

    PubMed

    Nyame, Theodore T; Chiang, H Abraham; Orgill, Dennis P

    2014-08-01

    A unique understanding of the components of mammalian skin has led to the development of numerous skin substitutes. These skin substitutes attempt to compensate for functional and physiologic deficits present in damaged tissue. Skin substitutes, when appropriately applied in optimized settings, offer a promising solution to difficult wound management. The body of literature on skin substitutes increases as the understanding of tissue engineering and molecular biology expands. Given the high cost of these products, future randomized large prospective studies are needed to guide the clinical applications of skin substitutes. PMID:25085091

  20. Hydrogen production in nitrogenase mutants in Anabaena variabilis.

    PubMed

    Weyman, Philip D; Pratte, Brenda; Thiel, Teresa

    2010-03-01

    Nitrogenase produces hydrogen as a normal byproduct of the reduction of dinitrogen to ammonia. The Nif2 nitrogenase in Anabaena variabilis is an alternative Mo-nitrogenase and is expressed in vegetative cells grown with fructose under strictly anaerobic conditions. We report here that the V75I substitution in the alpha-subunit of Nif2 showed greatly impaired acetylene reduction and reduced levels of (15)N(2) fixation but had similar hydrogen production rates as the wild-type enzyme under argon. Another mutant containing a substitution in the alpha-subunit, V76I, would result in a decrease in the size of the putative gas channel of nitrogenase and, thus, was hypothesized to affect substrate selectivity of nitrogenase. However, this substitution had no effect on the enzyme selectivity, suggesting that access by gases to the active site through this putative gas channel is not limited by the increased size of the amino acid side chain in the alpha-subunit, V76I substitution. PMID:20070369

  1. An Avirulent Mutant of Rabies Virus Is Unable To Infect Motoneurons In Vivo and In Vitro

    PubMed Central

    Coulon, Patrice; Ternaux, Jean-Pierre; Flamand, Anne; Tuffereau, Christine

    1998-01-01

    An antigenic double mutant of rabies virus (challenge virus standard [CVS] strain) was selected by successive use of two neutralizing antiglycoprotein monoclonal antibodies, both specific for antigenic site III. This mutant differed from the original virus strain by two amino acid substitutions in the ectodomain of the glycoprotein. The lysine in position 330 and the arginine in position 333 were replaced by asparagine and methionine, respectively. This double mutant was not pathogenic for adult mice. When injected intramuscularly into the forelimbs of adult mice, this virus could not penetrate the nervous system, either by the motor or by the sensory route, while respective single mutants infected motoneurons in the spinal cord and sensory neurons in the dorsal root ganglia. In vitro experiments showed that the double mutant was able to infect BHK cells, neuroblastoma cells, and freshly prepared embryonic motoneurons, albeit with a lower efficiency than the CVS strain. Upon further incubation at 37°C, the motoneurons became resistant to infection by the mutant while remaining permissive to CVS infection. These results suggest that rabies virus uses different types of receptors: a molecule which is ubiquitously expressed at the surface of continuous cell lines and which is recognized by both CVS and the double mutant and a neuron-specific molecule which is not recognized by the double mutant. PMID:9420224

  2. Methodologies in creating skin substitutes.

    PubMed

    Nicholas, Mathew N; Jeschke, Marc G; Amini-Nik, Saeid

    2016-09-01

    The creation of skin substitutes has significantly decreased morbidity and mortality of skin wounds. Although there are still a number of disadvantages of currently available skin substitutes, there has been a significant decline in research advances over the past several years in improving these skin substitutes. Clinically most skin substitutes used are acellular and do not use growth factors to assist wound healing, key areas of potential in this field of research. This article discusses the five necessary attributes of an ideal skin substitute. It comprehensively discusses the three major basic components of currently available skin substitutes: scaffold materials, growth factors, and cells, comparing and contrasting what has been used so far. It then examines a variety of techniques in how to incorporate these basic components together to act as a guide for further research in the field to create cellular skin substitutes with better clinical results. PMID:27154041

  3. Substrate Specificity of the Aspartate:Alanine Antiporter (AspT) of Tetragenococcus halophilus in Reconstituted Liposomes*

    PubMed Central

    Sasahara, Ayako; Nanatani, Kei; Enomoto, Masaru; Kuwahara, Shigefumi; Abe, Keietsu

    2011-01-01

    The aspartate:alanine antiporter (AspT) of the lactic acid bacterium Tetragenococcus halophilus is a member of the aspartate:alanine exchanger (AAEx) transporter family. T. halophilus AspT catalyzes the electrogenic exchange of l-aspartate1− with l-alanine0. Although physiological functions of AspT were well studied, l-aspartate1−:l-alanine0 antiport mechanisms are still unsolved. Here we report that the binding sites of l-aspartate and l-alanine are independently present in AspT by means of the kinetic studies. We purified His6-tagged T. halophilus AspT and characterized its kinetic properties when reconstituted in liposomes (Km = 0.35 ± 0.03 mm for l-aspartate, Km = 0.098 ± 0 mm for d-aspartate, Km = 26 ± 2 mm for l-alanine, Km = 3.3 ± 0.2 mm for d-alanine). Competitive inhibition by various amino acids of l-aspartate or l-alanine in self-exchange reactions revealed that l-cysteine selectively inhibited l-aspartate self-exchange but only weakly inhibited l-alanine self-exchange. Additionally, l-serine selectively inhibited l-alanine self-exchange but barely inhibited l-aspartate self-exchange. The aspartate analogs l-cysteine sulfinic acid, l-cysteic acid, and d-cysteic acid competitively and strongly inhibited l-aspartate self-exchange compared with l-alanine self-exchange. Taken together, these kinetic data suggest that the putative binding sites of l-aspartate and l-alanine are independently located in the substrate translocation pathway of AspT. PMID:21719707

  4. Substrate specificity of the aspartate:alanine antiporter (AspT) of Tetragenococcus halophilus in reconstituted liposomes.

    PubMed

    Sasahara, Ayako; Nanatani, Kei; Enomoto, Masaru; Kuwahara, Shigefumi; Abe, Keietsu

    2011-08-19

    The aspartate:alanine antiporter (AspT) of the lactic acid bacterium Tetragenococcus halophilus is a member of the aspartate:alanine exchanger (AAEx) transporter family. T. halophilus AspT catalyzes the electrogenic exchange of L-aspartate(1-) with L-alanine(0). Although physiological functions of AspT were well studied, L-aspartate(1-):L-alanine(0) antiport mechanisms are still unsolved. Here we report that the binding sites of L-aspartate and L-alanine are independently present in AspT by means of the kinetic studies. We purified His(6)-tagged T. halophilus AspT and characterized its kinetic properties when reconstituted in liposomes (K(m) = 0.35 ± 0.03 mm for L-aspartate, K(m) = 0.098 ± 0 mm for D-aspartate, K(m) = 26 ± 2 mm for L-alanine, K(m) = 3.3 ± 0.2 mm for D-alanine). Competitive inhibition by various amino acids of L-aspartate or L-alanine in self-exchange reactions revealed that L-cysteine selectively inhibited L-aspartate self-exchange but only weakly inhibited L-alanine self-exchange. Additionally, L-serine selectively inhibited L-alanine self-exchange but barely inhibited L-aspartate self-exchange. The aspartate analogs L-cysteine sulfinic acid, L-cysteic acid, and D-cysteic acid competitively and strongly inhibited L-aspartate self-exchange compared with L-alanine self-exchange. Taken together, these kinetic data suggest that the putative binding sites of L-aspartate and L-alanine are independently located in the substrate translocation pathway of AspT. PMID:21719707

  5. 40 CFR 721.10034 - Substituted pyridine coupled with diazotized substituted nitrobenzonitrile, diazotized...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Substituted pyridine coupled with... Specific Chemical Substances § 721.10034 Substituted pyridine coupled with diazotized substituted... as substituted pyridine coupled with diazotized substituted nitrobenzonitrile, diazotized...

  6. 40 CFR 721.10034 - Substituted pyridine coupled with diazotized substituted nitrobenzonitrile, diazotized...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted pyridine coupled with... Specific Chemical Substances § 721.10034 Substituted pyridine coupled with diazotized substituted... as substituted pyridine coupled with diazotized substituted nitrobenzonitrile, diazotized...

  7. Combined TL and 10B-alanine ESR dosimetry for BNCT.

    PubMed

    Bartolotta, A; D'Oca, M C; Lo Giudice, B; Brai, M; Borio, R; Forini, N; Salvadori, P; Manera, S

    2004-01-01

    The dosimetric technique described in this paper is based on electron spin resonance (ESR) detectors using an alanine-boric compound acid enriched with (10)B, and beryllium oxide thermoluminescent (TL) detectors; with this combined dosimetry, it is possible to discriminate the doses due to thermal neutrons and gamma radiation in a mixed field. Irradiations were carried out inside the thermal column of a TRIGA MARK II water-pool-type research nuclear reactor, also used for Boron Neutron Capture therapy (BNCT) applications, with thermal neutron fluence from 10(9) to 10(14) nth cm(-2). The ESR dosemeters using the alanine-boron compound indicated ESR signals about 30-fold stronger than those using only alanine. Moreover, a negligible correction for the gamma contribution, measured with TL detectors, almost insensitive to thermal neutrons, was necessary. Therefore, a simultaneous analysis of our TL and ESR detectors allows discrimination between thermal neutron and gamma doses, as required in BNCT. PMID:15353720

  8. Applicability of EPR/alanine dosimetry for quality assurance in proton eye radiotherapy.

    PubMed

    Michalec, B; Mierzwinska, G; Ptaszkiewicz, M; Sowa, U; Stolarczyk, L; Weber, A

    2014-06-01

    A new quality assurance and quality control method for proton eye radiotherapy based on electron paramagnetic resonance (EPR)/alanine dosimetry has been developed. It is based on Spread-Out Bragg Peak entrance dose measurement with alanine detectors. The entrance dose is well correlated with the dose at the facility isocenter, where, during the therapeutic irradiation, the tumour is placed. The unique alanine detector features namely keeping the dose record in a form of stable radiation-induced free radicals trapped in the material structure, and the non-destructive read-out makes this type of detector a good candidate for additional documentation of the patient's exposure over the therapy course. PMID:24876341

  9. An In silico Based Comparison of Drug Interactions in Wild and Mutant Human β-tubulin through Docking Studies

    PubMed Central

    Chellasamy, Selvaakumar; Mohammed, Sudheer M. M.

    2014-01-01

    Background Tubulin protein being the fundamental unit of microtubules is actively involved in cell division thus making them a potential anti-cancer drug target. In spite of many reported drugs against tubulin, few of them have started developing resistance in human β-tubulin due to amino acid substitutions. Methods In this study we generated three mutants (F270V, A364T and Q292E) using Modeller9v10 which were targeted with compounds from higher and lower plants along with marine isolates using iGEMDOCK2.0 to identify their residual interactions. Results The mutant F270V does not bring in any increase in the binding affinity in comparison with the taxol-wild type due to their conservative substitutions. However, it increases the volume of the active site. A364T mutant brings a better binding among few of the marine and higher plants isolates due to the substitution of the non-reactive methyl group with the polar residue. But this leads to reduced active site volume. Finally the mutant Q292E from epothilone binding site brings a remarkable change in drug binding in the mutants in comparison with the wild type due to the substitution of uncharged residue with the charged one. But as such there was no change in the volume of the active site observed in them. Conclusion Lower plants extracts were reported to exhibit better interactions with the taxol and epothilone binding sites. Whereas marine and higher plants isolates shows significant interactions only in the wild type instead of the mutants. In addition to this, the residual substitutions were also found to alter the conformations of the active sites in mutants PMID:24834310

  10. Polyimides comprising substituted benzidines

    NASA Technical Reports Server (NTRS)

    Harris, Frank W. (Inventor)

    1991-01-01

    A new class of polyimides and copolyimides made from substituted benzidines and aromatic dianhydrides and other aromatic diamines. The polyimides obtained with said diamines are distinguished by excellent thermal, excellent solubility, excellent electrical properties such as very low dielectric constants, excellent clarity and mechanical properties making the polyimides ideally suited as coating materials for microelectronic apparatii, as membranes for selective molecular or gas separation, as fibers in molecular composites, as high tensile strength, high compression strength fibers, as film castable coatings, or as fabric components.

  11. Trifluoromethyl-substituted polymers

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Current work sponsored by the grant at Southwest Texas State University is directed toward the synthesis and characterization of: (1) N-alkylated polyamides derived from o-fluorinated diacids; (2) highly fluorinated polyethers; (3) polyesters derived from 2-hydroxy-2-propyl substituted arenes and/or 2,5-difluoroterephthalic acid; and (4) silicon-containing fluoropolymers. Work during the period from 1 July to 31 Dec. 1993 focused primarily on items 3 and 4 and on the development of a phosphorus containing modification of '12F-PEK.'

  12. Individual Substitution Mutations in the AID C Terminus That Ablate IgH Class Switch Recombination

    PubMed Central

    Kadungure, Tatenda; Ucher, Anna J.; Linehan, Erin K.; Schrader, Carol E.; Stavnezer, Janet

    2015-01-01

    Activation-induced cytidine deaminase (AID) is essential for class switch recombination (CSR) and somatic hypermutation (SHM) of Ig genes. The C terminus of AID is required for CSR but not for SHM, but the reason for this is not entirely clear. By retroviral transduction of mutant AID proteins into aid-/- mouse splenic B cells, we show that 4 amino acids within the C terminus of mouse AID, when individually mutated to specific amino acids (R190K, A192K, L196S, F198S), reduce CSR about as much or more than deletion of the entire C terminal 10 amino acids. Similar to ΔAID, the substitutions reduce binding of UNG to Ig Sμ regions and some reduce binding of Msh2, both of which are important for introducing S region DNA breaks. Junctions between the IgH donor switch (S)μ and acceptor Sα regions from cells expressing ΔAID or the L196S mutant show increased microhomology compared to junctions in cells expressing wild-type AID, consistent with problems during CSR and the use of alternative end-joining, rather than non-homologous end-joining (NHEJ). Unlike deletion of the AID C terminus, 3 of the substitution mutants reduce DNA double-strand breaks (DSBs) detected within the Sμ region in splenic B cells undergoing CSR. Cells expressing these 3 substitution mutants also have greatly reduced mutations within unrearranged Sμ regions, and they decrease with time after activation. These results might be explained by increased error-free repair, but as the C terminus has been shown to be important for recruitment of NHEJ proteins, this appears unlikely. We hypothesize that Sμ DNA breaks in cells expressing these C terminus substitution mutants are poorly repaired, resulting in destruction of Sμ segments that are deaminated by these mutants. This could explain why these mutants cannot undergo CSR. PMID:26267846

  13. Structural and catalytic properties of L-alanine dehydrogenase from Bacillus cereus.

    PubMed

    Porumb, H; Vancea, D; Mureşan, L; Presecan, E; Lascu, I; Petrescu, I; Porumb, T; Pop, R; Bârzu, O

    1987-04-01

    Alanine dehydrogenase from Bacillus cereus, a non-allosteric enzyme composed of six identical subunits, was purified to homogeneity by chromatography on blue-Sepharose and Sepharose 6B-CL. Like other pyridine-linked dehydrogenases, alanine dehydrogenase is inhibited by Cibacron blue, competitively with respect to NADH and noncompetitively with respect to pyruvate. The enzyme was inactivated by 0.1 M glycine/HCl (pH 2) and reactivated by 0.1 M phosphate (pH 8) supplemented with NAD+ or NADH. The reactivation was characterized by sigmoidal kinetics indicating a complex mechanism involving rate-limiting folding and association steps. Cibacron blue interfered with renaturation, presumably by competition with NADH. Chromatography on Sepharose 6B-CL of the partially renatured alanine dehydrogenase led to the separation of several intermediates, but only the hexamer was characterized by enzymatic activity. By immobilization on Sepharose 4B, alanine dehydrogenase from B. cereus retained 66% of the specific activity of the soluble enzyme. After denaturation of immobilized alanine dehydrogenase with 7 M urea, 37% of the initial protein was still bound to Sepharose, indicating that on the average the hexamer was attached to the matrix via, at most, two subunits. The ability of the denatured, immobilized subunits to pick up subunits from solution shows their capacity to fold back to the native conformation after urea treatment. The formation of "hybrids" between subunits of enzyme from B. cereus and Bacillus subtilis demonstrates the close resemblance of the tertiary and quaternary structures of alanine dehydrogenases from these species. PMID:3104322

  14. Relative response of the alanine dosimeter to medium energy x-rays

    NASA Astrophysics Data System (ADS)

    Anton, M.; Büermann, L.

    2015-08-01

    The response of the alanine dosimeter to kilovoltage x-rays with respect to the dose to water was measured, relative to the response to Co-60 radiation. Two series of x-ray qualities were investigated, one ranging from 30 kV to 100 kV tube voltage (TW series), the other one ranging from 70 kV to 280 kV (TH series). Due to the use of the water calorimeter as a primary standard, the uncertainty of the delivered dose is significantly lower than for other published data. The alanine response was measured as described in a previous publication (Anton et al 2013 Phys. Med. Biol. 58 3259-82). The uncertainty component due to the alanine measurement and analysis is ⩽0.4%, the major part of the combined uncertainty of the relative response originates from the uncertainty of the delivered dose. The relative uncertainties of the relative response vary from ⩽2% for the TW series to ⩽1.1% for the TH series. Different from the behaviour of the alanine dosimeter for megavoltage x-rays or electrons, the relative response drops significantly from unity for Co-60 radiation to less than 64% for the TW quality with a tube voltage of 30 kV. In order to reproduce this behaviour through Monte Carlo simulations, not only the ratio of the absorbed dose to alanine to the absorbed dose to water has to be known, but also the intrinsic efficiency, i.e. the dependence of the number of free radicals generated per unit of absorbed dose on the photon energy. This quantity is not yet accessible for the TW series. For a possible use of the alanine dosimeter for kilovoltage x-rays, for example in electronic brachytherapy, users should rely on the measured data for the relative response which have become available with this publication.

  15. Relative response of the alanine dosimeter to medium energy x-rays.

    PubMed

    Anton, M; Büermann, L

    2015-08-01

    The response of the alanine dosimeter to kilovoltage x-rays with respect to the dose to water was measured, relative to the response to Co-60 radiation.Two series of x-ray qualities were investigated, one ranging from 30 kV to 100 kV tube voltage (TW series), the other one ranging from 70 kV to 280 kV (TH series). Due to the use of the water calorimeter as a primary standard, the uncertainty of the delivered dose is significantly lower than for other published data. The alanine response was measured as described in a previous publication (Anton et al 2013 Phys. Med. Biol. 58 3259-82). The uncertainty component due to the alanine measurement and analysis is ⩽0.4%, the major part of the combined uncertainty of the relative response originates from the uncertainty of the delivered dose. The relative uncertainties of the relative response vary from ⩽2% for the TW series to ⩽1.1% for the TH series.Different from the behaviour of the alanine dosimeter for megavoltage x-rays or electrons, the relative response drops significantly from unity for Co-60 radiation to less than 64% for the TW quality with a tube voltage of 30 kV. In order to reproduce this behaviour through Monte Carlo simulations, not only the ratio of the absorbed dose to alanine to the absorbed dose to water has to be known, but also the intrinsic efficiency, i.e. the dependence of the number of free radicals generated per unit of absorbed dose on the photon energy. This quantity is not yet accessible for the TW series.For a possible use of the alanine dosimeter for kilovoltage x-rays, for example in electronic brachytherapy, users should rely on the measured data for the relative response which have become available with this publication. PMID:26216572

  16. The effect of β-alanine supplementation on cycling time trials of different length.

    PubMed

    Bellinger, Phillip M; Minahan, Clare L

    2016-10-01

    The varying results reported in response to β-alanine supplementation may be related to the duration and nature of the exercise protocol employed. We investigated the effects of β-alanine supplementation on a wide range of cycling performance tests in order to produce a clear concise set of criteria for its efficacy. Fourteen trained cyclists (Age = 24.8 ± 6.7 years; VO2max = 65.4 ± 10.2 mL·kg·min(-1)) participated in this placebo-controlled, double-blind study. Prior to supplementation, subjects completed two (familiarization and baseline) supramaximal cycling bouts until exhaustion (120% pre-supplementation VO2max) and two 1-, 4- and 10-km cycling time trial (TT). Subjects then supplemented orally for 4 weeks with 6.4 g/d placebo or β-alanine and repeated the battery of performance tests. Blood lactate was measured pre-exercise, post-exercise and 5  min post-exercise. β-alanine supplementation elicited significant increases in time to exhaustion (TTE) (17.6 ± 11.5 s; p = 0.013, effect compared with placebo) and was likely to be beneficial to 4-km TT performance time (-7.8 ± 8.1 s; 94% likelihood), despite not being statistically different (p = 0.060). Performance times in the 1- and 10-km TT were not affected by treatment. For the highly trained cyclists in the current study, β-alanine supplementation significantly extended supramaximal cycling TTE and may have provided a worthwhile improvement to 4-km TT performance. However, 1- and 10-km cycling TT performance appears to be unaffected by β-alanine supplementation. PMID:26652037

  17. The energy dependence of lithium formate and alanine EPR dosimeters for medium energy x rays

    SciTech Connect

    Waldeland, Einar; Hole, Eli Olaug; Sagstuen, Einar; Malinen, Eirik

    2010-07-15

    Purpose: To perform a systematic investigation of the energy dependence of alanine and lilthium formate EPR dosimeters for medium energy x rays. Methods: Lithium formate and alanine EPR dosimeters were exposed to eight different x-ray beam qualities, with nominal potentials ranging from 50 to 200 kV. Following ionometry based on standards of absorbed dose to water, the dosimeters were given two different doses of approximately 3 and 6 Gy for each radiation quality, with three dosimeters for each dose. A reference series was also irradiated to three different dose levels at a {sup 60}Co unit. The dose to water energy response, that is, the dosimeter reading per absorbed dose to water relative to that for {sup 60}Co {gamma}-rays, was estimated for each beam quality. In addition, the energy response was calculated by Monte Carlo simulations and compared to the experimental energy response. Results: The experimental energy response estimates ranged from 0.89 to 0.94 and from 0.68 to 0.90 for lithium formate and alanine, respectively. The uncertainties in the experimental energy response estimates were typically 3%. The relative effectiveness, that is, the ratio of the experimental energy response to that following Monte Carlo simulations was, on average, 0.96 and 0.94 for lithium formate and alanine, respectively. Conclusions: This work shows that lithium formate dosimeters are less dependent on x-ray energy than alanine. Furthermore, as the relative effectiveness for both lithium formate and alanine were systematically less than unity, the yield of radiation-induced radicals is decreased following x-irradiation compared to irradiation with {sup 60}Co {gamma}-rays.

  18. Anaerobic Accumulation of γ-Aminobutyric Acid and Alanine in Radish Leaves (Raphanus sativus, L.)

    PubMed Central

    Streeter, John G.; Thompson, John F.

    1972-01-01

    In leaves, the anaerobic accumulation of alanine was accompanied by a loss of aspartate, and these changes preceded γ-aminobutyrate accumulation and glutamate loss. Changes in keto acid content did not appear to be the cause of amino acid changes. Accumulation of γ-aminobutyrate was due to acceleration of glutamate decarboxylation and arrest of γ-aminobutyrate transamination. Changes in enzyme content did not explain the changes in reaction rates in vivo. Most of the aspartate may be converted anaerobically to alanine via oxalacetate and pyruvate. PMID:16658004

  19. Steric effect exerted by the proline residue on the antecedent alanine residue.

    PubMed

    Siemión, I Z; Sobczyk, K; Nawrocka, E

    1982-05-01

    Five model tetrapeptides: Ala-Ala-Ala-Ala, Pro-Ala-Ala-Ala, Ala-Pro-Ala-Ala, Ala-Ala-Pro-Ala and Ala-Ala-Ala-Pro, were synthesized and measured in D2O by 13 C-n.m.r. spectroscopy. The spectra analysis led us to the conclusion that for each model (irrespective of pD) in conformational equilibrium, the predominant conformation is the one in which side methyl of alanine preceding proline residue eclipses alanine carbonyl group. The influence of pD changes in cis-trans isomerism of Ala-Pro amide bond was also investigated. PMID:7118413

  20. Borate substituted ettringites

    SciTech Connect

    Csetenyi, L.J.; Glasser, F.P.

    1993-12-31

    The setting of cement is adversely affected by soluble borates. To reduce interference, the extent to which borate can be insolubilized has been investigated. One specific mechanism of insolubilization is by inclusion into ettringite. Ettringite, Ca{sub 6}Al{sub 2}(SO{sub 4}){sub 3}(OH){sub 12}{center_dot}26H{sub 2}O, is a normal and stable constituent of Portland cement. It has an open but non-zeolitic framework. Borate can substitute partially or fully for sulfate. Formation conditions, solubility and stability of borate ettringites, Ca{sub 6}Al{sub 2}(BO{sub 4}){sub 2-4}(OH,O){sub 12}{center_dot}26H{sub 2}O, are characterized using XRD, IR, DTA, and SEM. The potential durability of borate ettringites in a repository environment have been assessed by exposing it to Na-sulfate and Na-carbonate attack at different concentrations. Ion exchange occurs; back substitution of borate by sulfate is incomplete; high carbonate concentrations can, however, decompose borate ettringite. On heat treatment up to 85{degrees}C the crystalline morphology and the OH arrangement of the structure are altered, but the X-ray powder pattern, and hence its structural framework are largely unaffected. It is concluded that ettringite has potential to reduce the solubility of borate.

  1. An Unusual Mutation Results in the Replacement of Diaminopimelate with Lanthionine in the Peptidoglycan of a Mutant Strain of Mycobacterium smegmatis†

    PubMed Central

    Consaul, Sandra A.; Wright, Lori F.; Mahapatra, Sebabrata; Crick, Dean C.; Pavelka, Martin S.

    2005-01-01

    Mycobacterial peptidoglycan contains l-alanyl-d-iso-glutaminyl-meso-diaminopimelyl-d-alanyl-d-alanine peptides, with the exception of the peptidoglycan of Mycobacterium leprae, in which glycine replaces the l-alanyl residue. The third-position amino acid of the peptides is where peptidoglycan cross-linking occurs, either between the meso-diaminopimelate (DAP) moiety of one peptide and the penultimate d-alanine of another peptide or between two DAP residues. We previously described a collection of spontaneous mutants of DAP-auxotrophic strains of Mycobacterium smegmatis that can grow in the absence of DAP. The mutants are grouped into seven classes, depending on how well they grow without DAP and whether they are sensitive to DAP, temperature, or detergent. Furthermore, the mutants are hypersusceptible to β-lactam antibiotics when grown in the absence of DAP, suggesting that these mutants assemble an abnormal peptidoglycan. In this study, we show that one of these mutants, M. smegmatis strain PM440, utilizes lanthionine, an unusual bacterial metabolite, in place of DAP. We also demonstrate that the abilities of PM440 to grow without DAP and use lanthionine for peptidoglycan biosynthesis result from an unusual mutation in the putative ribosome binding site of the cbs gene, encoding cystathionine β-synthase, an enzyme that is a part of the cysteine biosynthetic pathway. PMID:15716431

  2. Single Amino Acid Substitutions in HXT2.4 from Scheffersomyces stipitis Lead to Improved Cellobiose Fermentation by Engineered Saccharomyces cerevisiae

    PubMed Central

    Ha, Suk-Jin; Kim, Heejin; Lin, Yuping; Jang, Myoung-Uoon; Galazka, Jonathan M.; Kim, Tae-Jip; Cate, Jamie H. D.

    2013-01-01

    Saccharomyces cerevisiae cannot utilize cellobiose, but this yeast can be engineered to ferment cellobiose by introducing both cellodextrin transporter (cdt-1) and intracellular β-glucosidase (gh1-1) genes from Neurospora crassa. Here, we report that an engineered S. cerevisiae strain expressing the putative hexose transporter gene HXT2.4 from Scheffersomyces stipitis and gh1-1 can also ferment cellobiose. This result suggests that HXT2.4p may function as a cellobiose transporter when HXT2.4 is overexpressed in S. cerevisiae. However, cellobiose fermentation by the engineered strain expressing HXT2.4 and gh1-1 was much slower and less efficient than that by an engineered strain that initially expressed cdt-1 and gh1-1. The rate of cellobiose fermentation by the HXT2.4-expressing strain increased drastically after serial subcultures on cellobiose. Sequencing and retransformation of the isolated plasmids from a single colony of the fast cellobiose-fermenting culture led to the identification of a mutation (A291D) in HXT2.4 that is responsible for improved cellobiose fermentation by the evolved S. cerevisiae strain. Substitutions for alanine (A291) of negatively charged amino acids (A291E and A291D) or positively charged amino acids (A291K and A291R) significantly improved cellobiose fermentation. The mutant HXT2.4(A291D) exhibited 1.5-fold higher Km and 4-fold higher Vmax values than those from wild-type HXT2.4, whereas the expression levels were the same. These results suggest that the kinetic properties of wild-type HXT2.4 expressed in S. cerevisiae are suboptimal, and mutations of A291 into bulky charged amino acids might transform HXT2.4p into an efficient transporter, enabling rapid cellobiose fermentation by engineered S. cerevisiae strains. PMID:23263959

  3. The green-absorbing Drosophila Rh6 visual pigment contains a blue-shifting amino acid substitution that is conserved in vertebrates.

    PubMed

    Salcedo, Ernesto; Farrell, David M; Zheng, Lijun; Phistry, Meridee; Bagg, Eve E; Britt, Steven G

    2009-02-27

    The molecular mechanisms that regulate invertebrate visual pigment absorption are poorly understood. Through sequence analysis and functional investigation of vertebrate visual pigments, numerous amino acid substitutions important for this adaptive process have been identified. Here we describe a serine/alanine (S/A) substitution in long wavelength-absorbing Drosophila visual pigments that occurs at a site corresponding to Ala-292 in bovine rhodopsin. This S/A substitution accounts for a 10-17-nm absorption shift in visual pigments of this class. Additionally, we demonstrate that substitution of a cysteine at the same site, as occurs in the blue-absorbing Rh5 pigment, accounts for a 4-nm shift. Substitutions at this site are the first spectrally significant amino acid changes to be identified for invertebrate pigments sensitive to visible light and are the first evidence of a conserved tuning mechanism in vertebrate and invertebrate pigments of this class. PMID:19126545

  4. Kinetic properties and thermal stabilities of mutant forms of mitochondrial aspartate aminotransferase.

    PubMed

    Azzariti, A; Vacca, R A; Giannattasio, S; Merafina, R S; Marra, E; Doonan, S

    1998-07-28

    Kinetic properties and thermal stabilities of the precursor form of mitochondrial aspartate aminotransferase, the mature form lacking 9 amino acids from the N-terminus, and forms of the mature protein in which cysteine-166 had been mutated to serine or alanine were compared with those of the mature enzyme. The precursor and the cysteine mutants showed moderately impaired catalytic properties consistent with decreased ability to undergo transition from the open to the closed conformation which is an integral part of the mechanism of action of the enzyme. The deletion mutant had a kcat only 2% of that of the mature enzyme but also much reduced Km values for both substrates. In addition it showed enhanced reactivity of cysteine-166 with 5,5'-dithiobis(2-nitrobenzoate), which is characteristic of the closed form of the enzyme, with no enhancement of reactivity in the presence of substrates. This is taken to show that the deletion mutant adopts a conformation that is significantly different from that of the mature enzyme particularly in respect of the small domain. The deletion mutant was found to be more resistant to thermal inactivation over a range of temperatures than were the other forms of the enzyme consistent with its having a more tightly packed small domain. PMID:9675237

  5. Explicit Substitutions and All That

    NASA Technical Reports Server (NTRS)

    Ayala-Rincon, Mauricio; Munoz, Cesar; Busnell, Dennis M. (Technical Monitor)

    2000-01-01

    Explicit substitution calculi are extensions of the Lambda-calculus where the substitution mechanism is internalized into the theory. This feature makes them suitable for implementation and theoretical study of logic-based tools such as strongly typed programming languages and proof assistant systems. In this paper we explore new developments on two of the most successful styles of explicit substitution calculi: the lambda(sigma)- and lambda(s(e))-calculi.

  6. Explicit Substitutions and All That

    NASA Technical Reports Server (NTRS)

    Ayala-Rincon, Mauricio; Munoz, Cesar

    2000-01-01

    Explicit substitution calculi are extensions of the lambda-calculus where the substitution mechanism is internalized into the theory. This feature makes them suitable for implementation and theoretical study of logic-based tools such as strongly typed programming languages and proof assistant systems. In this paper we explore new developments on two of the most successful styles of explicit substitution calculi: the lambda sigma- and lambda S(e)-calculi.

  7. Trifluoromethyl-substituted tetrathiafulvalenes

    PubMed Central

    Jeannin, Olivier; Barrière, Frédéric

    2015-01-01

    Summary A series of tetrathiafulvalenes functionalized with one or two trifluoromethyl electron-withdrawing groups (EWG) is obtained by phosphite coupling involving CF3-substituted 1,3-dithiole-2-one derivatives. The relative effects of the EWG such as CF3, CO2Me and CN on the TTF core were investigated from a combination of structural, electrochemical, spectrochemical and theoretical investigations. Electrochemical data confirm the good correlations between the first oxidation potential of the TTF derivatives and the σmeta Hammet parameter, thus in the order CO2Me < CF3 < CN, indicating that, in any case, the mesomeric effect of the substituents is limited. Besides, crystal structure determinations show that the deformation of the unsymmetrically substituted dithiole rings, when bearing one, or two different EWG, and attributed to the mesomeric effect of ester or nitrile groups, is not notably modified or counter-balanced by the introduction of a neighboring trifluoromethyl group. DFT calculations confirm these observations and also show that the low energy HOMO–LUMO absorption band found in nitrile or ester-substituted TTFs is not found in TTF-CF3, where, as in TTF itself, the low energy absorption band is essentially attributable to a HOMO→LUMO + 1 transition. Despite relatively high oxidation potentials, these donor molecules with CF3 EWG can be involved in charge transfer complexes or cation radical salts, as reported here for the CF3-subsituted EDT-TTF donor molecule. A neutral charge transfer complex with TCNQ, (EDT-TTF-CF3)2(TCNQ) was isolated and characterized through alternated stacks of EDT-TTF-CF3 dimers and TCNQ in the solid state. A radical cation salt of EDT-TTF-CF3 is also obtained upon electrocrystallisation in the presence of the FeCl4 − anion. In this salt, formulated as (EDT-TTF-CF3)(FeCl4), the (EDT-TTF-CF3)+• radical cations are associated two-by-two into centrosymmetric dyads with a strong pairing of the radical species in a singlet

  8. Trifluoromethyl-substituted tetrathiafulvalenes.

    PubMed

    Jeannin, Olivier; Barrière, Frédéric; Fourmigué, Marc

    2015-01-01

    A series of tetrathiafulvalenes functionalized with one or two trifluoromethyl electron-withdrawing groups (EWG) is obtained by phosphite coupling involving CF3-substituted 1,3-dithiole-2-one derivatives. The relative effects of the EWG such as CF3, CO2Me and CN on the TTF core were investigated from a combination of structural, electrochemical, spectrochemical and theoretical investigations. Electrochemical data confirm the good correlations between the first oxidation potential of the TTF derivatives and the σmeta Hammet parameter, thus in the order CO2Me < CF3 < CN, indicating that, in any case, the mesomeric effect of the substituents is limited. Besides, crystal structure determinations show that the deformation of the unsymmetrically substituted dithiole rings, when bearing one, or two different EWG, and attributed to the mesomeric effect of ester or nitrile groups, is not notably modified or counter-balanced by the introduction of a neighboring trifluoromethyl group. DFT calculations confirm these observations and also show that the low energy HOMO-LUMO absorption band found in nitrile or ester-substituted TTFs is not found in TTF-CF3, where, as in TTF itself, the low energy absorption band is essentially attributable to a HOMO→LUMO + 1 transition. Despite relatively high oxidation potentials, these donor molecules with CF3 EWG can be involved in charge transfer complexes or cation radical salts, as reported here for the CF3-subsituted EDT-TTF donor molecule. A neutral charge transfer complex with TCNQ, (EDT-TTF-CF3)2(TCNQ) was isolated and characterized through alternated stacks of EDT-TTF-CF3 dimers and TCNQ in the solid state. A radical cation salt of EDT-TTF-CF3 is also obtained upon electrocrystallisation in the presence of the FeCl4 (-) anion. In this salt, formulated as (EDT-TTF-CF3)(FeCl4), the (EDT-TTF-CF3)(+•) radical cations are associated two-by-two into centrosymmetric dyads with a strong pairing of the radical species in a singlet state

  9. 40 CFR 721.520 - Alanine, N-(2-carboxyethyl)-N-alkyl-, salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...)(4), (c)(4) (where N = 100). The requirement of 40 CFR 721.91(a)(4) that the amount of the substance...-, salt. 721.520 Section 721.520 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.520 Alanine, N-(2-carboxyethyl)-N-alkyl-, salt. (a) Chemical...

  10. 40 CFR 721.520 - Alanine, N-(2-carboxyethyl)-N-alkyl-, salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...)(4), (c)(4) (where N = 100). The requirement of 40 CFR 721.91(a)(4) that the amount of the substance...-, salt. 721.520 Section 721.520 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.520 Alanine, N-(2-carboxyethyl)-N-alkyl-, salt. (a) Chemical...

  11. Protein Homeostasis Defects of Alanine-Glyoxylate Aminotransferase: New Therapeutic Strategies in Primary Hyperoxaluria Type I

    PubMed Central

    Pey, Angel L.; Albert, Armando; Salido, Eduardo

    2013-01-01

    Alanine-glyoxylate aminotransferase catalyzes the transamination between L-alanine and glyoxylate to produce pyruvate and glycine using pyridoxal 5′-phosphate (PLP) as cofactor. Human alanine-glyoxylate aminotransferase is a peroxisomal enzyme expressed in the hepatocytes, the main site of glyoxylate detoxification. Its deficit causes primary hyperoxaluria type I, a rare but severe inborn error of metabolism. Single amino acid changes are the main type of mutation causing this disease, and considerable effort has been dedicated to the understanding of the molecular consequences of such missense mutations. In this review, we summarize the role of protein homeostasis in the basic mechanisms of primary hyperoxaluria. Intrinsic physicochemical properties of polypeptide chains such as thermodynamic stability, folding, unfolding, and misfolding rates as well as the interaction of different folding states with protein homeostasis networks are essential to understand this disease. The view presented has important implications for the development of new therapeutic strategies based on targeting specific elements of alanine-glyoxylate aminotransferase homeostasis. PMID:23956997

  12. Beta-alanine/alpha-ketoglutarate aminotransferase for 3-hydroxypropionic acid production

    DOEpatents

    Jessen, Holly Jean; Liao, Hans H; Gort, Steven John; Selifonova, Olga V

    2014-11-18

    The present disclosure provides novel beta-alanine/alpha ketoglutarate aminotransferase nucleic acid and protein sequences having increased biological activity. Also provided are cells containing such enzymes, as well as methods of their use, for example to produce malonyl semialdehyde and downstream products thereof, such as 3-hydroxypropionic acid and derivatives thereof.

  13. Growth and characterization of pure and semiorganic nonlinear optical Lithium Sulphate admixtured l-alanine crystal

    NASA Astrophysics Data System (ADS)

    Vela, T.; Selvarajan, P.; Freeda, T. H.; Balasubramanian, K.

    2013-04-01

    Lithium sulphate admixtured l-alanine (LSLA) salt was synthesized and the solubility of the commercially available l-alanine and the synthesized LSLA sample was determined in de-ionized water at various temperatures. In accordance with the solubility data, the saturated aqueous solutions of l-alanine and lithium admixtured l-alanine were prepared separately and the single crystals of the samples were grown by the solution method with a slow evaporation technique. Studying single x-ray diffraction shows that pure and LSLA crystal belong to the orthorhombic system with a non-centrosymmetric space group P212121. Using the powder x-ray diffraction study, the crystallinity of the grown crystals is confirmed and the diffraction peaks are indexed. The various functional groups present in the pure and LSLA crystal are elucidated from Fourier transform infrared spectroscopy study. UV-visible transmittance is recorded to study the optical transmittance range for the grown crystals. The powder second harmonic generation test confirms the nonlinear optical property of the grown crystals. From the microhardness test, the hardness of the grown crystals is estimated. The dielectric behaviour, such as the dielectric constant and the loss of the sample, are measured as a function of temperature and frequency. The ac conductivity of the grown crystals is also studied and the activation energy is calculated.

  14. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  15. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  16. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  17. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  18. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  19. Synthesis, characterization, and biocompatible properties of alanine-grafted chitosan copolymers.

    PubMed

    Park, Gyu Han; Kang, Min-Sil; Knowles, Jonathan C; Gong, Myoung-Seon

    2016-04-01

    In order to overcome major problems regarding the lack of affinity to solvents and limited reactivity of the free amines of chitosan, introduction of appropriate spacer arms having terminal amine function is considered of interest.L-Alanine-N-carboxyanhydride was grafted onto chitosan via anionic ring-opening polymerization. The chemical and structural characterizations ofL-alanine-grafted chitosan (Ala-g-Cts) were confirmed through Fourier transform infrared spectroscopy and proton nuclear magnetic resonance spectroscopy ((1)H NMR). In addition, the viscoelastic properties ofAla-g-Cts were examined by means of a rotational viscometer, and thermal analysis was carried out with a thermogravimetric analyzer and differential scanning calorimetry. Morphological changes in the chitosanL-alanine moiety were determined by x-ray diffraction. To determine the feasibility of using these films as biomedical materials, we investigated the effects of theirL-alanine content on physical and mechanical properties. The biodegradation results of crosslinkedAla-g-Cts films were evaluated in phosphate-buffered solution containing lysozyme at 37℃. Proliferation of MC3T3-E1 cells on crosslinkedAla-g-Cts films was also investigated with use of the CCK-8 assay. PMID:26767393

  20. AlaScan: A Graphical User Interface for Alanine Scanning Free-Energy Calculations.

    PubMed

    Ramadoss, Vijayaraj; Dehez, François; Chipot, Christophe

    2016-06-27

    Computation of the free-energy changes that underlie molecular recognition and association has gained significant importance due to its considerable potential in drug discovery. The massive increase of computational power in recent years substantiates the application of more accurate theoretical methods for the calculation of binding free energies. The impact of such advances is the application of parent approaches, like computational alanine scanning, to investigate in silico the effect of amino-acid replacement in protein-ligand and protein-protein complexes, or probe the thermostability of individual proteins. Because human effort represents a significant cost that precludes the routine use of this form of free-energy calculations, minimizing manual intervention constitutes a stringent prerequisite for any such systematic computation. With this objective in mind, we propose a new plug-in, referred to as AlaScan, developed within the popular visualization program VMD to automate the major steps in alanine-scanning calculations, employing free-energy perturbation as implemented in the widely used molecular dynamics code NAMD. The AlaScan plug-in can be utilized upstream, to prepare input files for selected alanine mutations. It can also be utilized downstream to perform the analysis of different alanine-scanning calculations and to report the free-energy estimates in a user-friendly graphical user interface, allowing favorable mutations to be identified at a glance. The plug-in also assists the end-user in assessing the reliability of the calculation through rapid visual inspection. PMID:27214306

  1. Mechanism of inactivation of alanine racemase by beta, beta, beta-trifluoroalanine

    SciTech Connect

    Faraci, W.S.; Walsh, C.T.

    1989-01-24

    The alanine racemases are a group of PLP-dependent bacterial enzymes that catalyze the racemization of alanine, providing D-alanine for cell wall synthesis. Inactivation of the alanine racemases from the Gram-negative organism Salmonella typhimurium and Gram-positive organism Bacillus stearothermophilus with beta, beta, beta-trifluoroalanine has been studied. The inactivation occurs with the same rate constant as that for formation of a broad 460-490-nm chromophore. Loss of two fluoride ions per mole of inactivated enzyme and retention of (1-/sup 14/C)trifluoroalanine label accompany inhibition, suggesting a monofluoro enzyme adduct. Partial denaturation (1 M guanidine) leads to rapid return of the initial 420-nm chromophore, followed by a slower (t1/2 approximately 30 min-1 h) loss of the fluoride ion and /sup 14/CO/sub 2/ release. At this point, reduction by NaB/sub 3/H/sub 4/ and tryptic digestion yield a single radiolabeled peptide. Purification and sequencing of the peptide reveals that lysine-38 is covalently attached to the PLP cofactor. A mechanism for enzyme inactivation by trifluoroalanine is proposed and contrasted with earlier results on monohaloalanines, in which nucleophilic attack of released aminoacrylate on the PLP aldimine leads to enzyme inactivation. For trifluoroalanine inactivation, nucleophilic attack of lysine-38 on the electrophilic beta-difluoro-alpha, beta-unsaturated imine provides an alternative mode of inhibition for these enzymes.

  2. Beta-alanine/alpha-ketoglutarate aminotransferase for 3-hydroxypropionic acid production

    DOEpatents

    Jessen, Holly Jean; Liao, Hans H.; Gort, Steven John; Selifonova, Olga V.

    2011-10-04

    The present disclosure provides novel beta-alanine/alpha ketoglutarate aminotransferase nucleic acid and protein sequences having increased biological activity. Also provided are cells containing such enzymes, as well as methods of their use, for example to produce malonyl semialdehyde and downstream products thereof, such as 3-hydroxypropionic acid and derivatives thereof.

  3. 40 CFR 721.520 - Alanine, N-(2-carboxyethyl)-N-alkyl-, salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...)(4), (c)(4) (where N = 100). The requirement of 40 CFR 721.91(a)(4) that the amount of the substance...-, salt. 721.520 Section 721.520 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.520 Alanine, N-(2-carboxyethyl)-N-alkyl-, salt. (a) Chemical...

  4. 40 CFR 721.520 - Alanine, N-(2-carboxyethyl)-N-alkyl-, salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...)(4), (c)(4) (where N = 100). The requirement of 40 CFR 721.91(a)(4) that the amount of the substance...-, salt. 721.520 Section 721.520 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.520 Alanine, N-(2-carboxyethyl)-N-alkyl-, salt. (a) Chemical...

  5. 40 CFR 721.520 - Alanine, N-(2-carboxyethyl)-N-alkyl-, salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...)(4), (c)(4) (where N = 100). The requirement of 40 CFR 721.91(a)(4) that the amount of the substance...-, salt. 721.520 Section 721.520 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.520 Alanine, N-(2-carboxyethyl)-N-alkyl-, salt. (a) Chemical...

  6. The effects of post-exercise glucose and alanine ingestion on plasma carnitine and ketosis in humans.

    PubMed Central

    Carlin, J I; Olson, E B; Peters, H A; Reddan, W G

    1987-01-01

    1. Several studies have hypothesized that alanine decreases plasma ketone body levels by increasing availability of oxaloacetate, thus allowing acetyl groups to enter the tricarboxylic acid cycle and releasing co-enzyme A (CoA). 2. Four, fasted adult males exercised at 50% of their maximal oxygen consumption for 1.5 h, then ingested 100 g of either glucose or alanine 2 h into recovery. 3. Post-exercise ketosis had developed at 2 h into recovery, as shown by a significantly elevated concentration of beta-hydroxybutyrate in the plasma. At this time plasma free fatty acids were elevated above resting levels while plasma free carnitine concentrations had fallen below resting values. 4. After either alanine or glucose ingestion beta-hydroxybutyrate concentrations fell to the same extent. After the alanine load free carnitine increased above that seen in the glucose trial. Following either alanine or glucose ingestion free fatty acid levels fell; they remained at resting levels in the alanine trial but decreased below rest in the glucose trial. 5. We assume that plasma carnitine concentrations largely reflect the hepatic carnitine pools; therefore, elevations in the plasma free carnitine are probably the result of an increased utilization of acetyl CoA. The significant elevation in plasma free carnitine concentration found after alanine ingestion is consistent with the hypothesis that alanine increases the oxidation of acetyl CoA by providing oxaloacetate for the tricarboxylic acid cycle. PMID:3443938

  7. High-level production of extracellular lipase by Yarrowia lipolytica mutants from methyl oleate.

    PubMed

    Darvishi, Farshad; Destain, Jacqueline; Nahvi, Iraj; Thonart, Philippe; Zarkesh-Esfahani, Hamid

    2011-10-01

    The yeast Yarrowia lipolytica degrades efficiently low-cost hydrophobic substrates for the production of various added-value products such as lipases. To obtain yeast strains producing high levels of extracellular lipase, Y. lipolytica DSM3286 was subjected to mutation using ethyl methanesulfonate (EMS) and ultraviolet (UV) light. Twenty mutants were selected out of 1600 mutants of Y. lipolytica treated with EMS and UV based on lipase production ability on selective medium. A new industrial medium containing methyl oleate was optimized for lipase production. In the 20 L bioreactor containing new industrial medium, one UV mutant (U6) produced 356 U/mL of lipase after 24h, which is about 10.5-fold higher than that produced by the wild type strain. The properties of the mutant lipase were the same as those of the wild type: molecular weight 38 kDa, optimum temperature 37°C and optimum pH 7. Furthermore, the nucleotide sequences of extracellular lipase gene (LIP2) in wild type and mutant strains were determined. Only two silent substitutions at 362 and 385 positions were observed in the ORF region of LIP2. Two single substitutions and two duplications of the T nucleotide were also detected in the promoter region. LIP2 sequence comparison of the Y. lipolytica DSM3286 and U6 strains shows good targets to effective DNA recombinant for extracellular lipase of Y. lipolytica. PMID:21324386

  8. A preliminary optimization of alanine blends for ESR dosimetry in a mixed n–γ field: Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Hoseininaveh, M.; Ranjbar, A. H.

    2016-04-01

    In this study, a preliminary work on the enhancement of ESR response of several arrangements of alanine and boron compounds, exposed to a thermal neutron beam, is presented using FLUKA code. A multi-layer dosimeter consist of consecutive layers of alanine and boron compounds showed that the amount of energy deposited in the alanine layers is maximized when their thickness is 5 μm and the thickness of boron compound layers are between 2 and 3 μm. Furthermore, the optimum number of 10B layers in the dosimeter was found to be 35 layers. Moreover, the alanine samples consisting of small spherical grains of boron compounds, arranged regularly in the middle plane of the dosimeters, exposed to a thermal neutron beam, were modeled. The dependence of energy deposition in the alanine material on the size of grains, and on their composition were also studied, as well.

  9. Biochemical and structural characterization of alanine racemase from Bacillus anthracis (Ames)

    PubMed Central

    Couñago, Rafael M; Davlieva, Milya; Strych, Ulrich; Hill, Ryan E; Krause, Kurt L

    2009-01-01

    Background Bacillus anthracis is the causative agent of anthrax and a potential bioterrorism threat. Here we report the biochemical and structural characterization of B. anthracis (Ames) alanine racemase (AlrBax), an essential enzyme in prokaryotes and a target for antimicrobial drug development. We also compare the native AlrBax structure to a recently reported structure of the same enzyme obtained through reductive lysine methylation. Results B. anthracis has two open reading frames encoding for putative alanine racemases. We show that only one, dal1, is able to complement a D-alanine auxotrophic strain of E. coli. Purified Dal1, which we term AlrBax, is shown to be a dimer in solution by dynamic light scattering and has a Vmax for racemization (L- to D-alanine) of 101 U/mg. The crystal structure of unmodified AlrBax is reported here to 1.95 Å resolution. Despite the overall similarity of the fold to other alanine racemases, AlrBax makes use of a chloride ion to position key active site residues for catalysis, a feature not yet observed for this enzyme in other species. Crystal contacts are more extensive in the methylated structure compared to the unmethylated structure. Conclusion The chloride ion in AlrBax is functioning effectively as a carbamylated lysine making it an integral and unique part of this structure. Despite differences in space group and crystal form, the two AlrBax structures are very similar, supporting the case that reductive methylation is a valid rescue strategy for proteins recalcitrant to crystallization, and does not, in this case, result in artifacts in the tertiary structure. PMID:19695097

  10. Persistent GABAA/C responses to gabazine, taurine and beta-alanine in rat hypoglossal motoneurons.

    PubMed

    Chesnoy-Marchais, D

    2016-08-25

    In hypoglossal motoneurons, a sustained anionic current, sensitive to a blocker of ρ-containing GABA receptors, (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) and insensitive to bicuculline, was previously shown to be activated by gabazine. In order to better characterize the receptors involved, the sensitivity of this atypical response to pentobarbital (30μM), allopregnanolone (0.3μM) and midazolam (0.5μM) was first investigated. Pentobarbital potentiated the response, whereas the steroid and the benzodiazepine were ineffective. The results indicate the involvement of hybrid heteromeric receptors, including at least a GABA receptor ρ subunit and a γ subunit, accounting for the pentobarbital-sensitivity. The effects of the endogenous β amino acids, taurine and β-alanine, which are released under various pathological conditions and show neuroprotective properties, were then studied. In the presence of the glycine receptor blocker strychnine (1μM), both taurine (0.3-1mM) and β-alanine (0.3mM) activated sustained anionic currents, which were partly blocked by TPMPA (100μM). Thus, both β amino acids activated ρ-containing GABA receptors in hypoglossal motoneurons. Bicuculline (20μM) reduced responses to taurine and β-alanine, but small sustained responses persisted in the presence of both strychnine and bicuculline. Responses to β-alanine were slightly increased by allopregnanolone, indicating a contribution of the bicuculline- and neurosteroid-sensitive GABAA receptors underlying tonic inhibition in these motoneurons. Since sustained activation of anionic channels inhibits most mature principal neurons, the ρ-containing GABA receptors permanently activated by taurine and β-alanine might contribute to some of their neuroprotective properties under damaging overexcitatory situations. PMID:27246441

  11. Structural features and kinetic characterization of alanine racemase from Staphylococcus aureus (Mu50)

    PubMed Central

    Scaletti, Emma R.; Luckner, Sylvia R.; Krause, Kurt L.

    2012-01-01

    Staphylococcus aureus is an opportunistic Gram-positive bacterium which causes a wide variety of diseases ranging from minor skin infections to potentially fatal conditions such as pneumonia, meningitis and septicaemia. The pathogen is a leading cause of nosocomial acquired infections, a problem that is exacerbated by the existence of methicillin- and glycopeptide antibiotic-resistant strains which can be challenging to treat. Alanine racemase (Alr) is a pyridoxal-5′-phosphate-dependent enzyme which catalyzes reversible racemization between enantiomers of alanine. As d-alanine is an essential component of the bacterial cell-wall peptidoglycan, inhibition of Alr is lethal to prokaryotes. Additionally, while ubiquitous amongst bacteria, this enzyme is absent in humans and most eukaryotes, making it an excellent antibiotic drug target. The crystal structure of S. aureus alanine racemase (AlrSas), the sequence of which corresponds to that from the highly antibiotic-resistant Mu50 strain, has been solved to 2.15 Å resolution. Comparison of the AlrSas structure with those of various alanine racemases demonstrates a conserved overall fold, with the enzyme sharing most similarity to those from other Gram-positive bacteria. Structural examination indicates that the active-site binding pocket, dimer interface and active-site entryway of the enzyme are potential targets for structure-aided inhibitor design. Kinetic constants were calculated in this study and are reported here. The potential for a disulfide bond in this structure is noted. This structural and biochemical information provides a template for future structure-based drug-development efforts targeting AlrSas. PMID:22194336

  12. Characterization of the metabolic effect of β-alanine on markers of oxidative metabolism and mitochondrial biogenesis in skeletal muscle

    PubMed Central

    Sunderland, Kyle L.; Kuennen, Matthew R.; Vaughan, Roger A.

    2016-01-01

    [Purpose] β-alanine is a common component of numerous sports supplements purported to improve athletic performance through enhanced carnosine biosynthesis and related intracellular buffering. To date, the effects of β-alanine on oxidative metabolism remain largely unexplored. This work investigated the effects of β-alanine on the expression of proteins which regulate cellular energetics. [Methods] C2C12 myocytes were cultured and differentiated under standard conditions followed by treatment with either β-alanine or isonitrogenous non-metabolizable control D-alanine at 800μM for 24 hours. Metabolic gene and protein expression were quantified by qRT-PCR and immunoblotting, respectively. Glucose uptake and oxygen consumption were measured via fluorescence using commercially available kits. [Results] β-alanine-treated myotubes displayed significantly elevated markers of improved oxidative metabolism including elevated peroxisome proliferator-activated receptor β/δ (PPARβ/δ) and mitochondrial transcription factor a (TFAM) which led to increased mitochondrial content (evidenced by concurrent increases in cytochrome c content). Additionally, β-alanine-treated cells exhibited significantly increased oxygen consumption compared to control in a PPARβ/δ-dependent manner. β-alanine significantly enhanced expression of myocyte enhancer factor 2 (MEF-2) leading to increased glucose transporter 4 (GLUT4) content. [Conclusion] β-alanine appears to increase cellular oxygen consumption as well as the expression of several cellular proteins associated with improved oxidative metabolism, suggesting β-alanine supplementation may provide additional metabolic benefit (although these observations require in vivo experimental verification). PMID:27508152

  13. Crystal structure of a caricain D158E mutant in complex with E-64.

    PubMed

    Katerelos, N A; Taylor, M A; Scott, M; Goodenough, P W; Pickersgill, R W

    1996-08-19

    The structure of the D158E mutant of caricain (previously known as papaya protease omega) in complex with E-64 has been determined at 2.0 A resolution (overall R factor 19.3%). The structure reveals that the substituted glutamate makes the same pattern of hydrogen bonds as the aspartate in native caricain. This was not anticipated since in the native structure there is insufficient room to accommodate the glutamate side chain. The glutamate is accommodated in the mutant by a local expansion of the structure demonstrating that small structural changes are responsible for the change in activity. PMID:8769310

  14. Isolation and Characterization of Two Cellulose Morphology Mutants of Gluconacetobacter hansenii ATCC23769 Producing Cellulose with Lower Crystallinity

    PubMed Central

    Deng, Ying; Nagachar, Nivedita; Fang, Lin; Luan, Xin; Catchmark, Jeffrey M.; Tien, Ming; Kao, Teh-hui

    2015-01-01

    Gluconacetobacter hansenii, a Gram-negative bacterium, produces and secrets highly crystalline cellulose into growth medium, and has long been used as a model system for studying cellulose synthesis in higher plants. Cellulose synthesis involves the formation of β-1,4 glucan chains via the polymerization of glucose units by a multi-enzyme cellulose synthase complex (CSC). These glucan chains assemble into ordered structures including crystalline microfibrils. AcsA is the catalytic subunit of the cellulose synthase enzymes in the CSC, and AcsC is required for the secretion of cellulose. However, little is known about other proteins required for the assembly of crystalline cellulose. To address this question, we visually examined cellulose pellicles formed in growth media of 763 individual colonies of G. hansenii generated via Tn5 transposon insertion mutagenesis, and identified 85 that produced cellulose with altered morphologies. X-ray diffraction analysis of these 85 mutants identified two that produced cellulose with significantly lower crystallinity than wild type. The gene disrupted in one of these two mutants encoded a lysine decarboxylase and that in the other encoded an alanine racemase. Solid-state NMR analysis revealed that cellulose produced by these two mutants contained increased amounts of non-crystalline cellulose and monosaccharides associated with non-cellulosic polysaccharides as compared to the wild type. Monosaccharide analysis detected higher percentages of galactose and mannose in cellulose produced by both mutants. Field emission scanning electron microscopy showed that cellulose produced by the mutants was unevenly distributed, with some regions appearing to contain deposition of non-cellulosic polysaccharides; however, the width of the ribbon was comparable to that of normal cellulose. As both lysine decarboxylase and alanine racemase are required for the integrity of peptidoglycan, we propose a model for the role of peptidoglycan in the

  15. Isolation and characterization of two cellulose morphology mutants of Gluconacetobacter hansenii ATCC23769 producing cellulose with lower crystallinity.

    PubMed

    Deng, Ying; Nagachar, Nivedita; Fang, Lin; Luan, Xin; Catchmark, Jeffrey M; Tien, Ming; Kao, Teh-hui

    2015-01-01

    Gluconacetobacter hansenii, a Gram-negative bacterium, produces and secrets highly crystalline cellulose into growth medium, and has long been used as a model system for studying cellulose synthesis in higher plants. Cellulose synthesis involves the formation of β-1,4 glucan chains via the polymerization of glucose units by a multi-enzyme cellulose synthase complex (CSC). These glucan chains assemble into ordered structures including crystalline microfibrils. AcsA is the catalytic subunit of the cellulose synthase enzymes in the CSC, and AcsC is required for the secretion of cellulose. However, little is known about other proteins required for the assembly of crystalline cellulose. To address this question, we visually examined cellulose pellicles formed in growth media of 763 individual colonies of G. hansenii generated via Tn5 transposon insertion mutagenesis, and identified 85 that produced cellulose with altered morphologies. X-ray diffraction analysis of these 85 mutants identified two that produced cellulose with significantly lower crystallinity than wild type. The gene disrupted in one of these two mutants encoded a lysine decarboxylase and that in the other encoded an alanine racemase. Solid-state NMR analysis revealed that cellulose produced by these two mutants contained increased amounts of non-crystalline cellulose and monosaccharides associated with non-cellulosic polysaccharides as compared to the wild type. Monosaccharide analysis detected higher percentages of galactose and mannose in cellulose produced by both mutants. Field emission scanning electron microscopy showed that cellulose produced by the mutants was unevenly distributed, with some regions appearing to contain deposition of non-cellulosic polysaccharides; however, the width of the ribbon was comparable to that of normal cellulose. As both lysine decarboxylase and alanine racemase are required for the integrity of peptidoglycan, we propose a model for the role of peptidoglycan in the

  16. Isolation and characterization of two cellulose morphology mutants of Gluconacetobacter hansenii ATCC23769 producing cellulose with lower crystallinity

    DOE PAGESBeta

    Deng, Ying; Nagachar, Nivedita; Fang, Lin; Luan, Xin; Catchmark, Jeffrey M.; Tien, Ming; Kao, Teh -hui; Lai, Hsin -Chih

    2015-03-19

    Gluconacetobacter hansenii, a Gram-negative bacterium, produces and secrets highly crystalline cellulose into growth medium, and has long been used as a model system for studying cellulose synthesis in higher plants. Cellulose synthesis involves the formation of β-1,4 glucan chains via the polymerization of glucose units by a multi-enzyme cellulose synthase complex (CSC). These glucan chains assemble into ordered structures including crystalline microfibrils. AcsA is the catalytic subunit of the cellulose synthase enzymes in the CSC, and AcsC is required for the secretion of cellulose. However, little is known about other proteins required for the assembly of crystalline cellulose. To addressmore » this question, we visually examined cellulose pellicles formed in growth media of 763 individual colonies of G. hansenii generated via Tn5 transposon insertion mutagenesis, and identified 85 that produced cellulose with altered morphologies. X-ray diffraction analysis of these 85 mutants identified two that produced cellulose with significantly lower crystallinity than wild type. The gene disrupted in one of these two mutants encoded a lysine decarboxylase and that in the other encoded an alanine racemase. Solid-state NMR analysis revealed that cellulose produced by these two mutants contained increased amounts of non-crystalline cellulose and monosaccharides associated with non-cellulosic polysaccharides as compared to the wild type. Monosaccharide analysis detected higher percentages of galactose and mannose in cellulose produced by both mutants. Field emission scanning electron microscopy showed that cellulose produced by the mutants was unevenly distributed, with some regions appearing to contain deposition of non-cellulosic polysaccharides; however, the width of the ribbon was comparable to that of normal cellulose. As both lysine decarboxylase and alanine racemase are required for the integrity of peptidoglycan, we propose a model for the role of peptidoglycan

  17. Displacement, Substitution, Sublimation: A Bibliography.

    ERIC Educational Resources Information Center

    Pedrini, D. T.; Pedrini, Bonnie C.

    Sigmund Freund worked with the mechanisms of displacement, substitution, and sublimation. These mechanisms have many similarities and have been studied diagnostically and therapeutically. Displacement and substitution seem to fit in well with phobias, hysterias, somatiyations, prejudices, and scapegoating. Phobias, prejudices, and scapegoating…

  18. Arabidopsis mutants impaired in cosuppression.

    PubMed Central

    Elmayan, T; Balzergue, S; Béon, F; Bourdon, V; Daubremet, J; Guénet, Y; Mourrain, P; Palauqui, J C; Vernhettes, S; Vialle, T; Wostrikoff, K; Vaucheret, H

    1998-01-01

    Post-transcriptional gene silencing (cosuppression) results in the degradation of RNA after transcription. A transgenic Arabidopsis line showing post-transcriptional silencing of a 35S-uidA transgene and uidA-specific methylation was mutagenized using ethyl methanesulfonate. Six independent plants were isolated in which uidA mRNA accumulation and beta-glucuronidase activity were increased up to 3500-fold, whereas the transcription rate of the 35S-uidA transgene was increased only up to threefold. These plants each carried a recessive monogenic mutation that is responsible for the release of silencing. These mutations defined two genetic loci, called sgs1 and sgs2 (for suppressor of gene silencing). Transgene methylation was distinctly modified in sgs1 and sgs2 mutants. However, methylation of centromeric repeats was not affected, indicating that sgs mutants differ from ddm (for decrease in DNA methylation) and som (for somniferous) mutants. Indeed, unlike ddm and som mutations, sgs mutations were not able to release transcriptional silencing of a 35S-hpt transgene. Conversely, both sgs1 and sgs2 mutations were able to release cosuppression of host Nia genes and 35S-Nia2 transgenes. These results therefore indicate that sgs mutations act in trans to impede specifically transgene-induced post-transcriptional gene silencing. PMID:9761800

  19. Problem-Solving Test: Tryptophan Operon Mutants

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2010-01-01

    This paper presents a problem-solving test that deals with the regulation of the "trp" operon of "Escherichia coli." Two mutants of this operon are described: in mutant A, the operator region of the operon carries a point mutation so that it is unable to carry out its function; mutant B expresses a "trp" repressor protein unable to bind…

  20. How Do Substitute Teachers Substitute? An Empirical Study of Substitute-Teacher Labor Supply

    ERIC Educational Resources Information Center

    Gershenson, Seth

    2012-01-01

    This paper examines the daily labor supply of a potentially important, but often overlooked, source of instruction in U.S. public schools: substitute teachers. I estimate a sequential binary-choice model of substitute teachers' job-offer acceptance decisions using data on job offers made by a randomized automated calling system. Importantly, this…

  1. Destabilization of pea lectin by substitution of a single amino acid in a surface loop.

    PubMed

    Hoedemaeker, F J; van Eijsden, R R; Díaz, C L; de Pater, B S; Kijne, J W

    1993-09-01

    Legume lectins are considered to be antinutritional factors (ANF) in the animal feeding industry. Inactivation of ANF is an important element in processing of food. In our study on the stability of Pisum sativum L. lectin (PSL), a conserved hydrophobic amino acid (Val103) in a surface loop was replaced with alanine. The mutant lectin, PSL V103A, showed a decrease in unfolding temperature (Tm) by some 10 degrees C in comparison with wild-type (wt) PSL, and the denaturation energy (delta H) is only about 55% of that of wt PSL. Replacement of an adjacent amino acid (Phe104) with alanine did not result in a significant difference in stability in comparison with wt PSL. Both mutations did not change the sugar-binding properties of the lectin, as compared with wt PSL and with PSL from pea seeds, at ambient temperatures. The double mutant, PSL V103A/F104A, was produced in Escherichia coli, but could not be isolated in an active (i.e. sugar-binding) form. Interestingly, the mutation in PSL V103A reversibly affected sugar-binding at 37 degrees C, as judged from haemagglutination assays. These results open the possibility of production of lectins that are active in planta at ambient temperatures, but are inactive and possibly non-toxic at 37 degrees C in the intestines of mammals. PMID:8400124

  2. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo substituted phenyl azo... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10126 Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato...

  3. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo substituted phenyl azo... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10126 Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato...

  4. Enzymological and mutational analysis of a complex primary hyperoxaluria type I phenotype involving alanine: Glyoxylate aminotransferase peroxisome-to-mitochondrion mistargeting and intraperoxisomal aggregation

    SciTech Connect

    Danpure, C.J.; Purdue, P.E.; Allsop, J.; Lumb, M.J.; Jennings, P.R. ); Scheinman, J.I. ); Mauer, S.M. ); Davidson, N.O. )

    1993-08-01

    Primary hyperoxaluri type 1 (PH1) is a rare autosomal recessive disease caused by a deficiency of the liver-specific peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT). Three unrelated PH1 patients, who possess a novel complex phenotype, are described. At the enzymological level, this phenotype is characterized by a complete, or nearly complete, absence of AGT catalytic activity and reduced AGT immunoreactivity. Unlike normal individuals in whom the AGT is confined to the peroxisomal matrix, the immunoreactive AGT in these three patients was distributed approximately equally between the peroxisomes and mitochondria. The peroxisomal AGT appeared to be aggregated into amorphous core-like structures in which no other peroxisomal enzymes could be identified. Mutational analysis of the AGT gene showed that two of the three patients were compound heterozygotes for two previously unrecognized point mutations which caused Gly41[yields]Arg and Phe152[yields]Iso amino acid substitutions. The third patient was shown to be a compound heterozygote for the Gly41[yields]Arg mutation and a previously recognized Gly170[yields]Arg mutation. All three patients were homozygous for the Pro11[yields]Leu polymorphism that had been found previously with a high allelic frequency in normal populations. It is suggested the the Phe152[yields]Iso and Gly170[yields]Arg substitutions, which are only eighteen residues apart and located in the same highly conserved internal region of 58 amino acids, might be involved in the inhibition of peroxisomal targeting and/or import of AGT and, in combination with the Pro11[yields]Leu polymorphism, be responsible for its aberrant mitochondrial compartmentalization. On the other hand, the Gly41[yields]Arg substitution, either in combination with the Pro11[yields]Leu polymorphism or by itself, is predicted to be responsible for the intraperoxisomal aggregation of the AGT protein. 50 refs., 8 figs., 4 tabs.

  5. Synthesis and evaluation of 18F labeled alanine derivatives as potential tumor imaging agents

    PubMed Central

    Wang, Limin; Zha, Zhihao; Qu, Wenchao; Qiao, Hongwen; Lieberman, Brian P.; Plössl, Karl; Kung, Hank F.

    2012-01-01

    Introduction This paper reports the synthesis and labeling of 18F alanine derivatives. We also investigate their biological characteristics as potential tumor imaging agents mediated by alanine-serine-cysteine preferring (ASC) transporter system. Methods Three new 18F alanine derivatives were prepared from corresponding tosylate-precursors through a two-step labelling reaction. In vitro uptake studies to evaluate and to compare these three analogs were carried out in 9L glioma and PC-3 prostate cancer cell lines. Potential transport mechanisms, protein incorporation and stability of 3-(1-[18F]fluoromethyl)-L-alanine (L[18F]FMA) were investigated in 9L glioma cells. Its biodistribution was determined in a rat-bearing 9L tumor model. PET imaging studies were performed on rat bearing 9L glioma tumors and transgenic mouse carrying spontaneous generated M/tomND tumor (mammary gland adenocarcinoma). Results New 18F alanine derivatives were prepared with 7–34% uncorrected radiochemical yields, excellent enantiomeric purity (>99%) and good radiochemical purity (>99%). In vitro uptake of the L-[18F]FMA in 9L glioma and PC-3 prostate cancer cells was higher than those observed for other two alanine derivatives and [18F]FDG in first 1 h. Inhibition of cell uptake studies suggested that L-[18F]FMA uptake in 9L glioma was predominantly via transport system ASC. After entering into cells, L-[18F]FMA remained stable and was not incorporated into protein within 2 h. In vivo biodistribution studies demonstrated that L-[18F]FMA had relatively high uptake in liver and kidney. Tumor uptake was fast, reaching a maximum within 30 min. The tumor-to-muscle, tumor-to-blood and tumor-to-brain ratios at 60 min post injection were 2.2, 1.9 and 3.0, respectively. In PET imaging studies, tumors were visualized with L-[18F]FMA in both 9L rat and transgenic mouse. Conclusion L-[18F]FMA showed promising properties as a PET imaging agent for up-regulated ASC transporter associated with tumor

  6. L-alanine uptake in membrane vesicles from Mytilus edulis gills

    SciTech Connect

    Pajor, A.M.; Wright, S.H.

    1986-03-05

    Previous studies have shown that gills from M. edulis can accumulate L-alanine from seawater by a saturable process specific for ..cap alpha..-neutral amino acids. This uptake occurs against chemical gradients in excess of 10/sup 6/ to 1. To further characterize this uptake, membrane vesicles were prepared from M. edulis gill tissue by differential centrifugation. Enrichments of putative enzyme markers (relative to that in combined initial fractions) were as follows: ..gamma..-Glutamyltranspeptidase, 25-30x; Alkaline Phosphatase, 5-6x; K/sup +/-dependent para-Nitrophenyl Phosphatase, 3-5x; Succinate Dehydrogenase 0.1-0.2x. These results suggest that the preparation is enriched in plasma membranes, although histochemical studies will be needed to verify this. The time course of /sup 14/C-L-alanine uptake in the presence of inwardly-directed Na/sup +/ gradient showed a transient overshoot (3-5 fold) at 10 minutes which decreased to equilibrium after six hours. The size of the overshoot and early uptake rates depended on the size of the inwardly-directed Na/sup +/ gradient. No overshoot was seen in the presence of inwardly-directed gradients of LiCl or choline-Cl, or with equilibrium concentrations NaCl or mannitol. A reduced overshoot was seen with a gradient of NaSCN. A small overshoot was seen with an inwardly-directed gradient of KCl. Transport of L-alanine included saturable and diffusive components. Uptake of 6 ..mu..M L-alanine was inhibited more than 80% by 100 ..mu..M ..cap alpha..-zwitterionic amino acids (alanine, leucine, glycine); by 30 to 75% by proline, aspartate and lysine; and less than 20% by a ..beta..-amino acid, taurine. The results of these experiments agree with those from intact gill studies and support the hypothesis that L-alanine is transported into gill epithelial cells by a secondary active transport process involving Na/sup +/.

  7. The alanine detector in BNCT dosimetry: Dose response in thermal and epithermal neutron fields

    SciTech Connect

    Schmitz, T.; Bassler, N.; Blaickner, M.; Ziegner, M.; Hsiao, M. C.; Liu, Y. H.; Koivunoro, H.; Auterinen, I.; Serén, T.; Kotiluoto, P.; Palmans, H.; Sharpe, P.; Langguth, P.; Hampel, G.

    2015-01-15

    Purpose: The response of alanine solid state dosimeters to ionizing radiation strongly depends on particle type and energy. Due to nuclear interactions, neutron fields usually also consist of secondary particles such as photons and protons of diverse energies. Various experiments have been carried out in three different neutron beams to explore the alanine dose response behavior and to validate model predictions. Additionally, application in medical neutron fields for boron neutron capture therapy is discussed. Methods: Alanine detectors have been irradiated in the thermal neutron field of the research reactor TRIGA Mainz, Germany, in five experimental conditions, generating different secondary particle spectra. Further irradiations have been made in the epithermal neutron beams at the research reactors FiR 1 in Helsinki, Finland, and Tsing Hua open pool reactor in HsinChu, Taiwan ROC. Readout has been performed with electron spin resonance spectrometry with reference to an absorbed dose standard in a {sup 60}Co gamma ray beam. Absorbed doses and dose components have been calculated using the Monte Carlo codes FLUKA and MCNP. The relative effectiveness (RE), linking absorbed dose and detector response, has been calculated using the Hansen and Olsen alanine response model. Results: The measured dose response of the alanine detector in the different experiments has been evaluated and compared to model predictions. Therefore, a relative effectiveness has been calculated for each dose component, accounting for its dependence on particle type and energy. Agreement within 5% between model and measurement has been achieved for most irradiated detectors. Significant differences have been observed in response behavior between thermal and epithermal neutron fields, especially regarding dose composition and depth dose curves. The calculated dose components could be verified with the experimental results in the different primary and secondary particle fields. Conclusions: The

  8. Prion propagation in cells expressing PrP glycosylation mutants.

    PubMed

    Salamat, Muhammad K; Dron, Michel; Chapuis, Jérôme; Langevin, Christelle; Laude, Hubert

    2011-04-01

    Infection by prions involves conversion of a host-encoded cell surface protein (PrP(C)) to a disease-related isoform (PrP(Sc)). PrP(C) carries two glycosylation sites variably occupied by complex N-glycans, which have been suggested by previous studies to influence the susceptibility to these diseases and to determine characteristics of prion strains. We used the Rov cell system, which is susceptible to sheep prions, to generate a series of PrP(C) glycosylation mutants with mutations at one or both attachment sites. We examined their subcellular trafficking and ability to convert into PrP(Sc) and to sustain stable prion propagation in the absence of wild-type PrP. The susceptibility to infection of mutants monoglycosylated at either site differed dramatically depending on the amino acid substitution. Aglycosylated double mutants showed overaccumulation in the Golgi compartment and failed to be infected. Introduction of an ectopic glycosylation site near the N terminus fully restored cell surface expression of PrP but not convertibility into PrP(Sc), while PrP(C) with three glycosylation sites conferred cell permissiveness to infection similarly to the wild type. In contrast, predominantly aglycosylated molecules with nonmutated N-glycosylation sequons, produced in cells expressing glycosylphosphatidylinositol-anchorless PrP(C), were able to form infectious PrP(Sc). Together our findings suggest that glycosylation is important for efficient trafficking of anchored PrP to the cell surface and sustained prion propagation. However, properly trafficked glycosylation mutants were not necessarily prone to conversion, thus making it difficult in such studies to discern whether the amino acid changes or glycan chain removal most influences the permissiveness to prion infection. PMID:21248032

  9. Structural characterization of V57D and V57P mutants of human cystatin C, an amyloidogenic protein

    SciTech Connect

    Orlikowska, Marta; Szymańska, Aneta; Skowron, Piotr; Jankowska, Elżbieta

    2013-04-01

    Val57 point mutants of human cystatin C, which were designed to assess the influence of changes in the properties of the L1 loop on the dimerization propensity, were structurally characterized. Wild-type human cystatin C (hCC wt) is a low-molecular-mass protein (120 amino-acid residues, 13 343 Da) that is found in all nucleated cells. Physiologically, it functions as a potent regulator of cysteine protease activity. While the biologically active hCC wt is a monomeric protein, all crystallization efforts to date have resulted in a three-dimensional domain-swapped dimeric structure. In the recently published structure of a mutated hCC, the monomeric fold was preserved by a stabilization of the conformationally constrained loop L1 caused by a single amino-acid substitution: Val57Asn. Additional hCC mutants were obtained in order to elucidate the relationship between the stability of the L1 loop and the propensity of human cystatin C to dimerize. In one mutant Val57 was substituted by an aspartic acid residue, which is favoured in β-turns, and in the second mutant proline, a residue known for broadening turns, was substituted for the same Val57. Here, 2.26 and 3.0 Å resolution crystal structures of the V57D andV57P mutants of hCC are reported and their dimeric architecture is discussed in terms of the stabilization and destabilization effects of the introduced mutations.

  10. 40 CFR 721.3063 - Substituted phenyl azo substituted phenyl esters (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Substituted phenyl azo substituted... Significant New Uses for Specific Chemical Substances § 721.3063 Substituted phenyl azo substituted phenyl... chemical substances identified generically as substituted phenyl azo substituted phenyl esters (PMNs...

  11. 40 CFR 721.3063 - Substituted phenyl azo substituted phenyl esters (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted phenyl azo substituted... Significant New Uses for Specific Chemical Substances § 721.3063 Substituted phenyl azo substituted phenyl... as substituted phenyl azo substituted phenyl esters (PMNs P-95-655, P-95-782 and P-95-871)...

  12. 40 CFR 721.3063 - Substituted phenyl azo substituted phenyl esters (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted phenyl azo substituted... Significant New Uses for Specific Chemical Substances § 721.3063 Substituted phenyl azo substituted phenyl... chemical substances identified generically as substituted phenyl azo substituted phenyl esters (PMNs...

  13. Computational Prediction of Alanine Scanning and Ligand Binding Energetics in G-Protein Coupled Receptors

    PubMed Central

    Boukharta, Lars; Gutiérrez-de-Terán, Hugo; Åqvist, Johan

    2014-01-01

    Site-directed mutagenesis combined with binding affinity measurements is widely used to probe the nature of ligand interactions with GPCRs. Such experiments, as well as structure-activity relationships for series of ligands, are usually interpreted with computationally derived models of ligand binding modes. However, systematic approaches for accurate calculations of the corresponding binding free energies are still lacking. Here, we report a computational strategy to quantitatively predict the effects of alanine scanning and ligand modifications based on molecular dynamics free energy simulations. A smooth stepwise scheme for free energy perturbation calculations is derived and applied to a series of thirteen alanine mutations of the human neuropeptide Y1 receptor and series of eight analogous antagonists. The robustness and accuracy of the method enables univocal interpretation of existing mutagenesis and binding data. We show how these calculations can be used to validate structural models and demonstrate their ability to discriminate against suboptimal ones. PMID:24743773

  14. Membrane topology of the electrogenic aspartate-alanine antiporter AspT of Tetragenococcus halophilus.

    PubMed

    Nanatani, Kei; Ohonishi, Fumito; Yoneyama, Hiroshi; Nakajima, Tasuku; Abe, Keietsu

    2005-03-01

    AspT is an electrogenic aspartate:alanine exchange protein that represents the vectorial component of a proton-motive metabolic cycle found in some strains of Tetragenococcus halophilus. AspT is the sole member of a new family, the Aspartate: Alanine Exchanger (AAE) family, in secondary transporters, according to the computational classification proposed by Saier et al. (http://www.biology.ucsd.edu/~msaier/transport/). We analyzed the topology of AspT biochemically, by using fusion methods in combination with alkaline phosphatase or beta-lactamase. These results suggested that AspT has a unique topology; 8 TMS, a large cytoplasmic loop (183 amino acids) between TMS5 and TMS6, and N- and C-termini that both face the periplasm. These results demonstrated a unique 2D-structure of AspT as the novel AAE family. PMID:15670744

  15. Chiral effects on helicity studied via the energy landscape of short (d, l)-alanine peptides

    NASA Astrophysics Data System (ADS)

    Neelamraju, Sridhar; Oakley, Mark T.; Johnston, Roy L.

    2015-10-01

    The homochirality of natural amino acids facilitates the formation of regular secondary structures such as α-helices and β-sheets. Here, we study the relationship between chirality and backbone structure for the example of hexa-alanine. The most stable stereoisomers are identified through global optimisation. Further, the energy landscape, a database of connected low-energy local minima and transition points, is constructed for various neutral and zwitterionic stereoisomers of hexa-alanine. Three order parameters for partial helicity are applied and metric disconnectivity graphs are presented with partial helicity as a metric. We also apply the Zimm-Bragg model to derive average partial helicities for Ace-(l-Ala)6-NHMe, Ace-(d-Ala-l-Ala)3-NHMe, and Ace-(l-Ala)3-(d-Ala)3-NHMe from the database of local minima and compare with previous studies.

  16. Unusual hydroxyl migration in the fragmentation of β-alanine dication in the gas phase.

    PubMed

    Piekarski, Dariusz Grzegorz; Delaunay, Rudy; Maclot, Sylvain; Adoui, Lamri; Martín, Fernando; Alcamí, Manuel; Huber, Bernd A; Rousseau, Patrick; Domaracka, Alicja; Díaz-Tendero, Sergio

    2015-07-14

    We present a combined experimental and theoretical study of the fragmentation of doubly positively charged β-alanine molecules in the gas phase. The dissociation of the produced dicationic molecules, induced by low-energy ion collisions, is analysed by coincidence mass spectrometric techniques; the coupling with ab initio molecular dynamics simulations allows rationalisation of the experimental observations. The present strategy gives deeper insights into the chemical mechanisms of multiply charged amino acids in the gas phase. In the case of the β-alanine dication, in addition to the expected Coulomb explosion and hydrogen migration processes, we have found evidence of hydroxyl-group migration, which leads to unusual fragmentation products, such as hydroxymethyl cation, and is necessary to explain some of the observed dominant channels. PMID:26035826

  17. Response of the alanine/ESR dosimeter to radiation from an Ir-192 HDR brachytherapy source

    NASA Astrophysics Data System (ADS)

    Anton, M.; Hackel, T.; Zink, K.; von Voigts-Rhetz, P.; Selbach, H.-J.

    2015-01-01

    The response of the alanine dosimeter to radiation from an Ir-192 source with respect to the absorbed dose to water, relative to Co-60 radiation, was determined experimentally as well as by Monte Carlo simulations. The experimental and Monte Carlo results for the response agree well within the limits of uncertainty. The relative response decreases with an increasing distance between the measurement volume and the source from approximately 98% at a 1 cm distance to 96% at 5 cm. The present data are more accurate, but agree well with data published by Schaeken et al (2011 Phys. Med. Biol. 56 6625-34). The decrease of the relative response with an increasing distance that had already been observed by these authors is confirmed. In the appendix, the properties of the alanine dosimeter with respect to volume and sensitivity corrections are investigated. The inhomogeneous distribution of the detection probability that was taken into account for the analysis was determined experimentally.

  18. The effects of boron on the electron paramagnetic resonance spectra of alanine irradiated with thermal neutrons

    SciTech Connect

    Ciesielski, B.; Wielopolski, L.

    1995-10-01

    The effects of boric acid admixture on the intensity and line structure of EPR spectra of free radicals produced in alanine by thermal neutrons are presented. The EPR signal enhancement, up to a factor of 40 depending on the boron concentration, is related to additional energy deposition in alanine crystals by the disintegration products resulting from the capture of a thermal neutron by boron, {sup 10}B(n,{alpha}){sup 7}Li. The changes in the shape of the EPR spectra observed by changing the microwave power are due to the differences in the microwave power saturation of the free radicals produced by a low-LET radiation and those produced by the high-LET components of the radiation after the neutron capture reaction. 27 refs., 4 figs., 2 tabs.

  19. Formation of homochiral glycine/Cu(111) quantum corral array realized using alanine nuclei

    NASA Astrophysics Data System (ADS)

    Nakamura, Miki; Huang, Hui; Kanazawa, Ken; Taninaka, Atsushi; Yoshida, Shoji; Takeuchi, Osamu; Shigekawa, Hidemi

    2015-08-01

    Glycine has enantiomeric isomers on a Cu(111) surface through the dissociation of hydrogen from the carboxyl group and forms an array of quantum corrals of ∼1.3 nm diameter. Stable homo-chiral glycinate trimers are formed in the first step, which subsequently form a network with a hexagonal arrangement. However, domains with R- or S-chirality coexist with the same probability. On the other hand, α-alanine has D- and L-chirality in nature and forms a similar quantum corral array on Cu(111) with R- and S-chirality, respectively. Here, by using α-alanine molecules as nuclei, the chirality of glycine molecules was controlled and a homochiral quantum corral array was successfully formed, which indicates the possibility that the optical isomers can be separated through a method such as preferential crystallization.

  20. Crystallization and preliminary X-ray data analysis of β-alanine synthase from Drosophila melanogaster

    SciTech Connect

    Lundgren, Stina; Andersen, Birgit; Piškur, Jure; Dobritzsch, Doreen

    2007-10-01

    β-Alanine synthase catalyzes the last step in the reductive degradation pathway for uracil and thymine. Crystals of the recombinant enzyme from D. melanogaster belong to space group C2. Diffraction data to 3.3 Å resolution were collected and analyzed. β-Alanine synthase catalyzes the last step in the reductive degradation pathway for uracil and thymine, which represents the main clearance route for the widely used anticancer drug 5-fluorouracil. Crystals of the recombinant enzyme from Drosophila melanogaster, which is closely related to the human enzyme, were obtained by the hanging-drop vapour-diffusion method. They diffracted to 3.3 Å at a synchrotron-radiation source, belong to space group C2 (unit-cell parameters a = 278.9, b = 95.0, c = 199.3 Å, β = 125.8°) and contain 8–10 molecules per asymmetric unit.

  1. Altered Fermentative Metabolism in Chlamydomonas reinhardtii Mutants Lacking Pyruvate Formate Lyase and Both Pyruvate Formate Lyase and Alcohol Dehydrogenase[W

    PubMed Central

    Catalanotti, Claudia; Dubini, Alexandra; Subramanian, Venkataramanan; Yang, Wenqiang; Magneschi, Leonardo; Mus, Florence; Seibert, Michael; Posewitz, Matthew C.; Grossman, Arthur R.

    2012-01-01

    Chlamydomonas reinhardtii, a unicellular green alga, often experiences hypoxic/anoxic soil conditions that activate fermentation metabolism. We isolated three Chlamydomonas mutants disrupted for the pyruvate formate lyase (PFL1) gene; the encoded PFL1 protein catalyzes a major fermentative pathway in wild-type Chlamydomonas cells. When the pfl1 mutants were subjected to dark fermentative conditions, they displayed an increased flux of pyruvate to lactate, elevated pyruvate decarboxylation, ethanol accumulation, diminished pyruvate oxidation by pyruvate ferredoxin oxidoreductase, and lowered H2 production. The pfl1-1 mutant also accumulated high intracellular levels of lactate, succinate, alanine, malate, and fumarate. To further probe the system, we generated a double mutant (pfl1-1 adh1) that is unable to synthesize both formate and ethanol. This strain, like the pfl1 mutants, secreted lactate, but it also exhibited a significant increase in the levels of extracellular glycerol, acetate, and intracellular reduced sugars and a decrease in dark, fermentative H2 production. Whereas wild-type Chlamydomonas fermentation primarily produces formate and ethanol, the double mutant reroutes glycolytic carbon to lactate and glycerol. Although the metabolic adjustments observed in the mutants facilitate NADH reoxidation and sustained glycolysis under dark, anoxic conditions, the observed changes could not have been predicted given our current knowledge of the regulation of fermentation metabolism. PMID:22353371

  2. RNA duplexes with abasic substitutions are potent and allele-selective inhibitors of huntingtin and ataxin-3 expression

    PubMed Central

    Liu, Jing; Pendergraff, Hannah; Narayanannair, K. Jayaprakash; Lackey, Jeremy G.; Kuchimanchi, Satya; Rajeev, Kallanthottathil G.; Manoharan, Muthiah; Hu, Jiaxin; Corey, David R.

    2013-01-01

    Abasic substitutions within DNA or RNA are tools for evaluating the impact of absent nucleobases. Because of the importance of abasic sites in genetic damage, most research has involved DNA. Little information is available on the impact of abasic substitutions within RNA or on RNA interference (RNAi). Here, we examine the effect of abasic substitutions on RNAi and allele-selective gene silencing. Huntington's disease (HD) and Machado Joseph Disease (MJD) are severe neurological disorders that currently have no cure. HD and MJD are caused by an expansion of CAG repeats within one mRNA allele encoding huntingtin (HTT) and ataxin-3 (ATX-3) proteins. Agents that silence mutant HTT or ATX-3 expression would remove the cause of HD or MJD and provide an option for therapeutic development. We describe flexible syntheses for abasic substitutions and show that abasic RNA duplexes allele-selectively inhibit both mutant HTT and mutant ATX-3. Inhibition involves the RNAi protein argonaute 2, even though the abasic substitution disrupts the catalytic cleavage of RNA target by argonaute 2. Several different abasic duplexes achieve potent and selective inhibition, providing a broad platform for subsequent development. These findings introduce abasic substitutions as a tool for tailoring RNA duplexes for gene silencing. PMID:23887934

  3. Weak BMAA toxicity compares with that of the dietary supplement β-alanine.

    PubMed

    Lee, Moonhee; McGeer, Patrick L

    2012-07-01

    β-N-methylamino-L-alanine (BMAA) is routinely described in the literature as a potent neurotoxin and as a possible cause of neurodegenerative disorders of aging such as Alzheimer's disease, amyotrophic lateral sclerosis, and the amyotrophic lateral sclerosis/parkinsonism-dementia complex (ALS-PDC) syndrome of Guam. To test for the toxicity of BMAA against human neurons, we chose 3 standard human neuronal cell lines for examination and compared the toxicity with the muscle-building nutritional supplement β-alanine, glutamic acid, and the established excitotoxins kainic acid, quisqualic acid, ibotenic acid, domoic acid, and quinolinic acid. Neurotoxicity was measured by the standard lactic dehydrogenase release assay after 5-day incubation of NT-2, SK-N-MC, and SH-SY5Y cells with BMAA and the comparative substances. The ED(50) of BMAA, corresponding to 50% death of neurons, varied from 1430 to 1604 μM while that of the nutritional supplement β-alanine was almost as low, varying from 1945 to 2134 μM. The ED(50) for glutamic acid and the 5 established excitotoxins was 200- to 360-fold lower, varying from 44 to 70 μM. These in vitro data are in accord with previously published in vivo data on BMAA toxicity in which mice showed no pathological effects from oral consumption of 500 mg/kg/day for more than 10 weeks. Because there are no known natural sources of BMAA that would make consumption of such amounts possible, and because the toxicity observed was in the same range as the nutritional supplement β-alanine, the hypothesis that BMAA is an environmental hazard and a contributor to degenerative neurological diseases becomes untenable. PMID:21236519

  4. β-alanine supplementation improves isometric endurance of the knee extensor muscles

    PubMed Central

    2012-01-01

    Background We examined the effect of four weeks of β-alanine supplementation on isometric endurance of the knee extensors at 45% maximal voluntary isometric contraction (MVIC). Methods Thirteen males (age 23 ± 6 y; height 1.80 ± 0.05 m; body mass 81.0 ± 10.5 kg), matched for pre-supplementation isometric endurance, were allocated to either a placebo (n = 6) or β-alanine (n = 7; 6.4 g·d-1 over 4 weeks) supplementation group. Participants completed an isometric knee extension test (IKET) to fatigue, at an intensity of 45% MVIC, before and after supplementation. In addition, two habituation tests were completed in the week prior to the pre-supplementation test and a further practice test was completed in the week prior to the post-supplementation test. MVIC force, IKET hold-time, and impulse generated were recorded. Results IKET hold-time increased by 9.7 ± 9.4 s (13.2%) and impulse by 3.7 ± 1.3 kN·s-1 (13.9%) following β-alanine supplementation. These changes were significantly greater than those in the placebo group (IKET: t(11) = 2.9, p ≤0.05; impulse: t(11) = 3.1, p ≤ 0.05). There were no significant changes in MVIC force in either group. Conclusion Four weeks of β-alanine supplementation at 6.4 g·d-1 improved endurance capacity of the knee extensors at 45% MVIC, which most likely results from improved pH regulation within the muscle cell as a result of elevated muscle carnosine levels. PMID:22697405

  5. Protein Folding Simulation of Mutant Go Models of the Wild-Type Trp-cage Protein

    NASA Astrophysics Data System (ADS)

    Linhananta, Apichart; Liu, Junmin

    2008-03-01

    For the past three decades, Go models of protein folding have played important roles in the understanding of how proteins fold from random conformations to their unique native structures. Unfortunately Go models reliance on known NMR or x-ray structures to construct Go interaction potentials severely limit their predictive powers. In this work, we introduce a novel method for constructing Go interaction potentials of mutant proteins based on Go interaction potentials of wild type proteins. As a template we employ the all-atom Go model of the 20-residue Trp-cage protein (A. Linhananta, J. Boer and I. MacKay, J. Chem. Phys., 2005, 122, 114901) as the wild type Go model. Trp-cage mutants are constructed by replacing a Trp-cage residue with a different residue. In particular the Pro-12 residue of the Trp-cage is substituted by Trp-12 to produce the Trp2-cage mutant, whose native structure is not yet known. Monte Carlo simulations, using CHARMM force fields, are performed to determine the ground-state structure mutant. The resulting mutant structures are used to construct the Go interaction potential of the Trp2-cage mutant Go model.

  6. Predicting a double mutant in the twilight zone of low homology modeling for the skeletal muscle voltage-gated sodium channel subunit beta-1 (Nav1.4 β1)

    PubMed Central

    Scior, Thomas; Paiz-Candia, Bertin; Islas, Ángel A.; Sánchez-Solano, Alfredo; Millan-Perez Peña, Lourdes; Mancilla-Simbro, Claudia; Salinas-Stefanon, Eduardo M.

    2015-01-01

    The molecular structure modeling of the β1 subunit of the skeletal muscle voltage-gated sodium channel (Nav1.4) was carried out in the twilight zone of very low homology. Structural significance can per se be confounded with random sequence similarities. Hence, we combined (i) not automated computational modeling of weakly homologous 3D templates, some with interfaces to analogous structures to the pore-bearing Nav1.4 α subunit with (ii) site-directed mutagenesis (SDM), as well as (iii) electrophysiological experiments to study the structure and function of the β1 subunit. Despite the distant phylogenic relationships, we found a 3D-template to identify two adjacent amino acids leading to the long-awaited loss of function (inactivation) of Nav1.4 channels. This mutant type (T109A, N110A, herein called TANA) was expressed and tested on cells of hamster ovary (CHO). The present electrophysiological results showed that the double alanine substitution TANA disrupted channel inactivation as if the β1 subunit would not be in complex with the α subunit. Exhaustive and unbiased sampling of “all β proteins” (Ig-like, Ig) resulted in a plethora of 3D templates which were compared to the target secondary structure prediction. The location of TANA was made possible thanks to another “all β protein” structure in complex with an irreversible bound protein as well as a reversible protein–protein interface (our “Rosetta Stone” effect). This finding coincides with our electrophysiological data (disrupted β1-like voltage dependence) and it is safe to utter that the Nav1.4 α/β1 interface is likely to be of reversible nature. PMID:25904995

  7. Structure/function studies of human immunodeficiency virus type 1 reverse transcriptase. Alanine scanning mutagenesis of an alpha-helix in the thumb subdomain.

    PubMed

    Beard, W A; Stahl, S J; Kim, H R; Bebenek, K; Kumar, A; Strub, M P; Becerra, S P; Kunkel, T A; Wilson, S H

    1994-11-11

    Human immunodeficiency virus type 1 reverse transcriptase has subunits of 66 and 51 kDa (p66 and p51, respectively). Structural studies indicate that each subunit consists of common subdomains. The polymerase domain of p66 forms a nucleic acid binding cleft, and, by analogy with a right hand, the subdomains are referred to as fingers, palm, and thumb (Kohlstaedt, L. A., Wang, J., Friedman, J. M., Rice, P. A., and Steitz, T. A. (1992) Science 256, 1783-1790). Residues 257-266 correspond to a highly conserved region of primary structure among retroviral pol genes. Crystallographic evidence indicates that these residues are in the thumb subdomain and form part of an alpha-helix (alpha H), which interacts with DNA (Jacobo-Molina, A., Ding, J., Nanni, R. G., Clark, A. D., Jr., Lu, X., Tantillo, C., Williams, R. L., Kamer, G., Ferris, A. L., Clark, P., Hizi, A., Hughes, S. H., and Arnold, E. (1993) Proc. Natl. Acad. Sci. U. S. A. 90, 6320-6324). To define the role of this region during catalytic cycling, we performed systematic site-directed mutagenesis from position 253 through position 271 by changing each residue, one by one, to alanine. Each mutant protein was expressed and purified, and their substrate-specific activities were surveyed. The results are consistent with alpha H (residues 255-268) of p66 interacting with the template and/or primer strand. The core of alpha H appears to play an important role in template-primer binding (residues Gln-258, Gly-262, and Trp-266), and in protein-protein interactions (residues Val-261 and Leu-264). The periodicity of the effects observed suggest that a segment of one face of alpha H interacts with the template-primer. The lower fidelity observed with alanine mutants of Gly-262 and Trp-266 correlated with an over 200-fold increase in the dissociation rate constant for template-primer relative to wild type enzyme and suggests that enzyme-DNA interactions in the template-primer stem are important fidelity determinants. PMID

  8. Nucleophilic Substitution by Benzodithioate Anions.

    ERIC Educational Resources Information Center

    Bonnans-Plaisance, Chantal; Gressier, Jean-Claude

    1988-01-01

    Describes a two-session experiment designed to provide a good illustration of, and to improve student knowledge of, the Grignard reaction and nucleophilic substitution. Discusses the procedure, experimental considerations, and conclusion of this experiment. (CW)

  9. DESIGNING ENVIRONMENTALLY BENIGN SOLVENT SUBSTITUTES

    EPA Science Inventory

    Since the signing of 1987 Montreal Protocol, reducing and eliminating the use of harmful solvents has become an internationally imminent environmental protection mission. Solvent substitution is an effective way to achieve this goal. The Program for Assisting the Replacement of...

  10. Conformation-specific pathways of beta-alanine: a vacuum ultraviolet photoionization and theoretical study.

    PubMed

    Zhang, Lidong; Pan, Yang; Guo, Huijun; Zhang, Taichang; Sheng, Liusi; Qi, Fei; Lo, Po-Kam; Lau, Kai-Chung

    2009-05-21

    We report a photoionization and dissociative photoionization study of beta-alanine using IR laser desorption combined with synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry. Fragments at m/z = 45, 44, 43, and 30 yielded from photoionization are assigned to NH(3)CH(2)CH(2)(+), NH(2)CHCH(3)(+), NH(2)CHCH(2)(+), and NH(2)CH(2)(+), respectively. Some new conformation-specific dissociation channels and corresponding dissociation energies for the observed fragments are established and determined with the help of ab initio G3B3 calculations and measurements of photoionization efficiency (PIE) spectra. The theoretical values are in fair agreement with the experimental results. Three low-lying conformers of the beta-alanine cation, including two gauche conformers G1+, G2+ and one anti conformer A+ are investigated by G3B3 calculations. The conformer G1+ (intramolecular hydrogen bonding N-H...OC) is found to be another precursor in forming the NH(3)CH(2)CH(2)(+) ion, which is complementary to the previously reported formation pathway that only occurs with the conformer G2+ (intramolecular hydrogen bonding O-H...N). Species NH(2)CHCH(2)(+) may come from the contributions of G1+, G2+, and A+ via different dissociation pathways. The most abundant fragment ion, NH(2)CH(2)(+), is formed from a direct C-C bond cleavage. Intramolecular hydrogen transfer processes dominate most of the fragmentation pathways of the beta-alanine cation. PMID:19400571

  11. Kinetics and mechanism of the beta-alanine + OH gas phase reaction: a quantum mechanical approach.

    PubMed

    Cruz-Torres, Armando; Galano, Annia; Alvarez-Idaboy, J Raúl

    2006-01-14

    The OH hydrogen abstraction reaction from beta-alanine has been studied using the BHandHLYP hybrid HF-density functional and 6-311G(d,p) basis sets. The energies have been improved by single point calculations at the CCSD(T)/6-311G(d,p) level of theory. The structures of the different stationary points are discussed. Reaction profiles are modeled including the formation of pre-reactive and product complexes. Negative net activation energy is obtained for the overall reaction. A complex mechanism is proposed, and the rate coefficients are calculated using transition state theory over the temperature range of 250-400 K. The rate coefficients are proposed for the first time and it was found that in the gas phase the hydrogen abstraction occurs mainly from the CH(2) group next to the amino end. The following expressions, in cm(3) mol(-1) s(-1), are obtained for the overall rate constants, at 250-400 and 290-310 K, respectively: k(250-400)= 2.36 x 10(-12) exp(340/T), and k(290-310)= 1.296 x 10(-12) exp(743/T). The three parameter expression that best describes the studied reaction is k(250-400)= 1.01 x 10(-21)T(3.09) exp(1374/T). The beta-alanine + OH reaction was found to be 1.5 times faster than the alpha-alanine + OH reaction. PMID:16482271

  12. Survivability and reactivity of glycine and alanine in early oceans: effects of meteorite impacts.

    PubMed

    Umeda, Yuhei; Fukunaga, Nao; Sekine, Toshimori; Furukawa, Yoshihiro; Kakegawa, Takeshi; Kobayashi, Takamichi; Nakazawa, Hiromoto

    2016-01-01

    Prebiotic oceans might have contained abundant amino acids, and were subjected to meteorite impacts, especially during the late heavy bombardment. It is so far unknown how meteorite impacts affected amino acids in the early oceans. Impact experiments were performed under the conditions where glycine was synthesized from carbon, ammonia, and water, using aqueous solutions containing (13)C-labeled glycine and alanine. Selected amino acids and amines in samples were analyzed with liquid chromatography-mass spectrometry (LC/MS). In particular, the (13)C-labeled reaction products were analyzed to distinguish between run products and contaminants. The results revealed that both amino acids survived partially in the early ocean through meteorite impacts, that part of glycine changed into alanine, and that large amounts of methylamine and ethylamine were formed. Fast decarboxylation was confirmed to occur during such impact processes. Furthermore, the formation of n-butylamine, detected only in the samples recovered from the solutions with additional nitrogen and carbon sources of ammonia and benzene, suggests that chemical reactions to form new biomolecules can proceed through marine impacts. Methylamine and ethylamine from glycine and alanine increased considerably in the presence of hematite rather than olivine under similar impact conditions. These results also suggest that amino acids present in early oceans can contribute further to impact-induced reactions, implying that impact energy plays a potential role in the prebiotic formation of various biomolecules, although the reactions are complicated and depend upon the chemical environments as well. PMID:26369758

  13. Surface chemistry of alanine on Cu{111}: Adsorption geometry and temperature dependence

    NASA Astrophysics Data System (ADS)

    Baldanza, Silvia; Cornish, Alix; Nicklin, Richard E. J.; Zheleva, Zhasmina V.; Held, Georg

    2014-11-01

    Adsorption of L-alanine on the Cu{111} single crystal surface was investigated as a model system for interactions between small chiral modifier molecules and close-packed metal surfaces. Synchrotron-based X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy are used to determine the chemical state, bond coordination and out-of-plane orientation of the molecule on the surface. Alanine adsorbs in its anionic form at room temperature, whilst at low temperature the overlayer consists of anionic and zwitterionic molecules. NEXAFS spectra exhibit a strong angular dependence of the π* resonance associated with the carboxylate group, which allows determining the tilt angle of this group with respect to the surface plane (48° ± 2°) at room temperature. Low-energy electron diffraction (LEED) shows a p(2√{ 13} × 2√{ 13}) R 13 ° superstructure with only one domain, which breaks the mirror symmetry of the substrate and, thus, induces global chirality to the surface. Temperature-programmed XPS (TP-XPS) and temperature-programmed desorption (TPD) experiments indicate that the zwitterionic form converts into the anionic species (alaninate) at 293 K. The latter desorbs/decomposes between 435 K and 445 K.

  14. Monte Carlo Simulation of the Irradiation of Alanine Coated Film Dosimeters with Accelerated Electrons

    NASA Astrophysics Data System (ADS)

    Uribe, R. M.; Salvat, F.; Cleland, M. R.; Berejka, A.

    2009-03-01

    The Monte Carlo code PENELOPE was used to simulate the irradiation of alanine coated film dosimeters with electron beams of energies from 1 to 5 MeV being produced by a high-current industrial electron accelerator. This code includes a geometry package that defines complex quadratic geometries, such as those of the irradiation of products in an irradiation processing facility. In the present case the energy deposited on a water film at the surface of a wood parallelepiped was calculated using the program PENMAIN, which is a generic main program included in the PENELOPE distribution package. The results from the simulation were then compared with measurements performed by irradiating alanine film dosimeters with electrons using a 150 kW Dynamitron™ electron accelerator. The alanine films were placed on top of a set of wooden planks using the same geometrical arrangement as the one used for the simulation. The way the results from the simulation can be correlated with the actual measurements, taking into account the irradiation parameters, is described. An estimation of the percentage difference between measurements and calculations is also presented.

  15. Evaluation of Conformation and Association Behavior of Multivalent Alanine-Rich Polypeptides

    PubMed Central

    Farmer, Robin S.; Top, Ayben; Argust, Lindsey M.; Liu, Shuang; Kiick, Kristi L.

    2008-01-01

    Purpose Helical alanine-rich polypeptides with functional groups displayed along the backbone can display desired molecules such as saccharides or therapeutic molecules at a prescribed spacing. Because these polypeptides have promise for application as biomaterials, the conformation and association of these molecules have been investigated under biologically relevant conditions. Methods Three polypeptide sequences, 17-H-3, 17-H-6, and 35-H-6, have been produced through recombinant techniques. Circular dichroic (CD) spectroscopy was used to monitor the secondary structure of the polypeptides in PBS (phosphate buffered saline, pH 7.4). The aggregation behavior in PBS was monitored via analytical ultracentrifugation and non-denaturing polyacrylamide gel electrophoresis. Results The three polypeptides adopt a highly helical structure at low and ambient temperatures, and when heated, undergo a helix-to-coil transition, typical of other alanine-rich peptide sequences. The melting temperatures and van’t Hoff enthalpies, extracted from the CD data, suggest similar stability of the sequences. Although alanine-rich sequences can be prone to aggregation, there is no indication of aggregation for the three polypeptides at a range of concentrations relevant for possible biological applications. Conclusions The helical polypeptides are monomeric under biologically relevant conditions enabling application of these polypeptides as useful scaffolds for ligand or drug display. PMID:17674161

  16. Theoretical study of alpha/beta-alanine and their protonated/alkali metal cationized complexes.

    PubMed

    Abirami, S; Xing, Y M; Tsang, C W; Ma, N L

    2005-01-27

    Density functional theory has been employed to model the structure and the relative stabilities of alpha/beta-alanine conformers and their protonated and alkali metal cationized complexes. In general, we find that the behavior of the beta-alanine (beta-Ala) system is quite similar to that of alpha-alanine (alpha-Ala). However, the presence of the methylene group (-CH2-) at the beta position in beta-Ala leads to a few key differences. First, the intramolecular hydrogen bonding patterns are different between free alpha- and beta-Ala. Second, the stability of zwitterionic species (in either the free ligand or alkali metal cationized complexes) is often enhanced in beta-Ala. Third, the preferred mode of alkali metal cation (M+) binding may also differ in alpha- and beta-Ala. Natural energy decomposition analysis has been applied here to gain further insight into the effects of the ligand, cation size, and mode of binding on the nature of interaction in these M+-Ala complexes. PMID:16833371

  17. Development of an alanine dosimetry system for radiation dose measurements in the radiotherapy range

    NASA Astrophysics Data System (ADS)

    Gago-Arias, A.; González-Castaño, D. M.; Gómez, F.; Peteiro, E.; Lodeiro, C.; Pardo-Montero, J.

    2015-08-01

    Alanine/ESR systems provide an interesting alternative to standard dosimetry systems like solid state or gas ionization chambers for dosimetry in radiotherapy. This is primarily due to the negligible energy dependence, high stability, and the possibility of using small pellets that are especially suitable for the dosimetry of small fields. In order to obtain acceptable dose uncertainties in the radiotherapy dose range, the setup, operational parameters and quantification methods need to be carefully investigated and optimized. In this work we present the development of an alanine/ESR dosimetry system, traced to the secondary standard laboratory of absorbed dose to water at the Radiation Physics Laboratory of the Universidade de Santiago de Compostela (Spain). We focus on the setup, the optimization of the operational parameters of the ESR spectrometer, the quantification of the readout signal and the construction of a calibration curve. The evaluation of the uncertainty budget is also a key component of an alanine/ESR system for radiotherapy dosimetry, and is presented in detail.After the optimization of the procedures, we have achieved a relative uncertainty of 1.7% (k=2) for an absorbed dose of 10 Gy, decreasing to 0.9% for 50 Gy.

  18. Chiral molecule for spin filtering purposes: the study of L- and D-Alanine

    NASA Astrophysics Data System (ADS)

    Yitamben, Esmeralda; Rosenberg, Richard; Guisinger, Nathan

    2011-03-01

    The field of molecular electronics has attracted scientists by the great opportunities and versatility it offers as a replacement for standard semiconductor electronics with organic materials, thus bringing down the cost, and opening endless possibilities for chemical synthesis, and scientific breakthrough. Of particular interest is the use of chiral molecules, such as alanine, for spin filtering studies in hope of creating highly spin-polarized charge carriers for spintronics applications. Preliminary studies of both L- and D-alanine on Cu(111) were conducted using scanning tunneling microscopy and spectroscopy, revealing the formation of a 2-dimensional phase at low coverage, a hexagonal ``flower'' pattern at intermediate coverage, and a chain and ring superstructures at high coverage. A model is proposed to explain the surface chemistry and bonding of the molecules on the metallic surface. Current studies of L- and D-alanine on Fe/W show promises in the intermediate coverage regime. This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

  19. Isolation and characterization of Escherichia coli pantothenate permease (panF) mutants.

    PubMed Central

    Vallari, D S; Rock, C O

    1985-01-01

    Mutants of Escherichia coli K-12 defective in the pantothenate permease (panF) were isolated and characterized. The panF mutation resulted in the complete loss of pantothenate uptake and of the ability to use extracellular vitamin for growth. The growth phenotypes of panF panD, panF panB, and panF panC double mutants showed that the cytoplasmic membrane was impermeable to external pantothenate. Analysis of the intracellular and extracellular metabolites from strain DV1 (panF panD) labeled with beta-[3-3H]alanine demonstrated that a carrier-mediated mechanism for efficient pantothenate efflux remained in the panF mutant. Genetic mapping of this nonselectable allele was facilitated by the isolation of three independent Tn10 insertions close to panF. Two- and three-factor crosses located panF at minute 72 of the E. coli chromosome and established the gene order fabE panF aroE. PMID:2995306

  20. Mutant lamin A links prophase to a p53 independent senescence program

    PubMed Central

    Moiseeva, Olga; Lessard, Frédéric; Acevedo-Aquino, Mariana; Vernier, Mathieu; Tsantrizos, Youla S; Ferbeyre, Gerardo

    2015-01-01

    Expression of oncogenes or short telomeres can trigger an anticancer response known as cellular senescence activating the p53 and RB tumor suppressor pathways. This mechanism is switched off in most tumor cells by mutations in p53 and RB signaling pathways. Surprisingly, p53 disabled tumor cells could be forced into senescence by expression of a mutant allele of the nuclear envelope protein lamin A. The pro-senescence lamin A mutant contains a deletion in the sequence required for processing by the protease ZMPSTE24 leading to accumulation of farnesylated lamin A in the nuclear envelope. In addition, the serine at position 22, a target for CDK1-dependent phosphorylation, was mutated to alanine, preventing CDK1-catalyzed nuclear envelope disassembly. The accumulation of this mutant lamin A compromised prophase to prometaphase transition leading to invaginations of the nuclear lamina, nuclear fragmentation and impaired chromosome condensation. Cells exited this impaired mitosis without cytokinesis and re-replicated their DNA ultimately arresting in interphase as polyploid cells with features of cellular senescence including increased expression of inflammatory gene products and a significant reduction of tumorigenicity in vivo. PMID:26029982

  1. Loop substitution as a tool to identify active sites of interleukin-1 beta.

    PubMed

    Palla, E; Bensi, G; Solito, E; Buonamassa, D T; Fassina, G; Raugei, G; Spano, F; Galeotti, C; Mora, M; Domenighini, M

    1993-06-25

    By computer analysis of the amino acid sequence of human interleukin-1 beta (IL-1 beta) and of the human type I IL-1 receptor (IL-1RI), we have identified two hydropathically complementary peptides (Fassina, G., Roller, P. P., Olson, A. D., Thorgeirsson, S. S., and Omichinski, J. G. (1989) J. Biol. Chem. 264, 11252-11257) capable of binding to each other. The sequence of the IL-1 beta peptide corresponds to that of residues 88-99 (loop 7 of the crystal structure of mature IL-1 beta) of mature IL-1 beta, one of the exposed and highly charged regions of the molecule. The substitution of this loop with an amino acid sequence of the same length but different hydropathic profile generates a mutant with drastically reduced binding activity to IL-1RI. In contrast, the binding affinity to the type II IL-1R (IL-1RII) is the same as that of wild type IL-1 beta. The results show that 1) loop 7 is part of the binding site of IL-1 beta to IL-1RI, but not to IL-1RII. 2) The structure of the mutant protein is not grossly altered except locally at the position of the substituted loop. 3) The substitution of amino acids by site-directed mutagenesis of the loop 7 region generates mutants with binding affinity constants slightly lower than that of wild type IL-1 beta and not comparable to that of the loop substitution analogue. 4. All mutants analyzed, including the loop substitutions, are biologically active, confirming the structural integrity of the proteins. We propose a binding site in which the cooperation of several low energy bonds extended over a wide area results in a high affinity complex between IL-1 and the type I receptor. PMID:7685764

  2. Modifiers of mutant huntingtin aggregation

    PubMed Central

    Teuling, Eva; Bourgonje, Annika; Veenje, Sven; Thijssen, Karen; de Boer, Jelle; van der Velde, Joeri; Swertz, Morris; Nollen, Ellen

    2011-01-01

    Protein aggregation is a common hallmark of a number of age-related neurodegenerative diseases, including Alzheimer’s, Parkinson’s, and polyglutamine-expansion disorders such as Huntington’s disease, but how aggregation-prone proteins lead to pathology is not known. Using a genome-wide RNAi screen in a C. elegans-model for polyglutamine aggregation, we previously identified 186 genes that suppress aggregation. Using an RNAi screen for human orthologs of these genes, we here present 26 human genes that suppress aggregation of mutant huntingtin in a human cell line. Among these are genes that have not been previously linked to mutant huntingtin aggregation. They include those encoding eukaryotic translation initiation, elongation and translation factors, and genes that have been previously associated with other neurodegenerative diseases, like the ATP-ase family gene 3-like 2 (AFG3L2) and ubiquitin-like modifier activating enzyme 1 (UBA1). Unravelling the role of these genes will broaden our understanding of the pathogenesis of Huntington’s disease. PMID:21915392

  3. β-alanine supplementation improves tactical performance but not cognitive function in combat soldiers

    PubMed Central

    2014-01-01

    Background There are no known studies that have examined β-alanine supplementation in military personnel. Considering the physiological and potential neurological effects that have been reported during sustained military operations, it appears that β-alanine supplementation may have a potential benefit in maintaining physical and cognitive performance during high-intensity military activity under stressful conditions. The purpose of this study was to examine the effect of 28 days of β-alanine ingestion in military personnel while fatigued on physical and cognitive performance. Methods Twenty soldiers (20.1 ± 0.9 years) from an elite combat unit were randomly assigned to either a β-alanine (BA) or placebo (PL) group. Soldiers were involved in advanced military training, including combat skill development, navigational training, self-defense/hand-to-hand combat and conditioning. All participants performed a 4-km run, 5-countermovement jumps using a linear position transducer, 120-m sprint, a 10-shot shooting protocol with assault rifle, including overcoming a misfire, and a 2-min serial subtraction test to assess cognitive function before (Pre) and after (Post) 28 days of supplementation. Results The training routine resulted in significant increases in 4-km run time for both groups, but no between group differences were seen (p = 0.597). Peak jump power at Post was greater for BA than PL (p = 0.034), while mean jump power for BA at Post was 10.2% greater (p = 0.139) than PL. BA had a significantly greater (p = 0.012) number of shots on target at Post (8.2 ± 1.0) than PL (6.5 ± 2.1), and their target engagement speed at Post was also significantly faster (p = 0.039). No difference in serial subtraction performance was seen between the groups (p = 0.844). Conclusion Results of this study indicate that 4-weeks of β-alanine ingestion in young, healthy soldiers did not impact cognitive performance, but did enhance power

  4. Determination of muscle protein synthesis rates in fish using (2)H2O and (2)H NMR analysis of alanine.

    PubMed

    Marques, Cátia; Viegas, Filipa; Rito, João; Jones, John; Viegas, Ivan

    2016-09-15

    Following administration of deuterated water ((2)H2O), the fractional synthetic rate (FSR) of a given endogenous protein can be estimated by (2)H-enrichment quantification of its alanine residues. Currently, this is measured by mass spectrometry following a derivatization procedure. Muscle FSR was measured by (1)H/(2)H NMR analysis of alanine from seabass kept for 6 days in 5% (2)H-enriched saltwater, following acid hydrolysis and amino acid isolation by cation-exchange chromatography of muscle tissue. The analysis is simple and robust, and provides precise measurements of excess alanine (2)H-enrichment in the 0.1-0.4% range from 50 mmol of alanine recovered from muscle protein. PMID:27418547

  5. Alanine with the Precipitate of Tomato Juice Administered to Rats Enhances the Reduction in Blood Ethanol Levels

    PubMed Central

    Oshima, Shunji; Shiiya, Sachie; Tokumaru, Yoshimi; Kanda, Tomomasa

    2015-01-01

    Delay in gastric emptying (GE) lowers the blood ethanol concentration (BEC) after alcohol administration. We previously demonstrated that water-insoluble fractions, mainly comprising dietary fiber derived from many types of botanical foods, possessed the ability to absorb ethanol-containing aqueous solutions. Furthermore, there was a significant correlation between the absorption of ethanol and lowering of BEC because of delay in GE. Here we identified dietary nutrients that synergize with the water-insoluble fraction of tomatoes to lower BEC in rats. Consequently, unlike tomato juice without alanine, tomato juice with 5.0% alanine decreased BEC depending on the delay in GE and mediated the ethanol-induced decrease in the spontaneous motor activity (an indicator of drunkenness). Our findings indicate that the synergism between tomato juice and alanine to reduce the absorption of ethanol was attributable to the effect of alanine on precipitates such as the water-insoluble fraction of tomatoes. PMID:26713162

  6. Alanine with the Precipitate of Tomato Juice Administered to Rats Enhances the Reduction in Blood Ethanol Levels.

    PubMed

    Oshima, Shunji; Shiiya, Sachie; Tokumaru, Yoshimi; Kanda, Tomomasa

    2015-01-01

    Delay in gastric emptying (GE) lowers the blood ethanol concentration (BEC) after alcohol administration. We previously demonstrated that water-insoluble fractions, mainly comprising dietary fiber derived from many types of botanical foods, possessed the ability to absorb ethanol-containing aqueous solutions. Furthermore, there was a significant correlation between the absorption of ethanol and lowering of BEC because of delay in GE. Here we identified dietary nutrients that synergize with the water-insoluble fraction of tomatoes to lower BEC in rats. Consequently, unlike tomato juice without alanine, tomato juice with 5.0% alanine decreased BEC depending on the delay in GE and mediated the ethanol-induced decrease in the spontaneous motor activity (an indicator of drunkenness). Our findings indicate that the synergism between tomato juice and alanine to reduce the absorption of ethanol was attributable to the effect of alanine on precipitates such as the water-insoluble fraction of tomatoes. PMID:26713162

  7. Pre-thymic somatic mutation leads to high mutant frequency at hypoxanthine-guanine phosphoribosyltransferase gene

    SciTech Connect

    Jett, J.

    1994-12-01

    While characterizing the background mutation spectrum of the Hypoxathine-guanine phosphoribosyltransferase (HPRT) gene in a healthy population, an outlier with a high mutant frequency of thioguanine resistant lymphocytes was found. When studied at the age of 46, this individual had been smoking 60 cigarettes per day for 38 years. His mutant frequency was calculated at 3.6 and 4.2x10{sup {minus}4} for two sampling periods eight months apart. Sequencing analysis of the HPRT gene in his mutant thioguanine resistant T lymphocytes was done to find whether the cells had a high rate of mutation, or if the mutation was due to a single occurrence of mutation and, if so, when in the T lymphocyte development the mutation occurred. By T-cell receptor analysis it has been found that out of 35 thioguanine resistant clones there was no dominant gamma T cell receptor gene rearrangement. During my appointment in the Science & Engineering Research Semester, I found that 34 of those clones have the same base substitution of G{yields}T at cDNA position 197. Due to the consistent mutant frequency from both sampling periods and the varying T cell receptors, the high mutant frequency cannot be due to recent proliferation of a mature mutant T lymphocyte. From the TCR and DNA sequence analysis we conclude that the G{yields}T mutation must have occurred in a T lymphocyte precursor before thymic differentiation so that the thioguanine resistant clones share the same base substitution but not the same gamma T cell receptor gene.

  8. Effects of high-salinity seawater acclimation on the levels of D-alanine in the muscle and hepatopancreas of kuruma prawn, Marsupenaeus japonicus.

    PubMed

    Yoshikawa, Naoko; Yokoyama, Masahumi

    2015-12-10

    Changes in D- and L-alanine contents were determined in the muscle and hepatopancreas of kuruma prawn Marsupenaeus japonicus, during acclimation from seawater containing 100% salinity to artificial seawater containing 150% salinity. In the hepatopancreas, contents of both amino acids increased by approximately threefold. The activity of alanine racemase, which catalyzes the interconversion of D- and L-alanine, also increased in the high-salinity seawater. In addition, the expression of the gene encoding alanine racemase increased in the hepatopancreas with an increase in the alanine racemase activity. These data indicate that the biosynthesis of D- and L-alanine is controlled by the gene expression level of alanine racemase, and D-alanine in the hepatopancreas functions as a major osmolyte for isosmotic regulation. In contrast, the content of D-alanine and alanine racemase activity did not change in the muscle during hyper-osmotic acclimation. Therefore, we suggest that D-alanine, which exists in the several tissues of M. japonicus, is considered to be utilized in some different physiological phenomena in different tissues. PMID:26025417

  9. The effect of beta-alanine supplementation on isokinetic force and cycling performance in highly trained cyclists.

    PubMed

    Howe, Samuel T; Bellinger, Phillip M; Driller, Matthew W; Shing, Cecilia M; Fell, James W

    2013-12-01

    Beta-alanine may benefit short-duration, high-intensity exercise performance. The aim of this randomized double-blind placebo-controlled study was to examine the effects of beta-alanine supplementation on aspects of muscular performance in highly trained cyclists. Sixteen highly trained cyclists (mean ± SD; age = 24 ± 7 yr; mass = 70 ± 7 kg; VO2max = 67 ± 4 ml · kg(-1) · min(-1)) supplemented with either beta-alanine (n = 8, 65 mg · kg - 1BM) or a placebo (n = 8; dextrose monohydrate) over 4 weeks. Pre- and postsupplementation cyclists performed a 4-minute maximal cycling test to measure average power and 30 reciprocal maximal isokinetic knee contractions at a fixed angular velocity of 180° · sec(-1) to measure average power/repetition, total work done (TWD), and fatigue index (%). Blood pH, lactate (La-) and bicarbonate (HCO3-) concentrations were measured pre- and postisokinetic testing at baseline and following the supplementation period. Beta-alanine supplementation was 44% likely to increase average power output during the 4-minute cycling time trial when compared with the placebo, although this was not statistically significant (p = .25). Isokinetic average power/repetition was significantly increased post beta-alanine supplementation compared with placebo (beta-alanine: 6.8 ± 9.9 W, placebo: -4.3 ± 9.5 W, p = .04, 85% likely benefit), while fatigue index was significantly reduced (p = .03, 95% likely benefit). TWD was 89% likely to be improved following beta-alanine supplementation; however, this was not statistically significant (p = .09). There were no significant differences in blood pH, lactate, and HCO3- between groups (p > .05). Four weeks of beta-alanine supplementation resulted in worthwhile changes in time-trial performance and short-duration muscular force production in highly trained cyclists. PMID:23630052

  10. Feasibility on using composite gel-alanine dosimetry on the validation of a multiple brain metastasis radiosurgery VMAT technique

    NASA Astrophysics Data System (ADS)

    Pavoni, J. F.; Neves-Junior, W. F. P.; Silveira, M. A.; Ramos, P. A. M. M.; Haddad, C. M. K.; Baffa, O.

    2015-01-01

    This work presents an end-to-end test using a composite Gel-Alanine phantom, in order to validate 3-dimensionally the dose distribution delivered by a single isocenter VMAT technique on the simultaneous treatment of multiple brain metastases. The results obtained with the gel and alanine dosimeters are consistent with the expected by the treatment planning system, showing the potential of this multidosimetric approach and validating dosimetrically the multiple brain metastases treatment using VMAT.

  11. Isolation and characterisation of transport-defective substrate-binding mutants of the tetracycline antiporter TetA(B).

    PubMed

    Wright, David J; Tate, Christopher G

    2015-10-01

    The tetracycline antiporter TetA(B) is a member of the Major Facilitator Superfamily which confers tetracycline resistance to cells by coupling the efflux of tetracycline to the influx of protons down their chemical potential gradient. Although it is a medically important transporter, its structure has yet to be determined. One possibility for why this has proven difficult is that the transporter may be conformationally heterogeneous in the purified state. To overcome this, we developed two strategies to rapidly identify TetA(B) mutants that were transport-defective and that could still bind tetracycline. Up to 9 amino acid residues could be deleted from the loop between transmembrane α-helices 6 and 7 with only a slight decrease in affinity of tetracycline binding as measured by isothermal titration calorimetry, although the mutant was transport-defective. Scanning mutagenesis where all the residues between 2 and 389 were mutated to either valine, alanine or glycine (VAG scan) identified 15 mutants that were significantly impaired in tetracycline transport. Of these mutants, 12 showed no evidence of tetracycline binding by isothermal titration calorimetry performed on the purified transporters. In contrast, the mutants G44V and G346V bound tetracycline 4-5 fold more weakly than TetA(B), with Kds of 28 μM and 36 μM, respectively, whereas the mutant R70G bound tetracycline 3-fold more strongly (Kd 2.1 μM). Systematic mutagenesis is thus an effective strategy for isolating transporter mutants that may be conformationally constrained and which represent attractive targets for crystallisation and structure determination. PMID:26143388

  12. Allele Specific p53 Mutant Reactivation

    PubMed Central

    Yu, Xin; Vazquez, Alexei; Levine, Arnold J.; Carpizo, Darren R.

    2012-01-01

    Summary Rescuing the function of mutant p53 protein is an attractive cancer therapeutic strategy. Using the NCI anticancer drug screen data, we identified two compounds from the thiosemicarbazone family that manifest increased growth inhibitory activity in mutant p53 cells, particularly for the p53R175 mutant. Mechanistic studies reveal that NSC319726 restores WT structure and function to the p53R175 mutant. This compound kills p53R172H knock-in mice with extensive apoptosis and inhibits xenograft tumor growth in a 175-allele specific mutant p53 dependent manner. This activity depends upon the zinc ion chelating properties of the compound as well as redox changes. These data identify NSC319726 as a p53R175 mutant reactivator and as a lead compound for p53 targeted drug development. PMID:22624712

  13. Oxygen radical-mediated oxidation reactions of an alanine peptide motif - density functional theory and transition state theory study

    PubMed Central

    2012-01-01

    Background Oxygen-base (O-base) oxidation in protein backbone is important in the protein backbone fragmentation due to the attack from reactive oxygen species (ROS). In this study, an alanine peptide was used model system to investigate this O-base oxidation by employing density functional theory (DFT) calculations combining with continuum solvent model. Detailed reaction steps were analyzed along with their reaction rate constants. Results Most of the O-base oxidation reactions for this alanine peptide are exothermic except for the bond-breakage of the Cα-N bond to form hydroperoxy alanine radical. Among the reactions investigated in this study, the activated energy of OH α-H abstraction is the lowest one, while the generation of alkylperoxy peptide radical must overcome the highest energy barrier. The aqueous situation facilitates the oxidation reactions to generate hydroxyl alanine peptide derivatives except for the fragmentations of alkoxyl alanine peptide radical. The Cα-Cβ bond of the alkoxyl alanine peptide radical is more labile than the peptide bond. Conclusion the rate-determining step of oxidation in protein backbone is the generation of hydroperoxy peptide radical via the reaction of alkylperoxy peptide radical with HO2. The stabilities of alkylperoxy peptide radical and complex of alkylperoxy peptide radical with HO2 are crucial in this O-base oxidation reaction. PMID:22524792

  14. Exploration of Sitagliptin as a potential inhibitor for the M1 Alanine aminopeptidase enzyme in Plasmodium falciparum using computational docking

    PubMed Central

    Krishnamoorthy, Mohana; Achary, Anant

    2013-01-01

    Plasmodium falciparum has limited capacity for de novo amino acid synthesis and rely on degradation of host hemoglobin to maintain protein metabolism and synthesis of proteins. M1 alanine aminopeptidase enzyme of the parasite involved in the terminal degradation of host hemoglobin was subjected to in silico screening with low molecular weight protease inhibitors. The km (avg) of the enzyme M1 alanine aminopeptidase for the substrate DL – Alanine β Napthylamide Hydrochloride was estimated as 322.05µM. The molecular interactions between the enzyme and the substrate and the mechanism of enzyme action were analyzed which paved way for inhibition strategies. Among all the inhibitors screened, Sitagliptin was found to be most potent inhibitor with ki of 0.152 µM in its best orientation whereas the ki(avg) was 2.0055 µM. The ki of Sitagliptin is lower than the km of M1 alanine aminopeptidase for the substrate DL – Alanine β Napthylamide Hydrochloride (322.05 µM) and Ki of the known inhibitor Bestatin. Therefore Sitagliptin may serve as a potent competitive inhibitor of the enzyme M1 alanine aminopeptidase of Plasmodium falciparum. PMID:23559748

  15. The Inhibition of Heat Shock Protein 90 Facilitates the Degradation of Poly-Alanine Expanded Poly (A) Binding Protein Nuclear 1 via the Carboxyl Terminus of Heat Shock Protein 70-Interacting Protein

    PubMed Central

    Shi, Chao; Huang, Xuan; Zhang, Bin; Zhu, Dan; Luo, Huqiao; Lu, Quqin; Xiong, Wen-Cheng; Mei, Lin; Luo, Shiwen

    2015-01-01

    Background Since the identification of poly-alanine expanded poly(A) binding protein nuclear 1 (PABPN1) as the genetic cause of oculopharyngeal muscular dystrophy (OPMD), considerable progress has been made in our understanding of the pathogenesis of the disease. However, the molecular mechanisms that regulate the onset and progression of the disease remain unclear. Results In this study, we show that PABPN1 interacts with and is stabilized by heat shock protein 90 (HSP90). Treatment with the HSP90 inhibitor 17-AAG disrupted the interaction of mutant PABPN1 with HSP90 and reduced the formation of intranuclear inclusions (INIs). Furthermore, mutant PABPN1 was preferentially degraded in the presence of 17-AAG compared with wild-type PABPN1 in vitro and in vivo. The effect of 17-AAG was mediated through an increase in the interaction of PABPN1 with the carboxyl terminus of heat shock protein 70-interacting protein (CHIP). The overexpression of CHIP suppressed the aggregation of mutant PABPN1 in transfected cells. Conclusions Our results demonstrate that the HSP90 molecular chaperone system plays a crucial role in the selective elimination of abnormal PABPN1 proteins and also suggest a potential therapeutic application of the HSP90 inhibitor 17-AAG for the treatment of OPMD. PMID:26414348

  16. Binding interaction of the heregulinbeta egf domain with ErbB3 and ErbB4 receptors assessed by alanine scanning mutagenesis.

    PubMed

    Jones, J T; Ballinger, M D; Pisacane, P I; Lofgren, J A; Fitzpatrick, V D; Fairbrother, W J; Wells, J A; Sliwkowski, M X

    1998-05-01

    Individual residues of the heregulinbeta (HRG) egf domain were mutated to alanine and displayed monovalently on phagemid particles as gene III fusion proteins. Wild type HRGbeta egf domain displayed on phage was properly folded as evidenced by its ability to bind ErbB3 and ErbB4 receptor-IgG fusion proteins with affinities close to those measured for bacterially produced HRGbeta egf domain. Binding to ErbB3 and ErbB4 receptors was affected by mutation of residues throughout the egf domain; including the NH2 terminus (His2 and Leu3), the two beta-turns (Val15-Gly18 and Gly42-Gln46), and some discontinuous residues (including Leu3, Val4, Phe13, Val23, and Leu33) that form a patch on the major beta-sheet and the COOH-terminal region (Tyr48 and Met50-Phe53). Binding affinity was least changed by mutations throughout the Omega-loop and the second strand of the major beta-sheet. More mutants had greater affinity loss for ErbB3 compared with ErbB4 implying that it has more stringent binding requirements. Many residues important for HRG binding to its receptors correspond to critical residues for epidermal growth factor (EGF) and transforming growth factor alpha binding to the EGF receptor. Specificity may be determined in part by bulky groups that prevent binding to the unwanted receptor. All of the mutants tested were able to induce phosphorylation and mitogen-activated protein kinase activation through ErbB4 receptors and were able to modulate a transphosphorylation signal from ErbB3 to ErbB2 in MCF7 cells. An understanding of binding similarities and differences among the EGF family of ligands may facilitate the development of egf-like analogs with broad or narrow specificity. PMID:9565587

  17. Abnormal lignin in a loblolly pine mutant

    SciTech Connect

    Ralph, J.; MacKay, J.J.; Hatfield, R.D.

    1997-07-11

    Novel lignin is formed in a mutant loblolly pine (Pinus taeda L.) severely depleted in cinnamyl alcohol dehydrogenase (E.C. 1.1.1.195), which converts coniferaldehyde to coniferyl alcohol, the primary lignin precursor in pines. Dihydroconiferyl alcohol, a monomer not normally associated with the lignin biosynthetic pathway, is the major component of the mutant`s lignin, accounting for {approximately}30 percent (versus {approximately}3 percent in normal pine) of the units. The level of aldehydes, including new 2-methoxybenzaldehydes, is also increased. The mutant pines grew normally indicating that, even within a species, extensive variations in lignin composition need not disrupt the essential functions of lignin.

  18. Identifying representative drug resistant mutants of HIV

    PubMed Central

    2015-01-01

    Background Drug resistance is one of the most important causes for failure of anti-AIDS treatment. During therapy, multiple mutations accumulate in the HIV genome, eventually rendering the drugs ineffective in blocking replication of the mutant virus. The huge number of possible mutants precludes experimental analysis to explore the molecular mechanisms of resistance and develop improved antiviral drugs. Results In order to solve this problem, we have developed a new algorithm to reveal the most representative mutants from the whole drug resistant mutant database based on our newly proposed unified protein sequence and 3D structure encoding method. Mean shift clustering and multiple regression analysis were applied on genotype-resistance data for mutants of HIV protease and reverse transcriptase. This approach successfully chooses less than 100 mutants with the highest resistance to each drug out of about 10K in the whole database. When considering high level resistance to multiple drugs, the numbers reduce to one or two representative mutants. Conclusion This approach for predicting the most representative mutants for each drug has major importance for experimental verification since the results provide a small number of representative sequences, which will be amenable for in vitro testing and characterization of the expressed mutant proteins. PMID:26678327

  19. Susceptibility of Pseudomonas aeruginosa to catechol-substituted cephalosporin is unrelated to the pyochelin-Fe transporter FptA.

    PubMed

    Hoegy, Françoise; Gwynn, Michael N; Schalk, Isabelle J

    2010-05-01

    Previously it has been postulated that the pyochelin-Fe outer membrane transporter, FptA, is involved in the uptake of catechol-substituted cephalosporins in Pseudomonas aeruginosa. Iron uptake and antibacterial activity studies on different mutants showed clearly that FptA is unable to bind and transport these antibiotics. PMID:19777323

  20. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... substituted benzenesulfonic acid copper compound (generic). 721.10126 Section 721.10126 Protection of... substituted phenyl azo substituted benzenesulfonic acid copper compound (generic). (a) Chemical substance and... substituted phenyl azo substituted benzenesulfonic acid copper compound (PMN P-06-689) is subject to...

  1. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... substituted benzenesulfonic acid copper compound (generic). 721.10126 Section 721.10126 Protection of... substituted phenyl azo substituted benzenesulfonic acid copper compound (generic). (a) Chemical substance and... substituted phenyl azo substituted benzenesulfonic acid copper compound (PMN P-06-689) is subject to...

  2. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... substituted benzenesulfonic acid copper compound (generic). 721.10126 Section 721.10126 Protection of... substituted phenyl azo substituted benzenesulfonic acid copper compound (generic). (a) Chemical substance and... substituted phenyl azo substituted benzenesulfonic acid copper compound (PMN P-06-689) is subject to...

  3. 40 CFR 721.2577 - Copper complex of (substituted sulfonaphthyl azo substituted phenyl) disulfonaphthyl azo, amine...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Copper complex of (substituted... Copper complex of (substituted sulfonaphthyl azo substituted phenyl) disulfonaphthyl azo, amine salt... substances identified generically as copper complex of (substituted sulfonaphthyl azo substituted...

  4. 40 CFR 721.2577 - Copper complex of (substituted sulfonaphthyl azo substituted phenyl) disulfonaphthyl azo, amine...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Copper complex of (substituted... Copper complex of (substituted sulfonaphthyl azo substituted phenyl) disulfonaphthyl azo, amine salt... substances identified generically as copper complex of (substituted sulfonaphthyl azo substituted...

  5. 40 CFR 721.2577 - Copper complex of (substituted sulfonaphthyl azo substituted phenyl) disulfonaphthyl azo, amine...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Copper complex of (substituted... Copper complex of (substituted sulfonaphthyl azo substituted phenyl) disulfonaphthyl azo, amine salt... substances identified generically as copper complex of (substituted sulfonaphthyl azo substituted...

  6. 40 CFR 721.2577 - Copper complex of (substituted sulfonaphthyl azo substituted phenyl) disulfonaphthyl azo, amine...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Copper complex of (substituted... Copper complex of (substituted sulfonaphthyl azo substituted phenyl) disulfonaphthyl azo, amine salt... substances identified generically as copper complex of (substituted sulfonaphthyl azo substituted...

  7. Characterization of Phospho-(Tyrosine)-Mimetic Calmodulin Mutants

    PubMed Central

    Stateva, Silviya R.; Salas, Valentina; Benaim, Gustavo; Menéndez, Margarita; Solís, Dolores; Villalobo, Antonio

    2015-01-01

    Calmodulin (CaM) phosphorylated at different serine/threonine and tyrosine residues is known to exert differential regulatory effects on a variety of CaM-binding enzymes as compared to non-phosphorylated CaM. In this report we describe the preparation and characterization of a series of phospho-(Y)-mimetic CaM mutants in which either one or the two tyrosine residues present in CaM (Y99 and Y138) were substituted to aspartic acid or glutamic acid. It was expected that the negative charge of the respective carboxyl group of these amino acids mimics the negative charge of phosphate and reproduce the effects that distinct phospho-(Y)-CaM species may have on target proteins. We describe some physicochemical properties of these CaM mutants as compared to wild type CaM, after their expression in Escherichia coli and purification to homogeneity, including: i) changes in their electrophoretic mobility in the absence and presence of Ca2+; ii) ultraviolet (UV) light absorption spectra, far- and near-UV circular dichroism data; iii) thermal stability in the absence and presence of Ca2+; and iv) Tb3+-emitted fluorescence upon tyrosine excitation. We also describe some biochemical properties of these CaM mutants, such as their differential phosphorylation by the tyrosine kinase c-Src, and their action as compared to wild type CaM, on the activity of two CaM-dependent enzymes: cyclic nucleotide phosphodiesterase 1 (PDE1) and endothelial nitric oxide synthase (eNOS) assayed in vitro. PMID:25830911

  8. Clinical significance of hepatitis B surface antigen mutants

    PubMed Central

    Coppola, Nicola; Onorato, Lorenzo; Minichini, Carmine; Di Caprio, Giovanni; Starace, Mario; Sagnelli, Caterina; Sagnelli, Evangelista

    2015-01-01

    Hepatitis B virus (HBV) infection is a major public health problem in many countries, with nearly 300 million people worldwide carrying HBV chronic infection and over 1 million deaths per year due to cirrhosis and liver cancer. Several hepatitis B surface antigen (HBsAg) mutations have been described, most frequently due to a single amino acid substitution and seldom to a nucleotide deletion. The majority of mutations are located in the S region, but they have also been found in the pre-S1 and pre-S2 regions. Single amino acid substitutions in the major hydrophilic region of HBsAg, called the “a” determinant, have been associated with immune escape and the consequent failure of HBV vaccination and HBsAg detection, whereas deletions in the pre-S1 or pre-S2 regions have been associated with the development of hepatocellular carcinoma. This review article will focus on the HBsAg mutants and their biological and clinical implications. PMID:26644816

  9. Bone grafts and their substitutes.

    PubMed

    Fillingham, Y; Jacobs, J

    2016-01-01

    The continual cycle of bone formation and resorption is carried out by osteoblasts, osteocytes, and osteoclasts under the direction of the bone-signaling pathway. In certain situations the host cycle of bone repair is insufficient and requires the assistance of bone grafts and their substitutes. The fundamental properties of a bone graft are osteoconduction, osteoinduction, osteogenesis, and structural support. Options for bone grafting include autogenous and allograft bone and the various isolated or combined substitutes of calcium sulphate, calcium phosphate, tricalcium phosphate, and coralline hydroxyapatite. Not all bone grafts will have the same properties. As a result, understanding the requirements of the clinical situation and specific properties of the various types of bone grafts is necessary to identify the ideal graft. We present a review of the bone repair process and properties of bone grafts and their substitutes to help guide the clinician in the decision making process. PMID:26733632

  10. Magnesium substitution in brushite cements.

    PubMed

    Alkhraisat, Mohammad Hamdan; Cabrejos-Azama, Jatsue; Rodríguez, Carmen Rueda; Jerez, Luis Blanco; Cabarcos, Enrique López

    2013-01-01

    The use of magnesium-doped ceramics has been described to modify brushite cements and improve their biological behavior. However, few studies have analyzed the efficiency of this approach to induce magnesium substitution in brushite crystals. Mg-doped ceramics composed of Mg-substituted β-TCP, stanfieldite and/or farringtonite were reacted with primary monocalcium phosphate (MCP) in the presence of water. The cement setting reaction has resulted in the formation of brushite and newberyite within the cement matrix. Interestingly, the combination of SAED and EDX analyses of single crystal has indicated the occurrence of magnesium substitution within brushite crystals. Moreover, the effect of magnesium ions on the structure, and mechanical and setting properties of the new cements was characterized as well as the release of Ca(2+) and Mg(2+) ions. Further research would enhance the efficiency of the system to incorporate larger amounts of magnesium ions within brushite crystals. PMID:25428098

  11. Resistance-induced antibiotic substitution.

    PubMed

    Howard, David H

    2004-06-01

    In many cases, physicians prescribe antibiotics without knowing whether an individual patient is infected with a susceptible or resistant pathogen. As the proportion of resistant organisms in a community increases, physicians substitute away from older-inexpensive drugs to newer, more expensive agents as first line therapy. This paper explores the implications of resistance-induced antibiotic substitution for epidemiological models to predict future resistance levels, efforts to measure the health care costs associated with resistance, and policies to improve physicians' antibiotic prescribing decisions. The extent of resistance-induced substitution in outpatient settings is documented using a data set consisting of observations on initial physician office visits for otitis media in the US controlling for new product introductions and price increases, per prescription antibiotic spending increased by 22% between 1980 and 1996, corresponding to a steep increase in resistance levels over the same period. PMID:15185388

  12. Substitution systems and nonextensive statistics

    NASA Astrophysics Data System (ADS)

    García-Morales, V.

    2015-12-01

    Substitution systems evolve in time by generating sequences of symbols from a finite alphabet: At a certain iteration step, the existing symbols are systematically replaced by blocks of Nk symbols also within the alphabet (with Nk, a natural number, being the length of the kth block of the substitution). The dynamics of these systems leads naturally to fractals and self-similarity. By using B-calculus (García-Morales, 2012) universal maps for deterministic substitution systems both of constant and non-constant length, are formulated in 1D. It is then shown how these systems can be put in direct correspondence with Tsallis entropy. A 'Second Law of Thermodynamics' is also proved for these systems in the asymptotic limit of large words.

  13. Unified optical symbolic substitution processor

    NASA Astrophysics Data System (ADS)

    Casasent, David P.

    1990-07-01

    Symbolic substitution operations can be realized optically on a correlator. This is a very attractive and efficient architecture for symbolic substitution. It allows parallel multichannel realization with a fixed set of filters (on film or easily realized on low space bandwidth product spatial light modulators) using space and frequency-multiplexing or sequential filters. All basic logic, numeric and morphological image processing functions can be achieved by symbolic substitution. Moreover, all operations are possible on one multifunctional optical processor. Morphological operations are felt to be essential for ATR and pattern recognition preprocessing in clutter. They greatly improve the role for optics by allowing the same optical architecture to be used for low, medium and high level vision.

  14. Structural characterization of V57D and V57P mutants of human cystatin C, an amyloidogenic protein

    PubMed Central

    Orlikowska, Marta; Szymańska, Aneta; Borek, Dominika; Otwinowski, Zbyszek; Skowron, Piotr; Jankowska, Elżbieta

    2013-01-01

    Wild-type human cystatin C (hCC wt) is a low-molecular-mass protein (120 amino-acid residues, 13 343 Da) that is found in all nucleated cells. Physiologically, it functions as a potent regulator of cysteine protease activity. While the biologically active hCC wt is a monomeric protein, all crystallization efforts to date have resulted in a three-dimensional domain-swapped dimeric structure. In the recently published structure of a mutated hCC, the monomeric fold was preserved by a stabilization of the conformationally constrained loop L1 caused by a single amino-acid substitution: Val57Asn. Additional hCC mutants were obtained in order to elucidate the relationship between the stability of the L1 loop and the propensity of human cystatin C to dimerize. In one mutant Val57 was substituted by an aspartic acid residue, which is favoured in β-turns, and in the second mutant proline, a residue known for broadening turns, was substituted for the same Val57. Here, 2.26 and 3.0 Å resolution crystal structures of the V57D andV57P mutants of hCC are reported and their dimeric architecture is discussed in terms of the stabilization and destabilization effects of the introduced mutations. PMID:23519666

  15. Concerted modulation of alanine and glutamate metabolism in young Medicago truncatula seedlings under hypoxic stress

    PubMed Central

    Limami, Anis M.; Glévarec, Gaëlle; Ricoult, Claudie; Cliquet, Jean-Bernard; Planchet, Elisabeth

    2008-01-01

    The modulation of primary nitrogen metabolism by hypoxic stress was studied in young Medicago truncatula seedlings. Hypoxic seedlings were characterized by the up-regulation of glutamate dehydrogenase 1 (GDH1) and mitochondrial alanine aminotransferase (mAlaAT), and down-regulation of glutamine synthetase 1b (GS1b), NADH-glutamate synthase (NADH-GOGAT), glutamate dehydrogenase 3 (GDH3), and isocitrate dehydrogenase (ICDH) gene expression. Hypoxic stress severely inhibited GS activity and stimulated NADH-GOGAT activity. GDH activity was lower in hypoxic seedlings than in the control, however, under either normoxia or hypoxia, the in vivo activity was directed towards glutamate deamination. 15NH4 labelling showed for the first time that the adaptive reaction of the plant to hypoxia consisted of a concerted modulation of nitrogen flux through the pathways of both alanine and glutamate synthesis. In hypoxic seedlings, newly synthesized 15N-alanine increased and accumulated as the major amino acid, asparagine synthesis was inhibited, while 15N-glutamate was synthesized at a similar rate to that in the control. A discrepancy between the up-regulation of GDH1 expression and the down-regulation of GDH activity by hypoxic stress highlighted for the first time the complex regulation of this enzyme by hypoxia. Higher rates of glycolysis and ethanol fermentation are known to cause the fast depletion of sugar stores and carbon stress. It is proposed that the expression of GDH1 was stimulated by hypoxia-induced carbon stress, while the enzyme protein might be involved during post-hypoxic stress contributing to the regeneration of 2-oxoglutarate via the GDH shunt. PMID:18508812

  16. Comparative study of glycine, alanine or casein as inert nitrogen sources in endotoxemic rats.

    PubMed

    Chambon-Savanovitch, C; Felgines, C; Farges, M C; Raul, F; Cézard, J P; Davot, P; Vasson, M P; Cynober, L A

    1999-10-01

    Pharmacological effects of dietary amino acids (AA) and peptides must be compared to an isonitrogenous control that is as inert as possible. To establish a rationale for the choice of such a control, potential metabolic and nutritional effects of three currently used nitrogenous controls (glycine, alanine, and casein) were evaluated in an endotoxemic rat model that has well-defined alterations in AA and protein metabolism. Five-week-old male Sprague-Dawley rats (113 +/- 1 g) were randomly assigned to four groups and received at d 0 an intraperitoneal injection of endotoxin (3 mg/kg). After withdrawal of food for 24 h, the rats were enterally refed for 48 h with a liquid diet (Osmolite((R))) supplemented with 0.19 g N. kg(-1). d(-1) in the form of glycine [lipopolysaccharide (LPS)-GLY group], alanine (LPS-ALA group) or casein (LPS-CAS group). One group (LPS group) received only Osmolite((R)). Plasma, two skeletal muscles, the liver and the intestine were then removed. Body and tissue weights and tissue protein contents did not differ among the four groups. Intestine histomorphometry showed no significant difference among groups. Jejunal hydrolase activities were significantly affected by the nitrogenous supplementations, but no effect was observed in the ileum. Only limited significant effects were observed on plasma and tissue-free AA concentrations, except for an accumulation of glycine in the plasma and tissues from the LPS-GLY group, compared to other groups. Overall, whereas glycine as a nitrogenous control should be used with care, either alanine or casein may be used as the "placebo," with the choice depending on the study to be performed. PMID:10498760

  17. Twin-arginine translocation system (tat) mutants of Salmonella are attenuated due to envelope defects, not respiratory defects.

    PubMed

    Craig, Maureen; Sadik, Adam Y; Golubeva, Yekaterina A; Tidhar, Avital; Slauch, James M

    2013-09-01

    The twin-arginine translocation system (Tat) transports folded proteins across the cytoplasmic membrane and is critical to virulence in Salmonella and other pathogens. Experimental and bioinformatic data indicate that 30 proteins are exported via Tat in Salmonella Typhimurium. However, there are no data linking specific Tat substrates with virulence. We inactivated every Tat-exported protein and determined the virulence phenotype of mutant strains. Although a tat mutant is highly attenuated, no single Tat-exported substrate accounts for this virulence phenotype. Rather, the attenuation is due primarily to envelope defects caused by failure to translocate three Tat substrates, the N-acetylmuramoyl-l-alanine amidases, AmiA and AmiC, and the cell division protein, SufI. Strikingly, neither the amiA amiC nor the sufI mutations alone conferred any virulence defect. Although AmiC and SufI have previously been localized to the divisome, the synthetic phenotypes observed are the first to suggest functional overlap. Many Tat substrates are involved in anaerobic respiration, but we show that a mutant completely deficient in anaerobic respiration retains full virulence in both the oral and systemic phases of infection. Similarly, an obligately aerobic mutant is fully virulent. These results suggest that in the classic mouse model of infection, S. Typhimurium is replicating only in aerobic environments. PMID:23822642

  18. Twin-arginine Translocation System (tat) Mutants of Salmonella are Attenuated Due to Envelope Defects, not Respiratory Defects

    PubMed Central

    Craig, Maureen; Sadik, Adam Y.; Golubeva, Yekaterina A.; Tidhar, Avital; Slauch, James M.

    2013-01-01

    Summary The twin-arginine translocation system (Tat) transports folded proteins across the cytoplasmic membrane and is critical to virulence in Salmonella and other pathogens. Experimental and bioinformatic data indicate that 30 proteins are exported via Tat in Salmonella Typhimurium. However, there are no data linking specific Tat substrates with virulence. We inactivated every Tat-exported protein and determined the virulence phenotype of mutant strains. Though a tat mutant is highly attenuated, no single Tat-exported substrate accounts for this virulence phenotype. Rather, the attenuation is due primarily to envelope defects caused by failure to translocate three Tat substrates, the N-acetylmuramoyl-L-alanine amidases, AmiA and AmiC, and the cell division protein, SufI. Strikingly, neither the amiA amiC nor the sufI mutations alone conferred any virulence defect. Although AmiC and SufI have previously been localized to the divisome, the synthetic phenotypes observed are the first to suggest functional overlap. Many Tat substrates are involved in anaerobic respiration, but we show that a mutant completely deficient in anaerobic respiration retains full virulence in both the oral and systemic phases of infection. Similarly, an obligately aerobic mutant is fully virulent. These results suggest that in the classic mouse model of infection, S. Typhimurium is replicating only in aerobic environments. PMID:23822642

  19. Oxidation of substituted phenols by Pseudomonas putida F1 and Pseudomonas sp. strain JS6

    SciTech Connect

    Spain, J.C.; Gibson, D.T.

    1988-06-01

    The biodegradation of benzene, toluene, and chlorobenzenes by Pseudomonas putida involves the initial conversion of the parent molecules to cis-dihydrodiols by dioxygenase enzyme systems. The cis-dihydrodiols are then converted to the corresponding catechols by dihydrodiol dehydrogenase enzymes. Pseudomonas sp. strain JS6 uses a similar system for growth on toluene or dichlorobenzenes. We tested the wild-type organisms and a series of mutants for their ability to transform substituted phenols after induction with toluene. When grown on toluene, both wild-type organisms converted methyl-, chloro-, and nitro-substituted phenols to the corresponding catechols. Mutant strains deficient in dihydrodiol dehydrogenase or catechol oxygenase activities also transformed the phenols. Oxidation of phenols was closely correlated with the induction and activity of the toluene dioxygenase enzyme system.

  20. Aspartate Aminotransferase (AST/GOT) and Alanine Aminotransferase (ALT/GPT) Detection Techniques

    PubMed Central

    Huang, Xing-Jiu; Choi, Yang-Kyu; Im, Hyung-Soon; Yarimaga, Oktay; Yoon, Euisik; Kim, Hak-Sung

    2006-01-01

    The levels of aspartate aminotransferase (AST/GOT) and alanine aminotransferase (ALT/GPT) in serum can help people diagnose body tissues especially the heart and the liver are injured or not. This article provides a comprehensive review of research activities that concentrate on AST/GOT and ALT/GPT detection techniques due to their clinical importance. The detection techniques include colorimetric, spectrophotometric, chemiluminescence, chromatography, fluorescence and UV absorbance, radiochemical, and electrochemical techniques. We devote the most attention on experimental principle. In some methods a few representative devices and important conclusions are presented.

  1. Evaluation of alanine as a reference dosimeter for therapy level dose comparisons in megavoltage electron beams

    NASA Astrophysics Data System (ADS)

    McEwen, Malcolm; Sharpe, Peter; Vörös, Sándor

    2015-04-01

    When comparing absorbed dose standards from different laboratories (e.g. National Measurement Institutes, NMIs, for Key or Supplementary comparisons) it is rarely possible to carry out a direct comparison of primary standard instruments, and therefore some form of transfer detector is required. Historically, air-filled, unsealed ionization chambers have been used because of the long history of using these instruments, very good stability over many years, and ease of transport. However, the use of ion chambers for therapy-level comparisons is not without its problems. Findings from recent investigations suggest that ion chambers are prone to non-random variations, they are not completely robust to standard courier practices, and failure at any step in a comparison can render all measurements potentially useless. An alternative approach is to identify a transfer system that is insensitive to some of these concerns—effectively a dosimeter that is inexpensive, simple to use, robust, but with sufficient precision and of a size relevant to the disseminated quantity in question. The alanine dosimetry system has been successfully used in a number of situations as an audit dosimeter and therefore the purpose of this investigation was to determine whether alanine could also be used as the transfer detector for dosimetric comparisons, which require a lower value for the measurement uncertainty. A measurement protocol was developed for comparing primary standards of absorbed dose to water in high-energy electron beams using alanine pellets irradiated in a water-equivalent plastic phantom. A trial comparison has been carried out between three NMIs and has indicated that alanine is a suitable alternative to ion chambers, with the system used achieving a precision of 0.1%. Although the focus of the evaluation was on the performance of the dosimeter, the comparison results are encouraging, showing agreement at the level of the combined uncertainties (~0.6%). Based on this

  2. Functionalization of single-walled carbon nanotubes with uracil, guanine, thymine and L-alanine

    NASA Astrophysics Data System (ADS)

    Silambarasan, D.; Iyakutti, K.; Vasu, V.

    2014-06-01

    Experimental investigation of functionalization of oxidized single-walled carbon nanotubes (OSWCNTs) with three nucleic acid bases such as uracil, guanine, thymine and one amino acid, L-alanine is carried out. Initially, the SWCNTs are oxidized by acid treatment. Further, the oxidized SWCNTs are effectively functionalized with aforementioned biological compounds by ultrasonication. The diameter of OSWCNTs has increased after the adsorption of biological compounds. The cumulative Π-Π stacking, hydrogen bond and polar interaction are the key factors to realize the adsorption. The amount of adsorption of each biological compound is estimated. The adsorption of guanine is more among all the four biological compounds.

  3. Is there an influence of the surrounding material on the response of the alanine dosimetry system?

    NASA Astrophysics Data System (ADS)

    Anton, Mathias; Kapsch, Ralf-Peter; Hackel, Thomas

    2009-04-01

    In a combined experimental and Monte Carlo study the possible influence of the surrounding material on the response of the alanine dosimetry system was investigated. The aim of this work was to estimate the uncertainties induced by the surroundings with respect to quality assurance measurements for radiotherapy, for example in humanoid phantoms. Six different materials were tested. The electron density range covered comprises the range present in human tissue. No significant influence of the surrounding material could be found for irradiations in the 60Co reference field of the Physikalisch-Technische Bundesanstalt (PTB).

  4. (L)-(Trimethylsilyl)alanine synthesis exploiting hydroxypinanone-induced diastereoselective alkylation.

    PubMed

    René, A; Vanthuyne, N; Martinez, J; Cavelier, F

    2013-08-01

    A new and efficient synthesis of (L)-(trimethylsilyl)alanine (TMSAla) with suitable protection for use in Solid Phase Peptide Synthesis (SPPS) has been accomplished starting from glycine tert-butyl ester and using hydroxypinanone as chiral inductor. The silylated side chain was introduced by alkylation of the Schiff base intermediate with iodomethyl(trimethylsilane) at -78 °C. Among the different synthetic routes that were tested including several chiral inductors and different Schiff bases, this strategy was selected and afforded (L)-TMSAla in good chemical overall yield with 98 % ee. PMID:23620077

  5. Osteocompatibility evaluation of poly(glycine ethyl ester-co-alanine ethyl ester)phosphazene with honeycomb-patterned surface topography.

    PubMed

    Duan, Shun; Yang, Xiaoping; Mao, Jifu; Qi, Bing; Cai, Qing; Shen, Hong; Yang, Fei; Deng, Xuliang; Wang, Shenguo

    2013-02-01

    Biodegradable amino acid ester-substituted polyphosphazenes are unique biomaterials for tissue engineering. Considering the surface properties as topography and chemical composition having vital roles in regulating cellular response, in this study, a kind of micropatterned polyphosphazene films were prepared and subjected to osteoblasts culture. Briefly, poly(glycine ethyl ester-co-alanine ethyl ester)phosphazene (PGAP) was synthesized, and its solution in chloroform was cast under high (80%) or low (20%) environmental humidity. Honeycomb-patterned or flat PGAP films were resulted. By analyzing with scanning electron microscope, atomic force microscope, X-ray photoelectron spectroscope, and water contact angle measurement, the honeycomb-patterned PGAP films demonstrated higher surface roughness, phosphorous and nitrogen content, and hydrophilicity than the flat one. Although the initial cell attachment and proliferation on PGAP films were inferior to those on conventional poly(lactic-co-glycolic acid) films, P-containing PGAP was a sort of bone-binding bioactive polymer. With these alternations, honeycomb-patterned PGAP films had accordingly enhanced protein adsorption and apatite deposition in simulated body fluid and showed great advantages in promoting osteogenous differentiation. The results suggested a potential way to make polyphosphazenes as good choices for bone tissue regeneration by increasing their surface roughness and phosphorous content. PMID:22733644

  6. A structural insight into the P1S1 binding mode of diaminoethylphosphonic and phosphinic acids, selective inhibitors of alanine aminopeptidases.

    PubMed

    Węglarz-Tomczak, Ewelina; Berlicki, Łukasz; Pawełczak, Małgorzata; Nocek, Bogusław; Joachimiak, Andrzej; Mucha, Artur

    2016-07-19

    N'-substituted 1,2-diaminoethylphosphonic acids and 1,2-diaminoethylphosphinic dipeptides were explored to unveil the structural context of the unexpected selectivity of these inhibitors of M1 alanine aminopeptidases (APNs) versus M17 leucine aminopeptidase (LAP). The diaminophosphonic acids were obtained via aziridines in an improved synthetic procedure that was further expanded for the phosphinic pseudodipeptide system. The inhibitory activity, measured for three M1 and one M17 metalloaminopeptidases of different sources (bacterial, human and porcine), revealed several potent compounds (e.g., Ki = 65 nM of 1u for HsAPN). Two structures of an M1 representative (APN from Neisseria meningitidis) in complex with N-benzyl-1,2-diaminoethylphosphonic acid and N-cyclohexyl-1,2-diaminoethylphosphonic acid were determined by the X-ray crystallography. The analysis of these structures and the models of the phosphonic acid complexes of the human ortholog provided an insight into the role of the additional amino group and the hydrophobic substituents of the ligands within the S1 active site region. PMID:27100031

  7. Peptide aromatic interactions modulated by fluorinated residues: Synthesis, structure and biological activity of Somatostatin analogs containing 3-(3′,5′difluorophenyl)-alanine

    PubMed Central

    Martín-Gago, Pablo; Rol, Álvaro; Todorovski, Toni; Aragón, Eric; Martin-Malpartida, Pau; Verdaguer, Xavier; Vallès Miret, Mariona; Fernández-Carneado, Jimena; Ponsati, Berta; Macias, Maria J.; Riera, Antoni

    2016-01-01

    Somatostatin is a 14-residue peptide hormone that regulates the endocrine system by binding to five G-protein-coupled receptors (SSTR1–5). We have designed six new Somatostatin analogs with L-3-(3′,5′-difluorophenyl)-alanine (Dfp) as a substitute of Phe and studied the effect of an electron-poor aromatic ring in the network of aromatic interactions present in Somatostatin. Replacement of each of the Phe residues (positions 6, 7 and 11) by Dfp and use of a D-Trp8 yielded peptides whose main conformations could be characterized in aqueous solution by NMR. Receptor binding studies revealed that the analog with Dfp at position 7 displayed a remarkable affinity to SSTR2 and SSTR3. Analogs with Dfp at positions 6 or 11 displayed a π-π interaction with the Phe present at 11 or 6, respectively. Interestingly, these analogs, particularly [D-Trp8,L-Dfp11]-SRIF, showed high selectivity towards SSTR2, with a higher value than that of Octreotide and a similar one to that of native Somatostatin. PMID:27271737

  8. Peptide aromatic interactions modulated by fluorinated residues: Synthesis, structure and biological activity of Somatostatin analogs containing 3-(3',5'difluorophenyl)-alanine.

    PubMed

    Martín-Gago, Pablo; Rol, Álvaro; Todorovski, Toni; Aragón, Eric; Martin-Malpartida, Pau; Verdaguer, Xavier; Vallès Miret, Mariona; Fernández-Carneado, Jimena; Ponsati, Berta; Macias, Maria J; Riera, Antoni

    2016-01-01

    Somatostatin is a 14-residue peptide hormone that regulates the endocrine system by binding to five G-protein-coupled receptors (SSTR1-5). We have designed six new Somatostatin analogs with L-3-(3',5'-difluorophenyl)-alanine (Dfp) as a substitute of Phe and studied the effect of an electron-poor aromatic ring in the network of aromatic interactions present in Somatostatin. Replacement of each of the Phe residues (positions 6, 7 and 11) by Dfp and use of a D-Trp8 yielded peptides whose main conformations could be characterized in aqueous solution by NMR. Receptor binding studies revealed that the analog with Dfp at position 7 displayed a remarkable affinity to SSTR2 and SSTR3. Analogs with Dfp at positions 6 or 11 displayed a π-π interaction with the Phe present at 11 or 6, respectively. Interestingly, these analogs, particularly [D-Trp8,L-Dfp11]-SRIF, showed high selectivity towards SSTR2, with a higher value than that of Octreotide and a similar one to that of native Somatostatin. PMID:27271737

  9. Chemical rescue of histidine selectivity filter mutants of the M2 ion channel of influenza A virus.

    PubMed

    Venkataraman, Padmavati; Lamb, Robert A; Pinto, Lawrence H

    2005-06-01

    The influenza virus M2 proton-selective ion channel activity facilitates virus uncoating, a process that occurs in the acidic environment of the endosome. The M2 channel causes acidification of the interior of the virus particle, which results in viral protein-protein dissociation. The M2 protein is a homotetramer that contains in its aqueous pore a histidine residue (His-37) that acts as a selectivity filter and a tryptophan residue (Trp-41) that acts as a channel gate. Substitution of His-37 modifies M2 ion channel properties drastically. However, the results of such experiments are difficult to interpret because substitution of His-37 could cause gross structural changes to the channel pore. We described here experiments in which partial or, in some cases, full rescue of specific M2 ion channel properties of His-37 substitution mutants was achieved by addition of imidazole to the bathing medium. Chemical rescue was demonstrated for three histidine substitution mutant ion channels (M2-H37G, M2-H37S, and M2-H37T) and for two double mutants in which the Trp-41 channel gate was also mutated (H37G/W41Y and H37G/W41A). Currents of the M2-H37G mutant ion channel were inhibited by Cu(II), which has been shown to coordinate with His-37 in the wild-type channel. Chemical rescue was very specific for imidazole. Buffer molecules that were neutral when protonated (4-morpholineethanesulfonic acid and 3-morpholino-2-hydroxypropanesulfonic acid) did not rescue ion channel activity of the M2-H37G mutant ion channel, but 1-methylimidazole did provide partial rescue of function. These results were consistent with a model for proton transport through the pore of the wild-type channel in which the imidazole side chain of His-37 acted as an intermediate proton acceptor/donor group. PMID:15784624

  10. Verification of the pure alanine in PMMA tube dosimeter applicability for dosimetry of radiotherapy photon beams: a feasibility study.

    PubMed

    Al-Karmi, Anan M; Ayaz, Ali Asghar H; Al-Enezi, Mamdouh S; Abdel-Rahman, Wamied; Dwaikat, Nidal

    2015-09-01

    Alanine dosimeters in the form of pure alanine powder in PMMA plastic tubes were investigated for dosimetry in a clinical application. Electron paramagnetic resonance (EPR) spectroscopy was used to measure absorbed radiation doses by detection of signals from radicals generated in irradiated alanine. The measurements were performed for low-dose ranges typical for single-fraction doses often used in external photon beam radiotherapy. First, the dosimeters were irradiated in a solid water phantom to establish calibration curves in the dose range from 0.3 to 3 Gy for 6 and 18 MV X-ray beams from a clinical linear accelerator. Next, the dosimeters were placed at various locations in an anthropomorphic pelvic phantom to measure the dose delivery of a conventional four-field box technique treatment plan to the pelvis. Finally, the doses measured with alanine dosimeters were compared against the doses calculated with a commercial treatment planning system (TPS). The results showed that the alanine dosimeters have a highly sensitive dose response with good linearity and no energy dependence in the dose range and photon beams used in this work. Also, a fairly good agreement was found between the in-phantom dose measurements with alanine dosimeters and the TPS dose calculations. The mean value of the ratios of measured to calculated dose values was found to be near unity. The measured points in the in-field region passed dose-difference acceptance criterion of 3% and those in the penumbral region passed distance-to-agreement acceptance criterion of 3 mm. These findings suggest that the pure alanine powder in PMMA tube dosimeter is a suitable option for dosimetry of radiotherapy photon beams. PMID:26138456

  11. Regulation of Mutant p53 Protein Expression

    PubMed Central

    Vijayakumaran, Reshma; Tan, Kah Hin; Miranda, Panimaya Jeffreena; Haupt, Sue; Haupt, Ygal

    2015-01-01

    For several decades, p53 has been detected in cancer biopsies by virtue of its high protein expression level which is considered indicative of mutation. Surprisingly, however, mouse genetic studies revealed that mutant p53 is inherently labile, similar to its wild type (wt) counterpart. Consistently, in response to stress conditions, both wt and mutant p53 accumulate in cells. While wt p53 returns to basal level following recovery from stress, mutant p53 remains stable. In part, this can be explained in mutant p53-expressing cells by the lack of an auto-regulatory loop with Mdm2 and other negative regulators, which are pivotal for wt p53 regulation. Further, additional protective mechanisms are acquired by mutant p53, largely mediated by the co-chaperones and their paralogs, the stress-induced heat shock proteins. Consequently, mutant p53 is accumulated in cancer cells in response to chronic stress and this accumulation is critical for its oncogenic gain of functions (GOF). Building on the extensive knowledge regarding wt p53, the regulation of mutant p53 is unraveling. In this review, we describe the current understanding on the major levels at which mutant p53 is regulated. These include the regulation of p53 protein levels by microRNA and by enzymes controlling p53 proteasomal degradation. PMID:26734569

  12. Uncaging Mutants: Moving From Menageries to Menages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The thousands of mutants of maize are a remarkable resource for study of plant physiology, phylogeny, cell biology, biochemistry, development, and molecular biology. Mutants are most often applied in research studies as "members of collections" rather than as select families of members relevant to ...

  13. Nebulin binding impedes mutant desmin filament assembly

    PubMed Central

    Baker, Laura K.; Gillis, David C.; Sharma, Sarika; Ambrus, Andy; Herrmann, Harald; Conover, Gloria M.

    2013-01-01

    Desmin intermediate filaments (DIFs) form an intricate meshwork that organizes myofibers within striated muscle cells. The mechanisms that regulate the association of desmin to sarcomeres and their role in desminopathy are incompletely understood. Here we compare the effect nebulin binding has on the assembly kinetics of desmin and three desminopathy-causing mutant desmin variants carrying mutations in the head, rod, or tail domains of desmin (S46F, E245D, and T453I). These mutants were chosen because the mutated residues are located within the nebulin-binding regions of desmin. We discovered that, although nebulin M160–164 bound to both desmin tetrameric complexes and mature filaments, all three mutants exhibited significantly delayed filament assembly kinetics when bound to nebulin. Correspondingly, all three mutants displayed enhanced binding affinities and capacities for nebulin relative to wild-type desmin. Electron micrographs showed that nebulin associates with elongated normal and mutant DIFs assembled in vitro. Moreover, we measured significantly delayed dynamics for the mutant desmin E245D relative to wild-type desmin in fluorescence recovery after photobleaching in live-cell imaging experiments. We propose a mechanism by which mutant desmin slows desmin remodeling in myocytes by retaining nebulin near the Z-discs. On the basis of these data, we suggest that for some filament-forming desmin mutants, the molecular etiology of desminopathy results from subtle deficiencies in their association with nebulin, a major actin-binding filament protein of striated muscle. PMID:23615443

  14. Mutant Profilin Suppresses Mutant Actin-dependent Mitochondrial Phenotype in Saccharomyces cerevisiae*

    PubMed Central

    Wen, Kuo-Kuang; McKane, Melissa; Stokasimov, Ema; Rubenstein, Peter A.

    2011-01-01

    In the Saccharomyces cerevisiae actin-profilin interface, Ala167 of the actin barbed end W-loop and His372 near the C terminus form a clamp around a profilin segment containing residue Arg81 and Tyr79. Modeling suggests that altering steric packing in this interface regulates actin activity. An actin A167E mutation could increase interface crowding and alter actin regulation, and A167E does cause growth defects and mitochondrial dysfunction. We assessed whether a profilin Y79S mutation with its decreased mass could compensate for actin A167E crowding and rescue the mutant phenotype. Y79S profilin alone caused no growth defect in WT actin cells under standard conditions in rich medium and rescued the mitochondrial phenotype resulting from both the A167E and H372R actin mutations in vivo consistent with our model. Rescue did not result from effects of profilin on actin nucleotide exchange or direct effects of profilin on actin polymerization. Polymerization of A167E actin was less stimulated by formin Bni1 FH1-FH2 fragment than was WT actin. Addition of WT profilin to mixtures of A167E actin and formin fragment significantly altered polymerization kinetics from hyperbolic to a decidedly more sigmoidal behavior. Substitution of Y79S profilin in this system produced A167E behavior nearly identical to that of WT actin. A167E actin caused more dynamic actin cable behavior in vivo than observed with WT actin. Introduction of Y79S restored cable movement to a more normal phenotype. Our studies implicate the importance of the actin-profilin interface for formin-dependent actin and point to the involvement of formin and profilin in the maintenance of mitochondrial integrity and function. PMID:21956104

  15. 40 CFR 721.10214 - Poly(oxyalkylenediyl),.alpha.-substituted carbomonocycle-.omega.-substituted carbomonocycle...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Poly(oxyalkylenediyl),.alpha... Poly(oxyalkylenediyl),.alpha.-substituted carbomonocycle-.omega.-substituted carbomonocycle (generic... identified generically as poly(oxyalkylenediyl),.alpha.-substituted...

  16. 40 CFR 721.10214 - Poly(oxyalkylenediyl),.alpha.-substituted carbomonocycle-.omega.-substituted carbomonocycle...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Poly(oxyalkylenediyl),.alpha... Poly(oxyalkylenediyl),.alpha.-substituted carbomonocycle-.omega.-substituted carbomonocycle (generic... identified generically as poly(oxyalkylenediyl),.alpha.-substituted...

  17. 40 CFR 721.10214 - Poly(oxyalkylenediyl),.alpha.-substituted carbomonocycle-.omega.-substituted carbomonocycle...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Poly(oxyalkylenediyl),.alpha... Poly(oxyalkylenediyl),.alpha.-substituted carbomonocycle-.omega.-substituted carbomonocycle (generic... identified generically as poly(oxyalkylenediyl),.alpha.-substituted...

  18. 40 CFR 721.10214 - Poly(oxyalkylenediyl),.alpha.-substituted carbomonocycle-.omega.-substituted carbomonocycle...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Poly(oxyalkylenediyl),.alpha... Poly(oxyalkylenediyl),.alpha.-substituted carbomonocycle-.omega.-substituted carbomonocycle (generic... identified generically as poly(oxyalkylenediyl),.alpha.-substituted...

  19. Mutants of thermotaxis in Dictyostelium discoideum

    SciTech Connect

    Schneider, M.J.; Fontana, D.R.; Poff, K.L.

    1982-08-01

    Amoebae of Dictyostelium discoideum, strain HL50 were mutagenized with N-methyl-N'-nitro-N-nitrosoguanidine, cloned, allowed to form pseudoplasmodia and screened for aberrant positive and negative thermotaxis. Three types of mutants were found. Mutant HO428 exhibits only positive thermotaxis over the entire temperature range (no negative thermotaxis). HO596 and HO813 exhibit weakened positive thermotaxis and normal negative thermotaxis. The weakened positive thermotactic response results in a shift toward warmer temperatures in the transition temperature from negative to positive thermotaxis. Mutant HO209 exhibits weakened positive and negative thermotactic responses and has a transition temperature similar to the 'wild type' (HL50).The two types of mutants represented by HO428, HO596 and HO813 support the model that positive and negative thermotaxis have separate pathways for temperature sensing. The type of mutants which contains HO209 suggests that those two pathways converge at some point before the response.

  20. Cytosine hypomethylation at CHG and CHH sites in the pleiotropic mutants of Mendelian inheritance in Catharanthus roseus.

    PubMed

    Kumari, Renu; Yadav, Gitanjali; Sharma, Vishakha; Sharma, Vinay; Kumar, Sushil

    2013-12-01

    The 5S and 18S rDNA sequences of Catharanthus roseus cv 'Nirmal' (wild type) and its leafless inflorescence (lli), evergreen dwarf (egd) and irregular leaf lamina (ill) single mutants and lli egd, lli ill and egd ill double mutants were characterized. The lli, egd and ill mutants of Mendelian inheritance bore the names after their most conspicuous morphological feature(s). They had been chemically induced and isolated for their salt tolerance. The double mutants were isolated as morphological segregants from crosses between single mutants. The morphological features of the two parents accompanied salt tolerance in the double mutants. All the six mutants were hypomethylated at repeat sequences, upregulated and downregulated for many genes and carried pleiotropic alterations for several traits. Here the 5S and 18S rDNAs of C. roseus were found to be relatively low in cytosine content. Cytosines were preponderantly in CG context (53%) and almost all of them were methylated (97%). The cytosines in CHH and CHG (where H = A, T or C) contexts were largely demethylated (92%) in mutants. The demethylation was attributable to reduced expression of RDR2 and DRM2 led RNA dependant DNA methylation and CMT3 led maintenance methylation pathways. Mutants had gained some cytosines by substitution of C at T sites. These perhaps arose on account of errors in DNA replication, mediated by widespread cytosine demethylation at CHG and CHH sites. It was concluded that the regulation of cytosine ethylation mechanisms was disturbed in the mutants. ILL, EGD and LLI genes were identified as the positive regulators of other genes mediating the RdDM and CMT3 pathways, for establishment and maintenance of cytosine methylation in C. roseus. PMID:24371171

  1. 'Vegetable' substitutes for diesel fuel

    SciTech Connect

    Not Available

    1981-07-22

    Research programs in the US, Brazil, South Africa and the Philippines on efforts to find a vegetable oil substitute for diesel fuel are reported. A narrowing price gap with diesel fuel and a favourable energy balance improve the prospects for such fuels. Much of the current work is centered on blends, rather than the use of the pure oil.

  2. Characterization and fine mapping of a light-dependent leaf lesion mimic mutant 1 in rice.

    PubMed

    Wang, Jing; Ye, Bangquan; Yin, Junjie; Yuan, Can; Zhou, Xiaogang; Li, Weitao; He, Min; Wang, Jichun; Chen, Weilan; Qin, Peng; Ma, Bintian; Wang, Yuping; Li, Shigui; Chen, Xuewei

    2015-12-01

    Plants that spontaneously produce lesion mimics or spots, without any signs of obvious adversity, such as pesticide and mechanical damage, or pathogen infection, are so-called lesion mimic mutants (lmms). In rice, many lmms exhibit enhanced resistance to pathogens, which provides a unique opportunity to uncover the molecular mechanism underlying lmms. We isolated a rice light-dependent leaf lesion mimic mutant 1 (llm1). Lesion spots appeared in the leaves of the llm1 mutant at the tillering stage. Furthermore, the mutant llm1 had similar agronomic traits to wild type rice. Trypan blue and diamiobenzidine staining analyses revealed that the lesion spot formation on the llm1 mutant was due to programmed cell death and reactive oxygen species. The chloroplasts were severely damaged in the llm1 mutant, suggesting that chloroplast damage was associated with the formation of lesion spots in llm1. More importantly, llm1 exhibited enhanced resistance to bacterial blight pathogens within increased expression of pathogenesis related genes (PRs). Using a map-based cloning approach, we delimited the LLM1 locus to a 121-kb interval between two simple sequence repeat markers, RM17470 and RM17473, on chromosome 4. We sequenced the candidate genes on the interval and found that a base mutation had substituted adenine phosphate for thymine in the last exon of LOC_Os04g52130, which led to an amino acid change (Asp(388) to Val) in the llm1 mutant. Our investigation showed that the putative coproporphyrinogen III oxidase (CPOX) encoded by LOC_Os04g52130 was produced by LLM1 and that amino acid Asp(388) was essential for CPOX function. Our study provides the basis for further investigations into the mechanism underlying lesion mimic initiation associated with LLM1. PMID:26410574

  3. A nucleotide mutation associated with fluoroquinolone resistance observed in gyrA of in vitro obtained Rhodococcus equi mutants.

    PubMed

    Niwa, Hidekazu; Hobo, Seiji; Anzai, Toru

    2006-06-15

    In this study, the quinolone resistance-determining region (QRDR) in gyrA and gyrB of in vitro fluoroquinolone-resistant Rhodococcus equi mutants was sequenced. These mutants were selected from four R. equi strains on blood agar plates containing ciprofloxacin or enrofloxacin. Each mutant became 8- to 64 or greater-fold resistant to fluoroquinolones compared with their parent strains. From the results of sequence analysis of QRDR in gyrA and gyrB, a nucleotide mutation of codon GAC for GGC in gyrA was detected in all mutants, but no mutation was observed in gyrB. This mutation leads to amino acid substitution of Asp for Gly in putative GyrA in R. equi. The position of this substitution corresponds to position 87 of GyrA in Escherichia coli. Our results suggest that the mutation of QRDR in gyrA, which was observed in in vitro fluoroquinolone-resistant R. equi mutants in this study, is closely associated with fluoroquinolone resistance. PMID:16563665

  4. Reversal of the surface charge asymmetry in purple membrane due to single amino acid substitutions.

    PubMed Central

    Hsu, K C; Rayfield, G W; Needleman, R

    1996-01-01

    Twenty-seven mutant bacteriorhodopsin's were screened to determine the PKa for reversal of the permanent electric dipole moment. The photoelectric response of an aqueous purple-membrane suspension was used to determine the direction of the purple-membrane dipole moment as a function of pH. The pK(a) for the dipole reversal of wild-type bacteriorhodopsin is 4.5. Six of the 27 mutant bacteriorhodopsin's were found to have a pK(a) for dipole reversal larger than that of wild-type bacteriorhodopsin. Two of these mutants, L93T and L93W, involve a neutral amino acid substitution in the interior of the protein. The direction of the purple-membrane permanent electric dipole moment is determined by the purple-membrane surface charge asymmetry. We conclude that these two substitutions, which do not involve charge replacement, alter the pK(a) for the reversal of the purple-membrane surface charge asymmetry. We suggest that these changes to the pK(a) are due to altered protein folding at the surface of the purple-membrane induced by single-site substitutions in the protein interior. PMID:9172760

  5. Alanine aminotransferase as a predictor of adverse perinatal outcomes in women with intrahepatic cholestasis of pregnancy

    PubMed Central

    Ekiz, Ali; Kaya, Basak; Avci, Muhittin Eftal; Polat, Ibrahim; Dikmen, Selin; Yildirim, Gokhan

    2016-01-01

    Objective: To evaluate the associations between adverse perinatal outcomes and serum transaminase levels at the time of diagnosis in patients with intrahepatic cholestasis of pregnancy. Methods: We performed a retrospective analysis of patients hospitalized for evaluation of intrahepatic cholestasis of pregnancy from January 2013 to June 2014 in a tertiary center. Seventy-one patients were divided into two groups according to the presence (Group I) or absence of adverse perinatal outcomes (Group II). Results: The mean aminotransferase levels and conjugated bilirubin levels at the time of diagnosis were significantly higher in Group I than in Group II. Receiver operating characteristic curve analysis revealed that the alanine aminotransferase level could predict adverse perinatal outcomes with 76.47% sensitivity and 78.38% specificity, and the cut-off value was 95 IU/L. Among patients with intrahepatic cholestasis of pregnancy, those with adverse perinatal outcomes were significantly older, had an earlier diagnosis, and had higher alanine aminotransferase levels. Using the 95-IU/L cut-off value, patients with intrahepatic cholestasis of pregnancy had a 3.54-fold increased risk for adverse perinatal outcomes. Conclusions: Patients with intrahepatic cholestasis of pregnancy and high alanineaminotransferase levels should be followed up for possible adverse perinatal outcomes.

  6. A novel N(alpha)-acetyl alanine aminopeptidase from Allomyces arbuscula.

    PubMed

    Beti, Raniera; Cattaneo, Arlette; Gabriel, Jean Marc; Ojha, Mukti

    2002-04-01

    An N(alpha)-acetyl alanine aminopeptidase has been purified from the aquatic fungus Allomyces arbuscula. The apparent molecular mass of the enzyme was estimated to be 280 kDa by gel filtration through calibrated Sephacryl S300 column. In SDS-PAGE, the purified enzyme appeared as a single band of M(r) 80 kDa. Catalytic activity of the enzyme was inhibited by specific serine protease inhibitors, 3,4-DCI and APMSF, as well as SH reacting compounds, HgCl(2) and iodoacetate, indicating that the enzyme is a serine protease with some functional SH group(s) involved in the catalytic reaction. 3H-DFP was used to label the reactive serine of the enzyme. When the labeled protein was analyzed in SDS-PAGE, most of the label appeared in the M(r) 80 kDa band, however, a few additional faster migrating minor bands were also seen, probably representing a minor degradation product of the enzyme. The enzyme cleaved mainly N(alpha)-acetlylated alanine, although a small but negligible activity was also obtained with acetylated leucine and phenylalanine. The role of the enzyme in N-end rule proteolysis is discussed. PMID:12106909

  7. In vivo dose evaluation during gynaecological radiotherapy using L-alanine/ESR dosimetry.

    PubMed

    Rech, Amanda Burg; Barbi, Gustavo Lazzaro; Ventura, Luiz Henrique Almeida; Guimarães, Flavio Silva; Oliveira, Harley Francisco; Baffa, Oswaldo

    2014-06-01

    The dose delivered by in vivo 3-D external beam radiation therapy (EBRT) was verified with L-alanine/electron spin resonance (ESR) dosimetry for patients diagnosed with gynaecological cancer. Measurements were performed with an X-band ESR spectrometer. Dosemeters were positioned inside the vaginal cavity with the assistance of an apparatus specially designed for this study. Previous phantom studies were performed using the same conditions as in the in vivo treatment. Four patients participated in this study during 20-irradiation sessions, giving 220 dosemeters to be analysed. The doses were determined with the treatment planning system, providing dose confirmation. The phantom study resulted in a deviation between -2.5 and 2.1 %, and for the in vivo study a deviation between -9.2 and 14.2 % was observed. In all cases, the use of alanine with ESR was effective for dose assessment, yielding results consistent with the values set forth in the International Commission on Radiation Units and Measurements (ICRU) reports. PMID:24751984

  8. Rapid Crystallization of L-Alanine on Engineered Surfaces using Metal-Assisted and Microwave-Accelerated Evaporative Crystallization.

    PubMed

    Alabanza, Anginelle M; Pozharski, Edwin; Aslan, Kadir

    2012-01-01

    This study demonstrates the application of metal-assisted and microwave-accelerated evaporative crystallization (MA-MAEC) technique to rapid crystallization of L-alanine on surface engineered silver nanostructures. In this regard, silver island films (SIFs) were modified with hexamethylenediamine (HMA), 1-undecanethiol (UDET), and 11-mercaptoundecanoic acid (MUDA), which introduced -NH(2), -CH(3) and -COOH functional groups to SIFs, respectively. L-Alanine was crystallized on these engineered surfaces and blank SIFs at room temperature and using MA-MAEC technique. Significant improvements in crystal size, shape, and quality were observed on HMA-, MUDA- and UDET-modified SIFs at room temperature (crystallization time = 144, 40 and 147 min, respectively) as compared to those crystals grown on blank SIFs. Using the MA-MAEC technique, the crystallization time of L-alanine on engineered surfaces were reduced to 17 sec for microwave power level 10 (i.e., duty cycle 100%) and 7 min for microwave power level 1 (duty cycle 10%). Raman spectroscopy and powder x-ray diffraction (XRD) measurements showed that L-Alanine crystals grown on engineered surfaces using MA-MAEC technique had identical characteristic peaks of L-alanine crystals grown using traditional evaporative crystallization. PMID:22267957

  9. Adjuvant effect of non-toxic mutants of E. coli heat-labile enterotoxin following intranasal, oral and intravaginal immunization.

    PubMed

    De Magistris, M T; Pizza, M; Douce, G; Ghiara, P; Dougan, G; Rappuoli, R

    1998-01-01

    Cholera toxin and Escherichia coli heat-labile enterotoxin (LT) are known to be very effective mucosal adjuvants, but their toxicity limits their use in humans. We genetically detoxified LT by substituting single residues in the active site of the enzymatic A subunit and obtained mutant molecules that retain mucosal adjuvant activity but are devoid of toxicity. These mutant LT molecules induce mucosal and systemic responses to antigens delivered intranasally, orally and intravaginally in mice. Furthermore, mucosal immunization with these molecules confers protection against systemic challenge with tetanus toxin (TT) and mucosal challenge with Helicobacter pylori. PMID:9554265

  10. Isolation and characterization of two cellulose morphology mutants of Gluconacetobacter hansenii ATCC23769 producing cellulose with lower crystallinity

    SciTech Connect

    Deng, Ying; Nagachar, Nivedita; Fang, Lin; Luan, Xin; Catchmark, Jeffrey M.; Tien, Ming; Kao, Teh -hui; Lai, Hsin -Chih

    2015-03-19

    Gluconacetobacter hansenii, a Gram-negative bacterium, produces and secrets highly crystalline cellulose into growth medium, and has long been used as a model system for studying cellulose synthesis in higher plants. Cellulose synthesis involves the formation of β-1,4 glucan chains via the polymerization of glucose units by a multi-enzyme cellulose synthase complex (CSC). These glucan chains assemble into ordered structures including crystalline microfibrils. AcsA is the catalytic subunit of the cellulose synthase enzymes in the CSC, and AcsC is required for the secretion of cellulose. However, little is known about other proteins required for the assembly of crystalline cellulose. To address this question, we visually examined cellulose pellicles formed in growth media of 763 individual colonies of G. hansenii generated via Tn5 transposon insertion mutagenesis, and identified 85 that produced cellulose with altered morphologies. X-ray diffraction analysis of these 85 mutants identified two that produced cellulose with significantly lower crystallinity than wild type. The gene disrupted in one of these two mutants encoded a lysine decarboxylase and that in the other encoded an alanine racemase. Solid-state NMR analysis revealed that cellulose produced by these two mutants contained increased amounts of non-crystalline cellulose and monosaccharides associated with non-cellulosic polysaccharides as compared to the wild type. Monosaccharide analysis detected higher percentages of galactose and mannose in cellulose produced by both mutants. Field emission scanning electron microscopy showed that cellulose produced by the mutants was unevenly distributed, with some regions appearing to contain deposition of non-cellulosic polysaccharides; however, the width of the ribbon was comparable to that of normal cellulose. As both lysine decarboxylase and alanine racemase are required for the integrity of peptidoglycan, we propose a model for the role of

  11. Incomplete flagellar structures in Escherichia coli mutants.

    PubMed Central

    Suzuki, T; Komeda, Y

    1981-01-01

    Escherichia coli mutants with defects in 29 flagellar genes identified so far were examined by electron microscopy for possession of incomplete flagellar structures in membrane-associated fractions. The results are discussed in consideration of the known transcriptional interaction of flagellar genes. Hook-basal body structures were detected in flaD, flaS, flaT, flbC, and hag mutants. The flaE mutant had a polyhook-basal body structure. An intact basal body appeared in flaK mutants. Putative precursors of the basal body were detected in mutants with defects in flaM, flaU, flaV, and flaY. No structures homologous to the flagellar basal body or its parts were detected in mutants with defects in flaA, flaB, flaC, flaG, flaH, flaI, flaL, flaN, flaO, flaP, flaQ, flaR, flaW, flaX, flbA, flbB, and flbD. One flaZ mutant had an incomplete flagellar basal body structure and another formed no significant structure, suggesting that flaZ is responsible for both basal body assembly and the transcription of the hag gene. Images PMID:7007337

  12. Kasugamycin-dependent mutants of Escherichia coli.

    PubMed Central

    Dabbs, E R

    1978-01-01

    Kasugamycin-dependent mutants have been isolated from Escherichia coli B. They were obtained through mutagenesis with ethyl methane sulfonate or nitrosoguanidine in conjunction with an antibiotic underlay technique. In the case of nitrosoguanidine, dependent mutants were obtained at a frequency of about 3% of survivors growing up in the selection. In the case of ethyl methane sulfonate, the corresponding value was 1%. Nineteen mutants showing a kasugamycin-dependent phenotype were studied. In terms of response to various temperatures and antibiotic concentrations, they were very heterogeneous, although most fell into two general classes. Genetic analysis indicated that in at least some cases, the kasugamycin-dependent phenotype was the product of two mutations. Two-dimensional gel electropherograms revealed alterations in the ribosomal proteins of seven mutants. One mutant had an alteration in protein S13, and one had an alteration in protein L14. Three showed changes in protein S9. Each of two mutants had changes in two proteins, S18 and L11. Three of these mutants additionally had protein S18 occurring in a partly altered, partly unaltered form. Images PMID:363701

  13. Common and New Acyclovir Resistant Herpes Simplex Virus-1 Mutants Causing Bilateral Recurrent Herpetic Keratitis in an Immunocompetent Patient

    PubMed Central

    Pan, Dongli; Kaye, Stephen B.; Hopkins, Mark; Kirwan, Ruaidhri; Hart, Ian J.; Coen, Donald M.

    2014-01-01

    We investigated thymidine kinase (tk) mutants isolated during multiple episodes of recurrent bilateral acyclovir resistant herpes simplex keratitis in an immunocompetent patient. From one eye, we found a single guanine insertion, previously shown to greatly reduce TK expression, and from the other, a previously unidentified substitution, which genetic experiments confirmed confers drug resistance. The substitution, although distant from substrate binding sites, reduced thymidine phosphorylation 10–20-fold, and acyclovir phosphorylation >100-fold. This phenotype should permit reactivation from latency to cause recurrent disease. The results may have implications for the prevalence and prevention of acyclovir resistance in patients with herpes simplex keratitis. PMID:23945375

  14. Properties of the coat protein of a new tobacco mosaic virus coat protein ts-mutant.

    PubMed

    Dobrov, E N; Abu-Eid, M M; Solovyev, A G; Kust, S V; Novikov, V K

    1997-01-01

    Amino acid substitutions in a majority of tobacco mosaic virus (TMV) coat protein (CP) ts-mutants have previously been mapped to the same region of the CP molecule tertiary structure, located at a distance of about 70 A from TMV virion axis. In the present work some properties of a new TMV CP ts-mutant ts21-66 (two substitutions I21=>T and D66=>G, both in the 70-A region) were studied. Thermal inactivation characteristics, sedimentation properties, circular dichroism spectra, and modification by a lysine-specific reagent, trinitrobenzensulfonic acid, of ts21-66 CP were compared with those of wild-type (U1) TMV CP. It is concluded that the 70-A region represents the most labile portion of the TMV CP molecule. Partial disordering of this region in the mutant CP at permissive temperatures leads to loss of the capacity to form two-layer aggregates of the cylindrical type, while further disordering induced by mild heating results also in the loss of the ability to form ordered helical aggregates. PMID:9055205

  15. Canine distemper virus neutralization activity is low in human serum and it is sensitive to an amino acid substitution in the hemagglutinin protein.

    PubMed

    Zhang, Xinsheng; Wallace, Olivia L; Domi, Arban; Wright, Kevin J; Driscoll, Jonathan; Anzala, Omu; Sanders, Eduard J; Kamali, Anatoli; Karita, Etienne; Allen, Susan; Fast, Pat; Gilmour, Jill; Price, Matt A; Parks, Christopher L

    2015-08-01

    Serum was analyzed from 146 healthy adult volunteers in eastern Africa to evaluate measles virus (MV) and canine distemper virus (CDV) neutralizing antibody (nAb) prevalence and potency. MV plaque reduction neutralization test (PRNT) results indicated that all sera were positive for MV nAbs. Furthermore, the 50% neutralizing dose (ND50) for the majority of sera corresponded to antibody titers induced by MV vaccination. CDV nAbs titers were low and generally were detected in sera with high MV nAb titers. A mutant CDV was generated that was less sensitive to neutralization by human serum. The mutant virus genome had 10 nucleotide substitutions, which coded for single amino acid substitutions in the fusion (F) and hemagglutinin (H) glycoproteins and two substitutions in the large polymerase (L) protein. The H substitution occurred in a conserved region involved in receptor interactions among morbilliviruses, implying that this region is a target for cross-reactive neutralizing antibodies. PMID:25880113

  16. [Isolation and certain properties of mutant alkaline phosphatase of Escherichia coli].

    PubMed

    Nesmeianova, M A; Krupianko, V I; Kalinin, A E; Kadyrova, L Iu

    1996-01-01

    Natural and mutant alkaline phosphatases with amino acid substitutions in the processing site and N-terminal domain of the mature polypeptide chain Val for Ala(-1), Gln for Glu (+4) and simultaneously Gln for Glu (+4) and Ala for Arg (+1) have been isolated from the periplasm and cultural fluid of E. coli. It has been found that these substitutions have little effect on the dependence of the enzyme activity on pH, ionic strength and temperature but influence its isoenzymic spectrum and decrease (almost twofold) the maximal rate of the enzyme-catalyzed reaction. Extracellular enzymes display, in contrast with periplasmic ones, other catalytic properties (Vmax) and binding activity (Km). After translocation through the outer membrane all the enzymes display decreased Vmax and increased Km. These changes are especially well-pronounced in case of the mutant protein PhoA46 which contains an uncleaved signal peptide due to the impossibility of processing resulting from the substitution of Val for Ala(-1). The Vmax for this protein is decreased 20 times, while the Km is increased 4-fold. The protein also shows a higher (in comparison with other proteins) sensitivity towards proteolytic enzymes and is less resistant upon storage. The experimental data suggest that the changes in the N-end of alkaline phosphatase located at a long distance from its active center influence the enzyme function. PMID:8679783

  17. Structural Insight Into the Altered Substrate Specificity of Human Cytochrome P450 2a6 Mutants

    SciTech Connect

    Sansen, S.; Hsu, M.-H.; Stout, C.David.; Johnson, E.F.

    2007-07-12

    Human P450 2A6 displays a small active site that is well adapted for the oxidation of small planar substrates. Mutagenesis of CYP2A6 resulted in an increased catalytic efficiency for indole biotransformation to pigments and conferred a capacity to oxidize substituted indoles (Wu, Z.-L., Podust, L.M., Guengerich, F.P. J. Biol. Chem. 49 (2005) 41090-41100.). Here, we describe the structural basis that underlies the altered metabolic profile of three mutant enzymes, P450 2A6 N297Q, L240C/N297Q and N297Q/I300V. The Asn297 substitution abolishes a potential hydrogen bonding interaction with substrates in the active site, and replaces a structural water molecule between the helix B-C region and helix I while maintaining structural hydrogen bonding interactions. The structures of the P450 2A6 N297Q/L240C and N297Q/I300V mutants provide clues as to how the protein can adapt to fit the larger substituted indoles in the active site, and enable a comparison with other P450 family 2 enzymes for which the residue at the equivalent position was seen to function in isozyme specificity, structural integrity and protein flexibility.

  18. Swimming activity in dystonia musculorum mutant mice.

    PubMed

    Lalonde, R; Joyal, C C; Cote, C

    1993-07-01

    Dystonia musculorum (dt) mutant mice, characterized by degeneration of spinocerebellar fibers, were evaluated in a visible platform swim test. It was found that dt mutants were slower to reach the platform than normal mice. However, the number of quadrants traversed was not higher in dt mutants. It is concluded that spinocerebellar fibers to the vermis are important in limb control during swimming but not in visuo-motor guidance (navigational skills) of the animal towards a visible goal, at least in regard to the quadrant measure. It is not excluded that a measure tracing their path may find a mild deviation from the goal. PMID:8327590

  19. Characterization of iduronate sulphatase mutants affecting N-glycosylation sites and the cysteine-84 residue.

    PubMed

    Millat, G; Froissart, R; Maire, I; Bozon, D

    1997-08-15

    Iduronate sulphatase (IDS) is responsible for mucopolysaccharidosis type II, a rare recessive X-linked lysosomal storage disease. The aim of this work was to evaluate the functional importance of each N-glycosylation site, and of the cysteine-84 residue. IDS mutant cDNAs, lacking one of the eight potential N-glycosylation sites, were expressed in COS cells. Although each of the potential sites was used, none of the eight glycosylation sites appeared to be essential for lysosomal targeting. Another important sulphatase co- or post-translational modification for generating catalytic activity involves the conversion of a cysteine residue surrounded by a conserved sequence C-X-P-S-R into a 2-amino-3-oxopropionic acid residue [Schmidt, Selmer, Ingendoh and von Figura (1995) Cell 82, 271-278]. This conserved cysteine, located at amino acid position 84 in IDS, was replaced either by an alanine (C84A) or by a threonine (C84T) using site-directed mutagenesis. C84A and C84T mutant cDNAs were expressed either in COS cells or in human lymphoblastoid cells deleted for the IDS gene. C84A had a drastic effect both for IDS processing and for catalytic activity. The C84T mutation produced a small amount of mature forms but also abolished enzyme activity, confirming that the cysteine residue at position 84 is required for IDS activity. PMID:9337875

  20. Microtubule stability in budding yeast: characterization and dosage suppression of a benomyl-dependent tubulin mutant.

    PubMed Central

    Machin, N A; Lee, J M; Barnes, G

    1995-01-01

    To better understand the dynamic regulation of microtubule structures in yeast, we studied a conditional-lethal beta-tubulin mutation tub2-150. This mutation is unique among the hundreds of tubulin mutations isolated in Saccharomyces cerevisiae in that it appears to cause an increase in the stability of microtubules. We report here that this allele is a mutation of threonine 238 to alanine, and that tub2-150 prevents the spindle from elongating during anaphase, suggesting a nuclear microtubule defect. To identify regulators of microtubule stability and/or anaphase, yeast genes were selected that, when overexpressed, could suppress the tub2-150 temperature-sensitive phenotype. One of these genes, JSN1, encodes a protein of 125 kDa that has limited similarity to a number of proteins of unknown function. Overexpression of the JSN1 gene in a TUB2 strain causes that strain to become more sensitive to benomyl, a microtubule-destabilizing drug. Of a representative group of microtubule mutants, only one other mutation, tub2-404, could be suppressed by JSN1 overexpression, showing that JSN1 is an allele-specific suppressor. As tub2-404 mutants are also defective for spindle elongation, this provides additional support for a role for JSN1 during anaphase. Images PMID:8534919

  1. Tritium suicide selection of mammalian cell mutants defective in the transport of neutral amino acids.

    PubMed Central

    Finkelstein, M C; Slayman, C W; Adelberg, E A

    1977-01-01

    Mouse lymphocytic cells of the established line GF-14 were allowed to accumulate intracellular 3H-labeled aminoisobutyric acid (AIB), frozen, and stored over liquid N2. After internal radiation had reduced survival to 1 in 10(4), survivors were plated and tested for their ability to transport AIB. Out of 200 clones tested, two (designated GF-17 and GF-18) were found to have reductions to 13-35% of the parent in the rate of transport of AIB, L-alanine, L-proline, and L-serine; GF-18 also showed significant reductions in the rate of transport of L-glutamate and DL-cysteine. Little or no change was observed for 10 other amino acids or for thymidine. Kinetic analyses revealed that the mutants were not altered in Km for AIB uptake, but had Vmax values approximately 20% the value of the parent strain, GF-14, suggesting that either the number of AIB transport sites or the turnover rate of the sites has been reduced in the two mutants. PMID:200920

  2. Ultraviolet radiation induces stress in etiolated Landoltia punctata, as evidenced by the presence of alanine, a universal stress signal: a ¹⁵N NMR study.

    PubMed

    Monselise, E B-I; Levkovitz, A; Kost, D

    2015-01-01

    Analysis with (15) N NMR revealed that alanine, a universal cellular stress signal, accumulates in etiolated duckweed plants exposed to 15-min pulsed UV light, but not in the absence of UV irradiation. The addition of 10 mm vitamin C, a radical scavenger, reduced alanine levels to zero, indicating the involvement of free radicals. Free D-alanine was detected in (15) N NMR analysis of the chiral amino acid content, using D-tartaric acid as solvent. The accumulation of D-alanine under stress conditions presents a new perspective on the biochemical processes taking place in prokaryote and eukaryote cells. PMID:24889211

  3. Contribution of proteolysis and de novo synthesis to alanine production in diabetic rat skeletal muscle: a 15N/1H nuclear magnetic resonance study.

    PubMed

    Meynial-Denis, D; Chavaroux, A; Foucat, L; Mignon, M; Prugnaud, J; Bayle, G; Renou, J P; Arnal, M

    1997-10-01

    To assess the role of leucine as a precursor of alanine alpha-amino nitrogen in skeletal muscle during diabetes, extensor digitorum longus muscles from control (n = 7 experiments) and streptozotocin-diabetic rats (n = 8 experiments) were isolated and superfused with [15N]leucine (3 mmol/l) in the presence of glucose (10 mmol/l) for 2 h. Muscle perchloric acid extraction was performed at the end of superfusion in order to quantify newly synthesized alanine by 15N/1H nuclear magnetic resonance. Release of [15N]alanine in the superfusion medium was also measured. The pool of newly synthesized [15N]alanine was significantly increased (approximately 40%) in extensor digitorum longus muscles from streptozotocin-diabetic rats. Whereas a significant enhancement of total alanine release from muscle was induced by diabetes (20%), only a slight increase in [15N]alanine release was detectable under our experimental conditions. Consequently, we conclude that streptozotocin-diabetes in growing rats induces in skeletal muscle: 1) an increase in nitrogen exchange between leucine and alanine leading to newly synthesized [15N]alanine; and 2) an increase of total alanine release from muscle originating from both proteolysis and de novo synthesis. PMID:9349596

  4. Crystal growth, structure and characterizations of a new semiorganic nonlinear optical material-{beta}-Alanine zinc chloride

    SciTech Connect

    Anbuchezhiyan, M.; Ponnusamy, S.; Muthamizhchelvan, C.; Sivakumar, K.

    2010-08-15

    The title compound, {beta}-alanine zinc chloride-a new semiorganic nonlinear optical crystal was grown by slow evaporation technique. Single crystals of {beta}-alanine zinc chloride have been subjected to X-ray diffraction analysis to determine the crystal structure. The powder X-ray diffractogram of the crystal has also been recorded. The amount of carbon, nitrogen and hydrogen in the crystals was also estimated. Fourier Transform Infrared and Raman spectral measurements have been carried out on the grown crystals in order to identify the functional groups. The presence of hydrogen and carbon in the {beta}-alanine zinc chloride was confirmed by using proton and carbon nuclear magnetic resonance spectral analyses. The percentage of zinc in the crystal was determined by atomic absorption spectroscopy. Optical behavior such as ultraviolet-vis-near infrared transmittance spectrum and second harmonic generation has been investigated. The mechanical strength and thermal behavior of the grown crystal have been analyzed.

  5. Effects of β-Alanine on Body Composition and Performance Measures in Collegiate Women.

    PubMed

    Outlaw, Jordan J; Smith-Ryan, Abbie E; Buckley, Amanda L; Urbina, Stacie L; Hayward, Sara; Wingfield, Hailee L; Campbell, Bill; Foster, Cliffa; Taylor, Lem W; Wilborn, Colin D

    2016-09-01

    Outlaw, JJ, Smith-Ryan, AE, Buckley, AL, Urbina, SL, Hayward, S, Wingfield, HL, Campbell, B, Foster, C, Taylor, LW, and Wilborn, CD. Effects of β-alanine on body composition and performance measures in collegiate women. J Strength Cond Res 30(9): 2627-2637, 2016-The purpose of this study was to evaluate the effects of β-alanine (BA) supplementation and resistance training on body composition and performance. In a double-blind placebo-controlled design, 16 untrained collegiate females (mean ± SD: 21.0 ± 2.2 years; 64.8 ± 8.5 kg; 164.5 ± 7.0 cm; 30.1 ± 5.1 percent body fat [%BF]) completed 8 weeks of resistance training while consuming either 3.4 g BA or placebo (PL; 5 g maltodextrin) before training sessions. Training consisted of 4 days per week upper- and lower-body exercises. Lean body mass (LBM), fat mass (FM), and %BF were assessed using dual-energy x-ray absorptiometry. Maximal oxygen consumption (V[Combining Dot Above]O2max), aerobic time to exhaustion, Wingate peak power, bench press and leg press 1RM (BPmax; LPmax), and repetitions at 65% (BPreps; LPreps), vertical jump (VJ), and standing broad jump were assessed using standard National Strength and Conditioning Association guidelines. All measurements were taken at baseline (T1), 4 weeks (T2), and 8 weeks (T3). Repeated-measures analysis of variance and 95% confidence intervals were used to determine significance. Body composition (LBM, FM, and %BF) improved over time (p < 0.01) for both groups. Maximal strength and VJ increased significantly from baseline to T3 (p ≤ 0.05). There was a significant interaction for LPreps (p = 0.040), with only BA group resulting in significantly greater LPreps (p = 0.041) at T2 and T3. Results from this study suggest that 8 weeks, 4 days per week progressive resistance training and BA supplementation may be effective for improving lower-body muscular endurance. β-alanine had no additive effects on body composition or maximal strength in collegiate women. PMID

  6. 40 CFR 721.4280 - Substituted hydrazine.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Substituted hydrazine. 721.4280... Substances § 721.4280 Substituted hydrazine. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted hydrazine (PMN P-90-594)...

  7. 40 CFR 721.4280 - Substituted hydrazine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted hydrazine. 721.4280... Substances § 721.4280 Substituted hydrazine. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted hydrazine (PMN P-90-594)...

  8. 40 CFR 721.4280 - Substituted hydrazine.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Substituted hydrazine. 721.4280... Substances § 721.4280 Substituted hydrazine. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted hydrazine (PMN P-90-594)...

  9. 40 CFR 721.4280 - Substituted hydrazine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted hydrazine. 721.4280... Substances § 721.4280 Substituted hydrazine. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted hydrazine (PMN P-90-594)...

  10. 40 CFR 721.4280 - Substituted hydrazine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted hydrazine. 721.4280... Substances § 721.4280 Substituted hydrazine. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted hydrazine (PMN P-90-594)...

  11. 40 CFR 721.9100 - Substituted quinoline.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Substituted quinoline. 721.9100... Substances § 721.9100 Substituted quinoline. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted quinoline (PMN P-93-1183)...

  12. 40 CFR 721.9100 - Substituted quinoline.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted quinoline. 721.9100... Substances § 721.9100 Substituted quinoline. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted quinoline (PMN P-93-1183)...

  13. 40 CFR 721.3360 - Substituted ethanolamine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted ethanolamine. 721.3360... Substances § 721.3360 Substituted ethanolamine. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted ethanolamine (PMN P-91-490)...

  14. Ethynyl and substituted ethynyl-terminated polysulfones

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M. (Inventor)

    1984-01-01

    Ethynyl and substituted ethynyl-terminated polysulfones and a process for preparing the same are disclosed. These polysulfones are thermally cured to induce cross-linking and chain extension, producing a polymer system with improved solvent resistance and use temperature. Also disclosed are substituted 4-ethynylbenzoyl chlorides as precursors to the substituted ethynyl-terminated polysulfones and a process for preparing the same.

  15. Ethynyl and substituted ethynyl-terminated polysulfones

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M. (Inventor)

    1986-01-01

    Ethynyl and substituted ethynyl-terminated polysulfones and their synthesis are disclosed. These polysulfones are thermally cured to induce cross-linking and chain extension, producing a polymer system with improved solvent resistance and use temperatures. Also disclosed are substituted 4-ethynylbenzoyl chlorides as precursors to the substituted ethynyl-terminated polysulfones and a process for preparing the same.

  16. Permanent Teacher Preparation for Substitute Teachers.

    ERIC Educational Resources Information Center

    Hardman, Steve; Tippetts, Zachary

    2001-01-01

    Presents information about what should be communicated to substitute teachers and why it is important, focusing on the substitute teacher's role, classroom management tools, curriculum management, and preparing students for the substitute teacher by creating bridges that will help minimize the sense of separation students feel when they have a…

  17. Substitutes for School Nurses in Illinois

    ERIC Educational Resources Information Center

    Vollinger, Linda Jeno; Bergren, Martha Dewey; Belmonte-Mann, Frances

    2011-01-01

    The purpose of this descriptive study was to explore utilization of nurse substitutes in the school setting in Illinois. The literature described personnel who staff the school health office in the absence of the school nurse and the barriers to obtaining nurse substitutes. There were no empirical studies conducted on school nurse substitutes in…

  18. 40 CFR 721.9820 - Substituted triazole.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted triazole. 721.9820 Section... Substances § 721.9820 Substituted triazole. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as a substituted triazole (PMN P-90-1731)...

  19. 40 CFR 721.9820 - Substituted triazole.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted triazole. 721.9820 Section... Substances § 721.9820 Substituted triazole. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as a substituted triazole (PMN P-90-1731)...

  20. 40 CFR 721.9820 - Substituted triazole.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Substituted triazole. 721.9820 Section... Substances § 721.9820 Substituted triazole. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as a substituted triazole (PMN P-90-1731)...

  1. 40 CFR 721.9820 - Substituted triazole.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted triazole. 721.9820 Section... Substances § 721.9820 Substituted triazole. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as a substituted triazole (PMN P-90-1731)...

  2. 40 CFR 721.9820 - Substituted triazole.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Substituted triazole. 721.9820 Section... Substances § 721.9820 Substituted triazole. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as a substituted triazole (PMN P-90-1731)...

  3. 24 CFR 221.252 - Substitute mortgagors.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Substitute mortgagors. 221.252... Cost Homes § 221.252 Substitute mortgagors. (a) Selling mortgagor. The mortgagee may effect the release... approval of a substitute mortgagor, as provided by this section. (b) Purchasing mortgagor. The...

  4. 40 CFR 721.5867 - Substituted phenol.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Substituted phenol. 721.5867 Section... Substances § 721.5867 Substituted phenol. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as substituted phenol (PMNs P-89-1125,...

  5. 40 CFR 721.5867 - Substituted phenol.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Substituted phenol. 721.5867 Section... Substances § 721.5867 Substituted phenol. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as substituted phenol (PMNs P-89-1125,...

  6. 40 CFR 721.5867 - Substituted phenol.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted phenol. 721.5867 Section... Substances § 721.5867 Substituted phenol. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as substituted phenol (PMNs P-89-1125,...

  7. 40 CFR 721.5867 - Substituted phenol.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted phenol. 721.5867 Section... Substances § 721.5867 Substituted phenol. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as substituted phenol (PMNs P-89-1125,...

  8. 40 CFR 721.5867 - Substituted phenol.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted phenol. 721.5867 Section... Substances § 721.5867 Substituted phenol. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as substituted phenol (PMNs P-89-1125,...

  9. The DNA binding specificity of the basic region of the yeast transcriptional activator GCN4 can be changed by substitution of a single amino acid.

    PubMed Central

    Suckow, M; von Wilcken-Bergmann, B; Müller-Hill, B

    1993-01-01

    The X-ray structure of a GCN4 DNA complex (1) shows, that specific DNA binding of the GCN4 basic region is mediated by a complicated network of base pair and DNA backbone contacts. According to the X-ray structure, alanine -14 of the basic region of GCN4 (we define the first leucine of the leucine zipper as +1) makes a hydrophobic contact to the methyl group of the thymine next to the center of the GCN4 binding site 5' ATGACTCAT 3'. We tested the DNA binding properties of the nineteen derivatives of GCN4, which carry all possible amino acids in position -14 of the basic region. Substitution of alanine -14 of GCN4 by either asparagine or cysteine changes the DNA binding specificity. Serine in this position broadens the specificity for position 1 of the target, whereas other amino acids either retain or decrease GCN4 specificity. Images PMID:8502548

  10. Iridium-Catalyzed Allylic Substitution

    NASA Astrophysics Data System (ADS)

    Hartwig, John F.; Pouy, Mark J.

    Iridium-catalyzed asymmetric allylic substitution has become a valuable method to prepare products from the addition of nucleophiles at the more substituted carbon of an allyl unit. The most active and selective catalysts contain a phosphoramidite ligand possessing at least one arylethyl substituent on the nitrogen atom of the ligand. In these systems, the active catalyst is generated by a base-induced cyclometalation at the methyl group of this substituent to generate an iridium metalacycle bound by the COD ligand of the [Ir(COD)Cl]2 precursor and one additional labile dative ligand. Such complexes catalyze the reactions of linear allylic esters with alkylamines, arylamines, phenols, alcohols, imides, carbamates, ammonia, enolates and enolate equivalents, as well as typical stabilized carbon nucleophiles generated from malonates and cyanoesters. Iridium catalysts for enantioselective allylic substitution have also been generated from phosphorus ligands with substituents bound by heteroatoms, and an account of the studies of such systems, along with a description of the development of iridium catalysts is included.

  11. Resonant photodissociation in substituted benzenes

    NASA Astrophysics Data System (ADS)

    Scarborough, Tim; McAcy, Collin; Foote, David; Uiterwaal, Cornelis

    2011-05-01

    Cyclic aromatic molecules are abundant in organic chemistry, with a wide variety of applications, including pharmacology, pollution studies and genetic research. Among the simplest of these molecules is benzene (C6H6) , with many relevant molecules being benzene-like with a single atomic substitution. In such a substitution, the substituent determines a characteristic perturbation of the electronic structure of the molecule. We discuss the substitution of halogens into the ring (C6H5X), and its effects on the dynamics of ionization and dissociation of the molecule without the focal volume effect. In particular, using 800-nm, 50-fs laser pulses, we present results in the dissociation of fluorobenzene, chlorobenzene, bromobenzene and iodobenzene into the phenyl ring (C6H5) and the atomic halogen, and the subsequent ionization of these fragments. The impact of the ``heavy atom effect'' on a 1 (π , π*) -->3 (n , σ*) singlet-triplet intersystem crossing will be emphasized. Currently under investigation is whether such a dissociation can be treated as an effective source of the neutral substituent. This material is based upon work supported by the National Science Foundation under Grant No. PHY-0355235.

  12. High-temperature Raman study of L-alanine, L-threonine and taurine crystals related to thermal decomposition

    NASA Astrophysics Data System (ADS)

    Cavaignac, A. L. O.; Lima, R. J. C.; Façanha Filho, P. F.; Moreno, A. J. D.; Freire, P. T. C.

    2016-03-01

    In this work high-temperature Raman spectra are used to compare temperature dependence of the lattice mode wavenumber of L-alanine, L-threonine and taurine crystals. Anharmonic effects observed are associated with intermolecular N-H· · ·O hydrogen bond that plays an important role in thermal decomposition process of these materials. Short and strong hydrogen bonds in L-alanine crystal were associated with anharmonic effects in lattice modes leading to low thermal stability compared to taurine crystals. Connection between thermal decomposition process and anharmonic effects is furnished for the first time.

  13. Phosphoglucomutase Mutants of Escherichia coli K-12

    PubMed Central

    Adhya, Sankar; Schwartz, Maxime

    1971-01-01

    Bacteria with strongly depressed phosphoglucomutase (EC 2.7.5.1) activity are found among the mutants of Escherichia coli which, when grown on maltose, accumulate sufficient amylose to be detectable by iodine staining. These pgm mutants grow poorly on galactose but also accumulate amylose on this carbon source. Growth on lactose does not produce high amylose but, instead, results in the induction of the enzymes of maltose metabolism, presumably by accumulation of maltose. These facts suggest that the catabolism of glucose-1-phosphate is strongly depressed in pgm mutants, although not completely abolished. Anabolism of glucose-1-phosphate is also strongly depressed, since amino acid- or glucose-grown pgm mutants are sensitive to phage C21, indicating a deficiency in the biosynthesis of uridine diphosphoglucose or uridine diphosphogalactose, or both. All pgm mutations isolated map at about 16 min on the genetic map, between purE and the gal operon. PMID:4942754

  14. Cooperative Interaction Within RNA Virus Mutant Spectra.

    PubMed

    Shirogane, Yuta; Watanabe, Shumpei; Yanagi, Yusuke

    2016-01-01

    RNA viruses usually consist of mutant spectra because of high error rates of viral RNA polymerases. Growth competition occurs among different viral variants, and the fittest clones predominate under given conditions. Individual variants, however, may not be entirely independent of each other, and internal interactions within mutant spectra can occur. Examples of cooperative and interfering interactions that exert enhancing and suppressing effects on replication of the wild-type virus, respectively, have been described, but their underlying mechanisms have not been well defined. It was recently found that the cooperation between wild-type and variant measles virus genomes produces a new phenotype through the heterooligomer formation of a viral protein. This observation provides a molecular mechanism underlying cooperative interactions within mutant spectra. Careful attention to individual sequences, in addition to consensus sequences, may disclose further examples of internal interactions within mutant spectra. PMID:26162566

  15. Mutant p53: one name, many proteins

    PubMed Central

    Freed-Pastor, William A.; Prives, Carol

    2012-01-01

    There is now strong evidence that mutation not only abrogates p53 tumor-suppressive functions, but in some instances can also endow mutant proteins with novel activities. Such neomorphic p53 proteins are capable of dramatically altering tumor cell behavior, primarily through their interactions with other cellular proteins and regulation of cancer cell transcriptional programs. Different missense mutations in p53 may confer unique activities and thereby offer insight into the mutagenic events that drive tumor progression. Here we review mechanisms by which mutant p53 exerts its cellular effects, with a particular focus on the burgeoning mutant p53 transcriptome, and discuss the biological and clinical consequences of mutant p53 gain of function. PMID:22713868

  16. 40 CFR 721.1555 - Substituted phenyl azo substituted benzenediazonium salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... benzenediazonium salt. 721.1555 Section 721.1555 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1555 Substituted phenyl azo substituted benzenediazonium salt. (a... generically as a substituted phenyl azo substituted benzenediazonium salt (PMN P-92-652) is subject...

  17. 40 CFR 721.1555 - Substituted phenyl azo substituted benzenediazonium salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... benzenediazonium salt. 721.1555 Section 721.1555 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1555 Substituted phenyl azo substituted benzenediazonium salt. (a... generically as a substituted phenyl azo substituted benzenediazonium salt (PMN P-92-652) is subject...

  18. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  19. 40 CFR 721.1555 - Substituted phenyl azo substituted benzenediazonium salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... benzenediazonium salt. 721.1555 Section 721.1555 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1555 Substituted phenyl azo substituted benzenediazonium salt. (a... generically as a substituted phenyl azo substituted benzenediazonium salt (PMN P-92-652) is subject...

  20. 40 CFR 721.9545 - Substituted phenyl azo substituted sulfocarbopolycle, sodium salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sulfocarbopolycle, sodium salt. 721.9545 Section 721.9545 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.9545 Substituted phenyl azo substituted sulfocarbopolycle, sodium salt... identified generically as a substituted phenyl azo substituted sulfocarbopolycle, sodium salt (PMN...

  1. 40 CFR 721.9545 - Substituted phenyl azo substituted sulfocarbopolycle, sodium salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sulfocarbopolycle, sodium salt. 721.9545 Section 721.9545 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.9545 Substituted phenyl azo substituted sulfocarbopolycle, sodium salt... identified generically as a substituted phenyl azo substituted sulfocarbopolycle, sodium salt (PMN...

  2. 40 CFR 721.9545 - Substituted phenyl azo substituted sulfocarbopolycle, sodium salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sulfocarbopolycle, sodium salt. 721.9545 Section 721.9545 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.9545 Substituted phenyl azo substituted sulfocarbopolycle, sodium salt... identified generically as a substituted phenyl azo substituted sulfocarbopolycle, sodium salt (PMN...

  3. 40 CFR 721.9545 - Substituted phenyl azo substituted sulfocarbopolycle, sodium salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sulfocarbopolycle, sodium salt. 721.9545 Section 721.9545 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.9545 Substituted phenyl azo substituted sulfocarbopolycle, sodium salt... identified generically as a substituted phenyl azo substituted sulfocarbopolycle, sodium salt (PMN...

  4. 40 CFR 721.9545 - Substituted phenyl azo substituted sulfocarbopolycle, sodium salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sulfocarbopolycle, sodium salt. 721.9545 Section 721.9545 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.9545 Substituted phenyl azo substituted sulfocarbopolycle, sodium salt... identified generically as a substituted phenyl azo substituted sulfocarbopolycle, sodium salt (PMN...

  5. 40 CFR 721.1555 - Substituted phenyl azo substituted benzenediazonium salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... benzenediazonium salt. 721.1555 Section 721.1555 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1555 Substituted phenyl azo substituted benzenediazonium salt. (a... generically as a substituted phenyl azo substituted benzenediazonium salt (PMN P-92-652) is subject...

  6. 40 CFR 721.1555 - Substituted phenyl azo substituted benzenediazonium salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... benzenediazonium salt. 721.1555 Section 721.1555 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1555 Substituted phenyl azo substituted benzenediazonium salt. (a... generically as a substituted phenyl azo substituted benzenediazonium salt (PMN P-92-652) is subject...

  7. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  8. Growth, Structural And Optical Studies On Bis L-alanine Lithium Chloride (BLALC) Single Crystal

    NASA Astrophysics Data System (ADS)

    Rose, A. S. J. Lucia; Selvarajan, P.; Perumal, S.

    2011-10-01

    Bis L-alanine Lithium Chloride (BLALC) single crystals were grown successfully by solution method with slow evaporation technique at room temperature. Crystals of size 15 x 9 x 4 mm3 have been obtained in 28 days. The grown crystals were colourless and transparent. Single crystal X-ray diffraction (XRD) study showed that BLALC belongs to orthorhombic system with a non-centro-symmetric space group P212121. The crystallinity of BLALC crystal was confirmed by the powder X-ray diffraction study and diffraction peaks were indexed. The functional groups of the grown crystals have been identified by FTIR studies. UV-visible transmittance spectrum was recorded to study the optical transparency of BLALC crystal. The nonlinear optical (NLO) property of the grown crystal was confirmed by Kurtz-Perry powder technique.

  9. The influence of various cations on the catalytic properties of clays. [polymerization of alanine adenylate

    NASA Technical Reports Server (NTRS)

    Paecht-Horowitz, M.

    1978-01-01

    The polymerization of alanine adenylate in the presence of the sodium form of various clays was studied, and hectorite was found to cause more polymerization than nontronite and montmorillonite (in that order) although the differences were not great. The effect on polymerization of presaturating montmorillonite with different cations was determined. Hectorite, with increased basicity of the interspatial planes, allows polymerization of lysine, which montmorillonite does not. The general trend is that, for the same amino acid, higher degrees of polymerization are obtained when the cation in the octahedral lattice of the clay is divalent rather than trivalent. With the exchangeable cations the order is reversed, for a reason that is explained. The main role of clays in the polymerization mechanism of amino acids is concentration and neutralization of charges.

  10. Experimental and DFT computational studies of L-alanine cadmium chloride crystals

    NASA Astrophysics Data System (ADS)

    Ignatius, I. Cicili; Dheivamalar, S.; Kirubavathi, K.; Selvaraju, K.

    2016-05-01

    In this work, we report the combined experimental and theoretical study on molecular structure and vibrational spectra of nonlinear optical crystal L-alanine cadmium chloride (LACC). The single X-ray diffraction studies have revealed that the compound crystallizes in monoclinic system C2 space group with cell parameters a = 16.270, b = 7.358, c = 7.887 and Z = 4. FTIR and Raman spectra of the nonlinear optical materials LACC have been recorded and analyzed. The optimized geometric bond length and bond angles are obtained with the help of density functional theory (DFT) (B3LYP) calculation. The optimized geometric bond lengths and bond angles obtained by using DFT show good agreement with the experimental data. Using the natural bond orbital analysis the electronic effect and hydrogen bonding were confirmed. The HOMO-LUMO energy gap and the first order hyperpolarizability were calculated and it supports the nonlinear optical activity of LACC crystal.

  11. Free energy surfaces from an extended harmonic superposition approach and kinetics for alanine dipeptide

    NASA Astrophysics Data System (ADS)

    Strodel, Birgit; Wales, David J.

    2008-12-01

    Approximate free energy surfaces and transition rates are presented for alanine dipeptide for a variety of force fields and implicit solvent models. Our calculations are based upon local minima, transition states and pathways characterised for each potential energy surface using geometry optimisation. The superposition approach employing only local minima and harmonic densities of states provides a representation of low-lying regions of the free energy surfaces. However, including contributions from the transition states of the potential energy surface and selected points obtained from displacements along the corresponding reaction vectors produces surfaces that compare quite well with results from replica exchange molecular dynamics. Characterising the local minima, transition states, normal modes, pathways, rate constants and free energy surfaces for each force field within this framework typically requires between one and five minutes cpu time on a single processor.

  12. Gliotoxicity of the cyanotoxin, β-methyl-amino-L-alanine (BMAA)

    PubMed Central

    Chiu, Alexander S.; Gehringer, Michelle M.; Braidy, Nady; Guillemin, Gilles J.; Welch, Jeffrey H.; Neilan, Brett A.

    2013-01-01

    The amino acid variant β-methyl-amino-L-alanine (BMAA) has long been associated with the increased incidence and progression of the amyotrophic lateral sclerosis/Parkinsonism dementia complex (ALS/PDC). Previous studies have indicated that BMAA damages neurons via excitotoxic mechanisms. We have challenged rat olfactory ensheathing cells (OECs) with exogenous BMAA and found it to be cytotoxic. BMAA also induces a significant increase in Ca2+ influx, enhanced production of reactive oxygen species (ROS), and disrupts mitochondrial activity in OECs. This is the first study investigating BMAA toxicity using pure glial cells. These findings align BMAA with the three proposed mechanisms of degeneration in ALS, those being non-cell autonomous death, excitotoxicity and mitochondrial dysfunction. PMID:23508043

  13. Linking β-methylamino-L-alanine exposure to sporadic amyotrophic lateral sclerosis in Annapolis, MD.

    PubMed

    Field, Nicholas C; Metcalf, James S; Caller, Tracie A; Banack, Sandra A; Cox, Paul A; Stommel, Elijah W

    2013-08-01

    Most amyotrophic lateral sclerosis (ALS) cases occur sporadically. Some environmental triggers have been implicated, including beta-methylamino-L-alanine (BMAA), a cyanobacteria produced neurotoxin. This study aimed to identify environmental risk factors common to three sporadic ALS patients who lived in Annapolis, Maryland, USA and developed the disease within a relatively short time and within close proximity to each other. A questionnaire was used to identify potential risk factors for ALS among the cohort of patients. One common factor among the ALS patients was the frequent consumption of blue crab. Samples of blue crab from the patients' local fish market were tested for BMAA using LC-MS/MS. BMAA was identified in these Chesapeake Bay blue crabs. We conclude that the presence of BMAA in the Chesapeake Bay food web and the lifetime consumption of blue crab contaminated with BMAA may be a common risk factor for sporadic ALS in all three patients. PMID:23660330

  14. The fate of the cyanobacterial toxin β-N-methylamino-L-alanine in freshwater mussels.

    PubMed

    Downing, Simoné; Contardo-Jara, Valeska; Pflugmacher, Stephan; Downing, Timothy Grant

    2014-03-01

    The cyanobacterial neurotoxin, β-N-methylamino-l-alanine (BMAA) has been suggested as a causative agent for certain neurodegenerative diseases. This cyanotoxin bioaccumulates in an array of aquatic organisms, in which it occurs as both a free amino acid and in a protein-associated form. This study was intended to investigate the environmental fate of BMAA by examining the metabolism of isotopically labeled BMAA in four freshwater mussel species. All species showed substantial uptake of BMAA from the culture media. Data showed no significant evidence for BMAA catabolism in any of the animals but did suggest metabolism via the reversible covalent modification of BMAA in freshwater mussels, a process that appears to be variable in different species. PMID:24507126

  15. Crystallization and preliminary X-ray study of alanine dehydrogenase from Bacillus pseudofirmus OF4

    PubMed Central

    Wen, Jinjin; Li, Zhenzhen; He, Guangzheng; Xu, Shujing; Zhao, Baohua; Zhu, Xianming; Dong, Hui; Ju, Jiansong

    2013-01-01

    Alanine dehydrogenase (OF4Ald) from the alkaliphilic Bacillus pseudofirmus OF4 was expressed and purified with a His6 tag in a form suitable for X-ray crystallographic analysis. Crystals were grown by the hanging-drop vapour-diffusion method at 289 K using a solution consisting of 0.1 M Tris–HCl pH 8.0, 0.2 M LiSO4, 22%(w/v) PEG 3350. X-ray diffraction data were collected to 2.8 Å resolution. The crystal belonged to the triclinic space group P1, with unit-cell parameters a = 88.04, b = 105.59, c = 120.53 Å, α = 88.37, β = 78.77, γ = 82.65°. PMID:24192355

  16. Controlled radical polymerization of an acrylamide containing L-alanine moiety via ATRP.

    PubMed

    Rafiee, Zahra

    2016-02-01

    Homopolymerization of an optically active acrylamide having an amino acid moiety in the side chain, N-acryloyl-L-alanine (AAla) was carried out via atom transfer radical polymerization (ATRP) at room temperature using 2-hydroxyethyl-2'-methyl-2'-bromopropionate (HMB) or sodium-4-(bromomethyl)benzoate (SBB) as initiator in pure water, methanol/water mixture and pure methanol solvents. The polymerization reaction resulted in the optically active biocompatible amino acid-based homopolymer in good yield with narrow molecular weight distribution. The number average molecular weight increased with conversion and polydispersity was low. The structure and molecular weight of synthesized polymer were characterized by (1)H NMR, FT-IR spectroscopic techniques and size-exclusion chromatography. PMID:26385362

  17. Evaluation of drug-induced tissue injury by measuring alanine aminotransferase (ALT) activity in silkworm hemolymph

    PubMed Central

    2012-01-01

    Background Our previous studies suggest silkworms can be used as model animals instead of mammals in pharmacologic studies to develop novel therapeutic medicines. We examined the usefulness of the silkworm larvae Bombyx mori as an animal model for evaluating tissue injury induced by various cytotoxic drugs. Drugs that induce hepatotoxic effects in mammals were injected into the silkworm hemocoel, and alanine aminotransferase (ALT) activity was measured in the hemolymph 1 day later. Results Injection of CCl4 into the hemocoel led to an increase in ALT activity. The increase in ALT activity was attenuated by pretreatment with N-acetyl-L-cysteine. Injection of benzoic acid derivatives, ferric sulfate, sodium valproate, tetracycline, amiodarone hydrochloride, methyldopa, ketoconazole, pemoline (Betanamin), N-nitroso-fenfluramine, and D-galactosamine also increased ALT activity. Conclusions These findings indicate that silkworms are useful for evaluating the effects of chemicals that induce tissue injury in mammals. PMID:23137391

  18. EPR/alanine pellets with low Gd content for neutron dosimetry.

    PubMed

    Marrale, M; Brai, M; Longo, A; Panzeca, S; Carlino, A; Tranchina, L; Tomarchio, E; Parlato, A; Buttafava, A; Dondi, D; Zeffiro, A

    2014-10-01

    This paper reports on results obtained by electron paramagnetic resonance (EPR) measurements and Monte Carlo (MC) simulation on a blend of alanine added with low content of gadolinium oxide (5 % by weight) to improve the sensitivity to thermal neutron without excessively affecting tissue equivalence. The sensitivity is enhanced by this doping procedure of more an order of magnitude. The results are compared with those obtained with the addition of boric acid (50 % by weight) where boron is in its natural isotopic composition in order to produce low-cost EPR dosemeters. The gadolinium addition influences neutron sensitivity more than the boron addition. The presence of additives does not substantially change the fading of the EPR signal induced by neutrons. The MC simulations agree the experimental results in case of gadolinium addition. PMID:24262924

  19. Gliotoxicity of the cyanotoxin, β-methyl-amino-L-alanine (BMAA).

    PubMed

    Chiu, Alexander S; Gehringer, Michelle M; Braidy, Nady; Guillemin, Gilles J; Welch, Jeffrey H; Neilan, Brett A

    2013-01-01

    The amino acid variant β-methyl-amino-L-alanine (BMAA) has long been associated with the increased incidence and progression of the amyotrophic lateral sclerosis/Parkinsonism dementia complex (ALS/PDC). Previous studies have indicated that BMAA damages neurons via excitotoxic mechanisms. We have challenged rat olfactory ensheathing cells (OECs) with exogenous BMAA and found it to be cytotoxic. BMAA also induces a significant increase in Ca2+ influx, enhanced production of reactive oxygen species (ROS), and disrupts mitochondrial activity in OECs. This is the first study investigating BMAA toxicity using pure glial cells. These findings align BMAA with the three proposed mechanisms of degeneration in ALS, those being non-cell autonomous death, excitotoxicity and mitochondrial dysfunction. PMID:23508043

  20. Discovery of an L-alanine ester prodrug of the Hsp90 inhibitor, MPC-3100.

    PubMed

    Kim, Se-Ho; Tangallapally, Rajendra; Kim, In Chul; Trovato, Richard; Parker, Daniel; Patton, J Scott; Reeves, Leslie; Bradford, Chad; Wettstein, Daniel; Baichwal, Vijay; Papac, Damon; Bajji, Ashok; Carlson, Robert; Yager, Kraig M

    2015-11-15

    Various types of Hsp90 inhibitors have been and continue to undergo clinical investigation. One development candidate is the purine-based, synthetic Hsp90 inhibitor 1 (MPC-3100), which successfully completed a phase I clinical study. However, further clinical development of 1 was hindered by poor solubility and consequent formulation issues and promoted development of a more water soluble prodrug. Towards this end, numerous pro-moieties were explored in vitro and in vivo. These studies resulted in identification of L-alanine ester mesylate, 2i (MPC-0767), which exhibited improved aqueous solubility, adequate chemical stability, and rapid bioconversion without the need for solubilizing excipients. Based on improved physical characteristics and favorable PK and PD profiles, 2i mesylate was selected for further development. A convergent, scalable, chromatography-free synthesis for 2i mesylate was developed to support further clinical evaluation. PMID:26483201