Science.gov

Sample records for alanine transaminase aspartate

  1. In Vitro antioxidative activity of pumpkin seed (Cucurbita pepo) protein isolate and its In Vivo effect on alanine transaminase and aspartate transaminase in acetaminophen-induced liver injury in low protein fed rats.

    PubMed

    Nkosi, C Z; Opoku, A R; Terblanche, S E

    2006-09-01

    The antioxidative effects of pumpkin seed protein isolate (Cucurbita pepo) were investigated in vitro. The isolate exhibited about 80% radical scavenging activity, chelating activity of approximately 64% on Fe2+ ions and an inhibition of approximately 10% of xanthine oxidase. Subsequently the effects of the isolate on the plasma activity levels of alanine transaminase and aspartate transaminase against acetaminophen induced acute liver injury in low-protein fed male Sprague-Dawley rats were ascertained. The rats were maintained on a low-protein diet for 5 days and divided into three subgroups. Two subgroups were injected with acetaminophen and the other with an equivalent amount of polyethylene glycol 400. Two hours after intoxication one of the two subgroups was administered with the protein isolate. Rats from the different subgroups were killed at 24, 48 and 72 h after treatment. After 5 days on the low-protein diet the activity levels of the enzymes were significantly higher than their counterparts on a normal balanced diet. The administration of protein isolate after acetaminophen intoxication resulted in significantly reduced activity levels. It is concluded that the protein isolate has promising antioxidative properties. Furthermore, the isolate administration was effective in alleviating the detrimental effects associated with protein malnutrition and acetaminophen intoxication.

  2. Similarities between cysteinesulphinate transaminase and aspartate aminotransferase.

    PubMed

    Recasens, M; Mandel, P

    1979-01-01

    A method for the purification of two cysteinesulphinate transaminases, A and B (EC 2.6.1), is described. These enzymes catalyse the conversion of cysteinesulphinic acid to beta-sulphinyl pyruvate. The final preparations are homogeneous by polyacrylamide gel electrophoresis, sodium dodecyl sulphate-polyacrylamide gel electrophoresis and isoelectrofocusing. The molecular weight of the subunits is 41 000 for cysteinesulphinate transaminase A and 43 400 for B. Both enzymes are unspecific, as L-asparate, L-glutamate and L-cysteic acid serve as substrates in addition to L-cysteinesulphinic acid. Cysteinesulphinate transaminase A has a Km of 9.8 mM for cysteinesulphinic acid and 0.25 mM for aspartic acid, whereas the B enzyme has a Km of 6.5 mM for cysteinesulphinic acid and 1.4 mM for aspartic acid. The Vmax values of the A and B enzymes are respectively 7.1 and 6.2 mmol h-1 mg-1 protein for aspartic acid and 45 and 9.3 mmol h-1 mg-1 protein for cysteinesulphinic acid. Both enzymes exhibit maximum activity at pH 8.6. A high specific activity is found in optimal conditions for these two transaminases, the pI values being 9.06 and 5.70 for cysteinesulphinate transaminase A and B respectively. These results have been compared with those already obtained for purified aspartate aminotransferase. Similarities in the pathways of taurine and gamma-aminobutyric acid (GABA) metabolism are discussed.

  3. Porcine alanine transaminase after liver allo-and xenotransplantation

    PubMed Central

    Ekser, Burcin; Gridelli, Bruno; Cooper, David K.C.

    2013-01-01

    Aspartate transaminase (AST) and alanine transaminase (ALT) are measured following liver transplantation as indicators of hepatocellular injury. During a series of orthotopic liver allo-and xenotransplants, we observed that there was an increase in AST in all cases. The anticipated concomitant rise in ALT did not occur when a wild-type (WT) pig was the source of the liver graft, but did occur when a baboon or a genetically engineered (α1,3-galactosyltransferase gene-knockout [GTKO]) pig was the source of the graft. We hypothesized that the cience of Galα1,3 Gal in GTKO pig livers may render pig hepatocytes similar to human and baboon hepatocytes in their response to hepatocellular injury. Reviewing the literature, after WT pig liver allotransplantation or xenotransplantation, in the majority of reports, although changes in AST were reported, no mention was made of changes in ALT, suggesting that there was no change in ALT. However, Ramirez et al. reported two cases of liver xenotransplants from hCD55 pigs, following which there were increases in both AST and ALT, suggesting that it is not simply the cience of expression of Galα1,3 Gal that is the cause. We acknowledge that our observation is based on a small number of experiments, but we believe it is worth recording. PMID:22360753

  4. Porcine alanine transaminase after liver allo-and xenotransplantation.

    PubMed

    Ekser, Burcin; Gridelli, Bruno; Cooper, David K C

    2012-01-01

    Aspartate transaminase (AST) and alanine transaminase (ALT) are measured following liver transplantation as indicators of hepatocellular injury. During a series of orthotopic liver allo-and xenotransplants, we observed that there was an increase in AST in all cases. The anticipated concomitant rise in ALT did not occur when a wild-type (WT) pig was the source of the liver graft, but did occur when a baboon or a genetically engineered (α1,3-galactosyltransferase gene-knockout [GTKO]) pig was the source of the graft. We hypothesized that the cience of Galα1,3Gal in GTKO pig livers may render pig hepatocytes similar to human and baboon hepatocytes in their response to hepatocellular injury. Reviewing the literature, after WT pig liver allotransplantation or xenotransplantation, in the majority of reports, although changes in AST were reported, no mention was made of changes in ALT, suggesting that there was no change in ALT. However, Ramirez et al. reported two cases of liver xenotransplants from hCD55 pigs, following which there were increases in both AST and ALT, suggesting that it is not simply the cience of expression of Galα1,3Gal that is the cause. We acknowledge that our observation is based on a small number of experiments, but we believe it is worth recording.

  5. 3-Hydroxykynurenine transaminase identity with alanine glyoxylate transaminase. A probable detoxification protein in Aedes aegypti.

    PubMed

    Han, Qian; Fang, Jianmin; Li, Jianyong

    2002-05-03

    This study describes the functional characterization of a specific mosquito transaminase responsible for catalyzing the transamination of 3-hydroxykynurenine (3-HK) to xanthurenic acid (XA). The enzyme was purified from Aedes aegypti larvae by ammonium sulfate fractionation, heat treatment, and various chromatographic techniques, plus non-denaturing electrophoresis. The purified transaminase has a relative molecular mass of 42,500 by SDS-PAGE. N-terminal and internal sequencing of the purified protein and its tryptic fragments resolved a partial N-terminal sequence of 19 amino acid residues and 3 partial internal peptide sequences with 7, 10, and 7 amino acid residues. Using degenerate primers based on the partial internal sequences for PCR amplification and cDNA library screening, a full-length cDNA clone with a 1,167-bp open reading frame was isolated. Its deduced amino acid sequence consists of 389 amino acid residues with a predicted molecular mass of 43,239 and shares 45-46% sequence identity with mammalian alanine glyoxylate transaminases. Northern analysis shows the active transcription of the enzyme in larvae and developing eggs. Substrate specificity analysis of this mosquito transaminase demonstrates that the enzyme is active with 3-HK, kynurenine, or alanine substrates. The enzyme has greater affinity and catalytic efficiency for 3-HK than for kynurenine and alanine. The biochemical characteristics of the enzyme in conjunction with the profiles of 3-HK transaminase activity and XA accumulation during mosquito development clearly point out its physiological function in the 3-HK to XA pathway. Our data suggest that the mosquito transaminase was evolved in a manner precisely reflecting the physiological requirement of detoxifying 3-HK produced in the tryptophan oxidation pathway in the mosquito.

  6. Probing alanine transaminase catalysis with hyperpolarized 13CD3-pyruvate

    PubMed Central

    Barb, A.W.; Hekmatyar, S.K.; Glushka, J.N.; Prestegard, J.H.

    2013-01-01

    Hyperpolarized metabolites offer a tremendous sensitivity advantage (>104 fold) when measuring flux and enzyme activity in living tissues by magnetic resonance methods. These sensitivity gains can also be applied to mechanistic studies that impose time and metabolite concentration limitations. Here we explore the use of hyperpolarization by dissolution dynamic nuclear polarization (DNP) in mechanistic studies of alanine transaminase (ALT), a well-established biomarker of liver disease and cancer that converts pyruvate to alanine using glutamate as a nitrogen donor. A specific deuterated, 13C-enriched analog of pyruvic acid, 13C3D3-pyruvic acid, is demonstrated to have advantages in terms of detection by both direct 13C observation and indirect observation through methyl protons introduced by ALT-catalyzed H–D exchange. Exchange on injecting hyperpolarized 13C3D3-pyruvate into ALT dissolved in buffered 1H2O, combined with an experimental approach to measure proton incorporation, provided information on mechanistic details of transaminase action on a 1.5 s timescale. ALT introduced, on average, 0.8 new protons into the methyl group of the alanine produced, indicating the presence of an off-pathway enamine intermediate. The opportunities for exploiting mechanism-dependent molecular signatures as well as indirect detection of hyperpolarized 13C3-pyruvate and products in imaging applications are discussed. PMID:23357427

  7. Exchange of aspartate and alanine. Mechanism for development of a proton-motive force in bacteria.

    PubMed

    Abe, K; Hayashi, H; Maloney, P C; Malone, P C

    1996-02-09

    We examined the idea that aspartate metabolism by Lactobacillus subsp. M3 is organized as a proton-motive metabolic cycle by using reconstitution to monitor the activity of the carrier, termed AspT, expected to carry out the electrogenic exchange of precursor (aspartate) and product (alanine). Membranes of Lactobacillus subsp. M3 were extracted with 1.25% octyl glucoside in the presence of 0. 4% Escherichia coli phospholipid and 20% glycerol. The extracts were then used to prepare proteoliposomes loaded with either aspartate or alanine. Aspartate-loaded proteoliposomes accumulated external [3H]aspartate by exchange with internal substrate; this homologous self-exchange (Kt = 0.4 mm) was insensitive to potassium or proton ionophores and was unaffected by the presence or absence of Na+, K+, or Mg2+. Alanine-loaded proteoliposomes also took up [3H]aspartate in a heterologous antiport reaction that was stimulated or inhibited by an inside-positive or inside-negative membrane potential, respectively. Several lines of evidence suggest that these homologous and heterologous exchange reactions were catalyzed by the same functional unit. Thus, [3H]aspartate taken up by AspT during self-exchange was released by a delayed addition of alanine. In addition, the spontaneous loss of AspT activity that occurs when a detergent extract is held at 37 degrees C prior to reconstitution was prevented by the presence of either aspartate (KD(aspartate) = 0.3 mm) or alanine (KD(alanine) > or = 10 mm), indicating that both substrates interact directly with AspT. These findings are consistent with operation of a proton-motive metabolic cycle during aspartate metabolism by Lactobacillus subsp. M3.

  8. Substrate Specificity of the Aspartate:Alanine Antiporter (AspT) of Tetragenococcus halophilus in Reconstituted Liposomes*

    PubMed Central

    Sasahara, Ayako; Nanatani, Kei; Enomoto, Masaru; Kuwahara, Shigefumi; Abe, Keietsu

    2011-01-01

    The aspartate:alanine antiporter (AspT) of the lactic acid bacterium Tetragenococcus halophilus is a member of the aspartate:alanine exchanger (AAEx) transporter family. T. halophilus AspT catalyzes the electrogenic exchange of l-aspartate1− with l-alanine0. Although physiological functions of AspT were well studied, l-aspartate1−:l-alanine0 antiport mechanisms are still unsolved. Here we report that the binding sites of l-aspartate and l-alanine are independently present in AspT by means of the kinetic studies. We purified His6-tagged T. halophilus AspT and characterized its kinetic properties when reconstituted in liposomes (Km = 0.35 ± 0.03 mm for l-aspartate, Km = 0.098 ± 0 mm for d-aspartate, Km = 26 ± 2 mm for l-alanine, Km = 3.3 ± 0.2 mm for d-alanine). Competitive inhibition by various amino acids of l-aspartate or l-alanine in self-exchange reactions revealed that l-cysteine selectively inhibited l-aspartate self-exchange but only weakly inhibited l-alanine self-exchange. Additionally, l-serine selectively inhibited l-alanine self-exchange but barely inhibited l-aspartate self-exchange. The aspartate analogs l-cysteine sulfinic acid, l-cysteic acid, and d-cysteic acid competitively and strongly inhibited l-aspartate self-exchange compared with l-alanine self-exchange. Taken together, these kinetic data suggest that the putative binding sites of l-aspartate and l-alanine are independently located in the substrate translocation pathway of AspT. PMID:21719707

  9. Substrate specificity of the aspartate:alanine antiporter (AspT) of Tetragenococcus halophilus in reconstituted liposomes.

    PubMed

    Sasahara, Ayako; Nanatani, Kei; Enomoto, Masaru; Kuwahara, Shigefumi; Abe, Keietsu

    2011-08-19

    The aspartate:alanine antiporter (AspT) of the lactic acid bacterium Tetragenococcus halophilus is a member of the aspartate:alanine exchanger (AAEx) transporter family. T. halophilus AspT catalyzes the electrogenic exchange of L-aspartate(1-) with L-alanine(0). Although physiological functions of AspT were well studied, L-aspartate(1-):L-alanine(0) antiport mechanisms are still unsolved. Here we report that the binding sites of L-aspartate and L-alanine are independently present in AspT by means of the kinetic studies. We purified His(6)-tagged T. halophilus AspT and characterized its kinetic properties when reconstituted in liposomes (K(m) = 0.35 ± 0.03 mm for L-aspartate, K(m) = 0.098 ± 0 mm for D-aspartate, K(m) = 26 ± 2 mm for L-alanine, K(m) = 3.3 ± 0.2 mm for D-alanine). Competitive inhibition by various amino acids of L-aspartate or L-alanine in self-exchange reactions revealed that L-cysteine selectively inhibited L-aspartate self-exchange but only weakly inhibited L-alanine self-exchange. Additionally, L-serine selectively inhibited L-alanine self-exchange but barely inhibited L-aspartate self-exchange. The aspartate analogs L-cysteine sulfinic acid, L-cysteic acid, and D-cysteic acid competitively and strongly inhibited L-aspartate self-exchange compared with L-alanine self-exchange. Taken together, these kinetic data suggest that the putative binding sites of L-aspartate and L-alanine are independently located in the substrate translocation pathway of AspT.

  10. Intramitochondrial localization of alanine aminotransferase in rat-liver mitochondria: comparison with glutaminase and aspartate aminotransferase.

    PubMed

    Masola, B; Devlin, T M

    1995-12-01

    The removal of the outer mitochondrial membrane and hence of constituents of the intermembrane space in rat-liver mitochondria using digitonin showed that phosphate-dependent glutaminase, alanine and aspartate aminotransferase were localized in the mitoplasts. Further fractionation of mitoplasts following their sonication resulted in 90% of glutaminase, 98% of alanine aminotransferase and 48% of aspartate aminotransferase being recovered in the soluble fraction while the remainder of each enzyme was recovered in the sonicated vesicles fraction. These results indicated that glutaminase and alanine aminotransferase were soluble matrix enzymes, the little of each enzyme recovered in the sonicated vesicles fraction being probably due to entrapment in the vesicles. Aspartate aminotransferase had dual localization, in the inner membrane and matrix with the high specific activity in sonicated vesicles confirming its association with the membrane. Activation experiments suggested that the membrane-bound enzyme was localized on the inner side of the inner mitochondrial membrane.

  11. Membrane topology of the electrogenic aspartate-alanine antiporter AspT of Tetragenococcus halophilus.

    PubMed

    Nanatani, Kei; Ohonishi, Fumito; Yoneyama, Hiroshi; Nakajima, Tasuku; Abe, Keietsu

    2005-03-04

    AspT is an electrogenic aspartate:alanine exchange protein that represents the vectorial component of a proton-motive metabolic cycle found in some strains of Tetragenococcus halophilus. AspT is the sole member of a new family, the Aspartate: Alanine Exchanger (AAE) family, in secondary transporters, according to the computational classification proposed by Saier et al. (http://www.biology.ucsd.edu/~msaier/transport/). We analyzed the topology of AspT biochemically, by using fusion methods in combination with alkaline phosphatase or beta-lactamase. These results suggested that AspT has a unique topology; 8 TMS, a large cytoplasmic loop (183 amino acids) between TMS5 and TMS6, and N- and C-termini that both face the periplasm. These results demonstrated a unique 2D-structure of AspT as the novel AAE family.

  12. PNPLA3 I148M polymorphism is associated with elevated alanine transaminase levels in Mexican Indigenous and Mestizo populations.

    PubMed

    Larrieta-Carrasco, Elena; Acuña-Alonzo, Victor; Velázquez-Cruz, Rafael; Barquera-Lozano, Rodrigo; León-Mimila, Paola; Villamil-Ramírez, Hugo; Menjivar, Marta; Romero-Hidalgo, Sandra; Méndez-Sánchez, Nahúm; Cárdenas, Vanessa; Bañuelos-Moreno, Manuel; Flores, Yvonne N; Quiterio, Manuel; Salmerón, Jorge; Sánchez-Muñoz, Fausto; Villarreal-Molina, Teresa; Aguilar-Salinas, Carlos A; Canizales-Quinteros, Samuel

    2014-07-01

    The patatin like phospholipase domain-containing (PNPLA3) I148M variant is the strongest genetic factor associated with elevated alanine transaminase (ALT) levels in different populations, particularly in Hispanics who have the highest 148M risk allele frequency reported to date. It has been suggested that Indigenous ancestry is associated with higher ALT levels in Mexicans. The aim of the present study was to assess the frequency of the PNPLA3 148M risk allele in Mexican indigenous and Mestizo individuals, and to examine its association with serum ALT levels. The study included a total of 1624 Mexican individuals: 919 Indigenous subjects from five different native groups and 705 Mexican Mestizo individuals (141 cases with ALT levels ≥ 40 U/L and 564 controls with ALT <40 U/L). The I148M polymorphism was genotyped by TaqMan assays. The frequency of elevated ALT levels in Indigenous populations was 18.7%, and varied according to obesity status: 14.4% in normal weight, 19.9% in overweight and 24.5% in obese individuals. The Mexican indigenous populations showed the highest reported frequency of the PNPLA3 148M risk allele (mean 0.73). The M148M genotype was significantly associated with elevated ALT levels in indigenous individuals (OR = 3.15, 95 % CI 1.91-5.20; P = 7.1 × 10(-6)) and this association was confirmed in Mexican Mestizos (OR = 2.24, 95% CI 1.50-3.33; P = 8.1 × 10(-5)). This is the first study reporting the association between M148M genotype and elevated ALT levels in Indigenous Mexican populations. The 148M allele risk may be considered an important risk factor for liver damage in Mexican indigenous and Mestizo populations.

  13. Plasmid-Encoded asp Operon Confers a Proton Motive Metabolic Cycle Catalyzed by an Aspartate-Alanine Exchange Reaction

    PubMed Central

    Abe, Keietsu; Ohnishi, Fumito; Yagi, Kyoko; Nakajima, Tasuku; Higuchi, Takeshi; Sano, Motoaki; Machida, Masayuki; Sarker, Rafiquel I.; Maloney, Peter C.

    2002-01-01

    Tetragenococcus halophila D10 catalyzes the decarboxylation of l-aspartate with nearly stoichiometric release of l-alanine and CO2. This trait is encoded on a 25-kb plasmid, pD1. We found in this plasmid a putative asp operon consisting of two genes, which we designated aspD and aspT, encoding an l-aspartate-β-decarboxylase (AspD) and an aspartate-alanine antiporter (AspT), respectively, and determined the nucleotide sequences. The sequence analysis revealed that the genes of the asp operon in pD1 were in the following order: promoter → aspD → aspT. The deduced amino acid sequence of AspD showed similarity to the sequences of two known l-aspartate-β-decarboxylases from Pseudomonas dacunhae and Alcaligenes faecalis. Hydropathy analyses suggested that the aspT gene product encodes a hydrophobic protein with multiple membrane-spanning regions. The operon was subcloned into the Escherichia coli expression vector pTrc99A, and the two genes were cotranscribed in the resulting plasmid, pTrcAsp. Expression of the asp operon in E. coli coincided with appearance of the capacity to catalyze the decarboxylation of aspartate to alanine. Histidine-tagged AspD (AspDHis) was also expressed in E. coli and purified from cell extracts. The purified AspDHis clearly exhibited activity of l-aspartate-β-decarboxylase. Recombinant AspT was solubilized from E. coli membranes and reconstituted in proteoliposomes. The reconstituted AspT catalyzed self-exchange of aspartate and electrogenic heterologous exchange of aspartate with alanine. Thus, the asp operon confers a proton motive metabolic cycle consisting of the electrogenic aspartate-alanine antiporter and the aspartate decarboxylase, which keeps intracellular levels of alanine, the countersubstrate for aspartate, high. PMID:12003930

  14. Plasmid-encoded asp operon confers a proton motive metabolic cycle catalyzed by an aspartate-alanine exchange reaction.

    PubMed

    Abe, Keietsu; Ohnishi, Fumito; Yagi, Kyoko; Nakajima, Tasuku; Higuchi, Takeshi; Sano, Motoaki; Machida, Masayuki; Sarker, Rafiquel I; Maloney, Peter C

    2002-06-01

    Tetragenococcus halophila D10 catalyzes the decarboxylation of L-aspartate with nearly stoichiometric release of L-alanine and CO(2). This trait is encoded on a 25-kb plasmid, pD1. We found in this plasmid a putative asp operon consisting of two genes, which we designated aspD and aspT, encoding an L-aspartate-beta-decarboxylase (AspD) and an aspartate-alanine antiporter (AspT), respectively, and determined the nucleotide sequences. The sequence analysis revealed that the genes of the asp operon in pD1 were in the following order: promoter --> aspD --> aspT. The deduced amino acid sequence of AspD showed similarity to the sequences of two known L-aspartate-beta-decarboxylases from Pseudomonas dacunhae and Alcaligenes faecalis. Hydropathy analyses suggested that the aspT gene product encodes a hydrophobic protein with multiple membrane-spanning regions. The operon was subcloned into the Escherichia coli expression vector pTrc99A, and the two genes were cotranscribed in the resulting plasmid, pTrcAsp. Expression of the asp operon in E. coli coincided with appearance of the capacity to catalyze the decarboxylation of aspartate to alanine. Histidine-tagged AspD (AspDHis) was also expressed in E. coli and purified from cell extracts. The purified AspDHis clearly exhibited activity of L-aspartate-beta-decarboxylase. Recombinant AspT was solubilized from E. coli membranes and reconstituted in proteoliposomes. The reconstituted AspT catalyzed self-exchange of aspartate and electrogenic heterologous exchange of aspartate with alanine. Thus, the asp operon confers a proton motive metabolic cycle consisting of the electrogenic aspartate-alanine antiporter and the aspartate decarboxylase, which keeps intracellular levels of alanine, the countersubstrate for aspartate, high.

  15. Enzymatic resolution for the preparation of enantiomerically enriched D-beta-heterocyclic alanine derivatives using Escherichia coli aromatic L-amino acid transaminase.

    PubMed

    Cho, Byung-Kwan; Park, Hyung-Yeon; Seo, Joo-Hyun; Kinnera, Koteshwar; Lee, Bon-Su; Kim, Byung-Gee

    2004-11-20

    An enzymatic resolution was carried out for the preparation of enriched beta-heterocyclic D-alanine derivatives using Escherichia coli aromatic L-amino acid transaminase. The excess of pyrazole, imidazole, or 1,2,4-triazole reacted with methyl-2-acetamidoacrylate in acetonitrile in the presence of potassium carbonate at 60 degrees C, directly leading to make the potassium salt of the corresponding N-acetyl-beta-heterocyclic alanine derivatives. After the acidic deprotection of the N-acetyl group, 10 mM of racemic pyrazolylalanine, triazolylalanine, and imidazolylalanine were resolved to D-pyrazolylalanine, D-triazolylalanine, and D-imidazolylalanine with 46% (85% ee), 42% (72% ee), and 48% (95% ee) conversion yield in 18 h, respectively, using E. coli aromatic L-amino acid transaminase (EC 2.6.1.5). Although the three beta-heterocyclic L-alanine derivatives have similar molecular structures, they showed different reaction rates and enantioselectivities. The relative reactivities of the transaminase toward the beta-heterocyclic L-alanine derivatives could be explained by the relationship between the substrate binding energy (E, kcal/mol) to the enzyme active site and the distance (delta, A) from the nitrogen of alpha-amino group of the substrates to the C4' carbon of PLP-Lys258 Schiff base. As the ratio of the substrate binding energy (E) to the distance (delta) becomes indicative value of k(cat)/K(M) of the enzyme to the substrate, the relative reactivities of the beta-heterocyclic L-alanine derivatives were successfully correlated with E/delta, and the relationship was confirmed by our experiments.

  16. A β-Alanine Catabolism Pathway Containing a Highly Promiscuous ω-Transaminase in the 12-Aminododecanate-Degrading Pseudomonas sp. Strain AAC

    PubMed Central

    Wilding, Matthew; Peat, Thomas S.; Newman, Janet

    2016-01-01

    ABSTRACT We previously isolated the transaminase KES23458 from Pseudomonas sp. strain AAC as a promising biocatalyst for the production of 12-aminododecanoic acid, a constituent building block of nylon-12. Here, we report the subsequent characterization of this transaminase. It exhibits activity with a broad substrate range which includes α-, β-, and ω-amino acids, as well as α,ω-diamines and a number of other industrially relevant compounds. It is therefore a prospective candidate for the biosynthesis of a range of polyamide monomers. The crystal structure of KES23458 revealed that the protein forms a dimer containing a large active site pocket and unusual phosphorylated histidine residues. To infer the physiological role of the transaminase, we expressed, purified, and characterized a dehydrogenase from the same operon, KES23460. Unlike the transaminase, the dehydrogenase was shown to be quite selective, catalyzing the oxidation of malonic acid semialdehyde, formed from β-alanine transamination via KES23458. In keeping with previous reports, the dehydrogenase was shown to catalyze both a coenzyme A (CoA)-dependent reaction to form acetyl-CoA and a significantly slower CoA-independent reaction to form acetate. These findings support the original functional assignment of KES23458 as a β-alanine transaminase. However, a seemingly well-adapted active site and promiscuity toward unnatural compounds, such as 12-aminododecanoic acid, suggest that this enzyme could perform multiple functions for Pseudomonas sp. strain AAC. IMPORTANCE We describe the characterization of an industrially relevant transaminase able to metabolize 12-aminododecanoic acid, a constituent building block of the widely used polymer nylon-12, and we report the biochemical and structural characterization of the transaminase protein. A physiological role for this highly promiscuous enzyme is proposed based on the characterization of a related gene from the host organism. Molecular dynamics

  17. 13C-NMR spectroscopic evaluation of the citric acid cycle flux in conditions of high aspartate transaminase activity in glucose-perfused rat hearts.

    PubMed

    Tran-Dinh, S; Hoerter, J A; Mateo, P; Gyppaz, F; Herve, M

    1998-12-01

    A new mathematical model, based on the observation of 13C-NMR spectra of two principal metabolites (glutamate and aspartate), was constructed to determine the citric acid cycle flux in the case of high aspartate transaminase activity leading to the formation of large amounts of labeled aspartate and glutamate. In this model, the labeling of glutamate and aspartate carbons by chemical and isotopic exchange with the citric acid cycle are considered to be interdependent. With [U-13C]Glc or [1,2-(13)C]acetate as a substrate, all glutamate and aspartate carbons can be labeled. The isotopic transformations of 32 glutamate isotopomers into 16 aspartate isotopomers or vice versa were studied using matrix operations; the results were compiled in two matrices. We showed how the flux constants of the citric acid cycle and the 13C-enrichment of acetyl-CoA can be deduced from 13C-NMR spectra of glutamate and/or aspartate. The citric acid cycle flux in beating Wistar rat hearts, aerobically perfused with [U-13C]glucose in the absence of insulin, was investigated by 13C-NMR spectroscopy. Surprisingly, aspartate instead of glutamate was found to be the most abundantly-labeled metabolite, indicating that aspartate transaminase (which catalyses the reversible reaction: (glutamate + oxaloacetate <--> 2-oxoglutarate + aspartate) is highly active in the absence of insulin. The amount of aspartate was about two times larger than glutamate. The quantities of glutamate (G0) or aspartate (A0) were approximately the same for all hearts and remained constant during perfusion: G0 = (0.74 +/- 0.03) micromol/g; A0 = (1.49 +/- 0.05) micromol/g. The flux constants, i.e., the fraction of glutamate and aspartate in exchange with the citric acid cycle, were about 1.45 min(-1) and 0.72 min(-1), respectively; the flux of this cycle is about (1.07 +/- 0.02) micromol min(-1) g(-1). Excellent agreement between the computed and experimental data was obtained, showing that: i) in the absence of insulin

  18. Conserved aspartic acid 233 and alanine 231 are not required for poliovirus polymerase function in replicons

    PubMed Central

    Freistadt, Marion S; Eberle, Karen E

    2007-01-01

    Nucleic acid polymerases have similar structures and motifs. The function of an aspartic acid (conserved in all classes of nucleic acid polymerases) in motif A remains poorly understood in RNA-dependent RNA polymerases. We mutated this residue to alanine in a poliovirus replicon. The resulting mutant could still replicate, although at a reduced level. In addition, mutation A231C (also in motif A) yielded high levels of replication. Taken together these results show that poliovirus polymerase conserved residues D233 and A231 are not essential to poliovirus replicon function. PMID:17352827

  19. Structural analysis and mutant growth properties reveal distinctive enzymatic and cellular roles for the three major L-alanine transaminases of Escherichia coli.

    PubMed

    Peña-Soler, Esther; Fernandez, Francisco J; López-Estepa, Miguel; Garces, Fernando; Richardson, Andrew J; Quintana, Juan F; Rudd, Kenneth E; Coll, Miquel; Vega, M Cristina

    2014-01-01

    In order to maintain proper cellular function, the metabolism of the bacterial microbiota presents several mechanisms oriented to keep a correctly balanced amino acid pool. Central components of these mechanisms are enzymes with alanine transaminase activity, pyridoxal 5'-phosphate-dependent enzymes that interconvert alanine and pyruvate, thereby allowing the precise control of alanine and glutamate concentrations, two of the most abundant amino acids in the cellular amino acid pool. Here we report the 2.11-Å crystal structure of full-length AlaA from the model organism Escherichia coli, a major bacterial alanine aminotransferase, and compare its overall structure and active site composition with detailed atomic models of two other bacterial enzymes capable of catalyzing this reaction in vivo, AlaC and valine-pyruvate aminotransferase (AvtA). Apart from a narrow entry channel to the active site, a feature of this new crystal structure is the role of an active site loop that closes in upon binding of substrate-mimicking molecules, and which has only been previously reported in a plant enzyme. Comparison of the available structures indicates that beyond superficial differences, alanine aminotransferases of diverse phylogenetic origins share a universal reaction mechanism that depends on an array of highly conserved amino acid residues and is similarly regulated by various unrelated motifs. Despite this unifying mechanism and regulation, growth competition experiments demonstrate that AlaA, AlaC and AvtA are not freely exchangeable in vivo, suggesting that their functional repertoire is not completely redundant thus providing an explanation for their independent evolutionary conservation.

  20. Membrane topology of aspartate:alanine antiporter AspT from Comamonas testosteroni.

    PubMed

    Fujiki, Takashi; Nanatani, Kei; Nishitani, Kei; Yagi, Kyoko; Ohnishi, Fumito; Yoneyama, Hiroshi; Uchida, Takafumi; Nakajima, Tasuku; Abea, Keietsu

    2007-01-01

    We cloned the aspT gene encoding the L-aspartate:L-alanine antiporter AspTCt in Comamonas testosteroni genomic DNA. Analysis of the nucleotide sequence revealed that C. testosteroni has an asp operon containing aspT upstream of the l-aspartate 4-decarboxylase gene, and that the gene order of the asp operon of C. testosteroni is the inverse of that of Tetragenococcus halophilus. We used proteoliposomes to confirm the transport processes of AspTCt. To elucidate the two-dimensional structure of AspTCt, we analysed its membrane topology by means of alkaline phosphatase (PhoA) and beta-lactamase (BlaM) fusion methods. The fusion analyses revealed that AspTCt has seven transmembrane segments (TMs), a large cytoplasmic loop containing approximately 200 amino acid residues between TM4 and TM5, a cytoplasmic N-terminus, and a periplasmic C-terminus. These results suggest that the orientation of the N-terminus of AspTCt differs from that of tetragenococcal AspT, even though these two AspT orthologues catalyse the same transport reactions.

  1. A systems biology approach to understanding elevated serum alanine transaminase levels in a clinical trial with ximelagatran.

    PubMed

    Andersson, Ulf; Lindberg, Johan; Wang, Shunghuang; Balasubramanian, Raji; Marcusson-Ståhl, Maritha; Hannula, Mira; Zeng, Chenhui; Juhasz, Peter J; Kolmert, Johan; Bäckström, Jonas; Nord, Lars; Nilsson, Kerstin; Martin, Steve; Glinghammar, Björn; Cederbrant, Karin; Schuppe-Koistinen, Ina

    2009-12-01

    Ximelagatran was developed for the prevention and treatment of thromboembolic conditions. However, in long-term clinical trials with ximelagatran, the liver injury marker, alanine aminotransferase (ALT) increased in some patients. Analysis of plasma samples from 134 patients was carried out using proteomic and metabolomic platforms, with the aim of finding predictive biomarkers to explain the ALT elevation. Analytes that were changed after ximelagatran treatment included 3-hydroxybutyrate, pyruvic acid, CSF1R, Gc-globulin, L-glutamine, protein S and alanine, etc. Two of these analytes (pyruvic acid and CSF1R) were studied further in human cell cultures in vitro with ximelagatran. A systems biology approach applied in this study proved to be successful in generating new hypotheses for an unknown mechanism of toxicity.

  2. Predicting three-dimensional conformations of peptides constructed of only glycine, alanine, aspartic acid, and valine.

    PubMed

    Oda, Akifumi; Fukuyoshi, Shuichi

    2015-06-01

    The GADV hypothesis is a form of the protein world hypothesis, which suggests that life originated from proteins (Lacey et al. 1999; Ikehara 2002; Andras 2006). In the GADV hypothesis, life is thought to have originated from primitive proteins constructed of only glycine, alanine, aspartic acid, and valine ([GADV]-proteins). In this study, the three-dimensional (3D) conformations of randomly generated short [GADV]-peptides were computationally investigated using replica-exchange molecular dynamics (REMD) simulations (Sugita and Okamoto 1999). Because the peptides used in this study consisted of only 20 residues each, they could not form certain 3D structures. However, the conformational tendencies of the peptides were elucidated by analyzing the conformational ensembles generated by REMD simulations. The results indicate that secondary structures can be formed in several randomly generated [GADV]-peptides. A long helical structure was found in one of the hydrophobic peptides, supporting the conjecture of the GADV hypothesis that many peptides aggregated to form peptide multimers with enzymatic activity in the primordial soup. In addition, these results indicate that REMD simulations can be used for the structural investigation of short peptides.

  3. Predicting Three-Dimensional Conformations of Peptides Constructed of Only Glycine, Alanine, Aspartic Acid, and Valine

    NASA Astrophysics Data System (ADS)

    Oda, Akifumi; Fukuyoshi, Shuichi

    2015-06-01

    The GADV hypothesis is a form of the protein world hypothesis, which suggests that life originated from proteins (Lacey et al. 1999; Ikehara 2002; Andras 2006). In the GADV hypothesis, life is thought to have originated from primitive proteins constructed of only glycine, alanine, aspartic acid, and valine ([GADV]-proteins). In this study, the three-dimensional (3D) conformations of randomly generated short [GADV]-peptides were computationally investigated using replica-exchange molecular dynamics (REMD) simulations (Sugita and Okamoto 1999). Because the peptides used in this study consisted of only 20 residues each, they could not form certain 3D structures. However, the conformational tendencies of the peptides were elucidated by analyzing the conformational ensembles generated by REMD simulations. The results indicate that secondary structures can be formed in several randomly generated [GADV]-peptides. A long helical structure was found in one of the hydrophobic peptides, supporting the conjecture of the GADV hypothesis that many peptides aggregated to form peptide multimers with enzymatic activity in the primordial soup. In addition, these results indicate that REMD simulations can be used for the structural investigation of short peptides.

  4. R76 in transmembrane domain 3 of the aspartate:alanine transporter AspT is involved in substrate transport.

    PubMed

    Suzuki, Satomi; Nanatani, Kei; Abe, Keietsu

    2016-01-01

    The L-aspartate:L-alanine antiporter of Tetragenococcus halophilus (AspT) possesses an arginine residue (R76) within the GxxxG motif in the central part of transmembrane domain 3 (TM3)-a residue that has been estimated to transport function. In this study, we carried out amino acid substitutions of R76 and used proteoliposome reconstitution for analyzing the transport function of each substitution. Both l-aspartate and l-alanine transport assays showed that R76K has higher activity than the AspT-WT (R76), whereas R76D and R76E have lower activity than the AspT-WT. These results suggest that R76 is involved in AspT substrate transport.

  5. Observations of alanine aminotransferase and aspartate aminotransferase in THRIVE studies treated orally with ximelagatran.

    PubMed

    Harenberg, Job; Jörg, Ingrid; Weiss, Christel

    2006-01-01

    Treatment of acute venous thromboembolism (VTE) and prophylaxis of recurrent events has been investigated in the THRIVE (THRombin Inhibitor in Venous Thrombe Embolism) Treatment and the THRIVE III trial using the oral direct thrombin inhibitor ximelagatran. Alanine aminotransferase (ALAT) increased in 9.6% and 6.4% of patients in the THRIVE Treatment and THRIVE III trials, respectively. The authors analysed the time course of the ALAT and in additionally of aspartate aminotransferase (ASAT) in blood from 52 and 23 patients participating in the THRIVE Treatment and the THRIVE III trials in Germany. Analysis of variance for repeated measures and t test were performed. In the THRIVE Treatment trial, ALAT was significantly higher at week 2 for enoxaparin/warfarin (p => .0039, t test) and at months 3 and 6 for ximelagatran (p = .0453, p = .0014, respectively). ASAT and ASAT/ALAT ratio values did not increase and not differ for both groups. In the THRIVE III trial, ALAT and ASAT did not increase and did not differ compared to the comparator placebo. 2 x 36 mg Ximelagatran, induced higher ALAT values at months 3 and 6 compared to 2 x 24 mg ximelagatran (p = .0105, p = .0063, respectively). ASAT did not differ between the two doses of ximelagatran. The ASAT/ALAT ratios were lower at week 2 for enoxaparin/warfarin (t-test, p = .0032) and at month 3 and 6 for 2 x 36 mg versus warfarin or 2 x 24 mg Ximelagatran (p between .0187 and .0002). The authors conclude that ALAT increases dose dependently during therapy with ximelagatran. The less frequent and lower increase of ASAT values compared to ALAT values indicates a nontoxic effect of ximelagatran on liver cells.

  6. Correlation of serum alanine aminotransferase and aspartate aminotransferase with coronary heart disease

    PubMed Central

    Shen, Jianying; Zhang, Jingying; Wen, Jing; Ming, Qiang; Zhang, Ji; Xu, Yawei

    2015-01-01

    Objective: This study aimed to explore the relationship between different risk factors (especially serum alanine aminotransferase [ALT] and aspartate aminotransferase [AST]) and coronary heart disease (CHD). Methods: A total of 610 inpatients were recruited. Initial coronary angiography (CAG) was performed to evaluate the severity of coronary lesions. On the basis of findings from CAG, patients were divided into control group (n=260) and CHD group (n=350). Logistic regression analysis was employed for the evaluation of clinical characteristics and biochemical parameters, aiming to explore the relationship between risk factors (including AST and ALT) and CHD. Results: Results showed type 2 diabetes, hypertension, dyslipidemia, smoking and family history of CHD were clinical risk factors of CHD. Laboratory examinations showed the serum levels of triglycerides, low-density lipoprotein, AST and ALT in CHD group were significantly higher than those in control group (P<0.05). Of these parameters, the AST was 50.98±8.12 U/L in CHD group and 20.14±3.94 U/L in control group (P<0.01); the ALT was 42.31±8.34 U/L in CHD group and 18.25±6.38 U/L in control group (P<0.01). Conclusion: The serum levels of AST and ALT in CHD patients are higher than those in controls. High serum AST and ALT are biochemical markers which can be used to predict the severity of CHD and are also independent risk factors of CHD. PMID:26064360

  7. [Unexplained, subclinical chronically elevated transaminases].

    PubMed

    Vital Durand, D; Lega, J-C; Fassier, T; Zenone, T; Durieu, I

    2013-08-01

    Unexplained, subclinical chronically elevated transaminases is mainly a marker of non-alcoholic fatty liver disease, metabolic syndrome, alcoholism and diabetes, which are very common situations but viral hepatitis and iatrogenic origin must also be considered. Before looking for hepatic or genetic rare diseases, it is worth considering hypertransaminasemia as a clue for muscular disease, particularly in paediatric settings, and creatine phosphokinase is a specific marker. Then, patient history, examination and appropriate biologic requests can permit the identification of less frequent disorders where isolated hypertransaminasemia is possibly the unique marker of the disease for a long while: hemochromatosis, celiac disease, autoimmune hepatitis, Wilson's disease, α1-anti-trypsine deficiency, thyroid dysfunctions, Addison's disease. Liver biopsy should be performed only in patients with aspartate aminotransferases upper the normal range or alanine aminotransferases higher than twice the normal range after 6 months delay with dietetic corrections.

  8. Topology of AspT, the aspartate:alanine antiporter of Tetragenococcus halophilus, determined by site-directed fluorescence labeling.

    PubMed

    Nanatani, Kei; Fujiki, Takashi; Kanou, Kazuhiko; Takeda-Shitaka, Mayuko; Umeyama, Hideaki; Ye, Liwen; Wang, Xicheng; Nakajima, Tasuku; Uchida, Takafumi; Maloney, Peter C; Abe, Keietsu

    2007-10-01

    The gram-positive lactic acid bacterium Tetragenococcus halophilus catalyzes the decarboxylation of L-aspartate (Asp) with release of L-alanine (Ala) and CO(2). The decarboxylation reaction consists of two steps: electrogenic exchange of Asp for Ala catalyzed by an aspartate:alanine antiporter (AspT) and intracellular decarboxylation of the transported Asp catalyzed by an L-aspartate-beta-decarboxylase (AspD). AspT belongs to the newly classified aspartate:alanine exchanger family (transporter classification no. 2.A.81) of transporters. In this study, we were interested in the relationship between the structure and function of AspT and thus analyzed the topology by means of the substituted-cysteine accessibility method using the impermeant, fluorescent, thiol-specific probe Oregon Green 488 maleimide (OGM) and the impermeant, nonfluorescent, thiol-specific probe [2-(trimethylammonium)ethyl]methanethiosulfonate bromide. We generated 23 single-cysteine variants from a six-histidine-tagged cysteineless AspT template. A cysteine position was assigned an external location if the corresponding single-cysteine variant reacted with OGM added to intact cells, and a position was assigned an internal location if OGM labeling required cell lysis. The topology analyses revealed that AspT has a unique topology; the protein has 10 transmembrane helices (TMs), a large hydrophilic cytoplasmic loop (about 180 amino acids) between TM5 and TM6, N and C termini that face the periplasm, and a positively charged residue (arginine 76) within TM3. Moreover, the three-dimensional structure constructed by means of the full automatic modeling system indicates that the large hydrophilic cytoplasmic loop of AspT possesses a TrkA_C domain and a TrkA_C-like domain and that the three-dimensional structures of these domains are similar to each other even though their amino acid sequences show low similarity.

  9. Elevated Aspartate and Alanine Aminotransferase Levels and Natural Death among Patients with Methamphetamine Dependence

    PubMed Central

    Kuo, Chian-Jue; Tsai, Shang-Ying; Liao, Ya-Tang; Conwell, Yeates; Lee, Wen-Chung; Huang, Ming-Chyi; Lin, Shih-Ku; Chen, Chiao-Chicy; Chen, Wei J.

    2012-01-01

    Background Methamphetamine is one of the fastest growing illicit drugs worldwide, causing multiple organ damage and excessive natural deaths. The authors aimed to identify potential laboratory indices and clinical characteristics associated with natural death through a two-phase study. Methods Methamphetamine-dependent patients (n = 1,254) admitted to a psychiatric center in Taiwan between 1990 and 2007 were linked with a national mortality database for causes of death. Forty-eight subjects died of natural causes, and were defined as the case subjects. A time-efficient sex- and age-matched nested case-control study derived from the cohort was conducted first to explore the potential factors associated with natural death through a time-consuming standardized review of medical records. Then the identified potential factors were evaluated in the whole cohort to validate the findings. Results In phase I, several potential factors associated with natural death were identified, including aspartate aminotransferase (AST), alanine aminotransferase (ALT), comorbid alcohol use disorder, and the prescription of antipsychotic drugs. In phase II, these factors were confirmed in the whole cohort using survival analysis. For the characteristics at the latest hospital admission, Cox proportional hazards models showed that the adjusted hazard ratios for natural death were 6.75 (p<0.001) in the group with markedly elevated AST (>80 U/L) and 2.66 (p<0.05) in the group with mildly elevated AST (40–80 U/L), with reference to the control group (<40 U/L). As for ALT, the adjusted hazard ratios were 5.41 (p<0.001), and 1.44 (p>0.05). Comorbid alcohol use disorder was associated with an increased risk of natural death, whereas administration of antipsychotic drugs was not associated with lowered risk. Conclusions This study highlights the necessity of intensive follow-up for those with elevated AST and ALT levels and comorbid alcohol use disorder for preventing excessive natural

  10. Alanine transaminase (ALT) blood test

    MedlinePlus

    ... liver damage. Normal Results The normal range is: Male: 10 to 40 U/L Female: 7 to 35 U/L Normal value ranges may vary slightly among different laboratories. Some labs use different measurements or may test different samples. Talk to your ...

  11. β-N-Methylamino-L-alanine (BMAA) perturbs alanine, aspartate and glutamate metabolism pathways in human neuroblastoma cells as determined by metabolic profiling.

    PubMed

    Engskog, Mikael K R; Ersson, Lisa; Haglöf, Jakob; Arvidsson, Torbjörn; Pettersson, Curt; Brittebo, Eva

    2017-02-04

    β-Methylamino-L-alanine (BMAA) is a non-proteinogenic amino acid that induces long-term cognitive deficits, as well as an increased neurodegeneration and intracellular fibril formation in the hippocampus of adult rodents following short-time neonatal exposure and in vervet monkey brain following long-term exposure. It has also been proposed to be involved in the etiology of neurodegenerative disease in humans. The aim of this study was to identify metabolic effects not related to excitotoxicity or oxidative stress in human neuroblastoma SH-SY5Y cells. The effects of BMAA (50, 250, 1000 µM) for 24 h on cells differentiated with retinoic acid were studied. Samples were analyzed using LC-MS and NMR spectroscopy to detect altered intracellular polar metabolites. The analysis performed, followed by multivariate pattern recognition techniques, revealed significant perturbations in protein biosynthesis, amino acid metabolism pathways and citrate cycle. Of specific interest were the BMAA-induced alterations in alanine, aspartate and glutamate metabolism and as well as alterations in various neurotransmitters/neuromodulators such as GABA and taurine. The results indicate that BMAA can interfere with metabolic pathways involved in neurotransmission in human neuroblastoma cells.

  12. Factors Predicting HBsAg Seroclearance and Alanine Transaminase Elevation in HBeAg-Negative Hepatitis B Virus-Infected Patients with Persistently Normal Liver Function

    PubMed Central

    Chien, Tai-Long; Wang, Jing-Houng; Kee, Kwong-Ming; Chen, Chien-Hung; Hung, Chao-Hung; Lu, Sheng-Nan

    2016-01-01

    Background A certain proportion of hepatitis B virus (HBV)-infected patients with persistently normal alanine transaminase (ALT) levels have significant fibrosis. Using liver stiffness measurements (Fibroscan®) and laboratory data, including serum ALT, quantitative HBsAg (qHBsAg), and HBV DNA, we attempted to predict the natural histories of these patients. Methods Non-cirrhotic HBeAg-negative chronic hepatitis B patients with persistently normal ALT were followed up prospectively with the end points of HBsAg seroclearance and ALT elevation above the upper limit of normal. The factors that were predictive of the end points were identified. Results A total of 235 patients with an average age of 48.1 +/- 10.7 years were followed up for 7 years. Eight patients (3.4%) lost HBsAg, and 15 patients (6.4%) experienced ALT elevation. The overall cumulative HBsAg seroclearances were 0.4%, 1.3% and 2.3% at years 1, 3 and 5, respectively. Regarding HBsAg seroclearance, the qHBsAg (< 30 IU/ml) cutoff resulted in a hazard ratio (HR) of 19.6 with a 95% confidence interval (CI) of 2.2–166.7 (P = 0.008). The baseline ALT level (odd ratio (OR) 1.075, 95% CI 1.020–1.132, P = 0.006) and a qHBsAg above 1000 IU/ml (3.7, 1.1–12.4, P = 0.032) were associated with ALT elevation. Limited to men, the baseline liver stiffness (1.6, 1.0–2.5, P = 0.031) and a qHBsAg above 1000 IU/ml (10.4, 2.1–52.4, P = 0.004) were factors that were independently associated with ALT elevation. Conclusion A low qHBsAg level predicted HBsAg clearance. Baseline ALT and a qHBsAg above 1000 IU/ml were independent predictive factors for ALT elevation. Among the men, the independent predictive factors for ALT elevation were qHBsAg and liver stiffness. PMID:27935953

  13. Serum γ-Glutamyltransferase, Alanine Aminotransferase and Aspartate Aminotransferase Activity in Healthy Blood Donor of Different Ethnic Groups in Gorgan

    PubMed Central

    Mehrpouya, Masoumeh; Pourhashem, Zeinab

    2016-01-01

    Introduction Measure of liver enzymes may help to increase safety of blood donation for both blood donor and recipient. Determination of liver enzymes may prepare valuable clinical information. Aim To assess serum γ-Glutamyltransferase (GGT), Alanine Aminotransferase (ALT), and Aspartate Aminotransferase (AST) activities in healthy blood donors in different ethnic groups in Gorgan. Materials and Methods This study was performed in 450 healthy male blood donors, in three ethnic groups (Fars, Sistanee and Turkman) who attended Gorgan blood transfusion center. Liver enzymes (GGT, ALT and AST) were determined. Results Serum AST and ALT in three ethnic groups were significant except for serum GGT levels. There was significant correlation between family histories of liver disease and systolic blood pressure and AST in Fars, and GGT in Sistanee ethnic groups. Conclusion Several factors, such as age, family history of diabetes mellitus, family history of liver disease and smoking habit had no effect on some liver enzymes in different ethnic groups in this area. Variation of AST, ALT, and GGT enzyme activities in healthy subjects was associated with some subjects in our study groups. According to our study, it suggests that screening of AST and GGT enzymes in subjects with family history of liver disease is necessary in different ethnic groups. PMID:27630834

  14. The effects of the stress caused by experimental procedures on alanine aspartate, glutamate and glutamine in rat liver

    PubMed Central

    Heath, D. F.; George, D. R.; Rose, J. G.

    1971-01-01

    Rats were stressed by intravenous injection, tail-warming or moderate restraint for 30s, i.e. by stresses imposed by normal handling during experiment. Liver glutamate concentrations were greatly affected. The results were substantially the same in two varieties of rat (Wistar and Sprague–Dawley), in two laboratories, in experiments carried out by two sets of workers, and after all three stresses. The following detailed results refer to Wistar rats. 1. In starved rats at 20°C and 30°C and in post-absorptive rats at 20°C stress by injection raised liver glutamate concentrations from 1.54, 1.57 and 1.88μmol/g wet wt. 30s after injection to 3.4, 2.7 and 3.6μmol/g wet wt. respectively a few minutes later. In starved rats at 20°C the concentration then fell slowly to 2.3μmol/g wet wt., in starved rats at 30°C it remained steady, and in post-absorptive rats at 20°C it rose slowly to about 4.3μmol/g wet wt. The final values seemed fairly steady and corresponded to an `alert' state. 2. In starved rats at 20°C anaesthesia, with or without injection or cannulation during it, raised glutamate concentrations to the `alert' values, which were maintained for 2–3h. 3. Liver alanine concentration in post-absorptive rats initially fell from 1.5 to 0.8μmol/g, and then stayed fairly constant. 4. Aspartate and glutamine concentrations altered only in starved rats, and proportionately much less than those of glutamate. 5. The necessity for knowing the time-dependence of glutamate concentrations after experimental handling is emphasized. 6. There is no wholly satisfactory explanation of the observations. PMID:5145894

  15. Topology of AspT, the Aspartate:Alanine Antiporter of Tetragenococcus halophilus, Determined by Site-Directed Fluorescence Labeling▿ †

    PubMed Central

    Nanatani, Kei; Fujiki, Takashi; Kanou, Kazuhiko; Takeda-Shitaka, Mayuko; Umeyama, Hideaki; Ye, Liwen; Wang, Xicheng; Nakajima, Tasuku; Uchida, Takafumi; Maloney, Peter C.; Abe, Keietsu

    2007-01-01

    The gram-positive lactic acid bacterium Tetragenococcus halophilus catalyzes the decarboxylation of l-aspartate (Asp) with release of l-alanine (Ala) and CO2. The decarboxylation reaction consists of two steps: electrogenic exchange of Asp for Ala catalyzed by an aspartate:alanine antiporter (AspT) and intracellular decarboxylation of the transported Asp catalyzed by an l-aspartate-β-decarboxylase (AspD). AspT belongs to the newly classified aspartate:alanine exchanger family (transporter classification no. 2.A.81) of transporters. In this study, we were interested in the relationship between the structure and function of AspT and thus analyzed the topology by means of the substituted-cysteine accessibility method using the impermeant, fluorescent, thiol-specific probe Oregon Green 488 maleimide (OGM) and the impermeant, nonfluorescent, thiol-specific probe [2-(trimethylammonium)ethyl]methanethiosulfonate bromide. We generated 23 single-cysteine variants from a six-histidine-tagged cysteineless AspT template. A cysteine position was assigned an external location if the corresponding single-cysteine variant reacted with OGM added to intact cells, and a position was assigned an internal location if OGM labeling required cell lysis. The topology analyses revealed that AspT has a unique topology; the protein has 10 transmembrane helices (TMs), a large hydrophilic cytoplasmic loop (about 180 amino acids) between TM5 and TM6, N and C termini that face the periplasm, and a positively charged residue (arginine 76) within TM3. Moreover, the three-dimensional structure constructed by means of the full automatic modeling system indicates that the large hydrophilic cytoplasmic loop of AspT possesses a TrkA_C domain and a TrkA_C-like domain and that the three-dimensional structures of these domains are similar to each other even though their amino acid sequences show low similarity. PMID:17660287

  16. An archaeal glutamate decarboxylase homolog functions as an aspartate decarboxylase and is involved in β-alanine and coenzyme A biosynthesis.

    PubMed

    Tomita, Hiroya; Yokooji, Yuusuke; Ishibashi, Takuya; Imanaka, Tadayuki; Atomi, Haruyuki

    2014-03-01

    β-Alanine is a precursor for coenzyme A (CoA) biosynthesis and is a substrate for the bacterial/eukaryotic pantothenate synthetase and archaeal phosphopantothenate synthetase. β-Alanine is synthesized through various enzymes/pathways in bacteria and eukaryotes, including the direct decarboxylation of Asp by aspartate 1-decarboxylase (ADC), the degradation of pyrimidine, or the oxidation of polyamines. However, in most archaea, homologs of these enzymes are not present; thus, the mechanisms of β-alanine biosynthesis remain unclear. Here, we performed a biochemical and genetic study on a glutamate decarboxylase (GAD) homolog encoded by TK1814 from the hyperthermophilic archaeon Thermococcus kodakarensis. GADs are distributed in all three domains of life, generally catalyzing the decarboxylation of Glu to γ-aminobutyrate (GABA). The recombinant TK1814 protein displayed not only GAD activity but also ADC activity using pyridoxal 5'-phosphate as a cofactor. Kinetic studies revealed that the TK1814 protein prefers Asp as its substrate rather than Glu, with nearly a 20-fold difference in catalytic efficiency. Gene disruption of TK1814 resulted in a strain that could not grow in standard medium. Addition of β-alanine, 4'-phosphopantothenate, or CoA complemented the growth defect, whereas GABA could not. Our results provide genetic evidence that TK1814 functions as an ADC in T. kodakarensis, providing the β-alanine necessary for CoA biosynthesis. The results also suggest that the GAD activity of TK1814 is not necessary for growth, at least under the conditions applied in this study. TK1814 homologs are distributed in a wide range of archaea and may be responsible for β-alanine biosynthesis in these organisms.

  17. An Archaeal Glutamate Decarboxylase Homolog Functions as an Aspartate Decarboxylase and Is Involved in β-Alanine and Coenzyme A Biosynthesis

    PubMed Central

    Tomita, Hiroya; Yokooji, Yuusuke; Ishibashi, Takuya; Imanaka, Tadayuki

    2014-01-01

    β-Alanine is a precursor for coenzyme A (CoA) biosynthesis and is a substrate for the bacterial/eukaryotic pantothenate synthetase and archaeal phosphopantothenate synthetase. β-Alanine is synthesized through various enzymes/pathways in bacteria and eukaryotes, including the direct decarboxylation of Asp by aspartate 1-decarboxylase (ADC), the degradation of pyrimidine, or the oxidation of polyamines. However, in most archaea, homologs of these enzymes are not present; thus, the mechanisms of β-alanine biosynthesis remain unclear. Here, we performed a biochemical and genetic study on a glutamate decarboxylase (GAD) homolog encoded by TK1814 from the hyperthermophilic archaeon Thermococcus kodakarensis. GADs are distributed in all three domains of life, generally catalyzing the decarboxylation of Glu to γ-aminobutyrate (GABA). The recombinant TK1814 protein displayed not only GAD activity but also ADC activity using pyridoxal 5′-phosphate as a cofactor. Kinetic studies revealed that the TK1814 protein prefers Asp as its substrate rather than Glu, with nearly a 20-fold difference in catalytic efficiency. Gene disruption of TK1814 resulted in a strain that could not grow in standard medium. Addition of β-alanine, 4′-phosphopantothenate, or CoA complemented the growth defect, whereas GABA could not. Our results provide genetic evidence that TK1814 functions as an ADC in T. kodakarensis, providing the β-alanine necessary for CoA biosynthesis. The results also suggest that the GAD activity of TK1814 is not necessary for growth, at least under the conditions applied in this study. TK1814 homologs are distributed in a wide range of archaea and may be responsible for β-alanine biosynthesis in these organisms. PMID:24415726

  18. Four cases of type 1 diabetes mellitus showing sharp serum transaminase increases and hepatomegaly due to glycogenic hepatopathy.

    PubMed

    Ikarashi, Yuichi; Kogiso, Tomomi; Hashimoto, Etsuko; Yamamoto, Kuniko; Kodama, Kazuhisa; Taniai, Makiko; Torii, Nobuyuki; Takaike, Hiroko; Uchigata, Yasuko; Tokushige, Katsutoshi

    2017-03-01

    Poorly controlled diabetes mellitus (DM) patients sometimes show serum transaminase elevations due to steatohepatitis. However, we experienced four cases with type 1 DM with sharp elevations in serum transaminases that could not be explained by steatohepatitis alone and showed bright liver. They were diagnosed with glycogenic hepatopathy (GH) clinicopathologically. The four patients had a median age of 22.5 years (range, 19-29 years) and 12.5 (4-15)-year histories of type 1 DM and showed marked increases in serum transaminases (aspartate aminotransferase, 698 U/L [469-2763 U/L]; alanine transaminase, 255 U/L [216-956 U/L]). Diabetes mellitus control was poor and hemoglobin A1c was 12.7% (11-16.5%). Three cases had a past history of diabetic ketoacidosis. Hepatomegaly and hyperdense liver were seen on computed tomography scans. Magnetic resonance imaging showed low intensity in T2-weighted images. The pathological findings revealed pale and swollen hepatocytes and glycogenated nuclei. The architecture of the liver was preserved, and steatosis and fibrosis were mild. The cytoplasm of hepatocytes stained densely positive with periodic acid-Schiff, and the positive staining disappeared after diastase digestion, suggesting glycogen deposition. No other cause of hepatitis was evident, and the diagnosis was GH. Elevated transaminases improved within 1 month with good glycemic control. Transaminase elevations were observed several times in three cases with poor glycemic control. Glycogenic hepatopathy is rare, but extremely high serum elevations of transaminases are important to identify clinically. Despite showing a good clinical course in general, GH sometimes recurs and requires strict glycemic control. Clinicians should be aware of and recognize GH when dealing with uncontrolled DM patients.

  19. The aspartate aminotransferase-to-alanine aminotransferase ratio predicts all-cause and cardiovascular mortality in patients with type 2 diabetes

    PubMed Central

    Zoppini, Giacomo; Cacciatori, Vittorio; Negri, Carlo; Stoico, Vincenzo; Lippi, Giuseppe; Targher, Giovanni; Bonora, Enzo

    2016-01-01

    Abstract An increased aspartate aminotransferase-to-alanine aminotransferase ratio (AAR) has been widely used as a marker of advanced hepatic fibrosis. Increased AAR was also shown to be significantly associated with the risk of developing cardiovascular (CV) disease. The aim of this study was to assess the relationship between the AAR and mortality risk in a well-characterized cohort of patients with type 2 diabetes. A cohort of 2529 type 2 diabetic outpatients was followed-up for 6 years to collect cause-specific mortality. Cox regression analyses were modeled to estimate the independent association between AAR and the risk of all-cause and CV mortality. Over the 6-year follow-up period, 12.1% of patients died, 47.5% of whom from CV causes. An increased AAR, but not its individual components, was significantly associated with an increased risk of all-cause (adjusted-hazard risk 1.83, confidence interval [CI] 95% 1.14–2.93, P = 0.012) and CV (adjusted-hazard risk 2.60, CI 95% 1.38–4.90, P < 0.003) mortality after adjustment for multiple clinical risk factors and potential confounding variables. The AAR was independently associated with an increased risk of both all-cause and CV mortality in patients with type 2 diabetes. These findings suggest that an increased AAR may reflect more systemic derangements that are not simply limited to liver damage. Further studies are needed to elucidate the pathophysiological implications of an increased AAR. PMID:27787357

  20. Aspartate aminotransferase (AST) blood test

    MedlinePlus

    ... 2016:chap 73. Read More Acute kidney failure Acute pancreatitis Alanine transaminase (ALT) blood test ALP - blood test Burns Cardiac catheterization Enzyme Heart attack Hemolytic anemia Hepatic Liver cancer - hepatocellular carcinoma Liver ...

  1. Choledocholithiasis presenting with very high transaminase level

    PubMed Central

    Agahi, Amy; McNair, Alistair

    2012-01-01

    We present three cases of choledocholithiasis presenting with a rise in transaminase to levels normally associated with acute hepatitis (alanine aminotransferase in excess of 1000 IU/l). All three cases had repeated investigation for liver disease before identification of common bile duct stones with magnetic resonance cholangiopancreatogram, and removal at endoscopic retrograde cholangiopancreatogram. We discuss the existing literature and the potential mechanisms of hepatocyte injury in extrahepatic obstruction. PMID:23188856

  2. Un-catalyzed peptide bond formation between two monomers of glycine, alanine, serine, threonine, and aspartic acid in gas phase: a density functional theory study

    NASA Astrophysics Data System (ADS)

    Bhunia, Snehasis; Singh, Ajeet; Ojha, Animesh K.

    2016-05-01

    In the present report, un-catalyzed peptide bond formation between two monomers of glycine (Gly), alanine (Ala), serine (Ser), threonine (Thr), and aspartic acid (Asp) has been investigated in gas phase via two steps reaction mechanism and concerted mechanism at B3LYP/6-31G(d,p) and M062X/6-31G(d,p) level of theories. The peptide bond is formed through a nucleophilic reaction via transition states, TS1 and TS2 in stepwise mechanism. The TS1 reveals formation of a new C-N bond while TS2 illustrate the formation of C=O bond. In case of concerted mechanism, C-N bond is formed by a single four-centre transition state (TS3). The energy barrier is used to explain the involvement of energy at each step of the reaction. The energy barrier (20-48 kcal/mol) is required for the transformation of reactant state R1 to TS1 state and intermediate state I1 to TS2 state. The large value of energy barrier is explained in terms of distortion and interaction energies for stepwise mechanism. The energy barrier of TS3 in concerted mechanism is very close to the energy barrier of the first transition state (TS1) of the stepwise mechanism for the formation of Gly-Gly and Ala-Ala di- peptide. However, in case of Ser-Ser, Thr-Thr and Asp-Asp di-peptide, the energy barrier of TS3 is relatively high than that of the energy barrier of TS1 calculated at B3LYP/6-31G(d,p) and M062X/6-31G(d,p) level of theories. In both the mechanisms, the value of energy barrier calculated at B3LYP/6-31G(d,p) level of theory is greater than that of the value calculated at M062X/6-31G(d,p) level of theory.

  3. Structural and Functional Importance of Transmembrane Domain 3 (TM3) in the Aspartate:Alanine Antiporter AspT: Topology and Function of the Residues of TM3 and Oligomerization of AspT▿

    PubMed Central

    Nanatani, Kei; Maloney, Peter C.; Abe, Keietsu

    2009-01-01

    AspT, the aspartate:alanine antiporter of Tetragenococcus halophilus, a membrane protein of 543 amino acids with 10 putative transmembrane (TM) helices, is the prototype of the aspartate:alanine exchanger (AAE) family of transporters. Because TM3 (isoleucine 64 to methionine 85) has many amino acid residues that are conserved among members of the AAE family and because TM3 contains two charged residues and four polar residues, it is thought to be located near (or to form part of) the substrate translocation pathway that includes the binding site for the substrates. To elucidate the role of TM3 in the transport process, we carried out cysteine-scanning mutagenesis. The substitutions of tyrosine 75 and serine 84 had the strongest inhibitory effects on transport (initial rates of l-aspartate transport were below 15% of the rate for cysteine-less AspT). Considerable but less-marked effects were observed upon the replacement of methionine 70, phenylalanine 71, glycine 74, arginine 76, serine 83, and methionine 85 (initial rates between 15% and 30% of the rate for cysteine-less AspT). Introduced cysteine residues at the cytoplasmic half of TM3 could be labeled with Oregon green maleimide (OGM), whereas cysteines close to the periplasmic half (residues 64 to 75) were not labeled. These results suggest that TM3 has a hydrophobic core on the periplasmic half and that hydrophilic residues on the cytoplasmic half of TM3 participate in the formation of an aqueous cavity in membranes. Furthermore, the presence of l-aspartate protected the cysteine introduced at glycine 62 against a reaction with OGM. In contrast, l-aspartate stimulated the reactivity of the cysteine introduced at proline 79 with OGM. These results demonstrate that TM3 undergoes l-aspartate-induced conformational alterations. In addition, nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis analyses and a glutaraldehyde cross-linking assay suggest that functional AspT forms homo-oligomers as a

  4. Structural and functional importance of transmembrane domain 3 (TM3) in the aspartate:alanine antiporter AspT: topology and function of the residues of TM3 and oligomerization of AspT.

    PubMed

    Nanatani, Kei; Maloney, Peter C; Abe, Keietsu

    2009-04-01

    AspT, the aspartate:alanine antiporter of Tetragenococcus halophilus, a membrane protein of 543 amino acids with 10 putative transmembrane (TM) helices, is the prototype of the aspartate:alanine exchanger (AAE) family of transporters. Because TM3 (isoleucine 64 to methionine 85) has many amino acid residues that are conserved among members of the AAE family and because TM3 contains two charged residues and four polar residues, it is thought to be located near (or to form part of) the substrate translocation pathway that includes the binding site for the substrates. To elucidate the role of TM3 in the transport process, we carried out cysteine-scanning mutagenesis. The substitutions of tyrosine 75 and serine 84 had the strongest inhibitory effects on transport (initial rates of l-aspartate transport were below 15% of the rate for cysteine-less AspT). Considerable but less-marked effects were observed upon the replacement of methionine 70, phenylalanine 71, glycine 74, arginine 76, serine 83, and methionine 85 (initial rates between 15% and 30% of the rate for cysteine-less AspT). Introduced cysteine residues at the cytoplasmic half of TM3 could be labeled with Oregon green maleimide (OGM), whereas cysteines close to the periplasmic half (residues 64 to 75) were not labeled. These results suggest that TM3 has a hydrophobic core on the periplasmic half and that hydrophilic residues on the cytoplasmic half of TM3 participate in the formation of an aqueous cavity in membranes. Furthermore, the presence of l-aspartate protected the cysteine introduced at glycine 62 against a reaction with OGM. In contrast, l-aspartate stimulated the reactivity of the cysteine introduced at proline 79 with OGM. These results demonstrate that TM3 undergoes l-aspartate-induced conformational alterations. In addition, nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis analyses and a glutaraldehyde cross-linking assay suggest that functional AspT forms homo-oligomers as a

  5. [Regulation of key enzymes of L-alanine biosynthesis by Brevibacterium flavum producer strains].

    PubMed

    Melkonian, L O; Avetisova, G E; Ambartsumian, A A; Chakhalian, A Kh; Sagian, A S

    2013-01-01

    The mechanisms of L-alanine overproduction by Brevibacterium flavum producer strains were studied. It was shown that beta-CI-L-alanine is an inhibitor of some key enzymes involved in the synthesis of L-alanine, including alanine transaminase and valine-pyruvate transaminase. Two highly active B. flavum GL1 and GL1 8 producer strains, which are resistant to the inhibitory effect of beta-Cl-L-alanine, were obtained using a parental B. flavum AA5 producer strain, characterized by a reduced activity of alanine racemase (>or=98%). It was demonstrated that the increased L-alanine synthesis efficiency observed in the producer strains developed in this work is associated with the absence of inhibition of alanine transaminase by the end product of the biosynthesis reaction, as well as with the effect of derepression of both alanine transaminase and valine-pyruvate transaminase synthesis by the studied compound.

  6. Simultaneous analysis of D-alanine, D-aspartic acid, and D-serine using chiral high-performance liquid chromatography-tandem mass spectrometry and its application to the rat plasma and tissues.

    PubMed

    Karakawa, Sachise; Shimbo, Kazutaka; Yamada, Naoyuki; Mizukoshi, Toshimi; Miyano, Hiroshi; Mita, Masashi; Lindner, Wolfgang; Hamase, Kenji

    2015-11-10

    A highly sensitive and selective chiral LC-MS/MS method for D-alanine, D-aspartic acid and D-serine has been developed using the precolumn derivatization reagents, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AccQ-Tag) or p-N,N,N-trimethylammonioanilyl N'-hydroxysuccinimidyl carbamate iodide (TAHS). The thus N-tagged enantiomers of the derivatized amino acids were nicely separated within 20min using the cinchona alkaloid-based zwittterionic ion-exchange type enantioselective column, Chiralpak ZWIX(+). The selected reaction monitoring was applied for detecting the target d-amino acids in biological matrices. By using the present chiral LC-MS/MS method, the three d-amino acids and their l-forms could be simultaneously determined in the range of 0.1-500nmol/mL. Finally, the technique was successfully applied to rat plasma and tissue samples.

  7. The effects of alanine-substituted conantokin-G and ifenprodil on the human spermine-activated N-methyl-D-aspartate receptor.

    PubMed

    Tsai, V W-W; Dodd, P R; Lewis, R J

    2005-01-01

    We evaluated the effects of Ala-7-conantokin-G (Con-G(A7)) and ifenprodil on the modulation by spermine of [(3)H]MK801 binding to human cortical membranes. Human cortical tissue was obtained at autopsy and stored at -80 degrees C until assay. Both Con-G(A7) and ifenprodil inhibited [(3)H]MK801 binding, but spermine affected these inhibitions differently. Con-G(A7) IC(50) changed little with spermine concentration, indicative of a non-competitive interaction, whereas the rightward shift in ifenprodil IC(50) with increasing spermine concentration suggested partial competition. When the two agents were tested against the biphasic activation of [(3)H]MK801 binding by spermine, they again differed in their effects. In the activation phase Con-G(A7) was a non-competitive inhibitor of spermine activation, and may even enhance the spermine EC(50), while the ifenprodil data indicated a partially competitive interaction. Both agents were non-competitive in the inhibitory phase. Overall, the data suggest that Con-G(A7) and ifenprodil interact differently with the polyamine modulation of the glutamate-N-methyl-D-aspartate receptor.

  8. THE EFFECT OF THE HYDROGEN ION CONCENTRATION ON THE RATE OF HYDROLYSIS OF GLYCYL GLYCINE, GLYCYL LEUCINE, GLYCYL ALANINE, GLYCYL ASPARAGINE, GLYCYL ASPARTIC ACID, AND BIURET BASE BY EREPSIN.

    PubMed

    Northrop, J H; Simms, H S

    1928-11-20

    1. The rate of hydrolysis at different pH values of glycyl glycine, glycyl leucine, glycyl alanine, glycyl asparagine, glycyl aspartic acid and biuret base has been determined. 2. The pH-activity curves obtained in this way differ for the different substrates. 3. The curves can be satisfactorily predicted by the assumption that erepsin is a weak acid or base with a dissociation constant of 10(-7.6) and that the reaction takes place between a particular ionic species of the enzyme and of the substrate. There are several possible arrangements which will predict the experimental results. 4. The rate of inactivation of erepsin at various pH values has been determined and found to agree with the assumption used above, that the enzyme is a weak acid or base with a dissociation constant of about 10(-7.6). 5. It is pointed out that if the mechanism assumed is correct, the determination of a significant value for the relative rate of hydrolysis of various peptides is a very uncertain procedure.

  9. Transplantation of Deceased Donor Livers With Elevated Levels of Serum Transaminases at Shiraz Transplant Center

    PubMed Central

    Fakhar, Nasir; Nikeghbalian, Saman; Kazemi, Kourosh; Shamsayeefar, Ali Reza; Gholami, Siavash; Kasraianfard, Amir; Malek-Hosseini, Seyed Ali

    2016-01-01

    Background The current organ shortage has prompted the use of marginal organs. We conducted this retrospective study to present our experience with transplanting deceased donor livers with elevated levels of serum transaminases and to explain whether elevated levels of serum transaminases in donors affect allograft function and survival of the recipients. Methods Data of deceased donor livers and patients, who underwent liver transplantation from March 2013 to March 2015 at Shiraz center for organ transplantation, was reviewed. Liver donors with aspartate aminotransferase (AST) and/or alanine aminotransferase (ALT) level of more than 500 IU/l and their related recipients were considered as the case group (n = 24) and the others were considered as the control group (n = 834). Results In the case group, the medians of levels of serum AST and ALT of donors were 834 ± 425 IU/L (range: 250 - 2285) and 507 ± 367 IU/L (range: 100 - 1600), respectively. Recipients were followed for a median of 13.6 ± 9 months (range: 7 - 28.4). Post-transplant complications were acute rejection (n = 5), infection (n = 3), portal vein thrombosis (n = 3), bile duct stricture (n = 1), and hepatic artery stenosis (n = 1). The one-year survival rate of the patients was 91.7%. Demographics, post-transplant complications and one-year survival rates were not significantly different between the two study groups. Conclusions Transplanting deceased donor livers with markedly elevated liver enzymes may be an acceptable choice for expanding the donor pool. PMID:27882068

  10. Abnormal serum transaminases following therapeutic doses of acetaminophen in the absence of known risk factors.

    PubMed

    Kwan, D; Bartle, W R; Walker, S E

    1995-09-01

    J.M., a healthy, 25-year-old male, volunteered for a study involving warfarin and acetaminophen. Acetaminophen 1 g four times a day was started for 21 days. Liver function tests taken at regular intervals for the first 12 days were unremarkable. On day 18, however, aspartate aminotransferase (AST) was 527 IU/liter and alanine aminotransferase (ALT) was 166 IU/liter. Acetaminophen was discontinued and serum transaminase levels returned to baseline levels two weeks later (AST = 26, ALT = 20). Analysis of J.M.'s urine samples over the first 18 days showed excretion patterns of glucuronide, sulfate, and glutathione derived cysteine and mercapturic acid conjugates were similar to the other subjects in the study. Acetaminophen causes hepatotoxicity in overdose or malnourished or alcoholic patients, none of which applied to our subject. Differences in metabolic activation and capacity for glutathione synthesis can predispose individuals given therapeutic doses of acetaminophen to adverse effects. Failure to detoxify a highly reactive metabolite, formed by P-450 metabolism, via glutathione conjugation is responsible for the development of acute hepatic necrosis. Accumulation of the toxic metabolite due to depleted glutathione stores may have occurred with prolonged high dosing in our subject and been responsible for his abnormal rise in liver enzymes.

  11. Aspartic acid

    MedlinePlus

    ... also called asparaginic acid. Aspartic acid helps every cell in the body work. It plays a role in: Hormone production and release Normal nervous system function Plant sources of aspartic acid include: Legumes such as ...

  12. Computation of energy interaction parameters as well as electric dipole intensity parameters for the absorption spectral study of the interaction of Pr(III) with L-phenylalanine, L-glycine, L-alanine and L-aspartic acid in the presence and absence of Ca 2+ in organic solvents

    NASA Astrophysics Data System (ADS)

    Moaienla, T.; Singh, Th. David; Singh, N. Rajmuhon; Devi, M. Indira

    2009-10-01

    Studying the absorption difference and comparative absorption spectra of the interaction of Pr(III) and Nd(III) with L-phenylalanine, L-glycine, L-alanine and L-aspartic acid in the presence and absence of Ca 2+ in organic solvents, various energy interaction parameters like Slater-Condon ( FK), Racah ( Ek), Lande factor ( ξ4f), nephelauxetic ratio ( β), bonding ( b1/2), percentage-covalency ( δ) have been evaluated applying partial and multiple regression analysis. The values of oscillator strength ( P) and Judd-Ofelt electric dipole intensity parameter Tλ ( λ = 2, 4, 6) for different 4f-4f transitions have been computed. On analysis of the variation of the various energy interaction parameters as well as the changes in the oscillator strength ( P) and Tλ values reveal the mode of binding with different ligands.

  13. Structural and biochemical characterization of the dual substrate recognition of the (R)-selective amine transaminase from Aspergillus fumigatus.

    PubMed

    Skalden, Lilly; Thomsen, Maren; Höhne, Matthias; Bornscheuer, Uwe T; Hinrichs, Winfried

    2015-01-01

    Chiral amines are important precursors for the pharmaceutical and fine-chemical industries. Because of this, the demand for enantiopure amines is currently increasing. Amine transaminases can produce a large spectrum of chiral amines in the (R)- or (S)-configuration, depending on their substrate scope and stereo-preference, by converting a prochiral ketone into the chiral amine while using alanine as the amine donor producing pyruvate as an α-keto acid product. In order to guide the protein engineering of transaminases to improve substrate specificity and enantioselectivity, we carried out a crystal structure analysis at 1.6 Å resolution of the (R)-amine transaminase from Aspergillus fumigatus with the bound inhibitor gabaculine. This revealed that Arg126 has an important role in the dual substrate recognition of this enzyme because mutating this residue to alanine reduced substantially the ability of the enzyme to use pyruvate as an amino acceptor.

  14. Alanine water complexes.

    PubMed

    Vaquero, Vanesa; Sanz, M Eugenia; Peña, Isabel; Mata, Santiago; Cabezas, Carlos; López, Juan C; Alonso, José L

    2014-04-10

    Two complexes of alanine with water, alanine-(H2O)n (n = 1,2), have been generated by laser ablation of the amino acid in a supersonic jet containing water vapor and characterized using Fourier transform microwave spectroscopy. In the observed complexes, water molecules bind to the carboxylic group of alanine acting as both proton donors and acceptors. In alanine-H2O, the water molecule establishes two intermolecular hydrogen bonds forming a six-membered cycle, while in alanine-(H2O)2 the two water molecules establish three hydrogen bonds forming an eight-membered ring. In both complexes, the amino acid moiety is in its neutral form and shows the conformation observed to be the most stable for the bare molecule. The microsolvation study of alanine-(H2O)n (n = 1,2) can be taken as a first step toward understanding bulk properties at a microscopic level.

  15. Non-enzymic beta-decarboxylation of aspartic acid.

    NASA Technical Reports Server (NTRS)

    Doctor, V. M.; Oro, J.

    1972-01-01

    Study of the mechanism of nonenzymic beta-decarboxylation of aspartic acid in the presence of metal ions and pyridoxal. The results suggest that aspartic acid is first converted to oxalacetic acid by transamination with pyridoxal which in turn is converted to pyridoxamine. This is followed by decarboxylation of oxalacetic acid to form pyruvic acid which transaminates with pyridoxamine to form alanine. The possible significance of these results to prebiotic molecular evolution is briefly discussed.

  16. Raised serum alkaline phosphatase and aspartate transaminase levels in two rheumatoid patients treated with sulphasalazine.

    PubMed Central

    Farr, M; Symmons, D P; Bacon, P A

    1985-01-01

    Hepatotoxicity is a rare complication of sulphasalazine therapy in ulcerative colitis. This report describes two rheumatoid patients in whom raised serum levels of liver enzymes occurred soon after starting sulphasalazine treatment for their arthritis. In both cases the serum enzyme levels returned to normal after stopping the drug. Drug-induced hepatotoxicity should be considered in patients with rheumatoid arthritis (RA) who develop raised serum levels of liver enzymes while taking sulphasalazine. PMID:2865931

  17. Aspartate transaminase to platelet ratio index in hepatitis C virus and Schistosomiasis coinfection

    PubMed Central

    Derbala, Moutaz; Elbadri, Mohammed Elshiekh; Amer, Aliaa Mohamed; AlKaabi, Saad; Sultan, Khaleel Hassan; Kamel, Yasser Medhat; Elsayed, Eman Hassan Satti; Avades, Tony Yervant; Chandra, Prem; Shebl, Fatma M

    2015-01-01

    AIM: To assess the diagnostic accuracy, of aminotransferase-to-platelet ratio index (APRI) alone and with antischistosomal antibody (Ab) in patients with hepatitis C virus (HCV) and schistosomiasis coinfection. METHODS: This retrospective study included medical records of three hundred and eighty three Egyptian men patients who had undergone percutaneous liver biopsy between January 2006 to April 2014 in tertiary care hospital in Qatar for diagnosis or monitoring purpose were selected. Data of patients > 18 years of age were included in the study. The values of HCV RNA titer and antischistosomal antibody titer were also taken into consideration. Patients were excluded from the study if they had any other concomitant chronic liver disease, including; history of previous antiviral or interferon therapy, immunosuppressive, therapy, chronic hepatitis B infection, human immunodeficiency virus co-infection, autoimmune hepatitis, decompensated liver disease, hepatocellular carcinoma, prior liver transplantation, and if no data about the liver biopsy present. RESULTS: Median age of patients was 46 years. About 7.1% had no fibrosis, whereas 30.4%, 37.5%, 20.4%, and 4.6% had fibrosis of stage I, II, III, and IV respectively. In bivariate analysis, APRI score, levels of AST, platelet count and age of patient showed statistically significant association with liver fibrosis (P < 0.0001); whereas antischistosomal antibody titer (P = 0.52) and HCV RNA titer (P = 0.79) failed to show a significant association. The respective AUC values for no fibrosis, significant fibrosis, severe fibrosis and cirrhosis of APRI score were 63%, 73.2%, 81.1% and 88.9% respectively. This showed good sensitivity and specificity of APRI alone for grading of liver fibrosis. But the inclusion of anti-Schistosoma antibody did not improve the prediction of fibrosis stage. CONCLUSION: The study results suggest that noninvasive biochemical markers like APRI are sensitive and specific in diagnosing the degree of fibrosis and cirrhosis in patients with coinfection of HCV and schistosomiasis as compared to biopsy. The addition of antischistosomal Ab to APRI did not improve sensitivity for predicting the degree of cirrhosis. PMID:26674154

  18. Serum Glutamic-Oxaloacetic Transaminase (GOT) and Glutamic-Pyruvic Transaminase (GPT) Levels in Children and Adolescents with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Lin, Jin-Ding; Lin, Pei-Ying; Chen, Li-Mei; Fang, Wen-Hui; Lin, Lan-Ping; Loh, Ching-Hui

    2010-01-01

    The elevated serum glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT) rate among people with intellectual disabilities (ID) is unknown and have not been sufficiently studies. The present paper aims to provide the profile of GOT and GPT, and their associated relationship with other biochemical levels of children or…

  19. Case-control study on prednisolone combined with ursodeoxycholic acid and azathioprine in pure primary biliary cirrhosis with high levels of immunoglobulin G and transaminases: efficacy and safety analysis.

    PubMed

    Fang, Yu-Qing; Lv, Dong-Xia; Jia, Wei; Li, Jun; Deng, Yong-Qiong; Wang, Yan; Yu, Min; Wang, Gui-Qiang

    2014-10-01

    To the best of our knowledge, this is the first study to address the use of glucocorticoids in the comparatively special population of pure primary biliary cirrhosis (PBC) patients who have high levels of immunoglobulin G (IgG) and transaminases but do not have PBC-autoimmune hepatitis overlap syndrome. Ursodeoxycholic acid (UDCA) is now assumed to be the standard therapy for PBC patients. However, patients treated with UDCA still have a risk of progression to cirrhosis and end-stage liver disease. The most recent European Association for the Study of the Liver guidelines of 2009 declared that further studies on glucocorticoid therapy in this disease should be a priority. Therefore, we designed this 3-year longitudinal retrospective study, which might provide deep insight into the treatment for PBC.The aim of this study was to assess whether the combination of prednisolone, UDCA, and azathioprine was superior to UDCA alone in these PBC patients.Sixty patients were enrolled in this study. Thirty-one patients underwent UDCA monotherapy, and 29 patients were treated with prednisolone, UDCA, and azathioprine. We analyzed their biochemistries, immune parameters, liver synthetic function, and noninvasive assessments of liver fibrosis, as well as treatment efficacy and adverse effects at baseline and at 1, 3, 6, 12, 24, and 36 months.Alkaline phosphatase (ALP), γ-glutamyl transpeptidase, alanine aminotransferase, and aspartate aminotransferase levels and the aspartate aminotransferase-to-platelet ratio index (APRI) and S-index improved dramatically in both groups, whereas IgG levels only decreased in the combination group (all P < 0.05). Albumin (ALB) levels decreased in the UDCA group but increased with the combination treatment at 36 months. Significant differences between the 2 groups were observed at 36 months in ALP (P = 0.005), IgG (P = 0.002), ALB (P = 0.002), APRI (P = 0.015), and S-index (P = 0.020). Prednisolone combined with UDCA and

  20. Disorders of GABA metabolism: SSADH and GABA-transaminase deficiencies.

    PubMed

    Parviz, Mahsa; Vogel, Kara; Gibson, K Michael; Pearl, Phillip L

    2014-11-25

    Clinical disorders known to affect inherited gamma-amino butyric acid (GABA) metabolism are autosomal recessively inherited succinic semialdehyde dehydrogenase and GABA-transaminase deficiency. The clinical presentation of succinic semialdehyde dehydrogenase deficiency includes intellectual disability, ataxia, obsessive-compulsive disorder and epilepsy with a nonprogressive course in typical cases, although a progressive form in early childhood as well as deterioration in adulthood with worsening epilepsy are reported. GABA-transaminase deficiency is associated with a severe neonatal-infantile epileptic encephalopathy.

  1. Transaminases for the synthesis of enantiopure beta-amino acids

    PubMed Central

    2012-01-01

    Optically pure β-amino acids constitute interesting building blocks for peptidomimetics and a great variety of pharmaceutically important compounds. Their efficient synthesis still poses a major challenge. Transaminases (also known as aminotransferases) possess a great potential for the synthesis of optically pure β-amino acids. These pyridoxal 5'-dependent enzymes catalyze the transfer of an amino group from a donor substrate to an acceptor, thus enabling the synthesis of a wide variety of chiral amines and amino acids. Transaminases can be applied either for the kinetic resolution of racemic compounds or the asymmetric synthesis starting from a prochiral substrate. This review gives an overview over microbial transaminases with activity towards β-amino acids and their substrate spectra. It also outlines current strategies for the screening of new biocatalysts. Particular emphasis is placed on activity assays which are applicable to high-throughput screening. PMID:22293122

  2. An easy method for diagnosing macro-aspartate aminotransferase: a case series.

    PubMed

    Beşer, Omer Faruk; Laçinel, Sibel; Gülcü, Didem; Kutlu, Tufan; Cullu Çokuğraş, Fügen; Erkan, Tülay

    2014-10-01

    Macro-aspartate transaminase (macro-AST) must be considered when the aspartate transaminase (AST) level is chronically high without any liver, cardiac, or muscle disease. Many specialized laboratory techniques have been recommended for diagnosing macro-AST, including the polyethylene glycol immune precipitate technique, which is simple. This study presents a considerably easier method based on the studies of Davidson and Watson and Castiella et al. Our method is based on the decrease in the plasma AST level after storage of the macroenzyme at 2-8 °C for 5 days, and has the advantages of low cost, reliability, and practicality at any health center. In our eight cases of macro-AST, the AST activity at day 6 had decreased by more than 50% from day 1. This method is practical for primary healthcare facilities because of its easy application and accurate results, and obviated the need for unnecessary tests after diagnosis.

  3. Serum transaminase levels after experimental paracetamol-induced hepatic necrosis.

    PubMed Central

    Dixon, M F; Fulker, M J; Walker, B E; Kelleher, J; Losowsky, M S

    1975-01-01

    The relationship between serum transaminase levels and the extent of paracetamol-induced liver necrosis has been investigated in the rat. Three methods of histological quantitation were used to assess of necrosis--arbitrary grading, point counting, and the image-analysis computer. Highly significant correlations were obtained between the three methods and all were found to be reproducible. A close correlation was found between the extent of hepatic necrosis and the serum ASAT and ALAT 24 hours after a large dose (4 g/kg) of paracetamol. Likewise, the mean grade of necrosis correlated reasonably well with the serum enzyme levels in the recovery phase at 36 and 72 hours, although the transaminase level for a given degree of necrosis was considerably lower at 72 hours than at 24 hours. These findings suggest that serum transaminase levels gives a reliable indication of the severity of hepatic necrosis if the time of ingestion of the paracetamol is known and taken into account. Images Fig 1 Fig 2 PMID:1205274

  4. Assessment of Metabolic Changes in Mycobacterium smegmatis Wild-Type and alr Mutant Strains: Evidence of a New Pathway of d-Alanine Biosynthesis.

    PubMed

    Marshall, Darrell D; Halouska, Steven; Zinniel, Denise K; Fenton, Robert J; Kenealy, Katie; Chahal, Harpreet K; Rathnaiah, Govardhan; Barletta, Raúl G; Powers, Robert

    2017-03-03

    In mycobacteria, d-alanine is an essential precursor for peptidoglycan biosynthesis. The only confirmed enzymatic pathway to form d-alanine is through the racemization of l-alanine by alanine racemase (Alr, EC 5.1.1.1). Nevertheless, the essentiality of Alr in Mycobacterium tuberculosis and Mycobacterium smegmatis for cell survivability in the absence of d-alanine has been a point of controversy with contradictory results reported in the literature. To address this issue, we examined the effects of alr inactivation on the cellular metabolism of M. smegmatis. The M. smegmatis alr insertion mutant TAM23 exhibited essentially identical growth to wild-type mc(2)155 in the absence of d-alanine. NMR metabolomics revealed drastically distinct phenotypes between mc(2)155 and TAM23. A metabolic switch was observed for TAM23 as a function of supplemented d-alanine. In the absence of d-alanine, the metabolic response directed carbon through an unidentified transaminase to provide the essential d-alanine required for survival. The process is reversed when d-alanine is available, in which the d-alanine is directed to peptidoglycan biosynthesis. Our results provide further support for the hypothesis that Alr is not an essential function of M. smegmatis and that specific Alr inhibitors will have no bactericidal action.

  5. Crystal Structures of Aedes Aegypt Alanine Glyoxylate Aminotransferase

    SciTech Connect

    Han,Q.; Robinson, H.; Gao, Y.; Vogelaar, N.; Wilson, S.; Rizzi, M.; Li, J.

    2006-01-01

    Mosquitoes are unique in having evolved two alanine glyoxylate aminotransferases (AGTs). One is 3-hydroxykynurenine transaminase (HKT), which is primarily responsible for catalyzing the transamination of 3-hydroxykynurenine (3-HK) to xanthurenic acid (XA). Interestingly, XA is used by malaria parasites as a chemical trigger for their development within the mosquito. This 3-HK to XA conversion is considered the major mechanism mosquitoes use to detoxify the chemically reactive and potentially toxic 3-HK. The other AGT is a typical dipteran insect AGT and is specific for converting glyoxylic acid to glycine. Here we report the 1.75{angstrom} high-resolution three-dimensional crystal structure of AGT from the mosquito Aedes aegypti (AeAGT) and structures of its complexes with reactants glyoxylic acid and alanine at 1.75 and 2.1{angstrom} resolution, respectively. This is the first time that the three-dimensional crystal structures of an AGT with its amino acceptor, glyoxylic acid, and amino donor, alanine, have been determined. The protein is dimeric and adopts the type I-fold of pyridoxal 5-phosphate (PLP)-dependent aminotransferases. The PLP co-factor is covalently bound to the active site in the crystal structure, and its binding site is similar to those of other AGTs. The comparison of the AeAGT-glyoxylic acid structure with other AGT structures revealed that these glyoxylic acid binding residues are conserved in most AGTs. Comparison of the AeAGT-alanine structure with that of the Anopheles HKT-inhibitor complex suggests that a Ser-Asn-Phe motif in the latter may be responsible for the substrate specificity of HKT enzymes for 3-HK.

  6. Crystal structures of Aedes aegypti alanine glyoxylate aminotransferase.

    PubMed

    Han, Qian; Robinson, Howard; Gao, Yi Gui; Vogelaar, Nancy; Wilson, Scott R; Rizzi, Menico; Li, Jianyong

    2006-12-01

    Mosquitoes are unique in having evolved two alanine glyoxylate aminotransferases (AGTs). One is 3-hydroxykynurenine transaminase (HKT), which is primarily responsible for catalyzing the transamination of 3-hydroxykynurenine (3-HK) to xanthurenic acid (XA). Interestingly, XA is used by malaria parasites as a chemical trigger for their development within the mosquito. This 3-HK to XA conversion is considered the major mechanism mosquitoes use to detoxify the chemically reactive and potentially toxic 3-HK. The other AGT is a typical dipteran insect AGT and is specific for converting glyoxylic acid to glycine. Here we report the 1.75A high-resolution three-dimensional crystal structure of AGT from the mosquito Aedes aegypti (AeAGT) and structures of its complexes with reactants glyoxylic acid and alanine at 1.75 and 2.1A resolution, respectively. This is the first time that the three-dimensional crystal structures of an AGT with its amino acceptor, glyoxylic acid, and amino donor, alanine, have been determined. The protein is dimeric and adopts the type I-fold of pyridoxal 5-phosphate (PLP)-dependent aminotransferases. The PLP co-factor is covalently bound to the active site in the crystal structure, and its binding site is similar to those of other AGTs. The comparison of the AeAGT-glyoxylic acid structure with other AGT structures revealed that these glyoxylic acid binding residues are conserved in most AGTs. Comparison of the AeAGT-alanine structure with that of the Anopheles HKT-inhibitor complex suggests that a Ser-Asn-Phe motif in the latter may be responsible for the substrate specificity of HKT enzymes for 3-HK.

  7. Fermentation of L-aspartate by a saccharolytic strain of Bacteroides melaninogenicus.

    PubMed Central

    Wong, J C; Dyer, J K; Tribble, J L

    1977-01-01

    Resting cells of Bacteroides melaninogenicus fermented L-[14C]aspartate as a single substrate. The 14C-labeled products included succinate, acetate, CO2, oxaloacetate, formate, malate, glycine, alanine, and fumarate in the relative percentages 68, 15, 9.9, 2.7, 1.8, 1.0, 0.7, 0.5, and 0.06, respectively, based on the total counts per minute of the L-[14C]aspartate fermented. Ammonia was produced in high amounts, indicating that 96% of the L-aspartate fermented was deaminated. These data suggest that L-aspartate is mainly being reduced through a number of intermediate reactions involving enzymes of the tricarboxylic acid cycle to succinate. L-[14C]asparagine was also fermented by resting cells of B. melaninogenicus to form L-aspartate, which was subsequently, but less actively, fermented. PMID:13713

  8. Alanine racemase mutants of Mycobacterium tuberculosis require D-alanine for growth and are defective for survival in macrophages and mice.

    PubMed

    Awasthy, Disha; Bharath, Sowmya; Subbulakshmi, Venkita; Sharma, Umender

    2012-02-01

    Alanine racemase (Alr) is an essential enzyme in most bacteria; however, some species (e.g. Listeria monocytogenes) can utilize d-amino acid transaminase (Dat) to generate d-alanine, which renders Alr non-essential. In addition to the conflicting reports on gene knockout of alr in Mycobacterium smegmatis, a recent study concluded that depletion of Alr does not affect the growth of M. smegmatis. In order to get an unambiguous answer on the essentiality of Alr in Mycobacterium tuberculosis and validate it as a drug target in vitro and in vivo, we have inactivated the alr gene of M. tuberculosis and found that it was not possible to generate an alr knockout in the absence of a complementing gene copy or d-alanine in the growth medium. The growth kinetics of the alr mutant revealed that M. tuberculosis requires very low amounts of d-alanine (5-10 µg ml(-1)) for optimum growth. Survival kinetics of the mutant in the absence of d-alanine indicated that depletion of this amino acid results in rapid loss of viability. The alr mutant was found to be defective for growth in macrophages. Analysis of phenotype in mice suggested that non-availability of d-alanine in mice leads to clearance of bacteria followed by stabilization of bacterial number in lungs and spleen. Additionally, reversal of d-cycloserine inhibition in the presence of d-alanine in M. tuberculosis suggested that Alr is the primary target of d-cycloserine. Thus, Alr of M. tuberculosis is a valid drug target and inhibition of Alr alone should result in loss of viability in vitro and in vivo.

  9. Elevated creatine kinase and transaminases in asymptomatic SBMA.

    PubMed

    Sorenson, Eric J; Klein, Christopher J

    2007-02-01

    X-linked spinal and bulbar muscular atrophy (SBMA or Kennedy's disease) has a variable prognosis. Most male carriers are affected by their fourth or fifth decade of life, while some remain asymptomatic lifelong. Elevations of serum creatine kinase are well known to occur in clinically manifesting SBMA patients. Elevations prior to the onset of the clinical syndrome have not been reported. Here we report two cases of SBMA presenting with 'idiopathic' elevations of serum transaminases and creatine kinase a decade in advance of their symptomatic onset. These cases emphasize the need to consider SBMA and genetic testing for the androgen receptor trinucleotide CAG expansion in males otherwise healthy with 'idiopathic' elevated creatinine kinase.

  10. Is Aspartate an Excitatory Neurotransmitter?

    PubMed Central

    Herring, Bruce E.; Silm, Katlin

    2015-01-01

    Recent evidence has resurrected the idea that the amino acid aspartate, a selective NMDA receptor agonist, is a neurotransmitter. Using a mouse that lacks the glutamate-selective vesicular transporter VGLUT1, we find that glutamate alone fully accounts for the activation of NMDA receptors at excitatory synapses in the hippocampus. This excludes a role for aspartate and, by extension, a recently proposed role for the sialic acid transporter sialin in excitatory transmission. SIGNIFICANCE STATEMENT It has been proposed that the amino acid aspartate serves as a neurotransmitter. Although aspartate is a selective agonist for NMDA receptors, we find that glutamate alone fully accounts for neurotransmission at excitatory synapses in the hippocampus, excluding a role for aspartate. PMID:26180193

  11. Levels of transaminases, alkaline phosphatase, and protein in tissues of Clarias gariepienus fingerlings exposed to sublethal concentrations of cadmium chloride.

    PubMed

    Velmurugan, Babu; Selvanayagam, Mariadoss; Cengiz, Elif I; Uysal, Ersin

    2008-12-01

    The freshwater fish, Clarias gariepienus fingerlings, were exposed to sublethal concentrations (1.7 and 3.4 mg/L) of cadmium chloride for 12 days. Aspartate aminotransferase (AAT), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and total protein levels were assayed in the gill, brain, and muscle of the fish at regular intervals of 6 and 12 days. The activities of AAT, ALT, and ALP of the treated fishes increased significantly in all the tissues compared with the control fish. Protein level in all the tissues showed a significant decrease in comparison to unexposed controls throughout the experimental periods. These results revealed that cadmium chloride effects the intermediary metabolism of C. gariepienus fingerlings and that the assayed enzymes can work as good biomarkers of contamination.

  12. Impact of charged amino acid substitution in the transmembrane domain of L-alanine exporter, AlaE, of Escherichia coli on the L-alanine export.

    PubMed

    Kim, Seryoung; Ihara, Kohei; Katsube, Satoshi; Ando, Tasuke; Isogai, Emiko; Yoneyama, Hiroshi

    2017-01-01

    The Escherichia coli alaE gene encodes the L-alanine exporter, AlaE, that catalyzes active export of L-alanine using proton electrochemical potential. The transporter comprises only 149 amino acid residues and four predicted transmembrane domains (TMs), which contain three charged amino acid residues. The AlaE-deficient L-alanine non-metabolizing cells (ΔalaE cells) appeared hypersusceptible to L-alanyl-L-alanine showing a minimum inhibitory concentration (MIC) of 2.5 µg/ml for the dipeptide due to a toxic accumulation of L-alanine. To elucidate the mechanism by which AlaE exports L-alanine, we replaced charged amino acid residues in the TMs, glutamic acid-30 (TM-I), arginine-45 (TM-II), and aspartic acid-84 (TM-III) with their respective charge-conserved amino acid or a net neutral cysteine. The ΔalaE cells producing R45K or R45C appeared hypersusceptible to the dipeptide, indicating that arginine-45 is essential for AlaE activity. MIC of the dipeptide in the ΔalaE cells expressing E30D and E30C was 156 µg/ml and >10,000 µg/ml, respectively, thereby suggesting that a negative charge at this position is not essential. The ΔalaE cells expressing D84E or D84C showed an MIC >10,000 and 78 µg/ml, respectively, implying that a negative charge is required at this position. These results were generally consistent with that of the L-alanine accumulation experiments in intact cells. We therefore concluded that charged amino acid residues (R45 and D84) in the AlaE transmembrane domain play a pivotal role in L-alanine export. Replacement of three cysteine residues at C22, C28 (both in TM-I), and C135 (C-terminal region) with alanine showed only a marginal effect on L-alanine export.

  13. Stimulation of [3H] GABA and beta-[3H] alanine release from rat brain slices by cis-4-aminocrotonic acid.

    PubMed

    Chebib, M; Johnston, G A

    1997-02-01

    cis-4-Aminocrotonic acid (CACA; 100 microM), an analogue of GABA in a folded conformation, stimulated the passive release of [3H] GABA from slices of rat cerebellum, cerebral cortex, retina, and spinal cord and of beta-[3H]alanine from slices of cerebellum and spinal cord without influencing potassium-evoked release. In contrast, CACA (100 microM) did not stimulate the passive release of [3H]taurine from slices of cerebellum and spinal cord or of D-[3H]aspartate from slices of cerebellum and did not influence potassium-evoked release of [3H]-taurine from the cerebellum and spinal cord and D-[3H]-aspartate from the cerebellum. These results suggest that the effects of CACA on GABA and beta-alanine release are due to CACA acting as a substrate for a beta-alanine-sensitive GABA transport system, consistent with CACA inhibiting the uptake of beta-[3H]alanine into slices of rat cerebellum and cerebral cortex. The observed Ki for CACA against beta-[3H]alanine uptake in the cerebellum was 750 +/- 60 microM. CACA appears to be 10-fold weaker as a substrate for the transporter system than as an agonist for the GABAc receptor. The effects of CACA on GABA and beta-alanine release provide indirect evidence for a GABA transporter in cerebellum, cerebral cortex, retina, and spinal cord that transports GABA, beta-alanine, CACA, and nipecotic acid that has a similar pharmacological profile to that of the GABA transporter, GAT-3, cloned from rat CNS. The structural similarities of GABA, beta-alanine, CACA, and nipecotic acid are demonstrated by computer-aided molecular modeling, providing information on the possible conformations of these substances being transported by a common carrier protein.

  14. Inhibitors of alanine racemase enzyme: a review.

    PubMed

    Azam, Mohammed Afzal; Jayaram, Unni

    2016-08-01

    Alanine racemase is a fold type III PLP-dependent amino acid racemase enzyme catalysing the conversion of l-alanine to d-alanine utilised by bacterial cell wall for peptidoglycan synthesis. As there are no known homologs in humans, it is considered as an excellent antibacterial drug target. The standard inhibitors of this enzyme include O-carbamyl-d-serine, d-cycloserine, chlorovinyl glycine, alaphosphin, etc. d-Cycloserine is indicated for pulmonary and extra pulmonary tuberculosis but therapeutic use of drug is limited due to its severe toxic effects. Toxic effects due to off-target affinities of cycloserine and other substrate analogs have prompted new research efforts to identify alanine racemase inhibitors that are not substrate analogs. In this review, an updated status of known inhibitors of alanine racemase enzyme has been provided which will serve as a rich source of structural information and will be helpful in generating selective and potent inhibitor of alanine racemase.

  15. [Raman scattering study of DL-alanine].

    PubMed

    Gong, Yan; Wang, Wen-qing

    2006-01-01

    Studies of Raman vibration spectra are useful to obtaining information on biomolecular crystals. The cell dimensions of the L- and DL-alanine crystals are nearly identical, and both structures belong to the orthorhombic system, but the space group is P2(1) 2(1) 2(1) for the L-isomer, and Pna2(1) for the racemate crystal. The Raman spectrum of L-alanine has been measured by many authors. The present work is focusing on the Raman scattering study of DL-alanine powder. Based on the analysis of the differences between DL-alanine and L-alanine Raman spectra, the authors obtained indispensable information on hydrogen bond and the motion of the molecular conformation in alanine crystals.

  16. Relation between Liver Transaminases and Dyslipidaemia among 2-10 y.o. Northern Mexican Children

    PubMed Central

    Bibiloni, Maria del Mar; Salas, Rogelio; Nuñez, Georgina M.; Villarreal, Jesús Z.; Sureda, Antoni

    2016-01-01

    Background and Aims The increase in overweight and obese children may be linked to increased rates of liver damage and dyslipidaemia. This study aimed to explore the associations of liver biomarkers with overweight/obesity and dyslipidaemia in Mexican children. Methods The study was a population-based cross-sectional nutritional survey carried out in the State of Nuevo León, Mexico. The study included a 414 subjects aged between 2 and 10 years old (47.8% girls) who took part in the State Survey of Nutrition and Health–Nuevo León 2011/2012. Associations between alanine aminotransferase (ALT) and aspartate aminotransferase (AST), ALT/AST ratio, and major components of serum lipid profile were assessed. Results Children with high ALT (defined as ≥P75) showed higher prevalence of dyslipidaemia than their counterparts, with high prevalence of high TChol (P = 0.053), non-HDL-chol, TG, and low HDL-chol. Children with an AST/ALT ≥T3 ratio were 0.43-times (95% CI: 0.25–0.74) and 0.27-times (95% CI: 0.17–0.44) low likely to be overweight/obese and to have dyslipidaemia than those with an AST/ALT

  17. Kynurenine Aminotransferase III and Glutamine Transaminase L Are Identical Enzymes that have Cysteine S-Conjugate β-Lyase Activity and Can Transaminate l-Selenomethionine*

    PubMed Central

    Pinto, John T.; Krasnikov, Boris F.; Alcutt, Steven; Jones, Melanie E.; Dorai, Thambi; Villar, Maria T.; Artigues, Antonio; Li, Jianyong; Cooper, Arthur J. L.

    2014-01-01

    Three of the four kynurenine aminotransferases (KAT I, II, and IV) that synthesize kynurenic acid, a neuromodulator, are identical to glutamine transaminase K (GTK), α-aminoadipate aminotransferase, and mitochondrial aspartate aminotransferase, respectively. GTK/KAT I and aspartate aminotransferase/KAT IV possess cysteine S-conjugate β-lyase activity. The gene for the former enzyme, GTK/KAT I, is listed in mammalian genome data banks as CCBL1 (cysteine conjugate beta-lyase 1). Also listed, despite the fact that no β-lyase activity has been assigned to the encoded protein in the genome data bank, is a CCBL2 (synonym KAT III). We show that human KAT III/CCBL2 possesses cysteine S-conjugate β-lyase activity, as does mouse KAT II. Thus, depending on the nature of the substrate, all four KATs possess cysteine S-conjugate β-lyase activity. These present studies show that KAT III and glutamine transaminase L are identical enzymes. This report also shows that KAT I, II, and III differ in their ability to transaminate methyl-l-selenocysteine (MSC) and l-selenomethionine (SM) to β-methylselenopyruvate (MSP) and α-ketomethylselenobutyrate, respectively. Previous studies have identified these seleno-α-keto acids as potent histone deacetylase inhibitors. Methylselenol (CH3SeH), also purported to have chemopreventive properties, is the γ-elimination product of SM and the β-elimination product of MSC catalyzed by cystathionine γ-lyase (γ-cystathionase). KAT I, II, and III, in part, can catalyze β-elimination reactions with MSC generating CH3SeH. Thus, the anticancer efficacy of MSC and SM will depend, in part, on the endogenous expression of various KAT enzymes and cystathionine γ-lyase present in target tissue coupled with the ability of cells to synthesize in situ either CH3SeH and/or seleno-keto acid metabolites. PMID:25231977

  18. Vibrational dynamics of crystalline L-alanine

    SciTech Connect

    Bordallo, H.N.; Eckert, J.; Barthes, M.

    1997-11-01

    The authors report a new, complete vibrational analysis of L-alanine and L-alanine-d{sub 4} which utilizes IINS intensities in addition to frequency information. The use of both isotopomers resulted in a self-consistent force field for and assignment of the molecular vibrations in L-alanine. Some details of the calculation as well as a comparison of calculated and observed IINS spectra are presented. The study clarifies a number of important issues on the vibrational dynamics of this molecule and presents a self-consistent force field for the molecular vibrations in crystalline L-alanine.

  19. Catalytic Stereoinversion of L-Alanine to Deuterated D-Alanine.

    PubMed

    Moozeh, Kimia; So, Soon Mog; Chin, Jik

    2015-08-03

    A combination of an achiral pyridoxal analogue and a chiral base has been developed for catalytic deuteration of L-alanine with inversion of stereochemistry to give deuterated D-alanine under mild conditions (neutral pD and 25 °C) without the use of any protecting groups. This system can also be used for catalytic deuteration of D-alanine with retention of stereochemistry to give deuterated D-alanine. Thus a racemic mixture of alanine can be catalytically deuterated to give an enantiomeric excess of deuterated D-alanine. While catalytic deracemization of alanine is forbidden by the second law of thermodynamics, this system can be used for catalytic deracemization of alanine with deuteration. Such green and biomimetic approach to catalytic stereocontrol provides insights into efficient amino acid transformations.

  20. Activity of the lactate-alanine shuttle is independent of glutamate-glutamine cycle activity in cerebellar neuronal-astrocytic cultures.

    PubMed

    Bak, Lasse K; Sickmann, Helle M; Schousboe, Arne; Waagepetersen, Helle S

    The glutamate-glutamine cycle describes the neuronal release of glutamate into the synaptic cleft, astrocytic uptake, and conversion into glutamine, followed by release for use as a neuronal glutamate precursor. This only explains the fate of the carbon atoms, however, and not that of the ammonia. Recently, a role for alanine has been proposed in transfer of ammonia between glutamatergic neurons and astrocytes, denoted the lactate-alanine shuttle (Waagepetersen et al. [ 2000] J. Neurochem. 75:471-479). The role of alanine in this context has been studied further using cerebellar neuronal cultures and corresponding neuronal-astrocytic cocultures. A superfusion paradigm was used to induce repetitively vesicular glutamate release by N-methyl-D-aspartate (NMDA) in the neurons, allowing the relative activity dependency of the lactate-alanine shuttle to be assessed. [(15)N]Alanine (0.2 mM), [2-(15)N]/[5-(15)N]glutamine (0.25 mM), and [(15)N]ammonia (0.3 mM) were used as precursors and cell extracts were analyzed by mass spectrometry. Labeling from [(15)N]alanine in glutamine, aspartate, and glutamate in cerebellar cocultures was independent of depolarization of the neurons. Employing glutamine with the amino group labeled ([2-(15)N]glutamine) as the precursor, an activity-dependent increase in the labeling of both glutamate and aspartate (but not alanine) was observed in the cerebellar neurons. When the amide group of glutamine was labeled ([5-(15)N]glutamine), no labeling could be detected in the analyzed metabolites. Altogether, the results of this study support the existence of the lactate-alanine shuttle and the associated glutamate-glutamine cycle. No direct coupling of the two shuttles was observed, however, and only the glutamate-glutamine cycle seemed activity dependent.

  1. Insulin Aspart (rDNA Origin) Injection

    MedlinePlus

    ... unless it is used in an external insulin pump. In patients with type 2 diabetes, insulin aspart ... also can be used with an external insulin pump. Before using insulin aspart in a pump system, ...

  2. 21 CFR 582.5017 - Aspartic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Aspartic acid. 582.5017 Section 582.5017 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5017 Aspartic acid. (a) Product. Aspartic acid (L- and DL-forms). (b) Conditions of...

  3. 21 CFR 582.5017 - Aspartic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Aspartic acid. 582.5017 Section 582.5017 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5017 Aspartic acid. (a) Product. Aspartic acid (L- and DL-forms). (b) Conditions of...

  4. 21 CFR 582.5017 - Aspartic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Aspartic acid. 582.5017 Section 582.5017 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5017 Aspartic acid. (a) Product. Aspartic acid (L- and DL-forms). (b) Conditions of...

  5. 21 CFR 582.5017 - Aspartic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Aspartic acid. 582.5017 Section 582.5017 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5017 Aspartic acid. (a) Product. Aspartic acid (L- and DL-forms). (b) Conditions of...

  6. 21 CFR 582.5017 - Aspartic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aspartic acid. 582.5017 Section 582.5017 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5017 Aspartic acid. (a) Product. Aspartic acid (L- and DL-forms). (b) Conditions of...

  7. Central neural regulation by adrenergic nerves of the daily rhythm in hepatic tyrosine transaminase activity

    PubMed Central

    Black, Ira B.; Reis, Donald J.

    1971-01-01

    1. In adrenalectomized fasted rats transection of the spinal cord at C7-C8 or placement of bilateral electrolytic lesions in the lateral hypothalamus when performed in the morning interrupted the daily rhythm of hepatic tyrosine transaminase by elevating low (AM) enzyme activities to high (PM) levels; lesions placed in PM did not affect the late afternoon rise in enzyme activity. 2. Bilateral thalamic lesions had no affect on enzyme activity. 3. The activity of hepatic catechol-O-methyl transferase was unaffected by hypothalamic lesions. 4. The lesion-evoked rise of tyrosine transaminase activity was abolished by exogenously administered norepinephrine. 5. Cycloheximide blocked the rise of tyrosine transaminase activity caused by hypothalamic lesions. 6. The results suggest that rhythmic activity of sympathetic nerves governed by lateral hypothalamus contribute to regulation of the daily rhythm in tyrosine transaminase by regulating the release of norepinephrine peripherally; norepinephrine may block the daily rise of enzyme by interfering with protein synthesis, possibly of new enzyme, by competing with pyridoxal co-factor. 7. It is proposed that alternating activity of sympathetic-adrenergic and vagal-cholinergic nerves to liver, controlled by the C.N.S., contribute to rhythmic activity of hepatic tyrosine transaminase. ImagesFig. 2 PMID:4400586

  8. Active-Site Engineering of ω-Transaminase for Production of Unnatural Amino Acids Carrying a Side Chain Bulkier than an Ethyl Substituent

    PubMed Central

    Han, Sang-Woo; Park, Eul-Soo; Dong, Joo-Young

    2015-01-01

    ω-Transaminase (ω-TA) is a promising enzyme for use in the production of unnatural amino acids from keto acids using cheap amino donors such as isopropylamine. The small substrate-binding pocket of most ω-TAs permits entry of substituents no larger than an ethyl group, which presents a significant challenge to the preparation of structurally diverse unnatural amino acids. Here we report on the engineering of an (S)-selective ω-TA from Ochrobactrum anthropi (OATA) to reduce the steric constraint and thereby allow the small pocket to readily accept bulky substituents. On the basis of a docking model in which l-alanine was used as a ligand, nine active-site residues were selected for alanine scanning mutagenesis. Among the resulting variants, an L57A variant showed dramatic activity improvements in activity for α-keto acids and α-amino acids carrying substituents whose bulk is up to that of an n-butyl substituent (e.g., 48- and 56-fold increases in activity for 2-oxopentanoic acid and l-norvaline, respectively). An L57G mutation also relieved the steric constraint but did so much less than the L57A mutation did. In contrast, an L57V substitution failed to induce the improvements in activity for bulky substrates. Molecular modeling suggested that the alanine substitution of L57, located in a large pocket, induces an altered binding orientation of an α-carboxyl group and thereby provides more room to the small pocket. The synthetic utility of the L57A variant was demonstrated by carrying out the production of optically pure l- and d-norvaline (i.e., enantiomeric excess [ee] > 99%) by asymmetric amination of 2-oxopantanoic acid and kinetic resolution of racemic norvaline, respectively. PMID:26231640

  9. Alanine increases blood pressure during hypotension

    NASA Technical Reports Server (NTRS)

    Conlay, L. A.; Maher, T. J.; Wurtman, R. J.

    1990-01-01

    The effect of L-alanine administration on blood pressure (BP) during haemorrhagic shock was investigated using anesthetized rats whose left carotid arteries were cannulated for BP measurement, blood removal, and drug administration. It was found that L-alanine, in doses of 10, 25, 50, 100, and 200 mg/kg, increased the systolic BP of hypotensive rats by 38 to 80 percent (while 100 mg/kg pyruvate increased BP by only 9.4 mmhg, not significantly different from saline). The results suggest that L-alanine might influence cardiovascular function.

  10. Effects of Glutamate and Aspartate on Serum Antioxidative Enzyme, Sex Hormones, and Genital Inflammation in Boars Challenged with Hydrogen Peroxide

    PubMed Central

    Ni, Hengjia; Lu, Lu; Deng, Jinpin; Fan, Wenjun

    2016-01-01

    Background. Oxidative stress is associated with infertility. This study was conducted to determine the effects of glutamate and aspartate on serum antioxidative enzymes, sex hormones, and genital inflammation in boars suffering from oxidative stress. Methods. Boars were randomly divided into 4 groups: the nonchallenged control (CON) and H2O2-challenged control (BD) groups were fed a basal diet supplemented with 2% alanine; the other two groups were fed the basal diet supplemented with 2% glutamate (GLU) or 2% aspartate (ASP). The BD, GLU, and ASP groups were injected with hydrogen peroxide (H2O2) on day 15. The CON group was injected with 0.9% sodium chloride solution on the same day. Results. Dietary aspartate decreased the malondialdehyde (MDA) level in serum (P < 0.05) compared with the BD group. Additionally, aspartate maintained serum luteinizing hormone (LH) at a relatively stable level. Moreover, glutamate and aspartate increased transforming growth factor-β1 (TGF-β1) and interleukin-10 (IL-10) levels in the epididymis and testis (P < 0.05) compared with the BD group. Conclusion. Both glutamate and aspartate promoted genital mRNA expressions of anti-inflammatory factors after oxidative stress. Aspartate more effectively decreased serum MDA and prevented fluctuations in serum sex hormones after H2O2 challenge than did glutamate. PMID:27777497

  11. Molecular cloning and enzymological characterization of pyridoxal 5'-phosphate independent aspartate racemase from hyperthermophilic archaeon Thermococcus litoralis DSM 5473.

    PubMed

    Washio, Tsubasa; Kato, Shiro; Oikawa, Tadao

    2016-09-01

    We succeeded in expressing the aspartate racemase homolog gene from Thermococcus litoralis DSM 5473 in Escherichia coli Rosetta (DE3) and found that the gene encodes aspartate racemase. The aspartate racemase gene consisted of 687 bp and encoded 228 amino acid residues. The purified enzyme showed aspartate racemase activity with a specific activity of 1590 U/mg. The enzyme was a homodimer with a molecular mass of 56 kDa and did not require pyridoxal 5'-phosphate as a coenzyme. The enzyme showed aspartate racemase activity even at 95 °C, and the activation energy of the enzyme was calculated to be 51.8 kJ/mol. The enzyme was highly thermostable, and approximately 50 % of its initial activity remained even after incubation at 90 °C for 11 h. The enzyme showed a maximum activity at a pH of 7.5 and was stable between pH 6.0 and 7.0. The enzyme acted on L-cysteic acid and L-cysteine sulfinic acid in addition to D- and L-aspartic acids, and was strongly inhibited by iodoacetic acid. The site-directed mutagenesis of the enzyme showed that the essential cysteine residues were conserved as Cys83 and Cys194. D-Forms of aspartic acid, serine, alanine, and valine were contained in T. litoralis DSM 5473 cells.

  12. Identification of (S)-selective transaminases for the asymmetric synthesis of bulky chiral amines

    NASA Astrophysics Data System (ADS)

    Pavlidis, Ioannis V.; Weiß, Martin S.; Genz, Maika; Spurr, Paul; Hanlon, Steven P.; Wirz, Beat; Iding, Hans; Bornscheuer, Uwe T.

    2016-11-01

    The use of transaminases to access pharmaceutically relevant chiral amines is an attractive alternative to transition-metal-catalysed asymmetric chemical synthesis. However, one major challenge is their limited substrate scope. Here we report the creation of highly active and stereoselective transaminases starting from fold class I. The transaminases were developed by extensive protein engineering followed by optimization of the identified motif. The resulting enzymes exhibited up to 8,900-fold higher activity than the starting scaffold and are highly stereoselective (up to >99.9% enantiomeric excess) in the asymmetric synthesis of a set of chiral amines bearing bulky substituents. These enzymes should therefore be suitable for use in the synthesis of a wide array of potential intermediates for pharmaceuticals. We also show that the motif can be engineered into other protein scaffolds with sequence identities as low as 70%, and as such should have a broad impact in the field of biocatalytic synthesis and enzyme engineering.

  13. Catalytic Promiscuity of Transaminases: Preparation of Enantioenriched β-Fluoroamines by Formal Tandem Hydrodefluorination/Deamination.

    PubMed

    Cuetos, Aníbal; García-Ramos, Marina; Fischereder, Eva-Maria; Díaz-Rodríguez, Alba; Grogan, Gideon; Gotor, Vicente; Kroutil, Wolfgang; Lavandera, Iván

    2016-02-24

    Transaminases are valuable enzymes for industrial biocatalysis and enable the preparation of optically pure amines. For these transformations they require either an amine donor (amination of ketones) or an amine acceptor (deamination of racemic amines). Herein transaminases are shown to react with aromatic β-fluoroamines, thus leading to simultaneous enantioselective dehalogenation and deamination to form the corresponding acetophenone derivatives in the absence of an amine acceptor. A series of racemic β-fluoroamines was resolved in a kinetic resolution by tandem hydrodefluorination/deamination, thus giving the corresponding amines with up to greater than 99 % ee. This protocol is the first example of exploiting the catalytic promiscuity of transaminases as a tool for novel transformations.

  14. Amino acid oxidation and alanine production in rat hemidiaphragm in vitro. Effects of dichloroacetate.

    PubMed Central

    Palmer, T N; Caldecourt, M A; Sugden, M C

    1984-01-01

    Dichloroacetate (an activator of pyruvate dehydrogenase) stimulates 14CO2 production from [U-14C]glucose, but not from [U-14C]glutamate, [U-14C]aspartate, [U-14C]- and [1-14C]-valine and [U-14C]- and [1-14C]-leucine. It is concluded (1) that pyruvate dehydrogenase is not rate-limiting in the oxidation to CO2 of amino acids that are metabolized to tricarboxylic acid-cycle intermediates, and (2) that carbohydrate (and not amino acids) is the main carbon precursor in alanine formation in muscle. PMID:6149743

  15. Aspartic acid substitutions affect proton translocation by bacteriorhodopsin.

    PubMed Central

    Mogi, T; Stern, L J; Marti, T; Chao, B H; Khorana, H G

    1988-01-01

    We have substituted each of the aspartic acid residues in bacteriorhodopsin to determine their possible role in proton translocation by this protein. The aspartic acid residues were replaced by asparagines; in addition, Asp-85, -96, -115, and -112 were changed to glutamic acid and Asp-212 was also replaced by alanine. The mutant bacteriorhodopsin genes were expressed in Escherichia coli and the proteins were purified. The mutant proteins all regenerated bacteriorhodopsin-like chromophores when treated with a detergent-phospholipid mixture and retinal. However, the rates of regeneration of the chromophores and their lambda max varied widely. No support was obtained for the external point charge model for the opsin shift. The Asp-85----Asn mutant showed not detectable proton pumping, the Asp-96----Asn and Asp-212----Glu mutants showed less than 10% and the Asp-115----Glu mutant showed approximately equal to 30% of the normal proton pumping. The implications of these findings for possible mechanisms of proton translocation by bacteriorhodopsin are discussed. PMID:3288985

  16. Transaminase Activity Predicts Survival in Patients with Head and Neck Cancer

    PubMed Central

    Takenaka, Yukinori; Takemoto, Norihiko; Yasui, Toshimichi; Yamamoto, Yoshifumi; Uno, Atsuhiko; Miyabe, Haruka; Ashida, Naoki; Shimizu, Kotaro; Nakahara, Susumu; Hanamoto, Atshushi; Fukusumi, Takahito; Michiba, Takahiro; Cho, Hironori; Yamamoto, Masashi; Inohara, Hidenori

    2016-01-01

    Various serum biomarkers have been developed for predicting head and neck squamous cell carcinoma (HNSCC) prognosis. However, none of them have been proven to be clinically significant. A recent study reported that the ratio of aspartate aminotransaminase (AST) to alanine aminotransaminase (ALT) had a prognostic effect on non-metastatic cancers. This study aimed to examine the effect of the AST/ALT ratio on the survival of patients with HNSCC. Clinical data of 356 patients with locoregionally advanced HNSCC were collected. The effect of the AST/ALT ratio on overall survival was analyzed using a Cox proportional hazard model. Moreover, recursive partitioning analysis (RPA) was used to divide the patients into groups on the basis of the clinical stage and AST/ALT ratio. The prognostic ability of this grouping was validated using an independent data set (N = 167). The AST/ALT ratio ranged from 0.42 to 4.30 (median, 1.42) and was a prognostic factor for overall survival that was independent of age, primary sites, and tumor stage (hazard ratio: 1.36, confidence interval: 1.08−1.68, P = 0.010). RPA divided patients with stage IVA into the following two subgroups: high AST/ALT (≥2.3) and low AST/ALT (<2.3) subgroups. The 5-year survival rate for patients with stage III, stage IVA with a low AST/ALT ratio, stage IVA with a high AST/ALT ratio, and stage IVB were 64.8%, 49.2%, 28.6%, and 33.3%, respectively (p < 0.001). Compared with the low AST/ALT group, the adjusted hazard ratio for death was 2.17 for high AST/ALT group (confidence interval: 1.02–.22 P = 0.045). The AST/ALT ratio was demonstrated to be a prognostic factor of HNSCC. The ratio subdivided patients with stage IVA into low- and high-risk groups. Moreover, intensified treatment for the high-risk group may be considered. PMID:27732629

  17. Isolation and characterization of recombinant Drosophila Copia aspartic proteinase

    PubMed Central

    Athauda, Senarath B. P.; Yoshioka, Katsuji; Shiba, Tadayoshi; Takahashi, Kenji

    2006-01-01

    The wild type Copia Gag precursor protein of Drosophila melanogaster expressed in Escherichia coli was shown to be processed autocatalytically to generate two daughter proteins with molecular masses of 33 and 23 kDa on SDS/PAGE. The active-site motif of aspartic proteinases, Asp-Ser-Gly, was present in the 23 kDa protein corresponding to the C-terminal half of the precursor protein. The coding region of this daughter protein (152 residues) in the copia gag gene was expressed in E. coli to produce the recombinant enzyme protein as inclusion bodies, which was then purified and refolded to create the active enzyme. Using the peptide substrate His-Gly-Ile-Ala-Phe-Met-Val-Lys-Glu-Val-Asn (cleavage site: Phe–Met) designed on the basis of the sequence of the cleavage-site region of the precursor protein, the enzymatic properties of the proteinase were investigated. The optimum pH and temperature of the proteinase toward the synthetic peptide were 4.0 and 70 °C respectively. The proteolytic activity was increased with increasing NaCl concentration in the reaction mixture, the optimum concentration being 2 M. Pepstatin A strongly inhibited the enzyme, with a Ki value of 15 nM at pH 4.0. On the other hand, the active-site residue mutant, in which the putative catalytic aspartic acid residue was mutated to an alanine residue, had no activity. These results show that the Copia proteinase belongs to the family of aspartic proteinases including HIV proteinase. The B-chain of oxidized bovine insulin was hydrolysed at the Leu15−–Tyr16 bond fairly selectively. Thus the recombinant Copia proteinase partially resembles HIV proteinase, but is significantly different from it in certain aspects. PMID:16813567

  18. Production of Alanine by Fusarium moniliforme

    PubMed Central

    Carito, Sebastian L.; Pisano, Michael A.

    1966-01-01

    Fusarium moniliforme grown in a chemically defined medium in submerged culture accumulated amino acids extracellularly. Alanine and glutamic acid were present in greatest amounts, with traces of glycine, lysine, threonine, and valine detectable. Increasing the glucose and urea concentrations of the medium increased yields of alanine. Further increases in alanine production occurred with elevated levels of mineral salts in the medium, whereas the addition of a vitamin mixture proved to be inhibitory. Chemical changes resulting from the growth of F. moniliforme in the final fermentation medium disclosed maximal alanine production, mycelial weight, and glucose consumption after 72 hr of incubation at 28.5 C. Total soluble nitrogen, by contrast, was minimal at the same time period. The pH remained in the alkaline range throughout the fermentation. PMID:5914495

  19. Solved? The reductive radiation chemistry of alanine.

    PubMed

    Pauwels, Ewald; De Cooman, Hendrik; Waroquier, Michel; Hole, Eli O; Sagstuen, Einar

    2014-02-14

    The structural changes throughout the entire reductive radiation-induced pathway of l-α-alanine are solved on an atomistic level with the aid of periodic DFT and nudged elastic band (NEB) simulations. This yields unprecedented information on the conformational changes taking place, including the protonation state of the carboxyl group in the "unstable" and "stable" alanine radicals and the internal transformation converting these two radical variants at temperatures above 220 K. The structures of all stable radicals were verified by calculating EPR properties and comparing those with experimental data. The variation of the energy throughout the full radiochemical process provides crucial insight into the reason why these structural changes and rearrangements occur. Starting from electron capture, the excess electron quickly localizes on the carbon of a carboxyl group, which pyramidalizes and receives a proton from the amino group of a neighboring alanine molecule, forming a first stable radical species (up to 150 K). In the temperature interval 150-220 K, this radical deaminates and deprotonates at the carboxyl group, the detached amino group undergoes inversion and its methyl group sustains an internal rotation. This yields the so-called "unstable alanine radical". Above 220 K, triggered by the attachment of an additional proton on the detached amino group, the radical then undergoes an internal rotation in the reverse direction, giving rise to the "stable alanine radical", which is the final stage in the reductive radiation-induced decay of alanine.

  20. Magnitude of malate-aspartate reduced nicotinamide adenine dinucleotide shuttle activity in intact respiring tumor cells.

    PubMed

    Greenhouse, W V; Lehninger, A L

    1977-11-01

    Measurements of respiration, CO2 and lactate production, and changes in the levels of various key metabolites of the glycolytic sequence and tricarboxylic acid cycle were made on five lines of rodent ascites tumor cells (two strains of Ehrlich ascites tumor cells, Krebs II carcinoma, AS-30D carcinoma, and L1210 cells) incubated aerobically in the presence of uniformly labeled D-[14C]glucose. From these data, as well as earlier evidence demonstrating that the reduced nicotinamide adenine dinucleotide (NADH) shuttle in these cells requires a transaminase step and is thus identified as the malate-aspartate shuttle (W.V.V. Greenhouse and A.L. Lehninger, Cancer Res., 36: 1392-1396, 1976), metabolic flux diagrams were constructed for the five cell lines. These diagrams show the relative rates of glycolysis, the tricarboxylic acid cycle, electron transport, and the malate-aspartate shuttle in these tumors. Large amounts of cytosolic NADH were oxidized by the mitochondrial respiratory chain via the NADH shuttle, comprising anywhere from about 20 to 80% of the total flow of reducing equivalents to oxygen in these tumors. Calculations of the sources of energy for adenosine triphosphate synthesis indicated that on the average about one-third of the respiratory adenosine triphosphate is generated by electron flow originating from cytosolic NADH via the malate-aspartate shuttle.

  1. Occurrence of the malate-aspartate shuttle in various tumor types.

    PubMed

    Greenhouse, W V; Lehninger, A L

    1976-04-01

    The activity of the malate-aspartate shuttle for the reoxidation of cytoplasmic reduced nicotinamide adenine dinucleotide (NADH) by mitochondria was assessed in six lines of rodent ascites tumor cells (two strains of Ehrlich ascites carcinoma, Krebs II carcinoma, Novikoff hepatoma, AS-30D hepatoma, and L1210 mouse leukemia). All the tumor cells examined showed mitochondrial reoxidation of cytoplasmic NADH, as evidenced by the accumulation of pyruvate when the cells were incubated aerobically with L-lactate. Reoxidation of cytoplasmic NADH thus generated was completely inhibited by the transaminase inhibitor aminooxyacetate. The involvement of the respiratory chain in the reoxidation of cytoplasmic NADH was demonstrated by the action of cyanide, rotenone, and antimycin A, which strongly inhibited the formation of pyruvate from added L-lactate. Compounds that inhibit the carrier-mediated entry of malate into mitochondria, such as butylmalonate, benzenetricarboxylate, and iodobenzylmalonate, also inhibited the accumulation of pyruvate from added L-lactate by the tumor cells. The maximal rate of the malate-aspartate shuttle was established by addtion of arsenite to inhibit the mitochondrial oxidation of the pyruvate formed from added lactate. The capacity of the various tumor lines for the reoxidation of cytoplasmic NADH via the malate-aspartate shuttle approaches 20% of the total respiratory rate of the cells and thus appears to be sufficient to account for the mitochondrial reoxidation of that fraction of glycolytic NADH not reoxidized by pyruvate and lactate dehydrognenase in the cytoplasm.

  2. Synthesis of pharmaceutically relevant 17-α-amino steroids using an ω-transaminase.

    PubMed

    Richter, Nina; Simon, Robert C; Kroutil, Wolfgang; Ward, John M; Hailes, Helen C

    2014-06-11

    An efficient and sustainable biocatalytic route for the synthesis of important 17-α-amino steroids has been developed using an ω-transaminase variant from Arthrobacter sp. Optimisation of the reaction conditions facilitated the synthesis of these valuable synthons on a preparative scale, affording excellent isolated yields and stereocontrol.

  3. Simultaneous synthesis of 2-phenylethanol and L-homophenylalanine using aromatic transaminase with yeast Ehrlich pathway.

    PubMed

    Hwang, Joon-Young; Park, Jihyang; Seo, Joo-Hyun; Cha, Minho; Cho, Byung-Kwan; Kim, Juhan; Kim, Byung-Gee

    2009-04-01

    2-Phenylethanol is a widely used aroma compound with rose-like fragrance and L-homophenylalanine is a building block of angiotensin-converting enzyme (ACE) inhibitor. 2-phenylethanol and L-homophenylalanine were synthesized simultaneously with high yield from 2-oxo-4-phenylbutyric acid and L-phenylalanine, respectively. A recombinant Escherichia coli harboring a coupled reaction pathway comprising of aromatic transaminase, phenylpyruvate decarboxylase, carbonyl reductase, and glucose dehydrogenase (GDH) was constructed. In the coupled reaction pathway, the transaminase reaction was coupled with the Ehrlich pathway of yeast; (1) a phenylpyruvate decarboxylase (YDR380W) as the enzyme to generate the substrate for the carbonyl reductase from phenylpyruvate (i.e., byproduct of the transaminase reaction) and to shift the reaction equilibrium of the transaminase reaction, and (2) a carbonyl reductase (YGL157W) to produce the 2-phenylethanol. Selecting the right carbonyl reductase showing the highest activity on phenylacetaldehyde with narrow substrate specificity was the key to success of the constructing the coupling reaction. In addition, NADPH regeneration was achieved by incorporating the GDH from Bacillus subtilis in the coupled reaction pathway. Based on 40 mM of L-phenylalanine used, about 96% final product conversion yield of 2-phenylethanol was achieved using the recombinant E. coli.

  4. ACTION OF A HISTIDINE ANALOGUE, 1,2,4-TRIAZOLE-3-ALANINE, IN SALMONELLA TYPHIMURIUM

    PubMed Central

    Levin, Alfred P.; Hartman, Philip E.

    1963-01-01

    Levin, Alfred P. (The Johns Hopkins University, Baltimore, Md.), and Philip E. Hartman. Action of a histidine analogue, 1,2,4-triazole-3-alanine, in Salmonella typhimurium. J. Bacteriol. 86:820–828. 1963.—The effect of the histidine analogue, 1,2,4-triazole-3-alanine (TRA), on growth and enzyme synthesis in histidine auxotrophs of Salmonella typhimurium has been studied. TRA allows an increase of approximately 50% in the amount of protein in a culture but does not allow concomitant synthesis of ribonucleic acid and deoxyribonucleic acid. Although the analogue prevents the formation of active bacteriophage and of enzymatically active inosine 5′-phosphate dehydrogenase, it does not prevent the formation of enzymatically active l-histidinol phosphate phosphatase or of imidazoleacetol phosphate transaminase, two enzymes involved in the biosynthesis of histidine. Of the three known functions of histidine in the cell, TRA mimics two: it is incorporated into protein, and it acts as a repressor material for synthesis of enzymes involved in the formation of histidine. TRA fails to act as a feedback inhibitor of the first step in the formation of histidine. Images PMID:14066480

  5. Aspartate release from rat hippocampal synaptosomes.

    PubMed

    Bradford, S E; Nadler, J V

    2004-01-01

    Certain excitatory pathways in the rat hippocampus can release aspartate along with glutamate. This study utilized rat hippocampal synaptosomes to characterize the mechanism of aspartate release and to compare it with glutamate release. Releases of aspartate and glutamate from the same tissue samples were quantitated simultaneously. Both amino acids were released by 25 mM K(+), 300 microM 4-aminopyridine (4-AP) and 0.5 and 1 microM ionomycin in a predominantly Ca(2+)-dependent manner. For a roughly equivalent quantity of glutamate released, aspartate release was significantly greater during exposure to elevated [K(+)] than to 4-AP and during exposure to 0.5 than to 1 microM ionomycin. Aspartate release was inefficiently coupled to P/Q-type voltage-dependent Ca(2+) channels and was reduced by KB-R7943, an inhibitor of reversed Na(+)/Ca(2+) exchange. In contrast, glutamate release depended primarily on Ca(2+) influx through P/Q-type channels and was not significantly affected by KB-R7943. Pretreatment of the synaptosomes with tetanus toxin and botulinum neurotoxins C and F reduced glutamate release, but not aspartate release. Aspartate release was also resistant to bafilomycin A(1), an inhibitor of vacuolar H(+)-ATPase, whereas glutamate release was markedly reduced. (+/-) -Threo-3-methylglutamate, a non-transportable competitive inhibitor of excitatory amino acid transport, did not reduce aspartate release. Niflumic acid, a blocker of Ca(2+)-dependent anion channels, did not alter the release of either amino acid. Exogenous aspartate and aspartate recently synthesized from glutamate accessed the releasable pool of aspartate as readily as exogenous glutamate and glutamate recently synthesized from aspartate accessed the releasable glutamate pool. These results are compatible with release of aspartate from either a vesicular pool by a "non-classical" form of exocytosis or directly from the cytoplasm by an as-yet-undescribed Ca(2+)-dependent mechanism. In either case

  6. Overview of pepsin-like aspartic peptidases.

    PubMed

    Dunn, B M

    2001-11-01

    The aspartic peptidase family of enzymes has been implicated in a variety of disease states, from stomach ulcers, to breast cancer, and even Alzheimer's Disease. This unit describes the major characteristics of the aspartic peptidases, including mechanism of action, subcellular and tissue localization, and biological substrate specificity.

  7. 21 CFR 582.5118 - Alanine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Alanine. 582.5118 Section 582.5118 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  8. 21 CFR 582.5118 - Alanine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Alanine. 582.5118 Section 582.5118 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  9. 21 CFR 582.5118 - Alanine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Alanine. 582.5118 Section 582.5118 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  10. 21 CFR 582.5118 - Alanine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Alanine. 582.5118 Section 582.5118 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  11. 21 CFR 582.5118 - Alanine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Alanine. 582.5118 Section 582.5118 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  12. Differential effect of beta-N-oxalylamino-L-alanine, the Lathyrus sativus neurotoxin, and (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate on the excitatory amino acid and taurine levels in the brain of freely moving rats.

    PubMed

    La Bella, V; Piccoli, F

    2000-05-01

    We studied the effect of beta-oxalylamino-L-alanine, a glutamate analog present in Lathyrus sativus seeds and implicated in the etiopathogenesis of neurolathyrism, and (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate on the extracellular levels of aspartate, glutamate and taurine in the primary motor cortex of freely moving rats. We found that while both neurotoxins increase the level of aspartate and glutamate, only (+/-)-alpha(-amino-3-hydroxy-5-methylisoxazole-4-propionate is able to modulate the level of taurine. GYKI-52466, a non-competitive non-NMDA antagonist, inhibited beta-oxalylamino-L-alanine-induced increase of aspartate, but not that of glutamate. Conversely, this antagonist proved to be very efficient in blocking the stimulating effect of (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate on all three amino acids. We suggest that beta-oxalylamino-L-alanine increases the level of glutamate in vivo by a mechanism not connected to its effect on the non-NMDA receptors, which might involve the inhibition of glutamate transport. This would allow the excitatory neurotransmitter to reach a concentration sufficient to stimulate the non-NMDA receptors, which in their turn mediate the specific release of aspartate. Although the role of aspartate as a neurotransmitter is still under discussion, it might indeed amplify the excitotoxic cascade through its action on NMDA receptors. We speculate that this sequence of events might represent an important step in the molecular cascade leading to the appearance of the selective motoneuron degeneration in neurolathyrism.

  13. Inhibition of glutamine synthesis induces glutamate dehydrogenase-dependent ammonia fixation into alanine in co-cultures of astrocytes and neurons.

    PubMed

    Dadsetan, Sherry; Bak, Lasse K; Sørensen, Michael; Keiding, Susanne; Vilstrup, Hendrik; Ott, Peter; Leke, Renata; Schousboe, Arne; Waagepetersen, Helle S

    2011-09-01

    It has been previously demonstrated that ammonia exposure of neurons and astrocytes in co-culture leads to net synthesis not only of glutamine but also of alanine. The latter process involves the concerted action of glutamate dehydrogenase (GDH) and alanine aminotransferase (ALAT). In the present study it was investigated if the glutamine synthetase (GS) inhibitor methionine sulfoximine (MSO) would enhance alanine synthesis by blocking the GS-dependent ammonia scavenging process. Hence, co-cultures of neurons and astrocytes were incubated for 2.5h with [U-(13)C]glucose to monitor de novo synthesis of alanine and glutamine in the absence and presence of 5.0 mM NH(4)Cl and 10 mM MSO. Ammonia exposure led to increased incorporation of label but not to a significant increase in the amount of these amino acids. However, in the presence of MSO, glutamine synthesis was blocked and synthesis of alanine increased leading to an elevated content intra- as well as extracellularly of this amino acid. Treatment with MSO led to a dramatic decrease in glutamine content and increased the intracellular contents of glutamate and aspartate. The large increase in alanine during exposure to MSO underlines the importance of the GDH and ALAT biosynthetic pathway for ammonia fixation, and it points to the use of a GS inhibitor to ameliorate the brain toxicity and edema induced by hyperammonemia, events likely related to glutamine synthesis.

  14. 21 CFR 172.540 - DL-Alanine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true DL-Alanine. 172.540 Section 172.540 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents and Related Substances § 172.540 DL-Alanine. DL-Alanine (a racemic mixture of D- and...

  15. On the existence of ‘L-alanine cadmium bromide'

    NASA Astrophysics Data System (ADS)

    Srinivasan, Bikshandarkoil R.

    2013-12-01

    It is argued that the recently reported nonlinear optical crystal L-alanine cadmium bromide, grown by slow solvent evaporation method at room temperature [P. Ilayabarathi, J. Chandrasekaran, Spectrochim. Acta 96A (2012) 684-689] is the well-known L-alanine crystal. The isolation of L-alanine crystal is explained due to fractional crystallization.

  16. On the existence of 'L-alanine cadmium bromide'.

    PubMed

    Srinivasan, Bikshandarkoil R

    2013-12-01

    It is argued that the recently reported nonlinear optical crystal L-alanine cadmium bromide, grown by slow solvent evaporation method at room temperature [P. Ilayabarathi, J. Chandrasekaran, Spectrochim. Acta 96A (2012) 684-689] is the well-known L-alanine crystal. The isolation of L-alanine crystal is explained due to fractional crystallization.

  17. Identification of a vesicular aspartate transporter

    PubMed Central

    Miyaji, Takaaki; Echigo, Noriko; Hiasa, Miki; Senoh, Shigenori; Omote, Hiroshi; Moriyama, Yoshinori

    2008-01-01

    Aspartate is an excitatory amino acid that is costored with glutamate in synaptic vesicles of hippocampal neurons and synaptic-like microvesicles (SLMVs) of pinealocytes and is exocytosed and stimulates neighboring cells by binding to specific cell receptors. Although evidence increasingly supports the occurrence of aspartergic neurotransmission, this process is still debated because the mechanism for the vesicular storage of aspartate is unknown. Here, we show that sialin, a lysosomal H+/sialic acid cotransporter, is present in hippocampal synaptic vesicles and pineal SLMVs. RNA interference of sialin expression decreased exocytosis of aspartate and glutamate in pinealocytes. Proteoliposomes containing purified sialin actively accumulated aspartate and glutamate to a similar extent when inside positive membrane potential is imposed as the driving force. Sialin carrying a mutation found in people suffering from Salla disease (R39C) was completely devoid of aspartate and glutamate transport activity, although it retained appreciable H+/sialic acid cotransport activity. These results strongly suggest that sialin possesses dual physiological functions and acts as a vesicular aspartate/glutamate transporter. It is possible that people with Salla disease lose aspartergic (and also the associated glutamatergic) neurotransmission, and this could provide an explanation for why Salla disease causes severe neurological defects. PMID:18695252

  18. Alanine Aminotransferase Elevation in Obese Infants and Children: A Marker of Early Onset Non Alcoholic Fatty Liver Disease

    PubMed Central

    Engelmann, Guido; Hoffmann, Georg Friedrich; Grulich-Henn, Juergen; Teufel, Ulrike

    2014-01-01

    Background: Elevated aminotransferases serve as surrogate markers of non-alcoholic fatty liver disease, a feature commonly associated with the metabolic syndrome. Studies on the prevalence of fatty liver disease in obese children comprise small patient samples or focus on those patients with liver enzyme elevation. Objectives: We have prospectively analyzed liver enzymes in all overweight and obese children coming to our tertiary care centre. Patients and Methods: In a prospective study 224 healthy, overweight or obese children aged 1 - 12 years were examined. Body Mass Index-Standard Deviation Score, alanine aminotransferase, aspartate aminotransferase and gamma-glutamyl-transpeptidase were measured. Results: Elevated alanine aminotransferase was observed in 29% of children. 26 % of obese and 30 % of overweight children had liver enzyme elevations. Obese children had significantly higher alanine aminotransferase levels than overweight children (0.9 vs. 0.7 times the Upper Limit of Normal; P = 0.04). Conclusions: Elevation of liver enzymes appears in 29 % obese children in a tertiary care centre. Absolute alanine aminotransferase levels are significantly higher in obese than in overweight children. Even obese children with normal liver enzymes show signs of fatty liver disease as demonstrated by liver enzymes at the upper limit of normal. PMID:24748893

  19. Nucleic acids encoding plant glutamine phenylpyruvate transaminase (GPT) and uses thereof

    DOEpatents

    Unkefer, Pat J.; Anderson, Penelope S.; Knight, Thomas J.

    2016-03-29

    Glutamine phenylpyruvate transaminase (GPT) proteins, nucleic acid molecules encoding GPT proteins, and uses thereof are disclosed. Provided herein are various GPT proteins and GPT gene coding sequences isolated from a number of plant species. As disclosed herein, GPT proteins share remarkable structural similarity within plant species, and are active in catalyzing the synthesis of 2-hydroxy-5-oxoproline (2-oxoglutaramate), a powerful signal metabolite which regulates the function of a large number of genes involved in the photosynthesis apparatus, carbon fixation and nitrogen metabolism.

  20. Acute pancreatitis and elevated liver transaminases after rapid titration of oral levetiracetam.

    PubMed

    Azar, Nabil J; Aune, Patsy

    2014-06-01

    We report a 25-year-old woman with new onset convulsive episodes. The patient initially failed to respond to phenytoin and was switched to levetiracetam (LEV) which was rapidly titrated to 3000 mg daily over 1 week. At initiation of LEV therapy, she developed mild nausea and decrease in appetite. This was rapidly followed by severe digestive symptoms consistent with acute pancreatitis. She was also found to have elevated liver transaminases. An extensive work-up failed to reveal an organic cause for her symptoms, suggesting a direct relationship to LEV. Clinical symptoms and laboratory abnormalities normalized after LEV discontinuation, along with supportive therapy.

  1. The hydrothermal reaction kinetics of aspartic acid

    NASA Astrophysics Data System (ADS)

    Cox, Jenny S.; Seward, Terry M.

    2007-02-01

    Experimental data on the hydrothermal reaction kinetics of aspartic acid were acquired using a custom-built spectrophotometric reaction cell which permits in situ observation under hydrothermal conditions. The results of this study indicate that the reaction kinetics of dilute aspartic acid solutions are significantly different depending on the presence or absence of catalytic surfaces such as standard metal alloys. The spectroscopic data presented here represent the first direct observations, in situ and in real time, of an amino acid reacting in a hydrothermal solution. Quantitative kinetic information, including rate constants, concentration versus time profiles, and calculations of the individual component spectra, was obtained from the data using a chemometric approach based on factor analysis/principle component analysis which treats the rate expressions simultaneously as a system of differential algebraic equations (DAE) of index 1. Identification of the products was confirmed where possible by high pressure anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). The reaction kinetics of aspartic acid under hydrothermal conditions was observed to be highly complex, in contrast to previous studies which indicated almost exclusively deamination. At lower temperatures (120-170 °C), several different reaction pathways were observed, including decarboxylation and polymerization, and the catalytic effects of reactor surfaces on the aspartic acid system were clearly demonstrated. At higher temperatures (above 170 °C), aspartic acid exhibited highly complex behaviour, with evidence indicating that it can simultaneously dimerize and cyclize, deaminate (by up to two pathways), and decarboxylate (by up to two pathways). These higher temperature kinetics were not fully resolvable in a quantitative manner due to the complexity of the system and the constraints of UV spectroscopy. The results of this study provide strong evidence that the reaction

  2. SIRT3-dependent GOT2 acetylation status affects the malate–aspartate NADH shuttle activity and pancreatic tumor growth

    PubMed Central

    Yang, Hui; Zhou, Lisha; Shi, Qian; Zhao, Yuzheng; Lin, Huaipeng; Zhang, Mengli; Zhao, Shimin; Yang, Yi; Ling, Zhi-Qiang; Guan, Kun-Liang; Xiong, Yue; Ye, Dan

    2015-01-01

    The malate–aspartate shuttle is indispensable for the net transfer of cytosolic NADH into mitochondria to maintain a high rate of glycolysis and to support rapid tumor cell growth. The malate–aspartate shuttle is operated by two pairs of enzymes that localize to the mitochondria and cytoplasm, glutamate oxaloacetate transaminases (GOT), and malate dehydrogenases (MDH). Here, we show that mitochondrial GOT2 is acetylated and that deacetylation depends on mitochondrial SIRT3. We have identified that acetylation occurs at three lysine residues, K159, K185, and K404 (3K), and enhances the association between GOT2 and MDH2. The GOT2 acetylation at these three residues promotes the net transfer of cytosolic NADH into mitochondria and changes the mitochondrial NADH/NAD+ redox state to support ATP production. Additionally, GOT2 3K acetylation stimulates NADPH production to suppress ROS and to protect cells from oxidative damage. Moreover, GOT2 3K acetylation promotes pancreatic cell proliferation and tumor growth in vivo. Finally, we show that GOT2 K159 acetylation is increased in human pancreatic tumors, which correlates with reduced SIRT3 expression. Our study uncovers a previously unknown mechanism by which GOT2 acetylation stimulates the malate–aspartate NADH shuttle activity and oxidative protection. PMID:25755250

  3. NQR in Alanine and Lysine Iodates

    NASA Astrophysics Data System (ADS)

    Petrosyan, A. M.; Burbelo, V. M.; Tamazyan, R. A.; Karapetyan, H. A.; Sukiasyan, R. P.

    2000-02-01

    The structure o f iodates of α- and β-alanine ( Ala) (2(β-Ala • HIO3) • H2O , β-Ala-2HIO3 , D L-Ala• HIO3 • 2H2O, L-Ala • HIO3) and L-lysine (L-Lys) (L-Lys • HIO3, L-Lys • 2HIO3,L-Lys • 3HIO3, L-Lys • 6HIO3) have been investigated by means of iodine-127 NQR, IR spectroscopy and X-ray diffraction

  4. Secreted fungal aspartic proteases: A review.

    PubMed

    Mandujano-González, Virginia; Villa-Tanaca, Lourdes; Anducho-Reyes, Miguel Angel; Mercado-Flores, Yuridia

    2016-01-01

    The aspartic proteases, also called aspartyl and aspartate proteases or acid proteases (E.C.3.4.23), belong to the endopeptidase family and are characterized by the conserved sequence Asp-Gly-Thr at the active site. These enzymes are found in a wide variety of microorganisms in which they perform important functions related to nutrition and pathogenesis. In addition, their high activity and stability at acid pH make them attractive for industrial application in the food industry; specifically, they are used as milk-coagulating agents in cheese production or serve to improve the taste of some foods. This review presents an analysis of the characteristics and properties of secreted microbial aspartic proteases and their potential for commercial application.

  5. Discovery and structural characterisation of new fold type IV-transaminases exemplify the diversity of this enzyme fold

    PubMed Central

    Pavkov-Keller, Tea; Strohmeier, Gernot A.; Diepold, Matthias; Peeters, Wilco; Smeets, Natascha; Schürmann, Martin; Gruber, Karl; Schwab, Helmut; Steiner, Kerstin

    2016-01-01

    Transaminases are useful biocatalysts for the production of amino acids and chiral amines as intermediates for a broad range of drugs and fine chemicals. Here, we describe the discovery and characterisation of new transaminases from microorganisms which were enriched in selective media containing (R)-amines as sole nitrogen source. While most of the candidate proteins were clearly assigned to known subgroups of the fold IV family of PLP-dependent enzymes by sequence analysis and characterisation of their substrate specificity, some of them did not fit to any of these groups. The structure of one of these enzymes from Curtobacterium pusillum, which can convert d-amino acids and various (R)-amines with high enantioselectivity, was solved at a resolution of 2.4 Å. It shows significant differences especially in the active site compared to other transaminases of the fold IV family and thus indicates the existence of a new subgroup within this family. Although the discovered transaminases were not able to convert ketones in a reasonable time frame, overall, the enrichment-based approach was successful, as we identified two amine transaminases, which convert (R)-amines with high enantioselectivity, and can be used for a kinetic resolution of 1-phenylethylamine and analogues to obtain the (S)-amines with e.e.s >99%. PMID:27905516

  6. Discovery and structural characterisation of new fold type IV-transaminases exemplify the diversity of this enzyme fold.

    PubMed

    Pavkov-Keller, Tea; Strohmeier, Gernot A; Diepold, Matthias; Peeters, Wilco; Smeets, Natascha; Schürmann, Martin; Gruber, Karl; Schwab, Helmut; Steiner, Kerstin

    2016-12-01

    Transaminases are useful biocatalysts for the production of amino acids and chiral amines as intermediates for a broad range of drugs and fine chemicals. Here, we describe the discovery and characterisation of new transaminases from microorganisms which were enriched in selective media containing (R)-amines as sole nitrogen source. While most of the candidate proteins were clearly assigned to known subgroups of the fold IV family of PLP-dependent enzymes by sequence analysis and characterisation of their substrate specificity, some of them did not fit to any of these groups. The structure of one of these enzymes from Curtobacterium pusillum, which can convert d-amino acids and various (R)-amines with high enantioselectivity, was solved at a resolution of 2.4 Å. It shows significant differences especially in the active site compared to other transaminases of the fold IV family and thus indicates the existence of a new subgroup within this family. Although the discovered transaminases were not able to convert ketones in a reasonable time frame, overall, the enrichment-based approach was successful, as we identified two amine transaminases, which convert (R)-amines with high enantioselectivity, and can be used for a kinetic resolution of 1-phenylethylamine and analogues to obtain the (S)-amines with e.e.s >99%.

  7. Crystallization and preliminary crystallographic analysis of d-alanine-d-alanine ligase from Streptococcus mutans

    SciTech Connect

    Lu, Yong-Zhi; Sheng, Yu; Li, Lan-Fen; Tang, De-Wei; Liu, Xiang-Yu; Zhao, Xiaojun; Liang, Yu-He Su, Xiao-Dong

    2007-09-01

    A potential target for antibiotic drug design, d-alanine-d-alanine ligase from S. mutans, was expressed in E. coli, purified and crystallized. Diffraction data were collected to 2.4 Å resolution. d-Alanine-d-alanine ligase is encoded by the gene ddl (SMU-599) in Streptococcus mutans. This ligase plays a very important role in cell-wall biosynthesis and may be a potential target for drug design. To study the structure and function of this ligase, the gene ddl was amplified from S. mutans genomic DNA and cloned into the expression vector pET28a. The protein was expressed in soluble form in Escherichia coli strain BL21 (DE3). Homogeneous protein was obtained using a two-step procedure consisting of Ni{sup 2+}-chelating and size-exclusion chromatography. Purified protein was crystallized and the cube-shaped crystal diffracted to 2.4 Å. The crystal belongs to space group P3{sub 1}21 or P3{sub 2}21, with unit-cell parameters a = b = 79.50, c = 108.97 Å. There is one molecule per asymmetric unit.

  8. Racemization of alanine by the alanine racemases from Salmonella typhimurium and Bacillus stearothermophilus: energetic reaction profiles

    SciTech Connect

    Faraci, W.S.; Walsh, C.T.

    1988-05-03

    Alanine racemases are bacterial pyridoxal 5'-phosphate (PLP) dependent enzymes providing D-alanine as an essential building block for biosynthesis of the peptidoglycan layer of the cell wall. Two isozymic alanine racemases, encoded by the dadB gene and the alr gene, from the Gram-negative mesophilic Salmonella typhimurium and one from the Gram-positive thermophilic Bacillus stearothermophilus have been examined for the racemization mechanism. Substrate deuterium isotope effects and solvent deuterium isotope effects have been measured in both L ..-->.. D and D..-->.. L directions for all three enzymes to assess the degree to which abstraction of the ..cap alpha..-proton or protonation of substrate PLP carbanion is limiting in catalysis. Additionally, experiments measuring internal return of ..cap alpha..-/sup 3/H from substrate to product and solvent exchange/substrate conversion experiments in /sup 3/H/sub 2/O have been used with each enzyme to examine the partitioning of substrate PLP carbanion intermediates and to obtain the relative heights of kinetically significant energy barriers in alanine racemase catalysis.

  9. The crystal structure of the Pseudomonas dacunhae aspartate-beta-decarboxylase dodecamer reveals an unknown oligomeric assembly for a pyridoxal-5'-phosphate-dependent enzyme.

    PubMed

    Lima, Santiago; Sundararaju, Bakthavatsalam; Huang, Christina; Khristoforov, Roman; Momany, Cory; Phillips, Robert S

    2009-04-24

    The Pseudomonas dacunhael-aspartate-beta-decarboxylase (ABDC, aspartate 4-decarboxylase, aspartate 4-carboxylyase, E.C. 4.1.1.12) is a pyridoxal-5'-phosphate (PLP)-dependent enzyme that catalyzes the beta-decarboxylation of l-aspartate to produce l-alanine and CO(2). This catalytically versatile enzyme is known to form functional dodecamers at its optimal pH and is thought to work in conjunction with an l-Asp/l-Ala antiporter to establish a proton gradient across the membrane that can be used for ATP biosynthesis. We have solved the atomic structure of ABDC to 2.35 A resolution using single-wavelength anomalous dispersion phasing. The structure reveals that ABDC oligomerizes as a homododecamer in an unknown mode among PLP-dependent enzymes and has highest structural homology with members of the PLP-dependent aspartate aminotransferase subfamily. The structure shows that the ABDC active site is very similar to that of aspartate aminotransferase. However, an additional arginine side chain (Arg37) was observed flanking the re-side of the PLP ring in the ABDC active site. The mutagenesis results show that although Arg37 is not required for activity, it appears to be involved in the ABDC catalytic cycle.

  10. The Crystal Structure of the Pseudomonas dacunhae Aspartate-[beta]-Decarboxylase Dodecamer Reveals an Unknown Oligomeric Assembly for a Pyridoxal-5′-Phosphate-Dependent Enzyme

    SciTech Connect

    Lima, Santiago; Sundararaju, Bakthavatsalam; Huang, Christina; Khristoforov, Roman; Momany, Cory; Phillips, Robert S.

    2010-09-01

    The Pseudomonas dacunhae L-aspartate-{beta}-decarboxylase (ABDC, aspartate 4-decarboxylase, aspartate 4-carboxylyase, E.C. 4.1.1.12) is a pyridoxal-5'-phosphate (PLP)-dependent enzyme that catalyzes the {beta}-decarboxylation of L-aspartate to produce L-alanine and CO{sub 2}. This catalytically versatile enzyme is known to form functional dodecamers at its optimal pH and is thought to work in conjunction with an L-Asp/L-Ala antiporter to establish a proton gradient across the membrane that can be used for ATP biosynthesis. We have solved the atomic structure of ABDC to 2.35 {angstrom} resolution using single-wavelength anomalous dispersion phasing. The structure reveals that ABDC oligomerizes as a homododecamer in an unknown mode among PLP-dependent enzymes and has highest structural homology with members of the PLP-dependent aspartate aminotransferase subfamily. The structure shows that the ABDC active site is very similar to that of aspartate aminotransferase. However, an additional arginine side chain (Arg37) was observed flanking the re-side of the PLP ring in the ABDC active site. The mutagenesis results show that although Arg37 is not required for activity, it appears to be involved in the ABDC catalytic cycle.

  11. Enhanced poly(3-hydroxypropionate) production via β-alanine pathway in recombinant Escherichia coli

    PubMed Central

    Lacmata, Stephen Tamekou; Kuiate, Jules-Roger; Ding, Yamei; Xian, Mo; Liu, Huizhou; Boudjeko, Thaddée; Feng, Xinjun; Zhao, Guang

    2017-01-01

    Poly(3-hydroxypropionate) (P3HP) is a thermoplastic with great compostability and biocompatibility, and can be produced through several biosynthetic pathways, in which the glycerol pathway achieved the highest P3HP production. However, exogenous supply of vitamin B12 was required to maintain the activity of glycerol dehydratase, resulting in high production cost. To avoid the addition of VB12, we have previously constructed a P3HP biosynthetic route with β-alanine as intermediate, and the present study aimed to improve the P3HP production of this pathway. L-aspartate decarboxylase PanD was found to be the rate-limiting enzyme in the β-alanine pathway firstly. To improve the pathway efficiency, PanD was screened from four different sources (Escherichia coli, Bacillus subtilis, Pseudomonas fluorescens, and Corynebacterium glutamicum). And PanD from C. glutamicum was found to have the highest activity, the P3HP production was improved in flask cultivation with this enzyme. To further improve the production, the host strain was screened and the culture condition was optimized. Under optimal conditions, production and content of P3HP reached to 10.2 g/L and 39.1% (wt/wt [cell dry weight]) in an aerobic fed-batch fermentation. To date, this is the highest P3HP production without VB12. PMID:28253372

  12. The highly conserved aspartic acid residue between hypervariable regions 1 and 2 of human immunodeficiency virus type 1 gp120 is important for early stages of virus replication.

    PubMed Central

    Wang, W K; Essex, M; Lee, T H

    1995-01-01

    Between hypervariable regions V1 and V2 of human immunodeficiency virus type 1 (HIV-1) gp120 lies a cluster of relatively conserved residues. The contribution of nine charged residues in this region to virus infectivity was evaluated by single-amino-acid substitutions in an infectious provirus clone. Three of the HIV-1 mutants studied had slower growth kinetics than the wild-type virus. The delay was most pronounced in a mutant with an alanine substituted for an aspartic acid residue at position 180. This aspartic acid is conserved by all HIV-1 isolates with known nucleotide sequences. Substitutions with three other residues at this position, including a negatively charged glutamic acid, all affected virus infectivity. The defect identified in these mutants suggests that this aspartic acid residue is involved in the early stages of HIV-1 replication. PMID:7983752

  13. The Effect of Artichoke Leaf Extract on Alanine Aminotransferase and Aspartate Aminotransferase in the Patients with Nonalcoholic Steatohepatitis

    PubMed Central

    Rangboo, Vajiheh; Noroozi, Mostafa; Zavoshy, Roza; Rezadoost, Seyed Amirmansoor; Mohammadpoorasl, Asghar

    2016-01-01

    Background. Based on recent basic and clinical investigations, the extract of artichoke (Cynara scolymus) leaf has been revealed to be used for hepatoprotective and cholesterol reducing purposes. We aimed to assess the therapeutic effects of artichoke on biochemical and liver biomarkers in patients with nonalcoholic steatohepatitis (NASH). Methods. In a randomized double blind clinical trial, 60 consecutive patients suffering NASH were randomly assigned to receive Cynara scolymus extract (as 6 tablets per day consisting of 2700 mg extract of the herb) as the intervention group or placebo as the control group for two months. Results. Comparing changes in study markers following interventions showed improvement in liver enzymes. The levels of triglycerides and cholesterol were significantly reduced in the group treated with Cynara scolymus when compared to placebo group. To compare the role of Cynara scolymus use with placebo in changes in study parameters, multivariate linear regression models were employed indicating higher improvement in liver enzymes and also lipid profile particularly triglycerides and total cholesterol following administration of Cynara scolymus in comparison with placebo use. Conclusion. This study sheds light on the potential hepatoprotective activity and hypolipidemic effect of Cynara scolymus in management of NASH. This clinical trial is registered in the IRCT, Iranian Registry of Clinical Trials, by number IRCT2014070218321N1. PMID:27293900

  14. The Effect of Artichoke Leaf Extract on Alanine Aminotransferase and Aspartate Aminotransferase in the Patients with Nonalcoholic Steatohepatitis.

    PubMed

    Rangboo, Vajiheh; Noroozi, Mostafa; Zavoshy, Roza; Rezadoost, Seyed Amirmansoor; Mohammadpoorasl, Asghar

    2016-01-01

    Background. Based on recent basic and clinical investigations, the extract of artichoke (Cynara scolymus) leaf has been revealed to be used for hepatoprotective and cholesterol reducing purposes. We aimed to assess the therapeutic effects of artichoke on biochemical and liver biomarkers in patients with nonalcoholic steatohepatitis (NASH). Methods. In a randomized double blind clinical trial, 60 consecutive patients suffering NASH were randomly assigned to receive Cynara scolymus extract (as 6 tablets per day consisting of 2700 mg extract of the herb) as the intervention group or placebo as the control group for two months. Results. Comparing changes in study markers following interventions showed improvement in liver enzymes. The levels of triglycerides and cholesterol were significantly reduced in the group treated with Cynara scolymus when compared to placebo group. To compare the role of Cynara scolymus use with placebo in changes in study parameters, multivariate linear regression models were employed indicating higher improvement in liver enzymes and also lipid profile particularly triglycerides and total cholesterol following administration of Cynara scolymus in comparison with placebo use. Conclusion. This study sheds light on the potential hepatoprotective activity and hypolipidemic effect of Cynara scolymus in management of NASH. This clinical trial is registered in the IRCT, Iranian Registry of Clinical Trials, by number IRCT2014070218321N1.

  15. International society of sports nutrition position stand: Beta-Alanine.

    PubMed

    Trexler, Eric T; Smith-Ryan, Abbie E; Stout, Jeffrey R; Hoffman, Jay R; Wilborn, Colin D; Sale, Craig; Kreider, Richard B; Jäger, Ralf; Earnest, Conrad P; Bannock, Laurent; Campbell, Bill; Kalman, Douglas; Ziegenfuss, Tim N; Antonio, Jose

    2015-01-01

    The International Society of Sports Nutrition (ISSN) provides an objective and critical review of the mechanisms and use of beta-alanine supplementation. Based on the current available literature, the conclusions of the ISSN are as follows: 1) Four weeks of beta-alanine supplementation (4-6 g daily) significantly augments muscle carnosine concentrations, thereby acting as an intracellular pH buffer; 2) Beta-alanine supplementation currently appears to be safe in healthy populations at recommended doses; 3) The only reported side effect is paraesthesia (tingling), but studies indicate this can be attenuated by using divided lower doses (1.6 g) or using a sustained-release formula; 4) Daily supplementation with 4 to 6 g of beta-alanine for at least 2 to 4 weeks has been shown to improve exercise performance, with more pronounced effects in open end-point tasks/time trials lasting 1 to 4 min in duration; 5) Beta-alanine attenuates neuromuscular fatigue, particularly in older subjects, and preliminary evidence indicates that beta-alanine may improve tactical performance; 6) Combining beta-alanine with other single or multi-ingredient supplements may be advantageous when supplementation of beta-alanine is high enough (4-6 g daily) and long enough (minimum 4 weeks); 7) More research is needed to determine the effects of beta-alanine on strength, endurance performance beyond 25 min in duration, and other health-related benefits associated with carnosine.

  16. Effect of maternal fasting on ovine fetal and maternal branched-chain amino acid transaminase activities.

    PubMed

    Liechty, E A; Barone, S; Nutt, M

    1987-01-01

    Activities of branched-chain amino acid transaminase were assayed in maternal skeletal muscle, liver and fetal skeletal muscle, cardiac muscle, liver, kidney and placenta obtained from fed and 5-day-fasted late gestation ewes. Very high activities were found in placenta; fetal skeletal muscle also had high activity. Fetal brain had intermediate activity, followed by cardiac muscle and kidney. Fetal liver possessed negligible activity. Activities were low in both maternal liver and skeletal muscle. Trends were seen for fasting to increase activities in fetal placenta, skeletal muscle, brain, kidney, heart and maternal liver, but these changes were statistically significant only for fetal brain and placental tissue. Fetal skeletal muscle activity was 100 times that of maternal skeletal muscle. These data imply differences in the metabolism of the branched-chain amino acids by fetal and adult ruminants and expand the thesis that branched-chain amino acids are important to the metabolism of the ovine fetus.

  17. Alteration of the Donor/Acceptor Spectrum of the (S)-Amine Transaminase from Vibrio fluvialis.

    PubMed

    Genz, Maika; Vickers, Clare; van den Bergh, Tom; Joosten, Henk-Jan; Dörr, Mark; Höhne, Matthias; Bornscheuer, Uwe T

    2015-11-11

    To alter the amine donor/acceptor spectrum of an (S)-selective amine transaminase (ATA), a library based on the Vibrio fluvialis ATA targeting four residues close to the active site (L56, W57, R415 and L417) was created. A 3DM-derived alignment comprising fold class I pyridoxal-5'-phosphate (PLP)-dependent enzymes allowed identification of positions, which were assumed to determine substrate specificity. These positions were targeted for mutagenesis with a focused alphabet of hydrophobic amino acids to convert an amine:α-keto acid transferase into an amine:aldehyde transferase. Screening of 1200 variants revealed three hits, which showed a shifted amine donor/acceptor spectrum towards aliphatic aldehydes (mainly pentanal), as well as an altered pH profile. Interestingly, all three hits, although found independently, contained the same mutation R415L and additional W57F and L417V substitutions.

  18. Alteration of the Donor/Acceptor Spectrum of the (S)-Amine Transaminase from Vibrio fluvialis

    PubMed Central

    Genz, Maika; Vickers, Clare; van den Bergh, Tom; Joosten, Henk-Jan; Dörr, Mark; Höhne, Matthias; Bornscheuer, Uwe T.

    2015-01-01

    To alter the amine donor/acceptor spectrum of an (S)-selective amine transaminase (ATA), a library based on the Vibrio fluvialis ATA targeting four residues close to the active site (L56, W57, R415 and L417) was created. A 3DM-derived alignment comprising fold class I pyridoxal-5′-phosphate (PLP)-dependent enzymes allowed identification of positions, which were assumed to determine substrate specificity. These positions were targeted for mutagenesis with a focused alphabet of hydrophobic amino acids to convert an amine:α-keto acid transferase into an amine:aldehyde transferase. Screening of 1200 variants revealed three hits, which showed a shifted amine donor/acceptor spectrum towards aliphatic aldehydes (mainly pentanal), as well as an altered pH profile. Interestingly, all three hits, although found independently, contained the same mutation R415L and additional W57F and L417V substitutions. PMID:26569229

  19. Alanine aminotransferase controls seed dormancy in barley

    PubMed Central

    Sato, Kazuhiro; Yamane, Miki; Yamaji, Nami; Kanamori, Hiroyuki; Tagiri, Akemi; Schwerdt, Julian G.; Fincher, Geoffrey B.; Matsumoto, Takashi; Takeda, Kazuyoshi; Komatsuda, Takao

    2016-01-01

    Dormancy allows wild barley grains to survive dry summers in the Near East. After domestication, barley was selected for shorter dormancy periods. Here we isolate the major seed dormancy gene qsd1 from wild barley, which encodes an alanine aminotransferase (AlaAT). The seed dormancy gene is expressed specifically in the embryo. The AlaAT isoenzymes encoded by the long and short dormancy alleles differ in a single amino acid residue. The reduced dormancy allele Qsd1 evolved from barleys that were first domesticated in the southern Levant and had the long dormancy qsd1 allele that can be traced back to wild barleys. The reduced dormancy mutation likely contributed to the enhanced performance of barley in industrial applications such as beer and whisky production, which involve controlled germination. In contrast, the long dormancy allele might be used to control pre-harvest sprouting in higher rainfall areas to enhance global adaptation of barley. PMID:27188711

  20. Crystal structure of the Apo form of D-Alanine:D-Alanine ligase (DDl) from Streptococcus mutans.

    PubMed

    Lu, Yongzhi; Xu, Hongyan; Zhao, Xiaojun

    2010-08-01

    D-Alanine:D-Alanine ligase (DDl) catalyzes the formation of D-Alanine:D-Alanine dipeptide and is an essential enzyme in bacterial cell wall biosynthesis.. This enzyme does not have a human ortholog, making it an attractive target for developing new antibiotic drugs. We determined the crystal structure at 2.23 A resolution of DDl from Streptococcus mutans (SmDDl), the principal aetiological agent of human dental caries. This structure reveals that SmDDl is a dimer and has a disordered omega-loop region.

  1. Effect of abomasal infusion of aspartate on nitrogen balance and plasma amino acids in Holstein steers.

    PubMed

    Wessels, R H; Titgemeyer, E C

    1998-01-01

    We investigated the effect of abomasally infused aspartate (Asp) on N balance and plasma amino acids in steers. Four ruminally cannulated Holstein steers (180 kg) housed in metabolism crates were used in an experiment designed as a 4 x 3 Youden square. Steers received continuous abomasal infusions of water or water containing 40 or 80 g Asp/d. Steers were fed twice daily a diet containing 473 g/kg corn, 463 g/kg alfalfa hay and 52 g/kg soybean meal at levels near ad libitum intake. Abomasally infused Asp had no effect on N balance. Infusion of 80 g Asp/d increased (P < 0.05) plasma concentrations of Asp, glutamate and alanine. Metabolism of Asp by gut tissues probably prevented the large change in plasma concentration of Asp that seems necessary to trigger hormonal responses. We conclude that abomasal supplementation of steers with up to 80 g/d of Asp does not enhance performance.

  2. Glutamate and aspartate are decreased in the skin in amyotrophic lateral sclerosis

    NASA Technical Reports Server (NTRS)

    Ono, S.; Yamauchi, M.

    1992-01-01

    We measured the levels of amino acids in biopsied skin from eight patients with amyotrophic lateral sclerosis (ALS) and seven controls. The most conspicuous changes in ALS patients were as follows. First, the contents of the acidic amino acids glutamate and aspartate were significantly decreased in ALS, and were negatively and significantly associated with the duration of illness. Second, the levels of the collagen-associated amino acids hydroxyproline, proline, glycine, alanine, and hydroxylysine were significantly decreased in ALS, and correlated inversely with the duration of illness. These results suggest that there are abnormalities of acidic amino acids and collagen-associated amino acids in the skin of patients with ALS. These changes may underlie the pathogenesis of ALS.

  3. Alanine repeats influence protein localization in splicing speckles and paraspeckles.

    PubMed

    Chang, Shuo-Hsiu; Chang, Wei-Lun; Lu, Chia-Chen; Tarn, Woan-Yuh

    2014-12-16

    Mammalian splicing regulatory protein RNA-binding motif protein 4 (RBM4) has an alanine repeat-containing C-terminal domain (CAD) that confers both nuclear- and splicing speckle-targeting activities. Alanine-repeat expansion has pathological potential. Here we show that the alanine-repeat tracts influence the subnuclear targeting properties of the RBM4 CAD in cultured human cells. Notably, truncation of the alanine tracts redistributed a portion of RBM4 to paraspeckles. The alanine-deficient CAD was sufficient for paraspeckle targeting. On the other hand, alanine-repeat expansion reduced the mobility of RBM4 and impaired its splicing activity. We further took advantage of the putative coactivator activator (CoAA)-RBM4 conjoined splicing factor, CoAZ, to investigate the function of the CAD in subnuclear targeting. Transiently expressed CoAZ formed discrete nuclear foci that emerged and subsequently separated-fully or partially-from paraspeckles. Alanine-repeat expansion appeared to prevent CoAZ separation from paraspeckles, resulting in their complete colocalization. CoAZ foci were dynamic but, unlike paraspeckles, were resistant to RNase treatment. Our results indicate that the alanine-rich CAD, in conjunction with its conjoined RNA-binding domain(s), differentially influences the subnuclear localization and biogenesis of RBM4 and CoAZ.

  4. Production of D-Alanine by Corynebacterium fascians

    PubMed Central

    Yamada, Shigeki; Maeshima, Haruko; Wada, Mitsuru; Chibata, Ichiro

    1973-01-01

    A strain identified as Corynebacterium fascians was found to accumulate extracellular D-alanine from glycerol. Cultural conditions for the accumulation of D-alanine were investigated and, as a result, a yield of 7 g of D-alanine per liter was obtained after a 96-h incubation in a medium containing 5% glycerol, 4% (NH4)2HPO4, and 0.3% corn steep liquor. Optical purity of D-alanine was dependent upon the concentration of corn steep liquor. At the optimal condition, almost optically pure D-alanine was formed and readily isolated (5 g/liter) from the fermentation broth. The product was not contaminated with any detectable amount of other amino acids, except for glycine which was present at a concentration of less than 1 percent. PMID:4699220

  5. The structure of alanine racemase from Acinetobacter baumannii.

    PubMed

    Davis, Emily; Scaletti-Hutchinson, Emma; Opel-Reading, Helen; Nakatani, Yoshio; Krause, Kurt L

    2014-09-01

    Acinetobacter baumannii is an opportunistic Gram-negative bacterium which is a common cause of hospital-acquired infections. Numerous antibiotic-resistant strains exist, emphasizing the need for the development of new antimicrobials. Alanine racemase (Alr) is a pyridoxal 5'-phosphate dependent enzyme that is responsible for racemization between enantiomers of alanine. As D-alanine is an essential component of the bacterial cell wall, its inhibition is lethal to prokaryotes, making it an excellent antibiotic drug target. The crystal structure of A. baumannii alanine racemase (AlrAba) from the highly antibiotic-resistant NCTC13302 strain has been solved to 1.9 Å resolution. Comparison of AlrAba with alanine racemases from closely related bacteria demonstrates a conserved overall fold. The substrate entryway and active site of the enzymes were shown to be highly conserved. The structure of AlrAba will provide the template required for future structure-based drug-design studies.

  6. Specificity of a wheat gluten aspartic proteinase.

    PubMed

    Bleukx, W; Brijs, K; Torrekens, S; Van Leuven, F; Delcour, J A

    1998-09-08

    The substrate and peptide bond specificities of a purified wheat gluten aspartic proteinase (GlAP) are studied. GlAP shows maximum gluten hydrolysing activity at pH 3.0. At this pH, especially the wheat high molecular weight glutenin subunits (HMW-GS) and to a lesser extent the low molecular weight glutenin subunits and gliadins are hydrolysed. GlAP has no obvious effect on albumins and globulins. In its action on oxidised insulin B-chain, GlAP forms eight peptides and has high specificity for peptide bonds located between amino acid residues with large hydrophobic side chains (Leu, Phe, Tyr) but the peptide bond Glu13-Ala14 is also hydrolysed. Although structurally quite similar to a barley aspartic proteinase, the peptide bond specificity of GlAP towards oxidised insulin B-chain resembles slightly more that of a cardoon aspartic proteinase, cardosin B. HMW-GS 7, purified from cultivar Galahad-77, is rapidly hydrolysed by GlAP. N-Terminal amino acid sequence data show that GlAP cleaves at least one Met-Ile peptide bond at the end of the N-terminal domain and two Val-Leu peptide bonds in the repetitive domain of HMW-GS 7.

  7. Comparison of EPR response of alanine and Gd₂O₃-alanine dosimeters exposed to TRIGA Mainz reactor.

    PubMed

    Marrale, M; Schmitz, T; Gallo, S; Hampel, G; Longo, A; Panzeca, S; Tranchina, L

    2015-12-01

    In this work we report some preliminary results regarding the analysis of electron paramagnetic resonance (EPR) response of alanine pellets and alanine pellets added with gadolinium used for dosimetry at the TRIGA research reactor in Mainz, Germany. Two set-ups were evaluated: irradiation inside PMMA phantom and irradiation inside boric acid phantom. We observed that the presence of Gd2O3 inside alanine pellets increases the EPR signal by a factor of 3.45 and 1.24 in case of PMMA and boric acid phantoms, respectively. We can conclude that in the case of neutron beam with a predominant thermal neutron component the addition of gadolinium oxide can significantly improve neutron sensitivity of alanine pellets. Monte Carlo (MC) simulations of both response of alanine and Gd-added alanine pellets with FLUKA code were performed and a good agreement was achieved for pure alanine dosimeters. For Gd2O3-alanine deviations between MC simulations and experimental data were observed and discussed.

  8. Aspartate Decarboxylase is Required for a Normal Pupa Pigmentation Pattern in the Silkworm, Bombyx mori

    PubMed Central

    Dai, Fangyin; Qiao, Liang; Cao, Cun; Liu, Xiaofan; Tong, Xiaoling; He, Songzhen; Hu, Hai; Zhang, Li; Wu, Songyuan; Tan, Duan; Xiang, Zhonghuai; Lu, Cheng

    2015-01-01

    The pigmentation pattern of Lepidoptera varies greatly in different development stages. To date, the effects of key genes in the melanin metabolism pathway on larval and adult body color are distinct, yet the effects on pupal pigmentation remains unclear. In the silkworm, Bombyx mori, the black pupa (bp) mutant is only specifically melanized at the pupal stage. Using positional cloning, we found that a mutation in the Aspartate decarboxylase gene (BmADC) is causative in the bp mutant. In the bp mutant, a SINE-like transposon with a length of 493 bp was detected ~2.2 kb upstream of the transcriptional start site of BmADC. This insertion causes a sharp reduction in BmADC transcript levels in bp mutants, leading to deficiency of β-alanine and N-β-alanyl dopamine (NBAD), but accumulation of dopamine. Following injection of β-alanine into bp mutants, the color pattern was reverted that of the wild-type silkworms. Additionally, melanic pupae resulting from knock-down of BmADC in the wild-type strain were obtained. These findings show that BmADC plays a crucial role in melanin metabolism and in the pigmentation pattern of the silkworm pupal stage. Finally, this study contributes to a better understanding of pupa pigmentation patterns in Lepidoptera. PMID:26077025

  9. Juxtamembranous aspartic acid in Insig-1 and Insig-2 is required for cholesterol homeostasis

    PubMed Central

    Gong, Yi; Lee, Joon No; Brown, Michael S.; Goldstein, Joseph L.; Ye, Jin

    2006-01-01

    Insig-1 and Insig-2 are closely related proteins of the endoplasmic reticulum (ER) that mediate feedback control of cholesterol synthesis by sterol-dependent binding to the following two membrane proteins: the escort protein Scap, thus preventing proteolytic processing of sterol regulatory element-binding proteins; and the cholesterol biosynthetic enzyme 3-hydroxy-3-methylglutaryl CoA reductase, thus inducing the ubiquitination and ER-associated degradation of the enzyme. Here, we report that the conserved Asp-205 in Insig-1, which abuts the fourth transmembrane helix at the cytosolic side of the ER membrane, is essential for its dual function. When Asp-205 was mutated to alanine, the mutant Insig-1 lost the ability to bind to Scap and, thus, was unable to suppress the cleavage of sterol regulatory element-binding proteins. The mutant Insig-1 was ineffective also in accelerating sterol-stimulated degradation of 3-hydroxy-3-methylglutaryl CoA reductase. Alanine substitution of the corresponding aspartic acid in Insig-2 produced the same dual defects. These studies identify a single amino acid residue that is crucial for the function of Insig proteins in regulating cholesterol homeostasis in mammalian cells. PMID:16606821

  10. Aspartate Decarboxylase is Required for a Normal Pupa Pigmentation Pattern in the Silkworm, Bombyx mori.

    PubMed

    Dai, Fangyin; Qiao, Liang; Cao, Cun; Liu, Xiaofan; Tong, Xiaoling; He, Songzhen; Hu, Hai; Zhang, Li; Wu, Songyuan; Tan, Duan; Xiang, Zhonghuai; Lu, Cheng

    2015-06-16

    The pigmentation pattern of Lepidoptera varies greatly in different development stages. To date, the effects of key genes in the melanin metabolism pathway on larval and adult body color are distinct, yet the effects on pupal pigmentation remains unclear. In the silkworm, Bombyx mori, the black pupa (bp) mutant is only specifically melanized at the pupal stage. Using positional cloning, we found that a mutation in the Aspartate decarboxylase gene (BmADC) is causative in the bp mutant. In the bp mutant, a SINE-like transposon with a length of 493 bp was detected ~2.2 kb upstream of the transcriptional start site of BmADC. This insertion causes a sharp reduction in BmADC transcript levels in bp mutants, leading to deficiency of β-alanine and N-β-alanyl dopamine (NBAD), but accumulation of dopamine. Following injection of β-alanine into bp mutants, the color pattern was reverted that of the wild-type silkworms. Additionally, melanic pupae resulting from knock-down of BmADC in the wild-type strain were obtained. These findings show that BmADC plays a crucial role in melanin metabolism and in the pigmentation pattern of the silkworm pupal stage. Finally, this study contributes to a better understanding of pupa pigmentation patterns in Lepidoptera.

  11. Induction of α-Amylase in Barley Endosperm by Substrate Levels of Glutamate and Aspartate 1

    PubMed Central

    Galsky, Alan G.; Lippincott, James A.

    1971-01-01

    Incubation of embryoless barley (Hordeum vulgare) half-seeds for 24 hours with 0.1 m glutamate or aspartate resulted in the release of 17 to 48% as much α-amylase as did incubation with 260 mμm gibberellin. With incubation periods of 48 to 51 hours these amino acids were on the average about half as active as response-saturating concentrations of gibberellin, and in some experiments they were essentially as active. Citric acid cycle intermediates, glycolytic pathway intermediates, and cofactors of these pathways failed to induce α-amylase synthesis, while the following compounds were active: asparagine, homoserine, diaminopimelate, isoleucine, methionine, glutamine, ornithine, citrulline, argininosuccinate, and δ-aminolevulinate. However, threonine, lysine, β-alanine, alanine, γ-aminobutyrate, α-ketobutyrate, proline, arginine, glycine, leucine, and putrescine were inactive. Two patterns were noted in the list of active and inactive compounds: (a) all of the active compounds contain an amino group and are biosynthetically derived from citric acid cycle intermediates; and (b) biosynthetic precursors of the amino acids arginine, proline, threonine, and lysine were active whereas these amino acids were not. PMID:16657658

  12. Synchronization by Food Access Modifies the Daily Variations in Expression and Activity of Liver GABA Transaminase

    PubMed Central

    De Ita-Pérez, Dalia; Vázquez-Martínez, Olivia; Villalobos-Leal, Mónica

    2014-01-01

    Daytime restricted feeding (DRF) is an experimental protocol that influences the circadian timing system and underlies the expression of a biological clock known as the food entrained oscillator (FEO). Liver is the organ that reacts most rapidly to food restriction by adjusting the functional relationship between the molecular circadian clock and the metabolic networks. γ-Aminobutyric acid (GABA) is a signaling molecule in the liver, and able to modulate the cell cycle and apoptosis. This study was aimed at characterizing the expression and activity of the mostly mitochondrial enzyme GABA transaminase (GABA-T) during DRF/FEO expression. We found that DRF promotes a sustained increase of GABA-T in the liver homogenate and mitochondrial fraction throughout the entire day-night cycle. The higher amount of GABA-T promoted by DRF was not associated to changes in GABA-T mRNA or GABA-T activity. The GABA-T activity in the mitochondrial fraction even tended to decrease during the light period. We concluded that DRF influences the daily variations of GABA-T mRNA levels, stability, and catalytic activity of GABA-T. These data suggest that the liver GABAergic system responds to a metabolic challenge such as DRF and the concomitant appearance of the FEO. PMID:24809054

  13. Transaminase abnormalities and adaptations of the liver lobule manifest at specific cut-offs of steatosis

    PubMed Central

    Hall, Andrew; Covelli, Claudia; Manuguerra, Roberta; Luong, Tu Vinh; Buzzetti, Elena; Tsochatzis, Emmanuel; Pinzani, Massimo; Dhillon, Amar Paul

    2017-01-01

    There is little documented evidence suggesting that liver fat is responsible for liver injury in the absence of other disease processes. We investigated the relationships between liver fat, aminotransferases and hepatic architecture in liver biopsies with simple steatosis. We identified 136 biopsies with simple steatosis from the Royal Free Hospital Archives with both clinical data and sufficient material. Digital image analysis was employed to measure fat proportionate area (mFPA). Hepatocyte area (HA) and lobule radius (LR) were also measured. There were significant increases in ALT (p < 0.001) and AST (p = 0.013) with increased fat content and evidence to suggest both 5% and 20% mFPA as a cut-off for raised ALT. In liver with increased fat content there were significant increases in HA (p < 0.001). LR also increased as mFPA increased to 10% (p < 0.001), at which point the lobule ceased to expand further and was counterbalanced with a decrease in the number of hepatocytes per lobule (p = 0.029). Consequently there are mechanisms of adaption in the liver architecture to accommodate the accumulation of fat and these are accompanied by significant increases in transaminases. These results support the generally accepted cut-off of 5% fat for steatosis and indicate 20% as a threshold of more severe liver injury. PMID:28106158

  14. A neuron-glia interaction involving GABA Transaminase contributes to sleep loss in sleepless mutants

    PubMed Central

    Chen, Wen-Feng; Maguire, Sarah; Sowcik, Mallory; Luo, Wenyu; Koh, Kyunghee; Sehgal, Amita

    2014-01-01

    Sleep is an essential process and yet mechanisms underlying it are not well understood. Loss of the Drosophila quiver/sleepless (qvr/sss) gene increases neuronal excitability and diminishes daily sleep, providing an excellent model for exploring the underpinnings of sleep regulation. Here, we used a proteomic approach to identify proteins altered in sss brains. We report that loss of sleepless post-transcriptionally elevates the CG7433 protein, a mitochondrial γ-aminobutyric acid transaminase (GABAT), and reduces GABA in fly brains. Loss of GABAT increases daily sleep and improves sleep consolidation, indicating that GABAT promotes wakefulness. Importantly, disruption of the GABAT gene completely suppresses the sleep phenotype of sss mutants, demonstrating that GABAT is required for loss of sleep in sss mutants. While SSS acts in distinct populations of neurons, GABAT acts in glia to reduce sleep in sss flies. Our results identify a novel mechanism of interaction between neurons and glia that is important for the regulation of sleep. PMID:24637426

  15. Identification of novel transaminases from a 12-aminododecanoic acid-metabolizing Pseudomonas strain.

    PubMed

    Wilding, Matthew; Walsh, Ellen F A; Dorrian, Susan J; Scott, Colin

    2015-07-01

    A Pseudomonas species [Pseudomonas sp. strain amino alkanoate catabolism (AAC)] was identified that has the capacity to use 12-aminododecanoic acid, the constituent building block of homo-nylon-12, as a sole nitrogen source. Growth of Pseudomonas sp. strain AAC could also be supported using a range of additional ω-amino alkanoates. This metabolic function was shown to be most probably dependent upon one or more transaminases (TAs). Fourteen genes encoding putative TAs were identified from the genome of Pseudomonas sp. AAC. Each of the 14 genes was cloned, 11 of which were successfully expressed in Escherichia coli and tested for activity against 12-aminododecanoic acid. In addition, physiological functions were proposed for 9 of the 14 TAs. Of the 14 proteins, activity was demonstrated in 9, and of note, 3 TAs were shown to be able to catalyse the transfer of the ω-amine from 12-aminododecanoic acid to pyruvate. Based on this study, three enzymes have been identified that are promising biocatalysts for the production of nylon and related polymers.

  16. Comparison of Prothrombin Time and Aspartate Aminotransferase in Predicting Hepatotoxicity After Acetaminophen Overdose.

    PubMed

    Levine, Michael; O'Connor, Ayrn D; Padilla-Jones, Angela; Gerkin, Richard D

    2016-03-01

    Despite decades of experience with acetaminophen (APAP) overdoses, it remains unclear whether elevated hepatic transaminases or coagulopathy develop first. Furthermore, comparison of the predictive value of these two variables in determining hepatic toxicity following APAP overdoses has been poorly elucidated. The primary objective of this study is to determine the test characteristics of the aspartate aminotransferase (AST) and the prothrombin time (PT) in patients with APAP toxicity. A retrospective chart review of APAP overdoses treated with IV N-acetylcysteine at a tertiary care referral center was performed. Of the 304 subjects included in the study, 246 with an initial AST less than 1000 were analyzed to determine predictors of hepatic injury, defined as an AST exceeding 1000 IU/L. The initial AST >50 was 79.5 % sensitive and 82.6 % specific for predicting hepatic injury. The corresponding negative and positive predictive values were 95.5 and 46.3 %, respectively. In contrast, an initial abnormal PT had a sensitivity of 82.1 % and a specificity of 63.6 %. The negative and positive predictive values for initial PT were 94.9 and 30.2 %, respectively. Although the two tests performed similarly for predicting a composite endpoint of death or liver transplant, neither was a useful predictor. Initial AST performed better than the initial PT for predicting hepatic injury in this series of patients with APAP overdose.

  17. Function of the D-alanine:D-alanine ligase lid loop: a molecular modeling and bioactivity study.

    PubMed

    Hrast, Martina; Vehar, Blaž; Turk, Samo; Konc, Janez; Gobec, Stanislav; Janežič, Dušanka

    2012-08-09

    D-Alanine:D-alanine ligase (Ddl) is an essential ATP-dependent bacterial enzyme involved in peptidoglycan biosynthesis. Discovery of Ddl inhibitors not competitive with ATP has proven to be difficult because the Ddl bimolecular d-alanine binding pocket is very restricted, as is accessibility to the active site for larger molecules in the catalytically active closed conformation of Ddl. A molecular dynamics study of the opening and closing of the Ddl lid loop informs future structure-based design efforts that allow for the flexibility of Ddl. A virtual screen on generated enzyme conformations yielded some hit inhibitors whose bioactivity was determined.

  18. Crystallization and preliminary X-ray diffraction analysis of ω-amino acid:pyruvate transaminase from Chromobacterium violaceum

    SciTech Connect

    Sayer, Christopher; Isupov, Michail N.; Littlechild, Jennifer A.

    2007-02-01

    An ω-amino acid:pyruvate transaminase from C. violaceum has been purified and crystallized in two crystal forms. The structure has been solved using molecular replacement. The enzyme ω-transaminase catalyses the conversion of chiral ω-amines to ketones. The recombinant enzyme from Chromobacterium violaceum has been purified to homogeneity. The enzyme was crystallized from PEG 4000 using the microbatch method. Data were collected to 1.7 Å resolution from a crystal belonging to the triclinic space group P1, with unit-cell parameters a = 58.9, b = 61.9, c = 63.9 Å, α = 71.9, β = 87.0, γ = 74.6°. Data were also collected to 1.95 Å from a second triclinic crystal form. The structure has been solved using the molecular-replacement method.

  19. Inducible Glutamate Oxaloacetate Transaminase as a Therapeutic Target Against Ischemic Stroke

    PubMed Central

    Khanna, Savita; Briggs, Zachary

    2015-01-01

    Abstract Significance: Glutamate serves multi-faceted (patho)physiological functions in the central nervous system as the most abundant excitatory neurotransmitter and under pathological conditions as a potent neurotoxin. Regarding the latter, elevated extracellular glutamate is known to play a central role in ischemic stroke brain injury. Recent Advances: Glutamate oxaloacetate transaminase (GOT) has emerged as a new therapeutic target in protecting against ischemic stroke injury. Oxygen-sensitive induction of GOT expression and activity during ischemic stroke lowers glutamate levels at the stroke site while sustaining adenosine triphosphate levels in brain. The energy demands of the brain are among the highest of all organs underscoring the need to quickly mobilize alternative carbon skeletons for metabolism in the absence of glucose during ischemic stroke. Recent work builds on the important observation of Hans Krebs that GOT-mediated metabolism of glutamate generates tri-carboxylic acid (TCA) cycle intermediates in brain tissue. Taken together, outcomes suggest GOT may enable the transformative switch of otherwise excitotoxic glutamate into life-sustaining TCA cycle intermediates during ischemic stroke. Critical Issues: Neuroprotective strategies that focus solely on blocking mechanisms of glutamate-mediated excitotoxicity have historically failed in clinical trials. That GOT can enable glutamate to assume the role of a survival factor represents a paradigm shift necessary to develop the overall significance of glutamate in stroke biology. Future Directions: Ongoing efforts are focused to develop the therapeutic significance of GOT in stroke-affected brain. Small molecules that target induction of GOT expression and activity in the ischemic penumbra are the focus of ongoing studies. Antioxid. Redox Signal. 22, 175–186. PMID:25343301

  20. Basic aspects of GABA-transmission in alcoholism, with particular reference to GABA-transaminase.

    PubMed

    Sherif, F M; Tawati, A M; Ahmed, S S; Sharif, S I

    1997-02-01

    Neuronal dysfunction is the neurobiological basis for alcoholic behaviour, and ethanol craving seems related to hypofunction of the GABA-ergic activity. Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system (CNS). In several studies, GABA has been shown to be an important target of ethanol in the CNS, partly, as a consequence of damage to membrane-bound enzymes and receptors. GABA is involved in mediating pre- and post-synaptic inhibition of neuronal activity. It is speculated that the initial excitatory effects of ethanol may be due to inhibition of GABA-ergic activity whereas the sedative effects of the higher doses may be mediated by the activation of this inhibitory system. In the CNS, GABA is synthesised from glutamic acid by the enzyme glutamate decarboxylase (GAD) and catabolized into succinic semialdehyde by the enzyme GABA-transaminase (GABA-T), which are pyridoxal phosphate (PLP) dependent enzymes. Platelet GABA-T was characterized as being similar to central GABA-T. Inhibition of GABA-T with certain potent and selective compounds markedly increases the levels of brain GABA. Experimentally, acute ethanol treatment does not alter GABA-T activity whereas chronic treatment produces an increase in the activity, though, with some reservations since a bimodal effect has been found in chronically ethanol-treated rats. Thus, as it will be discussed below, it may be suggested that GABA-T inhibitors (e.g. vigabatrin) could have a potential role in the treatment of alcoholism and in some of the problems of ethanol withdrawal and of other drugs of abuse. Related studies on metabolism and concentrations of GABA are also promising and show a greater increase in our understanding of the aetiology and treatment of ethanol dependence and withdrawal. In general, this article also reviews both the animal and clinical observations in the field of alcoholism with regard to the GABA system.

  1. Crystallization and preliminary X-ray diffraction studies of the (R)-selective amine transaminase from Aspergillus fumigatus.

    PubMed

    Thomsen, Maren; Skalden, Lilly; Palm, Gottfried J; Höhne, Matthias; Bornscheuer, Uwe T; Hinrichs, Winfried

    2013-12-01

    The (R)-selective amine transaminase from Aspergillus fumigatus was expressed in Escherichia coli and purified to homogeneity. Bright yellow crystals appeared while storing the concentrated solution in the refrigerator and belonged to space group C222(1). X-ray diffraction data were collected to 1.27 Å resolution, as well as an anomalous data set to 1.84 Å resolution that was suitable for S-SAD phasing.

  2. [Activity of various oxidases and transaminases in the rat liver in the readaptation period after hypokinesia up to 30 days].

    PubMed

    Potapov, P P

    1990-01-01

    The activity of alpha-ketoglutarate dehydrogenase and succinic dehydrogenase in readaptation after 15-day hypokinesia was within normal limits, whereas following 30-day hypokinesia it was enhanced on days 11-15. Pyruvate dehydrogenase exhibited hyperactivity in the end of readaptation week 2 both in 15- and 30-day hypokinesia which resulted in rat liver hyperactivity of glutamate dehydrogenase and transaminases. Normal levels of the latter were recorded on readaptation day 12-19.

  3. L-aspartic acid transport by cat erythrocytes

    SciTech Connect

    Chen, C.W.; Preston, R.L.

    1986-03-01

    Cat and dog red cells are unusual in that they have no Na/K ATPase and contain low K and high Na intracellularly. They also show significant Na dependent L-aspartate (L-asp) transport. The authors have characterized this system in cat RBCs. The influx of /sup 3/H-L-asp (typically 2..mu..M) was measured in washed RBCs incubated for 60 s at 37/sup 0/C in medium containing 140 mM NaCl, 5 mM Kcl, 2 mM CaCl/sub 2/, 15 mM MOPS pH 7.4, 5 mM glucose, and /sup 14/C-PEG as a space marker. The cells were washed 3 times in the medium immediately before incubation which was terminated by centrifuging the RBCs through a layer of dibutylphthalate. Over an L-asp concentration range of 0.5-1000..mu..M, influx obeyed Michaelis-Menten kinetics with a small added linear diffusion component. The Kt and Jmax of the saturable component were 5.40 +/- 0.34 ..mu..M and 148.8 +/- 7.2 ..mu..mol 1. cell/sup -1/h/sup -1/ respectively. Replacement of Na with Li, K, Rb, Cs or choline reduce influx to diffusion. With the addition of asp analogues (4/sup +/M L-asp, 40/sup +/M inhibitor), the following sequence of inhibition was observed (range 80% to 40% inhib.): L-glutamate > L-cysteine sulfonate > D-asp > L-cysteic acid > D-glutamate. Other amino acids such as L-alanine, L-proline, L-lysine, L-cysteine, and taurine showed no inhibition (<5%). These data suggest that cat red cells contain a high-affinity Na dependent transport system for L-asp, glutamate, and closely related analogues which resembles that found in the RBCs of other carnivores and in neural tissues.

  4. D-Amino acid dipeptide production utilizing D-alanine-D-alanine ligases with novel substrate specificity.

    PubMed

    Sato, Masaru; Kirimura, Kohtaro; Kino, Kuniki

    2005-06-01

    D-Alanine-D-alanine ligase (Ddl) is an important enzyme in the synthesis of bacterial peptidoglycan. The genes encoding Ddls from Escherichia coli K12 (EcDdlB), Oceanobacillus iheyensis JCM 11309 (OiDdl), Synechocystis sp. PCC 6803 (SsDdl) and Thermotoga maritima ATCC 43589 (TmDdl), the genomic DNA sequences of which have been determined, were cloned and the substrate specificities of these recombinant Ddls were investigated. Although OiDdl had a high substrate specificity for D-alanine; EcDdlB, SsDdl and TmDdl showed broad substrate specificities for D-serine, D-threonine, D-cysteine and glycine, in addition to D-alanine. Four D-amino acid dipeptides were produced using EcDdlB, and D-amino acid homo-dipeptides were successfully produced at high yields except for D-threonyl-D-threonine.

  5. Noncovalent and covalent functionalization of a (5, 0) single-walled carbon nanotube with alanine and alanine radicals.

    PubMed

    Rajarajeswari, Muthusivarajan; Iyakutti, Kombiah; Kawazoe, Yoshiyuki

    2012-02-01

    We have systematically investigated the noncovalent and covalent adsorption of alanine and alanine radicals, respectively, onto a (5, 0) single-walled carbon nanotube using first-principles calculation. It was found that XH···π (X = N, O, C) interactions play a crucial role in the non-ovalent adsorption and that the functional group close to the carbon nanotube exhibits a significant influence on the binding strength. Noncovalent functionalization of the carbon nanotube with alanine enhances the conductivity of the metallic (5, 0) nanotube. In the covalent adsorption of each alanine radical onto a carbon nanotube, the binding energy depends on the adsorption site on CNT and the electronegative atom that binds with the CNT. The strongest complex is formed when the alanine radical interacts with a (5, 0) carbon nanotube through the amine group. In some cases, the covalent interaction of the alanine radical introduces a half-filled band at the Fermi level due to the local sp (3) hybridization, which modifies the conductivity of the tube.

  6. Structure of D-alanine-D-alanine ligase from Yersinia pestis: nucleotide phosphate recognition by the serine loop.

    PubMed

    Tran, Huyen Thi; Hong, Myoung Ki; Ngo, Ho Phuong Thuy; Huynh, Kim Hung; Ahn, Yeh Jin; Wang, Zhong; Kang, Lin Woo

    2016-01-01

    D-Alanyl-D-alanine is an essential precursor of bacterial peptidoglycan and is synthesized by D-alanine-D-alanine ligase (DDL) with hydrolysis of ATP; this reaction makes DDL an important drug target for the development of antibacterial agents. Five crystal structures of DDL from Yersinia pestis (YpDDL) were determined at 1.7-2.5 Å resolution: apo, AMP-bound, ADP-bound, adenosine 5'-(β,γ-imido)triphosphate-bound, and D-alanyl-D-alanine- and ADP-bound structures. YpDDL consists of three domains, in which four loops, loop 1, loop 2 (the serine loop), loop 3 (the ω-loop) and loop 4, constitute the binding sites for two D-alanine molecules and one ATP molecule. Some of them, especially the serine loop and the ω-loop, show flexible conformations, and the serine loop is mainly responsible for the conformational change in substrate nucleotide phosphates. Enzyme-kinetics assays were carried out for both the D-alanine and ATP substrates and a substrate-binding mechanism was proposed for YpDDL involving conformational changes of the loops.

  7. Homoserine as an Aspartic Acid Precursor for Synthesis of Proteoglycan Glycopeptide Containing Aspartic Acid and a Sulfated Glycan Chain.

    PubMed

    Yang, Weizhun; Ramadan, Sherif; Yang, Bo; Yoshida, Keisuke; Huang, Xuefei

    2016-12-02

    Among many hurdles in synthesizing proteoglycan glycopeptides, one challenge is the incorporation of aspartic acid in the peptide backbone and acid sensitive O-sulfated glycan chains. To overcome this, a new strategy was developed utilizing homoserine as an aspartic acid precursor. The conversion of homoserine to aspartic acid in the glycopeptide was successfully accomplished by late stage oxidation using (2,2,6,6-tetramethyl-piperidin-1-yl)oxyl (TEMPO) and bis(acetoxy)iodobenzene (BAIB). This is the first time that a glycopeptide containing aspartic acid and an O-sulfated glycan was synthesized.

  8. The polyproline II conformation in short alanine peptides is noncooperative.

    PubMed

    Chen, Kang; Liu, Zhigang; Kallenbach, Neville R

    2004-10-26

    The finding that short alanine peptides possess a high fraction of polyproline II (PII) structure (Phi=-75 degrees, Psi=+145 degrees ) at low temperature has broad implications for unfolded states of proteins. An important question concerns whether or not this structure is locally determined or cooperative. We have monitored the conformation of alanine in a series of model peptides AcGGAnGGNH2 (n=1-3) over a temperature range from -10 degrees C to +80 degrees C. Use of 15N-labeled alanine substitutions makes it possible to measure 3JalphaN coupling constants accurately over the full temperature range. Based on a 1D next-neighbor model, the cooperative parameter sigma of PII nucleation is evaluated from the coupling constant data. The finding that sigma is close to unity (1 +/- 0.2) indicates a noncooperative role for alanine in PII structure formation, consistent with statistical surveys of the Protein Data Bank that suggest that most PII structure occurs in isolated residues. Lack of cooperativity in these models implies that hydration effects that influence PII conformation in water are highly localized. Using a nuclear Overhauser effect ratio strategy to define the alanine Psi angle, we estimate that, at 40 degrees C, the time-averaged alanine conformation (Phi=-80 degrees, Psi=+170 degrees ) deviates from canonical PII structure, indicating that PII melts at high temperature. Thus, the high-temperature state of short alanine peptides seems to be an unfolded ensemble with higher distribution in the extended beta structure basin, but not a coil.

  9. EPR/alanine dosimetry for two therapeutic proton beams

    NASA Astrophysics Data System (ADS)

    Marrale, Maurizio; Carlino, Antonio; Gallo, Salvatore; Longo, Anna; Panzeca, Salvatore; Bolsi, Alessandra; Hrbacek, Jan; Lomax, Tony

    2016-02-01

    In this work the analysis of the electron paramagnetic resonance (EPR) response of alanine pellets exposed to two different clinical proton beams employed for radiotherapy is performed. One beam is characterized by a passive delivery technique and is dedicated to the eyes treatment (OPTIS2 beam line). Alanine pellets were irradiated with a 70 MeV proton beam corresponding to 35 mm range in eye tissue. We investigated how collimators with different sizes and shape used to conform the dose to the planned target volume influence the delivered dose. For this purpose we performed measurements with varying the collimator size (Output Factor) and the results were compared with those obtained with other dosimetric techniques (such as Markus chamber and diode detector). This analysis showed that the dosimeter response is independent of collimator diameter if this is larger than or equal to 10 mm. The other beam is characterized by an active spot-scanning technique, the Gantry1 beam line (maximum energy 230 MeV), and is used to treat deep-seated tumors. The dose linearity of alanine response in the clinical dose range was tested and the alanine dose response at selected locations in depth was measured and compared with the TPS planned dose in a quasi-clinical scenario. The alanine response was found to be linear in the dose in the clinical explored range (from 10 to 70 Gy). Furthermore, a depth dose profile in a quasi-clinical scenario was measured and compared to the dose computed by the Treatment Planning System PSIPLAN. The comparison of calibrated proton alanine measurements and TPS dose shows a difference under 1% in the SOBP and a "quenching" effect up to 4% in the distal part of SOBP. The positive dosimetric characteristics of the alanine pellets confirm the feasibility to use these detectors for "in vivo" dosimetry in clinical proton beams.

  10. Does acute alcohol intoxication cause transaminase elevations in children and adolescents?

    PubMed

    Binder, Christoph; Knibbe, Karoline; Kreissl, Alexandra; Repa, Andreas; Thanhaeuser, Margarita; Greber-Platzer, Susanne; Berger, Angelika; Jilma, Bernd; Haiden, Nadja

    2016-03-01

    Several long-term effects of alcohol abuse in children and adolescents are well described. Alcohol abuse has severe effects on neurodevelopmental outcome, such as learning disabilities, memory deficits, and decreased cognitive performance. Additionally, chronic alcohol intake is associated with chronic liver disease. However, the effects of acute alcohol intoxication on liver function in children and adolescents are not well characterized. The aim of this study was to determine if a single event of acute alcohol intoxication has short-term effects on liver function and metabolism. All children and adolescents admitted to the Department of Pediatrics and Adolescent Medicine between 2004 and 2011 with the diagnosis "acute alcohol intoxication" were included in this retrospective analysis. Clinical records were evaluated for age, gender, alcohol consumption, blood alcohol concentration, symptoms, and therapy. Blood values of the liver parameters, CK, creatinine, LDH, AP, and the values of the blood gas analysis were analyzed. During the 8-year study period, 249 children and adolescents with the diagnosis "acute alcohol intoxication" were admitted, 132 (53%) girls and 117 (47%) boys. The mean age was 15.3 ± 1.2 years and the mean blood alcohol concentration was 0.201 ± 0.049%. Girls consumed significantly less alcohol than boys (64 g vs. 90 g), but reached the same blood alcohol concentration (girls: 0.199 ± 0.049%; boys: 0.204 ± 0.049%). The mean values of liver parameters were in normal ranges, but AST was increased in 9.1%, ALT in 3.9%, and γGT in 1.4%. In contrast, the mean value of AST/ALT ratio was increased and the ratio was elevated in 92.6% of all patients. Data of the present study showed significant differences in the AST/ALT ratio (p < 0.01) in comparison to a control group. Data of the present study indicate that there might be an effect of acute alcohol intoxication on transaminase levels. The AST/ALT ratio seems to reflect the damage in hepatocytes

  11. Effects of lixisenatide on elevated liver transaminases: systematic review with individual patient data meta-analysis of randomised controlled trials on patients with type 2 diabetes

    PubMed Central

    Gluud, Lise L; Knop, Filip K; Vilsbøll, Tina

    2014-01-01

    Objective To evaluate the effects of the glucagon-like peptide-1 receptor agonist lixisenatide on elevated liver blood tests in patients with type 2 diabetes. Design Systematic review. Data sources Electronic and manual searches were combined. Study selection Randomised controlled trials (RCTs) on lixisenatide versus placebo or active comparators for type 2 diabetes were included. Participants Individual patient data were retrieved to calculate outcomes for patients with elevated liver blood tests. Main outcome measures Normalisation of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Data synthesis The results of included trials were combined in meta-analyses. Sequential, subgroup and regression analyses were performed to evaluate heterogeneity and bias. Results We included 12 RCTs on lixisenatide versus placebo and 3 RCTs with the active comparators liraglutide, exenatide or sitagliptin. The mean treatment duration was 29 weeks. Lixisenatide increased the proportion of patients with normalisation of ALT (risk difference: 0.07; 95% CI 0.01 to 0.14; number needed to treat: 14 patients, p=0.042). The effect was not confirmed in sequential analysis. No effects of lixisenatide were identified on AST, alkaline phosphatase or bilirubin. No evidence of bias was identified. Mixed effect multilevel meta-regression analyses suggest that the benefit of lixisenatide on ALT was limited to patients who were overweight or obese. Conclusions This review suggests that lixisenatide increases the proportion of obese or overweight patients with type 2 diabetes who achieve normalisation of ALT. Additional research is needed to determine if the findings translate to clinical outcome measures. Trial registration number PROSPERO; CRD42013005779. PMID:25526792

  12. [Conformation of aspartate aminotransferase in crystals].

    PubMed

    Borisov, V V; Borisova, S N; Sosfenov, N I; Dikson, Kh BF

    1983-01-01

    X-ray study of chicken cytosolic aspartate aminotransferase revealed conformational changes in the protein of two kinds: (1) a shift of the small domain adjacent to substrate-binding area due to interaction of the protein with two carboxyl groups of substrate and (2) a change in inclination of the coenzyme plane due to replacement of C = N bond of the coenzyme with Lys-258 by C = N bond with a substrate. An asymmetry in subunit behaviour is observed in both cases: the domain is shifted in one subunit and the coenzyme is rotated in other. Substrate-binding properties of each subunit are strictly dependent on the protein conformation in substrate-binding area.

  13. PPAR{alpha} regulates the hepatotoxic biomarker alanine aminotransferase (ALT1) gene expression in human hepatocytes

    SciTech Connect

    Thulin, Petra; Rafter, Ingalill; Stockling, Kenneth; Tomkiewicz, Celine; Norjavaara, Ensio; Aggerbeck, Martine; Hellmold, Heike; Ehrenborg, Ewa; Andersson, Ulf; Cotgreave, Ian; Glinghammar, Bjoern

    2008-08-15

    In this work, we investigated a potential mechanism behind the observation of increased aminotransferase levels in a phase I clinical trial using a lipid-lowering drug, the peroxisome proliferator-activated receptor (PPAR) {alpha} agonist, AZD4619. In healthy volunteers treated with AZD4619, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities were elevated without an increase in other markers for liver injury. These increases in serum aminotransferases have previously been reported in some patients receiving another PPAR{alpha} agonist, fenofibrate. In subsequent in vitro studies, we observed increased expression of ALT1 protein and mRNA in human hepatocytes after treatment with fenofibric acid. The PPAR effect on ALT1 expression was shown to act through a direct transcriptional mechanism involving at least one PPAR response element (PPRE) in the proximal ALT1 promoter, while no effect of fenofibrate and AZD4619 was observed on the ALT2 promoter. Binding of PPARs to the PPRE located at - 574 bp from the transcriptional start site was confirmed on both synthetic oligonucleotides and DNA in hepatocytes. These data show that intracellular ALT expression is regulated by PPAR agonists and that this mechanism might contribute to increased ALT activity in serum.

  14. The sodium effect of Bacillus subtilis growth on aspartate.

    PubMed

    Whiteman, P; Marks, C; Freese, E

    1980-08-01

    aspH mutants of Bacillus subtilis have a constitutive aspartase activity and grow well on aspartate as sole carbon source. aspH aspT mutants, which are deficient in high affinity aspartate transport as a result of the aspT mutation, grow as well as aspH mutants in medium containing high concentrations of aspartate and Na+. This Na+ effect is not due to an enhancement of aspartate transport but is the result of increased cellular metabolism. The ability to grow rapidly in sodium aspartate is induced by prior growth in the presence of Na+. In potassium aspartate, the addition of arginine, citrulline, ornithine, delta 1-pyrroline-5-carboxylase or proline instead of Na+ also allows rapid growth; but in a mutant deficient in ornithine--oxo-acid aminotransferase, only pyrroline-carboxylate or proline can replace Na+. The amino acid pool of cells growing slowly in potassium aspartate contains proline at a low concentration which increases upon addition of proline (but not Na+) to the medium. Thus, Na+ addition does not increase the synthesis of proline, but proline or pyrroline-carboxylate acts similarly to Na+ either in preventing some inhibitory effect (by aspartate or the accumulating NH4+) or in overcoming some deficiency (e.g. in further proline metabolism.

  15. Some aspects of structural studies on aspartic proteinases.

    PubMed

    Andreeva, N S

    1992-01-01

    This paper gives a brief overview over the differences and similarities in the structure of aspartic proteinases presently available. Comparison of the three-dimentional structure of different aspartic proteinases by a common intramolecular coordinate system have been performed. The intramolecular movable subdomains have been localized and the role of motion in substrate binding and zymogen activation is discussed.

  16. Metabolic Engineering of Escherichia coli for the Production of 3-Hydroxypropionic Acid and Malonic Acid through β-Alanine Route.

    PubMed

    Song, Chan Woo; Kim, Je Woong; Cho, In Jin; Lee, Sang Yup

    2016-11-18

    Escherichia coli was metabolically engineered to produce industrially important platform chemicals, 3-hydroxypropionic acid (3-HP) and malonic acid (MA), through the β-alanine (BA) route. First, various combinations of downstream enzymes were screened and BA pyruvate transaminase (encoded by pa0132) from P. aeruginosa was selected to generate malonic semialdehyde (MSA) from BA. This platform strain was engineered by introducing E. coli MSA reductase (encoded by ydfG) to reduce MSA to 3-HP. Replacement of native promoter of the sdhC gene with the strong trc promoter in the genome increased 3-HP production to 3.69 g/L in flask culture. Introduction of E. coli semialdehyde dehydrogenase (encoded by yneI) into the platform strain resulted in the production of MA, and additional deletion of the ydfG gene increased MA production to 0.450 g/L in flask culture. Fed-batch cultures of final engineered strains resulted in the production of 31.1 g/L 3-HP or 3.60 g/L MA from glucose.

  17. On the existence of ``l-threonine formate'', ``l-alanine lithium chloride'' and ``bis l-alanine lithium chloride'' crystals

    NASA Astrophysics Data System (ADS)

    Petrosyan, A. M.; Ghazaryan, V. V.; Fleck, M.

    2013-03-01

    We argue that the recently reported crystals "L-threonine formate" as well as "L-alanine lithium chloride" and "bis L-alanine lithium chloride" actually are the well-known crystals L-threonine and L-alanine, respectively.

  18. [Effects of ß-alanine supplementation on athletic performance].

    PubMed

    Domínguez, Raúl; Hernández Lougedo, Juan; Maté-Muñoz, José Luis; Garnacho-Castaño, Manuel Vicente

    2014-10-06

    Carnosine, dipeptide formed by amino acids ß-alanine and L-histidine, has important physiological functions among which its antioxidant and related memory and learning. However, in connection with the exercise, the most important functions would be associated with muscle contractility, improving calcium sensitivity in muscle fibers, and the regulatory function of pH. Thus, it is proposed that carnosine is the major intracellular buffer, but could contribute to 7-10% in buffer or buffer capacity. Since carnosine synthesis seems to be limited by the availability of ß-alanine supplementation with this compound has been gaining increasing popularity among the athlete population. Therefore, the objective of this study literature review was to examine all those research works have shown the effect of ß-alanine supplementation on athletic performance. Moreover, it also has attempted to establish a specific dosage that maximizing the potential benefits, minimize paresthesia, the main side effect presented in response to supplementation.

  19. First-principles studies of pure and fluorine substituted alanines

    NASA Astrophysics Data System (ADS)

    Ahmad, Sardar; Vaizie, Hamide; Rahnamaye Aliabad, H. A.; Ahmad, Rashid; Khan, Imad; Ali, Zahid; Jalali-Asadabadi, S.; Ahmad, Iftikhar; Khan, Amir Abdullah

    2016-05-01

    This paper communicates the structural, electronic and optical properties of L-alanine, monofluoro and difluoro substituted alanines using density functional calculations. These compounds exist in orthorhombic crystal structure and the calculated structural parameters such as lattice constants, bond angles and bond lengths are in agreement with the experimental results. L-alanine is an indirect band gap insulator, while its fluorine substituted compounds (monofluoroalanine and difluoroalanine) are direct band gap insulators. The substitution causes reduction in the band gap and hence these optically tailored direct wide band gap materials have enhanced optical properties in the ultraviolet (UV) region of electromagnetic spectrum. Therefore, optical properties like dielectric function, refractive index, reflectivity and energy loss function are also investigated. These compounds have almost isotropic nature in the lower frequency range while at higher energies, they have a significant anisotropic nature.

  20. Atomic Layer Deposition of L-Alanine Polypeptide

    SciTech Connect

    Fu, Yaqin; Li, Binsong; Jiang, Ying-Bing; Dunphy, Darren R.; Tsai, Andy; Tam, Siu-Yue; Fan, Hongyou Y.; Zhang, Hongxia; Rogers, David; Rempe, Susan; Atanassov, Plamen; Cecchi, Joseph L.; Brinker, C. Jeffrey

    2014-10-30

    L-Alanine polypeptide thin films were synthesized via atomic layer deposition (ALD). Rather, instead of using an amino acid monomer as the precursor, an L-alanine amino acid derivatized with a protecting group was used to prevent self-polymerization, increase the vapor pressure, and allow linear cycle-by-cycle growth emblematic of ALD. Moreover, the successful deposition of a conformal polypeptide film has been confirmed by FTIR, TEM, and Mass Spectrometry, and the ALD process has been extended to polyvaline.

  1. Stereoselective aminoacylation of a dinucleoside monophosphate by the imidazolides of DL-alanine and N-(tert-butoxycarbonyl)-DL-alanine

    NASA Technical Reports Server (NTRS)

    Profy, A. T.; Usher, D. A.

    1984-01-01

    The aminoacylation of diinosine monophosphate was studied experimentally. When the acylating agent was the imidazolide of N-(tert-butoxycarbonyl)-DL-alanine, a 40 percent enantiomeric excess of the isomer was incorporated at the 2' site and the positions of equilibrium for the reversible 2'-3' migration reaction differed for the D and L enantiomers. The reactivity of the nucleoside hydroxyl groups was found to decrease on the order 2'(3') less than internal 2' and less than 5', and the extent of the reaction was affected by the concentration of the imidazole buffer. Reaction of IpI with imidazolide of unprotected DL-alanine, by contrast, led to an excess of the D isomer at the internal 2' site. Finally, reaction with the N-carboxy anhydride of DL-alanine occurred without stereoselection. These results are found to be relevant to the study of the evolution of optical chemical activity and the origin of genetically directed protein synthesis.

  2. Aspartic acid 413 is important for the normal allosteric functioning of ADP-glucose pyrophosphorylase.

    PubMed Central

    Greene, T W; Woodbury, R L; Okita, T W

    1996-01-01

    As part of a structure-function analysis of the higher-plant ADP-glucose pyrophosphorylase (AGP), we used a random mutagenesis approach in combination with a novel bacterial complementation system to isolate over 100 mutants that were defective in glycogen production (T.W. Greene, S.E. Chantler, M.L. Khan, G.F. Barry, J. Preiss, T.W. Okita [1996] Proc Natl Acad Sci USA 93: 1509-1513). One mutant of the large subunit M27 was identified by its capacity to only partially complement a mutation in the structural gene for the bacterial AGP (glg C), as determined by its light-staining phenotype when cells were exposed to l3 vapors. Enzyme-linked immunosorbent assay and enzymatic pyrophosphorylysis assays of M27 cell extracts showed that the level of expression and AGP activity was comparable to those of cells that expressed the wild-type recombinant enzyme. Kinetic analysis indicated that the M27 AGP displays normal Michaelis constant values for the substrates glucose-1-phosphate and ATP but requires 6- to 10-fold greater levels of 3-phosphoglycerate (3-PGA) than the wild-type recombinant enzyme for maximum activation. DNA sequence analysis showed that M27 contains a single point mutation that resulted in the replacement of aspartic acid 413 to alanine. Substitution of a lysine residue at this site almost completely abolished activation by 3-PGA. Aspartic acid 413 is adjacent to a lysine residue that was previously identified by chemical modification studies to be important in the binding of 3-PGA (K. Ball, J. Preiss [1994] J Biol Chem 269: 24706-24711). The kinetic properties of M27 corroborate the importance of this region in the allosteric regulation of a higher-plant AGP. PMID:8938421

  3. Threonine 57 is required for the post-translational activation of Escherichia coli aspartate α-decarboxylase

    PubMed Central

    Webb, Michael E.; Yorke, Briony A.; Kershaw, Tom; Lovelock, Sarah; Lobley, Carina M. C.; Kilkenny, Mairi L.; Smith, Alison G.; Blundell, Tom L.; Pearson, Arwen R.; Abell, Chris

    2014-01-01

    Aspartate α-decarboxylase is a pyruvoyl-dependent decarboxylase required for the production of β-alanine in the bacterial pantothenate (vitamin B5) biosynthesis pathway. The pyruvoyl group is formed via the intramolecular rearrangement of a serine residue to generate a backbone ester intermediate which is cleaved to generate an N-terminal pyruvoyl group. Site-directed mutagenesis of residues adjacent to the active site, including Tyr22, Thr57 and Tyr58, reveals that only mutation of Thr57 leads to changes in the degree of post-translational activation. The crystal structure of the site-directed mutant T57V is consistent with a non-rearranged backbone, supporting the hypothesis that Thr57 is required for the formation of the ester intermediate in activation. PMID:24699660

  4. Threonine 57 is required for the post-translational activation of Escherichia coli aspartate α-decarboxylase.

    PubMed

    Webb, Michael E; Yorke, Briony A; Kershaw, Tom; Lovelock, Sarah; Lobley, Carina M C; Kilkenny, Mairi L; Smith, Alison G; Blundell, Tom L; Pearson, Arwen R; Abell, Chris

    2014-04-01

    Aspartate α-decarboxylase is a pyruvoyl-dependent decarboxylase required for the production of β-alanine in the bacterial pantothenate (vitamin B5) biosynthesis pathway. The pyruvoyl group is formed via the intramolecular rearrangement of a serine residue to generate a backbone ester intermediate which is cleaved to generate an N-terminal pyruvoyl group. Site-directed mutagenesis of residues adjacent to the active site, including Tyr22, Thr57 and Tyr58, reveals that only mutation of Thr57 leads to changes in the degree of post-translational activation. The crystal structure of the site-directed mutant T57V is consistent with a non-rearranged backbone, supporting the hypothesis that Thr57 is required for the formation of the ester intermediate in activation.

  5. Deletion of the Saccharomyces cerevisiae ARO8 gene, encoding an aromatic amino acid transaminase, enhances phenylethanol production from glucose.

    PubMed

    Romagnoli, Gabriele; Knijnenburg, Theo A; Liti, Gianni; Louis, Edward J; Pronk, Jack T; Daran, Jean-Marc

    2015-01-01

    Phenylethanol has a characteristic rose-like aroma that makes it a popular ingredient in foods, beverages and cosmetics. Microbial production of phenylethanol currently relies on whole-cell bioconversion of phenylalanine with yeasts that harbour an Ehrlich pathway for phenylalanine catabolism. Complete biosynthesis of phenylethanol from a cheap carbon source, such as glucose, provides an economically attractive alternative for phenylalanine bioconversion. In this study, synthetic genetic array (SGA) screening was applied to identify genes involved in regulation of phenylethanol synthesis in Saccharomyces cerevisiae. The screen focused on transcriptional regulation of ARO10, which encodes the major decarboxylase involved in conversion of phenylpyruvate to phenylethanol. A deletion in ARO8, which encodes an aromatic amino acid transaminase, was found to underlie the transcriptional upregulation of ARO10 during growth, with ammonium sulphate as the sole nitrogen source. Physiological characterization revealed that the aro8Δ mutation led to substantial changes in the absolute and relative intracellular concentrations of amino acids. Moreover, deletion of ARO8 led to de novo production of phenylethanol during growth on a glucose synthetic medium with ammonium as the sole nitrogen source. The aro8Δ mutation also stimulated phenylethanol production when combined with other, previously documented, mutations that deregulate aromatic amino acid biosynthesis in S. cerevisiae. The resulting engineered S. cerevisiae strain produced >3 mm phenylethanol from glucose during growth on a simple synthetic medium. The strong impact of a transaminase deletion on intracellular amino acid concentrations opens new possibilities for yeast-based production of amino acid-derived products.

  6. Formation of {gamma}-alumina nanorods in presence of alanine

    SciTech Connect

    Dabbagh, Hossein A.; Rasti, Elham; Yalfani, Mohammad S.; Medina, Francesc

    2011-02-15

    Graphical abstract: Nanorod aluminas with a possible hexagonal symmetry, high surface area and relatively narrow pore size distribution were obtained. Research highlights: {yields} Research highlights {yields} Boehmite was prepared using a green sol-gel process in the presence of alanine. {yields} Nanorod aluminas with a high surface area were obtained. {yields} Addition of alanine would shape the size of the holes and crevices. {yields} The morphologies of the nanorods were revealed by transmission electron microscope. -- Abstract: Boehmite and alumina nanostructures were prepared using a simple green sol-gel process in the presence of alanine in water medium at room temperature. The uncalcined (dried at 200 {sup o}C) and the calcined materials (at 500, 600 and 700 {sup o}C for 4 h) were characterized using XRD, TEM, SEM, N{sub 2} physisorption and TGA. Nanorod aluminas with a possible hexagonal symmetry, high surface area and relatively narrow pore size distribution were obtained. The surface area was enhanced and crystallization was retarded as the alanine content increased. The morphologies of the nanoparticles and nanorods were revealed by a transmission electron microscope (TEM).

  7. A theoretical study of alanine dipeptide and analogs

    SciTech Connect

    Head-Gordon, T.; Head-Gordon, M.; Brooks, C. III; Pople, J. ); Frisch, M.J. )

    1989-01-01

    We Present a preliminary report on the conformational and energetic analysis of the molecule (S)-2-acetylamino-N-methylpropanamide (alanine dipeptide) and an analog molecule, (S)-{alpha}-formylaminopropanamide, using high-quality ab initio methods. Alanine dipeptide and its analogs are of interest since they incorporate many of the structural features found in proteins, such as intramolecular hydrogen bonds, conformational flexibility, and a variety of chemical functionality. One purpose of this study is to provide a useful benchmark calculation, MP2/6-31+G{sup **}//HF/6-31+G{sup *}, for a number of conformations of the alanine system. Based on the comparison of these benchmark calculations with lower-level basis sets, HF/3-21G was chosen to generate a fully relaxed {phi}, {psi} dihedral map. These calculations are the first of their kind on systems of this size. Features of the {phi},{psi} alanine dipeptide map that are discussed include the energetically accessible conformations and possible pathways for their interconversion. In addition, we illustrate the importance of fully optimized geometries and the proper evaluation of correlation energies,

  8. Spectrophotometric readout for an alanine dosimeter for food irradiation applications

    NASA Astrophysics Data System (ADS)

    Ebraheem, S.; Beshir, W. B.; Eid, S.; Sobhy, R.; Kovács, A.

    2003-06-01

    The alanine-electron spin resonance (EPR) readout system is well known as a reference and transfer dosimetry system for the evaluation of high doses in radiation processing. The high cost of an EPR/alanine dosimetry system is a serious handicap for large-scale routine application in irradiation facilities. In this study, the use of a complex produced by dissolving irradiated L-alanine in 1,4-phenyl diammonium dichloride solution was investigated for dosimetry purposes. This complex—having a purple colour—has an increasing absorbance with increasing dose in the range of 1-20 kGy. The applicability of spectrophotometric evaluation was studied by measuring the absorbance intensity of this complex at 360 and 505 nm, respectively. Fluorimetric evaluation was also investigated by measuring the emission of the complex at 435 nm as a function of dose. The present method is easy for routine application. The effect of the dye concentration as well as the suitable amount of irradiated alanine has been studied. With respect to routine application, the stability of the product complex after its formation was also investigated.

  9. Computational alanine scanning with linear scaling semiempirical quantum mechanical methods.

    PubMed

    Diller, David J; Humblet, Christine; Zhang, Xiaohua; Westerhoff, Lance M

    2010-08-01

    Alanine scanning is a powerful experimental tool for understanding the key interactions in protein-protein interfaces. Linear scaling semiempirical quantum mechanical calculations are now sufficiently fast and robust to allow meaningful calculations on large systems such as proteins, RNA and DNA. In particular, they have proven useful in understanding protein-ligand interactions. Here we ask the question: can these linear scaling quantum mechanical methods developed for protein-ligand scoring be useful for computational alanine scanning? To answer this question, we assembled 15 protein-protein complexes with available crystal structures and sufficient alanine scanning data. In all, the data set contains Delta Delta Gs for 400 single point alanine mutations of these 15 complexes. We show that with only one adjusted parameter the quantum mechanics-based methods outperform both buried accessible surface area and a potential of mean force and compare favorably to a variety of published empirical methods. Finally, we closely examined the outliers in the data set and discuss some of the challenges that arise from this examination.

  10. The unresolved puzzle why alanine extensions cause disease.

    PubMed

    Winter, Reno; Liebold, Jens; Schwarz, Elisabeth

    2013-08-01

    The prospective increase in life expectancy will be accompanied by a rise in the number of elderly people who suffer from ill health caused by old age. Many diseases caused by aging are protein misfolding diseases. The molecular mechanisms underlying these disorders receive constant scientific interest. In addition to old age, mutations also cause congenital protein misfolding disorders. Chorea Huntington, one of the most well-known examples, is caused by triplet extensions that can lead to more than 100 glutamines in the N-terminal region of huntingtin, accompanied by huntingtin aggregation. So far, nine disease-associated triplet extensions have also been described for alanine codons. The extensions lead primarily to skeletal malformations. Eight of these proteins represent transcription factors, while the nuclear poly-adenylate binding protein 1, PABPN1, is an RNA binding protein. Additional alanines in PABPN1 lead to the disease oculopharyngeal muscular dystrophy (OPMD). The alanine extension affects the N-terminal domain of the protein, which has been shown to lack tertiary contacts. Biochemical analyses of the N-terminal domain revealed an alanine-dependent fibril formation. However, fibril formation of full-length protein did not recapitulate the findings of the N-terminal domain. Fibril formation of intact PABPN1 was independent of the alanine segment, and the fibrils displayed biochemical properties that were completely different from those of the N-terminal domain. Although intranuclear inclusions have been shown to represent the histochemical hallmark of OPMD, their role in pathogenesis is currently unclear. Several cell culture and animal models have been generated to study the molecular processes involved in OPMD. These studies revealed a number of promising future therapeutic strategies that could one day improve the quality of life for the patients.

  11. Crystal structures of d-alanine-d-alanine ligase from Xanthomonas oryzae pv. oryzae alone and in complex with nucleotides.

    PubMed

    Doan, Thanh Thi Ngoc; Kim, Jin-Kwang; Ngo, Ho-Phuong-Thuy; Tran, Huyen-Thi; Cha, Sun-Shin; Min Chung, Kyung; Huynh, Kim-Hung; Ahn, Yeh-Jin; Kang, Lin-Woo

    2014-03-01

    D-Alanine-D-alanine ligase (DDL) catalyzes the biosynthesis of d-alanyl-d-alanine, an essential bacterial peptidoglycan precursor, and is an important drug target for the development of antibacterials. We determined four different crystal structures of DDL from Xanthomonas oryzae pv. oryzae (Xoo) causing Bacteria Blight (BB), which include apo, ADP-bound, ATP-bound, and AMPPNP-bound structures at the resolution between 2.3 and 2.0 Å. Similarly with other DDLs, the active site of XoDDL is formed by three loops from three domains at the center of enzyme. Compared with d-alanyl-d-alanine and ATP-bound TtDDL structure, the γ-phosphate of ATP in XoDDL structure was shifted outside toward solution. We swapped the ω-loop (loop3) of XoDDL with those of Escherichia coli and Helicobacter pylori DDLs, and measured the enzymatic kinetics of wild-type XoDDL and two mutant XoDDLs with the swapped ω-loops. Results showed that the direct interactions between ω-loop and other two loops are essential for the active ATP conformation for D-ala-phosphate formation.

  12. Development and Characterization of a Mouse Model for Marburg Hemorrhagic Fever

    DTIC Science & Technology

    2009-07-01

    mouse 25-plex cytokine kit; Biosource/Invitrogen), alpha interferon (IFN-) (Biosource/Invitrogen), and D-dimer levels (Diagnostica Stago), as well...kidney functions were analyzed by measuring levels of alanine transaminase (ALT), aspartate transaminase (AST), amylase , alkaline phosphatase (ALP...IP-10, KC, MIP-1 alpha , and interleukin-6 [IL-6]), Th1 (IFN- and IL-12), and Th2 (IL-5, IL-10, and IL-13) cytokine assayed were observed relative to

  13. Formation of simple biomolecules from alanine in ocean by impacts

    NASA Astrophysics Data System (ADS)

    Umeda, Y.; Sekine, T.; Furukawa, Y.; Kakegawa, T.; Kobayashi, T.

    2013-12-01

    The biomolecules on the Earth are thought either to have originated from the extraterrestrial parts carried with flying meteorites or to have been formed from the inorganic materials on the Earth through given energy. From the standpoint to address the importance of impact energy, it is required to simulate experimentally the chemical reactions during impacts, because violent impacts may have occurred 3.8-4.0 Gyr ago to create biomolecules initially. It has been demonstrated that shock reactions among ocean (H2O), atmospheric nitrogen, and meteoritic constitution (Fe) can induce locally reduction environment to form simple bioorganic molecules such as ammonia and amino acid (Nakazawa et al., 2005; Furukawa et al., 2009). We need to know possible processes for alanine how chemical reactions proceed during repeated impacts and how complicated biomolecules are formed. Alanine can be formed from glycine (Umeda et al., in preparation). In this study, we carried out shock recovery experiments at pressures of 4.4-5.7 GPa to investigate the chemical reactions of alanine. Experiments were carried out with a propellant gun. Stainless steel containers (30 mm in diameter, 30 mm long) with 13C-labeled alanine aqueous solution immersed in olivine or hematite powders were used as targets. Air gap was present in the sample room (18 mm in diameter, 2 mm thick) behind the sample. The powder, solution, and air represent meteorite, ocean, and atmosphere on early Earth, respectively. Two powders of olivine and hematite help to keep the oxygen fugacity low and high during experiments, respectively in order to investigate the effect of oxygen fugacity on chemical processes of alanine. The recovered containers, after cleaned completely, were immersed into liquid nitrogen to freeze sample solution and then we drilled on the impact surface to extract water-soluble run products using pure water. Thus obtained products were analyzed by LC/MS for four amino acids (glycine, alanine, valine, and

  14. Fragmentation reactions of deprotonated peptides containing aspartic acid

    NASA Astrophysics Data System (ADS)

    Harrison, Alex G.; Young, Alex B.

    2006-09-01

    The fragmentation reactions of deprotonated peptides containing aspartic acid have been elucidated using MS2 and MS3 experiments and accurate mass measurements where necessary. The disposition of labile (N and O bonded) hydrogens in the fragmentation products has been studied by exchanging the labile hydrogens for deuterium whereby the [MD]- ion is formed on electrospray ionization. [alpha]-Aspartyl and [beta]-aspartyl dipeptides give very similar fragment ion spectra on collisional activation, involving for both species primarily formation of the y1 ion and loss of H2O from [MH]- followed by further fragmentation, thus precluding the distinction of the isomeric species by negative ion tandem mass spectrometry. Dipeptides of sequence HXxxAspOH give characteristic spectra different from the [alpha]- and [beta]-isomers. For larger peptides containing aspartic acid a common fragmentation reaction involves nominal cleavage of the NC bond N-terminal to the aspartic acid residue to form a c ion (deprotonated amino acid amide (c1) or peptide amide (cn)) and the complimentary product involving elimination of a neutral amino acid amide or peptide amide. When aspartic acid is in the C-terminal position this fragmentation reaction occurs from the [MH]- ion while when the aspartic acid is not in the C-terminal position the fragmentation reaction occurs mainly from the [MHH2O]- ion. The products of this NC bond cleavage reaction serve to identify the position of the aspartic acid residue in the peptide.

  15. Kinetic mechanism and inhibition of Mycobacterium tuberculosis D-alanine:D-alanine ligase by the antibiotic D-cycloserine.

    PubMed

    Prosser, Gareth A; de Carvalho, Luiz Pedro S

    2013-02-01

    D-cycloserine (DCS) is an antibiotic that is currently used in second-line treatment of tuberculosis. DCS is a structural analogue of D-alanine, and targets two enzymes involved in the cytosolic stages of peptidoglycan synthesis: alanine racemase (Alr) and D-alanine:D-alanine ligase (Ddl). The mechanisms of inhibition of DCS have been well-assessed using Alr and Ddl enzymes from various bacterial species, but little is known regarding the interactions of DCS with the mycobacterial orthologues of these enzymes. We have over-expressed and purified recombinant Mycobacterium tuberculosis Ddl (MtDdl; Rv2981c), and report a kinetic examination of the enzyme with both its native substrate and DCS. MtDdl is activated by K(+), follows an ordered ter ter mechanism and displays distinct affinities for D-Ala at each D-Ala binding site (K(m,D-Ala1) = 0.075 mm, K(m,D-Ala2) = 3.6 mm). ATP is the first substrate to bind and is necessary for subsequent binding of D-alanine or DCS. The pH dependence of MtDdl kinetic parameters indicate that general base chemistry is involved in the catalytic step. DCS was found to competitively inhibit D-Ala binding at both MtDdl D-Ala sites with equal affinity (K(i,DCS1) = 14 μm, K(i,DCS2) = 25 μm); however, each enzyme active site can only accommodate a single DCS molecule at a given time. The pH dependence of K(i,DCS2) revealed a loss of DCS binding affinity at high pH (pK(a) = 7.5), suggesting that DCS binds optimally in the zwitterionic form. The results of this study may assist in the design and development of novel Ddl-specific inhibitors for use as anti-mycobacterial agents.

  16. Structure of the Mycobacterium tuberculosis D-Alanine:D-Alanine Ligase, a Target of the Antituberculosis Drug D-Cycloserine

    SciTech Connect

    Bruning, John B.; Murillo, Ana C.; Chacon, Ofelia; Barletta, Raúl G.; Sacchettini, James C.

    2011-09-28

    D-Alanine:D-alanine ligase (EC 6.3.2.4; Ddl) catalyzes the ATP-driven ligation of two D-alanine (D-Ala) molecules to form the D-alanyl:D-alanine dipeptide. This molecule is a key building block in peptidoglycan biosynthesis, making Ddl an attractive target for drug development. D-Cycloserine (DCS), an analog of D-Ala and a prototype Ddl inhibitor, has shown promise for the treatment of tuberculosis. Here, we report the crystal structure of Mycobacterium tuberculosis Ddl at a resolution of 2.1 {angstrom}. This structure indicates that Ddl is a dimer and consists of three discrete domains; the ligand binding cavity is at the intersection of all three domains and conjoined by several loop regions. The M. tuberculosis apo Ddl structure shows a novel conformation that has not yet been observed in Ddl enzymes from other species. The nucleotide and D-alanine binding pockets are flexible, requiring significant structural rearrangement of the bordering regions for entry and binding of both ATP and D-Ala molecules. Solution affinity and kinetic studies showed that DCS interacts with Ddl in a manner similar to that observed for D-Ala. Each ligand binds to two binding sites that have significant differences in affinity, with the first binding site exhibiting high affinity. DCS inhibits the enzyme, with a 50% inhibitory concentration (IC{sub 50}) of 0.37 mM under standard assay conditions, implicating a preferential and weak inhibition at the second, lower-affinity binding site. Moreover, DCS binding is tighter at higher ATP concentrations. The crystal structure illustrates potential drugable sites that may result in the development of more-effective Ddl inhibitors.

  17. The role of helix 1 aspartates and salt bridges in the stability and conversion of prion protein.

    PubMed

    Speare, Jonathan O; Rush, Thomas S; Bloom, Marshall E; Caughey, Byron

    2003-04-04

    A key event in the pathogenesis of transmissible spongiform encephalopathies is the conversion of PrP-sen to PrP-res. Morrissey and Shakhnovich (Morrissey, M. P., and Shakhnovich, E. I. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 11293-11298) proposed that the conversion mechanism involves critical interactions at helix 1 (residues 144-153) and that the helix is stabilized on PrP-sen by intra-helix salt bridges between two aspartic acid-arginine ion pairs at positions 144 and 148 and at 147 and 151, respectively. Mutants of the hamster prion protein were constructed by replacing the aspartic acids with either asparagines or alanines to destabilize the proposed helix 1 salt bridges. Thermal and chemical denaturation experiments using circular dichroism spectroscopy indicated the overall structures of the mutants are not substantially destabilized but appear to unfold differently. Cell-free conversion reactions performed using ionic denaturants, detergents, and salts (conditions unfavorable to salt bridge formation) showed no significant differences between conversion efficiencies of mutant and wild type proteins. Using conditions more favorable to salt bridge formation, the mutant proteins converted with up to 4-fold higher efficiency than the wild type protein. Thus, although spectroscopic data indicate the salt bridges do not substantially stabilize PrP-sen, the cell-free conversion data suggest that Asp-144 and Asp-147 and their respective salt bridges stabilize PrP-sen from converting to PrP-res.

  18. Preoperative Aspartate Aminotransferase to White Blood Cell Count Ratio Predicting Postoperative Outcomes of Hepatocellular Carcinoma.

    PubMed

    Liao, Weijia; Wang, Yongqin; Liao, Yan; He, Songqing; Jin, Junfei

    2016-04-01

    Effective biomarkers for predicting prognosis of hepatocellular carcinoma (HCC) patients after hepatectomy is urgently needed. The purpose of this study is to evaluate the value of the preoperative peripheral aspartate aminotransferase to white blood cell count ratio (AWR) for the prognostication of patients with HCC.Clinical data of 396 HCC patients who underwent radical hepatectomy were retrospectively analyzed. The patients were divided into the low-AWR group (AWR ≤5.2) and the high-AWR group (AWR >5.2); univariate analysis, Kaplan-Meier method analysis, and the multivariate analysis by Cox regression were conducted, respectively.The results showed that AWR was associated with alpha-fetoprotein (AFP), tumor size, Barcelona clinic liver cancer (BCLC) stage, portal vein tumor thrombus (PVTT), and alanine aminotransferase (ALT) in HCC. AWR > 5.2, AFP > 100 ng/mL, size of tumor >6 cm, number of multiple tumors, B-C of BCLC stage, PVTT, and distant metastasis were predictors of poorer disease-free survival (DFS) and overall survival (OS). Except for recurrence, which was an independent predictor for OS only, AWR >5.2, size of tumor >6 cm, and PVTT were independent predictors of both DFS and OS.We concluded that preoperative AWR > 5.2 was an adverse predictor of DFS and OS in HCC after hepatectomy, AWR might be a novel prognostic biomarker in HCC after curative resection.

  19. Characterization of the Genes Encoding d-Amino Acid Transaminase and Glutamate Racemase, Two d-Glutamate Biosynthetic Enzymes of Bacillus sphaericus ATCC 10208

    PubMed Central

    Fotheringham, Ian G.; Bledig, Stefan A.; Taylor, Paul P.

    1998-01-01

    In Bacillus sphaericus and other Bacillus spp., d-amino acid transaminase has been considered solely responsible for biosynthesis of d-glutamate, an essential component of cell wall peptidoglycan, in contrast to the glutamate racemase employed by many other bacteria. We report here the cloning of the dat gene encoding d-amino acid transaminase and the glr gene encoding a glutamate racemase from B. sphaericus ATCC 10208. The glr gene encodes a 28.8-kDa protein with 40 to 50% sequence identity to the glutamate racemases of Lactobacillus, Pediococcus, and Staphylococcus species. The dat gene encodes a 31.4-kDa peptide with 67% primary sequence homology to the d-amino acid transaminase of the thermophilic Bacillus sp. strain YM1. PMID:9696787

  20. Bioassay-guided fractionation of lemon balm (Melissa officinalis L.) using an in vitro measure of GABA transaminase activity.

    PubMed

    Awad, Rosalie; Muhammad, Asim; Durst, Tony; Trudeau, Vance L; Arnason, John T

    2009-08-01

    A novel pharmacological mechanism of action for the anxiolytic botanical Melissa officinalis L. (lemon balm) is reported. The methanol extract was identified as a potent in vitro inhibitor of rat brain GABA transaminase (GABA-T), an enzyme target in the therapy of anxiety, epilepsy and related neurological disorders. Bioassay-guided fractionation led to the identification and isolation of rosmarinic acid (RA) and the triterpenoids, ursolic acid (UA) and oleanolic acid (OA) as active principles. Phytochemical characterization of the crude extract determined RA as the major compound responsible for activity (40% inhibition at 100 microg/mL) since it represented approximately 1.5% of the dry mass of the leaves. Synergistic effects may also play a role.

  1. Structural features and activity of Brazzein and its mutants upon substitution of a surfaced exposed alanine.

    PubMed

    Ghanavatian, Parisa; Khalifeh, Khosrow; Jafarian, Vahab

    2016-12-01

    Brazzein (Brz) is a member of sweet-tasting protein containing four disulfide bonds. It was reported as a compact and heat-resistant protein. Here, we have used site-directed mutagenesis and replaced a surface-exposed alanine with aspartic acid (A19D mutant), lysine (A19K mutant) and glycine (A19G mutant). Activity comparisons of wild-type (WT) and mutants using taste panel test procedure showed that A19G variant has the same activity as WT protein. However, introduction of a positive charge in A19K mutant led to significant increase in Brz's sweetness, while A19D has reduced sweetness compared to WT protein. Docking studies showed that mutation at position 19 results in slight chain mobility of protein at the binding surface and changing the patterns of interactions toward more effective binding of E9K variant in the concave surface of sweet taste receptor. Far-UV CD data spectra have a characteristic shape of beta structure for all variants, however different magnitudes of spectra suggest that beta-sheet structure in WT and A19G is more stable than that of A19D and A19K. Equilibrium unfolding studies with fluorescence spectroscopy and using urea and dithiothritol (DTT) as chemical denaturants indicates that A19G mutant gains more stability against urea denaturation; while conformational stability of A19D and A19K decreases when compared with WT and A19G variants. We concluded that the positive charge at the surface of protein is important factor responsible for the interaction of protein with the human sweet receptor and Ala(19) can be considered as a key region for investigating the mechanism of the interaction of Brz with corresponding receptor.

  2. Irritable Bowel Syndrome May Be Associated with Elevated Alanine Aminotransferase and Metabolic Syndrome

    PubMed Central

    Lee, Seung-Hwa; Kim, Kwang-Min; Joo, Nam-Seok

    2016-01-01

    Purpose Recent studies have revealed close relationships between hepatic injury, metabolic pathways, and gut microbiota. The microorganisms in the intestine also cause irritable bowel syndrome (IBS). The aim of this study was to examine whether IBS was associated with elevated hepatic enzyme [alanine aminotransferase (ALT) and aspartate aminotransferase (AST)], gamma-glutamyl transferase (γ-GT) levels, and metabolic syndrome (MS). Materials and Methods This was a retrospective, cross-sectional, case-control study. The case and control groups comprised subjects who visited our health promotion center for general check-ups from June 2010 to December 2010. Of the 1127 initially screened subjects, 83 had IBS according to the Rome III criteria. The control group consisted of 260 age- and sex-matched subjects without IBS who visited our health promotion center during the same period. Results Compared to control subjects, patients with IBS showed significantly higher values of anthropometric parameters (body mass index, waist circumference), liver enzymes, γ-GT, and lipid levels. The prevalences of elevated ALT (16.9% vs. 7.7%; p=0.015) and γ-GT (24.1% vs. 11.5%; p=0.037) levels were significantly higher in patients with IBS than in control subjects. A statistically significant difference was observed in the prevalence of MS between controls and IBS patients (12.7% vs. 32.5%; p<0.001). The relationships between elevated ALT levels, MS, and IBS remained statistically significant after controlling for potential confounding factors. Conclusion On the basis of our study results, IBS may be an important condition in certain patients with elevated ALT levels and MS. PMID:26632395

  3. Degradation of glycine and alanine on irradiated quartz.

    PubMed

    Pawlikowski, Maciej; Benko, Aleksandra; Wróbel, Tomasz P

    2013-04-01

    Recent researches suggest participation of minerals in the formation of life under primordial conditions. Among all of the minerals, quartz seems to be one of the most probable to take part in such processes. However, an external source of energy is needed, e.g. electric discharge. A device simulating the proposed conditions was designed and was used to simulate prebiotic conditions. Investigation of processes occurring during the stimulation of quartz with electric discharge was studied by means of Ultraviolet-visible (UV-VIS) spectroscopy, in order to monitor the generation kinetics of free radicals. Additionally, infrared spectroscopy was applied to identify chemical reaction products created in a solution of alanine or glycine, in the presence of quartz treated with electric discharge. Formation of increased amounts of free radicals, compared to experiments performed without quartz and/or amino acid, is reported, along with identification of possible degradation products of alanine. No synthetic reactions were observed.

  4. Clinical applications of alanine/electron spin resonance dosimetry.

    PubMed

    Baffa, Oswaldo; Kinoshita, Angela

    2014-05-01

    This paper discusses the clinical applications of electron spin resonance (ESR) dosimetry focusing on the ESR/alanine system. A review of few past studies in this area is presented offering a critical overview of the challenges and opportunities for extending this system into clinical applications. Alanine/ESR dosimetry fulfills many of the required properties for several clinical applications such as water-equivalent composition, independence of the sensitivity for the energy range used in therapy and high precision. Improvements in sensitivity and the development of minidosimeters coupled with the use of a spectrometer of higher microwave frequency expanded the possibilities for clinical applications to the new modalities of radiotherapy (intensity-modulated radiation therapy and radiosurgery) and to the detection of low doses such as those present in some radiological image procedures.

  5. Physiological hypercortisolemia increases proteolysis, glutamine, and alanine production

    SciTech Connect

    Darmaun, D.; Matthews, D.E.; Bier, D.M. Cornell Univ. Medical College, New York, NY )

    1988-09-01

    Physiological elevations of plasma cortisol levels, as are encountered in stress and severe trauma, were produced in six normal subjects by infusing them with hydrocortisone for 64 h. Amino acid kinetics were measured in the postabsorptive state using three 4-h infusions of L-(1-{sup 13}C)leucine, L-phenyl({sup 2}H{sub 5})phenylalanine, L-(2-{sup 15}N)glutamine, and L-(1-{sup 13}C)alanine tracers (1) before, (2) at 12 h, and (3) at 60 h of cortisol infusion. Before and throughout the study, the subjects ate a normal diet of adequate protein and energy intake. The cortisol infusion raised plasma cortisol levels significantly from 10 {plus minus} 1 to 32 {plus minus} 4 {mu}g/dl, leucine flux from 83 {plus minus} 3 to 97 {plus minus} 3 {mu}mol{center dot}kg{sup {minus}1}{center dot}h{sup {minus}1}, and phenylalanine flux from 34 {plus minus} 1 to 39 {plus minus} 1 (SE) {mu}mol{center dot}kg{sup {minus}1}{center dot}h{sup {minus}1} after 12 h of cortisol infusion. These increases were maintained until the cortisol infusion was terminated. These nearly identical 15% increases in two different essential amino acid appearance rates are reflective of increased whole body protein breakdown. Glutamine flux rose by 12 h of cortisol infusion and remained elevated at the same level at 64 h. The increase in flux was primarily due to a 55% increase in glutamine de novo synthesis. Alanine flux increased with acute hypercortisolemia and increased further at 60 h of cortisol infusion, a result primarily of increased alanine de novo synthesis. Insulin, alanine, and lactate plasma levels responded similarly with significant rises between the acute and chronic periods of cortisol infusion. Thus hypercortisolemia increases both protein breakdown and the turnover of important nonessential amino acids for periods of up to 64 h.

  6. Administration of thimerosal to infant rats increases overflow of glutamate and aspartate in the prefrontal cortex: protective role of dehydroepiandrosterone sulfate.

    PubMed

    Duszczyk-Budhathoki, Michalina; Olczak, Mieszko; Lehner, Malgorzata; Majewska, Maria Dorota

    2012-02-01

    Thimerosal, a mercury-containing vaccine preservative, is a suspected factor in the etiology of neurodevelopmental disorders. We previously showed that its administration to infant rats causes behavioral, neurochemical and neuropathological abnormalities similar to those present in autism. Here we examined, using microdialysis, the effect of thimerosal on extracellular levels of neuroactive amino acids in the rat prefrontal cortex (PFC). Thimerosal administration (4 injections, i.m., 240 μg Hg/kg on postnatal days 7, 9, 11, 15) induced lasting changes in amino acid overflow: an increase of glutamate and aspartate accompanied by a decrease of glycine and alanine; measured 10-14 weeks after the injections. Four injections of thimerosal at a dose of 12.5 μg Hg/kg did not alter glutamate and aspartate concentrations at microdialysis time (but based on thimerosal pharmacokinetics, could have been effective soon after its injection). Application of thimerosal to the PFC in perfusion fluid evoked a rapid increase of glutamate overflow. Coadministration of the neurosteroid, dehydroepiandrosterone sulfate (DHEAS; 80 mg/kg; i.p.) prevented the thimerosal effect on glutamate and aspartate; the steroid alone had no influence on these amino acids. Coapplication of DHEAS with thimerosal in perfusion fluid also blocked the acute action of thimerosal on glutamate. In contrast, DHEAS alone reduced overflow of glycine and alanine, somewhat potentiating the thimerosal effect on these amino acids. Since excessive accumulation of extracellular glutamate is linked with excitotoxicity, our data imply that neonatal exposure to thimerosal-containing vaccines might induce excitotoxic brain injuries, leading to neurodevelopmental disorders. DHEAS may partially protect against mercurials-induced neurotoxicity.

  7. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion.

    PubMed

    Sousa, Cristovão M; Biancur, Douglas E; Wang, Xiaoxu; Halbrook, Christopher J; Sherman, Mara H; Zhang, Li; Kremer, Daniel; Hwang, Rosa F; Witkiewicz, Agnes K; Ying, Haoqiang; Asara, John M; Evans, Ronald M; Cantley, Lewis C; Lyssiotis, Costas A; Kimmelman, Alec C

    2016-08-25

    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease characterized by an intense fibrotic stromal response and deregulated metabolism. The role of the stroma in PDAC biology is complex and it has been shown to play critical roles that differ depending on the biological context. The stromal reaction also impairs the vasculature, leading to a highly hypoxic, nutrient-poor environment. As such, these tumours must alter how they capture and use nutrients to support their metabolic needs. Here we show that stroma-associated pancreatic stellate cells (PSCs) are critical for PDAC metabolism through the secretion of non-essential amino acids (NEAA). Specifically, we uncover a previously undescribed role for alanine, which outcompetes glucose and glutamine-derived carbon in PDAC to fuel the tricarboxylic acid (TCA) cycle, and thus NEAA and lipid biosynthesis. This shift in fuel source decreases the tumour’s dependence on glucose and serum-derived nutrients, which are limited in the pancreatic tumour microenvironment. Moreover, we demonstrate that alanine secretion by PSCs is dependent on PSC autophagy, a process that is stimulated by cancer cells. Thus, our results demonstrate a novel metabolic interaction between PSCs and cancer cells, in which PSC-derived alanine acts as an alternative carbon source. This finding highlights a previously unappreciated metabolic network within pancreatic tumours in which diverse fuel sources are used to promote growth in an austere tumour microenvironment.

  8. Characterization of psychrophilic alanine racemase from Bacillus psychrosaccharolyticus.

    PubMed

    Okubo, Y; Yokoigawa, K; Esaki, N; Soda, K; Kawai, H

    1999-03-16

    A psychrophilic alanine racemase gene from Bacillus psychrosaccharolyticus was cloned and expressed in Escherichia coli SOLR with a plasmid pYOK3. The gene starting with the unusual initiation codon GTG showed higher preference for codons ending in A or T. The enzyme purified to homogeneity showed the high catalytic activity even at 0 degrees C and was extremely labile over 35 degrees C. The enzyme was found to have a markedly large Km value (5.0 microM) for the pyridoxal 5'-phosphate (PLP) cofactor in comparison with other reported alanine racemases, and was stabilized up to 50 degrees C in the presence of excess amounts of PLP. The low affinity of the enzyme for PLP may be related to the thermolability, and may be related to the high catalytic activity, initiated by the transaldimination reaction, at low temperature. The enzyme has a distinguishing hydrophilic region around the residue no. 150 in the deduced amino acid sequence (383 residues), whereas the corresponding regions of other Bacillus alanine racemases are hydrophobic. The position of the region in the three dimensional structure of C atoms of the enzyme was predicted to be in a surface loop surrounding the active site. The region may interact with solvent and reduce the compactness of the active site.

  9. Pressure-induced phase transitions in L-alanine, revisited.

    PubMed

    Tumanov, N A; Boldyreva, E V; Kolesov, B A; Kurnosov, A V; Quesada Cabrera, R

    2010-08-01

    The effect of pressure on L-alanine has been studied by X-ray powder diffraction (up to 12.3 GPa), single-crystal X-ray diffraction, Raman spectroscopy and optical microscopy (up to approximately 6 GPa). No structural phase transitions have been observed. At approximately 2 GPa the cell parameters a and b become accidentally equal to each other, but without a change in space-group symmetry. Neither of two transitions reported by others (to a tetragonal phase at approximately 2 GPa and to a monoclinic phase at approximately 9 GPa) was observed. The changes in cell parameters were continuous up to the highest measured pressures and the cells remained orthorhombic. Some important changes in the intermolecular interactions occur, which also manifest themselves in the Raman spectra. Two new orthorhombic phases could be crystallized from a MeOH/EtOH/H(2)O pressure-transmitting mixture in the pressure range 0.8-4.7 GPa, but only if the sample was kept at these pressures for at least 1-2 d. The new phases converted back to L-alanine on decompression. Judging from the Raman spectra and cell parameters, the new phases are most probably not L-alanine but its solvates.

  10. Isotopic effects in mechanistic studies of biotransformations of fluorine derivatives of L-alanine catalysed by L-alanine dehydrogenase.

    PubMed

    Szymańska-Majchrzak, Jolanta; Pałka, Katarzyna; Kańska, Marianna

    2017-05-01

    Synthesis of 3-fluoro-[2-(2)H]-L-alanine (3-F-[(2)H]-L-Ala) in reductive amination of 3-fluoropyruvic acid catalysed by L-alanine dehydrogenase (AlaDH) was described. Fluorine derivative was used to study oxidative deamination catalysed by AlaDH applied kinetic (for 3-F-L-Ala in H2O - KIE's on Vmax: 1.1; on Vmax/KM: 1.2; for 3-F-L-Ala in (2)H2O - on Vmax: 1.4; on Vmax/KM: 2.1) and solvent isotope effect methods (for 3-F-L-Ala - SIE's on Vmax: 1.0; on Vmax/KM: 0.87; for 3-F-[2-(2)H]-L-Ala - on Vmax: 1.4; on Vmax/KM: 1.5). Studies explain some details of reaction mechanism.

  11. In Vivo d-Serine Hetero-Exchange through Alanine-Serine-Cysteine (ASC) Transporters Detected by Microelectrode Biosensors

    PubMed Central

    2013-01-01

    d-Serine, a co-agonist of N-methyl d-aspartate (NMDA) receptors, has been implicated in neurological and psychiatric disorders such as cerebral ischemia, lateral amyotrophic sclerosis, or schizophrenia. d-Serine signaling represents an important pharmacological target for treating these diseases; however, the biochemical mechanisms controlling extracellular d-serine levels in vivo are still unclear. d-Serine heteroexchange through small neutral amino acid transporters has been shown in cell cultures and brain slices and could provide a biochemical mechanism for the control of d-serine extracellular concentration in vivo. Alternatively, exocytotic d-serine release has also been proposed. In this study, the dynamics of d-serine release and clearance were explored in vivo on a second-by-second time scale using microelectrode biosensors. The rate of d-serine clearance in the rat frontal cortex after a microionophoretic injection revealed a transporter-mediated uptake mechanism. d-Serine uptake was blocked by small neutral l-amino acids, implicating alanine-serine-cysteine (ASC) transporters, in particular high affinity Asc-1 and low affinity ASCT2 transporters. Interestingly, changes in alanine, serine, or threonine levels resulted in d-serine release through ASC transporters. Asc-1, but not ASCT2, appeared to release d-serine in response to changes in amino acid concentrations. Finally, neuronal silencing by tetrodotoxin increased d-serine extracellular concentration by an ASC-transporter-dependent mechanism. Together, these results indicate that d-serine heteroexchange through ASC transporters is present in vivo and may constitute a key component in the regulation of d-serine extracellular concentration. PMID:23581544

  12. Hepatoprotective effect of coumestans isolated from the leaves of Wedelia calendulacea Less. in paracetamol induced liver damage.

    PubMed

    Emmanuel, S; Amalraj, T; Ignacimuthu, S

    2001-12-01

    Effect of coumestans isolated form the leaves of W. calendulacea was evaluated in paracetamol induced liver damage. The increased serum enzyme levels (lactate dehydrogenase, alanine and aspartate transaminase and alkaline phophatase) by paracetamol induction were significantly lowered due to coumestans treatment. Results of this study revealed that coumestans of W. calendulacea afforded a significant protective action in the alleviation of paracetamol induced hepatocellular injury.

  13. Aspartic proteinases from Mucor spp. in cheese manufacturing.

    PubMed

    Yegin, Sirma; Fernandez-Lahore, Marcelo; Jose Gama Salgado, Antonio; Guvenc, Ulgar; Goksungur, Yekta; Tari, Canan

    2011-02-01

    Filamentous fungi belonging to the order of Mucorales are well known as producers of aspartic proteinases depicting milk-clotting activity. The biosynthesis level, the biochemical characteristics, and the technological properties of the resulting proteinases are affected by the producer strain and the mode of cultivation. While the milk-clotting enzymes produced by the Rhizomucor spp. have been extensively studied in the past, much less is known on the properties and potential applications of the aspartic proteinases obtained for Mucor spp. Indeed, several Mucor spp. strains have been reported as a potential source of milk-clotting enzymes having unique technological properties. Both submerged fermentation and solid substrate cultivation are proven alternatives for the production of Mucor spp. aspartic proteinases. This review provides an overview on the bioprocessing routes to obtain large amounts of these enzymes, on their structural characteristics as related to their functional properties, and on their industrial applications with focus on cheese manufacturing.

  14. Isolation and characterization of tryptophan transaminase and indolepyruvate C-methyltransferase. Enzymes involved in indolmycin biosynthesis in Streptomyces griseus.

    PubMed

    Speedie, M K; Hornemann, U; Floss, H G

    1975-10-10

    Two enzymes, tryptophan transaminase and indolepyruvate C-methyltransferase, which are active in the initial steps of the biosynthetic pathway of the antibiotic indolmycin, have been detected and partially purified from cell-free extracts of Streptomyces griseus. The transaminase has been purified 3-fold by ammonium sulfate fractionation. At this stage of purification, it catalyzes the alpha-ketoglutarate and pyridoxal phosphate-dependent transamination of L-tryptophan, 3-methyltryptophan, L-pphenylalanine, and L-tyrosine. The C-methyltransferase catalyzes the transfer of a methyl group from S-adenosylmethionine to position 3 of the aliphatic side chain of indolepyruvate. No cofactors are required. The C-methyltransferase has been purified 110-fold by ammonium sulfate fractionation, Sephadex G-150 gel filtration, DEAE-Sephadex column chromotography, and Bio-Gel A-5m gel filtration. The enzyme has a broad pH optimum of 7.5 to 8.5. A molecular weight of 55,000 +/- 5,000 has been determined by Sephadex G-200 gel filtration with reference proteins and a molecular weight of 58,000 +/- 8,000 has been determined by sucrose density gradient centrifugation. The enzyme is relatively stable at temperatures of 0-5 degrees but is destroyed by freezing or by heating. The C-methyltransferase is inhibited strongly by the thiol reagents p-chloromercuribenzoate and N-ethylmaleimide. The Zn2+ and Fe2+ chelators 1,10-phenanthroline and 2,2'-bipyridine also inhibit the enzyme activity but EDTA does not. Michaelis-Menten constants have been determined for the 110-fold purified enzyme as 1.2 X 10(-5) M for S-adenosylmethionine and 4.8 X 10(-6) M for indolepyruvate. The enzyme activity in the crude extract is inhibited competitively by indolmycin (Ki equals 2.3 mM) and L-tryptophan (Ki equals 0.17 mM), but these effects are not observed after the enzyme has been passed through the Sephades G-150 column during purification. The crude extract is capable of methylating phenylpyruvate and p

  15. Generic HPLC platform for automated enzyme reaction monitoring: Advancing the assay toolbox for transaminases and other PLP-dependent enzymes.

    PubMed

    Börner, Tim; Grey, Carl; Adlercreutz, Patrick

    2016-08-01

    Methods for rapid and direct quantification of enzyme kinetics independent of the substrate stand in high demand for both fundamental research and bioprocess development. This study addresses the need for a generic method by developing an automated, standardizable HPLC platform monitoring reaction progress in near real-time. The method was applied to amine transaminase (ATA) catalyzed reactions intensifying process development for chiral amine synthesis. Autosampler-assisted pipetting facilitates integrated mixing and sampling under controlled temperature. Crude enzyme formulations in high and low substrate concentrations can be employed. Sequential, small (1 µL) sample injections and immediate detection after separation permits fast reaction monitoring with excellent sensitivity, accuracy and reproducibility. Due to its modular design, different chromatographic techniques, e.g. reverse phase and size exclusion chromatography (SEC) can be employed. A novel assay for pyridoxal 5'-phosphate-dependent enzymes is presented using SEC for direct monitoring of enzyme-bound and free reaction intermediates. Time-resolved changes of the different cofactor states, e.g. pyridoxal 5'-phosphate, pyridoxamine 5'-phosphate and the internal aldimine were traced in both half reactions. The combination of the automated HPLC platform with SEC offers a method for substrate-independent screening, which renders a missing piece in the assay and screening toolbox for ATAs and other PLP-dependent enzymes.

  16. Plasma membrane fatty acid-binding protein and mitochondrial glutamic-oxaloacetic transaminase of rat liver are related

    SciTech Connect

    Berk, P.D.; Potter, B.J.; Sorrentino, D.; Zhou, S.L.; Isola, L.M.; Stump, D.; Kiang, C.L.; Thung, S. ); Wada, H.; Horio, Y. )

    1990-05-01

    The hepatic plasma membrane fatty acid-binding protein (h-FABP{sub PM}) and the mitochondrial isoenzyme of glutamic-oxaloacetic transaminase (mGOT) of rat liver have similar amino acid compositions and identical amino acid sequences for residues 3-24. Both proteins migrate with an apparent molecular mass of 43 kDa on SDS/polyacrylamide gel electrophoresis, have a similar pattern of basic charge isomers on isoelectric focusing, are eluted similarly from four different high-performance liquid chromatographic columns, have absorption maxima at 435 nm under acid conditions and 354 nm at pH 8.3, and bind oleate. Sinusoidally enriched liver plasma membranes and purified h-FABP{sub PM} have GOT enzymatic activity. Monospecific rabbit antiserum against h-FABP{sub PM} reacts on Western blotting with mGOT, and vice versa. Antisera against both proteins produce plasma membrane immunofluorescence in rat hepatocytes and selectively inhibit the hepatocellular uptake of ({sup 3}H)oleate but not that of ({sup 35}S)sulfobromophthalein or ({sup 14}C)taurocholate. The inhibition of oleate uptake produced by anti-h-FABP{sub PM} can be eliminated by preincubation of the antiserum with mGOT; similarly, the plasma membrane immunofluorescence produced by either antiserum can be eliminated by preincubation with the other antigen. These data suggest that h-FABP{sub PM} and mGOT are closely related.

  17. An Agrobacterium tumefaciens Strain with Gamma-Aminobutyric Acid Transaminase Activity Shows an Enhanced Genetic Transformation Ability in Plants

    PubMed Central

    Nonaka, Satoko; Someya, Tatsuhiko; Zhou, Sha; Takayama, Mariko; Nakamura, Kouji; Ezura, Hiroshi

    2017-01-01

    Agrobacterium tumefaciens has the unique ability to mediate inter-kingdom DNA transfer, and for this reason, it has been utilized for plant genetic engineering. To increase the transformation frequency in plant genetic engineering, we focused on gamma-aminobutyric acid (GABA), which is a negative factor in the Agrobacterium-plant interaction. Recent studies have shown contradictory results regarding the effects of GABA on vir gene expression, leading to the speculation that GABA inhibits T-DNA transfer. In this study, we examined the effect of GABA on T-DNA transfer using a tomato line with a low GABA content. Compared with the control, the T-DNA transfer frequency was increased in the low-GABA tomato line, indicating that GABA inhibits T-DNA transfer. Therefore, we bred a new A. tumefaciens strain with GABA transaminase activity and the ability to degrade GABA. The A. tumefaciens strain exhibited increased T-DNA transfer in two tomato cultivars and Erianthus arundinacues and an increased frequency of stable transformation in tomato. PMID:28220841

  18. The Arabidopsis thaliana isogene NIT4 and its orthologs in tobacco encode beta-cyano-L-alanine hydratase/nitrilase.

    PubMed

    Piotrowski, M; Schönfelder, S; Weiler, E W

    2001-01-26

    Nitrilases (nitrile aminohydrolases, EC ) are enzymes that catalyze the hydrolysis of nitriles to the corresponding carbon acids. Among the four known nitrilases of Arabidopsis thaliana, the isoform NIT4 is the most divergent one, and homologs of NIT4 are also known from species not belonging to the Brassicaceae like Nicotiana tabacum and Oryza sativa. We expressed A. thaliana NIT4 as hexahistidine tag fusion protein in Escherichia coli. The purified enzyme showed a strong substrate specificity for beta-cyano-l-alanine (Ala(CN)), an intermediate product of cyanide detoxification in higher plants. Interestingly, not only aspartic acid but also asparagine were identified as products of NIT4-catalyzed Ala(CN) hydrolysis. Asn itself was no substrate for NIT4, indicating that it is not an intermediate but one of two reaction products. NIT4 therefore has both nitrilase and nitrile hydratase activity. Several lines of evidence indicate that the catalytic center for both reactions is the same. The NIT4 homologs of N. tabacum were found to catalyze the same reactions and protein extracts of A. thaliana, N. tabacum and Lupinus angustifolius also converted Ala(CN) to Asp and Asn in vitro. NIT4 may play a role in cyanide detoxification during ethylene biosynthesis because extracts from senescent leaves of A. thaliana showed higher Ala(CN) hydratase/nitrilase activities than extracts from nonsenescent tissue.

  19. Thermodynamics of Deca-alanine Folding in Water.

    PubMed

    Hazel, Anthony; Chipot, Christophe; Gumbart, James C

    2014-07-08

    The determination of the folding dynamics of polypeptides and proteins is critical in characterizing their functions in biological systems. Numerous computational models and methods have been developed for studying structure formation at the atomic level. Due to its small size and simple structure, deca-alanine is used as a model system in molecular dynamics (MD) simulations. The free energy of unfolding in vacuum has been studied extensively using the end-to-end distance of the peptide as the reaction coordinate. However, few studies have been conducted in the presence of explicit solvent. Previous results show a significant decrease in the free energy of extended conformations in water, but the α-helical state is still notably favored over the extended state. Although sufficient in vacuum, we show that end-to-end distance is incapable of capturing the full complexity of deca-alanine folding in water. Using α-helical content as a second reaction coordinate, we deduce a more descriptive free-energy landscape, one which reveals a second energy minimum in the extended conformations that is of comparable free energy to the α-helical state. Equilibrium simulations demonstrate the relative stability of the extended and α-helical states in water as well as the transition between the two states. This work reveals both the necessity and challenge of determining a proper reaction coordinate to fully characterize a given process.

  20. The effect of immunonutrition (glutamine, alanine) on fracture healing

    PubMed Central

    Küçükalp, Abdullah; Durak, Kemal; Bayyurt, Sarp; Sönmez, Gürsel; Bilgen, Muhammed S.

    2014-01-01

    Background There have been various studies related to fracture healing. Glutamine is an amino acid with an important role in many cell and organ functions. This study aimed to make a clinical, radiological, and histopathological evaluation of the effects of glutamine on fracture healing. Methods Twenty rabbits were randomly allocated into two groups of control and immunonutrition. A fracture of the fibula was made to the right hind leg. All rabbits received standard food and water. From post-operative first day for 30 days, the study group received an additional 2 ml/kg/day 20% L-alanine L-glutamine solution via a gastric catheter, and the control group received 2 ml/kg/day isotonic via gastric catheter. At the end of 30 days, the rabbits were sacrificed and the fractures were examined clinically, radiologically, and histopathologically in respect to the degree of union. Results Radiological evaluation of the control group determined a mean score of 2.5 according to the orthopaedists and 2.65 according to the radiologists. In the clinical evaluation, the mean score was 1.875 for the control group and 2.0 for the study group. Histopathological evaluation determined a mean score of 8.5 for the control group and 9.0 for the study group. Conclusion One month after orally administered glutamine–alanine, positive effects were observed on fracture healing radiologically, clinically, and histopathologically, although no statistically significant difference was determined.

  1. Formation of chloroform during chlorination of alanine in drinking water.

    PubMed

    Chu, Wen-Hai; Gao, Nai-Yun; Deng, Yang; Dong, Bing-Zhi

    2009-11-01

    Currently, dissolved nitrogenous organic matters in water, important precursors of disinfection by-products (DBPs), are of significant concern. This study was to explore the formation of chloroform (CF) during chlorination of alanine (Ala), an important nitrogenous organic compound commonly present in water sources. Our results indicated that the CF yield reached a maximum value of 0.143% at the molar ratio of chlorine atom to nitrogen atom (Cl/N)=1.0 over a Cl/N range of 0.2-5.0 (pH=7.0, reaction time=5d, and initial Ala=0.1mM). At an acidic-neutral condition (pH 4-7), the formation of CF was suppressed. However, the highest CF yield (0.227%) occurred at weakly alkaline condition (pH 8.0) (initial Ala=0.1mM, and Cl/N=1.0). The increase of Br(-) in water can increase total trihalomethanes (THMs) and bromo-THMs. However, the bromo-THMs level reached a plateau at Br(-)/Cl>0.04. Finally, based on the computation of frontier electron density and identification and measurement of key intermediates during Ala chlorination, we proposed a formation pathway of CF from Ala chlorination: Ala-->monochloro-N-alanine (MC-N-Ala)-->acetaldehyde (AAld)-->monochloroacetaldehyde acetaldehyde (MCAld)-->dichloroacetaldehyde (DCAld)-->trichloroacetaldehyde (TCAld)-->CF.

  2. Recurrent truncating mutations in alanine-glyoxylate aminotransferase gene in two South Indian families with primary hyperoxaluria type 1 causing later onset end-stage kidney disease

    PubMed Central

    Dutta, A. K.; Paulose, B. K.; Danda, S.; Alexander, S.; Tamilarasi, V.; Omprakash, S.

    2016-01-01

    Primary hyperoxaluria type 1 is an autosomal recessive inborn error of metabolism due to liver-specific peroxisomal enzyme alanine-glyoxylate transaminase deficiency. Here, we describe two unrelated patients who were diagnosed to have primary hyperoxaluria. Homozygous c.445_452delGTGCTGCT (p.L151Nfs*14) (Transcript ID: ENST00000307503; human genome assembly GRCh38.p2) (HGMD ID CD073567) mutation was detected in both the patients and the parents were found to be heterozygous carriers. Our patients developed end-stage renal disease at 23 years and 35 years of age. However, in the largest series published from OxalEurope cohort, the median age of end-stage renal disease for null mutations carriers was 9.9 years, which is much earlier than our cases. Our patients had slower progressions as compared to three unrelated patients from North India and Pakistan, who had homozygous c.302T>C (p.L101P) (HGMD ID CM093792) mutation in exon 2. Further, patients need to be studied to find out if c.445_452delGTGCTGCT mutation represents a founder mutation in Southern India. PMID:27512303

  3. Alanine or aspartic acid substitutions at serine23/24 of cardiac troponin I decrease thin filament activation, with no effect on crossbridge detachment kinetics

    PubMed Central

    Mamidi, Ranganath; Gollapudi, Sampath K.; Mallampalli, Sri Lakshmi; Chandra, Murali

    2012-01-01

    Ala/Asp substitutions at Ser23/24 have been employed to investigate the functional impact of cardiac troponin I (cTnI) phosphorylation by protein kinase A (PKA). Some limitations of previous studies include the use of heterologous proteins and confounding effects arising from phosphorylation of cardiac myosin binding protein-C. Our goal was to probe the effects of cTnI phosphorylation using a homologous assay, so that altered function could be solely attributed to changes in cTnI. We reconstituted detergent-skinned rat cardiac papillary fibers with homologous rat cardiac troponin subunits to study the impact of Ala and Asp substitutions at Ser23/24 of rat cTnI (RcTnI S23A/24A and RcTnI S23D/24D). Both RcTnI S23A/24A and RcTnI S23D/24D showed a ~36% decrease in Ca2+-activated maximal tension. Both RcTnI S23A/24A and RcTnI S23D/24D showed a ~18% decrease in ATPase activity. Muscle fiber stiffness measurements suggested that the decrease in thin filament activation observed in RcTnI S23A/24A and RcTnI S23D/24D was due to a decrease in the number of strongly-bound crossbridges. Another major finding was that Ala and Asp substitutions in cTnI did not affect crossbridge detachment kinetics. PMID:22684024

  4. Involvement of alanine racemase in germination of Bacillus cereus spores lacking an intact exosporium.

    PubMed

    Venir, Elena; Del Torre, Manuela; Cunsolo, Vincenzo; Saletti, Rosaria; Musetti, Rita; Stecchini, Mara Lucia

    2014-02-01

    The L-alanine mediated germination of food isolated Bacillus cereus DSA 1 spores, which lacked an intact exosporium, increased in the presence of D-cycloserine (DCS), which is an alanine racemase (Alr) inhibitor, reflecting the activity of the Alr enzyme, capable of converting L-alanine to the germination inhibitor D-alanine. Proteomic analysis of the alkaline extracts of the spore proteins, which include exosporium and coat proteins, confirmed that Alr was present in the B. cereus DSA 1 spores and matched to that encoded by B. cereus ATCC 14579, whose spore germination was strongly affected by the block of conversion of L- to D-alanine. Unlike ATCC 14579 spores, L-alanine germination of B. cereus DSA 1 spores was not affected by the preincubation with DCS, suggesting a lack of restriction in the reactant accessibility.

  5. The Helical Alanine Controversy: An (Ala)6 Insertion Dramatically Increases Helicity

    PubMed Central

    Lin, Jasper C.; Barua, Bipasha

    2013-01-01

    Employing chemical shift melts and hydrogen/deuterium exchange NMR techniques, we have determined the stabilization of the Trp-cage miniprotein due to multiple alanine insertions within the N-terminal α-helix. Alanine is shown to be uniquely helix-stabilizing and this stabilization is reflected in the global fold stability of the Trp-cage. The associated free energy change per alanine can be utilized to calculate the alanine propagation value. From the Lifson–Roig formulation, the calculated value (wAla = 1.6) is comparable to those obtained for short, solubilized, alanine-rich helices and is much larger than the values obtained by prior host–guest techniques or in N-terminally templated helices and peptides bearing long contiguous strings of alanines with no capping or solubilizing units present. PMID:15493925

  6. The enzymology of alanine aminotransferase (AlaAT) isoforms from Hordeum vulgare and other organisms, and the HvAlaAT crystal structure.

    PubMed

    Duff, Stephen M G; Rydel, Timothy J; McClerren, Amanda L; Zhang, Wenlan; Li, Jimmy Y; Sturman, Eric J; Halls, Coralie; Chen, Songyang; Zeng, Jiamin; Peng, Jiexin; Kretzler, Crystal N; Evdokimov, Artem

    2012-12-01

    In this paper we describe the expression, purification, kinetics and biophysical characterization of alanine aminotransferase (AlaAT) from the barley plant (Hordeum vulgare). This dimeric PLP-dependent enzyme is a pivotal element of several key metabolic pathways from nitrogen assimilation to carbon metabolism, and its introduction into transgenic plants results in increased yield. The enzyme exhibits a bi-bi ping-pong reaction mechanism with a K(m) for alanine, 2-oxoglutarate, glutamate and pyruvate of 3.8, 0.3, 0.8 and 0.2 mM, respectively. Barley AlaAT catalyzes the forward (alanine-forming) reaction with a k(cat) of 25.6 s(-1), the reverse (glutamate-forming) reaction with k(cat) of 12.1 s(-1) and an equilibrium constant of ~0.5. The enzyme is also able to utilize aspartate and oxaloacetate with ~10% efficiency as compared to the native substrates, which makes it much more specific than related bacterial/archaeal enzymes (that also have lower K(m) values). We have crystallized barley AlaAT in complex with PLP and l-cycloserine and solved the structure of this complex at 2.7 Å resolution. This is the first example of a plant AlaAT structure, and it reveals a canonical aminotransferase fold similar to structures of the Thermotoga maritima, Pyrococcus furiosus, and human enzymes. This structure bridges our structural understanding of AlaAT mechanism between three kingdoms of life and allows us to shed some light on the specifics of the catalysis performed by these proteins.

  7. Residues Asp164 and Glu165 at the substrate entryway function potently in substrate orientation of alanine racemase from E. coli: Enzymatic characterization with crystal structure analysis.

    PubMed

    Wu, Dalei; Hu, Tiancen; Zhang, Liang; Chen, Jing; Du, Jiamu; Ding, Jianping; Jiang, Hualiang; Shen, Xu

    2008-06-01

    Alanine racemase (Alr) is an important enzyme that catalyzes the interconversion of L-alanine and D-alanine, an essential building block in the peptidoglycan biosynthesis. For the small size of the Alr active site, its conserved substrate entryway has been proposed as a potential choice for drug design. In this work, we fully analyzed the crystal structures of the native, the D-cycloserine-bound, and four mutants (P219A, E221A, E221K, and E221P) of biosynthetic Alr from Escherichia coli (EcAlr) and studied the potential roles in substrate orientation for the key residues involved in the substrate entryway in conjunction with the enzymatic assays. Structurally, it was discovered that EcAlr is similar to the Pseudomonas aeruginosa catabolic Alr in both overall and active site geometries. Mutation of the conserved negatively charged residue aspartate 164 or glutamate 165 at the substrate entryway could obviously reduce the binding affinity of enzyme against the substrate and decrease the turnover numbers in both D- to L-Ala and L- to D-Ala directions, especially when mutated to lysine with the opposite charge. However, mutation of Pro219 or Glu221 had only negligible or a small influence on the enzymatic activity. Together with the enzymatic and structural investigation results, we thus proposed that the negatively charged residues Asp164 and Glu165 around the substrate entryway play an important role in substrate orientation with cooperation of the positively charged Arg280 and Arg300 on the opposite monomer. Our findings are expected to provide some useful structural information for inhibitor design targeting the substrate entryway of Alr.

  8. Expression, crystallization and preliminary X-ray crystallographic analysis of Xoo0352, D-alanine-D-alanine ligase A, from Xanthomonas oryzae pv. oryzae.

    PubMed

    Doan, Thanh Thi Ngoc; Kim, Jin-Kwang; Kim, Hyesoon; Ahn, Yeh-Jin; Kim, Jeong-Gu; Lee, Byoung-Moo; Kang, Lin-Woo

    2008-12-01

    Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight (BB), which is one of the most devastating diseases of rice in most rice-growing countries. D-Alanine-D-alanine ligase A (DdlA), coded by the Xoo0352 gene, was expressed, purified and crystallized. DdlA is an enzyme that is involved in D-alanine metabolism and the biosynthesis of an essential bacterial peptidoglycan precursor, in which it catalyzes the formation of D-alanyl-D-alanine from two D-alanines, and is thus an attractive antibacterial drug target against Xoo. The DdlA crystals diffracted to 2.3 A resolution and belonged to the primitive tetragonal space group P4(3)2(1)2, with unit-cell parameters a = b = 83.0, c = 97.6 A. There is one molecule in the asymmetric unit, with a corresponding V(M) of 1.88 A(3) Da(-1) and a solvent content of 34.6%. The initial structure was determined by molecular replacement using D-alanine-D-alanine ligase from Staphylococcus aureus (PDB code 2i87) as a template model.

  9. Synthesis of 6-phosphofructose aspartic acid and some related Amadori compounds.

    PubMed

    Hansen, Alexandar L; Behrman, Edward J

    2016-08-05

    We describe the synthesis and characterization of 6-phosphofructose-aspartic acid, an intermediate in the metabolism of fructose-asparagine by Salmonella. We also report improved syntheses of fructose-asparagine itself and of fructose-aspartic acid.

  10. Asymmetric synthesis of aromatic β-amino acids using ω-transaminase: Optimizing the lipase concentration to obtain thermodynamically unstable β-keto acids.

    PubMed

    Mathew, Sam; Jeong, Seong-Su; Chung, Taeowan; Lee, Sang-Hyeup; Yun, Hyungdon

    2016-01-01

    Synthesized aromatic β-amino acids have recently attracted considerable attention for their application as precursors in many pharmacologically relevant compounds. Previous studies on asymmetric synthesis of aromatic β-amino acids using ω-transaminases could not be done efficiently due to the instability of β-keto acids. In this study, a strategy to circumvent the instability problem of β-keto acids was utilized to generate β-amino acids efficiently via asymmetric synthesis. In this work, thermodynamically stable β-ketoesters were initially converted to β-keto acids using lipase, and the β-keto acids were subsequently aminated using ω-transaminase. By optimizing the lipase concentration, we successfully overcame the instability problem of β-keto acids and enhanced the production of β-amino acids. This strategy can be used as a general approach to efficiently generate β-amino acids from β-ketoesters.

  11. Chromobacterium violaceum ω-transaminase variant Trp60Cys shows increased specificity for (S)-1-phenylethylamine and 4'-substituted acetophenones, and follows Swain-Lupton parameterisation.

    PubMed

    Cassimjee, Karim Engelmark; Humble, Maria Svedendahl; Land, Henrik; Abedi, Vahak; Berglund, Per

    2012-07-28

    For biocatalytic production of pharmaceutically important chiral amines the ω-transaminase enzymes have proven useful. Engineering of these enzymes has to some extent been accomplished by rational design, but mostly by directed evolution. By use of a homology model a key point mutation in Chromobacterium violaceum ω-transaminase was found upon comparison with engineered variants from homologous enzymes. The variant Trp60Cys gave increased specificity for (S)-1-phenylethylamine (29-fold) and 4'-substituted acetophenones (∼5-fold). To further study the effect of the mutation the reaction rates were Swain-Lupton parameterised. On comparison with the wild type, reactions of the variant showed increased resonance dependence; this observation together with changed pH optimum and cofactor dependence suggests an altered reaction mechanism.

  12. Transforming growth factor alpha: mutation of aspartic acid 47 and leucine 48 results in different biological activities.

    PubMed Central

    Lazar, E; Watanabe, S; Dalton, S; Sporn, M B

    1988-01-01

    To study the relationship between the primary structure of transforming growth factor alpha (TGF-alpha) and some of its functional properties (competition with epidermal growth factor (EGF) for binding to the EGF receptor and induction of anchorage-independent growth), we introduced single amino acid mutations into the sequence for the fully processed, 50-amino-acid human TGF-alpha. The wild-type and mutant proteins were expressed in a vector by using a yeast alpha mating pheromone promoter. Mutations of two amino acids that are conserved in the family of the EGF-like peptides and are located in the carboxy-terminal part of TGF-alpha resulted in different biological effects. When aspartic acid 47 was mutated to alanine or asparagine, biological activity was retained; in contrast, substitutions of this residue with serine or glutamic acid generated mutants with reduced binding and colony-forming capacities. When leucine 48 was mutated to alanine, a complete loss of binding and colony-forming abilities resulted; mutation of leucine 48 to isoleucine or methionine resulted in very low activities. Our data suggest that these two adjacent conserved amino acids in positions 47 and 48 play different roles in defining the structure and/or biological activity of TGF-alpha and that the carboxy terminus of TGF-alpha is involved in interactions with cellular TGF-alpha receptors. The side chain of leucine 48 appears to be crucial either indirectly in determining the biologically active conformation of TGF-alpha or directly in the molecular recognition of TGF-alpha by its receptor. PMID:3285178

  13. Human recombinant glutamate oxaloacetate transaminase 1 (GOT1) supplemented with oxaloacetate induces a protective effect after cerebral ischemia

    PubMed Central

    Pérez-Mato, M; Ramos-Cabrer, P; Sobrino, T; Blanco, M; Ruban, A; Mirelman, D; Menendez, P; Castillo, J; Campos, F

    2014-01-01

    Blood glutamate scavenging is a novel and attractive protecting strategy to reduce the excitotoxic effect of extracellular glutamate released during ischemic brain injury. Glutamate oxaloacetate transaminase 1 (GOT1) activation by means of oxaloacetate administration has been used to reduce the glutamate concentration in the blood. However, the protective effect of the administration of the recombinant GOT1 (rGOT1) enzyme has not been yet addressed in cerebral ischemia. The aim of this study was to analyze the protective effect of an effective dose of oxaloacetate and the human rGOT1 alone and in combination with a non-effective dose of oxaloacetate in an animal model of ischemic stroke. Sixty rats were subjected to a transient middle cerebral artery occlusion (MCAO). Infarct volumes were assessed by magnetic resonance imaging (MRI) before treatment administration, and 24 h and 7 days after MCAO. Brain glutamate levels were determined by in vivo MR spectroscopy (MRS) during artery occlusion (80 min) and reperfusion (180 min). GOT activity and serum glutamate concentration were analyzed during the occlusion and reperfusion period. Somatosensory test was performed at baseline and 7 days after MCAO. The three treatments tested induced a reduction in serum and brain glutamate levels, resulting in a reduction in infarct volume and sensorimotor deficit. Protective effect of rGOT1 supplemented with oxaloacetate at 7 days persists even when treatment was delayed until at least 2 h after onset of ischemia. In conclusion, our findings indicate that the combination of human rGOT1 with low doses of oxaloacetate seems to be a successful approach for stroke treatment PMID:24407245

  14. Oxygen-inducible glutamate oxaloacetate transaminase as protective switch transforming neurotoxic glutamate to metabolic fuel during acute ischemic stroke.

    PubMed

    Rink, Cameron; Gnyawali, Surya; Peterson, Laura; Khanna, Savita

    2011-05-15

    This work rests on our previous report (J Cereb Blood Flow Metab 30: 1275-1287, 2010) recognizing that glutamate (Glu) oxaloacetate transaminase (GOT) is induced when brain tissue hypoxia is corrected during acute ischemic stroke (AIS). GOT can metabolize Glu into tricarboxylic acid cycle intermediates and may therefore be useful to harness excess neurotoxic extracellular Glu during AIS as a metabolic substrate. We report that in cultured neural cells challenged with hypoglycemia, extracellular Glu can support cell survival as long as there is sufficient oxygenation. This effect is abrogated by GOT knockdown. In a rodent model of AIS, supplemental oxygen (100% O(2) inhaled) during ischemia significantly increased GOT expression and activity in the stroke-affected brain tissue and prevented loss of ATP. Biochemical analyses and in vivo magnetic resonance spectroscopy during stroke demonstrated that such elevated GOT decreased Glu levels at the stroke-affected site. In vivo lentiviral gene delivery of GOT minimized lesion volume, whereas GOT knockdown worsened stroke outcomes. Thus, brain tissue GOT emerges as a novel target in managing stroke outcomes. This work demonstrates that correction of hypoxia during AIS can help clear extracellular neurotoxic Glu by enabling utilization of this amino acid as a metabolic fuel to support survival of the hypoglycemic brain tissue. Strategies to mitigate extracellular Glu-mediated neurodegeneration via blocking receptor-mediated excitotoxicity have failed in clinical trials. We introduce the concept that under hypoglycemic conditions extracellular Glu can be transformed from a neurotoxin to a survival factor by GOT, provided there is sufficient oxygen to sustain cellular respiration.

  15. Biochemical changes of the synovial liquid of corpses with regard to the cause of death. 2: Alkaline phosphatase, lactic acid dehydrogenase (LDH), and glutamic oxalacetic transaminase (GOT).

    PubMed

    More, D S; Arroyo, M C

    1985-04-01

    We studied the activity of various enzymes in the synovial liquid of 100 corpses with regard to the cause of death finding that the alkaline phospatase and glutamic oxalacetic transaminase (GOT) are increased in cranioencephalic trauma, possibly as a result of the important cellular lysis which goes with them; and lactic acid dehydrogenase (LDH) is increased in the pulmonary processes, almost certainly with relation to the great quantity of this enzyme in the lung.

  16. Antibacterial Activity of Alanine-Derived Gemini Quaternary Ammonium Compounds.

    PubMed

    Piecuch, Agata; Obłąk, Ewa; Guz-Regner, Katarzyna

    The antibacterial activity of alanine-derived gemini quaternary ammonium salts (chlorides and bromides) with various spacer and alkyl chain lengths was investigated. The studied compounds exhibited a strong bactericidal effect, especially bromides with 10 and 12 carbon alkyl chains and 3 carbon spacer groups (TMPAL-10 Br and TMPAL-12 Br), with a short contact time. Both salts dislodged biofilms of Pseudomonas aeruginosa and Staphylococcus epidermidis, and were lethal to adherent cells of S. epidermidis. Bromide with 2 carbon spacer groups and 12 carbon alkyl chains (TMEAL-12 Br) effectively reduced microbial adhesion by coating polystyrene and silicone surfaces. The results obtained suggest that, after further studies, gemini QAS might be considered as antimicrobial agents in medicine or industry.

  17. Charge dependent photodynamic activity of alanine based zinc phthalocyanines.

    PubMed

    Wang, Ao; Li, Yejing; Zhou, Lin; Yuan, Linxin; Lu, Shan; Lin, Yun; Zhou, Jiahong; Wei, Shaohua

    2014-12-01

    In this paper, to minimize the effects of different structure, three alanine-based zinc phthalocyanines (Pcs) of differing charges were engineered and synthesized with the same basic structure. On this premise, the relationship between nature of charge and photodynamic activity was studied. Besides, further verification and explanation of some inconsistent results were also carried out. The results showed that charge can influence the aggregation state, singlet oxygen generation ability and cellular uptake of Pcs, thereby affecting their photodynamic activity. In addition, the biomolecules inside cells may interact with Pcs of differing charges, which can also influence the aggregation state and singlet oxygen generation of the Pcs, and then influence the relationship between nature of charge and photodynamic activity.

  18. Radiolysis of alanine adsorbed in a clay mineral

    SciTech Connect

    Aguilar-Ovando, Ellen Y.; Negron-Mendoza, Alicia

    2013-07-03

    Optical activity in molecules is a chemical characteristic of living beings. In this work, we examine the hypothesis of the influence of different mineral surfaces on the development of a specific chirality in organic molecules when subjected to conditions simulating the primitive Earth during the period of chemical evolution. By using X-ray diffraction techniques and HPLC/ELSD to analyze aqueous suspensions of amino acids adsorbed on minerals irradiated in different doses with a cobalt-60 gamma source, the experiments attempt to prove the hypothesis that some solid surfaces (like clays and meteorite rocks) may have a concentration capacity and protective role against external sources of ionizing radiation (specifically {gamma}-ray) for some organic compounds (like some amino acids) adsorbed on them. Preliminary results show a slight difference in the adsorption and radiolysis of the D-and L-alanine.

  19. First-principles study of fluorination of L-Alanine

    NASA Astrophysics Data System (ADS)

    Sreepad, H. R.; Ravi, H. R.; Ahmed, Khaleel; Dayananda, H. M.; Umakanth, K.; Manohara, B. M.

    2013-02-01

    First-principles calculations based on Density Functional Theory have been done on effect of fluorination of an important amino acid - L-Alanine. Its structure has been simulated. The unit cell is orthorhombic with lattice parameters a=5.90Å, b=13.85Å and c=5.75Å with volume 470 (Å)3. Bond lengths and bond angles have been estimated. Electronic Density of States calculations show that the material has a band gap of 4.47eV. Electronic band structure indicates that the material can be effectively used for NLO applications. The electronic contribution to the dielectric constant has been calculated and its average value comes out to be 2.165.

  20. Alanine Aminotransferase Variants Conferring Diverse NUE Phenotypes in Arabidopsis thaliana

    PubMed Central

    McAllister, Chandra H.; Good, Allen G.

    2015-01-01

    Alanine aminotransferase (AlaAT, E.C. 2.6.1.2), is a pyridoxal-5’-phosphate-dependent (PLP) enzyme that catalyzes the reversible transfer of an amino group from alanine to 2-oxoglutarate to produce glutamate and pyruvate, or vice versa. It has been well documented in both greenhouse and field studies that tissue-specific over-expression of AlaAT from barley (Hordeum vulgare, HvAlaAT) results in a significant increase in plant NUE in both canola and rice. While the physical phenotypes associated with over-expression of HvAlaAT have been well characterized, the role this enzyme plays in vivo to create a more N efficient plant remains unknown. Furthermore, the importance of HvAlaAT, in contrast to other AlaAT enzyme homologues in creating this phenotype has not yet been explored. To address the role of AlaAT in NUE, AlaAT variants from diverse sources and different subcellular locations, were expressed in the wild-type Arabidopsis thaliana Col-0 background and alaat1;2 (alaat1-1;alaat2-1) knockout background in various N environments. The analysis and comparison of both the physical and physiological properties of AlaAT over-expressing transgenic plants demonstrated significant differences between plants expressing the different AlaAT enzymes under different external conditions. This analysis indicates that the over-expression of AlaAT variants other than HvAlaAT in crop plants could further increase the NUE phenotype(s) previously observed. PMID:25830496

  1. Alanine aminotransferase variants conferring diverse NUE phenotypes in Arabidopsis thaliana.

    PubMed

    McAllister, Chandra H; Good, Allen G

    2015-01-01

    Alanine aminotransferase (AlaAT, E.C. 2.6.1.2), is a pyridoxal-5'-phosphate-dependent (PLP) enzyme that catalyzes the reversible transfer of an amino group from alanine to 2-oxoglutarate to produce glutamate and pyruvate, or vice versa. It has been well documented in both greenhouse and field studies that tissue-specific over-expression of AlaAT from barley (Hordeum vulgare, HvAlaAT) results in a significant increase in plant NUE in both canola and rice. While the physical phenotypes associated with over-expression of HvAlaAT have been well characterized, the role this enzyme plays in vivo to create a more N efficient plant remains unknown. Furthermore, the importance of HvAlaAT, in contrast to other AlaAT enzyme homologues in creating this phenotype has not yet been explored. To address the role of AlaAT in NUE, AlaAT variants from diverse sources and different subcellular locations, were expressed in the wild-type Arabidopsis thaliana Col-0 background and alaat1;2 (alaat1-1;alaat2-1) knockout background in various N environments. The analysis and comparison of both the physical and physiological properties of AlaAT over-expressing transgenic plants demonstrated significant differences between plants expressing the different AlaAT enzymes under different external conditions. This analysis indicates that the over-expression of AlaAT variants other than HvAlaAT in crop plants could further increase the NUE phenotype(s) previously observed.

  2. Stereospecific production of the herbicide phosphinothricin (glufosinate) by transamination: isolation and characterization of a phosphinothricin-specific transaminase from Escherichia coli.

    PubMed Central

    Schulz, A; Taggeselle, P; Tripier, D; Bartsch, K

    1990-01-01

    An aminotransferase capable of transaminating 2-oxo-4-[(hydroxy)(methyl)phosphinoyl]butyric acid to L-phosphinothricin [L-homoalanine-4-yl-(methyl)phosphinic acid], the active ingredient of the herbicide Basta (Hoechst AG), was purified to apparent homogeneity from Escherichia coli K-12. The enzyme catalyzes the transamination of L-phosphinothricin and various analogs with 2-ketoglutarate as the amino group acceptor. The transaminase has a molecular mass of 43 kilodaltons by sodium dodecyl sulfate-gel analysis and an isoelectric point of 4.35. The enzyme was most active in the high-pH region, with a maximum at pH 8.0 to 9.5, and had a temperature optimum of 55 degrees C. Heat stability was observed up to 70 degrees C. Substrate specificity studies suggested that the enzyme is identical with the 4-aminobutyrate:2-ketoglutarate transaminase (EC 2.6.1.19). The first 30 amino acids of the N terminus of the protein were determined by gas phase sequencing. The transaminase was immobilized by coupling to the epoxy-activated carrier VA-Biosynth (Riedel de Haen) and used in a column reactor for the continuous production of L-phosphinothricin. The enzyme reactor was operated for 7 weeks with only a slight loss of catalytic capacity. Production rates of more than 50 g of L-phosphinothricin per liter of column per h were obtained. Images PMID:2178550

  3. The 1.9 A Structure of the Branched-Chain Amino-Acid Transaminase (IlvE) from Mycobacterium tuberculosis

    SciTech Connect

    Tremblay, L.; Blanchard, J

    2009-01-01

    Unlike mammals, bacteria encode enzymes that synthesize branched-chain amino acids. The pyridoxal 5'-phosphate-dependent transaminase performs the final biosynthetic step in these pathways, converting keto acid precursors into {alpha}-amino acids. The branched-chain amino-acid transaminase from Mycobacterium tuberculosis (MtIlvE) has been crystallized and its structure has been solved at 1.9 {angstrom} resolution. The MtIlvE monomer is composed of two domains that interact to form the active site. The biologically active form of IlvE is a homodimer in which each monomer contributes a substrate-specificity loop to the partner molecule. Additional substrate selectivity may be imparted by a conserved N-terminal Phe30 residue, which has previously been observed to shield the active site in the type IV fold homodimer. The active site of MtIlvE contains density corresponding to bound PMP, which is likely to be a consequence of the presence of tryptone in the crystallization medium. Additionally, two cysteine residues are positioned at the dimer interface for disulfide-bond formation under oxidative conditions. It is unknown whether they are involved in any regulatory activities analogous to those of the human mitochondrial branched-chain amino-acid transaminase.

  4. [The prevalence of hepatitis C antibodies among volunteer blood donors with elevated blood transaminase and antibodies to the B virus core antigen].

    PubMed

    Gavilán Carrasco, J C; González Santos, P; Rosario Díaz, E

    1996-05-01

    The use of non-specific markers before 1989 (increased serum transaminase values and antibodies to hepatitis B core antigen) as a screening method for blood donors in an attempt to decrease the incidence of post-transfusional non-A non-B hepatitis (currently hepatitis C virus) was a matter of controversy. To determine the impact of the use of these markers on the detection of blood donors infected with hepatitis C virus, a prospective study was undertaken in Málaga (1988-1989) with 5,003 volunteer donors with two objectives: a) to know the prevalence of these non-specific markers (anti-HBc and increased serum transaminase) and antibodies to HCV (anti-C100) in our blood donor population; b) to determine whether the presence of some of these non specific markers in blood donors was associated with a higher rate of virus C infection. The prevalence of antibodies to HCV in blood donors with increased serum transaminase and/or anti-HBc was significantly higher than the prevalence found among the general blood donor population.

  5. Efficient L-Alanine Production by a Thermo-Regulated Switch in Escherichia coli.

    PubMed

    Zhou, Li; Deng, Can; Cui, Wen-Jing; Liu, Zhong-Mei; Zhou, Zhe-Min

    2016-01-01

    L-Alanine has important applications in food, pharmaceutical and veterinary and is used as a substrate for production of engineered thermoplastics. Microbial fermentation could reduce the production cost and promote the application of L-alanine. However, the presence of L-alanine significantly inhibit cell growth rate and cause a decrease in the ultimate L-alanine productivity. For efficient L-alanine production, a thermo-regulated genetic switch was designed to dynamically control the expression of L-alanine dehydrogenase (alaD) from Geobacillus stearothermophilus on the Escherichia coli B0016-060BC chromosome. The optimal cultivation conditions for the genetically switched alanine production using B0016-060BC were the following: an aerobic growth phase at 33 °C with a 1-h thermo-induction at 42 °C followed by an oxygen-limited phase at 42 °C. In a bioreactor experiment using the scaled-up conditions optimized in a shake flask, B0016-060BC accumulated 50.3 g biomass/100 g glucose during the aerobic growth phase and 96 g alanine/100 g glucose during the oxygen-limited phase, respectively. The L-alanine titer reached 120.8 g/l with higher overall and oxygen-limited volumetric productivities of 3.09 and 4.18 g/l h, respectively, using glucose as the sole carbon source. Efficient cell growth and L-alanine production were reached separately, by switching cultivation temperature. The results revealed the application of a thermo-regulated strategy for heterologous metabolic production and pointed to strategies for improving L-alanine production.

  6. Bioproduction of L-Aspartic Acid and Cinnamic Acid by L-Aspartate Ammonia Lyase from Pseudomonas aeruginosa PAO1.

    PubMed

    Patel, Arti T; Akhani, Rekha C; Patel, Manisha J; Dedania, Samir R; Patel, Darshan H

    2016-12-17

    Aspartase (L-aspartate ammonia lyase, EC 4.3.1.1) catalyses the reversible amination and deamination of L-aspartic acid to fumaric acid which can be used to produce important biochemical. In this study, we have explored the characteristics of aspartase from Pseudomonas aeruginosa PAO1 (PA-AspA). To overproduce PA-AspA, the 1425-bp gene was introduced in Escherichia coli BL21 and purified. A 51.0-kDa protein was observed as a homogenous purified protein on SDS-PAGE. The enzyme was optimally active at pH 8.0 and 35 °C. PA-AspA has retained 56% activity after 7 days of incubation at 35 °C, which displays the hyperthermostablility characteristics of the enzyme. PA-AspA is activated in the presence of metal ions and Mg2+ is found to be most effective. Among the substrates tested for specificity of PA-AspA, L-phenylalanine (38.35 ± 2.68) showed the highest specific activity followed by L-aspartic acid (31.21 ± 3.31) and fumarate (5.42 ± 2.94). K m values for L-phenylalanine, L-aspartic acid and fumarate were 1.71 mM, 0.346 μM and 2 M, respectively. The catalytic efficiency (k cat/K m) for L-aspartic acid (14.18 s(-1) mM(-1)) was higher than that for L-phenylalanine (4.65 s(-1) mM(-1)). For bioconversion, from an initial concentration of 1000 mM of fumarate and 30 mM of L-phenylalanine, PA-AspA was found to convert 395.31 μM L-aspartic acid and 3.47 mM cinnamic acid, respectively.

  7. Microwave-assisted reaction of glycosylamine with aspartic acid.

    PubMed

    Real-Fernández, Feliciana; Nuti, Francesca; Bonache, M Angeles; Boccalini, Marco; Chimichi, Stefano; Chelli, Mario; Papini, Anna Maria

    2010-07-01

    The synthesis of N-protected glycosyl amino acids from amines has been investigated and it was found that, under microwave conditions, glycosylamines could be hydrolyzed leading to new products containing a glycosyl ester linkage. The efficiency of the microwave-induced glycosylation of aspartic acid was studied comparing the microwave activity between amide and ester bond formation. Different sugar moieties have been employed to demonstrate the simple and reproducible coupling methodology. New glycosyl ester compounds were further characterized by NMR spectroscopy.

  8. Explosive enantiospecific decomposition of aspartic acid on Cu surfaces.

    PubMed

    Mhatre, B S; Dutta, S; Reinicker, A; Karagoz, B; Gellman, A J

    2016-12-01

    Aspartic acid adsorbed on Cu surfaces is doubly deprotonated. On chiral Cu(643)(R&S) its enantiomers undergo enantiospecific decomposition via an autocatalytic explosion. Once initiated, the decomposition mechanism proceeds via sequential cleavage of the C3-C4 and C1-C2 bonds each yielding CO2, followed by conversion of the remaining species into N[triple bond, length as m-dash]CCH3.

  9. On the solvation of L-aspartic acid

    NASA Astrophysics Data System (ADS)

    Paxton, A. T.; Harper, J. B.

    2004-01-01

    We use molecular statics and dynamics to study the stability of L-aspartic acid both in vacuo and solvated by polar and non-polar molecules using density functional theory in the generalized gradient approximation. We find that structures stable in vacuo are unstable in aqueous solution and vice versa. From our simulations we are able to come to some conclusions about the mechanism of stabilisation of zwitterions by polar protic solvents, water and methanol.

  10. Microbial aspartic proteases: current and potential applications in industry.

    PubMed

    Theron, Louwrens W; Divol, Benoit

    2014-11-01

    Aspartic proteases are a relatively small group of proteolytic enzymes that are active in acidic environments and are found across all forms of life. Certain microorganisms secrete such proteases as virulence agents and/or in order to break down proteins thereby liberating assimilable sources of nitrogen. Some of the earlier applications of these proteolytic enzymes are found in the manufacturing of cheese where they are used as milk-clotting agents. Over the last decade, they have received tremendous research interest because of their involvement in human diseases. Furthermore, there has also been a growing interest on these enzymes for their applications in several other industries. Recent research suggests in particular that they could be used in the wine industry to prevent the formation of protein haze while preserving the wines' organoleptic properties. In this mini-review, the properties and mechanisms of action of aspartic proteases are summarized. Thereafter, a brief overview of the industrial applications of this specific class of proteases is provided. The use of aspartic proteases as alternatives to clarifying agents in various beverage industries is mentioned, and the potential applications in the wine industry are thoroughly discussed.

  11. Age estimation based on aspartic acid racemization in human sclera.

    PubMed

    Klumb, Karolin; Matzenauer, Christian; Reckert, Alexandra; Lehmann, Klaus; Ritz-Timme, Stefanie

    2016-01-01

    Age estimation based on racemization of aspartic acid residues (AAR) in permanent proteins has been established in forensic medicine for years. While dentine is the tissue of choice for this molecular method of age estimation, teeth are not always available which leads to the need to identify other suitable tissues. We examined the suitability of total tissue samples of human sclera for the estimation of age at death. Sixty-five samples of scleral tissue were analyzed. The samples were hydrolyzed and after derivatization, the extent of aspartic acid racemization was determined by gas chromatography. The degree of AAR increased with age. In samples from younger individuals, the correlation of age and D-aspartic acid content was closer than in samples from older individuals. The age-dependent racemization in total tissue samples proves that permanent or at least long-living proteins are present in scleral tissue. The correlation of AAR in human sclera and age at death is close enough to serve as basis for age estimation. However, the precision of age estimation by this method is lower than that of age estimation based on the analysis of dentine which is due to molecular inhomogeneities of total tissue samples of sclera. Nevertheless, the approach may serve as a valuable alternative or addition in exceptional cases.

  12. 40 CFR 721.520 - Alanine, N-(2-carboxyethyl)-N-alkyl-, salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-, salt. 721.520 Section 721.520 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.520 Alanine, N-(2-carboxyethyl)-N-alkyl-, salt. (a) Chemical substance... alanine, N-(2-carboxyethyl)-N- alkyl-, salt (P-89-336) is subject to reporting under this section for...

  13. 40 CFR 721.520 - Alanine, N-(2-carboxyethyl)-N-alkyl-, salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-, salt. 721.520 Section 721.520 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.520 Alanine, N-(2-carboxyethyl)-N-alkyl-, salt. (a) Chemical substance... alanine, N-(2-carboxyethyl)-N- alkyl-, salt (P-89-336) is subject to reporting under this section for...

  14. Polymerization of alanine in the presence of a non-swelling montmorillonite

    NASA Technical Reports Server (NTRS)

    Paecht-Horowitz, M.; Lahav, N.

    1977-01-01

    Alanine, starting from alanine-adenylate, has been polymerized in the presence of non-swelling Al-montmorillonite. The yield of polymerization is much lower than that obtained in the presence of swelling Na-montmorillonite. The possibility that the changing interlayer spacing in Na-montmorillonite might be responsible for its catalytic properties, is discussed.

  15. Regulation of the ald gene encoding alanine dehydrogenase by AldR in Mycobacterium smegmatis.

    PubMed

    Jeong, Ji-A; Baek, Eun-Young; Kim, Si Wouk; Choi, Jong-Soon; Oh, Jeong-Il

    2013-08-01

    The regulatory gene aldR was identified 95 bp upstream of the ald gene encoding L-alanine dehydrogenase in Mycobacterium smegmatis. The AldR protein shows sequence similarity to the regulatory proteins of the Lrp/AsnC family. Using an aldR deletion mutant, we demonstrated that AldR serves as both activator and repressor for the regulation of ald gene expression, depending on the presence or absence of L-alanine. The purified AldR protein exists as a homodimer in the absence of L-alanine, while it adopts the quaternary structure of a homohexamer in the presence of L-alanine. The binding affinity of AldR for the ald control region was shown to be increased significantly by L-alanine. Two AldR binding sites (O1 and O2) with the consensus sequence GA-N₂-ATC-N₂-TC and one putative AldR binding site with the sequence GA-N₂-GTT-N₂-TC were identified upstream of the ald gene. Alanine and cysteine were demonstrated to be the effector molecules directly involved in the induction of ald expression. The cellular level of L-alanine was shown to be increased in M. smegmatis cells grown under hypoxic conditions, and the hypoxic induction of ald expression appears to be mediated by AldR, which senses the intracellular level of alanine.

  16. 40 CFR 721.520 - Alanine, N-(2-carboxyethyl)-N-alkyl-, salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-, salt. 721.520 Section 721.520 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.520 Alanine, N-(2-carboxyethyl)-N-alkyl-, salt. (a) Chemical substance... alanine, N-(2-carboxyethyl)-N- alkyl-, salt (P-89-336) is subject to reporting under this section for...

  17. 40 CFR 721.520 - Alanine, N-(2-carboxyethyl)-N-alkyl-, salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-, salt. 721.520 Section 721.520 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.520 Alanine, N-(2-carboxyethyl)-N-alkyl-, salt. (a) Chemical substance... alanine, N-(2-carboxyethyl)-N- alkyl-, salt (P-89-336) is subject to reporting under this section for...

  18. 40 CFR 721.520 - Alanine, N-(2-carboxyethyl)-N-alkyl-, salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-, salt. 721.520 Section 721.520 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.520 Alanine, N-(2-carboxyethyl)-N-alkyl-, salt. (a) Chemical substance... alanine, N-(2-carboxyethyl)-N- alkyl-, salt (P-89-336) is subject to reporting under this section for...

  19. Synthesis and GGCT Inhibitory Activity of N-Glutaryl-L-alanine Analogues.

    PubMed

    Ii, Hiromi; Yoshiki, Tatsuhiro; Hoshiya, Naoyuki; Uenishi, Jun'ichi

    2016-01-01

    γ-Glutamylcyclotransferase (GGCT) is an important enzyme that cleaves γ-glutamyl-amino acid in the γ-glutamyl cycle to release 5-oxoproline and amino acid. Eighteen N-acyl-L-alanine analogues including eleven new compounds have been synthesized and examined for their inhibitory activity against recombinant human GGCT protein. Simple N-glutaryl-L-alanine was found to be the most potent inhibitor for GGCT. Other N-glutaryl-L-alanine analogues having methyl and dimethyl substituents at the 2-position were moderately effective, while N-(3R-aminoglutary)-L-alanine, the substrate having an (R)-amino group at the 3-position or N-(N-methyl-3-azaglutaryl)-L-alanine, the substrate having an N-methyl substituent on the 3-azaglutaryl carbon, in constract, exhibited excellent inhibition properties.

  20. How similar is the electronic structures of β-lactam and alanine?

    NASA Astrophysics Data System (ADS)

    Chatterjee, Subhojyoti; Ahmed, Marawan; Wang, Feng

    2016-02-01

    The C1s spectra of β-lactam i.e. 2-azetidinone (C3H5NO), a drug and L-alanine (C3H7NO2), an amino acid, exhibit striking similarities, which may be responsible for the competition between 2-azetidinone and the alanyl-alanine moiety in biochemistry. The present study is to reveal the degree of similarities and differences between their electronic structures of the two model molecular pairs. It is found that the similarities in C1s and inner valence binding energy spectra are due to their bonding connections but other properties such as ring structure (in 2-azetidinone) and chiral carbon (alanine) can be very different. Further, the inner valence region of ionization potential greater than 18 eV for 2-azetidinone and alanine is also significantly similar. Finally the strained lactam ring exhibits more chemical reactivity measured at all non-hydrogen atoms by Fukui functions with respect to alanine.

  1. Association between PNPLA3 (rs738409), LYPLAL1 (rs12137855), PPP1R3B (rs4240624), GCKR (rs780094), and elevated transaminase levels in overweight/obese Mexican adults.

    PubMed

    Flores, Yvonne N; Velázquez-Cruz, Rafael; Ramírez, Paula; Bañuelos, Manuel; Zhang, Zuo-Feng; Yee, Hal F; Chang, Shen-Chih; Canizales-Quinteros, Samuel; Quiterio, Manuel; Cabrera-Alvarez, Guillermo; Patiño, Nelly; Salmerón, Jorge

    2016-12-01

    There is scarce information about the link between specific single-nucleotide polymorphisms (SNPs) and risk of liver disease among Latinos, despite the disproportionate burden of disease among this population. Our aim was to investigate nine SNPs in or near the following genes: PNPLA3, LYPLAL1, PPP1R3B, GCKR, NCAN, IRS1, PPARG, and ADIPOR2 and examine their association with persistently elevated alanine aminotransferase (ALT) or aspartate aminotransferase (AST) levels in Mexican adults. Data and samples were collected from 741 participants in the Mexican Health Worker Cohort Study, in Cuernavaca, Mexico. We identified 207 cases who had persistently elevated levels of ALT or AST (≥40 U/L) and 534 controls with at least two consecutive normal ALT or AST results in a 6 month period, during 2004-2006 and 2011-2013. TaqMan assays were used to genotype the SNPs. The risk allele of PNPLA3 rs738409 was found to be associated with persistently elevated levels of ALT or AST, adjusting for age, sex, BMI, type 2 diabetes, and ancestry: (OR 2.28, 95 % CI 1.13, 4.58). A significant association was found between the LYPLAL1, PPP1R3B, and GCKR risk alleles and elevated ALT or AST levels among overweight/obese adults. These results suggest that among Mexicans, the PNPLA3 (rs738409), LYPLAL1 (rs12137855), PPP1R3B (rs4240624), and GCKR (rs780094) polymorphisms may be associated with a greater risk of chronic liver disease among overweight adults. This study is the first to examine these nine SNPs in a sample of adults in Mexico.

  2. Preservation of homochirality of aspartic acid films irradiated with 8.5 eV vacuum ultraviolet light

    NASA Astrophysics Data System (ADS)

    Izumi, Yudai; Matsui, Takahiro; Koketsu, Toshiyuki; Nakagawa, Kazumichi

    2008-10-01

    Enantiomeric excess was reported for amino acids detected from some meteorites. These results imply that these amino acids might escape from racemization processes in space. Here, in an attempt to examine whether non-polarized vacuum ultraviolet (VUV) light was one of racemization factors, we irradiated solid films of homochiral L- or D-aspartic acid ( L- or D-Asp) with a 146 nm excimer lamp in vacuum at 290 K. After irradiation for L-Asp films, L-alanine ( L-Ala) and β-Ala were observed, but D-Asp or D-Ala was not observed. On the contrast, for irradiation to D-Asp films, D-Ala and β-Ala were observed, but L-Asp or L-Ala was not observed. Therefore, we concluded that the chirality was preserved through the photolysis of Asp to Ala. It is of interest to carry out the similar experiments using high-energy particles and/or γ-ray irradiation.

  3. Malate-Aspartate Shuttle Inhibitor Aminooxyacetate Acid Induces Apoptosis and Impairs Energy Metabolism of Both Resting Microglia and LPS-Activated Microglia.

    PubMed

    Chen, Heyu; Wang, Caixia; Wei, Xunbin; Ding, Xianting; Ying, Weihai

    2015-06-01

    NADH shuttles mediate the transfer of the reducing equivalents of cytosolic NADH into mitochondria. Cumulating evidence has suggested that malate-aspartate shuttle (MAS), one of the two types of NADH shuttles, plays significant roles in such biological processes as glutamate synthesis in neurons. However, there has been no information regarding the roles of NADH shuttle in the survival and energy metabolism of microglia. In current study, using microglial BV2 cells as a cellular model, we determined the roles of MAS in the survival and energy metabolism of microglia by using aminooxyacetate acid (AOAA)-a widely used MAS inhibitor. Our study has suggested that AOAA can effectively inhibit the MAS activity of the cells. We also found that AOAA can induce both early- and late-stage apoptosis of resting microglia and lipopolysaccharides (LPS)-activated microglia. AOAA also induced mitochondrial depolarization, increases in the cytosolic Ca(2+) concentrations, and decreases in the intracellular ATP levels. Moreover, our study has excluded the possibility that the major nonspecific effect of AOAA-inhibition of GABA transaminase-is involved in theses effects of AOAA. Collectively, our study has provided first information suggesting significant roles of MAS in the survival and energy metabolism in both resting microglia and LPS-activated microglia.

  4. Proteaselike sequence in hepatitis B virus core antigen is not required for e antigen generation and may not be part of an aspartic acid-type protease.

    PubMed Central

    Nassal, M; Galle, P R; Schaller, H

    1989-01-01

    The hepatitis B virus (HBV) C gene directs the synthesis of two major gene products: HBV core antigen (HBcAg[p21c]), which forms the nucleocapsid, and HBV e antigen (HBeAg [p17e]), a secreted antigen that is produced by several processing events during its maturation. These proteins contain an amino acid sequence similar to the active-site residues of aspartic acid and retroviral proteases. On the basis of this sequence similarity, which is highly conserved among mammalian hepadnaviruses, a model has been put forward according to which processing to HBeAg is due to self-cleavage of p21c involving the proteaselike sequence. Using site-directed mutagenesis in conjunction with transient expression of HBV proteins in the human hepatoma cell line HepG2, we tested this hypothesis. Our results with HBV mutants in which one or two of the conserved amino acids have been replaced by others suggest strongly that processing to HBeAg does not depend on the presence of an intact proteaselike sequence in the core protein. Attempts to detect an influence of this sequence on the processing of HBV P gene products into enzymatically active viral polymerase also gave no conclusive evidence for the existence of an HBV protease. Mutations replacing the putatively essential aspartic acid showed little effect on polymerase activity. Additional substitution of the likewise conserved threonine residue by alanine, in contrast, almost abolished the activity of the polymerase. We conclude that an HBV protease, if it exists, is functionally different from aspartic acid and retroviral proteases. Images PMID:2657101

  5. Alanine synthesis from glyceraldehyde and ammonium ion in aqueous solution

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    1985-01-01

    The formation of alanine (ala) form C(14)-glyceraldehyde and ammonium phosphate in the presence or absence of a thiol is reported. At ambient temperature, ala synthesis was six times more rapid in the presence of 3-mercaptopropionic acid than in its absence (0.6 and 0.1 percent, respectively, after 60 days). Similarly, the presence of another thiol, N-acetylcysteinate, increased the production of ala, as well as of lactate. The reaction pathway of thiol-catalyzed synthesis of ala, with the lactic acid formed in a bypath, is suggested. In this, dehydration of glyceraldehyde is followed by the formation of hemithioacetal. In the presence of ammonia, an imine is formed, which eventually yields ala. This pathway is consistent with the observation that the rate ratio of ala/lactate remains constant throughout the process. The fact that the reaction takes place under anaerobic conditions in the presence of H2O and with the low concentrations of simple substrates and catalysts makes it an attractive model prebiotic reaction in the process of molecular evolution.

  6. Origins of hydration differences in homochiral and racemic crystals of aspartic acid.

    PubMed

    Juliano, Thomas R; Korter, Timothy M

    2015-02-26

    The propensity for crystalline hydrates of organic molecules to form is related to the strength of the interactions between molecules, including the chiral composition of the molecular solids. Specifically, homochiral versus racemic crystalline samples can exhibit distinct differences in their ability to form energetically stable hydrates. The focus of the current study is a comparison of the crystal structures and intermolecular forces found in solid-state L-aspartic acid, DL-aspartic acid, and L-aspartic acid monohydrate. The absence of experimental evidence for the DL-aspartic acid monohydrate is considered here in terms of the enhanced thermodynamic stability of the DL-aspartic acid anhydrate crystal as compared to the L-aspartic acid anhydrate as revealed through solid-state density functional theory calculations and terahertz spectroscopic measurements. The results indicate that anhydrous DL-aspartic acid is the more stable solid, not due to intermolecular forces alone but also due to the improved conformations of the molecules within the racemic solid. Hemihydrated and monohydrated forms of DL-aspartic acid have been computationally evaluated, and in each case, the hydrates produce destabilized aspartic acid conformations that prevent DL-aspartic acid hydrate formation from occurring.

  7. Enzymatic characterization and crystal structure analysis of the D-alanine-D-alanine ligase from Helicobacter pylori.

    PubMed

    Wu, Dalei; Zhang, Liang; Kong, Yunhua; Du, Jiamu; Chen, Shuai; Chen, Jing; Ding, Jianping; Jiang, Hualiang; Shen, Xu

    2008-09-01

    D-Alanine-D-alanine ligase is the second enzyme in the D-Ala branch of bacterial cell wall peptidoglycan assembly, and recognized as an attractive antimicrobial target. In this work, the D-Ala-D-Ala ligase of Helicobacter pylori strain SS1 (HpDdl) was kinetically and structurally characterized. The determined apparent K(m) of ATP (0.87 microM), the K(m1) (1.89 mM) and K(m2) of D-Ala (627 mM), and the k(cat) (115 min(-1)) at pH 8.0 indicated its relatively weak binding affinity and poor catalytic activity against the substrate D-Ala in vitro. However, by complementary assay of expressing HpDdl in Escherichia coli Delta ddl mutant, HpDdl was confirmed to be capable of D-Ala-D-Ala ligating in vivo. Through sequence alignment with other members of the D-Ala-D-X ligase superfamily, HpDdl keeps two conservatively substituted residues (Ile16 and Leu241) and two nonconserved residues (Leu308 and Tyr311) broadly located in the active region of the enzyme. Kinetic analyses against the corresponding HpDdl mutants (I16V, L241Y, L241F, L308T, and Y311S) suggested that these residues, especially Leu308 and Tyr311, might partly contribute to the unique catalytic properties of the enzyme. This was fairly proved by the crystal structure of HpDdl, which revealed that there is a 3(10)-helix (including residues from Gly306 to Leu312) near the D-Ala binding region in the C-terminal domain, where HpDdl has two sequence deletions compared with other homologs. Such 3(10)-helix may participate in D-Ala binding and conformational change of the enzyme. Our present work hopefully provides useful information for understanding the D-Ala-D-Ala ligase of Helicobacter pylori.

  8. Effects of Monovalent Cations on the Sodium-Alanine Interaction in Rabbit Ileum

    PubMed Central

    Frizzell, Raymond A.; Schultz, Stanley G.

    1970-01-01

    H, K, Rb, and Li inhibit Na-dependent alanine influx across the brush border of rabbit ileum. Kinetic analysis indicates that H and K behave as competitive inhibitors of influx so that increasing the concentration of H or K in the mucosal solution is kinetically indistinguishable from decreasing the Na concentration. In addition the coupling between alanine and Na influxes is markedly reduced at pH 2.5. With the exception of H and Li, none of these monovalent cations significantly affects carrier-mediated alanine influx in the absence of Na indicating that their inhibitory effects are largely restricted to the Na-dependent fraction of influx. Increasing H concentration from 0.03 to 3 mM does not affect influx in the absence of Na but markedly inhibits influx in the presence of Na. Li significantly enhances alanine influx in the absence of Na. Ag, UO2, and La also inhibit the Na-dependent fraction of alanine influx. These findings suggest that anionic groups having a pKa of approximately 4 are involved in the interaction between Na and the alanine-carrier complex; present evidence implicates carboxylate groups however, phosphoryl residues cannot be ruled out. The previously proposed kinetic model for the Na-alanine interaction has been extended to accommodate these effects of H and other monovalent cations. The mechanistic and physiological implications of these findings are discussed. PMID:5507092

  9. Revised mechanism of D-alanine incorporation into cell wall polymers in Gram-positive bacteria.

    PubMed

    Reichmann, Nathalie T; Cassona, Carolina Picarra; Gründling, Angelika

    2013-09-01

    Teichoic acids (TAs) are important for growth, biofilm formation, adhesion and virulence of Gram-positive bacterial pathogens. The chemical structures of the TAs vary between bacteria, though they typically consist of zwitterionic polymers that are anchored to either the peptidoglycan layer as in the case of wall teichoic acid (WTA) or the cell membrane and named lipoteichoic acid (LTA). The polymers are modified with D-alanines and a lack of this decoration leads to increased susceptibility to cationic antimicrobial peptides. Four proteins, DltA-D, are essential for the incorporation of d-alanines into cell wall polymers and it has been established that DltA transfers D-alanines in the cytoplasm of the cell onto the carrier protein DltC. However, two conflicting models have been proposed for the remainder of the mechanism. Using a cellular protein localization and membrane topology analysis, we show here that DltC does not traverse the membrane and that DltD is anchored to the outside of the cell. These data are in agreement with the originally proposed model for D-alanine incorporation through a process that has been proposed to proceed via a D-alanine undecaprenyl phosphate membrane intermediate. Furthermore, we found that WTA isolated from a Staphylococcus aureus strain lacking LTA contains only a small amount of D-alanine, indicating that LTA has a role, either direct or indirect, in the efficient D-alanine incorporation into WTA in living cells.

  10. Alanine-EPR as a transfer standard dosimetry system for low energy X radiation

    NASA Astrophysics Data System (ADS)

    Khoury, H. J.; da Silva, E. J.; Mehta, K.; de Barros, V. S.; Asfora, V. K.; Guzzo, P. L.; Parker, A. G.

    2015-11-01

    The purpose of this paper is to evaluate the use of alanine-EPR as a transfer standard dosimetry system for low energy X radiation, such as that in RS-2400, which operates in the range from 25 to 150 kV and 2 to 45 mA. Two types of alanine dosimeters were investigated. One is a commercial alanine pellets from Aérial-Centre de Ressources Technologiques, France and one was prepared in our laboratory (LMRI-DEN/UFPE). The EPR spectra of the irradiated dosimeters were recorded in the Nuclear Energy Department of UFPE, using a Bruker EMX10 EPR spectrometer operating in the X-band. The alanine-EPR dosimetry system was calibrated in the range of 20-220 Gy in this X-ray field, against an ionization chamber calibrated at the relevant X-ray energy with traceability to PTB. The results showed that both alanine dosimeters presented a linear dose response the same sensitivity, when the EPR signal was normalized to alanine mass. The total uncertainty in the measured dose was estimated to be about 3%. The results indicate that it is possible to use the alanine-EPR dosimetry system for validation of a low-energy X ray irradiator, such as RS-2400.

  11. Characterization of alanine catabolism in Pseudomonas aeruginosa and its importance for proliferation in vivo.

    PubMed

    Boulette, Megan L; Baynham, Patricia J; Jorth, Peter A; Kukavica-Ibrulj, Irena; Longoria, Aissa; Barrera, Karla; Levesque, Roger C; Whiteley, Marvin

    2009-10-01

    The opportunistic pathogen Pseudomonas aeruginosa causes a variety of infections in immunocompromised individuals, including individuals with the heritable disease cystic fibrosis. Like the carbon sources metabolized by many disease-causing bacteria, the carbon sources metabolized by P. aeruginosa at the host infection site are unknown. We recently reported that l-alanine is a preferred carbon source for P. aeruginosa and that two genes potentially involved in alanine catabolism (dadA and dadX) are induced during in vivo growth in the rat peritoneum and during in vitro growth in sputum (mucus) collected from the lungs of individuals with cystic fibrosis. The goals of this study were to characterize factors required for alanine catabolism in P. aeruginosa and to assess the importance of these factors for in vivo growth. Our results reveal that dadA and dadX are arranged in an operon and are required for catabolism of l-alanine. The dad operon is inducible by l-alanine, d-alanine, and l-valine, and induction is dependent on the transcriptional regulator Lrp. Finally, we show that a mutant unable to catabolize dl-alanine displays decreased competitiveness in a rat lung model of infection.

  12. Structure and mechanisms of Escherichia coli aspartate transcarbamoylase.

    PubMed

    Lipscomb, William N; Kantrowitz, Evan R

    2012-03-20

    Enzymes catalyze a particular reaction in cells, but only a few control the rate of this reaction and the metabolic pathway that follows. One specific mechanism for such enzymatic control of a metabolic pathway involves molecular feedback, whereby a metabolite further down the pathway acts at a unique site on the control enzyme to alter its activity allosterically. This regulation may be positive or negative (or both), depending upon the particular system. Another method of enzymatic control involves the cooperative binding of the substrate, which allows a large change in enzyme activity to emanate from only a small change in substrate concentration. Allosteric regulation and homotropic cooperativity are often known to involve significant conformational changes in the structure of the protein. Escherichia coli aspartate transcarbamoylase (ATCase) is the textbook example of an enzyme that regulates a metabolic pathway, namely, pyrimidine nucleotide biosynthesis, by feedback control and by the cooperative binding of the substrate, L-aspartate. The catalytic and regulatory mechanisms of this enzyme have been extensively studied. A series of X-ray crystal structures of the enzyme in the presence and absence of substrates, products, and analogues have provided details, at the molecular level, of the conformational changes that the enzyme undergoes as it shifts between its low-activity, low-affinity form (T state) to its high-activity, high-affinity form (R state). These structural data provide insights into not only how this enzyme catalyzes the reaction between l-aspartate and carbamoyl phosphate to form N-carbamoyl-L-aspartate and inorganic phosphate, but also how the allosteric effectors modulate this activity. In this Account, we summarize studies on the structure of the enzyme and describe how these structural data provide insights into the catalytic and regulatory mechanisms of the enzyme. The ATCase-catalyzed reaction is regulated by nucleotide binding some 60

  13. Importance of intrahepatic mechanisms to gluconeogenesis from alanine during exercise and recovery

    SciTech Connect

    Wasserman, D.H.; Williams, P.E.; Lacy, D.B.; Green, D.R.; Cherrington, A.D.

    1988-04-01

    These studies were performed to assess the importance of intrahepatic mechanisms to gluconeogenesis in the dog during 150 min of treadmill exercise and 90 min of recovery. Sampling catheters were implanted in an artery and portal and hepatic veins 16 days before experimentation. Infusions of (U-/sup 14/C)alanine, (3-/sup 3/H)glucose, and indocyanine green were used to assess gluconeogenesis. During exercise, a decline in arterial and portal vein plasma alanine and in hepatic blood flow led to a decrease in hepatic alanine delivery. During recovery, hepatic blood flow was restored to basal, causing an increase in hepatic alanine delivery beyond exercise rates but still below resting rates. Hepatic fractional alanine extraction increased from 0.26 +/- 0.02 at rest to 0.64 +/- 0.03 during exercise and remained elevated during recovery. Net hepatic alanine uptake was 2.5 +/- 0.2 mumol.kg-1.min-1 at rest and remained unchanged during exercise but was increased during recovery. The conversion rate of (/sup 14/C)alanine to glucose had increased by 248 +/- 38% by 150 min of exercise and had increased further during recovery. The efficiency with which alanine was channeled into glucose in the liver was accelerated to a rate of 338 +/- 55% above basal by 150 min of exercise but declined slightly during recovery. In conclusion, 1) gluconeogenesis from alanine is accelerated during exercise, due to an increase in the hepatic fractional extraction of the amino acid and through intrahepatic mechanisms that more efficiently channel it into glucose.

  14. Determination of D- and L-alanine concentrations using a pyruvic acid sensor.

    PubMed

    Inaba, Yohei; Hamada-Sato, Naoko; Kobayashi, Takeshi; Imada, Chiaki; Watanabe, Etsuo

    2003-08-01

    The concentrations of D- and L-alanine in bivalves are useful as indicators of environmental pollution. Amino acid oxidase with a low substrate specificity catalyzes the oxidation of various amino acids. Among the various amino acids, pyruvic acid can be generated from alanine only by the catalytic oxidative reaction of this oxidase. Therefore, in this study, the concentrations of D- and L-alanine were determined from the concentration of pyruvic acid, which was determined from the consumption of oxygen based on the oxidative reaction of pyruvate oxidase. From this point of view, there is a very strong possibility that biosensors utilizing enzymes with a low substrate specificity can be developed. The results obtained were as follows. (1) The optimum conditions for the use of pyruvic acid sensor were as follows: temperature of 25 degrees C, pH of 6.8, flow rate of 0.1 ml/min, thiamin diphosphate concentration of 1.5 mM, and injection volume of 50 microl. (2) D-Alanine and L-alanine optimally reacted with D- and L-amino acid oxidase at 30 degrees C, pH 8.2, for 30 min and at 37 degrees C, pH 7.8, for 90 min, respectively. (3) The linear relationships between the concentrations of D- and L-alanine and the output of the sensor were obtained at 3.56-106.8 microg of D-alanine and 5.34-71.3 microg of L-alanine. (4) The concentrations of D- and L-alanine in Meretrix iusoria, Patinopecten yessonsi, and Corbicula leana obtained by the proposed assay were in good agreement with those determined by a conventional method.

  15. Serum Alanine Aminotransferase Levels, Hematocrit Rate and Body Weight Correlations Before and After Hemodialysis Session

    PubMed Central

    Lopes, Edmundo Pessoa; Sette, Luis Henrique B. C.; Sette, Jorge Bezerra C.; Luna, Carlos F.; Andrade, Amaro M.; Moraes, Maviael; Sette, Paulo C. A.; Menezes, Roberto; Cavalcanti, Rui L.; Conceição, Sergio C.

    2009-01-01

    PURPOSE To evaluate alanine aminotransferase levels before and after a hemodialysis session and to correlate these values with the hematocrit rate and weight loss during hemodialysis. PATIENTS AND METHODS The serum alanine aminotransferase levels, hematocrit rate and body weight were measured and correlated before and after a single hemodialysis session for 146 patients with chronic renal failure. An receiver operating characteristic (ROC) curve for the serum alanine aminotransferase levels collected before and after hemodialysis was plotted to identify hepatitis C virus-infected patients. RESULTS The mean weight loss of the 146 patients during hemodialysis was 5.3% (p < 0.001). The mean alanine aminotransferase levels before and after hemodialysis were 18.8 and 23.9 IU/, respectively, denoting a significant 28.1% increase. An equally significant increase of 16.4% in the hematocrit rate also occurred after hemodialysis. The weight loss was inversely correlated with the rise in both the alanine aminotransferase level (r = 0.3; p < 0.001) and hematocrit rate (r = 0.5; p < 0.001). A direct correlation was found between the rise in alanine aminotransferase levels and the hematocrit during the hemodialysis session (r = 0.4; p < 0.001). Based on the ROC curve, the upper limit of the normal alanine aminotransferase level should be reduced by 40% relative to the upper limit of normal if the blood samples are collected before the hemodialysis session or by 60% if blood samples are collected after the session. CONCLUSION In the present study, significant elevations in the serum alanine aminotransferase levels and hematocrit rates occurred in parallel to a reduction in body weight after the hemodialysis session. These findings suggest that one of the factors for low alanine aminotransferase levels prior to hemodialysis could be hemodilution in patients with chronic renal failure. PMID:19841699

  16. Ceruloplasmin, a reliable marker of fibrosis in chronic hepatitis B virus patients with normal or minimally raised alanine aminotransferase

    PubMed Central

    Zeng, Da-Wu; Dong, Jing; Jiang, Jia-Ji; Zhu, Yue-Yong; Liu, Yu-Rui

    2016-01-01

    AIM To develop a non-invasive model to evaluate significant fibrosis and cirrhosis by investigating the association between serum ceruloplasmin (CP) levels and liver fibrosis in chronic hepatitis B (CHB) patients with normal or minimally raised alanine aminotransferase (ALT). METHODS Serum samples and liver biopsy were obtained from 193 CHB patients with minimally raised or normal ALT who were randomly divided into a training group (n = 97) and a validation group (n = 96). Liver histology was evaluated by the METAVIR scoring system. Receiver operator characteristic curves were applied to the diagnostic value of CP for measuring liver fibrosis in CHB patients. Spearman rank correlation analyzed the relationship between CP and liver fibrosis. A non-invasive model was set up through multivariate logistic regression analysis. RESULTS Serum CP levels individualized various fibrosis stages via area under the curve (AUC) values. Multivariate analysis revealed that CP levels were significantly related to liver cirrhosis. Combining CP with serum GGT levels, a CG model was set up to predict significant fibrosis and liver cirrhosis in CHB patients with normal or minimally raised ALT. The AUC, sensitivity, specificity, positive predictive value, and negative predictive value were 0.84, 83.1%, 78.6%, 39.6%, and 96.5% to predict liver cirrhosis, and 0.789, 80.26%, 68.38%, 62.25%, and 84.21% to predict significant fibrosis. This model expressed a higher AUC than FIB-4 (age, ALT, aspartate aminotransferase, platelets) and GP (globulin, platelets) models to predict significant fibrosis (P = 0.019 and 0.022 respectively) and revealed a dramatically greater AUC than FIB-4 (P = 0.033) to predict liver cirrhosis. CONCLUSION The present study showed that CP was independently and negatively associated with liver fibrosis. Furthermore, we developed a novel promising model (CG), based on routine serum markers, for predicting liver fibrosis in CHB patients with normal or minimally raised

  17. Characterization of the l-alanine exporter AlaE of Escherichia coli and its potential role in protecting cells from a toxic-level accumulation of l-alanine and its derivatives.

    PubMed

    Kim, Seryoung; Ihara, Kohei; Katsube, Satoshi; Hori, Hatsuhiro; Ando, Tasuke; Isogai, Emiko; Yoneyama, Hiroshi

    2015-08-01

    We previously reported that the alaE gene of Escherichia coli encodes the l-alanine exporter AlaE. The objective of this study was to elucidate the mechanism of the AlaE exporter. The minimum inhibitory concentration of l-alanine and l-alanyl-l-alanine in alaE-deficient l-alanine-nonmetabolizing cells MLA301ΔalaE was 4- and >4000-fold lower, respectively, than in the alaE-positive parent cells MLA301, suggesting that AlaE functions as an efflux pump to avoid a toxic-level accumulation of intracellular l-alanine and its derivatives. Furthermore, the growth of the alaE-deficient mutant derived from the l-alanine-metabolizing strain was strongly inhibited in the presence of a physiological level of l-alanyl-l-alanine. Intact MLA301ΔalaE and MLA301ΔalaE/pAlaE cells producing plasmid-borne AlaE, accumulated approximately 200% and 50%, respectively, of the [(3) H]l-alanine detected in MLA301 cells, suggesting that AlaE exports l-alanine. When 200 mmol/L l-alanine-loaded inverted membrane vesicles prepared from MLA301ΔalaE/pAlaE were placed in a solution containing 200 mmol/L or 0.34 μmol/L l-alanine, energy-dependent [(3) H]l-alanine accumulation occurred under either condition. This energy-dependent uphill accumulation of [(3) H]l-alanine was strongly inhibited in the presence of carbonyl cyanide m-chlorophenylhydrazone but not by dicyclohexylcarbodiimide, suggesting that the AlaE-mediated l-alanine extrusion was driven by proton motive force. Based on these results, physiological roles of the l-alanine exporter are discussed.

  18. Progress towards an alanine/ESR therapy level reference dosimetry service at NPL.

    PubMed

    Sharpe, P H; Rajendran, K; Sephton, J P

    1996-01-01

    This paper describes work being carried out at the National Physical Laboratory towards the establishment of an alanine reference dosimetry service for radiotherapy applications. A precision fused quartz holder has been constructed to allow precise positioning of alanine dosimeters in the ESR cavity. A novel method of signal analysis based on spectrum fitting has been developed to minimize the effect of baseline distortions. Data are also presented on the relative response of alanine to 60Co gamma rays and high energy photons (4-12 MeV).

  19. Applicability of EPR/alanine dosimetry for quality assurance in proton eye radiotherapy.

    PubMed

    Michalec, B; Mierzwinska, G; Ptaszkiewicz, M; Sowa, U; Stolarczyk, L; Weber, A

    2014-06-01

    A new quality assurance and quality control method for proton eye radiotherapy based on electron paramagnetic resonance (EPR)/alanine dosimetry has been developed. It is based on Spread-Out Bragg Peak entrance dose measurement with alanine detectors. The entrance dose is well correlated with the dose at the facility isocenter, where, during the therapeutic irradiation, the tumour is placed. The unique alanine detector features namely keeping the dose record in a form of stable radiation-induced free radicals trapped in the material structure, and the non-destructive read-out makes this type of detector a good candidate for additional documentation of the patient's exposure over the therapy course.

  20. Interactions of L-alanine with alumina as studied by vibrational spectroscopy.

    PubMed

    Garcia, Ana R; de Barros, Ricardo Brito; Fidalgo, Alexandra; Ilharco, Laura M

    2007-09-25

    The interactions of L-alanine with gamma- and alpha-alumina have been investigated by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). L-alanine/alumina samples were dried from aqueous suspensions, at 36.5 degrees C, with two amino acid concentrations (0.4 and 0.8 mmol g-1) and at different pH values (1, 6, and 13). The vibrational spectra proved that the nature of L-alanine interactions with both aluminas is the same (hydrogen bonding), although the groups involved depend on the L-alanine form and on alumina surface groups, both controlled by the pH. For samples prepared at pH 1, cationic L-alanine [CH3CH(NH3+)COOH] displaces physisorbed water from alumina, and strong hydrogen bonds are established between the carbonyl groups of alanine, as electron donors, and the surface Al-OH2+ groups of alumina. This occurs at the expense of alanine dimer dissociation and breaking of intramolecular bonds. When samples are prepared at pH 6, the interacting groups are Al-OH2+ and the carboxylate groups of zwitterionic L-alanine [CH3CH(NH3+)COO-]. The affinity of L-alanine toward alumina decreases, as the strong NH3+...-OOC intermolecular hydrogen bonds prevail over the interactions with alumina. Thus, for a load of 0.8 mmol g-1, phase segregation is observed. On alpha-alumina, crystal deposition is even observed for a load of 0.4 mmol g-1. At pH 13, the carboxylate groups of anionic L-alanine [CH3CH(NH2)COO-] are not affected by alumina. Instead, hydrogen bond interactions occur between NH2 and the Al-OH surface groups of the substrate. Complementary N2 adsorption-desorption isotherms showed that adsorption of L-alanine occurs onto the alumina pore network for samples prepared at pH 1 and 13, whereas at pH 6 the amino acid/alumina interactions are not strong enough to promote adsorption. The mesoporous structure and the high specific surface area of gamma-alumina make it a more efficient substrate for adsorption of L-alanine. For each alumina, however, it is

  1. Temperature dependences of piezoelectric, elastic and dielectric constants of L-alanine crystal

    NASA Astrophysics Data System (ADS)

    Tylczyński, Z.; Sterczyńska, A.; Wiesner, M.

    2011-09-01

    Temperature changes in the components of piezoelectric, elastic and dielectric tensors were studied in L-alanine crystals in the range 100-300 K. A jumpwise increase in the c55 component of the elastic stiffness accompanied by maxima in damping of all face-shear modes observed at 199 K in L-alanine crystal were interpreted as a result of changes in the NH3+ vibrations occurring through electron-phonon coupling. All components of the piezoelectric tensor show small anomalies in this temperature range. The components of the electromechanical coupling coefficient determined indicate that L-alanine is a weak piezoelectric.

  2. Optical and Spectral Studies on β Alanine Metal Halide Hybrid Crystals

    NASA Astrophysics Data System (ADS)

    Sweetlin, M. Daniel; Selvarajan, P.; Perumal, S.; Ramalingom, S.

    2011-10-01

    We have synthesized and grown β alanine metal halide hybrid crystals viz. β alanine cadmium chloride (BACC), an amino acid transition metal halide complex crystal and β alanine potassium chloride (BAPC), an amino acid alkali metal halide complex crystal by slow evaporation method. The grown crystals were found to be transparent and have well defined morphology. The optical characteristics of the grown crystals were carried out with the help of UV-Vis Spectroscopy. The optical transmittances of the spectrums show that BAPC is more transparent than BACC. The Photoluminescence of the materials were determined by the Photoluminescent Spectroscopy

  3. Temperature dependences of piezoelectric, elastic and dielectric constants of L-alanine crystal.

    PubMed

    Tylczyński, Z; Sterczyńska, A; Wiesner, M

    2011-09-07

    Temperature changes in the components of piezoelectric, elastic and dielectric tensors were studied in L-alanine crystals in the range 100-300 K. A jumpwise increase in the c(55) component of the elastic stiffness accompanied by maxima in damping of all face-shear modes observed at 199 K in L-alanine crystal were interpreted as a result of changes in the NH(3)(+) vibrations occurring through electron-phonon coupling. All components of the piezoelectric tensor show small anomalies in this temperature range. The components of the electromechanical coupling coefficient determined indicate that L-alanine is a weak piezoelectric.

  4. Plastidic aspartate aminotransferases and the biosynthesis of essential amino acids in plants.

    PubMed

    de la Torre, Fernando; Cañas, Rafael A; Pascual, M Belén; Avila, Concepción; Cánovas, Francisco M

    2014-10-01

    In the chloroplasts and in non-green plastids of plants, aspartate is the precursor for the biosynthesis of different amino acids and derived metabolites that play distinct and important roles in plant growth, reproduction, development or defence. Aspartate biosynthesis is mediated by the enzyme aspartate aminotransferase (EC 2.6.1.1), which catalyses the reversible transamination between glutamate and oxaloacetate to generate aspartate and 2-oxoglutarate. Plastids contain two aspartate aminotransferases: a eukaryotic-type and a prokaryotic-type bifunctional enzyme displaying aspartate and prephenate aminotransferase activities. A general overview of the biochemistry, regulation, functional significance, and phylogenetic origin of both enzymes is presented. The roles of these plastidic aminotransferases in the biosynthesis of essential amino acids are discussed.

  5. Solvation Free Energies of Alanine Peptides: The Effect of Flexibility

    SciTech Connect

    Kokubo, Hironori; Harris, Robert C.; Asthagiri, Dilip; Pettitt, Bernard M.

    2013-12-03

    The electrostatic (?Gel), cavity-formation (?Gvdw), and total (?G) solvation free energies for 10 alanine peptides ranging in length (n) from 1 to 10 monomers were calculated. The free energies were computed both with xed, extended conformations of the peptides and again for some of the peptides without constraints. The solvation free energies, ?Gel, ?Gvdw, and ?G, were found to be linear in n, with the slopes of the best-fit lines being gamma_el, gamma_vdw, and gamma, respectively. Both gamma_el and gamma were negative for fixed and flexible peptides, and gamma_vdw was negative for fixed peptides. That gamma_vdw was negative was surprising, as experimental data on alkanes, theoretical models, and MD computations on small molecules and model systems generally suggest that gamma_vdw should be positive. A negative gamma_vdw seemingly contradicts the notion that ?Gvdw drives the initial collapse of the protein when it folds by favoring conformations with small surface areas, but when we computed ?Gvdw for the flexible peptides, thereby allowing the peptides to assume natural ensembles of more compact conformations, gamma-vdw was positive. Because most proteins do not assume extended conformations, a ?Gvdw that increases with increasing surface area may be typical for globular proteins. An alternative hypothesis is that the collapse is driven by intramolecular interactions. We show that the intramolecular van der Waal's interaction energy is more favorable for the flexible than for the extended peptides, seemingly favoring this hypothesis, but the large fluctuations in this energy may make attributing the collapse of the peptide to this intramolecular energy difficult.

  6. The substituted aspartate analogue L-beta-threo-benzyl-aspartate preferentially inhibits the neuronal excitatory amino acid transporter EAAT3.

    PubMed

    Esslinger, C Sean; Agarwal, Shailesh; Gerdes, John; Wilson, Paul A; Davis, Erin S; Awes, Alicia N; O'Brien, Erin; Mavencamp, Teri; Koch, Hans P; Poulsen, David J; Rhoderick, Joseph F; Chamberlin, A Richard; Kavanaugh, Michael P; Bridges, Richard J

    2005-11-01

    The excitatory amino acid transporters (EAATs) play key roles in the regulation of CNS L-glutamate, especially related to synthesis, signal termination, synaptic spillover, and excitotoxic protection. Inhibitors available to delineate EAAT pharmacology and function are essentially limited to those that non-selectively block all EAATs or those that exhibit a substantial preference for EAAT2. Thus, it is difficult to selectively study the other subtypes, particularly EAAT1 and EAAT3. Structure activity studies on a series of beta-substituted aspartate analogues identify L-beta-benzyl-aspartate (L-beta-BA) as among the first blockers that potently and preferentially inhibits the neuronal EAAT3 subtype. Kinetic analysis of D-[(3)H]aspartate uptake into C17.2 cells expressing the hEAATs demonstrate that L-beta-threo-BA is the more potent diastereomer, acts competitively, and exhibits a 10-fold preference for EAAT3 compared to EAAT1 and EAAT2. Electrophysiological recordings of EAAT-mediated currents in Xenopus oocytes identify L-beta-BA as a non-substrate inhibitor. Analyzing L-beta-threo-BA within the context of a novel EAAT2 pharmacophore model suggests: (1) a highly conserved positioning of the electrostatic carboxyl and amino groups; (2) nearby regions that accommodate select structural modifications (cyclopropyl rings, methyl groups, oxygen atoms); and (3) a unique region L-beta-threo-BA occupied by the benzyl moieties of L-TBOA, L-beta-threo-BA and related analogues. It is plausible that the preference of L-beta-threo-BA and L-TBOA for EAAT3 and EAAT2, respectively, could reside in the latter two pharmacophore regions.

  7. Rapid Ti(III) reduction of perchlorate in the presence of beta-alanine: kinetics, pH effect, complex formation, and beta-alanine effect.

    PubMed

    Wang, Chao; Huang, Zhengdao; Lippincott, Lee; Meng, Xiaoguang

    2010-03-15

    Ti(III) reduction of perchlorate might be a useful method for the treatment of highly perchlorate-contaminated water. Though the reaction rate was usually low, we observed that beta-alanine (HOOCCH(2)CH(2)NH(2)) could significantly promote the reaction. A complete (>99.9%) perchlorate removal was obtained in a solution containing [ClO(4)(-)]=1.0mM, [Ti(III)]=40 mM, and [beta-alanine]=120 mM after 2.5h of reaction under 50 degrees C. The effects of both pH and complex formation on the reaction were then studied. The results showed that without beta-alanine the optimal pH was 2.3. When pH increased from 1.6 to 2.3, the reduction rate increased remarkably. In the pH range >2.3, however, the reduction was significantly inhibited, attributed to the formation of Ti(III) precipitate. The presence of beta-alanine at a molar ratio of [beta-alanine]:[Ti(III)]=3:1 significantly increased the reduction rate of perchlorate even at near neutral pH. This is because beta-alanine formed complexes with Ti(III), which greatly improved the total soluble [Ti(III)] in the pH range between 3.5 and 6. The findings may lead to the development of rapid treatment methods for intermittent and small stream of highly perchlorate-contaminated water, which are resulted from the manufacturing, storage, handling, use and/or disposal of large quantities of perchlorate salts.

  8. Interaction Between Some Monosaccharides and Aspartic Acid in Dilute Aqueous Solutions

    PubMed Central

    Kulikova, Galina A.

    2008-01-01

    Interaction between aspartic acid and d-glucose, d-galactose, and d-fructose has been studied by isothermal titration calorimetry, calorimetry of dissolution, and densimetry. It has been found that d-glucose and d-fructose form thermodynamically stable associates with aspartic acid, in contrast to d-galactose. The selectivity in the interaction of aspartic acid with monosaccharides is affected by their stereochemical structures. PMID:19669542

  9. The bioactive acidic serine- and aspartate-rich motif peptide.

    PubMed

    Minamizaki, Tomoko; Yoshiko, Yuji

    2015-01-01

    The organic component of the bone matrix comprises 40% dry weight of bone. The organic component is mostly composed of type I collagen and small amounts of non-collagenous proteins (NCPs) (10-15% of the total bone protein content). The small integrin-binding ligand N-linked glycoprotein (SIBLING) family, a NCP, is considered to play a key role in bone mineralization. SIBLING family of proteins share common structural features and includes the arginine-glycine-aspartic acid (RGD) motif and acidic serine- and aspartic acid-rich motif (ASARM). Clinical manifestations of gene mutations and/or genetically modified mice indicate that SIBLINGs play diverse roles in bone and extraskeletal tissues. ASARM peptides might not be primary responsible for the functional diversity of SIBLINGs, but this motif is suggested to be a key domain of SIBLINGs. However, the exact function of ASARM peptides is poorly understood. In this article, we discuss the considerable progress made in understanding the role of ASARM as a bioactive peptide.

  10. Neuronal death enhanced by N-methyl-d-aspartate antagonists

    PubMed Central

    Ikonomidou, Chrysanthy; Stefovska, Vanya; Turski, Lechoslaw

    2000-01-01

    Glutamate promotes neuronal survival during brain development and destroys neurons after injuries in the mature brain. Glutamate antagonists are in human clinical trials aiming to demonstrate limitation of neuronal injury after head trauma, which consists of both rapid and slowly progressing neurodegeneration. Furthermore, glutamate antagonists are considered for neuroprotection in chronic neurodegenerative disorders with slowly progressing cell death only. Therefore, humans suffering from Huntington's disease, characterized by slowly progressing neurodegeneration of the basal ganglia, are subjected to trials with glutamate antagonists. Here we demonstrate that progressive neurodegeneration in the basal ganglia induced by the mitochondrial toxin 3-nitropropionate or in the hippocampus by traumatic brain injury is enhanced by N-methyl-d-aspartate antagonists but ameliorated by α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate antagonists. These observations reveal that N-methyl-d-aspartate antagonists may increase neurodestruction in mature brain undergoing slowly progressing neurodegeneration, whereas blockade of the action of glutamate at α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptors may be neuroprotective. PMID:11058158

  11. Aspartate and glutamate mimetic structures in biologically active compounds.

    PubMed

    Stefanic, Peter; Dolenc, Marija Sollner

    2004-04-01

    Glutamate and aspartate are frequently recognized as key structural elements for the biological activity of natural peptides and synthetic compounds. The acidic side-chain functionality of both the amino acids provides the basis for the ionic interaction and subsequent molecular recognition by specific receptor sites that results in the regulation of physiological or pathophysiological processes in the organism. In the development of new biologically active compounds that possess the ability to modulate these processes, compounds offering the same type of interactions are being designed. Thus, using a peptidomimetic design approach, glutamate and aspartate mimetics are incorporated into the structure of final biologically active compounds. This review covers different bioisosteric replacements of carboxylic acid alone, as well as mimetics of the whole amino acid structure. Amino acid analogs presented include those with different distances between anionic moieties, and analogs with additional functional groups that result in conformational restriction or alternative interaction sites. The article also provides an overview of different cyclic structures, including various cycloalkane, bicyclic and heterocyclic analogs, that lead to conformational restriction. Higher di- and tripeptide mimetics in which carboxylic acid functionality is incorporated into larger molecules are also reviewed. In addition to the mimetic structures presented, emphasis in this article is placed on their steric and electronic properties. These mimetics constitute a useful pool of fragments in the design of new biologically active compounds, particularly in the field of RGD mimetics and excitatory amino acid agonists and antagonists.

  12. Inducible l-Alanine Exporter Encoded by the Novel Gene ygaW (alaE) in Escherichia coli ▿

    PubMed Central

    Hori, Hatsuhiro; Yoneyama, Hiroshi; Tobe, Ryuta; Ando, Tasuke; Isogai, Emiko; Katsumata, Ryoichi

    2011-01-01

    We previously isolated a mutant hypersensitive to l-alanyl-l-alanine from a non-l-alanine-metabolizing Escherichia coli strain and found that it lacked an inducible l-alanine export system. Consequently, this mutant showed a significant accumulation of intracellular l-alanine and a reduction in the l-alanine export rate compared to the parent strain. When the mutant was used as a host to clone a gene(s) that complements the dipeptide-hypersensitive phenotype, two uncharacterized genes, ygaW and ytfF, and two characterized genes, yddG and yeaS, were identified. Overexpression of each gene in the mutant resulted in a decrease in the intracellular l-alanine level and enhancement of the l-alanine export rate in the presence of the dipeptide, suggesting that their products function as exporters of l-alanine. Since ygaW exhibited the most striking impact on both the intra- and the extracellular l-alanine levels among the four genes identified, we disrupted the ygaW gene in the non-l-alanine-metabolizing strain. The resulting isogenic mutant showed the same intra- and extracellular l-alanine levels as observed in the dipeptide-hypersensitive mutant obtained by chemical mutagenesis. When each gene was overexpressed in the wild-type strain, which does not intrinsically excrete alanine, only the ygaW gene conferred on the cells the ability to excrete alanine. In addition, expression of the ygaW gene was induced in the presence of the dipeptide. On the basis of these results, we concluded that YgaW is likely to be the physiologically most relevant exporter for l-alanine in E. coli and proposed that the gene be redesignated alaE for alanine export. PMID:21531828

  13. A comparative study on the growth and characterization of nonlinear optical amino acid crystals: L-alanine (LA) and L-alanine alaninium nitrate (LAAN).

    PubMed

    Aravindan, A; Srinivasan, P; Vijayan, N; Gopalakrishnan, R; Ramasamy, P

    2008-11-15

    A comparative study on the properties of L-alanine and LAAN crystals has been made and discussed. It may be concluded that the protonation of the amino group in the L-alanine molecule is the key factor in increasing the relative SHG efficiency of LAAN. The protonation is justified by the crystal structure analysis, FTIR and photoluminescence studies. The factor group vibrations are compared and found that there is an increase in vibrational modes of LA when reacted with nitric acid forming LAAN.

  14. Determination of the carbon, hydrogen and nitrogen contents of alanine and their uncertainties using the certified reference material L-alanine (NMIJ CRM 6011-a).

    PubMed

    Itoh, Nobuyasu; Sato, Ayako; Yamazaki, Taichi; Numata, Masahiko; Takatsu, Akiko

    2013-01-01

    The carbon, hydrogen, and nitrogen (CHN) contents of alanine and their uncertainties were estimated using a CHN analyzer and the certified reference material (CRM) L-alanine. The CHN contents and their uncertainties, as measured using the single-point calibration method, were 40.36 ± 0.20% for C, 7.86 ± 0.13% for H, and 15.66 ± 0.09% for N; the results obtained using the bracket calibration method were also comparable. The method described in this study is reasonable, convenient, and meets the general requirement of having uncertainties ≤ 0.4%.

  15. Growth and characterization of KDP crystals doped with L-aspartic acid.

    PubMed

    Krishnamurthy, R; Rajasekaran, R; Samuel, Bincy Susan

    2013-03-01

    Potassium Dihydrogen Phosphate (KDP) doped with L-aspartic acid has been grown by solvent slow evaporation technique from a mixture of aqueous solution of KDP and 0.7% of L-aspartic acid at room temperature. The grown crystals were characterized by powder X-ray diffraction, UV-visible, FTIR analysis. The doping of aspartic acid was confirmed by FTIR spectrum. The Nonlinear optical property (SHG) of L-aspartic acid doped KDP has been confirmed. Microhardness studies were carried out on the grown crystal.

  16. Growth and characterization of KDP crystals doped with L-aspartic acid

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, R.; Rajasekaran, R.; Samuel, Bincy Susan

    2013-03-01

    Potassium Dihydrogen Phosphate (KDP) doped with L-aspartic acid has been grown by solvent slow evaporation technique from a mixture of aqueous solution of KDP and 0.7% of L-aspartic acid at room temperature. The grown crystals were characterized by powder X-ray diffraction, UV-visible, FTIR analysis. The doping of aspartic acid was confirmed by FTIR spectrum. The Nonlinear optical property (SHG) of L-aspartic acid doped KDP has been confirmed. Microhardness studies were carried out on the grown crystal.

  17. Titration of Alanine Monitored by NMR Spectroscopy: A Biochemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Waller, Francis J.; And Others

    1977-01-01

    The experiment described here involves simultaneous monitoring of pH and NMR chemical shifts during an aqueous titration of alpha- and beta-alanine. This experiment is designed for use in an undergraduate biochemistry course. (MR)

  18. Second harmonic generation studies in L-alanine single crystals grown from solution

    NASA Astrophysics Data System (ADS)

    Boomadevi, Shanmugam; Pandiyan, Krishnamoorthy

    2014-01-01

    Single crystals of L-alanine of dimensions 2×1.1×0.5 cm3 were grown by evaporation method using deionised water as a solvent. The morphology of the grown crystals had (1 2 0) and (0 1 1) as their prominent faces. UV-vis-near IR spectrum shows the transparency range of L-alanine crystal available for frequency doubling from 250 to 1400 nm. Phase-matched second harmonic generation was observed in L-alanine sample by using 7 ns Q-switched Nd:YAG laser with OPO set up. In the present work, phase matching was achieved by angle and wavelength tuning. The angular and spectral phase-matching bandwidths were determined experimentally for a 1.5 mm thick L-alanine crystal and the results have been compared with their theoretical results. Further the possible reasons for the broadening of SHG spectrum have been discussed.

  19. The enzyme 3-hydroxykynurenine transaminase as potential target for 1,2,4-oxadiazoles with larvicide activity against the dengue vector Aedes aegypti.

    PubMed

    Oliveira, Vanessa S; Pimenteira, Cecília; da Silva-Alves, Diana C B; Leal, Laylla L L; Neves-Filho, Ricardo A W; Navarro, Daniela M A F; Santos, Geanne K N; Dutra, Kamilla A; dos Anjos, Janaína V; Soares, Thereza A

    2013-11-15

    The mosquito Aedes aegypti is the vector agent responsible for the transmission of yellow fever and dengue fever viruses to over 80 million people in tropical and subtropical regions of the world. Exhaustive efforts have lead to a vaccine candidate with only 30% effectiveness against the dengue virus and failure to protect patients against the serotype 2. Hence, vector control remains the most viable route to dengue fever control programs. We have synthesized a class of 1,2,4-oxadiazole derivatives whose most biologically active compounds exhibit potent activity against Aedes aegypti larvae (ca. of 15 ppm) and low toxicity in mammals. Exposure to these larvicides results in larvae pigmentation in a manner correlated with the LC50 measurements. Structural comparisons of the 1,2,4-oxadiazole nucleus against known inhibitors of insect enzymes allowed the identification of 3-hydroxykynurenine transaminase as a potential target for these synthetic larvicides. Molecular docking calculations indicate that 1,2,4-oxadiazole compounds can bind to 3-hydroxykynurenine transaminase with similar conformation and binding energies as its crystallographic inhibitor 4-(2-aminophenyl)-4-oxobutanoic acid.

  20. Complete amino acid sequence of branched-chain amino acid aminotransferase (transaminase B) of Salmonella typhimurium, identification of the coenzyme-binding site and sequence comparison analysis

    SciTech Connect

    Feild, M.J.

    1988-01-01

    The complete amino acid sequence of the subunit of branched-chain amino acid aminotransferase of Salmonella typhimurium was determined by automated Edman degradation of peptide fragments generated by chemical and enzymatic digestion of S-carboxymethylated and S-pyridylethylated transaminase B. Peptide fragments of transaminase B were generated by treatment of the enzyme with trypsin, Staphylococcus aureus V8 protease, endoproteinase Lys-C, and cyanogen bromide. Protocols were developed for separation of the peptide fragments by reverse-phase high performance liquid chromatography (HPLC), ion-exchange HPLC, and SDS-urea gel electrophoresis. The enzyme subunit contains 308 amino acid residues and has a molecular weight of 33,920 daltons. The coenzyme-binding site was determined by treatment of the enzyme, containing bound pyridoxal 5-phosphate, with tritiated sodium borohydride prior to trypsin digestion. Monitoring radioactivity incorporation and peptide map comparisons with an apoenzyme tryptic digest, allowed identification of the pyridoxylated-peptide which was isolated by reverse-phase HPLC and sequenced. The coenzyme-binding site is a lysyl residue at position 159. Some peptides were further characterized by fast atom bombardment mass spectrometry.

  1. Repeated Supramaximal Exercise-Induced Oxidative Stress: Effect of β-Alanine Plus Creatine Supplementation

    PubMed Central

    Belviranli, Muaz; Okudan, Nilsel; Revan, Serkan; Balci, Serdar; Gokbel, Hakki

    2016-01-01

    Background: Carnosine is a dipeptide formed from the β-alanine and histidine amino acids and found in mainly in the brain and muscle, especially fast twitch muscle. Carnosine and creatine has an antioxidant effect and carnosine accounts for about 10% of the muscle's ability to buffer the H+ ions produced by exercise. Objectives: The aim of the study was to investigate the effects of beta alanine and/or creatine supplementation on oxidant and antioxidant status during repeated Wingate tests (WTs). Patients and Methods: Forty four sedentary males participated in the study. Participants performed three 30s WTs with 2 minutes rest between exercise bouts. After the first exercise session, the subjects were assigned to one of four groups: Placebo, Creatine, Beta-alanine and Beta-alanine plus creatine. Participants ingested twice per day for 22 consecutive days, then four times per day for the following 6 days. After the supplementation period the second exercise session was applied. Blood samples were taken before and immediately after the each exercise session for the analysis of oxidative stress and antioxidant markers. Results: Malondialdehyde levels and superoxide dismutase activities were affected by neither supplementation nor exercise. During the pre-supplementation session, protein carbonyl reduced and oxidized glutathione (GSH and GSSG) levels increased immediately after the exercise. However, during the post-supplementation session GSH and GSSG levels increased in beta-alanine and beta-alanine plus creatine groups immediately after the exercise compared to pre-exercise. In addition, during the post-supplementation session total antioxidant capacity increased in beta-alanine group immediately after the exercise. Conclusions: Beta-alanine supplementation has limited antioxidant effect during the repeated WTs. PMID:27217925

  2. SU-E-T-643: Pure Alanine Dosimeter for Verification Dosimetry in IMRT

    SciTech Connect

    Al-Karmi, Anan M.; Zraiqat, Fadi

    2015-06-15

    Purpose: The objective of this study was evaluation of accuracy of pure alanine dosimeters measuring intensity-modulated radiation therapy (IMRT) dose distributions in a thorax phantom. Methods: Alanine dosimeters were prepared in the form of 110 mg pure L-α-alanine powder filled into clear tissue-equivalent polymethylmethacrylate (PMMA) plastic tubes with the dimensions 25 mm length, 3 mm inner diameter, and 1 mm wall thickness. A dose-response calibration curve was established for the alanine by placing the dosimeters at 1.5 cm depth in a 30×30×30 cm{sup 3} solid water phantom and then irradiating on a linac with 6 MV photon beam at 10×10 cm{sup 2} field size to doses ranging from 1 to 5 Gy. Electron paramagnetic resonance (EPR) spectroscopy was used to determine the absorbed dose in alanine. An IMRT treatment plan was designed for a commercial heterogeneous CIRS thorax phantom and the dose values were calculated at three different points located in tissue, lung, and bone equivalent materials. A set of dose measurements was carried out to compare measured and calculated dose values by placing the alanine dosimeters at those selected locations inside the thorax phantom and delivering the IMRT to the phantom. Results: The alanine dose measurements and the IMRT plan dose calculations were found to be in agreement within ±2%. Specifically, the deviations were −0.5%, 1.3%, and −1.7% for tissue, lung, and bone; respectively. The slightly large deviations observed for lung and bone may be attributed to tissue inhomogeneity, steep dose gradients in these regions, and uncontrollable changes in spectrometer conditions. Conclusion: The results described herein confirmed that pure alanine dosimeter was suitable for in-phantom dosimetry of IMRT beams because of its high sensitivity and acceptable accuracy. This makes the dosimeter a promising option for quality control of the therapeutic beams, complementing the commonly used ionization chambers, TLDs, and films.

  3. Effect of abomasal glucose infusion on alanine metabolism and urea production in sheep.

    PubMed

    Obitsu, T; Bremner, D; Milne, E; Lobley, G E

    2000-08-01

    The effect of abomasal infusion of glucose (120 kJ/d per kg body weight (BW)0.75, 758 mmol/d) on urea production, plasma alanine-N flux rate and the conversion of alanine-N to urea was studied in sheep offered a low-N diet at limited energy intake (500 kJ/d per kg BW0.75), based on hay and grass pellets. Glucose provision reduced urinary N (P = 0.040) and urea (P = 0.009) elimination but this was offset by poorer N digestibility. Urea-N production was significantly reduced (822 v. 619 mmol/d, P = 0.024) by glucose while plasma alanine-N flux rate was elevated (295 v. 342 mmol/d, P = 0.011). The quantity of urea-N derived from alanine tended to be decreased by glucose (127 v. 95 mmol/d) but the fraction of urea production from alanine was unaltered (15%). Plasma urea and alanine concentrations (plus those of the branched chain amino acids) decreased in response to exogenous glucose, an effect probably related to enhanced anabolic usage of amino acids and lowered urea production.

  4. [Alanine solution as enzyme reaction buffer used in A to O blood group conversion].

    PubMed

    Li, Su-Bo; Zhang, Xue; Zhang, Yin-Ze; Tan, Ying-Xia; Bao, Guo-Qiang; Wang, Ying-Li; Ji, Shou-Ping; Gong, Feng; Gao, Hong-Wei

    2014-06-01

    The aim of this study was to investigate the effect of alanine solution as α-N-acetylgalactosaminidase enzyme reaction buffer on the enzymatic activity of A antigen. The binding ability of α-N-acetylgalactosaminidase with RBC in different reaction buffer such as alanine solution, glycine solution, normal saline (0.9% NaCl), PBS, PCS was detected by Western blot. The results showed that the efficiency of A to O conversion in alanine solution was similar to that in glycine solution, and Western blot confirmed that most of enzymes blinded with RBC in glycine or alanine solution, but few enzymes blinded with RBC in PBS, PCS or normal saline. The evidences indicated that binding of enzyme with RBC was a key element for A to O blood group conversion, while the binding ability of α-N-acetylgalactosaminidase with RBC in alanine or glycine solution was similar. It is concluded that alanine solution can be used as enzyme reaction buffer in A to O blood group conversion. In this buffer, the α-N-acetylgalactosaminidase is closely blinded with RBC and α-N-acetylgalactosaminidase plays efficient enzymatic activity of A antigen.

  5. Expression, crystallization and preliminary X-ray crystallographic analysis of D-alanine-D-alanine ligase from OXA-23-producing Acinetobacter baumannii K0420859.

    PubMed

    Huynh, Kim-Hung; Tran, Huyen-Thi; Pham, Tan-Viet; Ngo, Ho-Phuong-Thuy; Cha, Sun-Shin; Chung, Kyung Min; Lee, Sang Hee; Kang, Lin-Woo

    2014-04-01

    Acinetobacter baumannii causes bacteraemia, pneumonia, other respiratory-tract and urinary-tract infections in humans. OXA-23 carbapenemase-producing A. baumannii K0420859 (A. baumannii OXA-23) is resistant to carbapenem, a common antibacterial drug. To develop an efficient and novel antibacterial drug against A. baumannii OXA-23, D-alanine-D-alanine ligase, which is essential in bacterial cell-wall synthesis, is of interest. Here, the D-alanine-D-alanine ligase (AbDdl) gene from A. baumannii OXA-23 was cloned and expressed, and the AbDdl protein was purified and crystallized; this enzyme can be used as a novel target for an antibacterial drug against A. baumannii OXA-23. The AbDdl crystal diffracted to a resolution of 2.8 Å and belonged to the orthorhombic space group P212121, with unit-cell parameters a = 113.4, b = 116.7, c = 176.5 Å, a corresponding VM of 2.8 Å(3) Da(-1) and a solvent content of 56.3%, and six protomers in the asymmetric unit.

  6. Allostery and cooperativity in Escherichia coli aspartate transcarbamoylase.

    PubMed

    Kantrowitz, Evan R

    2012-03-15

    The allosteric enzyme aspartate transcarbamoylase (ATCase) from Escherichia coli has been the subject of investigations for approximately 50 years. This enzyme controls the rate of pyrimidine nucleotide biosynthesis by feedback inhibition, and helps to balance the pyrimidine and purine pools by competitive allosteric activation by ATP. The catalytic and regulatory components of the dodecameric enzyme can be separated and studied independently. Many of the properties of the enzyme follow the Monod, Wyman Changeux model of allosteric control thus E. coli ATCase has become the textbook example. This review will highlight kinetic, biophysical, and structural studies which have provided a molecular level understanding of how the allosteric nature of this enzyme regulates pyrimidine nucleotide biosynthesis.

  7. Pleiotropic aspartate taxis and serine taxis mutants of Escherichia coli.

    PubMed

    Reader, R W; Tso, W W; Springer, M S; Goy, M F; Adler, J

    1979-04-01

    Mutants that at one time were thought to be specifically defective in taxis toward aspartate and related amino acids (tar mutants) or specifically defective in taxis toward serine and related amino acids (tar mutants) are now shown to be pleiotropic in their defects. The tar mutants also lack taxis toward maltose and away from Co2+ and Ni2+. The tsr mutants are altered in their response to a variety of repellents. Double mutants (tar tsr) fail in nearly all chemotactic responses. The tar and tsr mutants provide evidence for two complementary, converging pathways of information flow: certain chemoreceptors feed information into the tar pathway and others into the tsr pathway. The tar and tsr products have been shown to be two different sets of methylated proteins.

  8. A Potent, Versatile Disulfide-Reducing Agent from Aspartic Acid

    PubMed Central

    2013-01-01

    Dithiothreitol (DTT) is the standard reagent for reducing disulfide bonds between and within biological molecules. At neutral pH, however, >99% of DTT thiol groups are protonated and thus unreactive. Herein, we report on (2S)-2-amino-1,4-dimercaptobutane (dithiobutylamine or DTBA), a dithiol that can be synthesized from l-aspartic acid in a few high-yielding steps that are amenable to a large-scale process. DTBA has thiol pKa values that are ∼1 unit lower than those of DTT and forms a disulfide with a similar E°′ value. DTBA reduces disulfide bonds in both small molecules and proteins faster than does DTT. The amino group of DTBA enables its isolation by cation-exchange and facilitates its conjugation. These attributes indicate that DTBA is a superior reagent for reducing disulfide bonds in aqueous solution. PMID:22353145

  9. Analysis of the aspartic acid metabolic pathway using mutant genes.

    PubMed

    Azevedo, R A

    2002-01-01

    Amino acid metabolism is a fundamental process for plant growth and development. Although a considerable amount of information is available, little is known about the genetic control of enzymatic steps or regulation of several pathways. Much of the information about biochemical pathways has arisen from the use of mutants lacking key enzymes. Although mutants were largely used already in the 60's, by bacterial and fungal geneticists, it took plant research a long time to catch up. The advance in this area was rapid in the 80's, which was followed in the 90's by the development of techniques of plant transformation. In this review we present an overview of the aspartic acid metabolic pathway, the key regulatory enzymes and the mutants and transgenic plants produced for lysine and threonine metabolism. We also discuss and propose a new study of high-lysine mutants.

  10. The regulatory subunit of Escherichia coli aspartate carbamoyltransferase may influence homotropic cooperativity and heterotropic interactions by a direct interaction with the loop containing residues 230-245 of the catalytic chain.

    PubMed Central

    Newton, C J; Kantrowitz, E R

    1990-01-01

    A recent x-ray structure of aspartate carbamoyltransferase (carbamoyl-phosphate: L-aspartate carbamoyl-transferase, EC 2.1.3.2) with phosphonoacetamide bound [Gouaux, J. E. & Lipscomb, W. N. (1990) Biochemistry 29, 389-402] shows an interaction between Asp-236 of the catalytic chain and Lys-143 of the regulatory chain. Asp-236 is part of the loop containing residues 230-245 (240s) of the catalytic chain that undergoes a significant conformational change between the tight and the relaxed states of the enzyme. Furthermore, side-chain interactions between the 240s loop and other portions of the enzyme have been shown to be important for the low activity and low affinity of the tight state and the high activity and high affinity of the relaxed state. To determine whether the intersubunit link between Lys-143 of the regulatory chain and Asp-236 of the catalytic chain is important for either homotropic cooperativity and/or the heterotropic interactions in aspartate carbamoyltransferase, site-specific mutagenesis was used to replace Asp-236 with alanine. The mutant enzyme exhibits full activity and a loss of both homotropic cooperativity and heterotropic interactions. Furthermore, the aspartate concentration at half the maximal observed specific activity is reduced by approximately 8-fold. The mutant enzyme exhibits normal thermal stability but drastically altered reactivity toward p-hydroxymercuribenzoate. The catalytic subunit of the mutant and wild-type enzymes have very similar properties. These results, in conjunction with previous experiments, suggest that the intersubunit link involving Asp-236 is involved in the stabilization of the 240s loop in its tight-state position and that the regulatory subunits exert their effect on the catalytic subunits by influencing the position of the 240s loop. PMID:2179954

  11. AGC1/2, the mitochondrial aspartate-glutamate carriers.

    PubMed

    Amoedo, N D; Punzi, G; Obre, E; Lacombe, D; De Grassi, A; Pierri, C L; Rossignol, R

    2016-10-01

    In this review we discuss the structure and functions of the aspartate/glutamate carriers (AGC1-aralar and AGC2-citrin). Those proteins supply the aspartate synthesized within mitochondrial matrix to the cytosol in exchange for glutamate and a proton. A structure of an AGC carrier is not available yet but comparative 3D models were proposed. Moreover, transport assays performed by using the recombinant AGC1 and AGC2, reconstituted into liposome vesicles, allowed to explore the kinetics of those carriers and to reveal their specific transport properties. AGCs participate to a wide range of cellular functions, as the control of mitochondrial respiration, calcium signaling and antioxydant defenses. AGC1 might also play peculiar tissue-specific functions, as it was found to participate to cell-to-cell metabolic symbiosis in the retina. On the other hand, AGC1 is involved in the glutamate-mediated excitotoxicity in neurons and AGC gene or protein alterations were discovered in rare human diseases. Accordingly, a mice model of AGC1 gene knock-out presented with growth delay and generalized tremor, with myelinisation defects. More recently, AGC was proposed to play a crucial role in tumor metabolism as observed from metabolomic studies showing that the asparate exported from the mitochondrion by AGC1 is employed in the regeneration of cytosolic glutathione. Therefore, given the central role of AGCs in cell metabolism and human pathology, drug screening are now being developed to identify pharmacological modulators of those carriers. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.

  12. The aspartate metabolism pathway is differentiable in human hepatocellular carcinoma: transcriptomics and (13) C-isotope based metabolomics.

    PubMed

    Darpolor, Moses M; Basu, Sankha S; Worth, Andrew; Nelson, David S; Clarke-Katzenberg, Regina H; Glickson, Jerry D; Kaplan, David E; Blair, Ian A

    2014-04-01

    Hepatocellular carcinoma (HCC), the primary form of human adult liver malignancy, is a highly aggressive tumor with average survival rates that are currently less than a year following diagnosis. Although bioinformatic analyses have indicated differentially expressed genes and cancer related mutations in HCC, integrated genetic and metabolic pathway analyses remain to be investigated. Herein, gene (i.e. messenger RNA, mRNA) enrichment analysis was performed to delineate significant alterations of metabolic pathways in HCC. The objective of this study was to investigate the pathway of aspartate metabolism in HCC of humans. Coupled with transcriptomic (i.e. mRNA) and NMR based metabolomics of human tissue extracts, we utilized liquid chromatography mass spectrometry based metabolomics analysis of stable [U-(13) C6 ]glucose metabolism or [U-(13) C5 ,(15) N2 ]glutamine metabolism of HCC cell culture. Our results indicated that aspartate metabolism is a significant and differentiable metabolic pathway of HCC compared with non-tumor liver (p value < 0.0001). In addition, branched-chain amino acid metabolism (p value < 0.0001) and tricarboxylic acid metabolism (p value < 0.0001) are significant and differentiable. Statistical analysis of measurable NMR metabolites indicated that at least two of the group means were significantly different for the metabolites alanine (p value = 0.0013), succinate (p value = 0.0001), lactate (p value = 0.0114), glycerophosphoethanolamine (p value = 0.015), and inorganic phosphate (p value = 0.0001). However, (13) C isotopic enrichment analysis of these metabolites revealed less than 50% isotopic enrichment with either stable [U-(13) C6 ]glucose metabolism or [U-(13) C5 ,(15) N2 ]glutamine. This may indicate the differential account of total metabolite pool versus de novo metabolites from a (13) C labeled substrate. The ultimate translation of these findings will be to determine putative enzyme activity via

  13. Interaction of aspartate and aspartate-derived antimetabolites with the enzymes of the threonine biosynthetic pathway of Escherichia coli.

    PubMed

    Shames, S L; Ash, D E; Wedler, F C; Villafranca, J J

    1984-12-25

    The five enzymes responsible for the conversion of L-aspartate to L-threonine in Escherichia coli were purified to homogeneity and subsequently reconstituted in vitro in ratios approximating those found in vivo. 31P NMR was used to conveniently monitor the rates of consumption of the substrates ATP and NADPH, the accumulation of the intermediates beta-aspartyl phosphate and homoserine phosphate, and the formation of the products ADP, NADP+, and Pi in a single experiment. By this method, the flux of aspartic acid through the enzymes of the pathway was monitored in the absence and in the presence of several alternative substrates and inhibitors. Several known antimetabolites were found to be alternative substrates that ultimately became inhibitors of pathway flux. L-threo-3-Hydroxyaspartic acid was converted to 3-hydroxyhomoserine phosphate by the first four enzymes of the pathway. The antimetabolite L-threo-3-hydroxyhomoserine was found to bind to and inhibit aspartokinase-homoserine dehydrogenase I in a cooperative fashion (I 0.5 = 3 mM, nH = 2.5), similar to the action of the allosteric end product inhibitor L-threonine (I 0.5 = 0.36 mM, nH = 2.4). In the presence of the remaining enzymes of the pathway, however, L-threo-3-hydroxyhomoserine was phosphorylated to the apparent ultimate antimetabolite L-threo-3-hydroxyhomoserine phosphate that was a potent inhibitor of threonine synthase and consequently of L-threonine biosynthesis. When aspartic acid alone was examined as a substrate of the enzymes of the pathway, no accumulation of the beta-aspartyl phosphate and homoserine phosphate intermediates was observed. However, in the presence of either 5 mM L-threo-3-hydroxyhomoserine or 5 mM L-threo-3-hydroxyhomoserine phosphate, homoserine phosphate was found to accumulate. In contrast to the homoserine phosphate and 3-hydroxyhomoserine phosphate intermediates, both of which were very stable, the acylphosphate intermediates beta-aspartyl phosphate and beta-3

  14. Properties of Copolymers of Aspartic Acid and Aliphatic Dicarboxylic Acids Prepared by Reactive Extrusion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspartic acid may be prepared chemically or by the fermentation of carbohydrates. Currently, low molecular weight polyaspartic acids are prepared commercially by heating aspartic acid at high temperatures (greater than 220 degrees C) for several hours in the solid state. In an effort to develop a ...

  15. Citrin and aralar1 are Ca2+-stimulated aspartate/glutamate transporters in mitochondria

    PubMed Central

    Palmieri, L.; Pardo, B.; Lasorsa, F.M.; del Arco, A.; Kobayashi, K.; Iijima, M.; Runswick, M.J.; Walker, J.E.; Saheki, T.; Satrústegui, J.; Palmieri, F.

    2001-01-01

    The mitochondrial aspartate/glutamate carrier catalyzes an important step in both the urea cycle and the aspartate/malate NADH shuttle. Citrin and aralar1 are homologous proteins belonging to the mitochondrial carrier family with EF-hand Ca2+-binding motifs in their N-terminal domains. Both proteins and their C-terminal domains were overexpressed in Escherichia coli, reconstituted into liposomes and shown to catalyze the electrogenic exchange of aspartate for glutamate and a H+. Overexpression of the carriers in transfected human cells increased the activity of the malate/aspartate NADH shuttle. These results demonstrate that citrin and aralar1 are isoforms of the hitherto unidentified aspartate/glutamate carrier and explain why mutations in citrin cause type II citrullinemia in humans. The activity of citrin and aralar1 as aspartate/glutamate exchangers was stimulated by Ca2+ on the external side of the inner mitochondrial membrane, where the Ca2+-binding domains of these proteins are localized. These results show that the aspartate/glutamate carrier is regulated by Ca2+ through a mechanism independent of Ca2+ entry into mitochondria, and suggest a novel mechanism of Ca2+ regulation of the aspartate/malate shuttle. PMID:11566871

  16. L-aspartate-evoked inhibition of melatonin production in rat pineal glands.

    PubMed

    Yamada, H; Yamaguchi, A; Moriyama, Y

    1997-06-06

    Our previous studies in rat indicated that pinealocytes secrete L-glutamate through microvesicle-mediated exocytosis to regulate negatively melatonin production. Recently, we further found that pinealocytes secrete L-aspartate through microvesicle-mediated exocytosis. In the present study, we investigated the role of L-aspartate in the melatonin production in isolated rat pineal glands. It was found that L-aspartate inhibits norepinephrine-stimulated melatonin production as well as serotonin N-acetyltransferase activity reversibly and dose-dependently, the concentrations required for 50% inhibition being 150 and 175 microM, respectively. L-Asparagine and oxaloacetate, metabolites of L-aspartate, had no effect on the melatonin production. These results suggest that pinealocytes use L-aspartate, as well as L-glutamate, as a negative regulator for melatonin production.

  17. Photosynthetic metabolism of malate and aspartate in Flaveria trinervia a C/sub 4/ dicot

    SciTech Connect

    Moore, B.A.

    1986-01-01

    C/sub 4/ species are known to vary in their apparent relative use of malate and aspartate to mediate carbon flux through the C/sub 4/ cycle. These studies investigate some of the adjustments in photosynthetic carbon metabolism that occur during a dark to light transition and during expansion of leaves of Flaveria trinervia, a C/sub 4/ dicot. Enzyme localization studies with isolated leaf mesophyll and bundle sheath protoplasts, indicated that both C/sub 4/ acids are formed in the mesophyll chloroplast, and that aspartate is metabolized to malate in the bundle sheath chloroplast prior to decaroxylation there. During photosynthetic induction, the partitioning of /sup 14/CO/sub 2/ between malate and aspartate showed a single oscillation of increased aspartate labelling after 5 min of illumination. Turnover of (4-14C) (malate plus aspartate) was slow initially during illumination, prior to establishment of active pools of C/sub 4/ cycle metabolites.

  18. FTIR spectra and conformational structure of deutero-β-alanine isolated in argon matrices

    NASA Astrophysics Data System (ADS)

    Stepanian, Stepan G.; Ivanov, Alexander Yu; Adamowicz, Ludwik

    2016-02-01

    Low temperature FTIR spectra of β-alanine-d3 isolated in argon matrices are used to determine the conformational composition of this compound. UV irradiation of the matrix samples is found to change the relative populations of the β-alanine-d3 conformers. The populations of conformers I and II with an Nsbnd D⋯O intramolecular H-bond decrease after the UV irradiation while the populations of conformer V with an N⋯Dsbnd O H-bond and conformer IV which has no intramolecular H-bonds increase. This behavior of the β-alanine-d3 conformers are used to separate the bands of the different conformers. The analysis of the experimental FTIR spectra is based on the calculated harmonic B3LYP/6-311++G(df,pd) frequencies and on the MP2/aug-cc-pVDZ frequencies calculated with a method that includes anharmonic effects. Polynomial scaling of the calculated frequencies is used to achieve better agreement with the experimental data. The observation of the wide band of the OD stretching vibration at 2201 cm-1 is a direct evidence of the presence of the β-alanine-d3 conformer V in the Ar matrix. In total ten bands of conformer V are detected. The influence of the matrix environment on the structures and the IR spectra of the β-alanine and β-alanine-d3 conformers is investigated. This involves performing calculations of the β-alanine conformers embedded in argon clusters containing from 163 to 166 argon atoms using the M06-2X and B3LYP(GD3BJ) density-functional methods. Good agreement between the calculated and the experimental matrix splitting is demonstrated.

  19. Glucose and Alanine Metabolism in Children with Maple Syrup Urine Disease

    PubMed Central

    Haymond, Morey W.; Ben-Galim, Ehud; Strobel, Karen E.

    1978-01-01

    In vitro studies have suggested that catabolism of branched chain amino acids is linked with alanine and glutamine formed in, and released from, muscle. To explore this possibility in vivo, static and kinetic studies were performed in three patients with classical, and one patient with partial, branched chain α-ketoacid decarboxylase deficiency (maple syrup urine disease, MSUD) and compared to similar studies in eight age-matched controls. The subjects underwent a 24-30-h fast, and a glucose-alanine flux study using stable isotopes. Basal plasma leucine concentrations were elevated (P <0.001) in patients with MSUD (1,140±125 μM vs. 155±18 μM in controls); and in contrast to the controls, branched chain amino acid concentrations in plasma increased during the fast in the MSUD patients. Basal plasma alanine concentrations were lower (P <0.01) in patients with classical MSUD (153±8 μM vs. 495±27 μM in controls). This discrepancy was maintained throughout the fast despite a decrease in alanine concentrations in both groups. Plasma alanine and leucine concentrations in the patient with partial MSUD were intermediate between those of the controls and the subjects with the classical form of the disease. Circulating ketone bodies and glucoregulatory hormones concentrations were similar in the MSUD and normal subjects during the fast. Alanine flux rates in two patients with classical MSUD (3.76 and 4.00 μmol/Kg per min) and the patient with partial MSUD (5.76 μmol/Kg per min) were clearly lower than those of the controls (11.72±2.53 [SD] μmol/Kg per min). After short-term starvation, glucose flux and fasting concentrations were similar in the MSUD patients and normal subjects. These data indicate that branched chain amino acid catabolism is an important rate limiting event for alanine production in vivo. PMID:670400

  20. Alanine 310 is important for the activity of 1,4-α-glucan branching enzyme from Geobacillus thermoglucosidans STB02.

    PubMed

    Liu, Yiting; Li, Caiming; Gu, Zhengbiao; Xin, Chenhao; Cheng, Li; Hong, Yan; Li, Zhaofeng

    2017-04-01

    1,4-α-Glucan branching enzyme (GBE) catalyzes the formation of α-1,6 branch points in starch or glycogen by hydrolyzing α-1,4-glucosidic linkages and then synthesizing α-1,6-glucosidic linkages. In the GBE from Geobacillus thermoglucosidans STB02, alanine 310 (Ala310) is located in conserved region II. An analysis of the amino acid sequence shows that Ala310 is highly conserved in the prokaryotic GBE subfamily. Site-directed mutagenesis was used to determine the function of Ala310 in GBE. Replacement of Ala310 with glycine, aspartate, asparagine, isoleucine, glutamate, or glutamine resulted in mutant enzymes with less than 10% to 25% of wild-type activity when amylopectin or amylose was used as substrate. Studies using high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) showed that A310G mutant had no effect on the transfer pattern, but the branching activity had been repressed to a large extent. Kinetic analysis also showed that mutations of Ala310 had an effect on the KM value that changed the preferred substrate from amylopectin to amylose. These results show that Ala310 is important for the catalytic activity of the GBE from G. thermoglucosidans STB02.

  1. Stimulation of L-asparate beta-decarboxylase formation by L-glutamate in Pseudomonas dacunhae and Improved production of L-alanine.

    PubMed

    Shibatani, T; Kakimoto, T; Chibata, I

    1979-09-01

    The formation of L-asparate beta-decarboxylase by Pseudomonas dacunhae was compared on media containing a variety of organic acids and amino acids as a carbon source. Although the enzyme was formed constitutively when the organism was grown on basal medium or on that containing tricarboxylic acid cycle intermediates, it was induced twofold by L-glutamate and repressed one-tenth by L-serine. L-Glutamine, L-proline, L-leucine, glycine, and L-threonine also showed induction effects lower than that of L-glutamate. L-Glutamate derepressed the serine effect. This glutamate effect was observed effect was observed with other microoganisms, e.g., Achromobacter pestifer and Achromobacter liquidum. Since the intermediates from L-glutamate metabolism had no effect, this induction effect was specific to L-glutamate. The formation of some glutamate-related enzymes was measured and is discussed in relation to the formation of L-asparate beta-decarboxylase. L-Asparate beta-decarboxylase was purified to an electrophoretically homogenous state from L-glutamate-grown cells of P. dacunhae, and some properties were compared with those of the enzyme from fumarate-grown cells. The two enzymes were identical in disc electrophoresis, molecular weight, and some enzymatic properties. The industrial production of L-alanine from L-aspartic acid acid was improved by using the culture broth with highly induced L-asparate beta-decarboxylase (9.4 U/ml of broth).

  2. Treatment of Huntington disease with gamma-acetylenic GABA an irreversible inhibitor of GABA-transaminase: increased CSF GABA and homocarnosine without clinical amelioration.

    PubMed

    Tell, G; Böhlen, P; Schechter, P J; Koch-Weser, J; Agid, Y; Bonnet, A M; Coquillat, G; Chazot, G; Fischer, C

    1981-02-01

    gamma-Acetylenic GABA (GAG, RMI 71.645), a potent irreversible inhibitor of gamma-aminobutyric acid transaminase, was given orally in various dosage schedules to 14 patients with Huntington disease. The biochemical effects of the drug on cerebrospinal fluid (CSF) concentrations of gamma-aminobutyric acid (GABA) and the GABA-containing dipeptide, homocarnosine, were measured in 10 of 14 patients. Treatment with GAG increased CSF concentrations of GABA and homocarnosine as compared to pretreatment values, suggesting that the drug increased brain GABA concentration. Despite this neurochemical effect, the clinical state was not improved. Except for single seizure episodes in five patients, GAG therapy was well tolerated. These results do not exclude the possibility that agents that augment CNS GABAergic function may prove useful in therapy of Huntington disease.

  3. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis

    PubMed Central

    Birsoy, Kıvanç; Wang, Tim; Chen, Walter; Freinkman, Elizaveta; Abu-Remaileh, Monther; Sabatini, David M.

    2015-01-01

    Summary The mitochondrial electron transport chain (ETC) enables many metabolic processes, but why its inhibition suppresses cell proliferation is unclear. It is also not well understood why pyruvate supplementation allows cells lacking ETC function to proliferate. We used a CRISPR-based genetic screen to identify genes whose loss sensitizes human cells to phenformin, a complex I inhibitor. The screen yielded GOT1, the cytosolic aspartate aminotransferase, loss of which kills cells upon ETC inhibition. GOT1 normally consumes aspartate to transfer electrons into mitochondria, but, upon ETC inhibition, it reverses to generate aspartate in the cytosol, which partially compensates for the loss of mitochondrial aspartate synthesis. Pyruvate stimulates aspartate synthesis in a GOT1-dependent fashion, which is required for pyruvate to rescue proliferation of cells with ETC dysfunction. Aspartate supplementation or overexpression of an aspartate transporter allows cells without ETC activity to proliferate. Thus, enabling aspartate synthesis is an essential role of the ETC in cell proliferation. PMID:26232224

  4. Effect of site-directed mutagenesis of the conserved aspartate and glutamate on E. coli undecaprenyl pyrophosphate synthase catalysis.

    PubMed

    Pan, J J; Yang, L W; Liang, P H

    2000-11-14

    Undecaprenyl pyrophosphate synthase (UPPs) catalyzes condensation of eight molecules of isopentenyl pyrophosphate with farnesyl pyrophosphate to yield C(55)-undecaprenyl pyrophosphate. We have mutated the aspartates and glutamates in the five conserved regions (I to V) of UPPs protein sequence to evaluate their effects on substrate binding and catalysis. The mutant enzymes including D26A, E73A, D150A, D190A, E198A, E213A, D218A, and D223A were expressed and purified to great homogeneity. Kinetic analyses of these mutant enzymes indicated that the substitution of D26 in region I with alanine resulted in a 10(3)-fold decrease of k(cat) value compared to wild-type UPPs. Its IPP K(m) value has only minor change. The mutagenesis of D150A has caused a much lower IPP affinity with IPP K(m) value 50-fold larger than that of wild-type UPPs but did not affect the FPP K(m) and the k(cat). The E213A mutant UPPs has a 70-fold increased IPP K(m) value and has a 100-fold decreased k(cat) value compared to wild-type. These results suggest that D26 of region I is critical for catalysis and D150 in region IV plays a significant role of IPP binding. The E213 residue in region V is also important in IPP binding as well as catalysis. Other mutant UPPs enzymes in this study have shown no significant change (<5-fold) of k(cat) with exception of E73A and D218A. Both enzymes have 10-fold lower k(cat) value relative to wild-type UPPs.

  5. Ontogenetic trends in aspartic acid racemization and amino acid composition within modern and fossil shells of the bivalve Arctica

    NASA Astrophysics Data System (ADS)

    Goodfriend, Glenn A.; Weidman, Christopher R.

    2001-06-01

    Ontogenetic trends (umbo to growth edge of shell) in aspartic acid (Asp) racemization and amino acid composition and their evolution over time are examined in serial samples of annual growth bands from a time-series of three live-collected and two fossil (ca. 500 and 1000 y BP) shells of the long-lived bivalve Arctica islandica. The rate of Asp racemization is shown to be higher in the umbonal portion of the shells (laid down when the clams are young) but constant from a biological age of 10 to 20 y to more than 100 y. Corresponding changes are also seen in amino acid composition and concentration: with increasing biological age of the clam: total amino acid concentration increases substantially, the acidic amino acids Asp, glutamic acid, and alanine decrease in relative concentration (mole-percent) and more basic amino acids including tyrosine, phenylalanine, and lysine increase in relative concentration. These ontogenetic trends are generally retained in the fossil shells. These trends may reflect changing protein composition related to changes in growth rate. Clams grow considerably faster in their youth than when they are older, as indicated by changes in the annual growth increments. Production of more acidic proteins, which play a role in crystal growth, may be favored during the phase of faster growth, whereas more structural proteins, perhaps enhancing structural strength of the shell, may be favored during later growth. These ontogenetic differences in protein composition affect the observed rates of racemization of the protein pool. Some weak diagenetic trends in amino acid composition and abundance may be represented in the time series of shells. These results emphasize the importance of standardization of the location from which samples are taken from shells for dating by amino acid racemization analysis.

  6. Aspartic acid-96 is the internal proton donor in the reprotonation of the Schiff base of bacteriorhodopsin.

    PubMed Central

    Otto, H; Marti, T; Holz, M; Mogi, T; Lindau, M; Khorana, H G; Heyn, M P

    1989-01-01

    Above pH 8 the decay of the photocycle intermediate M of bacteriorhodopsin splits into two components: the usual millisecond pH-independent component and an additional slower component with a rate constant proportional to the molar concentration of H+, [H+]. In parallel, the charge translocation signal associated with the reprotonation of the Schiff base develops a similar slow component. These observations are explained by a two-step reprotonation mechanism. An internal donor first reprotonates the Schiff base in the decay of M to N and is then reprotonated from the cytoplasm in the N----O transition. The decay rate of N is proportional to [H+]. By postulating a back reaction from N to M, the M decay splits up into two components, with the slower one having the same pH dependence as the decay of N. Photocycle, photovoltage, and pH-indicator experiments with mutants in which aspartic acid-96 is replaced by asparagine or alanine, which we call D96N and D96A, suggest that Asp-96 is the internal proton donor involved in the re-uptake pathway. In both mutants the stoichiometry of proton pumping is the same as in wild type. However, the M decay is monophasic, with the logarithm of the decay time [log (tau)] linearly dependent on pH, suggesting that the internal donor is absent and that the Schiff base is directly reprotonated from the cytoplasm. Like H+, azide increases the M decay rate in D96N. The rate constant is proportional to the azide concentration and can become greater than 100 times greater than in wild type. Thus, azide functions as a mobile proton donor directly reprotonating the Schiff base in a bimolecular reaction. Both the proton and azide effects, which are absent in wild type, indicate that the internal donor is removed and that the reprotonation pathway is different from wild type in these mutants. PMID:2556706

  7. Prevalence and Predictors of Elevated Aspartate Aminotransferase-to-Platelet Ratio Index in Latin American Perinatally HIV-infected Children

    PubMed Central

    Siberry, George K.; Cohen, Rachel A.; Harris, D. Robert; Cruz, Maria Leticia Santos; Oliveira, Ricardo; Peixoto, Mario F.; Cervi, Maria Celia; Hazra, Rohan; Pinto, Jorge A.

    2013-01-01

    Background Chronic liver disease has emerged as an important problem in adults with longstanding HIV infection, but data are lacking for children. We characterized elevated aspartate aminotransferase (AST)-to-platelet ratio index (APRI ), a marker of possible liver fibrosis, in perinatally HIV-infected children. Methods NISDI [NICHD (National Institute of Child Health and Human Development) International Site Development Initiative] enrolled HIV-infected children (ages 0.1-20.1 years) from five Latin American countries in an observational cohort from 2002–2009. Twice yearly visits included medical history, physical examination and laboratory evaluations. The prevalence (95% confidence interval [CI]) of APRI>1.5 was calculated and associations with demographic, HIV-related and liver-related variables were investigated in bivariate analyses. Results APRI was available for 1012 of 1032 children. APRI was >1.5 in 32 (3.2%, 95% CI: 2.2%-4.4%) including 2 of 4 participants with hepatitis B (HBV) infection. Factors significantly associated with APRI>1.5 (p<0.01 compared to APRI≤1.5) included country, younger age, past or current HBV, higher alanine aminotransferase, lower total cholesterol, higher log10 current viral load, lower current CD4 count, lower nadir CD4 count, use of hepatotoxic non-antiretroviral (ARV) medications, and no prior ARV use. Rates of APRI>1.5 varied significantly by current ARV regimen (p=0.0002), from 8.0% for no ARV to 3.2% for non-protease inhibitor (PI) regimens to 1.5% for PI-based regimens. Conclusions Elevated APRI occurred in approximately 3% of perinatally HIV-infected children. PI-based ARVs appeared protective while inadequate HIV control appeared to increase risk of elevated APRI. Additional investigations are needed to better assess potential subclinical, chronic liver disease in HIV-infected children. PMID:23799515

  8. Perturbation correction for alanine dosimeters in different phantom materials in high-energy photon beams.

    PubMed

    von Voigts-Rhetz, P; Anton, M; Vorwerk, H; Zink, K

    2016-02-07

    In modern radiotherapy the verification of complex treatments plans is often performed in inhomogeneous or even anthropomorphic phantoms. For dose verification small detectors are necessary and therefore alanine detectors are most suitable. Though the response of alanine for a wide range of clinical photon energies in water is well know, the knowledge about the influence of the surrounding phantom material on the response of alanine is sparse. Therefore we investigated the influence of twenty different surrounding/phantom materials for alanine dosimeters in clinical photon fields via Monte Carlo simulations. The relative electron density of the used materials was in the range [Formula: see text] up to 1.69, covering almost all materials appearing in inhomogeneous or anthropomorphic phantoms used in radiotherapy. The investigations were performed for three different clinical photon spectra ranging from 6 to 25 MV-X and Co-60 and as a result a perturbation correction [Formula: see text] depending on the environmental material was established. The Monte Carlo simulation show, that there is only a small dependence of [Formula: see text] on the phantom material and the photon energy, which is below  ±0.6%. The results confirm the good suitability of alanine detectors for in-vivo dosimetry.

  9. Theoretical and experimental study of valence photoelectron spectrum of D,L-alanine amino acid.

    PubMed

    Farrokhpour, H; Fathi, F; De Brito, A Naves

    2012-07-05

    In this work, the He-I (21.218 eV) photoelectron spectrum of D,L-alanine in the gas phase is revisited experimentally and theoretically. To support the experiment, the high level ab initio calculations were used to calculate and assign the photoelectron spectra of the four most stable conformers of gaseous alanine, carefully. The symmetry adapted cluster/configuration interaction (SAC-CI) method based on single and double excitation operators (SD-R) and its more accurate version, termed general-R, was used to separately calculate the energies and intensities of the ionization bands of the L- and D-alanine conformers. The intensities of ionization bands were calculated based on the monopole approximation. Also, natural bonding orbital (NBO) calculations were employed for better spectral band assignment. The relative electronic energy, Gibbs free energy, and Boltzmann population ratio of the conformers were calculated at the experimental temperature (403 K) using several theoretical methods. The theoretical photoelectron spectrum of alanine was calculated by summing over the spectra of individual D and L conformers weighted by different population ratios. Finally, the population ratio of the four most stable conformers of alanine was estimated from the experimental photoelectron spectrum using theoretical calculations for the first time.

  10. Perturbation correction for alanine dosimeters in different phantom materials in high-energy photon beams

    NASA Astrophysics Data System (ADS)

    von Voigts-Rhetz, P.; Anton, M.; Vorwerk, H.; Zink, K.

    2016-02-01

    In modern radiotherapy the verification of complex treatments plans is often performed in inhomogeneous or even anthropomorphic phantoms. For dose verification small detectors are necessary and therefore alanine detectors are most suitable. Though the response of alanine for a wide range of clinical photon energies in water is well know, the knowledge about the influence of the surrounding phantom material on the response of alanine is sparse. Therefore we investigated the influence of twenty different surrounding/phantom materials for alanine dosimeters in clinical photon fields via Monte Carlo simulations. The relative electron density of the used materials was in the range {{n}e}/{{n}e,\\text{w}}=0.20 up to 1.69, covering almost all materials appearing in inhomogeneous or anthropomorphic phantoms used in radiotherapy. The investigations were performed for three different clinical photon spectra ranging from 6 to 25 MV-X and Co-60 and as a result a perturbation correction {{k}\\text{env}} depending on the environmental material was established. The Monte Carlo simulation show, that there is only a small dependence of {{k}\\text{env}} on the phantom material and the photon energy, which is below  ±0.6%. The results confirm the good suitability of alanine detectors for in-vivo dosimetry.

  11. Absorbed dose determination in kilovoltage X-ray synchrotron radiation using alanine dosimeters.

    PubMed

    Butler, D J; Lye, J E; Wright, T E; Crossley, D; Sharpe, P H G; Stevenson, A W; Livingstone, J; Crosbie, J C

    2016-12-01

    Alanine dosimeters from the National Physical Laboratory (NPL) in the UK were irradiated using kilovoltage synchrotron radiation at the imaging and medical beam line (IMBL) at the Australian Synchrotron. A 20 × 20 mm(2) area was irradiated by scanning the phantom containing the alanine through the 1 mm × 20 mm beam at a constant velocity. The polychromatic beam had an average energy of 95 keV and nominal absorbed dose to water rate of 250 Gy/s. The absorbed dose to water in the solid water phantom was first determined using a PTW Model 31014 PinPoint ionization chamber traceable to a graphite calorimeter. The alanine was read out at NPL using correction factors determined for (60)Co, traceable to NPL standards, and a published energy correction was applied to correct for the effect of the synchrotron beam quality. The ratio of the doses determined by alanine at NPL and those determined at the synchrotron was 0.975 (standard uncertainty 0.042) when alanine energy correction factors published by Waldeland et al. (Waldeland E, Hole E O, Sagstuen E and Malinen E, Med. Phys. 2010, 37, 3569) were used, and 0.996 (standard uncertainty 0.031) when factors by Anton et al. (Anton M, Büermann L., Phys Med Biol. 2015 60 6113-29) were used. The results provide additional verification of the IMBL dosimetry.

  12. Effect of 10 week beta-alanine supplementation on competition and training performance in elite swimmers.

    PubMed

    Chung, Weiliang; Shaw, Greg; Anderson, Megan E; Pyne, David B; Saunders, Philo U; Bishop, David J; Burke, Louise M

    2012-10-09

    Although some laboratory-based studies show an ergogenic effect with beta-alanine supplementation, there is a lack of field-based research in training and competition settings. Elite/Sub-elite swimmers (n = 23 males and 18 females, age = 21.7 ± 2.8 years; mean ± SD) were supplemented with either beta-alanine (4 weeks loading phase of 4.8 g/day and 3.2 g/day thereafter) or placebo for 10 weeks. Competition performance times were log-transformed, then evaluated before (National Championships) and after (international or national selection meet) supplementation. Swimmers also completed three standardized training sets at baseline, 4 and 10 weeks of supplementation. Capillary blood was analyzed for pH, bicarbonate and lactate concentration in both competition and training. There was an unclear effect (0.4%; ± 0.8%, mean, ± 90% confidence limits) of beta-alanine on competition performance compared to placebo with no meaningful changes in blood chemistry. While there was a transient improvement on training performance after 4 weeks with beta-alanine (-1.3%; ± 1.0%), there was an unclear effect at ten weeks (-0.2%; ± 1.5%) and no meaningful changes in blood chemistry. Beta-alanine supplementation appears to have minimal effect on swimming performance in non-laboratory controlled real-world training and competition settings.

  13. Role of Alanine Dehydrogenase of Mycobacterium tuberculosis during Recovery from Hypoxic Nonreplicating Persistence

    PubMed Central

    Giffin, Michelle M.; Shi, Lanbo; Gennaro, Maria L.; Sohaskey, Charles D.

    2016-01-01

    Mycobacterium tuberculosis can maintain a nonreplicating persistent state in the host for decades, but must maintain the ability to efficiently reactivate and produce active disease to survive and spread in a population. Among the enzymes expressed during this dormancy is alanine dehydrogenase, which converts pyruvate to alanine, and glyoxylate to glycine concurrent with the oxidation of NADH to NAD. It is involved in the metabolic remodeling of M. tuberculosis through its possible interactions with both the glyoxylate and methylcitrate cycle. Both mRNA levels and enzymatic activities of isocitrate lyase, the first enzyme of the glyoxylate cycle, and alanine dehydrogenase increased during entry into nonreplicating persistence, while the gene and activity for the second enzyme of the glyoxylate cycle, malate synthase were not. This could suggest a shift in carbon flow away from the glyoxylate cycle and instead through alanine dehydrogenase. Expression of ald was also induced in vitro by other persistence-inducing stresses such as nitric oxide, and was expressed at high levels in vivo during the initial lung infection in mice. Enzyme activity was maintained during extended hypoxia even after transcription levels decreased. An ald knockout mutant of M. tuberculosis showed no reduction in anaerobic survival in vitro, but resulted in a significant lag in the resumption of growth after reoxygenation. During reactivation the ald mutant had an altered NADH/NAD ratio, and alanine dehydrogenase is proposed to maintain the optimal NADH/NAD ratio during anaerobiosis in preparation of eventual regrowth, and during the initial response during reoxygenation. PMID:27203084

  14. A Deficiency in Aspartate Biosynthesis in Lactococcus lactis subsp. lactis C2 Causes Slow Milk Coagulation†

    PubMed Central

    Wang, Hua; Yu, Weizhu; Coolbear, Tim; O’Sullivan, Dan; McKay, Larry L.

    1998-01-01

    A mutant of fast milk-coagulating (Fmc+) Lactococcus lactis subsp. lactis C2, designated L. lactis KB4, was identified. Although possessing the known components essential for utilizing casein as a nitrogen source, which include functional proteinase (PrtP) activity and oligopeptide, di- and tripeptide, and amino acid transport systems, KB4 exhibited a slow milk coagulation (Fmc−) phenotype. When the amino acid requirements of L. lactis C2 were compared with those of KB4 by use of a chemically defined medium, it was found that KB4 was unable to grow in the absence of aspartic acid. This aspartic acid requirement could also be met by aspartate-containing peptides. The addition of aspartic acid to milk restored the Fmc+ phenotype of KB4. KB4 was found to be defective in pyruvate carboxylase and thus was deficient in the ability to form oxaloacetate and hence aspartic acid from pyruvate and carbon dioxide. The results suggest that when lactococci are propagated in milk, aspartate derived from casein is unable to meet fully the nutritional demands of the lactococci, and they become dependent upon aspartate biosynthesis. PMID:9572935

  15. Mechanism of adenylate kinase. Demonstration of a functional relationship between aspartate 93 and Mg2+ by site-directed mutagenesis and proton, phosphorus-31, and magnesium-25 NMR.

    PubMed

    Yan, H G; Tsai, M D

    1991-06-04

    Earlier magnetic resonance studies suggested no direct interaction between Mg2+ ions and adenylate kinase (AK) in the AK.MgATP (adenosine 5'-triphosphate) complex. However, recent NMR studies concluded that the carboxylate of aspartate 119 accepts a hydrogen bond from a water ligand of the bound Mg2+ ion in the muscle AK.MgATP complex [Fry, D.C., Kuby, S.A., & Mildvan, A.S. (1985) Biochemistry 24, 4680-4694]. On the other hand, in the 2.6-A crystal structure of the yeast AK.MgAP5A [P1,P5-bis(5'-adenosyl)pentaphosphate] complex, the Mg2+ ion is in proximity to aspartate 93 [Egner, U., Tomasselli, A.G., & Schulz, G.E. (1987) J. Mol. Biol. 195, 649-658]. Substitution of Asp-93 with alanine resulted in no change in dissociation constants, 4-fold increases in Km, and a 650-fold decrease in kcat. Notable changes have been observed in the chemical shifts of the aromatic protons of histidine 36 and a few other aromatic residues. However, the results of detailed analyses of the free enzymes and the AK.MgAP5A complexes by one- and two-dimensional NMR suggested that the changes are due to localized perturbations. Thus it is concluded that Asp-93 stabilizes the transition state by ca. 3.9 kcal/mol. The next question is how. Since proton NMR results indicated that binding of Mg2+ to the AK.AP5A complex induces some changes in the proton NMR signals of WT but not those of D93A, the functional role of Asp-93 should be in binding to Mg2+.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. An aspartate ring at the TolC tunnel entrance determines ion selectivity and presents a target for blocking by large cations.

    PubMed

    Andersen, Christian; Koronakis, Eva; Hughes, Colin; Koronakis, Vassilis

    2002-06-01

    The TolC protein of Escherichia coli comprises an outer membrane beta-barrel channel and a contiguous alpha-helical tunnel spanning the periplasm, providing an exit duct for protein export and multidrug efflux. It forms a single transmembrane pore that is open to the outside of the cell but constricted at the peri-plasmic tunnel entrance. This sole constriction is lined by a ring of six aspartate residues, two in each of the three identical monomers. When these were replaced by alanines, the resulting TolC(DADA) protein reconstituted normally in black lipid membranes but showed altered electrophysiological characteristics. In particular, it had lost the strong pH dependence of the wild type and had switched ion selectivity from cations to anions. The function of wild-type TolC as a membrane pore was severely inhibited by divalent and trivalent cations entering the channel tunnel from the channel ("extracurricular") side. Divalent cations bound reversibly to effect complete blocking of the transmembrane ion flux. Trivalent cations were more potent. Hexamminecobalt bound at nanomolar concentrations allowed visualization of single blocking events, whereas the smaller Cr(3+) cation bound irreversibly and could also access the cation binding site via the tunnel entrance. The inhibitory cations had no effect on the mutant TolC(DADA), supporting the view that the aspartate ring is the cation binding site. The electronegative entrance is widely conserved throughout the TolC family, which is essential for efflux and export my Gram-negative bacteria, suggesting that it could present a general target for drugs.

  17. Sensitivity of alanine dosimeters with gadolinium exposed to 6 MV photons at clinical doses.

    PubMed

    Marrale, M; Longo, A; Spanò, M; Bartolotta, A; D'Oca, M C; Brai, M

    2011-12-01

    In this study we analyzed the ESR signal of alanine dosimeters with gadolinium exposed to 6 MV linear accelerator photons. We observed that the addition of gadolinium brings about an improvement in the sensitivity to photons because of its high atomic number. The experimental data indicated that the addition of gadolinium increases the sensitivity of the alanine to 6 MV photons. This enhancement was better observed at high gadolinium concentrations for which the tissue equivalence is heavily reduced. However, information about the irradiation setup and of the radiation beam features allows one to correct for this difference. Monte Carlo simulations were carried out to obtain information on the expected effect of the addition of gadolinium on the dose absorbed by the alanine molecules inside the pellets. These results are compared with the experimental values, and the agreement is discussed.

  18. Antimicrobial activity of antihypertensive food-derived peptides and selected alanine analogues.

    PubMed

    McClean, Stephen; Beggs, Louise B; Welch, Robert W

    2014-03-01

    This study evaluated four food-derived peptides with known antihypertensive activities for antimicrobial activity against pathogenic microorganisms, and assessed structure-function relationships using alanine analogues. The peptides (EVSLNSGYY, barley; PGTAVFK, soybean; TTMPLW, α-casein; VHLPP, α-zein) and the six alanine substitution peptides of PGTAVFK were synthesised, characterised and evaluated for antimicrobial activity using the bacteria, Escherichia coli, Staphylococcus aureus, and Micrococcus luteus and the yeast, Candida albicans. The peptides TTMPLW and PGTAVFK inhibited growth of all four microorganisms tested, with activities of a similar order of magnitude to ampicillin and ethanol controls. EVSLNSGYY inhibited the growth of the bacteria, but VHLPP showed no antimicrobial activity. The alanine analogue, PGAAVFK showed the highest overall antimicrobial activity and PGTAVFA showed no activity; overall, the activities of the analogues were consistent with their structures. Some peptides with antihypertensive activity also show antimicrobial activity, suggesting that food-derived peptides may exert beneficial effects via a number of mechanisms.

  19. On the roles of the alanine and serine in the β-sheet structure of fibroin.

    PubMed

    Carrascoza Mayen, Juan Francisco; Lupan, Alexandru; Cosar, Ciprian; Kun, Attila-Zsolt; Silaghi-Dumitrescu, Radu

    2015-02-01

    In its silk II form, fibroin is almost exclusively formed from layers of β-sheets, rich in glycine, alanine and serine. Reported here are computational results on fibroin models at semi-empirical, DFT levels of theory and molecular dynamics (MD) for (Gly)10, (Gly-Ala)5 and (Gly-Ser)5 decapeptides. While alanine and serine introduce steric repulsions, the alanine side-chain adds to the rigidity of the sheet, allowing it to maintain a properly pleated structure even in a single β-sheet, and thus avoiding two alternative conformations which would interfere with the formation of the multi-layer pleated-sheet structure. The role of the serine is proposed to involve modulation of the hydrophobicity in order to construct the supramolecular assembly as opposed to random precipitation due to hydrophobicity.

  20. A photoactivable amino acid based on a novel functional coumarin-6-yl-alanine.

    PubMed

    Fonseca, Andrea S C; Gonçalves, M Sameiro T; Costa, Susana P G

    2012-12-01

    A novel fluorescent amino acid, L-4-chloromethylcoumarin-6-yl-alanine, was obtained from tyrosine by a Pechmann reaction. The assembly of the heterocyclic ring at the tyrosine side chain could be achieved before or after incorporation of tyrosine into a dipeptide, and amino acid and dipeptide ester conjugates were obtained by coupling to a model N-protected alanine. The behaviour of one of the fluorescent conjugates towards irradiation was studied in a photochemical reactor at different wavelengths (254, 300, 350 and 419 nm). The photoreaction course in methanol/HEPES buffer solution (80:20) was followed by HPLC/UV monitoring. It was found that the novel unnatural amino acid could act as a fluorescent label, due to its fluorescence properties, and, more importantly, as a photoactivable unit, due to the short irradiation times necessary to cleave the ester bond between the model amino acid and the coumarin-6-yl-alanine.

  1. Probing the Catalytic Charge-Relay System in Alanine Racemase with Genetically Encoded Histidine Mimetics.

    PubMed

    Sharma, Vangmayee; Wang, Yane-Shih; Liu, Wenshe R

    2016-12-16

    Histidine is a unique amino acid with an imidazole side chain in which both of the nitrogen atoms are capable of serving as a proton donor and proton acceptor in hydrogen bonding interactions. In order to probe the functional role of histidine involved in hydrogen bonding networks, fine-tuning the hydrogen bonding potential of the imidazole side chain is required but not feasible through traditional mutagenesis methods. Here, we show that two close mimetics of histidine, 3-methyl-histidine and thiazole alanine, can be genetically encoded using engineered pyrrolysine incorporation machinery. Replacement of the three histidine residues predicted to be involved in an extended charge-relay system in alanine racemase with 3-methyl-histidine or thiazole alanine shows a dramatic loss in the enzyme's catalytic efficiency, implying the role of this extended charge-relay system in activating the active site residue Y265, a general acid/base catalyst in the enzyme.

  2. Nucleation kinetics, growth and studies of β-alanine single crystals

    NASA Astrophysics Data System (ADS)

    Shanthi, D.; Selvarajan, P.; HemaDurga, K. K.; Lincy Mary Ponmani, S.

    2013-06-01

    Solubility and metastable zone width for the re-crystallized salt of β-alanine was determined. Induction period measurement for the selected supersaturation ratios at room temperature (31 °C) was carried out for supersaturated aqueous solutions of β-alanine and it is noticed that induction period decreases with increase of supersaturation ratio. The nucleation parameters such as Gibbs free energy change, radius and number of molecules of the critical nucleus, interfacial tension and the nucleation rate have been evaluated by classical nucleation theory. Single crystals of β-alanine were grown using the optimized nucleation parameters by solution method and grown crystals have been subjected to various studies like XRD studies, FTIR, optical, thermal and SHG studies.

  3. Aspartate Biosynthesis Is Essential for the Growth of Streptococcus thermophilus in Milk, and Aspartate Availability Modulates the Level of Urease Activity▿

    PubMed Central

    Arioli, Stefania; Monnet, Christophe; Guglielmetti, Simone; Parini, Carlo; De Noni, Ivano; Hogenboom, Johannes; Halami, Prakash M.; Mora, Diego

    2007-01-01

    We investigated the carbon dioxide metabolism of Streptococcus thermophilus, evaluating the phenotype of a phosphoenolpyruvate carboxylase-negative mutant obtained by replacement of a functional ppc gene with a deleted and inactive version, Δppc. The growth of the mutant was compared to that of the parent strain in a chemically defined medium and in milk, supplemented or not with l-aspartic acid, the final product of the metabolic pathway governed by phosphoenolpyruvate carboxylase. It was concluded that aspartate present in milk is not sufficient for the growth of S. thermophilus. As a consequence, phosphoenolpyruvate carboxylase activity was considered fundamental for the biosynthesis of l-aspartic acid in S. thermophilus metabolism. This enzymatic activity is therefore essential for growth of S. thermophilus in milk even if S. thermophilus was cultured in association with proteinase-positive Lactobacillus delbrueckii subsp. bulgaricus. It was furthermore observed that the supplementation of milk with aspartate significantly affected the level of urease activity. Further experiments, carried out with a pureI-gusA recombinant strain, revealed that expression of the urease operon was sensitive to the aspartate concentration in milk and to the cell availability of glutamate, glutamine, and ammonium ions. PMID:17660309

  4. Relative response of the alanine dosimeter to medium energy x-rays.

    PubMed

    Anton, M; Büermann, L

    2015-08-07

    The response of the alanine dosimeter to kilovoltage x-rays with respect to the dose to water was measured, relative to the response to Co-60 radiation.Two series of x-ray qualities were investigated, one ranging from 30 kV to 100 kV tube voltage (TW series), the other one ranging from 70 kV to 280 kV (TH series). Due to the use of the water calorimeter as a primary standard, the uncertainty of the delivered dose is significantly lower than for other published data. The alanine response was measured as described in a previous publication (Anton et al 2013 Phys. Med. Biol. 58 3259-82). The uncertainty component due to the alanine measurement and analysis is ⩽0.4%, the major part of the combined uncertainty of the relative response originates from the uncertainty of the delivered dose. The relative uncertainties of the relative response vary from ⩽2% for the TW series to ⩽1.1% for the TH series.Different from the behaviour of the alanine dosimeter for megavoltage x-rays or electrons, the relative response drops significantly from unity for Co-60 radiation to less than 64% for the TW quality with a tube voltage of 30 kV. In order to reproduce this behaviour through Monte Carlo simulations, not only the ratio of the absorbed dose to alanine to the absorbed dose to water has to be known, but also the intrinsic efficiency, i.e. the dependence of the number of free radicals generated per unit of absorbed dose on the photon energy. This quantity is not yet accessible for the TW series.For a possible use of the alanine dosimeter for kilovoltage x-rays, for example in electronic brachytherapy, users should rely on the measured data for the relative response which have become available with this publication.

  5. The crystal structure of the D-alanine-D-alanine ligase from Acinetobacter baumannii suggests a flexible conformational change in the central domain before nucleotide binding.

    PubMed

    Huynh, Kim-Hung; Hong, Myoung-ki; Lee, Clarice; Tran, Huyen-Thi; Lee, Sang Hee; Ahn, Yeh-Jin; Cha, Sun-Shin; Kang, Lin-Woo

    2015-11-01

    Acinetobacter baumannii, which is emerging as a multidrug-resistant nosocomial pathogen, causes a number of diseases, including pneumonia, bacteremia, meningitis, and skin infections. With ATP hydrolysis, the D-alanine-D-alanine ligase (DDL) catalyzes the synthesis of D-alanyl-D-alanine, which is an essential component of bacterial peptidoglycan. In this study, we determined the crystal structure of DDL from A. baumannii (AbDDL) at a resolution of 2.2 Å. The asymmetric unit contained six protomers of AbDDL. Five protomers had a closed conformation in the central domain, while one protomer had an open conformation in the central domain. The central domain with an open conformation did not interact with crystallographic symmetry-related protomers and the conformational change of the central domain was not due to crystal packing. The central domain of AbDDL can have an ensemble of the open and closed conformations before the binding of substrate ATP. The conformational change of the central domain is important for the catalytic activity and the detail information will be useful for the development of inhibitors against AbDDL and putative antibacterial agents against A. baumannii. The AbDDL structure was compared with that of other DDLs that were in complex with potent inhibitors and the catalytic activity of AbDDL was confirmed using enzyme kinetics assays.

  6. Functional role of aspartic proteinase cathepsin D in insect metamorphosis

    PubMed Central

    Gui, Zhong Zheng; Lee, Kwang Sik; Kim, Bo Yeon; Choi, Yong Soo; Wei, Ya Dong; Choo, Young Moo; Kang, Pil Don; Yoon, Hyung Joo; Kim, Iksoo; Je, Yeon Ho; Seo, Sook Jae; Lee, Sang Mong; Guo, Xijie; Sohn, Hung Dae; Jin, Byung Rae

    2006-01-01

    Background Metamorphosis is a complex, highly conserved and strictly regulated development process that involves the programmed cell death of obsolete larval organs. Here we show a novel functional role for the aspartic proteinase cathepsin D during insect metamorphosis. Results Cathepsin D of the silkworm Bombyx mori (BmCatD) was ecdysone-induced, differentially and spatially expressed in the larval fat body of the final instar and in the larval gut of pupal stage, and its expression led to programmed cell death. Furthermore, BmCatD was highly induced in the fat body of baculovirus-infected B. mori larvae, suggesting that this gene is involved in the induction of metamorphosis of host insects infected with baculovirus. RNA interference (RNAi)-mediated BmCatD knock-down inhibited programmed cell death of the larval fat body, resulting in the arrest of larval-pupal transformation. BmCatD RNAi also inhibited the programmed cell death of larval gut during pupal stage. Conclusion Based on these results, we concluded that BmCatD is critically involved in the programmed cell death of the larval fat body and larval gut in silkworm metamorphosis. PMID:17062167

  7. Intentional overdose with insulin glargine and insulin aspart.

    PubMed

    Tofade, Toyin S; Liles, E Allen

    2004-10-01

    Reports of intentional massive overdoses of insulin are infrequent. A review of the literature revealed no reports of overdose attempts with either insulin glargine or insulin aspart. We report the case of a 33-year-old woman without diabetes mellitus who intentionally injected herself with an overdose of both products, which belonged to her husband. She arrived at the emergency department 15 hours after her suicide attempt, which took place the night before. Her husband had checked her blood glucose level throughout the night and had given her high-carbohydrate drinks and foods. The patient had a history of obsessive-compulsive disorder, major depression, and numerous suicide attempts. She recovered from the resulting hypoglycemia after 40 hours of dextrose infusion and was transferred to a mental health facility. The main danger associated with insulin overdose is the resultant hypoglycemia and its effects on the central nervous system; hypokalemia, hypophosphatemia, and hypomagnesemia also can develop with excess insulin administration. Dextrose infusion, with liberal oral intake when possible, and monitoring for electrolyte changes, making adjustments as needed, are recommended for the treatment of intentional insulin overdose.

  8. New paradigm for allosteric regulation of Escherichia coli aspartate transcarbamoylase.

    PubMed

    Cockrell, Gregory M; Zheng, Yunan; Guo, Wenyue; Peterson, Alexis W; Truong, Jennifer K; Kantrowitz, Evan R

    2013-11-12

    For nearly 60 years, the ATP activation and the CTP inhibition of Escherichia coli aspartate transcarbamoylase (ATCase) has been the textbook example of allosteric regulation. We present kinetic data and five X-ray structures determined in the absence and presence of a Mg(2+) concentration within the physiological range. In the presence of 2 mM divalent cations (Mg(2+), Ca(2+), Zn(2+)), CTP does not significantly inhibit the enzyme, while the allosteric activation by ATP is enhanced. The data suggest that the actual allosteric inhibitor of ATCase in vivo is the combination of CTP, UTP, and a divalent cation, and the actual allosteric activator is a divalent cation with ATP or ATP and GTP. The structural data reveals that two NTPs can bind to each allosteric site with a divalent cation acting as a bridge between the triphosphates. Thus, the regulation of ATCase is far more complex than previously believed and calls many previous studies into question. The X-ray structures reveal that the catalytic chains undergo essentially no alternations; however, several regions of the regulatory chains undergo significant structural changes. Most significant is that the N-terminal region of the regulatory chains exists in different conformations in the allosterically activated and inhibited forms of the enzyme. Here, a new model of allosteric regulation is proposed.

  9. Adsorption of Aspartic Acid onto Rutile: Implications for Biochirality

    NASA Astrophysics Data System (ADS)

    Estrada, C. F.; Jonsson, C. M.; Jonsson, C. L.; Sverjensky, D. A.; Hazen, R. M.

    2008-12-01

    Mineral surfaces may have facilitated the concentration and polymerization of simple biomolecules into macromolecules while promoting the development of biochirality. In this study, rutile and aspartic acid (Asp) were investigated as a possible system in this scenario. Batch adsorption experiments were performed to examine the adsorption of Asp as a function of total concentration and pH. A constant background electrolyte of 0.1 M NaCl was applied to the system, and all solutions were purged with argon gas to eliminate carbon dioxide contamination. Asp adsorbs onto rutile to the highest extent over the pH range 3-5.5 suggesting that an acidic environment is required for the adsorption between Asp and rutile to occur in significant amounts. This pH range of maximum adsorption is constrained between the isoelectric point of Asp and the point of zero charge of rutile, which indicates that electrostatic effects are influencing Asp adsorption. Both the L- and D- enantiomers of Asp were individually adsorbed onto the rutile surface to determine the potential of the system for chiral selection. Preliminary results indicate that D-Asp may possibly adsorb in greater amounts than L-Asp at higher Asp total concentrations. This trend is unexpected as the growth planes dominating the rutile are achiral, and a more thorough study is required to validate this difference in adsorption. Nevertheless, this result may provide insight on the emergence of chiral selection in macromolecules within what might be a predominantly achiral prebiotic system.

  10. Supermacroporous chemically cross-linked poly(aspartic acid) hydrogels.

    PubMed

    Gyarmati, Benjámin; Mészár, E Zsuzsanna; Kiss, Lóránd; Deli, Mária A; László, Krisztina; Szilágyi, András

    2015-08-01

    Chemically cross-linked poly(aspartic acid) (PASP) gels were prepared by a solid-liquid phase separation technique, cryogelation, to achieve a supermacroporous interconnected pore structure. The precursor polymer of PASP, polysuccinimide (PSI) was cross-linked below the freezing point of the solvent and the forming crystals acted as templates for the pores. Dimethyl sulfoxide was chosen as solvent instead of the more commonly used water. Thus larger temperatures could be utilized for the preparation and the drawback of increase in specific volume of water upon freezing could be eliminated. The morphology of the hydrogels was characterized by scanning electron microscopy and interconnectivity of the pores was proven by the small flow resistance of the gels. Compression tests also confirmed the interconnected porous structure and the complete re-swelling and shape recovery of the supermacroporous PASP hydrogels. The prepared hydrogels are of interest for several biomedical applications as scaffolding materials because of their cytocompatibility, controllable morphology and pH-responsive character.

  11. Fragmentation of α- and β-alanine molecules by ions at Bragg-peak energies

    NASA Astrophysics Data System (ADS)

    Bari, S.; Sobocinski, P.; Postma, J.; Alvarado, F.; Hoekstra, R.; Bernigaud, V.; Manil, B.; Rangama, J.; Huber, B.; Schlathölter, T.

    2008-02-01

    The interaction of keV He+, He2+, and O5+ ions with isolated α and β isomers of the amino acid alanine was studied by means of high resolution coincidence time-of-flight mass spectrometry. We observed a strong isomer dependence of characteristic fragmentation channels which manifests in strongly altered branching ratios. Despite the ultrashort initial perturbation by the incoming ion, evidence for molecular rearrangement leading to the formation of H3+ was found. The measured kinetic energies of ionic alanine fragments can be sufficient to induce secondary damage to DNA in a biological environment.

  12. On the fragmentation of biomolecules: Fragmentation of alanine dipeptide along the polypeptide chain

    SciTech Connect

    Solov'yov, I. A. Yakubovich, A. V.; Solov'yov, A. V.; Greiner, W.

    2006-09-15

    The interaction potential between amino acids in alanine dipeptide has been studied for the first time taking into account exact molecular geometry. Ab initio calculation has been performed in the framework of density functional theory taking into account all electrons in the system. The fragmentation of dipeptide along the polypeptide chain, as well as the interaction between alanines, has been considered. The energy of the system has been analyzed as a function of the distance between fragments for all possible dipeptide fragmentation channels. Analysis of the energy barriers makes it possible to estimate the characteristic fragmentation times and to determine the degree of applicability of classical electrodynamics for describing the system energy.

  13. Levels of enzymes in leukaemic mice treated withAeromonas L-asparaginase.

    PubMed

    Benny, P J; Muraleedhara Kurup, G; Sreejith, K

    1999-07-01

    L-asparaginase isolated in our laboratory fromAeromonas has been found to be antileukaemic. In the present study changes in the levels of serum enzymes in leukaemic mice and under treatment withAeromonas L-asparaginase has been compared. A significant increase in the levels of serum lactate dehydrogenase with tumour growth and a decrease during therapy was observed. A significant decrease in alanine transaminase activity during tumour growth and an increase during treatment was noticed. Increased levels of aspartate transaminase and alkaline phosphatase was observed during enzyme therapy. Total acid phosphatase was found to be increased during tumour growth and decreased considerably during treatment.

  14. Hepatoprotective and antioxidant effects of Hygrophila auriculata (K. Schum) Heine Acanthaceae root extract.

    PubMed

    Shanmugasundaram, P; Venkataraman, S

    2006-03-08

    Hygrophila auriculata (K. Schum) Heine (syn. Asteracantha longifolia Nees, Acanthaceae) was widely used in the Indian systems of medicine for the treatment of various liver ailments. The hepatoprotective activity of the aqueous extract of the roots was studied on CCl(4)-induced liver toxicity in rats. The activity was assessed by monitoring the various liver function tests, viz. alanine transaminase, aspartate transaminase (AST), alkaline phosphatase (ALP), total protein and total bilirubin. Furthermore, hepatic tissues were subjected to histopathological studies. The root extract was also studied for its in vitro antioxidant activity using ferric thiocyanate (FTC) and thiobarbituric acid (TBA) methods. The extract exhibited significant hepatoprotective and antioxidant activities.

  15. Hepatotoxicity due to Clindamycin in Combination with Acetaminophen in a 62-Year-Old African American Female: A Case Report and Review of the Literature

    PubMed Central

    Anusim, Nwabundo

    2016-01-01

    Clindamycin is a bacteriostatic lincosamide antibiotic with a broad spectrum. Side effects include nausea, vomiting, diarrhea, and metallic taste; however, hepatotoxicity is rare. The incidence is unknown. It is characterized by increases in aspartate and alanine transaminases. There may be no symptoms and the treatment is to stop the administration of clindamycin. We have described a 62-year-old African American female medicated with acetaminophen and clindamycin who had initially presented to the dental clinic for the evaluation of gum pain following tooth extraction. She had significantly increased levels of liver transaminases, which trended downwards on quitting the medication. PMID:27462474

  16. Anionic substitutes for catalytic aspartic acids in phosphoribulokinase.

    PubMed

    Runquist, Jennifer A; Miziorko, Henry M

    2002-09-15

    Mutagenic substitution of the invariant D42 and D169 residues in phosphoribulokinase (PRK) with amino acids that contain neutral side chains (e.g., alanine or asparagine) results in large decreases in catalytic efficiency (10(5)- and 10(4)-fold for replacement of D42 and D169, respectively). To further evaluate the importance of anionic side chains at residues 42 and 169, substitutions of glutamic acid (D42E, D169E) and cysteine (D42C and D169C in an otherwise cysteine-free protein) have been engineered. All purified mutant enzymes bind the fluorescent alternative substrate trinitrophenyl-ATP and the allosteric effector NADH similarly to wild-type PRK. For D42E and D42C, V(max) exhibits substantial decreases of 135- and 220-fold, respectively. Comparable substitutions for D169 result in smaller effects; D169E and D169C exhibit decreases in V(max) of 39- and 26-fold, respectively. Thus, regardless of the type of substitution, changes at D42 more profoundly affect catalytic rate than do comparable changes at D169. Precedent with enzymes in which cysteine replaces an acidic residue suggests that oxidation of the thiolate to a sulfinate can convert low-activity cysteine mutants into enzymes with improved activity. Periodate oxidation of cysteine-free PRK results in a slight decrease in activity. In contrast, comparable treatment of D42C and D169C proteins increases activity by 5- and 7-fold, respectively. Thus, for reasonably efficient catalysis, PRK requires anionic character in the side chains of residues 42 and 169. The enzyme can, however, tolerate substantial structural and chemical variability at these residues.

  17. N-Methyl-D-Aspartate Receptor Activation May Contribute to Glufosinate Neurotoxicity

    EPA Science Inventory

    N-Methyl-D-aspartate Receptor Activation May Contribute to Glufosinate Neurotoxicity Glufosinate (GLF) at high levels in mammals causes convulsions through a mechanism that is not completely understood. The structural similarity of GLF to glutamate (GLU) implicates the glutamate...

  18. Purification and characterization of aspartic protease derived from Sf9 insect cells.

    PubMed

    Gotoh, Takeshi; Ono, Hiroki; Kikuchi, Ken-Ichi; Nirasawa, Satoru; Takahashi, Saori

    2010-01-01

    An aspartic protease that is significantly produced by baculovirus-infected Spodoptera frugiperda Sf9 insect cells was purified to homogeneity from a growth medium. To monitor aspartic protease activity, an internally quenched fluoresce (IQF) substrate specific to cathepsin D was used. The purified aspartic protease showed a single protein band on SDS-PAGE with an apparent molecular mass of 40 kDa. The N-terminal amino acid sequence of the enzyme had a high homology to a Bombyx mori aspartic protease. The enzyme showed greatest affinity for the IQF substrate at pH 3.0 with a K(m) of 0.85 µM. The k(cat) and k(cat)/K(m) values were 13 s(-1) and 15 s(-1) µM(-1) respectively. Pepstatin A proved to be a potent competitive inhibitor with inhibitor constant, K(i), of 25 pM.

  19. New evidence for the antiquity of man in North America deduced from aspartic acid racemization.

    PubMed

    Bada, J L; Schroeder, R A; Carter, G F

    1974-05-17

    Ages of several Californzia Paleo-Indlian skeletons have been deduced from the extent of aspartic acid racemization. These dates suggest that man was present in North America at least 50,000 years before the present.

  20. Atomic resolution crystal structure of Sapp2p, a secreted aspartic protease from Candida parapsilosis.

    PubMed

    Dostál, Jiří; Pecina, Adam; Hrušková-Heidingsfeldová, Olga; Marečková, Lucie; Pichová, Iva; Řezáčová, Pavlina; Lepšík, Martin; Brynda, Jiří

    2015-12-01

    The virulence of the Candida pathogens is enhanced by the production of secreted aspartic proteases, which therefore represent possible targets for drug design. Here, the crystal structure of the secreted aspartic protease Sapp2p from Candida parapsilosis was determined. Sapp2p was isolated from its natural source and crystallized in complex with pepstatin A, a classical aspartic protease inhibitor. The atomic resolution of 0.83 Å allowed the protonation states of the active-site residues to be inferred. A detailed comparison of the structure of Sapp2p with the structure of Sapp1p, the most abundant C. parapsilosis secreted aspartic protease, was performed. The analysis, which included advanced quantum-chemical interaction-energy calculations, uncovered molecular details that allowed the experimentally observed equipotent inhibition of both isoenzymes by pepstatin A to be rationalized.

  1. Supporting Aspartate Biosynthesis Is an Essential Function of Respiration in Proliferating Cells.

    PubMed

    Sullivan, Lucas B; Gui, Dan Y; Hosios, Aaron M; Bush, Lauren N; Freinkman, Elizaveta; Vander Heiden, Matthew G

    2015-07-30

    Mitochondrial respiration is important for cell proliferation; however, the specific metabolic requirements fulfilled by respiration to support proliferation have not been defined. Here, we show that a major role of respiration in proliferating cells is to provide electron acceptors for aspartate synthesis. This finding is consistent with the observation that cells lacking a functional respiratory chain are auxotrophic for pyruvate, which serves as an exogenous electron acceptor. Further, the pyruvate requirement can be fulfilled with an alternative electron acceptor, alpha-ketobutyrate, which provides cells neither carbon nor ATP. Alpha-ketobutyrate restores proliferation when respiration is inhibited, suggesting that an alternative electron acceptor can substitute for respiration to support proliferation. We find that electron acceptors are limiting for producing aspartate, and supplying aspartate enables proliferation of respiration deficient cells in the absence of exogenous electron acceptors. Together, these data argue a major function of respiration in proliferating cells is to support aspartate synthesis.

  2. Chiral Asymmetric Structures in Aspartic Acid and Valine Crystals Assessed by Atomic Force Microscopy.

    PubMed

    Teschke, Omar; Soares, David Mendez

    2016-03-29

    Structures of crystallized deposits formed by the molecular self-assembly of aspartic acid and valine on silicon substrates were imaged by atomic force microscopy. Images of d- and l-aspartic acid crystal surfaces showing extended molecularly flat sheets or regions separated by single molecule thick steps are presented. Distinct orientation surfaces were imaged, which, combined with the single molecule step size, defines the geometry of the crystal. However, single molecule step growth also reveals the crystal chirality, i.e., growth orientations. The imaged ordered lattice of aspartic acid (asp) and valine (val) mostly revealed periodicities corresponding to bulk terminations, but a previously unreported molecular hexagonal lattice configuration was observed for both l-asp and l-val but not for d-asp or d-val. Atomic force microscopy can then be used to identify the different chiral forms of aspartic acid and valine crystals.

  3. Aspartic Acid Racemization and Age-Depth Relationships for Organic Carbon in Siberian Permafrost

    NASA Astrophysics Data System (ADS)

    Brinton, Karen L. F.; Tsapin, Alexandre I.; Gilichinsky, David; McDonald, Gene D.

    2002-03-01

    We have analyzed the degree of racemization of aspartic acid in permafrost samples from Northern Siberia, an area from which microorganisms of apparent ages up to a few million years have previously been isolated and cultured. We find that the extent of aspartic acid racemization in permafrost cores increases very slowly up to an age of ~25,000 years (around 5 m in depth). The apparent temperature of racemization over the age range of 0-25,000 years, determined using measured aspartic acid racemization rate constants, is -19°C. This apparent racemization temperature is significantly lower than the measured environmental temperature (-11 to -13°C) and suggests active recycling of D-aspartic acid in Siberian permafrost up to an age of around 25,000 years. This indicates that permafrost organisms are capable of repairing some molecular damage incurred while in a "dormant" state over geologic time.

  4. Aspartate oxidase plays an important role in Arabidopsis stomatal immunity.

    PubMed

    Macho, Alberto P; Boutrot, Freddy; Rathjen, John P; Zipfel, Cyril

    2012-08-01

    Perception of pathogen-associated molecular patterns (PAMPs), such as bacterial flagellin (or the peptide flg22), by surface-localized receptors activates defense responses and subsequent immunity. In a previous forward-genetic screen aimed at the identification of Arabidopsis (Arabidopsis thaliana) flagellin-insensitive (fin) mutants, we isolated fin4, which is severely affected in flg22-triggered reactive oxygen species (ROS) bursts. Here, we report that FIN4 encodes the chloroplastic enzyme ASPARTATE OXIDASE (AO), which catalyzes the first irreversible step in the de novo biosynthesis of NAD. Genetic studies on the role of NAD have been hindered so far by the lethality of null mutants in NAD biosynthetic enzymes. Using newly identified knockdown fin alleles, we found that AO is required for the ROS burst mediated by the NADPH oxidase RBOHD triggered by the perception of several unrelated PAMPs. AO is also required for RBOHD-dependent stomatal closure. However, full AO activity is not required for flg22-induced responses that are RBOHD independent. Interestingly, although the fin4 mutation dramatically affects RBOHD function, it does not affect functions carried out by other members of the RBOH family, such as RBOHC and RBOHF. Finally, we determined that AO is required for stomatal immunity against the bacterium Pseudomonas syringae. Altogether, our work reveals a novel specific requirement for AO activity in PAMP-triggered RBOHD-dependent ROS burst and stomatal immunity. In addition, the availability of viable mutants for the chloroplastic enzyme AO will enable future detailed studies on the role of NAD metabolism in different cellular processes, including immunity, in Arabidopsis.

  5. Pharmacology of Triheteromeric N-Methyl-D-Aspartate Receptors

    PubMed Central

    Cheriyan, John; Balsara, Rashna D.; Hansen, Kasper B.; Castellino, Francis J.

    2016-01-01

    The N-Methyl-D-Aspartate Receptors (NMDARs) are heteromeric cation channels involved in learning, memory, and synaptic plasticity, and their dysregulation leads to various neurodegenerative disorders. Recent evidence has shown that apart from the GluN1/GluN2A and GluN1/GluN2B diheteromeric ion channels, the NMDAR also exists as a GluN1/GluN2A/GluN2B triheteromeric channel that occupies the majority of the synaptic space. These GluN1/GluN2A/GluN2B triheteromers exhibit pharmacological and electrophysiological properties that are distinct from the GluN1/GluN2A and GluN1/GluN2B diheteromeric subtypes. However, these receptors have not been characterized with regards to their inhibition by conantokins, as well as their allosteric modulation by polyamines and extracellular protons. Here, we show that the GluN1/GluN2A/GluN2B triheteromeric channels showed less sensitivity to GluN2B-specific conantokin (con)-G and con-RlB, and subunit non-specific con-T, compared to the GluN2A-specific inhibitor TCN-201. Also, spermine modulation of GluN1/GluN2A/GluN2B triheteromers switched its nature from potentiation to inhibition in a pH dependent manner, and was 2.5-fold slower compared to the GluN1/GluN2B diheteromeric channels. Unraveling the distinctive functional attributes of the GluN1/GluN2A/GluN2B triheteromers is physiologically relevant since they form an integral part of the synapse, which will aid in understanding spermine/pH-dependent potentiation of these receptors in pathological settings. PMID:26917100

  6. Motor axon synapses on renshaw cells contain higher levels of aspartate than glutamate.

    PubMed

    Richards, Dannette S; Griffith, Ronald W; Romer, Shannon H; Alvarez, Francisco J

    2014-01-01

    Motoneuron synapses on spinal cord interneurons known as Renshaw cells activate nicotinic, AMPA and NMDA receptors consistent with co-release of acetylcholine and excitatory amino acids (EAA). However, whether these synapses express vesicular glutamate transporters (VGLUTs) capable of accumulating glutamate into synaptic vesicles is controversial. An alternative possibility is that these synapses release other EAAs, like aspartate, not dependent on VGLUTs. To clarify the exact EAA concentrated at motor axon synapses we performed a quantitative postembedding colloidal gold immunoelectron analysis for aspartate and glutamate on motor axon synapses (identified by immunoreactivity to the vesicular acetylcholine transporter; VAChT) contacting calbindin-immunoreactive (-IR) Renshaw cell dendrites. The results show that 71% to 80% of motor axon synaptic boutons on Renshaw cells contained aspartate immunolabeling two standard deviations above average neuropil labeling. Moreover, VAChT-IR synapses on Renshaw cells contained, on average, aspartate immunolabeling at 2.5 to 2.8 times above the average neuropil level. In contrast, glutamate enrichment was lower; 21% to 44% of VAChT-IR synapses showed glutamate-IR two standard deviations above average neuropil labeling and average glutamate immunogold density was 1.7 to 2.0 times the neuropil level. The results were not influenced by antibody affinities because glutamate antibodies detected glutamate-enriched brain homogenates more efficiently than aspartate antibodies detecting aspartate-enriched brain homogenates. Furthermore, synaptic boutons with ultrastructural features of Type I excitatory synapses were always labeled by glutamate antibodies at higher density than motor axon synapses. We conclude that motor axon synapses co-express aspartate and glutamate, but aspartate is concentrated at higher levels than glutamate.

  7. Aspartic peptidases of human pathogenic trypanosomatids: perspectives and trends for chemotherapy.

    PubMed

    Santos, L O; Garcia-Gomes, A S; Catanho, M; Sodre, C L; Santos, A L S; Branquinha, M H; d'Avila-Levy, C M

    2013-01-01

    Aspartic peptidases are proteolytic enzymes present in many organisms like vertebrates, plants, fungi, protozoa and in some retroviruses such as human immunodeficiency virus (HIV). These enzymes are involved in important metabolic processes in microorganisms/virus and play major roles in infectious diseases. Although few studies have been performed in order to identify and characterize aspartic peptidase in trypanosomatids, which include the etiologic agents of leishmaniasis, Chagas' disease and sleeping sickness, some beneficial properties of aspartic peptidase inhibitors have been described on fundamental biological events of these pathogenic agents. In this context, aspartic peptidase inhibitors (PIs) used in the current chemotherapy against HIV (e.g., amprenavir, indinavir, lopinavir, nelfinavir, ritonavir and saquinavir) were able to inhibit the aspartic peptidase activity produced by different species of Leishmania. Moreover, the treatment of Leishmania promastigotes with HIV PIs induced several perturbations on the parasite homeostasis, including loss of the motility and arrest of proliferation/growth. The HIV PIs also induced an increase in the level of reactive oxygen species and the appearance of irreversible morphological alterations, triggering parasite death pathways such as programed cell death (apoptosis) and uncontrolled autophagy. The blockage of physiological parasite events as well as the induction of death pathways culminated in its incapacity to adhere, survive and escape of phagocytic cells. Collectively, these results support the data showing that parasites treated with HIV PIs have a significant reduction in the ability to cause in vivo infection. Similarly, the treatment of Trypanosoma cruzi cells with pepstatin A showed a significant inhibition on both aspartic peptidase activity and growth as well as promoted several and irreversible morphological changes. These studies indicate that aspartic peptidases can be promising targets in

  8. Aspartic Peptidases of Human Pathogenic Trypanosomatids: Perspectives and Trends for Chemotherapy

    PubMed Central

    Santos, L.O.; Garcia-Gomes, A.S.; Catanho, M.; Sodré, C.L.; Santos, A.L.S.; Branquinha, M.H.; d’Avila-Levy, C.M.

    2013-01-01

    Aspartic peptidases are proteolytic enzymes present in many organisms like vertebrates, plants, fungi, protozoa and in some retroviruses such as human immunodeficiency virus (HIV). These enzymes are involved in important metabolic processes in microorganisms/virus and play major roles in infectious diseases. Although few studies have been performed in order to identify and characterize aspartic peptidase in trypanosomatids, which include the etiologic agents of leishmaniasis, Chagas’ disease and sleeping sickness, some beneficial properties of aspartic peptidase inhibitors have been described on fundamental biological events of these pathogenic agents. In this context, aspartic peptidase inhibitors (PIs) used in the current chemotherapy against HIV (e.g., amprenavir, indinavir, lopinavir, nelfinavir, ritonavir and saquinavir) were able to inhibit the aspartic peptidase activity produced by different species of Leishmania. Moreover, the treatment of Leishmania promastigotes with HIV PIs induced several perturbations on the parasite homeostasis, including loss of the motility and arrest of proliferation/growth. The HIV PIs also induced an increase in the level of reactive oxygen species and the appearance of irreversible morphological alterations, triggering parasite death pathways such as programed cell death (apoptosis) and uncontrolled autophagy. The blockage of physiological parasite events as well as the induction of death pathways culminated in its incapacity to adhere, survive and escape of phagocytic cells. Collectively, these results support the data showing that parasites treated with HIV PIs have a significant reduction in the ability to cause in vivo infection. Similarly, the treatment of Trypanosoma cruzi cells with pepstatin A showed a significant inhibition on both aspartic peptidase activity and growth as well as promoted several and irreversible morphological changes. These studies indicate that aspartic peptidases can be promising targets in

  9. The standard enthalpies of formation of crystalline N-(carboxymethyl)aspartic acid and its aqueous solutions

    NASA Astrophysics Data System (ADS)

    Lytkin, A. I.; Chernyavskaya, N. V.; Volkov, A. V.; Nikol'Skii, V. M.

    2007-07-01

    The energy of combustion of N-(carboxymethyl)aspartic acid (CMAA) was determined by bomb calorimetry in oxygen. The standard enthalpies of combustion and formation of crystalline N-(carboxymethyl)aspartic acid were calculated. The heat effects of solution of crystalline CMAA in water and a solution of sodium hydroxide were measured at 298.15 K by direct calorimetry. The standard enthalpies of formation of CMAA and its dissociation products in aqueous solution were determined.

  10. Infrared and Raman spectra of DL-aspartic acid nitrate monohydrate

    NASA Astrophysics Data System (ADS)

    Rajkumar, B. J. M.; Ramakrishnan, V.; Rajaram, R. K.

    1998-09-01

    Infrared and Raman spectral studies of DL-aspartic acid nitrate monohydrate help to determine the influence of extensive intermolecular hydrogen bonding in the aspartic acid crystal. The presence of the carbonyl rather than the carboxylic group indicates that the molecule is ionic. The shifting of several group frequencies in the molecule confirms extensive hydrogen bonding. The anion fundamentals however continue to be degenerate. This indicates that its symmetry is unaffected in the molecule.

  11. Effects of glycine, beta-alanine and diazepam upon morphine-tolerant-dependent mice.

    PubMed

    Contreras, E; Tamayo, L

    1980-05-01

    The effects in mice of glycine, beta-alanine and diazepam on the analgesic response to morphine, on the intensity of tolerance and on the physical dependence on the analgesic have been examined. The two amino acids increased the analgesic response to morphine in a dose-related manner. However, both compounds were ineffective in the analgesic test (hot plate) when administered without morphine. Diazepam was ineffective in the analgesic test and it did not alter morphine analgesia, except when administered in a high dose which decreased and analgesic response. Glycine, either in single or repeated doses, did not modify tolerance to morphine, whereas beta-alanine induced a dose-related partial antagonism, which promptly reached a plateau. Diazepam induced a small decrease in the intensity of tolerance to the analgesic. The abstinence syndrome to morphine, induced by naloxone administration to primed mice, was reduced by single doses of glycine or beta-alanine. Diazepam behaved as a weak inhibitor of the abstinence syndrome when administered at a high dose. The potentiation of morphine analgesia and the antagonism of the abstinence syndrome induced by the amino acids may be related to their hyperpolarizing action in the c.n. system. The effects of beta-alanine on morphine tolerance cannot be explained by the same mechanism.

  12. High-velocity intermittent running: effects of beta-alanine supplementation.

    PubMed

    Smith-Ryan, Abbie E; Fukuda, David H; Stout, Jeffrey R; Kendall, Kristina L

    2012-10-01

    The use of β-alanine in sport is widespread. However, the effects across all sport activities are inconclusive. The purpose of this study was to evaluate the effects of β-alanine supplementation on high-intensity running performance and critical velocity (CV) and anaerobic running capacity (ARC). Fifty recreationally trained men were randomly assigned, in a double-blind fashion, to a β-alanine group (BA, 2 × 800 mg tablets, 3 times daily; CarnoSyn; n = 26) or placebo group (PL, 2 × 800 mg maltodextrin tablets, 3 times daily; n = 24). A graded exercise test (GXT) was performed to establish peak velocity (PV). Three high-speed runs to exhaustion were performed at 110, 100, and 90% of PV, with 15 minutes of rest between bouts. The distances achieved were plotted over the time to exhaustion (TTE). Linear regression was used to determine the slope (CV) and y-intercept (ARC) of these relationships to assess aerobic and anaerobic performances, respectively. There were no significant treatment effects (p > 0.05) on CV or ARC for either men or women. Additionally, no TTE effects were evident for bouts at 90-110%PV lasting 1.95-5.06 minutes. There seems to be no ergogenic effect of β-alanine supplementation on CV, ARC, or high-intensity running lasting approximately 2-5 minutes in either men or women in the current study.

  13. Protein Homeostasis Defects of Alanine-Glyoxylate Aminotransferase: New Therapeutic Strategies in Primary Hyperoxaluria Type I

    PubMed Central

    Pey, Angel L.; Albert, Armando; Salido, Eduardo

    2013-01-01

    Alanine-glyoxylate aminotransferase catalyzes the transamination between L-alanine and glyoxylate to produce pyruvate and glycine using pyridoxal 5′-phosphate (PLP) as cofactor. Human alanine-glyoxylate aminotransferase is a peroxisomal enzyme expressed in the hepatocytes, the main site of glyoxylate detoxification. Its deficit causes primary hyperoxaluria type I, a rare but severe inborn error of metabolism. Single amino acid changes are the main type of mutation causing this disease, and considerable effort has been dedicated to the understanding of the molecular consequences of such missense mutations. In this review, we summarize the role of protein homeostasis in the basic mechanisms of primary hyperoxaluria. Intrinsic physicochemical properties of polypeptide chains such as thermodynamic stability, folding, unfolding, and misfolding rates as well as the interaction of different folding states with protein homeostasis networks are essential to understand this disease. The view presented has important implications for the development of new therapeutic strategies based on targeting specific elements of alanine-glyoxylate aminotransferase homeostasis. PMID:23956997

  14. Beta-alanine/alpha-ketoglutarate aminotransferase for 3-hydroxypropionic acid production

    DOEpatents

    Jessen, Holly Jean [Chanhassen, MN; Liao, Hans H [Eden Prairie, MN; Gort, Steven John [Apple Valley, MN; Selifonova, Olga V [Plymouth, MN

    2011-10-04

    The present disclosure provides novel beta-alanine/alpha ketoglutarate aminotransferase nucleic acid and protein sequences having increased biological activity. Also provided are cells containing such enzymes, as well as methods of their use, for example to produce malonyl semialdehyde and downstream products thereof, such as 3-hydroxypropionic acid and derivatives thereof.

  15. Influence of beta-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity.

    PubMed

    Hill, C A; Harris, R C; Kim, H J; Harris, B D; Sale, C; Boobis, L H; Kim, C K; Wise, J A

    2007-02-01

    Muscle carnosine synthesis is limited by the availability of beta-alanine. Thirteen male subjects were supplemented with beta-alanine (CarnoSyn) for 4 wks, 8 of these for 10 wks. A biopsy of the vastus lateralis was obtained from 6 of the 8 at 0, 4 and 10 wks. Subjects undertook a cycle capacity test to determine total work done (TWD) at 110% (CCT(110%)) of their maximum power (Wmax). Twelve matched subjects received a placebo. Eleven of these completed the CCT(110%) at 0 and 4 wks, and 8, 10 wks. Muscle biopsies were obtained from 5 of the 8 and one additional subject. Muscle carnosine was significantly increased by +58.8% and +80.1% after 4 and 10 wks beta-alanine supplementation. Carnosine, initially 1.71 times higher in type IIa fibres, increased equally in both type I and IIa fibres. No increase was seen in control subjects. Taurine was unchanged by 10 wks of supplementation. 4 wks beta-alanine supplementation resulted in a significant increase in TWD (+13.0%); with a further +3.2% increase at 10 wks. TWD was unchanged at 4 and 10 wks in the control subjects. The increase in TWD with supplementation followed the increase in muscle carnosine.

  16. Partial enzymatic elimination and quantification of sarcosine from alanine using liquid chromatography-tandem mass spectrometry.

    PubMed

    Burton, Casey; Gamagedara, Sanjeewa; Ma, Yinfa

    2013-04-01

    Since sarcosine and D,L-alanine co-elute on reversed-phase high-performance liquid chromatography (HPLC) columns and the tandem mass spectrometer cannot differentiate them due to equivalent parent and fragment ions, derivatization is often required for analysis of sarcosine in LC/MS systems. This study offers an alternative to derivatization by employing partial elimination of sarcosine by enzymatic oxidation. The decrease in apparent concentration from the traditionally merged sarcosine-alanine peak associated with the enzymatic elimination has been shown to be proportional to the total sarcosine present (R(2) = 0.9999), allowing for determinations of urinary sarcosine. Sarcosine oxidase was shown to eliminate only sarcosine in the presence of D,L-alanine, and was consequently used as the selective enzyme. This newly developed technique has a method detection limit of 1 μg/L (parts per billion) with a linear range of 3 ppb-1 mg/L (parts per million) in urine matrices. The method was further validated through spiked recoveries of real urine samples, as well as the analysis of 35 real urine samples. The average recoveries for low, middle, and high sarcosine concentration spikes were 111.7, 90.8, and 90.1 %, respectively. In conclusion, this simple enzymatic approach coupled with HPLC/MS/MS is able to resolve sarcosine from D,L-alanine leading to underivatized quantification of sarcosine.

  17. Synthesis, characterization, and biocompatible properties of alanine-grafted chitosan copolymers.

    PubMed

    Park, Gyu Han; Kang, Min-Sil; Knowles, Jonathan C; Gong, Myoung-Seon

    2016-04-01

    In order to overcome major problems regarding the lack of affinity to solvents and limited reactivity of the free amines of chitosan, introduction of appropriate spacer arms having terminal amine function is considered of interest. L-Alanine-N-carboxyanhydride was grafted onto chitosan via anionic ring-opening polymerization. The chemical and structural characterizations of L-alanine-grafted chitosan (Ala-g-Cts) were confirmed through Fourier transform infrared spectroscopy and proton nuclear magnetic resonance spectroscopy ((1)H NMR). In addition, the viscoelastic properties of Ala-g-Cts were examined by means of a rotational viscometer, and thermal analysis was carried out with a thermogravimetric analyzer and differential scanning calorimetry. Morphological changes in the chitosan L-alanine moiety were determined by x-ray diffraction. To determine the feasibility of using these films as biomedical materials, we investigated the effects of their L-alanine content on physical and mechanical properties. The biodegradation results of crosslinked Ala-g-Cts films were evaluated in phosphate-buffered solution containing lysozyme at 37℃. Proliferation of MC3T3-E1 cells on crosslinked Ala-g-Cts films was also investigated with use of the CCK-8 assay.

  18. Effect of alpha interferon on glucose and alanine transport by rat renal brush border membrane vesicles

    SciTech Connect

    Batuman, V.; Chadha, I. New Jersey Medical School, Newark )

    1990-01-01

    To investigate the pathogenetic mechanisms of interferon nephrotoxicity, we studied the effect of recombinant interferon alfa-2b on the uptake of {sup 14}C-D-glucose and {sup 14}C-L-alanine by rat renal brush-border-membrane vesicles. Interferon significantly inhibited 20 sec. sodium-dependent and 5 and 10 min. equilibrium uptake of both glucose and alanine. The inhibitory effect was dose dependent with maximum effect achieved at interferon concentration of 5 {times} 10{sup {minus}8}M in the uptake media. The half-maximal inhibitory concentrations, IC{sub 50}, of interferon on glucose uptake was 1.8 {times} 10{sup {minus}8}M, and 5.4 {times} 10{sup {minus}9}M on alanine uptake. Dixon plot analysis of uptake data was consistent with pure non-competitive inhibition. The inhibition constants, K{sub i}, 1.5 {times} 10{sup {minus}8}M for glucose uptake, and 7.3 {times} 10{sup {minus}9}M for alanine uptake, derived from Dixon plots were in close agreement with the IC{sub 50}s calculated from the semilog dose response curves. These observations reveal that direct interactions at the proximal tubule cell membrane are involved in the pathogenesis of interferon nephrotoxicity, and that its mechanism of nephrotoxicity is similar to that of other low molecular weight proteins.

  19. Investigation on physical properties of L-alanine: An effect of Methylene blue dye

    NASA Astrophysics Data System (ADS)

    Shkir, Mohd.; Yahia, I. S.; Al-Qahtani, A. M. A.; Ganesh, V.; AlFaify, S.

    2017-03-01

    In the present investigation, a bulk size (35 mm × 25 mm × 15 mm) single crystal of 0.1 wt% Methylene blue dye (MLB) added L-alanine is grown at room temperature using solution technique for the first time. The L-alanine crystals with higher concentrations of dye (0.5 and 1 wt%) were also grown. Solubility study was performed at different temperatures. Structural, vibrational and good quality was inveterate by powder XRD, FT-Raman and SEM analyses. High transmittance in dyed crystals was confirmed. The presence of MLB dye was confirmed by an absorption band centered at 650 nm. Optical band gap was calculated for pure and dyed L-alanine crystals and found to be 5.45 and 4.49 eV respectively. Photoluminescence intensity of UV-A emission band centered at 332 nm was found to be enhanced due to the presence of dye. The dielectric measurement was done in the wide frequency range. Furthermore, the third order nonlinear optical parameters are enhanced in dyed L-alanine crystals determined by Z-scan technique.

  20. Positron and electron scattering by glycine and alanine: Shape resonances and methylation effect

    NASA Astrophysics Data System (ADS)

    Nunes, Fernanda B.; Bettega, Márcio H. F.; Sanchez, Sergio d'Almeida

    2016-12-01

    We report integral cross sections (ICSs) for both positron and electron scattering by glycine and alanine amino acids. These molecules differ only by a methyl group. We computed the scattering cross sections using the Schwinger multichannel method for both glycine and alanine in different levels of approximation for both projectiles. The alanine ICSs are greater in magnitude than the glycine ICSs for both positron and electron scattering, probably due to the larger size of the molecule. In electron scattering calculations, we found two resonances for each molecule. Glycine presents one at 1.8 eV, and another centered at around 8.5 eV, in the static-exchange plus polarization (SEP) approximation. The ICS for alanine shows one resonance at 2.5 eV and another at around 9.5 eV, also in SEP approximation. The results are in good agreement with most of the data present in the literature. The comparison of the electron scattering ICSs for both molecules indicates that the methylation of glycine destabilizes the resonances, shifting them to higher energies.

  1. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  2. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  3. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  4. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  5. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  6. Synthesis of silver nanoparticles using DL-alanine for ESR dosimetry applications

    NASA Astrophysics Data System (ADS)

    Guidelli, Eder José; Ramos, Ana Paula; Zaniquelli, Maria Elisabete D.; Nicolucci, Patricia; Baffa, Oswaldo

    2012-03-01

    The potential use of alanine for the production of nanoparticles is presented here for the first time. Silver nanoparticles were synthesized using a simple green method, namely the thermal treatment of silver nitrate aqueous solutions with DL-alanine. The latter compound was employed both as a reducing and a capping agent. Particles with average size equal to 7.5 nm, face-centered cubic crystalline structure, narrow size distribution, and spherical shape were obtained. Interaction between the silver ions present on the surface of the nanoparticles and the amine group of the DL-alanine molecule seems to be responsible for reduction of the silver ions and for the stability of the colloid. The bio-hybrid nano-composite was used as an ESR dosimeter. The amount of silver nanoparticles in the nanocomposite was not sufficient to cause considerable loss of tissue equivalency. Moreover, the samples containing nanoparticles presented increased sensitivity and reduced energetic dependence as compared with pure DL-alanine, contributing to the construction of small-sized dosimeters.

  7. Growth and characterization of pure and semiorganic nonlinear optical Lithium Sulphate admixtured l-alanine crystal

    NASA Astrophysics Data System (ADS)

    Vela, T.; Selvarajan, P.; Freeda, T. H.; Balasubramanian, K.

    2013-04-01

    Lithium sulphate admixtured l-alanine (LSLA) salt was synthesized and the solubility of the commercially available l-alanine and the synthesized LSLA sample was determined in de-ionized water at various temperatures. In accordance with the solubility data, the saturated aqueous solutions of l-alanine and lithium admixtured l-alanine were prepared separately and the single crystals of the samples were grown by the solution method with a slow evaporation technique. Studying single x-ray diffraction shows that pure and LSLA crystal belong to the orthorhombic system with a non-centrosymmetric space group P212121. Using the powder x-ray diffraction study, the crystallinity of the grown crystals is confirmed and the diffraction peaks are indexed. The various functional groups present in the pure and LSLA crystal are elucidated from Fourier transform infrared spectroscopy study. UV-visible transmittance is recorded to study the optical transmittance range for the grown crystals. The powder second harmonic generation test confirms the nonlinear optical property of the grown crystals. From the microhardness test, the hardness of the grown crystals is estimated. The dielectric behaviour, such as the dielectric constant and the loss of the sample, are measured as a function of temperature and frequency. The ac conductivity of the grown crystals is also studied and the activation energy is calculated.

  8. [Temperature-dependent optical activity and birefringence study of D-alanine single crystal].

    PubMed

    Li, Zong-Sheng; Gong, Yan; Wang, Wen-Qing; Du, Wei-Min

    2006-02-01

    The measurement of the anisotropy of optical acitivity and birefringence is one of the most important clues to studying physical properties of a biaxial crystal of D-alanine. In order to investigate a second-order phase transition predicted by A. Salam between two states of D-alanine, the behavior of birefringence and optical activity is useful for the phenomenological approach to the transition mechanism. The optical activity as a peculiar quantity can respond to the modulation of the crystal lattice and to the change in the bonding nature of constituent atoms. In the present paper, the authors use the PEM-90 photoelastic modulator to study the conformation change of D-alanine at the temperature ranging from 220 to 290 K. The temperature dependence of I(2f)/I(dc) showed that the conformation of D-alanine molecule in single crystal changed around 250 K. The obtained results provide an obvious evidence of optical rotation phase transition predicted by Salam.

  9. Probing the interaction of the amino acid alanine with the surface of ZnO(1010).

    PubMed

    Gao, Y K; Traeger, F; Shekhah, O; Idriss, H; Wöll, C

    2009-10-01

    The adsorption modes and stability of the amino acid alanine (NH(2)-CH(CH(3))-COOH) have been studied on the nonpolar single crystal surface of zinc oxide, ZnO(1010), experimentally by X-ray photoelectron spectroscopy (XPS) and computationally using density functional theory (DFT). Deposition at 200 K was found to lead to the formation of multilayers identified by an XPS N1s peak at 401.7 eV assigned to the NH(3)(+) group, a fingerprint of the zwitterionic structure of alanine in the solid state. Heating to 300 K resulted in the removal of most of the multilayers with the remaining surface coverage estimated to 0.4 with respect to Zn cations. At this temperature most of the alanine molecules are found to be deprotonated (dissociated), yielding a carboxylate species (NH(2)-CH(CH(3))-COO(-) (a) + OH (s); where O is surface oxygen, (a) for adsorbed and (s) for surface species). Further heating of the surface resulted in a gradual decrease of the surface coverage and by 500 K a large fraction of adsorbed alanine molecules have desorbed from the surface. Total energy DFT computations of different adsorbate species identified two stable dissociative adsorption modes: bidentate and monodentate. The bidentate species with adsorption energy of 1.75 eV was found to be more stable than the monodentate species by about 0.7 eV.

  10. Spectral characterization of a non-centrosymmetric organic compound: D-(-)-alanine

    NASA Astrophysics Data System (ADS)

    Moovendaran, K.; Martin Britto Dhas, S. A.; Natarajan, S.

    2013-08-01

    The crystal growth of D-(-)-alanine (1), a non-centrosymmetric solid is reported. It was characterized by NMR, infrared, Raman, UV-Vis-NIR and CD spectra. Experimental vibrational frequencies are compared with theoretically calculated values. Second harmonic generation (SHG) and first hyperpolarizability measurements are reported.

  11. Spectral characterization of a non-centrosymmetric organic compound: D-(-)-alanine.

    PubMed

    Moovendaran, K; Martin Britto Dhas, S A; Natarajan, S

    2013-08-01

    The crystal growth of D-(-)-alanine (1), a non-centrosymmetric solid is reported. It was characterized by NMR, infrared, Raman, UV-Vis-NIR and CD spectra. Experimental vibrational frequencies are compared with theoretically calculated values. Second harmonic generation (SHG) and first hyperpolarizability measurements are reported.

  12. Beta-alanine/alpha-ketoglutarate aminotransferase for 3-hydroxypropionic acid production

    SciTech Connect

    Jessen, Holly Jean; Liao, Hans H; Gort, Steven John; Selifonova, Olga V

    2014-11-18

    The present disclosure provides novel beta-alanine/alpha ketoglutarate aminotransferase nucleic acid and protein sequences having increased biological activity. Also provided are cells containing such enzymes, as well as methods of their use, for example to produce malonyl semialdehyde and downstream products thereof, such as 3-hydroxypropionic acid and derivatives thereof.

  13. Effects of endogenous D-alanine synthesis and autoinhibition of Bacillus anthracis germination on in vitro and in vivo infections.

    PubMed

    McKevitt, Matthew T; Bryant, Katie M; Shakir, Salika M; Larabee, Jason L; Blanke, Steven R; Lovchik, Julie; Lyons, C Rick; Ballard, Jimmy D

    2007-12-01

    Bacillus anthracis transitions from a dormant spore to a vegetative bacillus through a series of structural and biochemical changes collectively referred to as germination. The timing of germination is important during early steps in infection and may determine if B. anthracis survives or succumbs to responsive macrophages. In the current study experiments determined the contribution of endogenous D-alanine production to the efficiency and timing of B. anthracis spore germination under in vitro and in vivo conditions. Racemase-mediated production of endogenous D-alanine by B. anthracis altered the kinetics for initiation of germination over a range of spore densities and exhibited a threshold effect wherein small changes in spore number resulted in major changes in germination efficiency. This threshold effect correlated with D-alanine production, was prevented by an alanine racemase inhibitor, and required L-alanine. Interestingly, endogenous production of inhibitory levels of D-alanine was detected under experimental conditions that did not support germination and in a germination-deficient mutant of B. anthracis. Racemase-dependent production of D-alanine enhanced survival of B. anthracis during interaction with murine macrophages, suggesting a role for inhibition of germination during interaction with these cells. Finally, in vivo experiments revealed an approximately twofold decrease in the 50% lethal dose of B. anthracis spores administered in the presence of D-alanine, indicating that rates of germination may be directly influenced by the levels of this amino acid during early stages of disease.

  14. Knockout of the alanine racemase gene in Aeromonas hydrophila HBNUAh01 results in cell wall damage and enhanced membrane permeability.

    PubMed

    Liu, Dong; Zhang, Lu; Xue, Wen; Wang, Yaping; Ju, Jiansong; Zhao, Baohua

    2015-07-01

    This study focused on the alanine racemase gene (alr-2), which is involved in the synthesis of d-alanine that forms the backbone of the cell wall. A stable alr-2 knockout mutant of Aeromonas hydrophila HBNUAh01 was constructed. When the mutant was supplemented with d-alanine, growth was unaffected; deprivation of d-alanine caused the growth arrest of the starved mutant cells, but not cell lysis. No alanine racemase activity was detected in the culture of the mutant. Additionally, a membrane permeability assay showed increasing damage to the cell wall during d-alanine starvation. No such damage was observed in the wild type during culture. Scanning and transmission electron microscopy analyses revealed deficiencies of the cell envelope and perforation of the cell wall. Leakage of UV-absorbing substances from the mutants was also observed. Thus, the partial viability of the mutants and their independence of d-alanine for growth indicated that inactivation of alr-2 does not impose an auxotrophic requirement for d-alanine.

  15. Lowered circulating aspartate is a metabolic feature of human breast cancer

    PubMed Central

    Xie, Guoxiang; Zhou, Bingsen; Zhao, Aihua; Qiu, Yunping; Zhao, Xueqing; Garmire, Lana; Shvetsov, Yurii B.; Yu, Herbert; Yen, Yun; Jia, Wei

    2015-01-01

    Distinct metabolic transformation is essential for cancer cells to sustain a high rate of proliferation and resist cell death signals. Such a metabolic transformation results in unique cellular metabolic phenotypes that are often reflected by distinct metabolite signatures in tumor tissues as well as circulating blood. Using a metabolomics platform, we find that breast cancer is associated with significantly (p = 6.27E-13) lowered plasma aspartate levels in a training group comprising 35 breast cancer patients and 35 controls. The result was validated with 103 plasma samples and 183 serum samples of two groups of primary breast cancer patients. Such a lowered aspartate level is specific to breast cancer as it has shown 0% sensitivity in serum from gastric (n = 114) and colorectal (n = 101) cancer patients. There was a significantly higher level of aspartate in breast cancer tissues (n = 20) than in adjacent non-tumor tissues, and in MCF-7 breast cancer cell line than in MCF-10A cell lines, suggesting that the depleted level of aspartate in blood of breast cancer patients is due to increased tumor aspartate utilization. Together, these findings suggest that lowed circulating aspartate is a key metabolic feature of human breast cancer. PMID:26452258

  16. Hydrolysis of aspartic acid phosphoramidate nucleotides: a comparative quantum chemical study.

    PubMed

    Michielssens, Servaas; Tien Trung, Nguyen; Froeyen, Matheus; Herdewijn, Piet; Tho Nguyen, Minh; Ceulemans, Arnout

    2009-09-07

    L-Aspartic acid has recently been found to be a good leaving group during HIV reverse transcriptase catalyzed incorporation of deoxyadenosine monophosphate (dAMP) in DNA. This showed that L-Asp is a good mimic for the pyrophosphate moiety of deoxyadenosine triphosphate. The present work explores the thermochemistry and mechanism for hydrolysis of several models for L-aspartic-dAMP using B3LYP/DGDZVP, MP2/6-311++G** and G3MP2 level of theory. The effect of the new compound is gradually investigated: starting from a simple methyl amine leaving group up to the aspartic acid leaving group. The enzymatic environment was mimicked by involving two Mg(2+) ions and some important active site residues in the reaction. All reactions are compared to the corresponding O-coupled leaving group, which is methanol for methyl amine and malic acid for aspartic acid. With methyl amine as a leaving group a tautomeric associative or tautomeric dissociative mechanism is preferred and the barrier is lower than the comparable mechanism with methanol as a leaving group. The calculations on the aspartic acid in the enzymatic environment show that qualitatively the mechanism is the same as for triphosphate but the barrier for hydrolysis by the associative mechanism is higher for L-aspartic-dAMP than for L-malic-dAMP and pyrophosphate.

  17. Ontogeny of malate-aspartate shuttle capacity and gene expression in cardiac mitochondria.

    PubMed

    Scholz, T D; Koppenhafer, S L; tenEyck, C J; Schutte, B C

    1998-03-01

    Developmental downregulation of the malate-aspartate shuttle has been observed in cardiac mitochondria. The goals of this study were to determine the time course of the postnatal decline and to identify potential regulatory sites by measuring steady-state myocardial mRNA and protein levels of the mitochondrial proteins involved in the shuttle. By use of isolated porcine cardiac mitochondria incubated with saturating concentrations of the cytosolic components of the malate-aspartate shuttle, shuttle capacity was found to decline by approximately 50% during the first 5 wk of life (from 921 +/- 48 to 531 +/- 53 nmol.min-1.mg protein-1). Mitochondrial aspartate aminotransferase mRNA levels were greater in adult than in newborn myocardium. mRNA levels of mitochondrial malate dehydrogenase in adult cardiac tissue were 224% of levels in newborn tissue, whereas protein levels were 54% greater in adult myocardium. Aspartate/glutamate carrier protein levels were also greater in adult than in newborn tissue. mRNA and protein levels of the oxoglutarate/malate carrier were increased in newborn myocardium. It was concluded that 1) myocardial malate-aspartate shuttle capacity declines rapidly after birth, 2) divergence of mitochondrial malate dehydrogenase mRNA and protein levels during development suggests posttranscriptional regulation of this protein, and 3) the developmental decline in malate-aspartate shuttle capacity is regulated by decreased oxoglutarate/malate carrier gene expression.

  18. Glutamate Racemase Is the Primary Target of β-Chloro-d-Alanine in Mycobacterium tuberculosis

    PubMed Central

    Rodenburg, Anne; Khoury, Hania; de Chiara, Cesira; Howell, Steve; Snijders, Ambrosius P.

    2016-01-01

    The increasing global prevalence of drug resistance among many leading human pathogens necessitates both the development of antibiotics with novel mechanisms of action and a better understanding of the physiological activities of preexisting clinically effective drugs. Inhibition of peptidoglycan (PG) biosynthesis and cross-linking has traditionally enjoyed immense success as an antibiotic target in multiple bacterial pathogens, except in Mycobacterium tuberculosis, where it has so far been underexploited. d-Cycloserine, a clinically approved antituberculosis therapeutic, inhibits enzymes within the d-alanine subbranch of the PG-biosynthetic pathway and has been a focus in our laboratory for understanding peptidoglycan biosynthesis inhibition and for drug development in studies of M. tuberculosis. During our studies on alternative inhibitors of the d-alanine pathway, we discovered that the canonical alanine racemase (Alr) inhibitor β-chloro–d-alanine (BCDA) is a very poor inhibitor of recombinant M. tuberculosis Alr, despite having potent antituberculosis activity. Through a combination of enzymology, microbiology, metabolomics, and proteomics, we show here that BCDA does not inhibit the d-alanine pathway in intact cells, consistent with its poor in vitro activity, and that it is instead a mechanism-based inactivator of glutamate racemase (MurI), an upstream enzyme in the same early stage of PG biosynthesis. This is the first report to our knowledge of inhibition of MurI in M. tuberculosis and thus provides a valuable tool for studying this essential and enigmatic enzyme and a starting point for future MurI-targeted antibacterial development. PMID:27480853

  19. Structural and functional characterization of the alanine racemase from Streptomyces coelicolor A3(2).

    PubMed

    Tassoni, Raffaella; van der Aart, Lizah T; Ubbink, Marcellus; van Wezel, Gilles P; Pannu, Navraj S

    2017-01-29

    The conversion of l-alanine (L-Ala) into d-alanine (D-Ala) in bacteria is performed by pyridoxal phosphate-dependent enzymes called alanine racemases. D-Ala is an essential component of the bacterial peptidoglycan and hence required for survival. The Gram-positive bacterium Streptomyces coelicolor has at least one alanine racemase encoded by alr. Here, we describe an alr deletion mutant of S. coelicolor which depends on D-Ala for growth and shows increased sensitivity to the antibiotic d-cycloserine (DCS). The crystal structure of the alanine racemase (Alr) was solved with and without the inhibitors DCS or propionate, at 1.64 Å and 1.51 Å resolution, respectively. The crystal structures revealed that Alr is a homodimer with residues from both monomers contributing to the active site. The dimeric state of the enzyme in solution was confirmed by gel filtration chromatography, with and without L-Ala or d-cycloserine. The activity of the enzyme was 66 ± 3 U mg(-1) for the racemization of L- to D-Ala, and 104 ± 7 U mg(-1) for the opposite direction. Comparison of Alr from S. coelicolor with orthologous enzymes from other bacteria, including the closely related d-cycloserine-resistant Alr from S. lavendulae, strongly suggests that structural features such as the hinge angle or the surface area between the monomers do not contribute to d-cycloserine resistance, and the molecular basis for resistance therefore remains elusive.

  20. Alanine racemase is essential for the growth and interspecies competitiveness of Streptococcus mutans

    PubMed Central

    Wei, Yuan; Qiu, Wei; Zhou, Xue-Dong; Zheng, Xin; Zhang, Ke-Ke; Wang, Shi-Da; Li, Yu-Qing; Cheng, Lei; Li, Ji-Yao; Xu, Xin; Li, Ming-Yun

    2016-01-01

    D-alanine (D-Ala) is an essential amino acid that has a key role in bacterial cell wall synthesis. Alanine racemase (Alr) is a unique enzyme that interconverts L-alanine and D-alanine in most bacteria, making this enzyme a potential target for antimicrobial drug development. Streptococcus mutans is a major causative factor of dental caries. The factors involved in the survival, virulence and interspecies interactions of S. mutans could be exploited as potential targets for caries control. The current study aimed to investigate the physiological role of Alr in S. mutans. We constructed alr mutant strain of S. mutans and evaluated its phenotypic traits and interspecies competitiveness compared with the wild-type strain. We found that alr deletion was lethal to S. mutans. A minimal supplement of D-Ala (150 μg·mL−1) was required for the optimal growth of the alr mutant. The depletion of D-alanine in the growth medium resulted in cell wall perforation and cell lysis in the alr mutant strain. We also determined the compromised competitiveness of the alr mutant strain relative to the wild-type S. mutans against other oral streptococci (S. sanguinis or S. gordonii), demonstrated using either conditioned medium assays or dual-species fluorescent in situ hybridization analysis. Given the importance and necessity of alr to the growth and competitiveness of S. mutans, Alr may represent a promising target to modulate the cariogenicity of oral biofilms and to benefit the management of dental caries. PMID:27740612

  1. Structural features and kinetic characterization of alanine racemase from Staphylococcus aureus (Mu50).

    PubMed

    Scaletti, Emma R; Luckner, Sylvia R; Krause, Kurt L

    2012-01-01

    Staphylococcus aureus is an opportunistic Gram-positive bacterium which causes a wide variety of diseases ranging from minor skin infections to potentially fatal conditions such as pneumonia, meningitis and septicaemia. The pathogen is a leading cause of nosocomial acquired infections, a problem that is exacerbated by the existence of methicillin- and glycopeptide antibiotic-resistant strains which can be challenging to treat. Alanine racemase (Alr) is a pyridoxal-5'-phosphate-dependent enzyme which catalyzes reversible racemization between enantiomers of alanine. As D-alanine is an essential component of the bacterial cell-wall peptidoglycan, inhibition of Alr is lethal to prokaryotes. Additionally, while ubiquitous amongst bacteria, this enzyme is absent in humans and most eukaryotes, making it an excellent antibiotic drug target. The crystal structure of S. aureus alanine racemase (Alr(Sas)), the sequence of which corresponds to that from the highly antibiotic-resistant Mu50 strain, has been solved to 2.15 Å resolution. Comparison of the Alr(Sas) structure with those of various alanine racemases demonstrates a conserved overall fold, with the enzyme sharing most similarity to those from other Gram-positive bacteria. Structural examination indicates that the active-site binding pocket, dimer interface and active-site entryway of the enzyme are potential targets for structure-aided inhibitor design. Kinetic constants were calculated in this study and are reported here. The potential for a disulfide bond in this structure is noted. This structural and biochemical information provides a template for future structure-based drug-development efforts targeting Alr(Sas).

  2. SdrI, a serine-aspartate repeat protein identified in Staphylococcus saprophyticus strain 7108, is a collagen-binding protein.

    PubMed

    Sakinc, Türkan; Kleine, Britta; Gatermann, Sören G

    2006-08-01

    A gene encoding a serine-aspartate repeat protein of Staphylococcus saprophyticus, an important cause of urinary tract infections in young women, has been cloned and sequenced. In contrast to other SD repeat proteins, SdrI carries 21 additional N-terminal repeats with a consensus sequence of (P/A)ATKE(K/E)A(A/V)(T/I)(A/T/S)EE and has the longest SD(AD)(1-5) repetitive region (854 amino acids) described so far. This highly repetitive sequence contains only the amino acids serine, asparagine, and a distinctly greater amount of alanine (37%) than all other known SD repeat proteins (2.3 to 4.4%). In addition, it is a collagen-binding protein of S. saprophyticus and the second example in this organism of a surface protein carrying the LPXTG motif. We constructed an isogenic sdrI knockout mutant that showed decreased binding to immobilized collagen compared with wild-type S. saprophyticus strain 7108. Binding could be reconstituted by complementation. Collagen binding is specifically caused by SdrI, and the recently described UafA protein, the only LPXTG-containing protein in the genome sequence of the type strain, is not involved in this trait. Our experiments suggest that, as in other staphylococci, the presence of different LPXTG-anchored cell wall proteins is common in S. saprophyticus and support the notion that the presence of matrix-binding surface proteins is common in staphylococci.

  3. The aspartate-257 of presenilin 1 is indispensable for mouse development and production of β-amyloid peptides through β-catenin-independent mechanisms

    PubMed Central

    Xia, Xuefeng; Wang, Pei; Sun, Xiaoyan; Soriano, Salvador; Shum, Wan-Kyng; Yamaguchi, Haruyasu; Trumbauer, Myrna E.; Takashima, Akihiko; Koo, Edward H.; Zheng, Hui

    2002-01-01

    To differentiate multiple activities of presenilin 1 (PS1), we generated transgenic mice expressing two human PS1 alleles: one with the aspartate to alanine mutation at residue 257 (hPS1D257A) that impairs the proteolytic activity of PS1, and the other deleting amino acids 340–371 of the hydrophilic loop sequence (hPS1Δcat) essential for β-catenin interaction. We show here that although hPS1Δcat is fully competent in rescuing the PS1-null lethal phenotype, hPS1D257A does not exhibit developmental activity. hPS1D257A also leads to the concurrent loss of the proteolytic processing of Notch and β-amyloid precursor protein (APP) and the generation of β-amyloid peptides (Aβ). Further, by measuring the levels of endogenous AβX-40 and AβX-42 in primary neuronal cultures, we confirmed the concept that PS1 is indispensable for the production of secreted Aβ. PMID:12070348

  4. Characterization, Genome Sequence, and Analysis of Escherichia Phage CICC 80001, a Bacteriophage Infecting an Efficient L-Aspartic Acid Producing Escherichia coli.

    PubMed

    Xu, Youqiang; Ma, Yuyue; Yao, Su; Jiang, Zengyan; Pei, Jiangsen; Cheng, Chi

    2016-03-01

    Escherichia phage CICC 80001 was isolated from the bacteriophage contaminated medium of an Escherichia coli strain HY-05C (CICC 11022S) which could produce L-aspartic acid. The phage had a head diameter of 45-50 nm and a tail of about 10 nm. The one-step growth curve showed a latent period of 10 min and a rise period of about 20 min. The average burst size was about 198 phage particles per infected cell. Tests were conducted on the plaques, multiplicity of infection, and host range. The genome of CICC 80001 was sequenced with a length of 38,810 bp, and annotated. The key proteins leading to host-cell lysis were phylogenetically analyzed. One protein belonged to class II holin, and the other two belonged to the endopeptidase family and N-acetylmuramoyl-L-alanine amidase family, respectively. The genome showed the sequence identity of 82.7% with that of Enterobacteria phage T7, and carried ten unique open reading frames. The bacteriophage resistant E. coli strain designated CICC 11021S was breeding and its L-aspartase activity was 84.4% of that of CICC 11022S.

  5. Mutation of aspartic acid-351, lysine-352, and lysine-515 alters the Ca2+ transport activity of the Ca2+-ATPase expressed in COS-1 cells.

    PubMed Central

    Maruyama, K; MacLennan, D H

    1988-01-01

    Full-length cDNAs encoding neonatal and adult isoforms of the Ca2+-ATPase of rabbit fast-twitch skeletal muscle sarcoplasmic reticulum were expressed transiently in COS-1 cells. The microsomal fraction isolated from transfected COS-1 cells contained immunoreactive Ca2+-ATPase and catalyzed Ca2+ transport at rates at least 15-fold above controls. No differences were observed in either the rates or Ca2+ dependency of Ca2+ transport catalyzed by the two isoforms. Aspartic acid-351, the site of formation of the catalytic acyl phosphate in the enzyme, was mutated to asparagine, glutamic acid, serine, threonine, histidine, or alanine. In every case, Ca2+ transport activity and Ca2+-dependent phosphorylation were eliminated. Ca2+ transport was also eliminated by mutation of lysine-352 to arginine, glutamine, or glutamic acid or by mutation of Asp351-Lys352 to Lys351-Asp352. Mutation of lysine-515, the site of fluorescein isothiocyanate modification in the enzyme, resulted in diminished Ca2+ transport activity as follows: arginine, 60%; glutamine, 25%; glutamic acid, 5%. These results demonstrate the absolute requirement of acylphosphate formation for the Ca2+ transport function and define a residue important for ATP binding. They also demonstrate the feasibility of a thorough analysis of active sites in the Ca2+-ATPase by expression and site-specific mutagenesis. Images PMID:2966962

  6. A preliminary optimization of alanine blends for ESR dosimetry in a mixed n-γ field: Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Hoseininaveh, M.; Ranjbar, A. H.

    2016-04-01

    In this study, a preliminary work on the enhancement of ESR response of several arrangements of alanine and boron compounds, exposed to a thermal neutron beam, is presented using FLUKA code. A multi-layer dosimeter consist of consecutive layers of alanine and boron compounds showed that the amount of energy deposited in the alanine layers is maximized when their thickness is 5 μm and the thickness of boron compound layers are between 2 and 3 μm. Furthermore, the optimum number of 10B layers in the dosimeter was found to be 35 layers. Moreover, the alanine samples consisting of small spherical grains of boron compounds, arranged regularly in the middle plane of the dosimeters, exposed to a thermal neutron beam, were modeled. The dependence of energy deposition in the alanine material on the size of grains, and on their composition were also studied, as well.

  7. Temperature dependence of N-methyl-D-aspartate receptor channels and N-methyl-D-aspartate receptor excitatory postsynaptic currents.

    PubMed

    Korinek, M; Sedlacek, M; Cais, O; Dittert, I; Vyklicky, L

    2010-02-03

    N-methyl-d-aspartate (NMDA) receptors (NMDARs) are highly expressed in the CNS and mediate the slow component of excitatory transmission. The present study was aimed at characterizing the temperature dependence of the kinetic properties of native NMDARs, with special emphasis on the deactivation of synaptic NMDARs. We used patch-clamp recordings to study synaptic NMDARs at layer II/III pyramidal neurons of the rat cortex, recombinant GluN1/GluN2B receptors expressed in human embryonic kidney (HEK293) cells, and NMDARs in cultured hippocampal neurons. We found that time constants characterizing the deactivation of NMDAR-mediated excitatory postsynaptic currents (EPSCs) were similar to those of the deactivation of responses to a brief application of glutamate recorded under conditions of low NMDAR desensitization (whole-cell recording from cultured hippocampal neurons). In contrast, the deactivation of NMDAR-mediated responses exhibiting a high degree of desensitization (outside-out recording) was substantially faster than that of synaptic NMDA receptors. The time constants characterizing the deactivation of synaptic NMDARs and native NMDARs activated by exogenous glutamate application were only weakly temperature sensitive (Q(10)=1.7-2.2), in contrast to those of recombinant GluN1/GluN2B receptors, which are highly temperature sensitive (Q(10)=2.7-3.7). Ifenprodil reduced the amplitude of NMDAR-mediated EPSCs by approximately 50% but had no effect on the time course of deactivation. Analysis of GluN1/GluN2B responses indicated that the double exponential time course of deactivation reflects mainly agonist dissociation and receptor desensitization. We conclude that the temperature dependences of native and recombinant NMDAR are different; in addition, we contribute to a better understanding of the molecular mechanism that controls the time course of NMDAR-mediated EPSCs.

  8. L-alanine-glyoxylate aminotransferase II of rat kidney and liver mitochondria possesses cysteine S-conjugate beta-lyase activity: a contributing factor to the nephrotoxicity/hepatotoxicity of halogenated alkenes?

    PubMed Central

    Cooper, Arthur J L; Krasnikov, Boris F; Okuno, Etsuo; Jeitner, Thomas M

    2003-01-01

    Several halogenated alkenes are metabolized in part to cysteine S-conjugates, which are mitochondrial toxicants of kidney and, to a lesser extent, other organs. Toxicity is due to cysteine S-conjugate beta-lyases, which convert the cysteine S-conjugate into pyruvate, ammonia and a reactive sulphur-containing fragment. A section of the human population is exposed to halogenated alkenes. To understand the health effects of such exposure, it is important to identify cysteine S-conjugate beta-lyases that contribute to mitochondrial damage. Mitochondrial aspartate aminotransferase [Cooper, Bruschi, Iriarte and Martinez-Carrion (2002) Biochem. J. 368, 253-261] and mitochondrial branched-chain aminotransferase [Cooper, Bruschi, Conway and Hutson (2003) Biochem. Pharmacol. 65, 181-192] exhibit beta-lyase activity toward S -(1,2-dichlorovinyl)-L-cysteine (the cysteine S-conjugate of trichloroethylene) and S -(1,1,2,2-tetrafluoroethyl)-L-cysteine (the cysteine S-conjugate of tetrafluoroethylene). Turnover leads to eventual inactivation of these enzymes. Here we report that mitochondrial L-alanine-glyoxylate aminotransferase II, which, in the rat, is most active in kidney, catalyses cysteine S-conjugate beta-lyase reactions with S -(1,1,2,2-tetrafluoroethyl)-L-cysteine, S -(1,2-dichlorovinyl)-L-cysteine and S -(benzothiazolyl-L-cysteine); turnover leads to inactivation. Previous workers showed that the reactive-sulphur-containing fragment released from S -(1,1,2,2-tetrafluoroethyl)-L-cysteine and S -(1,2-dichlorovinyl)-L-cysteine is toxic by acting as a thioacylating agent - particularly of lysine residues in nearby proteins. Toxicity, however, may also involve 'self-inactivation' of key enzymes. The present findings suggest that alanine-glyoxylate aminotransferase II may be an important factor in the well-established targeting of rat kidney mitochondria by toxic halogenated cysteine S-conjugates. Previous reports suggest that alanine-glyoxylate aminotransferase II is absent

  9. Characterization of the metabolic effect of β-alanine on markers of oxidative metabolism and mitochondrial biogenesis in skeletal muscle

    PubMed Central

    Sunderland, Kyle L.; Kuennen, Matthew R.; Vaughan, Roger A.

    2016-01-01

    [Purpose] β-alanine is a common component of numerous sports supplements purported to improve athletic performance through enhanced carnosine biosynthesis and related intracellular buffering. To date, the effects of β-alanine on oxidative metabolism remain largely unexplored. This work investigated the effects of β-alanine on the expression of proteins which regulate cellular energetics. [Methods] C2C12 myocytes were cultured and differentiated under standard conditions followed by treatment with either β-alanine or isonitrogenous non-metabolizable control D-alanine at 800μM for 24 hours. Metabolic gene and protein expression were quantified by qRT-PCR and immunoblotting, respectively. Glucose uptake and oxygen consumption were measured via fluorescence using commercially available kits. [Results] β-alanine-treated myotubes displayed significantly elevated markers of improved oxidative metabolism including elevated peroxisome proliferator-activated receptor β/δ (PPARβ/δ) and mitochondrial transcription factor a (TFAM) which led to increased mitochondrial content (evidenced by concurrent increases in cytochrome c content). Additionally, β-alanine-treated cells exhibited significantly increased oxygen consumption compared to control in a PPARβ/δ-dependent manner. β-alanine significantly enhanced expression of myocyte enhancer factor 2 (MEF-2) leading to increased glucose transporter 4 (GLUT4) content. [Conclusion] β-alanine appears to increase cellular oxygen consumption as well as the expression of several cellular proteins associated with improved oxidative metabolism, suggesting β-alanine supplementation may provide additional metabolic benefit (although these observations require in vivo experimental verification). PMID:27508152

  10. Biochemical characterization, mitochondrial localization, expression, and potential functions for an Arabidopsis γ-aminobutyrate transaminase that utilizes both pyruvate and glyoxylate

    PubMed Central

    Clark, Shawn M.; Di Leo, Rosa; Dhanoa, Preetinder K.; Van Cauwenberghe, Owen R.; Mullen, Robert T.; Shelp, Barry J.

    2009-01-01

    γ-Aminobutyrate transaminase (GABA-T) catalyses the breakdown of GABA to succinic semialdehyde. In this report, the previously identified Arabidopsis thaliana (L.) Heyhn GABA-T (AtGABA-T) was characterized in more detail. Full-length AtGABA-T contains an N-terminal 36 amino acid long targeting pre-sequence (36 amino acids) that is both sufficient and necessary for targeting the enzyme to mitochondria. Removal of the pre-sequence encoding this N-terminal targeting domain and co-expression of the resulting truncated AtGABA-T cDNA with the GroES/EL molecular chaperone complex in Escherichia coli yielded good recovery of the soluble recombinant proteins. Activity assays indicated that purified recombinant GABA-T has both pyruvate- and glyoxylate-dependent activities, but cannot utilize 2-oxoglutarate as amino acceptor. Kinetic parameters for glyoxylate- and pyruvate-dependent GABA-T activities were similar, with physiologically relevant affinities. Assays of GABA-T activity in cell-free leaf extracts from wild-type Arabidopsis and two knockout mutants in different genetic backgrounds confirmed that the native enzyme possesses both pyruvate- and glyoxylate-dependent activities. The GABA-T transcript was present throughout the plant, but its expression was highest in roots and increased as a function of leaf development. A GABA-T with dual functions suggests the potential for interaction between GABA metabolism and photorespiratory glyoxylate production. PMID:19264755

  11. The effect of increased branched-chain amino acid transaminase activity in yeast on the production of higher alcohols and on the flavour profiles of wine and distillates.

    PubMed

    Lilly, Mariska; Bauer, Florian F; Styger, Gustav; Lambrechts, Marius G; Pretorius, Isak S

    2006-08-01

    In Saccharomyces cerevisiae, branched-chain amino acid transaminases (BCAATases) are encoded by the BAT1 and BAT2 genes. BCAATases catalyse the transfer of amino groups between those amino acids and alpha-keto-acids. alpha-Keto-acids are precursors for the biosynthesis of higher alcohols, which significantly influence the aroma and flavour of yeast-derived fermentation products. The objective of this study was to investigate the influence of BAT-gene expression on general yeast physiology, on aroma and flavour compound formation and on the sensory characteristics of wines and distillates. For this purpose, the genes were overexpressed and deleted in a laboratory strain, BY4742, and overexpressed in an industrial wine yeast strain, VIN13. The data show that, with the exception of a slow growth phenotype observed for the BAT1 deletion strain, the fermentation behaviour of the strains was unaffected by the modifications. The chemical and sensory analysis of fermentation products revealed a strong correction between BAT gene expression and the formation of many aroma compounds. The data suggest that the adjustment of BAT gene expression could play an important role in assisting winemakers in their endeavour to produce wines with specific flavour profiles.

  12. Caffeine alters glutamate-aspartate transporter function and expression in rat retina.

    PubMed

    de Freitas, Adriana Pinto; Ferreira, Danielle Dias Pinto; Fernandes, Arlete; Martins, Robertta Silva; Borges-Martins, Vladimir Pedro Peralva; Sathler, Matheus Figueiredo; Dos-Santos-Pereira, Maurício; Paes-de-Carvalho, Roberto; Giestal-de-Araujo, Elizabeth; de Melo Reis, Ricardo Augusto; Kubrusly, Regina Celia Cussa

    2016-11-19

    l-Glutamate and l-aspartate are the main excitatory amino acids (EAAs) in the Central Nervous System (CNS) and their uptake regulation is critical for the maintenance of the excitatory balance. Excitatory amino acid transporters (EAATs) are widely distributed among central neurons and glial cells. GLAST and GLT1 are expressed in glial cells, whereas excitatory amino acid transporter 3/excitatory amino acid carrier 1 (EAAT3/EAAC1) is neuronal. Different signaling pathways regulate glutamate uptake by modifying the activity and expression of EAATs. In the present work we show that immature postnatal day 3 (PN3) rat retinas challenged by l-glutamate release [(3)H]-d-Aspartate linked to the reverse transport, with participation of NMDA, but not of non-NMDA receptors. The amount of [(3)H]-d-Aspartate released by l-glutamate is reduced during retinal development. Moreover, immature retinae at PN3 and PN7, but not PN14, exposed to a single dose of 200 or 500μM caffeine or the selective A2A receptor (A2AR) antagonist 100nM ZM241385 decreased [(3)H]-d-Aspartate uptake. Caffeine also selectively increased total expression of EAAT3 at PN7 and its expression in membrane fractions. However, both EAAT1 and EAAT2 were reduced after caffeine treatment in P2 fraction. Addition of 100nM DPCPX, an A1 receptor (A1R) antagonist, had no effect on the [(3)H]-d-Aspartate uptake. [(3)H]-d-Aspartate release was dependent on both extracellular sodium and Dl-TBOA, but not calcium, implying a transporter-mediated mechanism. Our results suggest that in the developing rat retina caffeine modulates [(3)H]-d-Aspartate uptake by blocking adenosine A2AR.

  13. Isotope labeling studies on the formation of multiple addition products of alanine in the pyrolysis residue of glucose/alanine mixtures by high-resolution ESI-TOF-MS.

    PubMed

    Chu, Fong Lam; Sleno, Lekha; Yaylayan, Varoujan A

    2011-11-09

    Pyrolysis was used as a microscale sample preparation tool to generate glucose/alanine reaction products to minimize the use of expensive labeled precursors in isotope labeling studies. The residue remaining after the pyrolysis at 250 °C was analyzed by electrospray time-of-flight mass spectrometry (ESI-TOF-MS). It was observed that a peak at m/z 199.1445 in the ESI-TOF-MS spectrum appeared only when the model system contained at least 2-fold excess alanine. The accurate mass determination indeed indicated the presence of two nitrogen atoms in the molecular formula (C(10)H(18)N(2)O(2)). To verify the origin of the carbon atoms in this unknown compound, model studies with [(13)U(6)]glucose, [(13)C-1]alanine, [(13)C-2]alanine, [(13)C-3]alanine, and [(15)N]alanine were also performed. Glucose furnished six carbon atoms, and alanine provides four carbon (2 × C-2 and 2 × C-3) and two nitrogen atoms. When commercially available fructosylalanine (N-attached to C-1) was reacted with only 1 mol of alanine, a peak at m/z 199.1445 was once again observed. In addition, when 3-deoxyglucosone (3-DG) was reacted with a 2-fold excess of alanine, a peak at m/z 199.1433 was also generated, confirming the points of attachment of the two amino acids at C-1 and C-2 atoms of 3-DG. These studies have indicated that amino acids can undergo multiple addition reactions with 1,2-dicarbonyl compounds such as 3-deoxyglucosone and eventually form a tetrahydropyrazine moiety.

  14. Synthesis and evaluation of 18F labeled alanine derivatives as potential tumor imaging agents

    PubMed Central

    Wang, Limin; Zha, Zhihao; Qu, Wenchao; Qiao, Hongwen; Lieberman, Brian P.; Plössl, Karl; Kung, Hank F.

    2012-01-01

    Introduction This paper reports the synthesis and labeling of 18F alanine derivatives. We also investigate their biological characteristics as potential tumor imaging agents mediated by alanine-serine-cysteine preferring (ASC) transporter system. Methods Three new 18F alanine derivatives were prepared from corresponding tosylate-precursors through a two-step labelling reaction. In vitro uptake studies to evaluate and to compare these three analogs were carried out in 9L glioma and PC-3 prostate cancer cell lines. Potential transport mechanisms, protein incorporation and stability of 3-(1-[18F]fluoromethyl)-L-alanine (L[18F]FMA) were investigated in 9L glioma cells. Its biodistribution was determined in a rat-bearing 9L tumor model. PET imaging studies were performed on rat bearing 9L glioma tumors and transgenic mouse carrying spontaneous generated M/tomND tumor (mammary gland adenocarcinoma). Results New 18F alanine derivatives were prepared with 7–34% uncorrected radiochemical yields, excellent enantiomeric purity (>99%) and good radiochemical purity (>99%). In vitro uptake of the L-[18F]FMA in 9L glioma and PC-3 prostate cancer cells was higher than those observed for other two alanine derivatives and [18F]FDG in first 1 h. Inhibition of cell uptake studies suggested that L-[18F]FMA uptake in 9L glioma was predominantly via transport system ASC. After entering into cells, L-[18F]FMA remained stable and was not incorporated into protein within 2 h. In vivo biodistribution studies demonstrated that L-[18F]FMA had relatively high uptake in liver and kidney. Tumor uptake was fast, reaching a maximum within 30 min. The tumor-to-muscle, tumor-to-blood and tumor-to-brain ratios at 60 min post injection were 2.2, 1.9 and 3.0, respectively. In PET imaging studies, tumors were visualized with L-[18F]FMA in both 9L rat and transgenic mouse. Conclusion L-[18F]FMA showed promising properties as a PET imaging agent for up-regulated ASC transporter associated with tumor

  15. Effect of glucose, independent of changes in insulin and glucagon secretion, on alanine metabolism in the conscious dog.

    PubMed Central

    Shulman, G I; Lacy, W W; Liljenquist, J E; Keller, U; Williams, P E; Cherrington, A D

    1980-01-01

    To study the effects of hyperglycemia on the metabolism of alanine and lactate independent of changes in plasma insulin and glucagon, glucose was infused into five 36-h-fasted dogs along with somatostatin and constant replacement amounts of both insulin and glucagon. Hepatic uptakes of alanine and lactate were calculated using the arteriovenous difference technique. [14C]Alanine was infused to measure the conversion of alanine and lactate into glucose. Hyperglycemia (delta 115 mg/dl) of 2 h duration caused the plasma alanine level to increase by over 50%. This change was caused by an increase in the inflow of alanine into plasma since the net hepatic uptake of the amino acid did not change. Taken together, the above findings indicate that glucose per se can significantly impair the fractional extraction of alanine by the liver. Hepatic extraction of lactate was also affected by hyperglycemia and had fallen to zero within 90 min of starting the glucose infusion. This fall was associated with a doubling of arterial lactate level. Conversion of [14C]-alanine and [14C]lactate into [14C]glucose was suppressed by 60 +/- 11% after 2 h of hyperglycemia, and because this fall could not be entirely accounted for by decreased lactate extraction an inhibitory effect of glucose on gluconeogenesis within the liver is suggested. These studies indicate that the plasma glucose level per se can be an important determinant of the level of alanine and lactate in plasma as well as the rate at which they are converted to glucose. PMID:7356691

  16. Effect of peroxides on [3H]D-aspartate release from bovine isolated retinae.

    PubMed

    LeDay, Angela M; Awe, Sunday O; Kulkarni, Kaustubh; Harris, Lydia C; Opere, Catherine; Dash, Alekha; Ohia, Sunny E

    2004-04-01

    In the present study, we investigated the effect of naturally occurring and synthetic peroxides on K+-depolarization-evoked release of [3H]D-aspartate from bovine isolated retinae. Furthermore, effect of peroxides on endogenous glutamate concentrations were measured by HPLC in bovine neural retinae and vitreous humor of eyes treated with hydrogen peroxide (H2O2) ex vivo. Both naturally occurring H2O2 (1-100 microM) and synthetic (cumene hydroperoxide, cuOOH; 1-100 microM) peroxides caused a concentration-dependent inhibition of K+-evoked [3H]D-aspartate release without affecting basal tritium efflux. The antioxidant, trolox (2 mM) prevented the inhibition of evoked [3H]D-aspartate overflow elicited by both H2O2 (30 microM) and cuOOH (10 microM). Inhibition of catalase by 3-amino-triazole (3- AT 100 mM) enhanced an inhibitory effect of a low concentration of H2O2 (1 microM) but antagonized the effect of H2O2 (30 microM) on K+-induced [3H]D-aspartate release. In ex vivo experiments, exogenously applied H2O2 (1-100 microM) also caused a concentration-related decrease in glutamate levels in the bovine retina. We conclude that peroxides can inhibit K+-evoked release of [3H]D-aspartate and also decrease endogenous glutamate concentrations in the bovine retina.

  17. Two Membrane-Anchored Aspartic Proteases Contribute to Pollen and Ovule Development1[OPEN

    PubMed Central

    Gao, Hui; Zhang, Yinghui; Wang, Wanlei; Zhao, Keke; Liu, Chunmei; Bai, Lin; Li, Rui

    2017-01-01

    Aspartic proteases are a class of proteolytic enzymes with conserved aspartate residues, which are implicated in protein processing, maturation, and degradation. Compared with yeast and animals, plants possess a larger aspartic protease family. However, little is known about most of these enzymes. Here, we characterized two Arabidopsis (Arabidopsis thaliana) putative glycosylphosphatidylinositol (GPI)-anchored aspartic protease genes, A36 and A39, which are highly expressed in pollen and pollen tubes. a36 and a36 a39 mutants display significantly reduced pollen activity. Transmission electron microscopy and terminal-deoxynucleotidyl transferase-mediated nick end labeling assays further revealed that the unviable pollen in a36 a39 may undergo unanticipated apoptosis-like programmed cell death. The degeneration of female gametes also occurred in a36 a39. Aniline Blue staining, scanning electron microscopy, and semi in vitro guidance assays indicated that the micropylar guidance of pollen tubes is significantly compromised in a36 a39. A36 and A39 that were fused with green fluorescent protein are localized to the plasma membrane and display punctate cytosolic localization and colocalize with the GPI-anchored protein COBRA-LIKE10. Furthermore, in a36 a39, the abundance of highly methylesterified homogalacturonans and xyloglucans was increased significantly in the apical pollen tube wall. These results indicate that A36 and A39, two putative GPI-anchored aspartic proteases, play important roles in plant reproduction in Arabidopsis. PMID:27872247

  18. Biodegradation and Osteosarcoma Cell Cultivation on Poly(aspartic acid) Based Hydrogels.

    PubMed

    Juriga, Dávid; Nagy, Krisztina; Jedlovszky-Hajdú, Angéla; Perczel-Kovách, Katalin; Chen, Yong Mei; Varga, Gábor; Zrínyi, Miklós

    2016-09-14

    Development of novel biodegradable and biocompatible scaffold materials with optimal characteristics is important for both preclinical and clinical applications. The aim of the present study was to analyze the biodegradability of poly(aspartic acid)-based hydrogels, and to test their usability as scaffolds for MG-63 osteoblast-like cells. Poly(aspartic acid) was fabricated from poly(succinimide) and hydrogels were prepared using natural amines as cross-linkers (diaminobutane and cystamine). Disulfide bridges were cleaved to thiol groups and the polymer backbone was further modified with RGD sequence. Biodegradability of the hydrogels was evaluated by experiments on the base of enzymes and cell culture medium. Poly(aspartic acid) hydrogels possessing only disulfide bridges as cross-links proved to be degradable by collagenase I. The MG-63 cells showed healthy, fibroblast-like morphology on the double cross-linked and RGD modified hydrogels. Thiolated poly(aspartic acid) based hydrogels provide ideal conditions for adhesion, survival, proliferation, and migration of osteoblast-like cells. The highest viability was found on the thiolated PASP gels while the RGD motif had influence on compacted cluster formation of the cells. These biodegradable and biocompatible poly(aspartic acid)-based hydrogels are promising scaffolds for cell cultivation.

  19. Reversible receptor methylation is essential for normal chemotaxis of Escherichia coli in gradients of aspartic acid.

    PubMed Central

    Weis, R M; Koshland, D E

    1988-01-01

    The chemotaxis of wild-type cells of Escherichia coli and double mutants lacking the methyltransferase and the methylesterase activities of the receptor modification system has been compared in spatial gradients of aspartic acid. Previous studies showing that a chemotactic response can be observed for the mutant raised questions about the role of methylation in the bacterial memory. To clarify the role of methylation, the redistribution of bacteria in stabilized defined gradients of aspartic acid was monitored by light scattering. There was no redistribution of the mutant cells in nonsaturating gradients of aspartic acid, but over the same range these mutant bacteria were observed to respond and to adapt during tethering experiments. In large saturating gradients of aspartate, slight movement of the mutant up the gradient was observed. These results show that dynamic receptor methylation is required for the chemotactic response to gentle gradients of aspartic acid and that methylation resets to zero and is part of the normal wild-type memory. There are certain gradients, however, in which the methylation-deficient mutants show chemotactic ability, thus explaining the apparent anomaly. Images PMID:2829179

  20. Efficient aspartic acid production by a psychrophile-based simple biocatalyst.

    PubMed

    Tajima, Takahisa; Hamada, Mai; Nakashimada, Yutaka; Kato, Junichi

    2015-10-01

    We previously constructed a Psychrophile-based Simple bioCatalyst (PSCat) reaction system, in which psychrophilic metabolic enzymes are inactivated by heat treatment, and used it here to study the conversion of aspartic acid from fumaric acid mediated by the activity of aspartate ammonia-lyase (aspartase). In Escherichia coli, the biosynthesis of aspartic acid competes with that of L-malic acid produced from fumaric acid by fumarase. In this study, E. coli aspartase was expressed in psychrophilic Shewanella livingstonensis Ac10 heat treated at 50 °C for 15 min. The resultant PSCat could convert fumaric acid to aspartic acid without the formation of L-malic acid because of heat inactivation of psychrophilic fumarase activity. Furthermore, alginate-immobilized PSCat produced high yields of aspartic acid and could be re-used nine times. The results of our study suggest that PSCat can be applied in biotechnological production as a new approach to increase the yield of target compounds.

  1. [Kinetics and equilibrium of reactions between nucleotides and methylol derivatives of beta-alanine].

    PubMed

    Khulordava, K G; Kosaganov, Iu N; Lazurkin, Iu S

    1978-01-01

    The rate constants of forward and reverse reactions between methylol derivatives of beta-alanine and deoxycytidine 5'-phosphate, deoxyadenosine 5'phosphate and deoxyguanosine 5'phosphate and the equilibrium constants of these reactions were determined by the spectrophotometric method at 39,5 degrees C and pH 6,95. Besides, the equilibrium constant of the reaction between beta-alanine and formaldehyde was determined. Unlike deoxycytidine and deoxyadenosine 5'-phosphates, interaction of deoxyguanosine 5'phosphate with methylol derivatives is more complicated. A model proposed for the interaction of deoxyguanosine 5'phosphate with methylol derivatives explains the behavior of this nucleotide in the reaction. The kinetic and equilibrium constants of the interaction of methylol derivatives with nucleotides investigated exceed by two or three orders of magnitude the corresponding constants of the interaction of formaldehyde with these nucleotides.

  2. Mutation of glycine receptor subunit creates beta-alanine receptor responsive to GABA.

    PubMed

    Schmieden, V; Kuhse, J; Betz, H

    1993-10-08

    The amino acid at position 160 of the ligand-binding subunit, alpha 1, is an important determinant of agonist and antagonist binding to the glycine receptor. Exchange of the neighboring residues, phenylalanine at position 159 and tyrosine at position 161, increased the efficacy of amino acid agonists. Whereas wild-type alpha 1 channels expressed in Xenopus oocytes required 0.7 millimolar beta-alanine for a half-maximal response, the doubly mutated (F159Y,Y161F) alpha 1 subunit had an affinity for beta-alanine (which was more potent than glycine) that was 110-fold that of the wild type. Also, gamma-aminobutyric acid and D-serine, amino acids that do not activate wild-type alpha 1 receptors, efficiently gated the mutant channel. Thus, aromatic hydroxyl groups are crucial for ligand discrimination at inhibitory amino acid receptors.

  3. Crystallization and preliminary X-ray analysis of an alanine dehydrogenase from Bacillus megaterium WSH-002.

    PubMed

    Lu, Xiaoyun; Yi, Qiufen; Zhang, Guofang; Zhu, Xianming; Zhou, Honggang; Dong, Hui

    2013-08-01

    Alanine dehydrogenase (L-AlaDH) from Bacillus megaterium WSH-002 catalyses the NAD⁺-dependent interconversion of L-alanine and pyruvate. The enzyme was expressed in Escherichia coli BL21 (DE3) cells and purified with a His6 tag by Ni²⁺-chelating affinity chromatography for X-ray crystallographic analysis. Crystals were grown in a solution consisting of 0.1 M HEPES pH 8.0, 12%(w/v) polyethylene glycol 8000, 8%(v/v) ethylene glycol at a concentration of 15 mg ml⁻¹ purified protein. The crystal diffracted to 2.35 Å resolution and belonged to the trigonal space group R32, with unit-cell parameters a = b = 125.918, c = 144.698 Å.

  4. Adsorption of di-l-alanine on Cu(110) investigated with scanning tunneling microscopy [rapid communication

    NASA Astrophysics Data System (ADS)

    Stensgaard, I.

    2003-11-01

    Sub-monolayer growth of a small chiral peptide, di- L-alanine, on Cu(1 1 0) was investigated by variable temperature scanning tunneling microscopy (STM). At low coverage and for temperatures above ≈-220 K the molecules nucleate along the [ 3¯ 3 2] direction to form short, mainly one-dimensional islands. An increase in coverage leads to the formation of [ 3¯ 3 2]-directed, elongated islands. Images with sub-molecular resolution reveal that the orientation of the molecules within one particular island depends on the deposition temperature. At higher coverage, up to one monolayer, the islands coalesce, giving rise to phase boundaries between domains of opposite orientation. An atomic-scale model for di- L-alanine on Cu(1 1 0) is presented.

  5. Unusual hydroxyl migration in the fragmentation of β-alanine dication in the gas phase.

    PubMed

    Piekarski, Dariusz Grzegorz; Delaunay, Rudy; Maclot, Sylvain; Adoui, Lamri; Martín, Fernando; Alcamí, Manuel; Huber, Bernd A; Rousseau, Patrick; Domaracka, Alicja; Díaz-Tendero, Sergio

    2015-07-14

    We present a combined experimental and theoretical study of the fragmentation of doubly positively charged β-alanine molecules in the gas phase. The dissociation of the produced dicationic molecules, induced by low-energy ion collisions, is analysed by coincidence mass spectrometric techniques; the coupling with ab initio molecular dynamics simulations allows rationalisation of the experimental observations. The present strategy gives deeper insights into the chemical mechanisms of multiply charged amino acids in the gas phase. In the case of the β-alanine dication, in addition to the expected Coulomb explosion and hydrogen migration processes, we have found evidence of hydroxyl-group migration, which leads to unusual fragmentation products, such as hydroxymethyl cation, and is necessary to explain some of the observed dominant channels.

  6. Formation of homochiral glycine/Cu(111) quantum corral array realized using alanine nuclei

    NASA Astrophysics Data System (ADS)

    Nakamura, Miki; Huang, Hui; Kanazawa, Ken; Taninaka, Atsushi; Yoshida, Shoji; Takeuchi, Osamu; Shigekawa, Hidemi

    2015-08-01

    Glycine has enantiomeric isomers on a Cu(111) surface through the dissociation of hydrogen from the carboxyl group and forms an array of quantum corrals of ∼1.3 nm diameter. Stable homo-chiral glycinate trimers are formed in the first step, which subsequently form a network with a hexagonal arrangement. However, domains with R- or S-chirality coexist with the same probability. On the other hand, α-alanine has D- and L-chirality in nature and forms a similar quantum corral array on Cu(111) with R- and S-chirality, respectively. Here, by using α-alanine molecules as nuclei, the chirality of glycine molecules was controlled and a homochiral quantum corral array was successfully formed, which indicates the possibility that the optical isomers can be separated through a method such as preferential crystallization.

  7. Chiral effects on helicity studied via the energy landscape of short (D, L)-alanine peptides.

    PubMed

    Neelamraju, Sridhar; Oakley, Mark T; Johnston, Roy L

    2015-10-28

    The homochirality of natural amino acids facilitates the formation of regular secondary structures such as α-helices and β-sheets. Here, we study the relationship between chirality and backbone structure for the example of hexa-alanine. The most stable stereoisomers are identified through global optimisation. Further, the energy landscape, a database of connected low-energy local minima and transition points, is constructed for various neutral and zwitterionic stereoisomers of hexa-alanine. Three order parameters for partial helicity are applied and metric disconnectivity graphs are presented with partial helicity as a metric. We also apply the Zimm-Bragg model to derive average partial helicities for Ace-(L-Ala)6-NHMe, Ace-(D-Ala-L-Ala)3-NHMe, and Ace-(L-Ala)3-(D-Ala)3-NHMe from the database of local minima and compare with previous studies.

  8. The potential of mean force surface for the alanine dipeptide in aqueous solution: a theoretical approach

    NASA Astrophysics Data System (ADS)

    Montgomery Pettitt, B.; Karplus, Martin

    1985-11-01

    Results of an application of integral equation theory to the determination of the intramolecular potential of mean force for the alanine dipeptide. N-methyl alanine acetamide, in aqueous solution are presented. The calculations are based on Ornstein—Zernike-like equations for polar systems with an intramolecular superposition approximation. The solvated free energy surface for the dipeptide as a function of the dihedral angles φ and ψ (Ramachandran plot) is determined and compared with the vaccum surface calculations. Conformations that are essentially forbidden in vaccum are found to be significant in aqueous solution. The solvent contributions to the free energy surface are decomposed into enthalpic and entropic terms. Possible applications and extensions of the method are outlined.

  9. Equine endurance exercise alters serum branched-chain amino acid and alanine concentrations.

    PubMed

    Trottier, N L; Nielsen, B D; Lang, K J; Ku, P K; Schott, H C

    2002-09-01

    Six 2-year-old Arabian horses were used to determine whether 60 km prolonged endurance exercise (approximately 4 h) alters amino acid concentrations in serum and muscle, and the time required for serum amino acid concentrations to return to basal resting values. Blood and muscle samples were collected throughout exercise and during a 3 day recovery period. Isoleucine concentration in muscle tended to increase and leucine and valine did not change due to exercise. Serum alanine concentrations did not increase immediately after exercise, but increased at 24, 48 and 72 h postexercise. Serum isoleucine, leucine, and valine concentrations decreased after exercise and time required to reach pre-exercising concentrations was 48 h. In conclusion, endurance exercise in the horse decreases serum isoleucine, leucine, and valine concentrations, and increases serum alanine concentration. The decrease in serum branched-chain amino acid concentrations did not correspond to a measurable increase in total muscle branched-chain amino acid concentrations.

  10. Crystallization and preliminary X-ray data analysis of β-alanine synthase from Drosophila melanogaster

    SciTech Connect

    Lundgren, Stina; Andersen, Birgit; Piškur, Jure; Dobritzsch, Doreen

    2007-10-01

    β-Alanine synthase catalyzes the last step in the reductive degradation pathway for uracil and thymine. Crystals of the recombinant enzyme from D. melanogaster belong to space group C2. Diffraction data to 3.3 Å resolution were collected and analyzed. β-Alanine synthase catalyzes the last step in the reductive degradation pathway for uracil and thymine, which represents the main clearance route for the widely used anticancer drug 5-fluorouracil. Crystals of the recombinant enzyme from Drosophila melanogaster, which is closely related to the human enzyme, were obtained by the hanging-drop vapour-diffusion method. They diffracted to 3.3 Å at a synchrotron-radiation source, belong to space group C2 (unit-cell parameters a = 278.9, b = 95.0, c = 199.3 Å, β = 125.8°) and contain 8–10 molecules per asymmetric unit.

  11. Response of the alanine/ESR dosimeter to radiation from an Ir-192 HDR brachytherapy source.

    PubMed

    Anton, M; Hackel, T; Zink, K; von Voigts-Rhetz, P; Selbach, H-J

    2015-01-07

    The response of the alanine dosimeter to radiation from an Ir-192 source with respect to the absorbed dose to water, relative to Co-60 radiation, was determined experimentally as well as by Monte Carlo simulations. The experimental and Monte Carlo results for the response agree well within the limits of uncertainty. The relative response decreases with an increasing distance between the measurement volume and the source from approximately 98% at a 1 cm distance to 96% at 5 cm. The present data are more accurate, but agree well with data published by Schaeken et al (2011 Phys. Med. Biol. 56 6625-34). The decrease of the relative response with an increasing distance that had already been observed by these authors is confirmed. In the appendix, the properties of the alanine dosimeter with respect to volume and sensitivity corrections are investigated. The inhomogeneous distribution of the detection probability that was taken into account for the analysis was determined experimentally.

  12. Structure-function relationship in the antifreeze activity of synthetic alanine-lysine antifreeze polypeptides.

    PubMed

    Wierzbicki, A; Knight, C A; Rutland, T J; Muccio, D D; Pybus, B S; Sikes, C S

    2000-01-01

    Recently antifreeze proteins (AFP) have been the subject of many structure-function relationship studies regarding their antifreeze activity. Attempts have been made to elucidate the structure-function relationship by various amino acid substitutions, but to our knowledge there has been no successful from first principles design of a polypeptide that would bind to designated ice planes along a specific direction. In this paper we show the results of our first attempt on an entirely de novo design of an alanine-lysine-rich antifreeze polypeptide. This 43 residue alanine-lysine peptide exhibits characteristic nonequilibrium freezing point depression and binds to the designated (210) planes of ice along the [122] vector. The structural and thermodynamic properties of this polypeptide were determined using circular dichroism spectroscopy and its nonequilibrium antifreeze properties were investigated using an ice-etching method and nanoliter osmometry.

  13. Structures of a γ-aminobutyrate (GABA) transaminase from the s-triazine-degrading organism Arthrobacter aurescens TC1 in complex with PLP and with its external aldimine PLP–GABA adduct

    PubMed Central

    Bruce, Heather; Nguyen Tuan, Anh; Mangas Sánchez, Juan; Leese, Charlotte; Hopwood, Jennifer; Hyde, Ralph; Hart, Sam; Turkenburg, Johan P.; Grogan, Gideon

    2012-01-01

    Two complex structures of the γ-aminobutyrate (GABA) transaminase A1R958 from Arthrobacter aurescens TC1 are presented. The first, determined to a resolution of 2.80 Å, features the internal aldimine formed by reaction between the ∊-amino group of Lys295 and the cofactor pyridoxal phosphate (PLP); the second, determined to a resolution of 2.75 Å, features the external aldimine adduct formed between PLP and GABA in the first half-reaction. This is the first structure of a microbial GABA transaminase in complex with its natural external aldimine and reveals the molecular determinants of GABA binding in this enzyme. PMID:23027742

  14. Annual Variations in Aspartic Acid Content of Coral Skeleton: A new Proxy for Changes in Biological Activity of Coral

    NASA Astrophysics Data System (ADS)

    Gupta, L. P.; Suzuki, A.; Kawahata, H.

    2004-12-01

    Biological or metabolic effects have often been invoked to explain abnormal changes in the annual pattern of the stable isotope record of the coral skeleton. However, it is not possible to isolate and quantify the magnitude of these effects from environmental effects controlling the stable isotopes record. Therefore, there is a need to develop a proxy which could be independently linked with the changes in biological activity of the corals. It is well known that amino acids are closely associated with biomineralization of coral skeleton. We examined variations in amino acid composition of coral skeleton by conducting high resolution micro-sampling along the coral growth axis. The samples (ca. 1 mg each) were collected at about 1 mm interval, which corresponded to about 1 month of coral skeletal growth, and hydrolyzed with 6N HCl at 110 deg.C for 22 hours. The results show that relative molar concentration of aspartic acid (Asp) shows the most pronounced annual variation, in comparison to other amino acids, over a wide range of 20 - 35 mole percent. The comparison of Asp mole content with stable oxygen isotope data shows that Asp content is the highest in summers while lowest in winters. The absence of non-protein amino acids in the samples suggests that the amino acids in the skeleton are neither degraded nor of extraneous origin, because in both the cases some amount of non-protein amino acids like beta-alanine and gama-amino butyric acid must be present in samples. Lack of correlation between Asp and stable isotope of carbon is probably due to the fact that isotope data are average values for all carbon-based compounds including carbonate carbon. In contrast, Asp relative mole content is based on only one compound and closely related with the secretion of polypeptides and amino acids by coral. Therefore, variations in Asp content is likely to reflect change in biological activity more directly than carbon isotope. Out of about 8 consecutive years record examined

  15. Influence of lysine content and pH on the stability of alanine-based copolypeptides.

    PubMed

    Vila, J A; Ripoll, D R; Scheraga, H A

    2001-03-01

    To account for the relative contributions of lysine and alanine residues to the stability of alpha-helices of copolymers of these two residues, conformational energy calculations were carried out for several hexadecapeptides at several pHs. All the calculations considered explicitly the coupling between the conformation of the molecule and the ionization equilibria as a function of pH. The total free energy function used in these calculations included terms that account for the solvation free energy and free energy of ionization. These terms were evaluated by means of a fast multigrid boundary element method. Reasonable agreement with experimental values was obtained for the helix contents and vicinal coupling constants ((3)J(HNalpha)). The helix contents were found to depend strongly on the lysine content, in agreement with recent experimental results of Williams et al. (Journal of the American Chemical Society, 1998, Vol. 120, pp. 11033-11043) In the lowest energy conformation computed for a hexadecapeptide containing 3 lysine residues at pH 6, the lysine side chains are preferentially hydrated; this decreases the hydration of the backbone CO and NH groups, thereby forcing the latter to form hydrogen bonds with each other in the helical conformation. The lowest energy conformation computed for a hexadecapeptide containing 6 lysine residues at pH 6 shows a close proximity between the NH3(+) groups of the lysine side chains, a feature that was previously observed in calculations of short alanine-based oligopeptides. The calculation on a blocked 16-mer of alanine shows a 7% helix content based on the Boltzmann averaged vicinal coupling constants computed from the dihedral angles phi, consistent with previous experimental evidence on triblock copolymers containing a central block of alanines, and with earlier theoretical calculations.

  16. Photochemical redox reactions of copper(II)-alanine complexes in aqueous solutions.

    PubMed

    Lin, Chen-Jui; Hsu, Chao-Sheng; Wang, Po-Yen; Lin, Yi-Liang; Lo, Yu-Shiu; Wu, Chien-Hou

    2014-05-19

    The photochemical redox reactions of Cu(II)/alanine complexes have been studied in deaerated solutions over an extensive range of pH, Cu(II) concentration, and alanine concentration. Under irradiation, the ligand-to-metal charge transfer results in the reduction of Cu(II) to Cu(I) and the concomitant oxidation of alanine, which produces ammonia and acetaldehyde. Molar absorptivities and quantum yields of photoproducts for Cu(II)/alanine complexes at 313 nm are characterized mainly with the equilibrium Cu(II) speciation where the presence of simultaneously existing Cu(II) species is taken into account. By applying regression analysis, individual Cu(I) quantum yields are determined to be 0.094 ± 0.014 for the 1:1 complex (CuL) and 0.064 ± 0.012 for the 1:2 complex (CuL2). Individual quantum yields of ammonia are 0.055 ± 0.007 for CuL and 0.036 ± 0.005 for CuL2. Individual quantum yields of acetaldehyde are 0.030 ± 0.007 for CuL and 0.024 ± 0.007 for CuL2. CuL always has larger quantum yields than CuL2, which can be attributed to the Cu(II) stabilizing effect of the second ligand. For both CuL and CuL2, the individual quantum yields of Cu(I), ammonia, and acetaldehyde are in the ratio of 1.8:1:0.7. A reaction mechanism for the formation of the observed photoproducts is proposed.

  17. Weak BMAA toxicity compares with that of the dietary supplement β-alanine.

    PubMed

    Lee, Moonhee; McGeer, Patrick L

    2012-07-01

    β-N-methylamino-L-alanine (BMAA) is routinely described in the literature as a potent neurotoxin and as a possible cause of neurodegenerative disorders of aging such as Alzheimer's disease, amyotrophic lateral sclerosis, and the amyotrophic lateral sclerosis/parkinsonism-dementia complex (ALS-PDC) syndrome of Guam. To test for the toxicity of BMAA against human neurons, we chose 3 standard human neuronal cell lines for examination and compared the toxicity with the muscle-building nutritional supplement β-alanine, glutamic acid, and the established excitotoxins kainic acid, quisqualic acid, ibotenic acid, domoic acid, and quinolinic acid. Neurotoxicity was measured by the standard lactic dehydrogenase release assay after 5-day incubation of NT-2, SK-N-MC, and SH-SY5Y cells with BMAA and the comparative substances. The ED(50) of BMAA, corresponding to 50% death of neurons, varied from 1430 to 1604 μM while that of the nutritional supplement β-alanine was almost as low, varying from 1945 to 2134 μM. The ED(50) for glutamic acid and the 5 established excitotoxins was 200- to 360-fold lower, varying from 44 to 70 μM. These in vitro data are in accord with previously published in vivo data on BMAA toxicity in which mice showed no pathological effects from oral consumption of 500 mg/kg/day for more than 10 weeks. Because there are no known natural sources of BMAA that would make consumption of such amounts possible, and because the toxicity observed was in the same range as the nutritional supplement β-alanine, the hypothesis that BMAA is an environmental hazard and a contributor to degenerative neurological diseases becomes untenable.

  18. β-alanine supplementation improves isometric endurance of the knee extensor muscles

    PubMed Central

    2012-01-01

    Background We examined the effect of four weeks of β-alanine supplementation on isometric endurance of the knee extensors at 45% maximal voluntary isometric contraction (MVIC). Methods Thirteen males (age 23 ± 6 y; height 1.80 ± 0.05 m; body mass 81.0 ± 10.5 kg), matched for pre-supplementation isometric endurance, were allocated to either a placebo (n = 6) or β-alanine (n = 7; 6.4 g·d-1 over 4 weeks) supplementation group. Participants completed an isometric knee extension test (IKET) to fatigue, at an intensity of 45% MVIC, before and after supplementation. In addition, two habituation tests were completed in the week prior to the pre-supplementation test and a further practice test was completed in the week prior to the post-supplementation test. MVIC force, IKET hold-time, and impulse generated were recorded. Results IKET hold-time increased by 9.7 ± 9.4 s (13.2%) and impulse by 3.7 ± 1.3 kN·s-1 (13.9%) following β-alanine supplementation. These changes were significantly greater than those in the placebo group (IKET: t(11) = 2.9, p ≤0.05; impulse: t(11) = 3.1, p ≤ 0.05). There were no significant changes in MVIC force in either group. Conclusion Four weeks of β-alanine supplementation at 6.4 g·d-1 improved endurance capacity of the knee extensors at 45% MVIC, which most likely results from improved pH regulation within the muscle cell as a result of elevated muscle carnosine levels. PMID:22697405

  19. Stabilization of helices in glycine and alanine dipeptides in a reaction field model of solvent

    SciTech Connect

    Shang, H.S. Lawrence Berkeley Lab., CA ); Head-Gordon, T. )

    1994-02-23

    We present molecular orbital calculations of the full conformational space of blocked glycine and alanine dipeptide in the presence of a reaction field representation of water. Secondary structures of right- and left-handed helices are found, in contrast to recent gas-phase results, indicating that the origin of helical stabilization in dipeptides is strictly due to environment. Limitations of the reaction field model and the various implications of stabilization due to environment are discussed. 43 refs., 2 figs., 3 tabs.

  20. Dosimétrie RPE alanine, étude de faisabilité et applications possibles

    NASA Astrophysics Data System (ADS)

    Kuntz, F.; Chabanais, B.; Karamanoukian, D.; Delpech, J. P.; Marchioni, E.

    1998-04-01

    Alanine ESR dosimetry presents a great interest for quality controls in radiotherapy. This new developped water equivalent alamine dosimeter allows a reproducible dose measurement, by a non-destructif readout technique in a large dose range. In this paper the stability of the dosimeter response has been shown but also its independance with the energy or the dose rate of the absorbed radiation. Through this different studies, one can broaden the application field of alanine/ESR dosimetry especially for in-vivo dosimetry. The results of the experiments and the intra operative treatment, indicate that this kind of dosimetry seems to be a promising technique for in-vivo quality controls in electron beam, γ ray or X-ray radiotherapy. Le dosimètre à l'alanine dépouillé par Résonance Paramagnétique Électronique (EPE), est pratiquement équivalent tissu et présente plusieurs caractéristiques intéressantes : la reproductibilité de sa mesure, son dépouillement non destructif, son faible fading, sa large gamme de mesure de dose (0,5 à 100 kGy). La réponse de ce dosimètre est, de plus, indépendante du débit de dose du rayonnement qu'il a absorbé ainsi que de son énergie. À travers plusieurs études, et un essai in-viro, nous ouvrons un important champ d'applications, faisant de la dosimétie RPE/Alanine un Outil prometteur pour le contrôle de la qualité des traitements radiothérapeutiques par faisceaux d'électrons, rayonnement X et photons γ.

  1. Hepatic serine and alanine metabolism during endotoxin-induced fever in sheep.

    PubMed Central

    Southorn, B G; Thompson, J R

    1987-01-01

    Time course changes in plasma amino acid concentrations and the hepatic metabolism of serine and alanine were measured in six mature wethers during endotoxin-induced fever. In separate trials, the animals' responses to injections of saline and endotoxin were measured. The endotoxin was from Escherichia coli serotype 055:B5 and was injected intravenously (4 micrograms/kg body weight). Liver biopsies were obtained from the sheep at 6 h postinjection during both endotoxin and saline injection trials. Rectal temperature in the endotoxin treated animals was increased (P less than 0.05, above that in control animals from 4.25 h to 9 h postinjection, with a maximum rise of 2.43 degrees C at 5.5 h postinjection. Glucose concentration in jugular plasma decreased (P less than 0.05) by 3 h postinjection and remained depressed throughout the 24 h postinjection sampling period. Plasma serine concentration was decreased (P less than 0.05) by 3 h postinjection. Plasma alanine concentration was decreased significantly (P less than 0.05) only at 24 h postinjection. Endotoxin injection increased (P less than 0.05) hepatic oxidation of 14C-serine (162%) and the net incorporation of 14C-serine carbon into hepatic protein (173%) and glycogen (275%). The net incorporation of 14C-alanine carbon into hepatic protein (172%) and glycogen (323%) were increased (P less than 0.05) by endotoxin injection, while alanine oxidation was not affected by endotoxin treatment (P greater than 0.05). The increased hepatic use of serine may explain, in part, the dramatic decrease in plasma concentrations of this amino acid following endotoxin injection into sheep. PMID:3115552

  2. Structure and vibrational spectra of L-alanine L-alaninium picrate monohydrate

    NASA Astrophysics Data System (ADS)

    Ghazaryan, V. V.; Fleck, M.; Petrosyan, A. M.

    2012-05-01

    Preparation, crystal and molecular structure as well as vibrational spectra of the crystal L-alanine L-alaninium picrate monohydrate are described. The title crystal is monoclinic, space group P21. The asymmetric unit contains one dimeric (L-Ala⋯L-Ala+) cation, one picrate anion and a water molecule. The O⋯O distance in the dimeric cation is equal to 2.553(2) Å. The IR and Raman spectra are interpreted based on the structure.

  3. Attenuation of γ-aminobutyric acid (GABA) transaminase activity contributes to GABA increase in the cerebral cortex of mice exposed to β-cypermethrin.

    PubMed

    Han, Y; Cao, D; Li, X; Zhang, R; Yu, F; Ren, Y; An, L

    2014-03-01

    The current study investigated the γ-aminobutyric acid (GABA) levels and GABA metabolic enzymes (GABA transaminase (GABA(T)) and glutamate decarboxylase (GAD)) activities at 2 and 4 h after treatment, using a high-performance liquid chromatography with ultraviolet detectors and colorimetric assay, in the cerebral cortex of mice treated with 20, 40 or 80 mg/kg β-cypermethrin by a single oral gavage, with corn oil as vehicle control. In addition, GABA protein (4 h after treatment), GABA(T) protein (2 h after treatment) and GABA receptors messenger RNA (mRNA) expression were detected by immunohistochemistry, Western blot and real-time quantitative reverse transcriptase polymerase chain reaction, respectively. β-Cypermethrin (80 mg/kg) significantly increased GABA levels in the cerebral cortex of mice, at both 2 and 4 h after treatment, compared with the control. Also, GABA immunohistochemistry results suggested that the number of positive granules was increased in the cerebral cortex of mice 4 h after exposure to 80 mg/kg β-cypermethrin when compared with the control. Furthermore, the results also showed that GABA(T) activity detected was significantly decreased in the cerebral cortex of mice 2 h after β-cypermethrin administration (40 or 80 mg/kg). No significant changes were found in GAD activity, or the expression of GABA(T) protein and GABAB receptors mRNA, in the cerebral cortex of mice, except that 80 mg/kg β-cypermethrin caused a significant decrease, compared with the vehicle control, in GABAA receptors mRNA expression 4 h after administration. These results suggested that attenuated GABA(T) activity induced by β-cypermethrin contributed to increased GABA levels in the mouse brain. The downregulated GABAA receptors mRNA expression is most likely a downstream event.

  4. Global N-linked Glycosylation is Not Significantly Impaired in Myoblasts in Congenital Myasthenic Syndromes Caused by Defective Glutamine-Fructose-6-Phosphate Transaminase 1 (GFPT1)

    PubMed Central

    Chen, Qiushi; Müller, Juliane S.; Pang, Poh-Choo; Laval, Steve H.; Haslam, Stuart M.; Lochmüller, Hanns; Dell, Anne

    2015-01-01

    Glutamine-fructose-6-phosphate transaminase 1 (GFPT1) is the first enzyme of the hexosamine biosynthetic pathway. It transfers an amino group from glutamine to fructose-6-phosphate to yield glucosamine-6-phosphate, thus providing the precursor for uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) synthesis. UDP-GlcNAc is an essential substrate for all mammalian glycosylation biosynthetic pathways and N-glycan branching is especially sensitive to alterations in the concentration of this sugar nucleotide. It has been reported that GFPT1 mutations lead to a distinct sub-class of congenital myasthenic syndromes (CMS) termed “limb-girdle CMS with tubular aggregates”. CMS are hereditary neuromuscular transmission disorders in which neuromuscular junctions are impaired. To investigate whether alterations in protein glycosylation at the neuromuscular junction might be involved in this impairment, we have employed mass spectrometric strategies to study the N-glycomes of myoblasts and myotubes derived from two healthy controls, three GFPT1 patients, and four patients with other muscular diseases, namely CMS caused by mutations in DOK7, myopathy caused by mutations in MTND5, limb girdle muscular dystrophy type 2A (LGMD2A), and Pompe disease. A comparison of the relative abundances of bi-, tri-, and tetra-antennary N-glycans in each of the cell preparations revealed that all samples exhibited broadly similar levels of branching. Moreover, although some differences were observed in the relative abundances of some of the N-glycan constituents, these variations were modest and were not confined to the GFPT1 samples. Therefore, GFPT1 mutations in CMS patients do not appear to compromise global N-glycosylation in muscle cells. PMID:26501342

  5. Global N-linked Glycosylation is Not Significantly Impaired in Myoblasts in Congenital Myasthenic Syndromes Caused by Defective Glutamine-Fructose-6-Phosphate Transaminase 1 (GFPT1).

    PubMed

    Chen, Qiushi; Müller, Juliane S; Pang, Poh-Choo; Laval, Steve H; Haslam, Stuart M; Lochmüller, Hanns; Dell, Anne

    2015-10-16

    Glutamine-fructose-6-phosphate transaminase 1 (GFPT1) is the first enzyme of the hexosamine biosynthetic pathway. It transfers an amino group from glutamine to fructose-6-phosphate to yield glucosamine-6-phosphate, thus providing the precursor for uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) synthesis. UDP-GlcNAc is an essential substrate for all mammalian glycosylation biosynthetic pathways and N-glycan branching is especially sensitive to alterations in the concentration of this sugar nucleotide. It has been reported that GFPT1 mutations lead to a distinct sub-class of congenital myasthenic syndromes (CMS) termed "limb-girdle CMS with tubular aggregates". CMS are hereditary neuromuscular transmission disorders in which neuromuscular junctions are impaired. To investigate whether alterations in protein glycosylation at the neuromuscular junction might be involved in this impairment, we have employed mass spectrometric strategies to study the N-glycomes of myoblasts and myotubes derived from two healthy controls, three GFPT1 patients, and four patients with other muscular diseases, namely CMS caused by mutations in DOK7, myopathy caused by mutations in MTND5, limb girdle muscular dystrophy type 2A (LGMD2A), and Pompe disease. A comparison of the relative abundances of bi-, tri-, and tetra-antennary N-glycans in each of the cell preparations revealed that all samples exhibited broadly similar levels of branching. Moreover, although some differences were observed in the relative abundances of some of the N-glycan constituents, these variations were modest and were not confined to the GFPT1 samples. Therefore, GFPT1 mutations in CMS patients do not appear to compromise global N-glycosylation in muscle cells.

  6. Suppression of γ-aminobutyric acid (GABA) transaminases induces prominent GABA accumulation, dwarfism and infertility in the tomato (Solanum lycopersicum L.).

    PubMed

    Koike, Satoshi; Matsukura, Chiaki; Takayama, Mariko; Asamizu, Erika; Ezura, Hiroshi

    2013-05-01

    Tomatoes accumulate γ-aminobutyric acid (GABA) at high levels in the immature fruits. GABA is rapidly converted to succinate during fruit ripening through the activities of GABA transaminase (GABA-T) and succinate semialdehyde dehydrogenase (SSADH). Although three genes encoding GABA-T and both pyruvate- and α-ketoglutarate-dependent GABA-T activities have been detected in tomato fruits, the mechanism underlying the GABA-T-mediated conversion of GABA has not been fully understood. In this work, we conducted loss-of-function analyses utilizing RNA interference (RNAi) transgenic plants with suppressed pyruvate- and glyoxylate-dependent GABA-T gene expression to clarify which GABA-T isoforms are essential for its function. The RNAi plants with suppressed SlGABA-T gene expression, particularly SlGABA-T1, showed severe dwarfism and infertility. SlGABA-T1 expression was inversely associated with GABA levels in the fruit at the red ripe stage. The GABA contents in 35S::SlGABA-T1(RNAi) lines were 1.3-2.0 times and 6.8-9.2 times higher in mature green and red ripe fruits, respectively, than the contents in wild-type fruits. In addition, SlGABA-T1 expression was strongly suppressed in the GABA-accumulating lines. These results indicate that pyruvate- and glyoxylate-dependent GABA-T is the essential isoform for GABA metabolism in tomato plants and that GABA-T1 primarily contributes to GABA reduction in the ripening fruits.

  7. Identification and expression analyses of the alanine aminotransferase (AlaAT) gene family in poplar seedlings.

    PubMed

    Xu, Zhiru; Ma, Jing; Qu, Chunpu; Hu, Yanbo; Hao, Bingqing; Sun, Yan; Liu, Zhongye; Yang, Han; Yang, Chengjun; Wang, Hongwei; Li, Ying; Liu, Guanjun

    2017-04-05

    Alanine aminotransferase (AlaAT, E.C.2.6.1.2) catalyzes the reversible conversion of pyruvate and glutamate to alanine and α-oxoglutarate. The AlaAT gene family has been well studied in some herbaceous plants, but has not been well characterized in woody plants. In this study, we identified four alanine aminotransferase homologues in Populus trichocarpa, which could be classified into two subgroups, A and B. AlaAT3 and AlaAT4 in subgroup A encode AlaAT, while AlaAT1 and AlaAT2 in subgroup B encode glutamate:glyoxylate aminotransferase (GGAT), which catalyzes the reaction of glutamate and glyoxylate to α-oxoglutarate and glycine. Four AlaAT genes were cloned from P. simonii × P. nigra. PnAlaAT1 and PnAlaAT2 were expressed predominantly in leaves and induced by exogenous nitrogen and exhibited a diurnal fluctuation in leaves, but was inhibited in roots. PnAlaAT3 and PnAlaAT4 were mainly expressed in roots, stems and leaves, and was induced by exogenous nitrogen. The expression of PnAlaAT3 gene could be regulated by glutamine or its related metabolites in roots. Our results suggest that PnAlaAT3 gene may play an important role in nitrogen metabolism and is regulated by glutamine or its related metabolites in the roots of P. simonii × P. nigra.

  8. beta-Alanine elevates dopamine levels in the rat nucleus accumbens: antagonism by strychnine.

    PubMed

    Ericson, Mia; Clarke, Rhona B C; Chau, PeiPei; Adermark, Louise; Söderpalm, Bo

    2010-04-01

    Glycine receptors (GlyRs) in the nucleus accumbens (nAc) have recently been suggested to be involved in the reinforcing and dopamine-elevating properties of ethanol via a neuronal circuitry involving the VTA. Apart from ethanol, both glycine and taurine have the ability to modulate dopamine output via GlyRs in the same brain region. In the present study, we wanted to explore whether yet another endogenous ligand for the GlyR, beta-alanine, had similar effects. To this end, we monitored dopamine in the nAc by means of in vivo microdialysis and found that local perfusion of beta-alanine increased dopamine output. In line with previous observations investigating ethanol, glycine and taurine, the competitive GlyR antagonist strychnine completely blocked the dopamine elevation. The present results suggest that beta-alanine has the ability to modulate dopamine levels in the nAc via strychnine-sensitive GlyRs, and are consistent with previous studies suggesting the importance of this receptor for modulating dopamine output.

  9. VUV photodynamics and chiral asymmetry in the photoionization of gas phase alanine enantiomers.

    PubMed

    Tia, Maurice; Cunha de Miranda, Barbara; Daly, Steven; Gaie-Levrel, François; Garcia, Gustavo A; Nahon, Laurent; Powis, Ivan

    2014-04-17

    The valence shell photoionization of the simplest proteinaceous chiral amino acid, alanine, is investigated over the vacuum ultraviolet region from its ionization threshold up to 18 eV. Tunable and variable polarization synchrotron radiation was coupled to a double imaging photoelectron/photoion coincidence (i(2)PEPICO) spectrometer to produce mass-selected threshold photoelectron spectra and derive the state-selected fragmentation channels. The photoelectron circular dichroism (PECD), an orbital-sensitive, conformer-dependent chiroptical effect, was also recorded at various photon energies and compared to continuum multiple scattering calculations. Two complementary vaporization methods-aerosol thermodesorption and a resistively heated sample oven coupled to an adiabatic expansion-were applied to promote pure enantiomers of alanine into the gas phase, yielding neutral alanine with different internal energy distributions. A comparison of the photoelectron spectroscopy, fragmentation, and dichroism measured for each of the vaporization methods was rationalized in terms of internal energy and conformer populations and supported by theoretical calculations. The analytical potential of the so-called PECD-PICO detection technique-where the electron spectroscopy and circular dichroism can be obtained as a function of mass and ion translational energy-is underlined and applied to characterize the origin of the various species found in the experimental mass spectra. Finally, the PECD findings are discussed within an astrochemical context, and possible implications regarding the origin of biomolecular asymmetry are identified.

  10. Beta-alanine and taurine as endogenous agonists at glycine receptors in rat hippocampus in vitro.

    PubMed

    Mori, Masahiro; Gähwiler, Beat H; Gerber, Urs

    2002-02-15

    Electrophysiological and pharmacological properties of glycine receptors were characterized in hippocampal organotypic slice cultures. In the presence of ionotropic glutamate and GABA(B) receptor antagonists, pressure-application of glycine onto CA3 pyramidal cells induced a current associated with increased chloride conductance, which was inhibited by strychnine. Similar chloride currents could also be induced with beta-alanine or taurine. Whole-cell glycine responses were significantly greater in CA3 pyramidal cells than in CA1 pyramidal cells and dentate granule cells, while responses to GABA were similar among these three cell types. Although these results demonstrate the presence of functional glycine receptors in the hippocampus, no evidence for their activation during synaptic stimulation was found. Gabazine, a selective GABA(A) receptor antagonist, totally blocked evoked IPSCs in CA3 pyramidal cells. Glycine receptor activation is not dependent on transporter-controlled levels of extracellular glycine, as no chloride current was observed in response to sarcosine, an inhibitor of glycine transporters. In contrast, application of guanidinoethanesulfonic acid, an uptake inhibitor of beta-alanine and taurine, induced strychnine-sensitive chloride current in the presence of gabazine. These data indicate that modulation of transporters for the endogenous amino acids, beta-alanine and taurine, can regulate tonic activation of glycine receptors, which may function in maintenance of inhibitory tone in the hippocampus.

  11. Exogenous alanine and/or glucose plus kanamycin kills antibiotic-resistant bacteria.

    PubMed

    Peng, Bo; Su, Yu-Bin; Li, Hui; Han, Yi; Guo, Chang; Tian, Yao-Mei; Peng, Xuan-Xian

    2015-02-03

    Multidrug-resistant bacteria are an increasingly serious threat to human and animal health. However, novel drugs that can manage infections by multidrug-resistant bacteria have proved elusive. Here we show that glucose and alanine abundances are greatly suppressed in kanamycin-resistant Edwardsiella tarda by GC-MS-based metabolomics. Exogenous alanine or glucose restores susceptibility of multidrug-resistant E. tarda to killing by kanamycin, demonstrating an approach to killing multidrug-resistant bacteria. The mechanism underlying this approach is that exogenous glucose or alanine promotes the TCA cycle by substrate activation, which in turn increases production of NADH and proton motive force and stimulates uptake of antibiotic. Similar results are obtained with other Gram-negative bacteria (Vibrio parahaemolyticus, Klebsiella pneumoniae, Pseudomonas aeruginosa) and Gram-positive bacterium (Staphylococcus aureus), and the results are also reproduced in a mouse model for urinary tract infection. This study establishes a functional metabolomics-based strategy to manage infection by antibiotic-resistant bacteria.

  12. Survivability and reactivity of glycine and alanine in early oceans: effects of meteorite impacts.

    PubMed

    Umeda, Yuhei; Fukunaga, Nao; Sekine, Toshimori; Furukawa, Yoshihiro; Kakegawa, Takeshi; Kobayashi, Takamichi; Nakazawa, Hiromoto

    2016-01-01

    Prebiotic oceans might have contained abundant amino acids, and were subjected to meteorite impacts, especially during the late heavy bombardment. It is so far unknown how meteorite impacts affected amino acids in the early oceans. Impact experiments were performed under the conditions where glycine was synthesized from carbon, ammonia, and water, using aqueous solutions containing (13)C-labeled glycine and alanine. Selected amino acids and amines in samples were analyzed with liquid chromatography-mass spectrometry (LC/MS). In particular, the (13)C-labeled reaction products were analyzed to distinguish between run products and contaminants. The results revealed that both amino acids survived partially in the early ocean through meteorite impacts, that part of glycine changed into alanine, and that large amounts of methylamine and ethylamine were formed. Fast decarboxylation was confirmed to occur during such impact processes. Furthermore, the formation of n-butylamine, detected only in the samples recovered from the solutions with additional nitrogen and carbon sources of ammonia and benzene, suggests that chemical reactions to form new biomolecules can proceed through marine impacts. Methylamine and ethylamine from glycine and alanine increased considerably in the presence of hematite rather than olivine under similar impact conditions. These results also suggest that amino acids present in early oceans can contribute further to impact-induced reactions, implying that impact energy plays a potential role in the prebiotic formation of various biomolecules, although the reactions are complicated and depend upon the chemical environments as well.

  13. Identification and expression analyses of the alanine aminotransferase (AlaAT) gene family in poplar seedlings

    PubMed Central

    Xu, Zhiru; Ma, Jing; Qu, Chunpu; Hu, Yanbo; Hao, Bingqing; Sun, Yan; Liu, Zhongye; Yang, Han; Yang, Chengjun; Wang, Hongwei; Li, Ying; Liu, Guanjun

    2017-01-01

    Alanine aminotransferase (AlaAT, E.C.2.6.1.2) catalyzes the reversible conversion of pyruvate and glutamate to alanine and α-oxoglutarate. The AlaAT gene family has been well studied in some herbaceous plants, but has not been well characterized in woody plants. In this study, we identified four alanine aminotransferase homologues in Populus trichocarpa, which could be classified into two subgroups, A and B. AlaAT3 and AlaAT4 in subgroup A encode AlaAT, while AlaAT1 and AlaAT2 in subgroup B encode glutamate:glyoxylate aminotransferase (GGAT), which catalyzes the reaction of glutamate and glyoxylate to α-oxoglutarate and glycine. Four AlaAT genes were cloned from P. simonii × P. nigra. PnAlaAT1 and PnAlaAT2 were expressed predominantly in leaves and induced by exogenous nitrogen and exhibited a diurnal fluctuation in leaves, but was inhibited in roots. PnAlaAT3 and PnAlaAT4 were mainly expressed in roots, stems and leaves, and was induced by exogenous nitrogen. The expression of PnAlaAT3 gene could be regulated by glutamine or its related metabolites in roots. Our results suggest that PnAlaAT3 gene may play an important role in nitrogen metabolism and is regulated by glutamine or its related metabolites in the roots of P. simonii × P. nigra. PMID:28378825

  14. Surface chemistry of alanine on Cu{111}: Adsorption geometry and temperature dependence

    NASA Astrophysics Data System (ADS)

    Baldanza, Silvia; Cornish, Alix; Nicklin, Richard E. J.; Zheleva, Zhasmina V.; Held, Georg

    2014-11-01

    Adsorption of L-alanine on the Cu{111} single crystal surface was investigated as a model system for interactions between small chiral modifier molecules and close-packed metal surfaces. Synchrotron-based X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy are used to determine the chemical state, bond coordination and out-of-plane orientation of the molecule on the surface. Alanine adsorbs in its anionic form at room temperature, whilst at low temperature the overlayer consists of anionic and zwitterionic molecules. NEXAFS spectra exhibit a strong angular dependence of the π* resonance associated with the carboxylate group, which allows determining the tilt angle of this group with respect to the surface plane (48° ± 2°) at room temperature. Low-energy electron diffraction (LEED) shows a p(2√{ 13} × 2√{ 13}) R 13 ° superstructure with only one domain, which breaks the mirror symmetry of the substrate and, thus, induces global chirality to the surface. Temperature-programmed XPS (TP-XPS) and temperature-programmed desorption (TPD) experiments indicate that the zwitterionic form converts into the anionic species (alaninate) at 293 K. The latter desorbs/decomposes between 435 K and 445 K.

  15. Paradox of mistranslation of serine for alanine caused by AlaRS recognition dilemma.

    PubMed

    Guo, Min; Chong, Yeeting E; Shapiro, Ryan; Beebe, Kirk; Yang, Xiang-Lei; Schimmel, Paul

    2009-12-10

    Mistranslation arising from confusion of serine for alanine by alanyl-tRNA synthetases (AlaRSs) has profound functional consequences. Throughout evolution, two editing checkpoints prevent disease-causing mistranslation from confusing glycine or serine for alanine at the active site of AlaRS. In both bacteria and mice, Ser poses a bigger challenge than Gly. One checkpoint is the AlaRS editing centre, and the other is from widely distributed AlaXps-free-standing, genome-encoded editing proteins that clear Ser-tRNA(Ala). The paradox of misincorporating both a smaller (glycine) and a larger (serine) amino acid suggests a deep conflict for nature-designed AlaRS. Here we show the chemical basis for this conflict. Nine crystal structures, together with kinetic and mutational analysis, provided snapshots of adenylate formation for each amino acid. An inherent dilemma is posed by constraints of a structural design that pins down the alpha-amino group of the bound amino acid by using an acidic residue. This design, dating back more than 3 billion years, creates a serendipitous interaction with the serine OH that is difficult to avoid. Apparently because no better architecture for the recognition of alanine could be found, the serine misactivation problem was solved through free-standing AlaXps, which appeared contemporaneously with early AlaRSs. The results reveal unconventional problems and solutions arising from the historical design of the protein synthesis machinery.

  16. Qualitative analysis of collective mode frequency shifts in L-alanine using terahertz spectroscopy.

    PubMed

    Taulbee, Anita R; Heuser, Justin A; Spendel, Wolfgang U; Pacey, Gilbert E

    2009-04-01

    We have observed collective mode frequency shifts in deuterium-substituted L-alanine, three of which have previously only been calculated. Terahertz (THz) absorbance spectra were acquired at room temperature in the spectral range of 66-90 cm(-1), or 2.0-2.7 THz, for L-alanine (L-Ala) and four L-Ala compounds in which hydrogen atoms (atomic mass = 1 amu) were substituted with deuterium atoms (atomic mass = 2 amu): L-Ala-2-d, L-Ala-3,3,3-d(3), L-Ala-2,3,3,3-d(4), and L-Ala-d(7). The absorbance maxima of two L-Ala collective modes in this spectral range were recorded for multiple spectral measurements of each compound, and the magnitude of each collective mode frequency shift due to increased mass of these specific atoms was evaluated for statistical significance. Calculations were performed which predict the THz absorbance frequencies based on the estimated reduced mass of the modes. The shifts in absorbance maxima were correlated with the location(s) of the substituted deuterium atom(s) in the L-alanine molecule, and the atoms contributing to the absorbing delocalized mode in the crystal structure were deduced using statistics described herein. The statistical analyses presented also indicate that the precision of the method allows reproducible frequency shifts as small as 1 cm(-1) or 0.03 THz to be observed and that these shifts are not random error in the measurement.

  17. Washout of tritium from 3R-3(/sup 3/H)-L-aspartate in the aspartase reaction

    SciTech Connect

    Katz, B.M.; Cook, P.F.

    1987-05-01

    Bacterial aspartase catalyzes the reversible conversion of L-aspartate to fumarate and ammonia. Recent studies that made use of deuterium and /sup 15/N isotope effects suggested a carbanion intermediate mechanism in which C-N bond cleavage is rate determining. This could result in removal of a proton from the 3R position of aspartate at a rate of faster than the elimination of ammonia. 3R-3(/sup 3/H)-Aspartate was prepared enzymatically using aspartase from fumarate, ammonia and /sup 3/H/sub 2/O and aspartate isolated via chromatography on Dowex 50W x 8 at pH 1, eluting with 2N pyridine. The rate of /sup 3/H washout from this aspartate was then measured as a function of aspartate concentration and compared to the rate of production of fumarate. Tritium does washout of aspartate at a rate faster than fumarate is formed but the proton is apparently not rapidly equilibrated with solvent. The tritium washout experiments were supplemented using 3R-3(/sup 2/H)-aspartate prepared as above with /sup 2/H/sub 2/O replacing /sup 3/H/sub 2/O and monitoring the appearance of 3R-3(/sup 1/H)-aspartate via /sup 1/H-NMR. Results confirm the tritium washout results. Data are discussed in terms of the carbanion mechanism.

  18. Distinguishing Aspartic and Isoaspartic Acids in Peptides by Several Mass Spectrometric Fragmentation Methods

    NASA Astrophysics Data System (ADS)

    DeGraan-Weber, Nick; Zhang, Jun; Reilly, James P.

    2016-12-01

    Six ion fragmentation techniques that can distinguish aspartic acid from its isomer, isoaspartic acid, were compared. MALDI post-source decay (PSD), MALDI 157 nm photodissociation, tris(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPP) charge tagging in PSD and photodissociation, ESI collision-induced dissociation (CID), electron transfer dissociation (ETD), and free-radical initiated peptide sequencing (FRIPS) with CID were applied to peptides containing either aspartic or isoaspartic acid. Diagnostic ions, such as the y-46 and b+H2O, are present in PSD, photodissociation, and charge tagging. c•+57 and z-57 ions are observed in ETD and FRIPS experiments. For some molecules, aspartic and isoaspartic acid yield ion fragments with significantly different intensities. ETD and charge tagging appear to be most effective at distinguishing these residues.

  19. Attractant Signaling by an Aspartate Chemoreceptor Dimer with a Single Cytoplasmic Domain

    NASA Astrophysics Data System (ADS)

    Gardina, Paul J.; Manson, Michael D.

    1996-10-01

    Signal transduction across cell membranes often involves interactions among identical receptor subunits, but the contribution of individual subunits is not well understood. The chemoreceptors of enteric bacteria mediate attractant responses by interrupting a phosphotransfer circuit initiated at receptor complexes with the protein kinase CheA. The aspartate receptor (Tar) is a homodimer, and oligomerized cytoplasmic domains stimulate CheA activity much more than monomers do in vitro. Intragenic complementation was used to show in Escherichia coli that heterodimers containing one full-length and one truncated Tar subunit mediated responses to aspartate in the presence of full-length Tar homodimers that could not bind aspartate. Thus, a Tar dimer containing only one cytoplasmic domain can initiate an attractant (inhibitory) signal, although it may not be able to stimulate kinase activity of CheA.

  20. Structure of RC1339/APRc from Rickettsia conorii, a retropepsin-like aspartic protease

    PubMed Central

    Li, Mi; Gustchina, Alla; Cruz, Rui; Simões, Marisa; Curto, Pedro; Martinez, Juan; Faro, Carlos; Simões, Isaura; Wlodawer, Alexander

    2015-01-01

    The crystal structures of two constructs of RC1339/APRc from Rickettsia conorii, consisting of either residues 105–231 or 110–231 followed by a His tag, have been determined in three different crystal forms. As predicted, the fold of a monomer of APRc resembles one-half of the mandatory homodimer of retroviral pepsin-like aspartic proteases (retropepsins), but the quaternary structure of the dimer of APRc differs from that of the canonical retropepsins. The observed dimer is most likely an artifact of the expression and/or crystallization conditions since it cannot support the previously reported enzymatic activity of this bacterial aspartic protease. However, the fold of the core of each monomer is very closely related to the fold of retropepsins from a variety of retroviruses and to a single domain of pepsin-like eukaryotic enzymes, and may represent a putative common ancestor of monomeric and dimeric aspartic proteases. PMID:26457434

  1. N-phosphonacetyl-L-isoasparagine a Potent and Specific Inhibitor of E. coli Aspartate Transcarbamoylase†

    PubMed Central

    Eldo, Joby; Cardia, James P.; O’Day, Elizabeth M.; Xia, Jiarong; Tsurata, Hiro; Kantrowitz, Evan R.

    2008-01-01

    The synthesis of a new inhibitor, N-phosphonacetyl-L-isoasparagine (PALI), of Escherichia coli aspartate transcarbamoylase (ATCase) is reported, as well as structural studies of the enzyme·PALI complex. PALI was synthesized in 7 steps from β-benzyl L-aspartate. The KD of PALI was 2 μM. Kinetics and small-angle X-ray scattering experiments showed that PALI can induce the cooperative transition of ATCase from the T to the R state. The X-ray structure of the enzyme·PALI complex showed 22 hydrogen bonding interactions between the enzyme and PALI. The kinetic characterization and crystal structure of the ATCase·PALI complex also provides detailed information regarding the importance of the α-carboxylate for the binding of the substrate aspartate. PMID:17004708

  2. Aspartate embedding depth affects pHLIP's insertion pKa.

    PubMed

    Fendos, Justin; Barrera, Francisco N; Engelman, Donald M

    2013-07-09

    We have used the pHlow insertion peptide (pHLIP) family to study the role of aspartate embedding depth in pH-dependent transmembrane peptide insertion. pHLIP binds to the surface of a lipid bilayer as a largely unstructured monomer at neutral pH. When the pH is lowered, pHLIP inserts spontaneously across the membrane as a spanning α-helix. pHLIP insertion is reversible when the pH is adjusted back to a neutral value. One of the critical events facilitating pHLIP insertion is the protonation of aspartates in the spanning domain of the peptide: the negative side chains of these residues convert to uncharged, polar forms, facilitating insertion by altering the hydrophobicity of the spanning domain. To examine this protonation mechanism further, we created pHLIP sequence variants in which the two spanning aspartates (D14 and D25) were moved up or down in the sequence. We hypothesized that the aspartate depth in the inserted state would directly affect the proton affinity of the acidic side chains, altering the pKa of pH-dependent insertion. To this end, we also mutated the arginine at position 11 to determine whether arginine snorkeling modulates the insertion pKa by affecting the aspartate depth. Our results indicate that both types of mutations change the insertion pKa, supporting the idea that the aspartate depth is a participating parameter in determining the pH dependence. We also show that pHLIP's resistance to aggregation can be altered with our mutations, identifying a new criterion for improving the performance of pHLIP in vivo when targeting acidic disease tissues such as cancer and inflammation.

  3. Aspartate-bond isomerization affects the major conformations of synthetic peptides.

    PubMed

    Szendrei, G I; Fabian, H; Mantsch, H H; Lovas, S; Nyéki, O; Schön, I; Otvos, L

    1994-12-15

    The aspartic acid bond changes to an beta-aspartate bond frequently as a side-reaction during peptide synthesis and often as a post-translational modification of proteins. The formation of beta-asparate bonds is reported to play a major role not only in protein metabolism, activation and deactivation, but also in pathological processes such as deposition of the neuritic plaques of Alzheimer's disease. Recently, we reported how conformational changes following the aspartic-acid-bond isomerization may help the selective aggregation and retention of the amyloid beta peptide in affected brains (Fabian et al., 1994). In the current study we used circular dichroism, Fourier-transform infrared spectroscopy, and molecular modeling to characterize the general effect of the beta-aspartate-bond formation on the conformation of five sets of synthetic model peptides. Each of the non-modified, parent peptides has one of the major secondary structures as the dominant spectroscopically determined conformation: a type I beta turn, a type II beta turn, short segments of alpha or 3(10) helices, or extended beta strands. We found that both types of turn structures are stabilized by the aspartic acid-bond isomerization. The isomerization at a terminal position did not affect the helix propensity, but placing it in mid-chain broke both the helix and the beta-pleated sheet with the formation of reverse turns. The alteration of the geometry of the lowest energy reverse turn was also supported by molecular dynamics calculations. The tendency of the aspartic acid-bond isomerization to stabilize turns is very similar to the effect of incorporating sugars into synthetic peptides and suggests a common feature of these post-translational modifications in defining the secondary structure of protein fragments.

  4. β-alanine supplementation improves tactical performance but not cognitive function in combat soldiers

    PubMed Central

    2014-01-01

    Background There are no known studies that have examined β-alanine supplementation in military personnel. Considering the physiological and potential neurological effects that have been reported during sustained military operations, it appears that β-alanine supplementation may have a potential benefit in maintaining physical and cognitive performance during high-intensity military activity under stressful conditions. The purpose of this study was to examine the effect of 28 days of β-alanine ingestion in military personnel while fatigued on physical and cognitive performance. Methods Twenty soldiers (20.1 ± 0.9 years) from an elite combat unit were randomly assigned to either a β-alanine (BA) or placebo (PL) group. Soldiers were involved in advanced military training, including combat skill development, navigational training, self-defense/hand-to-hand combat and conditioning. All participants performed a 4-km run, 5-countermovement jumps using a linear position transducer, 120-m sprint, a 10-shot shooting protocol with assault rifle, including overcoming a misfire, and a 2-min serial subtraction test to assess cognitive function before (Pre) and after (Post) 28 days of supplementation. Results The training routine resulted in significant increases in 4-km run time for both groups, but no between group differences were seen (p = 0.597). Peak jump power at Post was greater for BA than PL (p = 0.034), while mean jump power for BA at Post was 10.2% greater (p = 0.139) than PL. BA had a significantly greater (p = 0.012) number of shots on target at Post (8.2 ± 1.0) than PL (6.5 ± 2.1), and their target engagement speed at Post was also significantly faster (p = 0.039). No difference in serial subtraction performance was seen between the groups (p = 0.844). Conclusion Results of this study indicate that 4-weeks of β-alanine ingestion in young, healthy soldiers did not impact cognitive performance, but did enhance power

  5. Crystallization and preliminary X-ray diffraction analysis of the periplasmic domain of the Escherichia coli aspartate receptor Tar and its complex with aspartate

    SciTech Connect

    Mise, Takeshi; Matsunami, Hideyuki; Samatey, Fadel A.; Maruyama, Ichiro N.

    2014-08-27

    The periplasmic domain of the E. coli aspartate receptor Tar was cloned, expressed, purified and crystallized with and without bound ligand. The crystals obtained diffracted to resolutions of 1.58 and 1.95 Å, respectively. The cell-surface receptor Tar mediates bacterial chemotaxis toward an attractant, aspartate (Asp), and away from a repellent, Ni{sup 2+}. To understand the molecular mechanisms underlying the induction of Tar activity by its ligands, the Escherichia coli Tar periplasmic domain with and without bound aspartate (Asp-Tar and apo-Tar, respectively) were each crystallized in two different forms. Using ammonium sulfate as a precipitant, crystals of apo-Tar1 and Asp-Tar1 were grown and diffracted to resolutions of 2.10 and 2.40 Å, respectively. Alternatively, using sodium chloride as a precipitant, crystals of apo-Tar2 and Asp-Tar2 were grown and diffracted to resolutions of 1.95 and 1.58 Å, respectively. Crystals of apo-Tar1 and Asp-Tar1 adopted space group P4{sub 1}2{sub 1}2, while those of apo-Tar2 and Asp-Tar2 adopted space groups P2{sub 1}2{sub 1}2{sub 1} and C2, respectively.

  6. Proton transfer pathways in an aspartate-water cluster sampled by a network of discrete states

    NASA Astrophysics Data System (ADS)

    Reidelbach, Marco; Betz, Fridtjof; Mäusle, Raquel Maya; Imhof, Petra

    2016-08-01

    Proton transfer reactions are complex transitions due to the size and flexibility of the hydrogen-bonded networks along which the protons may ;hop;. The combination of molecular dynamics based sampling of water positions and orientations with direct sampling of proton positions is an efficient way to capture the interplay of these degrees of freedom in a transition network. The energetically most favourable pathway in the proton transfer network computed for an aspartate-water cluster shows the pre-orientation of water molecules and aspartate side chains to be a pre-requisite for the subsequent concerted proton transfer to the product state.

  7. Determination of aqueous acid-dissociation constants of aspartic acid using PCM/DFT method

    NASA Astrophysics Data System (ADS)

    Sang-Aroon, Wichien; Ruangpornvisuti, Vithaya

    Determination of acid-dissociation constants, pKa, of aspartic acid in aqueous solution, using density functional theory calculations combined with the conductor-like polarizable continuum model (CPCM) and with integral-equation-formalism polarizable continuum model (IEFPCM) based on the UAKS and UAHF radii, was carried out. The computed pKa values derived from the CPCM and IEFPCM with UAKS cavity model of bare structures of the B3LYP/6-31+G(d,p)-optimized tetrahydrated structures of aspartic acid species are mostly close to the experimental pKa values.0

  8. Probing the energy landscape of alanine dipeptide and decalanine using temperature as a tunable parameter in molecular dynamics

    NASA Astrophysics Data System (ADS)

    Chatterjee, A.; Bhattacharya, S.

    2016-10-01

    We perform several molecular dynamics (MD) calculations of solvated alanine dipeptide and decalanine in vacuum with temperature as a tunable parameter and in the process, generate Markov state models (MSMs) at each temperature. An interesting observation that the kinetic rates appear to obey the Arrhenius rate law allows us to predict the dynamics of alanine dipeptide at 300 K at the microsecond timescales using the nanoseconds long high temperature calculations without actually performing MD simulations at 300 K. We conclude that the energy landscape of alanine dipeptide contains superbasins deeper than kBT and determine the energy barriers associated with the moves from the Arrhenius rate expression. Similar insights regarding the energy landscape associated with folding/unfolding pathways of a deca-alanine molecule are obtained using kinetic rates calculated at different temperatures.

  9. Alanine with the Precipitate of Tomato Juice Administered to Rats Enhances the Reduction in Blood Ethanol Levels.

    PubMed

    Oshima, Shunji; Shiiya, Sachie; Tokumaru, Yoshimi; Kanda, Tomomasa

    2015-01-01

    Delay in gastric emptying (GE) lowers the blood ethanol concentration (BEC) after alcohol administration. We previously demonstrated that water-insoluble fractions, mainly comprising dietary fiber derived from many types of botanical foods, possessed the ability to absorb ethanol-containing aqueous solutions. Furthermore, there was a significant correlation between the absorption of ethanol and lowering of BEC because of delay in GE. Here we identified dietary nutrients that synergize with the water-insoluble fraction of tomatoes to lower BEC in rats. Consequently, unlike tomato juice without alanine, tomato juice with 5.0% alanine decreased BEC depending on the delay in GE and mediated the ethanol-induced decrease in the spontaneous motor activity (an indicator of drunkenness). Our findings indicate that the synergism between tomato juice and alanine to reduce the absorption of ethanol was attributable to the effect of alanine on precipitates such as the water-insoluble fraction of tomatoes.

  10. Alanine with the Precipitate of Tomato Juice Administered to Rats Enhances the Reduction in Blood Ethanol Levels

    PubMed Central

    Oshima, Shunji; Shiiya, Sachie; Tokumaru, Yoshimi; Kanda, Tomomasa

    2015-01-01

    Delay in gastric emptying (GE) lowers the blood ethanol concentration (BEC) after alcohol administration. We previously demonstrated that water-insoluble fractions, mainly comprising dietary fiber derived from many types of botanical foods, possessed the ability to absorb ethanol-containing aqueous solutions. Furthermore, there was a significant correlation between the absorption of ethanol and lowering of BEC because of delay in GE. Here we identified dietary nutrients that synergize with the water-insoluble fraction of tomatoes to lower BEC in rats. Consequently, unlike tomato juice without alanine, tomato juice with 5.0% alanine decreased BEC depending on the delay in GE and mediated the ethanol-induced decrease in the spontaneous motor activity (an indicator of drunkenness). Our findings indicate that the synergism between tomato juice and alanine to reduce the absorption of ethanol was attributable to the effect of alanine on precipitates such as the water-insoluble fraction of tomatoes. PMID:26713162

  11. Beta-alanine-hydrochloride (2:1) crystal: structure, 13C NMR and vibrational properties, protonation character.

    PubMed

    Godzisz, D; Ilczyszyn, M; Ciunik, Z

    2003-01-15

    The crystal structure of beta-alanine-hydrochloride (2:1) complex (2A-HCl) has been determined by X-ray diffraction method at 298 and 100 K as monoclinic, space group C2/c, Z=4. The crystal comprises chloride anions and protonated beta-alanine dimers: two beta-alanine zwitterions are joined by strong, symmetric (Ci) hydrogen bond with the O...O distance of 2.473 A at room temperature. Powder FT-IR and FT-Raman as well as solid state 13C NMR spectra provide insights into the solid structure of this complex, character of its hydrogen bonds and the beta-alanine protonation.

  12. Evidence for disorder in L-alanine lattice detected by Pulsed-EPR spectroscopy at cryogenic temperatures.

    PubMed

    Maltar-Strmecki, N; Rakvin, B

    2006-03-13

    The unusual behavior of lattice dynamics of L-alanine has been assigned to intermolecular dynamics and localization of vibrational energy. Recent heat capacity and Pulsed-EPR measurements support presence of thermally activated dynamic orientational disorder in the L-alanine lattice below 20 K. In the present study, the additional evidence for possible thermally activated disordered behavior of L-alanine lattice have been obtained by investigating dependences of longitudinal relaxation time of first stable L-alanine radical, SAR1, on sample cooling rates for the same low temperature interval. The obtained relaxation time by Pulsed-EPR shows clear dependence on cooling rates and this behavior can be explained within two types of suggested spin-lattice relaxation mechanisms for the paramagnetic centers in the hydrogen-bonded organic crystal.

  13. Feasibility on using composite gel-alanine dosimetry on the validation of a multiple brain metastasis radiosurgery VMAT technique

    NASA Astrophysics Data System (ADS)

    Pavoni, J. F.; Neves-Junior, W. F. P.; Silveira, M. A.; Ramos, P. A. M. M.; Haddad, C. M. K.; Baffa, O.

    2015-01-01

    This work presents an end-to-end test using a composite Gel-Alanine phantom, in order to validate 3-dimensionally the dose distribution delivered by a single isocenter VMAT technique on the simultaneous treatment of multiple brain metastases. The results obtained with the gel and alanine dosimeters are consistent with the expected by the treatment planning system, showing the potential of this multidosimetric approach and validating dosimetrically the multiple brain metastases treatment using VMAT.

  14. Barrier-Free Intermolecular Proton Transfer Induced by Excess Electron Attachment to the Complex of Alanine with Uracil

    SciTech Connect

    Dabkowska, Iwona; Rak, Janusz; Gutowski, Maciej S.; Nilles, J.M.; Stokes, Sarah; Bowen, Kit H.

    2004-04-01

    The photoelectron spectrum of the uracil-alanine anionic complex (UA)- has been recorded with 2.540 eV photons. This spectrum reveals a broad feature with a maximum between 1.6-2.1 eV. The vertical electron detachment energy is too large to be attributed to an (UA)- anionic complex in which an intact uracil anion is solvated by alanine, or vice versa. The neutral and anionic complexes of uracil and alanine were studied at the B3LYP and second order Moeller-Plesset level of theory with 6-31++G** basis sets. The neutral complexes form cyclic hydrogen bonds and the three most stable neutral complexes are bound by 0.72, 0.61 and 0.57 eV. The electron hole in complexes of uracil with alaninie is localized on uracil, but the formation of a complex with alanine strongly modulates the vertical ionization energy of uracil. The theoretical results indicate that the excess electron in (UA)- occupies a p* orbital localized on uracil. The excess electron attachment to the complex can induce a barrier-free proton transfer (BFPT) from the carboxylic group of alanine to the O8 atom of uracil. As a result, the four most stable structures of the uracil-alanine anionic complex can be characterized as the neutral radical of hydrogenated uracil solvated by the anion of deprotonated alanine. Our current results for the anionic complex of uracil with alanine are similar to our previous results for the anion of uracil with glycine [Eur. Phys. J. D 20, 431 (2002)], and together they indicate that the BFPT process is not very sensitive to the nature of the amino acid's hydrophobic residual group. The BFPT to the O8 atom of uracil may be relevant to the damage suffered by nucleic acid bases due to exposure to low energy electrons.

  15. The effect of beta-alanine supplementation on isokinetic force and cycling performance in highly trained cyclists.

    PubMed

    Howe, Samuel T; Bellinger, Phillip M; Driller, Matthew W; Shing, Cecilia M; Fell, James W

    2013-12-01

    Beta-alanine may benefit short-duration, high-intensity exercise performance. The aim of this randomized double-blind placebo-controlled study was to examine the effects of beta-alanine supplementation on aspects of muscular performance in highly trained cyclists. Sixteen highly trained cyclists (mean ± SD; age = 24 ± 7 yr; mass = 70 ± 7 kg; VO2max = 67 ± 4 ml · kg(-1) · min(-1)) supplemented with either beta-alanine (n = 8, 65 mg · kg - 1BM) or a placebo (n = 8; dextrose monohydrate) over 4 weeks. Pre- and postsupplementation cyclists performed a 4-minute maximal cycling test to measure average power and 30 reciprocal maximal isokinetic knee contractions at a fixed angular velocity of 180° · sec(-1) to measure average power/repetition, total work done (TWD), and fatigue index (%). Blood pH, lactate (La-) and bicarbonate (HCO3-) concentrations were measured pre- and postisokinetic testing at baseline and following the supplementation period. Beta-alanine supplementation was 44% likely to increase average power output during the 4-minute cycling time trial when compared with the placebo, although this was not statistically significant (p = .25). Isokinetic average power/repetition was significantly increased post beta-alanine supplementation compared with placebo (beta-alanine: 6.8 ± 9.9 W, placebo: -4.3 ± 9.5 W, p = .04, 85% likely benefit), while fatigue index was significantly reduced (p = .03, 95% likely benefit). TWD was 89% likely to be improved following beta-alanine supplementation; however, this was not statistically significant (p = .09). There were no significant differences in blood pH, lactate, and HCO3- between groups (p > .05). Four weeks of beta-alanine supplementation resulted in worthwhile changes in time-trial performance and short-duration muscular force production in highly trained cyclists.

  16. Effects of high-salinity seawater acclimation on the levels of D-alanine in the muscle and hepatopancreas of kuruma prawn, Marsupenaeus japonicus.

    PubMed

    Yoshikawa, Naoko; Yokoyama, Masahumi

    2015-12-10

    Changes in D- and L-alanine contents were determined in the muscle and hepatopancreas of kuruma prawn Marsupenaeus japonicus, during acclimation from seawater containing 100% salinity to artificial seawater containing 150% salinity. In the hepatopancreas, contents of both amino acids increased by approximately threefold. The activity of alanine racemase, which catalyzes the interconversion of D- and L-alanine, also increased in the high-salinity seawater. In addition, the expression of the gene encoding alanine racemase increased in the hepatopancreas with an increase in the alanine racemase activity. These data indicate that the biosynthesis of D- and L-alanine is controlled by the gene expression level of alanine racemase, and D-alanine in the hepatopancreas functions as a major osmolyte for isosmotic regulation. In contrast, the content of D-alanine and alanine racemase activity did not change in the muscle during hyper-osmotic acclimation. Therefore, we suggest that D-alanine, which exists in the several tissues of M. japonicus, is considered to be utilized in some different physiological phenomena in different tissues.

  17. Characteristics of the transport of alanine, serine and glutamine across the plasma membrane of isolated rat liver cells.

    PubMed Central

    Joseph, S K; Bradford, N M; McGivan, J D

    1978-01-01

    1. Alanine, glutamine and serine were actively accumulated in liver cells isolated from starved rats. 2. This accumulation was inhibited when either Na+ or HCO3- ions were omitted from the incubation medium. In general the degree of dependence on Na+ was quantitatively similar to that on HCO3-. 3. The apparent Km values for the transport of all three amino acids were in the range 3--5mM with Vmax. values in the range 15--25nmol/min per mg of cell protein at 37 degrees C. 4. Alanine and serine transport were mutually competitive; glutamine inhibited the transport of alanine and serine non-competitively. 5. The initial rate of transport of these amino acids was inhibited when the intracellular content of ATP was decreased. 6. Ouabain inhibited the rate of alanine transport without inhibiting the rate of alanine metabolism. 7. It is concluded that a minimum of three transport systems must be postulated to exist in the liver cell plasma membrane to account for the transport of alanine, serine and glutamine. The rate of transport of these amino acids in isolated hepatocytes is unlikely to limit the rate at which they are metabolized. PMID:747655

  18. Water-soluble polysaccharide from Eleutherococcus senticosus stems attenuates fulminant hepatic failure induced by D-galactosamine and lipopolysaccharide in mice.

    PubMed

    Park, Eun-Jeon; Nan, Ji-Xing; Zhao, Yu-Zhe; Lee, Sung Hee; Kim, Young Ho; Nam, Jeong Bum; Lee, Jung Joon; Sohn, Dong Hwan

    2004-06-01

    The aim of this study was to investigate whether Eleutherococcus senticosus stems could attenuate D-galactosamine/lipopolysaccharide-induced fulminant hepatic failure in mice. E. senticosus, known as Siberian ginseng, is a popular folk medicine used as a tonic in Asia. Preparations of E. senticosus used in this study were as follows; (i) 70% ethanol extract (ii) water extract (iii) ethanol-soluble part of the water extract (iv) polysaccharide obtained as an 80% ethanol insoluble of the water extract. Preparations were given by intraperitoneal (300 mg/kg and 50 mg/kg) or oral (300 mg/kg) injection at 12 hr and 1 hr before a D-galactosamine/lipopolysaccharide injection. The intraperitoneal injection of water extract and polysaccharide significantly lowered serum levels of tumour necrosis factor-alpha, aspartate transaminase and alanine transaminase, improved the histologic changes in liver, inhibited hepatocyte apoptosis confirmed by the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling method and DNA fragmentation assay, and suppressed the lethality induced by D-galactosamine/lipopolysaccharide. The oral administration of water extract and polysaccharide also reduced serum aspartate transaminase, alanine transaminase and tumour necrosis factor-alpha levels. In contrast 70% ethanol extract and ethanol-soluble part of the water extract had no protective effect when treated intraperitoneally or orally. These results indicate E. senticosus stems attenuate fulminant hepatic failure induced by D-galactosamine/lipopolysaccharide in mice and the protective effect is due to water-soluble polysaccharides in E. senticosus stems.

  19. Identification of a small molecule [beta]-secretase inhibitor that binds without catalytic aspartate engagement

    SciTech Connect

    Steele, Thomas G.; Hills, Ivory D.; Nomland, Ashley A.; de León, Pablo; Allison, Timothy; McGaughey, Georgia; Colussi, Dennis; Tugusheva, Katherine; Haugabook, Sharie J.; Espeseth, Amy S.; Zuck, Paul; Graham, Samuel L.; Stachel, Shawn J.

    2010-09-02

    A small molecule inhibitor of beta-secretase with a unique binding mode has been developed. Crystallographic determination of the enzyme-inhibitor complex shows the catalytic aspartate residues in the active site are not engaged in inhibitor binding. This unprecedented binding mode in the field of aspartyl protease inhibition is described.

  20. The anomalous kinetics of coupled aspartate aminotransferase and malate dehydrogenase. Evidence for compartmentation of oxaloacetate.

    PubMed Central

    Bryce, C F; Williams, D C; John, R A; Fasella, P

    1976-01-01

    Cytoplasmic aspartate aminotransferase and malate dehydrogenase were purified from pig heart. Kinetic parameters were determined for the separate reaction catalysed by each enzyme and used to predict the course of the coupled reaction: (see article). Although a lag phase should have been easily seen, none was detected. The same coupled reaction was also carried out by using radioactive aspartate in the presence of unlabelled oxaloacetate. The reaction was quenched with HClO4 after 70 ms and the specific radioactivity of the malate produced in this system was found to be essentially the same as that of the original aspartate. These results show that oxaloacetate produced by the aspartate aminotransferase is converted into malate by malate dehydrogenase before it equilibrates with the pool of unlabelled oxaloacetate and are consistent with a proposal that the enzymes are associated in a complex. However, no physical evidence of the existence of a complex could be found. An alternative means of compartmentation of the intermediate as an unstable isomer is considered. Images Fig. 2. Fig. 3. PMID:942372

  1. Discovery of MK-8718, an HIV Protease Inhibitor Containing a Novel Morpholine Aspartate Binding Group.

    PubMed

    Bungard, Christopher J; Williams, Peter D; Ballard, Jeanine E; Bennett, David J; Beaulieu, Christian; Bahnck-Teets, Carolyn; Carroll, Steve S; Chang, Ronald K; Dubost, David C; Fay, John F; Diamond, Tracy L; Greshock, Thomas J; Hao, Li; Holloway, M Katharine; Felock, Peter J; Gesell, Jennifer J; Su, Hua-Poo; Manikowski, Jesse J; McKay, Daniel J; Miller, Mike; Min, Xu; Molinaro, Carmela; Moradei, Oscar M; Nantermet, Philippe G; Nadeau, Christian; Sanchez, Rosa I; Satyanarayana, Tummanapalli; Shipe, William D; Singh, Sanjay K; Truong, Vouy Linh; Vijayasaradhi, Sivalenka; Wiscount, Catherine M; Vacca, Joseph P; Crane, Sheldon N; McCauley, John A

    2016-07-14

    A novel HIV protease inhibitor was designed using a morpholine core as the aspartate binding group. Analysis of the crystal structure of the initial lead bound to HIV protease enabled optimization of enzyme potency and antiviral activity. This afforded a series of potent orally bioavailable inhibitors of which MK-8718 was identified as a compound with a favorable overall profile.

  2. Concordance of Collagen-Based Radiocarbon and Aspartic-Acid Racemization Ages

    PubMed Central

    Bada, Jeffrey L.; Schroeder, Roy A.; Protsch, Reiner; Berger, Rainer

    1974-01-01

    By determining the extent of racemization of aspartic acid in a well-dated bone, it is possible to calculate the in situ first-order rate constant for the interconversion of the L and D enantiomers of aspartic acid. Collagen-based radiocarbon-dated bones are shown to be suitable samples for use in “calibrating” the racemization reaction. Once the aspartic-acid racemization reaction has been “calibrated” for a site, the reaction can be used to date other bones from the deposit. Ages deduced by this method are in good agreement with radiocarbon ages. These results provide evidence that the aspartic-acid racemization reaction is an important chronological tool for dating bones either too old or too small for radiocarbon dating. As an example of the potential application of the technique for dating fossil man, a piece of Rhodesian Man from Broken Hill, Zambia, was analyzed and tentatively assigned an age of about 110,000 years. PMID:4522802

  3. A Green Polymerization of Aspartic Acid for the Undergraduate Organic Laboratory

    ERIC Educational Resources Information Center

    Bennett, George D.

    2005-01-01

    The green polymerization of aspartic acid carried out during an organic-inorganic synthesis laboratory course for undergraduate students is described. The procedure is based on work by Donlar Corporation, a Peru, Illinois-based company that won a Green Chemistry Challenge Award in 1996 in the Small Business category for preparing thermal…

  4. Carbonyl-carbonyl interactions stabilize the partially allowed Ramachandran conformations of asparagine and aspartic acid.

    PubMed

    Deane, C M; Allen, F H; Taylor, R; Blundell, T L

    1999-12-01

    Asparagine and aspartate are known to adopt conformations in the left-handed alpha-helical region and other partially allowed regions of the Ramachandran plot more readily than any other non-glycyl amino acids. The reason for this preference has not been established. An examination of the local environments of asparagine and aspartic acid in protein structures with a resolution better than 1.5 A revealed that their side-chain carbonyls are frequently within 4 A of their own backbone carbonyl or the backbone carbonyl of the previous residue. Calculations using protein structures with a resolution better than 1.8 A reveal that this close contact occurs in more than 80% of cases. This carbonyl-carbonyl interaction offers an energetic sabilization for the partially allowed conformations of asparagine and aspartic acid with respect to all other non-glycyl amino acids. The non-covalent attractive interactions between the dipoles of two carbonyls has recently been calculated to have an energy comparable to that of a hydrogen bond. The preponderance of asparagine in the left-handed alpha-helical region, and in general of aspartic acid and asparagine in the partially allowed regions of the Ramachandran plot, may be a consequence of this carbonyl-carbonyl stacking interaction.

  5. 21 CFR 862.1100 - Aspartate amino transferase (AST/SGOT) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Aspartate amino transferase (AST/SGOT) test system. 862.1100 Section 862.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  6. 21 CFR 862.1100 - Aspartate amino transferase (AST/SGOT) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Aspartate amino transferase (AST/SGOT) test system. 862.1100 Section 862.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  7. 21 CFR 862.1100 - Aspartate amino transferase (AST/SGOT) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Aspartate amino transferase (AST/SGOT) test system. 862.1100 Section 862.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  8. 21 CFR 862.1100 - Aspartate amino transferase (AST/SGOT) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Aspartate amino transferase (AST/SGOT) test system. 862.1100 Section 862.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  9. 21 CFR 862.1100 - Aspartate amino transferase (AST/SGOT) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Aspartate amino transferase (AST/SGOT) test system. 862.1100 Section 862.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  10. Genome-wide identification, evolutuionary and expression analysis of aspartic proteases gene superfamily in grape

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspartic proteases (APs) are a large family of proteolytic enzymes in vertebrates, plants, yeast, nematodes, parasites, fungi, and viruses. In plants, they are involved in many biological processes, such as plant senescence, stress response, programmed cell death, and reproduction. Prior to the pr...

  11. Aspartic acid in the hippocampus: a biomarker for postoperative cognitive dysfunction

    PubMed Central

    Hu, Rong; Huang, Dong; Tong, Jianbin; Liao, Qin; Hu, Zhonghua; Ouyang, Wen

    2014-01-01

    This study established an aged rat model of cognitive dysfunction using anesthesia with 2% isoflurane and 80% oxygen for 2 hours. Twenty-four hours later, Y-maze test results showed that isoflurane significantly impaired cognitive function in aged rats. Gas chromatography-mass spectrometry results showed that isoflurane also significantly increased the levels of N,N-diethylacetamide, n-ethylacetamide, aspartic acid, malic acid and arabinonic acid in the hippocampus of isoflurane-treated rats. Moreover, aspartic acid, N,N-diethylacetamide, n-ethylacetamide and malic acid concentration was positively correlated with the degree of cognitive dysfunction in the isoflurane-treated rats. It is evident that hippocampal metabolite changes are involved in the formation of cognitive dysfunction after isoflurane anesthesia. To further verify these results, this study cultured hippocampal neurons in vitro, which were then treated with aspartic acid (100 μmol/L). Results suggested that aspartic acid concentration in the hippocampus may be a biomarker for predicting the occurrence and disease progress of cognitive dysfunction. PMID:25206795

  12. The heat effects of dissociation of N-(carboxymethyl)aspartic acid

    NASA Astrophysics Data System (ADS)

    Lytkin, A. I.; Chernyavskaya, N. V.; Orlova, T. D.; Nikol'Skii, V. M.

    2009-07-01

    The heat effects of dissociation of N-(carboxymethyl)aspartic acid were determined calorimetrically at 298.15 K and various ionic strength values. The standard thermodynamic characteristics of dissociation of the complexone at fixed and zero ionic strengths were calculated.

  13. Estimation of paleotemperature from racemization of aspartic acid in combination with radiocarbon age

    NASA Astrophysics Data System (ADS)

    Minami, Masayo; Takeyama, Masami; Mimura, Koichi; Nakamura, Toshio

    2007-06-01

    We tried to estimate paleotemperatures from two chosen fossils by measuring D/L aspartic acid ratios and radiocarbon ages of the XAD-2-treated hydrolysate fractions in the fossils. The D/L aspartic acid ratio was measured with a gas chromatograph and radiocarbon dating was performed using a Tandetron AMS system at Nagoya University. The radiocarbon age of a fossil mammoth molar collected from Bykovsky Peninsula, eastern Siberia, was found to be 35,170 ± 300 BP as an average value for the XAD-treated hydrolysate fractions. The aspartic acid in the mammoth molar showed a little evidence of racemization, which might be due to in vivo racemization during the lifetime and then suggests negligible or no postmortem racemization during burial in permafrost. From four animal bone fossils collected from a shell mound excavated at the Awazu submarine archeological site in Lake Biwa, Shiga, Japan, the racemization-based effective mean temperature was calculated to be 15-16 °C using the D/L aspartic acid ratio of about 0.11 and the 14C age of 4500 BP for the XAD-2-treated hydrolysate fractions in the fossils. The average annual temperature was estimated to be 11-12 °C, which approximates to the temperature that the fossils experienced during burial at the site. Although the application of racemization ratios in fossils as paleotemperature indicators is surrounded with many difficulties, the results obtained in this study suggest its feasibility.

  14. Thorium aspartate tetrahydrate precursor to ThO2: Comparison of hydrothermal and thermal conversions

    NASA Astrophysics Data System (ADS)

    Clavier, N.; Maynadié, J.; Mesbah, A.; Hidalgo, J.; Lauwerier, R.; Nkou Bouala, G. I.; Parrès-Maynadié, S.; Meyer, D.; Dacheux, N.; Podor, R.

    2017-04-01

    The synthesis of original crystalline thorium aspartate tetrahydrate, Th(C4NO4H6)4.4H2O, was performed using two different wet-chemistry routes, involving either L-asparagine or L-aspartic acid as complexing agent. Characterization of this compound through 13C NMR and PXRD led to confirm the terminal coordination mode of the aspartate group and to suggest a potential cubic lattice (Pn-3 space group). Vibrational spectroscopy data were also collected. The conversion of thorium aspartate tetrahydrate into thorium dioxide was further performed through classical high temperature heat treatment or under hydrothermal conditions. On the one hand, thermal treatment provided a pseudomorphic conversion which retained the starting morphology, and favored the increase of the average crystallite size, as well as the complete elimination of the residual carbon content. On the other, hydrothermal conversion could be used to tune the morphology of the final oxide, ThO2.nH2O microspheres being prepared when starting from L-asparagine.

  15. Pediatric Herpes Simplex Virus Encephalitis Complicated by N-Methyl-D-aspartate Receptor Antibody Encephalitis.

    PubMed

    Bamford, Alasdair; Crowe, Belinda H A; Hacohen, Yael; Lin, Jean-Pierre; Clarke, Antonia; Tudor-Williams, Gareth; Sancho-Shimizu, Vanessa; Vincent, Angela; Lim, Ming; Pullaperuma, Sunil P

    2015-06-01

    N-methyl-D-aspartate receptor antibodies (NMDAR-Abs) can contribute to neurological relapse after herpes simplex virus encephalitis (HSE). We describe a child with NMDAR-Ab encephalitis after HSE, which was recognized and treated early. We discuss the case in the context of existing reports, and we propose a modified immunotherapy strategy to minimize risk of viral reactivation.

  16. Insights into the behaviour of biomolecules on the early Earth: The concentration of aspartate by layered double hydroxide minerals

    NASA Astrophysics Data System (ADS)

    Grégoire, Brian; Erastova, Valentina; Geatches, Dawn L.; Clark, Stewart J.; Greenwell, H. Christopher; Fraser, Donald G.

    2016-03-01

    The role of mineral surfaces in concentrating and facilitating the polymerisation of simple protobiomolecules during the Hadean and Archean has been the subject of much research in order to constrain the conditions that may have led to the origin of life on early Earth. Here we examine the adsorption of the amino acid aspartate on layered double hydroxide minerals, and use a combined computer simulation - experimental spectroscopy approach to gain insight into the resulting structures of the host-aspartate material. We show that the uptake of aspartate occurs in alkaline solution by anion exchange of the dianion form of aspartate, rather than by surface adsorption. Anion exchange only occurs at values of pH where a significant population of aspartate has the amino group deprotonated, and is then highly efficient up to the mineral anion exchange capacity.

  17. DNA interaction with octahedral and square planar Ni(II) complexes of aspartic-acid Schiff-bases

    NASA Astrophysics Data System (ADS)

    Sallam, S. A.; Orabi, A. S.; Abbas, A. M.

    2011-12-01

    Ni(II) complexes of (S,E)-2-(2-OHbenzilydene)aspartic acid; (S,E)-2-(2,3-diOHbenzilydene)aspartic acid-; (S,E)-2-(2,4-diOH-benzilydene)aspartic acid; (S,E)-2-(2,5-diOHbenzilydene)aspartic acid and (S,E)-2-((2-OHnaphthalene-1-yl)methylene)aspartic acid Schiff-bases have been synthesized by template method in ethanol or ammonia media. They were characterized by elemental analyses, conductivity measurements, magnetic moment, UV, IR and 1H nmr spectra as well as thermal analysis (TG, DTG, DTA). The Schiff-bases are dibasic tridentate or tetradentate donors and the complexes have square planar and octahedral structures. The complexes decompose in two or three steps where kinetic and thermodynamic parameters of the decomposition steps were computed. The interactions of the formed complexes with FM-DNA were monitored by UV and fluorescence spectroscopy.

  18. Free Energy Landscapes of Alanine Oligopeptides in Rigid-Body and Hybrid Water Models.

    PubMed

    Nayar, Divya; Chakravarty, Charusita

    2015-08-27

    Replica exchange molecular dynamics is used to study the effect of different rigid-body (mTIP3P, TIP4P, SPC/E) and hybrid (H1.56, H3.00) water models on the conformational free energy landscape of the alanine oligopeptides (acAnme and acA5nme), in conjunction with the CHARMM22 force field. The free energy landscape is mapped out as a function of the Ramachandran angles. In addition, various secondary structure metrics, solvation shell properties, and the number of peptide-solvent hydrogen bonds are monitored. Alanine dipeptide is found to have similar free energy landscapes in different solvent models, an insensitivity which may be due to the absence of possibilities for forming i-(i + 4) or i-(i + 3) intrapeptide hydrogen bonds. The pentapeptide, acA5nme, where there are three intrapeptide backbone hydrogen bonds, shows a conformational free energy landscape with a much greater degree of sensitivity to the choice of solvent model, though the three rigid-body water models differ only quantitatively. The pentapeptide prefers nonhelical, non-native PPII and β-sheet populations as the solvent is changed from SPC/E to the less tetrahedral liquid (H1.56) to an LJ-like liquid (H3.00). The pentapeptide conformational order metrics indicate a preference for open, solvent-exposed, non-native structures in hybrid solvent models at all temperatures of study. The possible correlations between the properties of solvent models and secondary structure preferences of alanine oligopeptides are discussed, and the competition between intrapeptide, peptide-solvent, and solvent-solvent hydrogen bonding is shown to be crucial in the relative free energies of different conformers.

  19. Relative response of alanine dosemeters for high-energy electrons determined using a Fricke primary standard.

    PubMed

    Vörös, Sándor; Anton, Mathias; Boillat, Bénédicte

    2012-03-07

    A significant proportion of cancer patients is treated using MeV electron radiation. One of the measurement methods which is likely to furnish reliable dose values also under non-reference conditions is the dosimetry using alanine and read-out via electron spin resonance (ESR). The system has already proven to be suitable for QA purposes for modern radiotherapy involving megavoltage x-rays. In order to render the secondary standard measurement system of the Physikalisch-Technische Bundesanstalt based on alanine/ESR useable for dosimetry in radiotherapy, the dose-to-water (D(W)) response of the dosemeter needs to be known for relevant radiation qualities. For MeV electrons, the D(W) response was determined using the Fricke primary standard of the Swiss Federal Office of Metrology. Since there were no citable detailed publications on the Swiss primary standard available, this measurement system is described in some detail. The experimental results for the D(W) response are compared to results of Monte Carlo simulations which model in detail the beams furnished by the electron accelerator as well as the geometry of the detectors. The agreement between experiment and simulation is very good, as well as the agreement with results published by the National Research Council of Canada which are based on a different primary standard. No significant dependence of the D(W) response was found in the range between 6 and 20 MeV. It is therefore suggested to use a unique correction factor k(E) for alanine for all MeV qualities of k(E) = 1.012 ± 0.010.

  20. Alanine scan of core positions in ubiquitin reveals links between dynamics, stability, and function.

    PubMed

    Lee, Shirley Y; Pullen, Lester; Virgil, Daniel J; Castañeda, Carlos A; Abeykoon, Dulith; Bolon, Daniel N A; Fushman, David

    2014-04-03

    Mutations at solvent-inaccessible core positions in proteins can impact function through many biophysical mechanisms including alterations to thermodynamic stability and protein dynamics. As these properties of proteins are difficult to investigate, the impacts of core mutations on protein function are poorly understood for most systems. Here, we determined the effects of alanine mutations at all 15 core positions in ubiquitin on function in yeast. The majority (13 of 15) of alanine substitutions supported yeast growth as the sole ubiquitin. Both the two null mutants (I30A and L43A) were less stable to temperature-induced unfolding in vitro than wild type (WT) but were well folded at physiological temperatures. Heteronuclear NMR studies indicated that the L43A mutation reduces temperature stability while retaining a ground-state structure similar to WT. This structure enables L43A to bind to common ubiquitin receptors in vitro. Many of the core alanine ubiquitin mutants, including one of the null variants (I30A), exhibited an increased accumulation of high-molecular-weight species, suggesting that these mutants caused a defect in the processing of ubiquitin-substrate conjugates. In contrast, L43A exhibited a unique accumulation pattern with reduced levels of high-molecular-weight species and undetectable levels of free ubiquitin. When conjugation to other proteins was blocked, L43A ubiquitin accumulated as free ubiquitin in yeast. Based on these findings, we speculate that ubiquitin's stability to unfolding may be required for efficient recycling during proteasome-mediated substrate degradation.