Sample records for alara

  1. Proceedings of the Department of Energy ALARA Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dionne, B.J.; Baum, J.W.

    1992-01-01

    The report contains summaries of papers, discussions, and operational exercises presented at the first Department of Energy ALARA Workshop held at Brookhaven National Laboratory, Upton, New York on April 21--22, 1992. The purpose of this workshop was to provide a forum for, and enhance communication among, ALARA personnel, as well as to inform DOE's field office and contractor personnel about the Office of Health's programs and expectations from the entire DOE complex efforts in the ALARA area.The two-day workshop consisted of one day dedicated to presentations on implementing various elements of a formal ALARA program at the DOE contractors' facilities,more » regulatory aspects of ALARA programs, and DOE Headquarters' ALARA expectations/initiatives. The second day was devoted to detailed discussions on ALARA improvements and problems, and operational exercises on cost-benefit analyses and on ALARA job/experiment reviews. At this workshop, 70 health physicists and radiation safety engineers from 5 DOE Headquarter Offices, 7 DOE operations/area offices, and 27 contractor facilities exchanged information, which is expected to stimulate further improvement in the DOE contractors' ALARA programs. Individual papers are indexed separately.« less

  2. ALARA development in Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, M.A.M.

    1995-03-01

    Even though the ALARA philosophy was formally implemented in the early 1980`s, to some extent, ALARA considerations already had been incorporated into the design of most commercial equipment and facilities based on experience and engineering development. In Mexico, the design of medical and industrial facilities were based on international recommendations containing those considerations. With the construction of Laguna Verde Nuclear Power Station, formal ALARA groups were created to review some parts of its design, and to prepare the ALARA Program and related procedures necessary for its commercial operation. This paper begins with a brief historical description of ALARA development inmore » Mexico, and then goes on to discuss our regulatory frame in Radiation Protection, some aspects of the ALARA Program, efforts in controlling and reducing of sources of radiation, and finally, future perspectives in the ALARA field.« less

  3. Proceedings of the Department of Energy ALARA Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dionne, B.J.; Baum, J.W.

    1992-12-31

    The report contains summaries of papers, discussions, and operational exercises presented at the first Department of Energy ALARA Workshop held at Brookhaven National Laboratory, Upton, New York on April 21--22, 1992. The purpose of this workshop was to provide a forum for, and enhance communication among, ALARA personnel, as well as to inform DOE`s field office and contractor personnel about the Office of Health`s programs and expectations from the entire DOE complex efforts in the ALARA area.The two-day workshop consisted of one day dedicated to presentations on implementing various elements of a formal ALARA program at the DOE contractors` facilities,more » regulatory aspects of ALARA programs, and DOE Headquarters` ALARA expectations/initiatives. The second day was devoted to detailed discussions on ALARA improvements and problems, and operational exercises on cost-benefit analyses and on ALARA job/experiment reviews. At this workshop, 70 health physicists and radiation safety engineers from 5 DOE Headquarter Offices, 7 DOE operations/area offices, and 27 contractor facilities exchanged information, which is expected to stimulate further improvement in the DOE contractors` ALARA programs. Individual papers are indexed separately.« less

  4. ALARA in European nuclear installations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lefaure, C.; Croft, J.; Pfeffer, W.

    1995-03-01

    For over a decade the Commission of the European Community has sponsored research projects on the development and practical implementation of the Optimization principle, or as it is often referred to, ALARA. These projects have given rise to a series of successful international Optimization training courses and have provided a significant input to the periodic European Seminars on Optimization, the last one of which took place in April 1993. This paper reviews the approaches to Optimization that have development within Europe and describes the areas of work in the current project. The on-going CEC research project addresses the problem ofmore » ALARA and internal exposures, and tries to define procedures for ALARA implementation, taking account of the perception of the hazard as well as the levels of probability of exposure. The relationships between ALARA and work management, and ALARA and decommissioning of installations appear to be other fruitful research areas. Finally, this paper introduces some software for using ALARA decision aiding techniques and databases containing feed back experience developed in Europe.« less

  5. Fluor Hanford ALARA Center is a D and D Resource

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waggoner, L.O.

    2008-01-15

    The mission at the Hanford Nuclear Reservation changed when the last reactor plant was shut down in 1989 and work was started to place all the facilities in a safe condition and begin decontamination, deactivation, decommissioning, and demolition (D and D). These facilities consisted of old shutdown reactor plants, spent fuel pools, processing facilities, and 177 underground tanks containing 53 million gallons of highly radioactive and toxic liquids and sludge. New skills were needed by the workforce to accomplish this mission. By 1995, workers were in the process of getting the facilities in a safe condition and it became obviousmore » improvements were needed in their tools, equipment and work practices. The Hanford ALARA Program looked good on paper, but did little to help contractors that were working in the field. The Radiological Control Director decided that the ALARA program needed to be upgraded and a significant improvement could be made if workers had a place they could visit that had samples of the latest technology and could talk to experienced personnel who have had success doing D and D work. Two senior health physics personnel who had many years experience in doing radiological work were chosen to obtain tools and equipment from vendors and find a location centrally located on the Hanford site. Vendors were asked to loan their latest tools and equipment for display. Most vendors responded and the Hanford ALARA Center of Technology opened on October 1, 1996. Today, the ALARA Center includes a classroom for conducting training and a mockup area with gloveboxes. Two large rooms have a containment tent, several glove bags, samples of fixatives/expandable foam, coating displays, protective clothing, heat stress technology, cutting tools, HEPA filtered vacuums, ventilation units, pumps, hydraulic wrenches, communications equipment, shears, nibblers, shrouded tooling, and several examples of innovative tools developed by the Hanford facilities. See Figures I and II. The ALARA Center staff routinely researches and tests new technology, sponsor vendor demonstrations, and redistribute tools, equipment and temporary shielding that may not be needed at one facility to another facility that needs it. The ALARA Center staff learns about new technology in several ways. This includes past radiological work experience, interaction with vendors, lessons learned, networking with other DOE sites, visits to the Hanford Technical Library, attendance at off-site conferences and ALARA Workshops. Personnel that contact the ALARA Center for assistance report positive results when they implement the tools, equipment and work practices recommended by the ALARA Center staff. This has translated to reduced exposure for workers and reduced the risk of contamination spread. For example: using a hydraulic shear on one job saved 16 Rem of exposure that would have been received if workers had used saws-all tools to cut piping in twenty-nine locations. Currently, the ALARA Center staff is emphasizing D and D techniques on size-reducing materials, decontamination techniques, use of remote tools/video equipment, capture ventilation, fixatives, using containments and how to find lessons learned. The ALARA Center staff issues a weekly report that discusses their interaction with the workforce and any new work practices, tools and equipment being used by the Hanford contractors. Distribution of this weekly report is to about 130 personnel on site and 90 personnel off site. This effectively spreads the word about ALARA throughout the DOE Complex. DOE EM-23, in conjunction with the D and D and Environmental Restoration work group of the Energy Facility Contractors Organization (EFCOG) established the Hanford ALARA Center as the D and D Hotline for companies who have questions about how D and D work is accomplished. The ALARA Center has become a resource to the nuclear industry and routinely helps contractors at other DOE Sites, power reactors, DOD sites, and sites in England, Europe and Indonesia. Other ALARA Centers are located at the Savannah River Site and Los Alamos National Lab.« less

  6. History and Culture of Alara--The Action Learning and Action Research Association

    ERIC Educational Resources Information Center

    Zuber-Skerritt, Ortrun; Passfield, Ron

    2016-01-01

    As co-founders of the Action Learning and Action Research Association (ALARA), we tell the story of this international network organisation through our personal experience. Our history traces the evolution of ALARA from origins at the first World Congress in 1990 in Brisbane, Australia, through development over two and a half decades, to its…

  7. ALARA Council: Sharing our resources and experiences to reduce doses at Commonwealth Edison Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rescek, F.

    1995-03-01

    Commonwealth Edison Company is an investor-owned utility company supplying electricity to over three million customers (eight million people) in Chicago and northern Illinois, USA. The company operates 16 generating stations which have the capacity to produce 22,522 megawatts of electricity. Six of these generating stations, containing 12 nuclear units, supply 51% of this capacity. The 12 nuclear units are comprised of four General Electric boiling water (BWR-3) reactors, two General Electric BWR-5 reactors, and six Westinghouse four-loop pressurized water reactors (PWR). In August 1993, Commonwealth Edison created an ALARA Council with the responsibility to provide leadership and guidance that resultsmore » in an effective ALARA Culture within the Nuclear Operations Division. Unlike its predecessor, the Corporate ALARA Committee, the ALARA Council is designed to bring together senior managers from the six nuclear stations and corporate to create a collaborative effort to reduce occupational doses at Commonwealth Edison`s stations.« less

  8. Five-year ALARA review of dosimetry results :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paulus, Luke R.

    2013-08-01

    A review of personnel dosimetry (external and internal) and environmental monitoring results from 1 January 2008 through 31 December 2012 performed at Sandia National Laboratories, New Mexico was conducted to demonstrate that radiation protection methods used are compliant with regulatory limits and conform with the ALARA philosophy. ALARA is the philosophical approach to radiation protection by managing and controlling radiation exposures (individual and collective) to the work force and to the general public to levels that are As Low As is Reasonably Achievable taking social, technical, economic, practical, and public policy considerations into account. ALARA is not a dose limitmore » but a process which has the objective of attaining doses as far below applicable dose limits As Low As is Reasonably Achievable.« less

  9. ALARA implementation throughout project life cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haynes, M.J.

    1995-03-01

    A strength of radiation protection programs generally has been endorsement and application of the ALARA principle. In Ontario Hydro, which currently operates 20 commercial size nuclear units, great strides have been made in the last three decades in reducing occupational radiation exposure per unit of electricity generated. This paper will discuss specific applications of elements of the overall ALARA program which have most contributed to dose reduction as the nuclear program has expanded. This includes such things as management commitment, ALARA application in the design phase and major rehabilitation work, the benefits of the self protection concept, a specific examplemore » of elimination (or reduction) of the source term and the importance of dose targets. Finally, it is concluded that the major opportunities for further improvements may lie in the area of information management.« less

  10. Report on the PWR-radiation protection/ALARA Committee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malone, D.J.

    1995-03-01

    In 1992, representatives from several utilities with operational Pressurized Water Reactors (PWR) formed the PWR-Radiation Protection/ALARA Committee. The mission of the Committee is to facilitate open communications between member utilities relative to radiation protection and ALARA issues such that cost effective dose reduction and radiation protection measures may be instituted. While industry deregulation appears inevitable and inter-utility competition is on the rise, Committee members are fully committed to sharing both positive and negative experiences for the benefit of the health and safety of the radiation worker. Committee meetings provide current operational experiences through members providing Plant status reports, and informationmore » relative to programmatic improvements through member presentations and topic specific workshops. The most recent Committee workshop was facilitated to provide members with defined experiences that provide cost effective ALARA performance.« less

  11. Department of Energy ALARA implementation guide. Response to the Health Physics Society

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connelly, J.M.

    1995-03-01

    In the August 1993 Health Physics Society (HPS) newsletter, the HPS Scientific and Public Issues Committee published a Position Statement entitled {open_quotes}Radiation Protection of the Public and the Environment.{close_quotes}. In this article, this HPS committee made the statement that they were deeply concerned by the trend for agencies to incorporate the ALARA concept as a regulatory requirements, without providing specific guidance as to what it means and how to implement it consistently. The HPS position paper was in response to the DOE notice on proposed rulemaking for Title 10 Code of Federal Regulations Part 834, {open_quotes}Radiation Protection of the Publicmore » and the Environment{close_quotes} (10 CFR 834). In the notice of proposed rulemaking for 10 CFR 834, the Department of Energy (DOE) defined ALARA as follows: {open_quotes}As used in this part, ALARA is not a dose limit, but rather a process which has the objective of attaining doses as far below the applicable limit of this part as is reasonably achievable{close_quotes} (10 CFR 834.2, p. 16283 of the Federal Register). The HPS position paper continues, {open_quotes}The section goes on to elaborate on what is meant by a process without providing sufficient guidance to assure uniform applicability of the process.{close_quotes}. Although this concern is directed towards the ALARA process as it relates to the environment, the Office of Health, which is responsible for occupational workers, shares the same definition for ALARA.« less

  12. ALARA: The next link in a chain of activation codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, P.P.H.; Henderson, D.L.

    1996-12-31

    The Adaptive Laplace and Analytic Radioactivity Analysis [ALARA] code has been developed as the next link in the chain of DKR radioactivity codes. Its methods address the criticisms of DKR while retaining its best features. While DKR ignored loops in the transmutation/decay scheme to preserve the exactness of the mathematical solution, ALARA incorporates new computational approaches without jeopardizing the most important features of DKR`s physical modelling and mathematical methods. The physical model uses `straightened-loop, linear chains` to achieve the same accuracy in the loop solutions as is demanded in the rest of the scheme. In cases where a chain hasmore » no loops, the exact DKR solution is used. Otherwise, ALARA adaptively chooses between a direct Laplace inversion technique and a Laplace expansion inversion technique to optimize the accuracy and speed of the solution. All of these methods result in matrix solutions which allow the fastest and most accurate solution of exact pulsing histories. Since the entire history is solved for each chain as it is created, ALARA achieves the optimum combination of high accuracy, high speed and low memory usage. 8 refs., 2 figs.« less

  13. ANI/MAELU engineering inspection criteria 8.3 ALARA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, L.

    1995-03-01

    The purpose of this criteria section is to provide guidelines for programs whose intent is to achieve occupational doses and doses to members of the public that are as low as is reasonably achievable (ALARA). The success that has been achieved by applying ALARA concepts at nuclear power plants is clearly illustrated by the major reductions in the annual cumulative dose to workers at many sites over the last few years. This success is the combined result of the general maturity of the nuclear industry, the intensive study of dose reduction practices by industry groups, and the successful sharing ofmore » experience and practices among plants. Source term reduction should be used as a primary ALARA mechanism. Methods which should be considered include: satellite and cobalt reduction, chemistry control, decontamination, submicron filters, zinc addition, hot spot reduction and permanent or temporary shielding.« less

  14. Shippingport station decommissioning project ALARA Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crimi, F.P.

    1995-03-01

    Properly planned and implemented ALARA programs help to maintain nuclear worker radiation exposures {open_quotes}As Low As Reasonably Achievable.{close_quotes}. This paper describes the ALARA program developed and implemented for the decontamination and decommissioning (D&D) of the Shippingport Atomic Power Station. The elements required for a successful ALARA program are discussed along with examples of good ALARA practices. The Shippingport Atomic Power Station (SAPS) was the first commercial nuclear power plant to be built in the United States. It was located 35 miles northwest of Pittsburgh, PA on the south bank of the Ohio river. The reactor plant achieved initial criticality inmore » December 1959. During its 25-year life, it produced 7.5 billion kilowatts of electricity. The SAPS was shut down in October 1982 and was the first large-scale U.S. nuclear power plant to be totally decommissioned and the site released for unrestricted use. The Decommission Project was estimated to take 1,007 man-rem of radiation exposure and $.98.3 million to complete. Physical decommissioning commenced in September 1985 and was completed in September 1989. The actual man-rem of exposure was 155. The project was completed 6 months ahead of schedule at a cost of $91.3 million.« less

  15. Occupational dose reduction at Department of Energy contractor facilities: Bibliography of selected readings in radiation protection and ALARA; Volume 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dionne, B.J.; Sullivan, S.G.; Baum, J.W.

    1994-01-01

    Promoting the exchange of information related to implementation of the As Low as Reasonably Achievable (ALARA) philosophy is a continuing objective for the Department of Energy (DOE). This report was prepared by the Brookhaven National Laboratory (BNL) ALARA Center for the DOE Office of Health. It contains the fifth in a series of bibliographies on dose reduction at DOE facilities. The BNL ALARA Center was originally established in 1983 under the sponsorship of the Nuclear Regulatory Commission to monitor dose-reduction research and ALARA activities at nuclear power plants. This effort was expanded in 1988 by the DOE`s Office of Environment,more » Safety and Health, to include DOE nuclear facilities. This bibliography contains abstracts relating to various aspects of ALARA program implementation and dose-reduction activities, with a specific focus on DOE facilities. Abstracts included in this bibliography were selected from proceedings of technical meetings, journals, research reports, searches of the DOE Energy, Science and Technology Database (in general, the citation and abstract information is presented as obtained from this database), and reprints of published articles provided by the authors. Facility types and activities covered in the scope of this report include: radioactive waste, uranium enrichment, fuel fabrication, spent fuel storage and reprocessing, facility decommissioning, hot laboratories, tritium production, research, test and production reactors, weapons fabrication and testing, fusion, uranium and plutonium processing, radiography, and accelerators. Information on improved shielding design, decontamination, containments, robotics, source prevention and control, job planning, improved operational and design techniques, as well as on other topics, has been included. In addition, DOE/EH reports not included in previous volumes of the bibliography are in this volume (abstracts 611 to 684). This volume (Volume 5 of the series) contains 217 abstracts.« less

  16. TRADE ALARA for design and operations engineers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-04-01

    This product has been developed by the Training Resources and Data Exchange (TRADE) network for use at Department of Energy (DOE) and DOE contractor facilities. The TRADE network encourages and facilitates the exchange of ideas, techniques, and resources for improving training and development and serves as a forum for the discussion of issues of interest to the DOE community. This TRADE product has been developed for DOE contractor employees who are asked to deliver training to Design and Operations Engineers on the concept of As Low As Reasonably Achievable (ALARA). The ALARA concept is an approach to radiation protection tomore » control or manage exposures as low as social, technical, economic, practical, public policy, and other considerations permit. Worldwide panels of radiation experts have concluded that it is conservative to assume that a proportional relationship exists between radiation dose (exposure) and the biological effects resulting from it. This assumption implies that every dose received, no matter how small, carries some risk: the higher the dose, the higher the risk. The federal government, including agencies such as DOE, subscribes to the concept of ALARA and requires its facilities to subscribe to it as well. This course was developed to introduce engineers to the fundamentals of radiation and contamination reduction that they will use when designing or modifying plant facilities. The course was developed by the ALARA Program group and the Radiation Protection Monitoring/Training Group of Martin Marietta Energy Systems, Inc. at Oak Ridge National Laboratory. We wish to express our appreciation to Emily Copenhaver, Scott Taylor, and Janet Westbrook at Oak Ridge National Laboratory for their willingness to share their labors with the rest of the DOE community and for technical support during the development of the TRADE ALARA for Design and Operations Engineers Course Manual.« less

  17. Five-Year ALARA Review of Dosimetry Results 1 January 2009 through 31 December 2013.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paulus, Luke R

    2014-08-01

    A review of dosimetry results from 1 January 2009 through 31 December 2013 was conducted to demonstrate that radiation protection methods used are compliant with regulatory limits and conform to the ALARA philosophy. This included a review and evaluation of personnel dosimetry (external and internal) results at Sandia National Laboratories, New Mexico as well as at Sandia National Laboratories, California. Additionally, results of environmental monitoring efforts at Sandia National Laboratories, New Mexico were reviewed. ALARA is a philosophical approach to radiation protection by managing and controlling radiation exposures (individual and collective) to the work force and to the general publicmore » to levels that are As Low As is Reasonably Achievable taking social, technical, economic, practical, and public policy considerations into account. ALARA is not a dose limit but a process which has the objective of attaining doses as far below applicable dose limits As Low As is Reasonably Achievable.« less

  18. Five-Year ALARA Review of Dosimetry Results 1 January 2010 through 31 December 2014.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paulus, Luke R.

    2015-06-01

    A review of dosimetry results from 1 January 2010 through 31 December 2014 was conducted to demonstrate that radiation protection methods used are compliant with regulatory limits and conform to the philosophy to keep exposures to radiation As Low As is Reasonably Achievable (ALARA). This included a review and evaluation of personnel dosimetry (external and internal) results at Sandia National Laboratories, New Mexico as well as at Sandia National Laboratories, California. Additionally, results of environmental monitoring efforts at Sandia National Laboratories, New Mexico were reviewed. ALARA is a philosophical approach to radiation protection by managing and controlling radiation exposures (individualmore » and collective) to the work force and to the general public to levels that are As Low As is Reasonably Achievable taking social, technical, economic, practical, and public policy considerations into account. ALARA is not a dose limit but a process which has the objective of attaining doses as far below applicable dose limits As Low As is Reasonably Achievable.« less

  19. Proceedings of the Third International Workshop on the implementation of ALARA at nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, T.A.; Roecklein, A.K.

    1995-03-01

    This report contains the papers presented and the discussions that took place at the Third International Workshop on ALARA Implementation at Nuclear Power Plants, held in Hauppauge, Long Island, New York from May 8--11, 1994. The purpose of the workshop was to bring together scientists, engineers, health physicists, regulators, managers and other persons who are involved with occupational dose control and ALARA issues. The countries represented were: Canada, Finland, France, Germany, Japan, Korea, Mexico, the Netherlands, Spain, Sweden, the United Kingdom and the United States. The workshop was organized into twelve sessions and three panel discussions. Individual papers have beenmore » cataloged separately.« less

  20. LANL Environmental ALARA Program Status Report for CY 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whicker, Jeffrey Jay; Mcnaughton, Michael; Ruedig, Elizabeth

    2017-02-24

    Los Alamos National Laboratory (LANL) ensures that radiation exposures to members of the public and the environment from LANL operations, past and present, are below regulatory thresholds and are as low as reasonably achievable (ALARA) through compliance with DOE Order 458.1 Radiation Protection for the Public and the Environment, and LANL Policy 412 Environmental Radiation Protection (LANL2016a). In 2007, a finding (RL.2-F-1) and observation (RL.2-0-1) in the NNSA/ LASO report, September 2007, Release of Property (Land) Containing Residual Radioactive Material Self-Assessment Report, indicated that LANL had no policy or documented process in place for the release of property containing residualmore » radioactive material. In response, LANL developed PD410, Los Alamos National Laboratory Environmental ALARA Program. The most recent version of this document became effective in 2014 (LANL 2014a). The document provides program authorities, responsibilities, descriptions, processes, and thresholds for conducting qualitative and quantitative ALARA analyses for prospective and actual radiation exposures to the public and t o the environment resulting from DOE activities conducted on the LANL site.« less

  1. LANL Environmental ALARA Program Status Report for CY 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whicker, Jeffrey Jay; Mcnaughton, Michael; Gillis, Jessica Mcdonnel

    2016-03-29

    Los Alamos National Laboratory (LANL) ensures that radiation exposures to members of the public and the environment from LANL operations, past and present, are below regulatory thresholds and are as low as reasonably achievable (ALARA) through compliance with DOE Order 458.1 Radiation Protection for the Public and the Environment, and LANL Policy 412 Environmental Radiation Protection. In 2007, a finding (RL.2-F-1) and observation (RL.2-0-1) in the NNSA/ LASO report, September 2007, Release of Property (Land) Containing Residual Radioactive Material Self-Assessment Report, indicated that LANL had no policy or documented process in place for the release of property containing residual radioactivemore » material. In response, LANL developed PD410, Los Alamos National Laboratory Environmental ALARA Program. The most recent version of this document became effective on September 28, 2011. The document provides program authorities, responsibilities, descriptions, processes, and thresholds for conducting qualitative and quantitative ALARA analyses for prospective and actual radiation exposures to the public and t o the environment resulting from DOE activities conducted on the LANL site.« less

  2. ALARA and planning of interventions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocaboy, A.

    1995-03-01

    The implementation of ALARA programs implies integration of radiation protection criterion at all stages of outage management. Within the framework of its ALARA policy, Electricide de France (EDF) has given an incentive to all of its nuclear power plants to develop {open_quotes}good practices{close_quotes} in this domain, and to exchange their experience by the way of a national feed back file. Among the developments in the field of outage organization, some plants have focused on the planning stage of activities because of its influence on the radiological conditions of interventions and on the good succession of tasks within the radiological controlledmore » areas. This paper presents the experience of Chinon nuclear power plant. At Chinon, we are pursuing this goal through careful outage planning. We want the ALARA program during outages to be part of the overall maintenance task planning. This planning includes the provision of the availability of every safety-related component, and of the variations of water levels in hthereactor and steam generators to take advantage of the shield created by the water. We have developed a computerized data base with the exact position of all the components in the reactor building in order to avoid unnecessary interactions between different tasks performed in the same room. A common language between Operation and Maintenance had been established over the past years, using {open_quotes}Milestones and Corridors{close_quotes}. A real time dose rate counting system enables the Radiation Protection (RP) Department to do an accurate and efficient follow up during the outage for all the {open_quotes}ALARA{close_quotes} maintenance tasks.« less

  3. Maximum voltage gradient technique for optimization of ablation for typical atrial flutter with zero-fluoroscopy approach

    PubMed Central

    Deutsch, Karol; Śledź, Janusz; Mazij, Mariusz; Ludwik, Bartosz; Labus, Michał; Karbarz, Dariusz; Pasicka, Bernadetta; Chrabąszcz, Michał; Śledź, Arkadiusz; Klank-Szafran, Monika; Vitali-Sendoz, Laura; Kameczura, Tomasz; Śpikowski, Jerzy; Stec, Piotr; Ujda, Marek; Stec, Sebastian

    2017-01-01

    Abstract Radiofrequency catheter ablation (RFCA) is an established effective method for the treatment of typical cavo-tricuspid isthmus (CTI)-dependent atrial flutter (AFL). The introduction of 3-dimensional electro-anatomic systems enables RFCA without fluoroscopy (No-X-Ray [NXR]). The aim of this study was to evaluate the feasibility and effectiveness of CTI RFCA during implementation of the NXR approach and the maximum voltage-guided (MVG) technique for ablation of AFL. Data were obtained from prospective standardized multicenter ablation registry. Consecutive patients with the first RFCA for CTI-dependent AFL were recruited. Two navigation approaches (NXR and fluoroscopy based as low as reasonable achievable [ALARA]) and 2 mapping and ablation techniques (MVG and pull-back technique [PBT]) were assessed. NXR + MVG (n  =  164; age: 63.7 ± 9.5; 30% women), NXR + PBT (n  =  55; age: 63.9 ± 10.7; 39% women); ALARA + MVG (n  =  36; age: 64.2 ± 9.6; 39% women); and ALARA + PBT (n  =  205; age: 64.7 ± 9.1; 30% women) were compared, respectively. All groups were simplified with a 2-catheter femoral approach using 8-mm gold tip catheters (Osypka AG, Germany or Biotronik, Germany) with 15 min of observation. The MVG technique was performed using step-by-step application by mapping the largest atrial signals within the CTI. Bidirectional block in CTI was achieved in 99% of all patients (P  =  NS, between groups). In NXR + MVG and NXR + PBT groups, the procedure time decreased (45.4 ± 17.6 and 47.2 ± 15.7 min vs. 52.6 ± 23.7 and 59.8 ± 24.0 min, P < .01) as compared to ALARA + MVG and ALARA + PBT subgroups. In NXR + MVG and NXR + PBT groups, 91% and 98% of the procedures were performed with complete elimination of fluoroscopy. The NXR approach was associated with a significant reduction in fluoroscopy exposure (from 0.2 ± 1.1 [NXR + PBT] and 0.3 ± 1.6 [NXR + MVG] to 7.7 ± 6.0 min [ALARA + MVG] and 9.1 ± 7.2 min [ALARA + PBT], P < .001). The total application time significantly decreased in the MVG technique subgroup both in NXR and ALARA (P < .01). No major complications were observed in either groups. Complete elimination of fluoroscopy is feasible, safe, and effective during RFCA of CTI in almost all AFL patients without cardiac implanted electronic devices. The most optimal method for RFCA of CTI-dependent AFL seems to be MVG; however, it required validation of optimal RFCA's parameters with clinical follow-up. PMID:28640075

  4. Maximum voltage gradient technique for optimization of ablation for typical atrial flutter with zero-fluoroscopy approach.

    PubMed

    Deutsch, Karol; Śledź, Janusz; Mazij, Mariusz; Ludwik, Bartosz; Labus, Michał; Karbarz, Dariusz; Pasicka, Bernadetta; Chrabąszcz, Michał; Śledź, Arkadiusz; Klank-Szafran, Monika; Vitali-Sendoz, Laura; Kameczura, Tomasz; Śpikowski, Jerzy; Stec, Piotr; Ujda, Marek; Stec, Sebastian

    2017-06-01

    Radiofrequency catheter ablation (RFCA) is an established effective method for the treatment of typical cavo-tricuspid isthmus (CTI)-dependent atrial flutter (AFL). The introduction of 3-dimensional electro-anatomic systems enables RFCA without fluoroscopy (No-X-Ray [NXR]). The aim of this study was to evaluate the feasibility and effectiveness of CTI RFCA during implementation of the NXR approach and the maximum voltage-guided (MVG) technique for ablation of AFL.Data were obtained from prospective standardized multicenter ablation registry. Consecutive patients with the first RFCA for CTI-dependent AFL were recruited. Two navigation approaches (NXR and fluoroscopy based as low as reasonable achievable [ALARA]) and 2 mapping and ablation techniques (MVG and pull-back technique [PBT]) were assessed. NXR + MVG (n  =  164; age: 63.7 ± 9.5; 30% women), NXR + PBT (n  =  55; age: 63.9 ± 10.7; 39% women); ALARA + MVG (n  =  36; age: 64.2 ± 9.6; 39% women); and ALARA + PBT (n  =  205; age: 64.7 ± 9.1; 30% women) were compared, respectively. All groups were simplified with a 2-catheter femoral approach using 8-mm gold tip catheters (Osypka AG, Germany or Biotronik, Germany) with 15 min of observation. The MVG technique was performed using step-by-step application by mapping the largest atrial signals within the CTI.Bidirectional block in CTI was achieved in 99% of all patients (P  =  NS, between groups). In NXR + MVG and NXR + PBT groups, the procedure time decreased (45.4 ± 17.6 and 47.2 ± 15.7 min vs. 52.6 ± 23.7 and 59.8 ± 24.0 min, P < .01) as compared to ALARA + MVG and ALARA + PBT subgroups. In NXR + MVG and NXR + PBT groups, 91% and 98% of the procedures were performed with complete elimination of fluoroscopy. The NXR approach was associated with a significant reduction in fluoroscopy exposure (from 0.2 ± 1.1 [NXR + PBT] and 0.3 ± 1.6 [NXR + MVG] to 7.7 ± 6.0 min [ALARA + MVG] and 9.1 ± 7.2 min [ALARA + PBT], P < .001). The total application time significantly decreased in the MVG technique subgroup both in NXR and ALARA (P < .01). No major complications were observed in either groups.Complete elimination of fluoroscopy is feasible, safe, and effective during RFCA of CTI in almost all AFL patients without cardiac implanted electronic devices. The most optimal method for RFCA of CTI-dependent AFL seems to be MVG; however, it required validation of optimal RFCA's parameters with clinical follow-up.

  5. Clinical application of 'Justification' and 'Optimization' principle of ALARA in pediatric CT imaging: "How many children can be protected from unnecessary radiation?".

    PubMed

    Sodhi, Kushaljit S; Krishna, Satheesh; Saxena, Akshay K; Sinha, Anindita; Khandelwal, Niranjan; Lee, Edward Y

    2015-09-01

    Practice of ALARA (as low as reasonably achievable) principle in the developed world is currently well established. However, there is striking lack of published data regarding such experience in the developing countries. Therefore, the goal of this study is to prospectively evaluate CT request forms to assess how many children could be protected from harmful radiation exposure if 'Justification' and 'Optimization' principles of ALARA are applied before obtaining CT imaging in a developing country. This can save children from potential radiation risks including development of brain cancer and leukemia. Consecutive CT request forms over a six month study period (May 16, 2013 to November 15, 2013) in a tertiary pediatric children's hospital in India were prospectively reviewed by two pediatric radiologists before obtaining CT imaging. First, 'Justification' of CT was evaluated and then 'Optimization' was applied for evaluation of appropriateness of the requested CT studies. The number (and percentage) of CT studies avoided by applying 'Justification' and 'Optimization' principle of ALARA were calculated. The difference in number of declined and optimized CT requests between CT requests from inpatient and outpatient departments was compared using Chi-Square test. A total of 1302 consecutive CT request forms were received during the study period. Some of the request forms (n=86; 6.61%) had requests for more than one (multiple) anatomical regions, hence, a total of 1392 different anatomical CT requests were received. Based on evaluation of the CT request forms for 'Justification' and 'Optimization' principle of ALARA by pediatric radiology reviewers, 111 individual anatomic part CT requests from 105 pediatric patients were avoided. Therefore, 8.06% (105 out of 1302 pediatric patients) were protected from unnecessary or additional radiation exposure.The rates of declined or optimized CT requests from inpatient department was significantly higher than that from outpatient departments (p<0.05). A substantial number of pediatric patients, particularly coming from outpatient departments, can be protected from unnecessary or additional radiation exposure from CT imaging when 'Justification' and 'Optimization' principle of ALARA are applied before obtaining CT imaging in a developing country. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. ALARA database value in future outage work planning and dose management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, D.W.; Green, W.H.

    1995-03-01

    ALARA database encompassing job-specific duration and man-rem plant specific information over three refueling outages represents an invaluable tool for the outage work planner and ALARA engineer. This paper describes dose-management trends emerging based on analysis of three refueling outages at Clinton Power Station. Conclusions reached based on hard data available from a relational database dose-tracking system is a valuable tool for planning of future outage work. The system`s ability to identify key problem areas during a refueling outage is improving as more outage comparative data becomes available. Trends over a three outage period are identified in this paper in themore » categories of number and type of radiation work permits implemented, duration of jobs, projected vs. actual dose rates in work areas, and accuracy of outage person-rem projection. The value of the database in projecting 1 and 5 year station person-rem estimates is discussed.« less

  7. Health physics aspects of advanced reactor licensing reviews

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinson, C.S.

    1995-03-01

    The last Construction Permit to be issued by the U.S. Nuclear Regulatory Commission (NRC) for a U.S. light water reactor (LWR) was granted in the late 1970s. In 1989 the NRC issued 10 CFR Part 52 which is intended to serve as a framework for the licensing of future reactor designs. The NRC is currently reviewing four different future on {open_quotes}next-generation{close_quotes} reactor designs. Two of these designs are classified as evolutionary designs (modified versions of current generation LWRs) and two are advanced designs (reactors incorporating simplified designs and passive means for accident mitigation). These {open_quotes}next-generation{close_quotes} reactor designs incorporate many innovativemore » design features which are intended to maintain personnel doses ALARA and ensure that the annual average collective dose at these reactors does not exceed 100 person-rems (1 person-sievert) per year. This paper discusses some of the ALARA design features which are incorporated in the four {open_quotes}next-generation{close_quotes} reactor designs incorporate many innovative design features which are intended to maintain personnel doses ALARA and ensure that the annual average collective dose at these reactors does not exceed 100 person-rems (1 person-sievert) per year. This paper discusses some of the ALARA design features which are incorporated in the four {open_quotes}next-generation{close_quotes} reactor designs currently being reviewed by the NRC.« less

  8. ALARA at nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baum, J.W.

    1990-01-01

    Implementation of the As Low As Reasonably Achievable (ALARA) principle at nuclear power plants presents a continuing challenge for health physicists at utility corporate and plant levels, for plant designers, and for regulatory agencies. The relatively large collective doses at some plants are being addressed though a variety of dose reduction techniques. It is planned that this report will include material on historical aspects, management, valuation of dose reduction, quantitative and qualitative aspects of optimization, design, operational considerations, and training. The status of this work is summarized in this report. 30 refs., 1 fig., 6 tabs.

  9. ALARA radiation considerations for the AP600 reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, F.L.

    1995-03-01

    The radiation design of the AP600 reactor plant is based on an average annual occupational radiation exposure (ORE) of 100 man-rem. As a design goal we have established a lower value of 70 man-rem per year. And, with our current design process, we expect to achieve annual exposures which are well below this goal. To accomplish our goal we have established a process that provides criteria, guidelines and customer involvement to achieve the desired result. The criteria and guidelines provide the shield designer, as well as the systems and plant layout designers with information that will lead to an integratedmore » plant design that minimizes personnel exposure and yet is not burdened with complicated shielding or unnecessary component access limitations. Customer involvement is provided in the form of utility input, design reviews and information exchange. Cooperative programs with utilities in the development of specific systems or processes also provides for an ALARA design. The results are features which include ALARA radiation considerations as an integral part of the plant design and a lower plant ORE. It is anticipated that a further reduction in plant personnel exposures will result through good radiological practices by the plant operators. The information in place to support and direct the plant designers includes the Utility Requirements Document (URD), Federal Regulations, ALARA guidelines, radiation design information and radiation and shielding design criteria. This information, along with the utility input, design reviews and information feedback, will contribute to the reduction of plant radiation exposure levels such that they will be less than the stated goals.« less

  10. The optimisation approach of ALARA in nuclear practice: an early application of the precautionary principle. Scientific uncertainty versus legal uncertainty.

    PubMed

    Lierman, S; Veuchelen, L

    2005-01-01

    The late health effects of exposure to low doses of ionising radiation are subject to scientific controversy: one view finds threats of high cancer incidence exaggerated, while the other view thinks the effects are underestimated. Both views have good scientific arguments in favour of them. Since the nuclear field, both industry and medicine have had to deal with this controversy for many decades. One can argue that the optimisation approach to keep the effective doses as low as reasonably achievable, taking economic and social factors into account (ALARA), is a precautionary approach. However, because of these stochastic effects, no scientific proof can be provided. This paper explores how ALARA and the Precautionary Principle are influential in the legal field and in particular in tort law, because liability should be a strong incentive for safer behaviour. This so-called "deterrence effect" of liability seems to evaporate in today's technical and highly complex society, in particular when dealing with the late health effects of low doses of ionising radiation. Two main issues will be dealt with in the paper: 1. How are the health risks attributable to "low doses" of radiation regulated in nuclear law and what lessons can be learned from the field of radiation protection? 2. What does ALARA have to inform the discussion of the Precautionary Principle and vice-versa, in particular, as far as legal sanctions and liability are concerned? It will be shown that the Precautionary Principle has not yet been sufficiently implemented into nuclear law.

  11. Implementation of ALARA radiation protection on the ISS through polyethylene shielding augmentation of the Service Module Crew Quarters

    NASA Technical Reports Server (NTRS)

    Shavers, M. R.; Zapp, N.; Barber, R. E.; Wilson, J. W.; Qualls, G.; Toupes, L.; Ramsey, S.; Vinci, V.; Smith, G.; Cucinotta, F. A.

    2004-01-01

    With 5-7 month long duration missions at 51.6 degrees inclination in Low Earth Orbit, the ionizing radiation levels to which International Space Station (ISS) crewmembers are exposed will be the highest planned occupational exposures in the world. Even with the expectation that regulatory dose limits will not be exceeded during a single tour of duty aboard the ISS, the "as low as reasonably achievable" (ALARA) precept requires that radiological risks be minimized when possible through a dose optimization process. Judicious placement of efficient shielding materials in locations where crewmembers sleep, rest, or work is an important means for implementing ALARA for spaceflight. Polyethylene (CnHn) is a relatively inexpensive, stable, and, with a low atomic number, an effective shielding material that has been certified for use aboard the ISS. Several designs for placement of slabs or walls of polyethylene have been evaluated for radiation exposure reduction in the Crew Quarters (CQ) of the Zvezda (Star) Service Module. Optimization of shield designs relies on accurate characterization of the expected primary and secondary particle environment and modeling of the predicted radiobiological responses of critical organs and tissues. Results of the studies shown herein indicate that 20% or more reduction in equivalent dose to the CQ occupant is achievable. These results suggest that shielding design and risk analysis are necessary measures for reducing long-term radiological risks to ISS inhabitants and for meeting legal ALARA requirements. Verification of shield concepts requires results from specific designs to be compared with onboard dosimetry. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  12. Implementation of ALARA radiation protection on the ISS through polyethylene shielding augmentation of the Service Module crew quarters

    NASA Astrophysics Data System (ADS)

    Shavers, M.; Zapp, N.; Barber, R.; Wilson, J.; Qualls, G.; Toupes, L.; Ramsey, S.; Vinci, V.; Smith, G.; Cucinotta, F.

    With 5 to 7-month long duration missions at 51.6° inclination in Low Earth Orbit, the ionizing radiation levels to which International Space Station (ISS) crewmembers are exposed will be the highest planned occupational exposures in the world. Even with the expectation that regulatory dose limits will not be exceeded during a single tour of duty aboard the ISS, the "as low as reasonably achievable" (ALARA) precept requires that radiological risks be minimized when possible through an dose optimization process. Judicious placement of efficient shielding materials in locations where crewmembers sleep, rest, or work is an important means for implementing ALARA for spaceflight. Polyethylene (Cn Hn ), is a relatively inexpensive, stable, and, with a low atomic number, an effective shielding material that has been certified for use aboard the ISS. Several designs for placement of slabs or walls of polyethylene have been evaluated for radiation exposure reduction in the Crew Quarters (CQ) of the Zvezda (Star) Service Module. Optimization of shield designs relies on accurate characterization of the expected primary and secondary particle environment and modeling of the predicted radiobiological responses of critical organs and tissues. Results of the studies shown herein indicate that 20% or more reduction in dose equivalent to the CQ occupant is achievable. These results suggest that shielding design and risk analysis are necessary measures for reducing long-term radiological risks to ISS inhabitants and for meeting legal ALARA requirements. Verification of shield concepts requires results from specific designs to be compared with onboard dosimetry.

  13. Implementation of ALARA radiation protection on the ISS through polyethylene shielding augmentation of the Service Module Crew Quarters

    NASA Astrophysics Data System (ADS)

    Shavers, M. R.; Zapp, N.; Barber, R. E.; Wilson, J. W.; Qualls, G.; Toupes, L.; Ramsey, S.; Vinci, V.; Smith, G.; Cucinotta, F. A.

    2004-01-01

    With 5-7 month long duration missions at 51.6° inclination in Low Earth Orbit, the ionizing radiation levels to which International Space Station (ISS) crewmembers are exposed will be the highest planned occupational exposures in the world. Even with the expectation that regulatory dose limits will not be exceeded during a single tour of duty aboard the ISS, the "as low as reasonably achievable" (ALARA) precept requires that radiological risks be minimized when possible through a dose optimization process. Judicious placement of efficient shielding materials in locations where crewmembers sleep, rest, or work is an important means for implementing ALARA for spaceflight. Polyethylene (C nH n) is a relatively inexpensive, stable, and, with a low atomic number, an effective shielding material that has been certified for use aboard the ISS. Several designs for placement of slabs or walls of polyethylene have been evaluated for radiation exposure reduction in the Crew Quarters (CQ) of the Zvezda (Star) Service Module. Optimization of shield designs relies on accurate characterization of the expected primary and secondary particle environment and modeling of the predicted radiobiological responses of critical organs and tissues. Results of the studies shown herein indicate that 20% or more reduction in equivalent dose to the CQ occupant is achievable. These results suggest that shielding design and risk analysis are necessary measures for reducing long-term radiological risks to ISS inhabitants and for meeting legal ALARA requirements. Verification of shield concepts requires results from specific designs to be compared with onboard dosimetry.

  14. Process optimization of solid rad waste management at the Shelter object transformation to the ecologically safety system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batiy, V.G.; Stojanov, A.I.; Schmieman, E.

    2007-07-01

    Methodological approach of optimization of schemes of solid radwaste management of the Object Shelter (Shelter) and ChNPP industrial site during transformation to the ecologically safe system was developed. On the basis of the conducted models researches the ALARA-analysis was carried out for the choice of optimum variant of schemes and technologies of solid radwaste management. The criteria of choice of optimum schemes, which are directed on optimization of doses and financial expenses, minimization of amount of the formed radwaste etc, were developed for realization of this ALARA-analysis. (authors)

  15. Report on the BWR owners group radiation protection/ALARA Committee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldrich, L.R.

    1995-03-01

    Radiation protection programs at U.S. boiling water reactor (BWR) stations have evolved during the 1980s and early 1990s from a regulatory adherence-based endeavor to a proactive, risk-based radiation protection and prevention mission. The objectives are no longer to merely monitor and document exposure to radiation and radioactive materials. The focus of the current programs is the optimization of radiation protection of occupational workers consistent with the purpose of producing cost-effective electric power. The newly revised 10 CFR 20 defines the term ALARA (as low as reasonably achievable) to take into account the state of technology, the economics of improvements inmore » relation to the state of the technology, and the benefits to the public health and safety. The BWR Owners Group (BWROG) initially formed the Radiation Protection/ALARA Committee in January 1990 to evaluate methods of reducing occupational radiation exposure during refueling outages. Currently, twenty U.S. BWR owner/operators (representing 36 of the operational 37 domestic BWR units), as well as three foreign BWR operators (associate members), have broadened the scope to promote information exchange between BWR radiation protection professionals and develop good practices which will affect optimization of their radiation protection programs. In search of excellence and the challenge of becoming {open_quotes}World Class{close_quotes} performers in radiation protection, the BWROG Radiation Protection/ALARA Committee has recently accepted a role in assisting the member utilities in improving radiation protection performance in a cost-effective manner. This paper will summarize the recent activities of this Committee undertaken to execute their role of exchanging information in pursuit of optimizing the improvement of their collective radiation protection performance.« less

  16. Experience with ALARA and ALARA procedures in a nuclear power plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrahamse, J.C.

    1995-03-01

    The nuclear power plant Borssele is a Siemens two-loop Pressurized Water Reactor having a capacity of 480 MWe and in operation since 1973. The nuclear power plant Borssle is located in the southwest of the Netherlands, near the Westerschelde River. In the first nine years of operation the radiation level in the primary system increased, reaching a maximum in 1983. The most important reason for this high radiation level was the cobalt content of the grid assemblies of the fuel elements. After resolving this problem, the radiation level decreased to a level comparable with that of other nuclear power plants.

  17. Westinghouse Hanford Company health and safety performance report. Fourth quarter calendar year 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lansing, K.A.

    1995-03-01

    Detailed information pertaining to As Low As Reasonably Achievable/Contamination Control Improvement Project (ALARA/CCIP) activities are outlined. Improved commitment to the WHC ALARA/CCIP Program was experienced throughout FY 1994. During CY 1994, 17 of 19 sitewide ALARA performance goals were completed on or ahead of schedule. Estimated total exposure by facility for CY 1994 is listed in tables by organization code for each dosimeter frequency. Facilities/areas continue to utilize the capabilities of the RPR tracking system in conjunction with the present site management action-tracking system to manage deficiencies, trend performance, and develop improved preventive efforts. Detailed information pertaining to occupational injuries/illnessesmore » are provided. The Industrial Safety and Hygiene programs are described which have generated several key initiatives that are believed responsible for improved safety performance. A breakdown of CY 1994 occupational injuries/illnesses by type, affected body group, cause, job type, age/gender, and facility is provided. The contributing experience of each WHC division/department in attaining this significant improvement is described along with tables charting specific trends. The Radiological Control Program is on schedule to meet all RL Site Management System milestones and program commitments.« less

  18. Radiation dosage during pediatric diagnostic or interventional cardiac catheterizations using the “air gap technique” and an aggressive “as low as reasonably achievable” radiation reduction protocol in patients weighing <20 kg

    PubMed Central

    Osei, Frank A; Hayman, Joshua; Sutton, Nicole J; Pass, Robert H

    2016-01-01

    Background: Cardiac catheterizations expose both the patient and staff to the risks of ionizing radiation. Studies using the “air gap” technique (AGT) in various radiological procedures indicate that its use leads to reduction in radiation exposure but there are no data on its use for pediatric cardiac catheterization. The aim of this study was to retrospectively review the radiation exposure data for children weighing <20 kg during cardiac catheterizations using AGT and an “as low as reasonably achievable (ALARA)” radiation reduction protocol. Patients and Methods: All patients weighing <20 kg who underwent cardiac catheterization at the Children's Hospital at Montefiore (CHAM), New York, the United States from 05/2011 to 10/2013 were included. Transplant patients who underwent routine endomyocardial biopsy and those who had surgical procedures at the time of the catheterizations were excluded. The ALARA protocol was used in concert with AGT with the flat panel detector positioned 110 cm from the patient. Demographics, procedural data, and patient radiation exposure levels were collected and analyzed. Results: One-hundred and twenty-seven patients underwent 151 procedures within the study period. The median age was 1.2 years (range: 1 day to 7.9 years) and median weight was 8.8 kg (range: 1.9-19.7). Eighty-nine (59%) of the procedures were interventional. The median total fluoro time was 13 min [interquartile range (IQR) 7.3-21.8]. The median total air Kerma (K) product was 55.6 mGy (IQR 17.6-94.2) and dose area product (DAP) was 189 Gym2 (IQR 62.6-425.5). Conclusion: Use of a novel ALARA and AGT protocol for cardiac catheterizations in children markedly reduced radiation exposure to levels far below recently reported values. Abbreviations: AGT: Air gap technique, ALARA: As low as reasonably achievable. PMID:27011686

  19. Occupational dose reduction at Department of Energy contractor facilities: Bibliography of selected readings in radiation protection and ALARA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dionne, B.J.; Sullivan, S.G.; Baum, J.W.

    1993-12-01

    This bibliography contains abstracts relating to various aspects of ALARA program implementation and dose reduction activities, with a focus on DOE facilities. Abstracts included in this bibliography were selected from proceedings of technical meetings, journals, research reports, searches of the DOE Energy, Science and Technology Database (in general, the citation and abstract information is presented as obtained from this database), and reprints of published articles provided by the authors. Facility types and activities covered in the scope of this report include: radioactive waste, uranium enrichment, fuel fabrication, spent fuel storage and reprocessing, facility decommissioning, hot laboratories, tritium production, research, testmore » and production reactors, weapons fabrication and testing, fusion, uranium and plutonium processing, radiography, and aocelerators. Information on improved shielding design, decontamination, containments, robotics, source prevention and control, job planning, improved operational and design techniques, as well as on other topics, has been included. In addition, DOE/EH reports not included in previous volumes of the bibliography are in this volume (abstracts 611 to 684). This volume (Volume 5 of the series) contains 217 abstracts. An author index and a subject index are provided to facilitate use. Both indices contain the abstract numbers from previous volumes, as well as the current volume. Information that the reader feels might be included in the next volume of this bibliography should be submitted to the BNL ALARA Center.« less

  20. Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory`s hazardous waste management facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dionne, B.J.; Morris, S.C. III; Baum, J.W.

    1998-01-01

    The Department of Energy`s (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory`s Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an {open_quotes}As Low as Reasonably Achievable{close_quotes} (ALARA) analysis for use at other DOE nuclear facilities as an example ofmore » a risk-based decision technique. This document contains the Appendices for the report.« less

  1. Electricite de France`s ALARA policy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stricker, L.; Rollin, P.

    1995-03-01

    In 1992, Electricite de France - EDF decided to improve the degree to which radiological protection is incorporated in overall management of the utility and set itself the objective of ensuring the same level of protection for workers from contractors as for those from EDF. This decision was taken in a context marked by a deterioration in exposure figures for French plants and by the new recommendations issued by the ICRP. This document describes the policy adopted by EDF at both corporate and plant level to meet these objectives, by: (1) setting up management systems which were responsive but notmore » cumbersome; (2) a broad policy of motivation; (3) the development and use of suitable tools. The document then describes some quite positive results of EDF`s ALARA policy, giving concrete examples and analyzing the changes in global indicators.« less

  2. Towards a harmonized approach for risk assessment of genotoxic carcinogens in the European Union.

    PubMed

    Crebelli, Riccardo

    2006-01-01

    The EU Scientific Committees have considered in the past the use of matematical models for human cancer risk estimation not adequately supported by the available scientific knowledge. Therefore, the advice given to risk managers was to reduce the exposure as far as possible, following the as low as reasonably achievable (ALARA) principle. However, ALARA does not allow to set priorities for risk management, as it does not take into consideration carcinogenic potency and level of human exposure. For this reason the European Food Safety Authority (EFSA) has identified as a priority task the development of a transparent, scientically justifiable and harmonized approach for risk assessment of genotoxic carcinogens. This approach, proposed at the end of 2005, is based on the definition of the (MOE), i.e. the relationship between a given point of the dose reponse curve in the animal and human exposure. As point of comparison EFSA recommends the BMDL10, i.e. the lower limit of the confidence interval of the Benchmark Dose associated with an incidence of 10% of induced tumors. Based on current scientific knowkedge, EFSA concluded that a MOE of 10000 or greater is associated with a low risk and low priority for risk management actions. The approach proposed does not replace the ALARA. It should find application on food contaminants, process by-product, and other substances unintentionally present in food. On the other hand, it is not intended to provide a tool for the definition of tolerable intake levels for genotoxic carcinogens deliberately added to food.

  3. 75 FR 42339 - List of Approved Spent Fuel Storage Casks: NAC-MPC System, Revision 6

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-21

    ...; minor design modifications to the Vertical Concrete Cask (VCC) incorporating design features from the... (ALARA) principles; an increase in the concrete pad compression strength from 4000 psi to 6000 psi; added...

  4. Operational Aspects of Space Radiation Analysis

    NASA Technical Reports Server (NTRS)

    Weyland, M. D.; Johnson, A. S.; Semones, E. J.; Shelfer, T.; Dardano, C.; Lin, T.; Zapp, N. E.; Rutledge, R.; George, T.

    2005-01-01

    Minimizing astronaut's short and long-term medical risks arising from exposure to ionizing radiation during space missions is a major concern for NASA's manned spaceflight program, particularly exploration missions. For ethical and legal reasons, NASA follows the "as low as reasonably achievable" (ALARA) principal in managing astronaut's radiation exposures. One implementation of ALARA is the response to space weather events. Of particular concern are energetic solar particle events, and in low Earth orbit (LEO), electron belt enhancements. To properly respond to these events, NASA's Space Radiation Analysis Group (SRAG), in partnership with the NOAA Space Environment Center (SEC), provides continuous flight support during U.S. manned missions. In this partnership, SEC compiles space weather data from numerous ground and space based assets and makes it available in near real-time to SRAG (along with alerts and forecasts), who in turn uses these data as input to models to calculate estimates of the resulting exposure to astronauts. These calculations and vehicle instrument data form the basis for real-time recommendations to flight management. It is also important to implement ALARA during the design phase. In order to appropriately weigh the risks associated with various shielding and vehicle configuration concepts, the expected environment must be adequately characterized for nominal and worst case scenarios for that portion of the solar cycle and point in space. Even with the best shielding concepts and materials in place (unlikely), there will be numerous occasions where the crew is at greater risk due to being in a lower shielded environment (short term transit or lower shielded vehicles, EVAs), so that accurate space weather forecasts and nowcasts, of particles at the relevant energies, will be crucial to protecting crew health and safety.

  5. 10 CFR 50.34 - Contents of applications; technical information.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... capability for containment purging/venting designed to minimize the purging time consistent with ALARA... similarities to and differences from, facilities of similar design for which applications have previously been... to features affecting facility design. Special attention should be directed to the site evaluation...

  6. 10 CFR 50.34 - Contents of applications; technical information.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... capability for containment purging/venting designed to minimize the purging time consistent with ALARA... similarities to and differences from, facilities of similar design for which applications have previously been... to features affecting facility design. Special attention should be directed to the site evaluation...

  7. 10 CFR 835.1002 - Facility design and modifications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ....1002 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Design and Control § 835.1002... occupational exposure is maintained ALARA in developing and justifying facility design and physical controls... in § 835.202. (c) Regarding the control of airborne radioactive material, the design objective shall...

  8. 10 CFR 835.1002 - Facility design and modifications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ....1002 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Design and Control § 835.1002... occupational exposure is maintained ALARA in developing and justifying facility design and physical controls... in § 835.202. (c) Regarding the control of airborne radioactive material, the design objective shall...

  9. 10 CFR 835.1002 - Facility design and modifications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....1002 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Design and Control § 835.1002... occupational exposure is maintained ALARA in developing and justifying facility design and physical controls... in § 835.202. (c) Regarding the control of airborne radioactive material, the design objective shall...

  10. 10 CFR 835.1002 - Facility design and modifications.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ....1002 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Design and Control § 835.1002... occupational exposure is maintained ALARA in developing and justifying facility design and physical controls... in § 835.202. (c) Regarding the control of airborne radioactive material, the design objective shall...

  11. 10 CFR 835.1002 - Facility design and modifications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....1002 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Design and Control § 835.1002... occupational exposure is maintained ALARA in developing and justifying facility design and physical controls... in § 835.202. (c) Regarding the control of airborne radioactive material, the design objective shall...

  12. Strategy proposed by Electricite de France in the development of automatic tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castaing, C.; Cazin, B.

    1995-03-01

    The strategy proposed by EDF in the development of a means to limit personal and collective dosimetry is recent. It follows in the steps of a policy that consisted of developing remote operation means for those activities of inspection and maintenance on the reactor, pools bottom, steam generators (SGs), also reactor building valves; target activities because of their high dosimetric cost. One of the main duties of the UTO (Technical Support Department), within the EDF, is the maintenance of Pressurized Water Reactors in French Nuclear Power Plant Operations (consisting of 54 units) and the development and monitoring of specialized tools.more » To achieve this, the UTO has started a national think-tank on the implementation of the ALARA process in its field of activity and created an ALARA Committee responsible for running and monitoring it, as well as a policy for developing tools. This point will be illustrated in the second on reactor vessel heads.« less

  13. High level waste tank closure project: ALARA applications at the Idaho National Engineering and Environmental Laboratory.

    PubMed

    Aitken, Steven B; Butler, Richard; Butterworth, Steven W; Quigley, Keith D

    2005-05-01

    Bechtel BWXT Idaho, Maintenance and Operating Contractor for the Department of Energy at the Idaho National Engineering and Environmental Laboratory, has emptied, cleaned, and sampled six of the eleven 1.135 x 10(6) L high level waste underground storage tanks at the Idaho Nuclear Technology and Engineering Center, well ahead of the State of Idaho Consent Order cleaning schedule. Cleaning of a seventh tank is expected to be complete by the end of calendar year 2004. The tanks, with associated vaults, valve boxes, and distribution systems, are being closed to meet Resource Conservation and Recovery Act regulations and Department of Energy orders. The use of remotely operated equipment placed in the tanks through existing tank riser access points, sampling methods and application of as-low-as-reasonably-achievable (ALARA) principles have proven effective in keeping personnel dose low during equipment removal, tank, vault, and valve box cleaning, and sampling activities, currently at 0.03 Sv.

  14. 10 CFR 50.34 - Contents of applications; technical information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., and a program to ensure that the results of these studies are factored into the final design of the... assessment study to determine the optimum automatic depressurization system (ADS) design modifications that... capability for containment purging/venting designed to minimize the purging time consistent with ALARA...

  15. 10 CFR 50.34 - Contents of applications; technical information.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., and a program to ensure that the results of these studies are factored into the final design of the... assessment study to determine the optimum automatic depressurization system (ADS) design modifications that... capability for containment purging/venting designed to minimize the purging time consistent with ALARA...

  16. Occupational doses and ALARA - recent developments in Sweden

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godas, T.; Viktorsson, C.

    1995-03-01

    Sweden has traditionally experienced very slow doses to workers in the nuclear industry. However, this trend has since last year been broken mainly due to significant maintenance and repair work. This paper will describe occupational dose trends in Sweden and discuss actions that are being implemented to control this new situation.

  17. DOE 2011 Occupational Radiation Exposure report, _Prepared for the U.S. Department of Energy, Office of Health, Safety and Security. December 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derek Hagemeyer, Yolanda McCormick

    2012-12-12

    This report discusses radiation protection and dose reporting requirements, presents the 2011 occupational radiation dose data along with trends over the past 5 years, and provides instructions to submit successful as low as reasonably achievable (ALARA) projects.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillmer, Kurt T.

    This report focuses on the detection and control of radioactive contamination, which are an integral part of an aggressive ALARA program and provide an indication of the effectiveness of engineering controls and proper work practices in preventing the release of radioactive material. Radioactive contamination, if undetected or not properly controlled, can be spread and contaminate areas, equipment, personnel, and the environment.

  19. 75 FR 13600 - Nine Mile Point Nuclear Station, LLC, Nine Mile Point Nuclear Station, Unit No. 2; Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ... shielding design and the ALARA program would continue in its current form. Offsite Doses at EPU Conditions..., such as fossil fuel or alternative fuel power generation, to provide electric generation capacity to offset future demand. Construction and operation of such a fossil-fueled or alternative-fueled plant may...

  20. 75 FR 42292 - List of Approved Spent Fuel Storage Casks: NAC-MPC System, Revision 6

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-21

    ... modifications to the Vertical Concrete Cask (VCC) incorporating design features from the MAGNASTOR system for...; an increase in the concrete pad compression strength from 4,000 psi to 6,000 psi; added justification... system while adhering to ALARA principles; (5) an increase in the concrete pad compression strength from...

  1. Review of Radioisotopes as Radiological Weapons

    DTIC Science & Technology

    2016-06-01

    doses of radiation . Two of the woodsmen devel- oped serious symptoms of Acute Radiation Syndrome (ARS) and beta radiation burns that required...or organs). Absorbed dose is usually defined as energy deposited (joule) per unit of mass (kilogram). See gray and rad. Acute Radiation Syndrome ...AI alveolar-interstitial ALARA as low as reasonably achievable ARS Acute Radiation Syndrome Bq becquerel C Activity of Concern CDC Centers for

  2. Less is more: as less as reasonably achievable stenting (ALARAS) strategy in the femoropopliteal area.

    PubMed

    Deloose, Koen; Callaert, Joren

    2018-05-23

    Although evidence supports that the performance of drug coated balloons seems to be lesion complexity independent, it is quite clear that in long lesions, severe calcified lesions and chronic total occlusions, the bail out stent ratio is very high and that the "leaving nothing behind" strategy remains a dream in a lot of our daily cases. On the other side of the spectrum, "full metal jackets" of nitinol stents are creating even more problems. Stent fractures, intimal hyperplasia and reintervention difficulties complicate the recurrent vascular disease treatment. The go-between with the "As Less As Reasonably Achievable Stenting"-strategy (ALARAS), earlier named with a bad name "spot" stenting, seems the most attractive one. Scaffolding where needed and allowing freedom of vessel motion will lead to reduction of TLR rates. New technologies like the Tack Endovascular System and the Vascuflex MultiLOC MSD are responding very well tot this idea. Animal tests and pivotal trials (like TOBA and LOCOMOTIVE trials) already showed with both devices good results in terms of patencies and freedom from target lesion revascularizations, and... with less metallic implants. Primary patency at 12 months was 76.4% and 85.7% in the TOBA and LOCOMOTIVE trial respectively. Target lesion revascularization at 12 months was 10.5% and 9.3% respectively. In an era of "leaving nothing behind", post-angioplasty dissections are more frequent than ever. With a direct link between lesion complexity, dissections and increase of TLR rates, scaffolding solutions remains essential. The "As Less As Reasonably Achievable Stenting" (ALARAS) strategy tries to leave as little metal behind as possible, minimizing the risk of stent fractures, allowing freedom of vessel motion and reducing TLR rates. However, the lack of clear strategies and guidelines in where to scaffold which kind of dissections is the biggest issue at the moment. More objective classifications based on newer types of imaging like intra-operative ultrasound, IVUS, OCT and/or FFR pressure wire gradient measurements will potentially offer more solutions in this interesting field.

  3. Radiation Protection in the Application of Active Detection Technologies

    DTIC Science & Technology

    2013-07-01

    account (the ALARA principle). This requires optimization to achieve the greatest societal benefits while keeping costs in resources and health risks as...anthropomorphic physical phantoms contained within typical cargo contents and configurations. It was later decided, however, that the cost of producing a...basis that the expected benefits to society exceed the overall societal cost (i.e., justification). 24 2. The need to ensure that the total

  4. Site Safety Plan for Lawrence Livermore National Laboratory CERCLA investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bainer, R.; Duarte, J.

    1993-07-01

    The safety policy of LLNL is to take every reasonable precaution in the performance of work to protect the environment and the health and safety of employees and the public, and to prevent property damage. With respect to hazardous agents, this protection is provided by limiting human exposures, releases to the environment, and contamination of property to levels that are as low as reasonably achievable (ALARA). It is the intent of this Plan to supply the broad outline for completing environmental investigations within ALARA guidelines. It may not be possible to determine actual working conditions in advance of the work;more » therefore, planning must allow the opportunity to provide a range of protection based upon actual working conditions. Requirements will be the least restrictive possible for a given set of circumstances, such that work can be completed in an efficient and timely fashion. Due to the relatively large size of the LLNL Site and the different types of activities underway, site-specific Operational Safety Procedures (OSPs) will be prepared to supplement activities not covered by this Plan. These site-specific OSPs provide the detailed information for each specific activity and act as an addendum to this Plan, which provides the general plan for LLNL Main Site operation.« less

  5. Interpretation of ALARA in the Canadian regulatory framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Utting, R.

    1995-03-01

    The Atomic Energy Control Board (AECB) is responsible for the regulation of all aspects of atomic energy in Canada. This includes the complete nuclear fuel cycle from uranium mining to long-term disposal of nuclear fuel, as well as the medical and industrial utilization of radioisotopes. Clearly, the regulatory approach will differ from practice to practice but, as far as possible, the AECB has attempted to minimize the degree of prescription of regulatory requirements. The traditional modus operandi of the AECB has been to have broad general principles enshrined in regulations with the requirement that licensees submit specific operating policies andmore » procedures to the AECB for approval. In the large nuclear facilities with their sophisticated technical infrastructures, this policy has been largely successful although in a changing legal and political milieu the AECB is finding that a greater degree of proactive regulation is becoming necessary. With the smaller users, the AECB has for a long time found it necessary to have a greater degree of prescription in its regulatory function. Forthcoming General Amendments to the Atomic Energy Control Regulations will, amongst other things, formally incorporate the concept of ALARA into the Canadian regulatory framework. Within the broad range of practices licensed by the AECB it is not practical to provide detailed guidance on optimization that will be relevant and appropriate to all licensees, however the following general principles are proposed.« less

  6. 3D simulation as a tool for improving the safety culture during remediation work at Andreeva Bay.

    PubMed

    Chizhov, K; Sneve, M K; Szőke, I; Mazur, I; Mark, N K; Kudrin, I; Shandala, N; Simakov, A; Smith, G M; Krasnoschekov, A; Kosnikov, A; Kemsky, I; Kryuchkov, V

    2014-12-01

    Andreeva Bay in northwest Russia hosts one of the former coastal technical bases of the Northern Fleet. Currently, this base is designated as the Andreeva Bay branch of Northwest Center for Radioactive Waste Management (SevRAO) and is a site of temporary storage (STS) for spent nuclear fuel (SNF) and other radiological waste generated during the operation and decommissioning of nuclear submarines and ships. According to an integrated expert evaluation, this site is the most dangerous nuclear facility in northwest Russia. Environmental rehabilitation of the site is currently in progress and is supported by strong international collaboration. This paper describes how the optimization principle (ALARA) has been adopted during the planning of remediation work at the Andreeva Bay STS and how Russian-Norwegian collaboration greatly contributed to ensuring the development and maintenance of a high level safety culture during this process. More specifically, this paper describes how integration of a system, specifically designed for improving the radiological safety of workers during the remediation work at Andreeva Bay, was developed in Russia. It also outlines the 3D radiological simulation and virtual reality based systems developed in Norway that have greatly facilitated effective implementation of the ALARA principle, through supporting radiological characterisation, work planning and optimization, decision making, communication between teams and with the authorities and training of field operators.

  7. Radiation Protection of the Child from Diagnostic Imaging.

    PubMed

    Leung, Rebecca S

    2015-01-01

    In recent years due to the technological advances in imaging techniques, which have undoubtedly improved diagnostic accuracy and resulted in improved patient care, the utilization of ionizing radiation in diagnostic imaging has significantly increased. Computed tomography is the major contributor to the radiation burden, but fluoroscopy continues to be a mainstay in paediatric radiology. The rise in the use of ionizing radiation is of particular concern with regard to the paediatric population, as they are up to 10 times more sensitive to the effects of radiation than adults, due to their increased tissue radiosensitivity, increased cumulative lifetime radiation dose and longer lifetime in which to manifest the effects. This article will review the estimated radiation risk to the child from diagnostic imaging and summarise the various methods through which both the paediatrician and radiologist can practice the ALARA (As Low As Reasonably Achievable) principle, which underpins the safe practice of radiology. Emphasis is on the justification for an examination, i.e. weighing of benefits versus radiation risk, on the appropriate utilization of other, non-ionizing imaging modalities such as ultrasound and magnetic resonance imaging, and on optimisation of a clinically indicated examination. It is essential that the paediatrician and radiologist work together in this decision making process for the mutual benefit of the patient. The appropriate practical application of ALARA in the workplace is crucial to the radiation safety of our paediatric patients.

  8. Engineering report for simulated riser installation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brevick, C.H., Westinghouse Hanford

    1996-05-09

    The simulated riser installation field tests demonstrated that new access ports (risers) can be installed safely, quickly, and economically in the concrete domes of existing underground single- shell waste storage tanks by utilizing proven rotary drilling equipment and vacuum excavation techniques. The new riser installation will seal against water intrusion, provide as table riser anchored to the tank dome, and be installed in accordance with ALARA principles. The information contained in the report will apply to actual riser installation activity in the future.

  9. Technical basis for implementation of remote reading capabilities for radiological control instruments at tank farms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PIERSON, R.M.

    1999-10-27

    This document provides the technical basis for use of remote reading capabilities with radiological control instruments at River Protection Project facilities. The purpose of this document is to evaluate applications of remote reading capabilities with Radiological Control instrumentation to allow continuous monitoring of radiation dose rates at River Protection Project (RPP) facilities. In addition this document provides a technical basis and implementing guidelines for remote monitoring of dose rates and their potential contribution to maintaining radiation exposures ALARA.

  10. Panthere V2: Multipurpose Simulation Software for 3D Dose Rate Calculations

    NASA Astrophysics Data System (ADS)

    Penessot, Gaël; Bavoil, Éléonore; Wertz, Laurent; Malouch, Fadhel; Visonneau, Thierry; Dubost, Julien

    2017-09-01

    PANTHERE is a multipurpose radiation protection software developed by EDF to calculate gamma dose rates in complex 3D environments. PANTHERE takes a key role in the EDF ALARA process, enabling to predict dose rates and to organize and optimize operations in high radiation environments. PANTHERE is also used for nuclear waste characterization, transport of nuclear materials, etc. It is used in most of the EDF engineering units and their design service providers and industrial partners.

  11. IMPROVED WELL PLUGGING EQUIPMENT AND WASTE MANGEMENT TECHNIQUES EXCEED ALARA GOALS AT THE OAK RIDGE NATIONAL LABORATORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiteside, R.; Pawlowicz, R.; Whitehead, L.

    2002-02-25

    In 2000, Bechtel Jacobs Company LLC (BJC) contracted Tetra Tech NUS, Inc. (TtNUS) and their sub-contractor, Texas World Operations, Inc. (TWO), to plug and abandon (P&A) 111 wells located in the Melton Valley area of Oak Ridge National Laboratory (ORNL). One hundred and seven of those wells were used to monitor fluid movement and subsurface containment of the low level radioactive liquid waste/grout slurry that was injected into the Pumpkin Valley Shale Formation, underlying ORNL. Four wells were used as hydrofracture injection wells to emplace the waste in the shale formation. Although the practice of hydrofracturing was and is consideredmore » by many to pose no threat to human health or the environment, the practice was halted in 1982 after the Federal Underground Injection Control regulations were enacted by United States Environmental Protection Agency (USEPA) making it necessary to properly close the wells. The work is being performed for the United States Department of Energy Oak Ridge Operations (DOE ORO). The project team is using the philosophy of minimum waste generation and the principles of ALARA (As Low As Reasonably Achievable) as key project goals to minimize personnel and equipment exposure, waste generation, and project costs. Achievement of these goals was demonstrated by the introduction of several new pieces of custom designed well plugging and abandonment equipment that were tested and used effectively during field operations. Highlights of the work performed and the equipment used are presented.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, J.; Lee, H.; De Lurgio, P.

    Automated monitoring and tracking of materials with radio frequency identification (RFID) technology can significantly improve both the operating efficiency of radiological facilities and the application of the ALARA (as low as reasonably achievable) principle in them. One such system, called ARG-US, has been developed by Argonne National Laboratory for the U.S. Department of Energy (DOE) Packaging and Certification Program to use in managing sensitive nuclear and radioactive materials. Several ARG-US systems are in various stages of deployment and advanced testing across DOE sites. ARG-US utilizes sensors in the tags to continuously monitor the state of health of the packaging andmore » promptly disseminates alarms to authorized users. In conjunction with global positioning system (GPS) tracking provided by TRANSCOM, the system can also monitor and track packages during transport. A compact dosimeter has been incorporated in the ARG-US tags via an onboard universal asynchronous receiver/transmitter interface. The detector has a wide measurement range for gamma radiation - from 0.1 mSv/h to 8 Sv/h. The detector is able to generate alarms for both high and low radiation and for a high cumulative dose. In a large installation, strategically located dosimeter-enabled tags can yield an accurate, real-time, 2D or 3D dose field map that can be used to enhance facility safety, security, and safeguards. This implementation can also lead to a reduced need for manned surveillance and reduced exposure of personnel to radiation, consistent with the ALARA principle at workplaces. (authors)« less

  13. Repeat film analysis and its implications for quality assurance in dental radiology: An institutional case study

    PubMed Central

    Acharya, Shruthi; Pai, Keerthilatha M.; Acharya, Shashidhar

    2015-01-01

    Context: The goal of any radiologist is to produce the highest quality diagnostic radiographs, while keeping patient exposure as low as reasonably achievable (ALARA). Aims: The aim of this study was to describe the reasons for radiograph rejections through a repeat film analysis in an Indian dental school. Settings and Design: An observational study conducted in the Department of Oral Medicine and Radiology, Manipal College of Dental Sciences, Manipal. Materials and Methods: During a 6-month study period, a total of 9,495 intra-oral radiographs and 2339 extraoral radiographs taken in the Radiology Department were subjected to repeat film analysis. Statistical Analysis Used: SPSS Version 16. Descriptive analysis used. Results: The results showed that the repeat rates were 7.1% and 5.86% for intraoral and extraoral radiographs, respectively. Among the causes for errors reported, positioning error (38.7%) was the most common, followed by improper angulations (26.1%), and improper film placement (11.2%) for intra-oral radiographs. The study found that the maximum frequency of repeats among extraoral radiographs was for panoramic radiographs (49%) followed by lateral cephalogram (33%), and paranasal sinus view (14%). It was also observed that repeat rate of intraoral radiographs was highest for internees (44.7%), and undergraduate students (28.2%). Conclusions: The study pointed to a need for more targeted interventions to achieve the goal of keeping patient exposure ALARA in a dental school setting. PMID:26321841

  14. Understanding and acknowledging the ice throw hazard - consequences for regulatory frameworks, risk perception and risk communication

    NASA Astrophysics Data System (ADS)

    Bredesen, R. E.; Drapalik, M.; Butt, B.

    2017-11-01

    This study attempts to provide the necessary framework required to make sufficiently informed decisions regarding the safety implications of ice throw. The framework elaborates on how to cope with uncertainties, and how to describe results in a meaningful and useful manner to decision makers. Moreover, it points out the moral, judicial and economical obligations of wind turbine owners such that they are able to minimize risk of ice throws as much as possible. Building on the strength of knowledge as well as accounting for uncertainty are also essential in enabling clear communication with stakeholders on the most important/critical/vital issues. With increasing empirical evidence, one can assign a higher confidence level on the expert opinions on safety. Findings regarding key uncertainties of ice risk assessments are presented here to support the ongoing IEA Wind Task 19's work on creating the international guidelines on ice risk assessment due in 2018 (Krenn et al. 2017)[1-6]. In addition the study also incorporates the findings of a Norwegian information project, which focuses on the ice throw hazard for the public (Bredesen, Flage, Butt, Winterwind 2018)[7-9]. This includes measures to reduce damage and hazard from wind turbines for the general public. Recent theory of risk assessment questions the use of risk criteria for achieving optimum risk reduction and favours the use of the ALARA (as low as reasonably achievable) principle. Given the several practical problems associated with the ALARA approach (e.g. judicial realization), a joint approach, which uses a minimum set of criteria as well as the obligation to meet ALARA is suggested (associated with acceptable cost). The actual decision about acceptance criteria or obligations is a societal one, thus suggestions can be made at best. Risk acceptance, risk perception and risk communication are inextricably linked and should thus never be considered separately. Risk communication can shape risk perception, which again is vital for defining risk acceptance. Moreover, risk communication should be seen as an opportunity to demonstrate trustworthiness and an open, responsible and caring attitude. It is important for the wind industry to avoid accidents: In Winterwind 2017 (Ronsten)[10], the importance for the wind power community to proactively take safety measures for passers-by and service personnel was emphasized: Establishing good practices and communication routines is key to avoid accidents. Visually attractive ways of presenting the risk of ice throw are recommended.

  15. Image guidance doses delivered during radiotherapy: Quantification, management, and reduction: Report of the AAPM Therapy Physics Committee Task Group 180.

    PubMed

    Ding, George X; Alaei, Parham; Curran, Bruce; Flynn, Ryan; Gossman, Michael; Mackie, T Rock; Miften, Moyed; Morin, Richard; Xu, X George; Zhu, Timothy C

    2018-05-01

    With radiotherapy having entered the era of image guidance, or image-guided radiation therapy (IGRT), imaging procedures are routinely performed for patient positioning and target localization. The imaging dose delivered may result in excessive dose to sensitive organs and potentially increase the chance of secondary cancers and, therefore, needs to be managed. This task group was charged with: a) providing an overview on imaging dose, including megavoltage electronic portal imaging (MV EPI), kilovoltage digital radiography (kV DR), Tomotherapy MV-CT, megavoltage cone-beam CT (MV-CBCT) and kilovoltage cone-beam CT (kV-CBCT), and b) providing general guidelines for commissioning dose calculation methods and managing imaging dose to patients. We briefly review the dose to radiotherapy (RT) patients resulting from different image guidance procedures and list typical organ doses resulting from MV and kV image acquisition procedures. We provide recommendations for managing the imaging dose, including different methods for its calculation, and techniques for reducing it. The recommended threshold beyond which imaging dose should be considered in the treatment planning process is 5% of the therapeutic target dose. Although the imaging dose resulting from current kV acquisition procedures is generally below this threshold, the ALARA principle should always be applied in practice. Medical physicists should make radiation oncologists aware of the imaging doses delivered to patients under their care. Balancing ALARA with the requirement for effective target localization requires that imaging dose be managed based on the consideration of weighing risks and benefits to the patient. © 2018 American Association of Physicists in Medicine.

  16. Maintaining radiation exposures as low as reasonably achievable (ALARA) for dental personnel operating portable hand-held x-ray equipment.

    PubMed

    McGiff, Thomas J; Danforth, Robert A; Herschaft, Edward E

    2012-08-01

    Clinical experience indicates that newly available portable hand-held x-ray units provide advantages compared to traditional fixed properly installed and operated x-ray units in dental radiography. However, concern that hand-held x-ray units produce higher operator doses than fixed x-ray units has caused regulatory agencies to mandate requirements for use of hand-held units that go beyond those recommended by the manufacturer and can discourage the use of this technology. To assess the need for additional requirements, a hand-held x-ray unit and a pair of manikins were used to measure the dose to a simulated operator under two conditions: exposures made according to the manufacturer's recommendations and exposures made according to manufacturer's recommendation except for the removal of the x-ray unit's protective backscatter shield. Dose to the simulated operator was determined using an array of personal dosimeters and a pair of pressurized ion chambers. The results indicate that the dose to an operator of this equipment will be less than 0.6 mSv y⁻¹ if the device is used according to the manufacturer's recommendations. This suggests that doses to properly trained operators of well-designed, hand-held dental x-ray units will be below 1.0 mSv y⁻¹ (2% of the annual occupational dose limit) even if additional no additional operational requirements are established by regulatory agencies. This level of annual dose is similar to those reported as typical dental personnel using fixed x-ray units and appears to satisfy the ALARA principal for this class of occupational exposures.

  17. Final Radiological Assessment of External Exposure for CLEAR-Line Americium Recovery Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Adam C.; Belooussova, Olga N.; Hetrick, Lucas Duane

    2014-11-12

    Los Alamos National Laboratory is currently planning to implement an americium recovery program. The americium, ordinarily isotopically pure 241Am, would be extracted from existing Pu materials, converted to an oxide and shipped to support fabrication of americium oxide-beryllium neutron sources. These operations would occur in the currently proposed Chloride Extraction and Actinide Recovery (CLEAR) line of glove boxes. This glove box line would be collocated with the currently-operational Experimental Chloride Extraction Line (EXCEL). The focus of this document is to provide an in-depth assessment of the currently planned radiation protection measures and to determine whether or not further design workmore » is required to satisfy design-goal and ALARA requirements. Further, this document presents a history of americium recovery operations in the Department of Energy and high-level descriptions of the CLEAR line operations to provide a basis of comparison. Under the working assumptions adopted by this study, it was found that the evaluated design appears to mitigate doses to a level that satisfies the ALARA-in-design requirements of 10 CFR 835 as implemented by the Los Alamos National Laboratory procedure P121. The analyses indicate that extremity doses would also meet design requirements. Dose-rate calculations were performed using the radiation transport code MCNP5 and doses were estimated using a time-motion study developed in consort with the subject matter expert. A copy of this report and all supporting documentation are located on the Radiological Engineering server at Y:\\Rad Engineering\\2013 PROJECTS\\TA-55 Clear Line.« less

  18. Radiation Protection Considerations

    NASA Astrophysics Data System (ADS)

    Adorisio, C.; Roesler, S.; Urscheler, C.; Vincke, H.

    This chapter summarizes the legal Radiation Protection (RP) framework to be considered in the design of HiLumi LHC. It details design limits and constraints, dose objectives and explains how the As Low As Reasonably Achievable (ALARA) approach is formalized at CERN. Furthermore, features of the FLUKA Monte Carlo code are summarized that are of relevance for RP studies. Results of FLUKA simulations for residual dose rates during Long Shutdown 1 (LS1) are compared to measurements demonstrating good agreement and providing proof for the accuracy of FLUKA predictions for future shutdowns. Finally, an outlook for the residual dose rate evolution until LS3 is given.

  19. Radiation safety analysis of the ISS bone densitometer

    NASA Astrophysics Data System (ADS)

    Todd, Paul; Vellinger, John C.; Barton, Kenneth; Faget, Paul

    A Bone Densitometer (BD) has been developed for installation on the International Space Station (ISS) with delivery by the Space-X Dragon spacecraft planned for mid 2014. After initial tests on orbit the BD will be used in longitudinal measurements of bone mineral density in experimental mice as a means of evaluating countermeasures to bone loss. The BD determines bone mineral density (and other radiographic parameters) by dual energy x-ray absorptiometry (DEXA). In a single mouse DEXA “scan” its 80 kV x-ray tube is operated for 15 seconds at 35 kV and 3 seconds at 80 kV in four repetitions, giving the subject a total dose of 2.5 mSv. The BD is a modification of a commercial mouse DEXA product known as PIXImus(TM). Before qualifying the BD for utilization on ISS it was necessary to evaluate its radiation safety features and any level of risk to ISS crew members. The BD design reorients the PIXImus so that it fits in an EXPRESS locker on ISS with the x-ray beam directed into the crew aisle. ISS regulation SSP 51700 considers the production of ionizing radiation to be a catastrophic-level hazard. Accidental exposure is prevented by three independent levels of on-off control as required for a catastrophic hazard. The ALARA (As Low as Reasonably Achievable) principle was applied to the BD hazard just as would be done on the ground, so deliberate exposure is limited by lead shielding according to ALARA. Hot spots around the BD were identified by environmental dosimetry using a Ludlum 9DP pressurized ionization chamber survey meter. Various thicknesses of lead were applied to the BD housing in areas where highest dose-per-scan readings were made. It was concluded that 0.4 mm of lead shielding at strategic locations, adding only a few kg of mass to the payload, would accomplish ALARA. With shielding in place the BD now exposes a crew member floating 40 cm away to less than 0.08 microSv per mouse scan. There is an upper limit of 20 scans per day, or 1.6 microSv per day, which may occur a few times per year. This dose may be compared with the 400 microSv per day received by crew members in low earth orbit. The designed shielding level also protects adjacent payloads by maintaining less than 2 mrad/day at 5 cm - a requirement for the protection of electronic instrumentation. It is concluded that the ISS Bone Densitometer minimizes ionizing radiation risks associated with its operation. Research supported by NASA Contract NNJ13GA01C and the Center for the Advancement of Science in Space (CASIS).

  20. Progress report on the management of the NEA ISOE system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazo, E.

    1995-03-01

    The Information System on Occupational Exposure (ISOE) was launched by the Organization for Economic Cooperation and Development (OECD), Nuclear Energy Agency (NEA) on 1 January, 1992, to facilitate the communication of dosimetric and ALARA implementation data among nuclear utilities around the world. After two years of operation the System has become a mature interactive network for transfer of data and experience. Currently, 37 utilities from 12 countries, representing 289 power plants, and 12 national regulatory authorities participate in ISOE. Agreements for cooperation also exist between the NEA and the Commission of the European Communities (CEC), and the Paris Center ofmore » the WOrld Association of Nuclear Operators (WANO-PC). In addition, the International Atomic Energy Agency (IAEA) is acting as a co-sponsor of ISOE for the participation of non-NEA member countries. Three Regional Technical Centres, Europe, Asia, and Non-NEA member countries, serve to administer the system. The ISOE Network is comprised of three data bases and a communications network at several levels. The three ISOE data bases include the following types of information: NEA1 - annual plant dosimetric information; NEA2 - plant operational characteristics for dose and dose rate reduction; and NEA3 - job specific ALARA practices and experiences. The ISOE communications network has matured greatly during 1992 and 1993. In addition to having access to the above mentioned data bases, participants may now solicit information on new subjects, through the Technical Centres, from all other participants on a real-time basis. Information Sheets on these studies are produced for distribution to all participants. In addition, Topical Reports on areas of interest are produced, and Topical Meetings are held annually.« less

  1. ALARA and decommissioning: The Fort St. Vrain experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borst, T.; Niehoff, M.; Zachary, M.

    1995-03-01

    The Fort St. Vrain Nuclear Generating Station, the first and only commercial High Temperature Gas Cooled Reactor to operate in the United States, completed initial fuel loading in late 1973 and initial startup in early 1974. Due to a series of non-nuclear technical problems, Fort St. Vrain never operated consistently, attaining a lifetime capacity factor of slightly less than 15%. In August of 1989, the decision was made to permanently shut down the plant due to control rod drive and steam generator ring header failures. Public Service Company of Colorado elected to proceed with early dismantlement (DECON) as opposed tomore » SAFSTOR on the bases of perceived societal benefits, rad waste, and exposure considerations, regulatory uncertainties associated with SAFSTOR, and cost. The decommissioning of Fort St. Vrain began in August of 1992, and is scheduled to be completed in early 1996. Decommissioning is being conducted by a team consisting of Westinghouse, MK-Ferguson, and Scientific Ecology Group. Public Service Company of Colorado as the licensee provides contract management and oversight of contractor functions. An aggressive program to maintain project radiation exposures As Low As Reasonably Achievable (ALARA) has been established, with the following program elements: temporary and permanent shielding contamination control; mockup training; engineering controls; worker awareness; integrated work package reviews communication; special instrumentation; video camera usage; robotics application; and project committees. To date, worker exposures have been less than project estimates. from the start of the project through Februrary of 1994, total exposure has been 98.666 person-rem, compared to the project estimate of 433 person-rem and goal of 347 person-rem. The presentation will discuss the site characterization efforts, the radiological performance indicator program, and the final site release survey plans.« less

  2. A proposed framework for consistent regulation of public exposures to radionuclides and other carcinogens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocher, D.C.; Hoffman, F.O.

    1991-12-31

    This paper discusses a proposed framework for consistent regulation of carcinogenic risks to the public based on establishing de manifestis (i.e., unacceptable) and de minimis (i.e., trivial) lifetime risks from exposure to any carcinogens at levels of about 10{sup {minus}1}--10{sup {minus}3} and 10{sup {minus}4}--10{sup {minus}6}, respectively, and reduction of risks above de minimis levels as low as reasonably achievable (ALARA). We then discuss certain differences in the way risks from exposure to radionuclides and other carcinogens currently are regulated or assessed which would need to be considered in implementing the proposed regulatory framework for all carcinogens.

  3. A proposed framework for consistent regulation of public exposures to radionuclides and other carcinogens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocher, D.C.; Hoffman, F.O.

    1991-01-01

    This paper discusses a proposed framework for consistent regulation of carcinogenic risks to the public based on establishing de manifestis (i.e., unacceptable) and de minimis (i.e., trivial) lifetime risks from exposure to any carcinogens at levels of about 10{sup {minus}1}--10{sup {minus}3} and 10{sup {minus}4}--10{sup {minus}6}, respectively, and reduction of risks above de minimis levels as low as reasonably achievable (ALARA). We then discuss certain differences in the way risks from exposure to radionuclides and other carcinogens currently are regulated or assessed which would need to be considered in implementing the proposed regulatory framework for all carcinogens.

  4. Facility-specific radiation exposure risks and their implications for radiation workers at Department of Energy laboratories

    NASA Astrophysics Data System (ADS)

    Davis, Adam Christopher

    This research develops a new framework for evaluating the occupational risks of exposure to hazardous substances in any setting where As Low As Reasonably Achievable (ALARA) practices are mandated or used. The evaluation is performed by developing a hypothesis-test-based procedure for evaluating the homogeneity of various epidemiological cohorts, and thus the appropriateness of the application of aggregate data-pooling techniques to those cohorts. A statistical methodology is then developed as an alternative to aggregate pooling for situations in which individual cohorts show heterogeneity between them and are thus unsuitable for pooled analysis. These methods are then applied to estimate the all-cancer mortality risks incurred by workers at four Department-of-Energy nuclear weapons laboratories. Both linear, no-threshold and dose-bin averaged risks are calculated and it is further shown that aggregate analysis tends to overestimate the risks with respect to those calculated by the methods developed in this work. The risk estimates developed in Chapter 2 are, in Chapter 3, applied to assess the risks to workers engaged in americium recovery operations at Los Alamos National Laboratory. The work described in Chapter 3 develops a full radiological protection assessment for the new americium recovery project, including development of exposure cases, creation and modification of MCNP5 models, development of a time-and-motion study, and the final synthesis of all data. This work also develops a new risk-based method of determining whether administrative controls, such as staffing increases, are ALARA-optimized. The EPA's estimate of the value of statistical life is applied to these risk estimates to determine a monetary value for risk. The rate of change of this "risk value" (marginal risk) is then compared with the rate of change of workers' compensations as additional workers are added to the project to reduce the dose (and therefore, presumably, risk) to each individual.

  5. The influence of thresholds on the risk assessment of carcinogens in food.

    PubMed

    Pratt, Iona; Barlow, Susan; Kleiner, Juliane; Larsen, John Christian

    2009-08-01

    The risks from exposure to chemical contaminants in food must be scientifically assessed, in order to safeguard the health of consumers. Risk assessment of chemical contaminants that are both genotoxic and carcinogenic presents particular difficulties, since the effects of such substances are normally regarded as being without a threshold. No safe level can therefore be defined, and this has implications for both risk management and risk communication. Risk management of these substances in food has traditionally involved application of the ALARA (As Low as Reasonably Achievable) principle, however ALARA does not enable risk managers to assess the urgency and extent of the risk reduction measures needed. A more refined approach is needed, and several such approaches have been developed. Low-dose linear extrapolation from animal carcinogenicity studies or epidemiological studies to estimate risks for humans at low exposure levels has been applied by a number of regulatory bodies, while more recently the Margin of Exposure (MOE) approach has been applied by both the European Food Safety Authority and the Joint FAO/WHO Expert Committee on Food Additives. A further approach is the Threshold of Toxicological Concern (TTC), which establishes exposure thresholds for chemicals present in food, dependent on structure. Recent experimental evidence that genotoxic responses may be thresholded has significant implications for the risk assessment of chemicals that are both genotoxic and carcinogenic. In relation to existing approaches such as linear extrapolation, MOE and TTC, the existence of a threshold reduces the uncertainties inherent in such methodology and improves confidence in the risk assessment. However, for the foreseeable future, regulatory decisions based on the concept of thresholds for genotoxic carcinogens are likely to be taken case-by-case, based on convincing data on the Mode of Action indicating that the rate limiting variable for the development of cancer lies on a critical pathway that is thresholded.

  6. SU-F-T-403: Impact of Dose Reduction for Simulation CT On Radiation Therapy Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Q; Shah, P; Li, S

    Purpose: To investigate the feasibility of applying ALARA principles to current treatment planning CT scans. The study aims to quantitatively verify lower dose scans does not alter treatment planning. Method: Gammex 467 tissue characterization phantom with inserts of 14 different materials was scanned at seven different mA levels (30∼300 mA). CT numbers of different inserts were measured. Auto contouring for bone and lung in treatment planning system (Pinnacle) was used to evaluate the effect of CT number accuracy from treatment planning aspect, on the 30 and 300 mA-scanned images. A head CT scan intended for a 3D whole brain radiationmore » treatment was evaluated. Dose calculations were performed on normal scanned images using clinical protocol (120 kVP, Smart mA, maximum 291 mA), and the images with added simulating noise mimicking a 70 mA scan. Plan parameters including isocenter, beam arrangements, block shapes, dose grid size and resolution, and prescriptions were kept the same for these two plans. The calculated monitor units (MUs) for these two plans were compared. Results: No significant degradation of CT number accuracy was found at lower dose levels from both the phantom scans, and the patient images with added noise. The CT numbers kept consistent when mA is higher than 60 mA. The auto contoured volumes for lung and cortical bone show 0.3% and 0.12% of differences between 30 mA and 300 mA respectively. The two forward plans created on regular and low dose images gave the same calculated MU, and 98.3% of points having <1% of dose difference. Conclusion: Both phantom and patient studies quantitatively verified low dose CT provides similar quality for treatment planning at 20–25% of regular scan dose. Therefore, there is the potential to optimize simulation CT scan protocol to fulfil the ALARA principle and limit unnecessary radiation exposure to non-targeted tissues.« less

  7. Determining the Minimal Required Radioactivity of 18F-FDG for Reliable Semiquantification in PET/CT Imaging: A Phantom Study.

    PubMed

    Chen, Ming-Kai; Menard, David H; Cheng, David W

    2016-03-01

    In pursuit of as-low-as-reasonably-achievable (ALARA) doses, this study investigated the minimal required radioactivity and corresponding imaging time for reliable semiquantification in PET/CT imaging. Using a phantom containing spheres of various diameters (3.4, 2.1, 1.5, 1.2, and 1.0 cm) filled with a fixed (18)F-FDG concentration of 165 kBq/mL and a background concentration of 23.3 kBq/mL, we performed PET/CT at multiple time points over 20 h of radioactive decay. The images were acquired for 10 min at a single bed position for each of 10 half-lives of decay using 3-dimensional list mode and were reconstructed into 1-, 2-, 3-, 4-, 5-, and 10-min acquisitions per bed position using an ordered-subsets expectation maximum algorithm with 24 subsets and 2 iterations and a gaussian 2-mm filter. SUVmax and SUVavg were measured for each sphere. The minimal required activity (±10%) for precise SUVmax semiquantification in the spheres was 1.8 kBq/mL for an acquisition of 10 min, 3.7 kBq/mL for 3-5 min, 7.9 kBq/mL for 2 min, and 17.4 kBq/mL for 1 min. The minimal required activity concentration-acquisition time product per bed position was 10-15 kBq/mL⋅min for reproducible SUV measurements within the spheres without overestimation. Using the total radioactivity and counting rate from the entire phantom, we found that the minimal required total activity-time product was 17 MBq⋅min and the minimal required counting rate-time product was 100 kcps⋅min. Our phantom study determined a threshold for minimal radioactivity and acquisition time for precise semiquantification in (18)F-FDG PET imaging that can serve as a guide in pursuit of achieving ALARA doses. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  8. ALARA efforts in nordic BWRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingemansson, T.; Lundgren, K.; Elkert, J.

    1995-03-01

    Some ALARA-related ABB Atom projects are currently under investigation. One of the projects has been ordered by the Swedish Radiation Protection Institute, and two others by the Nordic BWR utilities. The ultimate objective of the projects is to identify and develop methods to significantly decrease the future exposure levels in the Nordic BWRS. As 85% to 90% of the gamma radiation field in the Nordic BWRs originates from Co-60, the only way to significantly decrease the radiation doses is to effect Co and Co-60. The strategy to do this is to map the Co sources and estimate the source strengthmore » of Co from these sources, and to study the possibility to affect the release of Co-60 from the core surfaces and the uptake on system surfaces. Preliminary results indicate that corrosion/erosion of a relatively small number of Stellite-coated valves and/or dust from grinding of Stellite valves may significantly contribute to the Co input to the reactors. This can be seen from a high measured Co/Ni ratio in the feedwater and in the reactor water. If stainless steel is the only source of Co, the Co/Ni ratio would be less than 0.02 as the Co content in the steel is less than 0.2%. The Co/Ni ratio in the reactor water, however, is higher than 0.1, indicating that the major fraction of the Co originates from Stellite-coated valves. There are also other possible explanations for an increase of the radiation fields. The Co-60 inventory on the core surfaces increases approximately as the square of the burn-up level. If the burn-up is increased from 35 to 5 MWd/kgU, the Co-60 inventory on the core surfaces will be doubled. Also the effect on the behavior of Co-60 of different water chemistry and materials conditions is being investigated. Examples of areas studied are Fe and Zn injection, pH-control, and different forms of surface pre-treatments.« less

  9. Preliminary validation of a new methodology for estimating dose reduction protocols in neonatal chest computed radiographs

    NASA Astrophysics Data System (ADS)

    Don, Steven; Whiting, Bruce R.; Hildebolt, Charles F.; Sehnert, W. James; Ellinwood, Jacquelyn S.; Töpfer, Karin; Masoumzadeh, Parinaz; Kraus, Richard A.; Kronemer, Keith A.; Herman, Thomas; McAlister, William H.

    2006-03-01

    The risk of radiation exposure is greatest for pediatric patients and, thus, there is a great incentive to reduce the radiation dose used in diagnostic procedures for children to "as low as reasonably achievable" (ALARA). Testing of low-dose protocols presents a dilemma, as it is unethical to repeatedly expose patients to ionizing radiation in order to determine optimum protocols. To overcome this problem, we have developed a computed-radiography (CR) dose-reduction simulation tool that takes existing images and adds synthetic noise to create realistic images that correspond to images generated with lower doses. The objective of our study was to determine the extent to which simulated, low-dose images corresponded with original (non-simulated) low-dose images. To make this determination, we created pneumothoraces of known volumes in five neonate cadavers and obtained images of the neonates at 10 mR, 1 mR and 0.1 mR (as measured at the cassette plate). The 10-mR exposures were considered "relatively-noise-free" images. We used these 10 mR-images and our simulation tool to create simulated 0.1- and 1-mR images. For the simulated and original images, we identified regions of interest (ROI) of the entire chest, free-in-air region, and liver. We compared the means and standard deviations of the ROI grey-scale values of the simulated and original images with paired t tests. We also had observers rate simulated and original images for image quality and for the presence or absence of pneumothoraces. There was no statistically significant difference in grey-scale-value means nor standard deviations between simulated and original entire chest ROI regions. The observer performance suggests that an exposure >=0.2 mR is required to detect the presence or absence of pneumothoraces. These preliminary results indicate that the use of the simulation tool is promising for achieving ALARA exposures in children.

  10. Achieving Effective Risk Management Reduction Throughout Decommissioning at the Columbus Closure Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, K.D.

    2006-07-01

    Nuclear facility decontamination, dismantlement, and demolition activities provide a myriad of challenges along the path to reaching a safe, effective, and compliant decommissioning. Among the challenges faced during decommissioning, is the constant management and technical effort to eliminate, mitigate, or minimize the potential of risks of radiation exposures and other hazards to the worker, the surrounding community, and the environment. Management strategies to eliminate, mitigate, or minimize risks include incorporating strong safety and As Low As Reasonably Achievable (ALARA) principles into an integrated work planning process. Technical and operational strategies may include utilizing predictive risk analysis tools to establish contaminationmore » limits for demolition and using remote handling equipment to reduce occupational and radiation exposures to workers. ECC and E2 Closure Services, LLC (Closure Services) have effectively utilized these management and technical tools to eliminate, mitigate, and reduce radiation exposures under contract to the U.S. Department of Energy (DOE) for the decontamination and decommissioning Columbus Closure Project (CCP). In particular, Closure Services achieved significant dose reduction during the dismantling, decontamination, and demolition activities for Building JN-1. Management strategies during the interior dismantlement, decontamination, and demolition of the facility demanded an integrated work planning processes that involved project disciplines. Integrated planning processes identified multiple opportunities to incorporate the use of remote handling equipment during the interior dismantling and demolition activities within areas of high radiation. Technical strategies employed predictive risk analysis tools to set upper bounding contamination limits, allowed for the radiological demolition of the building without exceeding administrative dose limits to the worker, general public, and the environment. Adhering to management and technical strategies during the dismantlement, decontamination, and demolition of Building JN-1 enabled Closure Services to achieve strong ALARA performance, maintain absolute compliance under the regulatory requirements and meeting licensing conditions for decommissioning. (authors)« less

  11. Regulation of NORM by the US Department of Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duvall, K.C.; Peterson, H.T. Jr.

    1997-02-01

    The authors discuss the radiation protection standards of the DOE for protection of the general public, which at present are primarily outlined in Order DOE 5400.5 and 10 CFR Part 834. The requirements include: basic dose limits for protection of the general public; radionuclide concentration guidelines for air and water; and surface contamination criteria for controlling the release of soil and equipment for restricted or unrestricted use. A major component of these orders is the concept of keeping radiation exposures as low as is reasonably achievable (ALARA), and the authors explain how this is applied to the implementation of themore » orders. Sections of the orders address radiation protection issues regarding natural radioactivity exposures.« less

  12. PC based temporary shielding administrative procedure (TSAP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, D.E.; Pederson, G.E.; Hamby, P.N.

    1995-03-01

    A completely new Administrative Procedure for temporary shielding was developed for use at Commonwealth Edison`s six nuclear stations. This procedure promotes the use of shielding, and addresses industry requirements for the use and control of temporary shielding. The importance of an effective procedure has increased since more temporary shielding is being used as ALARA goals become more ambitious. To help implement the administrative procedure, a personal computer software program was written to incorporate the procedural requirements. This software incorporates the useability of a Windows graphical user interface with extensive help and database features. This combination of a comprehensive administrative proceduremore » and user friendly software promotes the effective use and management of temporary shielding while ensuring that industry requirements are met.« less

  13. Dose reduction and cost-benefit analysis at Japan`s Tokai No. 2 Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humamoto, Hisao; Suzuki, Seishiro; Taniguchi, Kazufumi

    1995-03-01

    In the Tokai No. 2 power plant of the Japan Atomic Power Company, about 80% of the annual dose equivalent is received during periodic maintenance outages. A project group for dose reduction was organized at the company`s headquarters in 1986; in 1988, they proposed a five-year program to reduce by half the collective dose of 4 person-Sv per normal outage work. To achieve the target dose value, some dose-reduction measures were undertaken, namely, permanent radiation shielding, decontamination, automatic, operating machines, and ALARA organization. As the result, the collective dose from normal outage work was 1.6 person-Sv in 1992, which wasmore » less than the initial target value.« less

  14. Challenges for Electronics in the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.

    2005-01-01

    This presentation has been a brief snapshot discussing electronics and Exploration-related challenges. The vision for Space Exploration creates a new paradigm for NASA missions. This includes transport (Crew Exploration Vehicle-CEV), and lunar and Mars Exploration and human presence. If one considers the additional hazards faced by these concepts versus more traditional NASA missions, multiple challenges surface for reliable utilization of electronic parts. The true challenge is to provide a risk as low as reasonably achievable (ALARA-a traditional biological radiation exposure term), while still providing cost effective solutions. This presentation also discusses the hazard for electronic parts and exploration, the types of electronic parts for exploration, and the critical juncture for space usage of commercial changes in the electronics world.

  15. Dose reduction in paediatric MDCT: general principles.

    PubMed

    Paterson, A; Frush, D P

    2007-06-01

    The number of multi-detector array computed tomography (MDCT) examinations performed per annum continues to increase in both the adult and paediatric populations. Estimates from 2003 suggested that CT contributed 17% of a radiology department's workload, yet was responsible for up to 75% of the collective population dose from medical radiation. The effective doses for some CT examinations today overlap with those argued to have an increased risk of cancer. This is especially pertinent for paediatric CT, as children are more radiosensitive than adults (and girls more radiosensitive than boys). In addition, children have a longer life ahead of them, in which radiation induced cancers may become manifest. Radiologists must be aware of these facts and practise the ALARA (as low as is reasonably achievable) principle, when it comes to deciding CT protocols and parameters.

  16. Radiation Dose Reduction During EVAR: Results from a Prospective Multicentre Study (The REVAR Study).

    PubMed

    Hertault, Adrien; Rhee, Robert; Antoniou, George A; Adam, Donald; Tonda, Hisashi; Rousseau, Hervé; Bianchini, Aurélia; Haulon, Stéphan

    2018-06-09

    To evaluate radiation exposure in standard endovascular aneurysm repair (EVAR) using intra-operative guidance with pre-operative computed tomographic angiography (CTA) fusion and strict ALARA guidelines in a modern hybrid room. Between February and November 2016, consecutive patients with AAA undergoing EVAR with a bifurcated device in a hybrid room under fusion imaging guidance were prospectively enrolled in six aortic centres from the United States (n = 1), Europe (n = 4), and Japan (n = 1). Demographic data including body mass index (BMI), indirect dose area product (DAP), cumulative air kerma (CAK), variables influencing dose delivery, and contrast media volume were collected. 85 patients (90.4% males) were included. The median age was 75 (IQR 69-81), with a median BMI of 27.4 (IQR 24.7-30.6). Median DAP and CAK were 14.7 (IQR 10.0-27.7) Gy·cm 2 and 107 (IQR 68.0-189.0) mGy, respectively. The median contrast volume was 47 mL (IQR 35-70) (equivalent to 14.1g of iodine [IQR 10.5-21.0]). Median DAP per centre was 28.1 (n = 16, IQR 12.6-47.1), 15.9 (n = 11, IQR 11.9-22.5), 14.2 (n = 12, IQR 10.9-25.7), 20.2 (n = 18, IQR 7.0-39.5), 10.3 (n = 27, IQR 8.2-14.7) and 26.5 (n = 1) Gy·cm 2 . In multivariable analysis, collimation was the only factor that was significantly associated with DAP reduction, (coefficient = -0.014 per percentage of collimation, 95% CI -0.019 to -0.008, p < .001). With adherence to the ALARA principle and routine application of fusion imaging guidance for EVAR, low radiation exposure compared with the published literature can be achieved in a real world setting. Copyright © 2018 European Society for Vascular Surgery. Published by Elsevier B.V. All rights reserved.

  17. Decommissioning ALARA programs Cintichem decommissioning experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adler, J.J.; LaGuardia, T.S.

    1995-03-01

    The Cintichem facility, originally the Union Carbide Nuclear Company (UCNC) Research Center, consisted primarily of a 5MW pool type reactor linked via a four-foot-wide by twelve-foot-deep water-filled canal to a bank of five adjacent hot cells. Shortly after going into operations in the early 1960s, the facility`s operations expanded to provide various reactor-based products and services to a multitude of research, production, medical, and education groups. From 1968 through 1972, the facility developed a process of separating isotopes from mixed fission products generated by irradiating enriched Uranium target capsules. By the late 1970s, 20 to 30 capsules were being processedmore » weekly, with about 200,000 curies being produced per week. Several isotopes such as Mo{sup 99}, I{sup 131}, and Xe{sup 133} were being extracted for medical use.« less

  18. Determination of quality parameters from statistical analysis of routine TLD dosimetry data.

    PubMed

    German, U; Weinstein, M; Pelled, O

    2006-01-01

    Following the as low as reasonably achievable (ALARA) practice, there is a need to measure very low doses, of the same order of magnitude as the natural background, and the limits of detection of the dosimetry systems. The different contributions of the background signals to the total zero dose reading of thermoluminescence dosemeter (TLD) cards were analysed by using the common basic definitions of statistical indicators: the critical level (L(C)), the detection limit (L(D)) and the determination limit (L(Q)). These key statistical parameters for the system operated at NRC-Negev were quantified, based on the history of readings of the calibration cards in use. The electronic noise seems to play a minor role, but the reading of the Teflon coating (without the presence of a TLD crystal) gave a significant contribution.

  19. Time to Reject the Linear-No Threshold Hypothesis and Accept Thresholds and Hormesis: A Petition to the U.S. Nuclear Regulatory Commission.

    PubMed

    Marcus, Carol S

    2015-07-01

    On February 9, 2015, I submitted a petition to the U.S. Nuclear Regulatory Commission (NRC) to reject the linear-no threshold (LNT) hypothesis and ALARA as the bases for radiation safety regulation in the United States, using instead threshold and hormesis evidence. In this article, I will briefly review the history of LNT and its use by regulators, the lack of evidence supporting LNT, and the large body of evidence supporting thresholds and hormesis. Physician acceptance of cancer risk from low dose radiation based upon federal regulatory claims is unfortunate and needs to be reevaluated. This is dangerous to patients and impedes good medical care. A link to my petition is available: http://radiationeffects.org/wp-content/uploads/2015/03/Hormesis-Petition-to-NRC-02-09-15.pdf, and support by individual physicians once the public comment period begins would be extremely important.

  20. [Optimization of radiological scoliosis assessment].

    PubMed

    Enríquez, Goya; Piqueras, Joaquim; Catalá, Ana; Oliva, Glòria; Ruiz, Agustí; Ribas, Montserrat; Duran, Carmina; Rodrigo, Carlos; Rodríguez, Eugenia; Garriga, Victoria; Maristany, Teresa; García-Fontecha, César; Baños, Joan; Muchart, Jordi; Alava, Fernando

    2014-07-01

    Most scoliosis are idiopathic (80%) and occur more frequently in adolescent girls. Plain radiography is the imaging method of choice, both for the initial study and follow-up studies but has the disadvantage of using ionizing radiation. The breasts are exposed to x-ray along these repeated examinations. The authors present a range of recommendations in order to optimize radiographic exam technique for both conventional and digital x-ray settings to prevent unnecessary patients' radiation exposure and to reduce the risk of breast cancer in patients with scoliosis. With analogue systems, leaded breast protectors should always be used, and with any radiographic equipment, analog or digital radiography, the examination should be performed in postero-anterior projection and optimized low-dose techniques. The ALARA (as low as reasonable achievable) rule should always be followed to achieve diagnostic quality images with the lowest feasible dose. Copyright © 2014. Published by Elsevier Espana.

  1. Aspects of operational radiation protection during dismantling of nuclear facilities relevant for the estimation of internal doses.

    PubMed

    Labarta, T

    2007-01-01

    Operational radiation protection of workers during the dismantling of nuclear facilities is based on the same radiation protection principles as that applied in its exploitation period with the objective of ensuring proper implementation of the as-low-as-reasonably-achievable (ALARA) principle. These principles are: prior determination of the nature and magnitude of radiological risk; classification of workplaces and workers depending on the risks; implementation of control measures; monitoring of zones and working conditions, including, if necessary, individual monitoring. From the experiences and the lessons learned during the dismantling processes carried out in Spain, several important aspects in the practical implementation of these principles that directly influence and ensure an adequate prevention of exposures and the estimation of internal doses are pointed out, with special emphasis on the estimation of internal doses due to transuranic intakes.

  2. Dose rate prediction methodology for remote handled transuranic waste workers at the waste isolation pilot plant.

    PubMed

    Hayes, Robert

    2002-10-01

    An approach is described for estimating future dose rates to Waste Isolation Pilot Plant workers processing remote handled transuranic waste. The waste streams will come from the entire U.S. Department of Energy complex and can take on virtually any form found from the processing sequences for defense-related production, radiochemistry, activation and related work. For this reason, the average waste matrix from all generator sites is used to estimate the average radiation fields over the facility lifetime. Innovative new techniques were applied to estimate expected radiation fields. Non-linear curve fitting techniques were used to predict exposure rate profiles from cylindrical sources using closed form equations for lines and disks. This information becomes the basis for Safety Analysis Report dose rate estimates and for present and future ALARA design reviews when attempts are made to reduce worker doses.

  3. Radiation protection aspects of the operation in a cyclotron facility

    NASA Astrophysics Data System (ADS)

    Silva, P. P. N.; Carneiro, J. C. G. G.

    2014-02-01

    The activated accelerator cyclotron components and the radioisotope production may impact on the personnel radiation exposure of the workers during the routine maintenance and emergency repair procedures and any modification of the equipment. Since the adherence of the principle of ALARA (as low as reasonable achievable) constitutes a major objective of the cyclotron management, it has become imperative to investigate the radiation levels at the workplace and the probable health effects to the worker caused by radiation exposure. The data analysis in this study was based on the individual monitoring records during the period from 2007 to 2011. Monitoring of the workplace was also performed using gamma and neutron detectors to determine the dose rate in various predetermined spots. The results of occupational radiation exposures were analysed and compared with the values established in national standards and international recommendations. Important guidelines have been developed to reduce the individual dose.

  4. From public to occupational health: towards an inverse push-pull paradigm in nanotechnologies innovation.

    PubMed

    Couleaud, P; Faure, M; Verhille, M; Manigat, R; André, J C

    2010-01-01

    Nanotechnologies are an important set of new technologies no longer at a very early stage in their development. The financial support for R&D in this domain is greater than a few Giga Euros/year for innovation and considerably lower (less than 1-2%) for risk management. At the factory level, As Low As Reasonably Achievable (ALARA) methods have to be used in order to protect workers against possible exposure. New "short-term" toxicological studies show that nano-particles are seldom exempt of effects in humans... Thus, for the general population, more and more anxious about the future, nanotechnologies are the object of numerous debates. Ultimately, the population is asking governmental bodies to take the required preventive measures. Social pressure is now initiated by the public towards innovative industries, which have to prove, before the marketing stage, the absence of any risk for the users and demonstrate a safety driven governance.

  5. The Lambert-Beer law in time domain form and its application.

    PubMed

    Mosorov, Volodymyr

    2017-10-01

    The majority of current radioisotope gauges utilize measurements of intensity for a chosen sampling time interval using a detector. Such an approach has several disadvantages: temporal resolution of the gauge is fixed and the accuracy of the measurements is not the same for different count rate. The solution can be the use of a stronger radioactive source, but it will be conflicted with ALARA (As Low As Reasonably Achievable) principle. Therefore, the article presents an alternative approach which is based on modified Lambert-Beer law. The basis of the approach is the registration of time intervals instead of the registration of counts. It allows to increase the temporal resolution of a gauge without the necessity of using a stronger radioactive source and the accuracy of the measurements will not depend on count rate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    The Office of Analysis within the U.S. Department of Energy (DOE) Office of Environment, Health, Safety and Security (EHSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2013 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies formore » protection of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. Over the past five-year period, the occupational radiation exposure information has been analyzed in terms of aggregate data, dose to individuals, and dose by site.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2012 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protectionmore » of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. Over the past 5-year period, the occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site.« less

  8. A step function model to evaluate the real monetary value of man-sievert with real GDP.

    PubMed

    Na, Seong H; Kim, Sun G

    2009-01-01

    For use in a cost-benefit analysis to establish optimum levels of radiation protection in Korea under the ALARA principle, we introduce a discrete step function model to evaluate man-sievert monetary value in the real economic value. The model formula, which is unique and country-specific, is composed of real GDP, the nominal risk coefficient for cancer and hereditary effects, the aversion factor against radiation exposure, and average life expectancy. Unlike previous researches on alpha-value assessment, we show different alpha values in the real term, differentiated with respect to the range of individual doses, which would be more realistic and informative for application to the radiation protection practices. GDP deflators of economy can reflect the society's situations. Finally, we suggest that the Korean model can be generalized simply to other countries without normalizing any country-specific factors.

  9. Evaluation of multiple emission point facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miltenberger, R.P.; Hull, A.P.; Strachan, S.

    In 1970, the New York State Department of Environmental Conservation (NYSDEC) assumed responsibility for the environmental aspect of the state's regulatory program for by-product, source, and special nuclear material. The major objective of this study was to provide consultation to NYSDEC and the US NRC to assist NYSDEC in determining if broad-based licensed facilities with multiple emission points were in compliance with NYCRR Part 380. Under this contract, BNL would evaluate a multiple emission point facility, identified by NYSDEC, as a case study. The review would be a nonbinding evaluation of the facility to determine likely dispersion characteristics, compliance withmore » specified release limits, and implementation of the ALARA philosophy regarding effluent release practices. From the data collected, guidance as to areas of future investigation and the impact of new federal regulations were to be developed. Reported here is the case study for the University of Rochester, Strong Memorial Medical Center and Riverside Campus.« less

  10. Dose measurements in intraoral radiography using thermoluminescent dosimeters

    NASA Astrophysics Data System (ADS)

    Azorín, C.; Azorín, J.; Aguirre, F.; Rivera, T.

    2015-01-01

    The use of X-ray in medicine demands to expose the patient and the professional to the lowest radiation doses available in agreement with ALARA philosophy. The reference level for intraoral dental radiography is 7 mGy and, in Mexico, a number of examinations of this type are performed annually. It is considered that approximately 25% of all the X-rays examinations carried out in our country correspond to intraoral radiographies. In other hand, most of the intraoral X-ray equipment correspond to conventional radiological systems using film, which are developed as much manual as automatically. In this work the results of determining the doses received by the patients in intraoral radiological examinations made with different radiological systems using LiF:Mg,Cu,P+PTFE thermoluminescent dosimeters are presented. In some conventional radiological systems using film, when films are developed manual or automatically, incident kerma up to 10.61 ± 0.74 mGv were determined. These values exceed that reference level suggested by the IAEA and in the Mexican standards for intraoral examinations.

  11. Dose Assessment of Los Alamos National Laboratory-Derived Residual Radionuclides in Soils within C Tracts (C-2, C-3, and C-4) for Land Transfer Decisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillis, Jessica M.; Whicker, Jeffrey J.

    2016-01-26

    Three separate Sampling and Analysis Plans (SAPs) were prepared for tracts C-2, C-3, and C-4. The objective of sampling was to confirm, within the stated statistical confidence limits, that the mean levels of potential radioactive residual contamination in soils in the C Tracts are documented, in appropriate units, and are below the 15 mrem/y (150 μSv/y) Screening Action Levels (SALs). Results show that radionuclide concentration upper-bound 95% confidence levels were close to background levels, with the exception of Pu-239 and Cs-137 being slightly elevated above background, and all measurements were below the ALs and meet the real property release criteriamore » for future construction or recreational use. A follow-up ALARA analysis showed that the costs of cleanup of the soil in areas of elevated concentration and confirmatory sampling would far exceed any benefit from dose reduction.« less

  12. Minimizing radiation exposure during percutaneous nephrolithotomy.

    PubMed

    Chen, T T; Preminger, G M; Lipkin, M E

    2015-12-01

    Given the recent trends in growing per capita radiation dose from medical sources, there have been increasing concerns over patient radiation exposure. Patients with kidney stones undergoing percutaneous nephrolithotomy (PNL) are at particular risk for high radiation exposure. There exist several risk factors for increased radiation exposure during PNL which include high Body Mass Index, multiple access tracts, and increased stone burden. We herein review recent trends in radiation exposure, radiation exposure during PNL to both patients and urologists, and various approaches to reduce radiation exposure. We discuss incorporating the principles of As Low As reasonably Achievable (ALARA) into clinical practice and review imaging techniques such as ultrasound and air contrast to guide PNL access. Alternative surgical techniques and approaches to reducing radiation exposure, including retrograde intra-renal surgery, retrograde nephrostomy, endoscopic-guided PNL, and minimally invasive PNL, are also highlighted. It is important for urologists to be aware of these concepts and techniques when treating stone patients with PNL. The discussions outlined will assist urologists in providing patient counseling and high quality of care.

  13. Radiation dose optimization in the decommissioning plan for Loviisa NPP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmberg, R.; Eurajoki, T.

    1995-03-01

    Finnish rules for nuclear power require a detailed decommissioning plan to be made and kept up to date already during plant operation. The main reasons for this {open_quotes}premature{close_quotes} plan, is, firstly, the need to demonstrate the feasibility of decommissioning, and, secondly, to make realistic cost estimates in order to fund money for this future operation. The decomissioning for Lovissa Nuclear Power Plant (NPP) (2{times}445 MW, PWR) was issued in 1987. It must be updated about every five years. One important aspect of the plant is an estimate of radiation doses to the decomissioning workers. The doses were recently re-estimated becausemore » of a need to decrease the total collective dose estimate in the original plan, 23 manSv. In the update, the dose was reduced by one-third. Part of the reduction was due to changes in the protection and procedures, in which ALARA considerations were taken into account, and partly because of re-estimation of the doses.« less

  14. Safeguards by Design Challenge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alwin, Jennifer Louise

    The International Atomic Energy Agency (IAEA) defines Safeguards as a system of inspection and verification of the peaceful uses of nuclear materials as part of the Nuclear Nonproliferation Treaty. IAEA oversees safeguards worldwide. Safeguards by Design (SBD) involves incorporation of safeguards technologies, techniques, and instrumentation during the design phase of a facility, rather that after the fact. Design challenge goals are the following: Design a system of safeguards technologies, techniques, and instrumentation for inspection and verification of the peaceful uses of nuclear materials. Cost should be minimized to work with the IAEA’s limited budget. Dose to workers should always bemore » as low are reasonably achievable (ALARA). Time is of the essence in operating facilities and flow of material should not be interrupted significantly. Proprietary process information in facilities may need to be protected, thus the amount of information obtained by inspectors should be the minimum required to achieve the measurement goal. Then three different design challenges are detailed: Plutonium Waste Item Measurement System, Marine-based Modular Reactor, and Floating Nuclear Power Plant (FNPP).« less

  15. DOE 2011 occupational radiation exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2012-12-01

    The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2011 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protectionmore » of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. The occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site over the past five years.« less

  16. Dose Assessment of Los Alamos National Laboratory-Derived Residual Radionuclides in Soils within Tract A-18-2 for Land Conveyance and Transfer Decisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruedig, Elizabeth; Whicker, Jeffrey Jay

    In 2017, soil sampling for radiological materials was conducted within Tract A-18-2 at Los Alamos National Laboratory (LANL) for land conveyance decisions. Measurements of radionuclides in soil samples were evaluated against a recreational use scenario, and all measurements were below screening action levels for each radionuclide. The total estimated dose was less than 1 mrem/yr (<10 μSv/yr) for a hypothetical recreational user (compared with a dose limit of 25 mrem/yr [250 μSv/yr]). Dose estimates were based on the 95% upper confidence levels for radionuclide concentrations within the Tract. Dose estimates less than 3 mrem/yr are considered to be as lowmore » as reasonably achievable (ALARA), therefore no follow-up analysis was conducted. Release of this property is consistent with the requirements of DOE Order 458.1 (DOE 2013) and Policy 412 (LANL 2014).« less

  17. INTEGRATED OPERATIONAL DOSIMETRY SYSTEM AT CERN.

    PubMed

    Dumont, Gérald; Pedrosa, Fernando Baltasar Dos Santos; Carbonez, Pierre; Forkel-Wirth, Doris; Ninin, Pierre; Fuentes, Eloy Reguero; Roesler, Stefan; Vollaire, Joachim

    2017-04-01

    CERN, the European Organization for Nuclear Research, upgraded its operational dosimetry system in March 2013 to be prepared for the first Long Shutdown of CERN's facilities. The new system allows the immediate and automatic checking and recording of the dosimetry data before and after interventions in radiation areas. To facilitate the analysis of the data in context of CERN's approach to As Low As Reasonably Achievable (ALARA), this new system is interfaced to the Intervention Management Planning and Coordination Tool (IMPACT). IMPACT is a web-based application widely used in all CERN's accelerators and their associated technical infrastructures for the planning, the coordination and the approval of interventions (work permit principle). The coupling of the operational dosimetry database with the IMPACT repository allows a direct and almost immediate comparison of the actual dose with the estimations, in addition to enabling the configuration of alarm levels in the dosemeter in function of the intervention to be performed. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Space Radiation Cancer Risks

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2007-01-01

    Space radiation presents major challenges to astronauts on the International Space Station and for future missions to the Earth s moon or Mars. Methods used to project risks on Earth need to be modified because of the large uncertainties in projecting cancer risks from space radiation, and thus impact safety factors. We describe NASA s unique approach to radiation safety that applies uncertainty based criteria within the occupational health program for astronauts: The two terrestrial criteria of a point estimate of maximum acceptable level of risk and application of the principle of As Low As Reasonably Achievable (ALARA) are supplemented by a third requirement that protects against risk projection uncertainties using the upper 95% confidence level (CL) in the radiation cancer projection model. NASA s acceptable level of risk for ISS and their new lunar program have been set at the point-estimate of a 3-percent risk of exposure induced death (REID). Tissue-averaged organ dose-equivalents are combined with age at exposure and gender-dependent risk coefficients to project the cumulative occupational radiation risks incurred by astronauts. The 95% CL criteria in practice is a stronger criterion than ALARA, but not an absolute cut-off as is applied to a point projection of a 3% REID. We describe the most recent astronaut dose limits, and present a historical review of astronaut organ doses estimates from the Mercury through the current ISS program, and future projections for lunar and Mars missions. NASA s 95% CL criteria is linked to a vibrant ground based radiobiology program investigating the radiobiology of high-energy protons and heavy ions. The near-term goal of research is new knowledge leading to the reduction of uncertainties in projection models. Risk projections involve a product of many biological and physical factors, each of which has a differential range of uncertainty due to lack of data and knowledge. The current model for projecting space radiation cancer risk relies on the three assumptions of linearity, additivity, and scaling along with the use of population averages. We describe uncertainty estimates for this model, and new experimental data that sheds light on the accuracy of the underlying assumptions. These methods make it possible to express risk management objectives in terms of quantitative metrics, i.e., the number of days in space without exceeding a given risk level within well defined confidence limits. The resulting methodology is applied to several human space exploration mission scenarios including lunar station, deep space outpost, and a Mars mission. Factors that dominate risk projection uncertainties and application of this approach to assess candidate mitigation approaches are described.

  19. Subsurface Contamination Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y. Yuan

    There are two objectives of this report, ''Subsurface Contamination Control''. The first is to provide a technical basis for recommending limiting radioactive contamination levels (LRCL) on the external surfaces of waste packages (WP) for acceptance into the subsurface repository. The second is to provide an evaluation of the magnitude of potential releases from a defective WP and the detectability of the released contents. The technical basis for deriving LRCL has been established in ''Retrieval Equipment and Strategy for Wp on Pallet'' (CRWMS M and O 2000g, 6.3.1). This report updates the derivation by incorporating the latest design information of themore » subsurface repository for site recommendation. The derived LRCL on the external surface of WPs, therefore, supercede that described in CRWMS M and O 2000g. The derived LRCL represent the average concentrations of contamination on the external surfaces of each WP that must not be exceeded before the WP is to be transported to the subsurface facility for emplacement. The evaluation of potential releases is necessary to control the potential contamination of the subsurface repository and to detect prematurely failed WPs. The detection of failed WPs is required in order to provide reasonable assurance that the integrity of each WP is intact prior to MGR closure. An emplaced WP may become breached due to manufacturing defects or improper weld combined with failure to detect the defect, by corrosion, or by mechanical penetration due to accidents or rockfall conditions. The breached WP may release its gaseous and volatile radionuclide content to the subsurface environment and result in contaminating the subsurface facility. The scope of this analysis is limited to radioactive contaminants resulting from breached WPs during the preclosure period of the subsurface repository. This report: (1) documents a method for deriving LRCL on the external surfaces of WP for acceptance into the subsurface repository; (2) provides a table of derived LRCL for nuclides of radiological importance; (3) Provides an as low as is reasonably achievable (ALARA) evaluation of the derived LRCL by comparing potential onsite and offsite doses to documented ALARA requirements; (4) Provides a method for estimating potential releases from a defective WP; (5) Provides an evaluation of potential radioactive releases from a defective WP that may become airborne and result in contamination of the subsurface facility; and (6) Provides a preliminary analysis of the detectability of a potential WP leak to support the design of an airborne release monitoring system.« less

  20. Radioactivity in fossils at the Hagerman Fossil Beds National Monument.

    PubMed

    Farmer, C Neal; Kathren, Ronald L; Christensen, Craig

    2008-08-01

    Since 1996, higher than background levels of naturally occurring radioactivity have been documented in both fossil and mineral deposits at Hagerman Fossil Beds National Monument in south-central Idaho. Radioactive fossil sites occur primarily within an elevation zone of 900-1000 m above sea level and are most commonly found associated with ancient river channels filled with sand. Fossils found in clay rich deposits do not exhibit discernable levels of radioactivity. Out of 300 randomly selected fossils, approximately three-fourths exhibit detectable levels of natural radioactivity ranging from 1 to 2 orders of magnitude above ambient background levels when surveyed with a portable hand held Geiger-Muller survey instrument. Mineral deposits in geologic strata also show above ambient background levels of radioactivity. Radiochemical lab analysis has documented the presence of numerous natural radioactive isotopes. It is postulated that ancient groundwater transported radioactive elements through sand bodies containing fossils which precipitated out of solution during the fossilization process. The elevated levels of natural radioactivity in fossils may require special precautions to ensure that exposures to personnel from stored or displayed items are kept as low as reasonably achievable (ALARA).

  1. Residual activity evaluation: a benchmark between ANITA, FISPACT, FLUKA and PHITS codes

    NASA Astrophysics Data System (ADS)

    Firpo, Gabriele; Viberti, Carlo Maria; Ferrari, Anna; Frisoni, Manuela

    2017-09-01

    The activity of residual nuclides dictates the radiation fields in periodic inspections/repairs (maintenance periods) and dismantling operations (decommissioning phase) of accelerator facilities (i.e., medical, industrial, research) and nuclear reactors. Therefore, the correct prediction of the material activation allows for a more accurate planning of the activities, in line with the ALARA (As Low As Reasonably Achievable) principles. The scope of the present work is to show the results of a comparison between residual total specific activity versus a set of cooling time instants (from zero up to 10 years after irradiation) as obtained by two analytical (FISPACT and ANITA) and two Monte Carlo (FLUKA and PHITS) codes, making use of their default nuclear data libraries. A set of 40 irradiating scenarios is considered, i.e. neutron and proton particles of different energies, ranging from zero to many hundreds MeV, impinging on pure elements or materials of standard composition typically used in industrial applications (namely, AISI SS316 and Portland concrete). In some cases, experimental results were also available for a more thorough benchmark.

  2. Quality Assurance: Patient Chart Reviews

    NASA Astrophysics Data System (ADS)

    Oginni, B. M.; Odero, D. O.

    2009-07-01

    Recent developments in radiation therapy have immensely impacted the way the radiation dose is delivered to patients undergoing radiation treatments. However, the fundamental quality assurance (QA) issues underlying the radiation therapy still remain the accuracy of the radiation dose and the radiation safety. One of the major duties of clinical medical physicists in the radiation therapy departments still revolves around ensuring the accuracy of dose delivery to the planning target volume (PTV), the reduction of unintended radiation to normal organs and minimization of the radiation exposure to the medical personnel based on ALARA (as low as reasonably achievable) principle. Many of the errors in radiation therapy can be minimized through a comprehensive program of periodic checks. One of the QA procedures on the patient comes in the form of chart reviews which could be in either electronic or paper-based format. We present the quality assurance procedures that have to be performed on the patient records from the beginning and periodically to the end of the treatment, based on the guidelines from the American Association of Physicists in Medicine (AAPM) and American College of Physicians (ACP).

  3. EDF experience with {open_quotes}hot spot{close_quotes} management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guio, J.M. de

    1995-03-01

    During the past few years, {open_quotes}hot spots{close_quotes} due to the presence of particles of metal activated during their migration through the reactor core, have been detected at several French pressurized water reactor (PWR) units. These {open_quotes}hot spots,{close_quotes} which generate very high dose rates (from about 10 Gy/h to 200 G/h) are a significant factor in increase occupational exposures during outrates. Of particular concern are the difficult cases which prolong outage duration and increase the volume of radiological waste. Confronted with this situation, Electricite de France (EDF) has set up a national research group, as part of its ALARA program, tomore » establish procedures and techniques to avoid, detect, and eliminate of hot spots. In particular, specific processes have been developed to eliminate these hot spots which are most costly in terms of occupational exposure due to the need for reactor maintenance. This paper sets out the general approach adopted at EDF so far to cope with the problem of hot spots, illustrated by experience at Blayais 3 and 4.« less

  4. An overview of ALARA considerations during Yankee Atomic`s Component Removal Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granados, B.; Babineau, G.; Colby, B.

    1995-03-01

    In Februrary 1992, Yankee Atomic Electric Company (YAEC) permanently shutdown Yankee Nuclear Power Station in Rowe, Massachusetts, after thirty-two years of efficient operation. Yankee`s plan decommissioning is to defer dismantlement until a low level radioactive waste (LLRW) disposal facility is available. The plant will be maintained in a safe storage condition until a firm contract for the disposal of LLRW generated during decommissioning can be secured. Limited access to a LLRW disposal facility may occur during the safe storage period. Yankee intends to use these opportunities to remove components and structures. A Component Removal Project (CRP) was initiated in 1993more » to take advantage of one of these opportunities. A Componenet Removal Project (CRP) was initiated in 1993 to take advantage of one of these opportunities. The CRP includes removal of four steam generators, the pressurizer, and segmentation of reactor vessel internals and preparation of LLRW for shipment and disposal at Chem-Nuclear`s Barnwell, South Carolina facility. The CRP is projected to be completed by June 1994 at an estimated total worker exposure of less than 160 person-rem.« less

  5. A user friendly database for use in ALARA job dose assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zodiates, A.M.; Willcock, A.

    1995-03-01

    The pressurized water reactor (PWR) design chosen for adoption by Nuclear Electric plc was based on the Westinghouse Standard Nuclear Unit Power Plant (SNUPPS). This design was developed to meet the United Kingdom requirements and these improvements are embodied in the Sizewell B plant which will start commercial operation in 1994. A user-friendly database was developed to assist the station in the dose and ALARP assessments of the work expected to be carried out during station operation and outage. The database stores the information in an easily accessible form and enables updating, editing, retrieval, and searches of the information. Themore » database contains job-related information such as job locations, number of workers required, job times, and the expected plant doserates. It also contains the means to flag job requirements such as requirements for temporary shielding, flushing, scaffolding, etc. Typical uses of the database are envisaged to be in the prediction of occupational doses, the identification of high collective and individual dose jobs, use in ALARP assessments, setting of dose targets, monitoring of dose control performance, and others.« less

  6. Application of the Monte Carlo method to the analysis of doses and shielding around an X-ray fluorescence equipment

    NASA Astrophysics Data System (ADS)

    Ródenas, José; Juste, Belén; Gallardo, Sergio; Querol, Andrea

    2017-09-01

    An X-ray fluorescence equipment is used for practical exercises in the laboratory of Nuclear Engineering of the Polytechnic University of Valencia (Spain). This equipment includes a compact X-ray tube, ECLIPSE-III, and a Si-PIN XR-100T detector. The voltage (30 kV), and the current (100 μA) of the tube are low enough so that expected doses around the tube do not represent a risk for students working in the laboratory. Nevertheless, doses and shielding should be evaluated to accomplish the ALARA criterion. The Monte Carlo method has been applied to evaluate the dose rate around the installation provided with a shielding composed by a box of methacrylate. Dose rates calculated are compared with experimental measurements to validate the model. Obtained results show that doses are below allowable limits. Hence, no extra shielding is required for the X-ray beam. A previous Monte Carlo model was also developed to obtain the tube spectrum and validated by comparison with data from manufacturer.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    HUBER, J.H.

    An Enraf Densitometer is installed on tank 241-AY-102. The Densitometer will frequently be tasked to obtain and log density profiles. The activity can be effected a number of ways. Enraf Incorporated provides a software package called ''Logger18'' to its customers for the purpose of in-shop testing of their gauges. Logger18 is capable of accepting an input file which can direct the gauge to obtain a density profile for a given tank level and bottom limit. Logger18 is a complex, DOS based program which will require trained technicians and/or tank farm entries to obtain the data. ALARA considerations have prompted themore » development of a more user-friendly, computer-based interface to the Enraf densitometers. This document records the plan by which this new Enraf data acquisition software will be developed, reviewed, verified, and released. This plan applies to the development and implementation of a one-time-use software program, which will be called ''Enraf Control Panel.'' The software will be primarily used for remote operation of Enraf Densitometers for the purpose of obtaining and logging tank product density profiles.« less

  8. Radiological Examinations in Pediatric Age.

    PubMed

    Siciliano, R

    2017-01-01

    Diagnostic radiology imaging is an essential tool for adequate clinical investigation of pathological processes and the drafting of a personalized therapy plan. However, in recent years, there has been a substantial increase of requests, mainly due to technological advances but also to social and cultural reasons, not always based on the principle of the diagnostic justification. The progress of recent years in the field of diagnostic radiology has made available to the physician a variety of sophisticated radiological examinations, which are not always used rationally and appropriately. The theme is of paramount importance, particularly in childhood or adolescence, characterized by elevated radiosensitivity (high cell turnover) and longer life expectancy; therefore, children exposed to ionizing radiation are theoretically subject to a higher risk of carcinogenesis compared to the general population. For these reasons the young patients should have greater protection and examinations must respect stringent appropriateness criteria. Far from underestimating the important diagnostic and therapeutic benefits that these procedures provide, the use of ionizing radiations must minimize the radiation-related risk in accordance with the ALARA principle (As Low As Reasonably Achievable), key principle of modern radiation protection.

  9. Environmental Release Prevention and Control Plan (ERP and CP) annual review and update for 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jannik, G.T.; Mamatey, A.; Arnett, M.

    1993-10-05

    In the Environmental Release Prevention and Control Plan (ERP and CP), WSRC made a commitment to conduct the following follow-up activities and actions: (1) Complete the action items developed in response to the findings and recommendation of the Environmental Release Prevention Taskteam (WSRC-RP-92-356). (2) Complete all batch and continuous release procedure revisions to incorporate the attributes that WSRC senior management required of each procedure. (3) DOE-SR Assistance Managers and WSRC counterparts to reach consensus and closure on the identified engineered solutions documented in the ERP and CP, develop and drive implementation of facility changes per the agreements. (4) Continue tomore » analyze releases and monitor performance in accordance with the ERP and CP, and utilize the ALARA Release Guides Committee to drive improvements. (5) Conduct annual re-evaluations of the cost benefit analyses of the identified engineered solutions, and identify new options and alternatives for each outfall in response to site mission and facility changes. This report documents the efforts that have been completed over the past year in response to these commitments.« less

  10. Addressing as low as reasonably achievable (ALARA) issues: investigation of worker collective external and extremity dose data

    DOE PAGES

    Cournoyer, Michael Edward; Costigan, Stephen Andrew; Schreiber, Stephen Bruce

    2017-03-17

    Plutonium emits both neutrons and photons and when it is stored or handled inside a glovebox, both photons and neutrons are significant external radiation hazards. Doses to the extremities are usually dominated by gamma radiation in typical plutonium glovebox operations. Excess external dose can generates stochastic effects consisting of cancer and benign tumors in some organs. Direct doses from radiation sources external to the body are measured by thermoluminescent dosimeters (TLDs) placed on the glovebox worker between the neck and waist. Wrist dosimeters are used to assess externally penetrating radiation including neutrons and provide an estimate of neutron radiation exposuremore » to the extremities. Both TLDs and wrist dosimeters are processed monthly for most glovebox workers. Here, worker collective extremity and external dose data have been analyzed to prevent and mitigate external radiation events through the use of Lean Manufacturing and Six Sigma business practices (LSS). Employing LSS, statistically significant variations (trends) are identified in worker collective extremity and external dose data. Finally, the research results presented in this paper are pivotal to the ultimate focus of this program, which is to minimize external radiation events.« less

  11. Characterization of the radiation environment for a large-area interim spent-nuclear-fuel storage facility

    NASA Astrophysics Data System (ADS)

    Fortkamp, Jonathan C.

    Current needs in the nuclear industry and movements in the political arena indicate that authorization may soon be given for development of a federal interim storage facility for spent nuclear fuel. The initial stages of the design work have already begun within the Department of Energy and are being reviewed by the Nuclear Regulatory Commission. This dissertation addresses the radiation environment around an interim spent nuclear fuel storage facility. Specifically the dissertation characterizes the radiation dose rates around the facility based on a design basis source term, evaluates the changes in dose due to varying cask spacing configurations, and uses these results to define some applicable health physics principles for the storage facility. Results indicate that dose rates from the facility are due primarily from photons from the spent fuel and Co-60 activation in the fuel assemblies. In the modeled cask system, skyshine was a significant contribution to dose rates at distances from the cask array, but this contribution can be reduced with an alternate cask venting system. With the application of appropriate health physics principles, occupation doses can be easily maintained far below regulatory limits and maintained ALARA.

  12. Scoping studies of shielding to reduce the shutdown dose rates in the ITER ports

    NASA Astrophysics Data System (ADS)

    Juárez, R.; Guirao, J.; Pampin, R.; Loughlin, M.; Polunovskiy, E.; Le Tonqueze, Y.; Bertalot, L.; Kolsek, A.; Ogando, F.; Udintsev, V.; Walsh, M.

    2018-07-01

    The planned in situ maintenance tasks in the ITER port interspace are fundamental to ensure the operation of equipment to control, evaluate and optimize the plasma performance during the entire facility lifetime. They are subject to a limit of shutdown dose rates (SDDR) of 100 µSv h‑1 after 106 s of cooling time, which is nowadays a design driver for the port plugs as well as the application of ALARA. Three conceptual shielding proposals outside the ITER ports are studied in this work to support the achievement of this objective. Considered one by one, they offer reductions ranging from 25% to 50%, which are rather significant. This paper shows that, by combining these shields, the SDDR as low as 57Δ µSv h‑1 can be achieved with a local approach considering only radiation from one port (no cross-talk form neighboring ports). The locally evaluated SDDR are well below the limit which is an essential pre-requisite for achieving 100µSv h‑1 in a global analysis including all contributions. Further studies will have to deal with a realistic port plug design and the cross-talks from neighbour ports.

  13. Operational health physics training

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1992-06-01

    The initial four sections treat basic information concerning atomic structure and other useful physical quantities, natural radioactivity, the properties of {alpha}, {beta}, {gamma}, x rays and neutrons, and the concepts and units of radiation dosimetry (including SI units). Section 5 deals with biological effects and the risks associated with radiation exposure. Background radiation and man-made sources are discussed next. The basic recommendations of the ICRP concerning dose limitations: justification, optimization (ALARA concepts and applications) and dose limits are covered in Section seven. Section eight is an expanded version of shielding, and the internal dosimetry discussion has been extensively revised tomore » reflect the concepts contained in the MIRD methodology and ICRP 30. The remaining sections discuss the operational health physics approach to monitoring radiation. Individual sections include radiation detection principles, instrument operation and counting statistics, health physics instruments and personnel monitoring devices. The last five sections deal with the nature of, operation principles of, health physics aspects of, and monitoring approaches to air sampling, reactors, nuclear safety, gloveboxes and hot cells, accelerators and x ray sources. Decontamination, waste disposal and transportation of radionuclides are added topics. Several appendices containing constants, symbols, selected mathematical topics, and the Chart of the Nuclides, and an index have been included.« less

  14. Spatial interpolation of gamma dose in radioactive waste storage facility

    NASA Astrophysics Data System (ADS)

    Harun, Nazran; Fathi Sujan, Muhammad; Zaidi Ibrahim, Mohd

    2018-01-01

    External radiation measurement for a radioactive waste storage facility in Malaysian Nuclear Agency is a part of Class G License requirement under Atomic Licensing Energy Board (AELB). The objectives of this paper are to obtain the distribution of radiation dose, create dose database and generate dose map in the storage facility. The radiation dose measurement is important to fulfil the radiation protection requirement to ensure the safety of the workers. There are 118 sampling points that had been recorded in the storage facility. The highest and lowest reading for external radiation recorded is 651 microSv/hr and 0.648 microSv/hour respectively. The calculated annual dose shows the highest and lowest reading is 1302 mSv/year and 1.3 mSv/year while the highest and lowest effective dose reading is 260.4 mSv/year and 0.26 mSv/year. The result shows that the ALARA concept along time, distance and shield principles shall be adopted to ensure the dose for the workers is kept below the dose limit regulated by AELB which is 20 mSv/year for radiation workers. This study is important for the improvement of planning and the development of shielding design for the facility.

  15. Grand Junction Projects Office Remedial Action Project Building 2 public dose evaluation. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, R.

    1996-05-01

    Building 2 on the U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) site, which is operated by Rust Geotech, is part of the GJPO Remedial Action Program. This report describes measurements and modeling efforts to evaluate the radiation dose to members of the public who might someday occupy or tear down Building 2. The assessment of future doses to those occupying or demolishing Building 2 is based on assumptions about future uses of the building, measured data when available, and predictive modeling when necessary. Future use of the building is likely to be as an office facility. Themore » DOE sponsored program, RESRAD-BUILD, Version. 1.5 was chosen for the modeling tool. Releasing the building for unrestricted use instead of demolishing it now could save a substantial amount of money compared with the baseline cost estimate because the site telecommunications system, housed in Building 2, would not be disabled and replaced. The information developed in this analysis may be used as part of an as low as reasonably achievable (ALARA) cost/benefit determination regarding disposition of Building 2.« less

  16. Paediatric x-ray examinations in Rio de Janeiro

    NASA Astrophysics Data System (ADS)

    Azevedo, A. C. P.; Osibote, O. A.; Boechat, M. C. B.

    2006-08-01

    This work presents the results of a dose survey performed for paediatric patients and carried out in two large paediatric public hospitals in Rio de Janeiro city. The entrance surface dose (ESD) and the effective dose (ED) were evaluated for chest, skull, abdomen, lumbar spine, cervical spine and pelvis in antero-posterior (AP), postero-anterior (PA) and lateral (LAT) projections. For each examination, four age groups 0-1, 1-5, 5-10 and 10-15 years were studied. The DoseCal software was used to calculate these doses. Wide variations for the same type of examination and projection have been detected. These variations were evident, in Brazil, from previous work. In spite of the present results being still preliminary, they can give an idea of what paediatric ESDs are like in Brazil. Also, with respect to the entrance surface dose, some of the results are above the reference levels, which cause high ED, as well. On the other hand, the wide range of ESD reflects the disparity of radiographic techniques and demonstrates that the ALARA principle is not being applied in Brazilian hospitals and becomes a concern in terms of public health.

  17. National demonstration of full reactor coolant system (RCS) chemical decontamination at Indian Point 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trovato, S.A.; Parry, J.O.

    1995-03-01

    Key to the safe and efficient operation of the nation`s civilian nuclear power plants is the performance of maintenance activities within regulations and guidelines for personnel radiation exposure. However, maintenance activities, often performed in areas of relatively high radiation fields, will increase as the nation`s plant age. With the Nuclear Regulatory Commission (NRC) lowering the allowable radiation exposure to plant workers in 1994 and considering further reductions and regulations in the future, it is imperative that new techniques be developed and applied to reduce personnel exposure. Full primary system chemical decontamination technology offers the potential to be single most effectivemore » method of maintaining workers exposure {open_quotes}as low as reasonably achievable{close_quotes} (ALARA) while greatly reducing plant operation and maintenance (O&M) costs. A three-phase program underway since 1987, has as its goal to demonstrate that full RCS decontamination is a visible technology to reduce general plant radiation levels without threatening the long term reliability and operability of a plant. This paper discusses research leading to and plans for a National Demonstration of Full RCS Chemical Decontamination at Indian Point 2 nuclear generating station in 1995.« less

  18. COST–RISK–BENEFIT ANALYSIS IN DIAGNOSTIC RADIOLOGY: A THEORETICAL AND ECONOMIC BASIS FOR RADIATION PROTECTION OF THE PATIENT

    PubMed Central

    Moores, B. Michael

    2016-01-01

    In 1973, International Commission on Radiological Protection Publication 22 recommended that the acceptability of radiation exposure levels for a given activity should be determined by a process of cost–benefit analysis. It was felt that this approach could be used to underpin both the principle of ALARA as well for justification purposes. The net benefit, B, of an operation involving irradiation was regarded as equal to the difference between its gross benefit, V, and the sum of three components; the basic production cost associated with the operation, P; the cost of achieving the selected level of protection, X; and the cost Y of the detriment involved in the operation: B=V−(P+X+Y). This article presents a theoretical cost–risk–benefit analysis that is applicable to the diagnostic accuracy (Levels 1 and 2) of the hierarchical efficacy model presented by National Council on Radiation Protection and Measurements in 1992. This enables the costs of an examination to be related to the sensitivity and specificity of an X-ray examination within a defined clinical problem setting and introduces both false-positive/false-negative diagnostic outcomes into the patient radiation protection framework. PMID:26705358

  19. Assessment of the radiological impact of oil refining industry.

    PubMed

    Bakr, W F

    2010-03-01

    The field of radiation protection and corresponding national and international regulations has evolved to ensure safety in the use of radioactive materials. Oil and gas production processing operations have been known to cause naturally occurring radioactive materials (NORMs) to accumulate at elevated concentrations as by-product waste streams. A comprehensive radiological study on the oil refining industry in Egypt was carried out to assess the radiological impact of this industry on the workers. Scales, sludge, water and crude oil samples were collected at each stage of the refining process. The activity concentration of (226)Ra, (232)Th and (40)K were determined using high-resolution gamma spectrometry. The average activity concentrations of the determined isotopes are lower than the IAEA exempt activity levels for NORM isotopes. Different exposure scenarios were studied. The average annual effective dose for workers due to direct exposure to gamma radiation and dust inhalation found to be 0.6 microSv and 3.2 mSv, respectively. Based on the ALARA principle, the results indicate that special care must be taken during cleaning operations in order to reduce the personnel's exposure due to maintenance as well as to avoid contamination of the environment. 2009 Elsevier Ltd. All rights reserved.

  20. An evolution of technologies and applications of gamma imagers in the nuclear cycle industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalil, R. A.; Carrel, F.; Menaa, N.

    The tracking of radiation contamination and distribution has become a high priority in the nuclear cycle industry in order to respect the ALARA principle which is a main challenge during decontamination and dismantling activities. To support this need, AREVA/CANBERRA and CEA LIST have been actively carrying out research and development on a gamma-radiation imager. In this paper we will present the new generation of gamma camera, called GAMPIX. This system is based on the Timepix chip, hybridized with a CdTe substrate. A coded mask could be used in order to increase the sensitivity of the camera. Moreover, due to themore » USB connection with a standard computer, this gamma camera is immediately operational and user-friendly. The final system is a very compact gamma camera (global weight is less than 1 kg without any shielding) which could be used as a hand-held device for radioprotection purposes. In this article, we present the main characteristics of this new generation of gamma camera and we expose experimental results obtained during in situ measurements. Even though we present preliminary results the final product is under industrialization phase to address various applications specifications. (authors)« less

  1. Addressing as low as reasonably achievable (ALARA) issues: investigation of worker collective external and extremity dose data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cournoyer, Michael Edward; Costigan, Stephen Andrew; Schreiber, Stephen Bruce

    Plutonium emits both neutrons and photons and when it is stored or handled inside a glovebox, both photons and neutrons are significant external radiation hazards. Doses to the extremities are usually dominated by gamma radiation in typical plutonium glovebox operations. Excess external dose can generates stochastic effects consisting of cancer and benign tumors in some organs. Direct doses from radiation sources external to the body are measured by thermoluminescent dosimeters (TLDs) placed on the glovebox worker between the neck and waist. Wrist dosimeters are used to assess externally penetrating radiation including neutrons and provide an estimate of neutron radiation exposuremore » to the extremities. Both TLDs and wrist dosimeters are processed monthly for most glovebox workers. Here, worker collective extremity and external dose data have been analyzed to prevent and mitigate external radiation events through the use of Lean Manufacturing and Six Sigma business practices (LSS). Employing LSS, statistically significant variations (trends) are identified in worker collective extremity and external dose data. Finally, the research results presented in this paper are pivotal to the ultimate focus of this program, which is to minimize external radiation events.« less

  2. Clinical effectiveness in the diagnosis and acute management of pediatric nephrolithiasis.

    PubMed

    Van Batavia, Jason P; Tasian, Gregory E

    2016-12-01

    The incidence of pediatric nephrolithiasis has risen over the past few decades leading to a growing public health burden. Children and adolescents represent a unique patient population secondary to their higher risks from radiation exposure as compared to adults, high risk of recurrence, and longer follow up time given their longer life expectancies. Ultrasound imaging is the first-line modality for diagnosing suspected nephrolithiasis in children. Although data is limited, the best evidence based medicine supports the use of alpha-blockers as first-line MET in children, especially when stones are small and in a more distal ureteral location. Surgical management of pediatric nephrolithiasis is similar to that in adults with ESWL and URS first-line for smaller stones and PCNL reserved for larger renal stone burden. Clinical effectiveness in minimizing risks in children and adolescents with nephrolithiasis centers around ED pathways that limit CT imaging, strict guidance to ALARA principles or use of US during surgical procedures, and education of both patients and families on the risks of repeat ionizing radiation exposures during follow up and acute colic events. Copyright © 2016 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  3. MODEL 9977 B(M)F-96 SAFETY ANALYSIS REPORT FOR PACKAGING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abramczyk, G; Paul Blanton, P; Kurt Eberl, K

    2006-05-18

    This Safety Analysis Report for Packaging (SARP) documents the analysis and testing performed on and for the 9977 Shipping Package, referred to as the General Purpose Fissile Package (GPFP). The performance evaluation presented in this SARP documents the compliance of the 9977 package with the regulatory safety requirements for Type B packages. Per 10 CFR 71.59, for the 9977 packages evaluated in this SARP, the value of ''N'' is 50, and the Transport Index based on nuclear criticality control is 1.0. The 9977 package is designed with a high degree of single containment. The 9977 complies with 10 CFR 71more » (2002), Department of Energy (DOE) Order 460.1B, DOE Order 460.2, and 10 CFR 20 (2003) for As Low As Reasonably Achievable (ALARA) principles. The 9977 also satisfies the requirements of the Regulations for the Safe Transport of Radioactive Material--1996 Edition (Revised)--Requirements. IAEA Safety Standards, Safety Series No. TS-R-1 (ST-1, Rev.), International Atomic Energy Agency, Vienna, Austria (2000). The 9977 package is designed, analyzed and fabricated in accordance with Section III of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel (B&PV) Code, 1992 edition.« less

  4. D and D knowledge management information tool - a web based system developed to share D and D knowledge worldwide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagos, L.; Upadhyay, H.; Shoffner, P.

    2013-07-01

    Deactivation and decommissioning (D and D) work is a high risk and technically challenging enterprise within the U.S. Department of Energy complex. During the past three decades, the DOE's Office of Environmental Management has been in charge of carrying out one of the largest environmental restoration efforts in the world: the cleanup of the Manhattan Project legacy. In today's corporate world, worker experiences and knowledge that have developed over time represent a valuable corporate asset. The ever-dynamic workplace, coupled with an aging workforce, presents corporations with the ongoing challenge of preserving work-related experiences and knowledge for cross-generational knowledge transfer tomore » the future workforce [5]. To prevent the D and D knowledge base and expertise from being lost over time, the DOE and the Applied Research Center at Florida International University (FIU) have developed the web-based Knowledge Management Information Tool (KM-IT) to capture and maintain this valuable information in a universally available and easily accessible and usable system. The D and D KM-IT was developed in collaboration with DOE Headquarters (HQ), the Energy Facility Contractors Group (EFCOG), and the ALARA [as low as reasonably achievable] Centers at Savannah River Sites to preserve the D and D information generated and collected by the D and D community. This is an open secured system that can be accessed from https://www.dndkm.org over the web and through mobile devices at https://m.dndkm.org. This knowledge system serves as a centralized repository and provides a common interface for D and D-related activities. It also improves efficiency by reducing the need to rediscover knowledge and promotes the reuse of existing knowledge. It is a community-driven system that facilitates the gathering, analyzing, storing, and sharing of knowledge and information within the D and D community. It assists the DOE D and D community in identifying potential solutions to their problem areas by using the vast resources and knowledge base available throughout the global D and D community. The D and D KM-IT offers a mechanism to the global D and D community for searching relevant D and D information and is focused on providing a single point of access into the collective knowledge base of the D and D community within and outside of the DOE. Collecting information from subject matter specialists, it builds a knowledge repository for future reference archiving Lessons Learned, Best Practices, ALARA reports, and other relevant documents and maintains a secured collaboration platform for the global D and D community to share knowledge. With the dynamic nature and evolution of the D and D knowledge base due to multiple factors such as changes in the workforce, new technologies and methodologies, economics, and regulations, the D and D KM-IT is being developed in a phased and modular fashion. (authors)« less

  5. Safety conditions for irradiation, transporting, and melting of sintered TeO2 during the industrial production of 131I.

    PubMed

    Alanís, José; Segovia, A; Navarrete, M

    2004-08-01

    The development of a program to produce 131I by neutron activation of previously sintered TeO2, was started at the Nuclear Center of Mexico 3 y ago. Since then, the problems related to producing high purity, sintered TeO2 for neutron activation, transport of the activated samples and melting of the samples to retrieve the 131I have been satisfactorily solved. The main problems, related to health physics, arise when the process is conducted on a daily basis. Described are the irradiation conditions for sintered TeO2, retrieval of the sample from the pool, and the transport of the radioactive source after a 4-d cooling time. The radiation dose in the room where the hot cell is located increases from 2 microSv h(-1) (0.2 mrem h(-1)) to 4 microSv h(-1) (0.4 mrem h(-1)) during the melting of the radioactive (131+131m)TeO2, and the pumping out and dissolution of gaseous 131I. These measurements are below the maximum permissible levels and the ALARA concept has been assured through each step of the process and no leaks have been found in the system.

  6. Approaches to the risk assessment of genotoxic carcinogens in food: a critical appraisal.

    PubMed

    O'Brien, J; Renwick, A G; Constable, A; Dybing, E; Müller, D J G; Schlatter, J; Slob, W; Tueting, W; van Benthem, J; Williams, G M; Wolfreys, A

    2006-10-01

    The present paper examines the particular difficulties presented by low levels of food-borne DNA-reactive genotoxic carcinogens, some of which may be difficult to eliminate completely from the diet, and proposes a structured approach for the evaluation of such compounds. While the ALARA approach is widely applicable to all substances in food that are both carcinogenic and genotoxic, it does not take carcinogenic potency into account and, therefore, does not permit prioritisation based on potential risk or concern. In the absence of carcinogenicity dose-response data, an assessment based on comparison with an appropriate threshold of toxicological concern may be possible. When carcinogenicity data from animal bioassays are available, a useful analysis is achieved by the calculation of margins of exposure (MOEs), which can be used to compare animal potency data with human exposure scenarios. Two reference points on the dose-response relationship that can be used for MOE calculation were examined; the T25 value, which is derived from linear extrapolation, and the BMDL10, which is derived from mathematical modelling of the dose-response data. The above approaches were applied to selected food-borne genotoxic carcinogens. The proposed approach is applicable to all substances in food that are DNA-reactive genotoxic carcinogens and enables the formulation of appropriate semi-quantitative advice to risk managers.

  7. Environmental and biological monitoring on an oncology ward during a complete working week.

    PubMed

    Koller, Michael; Böhlandt, Antje; Haberl, Christopher; Nowak, Dennis; Schierl, Rudolf

    2018-05-05

    Workplace exposure to antineoplastic drugs (AD) is still of evident concern to all occupationally exposed persons in the healthcare sector as residues in relevant concentrations continue to be present. With respect to the carcinogenic and mutagenic potential of ADs and their toxicity on reproduction, occupational exposure should be kept as low as reasonably achievable (ALARA). In the oncology patient care, the medical staff is involved both in chemotherapy administration and handling of AD-contaminated body fluids of the patients. For this purpose, in this study, surface monitoring on an oncology ward and concurrent urine monitoring of the complete healthcare staff was performed during five consecutive days for 5-fluorouracil (5-FU), cyclophosphamide (CP) and platinum (Pt). Contamination was detected on all surfaces in various ranges (5-FU 0.7-12,600 pg/cm 2 , Pt 0.2-181,800 pg/cm 2 , CP (

  8. Solar particle event storm shelter requirements for missions beyond low Earth orbit.

    PubMed

    Townsend, L W; Adams, J H; Blattnig, S R; Clowdsley, M S; Fry, D J; Jun, I; McLeod, C D; Minow, J I; Moore, D F; Norbury, J W; Norman, R B; Reames, D V; Schwadron, N A; Semones, E J; Singleterry, R C; Slaba, T C; Werneth, C M; Xapsos, M A

    2018-05-01

    Protecting spacecraft crews from energetic space radiations that pose both chronic and acute health risks is a critical issue for future missions beyond low Earth orbit (LEO). Chronic health risks are possible from both galactic cosmic ray and solar energetic particle event (SPE) exposures. However, SPE exposures also can pose significant short term risks including, if dose levels are high enough, acute radiation syndrome effects that can be mission- or life-threatening. In order to address the reduction of short term risks to spaceflight crews from SPEs, we have developed recommendations to NASA for a design-standard SPE to be used as the basis for evaluating the adequacy of proposed radiation shelters for cislunar missions beyond LEO. Four SPE protection requirements for habitats are proposed: (1) a blood-forming-organ limit of 250 mGy-equivalent for the design SPE; (2) a design reference SPE environment equivalent to the sum of the proton spectra during the October 1989 event series; (3) any necessary assembly of the protection system must be completed within 30 min of event onset; and (4) space protection systems must be designed to ensure that astronaut radiation exposures follow the ALARA (As Low As Reasonably Achievable) principle. Copyright © 2018. Published by Elsevier Ltd.

  9. ALARA and work management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schieber, C.; Perin, M.; Saumon, P.

    1995-03-01

    At the request of Electricite de France (EDF) and Framatome, the Nuclear Protection Evaluation Centre (CEPN) developed a three-year research project, between 1991 and 1993, to evaluate the impact of various work management factors that can influence occupational exposures in nuclear power plants (NPPs) and to assess the effectiveness of protective actions implemented to reduce them. Three different categories of factors have been delineated: those linked to working conditions (such as ergonomic of work areas and protective suits), those characterizing the operators (qualification, experience level, motivation, etc.). In order to quantify the impact of these factors, a detailed survey wasmore » carried out in five French NPPs, focusing on three types of operations: primary valves maintenance, decontamination of reactor cavity, and specialized maintenance operations on the steam generator. This survey was augmented by a literature review on the influence of {open_quotes}hostile{close_quotes} environment on working conditions. Finally, a specific study was performed in order to quantify the impact of various types of protective suits used in French nuclear installations according to the type of work to be done. All of these factors have been included in a model aiming at quantifying the effectiveness of protection actions, both from dosimetric and economic point of views.« less

  10. Implementation of ALARA at the design stage of Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brissaud, A.; Ridoux, P.

    1995-03-01

    In the 1970s, Electricite de France (EdF) had limited knowledge and experience of pressurized water reactors (PWRs). Electricity generation by nuclear units was oriented towards gas-graphite reactors, even though EdF had a share in the PWR unit of CHOOZ A-1 (250 MWe, later upgraded to 320 MWe). Some facts about the origin of doses in that king of reactor were known to the research and development (R&D) support staff of EdF, which mainly comprises the French Atomic Commission (CEA), but only a few of EdF`s engineers were aware of these facts. One has to bear in mind that CHOOZ A-1more » only went critical in April 1967 and was officially connected to the grid in May 1970 after some important problems had been solved. Meanwhile, the nuclear program was launched at full speed, beginning with the order for FESSENHEIM 1 in 1970, FESSENHEIM 2 and BUGEY 2 and 3 in 1971. TIHANGE 1, in which EdF had a share, went on-line in September 1975. Also, supposing that EdF had had such knowledge and experience, it is quite evident that it would have been very difficult to modify the lay-out inside the reactor building.« less

  11. When should video and EMG be added to urodynamics in children with lower urinary tract dysfunction and is this justified by the evidence? ICI-RS 2014.

    PubMed

    Anding, Ralf; Smith, Phillip; de Jong, Tom; Constantinou, Christos; Cardozo, Linda; Rosier, Peter

    2016-02-01

    An ICI-RS Think Tank in 2014 discussed and evaluated the evidence for adding video and EMG to urodynamics (UDS) in children and also highlighted evidence gaps, with the aim of recommending further clinical and research protocols. A systematic analysis of the relevant literature for both X-ray (video) studies and electromyography, in combination with UDS in children with lower urinary tract dysfunction (LUTD), is summarized in this manuscript. The technical aspects are also critically reviewed. The body of evidence for the addition of X-ray (video) to filling and voiding cystometry and the evidence for the addition of pelvic muscle surface electromyography to urodynamics is scanty and insufficient. Standards are poor and variable so uncontrolled expert opinion dominates practice. The Think Tank has recommended that standardized ALARA ("As Low As Reasonably Achievable") principles should be adopted for video-urodynamics in children. The risk-benefit balance of X-ray exposure needs to be better evaluated and defined. Evaluation of images should be standardized and the association with pressure changes better analyzed and reported. Children's pelvic muscle surface electromyography technique should be standardized, technically improved, and its diagnostic relevance should be better evaluated. © 2016 Wiley Periodicals, Inc.

  12. COST-RISK-BENEFIT ANALYSIS IN DIAGNOSTIC RADIOLOGY: A THEORETICAL AND ECONOMIC BASIS FOR RADIATION PROTECTION OF THE PATIENT.

    PubMed

    Moores, B Michael

    2016-06-01

    In 1973, International Commission on Radiological Protection Publication 22 recommended that the acceptability of radiation exposure levels for a given activity should be determined by a process of cost-benefit analysis. It was felt that this approach could be used to underpin both the principle of ALARA as well for justification purposes. The net benefit, B, of an operation involving irradiation was regarded as equal to the difference between its gross benefit, V, and the sum of three components; the basic production cost associated with the operation, P; the cost of achieving the selected level of protection, X; and the cost Y of the detriment involved in the operation: [Formula: see text] This article presents a theoretical cost-risk-benefit analysis that is applicable to the diagnostic accuracy (Levels 1 and 2) of the hierarchical efficacy model presented by National Council on Radiation Protection and Measurements in 1992. This enables the costs of an examination to be related to the sensitivity and specificity of an X-ray examination within a defined clinical problem setting and introduces both false-positive/false-negative diagnostic outcomes into the patient radiation protection framework. © The Author 2015. Published by Oxford University Press.

  13. Method for inserting noise in digital mammography to simulate reduction in radiation dose

    NASA Astrophysics Data System (ADS)

    Borges, Lucas R.; de Oliveira, Helder C. R.; Nunes, Polyana F.; Vieira, Marcelo A. C.

    2015-03-01

    The quality of clinical x-ray images is closely related to the radiation dose used in the imaging study. The general principle for selecting the radiation is ALARA ("as low as reasonably achievable"). The practical optimization, however, remains challenging. It is well known that reducing the radiation dose increases the quantum noise, which could compromise the image quality. In order to conduct studies about dose reduction in mammography, it would be necessary to acquire repeated clinical images, from the same patient, with different dose levels. However, such practice would be unethical due to radiation related risks. One solution is to simulate the effects of dose reduction in clinical images. This work proposes a new method, based on the Anscombe transformation, which simulates dose reduction in digital mammography by inserting quantum noise into clinical mammograms acquired with the standard radiation dose. Thus, it is possible to simulate different levels of radiation doses without exposing the patient to new levels of radiation. Results showed that the achieved quality of simulated images generated with our method is the same as when using other methods found in the literature, with the novelty of using the Anscombe transformation for converting signal-independent Gaussian noise into signal-dependent quantum noise.

  14. Monte Carlo assessment of the finger shallow dose from direct contact with a microcentrifuge tube containing common biotechnology isotopes in solution.

    PubMed

    Cutright, Dan; Medich, David; Ring, Joseph

    2012-04-01

    Eppendorf tubes often are used in biomedical research labs and contain radioactive tracers. Although the associated direct contact finger doses are typically small, it is suggested (and in line with the principle of ALARA) to handle these tubes from the cap of the tube. When containing radioactive material, handling a tube near the bottom conical section would unnecessarily increase the skin dose to the fingers. This investigation modeled a 2.0-mL Eppendorf tube containing various individual beta emitting isotopes commonly used in a biomedical research environment (i.e., (14)C, (3)H, (131)I, (32)P, and (35)S) to determine the skin dose when directly handling the tube at the cap end and when handling it at the bottom conical section. The primary goal of this paper is to assess how significantly this dose is altered by handling geometry. The skin dose to a single finger was calculated with Monte Carlo simulations using MCNP5 and determined at a depth of 0.007 cm(2) in water averaged over 10 cm as described in 10CFR20. Results show that the dose rate may vary by as much as a factor of 700 depending on handling geometry.

  15. Comprehensive Shuttle Foam Debris Reduction Strategies

    NASA Technical Reports Server (NTRS)

    Semmes, Edmund B.

    2007-01-01

    The Columbia Accident Investigation Board (CAIB) was clear in its assessment of the loss of the Space Shuttle Columbia on February 3, 2003. Foam liberated from the External Tank (ET) impacting the brittle wing leading edge (WLE) of the orbiter causing the vehicle to disintegrate upon re-entry. Naturally, the CAB pointed out numerous issues affecting this exact outcome in hopes of correcting systems of systems failures any one of which might have altered the outcome. However, Discovery s recent return to flight (RTF) illustrates the primacy of erosion of foam and the risk of future undesirable outcomes. It is obvious that the original RTF focused approach to this problem was not equal to a comprehensive foam debris reduction activity consistent with the high national value of the Space Shuttle assets. The root cause is really very simple when looking at the spray-on foam insulation for the entire ET as part of the structure (e.g., actual stresses > materials allowable) rather than as some sort of sizehime limited ablator. This step is paramount to accepting the CAB recommendation of eliminating debris or in meeting any level of requirements due to the fundamental processes ensuring structural materials maintain their integrity. Significant effort has been expended to identify root cause of the foam debris In-Flight Anomaly (FA) of STS-114. Absent verifiable location specific data pre-launch (T-0) and in-flight, only a most probable cause can be identified. Indeed, the literature researched corroborates NASNTM-2004-2 13238 disturbing description of ill defined materials characterization, variable supplier constituents and foam processing irregularities. Also, foam is sensitive to age and the exposed environment making baseline comparisons difficult without event driven data. Conventional engineering processes account for such naturally occurring variability by always maintaining positive margins. Success in a negative margin range is not consistently achieved. Looking at the ET S spray-on foam insulation as part of the structural system (e.g., glass half full mentality) will create an environment where ET debris levels as low as reasonably achievable (ALARA) can be realized. ALARA is a NASA requirements philosophy deployed for the complex, mission altering radiation exposure requirements for life safety of astronauts. In the Shuttle s case, reasonableness is established by exhaustive engineering rigor, allowable debris size/quantity, technology maturity and programmatic constraints. A more robust urethane foam thermal protection system (TPS) will enhance the hctionality of the new Ares I Crew Launch Vehicle (CLV) Upper Stage. This paper will outline the strategy for a comprehensive effort to reduce ET foam debris and outline steps leading to an improved foam TPS. The NASA must remain committed to such an approach no matter what becomes of the next flight s actual debris field lest we fall back into a false sense of security. This commitment along with full implementation of all the other CAB recommendations such as orbiter hardening will significantly improve the Shuttle system, the engineering workforce, future capabilities & alternate policy offramps, national human resource protection, high value national asset protection and increase the level of service to the overall NASA mission.

  16. Interpretation of the margin of exposure for genotoxic carcinogens - elicitation of expert knowledge about the form of the dose response curve at human relevant exposures.

    PubMed

    Boobis, Alan; Flari, Villie; Gosling, John Paul; Hart, Andy; Craig, Peter; Rushton, Lesley; Idahosa-Taylor, Ehi

    2013-07-01

    The general approach to risk assessment of genotoxic carcinogens has been to advise reduction of exposure to "as low as reasonably achievable/practicable" (ALARA/P). However, whilst this remains the preferred risk management option, it does not provide guidance on the urgency or extent of risk management actions necessary. To address this, the "Margin of Exposure" (MOE) approach has been proposed. The MOE is the ratio between the point of departure for carcinogenesis and estimated human exposure. However, interpretation of the MOE requires implicit or explicit consideration of the shape of the dose-response curve at human relevant exposures. In a structured elicitation exercise, we captured expert opinion on available scientific evidence for low dose-response relationships for genotoxic carcinogens. This allowed assessment of: available evidence for the nature of dose-response relationships at human relevant exposures; the generality of judgments about such dose-response relationships; uncertainties affecting judgments on the nature of such dose-response relationships; and whether this last should differ for different classes of genotoxic carcinogens. Elicitation results reflected the variability in experts' views on the form of the dose-response curve for low dose exposure and major sources of uncertainty affecting the assumption of a linear relationship. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Is it better to remove pharmaceuticals in decentralized or conventional wastewater treatment plants? A life cycle assessment comparison.

    PubMed

    Igos, Elorri; Benetto, Enrico; Venditti, Silvia; Kohler, Christian; Cornelissen, Alex; Moeller, Ruth; Biwer, Arno

    2012-11-01

    After ingestion, pharmaceuticals are excreted unchanged or metabolized. They subsequently arrive in conventional wastewater treatment plants and are then released into the environment, often without undergoing any degradation. Conventional treatment plants can be upgraded with post treatment, alternatively the removal of pharmaceuticals could be achieved directly at point sources. In the European project PILLS, several solutions for decentralized treatment of pharmaceuticals at hospitals were investigated at both pilot plant and full scale, and were then compared to conventional and upgraded centralized treatment plants using Life Cycle Assessment (LCA). Within the scope of the study, pharmaceuticals were found to have a comparatively minor environmental impact. As a consequence, an additional post treatment does not provide significant benefits. In the comparison of post treatment technologies, ozonation and activated carbon performed better than UV. These results suffer however from high uncertainties due to the assessment models of the toxicity of pharmaceuticals in LCA. Our results should therefore be interpreted with caution. LCA is a holistic approach and does not cover effects or issues on a local level, which may be highly relevant. We should therefore apply the precautionary ALARA principle (As Low As Reasonably Achievable) and not conclude that the effect of pharmaceuticals is negligible in the environment. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Task related doses in Spanish pressurized water reactors over the period 1988-1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O`Donnell, P.; Labarta, T.; Amor, I.

    1995-03-01

    In order to evaluate in depth the collective dose trend and its correlation with the effectiveness of the practical application of the ALARA principle in Spanish nuclear facilities, and base the different policy lines to promote this criteria, the CSN has fullfilled an analysis of the task related doses data over the period 1988-1992. Previously, the CSN had required to the utilities the compilation of their refuelling outage collective dose from 1988 according with a predeterminate number of tasks, in order to have available a representative and retrospective set of data in an homogeneous way and coherent with the internationalmore » data banks on occupational exposure in NPP, as the CEC and the NEA ones. The scope of this analysis was the following: first, the collective dose summaries for outage tasks and departments for PWR and for BWR, including the minimum, maximum and average dose (and statistics data) for 18 different refuelling outage tasks and 12 personal departments for each generation of each type of rector, the task and department related collective dose trends in each plant and in each generation, and second, the dose reduction techniques having been used during that period in each plant and the relative level of adoption. In this presentation the main results and conclusions of the first part of the study are reviewed for PWR.« less

  19. Imaging utilization commentary: a radiology perspective.

    PubMed

    Reed, Martin H

    2008-11-01

    To adhere to the ALARA concept, imaging should be limited to studies that actually contribute to the management of the patient. For example, by applying the Ottawa Ankle Rule and the Ottawa Knee Rule, fewer radiographs are required to evaluate ankle and knee trauma in children. Chest radiographs usually do not contribute to the management of children presenting with typical acute bronchiolitis or asthma, and they can be detrimental because consolidation resulting from retained secretions is interpreted as pneumonia and the child is started on antibiotics unnecessarily. Moreover, a radiograph of the abdomen has poor validity and reproducibility for the diagnosis of constipation. The Pediatric Emergency Care Applied Research Network (PECARN) and the Pediatric Emergency Research in Canada (PERC) are currently developing decision rules for the use of CT in the assessment of minor head injuries in children, which should reduce its utilization in this condition. PECARN is also developing a decision rule for the use of CT in the assessment of abdominal trauma in children. CT is frequently used for the diagnosis of appendicitis in children, but appendicitis can be diagnosed clinically. If imaging is required, appendicitis can often be diagnosed with US, and CT need only be used in the minority of cases where the diagnosis is still in doubt. Utilization guidelines for pediatric imaging studies obtained in children in the emergency setting can improve yield and help in the more efficient management of often scarce health care resources.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podonsky, Glenn S.

    The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2012 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protectionmore » of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. Over the past 5-year period, the occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site. As an indicator of the overall amount of radiation dose received during the conduct of operations at DOE, the report includes information on collective total effective dose (TED). The TED is comprised of the effective dose (ED) from external sources, which includes neutron and photon radiation, and the internal committed effective dose (CED), which results from the intake of radioactive material into the body. The collective ED from photon exposure decreased by 23% between 2011 and 2012, while the neutron dose increased by 5%. The internal dose components of the collective TED decreased by 7%. Over the past 5-year period, 99.99% of the individuals receiving measurable TED have received doses below the 2 roentgen equivalent in man (rems) (20 millisievert [mSv]) TED administrative control level (ACL), which is well below the DOE regulatory limit of 5 rems (50 mSv) TED annually. The occupational radiation exposure records show that in 2012, DOE facilities continued to comply with DOE dose limits and ACLs and worked to minimize exposure to individuals. The DOE collective TED decreased 17.1% from 2011 to 2012. The collective TED decreased at three of the five sites with the largest collective TED. u Idaho Site – Collective dose reductions were achieved as a result of continuing improvements at the Advanced Mixed Waste Treatment Project (AMWTP) through the planning of drum movements that reduced the number of times a container is handled; placement of waste containers that created highradiation areas in a centralized location; and increased worker awareness of high-dose rate areas. In addition, Idaho had the largest decrease in the total number of workers with measurable TED (1,143 fewer workers). u Hanford Site (Hanford) – An overall reduction of decontamination and decommissioning (D&D) activities at the Plutonium Finishing Plant (PFP) and Transuranic (TRU) retrieval activities resulted in collective dose reductions. u Savannah River Site (SRS) – Reductions were achieved through ALARA initiatives employed site wide. The Solid Waste Management Facility used extended specialty tools, cameras and lead shield walls to facilitate removal of drums. These tools and techniques reduce exposure time through improved efficiency, increase distance from the source of radiation by remote monitoring, shield the workers to lower the dose rate, and reduce the potential for contamination and release of material through repacking of waste. Overall, from 2011 to 2012, there was a 19% decrease in the number of workers with measurable dose. Furthermore, due to a slight decrease in both the DOE workforce (7%) and monitored workers (10%), the ratio of workers with measurable doses to monitored workers decreased to 13%. Another primary indicator of the level of radiation exposure covered in this report is the average measurable dose, which normalizes the collective dose over the population of workers who actually received a measurable dose. The average measurable TED increased by 3% from 2011 to 2012. Additional analyses show that the dose distribution in 2012 was similar to the distribution in 2011. In 2012, 13% of the monitored workers received a measurable TED and the average measurable TED, 0.069 rem, was less than 2% of the DOE limit. From 2011 to 2012, the collective TED and the number of individuals with measurable TED decreased 17.1% and 19%, respectively. These decreases were mainly due to an overall reduction of D&D activities at the PFP and TRU retrieval activities at Hanford; a 78% decrease in the number of targeted waste drums that were processed at the Idaho Site’s Accelerated Retrieval Project (ARP) from 5,566 drums in 2011 to a total of 1,211 drums processed in 2012; and ALARA initiatives employed site wide at SRS. In addition, the decreases were the result of decreased American Recovery and Reinvestment Act (ARRA) activities and continuing D&D, particularly at the DOE sites that comprise the majority of DOE collective dose. Over the past 5 years, the size of the monitored workforce has remained at a fairly stable level (within 12%), while the collective dose has varied up to 37%. No reported doses exceeded the DOE occupational limit of 5 rems TED in 2012 and no reported doses exceeded the DOE ACL of 2 rems TED.« less

  1. Calculation of Absorbed Dose in Target Tissue and Equivalent Dose in Sensitive Tissues of Patients Treated by BNCT Using MCNP4C

    NASA Astrophysics Data System (ADS)

    Zamani, M.; Kasesaz, Y.; Khalafi, H.; Pooya, S. M. Hosseini

    Boron Neutron Capture Therapy (BNCT) is used for treatment of many diseases, including brain tumors, in many medical centers. In this method, a target area (e.g., head of patient) is irradiated by some optimized and suitable neutron fields such as research nuclear reactors. Aiming at protection of healthy tissues which are located in the vicinity of irradiated tissue, and based on the ALARA principle, it is required to prevent unnecessary exposure of these vital organs. In this study, by using numerical simulation method (MCNP4C Code), the absorbed dose in target tissue and the equiavalent dose in different sensitive tissues of a patiant treated by BNCT, are calculated. For this purpose, we have used the parameters of MIRD Standard Phantom. Equiavelent dose in 11 sensitive organs, located in the vicinity of target, and total equivalent dose in whole body, have been calculated. The results show that the absorbed dose in tumor and normal tissue of brain equal to 30.35 Gy and 0.19 Gy, respectively. Also, total equivalent dose in 11 sensitive organs, other than tumor and normal tissue of brain, is equal to 14 mGy. The maximum equivalent doses in organs, other than brain and tumor, appear to the tissues of lungs and thyroid and are equal to 7.35 mSv and 3.00 mSv, respectively.

  2. Usefulness of optic nerve ultrasound to predict clinical progression in multiple sclerosis.

    PubMed

    Pérez Sánchez, S; Eichau Madueño, S; Rus Hidalgo, M; Domínguez Mayoral, A M; Vilches-Arenas, A; Navarro Mascarell, G; Izquierdo, G

    2018-03-21

    Progressive neuronal and axonal loss are considered the main causes of disability in patients with multiple sclerosis (MS). The disease frequently involves the visual system; the accessibility of the system for several functional and structural tests has made it a model for the in vivo study of MS pathogenesis. Orbital ultrasound is a non-invasive technique that enables various structures of the orbit, including the optic nerve, to be evaluated in real time. We conducted an observational, ambispective study of MS patients. Disease progression data were collected. Orbital ultrasound was performed on all patients, with power set according to the 'as low as reasonably achievable' (ALARA) principle. Optical coherence tomography (OCT) data were also collected for those patients who underwent the procedure. Statistical analysis was conducted using SPSS version 22.0. Disease progression was significantly correlated with ultrasound findings (P=.041 for the right eye and P=.037 for the left eye) and with Expanded Disability Status Scale (EDSS) score at the end of the follow-up period (P=.07 for the right eye and P=.043 for the left eye). No statistically significant differences were found with relation to relapses or other clinical variables. Ultrasound measurement of optic nerve diameter constitutes a useful, predictive factor for the evaluation of patients with MS. Smaller diameters are associated with poor clinical progression and greater disability (measured by EDSS). Copyright © 2018 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Determining the applicability of the Landauer nanoDot as a general public dosimeter in a research imaging facility.

    PubMed

    Charlton, Michael A; Thoreson, Kelly F; Cerecero, Jennifer A

    2012-11-01

    The Research Imaging Institute (RII) building at the University of Texas Health Science Center at San Antonio (UTHSCSA) houses two cyclotron particle accelerators, positron emission tomography (PET) machines, and a fluoroscopic unit. As part of the radiation protection program (RPP) and meeting the standard for achieving ALARA (as low as reasonably achievable), it is essential to minimize the ionizing radiation exposure to the general public through the use of controlled areas and area dose monitoring. Currently, thirty-four whole body Luxel+ dosimeters, manufactured by Landauer, are being used in various locations within the RII to monitor dose to the general public. The intent of this research was to determine if the nanoDot, a single point dosimeter, can be used as a general public dosimeter in a diagnostic facility. This was tested by first verifying characteristics of the nanoDot dosimeter including dose linearity, dose rate dependence, angular dependence, and energy dependence. Then, the response of the nanoDot dosimeter to the Luxel+ dosimeter when placed in a continuous, low dose environment was investigated. Finally, the nanoDot was checked for appropriate response in an acute, high dose environment. Based on the results, the current recommendation is that the nanoDot should not replace the Luxel+ dosimeter without further work to determine the energy spectra in the RII building and without considering the limitation of the microStar reader, portable on-site OSL reader, at doses below 0.1 mGy (10 mrad).

  4. Poster — Thur Eve — 41: Considerations for Patients with Permanently Implant Radioactive Sources Requiring Unrelated Surgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basran, P. S; Beckham, WA; Baxter, P

    Permanent implant of sealed radioactive sources is an effective technique for treating cancer. Typically, the radioactive sources are implanted in and near the disease, depositing dose locally over several months. There may be instances where these patients must undergo unrelated surgical procedures when the radioactive material remains active enough to pose risks. This work explores these risks, discusses strategies to mitigate those risks, and describes a case study for a permanent I-125 prostate brachytherapy implant patient who developed colo-rectal cancer and required surgery 6 months after brachytherapy. The first consideration is identifying the risk from unwarranted radiation to the patientmore » and staff before, during, and after the surgical procedure. The second is identifying the risk the surgical procedure may have on the efficacy of the brachytherapy implant. Finally, there are considerations for controlling for radioactive substances from a regulatory perspective. After these risks are defined, strategies to mitigate those risks are considered. These strategies may include applying the concepts of ALARA, the use of protective equipment and developing a best practice strategy with the operating room team. We summarize this experience with some guidelines: If the surgical procedure is near (ex: 5 cm) of the implant; and, the surgical intervention may dislodge radioisotopes enough to compromise treatment or introduces radiation safety risks; and, the radioisotope has not sufficiently decayed to background levels; and, the surgery cannot be postponed, then a detailed analysis of risk is advised.« less

  5. [Concepts for the regulation of mixtures of toxic pollutants in environmental hygiene].

    PubMed

    Csicsaky, M J

    1998-06-01

    In view of the increasing accumulation of large-scale livestock production facilities in the western parts of Lower Saxony the question rises how ecology and economy can be conciliated and how the protection of human health can be assured. Based on existing legislation this is hard to achieve because of the weak legal position of the administration when trying to prohibit the further expansion of livestock production as opposed to the strong legal position of owners and investors. Presently there is no agreement within the scientific community on safe limits for airborne pathogens and it is quite obvious that thresholds for peak concentrations do not solve the problem of background level exposures. Apart from the unsatisfactory current practise to licence farm animal units in the outskirts of existing villages only, in future the introduction of the EC Environmental Management and Auditing Scheme (EMAS) in animal production may improve the situation. This management system is intended to permanently reduce the environmental impact of a production site and implements the ALARA-PRINCIPLE (as low as reasonably achievable) which is known from protection measures against radiation. As the implementation of the EMAS so far works only on a voluntary basis, an incentive is needed. If dealers and consumers give preference to products from producers having adopted the EMAS, this would be a very efficient incentive. Before this could be put into practise, however, the EMAS criteria originally designed for industrial production sites will have to be adapted to the special conditions of animal production.

  6. Spectral measurements of direct and scattered gamma radiation at a boiling-water reactor site

    NASA Astrophysics Data System (ADS)

    Block, R. C.; Preiss, I. L.; Ryan, R. M.; Vargo, G. J.

    1990-12-01

    Quantitative surveys of direct and scattered gamma radiation emitted from the steam-power conversion systems of a boiling-water reactor and other on-site radiation sources were made using a directionally shielded HPGe gamma spectrometry system. The purpose of this study was to obtain data on the relative contributions and energy distributions of direct and scattered gamma radiation in the site environs. The principal radionuclide of concern in this study is 16N produced by the 16O(n,p) 16N reaction in the reactor coolant. Due to changes in facility operation resulting from the implementation of hydrogen water chemistry (HWC), the amount of 16N transported from the reactor to the main steam system under full power operation is excepted to increase by a factor of 1.2 to 5.0. This increase in the 16N source term in the nuclear steam must be considered in the design of new facilities to be constructed on site as well as the evaluation of existing facilities with repect to ALARA (As Low As Reasonably Achievable) dose limits in unrestricted areas. This study consisted of base-line measurements taken under normal BWR chemistry conditions in October, 1987 and a corresponding set taken under HWC conditions in July, 1988. Ground-level and elevated measurements, corresponding to second-story building height, were obtained. The primary conclusion of this study is that direct radiation from the steam-power conversion system is the predominant source of radiation in the site environs of this reactor and that air scattering (i.e. skyshine) does not appear to be significant.

  7. Justification and good practice in using handheld portable dental X-ray equipment: a position paper prepared by the European Academy of DentoMaxilloFacial Radiology (EADMFR)

    PubMed Central

    Suomalainen, A; Brüllmann, D; Jacobs, R; Horner, K; Stamatakis, H C

    2015-01-01

    Handheld portable X-ray devices are increasingly used for intraoral radiography. This development introduces new challenges to staff and patient safety, for which new or revised risk assessments must be made and acted upon prior to use. Major issues might be: difficulties in using rectangular collimation with beam aiming devices, more complex matching of exposure settings to the X-ray receptor used (e.g. longer exposure times), movements owing to the units' weight, protection of the operator and third persons, and the use in uncontrolled environments. These problems may result in violation of the “as low as reasonably achievable’’, that is, ALARA principle by an increase in (re)exposures compared with the other available intraoral X-ray devices. Hence, the use of handheld portable X-ray devices should be considered only after careful and documented evaluation (which might be performed based on medical physics support), when there is evidence that handheld operation has benefits over traditional modalities and when no new risks to the operators and/or third parties are caused. It is expected that the use of handheld portable X-ray devices will be very exceptional, and for justified situations only. Special attention should be drawn to beam-aiming devices, rectangular collimation, the section of the X-ray receptor, focus–skin distance, and backscatter shielding, and that the unit delivers reproducible dose over the full set of environmental conditions (e.g. battery status and temperature). PMID:25710118

  8. Uncertainty Analysis in Space Radiation Protection

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2011-01-01

    Space radiation is comprised of high energy and charge (HZE) nuclei, protons, and secondary radiation including neutrons. The uncertainties in estimating the health risks from galactic cosmic rays (GCR) are a major limitation to the length of space missions, the evaluation of potential risk mitigation approaches, and application of the As Low As Reasonably Achievable (ALARA) principle. For long duration space missio ns, risks may approach radiation exposure limits, therefore the uncertainties in risk projections become a major safety concern and methodologies used for ground-based works are not deemed to be sufficient. NASA limits astronaut exposures to a 3% risk of exposure induced death (REID) and protects against uncertainties in risks projections using an assessment of 95% confidence intervals in the projection model. We discuss NASA s approach to space radiation uncertainty assessments and applications for the International Space Station (ISS) program and design studies of future missions to Mars and other destinations. Several features of NASA s approach will be discussed. Radiation quality descriptions are based on the properties of radiation tracks rather than LET with probability distribution functions (PDF) for uncertainties derived from radiobiology experiments at particle accelerators. The application of age and gender specific models for individual astronauts is described. Because more than 90% of astronauts are never-smokers, an alternative risk calculation for never-smokers is used and will be compared to estimates for an average U.S. population. Because of the high energies of the GCR limits the benefits of shielding and the limited role expected for pharmaceutical countermeasures, uncertainty reduction continues to be the optimal approach to improve radiation safety for space missions.

  9. Six steps to a successful dose-reduction strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, M.

    1995-03-01

    The increased importance of demonstrating achievement of the ALARA principle has helped produce a proliferation of dose-reduction ideas. Across a company there may be many dose-reduction items being pursued in a variety of areas. However, companies have a limited amount of resource and, therefore, to ensure funding is directed to those items which will produce the most benefit and that all areas apply a common policy, requires the presence of a dose-reduction strategy. Six steps were identified in formulating the dose-reduction strategy for Rolls-Royce and Associates (RRA): (1) collating the ideas; (2) quantitatively evaluating them on a common basis; (3)more » prioritizing the ideas in terms of cost benefit, (4) implementation of the highest priority items; (5) monitoring their success; (6) periodically reviewing the strategy. Inherent in producing the dose-reduction strategy has been a comprehensive dose database and the RRA-developed dose management computer code DOMAIN, which allows prediction of dose rates and dose. The database enabled high task dose items to be identified, assisted in evaluating dose benefits, and monitored dose trends once items had been implemented. The DOMAIN code was used both in quantifying some of the project dose benefits and its results, such as dose contours, used in some of the dose-reduction items themselves. In all, over fifty dose-reduction items were evaluated in the strategy process and the items which will give greatest benefit are being implemented. The strategy has been successful in giving renewed impetus and direction to dose-reduction management.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richer, Jeff; Frimeth, Jeff; Nesbitt, James

    Purpose: In Ontario, shielding for all X-ray machines, including CT scanners, must be evaluated according to Safety Code 20A (Health Canada, 1983) which is based on NCRP-49 (NCRP, 1976). NCRP-147 (NCRP, 2004) is the international standard for shielding calculations of CT scanners and is also referenced in Safety Code 35 (Health Canada, 2008) which, was published to supersede SC20A. The goal of this work is to demonstrate the cost effectiveness of NCRP-147 for CT scanner shielding. Methods: CT scanner shielding calculations are performed using SC20A and NCRP-147: A room located on the third floor with the nearest building 75m awaymore » A room with high occupancy uncontrolled adjacent spaces Two side by side rooms on the main floor Results: 1. SC20A: The exterior windows required 0.1mm of Pb to protect the public who may occupy the building at 75m. 1. NCRP-147: No additional shielding required. 2. SC20A: Two walls adjacent to high occupancy uncontrolled space required an additional 1.58mm Pb. 2. NCRP-147: No additional shielding required. 3. SC20A: The entire floor and ceiling slabs in both rooms required an additional 0.79mm Pb. In addition, 0.79mm Pb was added to the walls from the ceiling to overlap the existing Pb shielding in the walls. 3. NCRP-147: No additional shielding required. Conclusion: The application of NCRP Report No. 147 affords the required protection to staff and the public, in the true spirit of the ALARA principle, taking into account relevant social and economic factors.« less

  11. Develop and Manufacture an airlock sliding tray

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawton, Cindy M.

    2014-02-26

    The goal of this project is to continue to develop an airlock sliding tray and then partner with an industrial manufacturing company for production. The sliding tray will be easily installed into and removed from most glovebox airlocks in a few minutes. Technical Approach: A prototype of a sliding tray has been developed and tested in the LANL cold lab and 35 trays are presently being built for the plutonium facility (PF-4). The current, recently approved design works for a 14-inch diameter round airlock and has a tray length of approximately 20 inches. The grant will take the already testedmore » and approved round technology and design for the square airlock. These two designs will be suitable for the majority of the existing airlocks in the multitude of DOE facilities. Partnering with an external manufacturer will allow for production of the airlock trays at a much lower cost and increase the availability of the product for all DOE sites. Project duration is estimated to be 12-13 months. Benefits: The purpose of the airlock sliding trays is fourfold: 1) Mitigate risk of rotator cuff injuries, 2) Improve ALARA, 3) Reduce risk of glovebox glove breaches and glove punctures, and 4) Improve worker comfort. I have had the opportunity to visit many other DOE facilities including Savannah, Y-12, ORNL, Sandia, and Livermore for assistance with ergonomic problems and/or injuries. All of these sites would benefit from the airlock sliding tray and I can assume all other DOE facilities with gloveboxes built prior to 1985 could also use the sliding trays.« less

  12. Sampling and analyses plan for tank 103 at the 219-S waste handling facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FOWLER, K.D.

    1999-06-23

    This document describes the sampling and analysis activities associated with taking a Resource Conservation and Recovery Act (RCRA) protocol sample of the waste from Tank 103 at the 21 9-S Waste Handling Facility treatment storage, andlor disposal (TSD) unit at the 2224 Laboratory complex. This sampling and analyses is required based on negotiations between the State of Washington Department of Ecology (Ecology) and the Department of Energy, Richland Operations, (RL) in letters concerning the TPA Change Form M-32-98-01. In a letter from George H. Sanders, RL to Moses N. Jaraysi, Ecology, dated January 28,1999, it was noted that ''Prior tomore » the Tank 103 waste inventory transfer, a RCRA protocol sample of the waste will be obtained and tested for the constituents contained on the Part A, Form 3 Permit Application for the 219-S Waste Handling Facility.'' In the April 2, 1999 letter, from Brenda L. Becher-Khaleel, Ecology to James, E. Rasmussen, RL, and William O. Adair, FDH, Ecology states that the purpose of these analyses is to provide information and justification for leaving Tank 103 in an isolated condition in the 2194 TSD unit until facility closure. The data may also be used at some future date in making decisions regarding closure methodology for Tank 103. Ecology also notes that As Low As Reasonably Achievable (ALARA) concerns may force deviations from some SW-846 protocol. Every effort will be made to accommodate requirements as specified. Deviations from SW-846 will be documented in accordance with HASQARD.« less

  13. Imaging strategies to reduce the risk of radiation in CT studies, including selective substitution with MRI.

    PubMed

    Semelka, Richard C; Armao, Diane M; Elias, Jorge; Huda, Walter

    2007-05-01

    "When one admits that nothing is certain one must, I think, also admit that some things are much more nearly certain than others." Bertrand Russell (1872-1970) Computed tomography (CT) is one of the largest contributors to man-made radiation doses in medical populations. CT currently accounts for over 60 million examinations in the United States, and its use continues to grow rapidly. The principal concern regarding radiation exposure is that the subject may develop malignancies. For this systematic review we searched journal publications in MEDLINE (1966-2006) using the terms "CT," "ionizing radiation," "cancer risks," "MRI," and "patient safety." We also searched major reports issued from governmental U.S. and world health-related agencies. Many studies have shown that organ doses associated with routine diagnostic CT scans are similar to the low-dose range of radiation received by atomic-bomb survivors. The FDA estimates that a CT examination with an effective dose of 10 mSv may be associated with an increased chance of developing fatal cancer for approximately one patient in 2000, whereas the BEIR VII lifetime risk model predicts that with the same low-dose radiation, approximately one individual in 1000 will develop cancer. There are uncertainties in the current radiation risk estimates, especially at the lower dose levels encountered in CT. To address what should be done to ensure patient safety, in this review we discuss the "as low as reasonably achievable" (ALARA) principle, and the use of MRI as an alternative to CT. (c) 2007 Wiley-Liss, Inc.

  14. SU-E-P-11: Comparison of Image Quality and Radiation Dose Between Different Scanner System in Routine Abdomen CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, S; Wang, Y; Weng, H

    Purpose To evaluate image quality and radiation dose of routine abdomen computed tomography exam with the automatic current modulation technique (ATCM) performed in two different brand 64-slice CT scanners in our site. Materials and Methods A retrospective review of routine abdomen CT exam performed with two scanners; scanner A and scanner B in our site. To calculate standard deviation of the portal hepatic level with a region of interest of 12.5 mm x 12.5mm represented to the image noise. The radiation dose was obtained from CT DICOM image information. Using Computed tomography dose index volume (CTDIv) to represented CT radiationmore » dose. The patient data in this study were with normal weight (about 65–75 Kg). Results The standard deviation of Scanner A was smaller than scanner B, the scanner A might with better image quality than scanner B. On the other hand, the radiation dose of scanner A was higher than scanner B(about higher 50–60%) with ATCM. Both of them, the radiation dose was under diagnostic reference level. Conclusion The ATCM systems in modern CT scanners can contribute a significant reduction in radiation dose to the patient. But the reduction by ATCM systems from different CT scanner manufacturers has slightly variation. Whatever CT scanner we use, it is necessary to find the acceptable threshold of image quality with the minimum possible radiation exposure to the patient in agreement with the ALARA principle.« less

  15. Ambient Dose Equivalent measured at the Instituto Nacional de Cancerología Department of Nuclear Medicine

    NASA Astrophysics Data System (ADS)

    Ávila, O.; Torres-Ulloa, C. L.; Medina, L. A.; Trujillo-Zamudio, F. E.; de Buen, I. Gamboa; Buenfil, A. E.; Brandan, M. E.

    2010-12-01

    Ambient dose equivalent values were determined in several sites at the Instituto Nacional de Cancerología, Departmento de Medicina Nuclear, using TLD-100 and TLD-900 thermoluminescent dosemeters. Additionally, ambient dose equivalent was measured at a corridor outside the hospitalization room for patients treated with 137Cs brachytherapy. Dosemeter calibration was performed at the Instituto Nacional de Investigaciones Nucleares, Laboratorio de Metrología, to known 137Cs gamma radiation air kerma. Radionuclides considered for this study are 131I, 18F, 67Ga, 99mTc, 111In, 201Tl and 137Cs, with main gamma energies between 93 and 662 keV. Dosemeters were placed during a five month period in the nuclear medicine rooms (containing gamma-cameras), injection corridor, patient waiting areas, PET/CT study room, hot lab, waste storage room and corridors next to the hospitalization rooms for patients treated with 131I and 137Cs. High dose values were found at the waste storage room, outside corridor of 137Cs brachytherapy patients and PET/CT area. Ambient dose equivalent rate obtained for the 137Cs brachytherapy corridor is equal to (18.51±0.02)×10-3 mSv/h. Sites with minimum doses are the gamma camera rooms, having ambient dose equivalent rates equal to (0.05±0.03)×10-3 mSv/h. Recommendations have been given to the Department authorities so that further actions are taken to reduce doses at high dose sites in order to comply with the ALARA principle (as low as reasonably achievable).

  16. Evaluation of three imaging techniques for the detection of vertical root fractures in the absence and presence of gutta-percha root fillings.

    PubMed

    Khedmat, S; Rouhi, N; Drage, N; Shokouhinejad, N; Nekoofar, M H

    2012-11-01

    To compare the accuracy of digital radiography (DR), multidetector computed tomography (MDCT) and cone beam computed tomography (CBCT) in detecting vertical root fractures (VRF) in the absence and presence of gutta-percha root filling. The root canals of 100 extracted human single-rooted teeth were prepared and randomly divided into four groups: two experimental groups with artificially fractured root and two intact groups as controls. In one experimental and one control group, a size 40, 0.04 taper gutta-percha cone was inserted in the root canals. Then DR, MDCT and CBCT were performed and the images evaluated. Statistical analyses of sensitivity, specificity and accuracy of each imaging technique in the presence and absence of gutta-percha were calculated and compared. In the absence of gutta-percha, the specificity of DR, MDCT and CBCT was similar. CBCT was the most accurate and sensitive imaging technique (P < 0 .05). In the presence of gutta-percha, the accuracy of MDCT was higher than the other imaging techniques (P < 0.05). The sensitivity of CBCT and MDCT was significantly higher than that of DR (P < 0.05), whereas CBCT was the least specific technique. Under the conditions of this ex vivo study, CBCT was the most sensitive imaging technique in detecting vertical root fracture. The presence of gutta-percha reduced the accuracy, sensitivity and specificity of CBCT but not MDCT. The sensitivity of DR was reduced in the presence of gutta-percha. The use of MDCT as an alternative technique may be recommended when VRF are suspected in root filled teeth. However, as the radiation dose of MDCT is higher than CBCT, the technique could be considered at variance with the principles of ALARA. © 2012 International Endodontic Journal.

  17. Ionizing Radiation Environments and Exposure Risks

    NASA Astrophysics Data System (ADS)

    Kim, M. H. Y.

    2015-12-01

    Space radiation environments for historically large solar particle events (SPE) and galactic cosmic rays (GCR) are simulated to characterize exposures to radio-sensitive organs for missions to low-Earth orbit (LEO), moon, near-Earth asteroid, and Mars. Primary and secondary particles for SPE and GCR are transported through the respective atmospheres of Earth or Mars, space vehicle, and astronaut's body tissues using NASA's HZETRN/QMSFRG computer code. Space radiation protection methods, which are derived largely from ground-based methods recommended by the National Council on Radiation Protection and Measurements (NCRP) or International Commission on Radiological Protections (ICRP), are built on the principles of risk justification, limitation, and ALARA (as low as reasonably achievable). However, because of the large uncertainties in high charge and energy (HZE) particle radiobiology and the small population of space crews, NASA develops distinct methods to implement a space radiation protection program. For the fatal cancer risks, which have been considered the dominant risk for GCR, the NASA Space Cancer Risk (NSCR) model has been developed from recommendations by NCRP; and undergone external review by the National Research Council (NRC), NCRP, and through peer-review publications. The NSCR model uses GCR environmental models, particle transport codes describing the GCR modification by atomic and nuclear interactions in atmospheric shielding coupled with spacecraft and tissue shielding, and NASA-defined quality factors for solid cancer and leukemia risk estimates for HZE particles. By implementing the NSCR model, the exposure risks from various heliospheric conditions are assessed for the radiation environments for various-class mission types to understand architectures and strategies of human exploration missions and ultimately to contribute to the optimization of radiation safety and well-being of space crewmembers participating in long-term space missions.

  18. Dexterity tests data contribute to reduction in leaded glovebox gloves use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cournoyer, Michael E; Lawton, Cindy M; Castro, Amanda M

    2008-01-01

    Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA-55) involve working with various amounts of plutonium and other highly toxic, alphaemitting materials. The spread of radiological contamination on surfaces and airborne contamination and excursions of contaminants into the operator's breathing zone are prevented through the use of a variety of gloveboxes. Through an integrated approach, controls have been developed and implemented through an efficient Glovebox Glove Integrity Program (GGJP). A key element of this program is to consider measures that lower the overall risk of glovebox operations. Line management owning glovebox processes through this program make decisions onmore » which type of glovebox gloves (the weakest component of this safety significant system) would perform in these aggressive environments. As Low As Reasonably Achievable (ALARA) considerations must be balanced with glove durability and worker dexterity, both of which affect the final overall risk of the operation. In the past, lead-loaded (leaded) glovebox gloves made from Hypalon(reg.) had been the workhorse of programmatic operations at TA-55. Replacing leaded gloves with unleaded gloves for certain operations would lower the overall risk as well as reduced the amount of mixed TRU waste. This effort contributes to Los Alamos National Laboratory Continuous Improvement Program by improving the efficiency, cost effectiveness, and formality of glovebox operations. In the following report, the pros and cons of wearing leaded glovebox gloves, the effect of leaded gloves versus unleaded gloves on task performance using standard dexterity tests, the justification for switching from leaded to unleaded gloves, and pollution prevention benefits of this dramatic change in the glovebox system are presented.« less

  19. Identifying and managing the risks of medical ionizing radiation in endourology.

    PubMed

    Yecies, Todd; Averch, Timothy D; Semins, Michelle J

    2018-02-01

    The risks of exposure to medical ionizing radiation is of increasing concern both among medical professionals and the general public. Patients with nephrolithiasis are exposed to high levels of ionizing radiation through both diagnostic and therapeutic modalities. Endourologists who perform a high-volume of fluoroscopy guided procedures are also exposed to significant quantities of ionizing radiation. The combination of judicious use of radiation-based imaging modalities, application of new imaging techniques such as ultra-low dose computed tomography (CT) scan, and modifying use of current technology such as increasing ultrasound and pulsed fluoroscopy utilization offers the possibility of significantly reducing radiation exposure. We present a review of the literature regarding the risks of medical ionizing radiation to patients and surgeons as it pertains to the field of endourology and interventions that can be performed to limit this exposure. A review of the current state of the literature was performed using MEDLINE and PubMed. Interventions designed to limit patient and surgeon radiation exposure were identified and analyzed. Summaries of the data were compiled and synthesized in the body of the text. While no level 1 evidence exists demonstrating the risk of secondary malignancy with radiation exposure, the preponderance of evidence suggests a dose and age dependent increase in malignancy risk from ionizing radiation. Patients with nephrolithiasis were exposed to an average effective dose of 37mSv over a 2 year period. Multiple evidence-based interventions to limit patient and surgeon radiation exposure and associated risk were identified. Current evidence suggest an age and dose dependent risk of secondary malignancy from ionizing radiation. Urologists must act in accordance with ALARA principles to safely manage nephrolithiasis while minimizing radiation exposure.

  20. The rate of repeating X-rays in the medical centers of Jenin District/Palestine and how to reduce patient exposure to radiation

    NASA Astrophysics Data System (ADS)

    Assi, Abed Al Nasser

    2018-03-01

    Reduction of the patient's received radiation dose to as low as reasonably achievable (ALARA) is based on recommendations of radiation protection organizations such as the International Commission on Radiological Protection (ICRP) and the National Radiological Protection Board (NRPB). The aim of this study was to explore the frequency and characteristics of rejected / repeated radiographic films in governmental and private centers in Jenin city. The radiological centers were chosen based on their high volume of radiographic studies. The evaluation was carried out over a period of four months. The collected data were compiled at the end of each week and entered into a computer for analysis at the end of study. Overall 5000 films (images) were performed in four months, The average repeat rate of radiographic images was 10% (500 films). Repetition rate was the same for both thoracic and abdominal images (42%). The main reason for repeating imaging was inadequate imaging quality (58.2%) and poor film processing (38%). Human error was the most likely reason necessitating the repetition of the radiographs (48 %). Infant and children groups comprised 85% of the patient population that required repetition of the radiographic studies. In conclusion, we have a higher repetition rate of imaging studies compared to the international standards (10% vs. 4-6%, respectively). This is especially noticeable in infants and children, and mainly attributed to human error in obtaining and processing images. This is an important issue that needs to be addressed on a national level due to the ill effects associated with excessive exposure to radiation especially in children, and to reduce cost of the care delivered.

  1. Mobile phone radiation causes brain tumors and should be classified as a probable human carcinogen (2A) (review).

    PubMed

    Morgan, L Lloyd; Miller, Anthony B; Sasco, Annie; Davis, Devra Lee

    2015-05-01

    Quickly changing technologies and intensive uses of radiofrequency electromagnetic field (RF-EMF)‑emitting phones pose a challenge to public health. Mobile phone users and uses and exposures to other wireless transmitting devices (WTDs) have increased in the past few years. We consider that CERENAT, a French national study, provides an important addition to the literature evaluating the use of mobile phones and risk of brain tumors. The CERENAT finding of increased risk of glioma is consistent with studies that evaluated use of mobile phones for a decade or longer and corroborate those that have shown a risk of meningioma from mobile phone use. In CERENAT, exposure to RF‑EMF from digitally enhanced cordless telephones (DECTs), used by over half the population of France during the period of this study, was not evaluated. If exposures to DECT phones could have been taken into account, the risks of glioma from mobile phone use in CERENAT are likely to be higher than published. We conclude that radiofrequency fields should be classified as a Group 2A ̔probable̓ human carcinogen under the criteria used by the International Agency for Research on Cancer (Lyon, France). Additional data should be gathered on exposures to mobile and cordless phones, other WTDs, mobile phone base stations and Wi‑Fi routers to evaluate their impact on public health. We advise that the as low as reasonable achievable (ALARA) principle be adopted for uses of this technology, while a major cross‑disciplinary effort is generated to train researchers in bioelectromagnetics and provide monitoring of potential health impacts of RF‑EMF.

  2. Radiation dose reduction in thoracic and lumbar spine instrumentation using navigation based on an intraoperative cone beam CT imaging system: a prospective randomized clinical trial.

    PubMed

    Pireau, Nathalie; Cordemans, Virginie; Banse, Xavier; Irda, Nadia; Lichtherte, Sébastien; Kaminski, Ludovic

    2017-11-01

    Spine surgery still remains a challenge for every spine surgeon, aware of the potential serious outcomes of misplaced instrumentation. Though many studies have highlighted that using intraoperative cone beam CT imaging and navigation systems provides higher accuracy than conventional freehand methods for placement of pedicle screws in spine surgery, few studies are concerned about how to reduce radiation exposure for patients with the use of such technology. One of the main focuses of this study is based on the ALARA principle (as low as reasonably achievable). A prospective randomized trial was conducted in the hybrid operating room between December 2015 and December 2016, including 50 patients operated on for posterior instrumented thoracic and/or lumbar spinal fusion. Patients were randomized to intraoperative 3D acquisition high-dose (standard dose) or low-dose protocol, and a total of 216 pedicle screws were analyzed in terms of screw position. Two different methods were used to measure ionizing radiation: the total skin dose (derived from the dose-area product) and the radiation dose evaluated by thermoluminescent dosimeters on the surgical field. According to Gertzbein and Heary classifications, low-dose protocol provided a significant higher accuracy of pedicle screw placement than the high-dose protocol (96.1 versus 92%, respectively). Seven screws (3.2%), all implanted with the high-dose protocol, needed to be revised intraoperatively. The use of low-dose acquisition protocols reduced patient exposure by a factor of five. This study emphasizes the paramount importance of using low-dose protocols for intraoperative cone beam CT imaging coupled with the navigation system, as it at least does not affect the accuracy of pedicle screw placement and irradiates drastically less.

  3. Radiation exposure, and procedure and fluoroscopy times in endovascular treatment of intracranial aneurysms: a methodological comparison.

    PubMed

    Cheung, Nicholas K; Boutchard, Michelle; Carr, Michael W; Froelich, Jens J

    2018-01-09

    Limited data are available for radiation exposure, and procedure and fluoroscopy times in neuroendovascular treatment (NET) strategies. This study establishes and compares related parameters between coil embolization (COIL), balloon assisted coil embolization (BAC), stent assisted coil embolization (SAC), and flow diverting technology (FDT) in NET of intracranial aneurysms. Between 2010 and 2017, 249 consecutive intracranial aneurysms underwent NET at a single center, all performed by the same operator. Dose area products (DAP), and procedure and fluoroscopy times were recorded and compared between COIL, BAC, SAC, and FDT techniques. Differences in parameters between cohorts were analyzed for significance using the Mann-Whitney U test, unpaired t test and χ 2 test. Additional subgroup analysis was performed for emergency and elective cases. 83 aneurysms were treated with COIL (33%), 72 with BAC (29%), 61 with SAC (25%), and 33 with FDT (13%). Baseline characteristics were largely similar within these groups (P>0.05). Among COIL, BAC, and FDT cohorts, no significant difference was found for mean DAP, or procedure and fluoroscopy times (P>0.05). However, compared with all other cohorts, SAC was associated with a significantly higher DAP and longer procedure and fluoroscopy times (P<0.005). No significant difference was recorded for emergency and elective case subgroups. Compared with other NET strategies, SAC was associated with a significantly higher DAP, and longer procedure and fluoroscopy times. This study provides an initial dataset regarding radiation exposure, and procedure and fluoroscopy times for common NET, and may assist ALARA (As Low As Reasonably Achievable) principles to reduce radiation risks. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. Quantifying public radiation exposure related to lutetium-177 octreotate therapy for the development of a safe outpatient treatment protocol.

    PubMed

    Olmstead, Craig; Cruz, Kyle; Stodilka, Robert; Zabel, Pamela; Wolfson, Robert

    2015-02-01

    Radionuclide therapies, including treatment of neuroendocrine tumors with lutetium-177 (Lu-177) octreotate, often involve hospital admission to minimize radiation exposure to the public. Overnight admission due to Lu-177 octreotate therapy incurs additional cost for the hospital and is an inconvenience for the patient. This study endeavors to characterize the potential radiation risk to caregivers and the public should Lu-177 octreotate therapies be performed on an outpatient basis. Dose rate measurements of radiation emanating from 10 patients were taken 30 min, 4, and 20 h after initiation of Lu-177 octreotate therapy. Instadose radiation dose measurement monitors were also placed around the patients' rooms to assess the potential cumulative radiation exposure during the initial 30 min-4 h after treatment (simulating the hospital-based component of the outpatient model) as well as 4-20 h after treatment (simulating the discharged outpatient portion). The mean recorded dose rate at 30 min, 4, and 20 h after therapy was 20.4, 14.0, and 6.6 μSv/h, respectively. The majority of the cumulative dose readings were below the minimum recordable threshold of 0.03 mSv, with a maximum dose recorded of 0.18 mSv. Given the low dose rate and cumulative levels of radiation measured, the results support that an outpatient Lu-177 octreotate treatment protocol would not jeopardize public safety. Nevertheless, the concept of ALARA still requires that detailed radiation safety protocols be developed for Lu-177 octreotate outpatients to minimize radiation exposure to family members, caregivers, and the general public.

  5. Ambient Dose Equivalent measured at the Instituto Nacional de Cancerologia Department of Nuclear Medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avila, O.; Torres-Ulloa, C. L.; Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, AP 70-542, 04510, DF

    2010-12-07

    Ambient dose equivalent values were determined in several sites at the Instituto Nacional de Cancerologia, Departmento de Medicina Nuclear, using TLD-100 and TLD-900 thermoluminescent dosemeters. Additionally, ambient dose equivalent was measured at a corridor outside the hospitalization room for patients treated with {sup 137}Cs brachytherapy. Dosemeter calibration was performed at the Instituto Nacional de Investigaciones Nucleares, Laboratorio de Metrologia, to known {sup 137}Cs gamma radiation air kerma. Radionuclides considered for this study are {sup 131}I, {sup 18}F, {sup 67}Ga, {sup 99m}Tc, {sup 111}In, {sup 201}Tl and {sup 137}Cs, with main gamma energies between 93 and 662 keV. Dosemeters were placedmore » during a five month period in the nuclear medicine rooms (containing gamma-cameras), injection corridor, patient waiting areas, PET/CT study room, hot lab, waste storage room and corridors next to the hospitalization rooms for patients treated with {sup 131}I and {sup 137}Cs. High dose values were found at the waste storage room, outside corridor of {sup 137}Cs brachytherapy patients and PET/CT area. Ambient dose equivalent rate obtained for the {sup 137}Cs brachytherapy corridor is equal to (18.51{+-}0.02)x10{sup -3} mSv/h. Sites with minimum doses are the gamma camera rooms, having ambient dose equivalent rates equal to (0.05{+-}0.03)x10{sup -3} mSv/h. Recommendations have been given to the Department authorities so that further actions are taken to reduce doses at high dose sites in order to comply with the ALARA principle (as low as reasonably achievable).« less

  6. D and D Knowledge Management Information Tool - 2012 - 12106

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, H.; Lagos, L.; Quintero, W.

    2012-07-01

    Deactivation and decommissioning (D and D) work is a high priority activity across the Department of Energy (DOE) complex. Subject matter specialists (SMS) associated with the different ALARA (As-Low-As-Reasonably-Achievable) Centers, DOE sites, Energy Facility Contractors Group (EFCOG) and the D and D community have gained extensive knowledge and experience over the years in the cleanup of the legacy waste from the Manhattan Project. To prevent the D and D knowledge and expertise from being lost over time from the evolving and aging workforce, DOE and the Applied Research Center (ARC) at Florida International University (FIU) proposed to capture and maintainmore » this valuable information in a universally available and easily usable system. D and D KM-IT provides single point access to all D and D related activities through its knowledge base. It is a community driven system. D and D KM-IT makes D and D knowledge available to the people who need it at the time they need it and in a readily usable format. It uses the World Wide Web as the primary source for content in addition to information collected from subject matter specialists and the D and D community. It brings information in real time through web based custom search processes and its dynamic knowledge repository. Future developments include developing a document library, providing D and D information access on mobile devices for the Technology module and Hotline, and coordinating multiple subject matter specialists to support the Hotline. The goal is to deploy a high-end sophisticated and secured system to serve as a single large knowledge base for all the D and D activities. The system consolidates a large amount of information available on the web and presents it to users in the simplest way possible. (authors)« less

  7. Environmental analysis of Acid/middle Pueblo Canyon, Los Alamos, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferenbaugh, R.W.; Buhl, T.E.; Stoker, A.K.

    1982-08-01

    The radiological survey of the former radioactive waste treatment plant site (TA-45), Acid Canyon, and Pueblo Canyon found residual radioactivity at the site itself and in the channel and banks of Acid, Pueblo, and lower Los Alamos Canyons, all the way to the Rio Grande. The largest reservoir of radioactive material is in lower Pueblo Canyon, which is on DOE property. The only areas where residual radioactivity exceeds the proposed cleanup criteria are at the former vehicle decontamination facility, located between the former treatment plant site and Acid Canyon, around the former untreated waste outfall and for a short distancemore » below, and in two small areas farther down in Acid Canyon. The three alternatives proposed are (1) to take no action, (2) to fence the areas where the residual radioactivity exceeds the proposed criteria (minimal action), and (3) to clean up the former vehicle decontamination facility and around the former untreated waste outfall. Calculations based on actual measurements indicate that the annual dose at the location having the greatest residual radioactivity would be about 12% of the applicable guideline. Most doses are much smaller than that. No environmental impacts are associated with either the no-action or minimal action alternatives. The impact associated with the cleanup alternative is very small. The preferred alternative is to clean up the areas around the former vehicle decontamination facility and the untreated waste outfall. This course of action is recommended not because of any real danger associated with the residual radioactivity, but rather because the cleanup operation is a minor effort and would conform with the ALARA (as low as reasonably achievable) philosophy.« less

  8. Improving Site-Specific Radiological Performance Assessments - 13431

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tauxe, John; Black, Paul; Catlett, Kate

    2013-07-01

    An improved approach is presented for conducting complete and defensible radiological site-specific performance assessments (PAs) to support radioactive waste disposal decisions. The basic tenets of PA were initiated some thirty years ago, focusing on geologic disposals and evaluating compliance with regulations. Some of these regulations were inherently probabilistic (i.e., addressing uncertainty in a quantitative fashion), such as the containment requirements of the U.S. Environmental Protection Agency's (EPA's) 40 CFR 191, Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, Chap. 191.13 [1]. Methods of analysis were developed to meet those requirements, butmore » at their core early PAs used 'conservative' parameter values and modeling approaches. This limited the utility of such PAs to compliance evaluation, and did little to inform decisions about optimizing disposal, closure and long-term monitoring and maintenance, or, in general, maintaining doses 'as low as reasonably achievable' (ALARA). This basic approach to PA development in the United States was employed essentially unchanged through the end of the 20. century, principally by the U.S. Department of Energy (DOE). Performance assessments developed in support of private radioactive waste disposal operations, regulated by the U.S. Nuclear Regulatory Commission (NRC) and its agreement states, were typically not as sophisticated. Discussion of new approaches to PA is timely, since at the time of this writing, the DOE is in the midst of revising its Order 435.1, Radioactive Waste Management [2], and the NRC is revising 10 CFR 61, Licensing Requirements for Land Disposal of Radioactive Waste [3]. Over the previous decade, theoretical developments and improved computational technology have provided the foundation for integrating decision analysis (DA) concepts and objective-focused thinking, plus a Bayesian approach to probabilistic modeling and risk analysis, to guide improvements in PA. This decision-making approach, [4, 5, 6] provides a transparent formal framework for using a value- or objective-focused approach to decision-making. DA, as an analytical means to implement structured decision making, provides a context for both understanding how uncertainty affects decisions and for targeting uncertainty reduction. The proposed DA approach improves defensibility and transparency of decision-making. The DA approach is fully consistent with the need to perform realistic modeling (rather than conservative modeling), including evaluation of site-specific factors. Instead of using generic stylized scenarios for radionuclide fate and transport and for human exposures to radionuclides, site-specific scenarios better represent the advantages and disadvantages of alternative disposal sites or engineered designs, thus clarifying their differences as well as providing a sound basis for evaluation of site performance. The full DA approach to PA is described, from explicitly incorporating societal values through stakeholder involvement to model building. Model building involves scoping by considering features, events, processes, and exposure scenarios (FEPSs), development of a conceptual site model (CSM), translation into numerical models and subsequent computation, and model evaluation. These are implemented in a cycle of uncertainty analysis, sensitivity analysis and value of information analysis so that uncertainty can be reduced until sufficient confidence is gained in the decisions to be made. This includes the traditional focus on hydrogeological processes, but also places emphasis on other FEPSs such as biotically-induced transport and human exposure phenomena. The significance of human exposure scenarios is emphasized by modifying the traditional acronym 'FEPs' to include them, hence 'FEPSs'. The radioactive waste community is also recognizing that disposal sites are to be considered a national (or even global) resource. As such, there is a pressing need to optimize their utility within the constraints of protecting human health and the environment. Failing to do so will result in the need for additional sites or options for storing radioactive waste temporarily, assuming a continued need for radioactive waste disposal. Optimization should be performed using DA, including economic analysis, invoked if necessary through the ALARA process. The economic analysis must recognize the cost of implementation (disposal design, closure, maintenance, etc.), and intra- and inter-generational equity in order to ensure that the best possible radioactive waste management decisions are made for the protection of both current and future generations. In most cases this requires consideration of population or collective risk. (authors)« less

  9. Radiological monitoring plan for the Oak Ridge Y-12 Plant: Surface Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-10-01

    The Y-12 Plant conducts a surface water monitoring program in response to DOE Orders and state of Tennessee requirements under the National Pollutant Discharge Elimination System (NPDES). The anticipated codification of DOE Order 5400.5 for radiation protection of the public and the environment (10 CFR Part 834) will require an environmental radiation protection plan (ERPP). The NPDES permit issued by the state of Tennessee requires a radiological monitoring plan (RMP) for Y-12 Plant surface waters. In a May 4, 1995 memo, the state of Tennessee, Division of Water Pollution Control, stated their desired needs and goals regarding the content ofmore » RMPs, associated documentation, and data resulting from the RMPs required under the NPDES permitting system (L. Bunting, General Discussion, Radiological Monitoring Plans, Tennessee Division of Water Pollution Control, May 4,1995). Appendix A provides an overview of how the Y-12 Plant will begin to address these needs and goals. It provides a more complete, documented basis for the current Y-12 Plant surface water monitoring program and is intended to supplement documentation provided in the Annual Site Environmental Reports (ASERs), NPDES reports, Groundwater Quality Assessment Reports, and studies conducted under the Y-12 Plant Environmental Restoration (ER) Program. The purpose of this update to the Y-12 Plant RMP is to satisfy the requirements of the current NPDES permit, DOE Order 5400.5, and 10 CFR Part 834, as current proposed, by defining the radiological monitoring plan for surface water for the Y-12 Plant. This plan includes initial storm water monitoring and data analysis. Related activities such as sanitary sewer and sediment monitoring are also summarized. The plan discusses monitoring goals necessary to determine background concentrations of radionuclides, to quantify releases, determine trends, satisfy regulatory requirements, support consequence assessments, and meet requirements that releases be ``as low as reasonably achievable`` (ALARA).« less

  10. Assessment of the dose distribution inside a cardiac cath lab using TLD measurements and Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Baptista, M.; Teles, P.; Cardoso, G.; Vaz, P.

    2014-11-01

    Over the last decade, there was a substantial increase in the number of interventional cardiology procedures worldwide, and the corresponding ionizing radiation doses for both the medical staff and patients became a subject of concern. Interventional procedures in cardiology are normally very complex, resulting in long exposure times. Also, these interventions require the operator to work near the patient and, consequently, close to the primary X-ray beam. Moreover, due to the scattered radiation from the patient and the equipment, the medical staff is also exposed to a non-uniform radiation field that can lead to a significant exposure of sensitive body organs and tissues, such as the eye lens, the thyroid and the extremities. In order to better understand the spatial variation of the dose and dose rate distributions during an interventional cardiology procedure, the dose distribution around a C-arm fluoroscopic system, in operation in a cardiac cath lab at Portuguese Hospital, was estimated using both Monte Carlo (MC) simulations and dosimetric measurements. To model and simulate the cardiac cath lab, including the fluoroscopic equipment used to execute interventional procedures, the state-of-the-art MC radiation transport code MCNPX 2.7.0 was used. Subsequently, Thermo-Luminescent Detector (TLD) measurements were performed, in order to validate and support the simulation results obtained for the cath lab model. The preliminary results presented in this study reveal that the cardiac cath lab model was successfully validated, taking into account the good agreement between MC calculations and TLD measurements. The simulated results for the isodose curves related to the C-arm fluoroscopic system are also consistent with the dosimetric information provided by the equipment manufacturer (Siemens). The adequacy of the implemented computational model used to simulate complex procedures and map dose distributions around the operator and the medical staff is discussed, in view of the optimization principle (and the associated ALARA objective), one of the pillars of the international system of radiological protection.

  11. Philosophy on astronaut protection: Perspective of an astronaut

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, E

    There are significant differences in the risks during the launch of a spacecraft, its journey, and its subsequent return to earth, as contrasted to the risks of latent cancers that may develop as a result of the associated radiation exposures. Once the spacecraft has landed, following a successful mission, the risks of accidental death are over. The risks of latent cancers, however, will remain with the astronauts for the rest of their lives. The same may be true for many of the effects of the space environment, including microgravity. Compounding the problem with respect to radiation are the large uncertaintiesmore » accompanying the estimates of the associated latent cancer risks. In addition to radiation doses received as a result of being exposed in space, astronauts have received significant does of radiation in conjunction with medical examinations and experiments conducted to obtain data on the effects of the space environment on humans. The experiments were considered to be a part of the {open_quotes}job{close_quotes} of being an astronaut, and the resulting doses were included in the medical records. Following this approach, the accompanying doses were counted against the career limits being imposed on each astronaut. As a result, volunteering for such experiments could cause an earlier termination of the career of an astronaut than would otherwise have occurred and add to the total radiation exposure, thereby increasing one`s risk of subsequent illness. Through cooperative efforts, these does have been significantly reduced in recent years. In fact, one of the outcomes of these efforts has been the incorporation of the ALARA concept into the radiation protection program for the astronauts. The fact that a space mission has a range of risks, including some that are relatively large, is no justification for failing to reduce the accompanying radiation risk.« less

  12. Is the use of the cervical vertebrae maturation method justified to determine skeletal age? A comparison of radiation dose of two strategies for skeletal age estimation.

    PubMed

    Patcas, Raphael; Signorelli, Luca; Peltomäki, Timo; Schätzle, Marc

    2013-10-01

    The aim of this study was to assess effective doses of a lateral cephalogram radiograph with and without thyroid shield and compare the differences with the radiation dose of a hand-wrist radiograph. Thermoluminescent dosimeters were placed at 19 different sites in the head and neck of a tissue-equivalent human skull (RANDO phantom). Analogue lateral cephalograms with and without thyroid shield (67 kV, 250 mA, 10 mAs) and hand-wrist radiographs (40 kV, 250 mA, 10 mAs) were obtained. The effective doses were calculated using the 2007 International Commission on Radiological Protection recommendations. The effective dose for conventional lateral cephalogram without a thyroid shield was 5.03 microsieverts (µSv). By applying a thyroid shield to the RANDO phantom, a remarkable dose reduction of 1.73 µSv could be achieved. The effective dose of a conventional hand-wrist radiograph was calculated to be 0.16 µSv. Adding the effective dose of the hand-wrist radiograph to the effective dose of the lateral cephalogram with thyroid shield resulted in a cumulative effective dose of 3.46 µSv. Without thyroid shield, the effective dose of a lateral cephalogram was approximately 1.5-fold increased than the cumulative effective dose of a hand-wrist radiograph and a lateral cephalogram with thyroid shield. Thyroid is an organ that is very sensitive to radiation exposure. Its shielding will significantly reduce the effective dose. An additional hand-wrist radiograph, involving no vulnerable tissues, however, causes very little radiation risk. In accordance with the ALARA (As Low As Reasonably Achievable) principle, if an evaluation of skeletal age is indicated, an additional hand-wrist radiograph seems much more justifiable than removing the thyroid shield.

  13. Fundamentals of Aerospace Medicine: Cosmic Radiation

    NASA Technical Reports Server (NTRS)

    Bagshaw, Michael; Cucionotta, Francis A.

    2007-01-01

    Cosmic rays were discovered in 1911 by the Austrian physicist, Victor Hess. The planet earth is continuously bathed in high-energy galactic cosmic ionizing radiation (GCR), emanating from outside the solar system, and sporadically exposed to bursts of energetic particles from the sun referred to as solar particle events (SPEs). The main source of GCR is believed to be supernovae (exploding stars), while occasionally a disturbance in the sun's atmosphere (solar flare or coronal mass ejection) leads to a surge of radiation particles with sufficient energy to penetrate the earth's magnetic field and enter the atmosphere. The inhabitants of planet earth gain protection from the effects of cosmic radiation from the earth s magnetic field and the atmosphere, as well as from the sun's magnetic field and solar wind. These protective effects extend to the occupants of aircraft flying within the earth s atmosphere, although the effects can be complex for aircraft flying at high altitudes and high latitudes. Travellers in space do not have the benefit of this protection and are exposed to an ionizing radiation field very different in magnitude and quality from the exposure of individuals flying in commercial airliners. The higher amounts and distinct types of radiation qualities in space lead to a large need for understanding the biological effects of space radiation. It is recognized that although there are many overlaps between the aviation and the space environments, there are large differences in radiation dosimetry, risks and protection for airline crew members, passengers and astronauts. These differences impact the application of radiation protection principles of risk justification, limitation, and the principle of as low as reasonably achievable (ALARA). This chapter accordingly is divided into three major sections, the first dealing with the basic physics and health risks, the second with the commercial airline experience, and the third with the aspects of cosmic radiation appertaining to space travel including future considerations.

  14. Remediation of a Former USAF Radioactive Material Disposal Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, D. E.; Cushman, M; Tupyi, B.

    2003-02-25

    This paper describes the remediation of a low-level radiological waste burial site located at the former James Connally Air Force Base in Waco, Texas. Burial activities at the site occurred during the 1950's when the property was under the ownership of the United States Air Force. Included is a discussion of methods and strategies that were used to successfully exhume and characterize the wastes for proper disposal at offsite disposal facilities. Worker and environmental protection measures are also described. Information gained from this project may be used at other similar project sites. A total of nine burial tubes had beenmore » identified for excavation, characterization, and removal from the site. The disposal tubes were constructed of 4-ft lengths of concrete pipe buried upright with the upper ends flush with ground surface. Initial ground level observations of the burial tubes indicated that some weathering had occurred; however, the condition of the subsurface portions of the tubes was unknown. Soil excavation occurred in 1-foot lifts in order that the tubes could be inspected and to allow for characterization of the soils at each stage of the excavation. Due to the weight of the concrete pipe and the condition of the piping joints it was determined that special measures would be required to maintain the tubes intact during their removal. Special tube anchoring and handling methods were required to relocate the tubes from their initial positions to a staging area where they could be further characterized. Characterization of the disposal tubes was accomplished using a combination of gamma spectroscopy and activity mapping methods. Important aspects of the project included the use of specialized excavation and disposal tube reinforcement measures to maintain the disposal tubes intact during excavation, removal and subsequent characterization. The non-intrusive gamma spectroscopy and data logging methods allowed for effective characterization of the wastes while minimizing disposal costs. In addition, worker exposures were maintained ALARA as a result of the removal and characterization methods employed.« less

  15. SU-F-SPS-03: Direct Measurement of Organ Doses Resulting From Head and Cervical Spine Trauma CT Protocols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carranza, C; Lipnharski, I; Quails, N

    Purpose: This retrospective study analyzes the exposure history of emergency department (ED) patients undergoing head and cervical spine trauma computed tomography (CT) studies. This study investigated dose levels received by trauma patients and addressed any potential concerns regarding radiation dose issues. Methods: Under proper IRB approval, a cohort of 300 trauma cases of head and cervical spine trauma CT scans received in the ED was studied. The radiological image viewing software of the hospital was used to view patient images and image data. The following parameters were extracted: the imaging history of patients, the reported dose metrics from the scannermore » including the volumetric CT Dose Index (CTDIvol) and Dose Length Product (DLP). A postmortem subject was scanned using the same scan techniques utilized in a standard clinical head and cervical spine trauma CT protocol with 120 kVp and 280 mAs. The CTDIvol was recorded for the subject and the organ doses were measured using optically stimulated luminescent (OSL) dosimeters. Typical organ doses to the brain, thyroid, lens, salivary glands, and skin, based on the cadaver studies, were then calculated and reported for the cohort. Results: The CTDIvol reported by the CT scanner was 25.5 mGy for the postmortem subject. The average CTDIvol from the patient cohort was 34.1 mGy. From these metrics, typical average organ doses in mGy were found to be: Brain (44.57), Thyroid (33.40), Lens (82.45), Salivary Glands (61.29), Skin (47.50). The imaging history of the cohort showed that on average trauma patients received 26.1 scans over a lifetime. Conclusion: The average number of scans received on average by trauma ED patients shows that radiation doses in trauma patients may be a concern. Available dose tracking software would be helpful to track doses in trauma ED patients, highlighting the importance of minimizing unnecessary scans and keeping doses ALARA.« less

  16. Opportunities for improvement on current nuclear cardiology practices and radiation exposure in Latin America: Findings from the 65-country IAEA Nuclear Cardiology Protocols cross-sectional Study (INCAPS).

    PubMed

    Vitola, João V; Mut, Fernando; Alexánderson, Erick; Pascual, Thomas N B; Mercuri, Mathew; Karthikeyan, Ganesan; Better, Nathan; Rehani, Madan M; Kashyap, Ravi; Dondi, Maurizio; Paez, Diana; Einstein, Andrew J

    2017-06-01

    Comparison of Latin American (LA) nuclear cardiology (NC) practice with that in the rest of the world (RoW) will identify areas for improvement and lead to educational activities to reduce radiation exposure from NC. INCAPS collected data on all SPECT and PET procedures performed during a single week in March-April 2013 in 36 laboratories in 10 LA countries (n = 1139), and 272 laboratories in 55 countries in RoW (n = 6772). Eight "best practices" were identified a priori and a radiation-related Quality Index (QI) was devised indicating the number used. Mean radiation effective dose (ED) in LA was higher than in RoW (11.8 vs 9.1 mSv, p < 0.001). Within a populous country like Brazil, a wide variation in laboratory mean ED was found, ranging from 8.4 to 17.8 mSv. Only 11% of LA laboratories achieved median ED <9 mSv, compared to 32% in RoW (p < 0.001). QIs ranged from 2 in a laboratory in Mexico to 7 in a laboratory in Cuba. Three major opportunities to reduce ED for LA patients were identified: (1) more laboratories could implement stress-only imaging, (2) camera-based methods of ED reduction, including prone imaging, could be more frequently used, and (3) injected activity of 99m Tc could be adjusted reflecting patient weight/habitus. On average, radiation dose from NC is higher in LA compared to RoW, with median laboratory ED <9 mSv achieved only one third as frequently as in RoW. Opportunities to reduce radiation exposure in LA have been identified and guideline-based recommendations made to optimize protocols and adhere to the "as low as reasonably achievable" (ALARA) principle.

  17. SU-E-T-270: Optimized Shielding Calculations for Medical Linear Accelerators (LINACs).

    PubMed

    Muhammad, W; Lee, S; Hussain, A

    2012-06-01

    The purpose of radiation shielding is to reduce the effective equivalent dose from a medical linear accelerator (LINAC) to a point outside the room to a level determined by individual state/international regulations. The study was performed to design LINAC's room for newly planned radiotherapy centers. Optimized shielding calculations were performed for LINACs having maximum photon energy of 20 MV based on NCRP 151. The maximum permissible dose limits were kept 0.04 mSv/week and 0.002 mSv/week for controlled and uncontrolled areas respectively by following ALARA principle. The planned LINAC's room was compared to the already constructed (non-optimized) LINAC's room to evaluate the shielding costs and the other facilities those are directly related to the room design. In the evaluation process it was noted that the non-optimized room size (i.e., 610 × 610 cm 2 or 20 feet × 20 feet) is not suitable for total body irradiation (TBI) although the machine installed inside was having not only the facility of TBI but the license was acquired. By keeping this point in view, the optimized INAC's room size was kept 762 × 762 cm 2. Although, the area of the optimized rooms was greater than the non-planned room (i.e., 762 × 762 cm 2 instead of 610 × 610 cm 2), the shielding cost for the optimized LINAC's rooms was reduced by 15%. When optimized shielding calculations were re-performed for non-optimized shielding room (i.e., keeping room size, occupancy factors, workload etc. same), it was found that the shielding cost may be lower to 41 %. In conclusion, non- optimized LINAC's room can not only put extra financial burden on the hospital but also can cause of some serious issues related to providing health care facilities for patients. © 2012 American Association of Physicists in Medicine.

  18. Training software using virtual-reality technology and pre-calculated effective dose data.

    PubMed

    Ding, Aiping; Zhang, Di; Xu, X George

    2009-05-01

    This paper describes the development of a software package, called VR Dose Simulator, which aims to provide interactive radiation safety and ALARA training to radiation workers using virtual-reality (VR) simulations. Combined with a pre-calculated effective dose equivalent (EDE) database, a virtual radiation environment was constructed in VR authoring software, EON Studio, using 3-D models of a real nuclear power plant building. Models of avatars representing two workers were adopted with arms and legs of the avatar being controlled in the software to simulate walking and other postures. Collision detection algorithms were developed for various parts of the 3-D power plant building and avatars to confine the avatars to certain regions of the virtual environment. Ten different camera viewpoints were assigned to conveniently cover the entire virtual scenery in different viewing angles. A user can control the avatar to carry out radiological engineering tasks using two modes of avatar navigation. A user can also specify two types of radiation source: Cs and Co. The location of the avatar inside the virtual environment during the course of the avatar's movement is linked to the EDE database. The accumulative dose is calculated and displayed on the screen in real-time. Based on the final accumulated dose and the completion status of all virtual tasks, a score is given to evaluate the performance of the user. The paper concludes that VR-based simulation technologies are interactive and engaging, thus potentially useful in improving the quality of radiation safety training. The paper also summarizes several challenges: more streamlined data conversion, realistic avatar movement and posture, more intuitive implementation of the data communication between EON Studio and VB.NET, and more versatile utilization of EDE data such as a source near the body, etc., all of which needs to be addressed in future efforts to develop this type of software.

  19. [Radioprotection and environmental pollution by the use of the radionuclides 89Sr, 186Re, and 153Sm for pain palliation in metastatic bone diseases. Related calculations].

    PubMed

    Sbonias, Evangelos

    2005-01-01

    Due to the fact that the existing commercial analgesic drugs are not able to reduce effectively the pain caused by the metastatic bone disease, the use of radiopharmaceuticals with avidity to selectively localize in the metastatic skeletal sites, such as strondium-89 chloride (89Sr-Cl2), rhenium-186-hydroxy ethylene diphosphonate (186Re-HEDP), and samarium-153-ethylene diamine tetramethylene (153Sm-EDTMP), is widely accepted. However this medical application may be dangerous for the occupied personnel and more for general public, if radioactive waste is not properly disposed. In the following article we try to estimate the degree and the significance of that risk. For that reason we discuss the physical properties of these radionuclides and their distribution in the body of the patient. We conclude that 89Sr is not harmful for the physician, the attending personnel or those who live with the patient, because it radiates beta-radiation, while its gamma-radiation is negligeable. The radionuclides 186Re and 153Sm besides beta-radiation, also emit a perceptible amount of gamma-radiation. It has been shown that the exposure to gamma-radiation from these radionuclides of the physician, the attending personnel or those who live with the patient is very low as compared to the internationally accepted radioprotection limits. However the environmental contamination per treatment by either of these three radionuclides is not negligeable in comparison to the national and international accepted limits. Patients that are not in good clinical condition may pose an additional contamination danger to those attending them. For limiting radiocontamination, the annual number of treatments by the above three previous radionuclides, should be considered according to the ALARA principle in relation with the correct handling of these patients, and also considering the fundamentals of radioprotection.

  20. [Substance monograph on bisphenol A (BPA) - reference and human biomonitoring (HBM) values for BPA in urine. Opinion of the Human Biomonitoring Commission of the German Federal Environment Agency (UBA)].

    PubMed

    2012-09-01

    Bisphenol A (BPA) is used for the production of polycarbonates and synthetic resins. Many of the items that contain BPA, for example polycarbonate bottles and coated cans, are commodities from which BPA can migrate into food and drinks, resulting in ubiquitous exposure of the population. Numerous animal studies and in vitro tests have shown that BPA acts as an "endocrine disruptor". Because of the still incomplete understanding of the complex and contradictory effects of BPA at doses below the NOAEL, the toxicological significance of recent findings is uncertain. The German HBM Commission takes notice that the risk assessment is currently in flux and that in the EU and other countries precautionary bans on BPA have been introduced. In the light of the extensive and growing body of literature, the Commission does not see itself in a position to resolve this controversy, nor to answer the question of the relevance of observed effects of low BPA doses on human health. The Commission has derived reference values (RV95) and TDI-based HBM I values for total BPA in urine. The RV95 values are 30 μg/l for 3-5 year olds, 15 μg/l for 6-14 year olds, and 7 μg/l for 20-29 year olds. The HBM I value for children is 1.5 mg/l and 2.5 mg/l for adults, respectively. The Commission emphasizes that the HBM values will require immediate adjustment should the current TDI of 0.05 mg/kg bw/day be changed. For the practical application of HBM, the Commission recommends an assessment based on the RV95. Confirmed exceedance of the RV95 by repeat measurements should prompt a search for the possible source(s), following the ALARA principle.

  1. Dose equivalent rate constants and barrier transmission data for nuclear medicine facility dose calculations and shielding design.

    PubMed

    Kusano, Maggie; Caldwell, Curtis B

    2014-07-01

    A primary goal of nuclear medicine facility design is to keep public and worker radiation doses As Low As Reasonably Achievable (ALARA). To estimate dose and shielding requirements, one needs to know both the dose equivalent rate constants for soft tissue and barrier transmission factors (TFs) for all radionuclides of interest. Dose equivalent rate constants are most commonly calculated using published air kerma or exposure rate constants, while transmission factors are most commonly calculated using published tenth-value layers (TVLs). Values can be calculated more accurately using the radionuclide's photon emission spectrum and the physical properties of lead, concrete, and/or tissue at these energies. These calculations may be non-trivial due to the polyenergetic nature of the radionuclides used in nuclear medicine. In this paper, the effects of dose equivalent rate constant and transmission factor on nuclear medicine dose and shielding calculations are investigated, and new values based on up-to-date nuclear data and thresholds specific to nuclear medicine are proposed. To facilitate practical use, transmission curves were fitted to the three-parameter Archer equation. Finally, the results of this work were applied to the design of a sample nuclear medicine facility and compared to doses calculated using common methods to investigate the effects of these values on dose estimates and shielding decisions. Dose equivalent rate constants generally agreed well with those derived from the literature with the exception of those from NCRP 124. Depending on the situation, Archer fit TFs could be significantly more accurate than TVL-based TFs. These results were reflected in the sample shielding problem, with unshielded dose estimates agreeing well, with the exception of those based on NCRP 124, and Archer fit TFs providing a more accurate alternative to TVL TFs and a simpler alternative to full spectral-based calculations. The data provided by this paper should assist in improving the accuracy and tractability of dose and shielding calculations for nuclear medicine facility design.

  2. Risk control and the minimum significant risk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seiler, F.A.; Alvarez, J.L.

    1996-06-01

    Risk management implies that the risk manager can, by his actions, exercise at least a modicum of control over the risk in question. In the terminology of control theory, a management action is a control signal imposed as feedback on the system to bring about a desired change in the state of the system. In the terminology of risk management, an action is taken to bring a predicted risk to lower values. Even if it is assumed that the management action taken is 100% effective and that the projected risk reduction is infinitely well known, there is a lower limitmore » to the desired effects that can be achieved. It is based on the fact that all risks, such as the incidence of cancer, exhibit a degree of variability due to a number of extraneous factors such as age at exposure, sex, location, and some lifestyle parameters such as smoking or the consumption of alcohol. If the control signal is much smaller than the variability of the risk, the signal is lost in the noise and control is lost. This defines a minimum controllable risk based on the variability of the risk over the population considered. This quantity is the counterpart of the minimum significant risk which is defined by the uncertainties of the risk model. Both the minimum controllable risk and the minimum significant risk are evaluated for radiation carcinogenesis and are shown to be of the same order of magnitude. For a realistic management action, the assumptions of perfectly effective action and perfect model prediction made above have to be dropped, resulting in an effective minimum controllable risk which is determined by both risk limits. Any action below that effective limit is futile, but it is also unethical due to the ethical requirement of doing more good than harm. Finally, some implications of the effective minimum controllable risk on the use of the ALARA principle and on the evaluation of remedial action goals are presented.« less

  3. Derivation of strontium-90 and cesium-137 residual radioactive material guidelines for the Laboratory for Energy-Related Health Research, University of California, Davis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nimmagadda, M.; Yu, C.

    1993-04-01

    Residual radioactive material guidelines for strontium-90 and cesium-137 were derived for the Laboratory for Energy-Related Health Research (LEHR) site in Davis, California. The guideline derivation was based on a dose limit of 100 mrem/yr. The US Department of Energy (DOE) residual radioactive material guideline computer code, RESRAD, was used in this evaluation; this code implements the methodology described in the DOE manual for implementing residual radioactive material guidelines. Three potential site utilization scenarios were considered with the assumption that, for a period of 1,000 years following remedial action, the site will be utilized without radiological restrictions. The defined scenarios varymore » with regard to use of the site, time spent at the site, and sources of food consumed. The results of the evaluation indicate that the basic dose limit of 100 mrem/yr will not be exceeded within 1,000 years for either strontium-90 or cesium-137, provided that the soil concentrations of these radionuclides at the LEHR site do not exceed the following levels: 71,000 pCi/g for strontium-90 and 91 pCi/g for cesium-137 for Scenario A (researcher: the expected scenario); 160,000 pCi/g for strontium-90 and 220 pCi/g for cesium-137 for Scenario B (recreationist: a plausible scenario); and 37 pCi/g for strontium-90 and 32 pCi/g for cesium-137 for Scenario C (resident farmer ingesting food produced in the contaminated area: a plausible scenario). The derived guidelines are single-radionuclide guidelines and are linearly proportional to the dose limit used in the calculations. In setting the actual strontium-90 and cesium-137 guidelines for the LEHR site, DOE will apply the as low as reasonably achievable (ALARA) policy to the decision-making process, along with other factors such as whether a particular scenario is reasonable and appropriate.« less

  4. Hanford tank initiative vehicle/based waste retrieval demonstration report phase II, track 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berglin, E.J.

    1997-07-31

    Using the versatile TracPUMpTm, Environmental Specialties Group, LLC (ES) performed a successful Phase 11 demonstration of a Vehicle- Based Waste Retrieval System (VWRS) for removal of waste material and residual liquid found in the Hanford Underground Storage Tanks (ousts). The purpose of this demonstration was to address issues pertaining to the use of a VWRS in OUSTS. The demonstration also revealed the waste removal capabilities of the TracPumpTm and the most effective techniques and equipment to safely and effectively remove waste simulants. ES successfully addressed the following primary issues: I . Dislodge and convey the waste forms present in themore » Hanford OUSTS; 2. Access the UST through tank openings as small as twenty-four inches in diameter; 3. Traverse a variety of terrains including slopes, sludges, rocks and hard, slippery surfaces without becoming mired; 4. Dislodge and convey waste within the confinement of the Decontamination Containment Capture Vessel (DCCV) and with minimal personnel exposure; 5. Decontaminate equipment to acceptable limits during retrieval from the UST; 6. Perform any required maintenance within the confinement of the DCCV; and 7. Maintain contaminate levels ``as low as reasonably achievable`` (ALARA) within the DCCV due to its crevice and comer-free design. The following materials were used to simulate the physical characteristics of wastes found in Hanford`s OUSTS: (1) Hardpan: a clay-type material that has high shear strength; (2) Saltcake: a fertilizer-based material that has high compressive strength; and (3) Wet Sludge.- a sticky, peanut- butter- like material with low shear strength. Four test beds were constructed of plywood and filled with a different simulant to a depth of eight to ten inches. Three of the test beds were of homogenous simulant material, while the fourth bed consisted of a mixture of all three simulant types.« less

  5. WASTE TREATMENT BUILDING SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    F. Habashi

    2000-06-22

    The Waste Treatment Building System provides the space, layout, structures, and embedded subsystems that support the processing of low-level liquid and solid radioactive waste generated within the Monitored Geologic Repository (MGR). The activities conducted in the Waste Treatment Building include sorting, volume reduction, and packaging of dry waste, and collecting, processing, solidification, and packaging of liquid waste. The Waste Treatment Building System is located on the surface within the protected area of the MGR. The Waste Treatment Building System helps maintain a suitable environment for the waste processing and protects the systems within the Waste Treatment Building (WTB) from mostmore » of the natural and induced environments. The WTB also confines contaminants and provides radiological protection to personnel. In addition to the waste processing operations, the Waste Treatment Building System provides space and layout for staging of packaged waste for shipment, industrial and radiological safety systems, control and monitoring of operations, safeguards and security systems, and fire protection, ventilation and utilities systems. The Waste Treatment Building System also provides the required space and layout for maintenance activities, tool storage, and administrative facilities. The Waste Treatment Building System integrates waste processing systems within its protective structure to support the throughput rates established for the MGR. The Waste Treatment Building System also provides shielding, layout, and other design features to help limit personnel radiation exposures to levels which are as low as is reasonably achievable (ALARA). The Waste Treatment Building System interfaces with the Site Generated Radiological Waste Handling System, and with other MGR systems that support the waste processing operations. The Waste Treatment Building System interfaces with the General Site Transportation System, Site Communications System, Site Water System, MGR Site Layout, Safeguards and Security System, Site Radiological Monitoring System, Site Electrical Power System, Site Compressed Air System, and Waste Treatment Building Ventilation System.« less

  6. SU-F-J-16: Planar KV Imaging Dose Reduction Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gershkevitsh, E; Zolotuhhin, D

    Purpose: IGRT has become an indispensable tool in modern radiotherapy with kV imaging used in many departments due to superior image quality and lower dose when compared to MV imaging. Many departments use manufacturer supplied protocols for imaging which are not always optimised between image quality and radiation dose (ALARA). Methods: Whole body phantom PBU-50 (Kyoto Kagaku ltd., Japan) for imaging in radiology has been imaged on Varian iX accelerator (Varian Medical Systems, USA) with OBI 1.5 system. Manufacturer’s default protocols were adapted by modifying kV and mAs values when imaging different anatomical regions of the phantom (head, thorax, abdomen,more » pelvis, extremities). Images with different settings were independently reviewed by two persons and their suitability for IGRT set-up correction protocols were evaluated. The suitable images with the lowest mAs were then selected. The entrance surface dose (ESD) for manufacturer’s default protocols and modified protocols were measured with RTI Black Piranha (RTI Group, Sweden) and compared. Image quality was also measured with kVQC phantom (Standard Imaging, USA) for different protocols. The modified protocols have been applied for clinical work. Results: For most cases optimized protocols reduced the ESD on average by a factor of 3(range 0.9–8.5). Further reduction in ESD has been observed by applying bow-tie filter designed for CBCT. The largest reduction in dose (12.2 times) was observed for Thorax lateral protocol. The dose was slightly increased (by 10%) for large pelvis AP protocol. Conclusion: Manufacturer’s default IGRT protocols could be optimised to reduce the ESD to the patient without losing the necessary image quality for patient set-up correction. For patient set-up with planar kV imaging the bony anatomy is mostly used and optimization should focus on this aspect. Therefore, the current approach with anthropomorphic phantom is more advantageous in optimization over standard kV quality control phantoms and SNR metrics.« less

  7. Probabilistic dose assessment of normal operations and accident conditions for an assured isolation facility in Texas

    NASA Astrophysics Data System (ADS)

    Arno, Matthew Gordon

    Texas is investigating building a long-term waste storage facility, also known as an Assured Isolation Facility. This is an above-ground low-level radioactive waste storage facility that is actively maintained and from which waste may be retrieved. A preliminary, scoping-level analysis has been extended to consider more complex scenarios of radiation streaming and skyshine by using the computer code Monte Carlo N-Particle (MCNP) to model the facility in greater detail. Accidental release scenarios have been studied in more depth to better assess the potential dose to off-site individuals. Using bounding source term assumptions, the projected radiation doses and dose rates are estimated to exceed applicable limits by an order of magnitude. By altering the facility design to fill in the hollow cores of the prefabricated concrete slabs used in the roof over the "high-gamma rooms," where the waste with the highest concentration of gamma emitting radioactive material is stored, dose rates outside the facility decrease by an order of magnitude. With the modified design, the annual dose at the site fenceline is estimated at 86 mrem, below the 100 mrem annual limit for exposure of the public. Within the site perimeter, the dose rates are lowered sufficiently such that it is not necessary to categorize many workers and contractor personnel as radiation workers, saving on costs as well as being advisable under ALARA principles. A detailed analysis of bounding accidents incorporating information on the local meteorological conditions indicate that the maximum committed effective dose equivalent from the passage of a plume of material released in an accident at any of the cities near the facility is 59 :rem in the city of Eunice, NM based on the combined day and night meteorological conditions. Using the daytime meteorological conditions, the maximum dose at any city is 7 :rem, also in the city of Eunice. The maximum dose at the site boundary was determined to be 230 mrem using the combined day and night meteorological conditions and 33 mrem using the daytime conditions.

  8. Adapting Dry Cask Storage for Aging at a Geologic Repository

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. Sanders; D. Kimball

    2005-08-02

    A Spent Nuclear Fuel (SNF) Aging System is a crucial part of operations at the proposed Yucca Mountain repository in the United States. Incoming commercial SNF that does not meet thermal limits for emplacement will be aged on outdoor pads. U.S. Department of Energy SNF will also be managed using the Aging System. Proposed site-specific designs for the Aging System are closely based upon designs for existing dry cask storage (DCS) systems. This paper evaluates the applicability of existing DCS systems for use in the SNF Aging System at Yucca Mountain. The most important difference between existing DCS facilities andmore » the Yucca Mountain facility is the required capacity. Existing DCS facilities typically have less than 50 casks. The current design for the aging pad at Yucca Mountain calls for a capacity of over 2,000 casks (20,000 MTHM) [1]. This unprecedented number of casks poses some unique problems. The response of DCS systems to off-normal and accident conditions needs to be re-evaluated for multiple storage casks. Dose calculations become more complicated, since doses from multiple or very long arrays of casks can dramatically increase the total boundary dose. For occupational doses, the geometry of the cask arrays and the order of loading casks must be carefully considered in order to meet ALARA goals during cask retrieval. Due to the large area of the aging pad, skyshine must also be included when calculating public and worker doses. The expected length of aging will also necessitate some design adjustments. Under 10 CFR 72.236, DCS systems are initially certified for a period of 20 years [2]. Although the Yucca Mountain facility is not intended to be a storage facility under 10 CFR 72, the operational life of the SNF Aging System is 50 years [1]. Any cask system selected for use in aging will have to be qualified to this design lifetime. These considerations are examined, and a summary is provided of the adaptations that must be made in order to use DCS technologies successfully at a geologic repository.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detilleux, Michel; Centner, Baudouin

    The paper describes different methodologies and tools developed in-house by Tractebel Engineering to facilitate the engineering works to be carried out especially in the frame of decommissioning projects. Three examples of tools with their corresponding results are presented: - The LLWAA-DECOM code, a software developed for the radiological characterization of contaminated systems and equipment. The code constitutes a specific module of more general software that was originally developed to characterize radioactive waste streams in order to be able to declare the radiological inventory of critical nuclides, in particular difficult-to-measure radionuclides, to the Authorities. In the case of LLWAA-DECOM, deposited activitiesmore » inside contaminated equipment (piping, tanks, heat exchangers...) and scaling factors between nuclides, at any given time of the decommissioning time schedule, are calculated on the basis of physical characteristics of the systems and of operational parameters of the nuclear power plant. This methodology was applied to assess decommissioning costs of Belgian NPPs, to characterize the primary system of Trino NPP in Italy, to characterize the equipment of miscellaneous circuits of Ignalina NPP and of Kozloduy unit 1 and, to calculate remaining dose rates around equipment in the frame of the preparation of decommissioning activities; - The VISIMODELLER tool, a user friendly CAD interface developed to ease the introduction of lay-out areas in a software named VISIPLAN. VISIPLAN is a 3D dose rate assessment tool for ALARA work planning, developed by the Belgian Nuclear Research Centre SCK.CEN. Both softwares were used for projects such as the steam generators replacements in Belgian NPPs or the preparation of the decommissioning of units 1 and 2 of Kozloduy NPP; - The DBS software, a software developed to manage the different kinds of activities that are part of the general time schedule of a decommissioning project. For each activity, when relevant, algorithms allow to estimate, on the basis of local inputs, radiological exposures of the operators (collective and individual doses), production of primary, secondary and tertiary waste and their characterization, production of conditioned waste, release of effluents,... and enable the calculation and the presentation (histograms) of the global results for all activities together. An example of application in the frame of the Ignalina decommissioning project is given. (authors)« less

  10. Ultra low-dose CT attenuation correction in PET SPM

    NASA Astrophysics Data System (ADS)

    Wang, Shyh-Jen; Yang, Bang-Hung; Tsai, Chia-Jung; Yang, Ching-Ching; Lee, Jason J. S.; Wu, Tung-Hsin

    2010-07-01

    The use of CT images for attenuation correction (CTAC) allows significantly shorter scanning time and a high quality noise-free attenuation map compared with conventional germanium-68 transmission scan because at least 10 4 times greater of photon flux would be generated from a CT scan under standard operating condition. However, this CTAC technique would potentially introduce more radiation risk to the patients owing to the higher radiation exposure from CT scan. Statistic parameters mapping (SPM) is a prominent technique in nuclear medicine community for the analysis of brain imaging data. The purpose of this study is to assess the feasibility of low-dose CT (LDCT) and ultra low-dose CT (UDCT) in PET SPM applications. The study was divided into two parts. The first part was to evaluate of tracer uptake distribution pattern and quantity analysis by using the striatal phantom to initially assess the feasibility of AC for clinical purpose. The second part was to examine the group SPM analysis using the Hoffman brain phantom. The phantom study is to simulate the human brain and to reduce the experimental uncertainty of real subjects. The initial studies show that the results of PET SPM analysis have no significant differences between LDCT and UDCT comparing to the current used default CTAC. Moreover, the dose of the LDCT is lower than that of the default CT by a factor of 9, and UDCT can even yield a 42 times dose reduction. We have demonstrated the SPM results while using LDCT and UDCT for PET AC is comparable to those using default CT setting, suggesting their feasibility in PET SPM applications. In addition, the necessity of UDCT in PET SPM studies to avoid excess radiation dose is also evident since most of the subjects involved are non-cancer patients or children and some normal subjects are even served as a comparison group in the experiment. It is our belief that additional attempts to decrease the radiation dose would be valuable, especially for children and normal volunteers, to work towards ALARA (as low as reasonably achievable) concept for PET SPM studies.

  11. Moon manned missions radiation safety analysis

    NASA Astrophysics Data System (ADS)

    Tripathi, R. K.; Wilson, J. W.; de Anlelis, G.; Badavi, F. F.

    An analysis is performed on the radiation environment found on the surface of the Moon, and applied to different possible lunar base mission scenarios. An optimization technique has been used to obtain mission scenarios minimizing the astronaut radiation exposure and at the same time controlling the effect of shielding, in terms of mass addition and material choice, as a mission cost driver. The optimization process has been realized through minimization of mass along all phases of a mission scenario, in terms of time frame (dates, transfer time length and trajectory, radiation environment), equipment (vehicles, in terms of shape, volume, onboard material choice, size and structure), location (if in space, on the surface, inside or outside a certain habitats), crew characteristics (number, gender, age, tasks) and performance required (spacecraft and habitat volumes), radiation exposure annual and career limit constraint (from NCRP 132), and implementation of the ALARA principle (shelter from the occurrence of Solar Particle Events). On the lunar surface the most important contribution to radiation exposure is given by background Galactic Cosmic Rays (GCR) particles, mostly protons, alpha particles, and some heavy ions, and by locally induced particles, mostly neutrons, created by the interaction between GCR and surface material and emerging from below the surface due to backscattering processes. In this environment manned habitats are to host future crews involved in the construction and/or in the utilization of moon based infrastructure. Three different kinds of lunar missions are considered in the analysis, Moon Base Construction Phase, during which astronauts are on the surface just to build an outpost for future resident crews, Moon Base Outpost Phase, during which astronaut crews are resident but continuing exploration and installation activities, and Moon Base Routine Phase, with long-term shifting resident crews. In each scenario various kinds of habitats, from very simple shelters to more complex bases, are considered in full detail (e.g., shape, thickness, materials, etc) with considerations of various shielding strategies. In this first analysis all the shape considered are cylindrical or composed of combination of cylinders. Moreover, a radiation safety analysis of more future possible habitats like lava tubes has been also performed.

  12. Ethical Issues Related to the Promotion of a "100 mSv Threshold Assumption" in Japan after the Fukushima Nuclear Accident in 2011: Background and Consequences.

    PubMed

    Tsuda, Toshihide; Lindahl, Lena; Tokinobu, Akiko

    2017-06-01

    This article describes the debates in Japan regarding the 100 mSv threshold assumption and ethical issues related to it, and explores the background to distorted risk information and absence of risk communication in Japan. Then we seek proper risk communication based on scientific evidence. On March 11, 2011 an accident occurred at the Fukushima Daiichi Nuclear Power Plant due to the Great East Japan Earthquake. Since then a number of misunderstandings have become common in Japan as a result of public statements by the Japanese and local governments that have no basis in medical science or are contradictory to medical science. Consequently, not only the population of Fukushima Prefecture, but also others, have been subjected to unnecessary exposure to radiation, against the As Low As Reasonably Achievable (ALARA) principle. The number of cases of thyroid cancer has increased by one or two orders of magnitude since the accident in Fukushima. However, the population has hardly been given any correct information from the central and local governments, medical societies, and media. The center of this problem is a statement on radiation-induced cancer (including thyroid cancer) made by the Japanese Government and Japanese medical academic societies indicating that "exposure of less than 100 mSv gives rise to no excess risk of cancer, and even if there is some resulting cancer it will be impossible to detect it" (this will be referred to as "the 100 mSv threshold assumption" from now onward). They have been saying this since April 2011 and have made no effort to correct it. Many Japanese began to notice this but correct information on radiation protection has reached only one part of the population. Risk communication should be based on scientific evidence, and providing it as information for the public is a key element. In Japan, governments and academic societies tried to communicate with the public without doing it. Ethical problems after the accident in Fukushima can be understood from the consequences of the mistakes in both risk information and risk communication in Japan after 2011.

  13. Corporate Functional Management Evaluation of the LLNL Radiation Safety Organization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sygitowicz, L S

    2008-03-20

    A Corporate Assess, Improve, and Modernize review was conducted at Lawrence Livermore National Laboratory (LLNL) to evaluate the LLNL Radiation Safety Program and recommend actions to address the conditions identified in the Internal Assessment conducted July 23-25, 2007. This review confirms the findings of the Internal Assessment of the Institutional Radiation Safety Program (RSP) including the noted deficiencies and vulnerabilities to be valid. The actions recommended are a result of interviews with about 35 individuals representing senior management through the technician level. The deficiencies identified in the LLNL Internal Assessment of the Institutional Radiation Safety Program were discussed with Radiationmore » Safety personnel team leads, customers of Radiation Safety Program, DOE Livermore site office, and senior ES&H management. There are significant issues with the RSP. LLNL RSP is not an integrated, cohesive, consistently implemented program with a single authority that has the clear roll and responsibility and authority to assure radiological operations at LLNL are conducted in a safe and compliant manner. There is no institutional commitment to address the deficiencies that are identified in the internal assessment. Some of these deficiencies have been previously identified and corrective actions have not been taken or are ineffective in addressing the issues. Serious funding and staffing issues have prevented addressing previously identified issues in the Radiation Calibration Laboratory, Internal Dosimetry, Bioassay Laboratory, and the Whole Body Counter. There is a lack of technical basis documentation for the Radiation Calibration Laboratory and an inadequate QA plan that does not specify standards of work. The Radiation Safety Program lack rigor and consistency across all supported programs. The implementation of DOE Standard 1098-99 Radiological Control can be used as a tool to establish this consistency across LLNL. The establishment of a site wide ALARA Committee and administrative control levels would focus attention on improved processes. Currently LLNL issues dosimeters to a large number of employees and visitors that do not enter areas requiring dosimetry. This includes 25,000 visitor TLDs per year. Dosimeters should be issued to only those personnel who enter areas where dosimetry is required.« less

  14. Habitual tea drinking and bone mineral density in postmenopausal Turkish women: investigation of prevalence of postmenopausal osteoporosis in Turkey (IPPOT Study).

    PubMed

    Hamdi Kara, Ismail; Aydin, Serpil; Gemalmaz, Ayfer; Aktürk, Zekeriya; Yaman, Hakan; Bozdemir, Nafiz; Kurdak, Hatice; Sitmapinar, Karanfil; Devran Sencar, Ilknur; Başak, Okay; Akdeniz, Melahat; Işildar, Hakan; Burgut, Erhan; Ozcan, Sevgi; Akça, Unal; Dağdeviren, Nezih; Ungan, Mehmet

    2007-11-01

    In this epidemiological report, we assessed the prevalence of osteopenia and osteoporosis (OP) in postmenopausal Turkish women and the relationship between body mass index (BMI), and some nutritional factors (habitual tea, coffee, tobacco, and milk product consumption) with OP. This multicenter study was done in postmenopausal women residing in five big cities, in four different regions of Turkey between August and November 2005. An inclusion criterion was being in the postmenopausal period for at least 12 months. A semi-structured questionnaire was completed by face-to-face interview, consisting of closed- and open-ended questions about demographic characteristics, nutritional status, and habits with two or more choices as possible responses. Bone mineral density (BMD) measurements were performed with a MetriScan Densitometer (Alara Inc., CA, USA). Seven hundred twenty-four women were included in the study. The mean age was 57.6 +/- 9.6 years, and mean age at natural menopause was 46.4 +/- 5.6 years. Of the participants, 51% were illiterate. According to WHO classification; 42.5% were normal in terms of BMD, 27.2% had osteopenia, and 30.2% had OP. Women with high education levels had better T-scores (p = 0.019). Increase in BMI also had a positive effect on T-scores (p < 0.0001). A linear correlation was found between age (r= -0.386, p < 0.0001), BMI (r = -0.175, p < 0.0001), and education (r = -0.317, p < 0.0001), with T-scores. The T-scores of women who consumed tea on a regular basis were found to be higher than non-consumers (-1.51 +/- 1.68 vs. -1.09 +/- 1.66; p = 0.070) [when smokers, those who received hormonal therapy (HT), and those > 65 years were excluded]. OP was determined in 1/3 of the women. Advanced age (> 65) and being illiterate were negative factors, while high education levels, being overweight, and being treated with HT had a positive effects on BMD. Habitual tea drinking also may have a positive effect on BMD. However, tea drinking was not found to be a statistically significant factor in the present study.

  15. Long-Term Effects of Exposure to Ionizing Irradiation on Periodontal Health Status – The Tinea capitis Cohort Study

    PubMed Central

    Sadetzki, Siegal; Chetrit, Angela; Sgan-Cohen, Harold D.; Mann, Jonathan; Amitai, Tova; Even-Nir, Hadas; Vered, Yuval

    2015-01-01

    Studies among long-term survivors of childhood cancer who had received high-dose irradiation therapy of 4–60 Gy, demonstrated acute and chronic dental effects, including periodontal diseases. However, the possible effects of low to moderate doses of radiation on dental health are sparse. The aim of this study is to investigate the association between childhood exposure to low–moderate doses of ionizing radiation and periodontal health following 50 years since exposure. The study population included 253 irradiated subjects (treated for Tinea capitis in the 1950s) and, 162 non-irradiated subjects. The estimated dose to the teeth was 0.2–0.4 Gy. Dental examination was performed according to the community periodontal index (CPI). Socioeconomic and health behavior variables were obtained through a personal questionnaire. Periodontal disease was operationally defined as “deep periodontal pockets.” A multivariate logistic regression model was used for the association of irradiation status and other independent variables with periodontal status. The results showed that among the irradiated subjects, 23%, (95% CI 18–28%) demonstrated complete edentulousness or insufficient teeth for CPI scoring as compared to 13% (95% CI 8–19%) among the non-irradiated subjects (p = 0.01). Periodontal disease was detected among 54% of the irradiated subjects as compared to 40% of the non-irradiated (p = 0.008). Controlling for education and smoking, the ORs for the association between radiation and periodontal disease were 1.61 (95% CI 1.01–2.57) and 1.95 (95% CI 1.1–3.5) for ever never and per 1 Gy absorbed in the salivary gland, respectively. In line with other studies, a protective effect for periodontal diseases among those with high education and an increased risk for ever smokers were observed. In conclusion, childhood exposure to low-moderate doses of ionizing radiation might be associated with later outcomes of dental health. The results add valuable data on the long-term health effects of exposure to ionizing radiation and support the implementation of the ALARA principle in childhood exposure to diagnostic procedure involving radiation. PMID:26539423

  16. A Multicenter Survey of Endovascular Theatre Equipment and Radiation Exposure in France during Iliac Procedures.

    PubMed

    Maurel, Blandine; Hertault, Adrien; Salomon du Mont, Lucie; Cazaban, Sébastien; Rinckenbach, Simon

    2017-04-01

    The aim of this study is to evaluate radiation exposure, endovascular theatre equipment, and practices in France during iliac angioplasty. A prospective observational study was performed among vascular surgeons who attended a half day of radiation safety training in 2012 and 2015 and had to collect data on 3 patients undergoing iliac procedure. In 2012, 330 surgeons performed 899 procedures, compared with 114 surgeons and 338 procedures in 2015. Due to exclusions, 653 and 306 procedures were analyzed in 2012 and 2015, respectively. Endovascular environment, practices, anatomical characteristics, and radiation parameters were collected, analyzed, and compared generally and between the 2 groups. Endovascular theatre equipment significantly improved over the 3 years: mobile flat-panel detector (1.1% vs. 5.9%), hybrid rooms (1.5% vs. 14.7%), and dedicated radiology tables (37.2% vs. 51.2%). Lesion's classification (Trans-Atlantic Society Consensus) was similar between groups but procedure complexity increased overtime: more than one stent implanted (32.3% vs. 41%, P < 0.01), cross over (11.5% vs. 16%, P < 0.05), and kissing procedures (19.3% vs. 24.2%, P = 0.05). The mean dose area product (DAP) was 14.2 ± 18.9 Gy cm 2 in 2012 and 21.5 ± 37.6 Gy cm 2 in 2015 (P < 0.01), and the mean fluoroscopy time was 4.8 ± 5.5 min and 5.2 ± 5.9 min, respectively (nonsignificant). Overall, hybrid rooms, body mass index over 25 kg/m 2 , more than one stent implanted, and crossover technique were associated with a significantly higher DAP. Over 3 years, a large population of vascular surgeons improved radiation safety knowledge, operative environment, and technical complexity. However, these changes have led to an increased DAP in 2015, which underline the outmost importance of low dose settings and application of ALARA (as low as reasonably achievable) principles in every day practice. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Radioactive Waste Characterization Strategies; Comparisons Between AK/PK, Dose to Curie Modeling, Gamma Spectroscopy, and Laboratory Analysis Methods- 12194

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singledecker, Steven J.; Jones, Scotty W.; Dorries, Alison M.

    2012-07-01

    In the coming fiscal years of potentially declining budgets, Department of Energy facilities such as the Los Alamos National Laboratory (LANL) will be looking to reduce the cost of radioactive waste characterization, management, and disposal processes. At the core of this cost reduction process will be choosing the most cost effective, efficient, and accurate methods of radioactive waste characterization. Central to every radioactive waste management program is an effective and accurate waste characterization program. Choosing between methods can determine what is classified as low level radioactive waste (LLRW), transuranic waste (TRU), waste that can be disposed of under an Authorizedmore » Release Limit (ARL), industrial waste, and waste that can be disposed of in municipal landfills. The cost benefits of an accurate radioactive waste characterization program cannot be overstated. In addition, inaccurate radioactive waste characterization of radioactive waste can result in the incorrect classification of radioactive waste leading to higher disposal costs, Department of Transportation (DOT) violations, Notice of Violations (NOVs) from Federal and State regulatory agencies, waste rejection from disposal facilities, loss of operational capabilities, and loss of disposal options. Any one of these events could result in the program that mischaracterized the waste losing its ability to perform it primary operational mission. Generators that produce radioactive waste have four characterization strategies at their disposal: - Acceptable Knowledge/Process Knowledge (AK/PK); - Indirect characterization using a software application or other dose to curie methodologies; - Non-Destructive Analysis (NDA) tools such as gamma spectroscopy; - Direct sampling (e.g. grab samples or Surface Contaminated Object smears) and laboratory analytical; Each method has specific advantages and disadvantages. This paper will evaluate each method detailing those advantages and disadvantages including; - Cost benefit analysis (basic materials costs, overall program operations costs, man-hours per sample analyzed, etc.); - Radiation Exposure As Low As Reasonably Achievable (ALARA) program considerations; - Industrial Health and Safety risks; - Overall Analytical Confidence Level. The concepts in this paper apply to any organization with significant radioactive waste characterization and management activities working to within budget constraints and seeking to optimize their waste characterization strategies while reducing analytical costs. (authors)« less

  18. Structuring a risk-based bioassay program for uranium usage in university laboratories

    NASA Astrophysics Data System (ADS)

    Dawson, Johnne Talia

    Bioassay programs are integral in a radiation safety program. They are used as a method of determining whether individuals working with radioactive material have been exposed and have received a resulting dose. For radionuclides that are not found in nature, determining an exposure is straightforward. However, for a naturally occurring radionuclide like uranium, it is not as straightforward to determine whether a dose is the result of an occupational exposure. The purpose of this project is to address this issue within the University of Nevada, Las Vegas's (UNLV) bioassay program. This project consisted of two components that studied the effectiveness of a bioassay program in determining the dose for an acute inhalation of uranium. The first component of the plan addresses the creation of excretion curves, utilizing MATLAB that would allow UNLV to be able to determine at what time an inhalation dose can be attributed to. The excretion curves were based on the ICRP 30 lung model, as well as the Annual Limit Intake (ALI) values located in the Nuclear Regulatory Commission's 10CFR20 which is based on ICRP 30 (International Commission on Radiological Protection). The excretion curves would allow UNLV to be able to conduct in-house investigations of inhalation doses without solely depending on outside investigations and sources. The second component of the project focused on the creation of a risk based bioassay program to be utilized by UNLV that would take into account bioassay frequency that depended on the individual. Determining the risk based bioassay program required the use of baseline variance in order to minimize the investigation of false positives among those individuals who undergo bioassays for uranium work. The proposed program was compared against an evaluation limit of 10 mrem per quarter, an investigational limit of 125 mrem per quarter, and the federal/state requirement of 1.25 rem per quarter. It was determined that a bioassay program whose bioassay frequency varies per person, depending on the chemical class of material being worked with, in conjunction with continuous air monitoring can sufficiently meet ALARA standards.

  19. POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    V. King

    2000-06-19

    The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of themore » Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous radiological monitoring of the pool water. The Pool Water Treatment and Cooling System interfaces with the Waste Handling Building System, Site-Generated Radiological Waste Handling System, Site Radiological Monitoring System, Waste Handling Building Electrical System, Site Water System, and the Monitored Geologic Repository Operations Monitoring and Control System.« less

  20. Managing Space Radiation Risks on Lunar and Mars Missions: Risk Assessment and Mitigation

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; George, K.; Hu, X.; Kim, M. H.; Nikjoo, H.

    2006-01-01

    Radiation-induced health risks are a primary concern for human exploration outside the Earth's magnetosphere, and require improved approaches to risk estimation and tools for mitigation including shielding and biological countermeasures. Solar proton events are the major concern for short-term lunar missions (<60 d), and for long-term missions (>60 d) such as Mars exploration, the exposures to the high energy and charge (HZE) ions that make-up the galactic cosmic rays are the major concern. Health risks from radiation exposure are chronic risks including carcinogenesis and degenerative tissue risks, central nervous system effects, and acute risk such as radiation sickness or early lethality. The current estimate is that a more than four-fold uncertainty exists in the projection of lifetime mortality risk from cosmic rays, which severely limits analysis of possible benefits of shielding or biological countermeasure designs. Uncertainties in risk projections are largely due to insufficient knowledge of HZE ion radiobiology, which has led NASA to develop a unique probabilistic approach to radiation protection. We review NASA's approach to radiation risk assessment including its impact on astronaut dose limits and application of the ALARA (As Low as Reasonably Achievable) principle. The recently opened NASA Space Radiation Laboratory (NSRL) provides the capability to simulate the cosmic rays in controlled ground-based experiments with biological and shielding models. We discuss how research at NSRL will lead to reductions in the uncertainties in risk projection models. In developing mission designs, the reduction of health risks and mission constraints including costs are competing concerns that need to be addressed through optimization procedures. Mitigating the risks from space radiation is a multi-factorial problem involving individual factors (age, gender, genetic makeup, and exposure history), operational factors (planetary destination, mission length, and period in the solar cycle), and shielding characteristics (materials, mass, and topology). We review optimization metrics for radiation protection including scenarios that integrate biophysics models of radiation risks, operational variables, and shielding design tools needed to assess exploration mission designs. We discuss the application of a crosscutting metric, based on probabilistic risk assessment, to lunar and Mars mission trade studies including the assessment of multi-factorial problems and the potential benefits of new radiation health research strategies or mitigation technologies.

  1. Intraoral radiology in general dental practices - a comparison of digital and film-based X-ray systems with regard to radiation protection and dose reduction.

    PubMed

    Anissi, H D; Geibel, M A

    2014-08-01

    The purpose of this study was to gain insight into the distribution and application of digital intraoral radiographic techniques within general dental practices and to compare these with film-based systems in terms of patient dose reduction. 1100 questionnaires were handed out to general dental practitioners. Data was analyzed with respect to the type of system by using descriptive statistics and nonparametric tests, i.e. Kruskal-Wallis, Mann-Whitney and chi-square test (SPSS 20). 64% of the questioned dentists still use film-based radiology, 23% utilize storage phosphor plate (SPP) systems and 13% use a charge-coupled device (CCD). A strong correlation between the number of dentists working in a practice and the use of digital dental imaging was observed. Almost 3/4 of the film users work with E- or F-speed film. 45% of them refuse to change to a digital system. The use of lead aprons was popular, while only a minority preferred thyroid shields and rectangular collimators. A fourfold reduction of exposure time from D-speed film to CCD systems was observed. Due to detector size and positioning errors, users of CCD systems take significantly more single-tooth radiographs in total. Considering the number of radiographs per patient, there is only a slight tendency towards more X-rays with CCD systems. Up to image generation, digital systems seem to be as or even more difficult to handle than film-based systems, while their handling was favored after radiographic exposure. Despite a slight increase of radiographs taken with CCD systems, there is a significant dosage reduction. Corresponding to the decrease in exposure time, the patient dose for SPP systems is reduced to one half compared to film. The main issues in CCD technology are positioning errors and the size of the X-ray detectors which are difficult to eliminate. The usage of radiation protection measures still needs to be improved. ► Responsible use of digital intraoral radiology results in a significant dose reduction in everyday practice. ► The ALARA principle is only achieved by strict implementation of dose-reducing methods. ► The efforts to use dose-reducing devices must be increased. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Organ dose measurements from multiple-detector computed tomography using a commercial dosimetry system and tomographic, physical phantoms

    NASA Astrophysics Data System (ADS)

    Lavoie, Lindsey K.

    The technology of computed tomography (CT) imaging has soared over the last decade with the use of multi-detector CT (MDCT) scanners that are capable of performing studies in a matter of seconds. While the diagnostic information obtained from MDCT imaging is extremely valuable, it is important to ensure that the radiation doses resulting from these studies are at acceptably safe levels. This research project focused on the measurement of organ doses resulting from modern MDCT scanners. A commercially-available dosimetry system was used to measure organ doses. Small dosimeters made of optically-stimulated luminescent (OSL) material were analyzed with a portable OSL reader. Detailed verification of this system was performed. Characteristics studied include energy, scatter, and angular responses; dose linearity, ability to erase the exposed dose and ability to reuse dosimeters multiple times. The results of this verification process were positive. While small correction factors needed to be applied to the dose reported by the OSL reader, these factors were small and expected. Physical, tomographic pediatric and adult phantoms were used to measure organ doses. These phantoms were developed from CT images and are composed of tissue-equivalent materials. Because the adult phantom is comprised of numerous segments, dosimeters were placed in the phantom at several organ locations, and doses to select organs were measured using three clinical protocols: pediatric craniosynostosis, adult brain perfusion and adult cardiac CT angiography (CTA). A wide-beam, 320-slice, volumetric CT scanner and a 64-slice, MDCT scanner were used for organ dose measurements. Doses ranged from 1 to 26 mGy for the pediatric protocol, 1 to 1241 mGy for the brain perfusion protocol, and 2-100 mGy for the cardiac protocol. In most cases, the doses measured on the 64-slice scanner were higher than those on the 320-slice scanner. A methodology to measure organ doses with OSL dosimeters received from CT imaging has been presented. These measurements are especially important in keeping with the ALARA (as low as reasonably achievable) principle. While diagnostic information from CT imaging is valuable and necessary, the dose to patients is always a consideration. This methodology aids in this important task. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girigesh, Y; Kumar, L; Raman, K

    Purpose: Aim of this study is to determine the dosimetric influence of Filtered and Flatting Filter Free Photon Beam of 10 MV energy on RA planning for Ca. Cervix. Methods: CT data sets of eleven patients reported with carcinoma cervix were used for RA planning for 10MV -FFB and 10MV-FFFB. RA plans were generated using two full arcs.All RA plans were generated to deliver a dose of 50.4Gy in 28 fractions for PTV and ALARA for OAR’s. All plans were analysed for PTV Coverage, conformity Index, homogeneity index, dose to OAR’s, integral dose to normal tissue and total monitor unitsmore » were studied. Results: DVH was used to evaluate RA plans for both 10MV-FFB and 10MV-FFFB photon beam. Planning results show a comparable PTV coverage for both energies. Results shows volume of PTV receiving prescription dose were 95.10+ 0.09% and 95.09 +0.11%, and volume of PTV receiving a dose of 107% is 0.45+0.96% and 5.25+8.9%, homogeneity index (HI) were 1.051+0.007 and 1.066+0.008, Conformity Index(CI) were 1.003+0.019 and 1.012+0.013, Mean Integral dose were 2.65+0.34 and 2.60+0.33(*10−5Gy.cm3) for 10MV-FFB and 10MV-FFFB respectively. 10MV-FB shows statistically significant (p<0.05) improvement in mean doses to bladder, rectum, bowel and mean total number of MU’s and also shows remarkable decrease in mean total no. of MU’s by 43.7% in comparison to 10MV-FFFB. There is statistically significant (p<0.05) difference found in CI and HI for 10MV-FB in comparison to 10MV -FFF beam. 10MV-FFFB shows statistically significant (p<0.05) for mean NTID and delivers 1.65 % less NTID in comparison to 10 MV- FB. Conclusion: 10MV-FB is superior to 10MV-FFFB for rapid arc planning in case of Cervix carcinomas, it offers better target coverage and OAR’s sparing, comparable mean Integral dose to normal tissues and 10 MV- FB also produced highly conformal and homogeneous dose distribution in comparison to 10MV-FFFB.« less

  4. WASTE HANDLING BUILDING VENTILATION SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P.A. Kumar

    2000-06-21

    The Waste Handling Building Ventilation System provides heating, ventilation, and air conditioning (HVAC) for the contaminated, potentially contaminated, and uncontaminated areas of the Monitored Geologic Repository's (MGR) Waste Handling Building (WHB). In the uncontaminated areas, the non-confinement area ventilation system maintains the proper environmental conditions for equipment operation and personnel comfort. In the contaminated and potentially contaminated areas, in addition to maintaining the proper environmental conditions for equipment operation and personnel comfort, the contamination confinement area ventilation system directs potentially contaminated air away from personnel in the WHB and confines the contamination within high-efficiency particulate air (HEPA) filtration units. Themore » contamination confinement areas ventilation system creates airflow paths and pressure zones to minimize the potential for spreading contamination within the building. The contamination confinement ventilation system also protects the environment and the public by limiting airborne releases of radioactive or other hazardous contaminants from the WHB. The Waste Handling Building Ventilation System is designed to perform its safety functions under accident conditions and other Design Basis Events (DBEs) (such as earthquakes, tornadoes, fires, and loss of the primary electric power). Additional system design features (such as compartmentalization with independent subsystems) limit the potential for cross-contamination within the WHB. The system provides status of important system parameters and equipment operation, and provides audible and/or visual indication of off-normal conditions and equipment failures. The Waste Handling Building Ventilation System confines the radioactive and hazardous material within the building such that the release rates comply with regulatory limits. The system design, operations, and maintenance activities incorporate ALARA (as low as is reasonably achievable) principles to maintain personnel radiation doses to all occupational workers below regulatory limits and as low as is reasonably achievable. The Waste Handling Building Ventilation System interfaces with the Waste Handling Building System by being located within the WHB and by maintaining specific pressures, temperatures, and humidity within the building. The system also depends on the WHB for water supply. The system interfaces with the Site Radiological Monitoring System for continuous monitoring of the exhaust air; the Waste Handling Building Fire Protection System for detection of fire and smoke; the Waste Handling Building Electrical System for normal, emergency, and standby power; and the Monitored Geologic Repository Operations Monitoring and Control System for monitoring and control of the system.« less

  5. Managing Space Radiation Risks On Lunar and Mars Missions: Risk Assessment and Mitigation

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; George, K.; Hu, X.; Kim, M. H.; Nikjoo, H.

    2005-01-01

    Radiation-induced health risks are a primary concern for human exploration outside the Earth's magnetosphere, and require improved approaches to risk estimation and tools for mitigation including shielding and biological countermeasures. Solar proton events are the major concern for short-term lunar missions (<60 d), and for long-term missions (>60 d) such as Mars exploration, the exposures to the high energy and charge (HZE) ions that make-up the galactic cosmic rays are the major concern. Health risks from radiation exposure are chronic risks including carcinogenesis and degenerative tissue risks, central nervous system effects, and acute risk such as radiation sickness or early lethality. The current estimate is that a more than four-fold uncertainty exists in the projection of lifetime mortality risk from cosmic rays, which severely limits analysis of possible benefits of shielding or biological countermeasure designs. Uncertainties in risk projections are largely due to insufficient knowledge of HZE ion radiobiology, which has led NASA to develop a unique probabilistic approach to radiation protection. We review NASA's approach to radiation risk assessment including its impact on astronaut dose limits and application of the ALARA (As Low as Reasonably Achievable) principle. The recently opened NASA Space Radiation Laboratory (NSRL) provides the capability to simulate the cosmic rays in controlled ground-based experiments with biological and shielding models. We discuss how research at NSRL will lead to reductions in the uncertainties in risk projection models. In developing mission designs, the reduction of health risks and mission constraints including costs are competing concerns that need to be addressed through optimization procedures. Mitigating the risks from space radiation is a multi-factorial problem involving individual factors (age, gender, genetic makeup, and exposure history), operational factors (planetary destination, mission length, and period in the solar cycle), and shielding characteristics (materials, mass, and topology). We review optimization metrics for radiation protection including scenarios that integrate biophysics models of radiation risks, operational variables, and shielding design tools needed to assess exploration mission designs. We discuss the application of a crosscutting metric, based on probabilistic risk assessment, to lunar and Mars mission trade studies including the assessment of multi-factorial problems and the potential benefits of new radiation health research strategies or mitigation technologies.

  6. Managing Space Radiation Risks on Lunar and Mars Missions: Risk Assessment and Mitigation

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; George, K.; Hu, X.; Kim, M. H.; Nikjoo, H.; Ponomarev, A.; Ren, L.; Shavers, M. R.; Wu, H.

    2005-01-01

    Radiation-induced health risks are a primary concern for human exploration outside the Earth's magnetosphere, and require improved approaches to risk estimation and tools for mitigation including shielding and biological countermeasures. Solar proton events are the major concern for short-term lunar missions (<60 d), and for long-term missions (>60 d) such as Mars exploration, the exposures to the high energy and charge (HZE) ions that make-up the galactic cosmic rays are the major concern. Health risks from radiation exposure are chronic risks including carcinogenesis and degenerative tissue risks, central nervous system effects, and acute risk such as radiation sickness or early lethality. The current estimate is that a more than four-fold uncertainty exists in the projection of lifetime mortality risk from cosmic rays, which severely limits analysis of possible benefits of shielding or biological countermeasure designs. Uncertainties in risk projections are largely due to insufficient knowledge of HZE ion radiobiology, which has led NASA to develop a unique probabilistic approach to radiation protection. We review NASA's approach to radiation risk assessment including its impact on astronaut dose limits and application of the ALARA (As Low as Reasonably Achievable) principle. The recently opened NASA Space Radiation Laboratory (NSRL) provides the capability to simulate the cosmic rays in controlled ground-based experiments with biological and shielding models. We discuss how research at NSRL will lead to reductions in the uncertainties in risk projection models. In developing mission designs, the reduction of health risks and mission constraints including costs are competing concerns that need to be addressed through optimization procedures. Mitigating the risks from space radiation is a multi-factorial problem involving individual factors (age, gender, genetic makeup, and exposure history), operational factors (planetary destination, mission length, and period in the solar cycle), and shielding characteristics (materials, mass, and topology). We review optimization metrics for radiation protection including scenarios that integrate biophysics models of radiation risks, operational variables, and shielding design tools needed to assess exploration mission designs. We discuss the application of a crosscutting metric, based on probabilistic risk assessment, to lunar and Mars mission trade studies including the assessment of multi-factorial problems and the potential benefits of new radiation health research strategies or mitigation technologies.

  7. Assessment of neutron skyshine near unmodified Accumulator Debuncher storage rings under Mu2e operational conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cossairt, J.Donald; /Fermilab

    2010-12-01

    Preliminary plans for providing the proton beam needed by the proposed Mu2e experiment at Fermilab will require the transport of 8 GeV protons to the Accumulator/Debuncher where they be processed into an intensity and time structure useful for the experiment. The intensities involved are far greater that those encountered with antiprotons of the same kinetic energy in the same beam enclosures under Tevatron Collider operational conditions, the operating parameters for which the physical facilities of the Antiproton Source were designed. This note explores some important ramifications of the proposed operation for radiation safety and demonstrates the need for extensive modificationsmore » of significant portions of the shielding of the Accumulator Debuncher storage rings; notably that underneath the AP Service Buildings AP10, AP30, and AP50. While existing shielding is adequate for the current operating mode of the Accumulator/Debuncher as part of the Antiproton Source used in the Tevatron Collider program, without significant modifications of the shielding configuration in the Accumulator/Debuncher region and/or beam loss control systems far more effective than seen in most applications at Fermilab, the proposed operational mode for Mu2e is not viable for the following reasons: 1. Due to skyshine alone, under normal operational conditions large areas of the Fermilab site would be exposed to unacceptable levels of radiation where most of the Laboratory workforce and some members of the general public who regularly visit Fermilab would receive measurable doses annually, contrary to workforce, public, and DOE expectations concerning the As Low as Reasonably Achievable (ALARA) principle. 2. Under normal operational conditions, a sizeable region of the Fermilab site would also require fencing due to skyshine. The size of the areas involved would likely invite public inquiry about the significant and visible enlargement of Fermilab's posted radiological areas. 3. There would be aesthetics questions about the employment of so much new fencing on the Fermilab site. 4. The assumption of only 1.0% 'normal condition' beam losses over the three locations is regarded as being extremely optimistic. Thus, it is evident that it is necessary to pursue shielding improvements to support viable operation of the Mu2e experiment.« less

  8. Science Goals in Radiation Protection for Exploration

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francs A.

    2008-01-01

    Space radiation presents major challenges to future missions to the Earth s moon or Mars. Health risks of concern include cancer, degenerative and performance risks to the central nervous system, heart and lens, and the acute radiation syndromes. The galactic cosmic rays (GCR) contain high energy and charge (HZE) nuclei, which have been shown to cause qualitatively distinct biological damage compared to terresterial radiation, such as X-rays or gamma-rays, causing risk estimates to be highly uncertain. The biological effects of solar particle events (SPE) are similar to terresterial radiation except for their biological dose-rate modifiers; however the onset and size of SPEs are difficult to predict. The high energies of GCR reduce the effectiveness of shielding, while SPE s can be shielded however the current gap in radiobiological knowledge hinders optimization. Methods used to project risks on Earth must be modified because of the large uncertainties in projecting health risks from space radiation, and thus impact mission requirements and costs. We describe NASA s unique approach to radiation safety that applies probabilistic risk assessments and uncertainty based criteria within the occupational health program for astronauts and to mission design. The two terrestrial criteria of a point estimate of maximum acceptable level of risk and application of the principle of As Low As Reasonably Achievable (ALARA) are supplemented by a third requirement that protects against risk projection uncertainties using the upper 95% confidence level (CL) in radiation risk projection models. Exploration science goals in radiation protection are centered on ground-based research to achieve the necessary biological knowledge, and in the development of new technologies to improve SPE monitoring and optimize shielding. Radiobiology research is centered on a ground based program investigating the radiobiology of high-energy protons and HZE nuclei at the NASA Space Radiation Laboratory (NSRL) located at DoE s Brookhaven National Laboratory in Upton, NY. We describe recent NSRL results that are closing the knowledge gap in HZE radiobiology and improving exploration risk estimates. Linking probabilistic risk assessment to research goals makes it possible to express risk management objectives in terms of quantitative metrics, which include the number of days in space without exceeding a given risk level within well defined confidence limits, and probabilistic assessments of the effectiveness of design trade spaces such as material type, mass, solar cycle, crew selection criteria, and biological countermeasures. New research in SPE alert and risk assessment, individual radiation sensitivity, and biological countermeasure development are described.

  9. Potential hazard due to induced radioactivity secondary to radiotherapy: the report of task group 136 of the American Association of Physicists in Medicine.

    PubMed

    Thomadsen, Bruce; Nath, Ravinder; Bateman, Fred B; Farr, Jonathan; Glisson, Cal; Islam, Mohammad K; LaFrance, Terry; Moore, Mary E; George Xu, X; Yudelev, Mark

    2014-11-01

    External-beam radiation therapy mostly uses high-energy photons (x-rays) produced by medical accelerators, but many facilities now use proton beams, and a few use fast-neutron beams. High-energy photons offer several advantages over lower-energy photons in terms of better dose distributions for deep-seated tumors, lower skin dose, less sensitivity to tissue heterogeneities, etc. However, for beams operating at or above 10 MV, some of the materials in the accelerator room and the radiotherapy patient become radioactive due primarily to photonuclear reactions and neutron capture, exposing therapy staff and patients to unwanted radiation dose. Some recent advances in radiotherapy technology require treatments using a higher number of monitor units and monitor-unit rates for the same delivered dose, and compared to the conventional treatment techniques and fractionation schemes, the activation dose to personnel can be substantially higher. Radiotherapy treatments with proton and neutron beams all result in activated materials in the treatment room. In this report, the authors review critically the published literature on radiation exposures from induced radioactivity in radiotherapy. They conclude that the additional exposure to the patient due to induced radioactivity is negligible compared to the overall radiation exposure as a part of the treatment. The additional exposure to the staff due to induced activity from photon beams is small at an estimated level of about 1 to 2 mSv y. This is well below the allowed occupational exposure limits. Therefore, the potential hazard to staff from induced radioactivity in the use of high-energy x-rays is considered to be low, and no specific actions are considered necessary or mandatory. However, in the spirit of the "As Low as Reasonably Achievable (ALARA)" program, some reasonable steps are recommended that can be taken to reduce this small exposure to an even lower level. The dose reduction strategies suggested should be followed only if these actions are considered reasonable and practical in the individual clinics. Therapists working with proton beam and neutron beam units handle treatment devices that do become radioactive, and they should wear extremity monitors and make handling apertures and boluses their last task upon entering the room following treatment. Personnel doses from neutron-beam units can approach regulatory limits depending on the number of patients and beams, and strategies to reduce doses should be followed.

  10. 2009 EVALUATION OF TRITIUM REMOVAL AND MITIGATION TECHNOLOGIES FOR WASTEWATER TREATMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LUECK KJ; GENESSE DJ; STEGEN GE

    2009-02-26

    Since 1995, a state-approved land disposal site (SALDS) has received tritium contaminated effluents from the Hanford Site Effluent Treatment Facility (ETF). Tritium in this effluent is mitigated by storage in slow moving groundwater to allow extended time for decay before the water reaches the site boundary. By this method, tritium in the SALDS is isolated from the general environment and human contact until it has decayed to acceptable levels. This report contains the 2009 update evaluation of alternative tritium mitigation techniques to control tritium in liquid effluents and groundwater at the Hanford site. A thorough literature review was completed andmore » updated information is provided on state-of-the-art technologies for control of tritium in wastewaters. This report was prepared to satisfy the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-026-07B (Ecology, EPA, and DOE 2007). Tritium separation and isolation technologies are evaluated periodically to determine their feasibility for implementation to control Hanford site liquid effluents and groundwaters to meet the Us. Code of Federal Regulations (CFR), Title 40 CFR 141.16, drinking water maximum contaminant level (MCL) for tritium of 20,000 pOll and/or DOE Order 5400.5 as low as reasonably achievable (ALARA) policy. Since the 2004 evaluation, there have been a number of developments related to tritium separation and control with potential application in mitigating tritium contaminated wastewater. These are primarily focused in the areas of: (1) tritium recycling at a commercial facility in Cardiff, UK using integrated tritium separation technologies (water distillation, palladium membrane reactor, liquid phase catalytic exchange, thermal diffusion), (2) development and demonstration of Combined Electrolysis Catalytic Exchange (CECE) using hydrogen/water exchange to separate tritium from water, (3) evaporation of tritium contaminated water for dispersion in the atmosphere, and (4) use of barriers to minimize the transport of tritium in groundwater. Continuing development efforts for tritium separations processes are primarily to support the International Thermonuclear Experimental Reactor (ITER) program, the nuclear power industry, and the production of radiochemicals. While these applications are significantly different than the Hanford application, the technology could potentially be adapted for Hanford wastewater treatment. Separations based processes to reduce tritium levels below the drinking water MCL have not been demonstrated for the scale and conditions required for treating Hanford wastewater. In addition, available cost information indicates treatment costs for such processes will be substantially higher than for discharge to SALDS or other typical pump and treat projects at Hanford. Actual mitigation projects for groundwater with very low tritium contamination similar to that found at Hanford have focused mainly on controlling migration and on evaporation for dispersion in the atmosphere.« less

  11. Paediatric blunt abdominal trauma - are we doing too many computed tomography scans?

    PubMed

    Arnold, M; Moore, S W

    2013-02-14

    Blunt abdominal trauma in childhood contributes significantly to both morbidity and mortality. Selective non-operative management of blunt abdominal trauma in children depends on both diagnostic and clinical factors. Computed tomography (CT) scanning is widely used to facilitate better management. Increased availability of CT may, however, result in its overuse in the management of blunt abdominal trauma in children, which carries significant radiation exposure risks. To evaluate the use and value of CT scanning in the overall management and outcome of blunt abdominal trauma in children in the Tygerberg Academic Hospital trauma unit, Parow, Cape Town, South Africa, before and after improved access to CT as a result of installation of a new rapid CT scanner in the trauma management area (previously the scanner had been 4 floors away). Patients aged 0 - 13 years who were referred with blunt abdominal trauma due to vehicle-related accidents before the introduction of the new CT scanner (group 1, n=66, November 2003 - March 2009) were compared with those seen in the 1-year period after the scanner was installed (group 2, n=37, April 2009 - April 2010). Details of clinical presentation, imaging results and their influence on management were retrospectively reviewed. A follow-up group was evaluated after stricter criteria for abdominal CT scanning (viz. prior evaluation by paediatric surgical personnel) were introduced (group 3, n=14, November 2011 - May 2012) to evaluate the impact of this clinical screening on the rate of negative scans. There were 66 patients in group 1 and 37 in group 2. An apparent increase in CT use with increased availability was accompanied by a marked increase in negative CT scans (38.9% compared with 6.2%; p<0.006). Despite a slightly higher prevalence of associated injuries in group 2, as well as a slightly longer length of hospital stay, there was a similar prevalence of intra-abdominal injuries detected in positive scans in the two groups. In addition, rates of small-bowel perforation in the two groups were similar. The rate of negative scans in group 3 was 46.2% (6/13), but all except one of these patients had a severe brain injury preventing adequate clinical evaluation of intra-abdominal injury. CT scanning for blunt abdominal trauma in children is essential in the presence of appropriate clinical indications. Ease of access probably increases availability, but the rate of negative scans may increase. Management guidelines should be in place to direct CT scanning to cases in which clinical examination and/or other modalities indicate a likelihood of intra-abdominal injury. The principle of 'as low (radiation) dose as reasonably achievable' (ALARA) should be adhered to because of the increased radiation exposure risks in children.

  12. Monitoring and Modeling Astronaut Occupational Radiation Exposures in Space: Recent Advances

    NASA Technical Reports Server (NTRS)

    Weyland, Mark; Golightly, Michael

    1999-01-01

    In 1982 astronauts were declared to be radiation workers by OSHA, and as such were subject to the rules and regulations applied to that group. NASA was already aware that space radiation was a hazard to crewmembers and had been studying and monitoring astronaut doses since 1962 at the Johnson Space Center. It was quickly realized NASA would not be able to accomplish all of its goals if the astronauts were subject to the ground based radiation worker limits, and thus received a waiver from OSHA to establish independent limits. As part of the stipulation attached to setting new limits, OSHA included a requirement to perform preflight dose projections for each crew and inform them of the associated risks. Additional requirements included measuring doses from various sources during the flight, making every effort to prevent a crewmember from exceeding the new limits, and keeping all exposures As Low As Reasonably Achievable (a.k.a. ALARA - a common health physics principle). The assembly of the International Space Station (ISS) and its initial manned operations will coincide with the 4-5 year period of high space weather activity at the next maximum in the solar cycle. For the first time in NASA's manned program, US astronauts will be in orbit continuously throughout a solar maximum period. During this period, crews are at risk of significantly increased radiation exposures due to solar particle events and trapped electron belt enhancements following geomagnetic storms. The problem of protecting crews is compounded by the difficulty of providing continuous real-time monitoring over a period of a decade in an era of tightly constrained budgets. In order to prepare for ISS radiological support needs, the NASA Space Radiation Analysis Group and the NOAA Space Environment Center have undertaken a multiyear effort to improve and automate ground-based space weather monitoring systems and real-time radiation analysis tools. These improvements include a coupled, automated space weather monitoring and alarm system--SPE exposure analysis system, an advanced space weather data distribution and display system, and a high-fidelity space weather simulation system. In addition, significant new real-time space weather data sets, which will enhance the forecasting and now-casting of near-Earth space environment conditions, are being made available through unique NASA-NOAA-USAF collaborations. These new data sets include coronal mass ejection monitoring by the Solar and Heliospheric Observatory (SOHO) and in-situ plasma and particle monitoring at the L1 libration point by the Solar Wind Monitor (SWIM) and Advanced Composition Explorer (ACE) spacecraft. Advanced real-time radiation monitoring data from charged particle telescopes and tissue equivalent proportional counters will also be available to assist crew and flight controllers in monitoring the external and intravehicular radiation environment.

  13. 2001 Evaluation of Tritium Removal & Mitigation Technologies for Waste Water Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PENWELL, D.L.

    2001-06-01

    This report contains the 2001 biennial update evaluation of separation technologies and other mitigation techniques to control tritium in liquid effluents and groundwater at the Hanford site. A thorough literature review was completed, and national and international experts in the field of tritium separation and mitigation techniques were consulted. Current state-of-the-art technologies to address the control of tritium in wastewaters were identified and are described. This report was prepared to satisfy the Hanford Federal Facility Agreement and Consent Order Tri-Party Agreement, Milestone M-29-O5H (Ecology, EPA, and DOE 1996). Tritium separation and isolation technologies are evaluated on a biennial basis tomore » determine their feasibility for implementation for the control of Hanford site liquid effluents and groundwater to meet the US. Code of Federal Regulations (CFR), Title 40 CFR 141.16, drinking water maximum contaminant level (MCL) for tritium of 0.02 {mu} Ci/l ({approx}2 parts per quadrillion [10{sup -15}]) and/or DOE Order 5400.5 as low as reasonably achievable (ALARA) policy The objectives of this evaluation were to (1) status the development of potentially viable tritium separations technologies with regard to reducing tritium concentrations in current Hanford site process waters and existing groundwater to MCL levels and (2) status control methods to prevent the flow of tritiated water at concentrations greater than the MCL to the environment. Current tritium releases are in compliance with applicable US Environmental Protection Agency, Washington State Department of Ecology, and U.S. Department of Energy requirements under the Tri-Party Agreement. Advances in technologies for the separation of tritium from wastewater since the 1999 Hanford Site evaluation report include: (1) construction and testing of the Combined Industrial Reforming and Catalytic Exchange (CIRCE) Prototype Plant by Atomic Energy Canada Limited (AECL). The plant has a stage that uses the combined electrolysis catalytic exchange (CECE) and a stage that uses the bithermal hydrogen-waterprocess. The testing is still ongoing at the time of the development of this evaluation report, therefore, final results of the testing are not available; (2) further testing and a DOE sponsored American Society of Mechanical Engineers (ASME) peer review of a tritium resin separations process to remove tritium from wastewaters; and (3) completion of the design of the water detritiation system for the International Thermonuclear Experimental Reactor (ITER). The system uses a variation of the CECE process, and is designed to process 20 Whr of feed. The primary advance in technologies to control tritium migration in groundwater are the implementation of phytoremediation as a method of reducing the amount of tritium contaminated groundwater reaching the surface waters at Argonne National Laboratory, and initiation of a project for phytoremediation at the Savannah River Site.« less

  14. The role of acceptable knowledge in transuranic waste disposal operations - 11117

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chancellor, Christopher John; Nelson, Roger

    2010-11-08

    The Acceptable Knowledge (AK) process plays a key role in the delineation of waste streams destined for the Waste Isolation Pilot Plant (WIPP). General Electric's Vallecitos Nuclear Center (GEVNC) provides for an ideal case study of the application of AK in a multiple steward environment. In this review we will elucidate the pivotal role Acceptable Knowledge played in segregating Department of Energy (DOE) responsibilities from a commercial facility. The Acceptable Knowledge process is a necessary component of waste characterization that determines whether or not a waste stream may be considered for disposal at the WIPP site. This process may bemore » thought of as an effort to gain a thorough understanding of the waste origin, chemical content, and physical form gleaned by the collection of documentation that concerns generator/storage site history, mission, and operations; in addition to waste stream specific information which includes the waste generation process, the waste matrix, the quantity of waste concerned, and the radiological and chemical make up of the waste. The collection and dissemination of relevant documentation is the fundamental requirement for the AK process to work. Acceptable Knowledge is the predominant process of characterization and, therefore, a crucial part of WIPP's transuranic waste characterization program. This characterization process, when conducted to the standards set forth in WIPP's operating permit, requires confirmation/verification by physical techniques such as Non-Destructive Examination (NDE), Visual Examination (VE), and Non-Destructive Assay (NDA). These physical characterization techniques may vary in their appropriateness for a given waste stream; however, nothing will allow the substitution or exclusion of AK. Beyond the normal scope of operations, AK may be considered, when appropriate, a surrogate for the physical characterization techniques in a procedure that appeals to concepts such As Low As Reasonably Achievable (ALARA) and budgetary savings. This substitution is referred to as an Acceptable Knowledge Sufficiency Determination. With a Sufficiency Determination Request, AK may supplant the need for one or all of the physical analysis methods. This powerful procedure may be used on a scale as small as a single container to that of a vast waste stream. Only under the most stringent requirements will an AK Sufficiency Determination be approved by the regulators and, to date, only six such Sufficiency Determinations have been approved. Although Acceptable Knowledge is legislated into the operational procedures of the WIPP facility there is more to it than compliance. AK is not merely one of a long list of requirements in the characterization and verification of transuranic (TRU) waste destined for the WIPP. Acceptable Knowledge goes beyond the regulatory threshold by offering a way to reduce risk, cost, time, and uncertainty on its own laurels. Therefore, AK alone can be argued superior to any other waste characterization technique.« less

  15. MCNP simulation of radiation doses distributions in a water phantoms simulating interventional radiology patients

    NASA Astrophysics Data System (ADS)

    He, Wenjun; Mah, Eugene; Huda, Walter; Selby, Bayne; Yao, Hai

    2011-03-01

    Purpose: To investigate the dose distributions in water cylinders simulating patients undergoing Interventional Radiological examinations. Method: The irradiation geometry consisted of an x-ray source, dose-area-product chamber, and image intensifier as currently used in Interventional Radiology. Water cylinders of diameters ranging between 17 and 30 cm were used to simulate patients weighing between 20 and 90 kg. X-ray spectra data with peak x-ray tube voltages ranging from 60 to 120 kV were generated using XCOMP3R. Radiation dose distributions inside the water cylinder (Dw) were obtained using MCNP5. The depth dose distribution along the x-ray beam central axis was normalized to free-in-air air kerma (AK) that is incident on the phantom. Scattered radiation within the water cylinders but outside the directly irradiated region was normalized to the dose at the edge of the radiation field. The total absorbed energy to the directly irradiated volume (Ep) and indirectly irradiated volume (Es) were also determined and investigated as a function of x-ray tube voltage and phantom size. Results: At 80 kV, the average Dw/AK near the x-ray entrance point was 1.3. The ratio of Dw near the entrance point to Dw near the exit point increased from ~ 26 for the 17 cm water cylinder to ~ 290 for the 30 cm water cylinder. At 80 kV, the relative dose for a 17 cm water cylinder fell to 0.1% at 49 cm away from the central ray of the x-ray beam. For a 30 cm water cylinder, the relative dose fell to 0.1% at 53 cm away from the central ray of the x-ray beam. At a fixed x-ray tube voltage of 80 kV, increasing the water cylinder diameter from 17 to 30 cm increased the Es/(Ep+Es) ratio by about 50%. At a fixed water cylinder diameter of 24 cm, increasing the tube voltage from 60 kV to 120 kV increased the Es/(Ep+Es) ratio by about 12%. The absorbed energy from scattered radiation was between 20-30% of the total energy absorbed by the water cylinder, and was affected more by patient size than x-ray beam energy. Conclusion: MCNP offers a powerful tool to study the absorption and transmission of x-ray energy in phantoms that can be designed to represent patients undergoing Interventional Radiological procedures. This ability will permit a systematic investigation of the relationship between patient dose and diagnostic image quality, and thereby keep patient doses As Low As Reasonably Achievable (ALARA).

  16. The Low Earth Orbit validation of a dynamic and anisotropic trapped radiation model through ISS measurements

    NASA Astrophysics Data System (ADS)

    Badavi, Francis F.; Nealy, John E.; Wilson, John W.

    2011-10-01

    The International Space Station (ISS) provides the proving ground for future long duration human activities in space. Ionizing radiation measurements in ISS form the ideal tool for the experimental validation of radiation environmental models, nuclear transport code algorithms and nuclear reaction cross sections. Indeed, prior measurements on the Space Transportation System (STS; Shuttle) have provided vital information impacting both the environmental models and the nuclear transport code development by requiring dynamic models of the Low Earth Orbit (LEO) environment. Previous studies using Computer Aided Design (CAD) models of the evolving ISS configurations with Thermo-Luminescent Detector (TLD) area monitors, demonstrated that computational dosimetry requires environmental models with accurate non-isotropic as well as dynamic behavior, detailed information on rack loading, and an accurate six degree of freedom (DOF) description of ISS trajectory and orientation. It is imperative that we understand ISS exposures dynamically for crew career planning, and insure that the regulatory requirements of keeping exposure as low as reasonably achievable (ALARA) are adequately implemented. This is especially true as ISS nears some form of completion with increasing complexity, resulting in a larger drag coefficient, and requiring operation at higher altitudes with increased exposure rates. In this paper ISS environmental model is configured for 11A (circa mid 2005), and uses non-isotropic and dynamic geomagnetic transmission and trapped proton models. ISS 11A and LEO model validations are important steps in preparation for the design and validation for the next generation manned vehicles. While the described cutoff rigidity, trapped proton and electron formalisms as coded in a package named GEORAD (GEOmagnetic RADiation) and a web interface named OLTARIS (On-line Tool for the Assessment of Radiation in Space) are applicable to the LEO, Medium Earth Orbit (MEO) and Geosynchronous Earth Orbit (GEO) at quiet solar periods, in this report, the validation of the models using available measurements are limited to STS and ISS nominal operational altitudes (300-400 km) range at LEO where the dominant fields within the vehicle are the trapped proton and attenuated Galactic Cosmic Ray (GCR) ions. The described formalism applies to trapped electron at LEO, MEO and GEO as well. Due to the scarcity of available electron measurements, the trapped electron capabilities of the GEORAD are not discussed in this report, but are accessible through OLTARIS web interface. GEORAD and OLTARIS interests are in the study of long term effects (i.e. a meaningful portion of solar cycle). Therefore, GEORAD does not incorporate any short term external field contribution due to solar activity. Finally, we apply these environmental models to selected target points within ISS 6A (circa early 2001), 7A (circa late 2001), and 11A during its passage through the South Atlantic Anomaly (SAA) to assess the validity of the environmental models at ISS altitudes.

  17. Chooz A, First Pressurized Water Reactor to be Dismantled in France - 13445

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boucau, Joseph; Mirabella, C.; Nilsson, Lennart

    2013-07-01

    Nine commercial nuclear power plants have been permanently shut down in France to date, of which the Chooz A plant underwent an extensive decommissioning and dismantling program. Chooz Nuclear Power Station is located in the municipality of Chooz, Ardennes region, in the northeast part of France. Chooz B1 and B2 are 1,500 megawatt electric (MWe) pressurized water reactors (PWRs) currently in operation. Chooz A, a 305 MWe PWR implanted in two caves within a hill, began operations in 1967 and closed in 1991, and will now become the first PWR in France to be fully dismantled. EDF CIDEN (Engineering Centermore » for Dismantling and Environment) has awarded Westinghouse a contract for the dismantling of its Chooz A reactor vessel (RV). The project began in January 2010. Westinghouse is leading the project in a consortium with Nuvia France. The project scope includes overall project management, conditioning of the reactor vessel (RV) head, RV and RV internals segmentation, reactor nozzle cutting for lifting the RV out of the pit and seal it afterwards, dismantling of the RV thermal insulation, ALARA (As Low As Reasonably Achievable) forecast to ensure acceptable doses for the personnel, complementary vacuum cleaner to catch the chips during the segmentation work, needs and facilities, waste characterization and packaging, civil work modifications, licensing documentation. The RV and RV internals will be segmented based on the mechanical cutting technology that Westinghouse applied successfully for more than 13 years. The segmentation activities cover the cutting and packaging plan, tooling design and qualification, personnel training and site implementation. Since Chooz A is located inside two caves, the project will involve waste transportation from the reactor cave through long galleries to the waste buffer area. The project will end after the entire dismantling work is completed, and the waste storage is outside the caves and ready to be shipped either to the ANDRA (French National Radioactive Waste Management Agency) waste disposal facilities - (for low-level waste [LLW] and very low-level waste [VLLW], which are considered short lived) - or to the EDF Interim Storage Facility planned to be built on another site - (for low- and intermediate-level waste [LILW], which is considered long lived). The project has started with a detailed conceptual study that determines the step-by-step approach for dismantling the reactor and eventually supplying the packed containers ready for final disposal. All technical reports must be verified and approved by EDF and the French Nuclear Safety Authority before receiving the authorization to start the site work. The detailed conceptual study has been completed to date and equipment design and manufacturing is ongoing. This paper will present the conceptual design of the reactor internals segmentation and packaging process that will be implemented at Chooz A, including the planning, methodology, equipment, waste management, and packaging strategy. (authors)« less

  18. Use of the Oak Ridge National Laboratory tungsten-188/rhenium-188 generator for preparation of the rhenium-188 HDD/lipiodol complex for trans-arterial liver cancer therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, J M; Knapp Jr, Russ F

    2008-01-01

    This work describes the installation, use, and quality control (QC) of the alumina-based tungsten-188 ({sup 188}W)/rhenium-188 ({sup 188}Re) generators provided by the Oak Ridge National Laboratory (ORNL). In addition, methods used for concentration of the {sup 188}Re-perrhenate bolus and preparation of {sup 188}Re-labeled HDD (4-hexadecyl-2,2,9,9-tetramethyl-4,7-diaza-1,10-decanethiol) for trans-arterial administration for therapy of nonresectable liver cancer also are described. The {sup 188}W/{sup 188}Re generator has a long useful shelf-life of several months and is a convenient on-site {sup 188}Re production system. {sup 188}Re has excellent therapeutic and imaging properties (T{sub 1/2} 16.9 hours; E{sub {beta}max} 2.12 MeV; 155-keV gamma ray, 15%) andmore » is cost effectively obtained on demand by saline elution of the generator. The clinical efficacy of a variety of {sup 188}Re-labeled agents has been demonstrated for several therapeutic applications. Because of the favorable physical properties of {sup 188}Re, several {sup 188}Re-labeled agents are being developed and evaluated for the treatment of nonresectable/refractory liver cancer. {sup 188}Re-labeled HDD has been the most widely studied of these agents for this application and has been introduced into clinical trials at a number of institutions. The trans-arterial administration of {sup 188}Re-labeled agents for treatment of inoperable liver cancer requires use of high-level (1-2 Ci) {sup 188}W/{sup 188}Re generators. The handling of such high levels of {sup 188}Re imposes radiological precautions normally not encountered in a radiopharmacy and adequate care and ALARA (i.e., 'As Low As Reasonably Achievable') principles must be followed. The ORNL generator provides consistently high {sup 188}Re yields (>75%) and low {sup 188}W parent breakthrough (<10{sup -3}%) over an extended shelf-life of several months. However, the high elution volumes (20-40 mL for 1-2 Ci generators) can require concentration of the {sup 188}Re bolus by postelution passage through silver cation chloride trapping columns used in the cost-effective tandem cation/anion column system. The silver column removes the high levels of chloride anion as insoluble AgCl, thus allowing subsequent specific trapping of the perrhenate anion on the small (QMA SeaPak) anion column. This method permits subsequent elution of {sup 188}Re-perrhenate with a small volume of saline, providing a very high activity-concentration solution. Because the {sup 188}Re-specific volume-activity concentration continually decreases with time, the tandem system is especially effective method for extending the useful generator shelf-life. Low elution flow rates (<1 mL/min) minimize any high back pressure which may be encountered during generator/tandem column elution when using tightly packed, small-particle-size commercial columns. In-house preparation of silver cation columns is recommended since the chloride trapping capacity is essentially unlimited, it is inexpensive and not limited in availability to any one supplier, and back pressure can be eliminated by the use of larger particles. Methods for the preparation of {sup 188}Re-HDD have been optimized and this agent can be obtained in high yield (80%).« less

  19. Use of the ORNL Tungsten-188/Rhenium-188 Generator for Preparation of the Rhenium-188 HDD/Lipiodol Complex for Transarterial Liver Cancer Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knapp Jr, Russ F; Jeong, J M

    2008-01-01

    This work describes the installation, use, and quality control (QC) of the alumina-based tungsten-188 ({sup 188}W)/rhenium-188 ({sup 188}Re) generators provided by the Oak Ridge National Laboratory (ORNL). In addition, methods used for concentration of the {sup 188}Re-perrhenate bolus and preparation of {sup 188}Re-labeled HDD (4-hexadecyl-2,2,9,9-tetramethyl-4,7-diaza-1,10-decanethiol) for trans-arterial administration for therapy of nonresectable liver cancer also are described. The {sup 188}W/{sup 188}Re generator has a long useful shelf-life of several months and is a convenient on-site {sup 188}Re production system. {sup 188}Re has excellent therapeutic and imaging properties (T{sub 1/2} 16.9 hours; E{beta}{sub max} 2.12 MeV; 155-keV gamma ray, 15%) andmore » is cost effectively obtained on demand by saline elution of the generator. The clinical efficacy of a variety of {sup 188}Re-labeled agents has been demonstrated for several therapeutic applications. Because of the favorable physical properties of {sup 188}Re, several {sup 188}Re-labeled agents are being developed and evaluated for the treatment of nonresectable/refractory liver cancer. {sup 188}Re-labeled HDD has been the most widely studied of these agents for this application and has been introduced into clinical trials at a number of institutions. The trans-arterial administration of {sup 188}Re-labeled agents for treatment of inoperable liver cancer requires use of high-level (1-2 Ci) {sup 188}W/{sup 188}Re generators. The handling of such high levels of {sup 188}Re imposes radiological precautions normally not encountered in a radiopharmacy and adequate care and ALARA (ie, 'As Low As Reasonably Achievable') principles must be followed. The ORNL generator provides consistently high {sup 188}Re yields (>75%) and low {sup 188}W parent breakthrough (<10{sup -3}%) over an extended shelf-life of several months. However, the high elution volumes (20-40 mL for 1-2 Ci generators) can require concentration of the {sup 188}Re bolus by postelution passage through silver cation chloride trapping columns used in the cost-effective tandem cation/anion column system. The silver column removes the high levels of chloride anion as insoluble AgCl, thus allowing subsequent specific trapping of the perrhenate anion on the small (QMA SeaPak) anion column. This method permits subsequent elution of {sup 188}Re-perrhenate with a small volume of saline, providing a very high activity-concentration solution. Because the {sup 188}Re-specific volume-activity concentration continually decreases with time, the tandem system is especially effective method for extending the useful generator shelf-life. Low elution flow rates (<1 mL/min) minimize any high back pressure which may be encountered during generator/tandem column elution when using tightly packed, small-particle-size commercial columns. In-house preparation of silver cation columns is recommended since the chloride trapping capacity is essentially unlimited, it is inexpensive and not limited in availability to any one supplier, and back pressure can be eliminated by the use of larger particles. Methods for the preparation of {sup 188}Re-HDD have been optimized and this agent can be obtained in high yield (80%).« less

  20. Final Report For The Erosion And Corrosion Analysis Of Waste Transfer Primary Pipeline Sections From 241-SY Tank Farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Page, J. S.; Wyrwas, R. B.; Cooke, G. A.

    Three sections of primary transfer pipeline removed from the 241-SY Tank Farm in Hanford's 200 West area, labeled as SN-285, SN-286, and SN-278, were analyzed for the presence and amount of corrosion and erosion on the inside surface of the transfer pipe. All three sections of pipe, ranging in length between 6 and 8 in., were received at the 222-S Laboratory still in the pipe-in-pipe assembly. The annular spaces were filled with urethane foam injected into the pipes for as low as reasonably achievable (ALARA) purposes. The 3-in. primary transfer pipes were first separated from the outer encasement, 6-in. pipes.more » The pipes were cut into small sections, or coupons, based upon the results of a non-destructive pipe wall thickness measurement which used an ultrasonic transducer. Following removal of the foam, the coupons were subjected to a series of analytical methods utilizing both optical microscopy and scanning electron microscopy to obtain erosion and corrosion information. The ultrasonic transducer analysis of the SN-285 primary pipe did not show any thinned locations in the pipe wall which were outside the expected range for the 3-in. schedule 40 pipe of 216 mils. A coupon was cut from the thinnest area on the pipe, and analysis of the inside surface, which was in contact with the tank waste, revealed a continuous layer of corrosion ~ 100 11m (4 mils) thick under a semi-continuous layer of tank waste residue ~ 20 11m (1 mil) thick. This residue layer was composed of an amorphous phase rich in chromium, magnesium, calcium, and chlorine. Small pits were detected throughout the inside pipe surface with depths up to ~ 50 11m (2 mils). Similarly, the SN-286 primary pipe did not show, by the ultrasonic transducer measurements, any thinned locations in the pipe wall which were outside the expected range for this pipe. Analysis of the coupon cut from the pipe section showed the presence of a tank waste layer containing sodium aluminate and phases rich in iron, calcium, and chromium. This layer was removed by a cleaning process that left a pipe surface continuous in iron oxide/hydroxide (corrosion) with pockets of aluminum oxide, possibly gibbsite. The corrosion layer was ~ 50 11m (2 mil) thick over non-continuous pits less than ~ 50 11m deep (2 mils). Small particles of aluminum oxide were also detected under the corrosion layer. The ultrasonic transducer analysis of SN-278, like the previous primary pipes, did not reveal any noticeable thinning of the pipe wall. Analysis of the coupon cut from the pipe showed that the inside surface had a layer of tank waste residue that was partially detached from the pipe wall. This layer was easily scraped from the surface and was composed of two separate layers. The underlying layer was ~ 350 11m (14 mils) thick and composed of a cementation of small aluminum oxide (probably gibbsite) particles. A thinner layer on top of the aluminum oxide layer was rich in carbon and chlorine. Scattered pitting was observed on the inside pipe surface with one pit as deep as 200 11m (8 mils).« less

  1. Opportunities for Cost Effective Disposal of Radioactively Contaminated Solid Waste on the Oak Ridge Reservation, Oak Ridge, TN - 13045

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeMonia, Brian; Dunning, Don; Hampshire John

    2013-07-01

    Department of Energy (DOE) requirements for the release of non-real property, including solid waste, containing low levels of residual radioactive materials are specified in DOE Order 458.1 and associated guidance. Authorized limits have been approved under the requirements of DOE Order 5400.5, predecessor to DOE Order 458.1, to permit disposal of solid waste containing low levels of residual radioactive materials at solid waste landfills located within the DOE Oak Ridge Reservation (ORR). Specifically, volumetric concentration limits for disposal of solid waste at Industrial Landfill V and at Construction/Demolition Landfill VII were established in 2003 and 2007, respectively, based on themore » requirements in effect at that time, which included: an evaluation to ensure that radiation doses to the public would not exceed 25 mrem/year and would be as low as reasonably achievable (ALARA), with a goal of a few mrem/year or less (in fact, these authorized limits actually were derived to meet a dose constraint of 1 mrem/year); an evaluation of compliance with groundwater protection requirements; and reasonable assurance that the proposed disposal is not likely to result in a future requirement for remediation of the landfill. Prior to approval as DOE authorized limits, these volumetric concentration limits were coordinated with the Tennessee Department of Environment and Conservation (TDEC) and documented in a Memorandum of Understanding (MOU) between the TDEC Division of Radiological Health and the TDEC Division of Solid Waste Management. These limits apply to the disposal of soil and debris waste generated from construction, maintenance, environmental restoration, and decontamination and decommissioning (D and D) activities on the DOE Oak Ridge Reservation. The approved site-specific authorized limits were incorporated in the URS/CH2M Oak Ridge LLC (UCOR) waste profile system that authorizes disposal of special wastes at either of the RCRA Subtitle D landfills. However, a recent DOE assessment found that implementation of the site-specific authorized limits for volumetrically contaminated waste was potentially limited due in part to confusion regarding the applicability of volumetric concentration limits and/or surface activity limits to specific wastes. This paper describes recent efforts to update the authorized limits for Industrial Landfill V and Construction/Demolition Landfill VII and to improve the procedures for implementation of these criteria. The approved authorized limits have been evaluated and confirmed to meet the current requirements of DOE Order 458.1, which superseded DOE Order 5400.5 in February 2011. In addition, volumetric concentration limits have been developed for additional radionuclides, and site-specific authorized limits for wastes with surface contamination have been developed. Implementing procedures have been revised to clarify the applicability of volumetric concentration limits and surface activity limits, and to allow the use of non-destructive waste characterization methods. These changes have been designed to promote improved utilization of available disposal capacity of the onsite disposal facilities within the DOE Oak Ridge Reservation. In addition, these changes serve to bring the waste acceptance requirements at these DOE onsite landfills into greater consistency with the requirements for commercial/ public landfills under the TDEC Bulk Survey for Release (BSFR) program, including two public RCRA Subtitle D landfills in close proximity to the DOE Oak Ridge Reservation. (authors)« less

  2. Single-faced GRAYQB™: a radiation mapping device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayer, J.; Farfan, E.; Immel, D.

    2013-12-12

    GrayQb{trademark} is a novel technology that has the potential to characterize radioactively contaminated areas such as hot cells, gloveboxes, small and large rooms, hallways, and waste tanks. The goal of GrayQb{trademark} is to speed the process of decontaminating these areas, which reduces worker exposures and promotes ALARA considerations. The device employs Phosphorous Storage Plate (PSP) technology as its primary detector material. PSPs, commonly used for medical applications and non-destructive testing, can be read using a commercially available scanner. The goal of GrayQb{trademark} technology is to locate, quantify, and identify the sources of contamination. The purpose of the work documented inmore » this report was to better characterize the performance of GrayQb{trademark} in its ability to present overlay images of the PSP image and the associated visual image of the location being surveyed. The results presented in this report are overlay images identifying the location of hot spots in both controlled and field environments. The GrayQb{trademark} technology has been mainly tested in a controlled environment with known distances and source characteristics such as specific known radionuclides, dose rates, and strength. The original concept for the GrayQb{trademark} device involved utilizing the six faces of a cube configuration and was designed to be positioned in the center of a contaminated area for 3D mapping. A smaller single-faced GrayQb{trademark}, dubbed GrayQb SF, was designed for the purpose of conducting the characterization testing documented in this report. This lighter 2D version is ideal for applications where entry ports are too small for a deployment of the original GrayQb™ version or where only a single surface is of interest. The shape, size, and weight of these two designs have been carefully modeled to account for most limitations encountered in hot cells, gloveboxes, and contaminated areas. GrayQb{trademark} and GrayQb{trademark} SF share the same fundamental detection system design (e.g., pinhole and PSPs). Therefore, performance tests completed on the single face GrayQB in this report is also applicable to the six- faced GrayQB (e.g., ambient light sensitivity and PSP response). This report details the characterization of the GrayQb{trademark} SF in both an uncontrolled environment; specifically, the Savannah River Site (SRS) Plutonium Fuel Form Facility in Building 235-F (Metallurgical Building) and controlled testing at SRS’s Health Physics Instrument Calibration Facility and SRS’s R&D Engineering Imaging and Radiation Systems Building. In this report, the resulting images from the Calibration Facility were obtained by overlaying the PSP and visual images manually using ImageJ. The resulting images from the Building 235-F tests presented in this report were produced using ImageJ and applying response trends developed from controlled testing results. The GrayQb{trademark} technology has been developed in two main stages at Savannah River National Laboratory (SRNL): 1) the GrayQb{trademark} development was supported by SRNL’s Laboratory Directed Research and Development Program and 2) the GrayQb{trademark} SF development and its testing in Building 235-F were supported by the Office of Deactivation and Decommissioning and Facility Engineering (EM-13), U.S. Department of Energy – Office of Environmental Management.« less

  3. [Obstetrical ultrasound: can the fetus hear the wave and feel the heat?].

    PubMed

    Abramowicz, J S; Kremkau, F W; Merz, E

    2012-06-01

    "Fetuses can hear ultrasound and the sound is as loud as a subway train entering a station." This statement originates in a single report in a non-peer reviewed journal, despite its name 1, of a presentation at a scientific meeting by researchers who reported measuring the sound intensity in the uterus of pregnant women and being able to demonstrate the above. This was later published in a peer-review journal 2 probably not very widely read by clinicians or the general public. From time to time, the popular press or various pregnancy-related websites repeat the assertion or a worried pregnant patient inquires about the truthfulness of this statement. A second, oft-quoted concern is that ultrasound leads to heating of the amniotic fluid. These two assertions may be very concerning to expectant parents and merit scientific scrutiny. In this editorial, we shall examine the known facts about the physical properties of ultrasound as they relate to these two issues. Diagnostic ultrasound employs a pulsed sound wave with positive and negative pressures and the Mayo team, quoted in the New Scientist, predicted that the pulsing would translate into a "tapping" effect 1. According to their report, they placed a tiny hydrophone inside a woman's uterus while she was undergoing an ultrasound examination. They stated that they picked up a hum at around the frequency of the pulsing generated when the ultrasound is switched on and off. The sound was similar to the highest notes on a piano. They also indicated that when the ultrasound probe was pointed right at the hydrophone, it registered a level of 100 decibels, as loud as a subway train coming into a station. Sound levels in decibels are defined for audible frequencies with the reference level being the threshold for hearing at a given frequency. Although the operating frequencies used in sonography are inaudible, it is possible for the pulsing rate (pulse repetition frequency, PRF) to be heard, thus falling in the audible range. A previous report had hinted at similar phenomena 3.Ultrasound is a pressure wave with a frequency beyond (ultra) that detectable in the human auditory system. The human ear can discern sound at roughly 20 - 20 000 cycles (hertz) per second. The frequencies of diagnostic ultrasound are roughly 1 - 10 megahertz (MHz) or 1 000 000 to 10 000 000 cycles per second. It is a form of energy and, as such, may have effects in tissues it traverses. Any consequences occurring in living tissues secondary to an external influence are called biological effects or bioeffects. This term does not imply damage or harm. The two major mechanisms for bioeffects are thermal and non-thermal. Thermal effects are secondary to ultrasound energy being converted into heat in the tissue (indirect effect of ultrasound) and non-thermal effects are secondary to the alternating positive and negative pressures generated by the wave (direct effect). The definition of moderately loud sound is 60 - 70 dB (2 × 10-3-2 × 10-2 Pa), defined as high urban ambient sound, normal conversation at 1 m, or living room music 4. In comparison, quiet conversation is 40 dB, a railway diesel engine passing at 45 mph at 100 feet is 80 - 85 dB and a rock band is 110 dB 4. There have been a few publications describing harm to fetuses exposed to elevated levels of ambient noise, particularly industrial noise 567, specifically in the aircraft and textile industries, but while there have been reports of impaired hearing in infants who were exposed to ultrasound in the womb, several rigorous studies have disproved that notion 891011. Furthermore, a study of fetuses exposed in utero to vibroacoustic stimulation 12 and a recent study of fetuses exposed to noise generated during an MR exam of the pregnant women 13 showed no ill effect on the auditory system. There have been some reports of being able to hear a "hum" during transcranial ultrasound. This may be the pulse-repetition frequency (PRF), but, if so, it would be described as a higher pitch, and probably not a "hum". To our knowledge, this phenomenon has not been investigated. Although the report mentioned above suggested that diagnostic ultrasound is detectable at measurable levels in the uterus, there is no independently confirmed, peer-reviewed, published evidence that the fetus actually hears the PRF, responds to it or is harmed by it."The fetus cannot regulate its own body temperature, so amniotic fluid can reach very high temperatures over long periods" 14. Does this statement reflect a real risk? What does it mean if this statement is scientifically true? The fear is, of course, that this will raise the temperature of the fetus. Thermally induced teratogenesis has been demonstrated in many animal studies, as well as several controlled human studies 1516. A temperature increase of 1.5 °C above the normal value has been suggested as a universal threshold 17. It is important to note that diagnostic ultrasound was not the source of the temperature elevation in any of these studies. Some believe that there are temperature thresholds for hyperthermia-induced birth defects (hence the ALARA [as low as reasonably achievable] principle), but there is some evidence that any positive temperature differential for any period of time has some effect, in other words there may be no thermal threshold for hyperthermia-induced birth defects 18. In experimental animals the most common defects are microcephaly with associated functional and behavioral problems 17, microphthalmia and cataracts. There are reports on the effects of hyperthermia and measurements of in vivo temperature induced by pulsed ultrasound but not in humans 192021. Temperature increases of 1 °C are easily reached in routine scanning 22. Elevation of up to 1.5 °C can be obtained in the first trimester and up to 4 °C in the second and third trimesters, particularly with the use of pulsed Doppler 23. When the ultrasound wave travels through tissue, its intensity diminishes with distance (attenuation). In completely homogeneous materials, the signal amplitude is reduced only by beam divergence and absorption (conversion of sound to heat). However, biologic tissues are non-homogeneous and further weakening occurs due to scattering. The issue of temperature increase in the amniotic fluid is based on the fact that the energy of the ultrasound waves is partially converted to heat in the tissue traversed by the waves. Tissues with a high absorption coefficient (such as bone) will produce a high conversion rate while the conversion will be lower in tissues with low absorption. Fluids have very low absorption characteristics and, therefore, the risk of temperature elevation in the amniotic fluid is minimal. The only available study on the topic did not demonstrate any increase in temperature in the amniotic fluid when performing diagnostic ultrasound, both in grayscale anatomic imaging (sonography) and Doppler ultrasound 24. ConclusionWhile ultrasound is a sound wave which can produce mechanical effects and temperature elevation in tissues that it traverses, the risk to human fetuses when using diagnostic ultrasound appears to be minimal if certain rules are followed, such as performing a scan when medically indicated, and observing the ALARA principle (using the lowest output power consistent with acquiring the necessary diagnostic information and keeping the exposure time as low as possible for accurate diagnosis). © Georg Thieme Verlag KG Stuttgart · New York.

  4. Vertical Extraction Process Implemented at the 118-K-1 Burial Ground for Removal of Irradiated Reactor Debris from Silo Structures - 12431

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teachout, Douglas B.; Adamson, Clinton J.; Zacharias, Ames

    2012-07-01

    The primary objective of a remediation project is the safe extraction and disposition of diverse waste forms and materials. Remediation of a solid waste burial ground containing reactor hardware and irradiated debris involves handling waste with the potential to expose workers to significantly elevated dose rates. Therefore, a major challenge confronted by any remediation project is developing work processes that facilitate compliant waste management practices while at the same time implementing controls to protect personnel. Traditional burial ground remediation is accomplished using standard excavators to remove materials from trenches and other excavation configurations often times with minimal knowledge of wastemore » that will be encountered at a specific location. In the case of the 118-K-1 burial ground the isotopic activity postulated in historic documents to be contained in vertical cylindrical silos was sufficient to create the potential for a significant radiation hazard to project personnel. Additionally, certain reported waste forms posed an unacceptably high potential to contaminate the surrounding environment and/or workers. Based on process knowledge, waste management requirements, historic document review, and a lack of characterization data it was determined that traditional excavation techniques applied to remediation of vertical silos would expose workers to unacceptable risk. The challenging task for the 118-K-1 burial ground remediation project team then became defining an acceptable replacement technology or modification of an existing technology to complete the silo remediation. Early characterization data provided a good tool for evaluating the location of potential high exposure rate items in the silos. Quantitative characterization was a different case and proved difficult because of the large diameter of the silos and the potential for variable density of attenuating soils and waste forms in the silo. Consequently, the most relevant information supporting job planning and understanding of the conditions was the data obtained from the gross gamma meter that was inserted into each casing to provide a rough estimate of dose rates in the tubes. No added value was realized in attempting to quantify the source term and/or associate the isotopic activity with a particular actual waste form (e.g., sludge). Implementing the WRM system allowed monitoring of worker and boundary exposure rates from a distance, maintaining compliance with ALARA principles. This system also provided the project team early knowledge of items being removed that had high exposure rates associated with them, thus creating an efficient method of acknowledging an issue and arriving at a solution prior to having an upset condition. An electronic dosimeter with telemetry capability replaced the excavator mounted AMP-100 system approximately half way through remediation of the silos. Much higher connectivity efficiency was derived from this configuration. Increasing the data feed efficiency additionally led to less interruption of the remediation effort. Early in system testing process a process handicap on the excavator operator was acknowledged. A loss of depth perception resulted when maneuvering the excavator and bucket using the camera feed to an in-cab monitor. Considerable practice and mock-up testing allowed this handicap to be overcome. The most significant equipment failures involved the cable connection to the camera mounted between the clamshell bucket jaws and the video splitter in the excavator cab. Rotation of the clamshell bucket was identified as the cause of cable connection failures because of the cyclic twisting motion and continuous mechanical jarring of the connection. In-cab vibration was identified as the culprit in causing connection failures of the video splitter. While these failures were repaired, substantial production time was lost. Ultimately, the decision was made to purchase a second cable and higher quality video splitter eliminate the down time. An engineering improvement for future operations would be inserting cable pig tails at more stressed cable connection points to facilitate rapid change out of the cable should that be required. Overall, the system performed better than expected in a safe and efficient manner. (authors)« less

  5. Determination of the internal exposure hazard from plutonium work in an open front hood

    NASA Astrophysics Data System (ADS)

    Olson, Cheryl Lynn

    Work with hazardous substances, such as radioactive material, can be done safely when engineered controls are used to maintain the worker effective dose below the International Commission on Radiological Protection ICRP 60 recommendation of 0.02 Sv/year and reduce the worker exposure to material to as low as reasonably achievable (ALARA). A primary engineered control used at a Los Alamos National Laboratory facility is the open-front hood. An open-front hood, also known as an open-front box, is a laboratory containment box that is fully enclosed except for a 15-cm opening along the front of the box. This research involved collection of the aerosol escaping an open-front hood while PuO2 sample digestion was simulated. Sodium chloride was used as a surrogate to mimic the behavior of PuO2. The NaCl aerosol was binned as a function of median aerodynamic diameter using a Micro-orifice Uniform Deposit Impactor (MOUDI, MSP Corporation, Shoreview, MN) cascade impactor. Using neutron activation analysis (NAA) to measure the mass of material in each of the nine bins of the MOUDI, the mass median diameter of the escaping aerosol was determined. Using the mass median diameter and the total mass of the particle distribution, dose was calculated using ICRP 60 methodology. Experimental conditions mimicked a stationary worker and a worker moving her hands in and out of the open front hood. Measurements were also done in the hood for comparison. The effect of the hands moving in and out of the box was modeled. Information necessary for Computational Fluid Dynamics (CFD) modeling is given, such as volumetric flow rates out of the open front hood and into the experimental room, detailed sketches of the experimental set-up, and energy provided by the hot plate and worker. This research is unique as it measures particle size distribution from routine working conditions. Current research uses tracer gases or describes non-routine conditions. It is important to have results that mimic routine conditions to allow for quantitative measurement of worker exposure and determination of the adequacy of the open front hood for this type of work. This work is important as it quantifies the effectiveness of the open front hood for controlling inhalation hazards. This information is crucial for managing the risk to workers. The mass median diameter of particles escaping the hood when a stationary worker sits in front of the hood is 0.54 +/- 3.7 mum. The mass median diameter of particles escaping the hood when a worker performs work in the hood is 0.35 +/- 5.1 mum. These particle sizes are in the range of those seen in the published liturature. (Raabe, et al., 1978; Dorrian and Bailey, 1995; and Cheng, et al., 2004) The effective dose from digestion of PuO2 in an open-front hood while a worker is moving her hands in and out of the hood was estimated to be 5 mSv. Based on the experimental error, this value could be low by a factor of 4. There was little difference between the dose calculated for a worker in motion and a stationary worker. The calculated dose while work was being performed is 5% higher. Comparison of these results to measured worker doses and continuous air monitoring results showed the experimental results may be somewhat higher. The lower limit of detection for urine bioassay is 0.002 Sv (Inkret, et al., 1999). Workers performing the activity mimicked in this experiment are routinely monitored and do not have measurable internal doses. The most likely reason for the high experimental results is the placement of the sample digestion apparatus. For this experiment, the material was placed 10 cm from the hood opening. In practice, the material is typically further back in the hood; placing the material further back in the hood likely decreases the amount of material escaping the hood. The cost-benefit analysis showed the use of the open-front hood as a reasonable protective measure. Although worker exposure may approach the ICRP limit, the cost of previously observed ergonomic injuries caused by work in a glove box is five thousand times greater than the dose received by the worker. Protective measures such as respiratory protection should be evaluated on a case by case basis to keep worker exposure as low as reasonably achievable.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, J.-J.; Chen, S.-Y.; Environmental Science Division

    This report contains data and analyses to support the approval of authorized release limits for the clearance from radiological control of polychlorinated biphenyl (PCB) capacitors in Buildings 361 and 391 at Argonne National Laboratory, Argonne, Illinois. These capacitors contain PCB oil that must be treated and disposed of as hazardous waste under the Toxic Substances Control Act (TSCA). However, they had been located in radiological control areas where the potential for neutron activation existed; therefore, direct release of these capacitors to a commercial facility for PCB treatment and landfill disposal is not allowable unless authorized release has been approved. Radiologicalmore » characterization found no loose contamination on the exterior surface of the PCB capacitors; gamma spectroscopy analysis also showed the radioactivity levels of the capacitors were either at or slightly above ambient background levels. As such, conservative assumptions were used to expedite the analyses conducted to evaluate the potential radiation exposures of workers and the general public resulting from authorized release of the capacitors; for example, the maximum averaged radioactivity levels measured for capacitors nearest to the beam lines were assumed for the entire batch of capacitors. This approach overestimated the total activity of individual radionuclide identified in radiological characterization by a factor ranging from 1.4 to 640. On the basis of this conservative assumption, the capacitors were assumed to be shipped from Argonne to the Clean Harbors facility, located in Deer Park, Texas, for incineration and disposal. The Clean Harbors facility is a state-permitted TSCA facility for treatment and disposal of hazardous materials. At this facility, the capacitors are to be shredded and incinerated with the resulting incineration residue buried in a nearby landfill owned by the company. A variety of receptors that have the potential of receiving radiation exposures were analyzed. Based on the dose assessment results, it is indicated that, if the disposition activities are completed within a year, the maximum individual dose would be about 0.021 mrem/yr, which is about 0.02% of the primary dose limit of 100 mrem/yr set by U.S. Department of Energy (DOE) for members of the public. The maximum individual dose was associated with a conservative and unlikely scenario involving a hypothetical farmer who intruded the landfill area to set up a subsistence living above the disposal area 30 years after burial of the incineration residue. Potential collective dose for worker and the general public combined was estimated to be less than 4 x 10{sup -4} person-rem/yr, about 0.004% of the DOE authorized release objective of 10 person-rem/yr for collective exposure. In reality, the actual radiation doses incurred by workers and the general public are expected to be at least two orders of magnitude lower than the estimated values. To follow the ALARA (as low as reasonably achievable) principle of reducing potential radiation exposures associated with authorized release of the PCB capacitors, a dose constraint of 1 mrem/yr, corresponding to a small fraction of the 25 mrem/yr limit set by DOE, was initially used as a reference to derive the authorized release limits. On the basis of the dose assessment results, the following authorized release limits are proposed - 0.6 pCi/g for Mn-54, 0.6 pCi/g for Na-22, 0.1 pCi/g for Co-57, and 2.3 pCi/g for Co-60, with a corresponding maximum individual dose of 0.21 mrem/yr. This maximum dose, about 0.2% of the DOE primary dose limit of 100 mrem/yr for members of the public from all sources and exposure pathways, was then selected as the final dose constraint for releasing the PCB capacitors through the authorized process. The proposed authorized release limits would satisfy the DOE requirements for the release of non-real properties to a commercial treatment and disposal facility. In addition, due to the relatively short half-lives (< 5.27 years) of radionuclides of concern, there will be no long-term buildup of doses either in groundwater or through other exposure pathways associated with this particular release action. Contact with Clean Harbors and the State of Texas has been initiated. The radioactivity levels in the PCB capacitors meet the State of Texas radiological exemption limits and would be accepted by Clean Harbors, subject to the approval by DOE for the authorized release process. Cost benefit analysis shows that authorized release of the PCB capacitors would provide significant cost saving over the low-level radioactive waste (LLRW) disposition alternative, i.e. sending the PCB capacitors to a certified LLRW facility for treatment and disposal, and would not cause a significantly different impact in terms of human health protection. Therefore, authorized release is determined to be the preferred alternative for the disposition of Argonne PCB capacitors.« less

  7. Current Ground Test Options for Nuclear Thermal Propulsion (NTP)

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold P., Jr.

    2014-01-01

    About 20 different NTP engines/ reactors were tested from 1959 to 1972 as part of the Rover and Nuclear Engine for Rocket Vehicle Application (NERVA) program. Most were tested in open air at test cell A or test cell C, at the Nevada Test Site (NTS). Even after serious engine breakdowns of the reactor (e.g., Phoebus 1A), the test cells were cleaned up for other engine tests. The engine test stand (ETS) was made for high altitude (approximately 1 psia) testing of an NTP engine with a flight configuration, but still had the exhaust released to open air. The Rover/NERVA program became aware of new environmental regulations which would prohibit the release of any significant quantity of radioactive particulates and noble gases into the open air. The nuclear furnace (NF-1) was the last reactor tested before the program was cancelled in 1973, but successfully demonstrated a scrubber concept on how to filter the NTP exhaust. The NF-1 was demonstrated in the summer of 1972. The NF-1 used a 44MW reactor and operated each run for approximately 90 minutes. The system cooled the hot hydrogen exhaust from the engine with a water spray before entering a particle filter. The exhaust then passed through a series of heat exchangers and water separators to help remove water from the exhaust and further reduce the exhaust temperatures. The exhaust was next prepared for the charcoal trap by passing through a dryer and effluent cooler to bring exhaust temperatures close to liquid nitrogen. At those low temperatures, most of the noble gases (e.g., Xe and Kr made from fission products) get captured in the charcoal trap. The filtered hydrogen is finally passed through a flare stack and released to the air. The concept was overall successful but did show a La plating on some surfaces and had multiple recommendations for improvement. The most recent detailed study on the NTP scrubber concept was performed by the ARES Corporation in 2006. The concept is based on a 50,000 lbf thrust engine (approximately 1 GW) with a maximum burn time of 1 hour. The concept utilized lessons learned from NF-1. The strategy breaks down the exhaust into parallel paths to allow flexibility with engine size and mass flow of exhaust. Similar to NF-1, the exhaust is slowed down, cooled, filtered of particulates, filtered of noble gases, and then the clean hydrogen is flared to open air. Another concept proposed by Steve Howe (currently Director of the Center for Space Nuclear Research) to simplify the NTP exhaust filtering is to run the hydrogen exhaust into boreholes underground to filter the exhaust. The two borehole site locations proposed are at the NTS and at the Idaho National Laboratory (INL). At NTS, the boreholes are 8' diameter and 1200' deep. The permeability of hydrogen through the soil and its buoyancy will allow it to rise up through the soil and allow the filtering of noble gases and radioactive particulates. The exhaust needs to be cooled to 600C before entering the borehole to avoid soil glazing. Preliminary analysis shows a small buildup of back pressure with time which depends on permeability. Noble gases entering the borehole walls deep can take a long time before reaching the surface. Other factors affecting permeability include borehole pressure, water saturation, and turbulence. Also, a possible need to pump out contaminated water collected at the bottom of the borehole. At INL, the borehole concept is slightly different. The underground borehole has openings to the soil at special depths which have impermeable interbeds above the water table and below the surface to allow the exhaust to travel horizontal between the impermeable layers. Preliminary results indicate better permeability than at NTS. The last option is total containment of the exhaust during the test run. The concept involves slowing down the flow to subsonic in a water cooled diffuser. The hydrogen is burned off in an oxygen rich afterburner with the only products being steam, oxygen, and some noble gases. A heat exchanger and water spray pulls heat from the steam and lowers the temperature for condensation. The optimum ratio between the two is being investigated, with a goal to minimize the total volume of the water hold tanks. A water tank farm collects the contaminated water. The amount of water produced from burning the hydrogen is approximately 100,000 gallons (not including cooling water) for a 25k lbf engine operating for 50 minutes. Residual gases (e.g., oxygen and some noble gases) can be captured at cryogenic levels with a liquid nitrogen cooled dewar. After a few weeks post-test, the radiation levels can drop to more favorable levels before slowly draining each capture tank and using existing filters. With today's environmental regulations, the NTP exhaust is filtered to meet 10 mrem/year exposure to the general public (at a DOE site) or 100 mrem/year (via NRC when tested elsewhere), when natural background radiation exposure to the general public is 300- 600 mrem per year. The current society feels more comfortable with filtering even lower to as low as reasonably achievable (ALARA).

  8. Cosmic Radiation and Aircrew Exposure: Implementation of European Requirements in Civil Aviation, Dublin, 1-3 July 1998

    NASA Astrophysics Data System (ADS)

    Talbot, Lee

    1999-03-01

    The European Union's Basic Safety Standards Directive (96/29/Euratom) lays down safety standards for the protection of workers and the general public against the effects of ionising radiations. Article 42 of the Directive deals with the protection of aircrew. It states that for crew of jet aircraft who are likely to be subject to exposure to more than 1 mSv y-1 appropriate measures must be taken, in particular: to assess the exposure of the crew concerned, to take into account the assessed exposure when organising working schedules with a view to reducing the doses of highly exposed aircrew, to inform concerned workers of the health risks involved in their work, to apply Article 10 to female aircrew. (The unborn child shall be treated like a member of the public.) This Directive must be transformed into national law of the 15 member states of the European Union by 13 May 2000. The European Commission and the Radiological Protection Institute of Ireland sponsored this International Conference. The objective of this conference was to assist both the airline industry and the national regulatory organisations in identifying the means available to comply with the requirements of the Directive. Over 200 delegates attended the conference from more than 25 countries. The welcoming addresses were made by Mary Upton (Director of the Radiological Protection Institute of Ireland), Joe Jacob (Minister for State responsible for Nuclear Safety) and James Currie (Director-General for the Environment, Nuclear Safety and Civil Protection). Mr Currie stated that there was a need for political decisions to be based on good science, and that technological trends will lead to higher and longer flights, and therefore higher radiation doses. The first day concentrated on the scientific basis of measurement, calculation and monitoring of cosmic radiation. The first speaker, Dr Heinrich from the University of Siegen, Germany, talked about the physics of cosmic radiation fields. He pointed out that of all the particles that come from outside our solar system 85% are hydrogen, 12.5% are helium and 1.5% are heavier particles. The flux of these particles changes over the 11-year solar cycle: if the solar activity is high then the cosmic radiation flux is low. The Earth's geomagnetic field affects whether or not a particle will reach the Earth. The nearer the equator, the higher the cut-off rigidity and hence the greater the shielding. At the poles the cut-off rigidity is at its lowest, hence the greater the number of particles which reach the Earth. The speaker summarised by saying that in order to make an accurate assessment of the radiation dose due to cosmic radiation one must know which primary cosmic rays are involved, the solar modulation effects, the geomagnetic shielding and particle interactions in the atmosphere. Alternatively dosimetric measurements can be made at different altitudes, latitudinal and longitudinal positions for the most relevant radiation components. The second speaker of the morning, Dr Hilton Smith, the Ex-Scientific Secretary of the ICRP, gave a talk entitled `Quantifying Radiation Risk'. The talk started by explaining that high LET radiations have a greater probability of causing DNA damage than low LET radiations and that DNA can be damaged in a number of ways: the single-strand break, two single-strand breaks, the double-strand break (the hallmark of ionising radiation) and base damage. The possible effects of these interactions are the death of the cell, inhibition of cellular division and change in cell structure. The physical and chemical effects occur over very short periods, but the biological effects may not be noticed for many years. The speaker described risk estimation based on A-bomb survivors, medical therapy, medical diagnosis of patients, occupational studies of uranium miners and radium workers. The human fatal cancer risk has been calculated by the ICRP to be 5% Sv-1 for the public. The maximum likelihood of cancer occurring is at age 70. At the end of the presentation there was a discussion on whether or not protons of a certain energy should have a quality factor of 5. It was suggested that the factor should be equal to one. Dr Bartlett of the NRPB gave the next talk on Radiation Protection Concepts and Quantities for Occupational Exposure to Cosmic Radiation. Dr Bartlett explained that there are significant differences between the exposure condition of aircrew and occupational exposure generally. There are a greater range of radiation types and energies. Half of aircrews' doses are due to neutrons. UK Classified radiation workers receive 2% of their dose from high LET radiations and aircrew receive 50%. Dose distributions and characteristics of the working populations are different, with 53% of aircrew being female, as opposed to 7% of Classified UK radiation workers. The field intensity on aircraft is predictable, and, with the exception of rare solar flare events, there is no risk of accidental exposures. The speaker highlighted the variation in cosmic radiation dose as a function of altitude illustrated by the radiation doses at 15, 10 and 6.7 km being 10, 5 and 1 µSv h-1. It was interesting to note the comparison made between the average radiation dose of 1 mSv y-1 in the nuclear industry and 2 mSv y-1 for aircrew. The speaker said that it is necessary to appreciate that people living in high radon areas in the UK receive approximately 8 mSv per year. Dr Bartlett highlighted how the requirements for the protection of aircrew from the Basic Safety Standard Directive (BSS96) differed from those for occupational exposures in general, namely that there are not explicit dose limits, other than that to be applied to the exposure of the foetus. There are no requirements for the designation of areas or classification of workers and there is no reference to the principle of ALARA, but there is a requirement to take account of the assessed exposure when arranging work schedules with a view to reducing higher doses. Dr Bartlett summed up by saying that dose assessment will probably be done by folding roster information with estimates of route doses. The last speaker of the morning session was Dr Maria Blettner, from the International Agency for Research on Cancer, Lyon, France. She talked about epidemiological studies for individuals occupationally exposed to radiation. The speaker emphasised that the results of early studies regarding cancer mortality are equivocal; elevated cancer risks have been observed in some studies, but not in others. The low cumulative dose up to 100 mSv is associated with poor statistics. Therefore it is difficult to calculate the relative risk of exposure with a high degree of confidence. The speaker also highlighted the difficulty in obtaining a comparison population since aircrews have characteristics and lifestyles that differ from the general population. The speaker stressed the need for large studies in this field of epidemiology. Dr Blettner summarised her speech by saying that the results of a cohort of some 22 000 pilots and 47 000 crewmembers can be formed from the workers in nine different countries and that pooled analyses are expected in 2001. The next speaker was Dennis O'Sullivan, from the Dublin Institute of Advanced Studies, who gave a talk entitled `Overview and Present Status of EC Research Programme'. The objectives of the EC programme were highlighted as follows: to develop and calibrate instrumentation for use at altitude, to measure flux and energy spectra of neutrons and charged particles, to measure LET spectra and ambient dose equivalent, to estimate dose contribution by solar particle events and finally to compare results with calculations. The airlines involved in these studies were Aer Lingus, Alitalia, BA, Lufthansa and Scandinavia Airlines. Tests were carried out on several routes, on both subsonic and supersonic aircraft. A detailed set of measurements were obtained over a five-year period. Professor O'Sullivan said that the NRPB used TLDs for low and high LET radiations and PADC for neutrons. The investigation of dosemeter response was carried out using Monte Carlo codes. The active instruments used for measurements were the tissue equivalent proportional counter (TEPC) and a Bonnersphere spectrometer using eight spheres. The instrumentation used was calibrated in the CERN-CEC reference field. In summary, it was found that the shape of the neutron spectrum does not change with altitudes and that the maximum dose rate was found to be under the seats of the aircraft. Dr Lindbourg of the Swedish Radiation Protection Institute gave a short talk on the importance of using the TEPC for cosmic ray measurements, as it is the only means of reading directly absorbed dose to tissue and the radiation quality (in terms of lineal energy). Dr Schewe from PTB, Germany, gave the next talk on reference fields and calibration procedures. The speaker highlighted the difficulties in measuring radiation fields onboard aircraft, as the calibration fields used are often vastly different to the radiation field the instrumentation is being exposed to. The speaker said that this could lead to errors in the measurements in excess of 50%. One way around this is to use realistic reference fields, which produce similar particle compositions and particle fluences as those present in the cosmic radiation at aircraft altitudes. For this work the reference field facility in one of the secondary beams lines of the CERN Super Proton Synchrotron was used. In summary it was shown that the TEPC could be used as a reference instrument for evaluating ambient dose equivalent in aircraft. The next speaker was Dr Tommasino of the ANPA, Rome, who talked about in-flight measurement of radiation fields and doses. He stated that the problem of radiation dose assessment has been developed within the multinational research programmes of the Commission of the European Communities. The speaker talked about the different dosimetric systems formed by the TEPC, ANPA-stack, DIAS-stack and Extended Rem-counter. The ANPA-stack and DIAS-stack detectors have been developed under the CEC research programme specifically for the measurement of cosmic radiation on aircraft. The experiments were carried out between 1994 and 1997 at the period of the solar minimum, and therefore represent an upper limit on the dose due to galactic cosmic rays. The speaker gave an example of a flight from Tokyo to Milan, where the ambient dose equivalent was 4.83 µSv h-1 and the annual dose, assuming a 700 hour year, was 3.38 mSv y-1. In conclusion the speaker said that the measurements from all four dosimetric systems were consistent. Dr Schraube from the National Research Centre for Environment and Health, Germany, gave the last presentation of the day, on the experimental verification and calculation of route doses. The verification was restricted to neutrons. The speaker showed that theoretical calculations could be matched to experimental data. Therefore the fluences at all positions of interest in the Earth's atmosphere could be calculated. It was then possible to calculate the doses on aviation routes using the computer package European Program for the Calibration of Aviation Route Dose (EPCARD). The second day of the conference concentrated on the airline industry perspective of the cosmic radiation problem. The first speaker was B Lecouturier, of the Federation des Syndicats de Transport, Brussels. She gave an introductory presentation on the view of cabin crew. The speaker highlighted the inconsistency of some EU states: for example, some states insist that pregnant workers stop flying, while others do not. In conclusion the speaker said that cabin crew wish for a correct assessment of their cosmic radiation dose, medical surveillance and further epidemiological studies. The second speaker of the day was Dr Balouet, also from the Federation des Syndicats de Transport, Brussels. His talk was entitled, `Ionising Radiations and Cabin Crew Concerns'. The main concerns of cabin crews were as follows: uncertainty in the quality factor for neutrons, heavy ions are not taken into account when calculating radiation doses, 25-60% of some routes if flown for a standard working year could exceed the 6 mSv level, European crew flying on non-European airlines, solar flares, which give relatively high radiation exposures. The next speaker was Wallace Friedberg of the Civil Aeromedical Institute, USA, who gave a talk on the guidelines provided by the FAA to promote radiation safety for Air Carrier Crewmembers. Wallace recalled the information the FAA has provided, including: (a) guidelines for air carrier training programmes on in-flight radiation exposure, including recommended radiation exposure limits; (b) estimates of the galactic radiation dose received on a wide variety of air carrier flights; (c) tables for estimating healthy risks from galactic radiation exposure; and (d) support for research on the effects of irradiation during pregnancy, including possible galactic radiation effects on the reproductive health of female flight attendants. The speaker highlighted the availability of a computer program (CARI) available to the general public, which can be used for estimating the galactic radiation dose received from a non-stop flight between any two locations in the world. Sandy Mitchell of the European Cockpit Association was the next speaker. He gave a talk on the concept of `As Low as Reasonably Achievable' in relation to cosmic radiation. The speaker began by saying that aviation activity was increasing by 5% per annum and flights below 25 000 ft pose no radiation exposure problem. The speaker then drew attention to the strategies that could be employed to reduce radiation exposure, which include restriction of altitude to 31 000 ft, restriction of annual flying hours to 500 hours, increased aircraft shielding, fitting all aircraft with active monitoring and the introduction of annual medical examinations for aircrew. It was also suggested by the speaker that pregnant flying aircrew could undertake ground duties or be given unpaid leave. Alternatively, they could be transferred to regional routes where doses are very low. The speaker concluded by performing a cost-benefit analysis of reducing the cruising altitude of aircraft. This lead to increased fuel consumption but reduced collective dose. It was shown that the collective dose reduction would not be great enough to justify the costs incurred. The session after lunch concentrated on the airlines and the air industry. Dr Oksanen of Finnair gave the fist lecture of this session in a talk entitled `The Operator: Experiences and Views'. The speaker began by summarising the Association of European Airlines (AEA) involvement in cosmic radiation, which has included dose measurement and estimation, production of educational material and epidemiological studies. The speaker talked about the differing methods of route dose estimation using active monitoring, passive monitoring and computer modelling. The AEA airlines believe that the EURATOM Directive may best be implemented by route dose estimation using a common mathematical model. This would have the advantage that modelling is accepted worldwide as a credible and practical method of dose estimates and overcomes the logistic problems, the likelihood of equipment failure and error inherent in direct measurement. In addition, it allows for consistency of route dose estimates among various airlines and finally offers the opportunity for independent scrutiny and audit required. Michael Bagshaw, the Head of Medical Services for British Airways, gave a very interesting talk on in-flight measurements. Mr Bagshaw began by talking about the cosmic ray detection methods used on the Concorde, consisting of GM tubes and boron trifluoride detectors. The information from these detectors is then fed directly to the pilot. The system alarms at 500 µSv h-1. However, since Concorde entered service in 1976 no Concorde has had to reduce altitude due to cosmic radiation. Mr BAGSHAW said the effective dose when averaged over 113 flights was 13 µSv h-1, with the London to New York route dose being 43 µSv h-1. On average flight crew get 3-4 mSv y-1 and cabin crews get 2-3 mSv y-1. Interestingly, it is BA policy to ground crew on the declaration of pregnancy. A crewmember who does not declare she is pregnant may still fly, even if she knows she is pregnant. A pregnant crewmember therefore has a choice. Christopher Hume from British Aerospace gave a short presentation regarding the manufacturer's perspective. A number of issues that are going to increase cosmic radiation dose were highlighted. Future aircraft are going to fly at much higher altitudes, the BIZ JET is going to fly at 60 000 ft and the SCT is going to fly at 70 000 ft. Some new routes may go directly over the North Pole. The speaker mentioned that shielding of the aircraft in order to reduce doses was impractical. Clive Dyer from the DERA Space Department in Farnborough made an unscheduled and very interesting presentation concerning the cosmic radiation effects on avionics. He stated that there are common links between the interaction of radiation within electronics and that within tissue at the DNA level. His talk described the different ways in which ionising radiation can interact with electronics and cause a number of different effects, including bit-flips, destructive burn-out, gate rupture and dielectric failure. Professor Dyer mentioned that the reduction in component size means larger upsets in the electronics. The speaker then concentrated on single-event effects on equipment in space, where the problems were first predicted in 1962 and observed in 1975. PCs on the Space Shuttle and Mir require frequent reboot, typically every nine hours. The speaker concluded by saying that single-event effects can now be seen at ground level because of the design of modern computer chips. The final day concentrated on regulatory aspects. L Bergau, from the Medical Department of Lufthansa German Airlines, gave the first talk on medical aspects. His study involved the comparison of female aircrew and female ground crew. The study excluded anyone who had undergone medical treatment with ionising radiation and heavy smokers. Two thousand cells from each individual were scored. The results showed that the numbers of dicentrics were the same in the cabin crew, aircrew and ground crew, demonstrating that the low cosmic radiation exposures seem not to increase cancer risk. Mr Ulback from the National Institute of Radiation Hygiene, Denmark, gave the next speech. His talk was simply entitled `Radiation Protection'. The speaker outlined how the legislation had been derived from the ICRP, through the EU commission and EU council, and finally adopted in the legislation of the member states. The final speaker, Mr Courades from the European Commission, spoke about EU legislation. Mr Courades said that the EU Directive would affect more states than are currently members because other countries wish to become part of the EU. It was highlighted that Article 42 applied only to aircrew (civilian and military) and not passengers. It was also pointed out that classification of the workplace is not required onboard aircraft. Mr Courades said that it was difficult to have a generic dose for a specific flight because of `free flight' where an aircraft changes altitude frequently. The speaker summed up by stressing the need for a common implementation of the directive.

Top