Science.gov

Sample records for alara center alara

  1. BNL ALARA Center: ALARA Notes, No. 9

    SciTech Connect

    Khan, T.A.; Xie, J.W.; Beckman, M.C.

    1994-02-01

    This issue of the Brookhaven National Laboratory`s Alara Notes includes the agenda for the Third International Workshop on ALARA and specific instructions on the use of the on-line fax-on-demand service provided by BNL. Other topics included in this issue are: (1) A discussion of low-level discharges from Canadian nuclear plants, (2) Safety issues at French nuclear plants, (3) Acoustic emission as a means of leak detection, (4) Replacement of steam generators at Doel-3, Beaznau, and North Anna-1, (5) Remote handling equipment at Bruce, (6) EPRI`s low level waste program, (7) Radiation protection during concrete repairs at Savannah River, (8) Reactor vessel stud removal/repair at Comanche Peak-1, (9) Rework of reactor coolant pump motors, (10) Restoration of service water at North Anna-1 and -2, (11) Steam generator tubing problems at Mihama-1, (12) Full system decontamination at Indian Point-2, (13) Chemical decontamination at Browns Ferry-2, and (14) Inspection methodolody in France and Japan.

  2. ALARA Center of Technology -- resource guide

    SciTech Connect

    Waggoner, L.O.

    1998-02-05

    The purpose is to provide a source of information that can be used to assist personnel in the planning, training, and execution of radiological work using the principles of ALARA. This document is not intended to replace HNF or WHC Control Manual requirements. The ALARA Tools-List provides detailed information on the use and procurement of engineered controls, mockup training guidelines, and good radiological work practices that have been proven to be ALARA.

  3. Fluor Hanford ALARA Center is a D and D Resource

    SciTech Connect

    Waggoner, L.O.

    2008-01-15

    The mission at the Hanford Nuclear Reservation changed when the last reactor plant was shut down in 1989 and work was started to place all the facilities in a safe condition and begin decontamination, deactivation, decommissioning, and demolition (D and D). These facilities consisted of old shutdown reactor plants, spent fuel pools, processing facilities, and 177 underground tanks containing 53 million gallons of highly radioactive and toxic liquids and sludge. New skills were needed by the workforce to accomplish this mission. By 1995, workers were in the process of getting the facilities in a safe condition and it became obvious improvements were needed in their tools, equipment and work practices. The Hanford ALARA Program looked good on paper, but did little to help contractors that were working in the field. The Radiological Control Director decided that the ALARA program needed to be upgraded and a significant improvement could be made if workers had a place they could visit that had samples of the latest technology and could talk to experienced personnel who have had success doing D and D work. Two senior health physics personnel who had many years experience in doing radiological work were chosen to obtain tools and equipment from vendors and find a location centrally located on the Hanford site. Vendors were asked to loan their latest tools and equipment for display. Most vendors responded and the Hanford ALARA Center of Technology opened on October 1, 1996. Today, the ALARA Center includes a classroom for conducting training and a mockup area with gloveboxes. Two large rooms have a containment tent, several glove bags, samples of fixatives/expandable foam, coating displays, protective clothing, heat stress technology, cutting tools, HEPA filtered vacuums, ventilation units, pumps, hydraulic wrenches, communications equipment, shears, nibblers, shrouded tooling, and several examples of innovative tools developed by the Hanford facilities. See Figures I and

  4. The program of the ALARA Center at Brookhaven National Laboratory

    SciTech Connect

    Khan, T.A.; Baum, J.W.

    1993-04-01

    In 1984 the Brookhaven National Laboratory was asked by the Nuclear Regulatory Commission to set up a Center to monitor dose-reduction efforts in the US and abroad and to focus the industry`s attention on ALARA. The paper summarizes the main work of the ALARA Center between 1984 and 1992. The Center maintains nine data bases for the NRC and the Nuclear Power Industry. These databases are constantly updated and access to them is provided through a personal computer and a modem and by periodic publications in the form of a newsletter and NUREG reports. Also described briefly are eight other projects related to dose-reduction at nuclear power plants that the Center has carried out for the NRC. Among these are projects that analyze the cost-effectiveness of engineering modifications, look at worldwide activities at dose reduction and compare US and foreign dose experience, examine high-dose worker groups and high-dose jobs, develop optimum techniques to control contamination at nuclear plants, and look at the doses being received by men and women in all sectors of the nuclear industry.

  5. The program of the ALARA Center at Brookhaven National Laboratory

    SciTech Connect

    Khan, T.A.; Baum, J.W.

    1993-01-01

    In 1984 the Brookhaven National Laboratory was asked by the Nuclear Regulatory Commission to set up a Center to monitor dose-reduction efforts in the US and abroad and to focus the industry's attention on ALARA. The paper summarizes the main work of the ALARA Center between 1984 and 1992. The Center maintains nine data bases for the NRC and the Nuclear Power Industry. These databases are constantly updated and access to them is provided through a personal computer and a modem and by periodic publications in the form of a newsletter and NUREG reports. Also described briefly are eight other projects related to dose-reduction at nuclear power plants that the Center has carried out for the NRC. Among these are projects that analyze the cost-effectiveness of engineering modifications, look at worldwide activities at dose reduction and compare US and foreign dose experience, examine high-dose worker groups and high-dose jobs, develop optimum techniques to control contamination at nuclear plants, and look at the doses being received by men and women in all sectors of the nuclear industry.

  6. Fluor hanford ALARA center -showcases- tools, equipment, and work practices used during D and D work

    SciTech Connect

    Waggoner, L.O.

    2007-07-01

    In 1996, Fluor established the ALARA Center at the Department of Energy's (DOE) Hanford Site in southeastern Washington State to 'showcase' tools and equipment used to support the principle of As Low As Reasonably Achievable (ALARA). Much of the work was being done by workers who used hand tools while dressed in multiple sets of protective clothing. The Center was opened so that workers could see and handle the latest tools and equipment and have experienced personnel to help them plan work evolutions. Experienced personnel who were familiar with the ALARA concept as well as new technology were assigned to the Center. In addition, vendors were asked to display their products so the Hanford workers could experience state-of-the-art tools and equipment for doing work in a radiological environment. Since opening, the ALARA Center has evolved into a tremendous resource - not only for Hanford, but also most of the entire DOE Complex, as well as contractors around the world. Classes in fundamental radiological work practices are presented when the facilities recognize a need. The ALARA Center has a variety of products that range from simple hand tools to robots, video scopes, and gamma cameras. The tools and equipment on display are used in these training classes to train the workers on the work practices to operate them, take them apart to determine how they work and decide how to maintain them. Many facilities invite the ALARA Center staff to attend planning meetings at the facilities and participate in job walk-downs. Generally, ALARA Center personnel provide several options on how the radiological work can be accomplished safely and recommend the option that is ALARA and safest for the workers. A few years ago, it became obvious that the work scope was changing and many facilities had a new job to clean out the facilities and demolish them. The ALARA Center began contacting vendors who had tools and equipment that could be used for D and D work. Today, the ALARA

  7. What is ALARA

    SciTech Connect

    Auxier, J.A.; Dickson, H.W.

    1981-01-01

    The as-low-as-reasonably-achievable (ALARA) philosophy as it applies to personnel radiation exposure has been with us for a long time. The essential tenets of this philosophy surfaced quite early in the history of the Manhattan Project. Although the terminology has suffered through various translations and the application has seen many organizations and agencies come and go, the principles remain as valid today as ever. It is regretable that some regulatory agencies claim ALARA as their newfound miracle drug and that application according to their prescriptions will result in endless rounds of cyclical improvement in radiation protection practices. Others have taken advantage of the popularity of ALARA and have bastardized the philosophy to mean whatever is expedient for their purposes. In this paper, we review briefly the history of ALARA and what it seemingly means to different interest groups and offer a balanced viewpoint that health physicists should adopt.

  8. Applied ALARA techniques

    SciTech Connect

    Waggoner, L.O.

    1998-02-05

    The presentation focuses on some of the time-proven and new technologies being used to accomplish radiological work. These techniques can be applied at nuclear facilities to reduce radiation doses and protect the environment. The last reactor plants and processing facilities were shutdown and Hanford was given a new mission to put the facilities in a safe condition, decontaminate, and prepare them for decommissioning. The skills that were necessary to operate these facilities were different than the skills needed today to clean up Hanford. Workers were not familiar with many of the tools, equipment, and materials needed to accomplish:the new mission, which includes clean up of contaminated areas in and around all the facilities, recovery of reactor fuel from spent fuel pools, and the removal of millions of gallons of highly radioactive waste from 177 underground tanks. In addition, this work has to be done with a reduced number of workers and a smaller budget. At Hanford, facilities contain a myriad of radioactive isotopes that are 2048 located inside plant systems, underground tanks, and the soil. As cleanup work at Hanford began, it became obvious early that in order to get workers to apply ALARA and use hew tools and equipment to accomplish the radiological work it was necessary to plan the work in advance and get radiological control and/or ALARA committee personnel involved early in the planning process. Emphasis was placed on applying,ALARA techniques to reduce dose, limit contamination spread and minimize the amount of radioactive waste generated. Progress on the cleanup has,b6en steady and Hanford workers have learned to use different types of engineered controls and ALARA techniques to perform radiological work. The purpose of this presentation is to share the lessons learned on how Hanford is accomplishing radiological work.

  9. Chernobyl Deconstruction ALARA Analysis

    SciTech Connect

    Shipler, Dillard B.; Batiy, Valeriy; Povlovsky, Leonid; Schmidt, John P.; Schmieman, Eric A.

    2004-03-24

    The Bechtel/EDF/Battelle Consortium has recently completed the conceptual design for the Chernobyl New Safe Confinement (NSC). Battelle has the scope of work related to environment and safety of the design. As part of the safety analysis, an ALARA analysis was performed for deconstruction of the major, unstable elements of the Shelter Object over the destroyed Unit 4 of the reactor complex. The major elements addressed in the analysis included the current roof sections and the major beams supporting the roof sections. The analysis was based on the existing configuration of the Shelter Object, the developing conceptual design of the NSC arch structure, the developing conceptual design of the facilities within and associated with the NSC (including handling and processing of deconstructed elements, and waste management), and existing Ukranian regulations and working processes and procedures. KSK (a Ukranian Consortium) is a subcontractor to the Bechtel/EDF/Battelle Consortium and performed much of the dose analysis. The analysis concluded that ALARA could be achieved with appropriate implementation of existing Ukrainian regulations and procedures, and developing conceptual design criteria and features.

  10. Project W-320 ALARA Plan

    SciTech Connect

    Harty, W.M.

    1995-06-06

    This supporting document establishes the As Low As Reasonable Achievable (ALARA) Plan to be followed during Sluicing Project W-320 design and construction activities to minimize personnel exposure to radiation and hazardous materials.

  11. ALARA Center of Technology promotes good radiological work practices at Hanford

    SciTech Connect

    Waggoner, L.O., Westinghouse Hanford, Richland, WA

    1997-10-31

    The central Radiological Control Organization, originally under the previous Management and Operations contractor (Westinghouse Hanford Company) decided that a significant improvement in ALARA implementation would result if examples of engineered controls used for radiological work were assembled in one location to provide a ``showcase`` for workers and managers. The facility would be named the ALARA Center of Technology (ACT) and would include the latest technologies used to accomplish radiological work, as well as proven techniques, tools, and equipment. A location for the Center was selected in the 200 East Area of Hanford in a central location to be easily accessible to all facilities and contractors. Since there was little money available for this project, a decision was made to contact several vendors and request loans of their tools, equipment, and materials. In return, the center would help market products on site and assist with product demonstrations when the vendors visited Hanford. Out of 28 vendors originally contacted, 16 responded with offers to loan products. This included a containment tent, several glove bags, BEPA filtered vacuum cleaners, portable ventilation systems, fixatives, temporary shielding, pumps, and several special tools. Vendors who could not provide products sent videos and brochures. Westinghouse Hanford Company began using the ACT in June 1996. Fluor Daniel Hanford, Inc., the present Management and Integrating Contractor for the Hanford Site, held the formal opening ceremony of the ALARA Center of Technology on October 1, 1996. The Center now has about 1200 ft{sup 2} of floor space fi Iled with tools, equipment and material used to perform radiological work.

  12. BNL ALARA Center experience with an information exchange system on dose control at nuclear power plants

    SciTech Connect

    Baum, J.W.; Khan, T.A.

    1992-04-01

    The essential elements of an international information exchange system on dose control at nuclear power plants are summarized. Information was collected from literature abstracting services, by attending technical meetings, by circulating data collection forms, and through personal contacts. Data are assembled in various databases and periodically disseminated to several hundred interested participants through a variety of publications and at technical meetings. Immediate on-line access to the data is available to participants with modems, commercially available communications software, and a password that is provided by the Brookhaven National Laboratory (BNL) ALARA Center to authorized users of the system. Since January 1992, rapid access also has been provided to persons with fax machines. Some information is available for ``polling`` the BNL system at any time, and other data can be installed for polling on request. Most information disseminated to data has been through publications; however, new protocols, simplified by the ALARA Center staff, and the convenience of fax machines are likely to make the earlier availability of information through these mechanisms increasingly important.

  13. BNL ALARA Center`s development of a computerized radiological assessment and design system (RADS)

    SciTech Connect

    Dionne, B.J.; Masciulli, S.; Connelly, J.M.

    1993-07-01

    The US Department of Energy`s (DOE) Office of Health Physics and Industrial Hygiene sponsored a study of Radiological Engineering Programs at selected DOE contractor facilities. This study was conducted to review, evaluate, and summarize techniques and practices that should be considered in the design phase that reduce dose and the spread of radioactive materials during subsequent construction and operation of DOE radiological facilities. As in a previous study on operational ALARA programs, a variety of good-practice documents will be generated. It is envisioned that these documents will serve as a resource to assist radiological engineers in the process of designing radiological facilities, and in performing radiological safety/ALARA design reviews. This paper presents the features for three good-practice documents and related software applications that are being developed based on the findings of this study. The proposed software called Radiological Assessment and Design System (RADS) will be a menu-driven database and spreadsheet program. It will be designed to provide easy, consistent, and effective implementation of the methodologies described in the three good-practice documents. These documents and the associated RADS software will provide the user with the following three functions: (1) enter dose assessment information and data into computer worksheets and provide printed tables of the results which can then be inserted into safety analysis reports or cost-benefit analyses, (2) perform a wide variety of sorts of radiological design criteria from DOE Orders and produce a checklist of the desired design criteria, and (3) enter cost/benefit data and qualitative rating of attributes for various design alternatives which reduce dose into computer worksheets and provide printed reports of cost-effectiveness results.

  14. ALARA at nuclear power plants

    SciTech Connect

    Baum, J.W.

    1990-01-01

    Implementation of the As Low As Reasonably Achievable (ALARA) principle at nuclear power plants presents a continuing challenge for health physicists at utility corporate and plant levels, for plant designers, and for regulatory agencies. The relatively large collective doses at some plants are being addressed though a variety of dose reduction techniques. It is planned that this report will include material on historical aspects, management, valuation of dose reduction, quantitative and qualitative aspects of optimization, design, operational considerations, and training. The status of this work is summarized in this report. 30 refs., 1 fig., 6 tabs.

  15. Savannah River Site ALARA Program appraisals

    SciTech Connect

    Johnson, J.R.

    1992-01-01

    ALARA Program audits are recommended in PNL-6566, Health Physics Manual of Good Practices for Reducing Radiation Exposure to Levels that are As Low As Reasonably Achievable (ALARA).'' The Department of Energy (DOE) Order 5480.11, Radiation Protection For Occupational Workers,'' requires contractors to conduct internal audits of all functional elements of the radiological protection program, which includes the ALARA program, as often as necessary, but at a minimum every three years. At the Savannah River Site (SRS), these required audits are performed as part of the Health Protection Internal Appraisal Program. This program was established to review the Site radiological protection program, which includes the ALARA program, on an ongoing basis and to provide recommendations for improvement directly to senior Health Protection management. This paper provides an overview of the SRS Health Protection Internal Appraisal program. In addition, examples of specific performance criteria and detailed appraisal guidelines used ALARA appraisals are provided.

  16. Savannah River Site ALARA Program appraisals

    SciTech Connect

    Johnson, J.R.

    1992-06-01

    ALARA Program audits are recommended in PNL-6566, ``Health Physics Manual of Good Practices for Reducing Radiation Exposure to Levels that are As Low As Reasonably Achievable (ALARA).`` The Department of Energy (DOE) Order 5480.11, ``Radiation Protection For Occupational Workers,`` requires contractors to conduct internal audits of all functional elements of the radiological protection program, which includes the ALARA program, as often as necessary, but at a minimum every three years. At the Savannah River Site (SRS), these required audits are performed as part of the Health Protection Internal Appraisal Program. This program was established to review the Site radiological protection program, which includes the ALARA program, on an ongoing basis and to provide recommendations for improvement directly to senior Health Protection management. This paper provides an overview of the SRS Health Protection Internal Appraisal program. In addition, examples of specific performance criteria and detailed appraisal guidelines used ALARA appraisals are provided.

  17. BNL ALARA Center's development of a computerized radiological assessment and design system (RADS)

    SciTech Connect

    Dionne, B.J. ); Masciulli, S. ); Connelly, J.M. . Office of Health)

    1993-01-01

    The US Department of Energy's (DOE) Office of Health Physics and Industrial Hygiene sponsored a study of Radiological Engineering Programs at selected DOE contractor facilities. This study was conducted to review, evaluate, and summarize techniques and practices that should be considered in the design phase that reduce dose and the spread of radioactive materials during subsequent construction and operation of DOE radiological facilities. As in a previous study on operational ALARA programs, a variety of good-practice documents will be generated. It is envisioned that these documents will serve as a resource to assist radiological engineers in the process of designing radiological facilities, and in performing radiological safety/ALARA design reviews. This paper presents the features for three good-practice documents and related software applications that are being developed based on the findings of this study. The proposed software called Radiological Assessment and Design System (RADS) will be a menu-driven database and spreadsheet program. It will be designed to provide easy, consistent, and effective implementation of the methodologies described in the three good-practice documents. These documents and the associated RADS software will provide the user with the following three functions: (1) enter dose assessment information and data into computer worksheets and provide printed tables of the results which can then be inserted into safety analysis reports or cost-benefit analyses, (2) perform a wide variety of sorts of radiological design criteria from DOE Orders and produce a checklist of the desired design criteria, and (3) enter cost/benefit data and qualitative rating of attributes for various design alternatives which reduce dose into computer worksheets and provide printed reports of cost-effectiveness results.

  18. Pacific Northwest Laboratory ALARA report for CY 1990

    SciTech Connect

    Ceffalo, G.M.; Oxley, C.L.; Wright, P.A.

    1992-05-01

    This report provides summary results of the CY 1990 ALARA Program at the Pacific Northwest Laboratory. Information has been included regarding whole-body exposures to radiation, skin contaminations, and the nonradiological ALARA program.

  19. ALARA Review for the 221-U Characterization

    SciTech Connect

    T. A. Edwards

    1998-11-10

    The following ALARA review provides a description of the engineeringand administrative controls used to manage personnel exposure; controlcontamination levels, and control airborne radioactivity concentrationswhile conducting surveillance and maintenance and Canyon DispositionInitiative effort activities at the U Plant 221-U Building locatedin the 200 West Area of the Hanford Site.

  20. Integration of Formal Job Hazard Analysis & ALARA Work Practice

    SciTech Connect

    NELSEN, D.P.

    2002-09-01

    ALARA work practices have traditionally centered on reducing radiological exposure and controlling contamination. As such, ALARA policies and procedures are not well suited to a wide range of chemical and human health issues. Assessing relative risk, identifying appropriate engineering/administrative controls and selecting proper Personal Protective Equipment (PPE) for non nuclear work activities extends beyond the limitations of traditional ALARA programs. Forging a comprehensive safety management program in today's (2002) work environment requires a disciplined dialog between health and safety professionals (e.g. safety, engineering, environmental, quality assurance, industrial hygiene, ALARA, etc.) and personnel working in the field. Integrating organizational priorities, maintaining effective pre-planning of work and supporting a team-based approach to safety management represents today's hallmark of safety excellence. Relying on the mandates of any single safety program does not provide industrial hygiene with the tools necessary to implement an integrated safety program. The establishment of tools and processes capable of sustaining a comprehensive safety program represents a key responsibility of industrial hygiene. Fluor Hanford has built integrated safety management around three programmatic attributes: (1) Integration of radiological, chemical and ergonomic issues under a single program. (2) Continuous improvement in routine communications among work planning/scheduling, job execution and management. (3) Rapid response to changing work conditions, formalized work planning and integrated worker involvement.

  1. An operational-based ALARA design program

    SciTech Connect

    Wagner, W.A.; Stocknoff, M.S. ); Pike, D.L.; Ward, K.D. )

    1985-01-01

    A frequent criticism of the nuclear power plant design and construction process is that operational considerations for maintaining occupational radiation exposures as low as reasonably achievable are not addressed until it is too late to incorporate desirable modifications. Lessons that have been learned in the construction and operation of another plants and problems foreseen by the utility's radiation protection and engineering personnel often simply do not get the attention they deserve during the design and field engineering stages. Stone and Webster Engineering Corporation and Niagara Mohawk Power Corporation have sought to avoid just such problems by jointly implementing a comprehensive, multidisciplinary ALARA design program for the Nine Mile Point Unit 2 nuclear power plant. This paper reports that this ALARA design program is organized to: directly incorporate NMPC's operational experience and philosophy, efficiently review the design and identify improvements from an occupational exposure viewpoint, and expedite design modifications while minimizing cost and schedule impacts.

  2. Savannah River Site 1992 ALARA goals

    SciTech Connect

    Smith, L.S.

    1992-06-01

    The ALARA Goals for the Savannah River Site (SRS) for 1992 have been established by the operating Divisions/Departments and totaled for the anticipated scope of sitewide work. Goals for maximum individual exposure and personnel contamination cases have been reduced from 1991 actual data. The goal for assimilations of radionuclides remains at zero. The 633.20 rem cumulative exposure goal is constituted of special work operations and base routine operations, respectively 244.68 rem and 388.52 rem. The cumulative exposure goal is an increase of 50% over the 1991 data to support the start up to K Reactor, operations of FB Line and scheduled special work. The 633.20 rem is 4% less than the 1990 data. Additionally, three reduction goals have been established to demonstrate a decrease in the Site overall radiological hazard. These reduction goals are for the size of airborne activity and contamination areas and the number of contamination events occurring outside a radiologically controlled area (RCA). The ALARA program is documented in the recently revised SRS ALARA Guide (October 1991).

  3. Savannah River Site 1992 ALARA goals

    SciTech Connect

    Smith, L.S.

    1992-01-01

    The ALARA Goals for the Savannah River Site (SRS) for 1992 have been established by the operating Divisions/Departments and totaled for the anticipated scope of sitewide work. Goals for maximum individual exposure and personnel contamination cases have been reduced from 1991 actual data. The goal for assimilations of radionuclides remains at zero. The 633.20 rem cumulative exposure goal is constituted of special work operations and base routine operations, respectively 244.68 rem and 388.52 rem. The cumulative exposure goal is an increase of 50% over the 1991 data to support the start up to K Reactor, operations of FB Line and scheduled special work. The 633.20 rem is 4% less than the 1990 data. Additionally, three reduction goals have been established to demonstrate a decrease in the Site overall radiological hazard. These reduction goals are for the size of airborne activity and contamination areas and the number of contamination events occurring outside a radiologically controlled area (RCA). The ALARA program is documented in the recently revised SRS ALARA Guide (October 1991).

  4. Proceedings of the Department of Energy ALARA Workshop

    SciTech Connect

    Dionne, B.J.; Baum, J.W.

    1992-12-31

    The report contains summaries of papers, discussions, and operational exercises presented at the first Department of Energy ALARA Workshop held at Brookhaven National Laboratory, Upton, New York on April 21--22, 1992. The purpose of this workshop was to provide a forum for, and enhance communication among, ALARA personnel, as well as to inform DOE`s field office and contractor personnel about the Office of Health`s programs and expectations from the entire DOE complex efforts in the ALARA area.The two-day workshop consisted of one day dedicated to presentations on implementing various elements of a formal ALARA program at the DOE contractors` facilities, regulatory aspects of ALARA programs, and DOE Headquarters` ALARA expectations/initiatives. The second day was devoted to detailed discussions on ALARA improvements and problems, and operational exercises on cost-benefit analyses and on ALARA job/experiment reviews. At this workshop, 70 health physicists and radiation safety engineers from 5 DOE Headquarter Offices, 7 DOE operations/area offices, and 27 contractor facilities exchanged information, which is expected to stimulate further improvement in the DOE contractors` ALARA programs. Individual papers are indexed separately.

  5. Proceedings of the Department of Energy ALARA Workshop

    SciTech Connect

    Dionne, B.J.; Baum, J.W.

    1992-01-01

    The report contains summaries of papers, discussions, and operational exercises presented at the first Department of Energy ALARA Workshop held at Brookhaven National Laboratory, Upton, New York on April 21--22, 1992. The purpose of this workshop was to provide a forum for, and enhance communication among, ALARA personnel, as well as to inform DOE's field office and contractor personnel about the Office of Health's programs and expectations from the entire DOE complex efforts in the ALARA area.The two-day workshop consisted of one day dedicated to presentations on implementing various elements of a formal ALARA program at the DOE contractors' facilities, regulatory aspects of ALARA programs, and DOE Headquarters' ALARA expectations/initiatives. The second day was devoted to detailed discussions on ALARA improvements and problems, and operational exercises on cost-benefit analyses and on ALARA job/experiment reviews. At this workshop, 70 health physicists and radiation safety engineers from 5 DOE Headquarter Offices, 7 DOE operations/area offices, and 27 contractor facilities exchanged information, which is expected to stimulate further improvement in the DOE contractors' ALARA programs. Individual papers are indexed separately.

  6. ALARA{trademark} 1146 strippable coating

    SciTech Connect

    Fricke, V.

    1999-12-17

    Strippable or temporary coatings are innovative technologies for decontamination that effectively reduce loose contamination at low cost. These coatings have become a viable option during the deactivation and decommissioning of both US Department of Energy (DOE) and commercial nuclear facilities to remove or fix loose contamination on both vertical and horizontal surfaces. The ALARA{trademark} 1146 strippable coating was demonstrated as part of the Savannah River Site LSDDP and successfully removed transferable (surface) contamination from multiple surfaces (metal and concrete) with an average decontamination factor for alpha contamination of 6.68 and an average percentage of alpha contamination removed of 85.0%. Beta contamination removed was an average DF of 5.55 and an average percentage removed of 82.0%. This paper is an Innovative Technology Summary Report designed to provide potential users with the information they need to quickly determine if a technology would apply to a particular environmental management problem. They also are designed for readers who may recommend that a technology be considered by prospective users. This Innovative Technology offers a 35% cost savings over the Baseline Technology.

  7. Using Weibull Distribution Analysis to Evaluate ALARA Performance

    SciTech Connect

    E. L. Frome, J. P. Watkins, and D. A. Hagemeyer

    2009-10-01

    As Low as Reasonably Achievable (ALARA) is the underlying principle for protecting nuclear workers from potential health outcomes related to occupational radiation exposure. Radiation protection performance is currently evaluated by measures such as collective dose and average measurable dose, which do not indicate ALARA performance. The purpose of this work is to show how statistical modeling of individual doses using the Weibull distribution can provide objective supplemental performance indicators for comparing ALARA implementation among sites and for insights into ALARA practices within a site. Maximum likelihood methods were employed to estimate the Weibull shape and scale parameters used for performance indicators. The shape parameter reflects the effectiveness of maximizing the number of workers receiving lower doses and is represented as the slope of the fitted line on a Weibull probability plot. Additional performance indicators derived from the model parameters include the 99th percentile and the exceedance fraction. When grouping sites by collective total effective dose equivalent (TEDE) and ranking by 99th percentile with confidence intervals, differences in performance among sites can be readily identified. Applying this methodology will enable more efficient and complete evaluation of the effectiveness of ALARA implementation.

  8. Westinghouse Hanford Company ALARA year-end report, Calendar Year 1994: Revision 3A, Radiological engineering and ALARA

    SciTech Connect

    Berglund, O.D.

    1995-06-01

    It has long been the US Department of Energy`s (DOE`s) Policy that radiation doses should be maintained as far below the dose limits as is reasonably achievable. This policy, known as the ``ALARA Principle of radiation protection,`` maintains that radiation exposures should be maintained as low as reasonably achievable, taking into account social, technical, economic, practical, and public policy considerations. The ALARA Principle is based on the hypothesis that even very low radiation doses carry some risk. As a result, it is not enough to maintain doses at/or slightly below limits; the lower the doses, the lower the risks. Because it is not possible to reduce all doses at DOE facilities to zero, economic and social factors must be considered to determine the optimal level of radiation doses. According to the ALARA Principle, if doses are too high, resources should be well spent to reduce them. At some point, the resources being spent to maintain low doses are exactly balanced by the risks avoided. Reducing doses below this point results in a misallocation of resources; the resources could be spent elsewhere and have a greater positive impact on health and safety. The objective of the Westinghouse Hanford Company (WHC) ALARA/Contamination Control Improvement Project (CCIP) Program is to manage and control exposures (both individual and collective) to the work force, the general public, and the environment to levels as low as is reasonable using the aforementioned ALARA Principle.

  9. Five-year ALARA review of dosimetry results :

    SciTech Connect

    Paulus, Luke R.

    2013-08-01

    A review of personnel dosimetry (external and internal) and environmental monitoring results from 1 January 2008 through 31 December 2012 performed at Sandia National Laboratories, New Mexico was conducted to demonstrate that radiation protection methods used are compliant with regulatory limits and conform with the ALARA philosophy. ALARA is the philosophical approach to radiation protection by managing and controlling radiation exposures (individual and collective) to the work force and to the general public to levels that are As Low As is Reasonably Achievable taking social, technical, economic, practical, and public policy considerations into account. ALARA is not a dose limit but a process which has the objective of attaining doses as far below applicable dose limits As Low As is Reasonably Achievable.

  10. Pacific Northwest Laboratory ALARA Report for Calendar Year 1993

    SciTech Connect

    Keller, S.L.

    1994-07-01

    This report provides summary results of the Calendar Year (CY) 1993 As Low As Reasonably Achievable (ALARA) Program at the Pacific Northwest Laboratory (PNL). This report includes information regarding whole-body exposures to radiation, and skin contaminations. The collective whole-body radiation dose to employees during 1993 was 0.58 person-sievert (58 person-rem). This dose was 11 percent lower than the projected dose of 0.65 person-sievert (65 person-rem). The Radiation Protection Section`s Field Dosimetry Services group projected that no PNL employee`s dose would exceed 0.02 sievert (2 rem) based on dosimeters processed during the year; no worker actually exceeded the limit by the end of CY 1993. There were 15 reported cases of skin contamination for PNL employees during 1993. This number of 60 percent of the projected total of 25 cases. There were an additional 21 cases of personal-effects contamination to PNL staff: Nine of these contamination events occurred at the 324 Building, nine occurred at the 325 Building, one occurred in the 327 Building, one occurred in the 3720 Building, and one occurred in the 326 Building. Line management set numerous challenging and production ALARA goals for their facilities. Appendix A describes the final status of the 1993 ALARA goals. Appendix B describes the radiological ALARA goals for 1994. The Radiation Protection Section of the Laboratory Safety Dept. routinely perform audits of radiological ALARA requirements for specific facilities with significant potential for exposure. These ALARA audits are part of a comprehensive safety audit of the facility, designed to evaluate and improve total safety performance.

  11. Occupational dose reduction at Department of Energy contractor facilities: Study of ALARA programs. Status 1990

    SciTech Connect

    Dionne, B.J.; Meinhold, C.B.; Khan, T.A.; Baum, J.W.

    1992-08-01

    This report provides the US Department of Energy (DOE) and its contractors with information that will be useful for reducing occupational radiation doses at DOE`s nuclear facilities. In 1989 and 1990, health physicists from the Brookhaven National Laboratory`s (BNL) ALARA Center visited twelve DOE contractor facilities with annual collective dose equivalents greater than 100 person-rem (100 person-cSv). The health physicists interviewed radiological safety staff, engineers, and training personnel who were responsible for dose control. The status of ALARA practices at the major contractor facilities was compared with the requirements and recommendation in DOE Order 5480.11 ``Radiation Protection for Occupational Workers`` and PNL-6577 ``Health Physics Manual of Good Practices for Reducing Radiation Exposure to Levels that are as Low as Reasonably Achievable.`` The information and data collected are described and examples of successful practices are presented. The findings on the status of the DOE Contractor ALARA Programs are summarized and evaluated. In addition, the supplement to this report contains examples of good-practice documents associated with implementing the major elements of a formally documented ALARA program for a major DOE contractor facility.

  12. History and Culture of Alara--The Action Learning and Action Research Association

    ERIC Educational Resources Information Center

    Zuber-Skerritt, Ortrun; Passfield, Ron

    2016-01-01

    As co-founders of the Action Learning and Action Research Association (ALARA), we tell the story of this international network organisation through our personal experience. Our history traces the evolution of ALARA from origins at the first World Congress in 1990 in Brisbane, Australia, through development over two and a half decades, to its…

  13. ALARA assessment of spent fuel and nuclear waste transportation systems

    SciTech Connect

    Sutherland, S. H.

    1980-01-01

    The effects of ALARA (as low as reasonably achievable) on transportation system costs were evaluated for LWR spent fuel, high-level commercial and defense wastes, and remotely handled TRU waste. Three dose rate specifications were used: 10 mrem/h at 2m, 5 mrem/h, and 2 mrem/h. The evaluation was done for wastes and LWR spent fuel 1, 3, 5, and 10 years old. Gamma shield materials were depleted uranium, lead, and steel; the neutron shield material was water. Results for a 7-element PWR cask show that uranium shielding is the lightest, and that the increased weight of the low dose rate casks results in 1 to 2 million dollars increase in lifetime transportation costs. 6 figures, 3 tables. (DLC)

  14. Application of ALARA principles to shipment of spent nuclear fuel

    SciTech Connect

    Greenborg, J.; Brackenbush, L.W.; Murphy, D.W. Burnett, R.A.; Lewis, J.R.

    1980-05-01

    The public exposure from spent fuel shipment is very low. In view of this low exposure and the perfect safety record for spent fuel shipment, existing systems can be considered satisfactory. On the other hand, occupational exposure reduction merits consideration and technology improvement to decrease dose should concentrate on this exposure. Practices that affect the age of spent fuel in shipment and the number of times the fuel must be shipped prior to disposal have the largest impact. A policy to encourage a 5-year spent fuel cooling period prior to shipment coupled with appropriate cask redesign to accommodate larger loads would be consistent with ALARA and economic principles. And finally, bypassing high population density areas will not in general reduce shipment dose.

  15. Occupational dose reduction at Department of Energy contractor facilities: Bibliography of selected readings in radiation protection and ALARA; Volume 5

    SciTech Connect

    Dionne, B.J.; Sullivan, S.G.; Baum, J.W.

    1994-01-01

    Promoting the exchange of information related to implementation of the As Low as Reasonably Achievable (ALARA) philosophy is a continuing objective for the Department of Energy (DOE). This report was prepared by the Brookhaven National Laboratory (BNL) ALARA Center for the DOE Office of Health. It contains the fifth in a series of bibliographies on dose reduction at DOE facilities. The BNL ALARA Center was originally established in 1983 under the sponsorship of the Nuclear Regulatory Commission to monitor dose-reduction research and ALARA activities at nuclear power plants. This effort was expanded in 1988 by the DOE`s Office of Environment, Safety and Health, to include DOE nuclear facilities. This bibliography contains abstracts relating to various aspects of ALARA program implementation and dose-reduction activities, with a specific focus on DOE facilities. Abstracts included in this bibliography were selected from proceedings of technical meetings, journals, research reports, searches of the DOE Energy, Science and Technology Database (in general, the citation and abstract information is presented as obtained from this database), and reprints of published articles provided by the authors. Facility types and activities covered in the scope of this report include: radioactive waste, uranium enrichment, fuel fabrication, spent fuel storage and reprocessing, facility decommissioning, hot laboratories, tritium production, research, test and production reactors, weapons fabrication and testing, fusion, uranium and plutonium processing, radiography, and accelerators. Information on improved shielding design, decontamination, containments, robotics, source prevention and control, job planning, improved operational and design techniques, as well as on other topics, has been included. In addition, DOE/EH reports not included in previous volumes of the bibliography are in this volume (abstracts 611 to 684). This volume (Volume 5 of the series) contains 217 abstracts.

  16. ALARA and de minimis concepts in regulation of personnel exposure

    SciTech Connect

    Baum, J.W.

    1987-01-01

    The ALARA process should not be limited by a de minimis level on either collective or individual dose, but should be limited or defined by an acceptable discount-rate on future costs and effects, and a monetary value for detriment, to be used in cost-effectiveness or cost-benefit calculations at dose levels well below the regulatory limits. This approach would provide the desired benefit of simplifying the decision process, it makes it more cost effective, and would avoid the inconsistencies of limits on only one of the four parameters of importance in the optimization process. These are average individual effective dose equivalent rate, number of individuals to be included in the summation, years of exposure, and costs, which include costs of analysis to reduce the exposure. This approach emphasizes that these doses to an individual may not be considered trivial by society when given to a very large population, especially if they could easily be avoided. 32 refs., 2 tabs.

  17. Occupational dose reduction at nuclear power plants: Annotated bibliography of selected readings in radiation protection and ALARA

    SciTech Connect

    Baum, J.W.; Khan, T.A.

    1986-10-01

    This report is the third in a series of bibliographies supporting the efforts at Brookhaven National Laboratory on dose reduction at nuclear power plants. Abstracts for this report were selected from papers presented at recent technical meetings, journals and research reports reviewed at the BNL ALARA Center, and searches of the DOE/RECON data base on energy-related publications. The references selected for inclusion in the bibliography relate not only to operational health physics topics but also to plant chemistry, stress corrosion cracking, and other aspects of plant operation which have important impacts on occupational exposure. Also included are references to improved design, planning, materials selection and other topics related to what might be called ALARA engineering. Thus, an attempt has been made to cover a broad spectrum of topics related directly or indirectly to occupational exposure reduction. The report contains 252 abstracts and both author and subject indices.

  18. Five-Year ALARA Review of Dosimetry Results 1 January 2010 through 31 December 2014.

    SciTech Connect

    Paulus, Luke R.

    2015-06-01

    A review of dosimetry results from 1 January 2010 through 31 December 2014 was conducted to demonstrate that radiation protection methods used are compliant with regulatory limits and conform to the philosophy to keep exposures to radiation As Low As is Reasonably Achievable (ALARA). This included a review and evaluation of personnel dosimetry (external and internal) results at Sandia National Laboratories, New Mexico as well as at Sandia National Laboratories, California. Additionally, results of environmental monitoring efforts at Sandia National Laboratories, New Mexico were reviewed. ALARA is a philosophical approach to radiation protection by managing and controlling radiation exposures (individual and collective) to the work force and to the general public to levels that are As Low As is Reasonably Achievable taking social, technical, economic, practical, and public policy considerations into account. ALARA is not a dose limit but a process which has the objective of attaining doses as far below applicable dose limits As Low As is Reasonably Achievable.

  19. Methodology for making environmental as low as reasonably achievable (ALARA) determinations

    SciTech Connect

    Brown, R.C.; Speer, D.R.

    1982-01-01

    An overall evaluation concept for use in making differential cost-benefit analyses in environmental as low as reasonably achievable (ALARA) determinations is being implemented by Rockwell Hanford Operations. This evaluation includes consideration of seven categories: (1) capital costs; (2) operating costs; (3) state of the art; (4) safety; (5) accident or upset consequences; (6) reliability, operability, and maintainability; and (7) decommissionability. Appropriate weighting factors for each of these categories are under development so that ALARA determinations can be made by comparing scores of alternative proposals for facility design, operations, and upgrade. This method of evaluation circumvents the traditional basis of a stated monetary sum per person-rem of dose commitment. This alternative was generated by advice from legal counsel who advised against formally pursuing this avenue of approach to ALARA for environmental and occupational dose commitments.

  20. Five-Year ALARA Review of Dosimetry Results 1 January 2009 through 31 December 2013.

    SciTech Connect

    Paulus, Luke R

    2014-08-01

    A review of dosimetry results from 1 January 2009 through 31 December 2013 was conducted to demonstrate that radiation protection methods used are compliant with regulatory limits and conform to the ALARA philosophy. This included a review and evaluation of personnel dosimetry (external and internal) results at Sandia National Laboratories, New Mexico as well as at Sandia National Laboratories, California. Additionally, results of environmental monitoring efforts at Sandia National Laboratories, New Mexico were reviewed. ALARA is a philosophical approach to radiation protection by managing and controlling radiation exposures (individual and collective) to the work force and to the general public to levels that are As Low As is Reasonably Achievable taking social, technical, economic, practical, and public policy considerations into account. ALARA is not a dose limit but a process which has the objective of attaining doses as far below applicable dose limits As Low As is Reasonably Achievable.

  1. Proceedings of the Third International Workshop on the implementation of ALARA at nuclear power plants

    SciTech Connect

    Khan, T.A.; Roecklein, A.K.

    1995-03-01

    This report contains the papers presented and the discussions that took place at the Third International Workshop on ALARA Implementation at Nuclear Power Plants, held in Hauppauge, Long Island, New York from May 8--11, 1994. The purpose of the workshop was to bring together scientists, engineers, health physicists, regulators, managers and other persons who are involved with occupational dose control and ALARA issues. The countries represented were: Canada, Finland, France, Germany, Japan, Korea, Mexico, the Netherlands, Spain, Sweden, the United Kingdom and the United States. The workshop was organized into twelve sessions and three panel discussions. Individual papers have been cataloged separately.

  2. Pacific Northwest Laboratory ALARA report for Calendar Year 1994

    SciTech Connect

    Keller, S.L.

    1995-08-01

    This report provides summary results of the Calendar Year (CY) 1994 As Low As Reasonably Achievable (ALARA) Program performance at the Pacific Northwest Laboratory (PNL). This report includes data regarding performance in the area of personnel exposures to radiation, skin contaminations, control of contaminated areas, minimization of radioactive waste, and control of radioactive releases. In CY 1994: (1) The collective total effective dose equivalent to PNL employees during 1994 was 55 person-rem. The Field Dosimetry Services of the Radiological Control Department, Technical Support Section, projected that no PNL employee`s dose would exceed 2 rem based on dosimeters processed during the year; no worker actually exceeded the projection-by the end of CY 1994. The maximum dose to any individual was 1.11 rem. (2) There were 34 instances of skin and personal-clothing contamination events for PNL employees during 1994. Eighteen of these contamination events occurred at the 324 Building; eleven occurred at the 325 Building; two occurred in the 327 Building; one occurred in the 326 Building; one occurred in the 3708 Building; and one occurred in the RTL Building. (3) PNL facilities contained 12 Airborne Radioactivity Areas, and 60 Contamination Areas and High Contamination Areas. The area of the Airborne Radioactivity Areas was 383 m{sup 2}(4125 ft{sup 2}). The area of the Contamination Areas was 5290 m{sup 2}(56,947 ft{sup 2}). The area of the High Contamination Areas was 266 m{sup 2}(2863 ft{sup 2}). (4) PNL disposed of 10.5 m{sup 3}(371 ft{sup 3}) of compacted low level waste. Also disposed was 423 m{sup 3} (14,949 ft{sup 3}) of noncompacted low level and mixed waste that was not subject to volume reduction. The total radioactivity of the disposed waste was 1217 Ci. (5) PNL facilities released 165.2 Ci of noble gas, 3.0E-5 Ci of airborne particulate radioactive material, and 12.2 Ci of tritium to the environment.

  3. High level waste tank closure project: ALARA applications at the Idaho National Engineering and Environmental Laboratory.

    PubMed

    Aitken, Steven B; Butler, Richard; Butterworth, Steven W; Quigley, Keith D

    2005-05-01

    Bechtel BWXT Idaho, Maintenance and Operating Contractor for the Department of Energy at the Idaho National Engineering and Environmental Laboratory, has emptied, cleaned, and sampled six of the eleven 1.135 x 10(6) L high level waste underground storage tanks at the Idaho Nuclear Technology and Engineering Center, well ahead of the State of Idaho Consent Order cleaning schedule. Cleaning of a seventh tank is expected to be complete by the end of calendar year 2004. The tanks, with associated vaults, valve boxes, and distribution systems, are being closed to meet Resource Conservation and Recovery Act regulations and Department of Energy orders. The use of remotely operated equipment placed in the tanks through existing tank riser access points, sampling methods and application of as-low-as-reasonably-achievable (ALARA) principles have proven effective in keeping personnel dose low during equipment removal, tank, vault, and valve box cleaning, and sampling activities, currently at 0.03 Sv. PMID:15824589

  4. Health physics manual of good practices for reducing radiation exposure to levels that are as low as reasonably achievable (ALARA)

    SciTech Connect

    Herrington, W.N.; Higby, D.P.; Kathren,., R.L.; Merwin, S.E.; Stoetzel, G.A.

    1988-06-01

    A primary objective of the US Department of Energy (DOE) health physics and radiation protection program has been to limit radiation exposures to those levels that are as low as reasonably achievable (ALARA). As a result, the ALARA concept developed into a program and a set of operational principles to ensure that the objective was consistently met. Implementation of these principles required that a guide be produced. The original ALARA guide was issued by DOE in 1980 to promote improved understanding of ALARA concepts within the DOE community and to assist those responsible for operational ALARA activities in attaining their goals. Since 1980, additional guidance has been published by national and international organizations to provide further definition and clarification to ALARA concepts. As basic ALARA experience increased, the value and role of the original guide prompted the DOE Office of Nuclear Safety (ONS) to support a current revision. The revised manual of good practices includes six sections: 1.0 Introduction, 2.0 Administration, 3.0 Optimization, 4.0 Setting and Evaluating ALARA Goals, 5.0 Radiological Design, and 6.0 Conduct of Operations. The manual is directed primarily to contractor and DOE staff who are responsible for conduct and overview of radiation protection and ALARA programs at DOE facilities. The intent is to provide sufficient guidance such that the manual, if followed, will ensure that radiation exposures are maintained as low as reasonably achievable and will establish the basis for a formally structured and auditable program. 118 refs., 16 figs., 3 tabs.

  5. CSER 95-002: ALARA shielding for IAEA SNM container movement

    SciTech Connect

    Miller, E.M.

    1995-03-07

    This CSER qualifies use of a 5% borated, lead foil lined polyethylene 1 inch annulus as a bucket and in a small carrier to move sealed containers of plutonium. The containers are Oversize Cans or smaller containing plutonium limited in mass and H/Pu ratio by PFP storage and transportation CPS`s. These ALARA shielding units reduce personnel exposure to the radiation from the containers as they are moved for assay and other required activities.

  6. Current practices for maintaining occupational exposures ALARA at low-level waste disposal sites

    SciTech Connect

    Hadlock, D.E.; Herrington, W.N.; Hooker, C.D.; Murphy, D.W.; Gilchrist, R.L.

    1983-12-01

    The United States Nuclear Regulatory Commission contracted with Pacific Northwest Laboratory (PNL) to provide technical assistance in establishing operational guidelines, with respect to radiation control programs and methods of minimizing occupational radiation exposure, at Low-Level Waste (LLW) disposal sites. The PNL, through site visits, evaluated operations at LLW disposal sites to determine the adequacy of current practices in maintaining occupational exposures as low as is reasonably achievable (ALARA). The data sought included the specifics of: ALARA programs, training programs, external exposure control, internal exposure control, respiratory protection, surveillance, radioactive waste management, facilities and equipment, and external dose analysis. The results of the study indicated the following: The Radiation Protection and ALARA programs at the three commercial LLW disposal sites were observed to be adequate in scope and content compared to similar programs at other types of nuclear facilities. However, it should be noted that there were many areas that could be improved upon to help ensure the health and safety of occupationally exposed individuals.

  7. ALARA Design Review for the Resumption of the Plutonium Finishing Plant (PFP) Cementation Process Project Activities

    SciTech Connect

    DAYLEY, L.

    2000-06-14

    The requirements for the performance of radiological design reviews are codified in 10CFR835, Occupational Radiation Protection. The basic requirements for the performance of ALARA design reviews are presented in the Hanford Site Radiological Control Manual (HSRCM). The HSRCM has established trigger levels requiring radiological reviews of non-routine or complex work activities. These requirements are implemented in site procedures HNF-PRO-1622 and 1623. HNF-PRO-1622 Radiological Design Review Process requires that ''radiological design reviews [be performed] of new facilities and equipment and modifications of existing facilities and equipment''. In addition, HNF-PRO-1623 Radiological Work Planning Process requires a formal ALARA Review for planned activities that are estimated to exceed 1 person-rem total Dose Equivalent (DE). The purpose of this review is to validate that the original design for the PFP Cementation Process ensures that the principles of ALARA (As Low As Reasonably Achievable) were included in the original project design. That is, that the design and operation of existing Cementation Process equipment and processes allows for the minimization of personnel exposure in its operation, maintenance and decommissioning and that the generation of radioactive waste is kept to a minimum.

  8. Guide to reducing radiation exposure to as low as reasonably achievable (ALARA)

    SciTech Connect

    Kathren, R.L.

    1980-04-01

    This document is designed to provide DOE contractor personnel with general guidance regarding programs and techniques to reduce radiation exposures to as low as reasonably achievable (ALARA). Thus it is directed towards a broad audience, and should have special relevance and interest for operating management as well as radiation protection personnel. It is well recognized that each contractor has needs specific and critical to its radiation protection program. Hence no single set of specific and detailed criteria can be set down as a prescription for achieving the ALARA goal. Rather, general guidance in the form of broad principles is given in order to acquaint management with ALARA needs and concepts. The purpose is to encourage maximum management support of the technical personnel responsible for carrying out day-to-day radiation protection activities. Although primarily written for management, this document also contains technical guidance of potential value to those directly involved in radiation protection activities. Again it should be stressed that what is provided is guidance, and is therefore not mandatory.

  9. ALARA Review of the Spallation Neutron Source Accumulator Ring and Transfer Lines

    SciTech Connect

    Haire, M.J.

    2003-06-30

    The Spallation Neutron Source (SNS) is designed to meet the growing need for new tools that will deepen our understanding in materials science, life science, chemistry, fundamental and nuclear physics, earth and environmental sciences, and engineering sciences. The SNS is an accelerator-based neutron-scattering facility that when operational will produce an average beam power of 2 MW at a repetition rate of 60 Hz. The accelerator complex consists of the front-end systems, which will include an ion source; a 1-GeV full-energy linear accelerator; a single accumulator ring and its transfer lines; and a liquid mercury target. This report documents an as-low-as-reasonably-achievable (ALARA) review of the accumulator ring and transfer lines at their early design stage. An ALARA working group was formed and conducted a review of the SNS ring and transfer lines at the {approx}25% complete design stage to help ensure that ALARA principles are being incorporated into the design. The radiological aspects of the SNS design criteria were reviewed against regulatory requirements and ALARA principles. Proposed features and measures were then reviewed against the SNS design criteria. As part of the overall review, the working group reviewed the design manual; design drawings and process and instrumentation diagrams; the environment, safety, and health manual; and other related reports and literature. The group also talked with SNS design engineers to obtain explanations of pertinent subject matter. The ALARA group found that ALARA principles are indeed being incorporated into the early design stage. Radiation fields have been characterized, and shielding calculations have been performed. Radiological issues are being adequately addressed with regard to equipment selection, access control, confinement structure and ventilation, and contamination control. Radiation monitoring instrumentation for worker and environment protection are also being considered--a good practice at this

  10. Occupational dose reduction at nuclear power plants: Annotated bibliography of selected readings in radiation protection and ALARA. Volume 7

    SciTech Connect

    Kaurin, D.G.; Khan, T.A.; Sullivan, S.G.; Baum, J.W.

    1993-07-01

    The ALARA Center at Brookhaven National Laboratory publishes a series of bibliographies of selected readings in radiation protection and ALARA in the continuing effort to collect and disseminate information on radiation dose reduction at nuclear power plants. This is volume 7 of the series. The abstracts in this bibliography were selected from proceedings of technical meetings and conferences, journals, research reports, and searches of the Energy Science and Technology database of the US Department of Energy. The subject material of these abstracts relates to radiation protection and dose reduction, and ranges from use of robotics to operational health physics, to water chemistry. Material on the design, planning, and management of nuclear power stations is included, as well as information on decommissioning and safe storage efforts. Volume 7 contains 293 abstract, an author index, and a subject index. The author index is specific for this volume. The subject index is cumulative and lists all abstract numbers from volumes 1 to 7. The numbers in boldface indicate the abstracts in this volume; the numbers not in boldface represent abstracts in previous volumes.

  11. Occupational dose reduction at Department of Energy contractor facilities: Bibliography of selected readings in radiation protection and ALARA

    SciTech Connect

    Dionne, B.J.; Sullivan, S.G.; Baum, J.W.

    1993-12-01

    This bibliography contains abstracts relating to various aspects of ALARA program implementation and dose reduction activities, with a focus on DOE facilities. Abstracts included in this bibliography were selected from proceedings of technical meetings, journals, research reports, searches of the DOE Energy, Science and Technology Database (in general, the citation and abstract information is presented as obtained from this database), and reprints of published articles provided by the authors. Facility types and activities covered in the scope of this report include: radioactive waste, uranium enrichment, fuel fabrication, spent fuel storage and reprocessing, facility decommissioning, hot laboratories, tritium production, research, test and production reactors, weapons fabrication and testing, fusion, uranium and plutonium processing, radiography, and aocelerators. Information on improved shielding design, decontamination, containments, robotics, source prevention and control, job planning, improved operational and design techniques, as well as on other topics, has been included. In addition, DOE/EH reports not included in previous volumes of the bibliography are in this volume (abstracts 611 to 684). This volume (Volume 5 of the series) contains 217 abstracts. An author index and a subject index are provided to facilitate use. Both indices contain the abstract numbers from previous volumes, as well as the current volume. Information that the reader feels might be included in the next volume of this bibliography should be submitted to the BNL ALARA Center.

  12. Occupational dose reduction at nuclear power plants: Annotated bibliography of selected readings in radiation protection and ALARA. Volume 8

    SciTech Connect

    Sullivan, S.G.; Khan, T.A.; Xie, J.W.

    1995-05-01

    The ALARA Center at Brookhaven National Laboratory publishes a series of bibliographies of selected readings in radiation protection and ALARA in a continuing effort to collect and disseminate information on radiation dose reduction at nuclear power plants. This volume 8 of the series. The abstracts in this bibliography were selected form proceedings of technical meetings and conference journals, research reports, and searches of the Energy Science and Technology database of the US Department of Energy. The subject material of these abstracts relates to the many aspects of radiation protection and dose reduction, and ranges form use of robotics, to operational health physics, to water chemistry. Material on the design, planning, and management of nuclear power stations is included, as well as information on decommissioning and safe storage efforts. Volume 8 contains 232 abstracts, an author index, and a subject index. The author index is specific for this volume. The subject index is cumulative and lists all abstract numbers from volumes 1 to 8. The numbers in boldface indicate the abstracts in this volume; the numbers not in boldface represent abstracts in previous volumes.

  13. Cone-beam computed tomography: Time to move from ALARA to ALADA.

    PubMed

    Jaju, Prashant P; Jaju, Sushma P

    2015-12-01

    Cone-beam computed tomography (CBCT) is routinely recommended for dental diagnosis and treatment planning. CBCT exposes patients to less radiation than does conventional CT. Still, lack of proper education among dentists and specialists is resulting in improper referral for CBCT. In addition, aiming to generate high-quality images, operators may increase the radiation dose, which can expose the patient to unnecessary risk. This letter advocates appropriate radiation dosing during CBCT to the benefit of both patients and dentists, and supports moving from the concept of "as low as reasonably achievable" (ALARA) to "as low as diagnostically acceptable" (ALADA). PMID:26730375

  14. Cone-beam computed tomography: Time to move from ALARA to ALADA

    PubMed Central

    Jaju, Sushma P.

    2015-01-01

    Cone-beam computed tomography (CBCT) is routinely recommended for dental diagnosis and treatment planning. CBCT exposes patients to less radiation than does conventional CT. Still, lack of proper education among dentists and specialists is resulting in improper referral for CBCT. In addition, aiming to generate high-quality images, operators may increase the radiation dose, which can expose the patient to unnecessary risk. This letter advocates appropriate radiation dosing during CBCT to the benefit of both patients and dentists, and supports moving from the concept of "as low as reasonably achievable" (ALARA) to "as low as diagnostically acceptable" (ALADA). PMID:26730375

  15. ALARA Overview System at Crystal River Unit 3 Nuclear Station.

    PubMed

    Kline, K B; Cope, W B

    1995-08-01

    During the Spring of 1994 the Health Physics Department at Florida Power Company used video and audio equipment to support remote health physics coverage for their Crystal River Unit 3 refueling outage (Refuel 9). The system consisted of eight cameras with audio interface linked to a control center located in a low-dose area. The system allowed health physics personnel to monitor steam generator and refueling activities with minimum exposure in high-dose areas, cutting by half the dose from the previous outage. B&W Nuclear Technologies provided complete setup, maintenance and tear-down, as well as assuming responsibilities for contaminated video and audio equipment. PMID:7622378

  16. ALARA plan for the Old Hydrofracture Facility tanks contents removal project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1998-04-01

    The purpose of the Old Hydrofracture Facility (OHF) Tanks Contents Removal Project is to remove the liquid low-level waste from the five underground storage tanks located at OHF and transfer the resulting slurry to the Melton Valley Storage Tanks facility for treatment and disposal. Among the technical objectives for the OHF Project, there is a specific provision to maintain personnel exposures as low as reasonably achievable (ALARA) during each activity of the project and to protect human health and the environment. The estimated doses and anticipated conditions for accomplishing this project are such that an ALARA Plan is necessary to facilitate formal radiological review of the campaign. This ALARA Plan describes the operational steps necessary for accomplishing the job together with the associated radiological impacts and planned controls. Individual and collective dose estimates are also provided for the various tasks. Any significant changes to this plan (i.e., planned exposures that are greater than 10% of original dose estimates) will require formal revision and concurrence from all parties listed on the approval page. Deviations from this plan (i.e., work outside the scope covered by this plan) also require the preparation of a task-specific ALARA Review that will be amended to this plan with concurrence from all parties listed on the approval page.

  17. ALARA considerations for the whole body neutron irradiation facility source removal project at Brookhaven National Laboratory.

    PubMed

    Sullivan, Patrick T

    2006-02-01

    This paper describes the activities that were involved with the safe removal of fourteen PuBe sources from the Brookhaven National Laboratory (BNL) Whole Body Neutron Irradiation Facility (WBNIF). As part of a Department of Energy and BNL effort to reduce the radiological inventory, the WBNIF was identified as having no future use. In order to deactivate the facility and eliminate the need for nuclear safety management and long-term surveillance, it was decided to remove the neutron sources and dismantle the facility. In addition, the sources did not have DOT Special Form documentation so they would need to be encapsulated once removed for offsite storage or disposal. The planning and the administrative as well as engineering controls put in place enabled personnel to safely remove and encapsulate the sources while keeping exposure as low as reasonably achievable (ALARA). PMID:16404183

  18. Implementation of ALARA radiation protection on the ISS through polyethylene shielding augmentation of the Service Module Crew Quarters.

    PubMed

    Shavers, M R; Zapp, N; Barber, R E; Wilson, J W; Qualls, G; Toupes, L; Ramsey, S; Vinci, V; Smith, G; Cucinotta, F A

    2004-01-01

    With 5-7 month long duration missions at 51.6 degrees inclination in Low Earth Orbit, the ionizing radiation levels to which International Space Station (ISS) crewmembers are exposed will be the highest planned occupational exposures in the world. Even with the expectation that regulatory dose limits will not be exceeded during a single tour of duty aboard the ISS, the "as low as reasonably achievable" (ALARA) precept requires that radiological risks be minimized when possible through a dose optimization process. Judicious placement of efficient shielding materials in locations where crewmembers sleep, rest, or work is an important means for implementing ALARA for spaceflight. Polyethylene (CnHn) is a relatively inexpensive, stable, and, with a low atomic number, an effective shielding material that has been certified for use aboard the ISS. Several designs for placement of slabs or walls of polyethylene have been evaluated for radiation exposure reduction in the Crew Quarters (CQ) of the Zvezda (Star) Service Module. Optimization of shield designs relies on accurate characterization of the expected primary and secondary particle environment and modeling of the predicted radiobiological responses of critical organs and tissues. Results of the studies shown herein indicate that 20% or more reduction in equivalent dose to the CQ occupant is achievable. These results suggest that shielding design and risk analysis are necessary measures for reducing long-term radiological risks to ISS inhabitants and for meeting legal ALARA requirements. Verification of shield concepts requires results from specific designs to be compared with onboard dosimetry. PMID:15880921

  19. Implementation of ALARA radiation protection on the ISS through polyethylene shielding augmentation of the Service Module Crew Quarters

    NASA Astrophysics Data System (ADS)

    Shavers, M. R.; Zapp, N.; Barber, R. E.; Wilson, J. W.; Qualls, G.; Toupes, L.; Ramsey, S.; Vinci, V.; Smith, G.; Cucinotta, F. A.

    2004-01-01

    With 5-7 month long duration missions at 51.6° inclination in Low Earth Orbit, the ionizing radiation levels to which International Space Station (ISS) crewmembers are exposed will be the highest planned occupational exposures in the world. Even with the expectation that regulatory dose limits will not be exceeded during a single tour of duty aboard the ISS, the "as low as reasonably achievable" (ALARA) precept requires that radiological risks be minimized when possible through a dose optimization process. Judicious placement of efficient shielding materials in locations where crewmembers sleep, rest, or work is an important means for implementing ALARA for spaceflight. Polyethylene (C nH n) is a relatively inexpensive, stable, and, with a low atomic number, an effective shielding material that has been certified for use aboard the ISS. Several designs for placement of slabs or walls of polyethylene have been evaluated for radiation exposure reduction in the Crew Quarters (CQ) of the Zvezda (Star) Service Module. Optimization of shield designs relies on accurate characterization of the expected primary and secondary particle environment and modeling of the predicted radiobiological responses of critical organs and tissues. Results of the studies shown herein indicate that 20% or more reduction in equivalent dose to the CQ occupant is achievable. These results suggest that shielding design and risk analysis are necessary measures for reducing long-term radiological risks to ISS inhabitants and for meeting legal ALARA requirements. Verification of shield concepts requires results from specific designs to be compared with onboard dosimetry.

  20. Implementation of ALARA radiation protection on the ISS through polyethylene shielding augmentation of the Service Module crew quarters

    NASA Astrophysics Data System (ADS)

    Shavers, M.; Zapp, N.; Barber, R.; Wilson, J.; Qualls, G.; Toupes, L.; Ramsey, S.; Vinci, V.; Smith, G.; Cucinotta, F.

    With 5 to 7-month long duration missions at 51.6° inclination in Low Earth Orbit, the ionizing radiation levels to which International Space Station (ISS) crewmembers are exposed will be the highest planned occupational exposures in the world. Even with the expectation that regulatory dose limits will not be exceeded during a single tour of duty aboard the ISS, the "as low as reasonably achievable" (ALARA) precept requires that radiological risks be minimized when possible through an dose optimization process. Judicious placement of efficient shielding materials in locations where crewmembers sleep, rest, or work is an important means for implementing ALARA for spaceflight. Polyethylene (Cn Hn ), is a relatively inexpensive, stable, and, with a low atomic number, an effective shielding material that has been certified for use aboard the ISS. Several designs for placement of slabs or walls of polyethylene have been evaluated for radiation exposure reduction in the Crew Quarters (CQ) of the Zvezda (Star) Service Module. Optimization of shield designs relies on accurate characterization of the expected primary and secondary particle environment and modeling of the predicted radiobiological responses of critical organs and tissues. Results of the studies shown herein indicate that 20% or more reduction in dose equivalent to the CQ occupant is achievable. These results suggest that shielding design and risk analysis are necessary measures for reducing long-term radiological risks to ISS inhabitants and for meeting legal ALARA requirements. Verification of shield concepts requires results from specific designs to be compared with onboard dosimetry.

  1. The optimisation approach of ALARA in nuclear practice: an early application of the precautionary principle. Scientific uncertainty versus legal uncertainty.

    PubMed

    Lierman, S; Veuchelen, L

    2005-01-01

    The late health effects of exposure to low doses of ionising radiation are subject to scientific controversy: one view finds threats of high cancer incidence exaggerated, while the other view thinks the effects are underestimated. Both views have good scientific arguments in favour of them. Since the nuclear field, both industry and medicine have had to deal with this controversy for many decades. One can argue that the optimisation approach to keep the effective doses as low as reasonably achievable, taking economic and social factors into account (ALARA), is a precautionary approach. However, because of these stochastic effects, no scientific proof can be provided. This paper explores how ALARA and the Precautionary Principle are influential in the legal field and in particular in tort law, because liability should be a strong incentive for safer behaviour. This so-called "deterrence effect" of liability seems to evaporate in today's technical and highly complex society, in particular when dealing with the late health effects of low doses of ionising radiation. Two main issues will be dealt with in the paper: 1. How are the health risks attributable to "low doses" of radiation regulated in nuclear law and what lessons can be learned from the field of radiation protection? 2. What does ALARA have to inform the discussion of the Precautionary Principle and vice-versa, in particular, as far as legal sanctions and liability are concerned? It will be shown that the Precautionary Principle has not yet been sufficiently implemented into nuclear law.

  2. Implementation of ALARA radiation protection on the ISS through polyethylene shielding augmentation of the Service Module Crew Quarters.

    PubMed

    Shavers, M R; Zapp, N; Barber, R E; Wilson, J W; Qualls, G; Toupes, L; Ramsey, S; Vinci, V; Smith, G; Cucinotta, F A

    2004-01-01

    With 5-7 month long duration missions at 51.6 degrees inclination in Low Earth Orbit, the ionizing radiation levels to which International Space Station (ISS) crewmembers are exposed will be the highest planned occupational exposures in the world. Even with the expectation that regulatory dose limits will not be exceeded during a single tour of duty aboard the ISS, the "as low as reasonably achievable" (ALARA) precept requires that radiological risks be minimized when possible through a dose optimization process. Judicious placement of efficient shielding materials in locations where crewmembers sleep, rest, or work is an important means for implementing ALARA for spaceflight. Polyethylene (CnHn) is a relatively inexpensive, stable, and, with a low atomic number, an effective shielding material that has been certified for use aboard the ISS. Several designs for placement of slabs or walls of polyethylene have been evaluated for radiation exposure reduction in the Crew Quarters (CQ) of the Zvezda (Star) Service Module. Optimization of shield designs relies on accurate characterization of the expected primary and secondary particle environment and modeling of the predicted radiobiological responses of critical organs and tissues. Results of the studies shown herein indicate that 20% or more reduction in equivalent dose to the CQ occupant is achievable. These results suggest that shielding design and risk analysis are necessary measures for reducing long-term radiological risks to ISS inhabitants and for meeting legal ALARA requirements. Verification of shield concepts requires results from specific designs to be compared with onboard dosimetry.

  3. Review of ALARA plan for activities at the 105 K-East fuel storage basin

    SciTech Connect

    Vargo, G.J.; Durham, J.S.; Hickey, E.E.; Stansbury, P.S.; Cicotte, G.R.

    1994-09-01

    As part of its ongoing efforts to reduce doses to workers to levels as low as reasonably achievable (ALARA), Westinghouse Hanford Company (WHC) tasked the Health Protection Department of the Pacific Northwest Laboratory (PNL) to review operations at the 105 K-East Fuel Storage Basin (105 K-East). This review included both routine operations and a proposed campaign to encapsulate N-Reactor fuel stored there. This report summarizes the results of PNL`s reviews of policy, procedures, and practices for operations at 105 K-East as well as an evaluation of the major sources of occupational radiation exposures. Where possible, data previously collected by WHC and its predecessors were used. In addition, PNL staff developed a three-dimensional model of the radiological environment within 105 K-East to assess the relative contributions of different radiation sources to worker dose and to provide a decision tool for use in evaluating alternative methods of dose rate reduction. The model developed by PNL indicates that for most areas in the basin the primary source of occupational radiation exposure is the contaminated concrete surfaces of the basin near the waterline. Basin cooling water piping represents a significant source in a number of areas, particularly the Technical Viewing Pit. This report contains specific recommendations to reduce the impact of these sources of occupational radiation exposure in 105 K-East. Other recommendations to reduce doses to workers during activities such as filter changes and filter sampling are also included.

  4. ALARA approach to the radiological control of foodstuffs following an accidental release

    SciTech Connect

    Lombard, J.; Coulon, R.; Despres, A.

    1988-06-01

    This article presents a methodology based on two complementary approaches, thus allowing a selection of maximal concentration in foodstuffs for determining appropriate countermeasures. The first approach is based on a minimal and maximal per capita intervention level and takes into account the annual intake of each product. The second one is based on a cost-benefit analysis, comparing the advantages of a countermeasure concerning those products presenting a contamination higher than a given maximal concentration (in terms of reduction of cost of the detriment associated with the risk), with its drawbacks (in terms of cost of the products) in order to select the ''ALARA'' maximal concentration. This second approach is used as a complement to the first one. The results obtained through these two approaches are given for four products (milk, meat, fresh vegetables, and corn) and two nuclides (Cs-137 and I-131). These are presented for various scenarios: one or various products contaminated by one or various radionuclides. It is concluded that these two approaches are complementary, the first one being related to individual risk and the second to collective risk. Therefore, these approaches are both of interest in the context of the elaboration of modalities for the radiological control of foodstuffs following an accidental release and both methods may be useful for determining appropriate countermeasures.

  5. Occupational dose reduction at nuclear power plants: Annotated bibliography of selected readings in radiation protection and ALARA: Volume 4

    SciTech Connect

    Khan, T.A.; Baum, J.W.

    1989-06-01

    This report is the fourth in the series of bibliographies supporting the efforts at the Brookhaven National Laboratory on dose reduction at nuclear power plants. Abstracts for this bibliography were selected from proceedings of technical meetings, journals, research reports and searches of the DOE's Energy Data Base. The abstracts included in this report to operational health physics as well as other subjects which have a bearing on dose reduction at nuclear power plants, such as stress corrosion, cracking, plant chemistry, use of robotics and remote devices, etc. Material on improved design, materials selection, planning and other topics which are related to dose reduction efforts are also included. The report contains 327 abstracts as well as subject and author indices. All information in the current volume is also available from the ALARA Center's bulletin board service which is accessible by personal computers with the help of a modem. The last section of the report explains the features of the bulletin board. The bulletin board will be kept up-to-date with new information and should be of help in keeping people current in the area of dose reduction.

  6. A simplified ALARA approach to demonstration of compliance with surface contaminated object regulatory requirements

    SciTech Connect

    Pope, R.B.; Shappert, L.B.; Michelhaugh, R.D.; Boyle, R.W.; Cook, J.C.

    1998-02-01

    The US Department of Transportation (DOT) and the US Nuclear Regulatory Commission (NRC) have jointly prepared a comprehensive set of draft guidance for consignors and inspectors to use when applying the newly imposed regulatory requirements for low specific activity (LSA) material and surface contaminated objects (SCOs). The guidance is being developed to facilitate compliance with the new LSA material and SCO requirements, not to impose additional requirements. These new requirements represent, in some areas, significant departures from the manner in which packaging and transportation of these materials and objects were previously controlled. On occasion, it may be appropriate to use conservative approaches to demonstrate compliance with some of the requirements, ensuring that personnel are not exposed to radiation at unnecessary levels, so that exposures are kept as low as reasonably achievable (ALARA). In the draft guidance, one such approach would assist consignors preparing a shipment of a large number of SCOs in demonstrating compliance without unnecessarily exposing personnel. In applying this approach, users need to demonstrate that four conditions are met. These four conditions are used to categorize non-activated, contaminated objects as SCO-2. It is expected that, by applying this approach, it will be possible to categorize a large number of small contaminated objects as SCO-2 without the need for detailed, quantitative measurements of fixed, accessible contamination, or of total (fixed and non-fixed) contamination on inaccessible surfaces. The method, which is based upon reasoned argument coupled with limited measurements and the application of a sum of fractions rule, is described and examples of its use are provided.

  7. Implementation of ALARA radiation protection on the ISS through polyethylene shielding augmentation of the Service Module Crew Quarters

    NASA Technical Reports Server (NTRS)

    Shavers, M. R.; Zapp, N.; Barber, R. E.; Wilson, J. W.; Qualls, G.; Toupes, L.; Ramsey, S.; Vinci, V.; Smith, G.; Cucinotta, F. A.

    2004-01-01

    With 5-7 month long duration missions at 51.6 degrees inclination in Low Earth Orbit, the ionizing radiation levels to which International Space Station (ISS) crewmembers are exposed will be the highest planned occupational exposures in the world. Even with the expectation that regulatory dose limits will not be exceeded during a single tour of duty aboard the ISS, the "as low as reasonably achievable" (ALARA) precept requires that radiological risks be minimized when possible through a dose optimization process. Judicious placement of efficient shielding materials in locations where crewmembers sleep, rest, or work is an important means for implementing ALARA for spaceflight. Polyethylene (CnHn) is a relatively inexpensive, stable, and, with a low atomic number, an effective shielding material that has been certified for use aboard the ISS. Several designs for placement of slabs or walls of polyethylene have been evaluated for radiation exposure reduction in the Crew Quarters (CQ) of the Zvezda (Star) Service Module. Optimization of shield designs relies on accurate characterization of the expected primary and secondary particle environment and modeling of the predicted radiobiological responses of critical organs and tissues. Results of the studies shown herein indicate that 20% or more reduction in equivalent dose to the CQ occupant is achievable. These results suggest that shielding design and risk analysis are necessary measures for reducing long-term radiological risks to ISS inhabitants and for meeting legal ALARA requirements. Verification of shield concepts requires results from specific designs to be compared with onboard dosimetry. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  8. Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory`s hazardous waste management facility

    SciTech Connect

    Dionne, B.J.; Morris, S.C. III; Baum, J.W.

    1998-01-01

    The Department of Energy`s (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory`s Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an {open_quotes}As Low as Reasonably Achievable{close_quotes} (ALARA) analysis for use at other DOE nuclear facilities as an example of a risk-based decision technique. This document contains the Appendices for the report.

  9. Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory`s hazardous waste management facility

    SciTech Connect

    Dionne, B.J.; Morris, S. III; Baum, J.W.

    1998-03-01

    The Department of Energy`s (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory`s Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an {open_quotes}As Low as Reasonably Achievable{close_quotes} (ALARA) analysis for use at other DOE nuclear facilities as an example of a risk-based decision technique.

  10. IMPROVED WELL PLUGGING EQUIPMENT AND WASTE MANGEMENT TECHNIQUES EXCEED ALARA GOALS AT THE OAK RIDGE NATIONAL LABORATORY

    SciTech Connect

    Whiteside, R.; Pawlowicz, R.; Whitehead, L.; Arnseth, R.

    2002-02-25

    In 2000, Bechtel Jacobs Company LLC (BJC) contracted Tetra Tech NUS, Inc. (TtNUS) and their sub-contractor, Texas World Operations, Inc. (TWO), to plug and abandon (P&A) 111 wells located in the Melton Valley area of Oak Ridge National Laboratory (ORNL). One hundred and seven of those wells were used to monitor fluid movement and subsurface containment of the low level radioactive liquid waste/grout slurry that was injected into the Pumpkin Valley Shale Formation, underlying ORNL. Four wells were used as hydrofracture injection wells to emplace the waste in the shale formation. Although the practice of hydrofracturing was and is considered by many to pose no threat to human health or the environment, the practice was halted in 1982 after the Federal Underground Injection Control regulations were enacted by United States Environmental Protection Agency (USEPA) making it necessary to properly close the wells. The work is being performed for the United States Department of Energy Oak Ridge Operations (DOE ORO). The project team is using the philosophy of minimum waste generation and the principles of ALARA (As Low As Reasonably Achievable) as key project goals to minimize personnel and equipment exposure, waste generation, and project costs. Achievement of these goals was demonstrated by the introduction of several new pieces of custom designed well plugging and abandonment equipment that were tested and used effectively during field operations. Highlights of the work performed and the equipment used are presented.

  11. INNOVATIVE ALARA TOOLS AND WORK PRACTICES USED AT THE DOE HANFORD SITE

    SciTech Connect

    WAGGONER LO

    2010-02-12

    The Hanford Nuclear Reservation occupies an area of 586 square miles in southeastern Washington state. The site was created as part of the World War II Manhattan Project to produce weapons grade plutonium. A multitude of old reactor plants, processing facilities, underground tank farms, contaminated soil and ground water remain and are part of an on-going environmental cleanup mission of the site. The Columbia River bisects Hanford, and the concern is that the river will become contaminated if the sources of contamination are not removed. Currently facilities are being removed, the ground water is being treated, and contaminated soil is being transferred to an approved burial ground about 15 miles away from the River located in the center of the Hanford Site The remaining facilities and adjacent structures are undergoing D&D (decontaminate and demolish) and to date, significant progress has been made. During this presentation, I will discuss how we are using innovative tools and work practices to D&D these Hanford Site facilities.

  12. ALARA notes, Number 8

    SciTech Connect

    Khan, T.A.; Baum, J.W.; Beckman, M.C.

    1993-10-01

    This document contains information dealing with the lessons learned from the experience of nuclear plants. In this issue the authors tried to avoid the `tyranny` of numbers and concentrated on the main lessons learned. Topics include: filtration devices for air pollution abatement, crack repair and inspection, and remote handling equipment.

  13. Virtual radiation fields for ALARA determination

    SciTech Connect

    Knight, T.W.

    1995-12-31

    As computing power has increased, so too has the ability to model and simulate complex systems and processes. In addition, virtual reality technology has made it possible to visualize and understand many complex scientific and engineering problems. For this reason, a virtual dosimetry program called Virtual Radiation Fields (VRF) is developed to model radiation dose rate and cumulative dose to a receptor operating in a virtual radiation environment. With the design and testing of many facilities and products taking place in the virtual world, this program facilitates the concurrent consideration of radiological concerns during the design process. Three-dimensional (3D) graphical presentation of the radiation environment is made possible through the use of IGRIP, a graphical modeling program developed by Deneb Robotics, Inc. The VRF simulation program was designed to model and display a virtual dosimeter. As a demonstration of the program`s capability, the Hanford tank, C-106, was modeled to predict radiation doses to robotic equipment used to remove radioactive waste from the tank. To validate VRF dose predictions, comparison was made with reported values for tank C-106, which showed agreement to within 0.5%. Graphical information is presented regarding the 3D dose rate variation inside the tank. Cumulative dose predictions were made for the cleanup operations of tank C-106. A four-dimensional dose rate map generated by VRF was used to model the dose rate not only in 3D space but also as a function of the amount of waste remaining in the tank. This allowed VRF to predict dose rate at any stage in the waste removal process for an accurate simulation of the radiological conditions throughout the tank cleanup procedure.

  14. Peach bottom recirculation piping replacement ALARA program

    SciTech Connect

    Englesson, G.A.; Hilsmeier, A.E.; Mann, B.J.

    1986-01-01

    In late 1983, Philadelphia Electric Company (PECo) began detailed planning to replace the recirculation, residual heat removal, and part of the reactor water cleanup piping of the Peach Bottom Unit 2 reactor. Included in this work was an estimate of the collective exposure expected during piping replacement. That initial estimate, 1945 man-rem, is compared with the actual collective dose incurred during the piping replacement program. Also included are the exposures incurred during two additional tasks (safe end replacement and recirculation pump disassembly and decontamination) not considered in the initial estimate.

  15. Virtual radiation fields for ALARA determination

    SciTech Connect

    Knight, T.W.; Dalton, G.R.; Tulenko, J.S.

    1995-12-31

    VRF (virtual radiation fields) was developed to accurately predict the radiation dose received by a person or robotic device with minimum effort. Dose calculations are performed using Monte Carlo techniques while the user interacts with the computer via a user-friendly graphical interface. The code has been utilized for the prediction of radiation doses from the Hanford Reservation waste tanks, particularly tank c-106. This paper describes the features of the code and evaluates it`s application to tank c-106.

  16. Savannah River Site Radiological Technology Center's Efforts Supporting Waste Minimization

    SciTech Connect

    Rosenberger, K. H.; Smith, L. S.; Bates, R. L.

    2003-02-25

    This paper describes the efforts of the newly formed Radiological Technology Center (RTC) at the Department of Energy's Savannah River Site (SRS) to support waste minimization. The formation of the RTC was based upon the highly successful ALARA Center at the DOE Hanford Site. The RTC is tasked with evaluation and dissemination of new technologies and techniques for radiological hazard reduction and waste minimization. Initial waste minimization efforts have focused on the promotion of SRS containment fabrication capabilities, new personal protective equipment and use of recyclable versus disposable materials.

  17. Patient-centered Care.

    PubMed

    Reynolds, April

    2009-01-01

    Patient-centered care focuses on the patient and the individual's particular health care needs. The goal of patient-centered health care is to empower patients to become active participants in their care. This requires that physicians, radiologic technologists and other health care providers develop good communication skills and address patient needs effectively. Patient-centered care also requires that the health care provider become a patient advocate and strive to provide care that not only is effective but also safe. For radiologic technologists, patient-centered care encompasses principles such as the as low as reasonably achievable (ALARA) concept and contrast media safety. Patient-centered care is associated with a higher rate of patient satisfaction, adherence to suggested lifestyle changes and prescribed treatment, better outcomes and more cost-effective care. This article is a Directed Reading. Your access to Directed Reading quizzes for continuing education credit is determined by your area of interest. For access to other quizzes, go to www.asrt.org/store. According to one theory, most patients judge the quality of their healthcare much like they rate an airplane flight. They assume that the airplane is technically viable and is being piloted by competent people. Criteria for judging a particular airline are personal and include aspects like comfort, friendly service and on-time schedules. Similarly, patients judge the standard of their healthcare on nontechnical aspects, such as a healthcare practitioner's communication and "soft skills." Most are unable to evaluate a practitioner's level of technical skill or training, so the qualities they can assess become of the utmost importance in satisfying patients and providing patient-centered care.(1). PMID:19901351

  18. Operational Radiation Protection in High-Energy Physics Accelerators: Implementation of ALARA in Design and Operation of Accelerators

    SciTech Connect

    Fasso, A.; Rokni, S.; /SLAC

    2011-06-30

    It used to happen often, to us accelerator radiation protection staff, to be asked by a new radiation worker: ?How much dose am I still allowed?? And we smiled looking at the shocked reaction to our answer: ?You are not allowed any dose?. Nowadays, also thanks to improved training programs, this kind of question has become less frequent, but it is still not always easy to convince workers that staying below the exposure limits is not sufficient. After all, radiation is still the only harmful agent for which this is true: for all other risks in everyday life, from road speed limits to concentration of hazardous chemicals in air and water, compliance to regulations is ensured by keeping below a certain value. It appears that a tendency is starting to develop to extend the radiation approach to other pollutants (1), but it will take some time before the new attitude makes it way into national legislations.

  19. U.S. Department of Energy National Center of Excellence for Metals Recycle

    SciTech Connect

    Adams, V.; Bennett, M.; Bishop, L.

    1998-05-01

    The US Department of Energy (DOE) National Center of Excellence for Metals Recycle has recently been established. The vision of this new program is to develop a DOE culture that promotes pollution prevention by considering the recycle and reuse of metal as the first and primary disposition option and burial as a last option. The Center of Excellence takes the approach that unrestricted release of metal is the first priority because it is the most cost-effective disposition pathway. Where this is not appropriate, restricted release, beneficial reuse, and stockpile of ingots are considered. Current recycling activities include the sale of 40,000 tons of scrap metal from the East Tennessee Technology Park (formerly K-25 Plant) K-770 scrap yard, K-1064 surplus equipment and machinery, 7,000 PCB-contaminated drums, 12,000 tons of metal from the Y-l2 scrap yard, and 1,000 metal pallets. In addition, the Center of Excellence is developing a toolbox for project teams that will contain a number of specific tools to facilitate metals recycle. This Internet-based toolbox will include primers, computer programs, and case studies designed to help sites to perform life cycle analysis, perform ALARA (As Low As is Reasonably Achievable) analysis for radiation exposures, provide pollution prevention information and documentation, and produce independent government estimates. The use of these tools is described for two current activities: disposition of scrap metal in the Y-12 scrapyard, and disposition of PCB-contaminated drums.

  20. Utilizing 3D-visualization to apply compulsory ALARA principles in nuclear power plant design and day-to-day operation

    SciTech Connect

    Sanders, R. L.; Lake, J. E.

    2006-07-01

    The development of an advanced visualization and simulation tool to support both design as well as day-to-day operation is presented. This tool exploits cutting edge computer graphics, physics-based effects modeling, virtual reality, and gaming technologies to establish a system that can eventually be used for the administrative planning and training of plant operators and design engineers. (authors)

  1. DOE 2010 Occupational Radiation Exposure November 2011

    SciTech Connect

    U.S. Department of Energy, Office of Health, Safety and Security, Office of Analysis

    2011-11-11

    This report discusses radiation protection and dose reporting requirements, presents the 2010 occupational radiation dose data trended over the past 5 years, and includes instructions to submit successful ALARA projects.

  2. DOE 2011 Occupational Radiation Exposure report, _Prepared for the U.S. Department of Energy, Office of Health, Safety and Security. December 2012

    SciTech Connect

    Derek Hagemeyer, Yolanda McCormick

    2012-12-12

    This report discusses radiation protection and dose reporting requirements, presents the 2011 occupational radiation dose data along with trends over the past 5 years, and provides instructions to submit successful as low as reasonably achievable (ALARA) projects.

  3. Training Workers to use Localized Ventilation for Radiological Work

    SciTech Connect

    WAGGONER, L.O.

    2000-09-01

    Work on radiological systems and components needs to be accomplished using techniques that reduce radiation dose to workers, limit contamination spread, and minimize radioactive waste. One of the best methods to control contamination spread is to use localized ventilation to capture radioactive material and keep it from spreading. The Fluor Hanford ALARA Center teaches workers how to use ventilation in partnership with other engineered controls and this has resulted in improved work practices, minimized the impact on adjacent work operations, and decreased the amount of radioactive waste generated. This presentation will emphasize how the workers are trained to use localized ventilation for contamination control.

  4. Operational Aspects of Space Radiation Analysis

    NASA Technical Reports Server (NTRS)

    Weyland, M. D.; Johnson, A. S.; Semones, E. J.; Shelfer, T.; Dardano, C.; Lin, T.; Zapp, N. E.; Rutledge, R.; George, T.

    2005-01-01

    Minimizing astronaut's short and long-term medical risks arising from exposure to ionizing radiation during space missions is a major concern for NASA's manned spaceflight program, particularly exploration missions. For ethical and legal reasons, NASA follows the "as low as reasonably achievable" (ALARA) principal in managing astronaut's radiation exposures. One implementation of ALARA is the response to space weather events. Of particular concern are energetic solar particle events, and in low Earth orbit (LEO), electron belt enhancements. To properly respond to these events, NASA's Space Radiation Analysis Group (SRAG), in partnership with the NOAA Space Environment Center (SEC), provides continuous flight support during U.S. manned missions. In this partnership, SEC compiles space weather data from numerous ground and space based assets and makes it available in near real-time to SRAG (along with alerts and forecasts), who in turn uses these data as input to models to calculate estimates of the resulting exposure to astronauts. These calculations and vehicle instrument data form the basis for real-time recommendations to flight management. It is also important to implement ALARA during the design phase. In order to appropriately weigh the risks associated with various shielding and vehicle configuration concepts, the expected environment must be adequately characterized for nominal and worst case scenarios for that portion of the solar cycle and point in space. Even with the best shielding concepts and materials in place (unlikely), there will be numerous occasions where the crew is at greater risk due to being in a lower shielded environment (short term transit or lower shielded vehicles, EVAs), so that accurate space weather forecasts and nowcasts, of particles at the relevant energies, will be crucial to protecting crew health and safety.

  5. Computer centers

    NASA Astrophysics Data System (ADS)

    The National Science Foundation has renewed grants to four of its five supercomputer centers. Average annual funding will rise from $10 million to $14 million so facilities can be upgraded and training and education expanded. As cooperative projects, the centers also receive money from states, universities, computer vendors and industry. The centers support research in fluid dynamics, atmospheric modeling, engineering geophysics and many other scientific disciplines.

  6. Skills Center.

    ERIC Educational Resources Information Center

    Canter, Patricia; And Others

    The services of the Living Skills Center for the Visually Handicapped, a habilitative service for blind young adults, are described. It is explained that the Center houses its participants in their own apartments in a large complex and has served over 70 young people in 4 years. The evaluation section describes such assessment instruments as an…

  7. Senior Centers

    MedlinePlus Videos and Cool Tools

    ... something many older adults would like to do as long as they can. Senior centers, adult day care, transportation, ... adults who live independently can go to find a variety of social and recreational activities. [Karen Albers] ...

  8. Coastal Center

    NASA Astrophysics Data System (ADS)

    The U.S. Geological Survey dedicated its new Center for Coastal Geology June 12 at the University of South Florida in St. Petersburg. Robert Halley leads the staff of nine USGS scientists studying coastal erosion and pollution and underwater mineral resources in cooperation with the university's Marine Science Department. Current research is on erosion along Lake Michigan and the Gulf Coast of Louisiana. The number of USGS scientists at the center should increase to 30 over five years.

  9. 3D simulation as a tool for improving the safety culture during remediation work at Andreeva Bay.

    PubMed

    Chizhov, K; Sneve, M K; Szőke, I; Mazur, I; Mark, N K; Kudrin, I; Shandala, N; Simakov, A; Smith, G M; Krasnoschekov, A; Kosnikov, A; Kemsky, I; Kryuchkov, V

    2014-12-01

    Andreeva Bay in northwest Russia hosts one of the former coastal technical bases of the Northern Fleet. Currently, this base is designated as the Andreeva Bay branch of Northwest Center for Radioactive Waste Management (SevRAO) and is a site of temporary storage (STS) for spent nuclear fuel (SNF) and other radiological waste generated during the operation and decommissioning of nuclear submarines and ships. According to an integrated expert evaluation, this site is the most dangerous nuclear facility in northwest Russia. Environmental rehabilitation of the site is currently in progress and is supported by strong international collaboration. This paper describes how the optimization principle (ALARA) has been adopted during the planning of remediation work at the Andreeva Bay STS and how Russian-Norwegian collaboration greatly contributed to ensuring the development and maintenance of a high level safety culture during this process. More specifically, this paper describes how integration of a system, specifically designed for improving the radiological safety of workers during the remediation work at Andreeva Bay, was developed in Russia. It also outlines the 3D radiological simulation and virtual reality based systems developed in Norway that have greatly facilitated effective implementation of the ALARA principle, through supporting radiological characterisation, work planning and optimization, decision making, communication between teams and with the authorities and training of field operators. PMID:25254659

  10. 3D simulation as a tool for improving the safety culture during remediation work at Andreeva Bay.

    PubMed

    Chizhov, K; Sneve, M K; Szőke, I; Mazur, I; Mark, N K; Kudrin, I; Shandala, N; Simakov, A; Smith, G M; Krasnoschekov, A; Kosnikov, A; Kemsky, I; Kryuchkov, V

    2014-12-01

    Andreeva Bay in northwest Russia hosts one of the former coastal technical bases of the Northern Fleet. Currently, this base is designated as the Andreeva Bay branch of Northwest Center for Radioactive Waste Management (SevRAO) and is a site of temporary storage (STS) for spent nuclear fuel (SNF) and other radiological waste generated during the operation and decommissioning of nuclear submarines and ships. According to an integrated expert evaluation, this site is the most dangerous nuclear facility in northwest Russia. Environmental rehabilitation of the site is currently in progress and is supported by strong international collaboration. This paper describes how the optimization principle (ALARA) has been adopted during the planning of remediation work at the Andreeva Bay STS and how Russian-Norwegian collaboration greatly contributed to ensuring the development and maintenance of a high level safety culture during this process. More specifically, this paper describes how integration of a system, specifically designed for improving the radiological safety of workers during the remediation work at Andreeva Bay, was developed in Russia. It also outlines the 3D radiological simulation and virtual reality based systems developed in Norway that have greatly facilitated effective implementation of the ALARA principle, through supporting radiological characterisation, work planning and optimization, decision making, communication between teams and with the authorities and training of field operators.

  11. Environmental Assessment For Cleanup and Closure of the Energy Technology Engineering Center. Final Report

    SciTech Connect

    None, None

    2003-03-01

    DOE analyzed two cleanup and closure alternatives and the No Action Alternative, in accordance with the Council on Environmental Quality regulations implementing NEPA (40 CFR Parts 1500-1508) and DOE's NEPA implementing regulations (10 CFR Part 1021). Under Alternative 1, DOE is proposing to clean up the remaining ETEC facilities using the existing site specific cleanup standard of 15 mrem/yr. (plus DOE's As Low As Reasonably Achievable--ALARA-principle) for decontamination of radiological facilities and surrounding soils (Alternative 1). An annual 15-millirem additional radiation dose to the maximally exposed individual (assumed to be an individual living in a residential setting on Area IV) from all exposure pathways (air, soil, groundwater) equates to an additional theoretical lifetime cancer risk of no more than 3 x 10-4 (3 in 10,000). For perspective, it is estimated that the average individual in the United States receives a dose of about 300 millirem each year from natural sources of radiation. However, actual exposures generally will be much lower as a result of the application of the ''as low as reasonably achievable'' (ALARA) principle. Based on post-remediation verification sampling previous cleanups have generally resulted in a 2 x 10-6 level of residual risk. DOE would decontaminate, decommission, and demolish the remaining radiological facilities. DOE would also decommission and demolish the one remaining sodium facility and all of the remaining uncontaminated support buildings for which it is responsible. The ongoing RCRA corrective action program, including groundwater treatment (interim measures), would continue. Other environmental impacts would include 2.5 x 10-3 fatalities as a result of LLW shipments and 6.0 x 10-3 fatalities as a result of emission exhaust from all shipments. DOE would also decommission and demolish the remaining sodium facility and decommission and demolish all of the remaining

  12. The Watergate Learning Center

    ERIC Educational Resources Information Center

    Training in Business and Industry, 1971

    1971-01-01

    The Watergate Learning Center, recently opened by Sterling Learning Center in Washington, D. C., blueprints the plan established by Sterling and Marriott Hotels for a national chain of learning centers with much the same facilities. (EB)

  13. Fireworks Information Center

    MedlinePlus

    ... Home / Safety Education / Safety Education Centers En Español Fireworks Information Center This is an information center on ... Video Put Safety First This Fourth of July Fireworks Information What are consumer fireworks and where are ...

  14. Children's cancer centers

    MedlinePlus

    Pediatric cancer center; Pediatric oncology center; Comprehensive cancer center ... Treating childhood cancer is not the same as treating adult cancer. The cancers are different. So are the treatments and the ...

  15. Evaluation of multiple emission point facilities

    SciTech Connect

    Miltenberger, R.P.; Hull, A.P.; Strachan, S.; Tichler, J.

    1988-01-01

    In 1970, the New York State Department of Environmental Conservation (NYSDEC) assumed responsibility for the environmental aspect of the state's regulatory program for by-product, source, and special nuclear material. The major objective of this study was to provide consultation to NYSDEC and the US NRC to assist NYSDEC in determining if broad-based licensed facilities with multiple emission points were in compliance with NYCRR Part 380. Under this contract, BNL would evaluate a multiple emission point facility, identified by NYSDEC, as a case study. The review would be a nonbinding evaluation of the facility to determine likely dispersion characteristics, compliance with specified release limits, and implementation of the ALARA philosophy regarding effluent release practices. From the data collected, guidance as to areas of future investigation and the impact of new federal regulations were to be developed. Reported here is the case study for the University of Rochester, Strong Memorial Medical Center and Riverside Campus.

  16. Dryden Flight Research Center: Center Overview

    NASA Technical Reports Server (NTRS)

    Ratnayake, Nalin

    2009-01-01

    This viewgraph presentation describes a general overview of Dryden Flight Research Center. Strategic partnerships, Dryden's mission activity, exploration systems and aeronautics research programs are also described.

  17. Women's Centers: The Frameworks.

    ERIC Educational Resources Information Center

    Wetzel, Jodi

    1988-01-01

    Presents a typology of women's centers and provides an overview of state, regional, and national networks of women's centers, including the evolution of the Women's Center/Services Caucus of the National Women's Studies Association and the more recently organized National Association of Women's Centers. (NB)

  18. Student Success Center Toolkit

    ERIC Educational Resources Information Center

    Jobs For the Future, 2014

    2014-01-01

    "Student Success Center Toolkit" is a compilation of materials organized to assist Student Success Center directors as they staff, launch, operate, and sustain Centers. The toolkit features materials created and used by existing Centers, such as staffing and budgeting templates, launch materials, sample meeting agendas, and fundraising…

  19. From Teacher Centered to Student Centered Learning.

    ERIC Educational Resources Information Center

    Lockemy, M. J.; Summers, Sylvia

    In 1991, staff at the Business Resource Center (BRC) at Tacoma Community College, in Washington, began to reevaluate their approach to serving students. Up to that point, the BRC had been teacher centered, with staff operating under the assumptions that only the students who succeeded were actually "college material," that students would cheat if…

  20. US Department of Energy standardized radiation safety training

    SciTech Connect

    Trinoskey, P.A.

    1997-02-01

    The following working groups were formed under the direction of a radiological training coordinator: managers, supervisors, DOE auditors, ALARA engineers/schedulers/planners, radiological control personnel, radiation-generating device operators, emergency responders, visitors, Pu facilities, U facilities, tritium facilities, accelerator facilities, biomedical researchers. General courses for these groups are available, now or soon, in the form of handbooks.

  1. The development and application of advanced analytical methods to commercial ICF reactor chambers. Final report

    SciTech Connect

    Cousseau, P.; Engelstad, R.; Henderson, D.L.

    1997-10-01

    Progress is summarized in this report for each of the following tasks: (1) multi-dimensional radiation hydrodynamics computer code development; (2) 2D radiation-hydrodynamic code development; (3) ALARA: analytic and Laplacian adaptive radioactivity analysis -- a complete package for analysis of induced activation; (4) structural dynamics modeling of ICF reactor chambers; and (5) analysis of self-consistent target chamber clearing.

  2. 10 CFR 835.1002 - Facility design and modifications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....1002 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Design and Control § 835.1002... occupational exposure is maintained ALARA in developing and justifying facility design and physical controls... areas of continuous occupational occupancy (2000 hours per year) shall be to maintain exposure...

  3. 10 CFR 835.1002 - Facility design and modifications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....1002 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Design and Control § 835.1002... occupational exposure is maintained ALARA in developing and justifying facility design and physical controls... areas of continuous occupational occupancy (2000 hours per year) shall be to maintain exposure...

  4. 10 CFR 835.1002 - Facility design and modifications.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ....1002 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Design and Control § 835.1002... occupational exposure is maintained ALARA in developing and justifying facility design and physical controls... areas of continuous occupational occupancy (2000 hours per year) shall be to maintain exposure...

  5. 10 CFR 835.1002 - Facility design and modifications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ....1002 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Design and Control § 835.1002... occupational exposure is maintained ALARA in developing and justifying facility design and physical controls... areas of continuous occupational occupancy (2000 hours per year) shall be to maintain exposure...

  6. 10 CFR 835.1002 - Facility design and modifications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ....1002 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Design and Control § 835.1002... occupational exposure is maintained ALARA in developing and justifying facility design and physical controls... areas of continuous occupational occupancy (2000 hours per year) shall be to maintain exposure...

  7. Recommended Radiation Protection Practices for Low-Level Waste Disposal Sites

    SciTech Connect

    Hadlock, D. E.; Hooker, C. D.; Herrington, W. N.; Gilchrist, R. L.

    1983-12-01

    The United States Nuclear Regulatory Commission contracted with Pacific Northwest Laboratory (PNL) to provide technical assistance in estsblishing operational guidelines, with respect to radiation control programs and methods of minimizing occupational radiation exposure, at Low-Level Waste (LLW) dis- posal sites. The PNL, through site visits, evaluated operations at LLW dis- posal sites to determine the adequacy of current practices in maintaining occupational exposures as low as is reasonably achievable (ALARA). The data sought included the specifics of: ALARA programs, training programs, external exposure control , internal exposure control , respiratory protection, survei 1 - lance, radioactive waste management, facilities and equipment, and external dose analysis. The results of the study indicated the following: The Radiation Protection and ALARA programs at the three commercial LLW disposal sites were observed to be adequate in scope and content compared to similar programs at other types of nuclear facilities. However, it should be noted that there were many areas that could be improved upon to help ensure the health and safety of the occupa- tionally exposed individuals. As a result, radiation protection practices were recommended with related rationales in order to reduce occupational exposures as far below specified radiation limits as is reasonably achievable. In addition, recommendations were developed for achieving occupational exposure ALARA under the Regulatory Requirements issued in 10 CFR Part 61.

  8. 10 CFR 34.42 - Radiation Safety Officer for industrial radiography.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., and ALARA procedures as required by 10 CFR part 20 of this chapter, and reviewing them regularly to ensure that the procedures in use conform to current 10 CFR part 20 procedures, conform to other NRC... 10 Energy 1 2013-01-01 2013-01-01 false Radiation Safety Officer for industrial radiography....

  9. 10 CFR 34.42 - Radiation Safety Officer for industrial radiography.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., and ALARA procedures as required by 10 CFR part 20 of this chapter, and reviewing them regularly to ensure that the procedures in use conform to current 10 CFR part 20 procedures, conform to other NRC... 10 Energy 1 2010-01-01 2010-01-01 false Radiation Safety Officer for industrial radiography....

  10. 10 CFR 34.42 - Radiation Safety Officer for industrial radiography.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., and ALARA procedures as required by 10 CFR part 20 of this chapter, and reviewing them regularly to ensure that the procedures in use conform to current 10 CFR part 20 procedures, conform to other NRC... 10 Energy 1 2014-01-01 2014-01-01 false Radiation Safety Officer for industrial radiography....

  11. 10 CFR 34.42 - Radiation Safety Officer for industrial radiography.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., and ALARA procedures as required by 10 CFR part 20 of this chapter, and reviewing them regularly to ensure that the procedures in use conform to current 10 CFR part 20 procedures, conform to other NRC... 10 Energy 1 2012-01-01 2012-01-01 false Radiation Safety Officer for industrial radiography....

  12. 10 CFR 34.42 - Radiation Safety Officer for industrial radiography.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., and ALARA procedures as required by 10 CFR part 20 of this chapter, and reviewing them regularly to ensure that the procedures in use conform to current 10 CFR part 20 procedures, conform to other NRC... 10 Energy 1 2011-01-01 2011-01-01 false Radiation Safety Officer for industrial radiography....

  13. Vegetation management 1994 fiscal year end report

    SciTech Connect

    Rodriguez, J.M.

    1995-02-01

    This year-end report evaluates vegetation management operations on the Hanford reservation conducted during fiscal year (FY) 1994 and proposed control methods to be used in FY 1995 and following years. The 1995 control methods proposed are based on an evaluation of past and current ALARA principles, employee safety, environmental impacts, applicable regulations, site esthetics, and other site-specific factors.

  14. Occupational radiation dose assessment for a non site specific spent fuel storage facility

    SciTech Connect

    Hadley, J.; Eble, R.G. Jr.

    1997-12-01

    To expedite the licensing process of the non site specific Centralized Interim Storage Facility (CISF) the Department of Energy has completed a phase I CISF Topical Safety Analysis Report (TSAR). The TSAR will be used in licensing the phase I CISF if a site is designated. An occupational radiation does assessment of the facility operations is performed as part of the phase I CISF design. The first phase of the CISF has the capability to receive, transfer, and store SNF in dual-purpose cask/canister systems (DPC`s). Currently there are five vendor technologies under consideration. The preliminary dose assessment is based on estimated occupational exposures using traditional power plant ISFSI and transport cask handling processes. The second step in the process is to recommend ALARA techniques to reduce potential exposures. A final dose assessment is completed implementing the ALARA techniques and a review is performed to ensure that the design is in compliance with regulatory criteria. The dose assessment and ALARA evaluation are determined using the following input information: Dose estimates from vendor SAR`s; ISFSI experience with similar systems; Traditional methods of operations; Expected CISF cask receipt rates; and feasible ALARA techniques. 5 refs., 1 tab.

  15. Radiological Worker Computer Based Training

    2003-02-06

    Argonne National Laboratory has developed an interactive computer based training (CBT) version of the standardized DOE Radiological Worker training program. This CD-ROM based program utilizes graphics, animation, photographs, sound and video to train users in ten topical areas: radiological fundamentals, biological effects, dose limits, ALARA, personnel monitoring, controls and postings, emergency response, contamination controls, high radiation areas, and lessons learned.

  16. NIST Diffusion Data Center

    National Institute of Standards and Technology Data Gateway

    NIST Diffusion Data Center (Web, free access)   The NIST Diffusion Data Center is a collection of over 14,100 international papers, theses, and government reports on diffusion published before 1980.

  17. Taking Center Stage.

    ERIC Educational Resources Information Center

    Cohen, Andrew

    1995-01-01

    Describes Ohio's 390,000 square-foot Perry High School and Community Fitness Center and its ability to accommodate all segments of both school and community group activities. A list of companies that supply the center is included. (GR)

  18. Tornadoes: A Center Approach.

    ERIC Educational Resources Information Center

    Christman-Rothlein, Liz; Meinbach, Anita M.

    1981-01-01

    Information is given on how to put together a learning center. Discusses information and activity packets for a complete learning center on tornadoes including objectives, directions, materials, photographs of physical arrangements, and posttest. (DC)

  19. Evaluating Teacher Centers

    ERIC Educational Resources Information Center

    Feiman, Sharon

    1977-01-01

    Considers what teacher centers actually are, what they do, what they are supposed to do, and how they are formed. Discusses three types of centers, their organizational structure and function, and the theory underlying them. (Editor/RK)

  20. National Health Information Center

    MedlinePlus

    ... About ODPHP Dietary Guidelines Physical Activity Guidelines Health Literacy and Communication Health Care Quality and Patient Safety Healthy People healthfinder health.gov About ODPHP National Health Information Center National Health Information Center The National Health ...

  1. BKG Data Center

    NASA Technical Reports Server (NTRS)

    Thorandt, Volkmar; Wojdziak, Reiner

    2013-01-01

    This report summarizes the activities and background information of the IVS Data Center for the year 2012. Included is information about functions, structure, technical equipment, and staff members of the BKG Data Center.

  2. ACTS data center

    NASA Technical Reports Server (NTRS)

    Syed, Ali; Vogel, Wolfhard J.

    1993-01-01

    Viewgraphs on ACTS Data Center status report are included. Topics covered include: ACTS Data Center Functions; data flow overview; PPD flow; RAW data flow; data compression; PPD distribution; RAW Data Archival; PPD Audit; and data analysis.

  3. Nonschool Learning Center

    ERIC Educational Resources Information Center

    Brown, Doris B.

    1972-01-01

    Describes a privately financed science center, museum and planetarium - observatory in Twin Falls, Idaho. Centers three hour program includes a lecture on archaeology, time to look at displays, a lunch break, and a planetarium lecture. (RB)

  4. Accredited Birth Centers

    MedlinePlus

    ... Birth Center Accredited 624 Smith Avenue St. Paul, MN 55107 651-689-3988 Accredited since April 2015 ... Birth Center Accredited 1901 44th Avenue North Minneapolis, MN 55343 612-338-2784 Accredited since November 2015 ...

  5. Regional Instrumentation Centers.

    ERIC Educational Resources Information Center

    Cromie, William J.

    1980-01-01

    Focuses on the activities of regional instrumentation centers that utilize the state-of-the-art instruments and methodology in basic scientific research. The emphasis is on the centers involved in mass spectroscopy, magnetic resonance spectroscopy, lasers, and accelerators. (SA)

  6. Teachers' Centers Exchange Directory.

    ERIC Educational Resources Information Center

    Lance, Jeanne; Kreitzman, Ruth

    This directory has three major sections. The foreword is a brief essay describing the purpose of the Teachers' Centers Exchange, the "network" of teachers' centers, and the reasons for compiling and publishing this directory. The second section gives descriptions of 78 teachers' centers in the Exchange's network. These descriptions highlight each…

  7. Data center cooling method

    DOEpatents

    Chainer, Timothy J.; Dang, Hien P.; Parida, Pritish R.; Schultz, Mark D.; Sharma, Arun

    2015-08-11

    A method aspect for removing heat from a data center may use liquid coolant cooled without vapor compression refrigeration on a liquid cooled information technology equipment rack. The method may also include regulating liquid coolant flow to the data center through a range of liquid coolant flow values with a controller-apparatus based upon information technology equipment temperature threshold of the data center.

  8. Center of buoyancy definition

    SciTech Connect

    Sandberg, V.

    1988-12-01

    The center of buoyancy of an arbitrary shaped body is defined in analogy to the center of gravity. The definitions of the buoyant force and center of buoyancy in terms of integrals over the area of the body are converted to volume integrals and shown to have simple intuitive interpretations.

  9. Equality of Fitness Centers

    ERIC Educational Resources Information Center

    Swoyer, Jesse O.

    2008-01-01

    The author, who has been a personal trainer for the past ten years, recently realized that all fitness centers are not equal. In February, he was able to participate in the grand opening of the Center for Independent Living of Central PA (CILCP), a fitness center that is designed to accommodate persons with disabilities living in the Central…

  10. Data Center Tasking.

    ERIC Educational Resources Information Center

    Temares, M. Lewis; Lutheran, Joseph A.

    Operations tasking for data center management is discussed. The original and revised organizational structures of the data center at the University of Miami are also described. The organizational strategy addresses the functions that should be performed by the data center, anticipates the specialized skills required, and addresses personnel…

  11. Language Resource Centers Program

    ERIC Educational Resources Information Center

    Office of Postsecondary Education, US Department of Education, 2012

    2012-01-01

    The Language Resource Centers (LRC) program provides grants to institutions of higher education to establish, strengthen, and operate resource centers that serve to improve the nation's capacity to teach and learn foreign languages. Eligible applicants are institutions of higher education. Duration of the grant is four years. Center activities…

  12. Nuclear Reaction Data Centers

    SciTech Connect

    McLane, V.; Nordborg, C.; Lemmel, H.D.; Manokhin, V.N.

    1988-01-01

    The cooperating Nuclear Reaction Data Centers are involved in the compilation and exchange of nuclear reaction data for incident neutrons, charged particles and photons. Individual centers may also have services in other areas, e.g., evaluated data, nuclear structure and decay data, reactor physics, nuclear safety; some of this information may also be exchanged between interested centers. 20 refs., 1 tab.

  13. THE INSTRUCTIONAL MATERIALS CENTER.

    ERIC Educational Resources Information Center

    ARTZ, DELPHINE; AND OTHERS

    THIS BULLETIN PRESENTS RECOMMENDATIONS WITH REGARD TO PROGRAM, PERSONNEL, AND FACILITIES FOR AN INSTRUCTIONAL MATERIALS CENTER. IT INCLUDES UTILIZATION, MATERIALS, FACILITIES, ORGANIZATION AND LAYOUTS FOR AN INSTRUCTIONAL MATERIALS CENTER. CASE STUDIES AND EXAMPLES ARE PROVIDED FOR MAKING THE MAXIMUM POSSIBLE USAGE OF THE CENTER WITHIN BOTH THE…

  14. Progress report on the management of the NEA ISOE system

    SciTech Connect

    Lazo, E.

    1995-03-01

    The Information System on Occupational Exposure (ISOE) was launched by the Organization for Economic Cooperation and Development (OECD), Nuclear Energy Agency (NEA) on 1 January, 1992, to facilitate the communication of dosimetric and ALARA implementation data among nuclear utilities around the world. After two years of operation the System has become a mature interactive network for transfer of data and experience. Currently, 37 utilities from 12 countries, representing 289 power plants, and 12 national regulatory authorities participate in ISOE. Agreements for cooperation also exist between the NEA and the Commission of the European Communities (CEC), and the Paris Center of the WOrld Association of Nuclear Operators (WANO-PC). In addition, the International Atomic Energy Agency (IAEA) is acting as a co-sponsor of ISOE for the participation of non-NEA member countries. Three Regional Technical Centres, Europe, Asia, and Non-NEA member countries, serve to administer the system. The ISOE Network is comprised of three data bases and a communications network at several levels. The three ISOE data bases include the following types of information: NEA1 - annual plant dosimetric information; NEA2 - plant operational characteristics for dose and dose rate reduction; and NEA3 - job specific ALARA practices and experiences. The ISOE communications network has matured greatly during 1992 and 1993. In addition to having access to the above mentioned data bases, participants may now solicit information on new subjects, through the Technical Centres, from all other participants on a real-time basis. Information Sheets on these studies are produced for distribution to all participants. In addition, Topical Reports on areas of interest are produced, and Topical Meetings are held annually.

  15. A call center primer.

    PubMed

    Durr, W

    1998-01-01

    Call centers are strategically and tactically important to many industries, including the healthcare industry. Call centers play a key role in acquiring and retaining customers. The ability to deliver high-quality and timely customer service without much expense is the basis for the proliferation and expansion of call centers. Call centers are unique blends of people and technology, where performance indicates combining appropriate technology tools with sound management practices built on key operational data. While the technology is fascinating, the people working in call centers and the skill of the management team ultimately make a difference to their companies. PMID:10182518

  16. Emergency Operations Center at Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Caylor, Gary C.

    1997-01-01

    In June 1966, at the start of the Gulf Coast hurricane season, the Johnson Space Center (JSC) celebrated the opening of its new 4,000-square foot, state-of-the-art Emergency Operations Center (EOC). The new EOC has been upgraded and enhanced to support a wide spectrum of emergencies affecting JSC and neighboring communities. One of the main features of the EOC is its premier computerized dispatch center. The new system unites many of JSC's critical emergency functions into one integrated network. It automatically monitors fire alarms, security entrances, and external cameras. It contains the JSC inventory of hazardous materials, by building and room, and can call up Material Safety Data Sheets for most of the generic hazardous materials used on-site. The EOC is available for community use during area emergencies such as hurricanes and is a welcome addition to the Clear Lake/Galveston Bay Area communities' emergency response resources.

  17. Tradeoffs between image quality and dose.

    PubMed

    Seibert, J Anthony

    2004-10-01

    Image quality takes on different perspectives and meanings when associated with the concept of as low as reasonably achievable (ALARA), which is chiefly focused on radiation dose delivered as a result of a medical imaging procedure. ALARA is important because of the increased radiosensitivity of children to ionizing radiation and the desire to keep the radiation dose low. By the same token, however, image quality is also important because of the need to provide the necessary information in a radiograph in order to make an accurate diagnosis. Thus, there are tradeoffs to be considered between image quality and radiation dose, which is the main topic of this article. ALARA does not necessarily mean the lowest radiation dose, nor, when implemented, does it result in the least desirable radiographic images. With the recent widespread implementation of digital radiographic detectors and displays, a new level of flexibility and complexity confronts the technologist, physicist, and radiologist in optimizing the pediatric radiography exam. This is due to the separation of the acquisition, display, and archiving events that were previously combined by the screen-film detector, which allows for compensation for under- and overexposures, image processing, and on-line image manipulation. As explained in the article, different concepts must be introduced for a better understanding of the tradeoffs encountered when dealing with digital radiography and ALARA. In addition, there are many instances during the image acquisition/display/interpretation process in which image quality and associated dose can be compromised. This requires continuous diligence to quality control and feedback mechanisms to verify that the goals of image quality, dose and ALARA are achieved.

  18. 13. SAC command center, weather center, underground structure, building 501, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. SAC command center, weather center, underground structure, building 501, undated - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  19. Test Control Center exhibit

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Have you ever wondered how the engineers at John C. Stennis Space Center in Hancock County, Miss., test fire a Space Shuttle Main Engine? The Test Control Center exhibit at StenniSphere can answer your questions by simulating the test firing of a Space Shuttle Main Engine. A recreation of one of NASA's test control centers, the exhibit explains and portrays the 'shake, rattle and roar' that happens during a real test firing.

  20. Relativistic Guiding Center Equations

    SciTech Connect

    White, R. B.; Gobbin, M.

    2014-10-01

    In toroidal fusion devices it is relatively easy that electrons achieve relativistic velocities, so to simulate runaway electrons and other high energy phenomena a nonrelativistic guiding center formalism is not sufficient. Relativistic guiding center equations including flute mode time dependent field perturbations are derived. The same variables as used in a previous nonrelativistic guiding center code are adopted, so that a straightforward modifications of those equations can produce a relativistic version.

  1. Forensic Science Center

    SciTech Connect

    Andresen, B.; Grant, P.M.

    1994-03-01

    Since 1991, the Laboratory's Forensic Science Center has focused a comprehensive range of analytical expertise on issues related to non proliferation, counterterrorism, and domestic law enforcement. During this short period, LLNL's singular combination of human and technological resources has made the Center among the best of its kind in the world. The Forensic Science Center houses a variety of state-of-the-art analytical tools ranging from gas chromatograph/mass spectrometers to ultratrace DNA detection techniques. The Center's multidisciplinary staff provides expertise in organic and inorganic analytical chemistry, nuclear science, biochemistry, and genetics useful for supporting law enforcement and for verifying compliance with international treaties and agreements.

  2. Data Center at NICT

    NASA Technical Reports Server (NTRS)

    Ichikawa, Ryuichi; Sekido, Mamoru

    2013-01-01

    The Data Center at the National Institute of Information and Communications Technology (NICT) archives and releases the databases and analysis results processed at the Correlator and the Analysis Center at NICT. Regular VLBI sessions of the Key Stone Project VLBI Network were the primary objective of the Data Center. These regular sessions continued until the end of November 2001. In addition to the Key Stone Project VLBI sessions, NICT has been conducting geodetic VLBI sessions for various purposes, and these data are also archived and released by the Data Center.

  3. Surgery center joint ventures.

    PubMed

    Zasa, R J

    1999-01-01

    Surgery centers have been accepted as a cost effective, patient friendly vehicle for delivery of quality ambulatory care. Hospitals and physician groups also have made them the vehicles for coming together. Surgery centers allow hospitals and physicians to align incentives and share benefits. It is one of the few types of health care businesses physicians can own without anti-fraud and abuse violation. As a result, many surgery center ventures are now jointly owned by hospitals and physician groups. This article outlines common structures that have been used successfully to allow both to own and govern surgery centers.

  4. Funding Opportunity: Genomic Data Centers

    Cancer.gov

    Funding Opportunity CCG, Funding Opportunity Center for Cancer Genomics, CCG, Center for Cancer Genomics, CCG RFA, Center for cancer genomics rfa, genomic data analysis network, genomic data analysis network centers,

  5. Johnson Space Center

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Johnson Space Center (JSC) in Houston is NASA's lead center for the space shuttle and the International Space Station programs and for biomedical research. Areas of study include Earth sciences and solar system exploration, astromaterials and space medicine. About 14 000 people, including 3000 civil servants, work at JSC....

  6. Early Childhood Centers

    ERIC Educational Resources Information Center

    Butin, Dan; Woolums, Jennifer

    2009-01-01

    Early childhood centers have become a common and necessary part of millions of Americans' lives. More women in the workforce, longer workweeks, and educational research supporting the importance of early education have all contributed to the rise of early childhood centers throughout the United States. Today, more than 30 percent of children under…

  7. URBAN STUDIES CENTER.

    ERIC Educational Resources Information Center

    HEBOUT, JOHN E.

    THE CENTER WORKS WITH RUTGERS UNIVERSITY TO MAKE USE OF URBAN STUDIES IN APPROPRIATE RESEARCH AND TEACHING PROGRAMS AND IN OTHER INTELLECTUAL SERVICES TO THE COMMUNITY. THE FIVE MAIN RESPONSIBILITIES OF THE CENTER - EXTENSION, RESEARCH AND EDUCATION, LIBRARY SERVICES, OPPORTUNITIES EXPANSION PROJECT, AND THE URBAN FELLOWSHIP PROGRAM - ARE…

  8. Handbook for Learning Centers.

    ERIC Educational Resources Information Center

    Norwalk Board of Education, CT.

    The handbook for learning centers contains guidelines, forms, and supplementary information to be used with all children identified as having a learning disability, mild retardation, or sensory deprivation in the Norwalk, Connecticut public schools. It is stressed that the learning center should provide supportive services for at least 35 minutes…

  9. Natural Science Centers: Directory.

    ERIC Educational Resources Information Center

    Natural Science for Youth Foundation, Roswell, GA.

    A nature center is defined as an organized and permanent nonprofit institution which is essentially educational, scientific, and cultural in purpose with professional staff, and open to the public on some regular schedule. A nature center manages and interprets its lands, native plants and animals and facilities to promote an understanding of…

  10. GSFC VLBI Analysis Center

    NASA Technical Reports Server (NTRS)

    Gordon, David; Ma, Chopo; MacMillan, Dan; Gipson, John; Bolotin, Sergei; Le Bail, Karine; Baver, Karen

    2013-01-01

    This report presents the activities of the GSFC VLBI Analysis Center during 2012. The GSFC VLBI Analysis Center analyzes all IVS sessions, makes regular IVS submissions of data and analysis products, and performs research and software development aimed at improving the VLBI technique.

  11. World Saver Center.

    ERIC Educational Resources Information Center

    Kennedy, Theresa; And Others

    Conservation is a concern for all cultures, and children are familiar with this concept because of recycling in their homes and home towns. The World Saver Center, an example of the thematic approach to learning, is designed to allow children to experiment with concepts of conservation in a familiar setting. The center, designed to resemble an…

  12. NASA Propagation Information Center

    NASA Technical Reports Server (NTRS)

    Smith, Ernest K.; Flock, Warren L.

    1989-01-01

    The NASA Propagation Information Center became formally operational in July 1988. It is located in the Department of Electrical and Computer Engineering of the University of Colorado at Boulder. The Center is several things: a communications medium for the propagation with the outside world, a mechanism for internal communication within the program, and an aid to management.

  13. NASA propagation information center

    NASA Astrophysics Data System (ADS)

    Smith, Ernest K.; Flock, Warren L.

    1990-07-01

    The NASA Propagation Information Center became formally operational in July 1988. It is located in the Department of Electrical and Computer Engineering of the University of Colorado at Boulder. The center is several things: a communications medium for the propagation with the outside world, a mechanism for internal communication within the program, and an aid to management.

  14. Simple Machine Science Centers

    ERIC Educational Resources Information Center

    Chessin, Debby

    2007-01-01

    Science centers can engage students; accommodate different learning styles and individual interests; help students become independent and confident learners; and encourage social skills among students. In this article, the author worked with third-grade students as they completed activities at learning centers during a week-long unit on simple…

  15. Science Center and Attitude

    ERIC Educational Resources Information Center

    Daneshamooz, Saeed; Alamolhodaei, Hassan; Darvishian, Saeed; Daneshamooz, Soniya

    2013-01-01

    The project team gathered data with the assistance of Recreational and Cultural Organization of Mashhad Municipality, Organization of Mashhad Municipality and Science and Astronomy Science Center of Mashhad Municipality, Khorasan Razavi, Islamic Republic of Iran. This paper discusses the effect of science center on attitude of students who visit…

  16. Energy efficient data centers

    SciTech Connect

    Tschudi, William; Xu, Tengfang; Sartor, Dale; Koomey, Jon; Nordman, Bruce; Sezgen, Osman

    2004-03-30

    Data Center facilities, prevalent in many industries and institutions are essential to California's economy. Energy intensive data centers are crucial to California's industries, and many other institutions (such as universities) in the state, and they play an important role in the constantly evolving communications industry. To better understand the impact of the energy requirements and energy efficiency improvement potential in these facilities, the California Energy Commission's PIER Industrial Program initiated this project with two primary focus areas: First, to characterize current data center electricity use; and secondly, to develop a research ''roadmap'' defining and prioritizing possible future public interest research and deployment efforts that would improve energy efficiency. Although there are many opinions concerning the energy intensity of data centers and the aggregate effect on California's electrical power systems, there is very little publicly available information. Through this project, actual energy consumption at its end use was measured in a number of data centers. This benchmark data was documented in case study reports, along with site-specific energy efficiency recommendations. Additionally, other data center energy benchmarks were obtained through synergistic projects, prior PG&E studies, and industry contacts. In total, energy benchmarks for sixteen data centers were obtained. For this project, a broad definition of ''data center'' was adopted which included internet hosting, corporate, institutional, governmental, educational and other miscellaneous data centers. Typically these facilities require specialized infrastructure to provide high quality power and cooling for IT equipment. All of these data center types were considered in the development of an estimate of the total power consumption in California. Finally, a research ''roadmap'' was developed through extensive participation with data center professionals, examination of case

  17. Visitors Center activities

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Astronaut Katherine Hire and LEGO-Master Model Builders assisted children from Mississippi, Louisiana and Mississippi in the building of a 12-foot tall Space Shuttle made entirely from tiny LEGO bricks at the John C. Stennis Space Center Visitors Center in South Mississippi. The shuttle was part of an exhibit titled ' Travel in Space' World Show which depicts the history of flight and space travel from the Wright brothers to future generations of space vehicles. For more information concerning hours of operation or Visitors Center educational programs, call 1-800-237-1821 in Mississippi and Louisiana or (601) 688-2370.

  18. Visitors Center activities

    NASA Technical Reports Server (NTRS)

    1997-01-01

    More than 2,000 children and adults from Mississippi, Louisiana and Alabama recently build a 12-foot tall Space Shuttle made entirely from tiny LEGO bricks at the John C. Stennis Space Center Visitors Center in South Mississippi. The shuttle was part of an exhibit titled 'Travel in Space' World Show which depicts the history of flight and space travel from the Wright brothers to future generations of space vehicles. For more information concerning hours of operation or Visitors Center educational programs, call 1-800-237-1821 in Mississippi and Louisiana or (601) 688-2370.

  19. A Center for All.

    ERIC Educational Resources Information Center

    Leisner, Hava

    2002-01-01

    Describes the building of Princeton University's $42 million Frist Student Center, which incorporates the original physics building, Palmer Hall, and a new addition. Provides information on the architect, construction manager, and product suppliers. Includes photographs. (EV)

  20. Soviet Mission Control Center

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This photo is an overall view of the Mission Control Center in Korolev, Russia during the Expedition Seven mission. The Expedition Seven crew launched aboard a Soyez spacecraft on April 26, 2003. Photo credit: NASA/Bill Ingalls

  1. An Educational Shopping Center

    ERIC Educational Resources Information Center

    De Bernardis, Amo

    1970-01-01

    A comparison is made between the Portland Community College (Oregon) physical plant and a shopping center. The college planners have arranged the facilities to provide useful, practical, and effective educational opportunities for all of the students. (BB)

  2. Precision Joining Center

    NASA Technical Reports Server (NTRS)

    Powell, John W.

    1991-01-01

    The establishment of a Precision Joining Center (PJC) is proposed. The PJC will be a cooperatively operated center with participation from U.S. private industry, the Colorado School of Mines, and various government agencies, including the Department of Energy's Nuclear Weapons Complex (NWC). The PJC's primary mission will be as a training center for advanced joining technologies. This will accomplish the following objectives: (1) it will provide an effective mechanism to transfer joining technology from the NWC to private industry; (2) it will provide a center for testing new joining processes for the NWC and private industry; and (3) it will provide highly trained personnel to support advance joining processes for the NWC and private industry.

  3. National Farm Medicine Center

    MedlinePlus

    ... Work Seguridad Surveillance Cultural Anthropology Veterans to Farmers WI Infant Study Cohort Prevention Agricultural Safety Consulting Agritourism ... Center Marshfield Clinic 1000 North Oak Avenue Marshfield, WI 54449-5790 Phone: 1.800.662.6900 or ...

  4. NMA Analysis Center

    NASA Technical Reports Server (NTRS)

    Kierulf, Halfdan Pascal; Andersen, Per Helge

    2013-01-01

    The Norwegian Mapping Authority (NMA) has during the last few years had a close cooperation with Norwegian Defence Research Establishment (FFI) in the analysis of space geodetic data using the GEOSAT software. In 2012 NMA has taken over the full responsibility for the GEOSAT software. This implies that FFI stopped being an IVS Associate Analysis Center in 2012. NMA has been an IVS Associate Analysis Center since 28 October 2010. NMA's contributions to the IVS as an Analysis Centers focus primarily on routine production of session-by-session unconstrained and consistent normal equations by GEOSAT as input to the IVS combined solution. After the recent improvements, we expect that VLBI results produced with GEOSAT will be consistent with results from the other VLBI Analysis Centers to a satisfactory level.

  5. Tsukuba VLBI Analysis Center

    NASA Technical Reports Server (NTRS)

    Kurihara, Shinobu; Nozawa, Kentaro

    2013-01-01

    The Tsukuba Analysis Center is funded by the Geospatial Information Authority of Japan (GSI). The c5++ analysis software is regularly used for the IVS-INT2 analysis and the ultra-rapid EOP experiments.

  6. Mental Health Screening Center

    MedlinePlus

    ... Center For Clinicians resources, publications Publications for Your Office Resources for Your Patients Information about Depression Information about Bipolar Disorder Wellness Tools DBSA Support Groups Active Research Studies Mood Disorders ...

  7. Fermi Galactic Center Zoom

    NASA Video Gallery

    This animation zooms into an image of the Milky Way, shown in visible light, and superimposes a gamma-ray map of the galactic center from NASA's Fermi. Raw data transitions to a view with all known...

  8. A Money Center.

    ERIC Educational Resources Information Center

    Weir, Merlene J.

    1981-01-01

    A collection of games and activities that teach the concept of money and the actual use of real money are presented. The center for activities described was originally designed for low to average ability pupils. (MP)

  9. NCI Designated Cancer Centers

    MedlinePlus

    ... Laboratory for Cancer Research Partners & Collaborators Spotlight on Scientists Research Areas Cancer Biology Cancer Genomics Causes of Cancer ... Cancer Center History Frederick National Laboratory for Cancer Research Partners ... Profiles in Cancer Research Outstanding Investigator Award Recipients ...

  10. Libraries/Media Centers.

    ERIC Educational Resources Information Center

    American School & University, 2002

    2002-01-01

    Describes the design of notable school libraries and media centers, including the educational context and design goals. Includes information on architects, suppliers, and cost, as well as photographs. (EV)

  11. Reliability Centered Maintenance - Methodologies

    NASA Technical Reports Server (NTRS)

    Kammerer, Catherine C.

    2009-01-01

    Journal article about Reliability Centered Maintenance (RCM) methodologies used by United Space Alliance, LLC (USA) in support of the Space Shuttle Program at Kennedy Space Center. The USA Reliability Centered Maintenance program differs from traditional RCM programs because various methodologies are utilized to take advantage of their respective strengths for each application. Based on operational experience, USA has customized the traditional RCM methodology into a streamlined lean logic path and has implemented the use of statistical tools to drive the process. USA RCM has integrated many of the L6S tools into both RCM methodologies. The tools utilized in the Measure, Analyze, and Improve phases of a Lean Six Sigma project lend themselves to application in the RCM process. All USA RCM methodologies meet the requirements defined in SAE JA 1011, Evaluation Criteria for Reliability-Centered Maintenance (RCM) Processes. The proposed article explores these methodologies.

  12. Carbon Monoxide Information Center

    MedlinePlus

    ... Monoxide Carbon Monoxide Information Center En Español The Invisible Killer Carbon monoxide, also known as CO, is called the "Invisible Killer" because it's a colorless, odorless, poisonous gas. ...

  13. Science Center Goes Underground

    ERIC Educational Resources Information Center

    Modern Schools, 1977

    1977-01-01

    A unique underground science center at Bluffton College, designed to save energy and preserve trees, rolling landscape, and other environmental features of the campus, is under construction in Bluffton, Ohio. (Author)

  14. The EROS Data Center

    USGS Publications Warehouse

    ,

    1975-01-01

    The EROS Data Center, 16 miles (25 km) northeast of Sioux Falls, South Dakota, is operated by the EROS Program to provide access to NASA's LANDSAT [formerly Earth Resources Technology Satellite (ERTS)] imagery, aerial photography acquired by the U.S. Department of the Interior, and photography and imagery acquired by the National Aeronautics and Space Administration (NASA) from research aircraft and from Skylab, Apollo, and Gemini spacecraft. The primary functions of the Center are data storage and reproduction, and user assistance and training. This publication describes the Data Center operations, data products, services, and procedures for ordering remotely sensed data. The EROS Data Center and its principal facility, the 120,000-square-foot (11,200 m2) Karl E. Mundt Federal Building, were dedicated August 7, 1973.

  15. Data center cooling system

    DOEpatents

    Chainer, Timothy J; Dang, Hien P; Parida, Pritish R; Schultz, Mark D; Sharma, Arun

    2015-03-17

    A data center cooling system may include heat transfer equipment to cool a liquid coolant without vapor compression refrigeration, and the liquid coolant is used on a liquid cooled information technology equipment rack housed in the data center. The system may also include a controller-apparatus to regulate the liquid coolant flow to the liquid cooled information technology equipment rack through a range of liquid coolant flow values based upon information technology equipment temperature thresholds.

  16. Transportation Systems Center

    SciTech Connect

    Greer, G.S.

    1992-07-01

    The Transportation Systems Center at Sandia Laboratory performs research, development, and implementation of technologies that enhance the safe movement of people, goods, and information. Our focus is on systems engineering. However, we realize that to understand the puzzle, you must also understand the pieces. This brochure describes some of the activities currently underway at the Center and presents the breadth and depth of our capabilities. Please contact the noted, individuals for more, information.

  17. Lens auto-centering

    NASA Astrophysics Data System (ADS)

    Lamontagne, Frédéric; Desnoyers, Nichola; Doucet, Michel; Côté, Patrice; Gauvin, Jonny; Anctil, Geneviève; Tremblay, Mathieu

    2015-09-01

    In a typical optical system, optical elements usually need to be precisely positioned and aligned to perform the correct optical function. This positioning and alignment involves securing the optical element in a holder or mount. Proper centering of an optical element with respect to the holder is a delicate operation that generally requires tight manufacturing tolerances or active alignment, resulting in costly optical assemblies. To optimize optical performance and minimize manufacturing cost, there is a need for a lens mounting method that could relax manufacturing tolerance, reduce assembly time and provide high centering accuracy. This paper presents a patent pending lens mounting method developed at INO that can be compared to the drop-in technique for its simplicity while providing the level of accuracy close to that achievable with techniques using a centering machine (usually < 5 μm). This innovative auto-centering method is based on the use of geometrical relationship between the lens diameter, the lens radius of curvature and the thread angle of the retaining ring. The autocentering principle and centering test results performed on real optical assemblies are presented. In addition to the low assembly time, high centering accuracy, and environmental robustness, the INO auto-centering method has the advantage of relaxing lens and barrel bore diameter tolerances as well as lens wedge tolerances. The use of this novel lens mounting method significantly reduces manufacturing and assembly costs for high performance optical systems. Large volume productions would especially benefit from this advancement in precision lens mounting, potentially providing a drastic cost reduction.

  18. "Infotonics Technology Center"

    SciTech Connect

    Fritzemeier, L.; Boysel, M. B.; Smith, D. R.

    2004-09-30

    During this grant period July 15, 2002 thru September 30, 2004, the Infotonics Technology Center developed the critical infrastructure and technical expertise necessary to accelerate the development of sensors, alternative lighting and power sources, and other specific subtopics of interest to Department of Energy. Infotonics fosters collaboration among industry, universities and government and operates as a national center of excellence to drive photonics and microsystems development and commercialization. A main goal of the Center is to establish a unique, world-class research and development facility. A state-of-the-art microsystems prototype and pilot fabrication facility was established to enable rapid commercialization of new products of particular interest to DOE. The Center has three primary areas of photonics and microsystems competency: device research and engineering, packaging and assembly, and prototype and pilot-scale fabrication. Center activities focused on next generation optical communication networks, advanced imaging and information sensors and systems, micro-fluidic systems, assembly and packaging technologies, and biochemical sensors. With targeted research programs guided by the wealth of expertise of Infotonics business and scientific staff, the fabrication and packaging facility supports and accelerates innovative technology development of special interest to DOE in support of its mission and strategic defense, energy, and science goals.

  19. Earth Science Information Center

    USGS Publications Warehouse

    ,

    1991-01-01

    An ESIC? An Earth Science Information Center. Don't spell it. Say it. ESIC. It rhymes with seasick. You can find information in an information center, of course, and you'll find earth science information in an ESIC. That means information about the land that is the Earth, the land that is below the Earth, and in some instances, the space surrounding the Earth. The U.S. Geological Survey (USGS) operates a network of Earth Science Information Centers that sell earth science products and data. There are more than 75 ESIC's. Some are operated by the USGS, but most are in other State or Federal agencies. Each ESIC responds to requests for information received by telephone, letter, or personal visit. Your personal visit.

  20. High-volume centers.

    PubMed

    Vespa, P; Diringer, Michael N

    2011-09-01

    Outcome from trauma, surgery, and a variety of other medical conditions has been shown to be positively affected by providing treatment at facilities experiencing a high volume of patients with those conditions. An electronic literature search was made to identify English-language articles available through March 2011, addressing the effect of patient treatment volume on outcome for patients with subarachnoid hemorrhage. Limited data were identified, with 16 citations included in the current review. Over 60% of hospitals fall into the lowest case-volume quartile. Outcome is influenced by patient volume, with better outcome occurring in high-volume centers treating >60 cases per year. Patients treated at low-volume hospitals are less likely to experience definitive treatment. Furthermore, transfer to high-volume centers may be inadequately arranged. Several factors may influence the better outcome at high-volume centers, including the availability of neurointensivists and interventional neuroradiologists. PMID:21792754

  1. Survey: National Meteorological Center

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The National Meteorological Center (NMC) is comprised of three operational divisions (Development, Automation, and Forecast) and an Administrative Division. The Development Division develops and implements mathematical models for forecasting the weather. The Automation Division provides the software and processing services to accommodate the models used in daily forecasts. The Forecasting Division applies a combination of numerical and manual techniques to produce analyses and prognoses up to 120 hr into the future. This guidance material is combined with severe storm information from the National Hurricane Center and the National Severe Storms Forecasting Center to develop locally tailored forecasts by the Weather Service Forecast Offices and, in turn, by the local Weather Service Offices. A very general flow of this information is shown. A more detailed illustration of data flow into, within, and from the NMC is given. The interrelations are depicted between the various meteorological organizations and activities.

  2. MARS Mission research center

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Mars Mission Research Center (M2RC) is one of nine University Space Engineering Research Centers established by NASA in June 1988. It is a cooperative effort between NCSU and A&T in Greensboro. The goal of the Center is to focus on research and educational technologies for planetary exploration with particular emphasis on Mars. The research combines Mission Analysis and Design, Hypersonic Aerodynamics and Propulsion, Structures and Controls, Composite Materials, and Fabrication Methods in a cross-disciplined program directed towards the development of space transportation systems for lunar and planetary travel. The activities of the students and faculty in the M2RC for the period 1 Jul. 1990 to 30 Jun. 1991 are described.

  3. International Water Center

    NASA Astrophysics Data System (ADS)

    The urban district of Nancy and the Town of Nancy, France, have taken the initiative of creating an International Center of Water (Centre International de l'Eau à Nancy—NAN.C.I.E.) in association with two universities, six engineering colleges, the Research Centers of Nancy, the Rhine-Meuse Basin Agency, and the Chamber of Commerce and Industry. The aim of this center is to promote research and technology transfer in the areas of water and sanitation. In 1985 it will initiate a research program drawing on the experience of 350 researchers and engineers of various disciplines who have already been assigned to research in these fields. The research themes, the majority of which will be multidisciplinary, concern aspects of hygiene and health, the engineering of industrial processes, water resources, and the environment and agriculture. A specialist training program offering five types of training aimed at university graduates, graduates of engineering colleges, or experts, will start in October 1984.

  4. The USC Epigenome Center.

    PubMed

    Laird, Peter W

    2009-10-01

    The University of Southern California (USC, CA, USA) has a long tradition of excellence in epigenetics. With the recent explosive growth and technological maturation of the field of epigenetics, it became clear that a dedicated high-throughput epigenomic data production facility would be needed to remain at the forefront of epigenetic research. To address this need, USC launched the USC Epigenome Center as the first large-scale center in academics dedicated to epigenomic research. The Center is providing high-throughput data production for large-scale genomic and epigenomic studies, and developing novel analysis tools for epigenomic research. This unique facility promises to be a valuable resource for multidisciplinary research, education and training in genomics, epigenomics, bioinformatics, and translational medicine.

  5. Control Center Technology Conference Proceedings

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Conference papers and presentations are compiled and cover evolving architectures and technologies applicable to flight control centers. Advances by NASA Centers and the aerospace industry are presented.

  6. Towards cheaper control centers

    NASA Astrophysics Data System (ADS)

    Baize, Lionel

    1994-11-01

    Today, any approach to the design of new space systems must take into consideration an important constraint, namely costs. This approach is our guideline for new missions and also applies to the ground segment, and particularly to the control center. CNES has carried out a study on a recent control center for application satellites in order to take advantage of the experience gained. This analysis, the purpose of which is to determine, a posteriori, the costs of architecture needs and choices, takes hardware and software costs into account and makes a number of recommendations.

  7. Lied Transplant Center

    SciTech Connect

    1996-02-01

    The Department of Energy has prepared an Environmental Assessment (DOE/EA-1143) evaluating the construction, equipping and operation of the proposed Lied Transplant Center at the University of Nebraska Medical Center in Omaha, Nebraska. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an Environmental Statement in not required.

  8. Emergency Operation Center

    NASA Technical Reports Server (NTRS)

    Chinea, Anoushka Z.

    1995-01-01

    The Emergency Operation Center (EOC) is a site from which NASA LaRC Emergency Preparedness Officials exercise control and direction in an emergency. Research was conducted in order to determine what makes an effective EOC. Specifically information concerning the various types of equipment and communication capability that an efficient EOC should contain (i.e., computers, software, telephone systems, radio systems, etc.) was documented. With this information a requirements document was written stating a brief description of the equipment and required quantity to be used in an EOC and then compared to current capabilities at the NASA Langley Research Center.

  9. Mars mission research center

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The Mars Mission Research Center is one of nine University Space Engineering Research Centers established by NASA to broaden the nation's engineering capability to meet the critical needs of the civilian space program. It has the goal of focusing on research and training technologies for planetary exploration with particular emphasis on Mars. The research combines: (1) composite materials and fabrication, (2) light weight structures and controls, and (3) hypersonic aerodynamics and propulsion in a cross disciplined program directed towards the development of the space transportation system for planetary travel.

  10. Towards cheaper control centers

    NASA Technical Reports Server (NTRS)

    Baize, Lionel

    1994-01-01

    Today, any approach to the design of new space systems must take into consideration an important constraint, namely costs. This approach is our guideline for new missions and also applies to the ground segment, and particularly to the control center. CNES has carried out a study on a recent control center for application satellites in order to take advantage of the experience gained. This analysis, the purpose of which is to determine, a posteriori, the costs of architecture needs and choices, takes hardware and software costs into account and makes a number of recommendations.

  11. Ocean Pollution Research Center

    SciTech Connect

    Not Available

    1994-10-01

    The Ocean Pollution Research Center (OPRC) is a University of Miami center based at the Rosenstiel School of Marine and Atmospheric Science (RSMAS) and with significant involvement by the College of Engineering. It was formed in 1992 out of concerns for potential oil spills placing at risk the fragile ecosystems of the Florida Keys. OPRC's scope also includes the Caribbean Sea, Gulf of Mexico, and the South Atlantic Bight. Focus is on the physical transport of oil spills and information management for response operations. Studies of the fates and effects of oil spills are also undertaken.

  12. Vet Centers. Final rule.

    PubMed

    2016-03-01

    The Department of Veterans Affairs (VA) adopts as final an interim final rule that amends its medical regulation that governs Vet Center services. The National Defense Authorization Act for Fiscal Year 2013 (the 2013 Act) requires Vet Centers to provide readjustment counseling services to broader groups of veterans, members of the Armed Forces, including a member of a reserve component of the Armed Forces, and family members of such veterans and members. This final rule adopts as final the regulatory criteria to conform to the 2013 Act, to include new and revised definitions. PMID:26934755

  13. Starting an aphasia center?

    PubMed

    Elman, Roberta J

    2011-08-01

    Starting an aphasia center can be an enormous challenge. This article provides initial issues to review and consider when deciding whether starting a new organization is right for you. Determining the need for the program in your community, the best size and possible affiliation for the organization, and available resources, as well as developing a business plan, marketing the program, and building awareness in the community, are some of the factors that are discussed. Specific examples related to starting the Aphasia Center of California are provided.

  14. User-Centered Design through Learner-Centered Instruction

    ERIC Educational Resources Information Center

    Altay, Burçak

    2014-01-01

    This article initially demonstrates the parallels between the learner-centered approach in education and the user-centered approach in design disciplines. Afterward, a course on human factors that applies learner-centered methods to teach user-centered design is introduced. The focus is on three tasks to identify the application of theoretical and…

  15. Economics of data center optics

    NASA Astrophysics Data System (ADS)

    Huff, Lisa

    2016-03-01

    Traffic to and from data centers is now reaching Zettabytes/year. Even the smallest of businesses now rely on data centers for revenue generation. And, the largest data centers today are orders of magnitude larger than the supercomputing centers of a few years ago. Until quite recently, for most data center managers, optical data centers were nice to dream about, but not really essential. Today, the all-optical data center - perhaps even an all-single mode fiber (SMF) data center is something that even managers of medium-sized data centers should be considering. Economical transceivers are the key to increased adoption of data center optics. An analysis of current and near future data center optics economics will be discussed in this paper.

  16. The Shopping Center. Intermediate.

    ERIC Educational Resources Information Center

    Timmons, Darrell; And Others

    This teaching guide is designed to develop thinking skills of intermediate elementary school children by using the concept of a shopping center. Thinking skills defined in the guide are observing, recalling, noticing differences and similarities, ordering, grouping, concept labeling, classifying, concept testing, inferring causes and effects,…

  17. Alternative Fuels Data Center

    SciTech Connect

    2013-06-01

    Fact sheet describes the Alternative Fuels Data Center, which provides information, data, and tools to help fleets and other transportation decision makers find ways to reduce petroleum consumption through the use of alternative and renewable fuels, advanced vehicles, and other fuel-saving measures.

  18. Learning Center Unlimited.

    ERIC Educational Resources Information Center

    Vivrette, Lyndon

    Cuesta College's Learning Center is designed to totally support the instructional methods of each instructor, to meet the individual learning and study needs of each student, and to provide cultural and educational resource opportunities to the community. The facility is to be a traditional library, whose total media storage and retrieval capacity…

  19. Johnson Space Center Overview

    NASA Technical Reports Server (NTRS)

    Gafka, Tammy; Terrier, Doug; Smith, James

    2011-01-01

    This slide presentation is a review of the work of Johnson Space Center. It includes a section on technology development areas, (i.e., composite structures, non-destructive evaluation, applied nanotechnology, additive manufacturing, and fracture and fatigue analytical methods), a section on structural analysis capabilities within NASA/JSC and a section on Friction stir welding and laser peening.

  20. Science and Technology Centers.

    ERIC Educational Resources Information Center

    Danilov, Victor J.

    Science and technology centers, which are relative newcomers to the museum field, differ from traditional museums in a number of respects. They are concerned with furthering public understanding and appreciation of the physical and biological sciences, engineering, technology, and health and seek to accomplish this goal by making museums both…

  1. The Pupil Appraisal Center.

    ERIC Educational Resources Information Center

    Wilborn, Bobbie; Gentile, Lance M.

    The primary purpose of the Pupil Appraisal Center (PAC) is to promote teacher education by providing teachers and students direct experience in resolving behavioral disorders and learning problems. PAC provides specialized teacher training in counseling, reading, hearing, speech, and language development and provides service to area schools for…

  2. Research: Hyperactivity, Placement Centers

    ERIC Educational Resources Information Center

    Nation's Schools and Colleges, 1975

    1975-01-01

    A diet that emphasizes the elimination of food containing artificial coloring and flavoring from meals served to hyperactive children has met with success in preliminary studies; college placement centers are advised to shift their emphasis from job research and counseling. (Author/MLF)

  3. General Management Training Center.

    ERIC Educational Resources Information Center

    Civil Service Commission, Washington, DC. Bureau of Training.

    A description of the courses and seminars given by the General Management Training Center of the U. S. Civil Service Commission to provide training opportunity for managers working in Washington metropolitan area at all levels of government is given. Categories of courses are: Entry Level Training; Supervisory Training; Management Training;…

  4. Precision Joining Center

    SciTech Connect

    Powell, J.W.; Westphal, D.A.

    1991-08-01

    A workshop to obtain input from industry on the establishment of the Precision Joining Center (PJC) was held on July 10--12, 1991. The PJC is a center for training Joining Technologists in advanced joining techniques and concepts in order to promote the competitiveness of US industry. The center will be established as part of the DOE Defense Programs Technology Commercialization Initiative, and operated by EG G Rocky Flats in cooperation with the American Welding Society and the Colorado School of Mines Center for Welding and Joining Research. The overall objectives of the workshop were to validate the need for a Joining Technologists to fill the gap between the welding operator and the welding engineer, and to assure that the PJC will train individuals to satisfy that need. The consensus of the workshop participants was that the Joining Technologist is a necessary position in industry, and is currently used, with some variation, by many companies. It was agreed that the PJC core curriculum, as presented, would produce a Joining Technologist of value to industries that use precision joining techniques. The advantage of the PJC would be to train the Joining Technologist much more quickly and more completely. The proposed emphasis of the PJC curriculum on equipment intensive and hands-on training was judged to be essential.

  5. A New Media Center.

    ERIC Educational Resources Information Center

    Halliday, Meta A.

    A new media center is planned for a K-8 Department of Defense Dependents School (DoDDS) with approximately 850 students in Heilbronn, West Germany. Heilbronn has a U.S. Army community with the majority of the students being military dependents. The faculty and administration are made up of educators from all over the United States. Although at the…

  6. Resource Centers; Some Ideas.

    ERIC Educational Resources Information Center

    Klitzke, Dwight Mark; Starkey, John

    Teachers, Principals, and other public school personnel interested in establishing learning resource centers are provided with guidelines and a framework within which they can structure their efforts. Professional literature, observation, and experimental trials serve as the sources from which observations are drawn. The advantages of the resource…

  7. The Parent Consultation Center

    ERIC Educational Resources Information Center

    Golden, Larry; Cook, Katrina

    2010-01-01

    The Parent Consultation Center (PCC) is a win-win project that offers free consultation to families about childhood behavior problems and a supervised practice experience for counselors in training. The PCC can be replicated in any school district where there is a nearby university with a counselor education program. This is a guide to starting…

  8. Carolinas Energy Career Center

    SciTech Connect

    Classens, Anver; Hooper, Dick; Johnson, Bruce

    2013-03-31

    Central Piedmont Community College (CPCC), located in Charlotte, North Carolina, established the Carolinas Energy Career Center (Center) - a comprehensive training entity to meet the dynamic needs of the Charlotte region's energy workforce. The Center provides training for high-demand careers in both conventional energy (fossil) and renewable energy (nuclear and solar technologies/energy efficiency). CPCC completed four tasks that will position the Center as a leading resource for energy career training in the Southeast: • Development and Pilot of a New Advanced Welding Curriculum, • Program Enhancement of Non-Destructive Examination (NDE) Technology, • Student Support through implementation of a model targeted toward Energy and STEM Careers to support student learning, • Project Management and Reporting. As a result of DOE funding support, CPCC achieved the following outcomes: • Increased capacity to serve and train students in emerging energy industry careers; • Developed new courses and curricula to support emerging energy industry careers; • Established new training/laboratory resources; • Generated a pool of highly qualified, technically skilled workers to support the growing energy industry sector.

  9. Gullo Student Center, California.

    ERIC Educational Resources Information Center

    Pearson, Clifford A.

    2001-01-01

    Highlights a new college student center in California that serves as a physical and social hub for its campus and has helped transform a bland, bunker-like commuter school into a place that engages students, faculty, and visitors. Examines facility planning and design features; includes photographs and site plans. (GR)

  10. Vocabulary at the Center

    ERIC Educational Resources Information Center

    Benjamin, Amy; Crow, John T.

    2009-01-01

    In "Vocabulary at the Center," Amy Benjamin and John T. Crow identify the most effective methods for extending the use of new words--in every grade level and across all subjects. This book shows teachers how to use context-driven exercises to incorporate new words into other areas of study. This book contains information about the authors, an…

  11. Libraries/Media Centers.

    ERIC Educational Resources Information Center

    American School & University, 2003

    2003-01-01

    Presents K-12 and college libraries/media centers considered outstanding in a competition, which judged the most outstanding learning environments at educational institutions nationwide. Jurors spent two days reviewing projects, highlighting concepts and ideas that made them exceptional. For each citation, the article offers information on the…

  12. A Learner Centered Education.

    ERIC Educational Resources Information Center

    Ballard, Florence N.

    This paper proposes a learner-centered educational system, focusing on aspects that are intrinsically associated with the modern educational system, such as the curriculum, school community, parents, learners, and educational support personnel. It examines: primary level preparation (literacy, numeracy, and basic knowledge; examination and…

  13. INTERMOUNTAIN INDUSTRIAL ASSESSMENT CENTER

    SciTech Connect

    MELINDA KRAHENBUHL

    2010-05-28

    The U. S. Department of Energy’s Intermountain Industrial Assessment Center (IIAC) at the University of Utah has been providing eligible small- and medium-sized manufacturers with no-cost plant assessments since 2001, offering cost-effective recommendations for improvements in the areas of energy efficiency, pollution prevention, and productivity improvement.

  14. Media Center: Operations Handbook.

    ERIC Educational Resources Information Center

    Dependents Schools (DOD), Washington, DC.

    This guide to basic technical procedures recommended in the operation of within-school media centers is intended for all Department of Defense Dependent Schools (DoDDS) media specialists, clerks, aides, and technicians. The first four sections refer to the general media program functions identified in the related manual, "A is for Apple:…

  15. Organizing a Learning Center.

    ERIC Educational Resources Information Center

    Davis, Harold S.

    The organization and development of instructional materials centers (IMC's) as a part of a program of educational improvement is discussed. Analysis is made of the advantages, disadvantages, and organization of centralized IMC's, decentralized IMC's, and coordinated IMC's, with recommendations being made for their development. The operation of…

  16. Nicolaus Copernicus Astronomical Center

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Nicolaus Copernicus Astronomical Center is the largest astronomical institution in Poland, located in Warsaw and founded in 1956. At present it is a government-funded research institute supervised by the Polish Academy of Sciences and licensed by the government of Poland to award PhD and doctor habilitatus degrees in astronomy and astrophysics. In September 1999 staff included 21 senior scientist...

  17. Evidence-Centered Assessment

    ERIC Educational Resources Information Center

    Morrow-Leong, Kimberly

    2016-01-01

    Assessing student understanding is a critical part of a teacher's routine. Most assessments are reviewed with a quick eye, but the evidence-centered assessment strategy encourages us to slow down and look more carefully at student work samples. In this article, the author proposes guidelines for the close examination of student work. These…

  18. School Based Health Centers

    ERIC Educational Resources Information Center

    Children's Aid Society, 2012

    2012-01-01

    School Based Health Centers (SBHC) are considered by experts as one of the most effective and efficient ways to provide preventive health care to children. Few programs are as successful in delivering health care to children at no cost to the patient, and where they are: in school. For many underserved children, The Children's Aid Society's…

  19. Blueprint for a Teacher Center.

    ERIC Educational Resources Information Center

    Weiler, Pat

    1983-01-01

    An approach is outlined for beginning a teacher center: (1) do your homework; (2) generate interest in the center; (3) form a team--establish a teacher center board; and (4) plan a program of action. Five success factors to ensure the center's longevity are listed and a bibliography is included. (JMK)

  20. Teachers' Centers Exchange Directory. 1982.

    ERIC Educational Resources Information Center

    Piper, Barbara

    The 198 teacher centers listed in this directory comprise a network of teacher center practitioners who communicate with the Teachers' Centers Exchange (Far West Laboratory for Educational Research and Development, San Francisco, California). Centers in the United States and Canada are listed alphabetically by state. Information on each center…

  1. American Overseas Research Centers Program

    ERIC Educational Resources Information Center

    Office of Postsecondary Education, US Department of Education, 2012

    2012-01-01

    The American Overseas Research Centers Program provides grants to overseas research centers that are consortia of U.S. institutions of higher education to enable the centers to promote postgraduate research, exchanges, and area studies. Eligible applicants are those consortia of U.S. institutions of higher education centers that: (1) Receive more…

  2. Music Centers: Freedom to Explore.

    ERIC Educational Resources Information Center

    Kenney, Susan

    1989-01-01

    Discusses effective ways to develop and promote educationally sound music programs for preschool children. Covers three types of music learning centers as versatile and inexpensive resources for creating independent learning environments: singing centers, instrument centers, and listening centers. Suggests ideas for group time, and for promoting…

  3. Aperture center energy showcase

    SciTech Connect

    Torres, J. J.

    2012-03-01

    Sandia and Forest City have established a Cooperative Research and Development Agreement (CRADA), and the partnership provides a unique opportunity to take technology research and development from demonstration to application in a sustainable community. A project under that CRADA, Aperture Center Energy Showcase, offers a means to develop exhibits and demonstrations that present feedback to community members, Sandia customers, and visitors. The technologies included in the showcase focus on renewable energy and its efficiency, and resilience. These technologies are generally scalable, and provide secure, efficient solutions to energy production, delivery, and usage. In addition to establishing an Energy Showcase, support offices and conference capabilities that facilitate research, collaboration, and demonstration were created. The Aperture Center project focuses on establishing a location that provides outreach, awareness, and demonstration of research findings, emerging technologies, and project developments to Sandia customers, visitors, and Mesa del Sol community members.

  4. Center for Healthcare Technologies

    SciTech Connect

    Carrano, A.V.

    1994-03-01

    In the U.S., we now spend about 13% of the gross domestic product (CDP) on healthcare. This figure represents nearly $3000 per year per man, woman, and child. Moreover, this expenditure is projected to grow to about 20% of the GDP by the year 2000. Medical research and development accounts for only about 3% of national healthcare spending, and technology development represents only a small fraction of that 3%. New technologies that are far more cost-effective than previous ones - such as minimally invasive surgical procedures, advanced automated diagnostics, and better information systems - could save the nation billions of dollars per year to say nothing of the potential reductions in pain and suffering. A center is described that will coordinate ongoing Laboratory research aimed at developing more cost-effective tools for use by the healthcare community. The new Center for Healthcare Technologies will have many long-term benefits for the region and the nation.

  5. Seismic Data Analysis Center

    NASA Astrophysics Data System (ADS)

    1983-01-01

    The effort required to operate and maintain the Seismic Data Analysis Center during the fiscal year of 1981 is described. Statistics concerning the operational effectiveness and the utilization of the systems at the Center are also given. The major activities associated with maintaining the operating systems, providing data services, and performing maintenance are discussed. The development effort and improvements made to the systems supporting the geophysical research include capabilities added to the Regional Event Location System and the Automatic Association program. Other tasks reported include the result of implementing a front end processor (called an intelligent line interface) to do real time signal detection, the effects of altering the configuration of the detection systems, and the status of software developed to do interactive discrimination. A computer study was performed to determine a preferred system to accomplish the on-line data recording and support the data services activity.

  6. The Galactic Center

    NASA Astrophysics Data System (ADS)

    Genzel, Reinhard; Karas, Vladimír

    2007-04-01

    In the past decade high resolution measurements in the infrared employing adaptive optics imaging on 10m telescopes have allowed determining the three dimensional orbits stars within ten light hours of the compact radio source SgrA* at the Center of the Milky Way. These observations show that SgrA* is a three million solar mass black hole, beyond any reasonable doubt. The Galactic Center thus constitutes the best astrophysical evidence for the existence of black holes which have long been postulated, and is also an ideal 'lab' for studying the physics in the vicinity of such an object. Remarkably, young massive stars are present there and probably have formed in the innermost stellar cusp. Variable infrared and X-ray emission from SgrA* are a new probe of the physics and space time just outside the event horizon.

  7. Bahrain's offshore banking center

    SciTech Connect

    Gerakis, A.S.; Roncesvalles, O.

    1983-01-01

    The economic effects of Bahrain's schemes for licensing offshore banking units (OBUs) were the immediate response of major international banks and the financial services the banking center has rendered by improving regional money and exchange markets at a time when a Middle East link was needed to service the increasing demand for oil-wealth banking services. Bahrain's leadership also created a favorable climate. Aggressive competition from banks in Kuwait and Saudi Arabia have caused some friction, but informal supervision by the Bahrain Monetary Agency (BMA) should be able to avoid serious difficulty. Bahrain's success required a banking infrastructure, a free-enterprise system, a willingness to maintain banking standards, a country small enough to benefit directly from OBU income, and a gap in nearby competing centers. 39 references, 1 figure, 5 tables. (DCK)

  8. Geo-heat center

    SciTech Connect

    Lienau, P.J.; Fornes, A.O.

    1983-01-01

    A summary is presented of the Geo-Heat Center from its origin in 1974. The GHC has been involved in a number of studies and projects. A few of these are: construction of a greenhouse based on geothermal applications, an aquaculture project raising freshwater Malaysian prawns, an investigation of ground water characteristics and corrosion problems associated with the use of geothermal waters, and the assessment of the potential utilization of direct-heat applications of geothermal energy for an agribusiness.

  9. Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Kostyk, Christopher Barry

    2007-01-01

    As part of a session at the 2007 Thermal & Fluids Analysis Workshop (TFAWS), an overview of the operations at NASA Dryden Flight Research Center was given. Mission support at this site includes the Aeronautics Research Mission Directorate (ARMD); Exploration Systems Mission Directorate (ESMD), Science - ER-2; Science - G3 UAVSAR; Science - Ikhana and Space Operations. In addition, the presentation describes TFAWS related work at Dryden.

  10. National Data Buoy Center

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The National Data Buoy Center (NDBC), part of the National Weather Service, is an agency within the National Oceanic and Atmospheric Administration (NOAA) and is supported by personnel and ships of the U.S. Coast Guard. NDBC operates automated observing systems that measure environmental conditions from coastal and remote marine areas. These measurements support the requirements of national and international scope and are used for forecasting, public advisories and warning, and in climate and research programs.

  11. National Cartographic Information Center

    USGS Publications Warehouse

    ,

    1984-01-01

    The National Cartographic Information Center (NCIC) exists to help you find maps of all kinds and much of the data and materials used to compile and to print them. NCIC collects, sorts and describes all types of cartographic information from Federal, State and local government agencies and, where possible, from private companies in the mapping business. It is the public's primary source for cartographic information. (See partial list of Federal agencies and their map and other cartographic products.)

  12. IAA Correlator Center

    NASA Technical Reports Server (NTRS)

    Surkis, Igor; Ken, Voitsekh; Melnikov, Alexey; Mishin, Vladimir; Sokolova, Nadezda; Shantyr, Violet; Zimovsky, Vladimir

    2013-01-01

    The activities of the six-station IAA RAS correlator include regular processing of national geodetic VLBI programs Ru-E, Ru-U, and Ru-F. The Ru-U sessions have been transferred in e-VLBI mode and correlated in the IAA Correlator Center automatically since 2011. The DiFX software correlator is used at the IAA in some astrophysical experiments.

  13. COMPUTATIONAL SCIENCE CENTER

    SciTech Connect

    DAVENPORT,J.

    2004-11-01

    The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security.

  14. Center for Functional Nanomaterials

    SciTech Connect

    BNL

    2008-08-12

    Staff from Brookhaven's new Center for Functional Nanomaterials (CFN) describe how this advanced facility will focus on the development and understanding of nanoscale materials. The CFN provides state-of-the-art capabilities for the fabrication and study of nanoscale materials, with an emphasis on atomic-level tailoring to achieve desired properties and functions. The overarching scientific theme of the CFN is the development and understanding of nanoscale materials that address the Nation's challenges in energy security.

  15. Center for Functional Nanomaterials

    ScienceCinema

    BNL

    2016-07-12

    Staff from Brookhaven's new Center for Functional Nanomaterials (CFN) describe how this advanced facility will focus on the development and understanding of nanoscale materials. The CFN provides state-of-the-art capabilities for the fabrication and study of nanoscale materials, with an emphasis on atomic-level tailoring to achieve desired properties and functions. The overarching scientific theme of the CFN is the development and understanding of nanoscale materials that address the Nation's challenges in energy security.

  16. 3. FLAME DEFLECTOR AT CENTER, CONNECTING TUNNEL AT CENTER RIGHT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. FLAME DEFLECTOR AT CENTER, CONNECTING TUNNEL AT CENTER RIGHT, VIEW TOWARDS SOUTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-1, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  17. Pediatric family-centered rehabilitation.

    PubMed

    Hostler, S L

    1999-08-01

    Family-centered rehabilitation programs are derived from a philosophy of heath care delivery known as family-centered care. The principles of family-centered care are presented with clinical examples. Its origins are reviewed, and the 10-year process of implementation of family-centered care practice and policy at a children's rehabilitation center are described. Profound changes in behavior are required of the health care professionals as meaningful collaboration with families develops. Key elements of a family-centered rehabilitation program include meaningful participation by families in medical decision making and an institutional culture flexible enough to respond to the ongoing collaboration between families and practitioners.

  18. Solar Technology Center

    SciTech Connect

    Boehm, Bob

    2011-04-27

    The Department of Energy, Golden Field Office, awarded a grant to the UNLV Research Foundation (UNLVRF) on August 1, 2005 to develop a solar and renewable energy information center. The Solar Technology Center (STC) is to be developed in two phases, with Phase I consisting of all activities necessary to determine feasibility of the project, including design and engineering, identification of land access issues and permitting necessary to determine project viability without permanently disturbing the project site, and completion of a National Environmental Policy Act (NEPA) Environmental Assessment. Phase II is the installation of infrastructure and related structures, which leads to commencement of operations of the STC. The STC is located in the Boulder City designated 3,000-acre Eldorado Valley Energy Zone, approximately 15 miles southwest of downtown Boulder City and fronting on Eldorado Valley Drive. The 33-acre vacant parcel has been leased to the Nevada Test Site Development Corporation (NTSDC) by Boulder City to accommodate a planned facility that will be synergistic with present and planned energy projects in the Zone. The parcel will be developed by the UNLVRF. The NTSDC is the economic development arm of the UNLVRF. UNLVRF will be the entity responsible for overseeing the lease and the development project to assure compliance with the lease stipulations established by Boulder City. The STC will be operated and maintained by University of Nevada, Las Vegas (UNLV) and its Center for Energy Research (UNLV-CER). Land parcels in the Eldorado Valley Energy Zone near the 33-acre lease are committed to the construction and operation of an electrical grid connected solar energy production facility. Other projects supporting renewable and solar technologies have been developed within the energy zone, with several more developments in the horizon.

  19. 3. CONNECTING TUNNEL AT BOTTOM CENTER TO CENTER, CONTROL BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. CONNECTING TUNNEL AT BOTTOM CENTER TO CENTER, CONTROL BUILDING B AT CENTER, WATER TANK TO UPPER LEFT, VIEW TOWARDS WEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Control Building B, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  20. [Client centered psychotherapy].

    PubMed

    Werthmann, H V

    1979-01-01

    In the discussion concerning which psychotherapeutic methods should come under the auspices of the medical health system in West Germany, the question is raised regarding the client-centered therapy of Carl Rogers. Can it be considered a distinct psychotherapeutic method? A review of the scientific literature dealing with this method shows that it provides neither a theory of mental illness nor a theory of clinical application based on individual cases or specific neurotic disturbances, Therefore it should be categorized as a useful method of communication in the field of psychology and not as a therapeutic method for treating mental illness.

  1. FFTF Work Control Center

    SciTech Connect

    Talbot, M.D.

    1986-01-01

    A centralized Work Control Center (WCC) is responsible for assuring that maintenance and modification of the Fast Flux Test Facility (FFTF) is performed in accordance with written procedures that ensure design integrity, personnel and public safety, and equipment and system availability for the computerized Master Information Data Acquisition System (MIDAS). Each maintenance task is logged into MIDAS from a Work Request from that has been reviewed and prioritized by the WCC. Thereafter, MIDAS is used to track schedule, manpower and material requirements; authorize field work; and close out the maintenance activity.

  2. Financing a Simulation Center.

    PubMed

    Tsuda, Shawn; Mohsin, Adnan; Jones, Daniel

    2015-08-01

    As simulation-based training has become established within medical and health professional disciplines, skills training laboratories have become a standard in surgery training programs. In 2008, the American College of Surgeons and Association of Program Directors in Surgery developed a simulation-based surgical skills curriculum; the Residency Review Committee for Surgery of the Accreditation Council for Graduate Medical Education mandated access to skills laboratories for all surgery programs. Establishing a surgical skills laboratory and adapting the training curriculum requires a significant amount of resources. This article discusses the financial aspects of establishing a training center, from funding opportunities to budgeting considerations.

  3. Interferometry science center

    NASA Technical Reports Server (NTRS)

    Sargent, A. I.

    2002-01-01

    The Interferometry Science Center (ISC) is operated jointly by Caltech and JPL and is part of NASA's Navigator Program. The ISC has been created to facilitate the timely and successful execution of scientific investigations within the Navigator program, particularly those that rely on observations from NASA's interferometer projects. Currently, ISC is expected to provide full life cycle support for the Keck Interferometer, the Starlight mission, the Space Interferometry Mission, and the Terrestrial Planet Finder Mission. The nature and goals of ISc will be described.

  4. INDUSTRIAL ASSESSMENT CENTER PROGRAM

    SciTech Connect

    ASFAW BEYENE

    2008-09-29

    Since its establishment in 1990, San Diego State University’s Industrial Assessment Center (IAC) has served close to 400 small and medium-sized manufacturing plants in Southern California. SDSU/IAC’s efforts to transfer state-of-the-art technologies to industry have increased revenues, cultivated creativity, improved efficiencies, and benefited the environment. A substantial benefit from the program has been the ongoing training of engineering faculty and students. During this funding cycle, SDSU/IAC has trained 31 students, 7 of the graduate. A total of 92 assessments and 108 assessment days were completed, resulting in 638 assessment recommendations.

  5. COMPUTATIONAL SCIENCE CENTER

    SciTech Connect

    DAVENPORT, J.

    2005-11-01

    The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include, for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security. To achieve our goals we have established a close alliance with applied mathematicians and computer scientists at Stony Brook and Columbia Universities.

  6. PMD IVS Analysis Center

    NASA Technical Reports Server (NTRS)

    Tornatore, Vincenza

    2013-01-01

    The main activities carried out at the PMD (Politecnico di Milano DIIAR) IVS Analysis Center during 2012 are briefly higlighted, and future plans for 2013 are sketched out. We principally continued to process European VLBI sessions using different approaches to evaluate possible differences due to various processing choices. Then VLBI solutions were also compared to the GPS ones as well as the ones calculated at co-located sites. Concerning the observational aspect, several tests were performed to identify the most suitable method to achieve the highest possible accuracy in the determination of GNSS (GLOBAL NAVIGATION SATELLITE SYSTEM) satellite positions using the VLBI technique.

  7. [Client centered psychotherapy].

    PubMed

    Werthmann, H V

    1979-01-01

    In the discussion concerning which psychotherapeutic methods should come under the auspices of the medical health system in West Germany, the question is raised regarding the client-centered therapy of Carl Rogers. Can it be considered a distinct psychotherapeutic method? A review of the scientific literature dealing with this method shows that it provides neither a theory of mental illness nor a theory of clinical application based on individual cases or specific neurotic disturbances, Therefore it should be categorized as a useful method of communication in the field of psychology and not as a therapeutic method for treating mental illness. PMID:543319

  8. Seafloor manifold center installed

    SciTech Connect

    Edmiston, K.

    1982-07-01

    The Shell/Esso Underwater Manifold Center (UMC), designed and tested as a diverless production facility, is a significant step toward really deep water oil and gas production. In May 1982, the 2100 metric ton unit was towed 645 miles from its Dutch fabrication yard and precisely emplaced in 500 ft water in the Cormorant field in only 6 days. When fully installed with all of its wells drilled and testing completed, the UMC will have cost an estimated $700 million. During its anticipated 25 yr operating life, the UMC is expected to produce ca 110 million bbl from the central Cormorant area. Design and operational criteria are described.

  9. The EROS Data Center

    USGS Publications Warehouse

    ,

    1972-01-01

    The EROS Data Center in Sioux Falls, South Dakota, is operated for the Earth Resources Observation Systems Program of the Department of the Interior by the Topographic Division of the Geological Survey to provide access to Earth Resources Technology Satellite (ERTS) imagery, USGS aerial photography, and NASA aircraft data for the general public, domestic government agencies at all levels, and foreign government agencies at all levels, and foreign governments. Facilities are available for data storage, retrieval, reproduction, and dissemination, and for user assistance and training.

  10. A center's callosities.

    PubMed

    Adams, B B; Lucky, A W

    2001-02-01

    We present a case report of a 14-year-old white male who developed hyperkeratotic plaques on the distal aspects of 2 toes. He was referred by his primary care physician for the treatment of onychomycosis. With questioning, the patient stated that he played center for his high school basketball team. After physical examination, he was diagnosed with callosities caused by his basketball activities. Proper nail hygiene and wearing of larger footwear resulted in improvement of his callosities. Sports-related cutaneous injuries should be included in the differential diagnosis of nail and toe abnormalities.

  11. Center for Beam Physics, 1992

    SciTech Connect

    Not Available

    1993-06-01

    This report contains the following information on the center for beam physics: Facilities; Organizational Chart; Roster; Profiles of Staff; Affiliates; Center Publications (1991--1993); and 1992 Summary of Activities.

  12. National Center on Family Homelessness

    MedlinePlus

    ... You are here Home National Center on Family Homelessness Center A staggering 2.5 million children are ... raise awareness of the current state of child homelessness in the United States, documents the number of ...

  13. Italy INAF Data Center Report

    NASA Technical Reports Server (NTRS)

    Negusini, M.; Sarti, P.

    2013-01-01

    This report summarizes the activities of the Italian INAF VLBI Data Center. Our Data Center is located in Bologna, Italy and belongs to the Institute of Radioastronomy, which is part of the National Institute of Astrophysics.

  14. Dialysis centers - what to expect

    MedlinePlus

    ... in a treatment center. This article focuses on hemodialysis at a treatment center. ... JT, Blake PG, Ing TS, eds. Handbook of Dialysis . 5th ed. ... TA. Hemodialysis. In: Skorecki K, Chertow GM, Marsden PA, Taal ...

  15. Centers for Medicare & Medicaid Services

    MedlinePlus

    ... Websites Visit other Centers for Medicare and Medicaid Services & Health and Human Services Websites section Expand Medicare.gov Link to the ... helpful links for all Centers for Medicare & Medicaid Services websites section Expand Web Policies & Important Links Privacy ...

  16. Data center coolant switch

    SciTech Connect

    Iyengar, Madhusudan K.; Parida, Pritish R.; Schultz, Mark D.

    2015-10-06

    A data center cooling system is operated in a first mode; it has an indoor portion wherein heat is absorbed from components in the data center, and an outdoor heat exchanger portion wherein outside air is used to cool a first heat transfer fluid (e.g., water) present in at least the outdoor heat exchanger portion of the cooling system during the first mode. The first heat transfer fluid is a relatively high performance heat transfer fluid (as compared to the second fluid), and has a first heat transfer fluid freezing point. A determination is made that an appropriate time has been reached to switch from the first mode to a second mode. Based on this determination, the outdoor heat exchanger portion of the data cooling system is switched to a second heat transfer fluid, which is a relatively low performance heat transfer fluid, as compared to the first heat transfer fluid. It has a second heat transfer fluid freezing point lower than the first heat transfer fluid freezing point, and the second heat transfer fluid freezing point is sufficiently low to operate without freezing when the outdoor air temperature drops below a first predetermined relationship with the first heat transfer fluid freezing point.

  17. Sustainable Biofuels Development Center

    SciTech Connect

    Reardon, Kenneth F.

    2015-03-01

    The mission of the Sustainable Bioenergy Development Center (SBDC) is to enhance the capability of America’s bioenergy industry to produce transportation fuels and chemical feedstocks on a large scale, with significant energy yields, at competitive cost, through sustainable production techniques. Research within the SBDC is organized in five areas: (1) Development of Sustainable Crops and Agricultural Strategies, (2) Improvement of Biomass Processing Technologies, (3) Biofuel Characterization and Engine Adaptation, (4) Production of Byproducts for Sustainable Biorefining, and (5) Sustainability Assessment, including evaluation of the ecosystem/climate change implication of center research and evaluation of the policy implications of widespread production and utilization of bioenergy. The overall goal of this project is to develop new sustainable bioenergy-related technologies. To achieve that goal, three specific activities were supported with DOE funds: bioenergy-related research initiation projects, bioenergy research and education via support of undergraduate and graduate students, and Research Support Activities (equipment purchases, travel to attend bioenergy conferences, and seminars). Numerous research findings in diverse fields related to bioenergy were produced from these activities and are summarized in this report.

  18. Patient-centered Radiology.

    PubMed

    Itri, Jason N

    2015-10-01

    Patient-centered care (ie, care organized around the patient) is a model in which health care providers partner with patients and families to identify and satisfy patients' needs and preferences. In this model, providers respect patients' values and preferences, address their emotional and social needs, and involve them and their families in decision making. Radiologists have traditionally been characterized as "doctor-to-doctor" consultants who are distanced from patients and work within a culture that does not value patient centeredness. As medicine becomes more patient driven and the trajectory of health care is toward increasing patient self-reliance, radiologists must change the perception that they are merely consultants and become more active participants in patient care by embracing greater patient interaction. The traditional business model for radiology practices, which devalues interaction between patients and radiologists, must be transformed into a patient-centered model in which radiologists are reintegrated into direct patient care and imaging processes are reorganized around patients' needs and preferences. Expanding radiology's core assets to include direct patient care may be the most effective deterrent to the threat of commoditization. As the assault on the growth of Medicare spending continues, with medical imaging as a highly visible target, radiologists must adapt to the changing landscape by focusing on their most important consumer: the patient. This may yield substantial benefits in the form of improved quality and patient safety, reduced costs, higher-value care, improved patient outcomes, and greater patient and provider satisfaction. PMID:26466190

  19. Core Research Center

    USGS Publications Warehouse

    Hicks, Joshua; Adrian, Betty

    2009-01-01

    The Core Research Center (CRC) of the U.S. Geological Survey (USGS), located at the Denver Federal Center in Lakewood, Colo., currently houses rock core from more than 8,500 boreholes representing about 1.7 million feet of rock core from 35 States and cuttings from 54,000 boreholes representing 238 million feet of drilling in 28 States. Although most of the boreholes are located in the Rocky Mountain region, the geologic and geographic diversity of samples have helped the CRC become one of the largest and most heavily used public core repositories in the United States. Many of the boreholes represented in the collection were drilled for energy and mineral exploration, and many of the cores and cuttings were donated to the CRC by private companies in these industries. Some cores and cuttings were collected by the USGS along with other government agencies. Approximately one-half of the cores are slabbed and photographed. More than 18,000 thin sections and a large volume of analytical data from the cores and cuttings are also accessible. A growing collection of digital images of the cores are also becoming available on the CRC Web site Internet http://geology.cr.usgs.gov/crc/.

  20. Cryogenic Information Center

    NASA Technical Reports Server (NTRS)

    Mohling, Robert A.; Marquardt, Eric D.; Fusilier, Fred C.; Fesmire, James E.

    2003-01-01

    The Cryogenic Information Center (CIC) is a not-for-profit corporation dedicated to preserving and distributing cryogenic information to government, industry, and academia. The heart of the CIC is a uniform source of cryogenic data including analyses, design, materials and processes, and test information traceable back to the Cryogenic Data Center of the former National Bureau of Standards. The electronic database is a national treasure containing over 146,000 specific bibliographic citations of cryogenic literature and thermophysical property data dating back to 1829. A new technical/bibliographic inquiry service can perform searches and technical analyses. The Cryogenic Material Properties (CMP) Program consists of computer codes using empirical equations to determine thermophysical material properties with emphasis on the 4-300K range. CMP's objective is to develop a user-friendly standard material property database using the best available data so government and industry can conduct more accurate analyses. The CIC serves to benefit researchers, engineers, and technologists in cryogenics and cryogenic engineering, whether they are new or experienced in the field.

  1. The Backgrounds Data Center

    NASA Technical Reports Server (NTRS)

    Snyder, W. A.; Gursky, H.; Heckathorn, H. M.; Lucke, R. L.; Berg, S. L.; Dombrowski, E. G.; Kessel, R. A.

    1993-01-01

    The Strategic Defense Initiative Organization has created data centers for midcourse, plumes, and backgrounds phenomenologies. The Backgrounds Data Center (BDC) has been designated as the prime archive for data collected by SDIO programs. The BDC maintains a Summary Catalog that contains 'metadata,' that is, information about data, such as when the data were obtained, what the spectral range of the data is, and what region of the Earth or sky was observed. Queries to this catalog result in a listing of all data sets (from all experiments in the Summary Catalog) that satisfy the specified criteria. Thus, the user can identify different experiments that made similar observations and order them from the BDC for analysis. On-site users can use the Science Analysis Facility (SAFE for this purpose. For some programs, the BDC maintains a Program Catalog, which can classify data in as many ways as desired (rather than just by position, time, and spectral range as in the Summary Catalog). For example, data sets could be tagged with such diverse parameters as solar illumination angle, signal level, or the value of a particular spectral ratio, as long as these quantities can be read from the digital record or calculated from it by the ingest program. All unclassified catalogs and unclassified data will be remotely accessible.

  2. Backgrounds Data Center

    NASA Astrophysics Data System (ADS)

    Snyder, William A.; Gursky, Herbert; Heckathorn, Harry M.; Lucke, Bob L.; Dorland, Bryan N.; Kessel, R. A.; Berg, S. L.; Dombrowski, E. G.

    1994-09-01

    The Backgrounds Data Center (BDC) is the designated archive for backgrounds data collected by Ballistic Missile Defense Organization (BMDO) programs, some of which include ultraviolet sensors. Currently, the BDC holds ultraviolet data from the IBSS, UVPI, UVLIM, and FUVCAM sensors. The BDC will also be the prime archive for Midcourse Space Experiment (MSX) data and is prepared to negotiate with program managers to handle other datasets. The purpose of the BDC is to make data accessible to users and to assist them in analyzing it. The BDC maintains the Science Catalog Information Exchange System (SCIES) allowing remote users to log in, read or post notices about current programs, search the catalogs for datasets of interest, and submit orders for data. On-site facilities are also available for the analysis of data, and consist of VMS and UNIX workstations with access to software analysis packages such as IDL, IRAF, and Khoros. Either on-site or remotely, users can employ the BDC-developed graphical user interface called the Visual Interface for Space and Terrestrial Analysis (VISTA) to generate catalog queries and to display and analyze data. SCIES and VISTA permit nearly complete access to BDC services and capabilities without the need to be physically present at the data center.

  3. Distributed Active Archive Center

    NASA Technical Reports Server (NTRS)

    Bodden, Lee; Pease, Phil; Bedet, Jean-Jacques; Rosen, Wayne

    1993-01-01

    The Goddard Space Flight Center Version 0 Distributed Active Archive Center (GSFC V0 DAAC) is being developed to enhance and improve scientific research and productivity by consolidating access to remote sensor earth science data in the pre-EOS time frame. In cooperation with scientists from the science labs at GSFC, other NASA facilities, universities, and other government agencies, the DAAC will support data acquisition, validation, archive and distribution. The DAAC is being developed in response to EOSDIS Project Functional Requirements as well as from requirements originating from individual science projects such as SeaWiFS, Meteor3/TOMS2, AVHRR Pathfinder, TOVS Pathfinder, and UARS. The GSFC V0 DAAC has begun operational support for the AVHRR Pathfinder (as of April, 1993), TOVS Pathfinder (as of July, 1993) and the UARS (September, 1993) Projects, and is preparing to provide operational support for SeaWiFS (August, 1994) data. The GSFC V0 DAAC has also incorporated the existing data, services, and functionality of the DAAC/Climate, DAAC/Land, and the Coastal Zone Color Scanner (CZCS) Systems.

  4. Correlates of Senior Center Participation

    ERIC Educational Resources Information Center

    Hanssen, Anne M.; And Others

    1978-01-01

    To determine the extent to which multiservice centers serve the varied needs of the senior population, this study examined users of a Senior Center and three groups of nonusers: persons only attending a nutrition site, former center participants, and persons who never participated. Differences were found in life styles. (Author)

  5. Guidelines for Engineering Research Centers.

    ERIC Educational Resources Information Center

    National Academy of Engineering, Washington, DC.

    This report responds to a National Science Foundation (NSF) request to provide advice on developing Engineering Research Centers, which NSF described as "on-campus centers that would house cross-disciplinary experimental research activities." In addition to conducting such research, the principal purposes of the centers are to provide a means for…

  6. Centers for Enhancement of Education.

    ERIC Educational Resources Information Center

    Biggerstaff, Ed

    The Center for Enhancement of Education organizes seven specialized centers within the School of Education and Human Services to provide faculty and students with the opportunity for research, development, and public service activities that complement and supplement classroom teaching. Each of the seven centers stresses one of the following…

  7. Premier Forecasting Center Avoids Ax

    NASA Astrophysics Data System (ADS)

    Simpson, Sarah

    2004-03-01

    Last fall, the U.S. Senate proposed eliminating all 2004 funding for NOAA's Space Environment Center (SEC), but fortunately for the world's premier space weather forecasting center and its myriad customers, the Senate did not get its way. When the full Congress passed the final budget on 22 January, the center's budget for the year was at least restored-at least partially.

  8. NASA Glenn Research Center Overview

    NASA Technical Reports Server (NTRS)

    Sehra, Arun K.

    2002-01-01

    This viewgraph presentation provides information on the NASA Glenn Research Center. The presentation is a broad overview, including the chain of command at the center, its aeronautics facilities, and the factors which shape aerospace product line integration at the center. Special attention is given to the future development of high fidelity probabilistic methods, and NPSS (Numerical Propulsion System Simulation).

  9. Industry Invests in Research Centers.

    ERIC Educational Resources Information Center

    Ploch, Margie

    1983-01-01

    Universities and industry are forging new relationships to support academic research and industrial research and development, including the establishment of university/cooperative research centers. Discusses various cooperative projects at these research centers. Includes a list of representative R&D centers in biotechnology, building…

  10. Industrial Assessment Center Program

    SciTech Connect

    Kolarik, William J.

    2007-02-26

    Over the five-year period (2002-2006) the Oklahoma State University Industrial Assessment Center (IAC) performed energy assessments for 106 different clients, writing 835 recommendations, for a total of $23,937,099 in potential estimated annual savings. IAC clients served consisted of small and medium-sized manufacturers ranging from food manufactures to foundries. The OSU IAC served clients in Oklahoma, Kansas, Missouri, Arkansas, and Texas. In addition to client service, student training and instruction was a major accomplishment. The OSU IAC employed (and trained) 12 baccalaureate-level students, 17 masters-level graduate students, and 7 doctoral-level graduate students. Most are practicing in the energy management area. Training was focused on both energy assessment and safety. Safety training was both center-based training as well as on-site training. Energy management related training was focused on classroom (for academic credit) work at both the undergraduate and graduate level. IEM 4923 (Energy and Water Management) was developed to serve both the IAC as well as non-IAC students. It was delivered once per year, with enrollments of typically 10 to 20 students. This course was required for IAC student employees, both undergraduate and graduate. This course was patterned after the AEE CEM (five-day) course for practicing professionals. IEM 4923 required each student to attend at least one on-site assessment and write at least one recommendation for their client’s report. Hence, a hands-on approach was practiced. Advance level courses were used to train graduate students. Two courses played major roles here: IEM 5923 (Advanced Energy and Water Management) and IEM 5943 (Hazardous Material and Waste). Graduate student participation in these courses helped the IAC to gain additional perspectives in on-site assessment and resulting recommendations. Numerous hands-on demonstration/training was conducted by directors and graduate students in order to gain

  11. COMPUTATIONAL SCIENCE CENTER

    SciTech Connect

    DAVENPORT, J.

    2006-11-01

    Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to bring together

  12. Industrial Assessment Center

    SciTech Connect

    J. Kelly Kissock; Becky Blust

    2007-04-17

    The University of Dayton (UD) performed energy assessments, trained students and supported USDOE objectives. In particular, the UD Industrial Assessment Center (IAC) performed 96 industrial energy assessment days for mid-sized manufacturers. The average identified and implemented savings on each assessment were $261,080 per year and $54,790 per year. The assessments served as direct training in industrial energy efficiency for 16 UD IAC students. The assessments also served as a mechanism for the UD IAC to understand manufacturing energy use and improve upon the science of manufacturing energy efficiency. Specific research results were published in 16 conference proceedings and journals, disseminated in 22 additional invited lectures, and shared with the industrial energy community through the UD IAC website.

  13. Supernova Science Center

    SciTech Connect

    S. E. Woosley

    2008-05-05

    The Supernova Science Center (SNSC) was founded in 2001 to carry out theoretical and computational research leading to a better understanding of supernovae and related transients. The SNSC, a four-institutional collaboration, included scientists from LANL, LLNL, the University of Arizona (UA), and the University of California at Santa Cruz (UCSC). Intitially, the SNSC was funded for three years of operation, but in 2004 an opportunity was provided to submit a renewal proposal for two years. That proposal was funded and subsequently, at UCSC, a one year no-cost extension was granted. The total operational time of the SNSC was thus July 15, 2001 - July 15, 2007. This document summarizes the research and findings of the SNSC and provides a cummulative publication list.

  14. Interactive design center.

    SciTech Connect

    Pomplun, Alan R. (Sandia National Laboratories, Livermore, CA)

    2005-07-01

    Sandia's advanced computing resources provide researchers, engineers and analysts with the ability to develop and render highly detailed large-scale models and simulations. To take full advantage of these multi-million data point visualizations, display systems with comparable pixel counts are needed. The Interactive Design Center (IDC) is a second generation visualization theater designed to meet this need. The main display integrates twenty-seven projectors in a 9-wide by 3-high array with a total display resolution of more than 35 million pixels. Six individual SmartBoard displays offer interactive capabilities that include on-screen annotation and touch panel control of the facility's display systems. This report details the design, implementation and operation of this innovative facility.

  15. Industrial Assessment Center Program

    SciTech Connect

    Dr. Dereje Agonafer

    2007-11-30

    The work described in this report was performed under the direction of the Industrial Assessment Center (IAC) at University of Texas at Arlington. The IAC at The University of Texas at Arlington is managed by Rutgers University under agreement with the United States Department of Energy Office of Industrial Technology, which financially supports the program. The objective of the IAC is to identify, evaluate, and recommend, through analysis of an industrial plant’s operations, opportunities to conserve energy and prevent pollution, thereby reducing the associated costs. IAC team members visit and survey the plant. Based upon observations made in the plant, preventive/corrective actions are recommended. At all times we try to offer specific and quantitative recommendations of cost savings, energy conservation, and pollution prevention to the plants we serve.

  16. Concurrent engineering research center

    NASA Technical Reports Server (NTRS)

    Callahan, John R.

    1995-01-01

    The projects undertaken by The Concurrent Engineering Research Center (CERC) at West Virginia University are reported and summarized. CERC's participation in the Department of Defense's Defense Advanced Research Project relating to technology needed to improve the product development process is described, particularly in the area of advanced weapon systems. The efforts committed to improving collaboration among the diverse and distributed health care providers are reported, along with the research activities for NASA in Independent Software Verification and Validation. CERC also takes part in the electronic respirator certification initiated by The National Institute for Occupational Safety and Health, as well as in the efforts to find a solution to the problem of producing environment-friendly end-products for product developers worldwide. The 3M Fiber Metal Matrix Composite Model Factory Program is discussed. CERC technologies, facilities,and personnel-related issues are described, along with its library and technical services and recent publications.

  17. RIKEN BNL Research Center

    NASA Astrophysics Data System (ADS)

    Samios, Nicholas

    2014-09-01

    Since its inception in 1997, the RIKEN BNL Research Center (RBRC) has been a major force in the realms of Spin Physics, Relativistic Heavy Ion Physics, large scale Computing Physics and the training of a new generation of extremely talented physicists. This has been accomplished through the recruitment of an outstanding non-permanent staff of Fellows and Research associates in theory and experiment. RBRC is now a mature organization that has reached a steady level in the size of scientific and support staff while at the same time retaining its vibrant youth. A brief history of the scientific accomplishments and contributions of the RBRC physicists will be presented as well as a discussion of the unique RBRC management structure.

  18. Abramovo Counterterrorism Training Center

    SciTech Connect

    Hayes, Christopher M; Ross, Larry; Lingenfelter, Forrest E; Sokolnikov, Pavel I; Kaldenbach, Karen Yvonne; Estigneev, Yuri; Murievav, Andrey

    2011-01-01

    The U.S. government has been assisting the Russian Federation (RF) Ministry of Defense (MOD) for many years with nuclear weapons transportation security (NWTS) through the provision of specialized guard escort railcars and cargo railcars with integrated physical security and communication systems, armored transport vehicles, and armored escort vehicles. As a natural continuation of the NWTS program, a partnership has been formed to construct a training center that will provide counterterrorism training to personnel in all branches of the RF MOD. The Abramovo Counterterrorism Training Center (ACTC) is a multinational, multiagency project with funding from Canada, RF and the U.S. Departments of Defense and Energy. ACTC will be a facility where MOD personnel can conduct basic through advanced training in various security measures to protect Category IA material against the threat of terrorist attack. The training will enhance defense-in-depth principles by integrating MOD guard force personnel into the overall physical protection systems and improving their overall response time and neutralization capabilities. The ACTC project includes infrastructure improvements, renovation of existing buildings, construction of new buildings, construction of new training facilities, and provision of training and other equipment. Classroom training will be conducted in a renovated training building. Basic and intermediate training will be conducted on three different security training areas where various obstacles and static training devices will be constructed. The central element of ACTC, where advanced training will be held, is the 'autodrome,' a 3 km road along which various terrorist events can be staged to challenge MOD personnel in realistic and dynamic nuclear weapons transportation scenarios. This paper will address the ACTC project elements and the vision for training development and integrating this training into actual nuclear weapons transportation operations.

  19. Regional Warning Center Sweden

    NASA Astrophysics Data System (ADS)

    Lundstedt, Henrik

    RWC-Sweden is operated by the Lund division of the Swedish Institute of Space Physics located at IDEON, a Science Research Technology Park. The Institute of Technology of Lund and Lund University are just adjacent to IDEON. This creates a lot of synergy effects. Copenhagen, with the Danish National Space Center DNSC), and Atmosphere Space Research Division of Danish Meteorological Institute (DMI), is 45 min away via the bridge. The new LOIS Space Centre is located two hours away by car, north of Lund and just outside V¨xj¨. The IRF Lund a o division is aiming at becoming a "Solar and Space Weather Center". We focus on solar magnetic activity, its influence on climate and on space weather effects such the effect of geomagnetically induced currents (GIC). Basic research: A PostDoc position on "Solar Magnetic Activity: Topology and Predictions has recently been created. Research is carried on to improve predictions of solar magnetic activity. Preparations for using upcoming SDO vector magnetic fields are ongoing. Predictions: RWC-Sweden offers real-time forecasts of space weather and space weather effects based on neural networks. We participated in the NASA/NOAA Cycle 24 Prediction Panel. We have also participated in several ESA/EU solar-climate projects New observation facilities: Distributed, wide-area radio facility (LOIS) for solar (and other space physics) observations and a guest prof: Radio facility about 200 km distant, outside V¨xj¨ (Sm˚ a o aland), in Ronneby (Blekinge) and Lund (Sk˚ ane) is planned to be used for tracking of CMEs and basic solar physics studies of the corona. The LOIS station outside V¨xj¨ has a o been up and running for the past three years. Bo Thidé has joined the Lund division e as a guest prof. A new magnetometer at Risinge LOIS station has been installed an calibrated and expected to be operational in March, 2008.

  20. Taking the center to market.

    PubMed

    Roberts, J; Roberts, T

    1985-01-01

    Community mental health centers have seldom been involved in marketing their services. Marketing is defined as responding sensitively to human needs, not hucksterism, and is an appropriate activity for centers. Centers are vulnerable because of declining federal funding and in order to serve the poor, must also service other populations with greater ability to pay for services or face retrenchment. Over the past twenty years, locally controlled centers have broadened their missions to serve many types of personal and family problems, not just the chronically ill. Centers should omit "mental health" for their names because of the stigma. Guidelines for creation of a positive image including name and logo selection, color, open houses, and ad campaigns are given using Madison Center (formerly the Mental Health Center of St. Joseph County) as a case study. Reactions of other providers, creative delivery of services through consultation and education, market segmentation and message levels of advertising are also discussed.

  1. Launch Vehicle Control Center Architectures

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Epps, Amy; Woodruff, Van; Vachon, Michael Jacob; Monreal, Julio; Williams, Randall; McLaughlin, Tom

    2014-01-01

    This analysis is a survey of control center architectures of the NASA Space Launch System (SLS), United Launch Alliance (ULA) Atlas V and Delta IV, and the European Space Agency (ESA) Ariane 5. Each of these control center architectures have similarities in basic structure, and differences in functional distribution of responsibilities for the phases of operations: (a) Launch vehicles in the international community vary greatly in configuration and process; (b) Each launch site has a unique processing flow based on the specific configurations; (c) Launch and flight operations are managed through a set of control centers associated with each launch site, however the flight operations may be a different control center than the launch center; and (d) The engineering support centers are primarily located at the design center with a small engineering support team at the launch site.

  2. The Texas Solution to the Nation's Disposal Needs for Irradiated Hardware - 13337

    SciTech Connect

    Britten, Jay M.

    2013-07-01

    The closure of the disposal facility in Barnwell, South Carolina, to out-of-compact states in 2008 left commercial nuclear power plants without a disposal option for Class B and C irradiated hardware. In 2012, Waste Control Specialists LLC (WCS) opened a highly engineered facility specifically designed and built for the disposal of Class B and C waste. The WCS facility is the first Interstate Compact low-level radioactive waste disposal facility to be licensed and operated under the Low-level Waste Policy Act of 1980, as amended in 1985. Due to design requirements of a modern Low Level Radioactive Waste (LLRW) facility, traditional methods for disposal were not achievable at the WCS site. Earlier methods primarily utilized the As Low as Reasonably Achievable (ALARA) concept of distance to accomplish worker safety. The WCS method required the use of all three ALARA concepts of time, distance, and shielding to ensure the safe disposal of this highly hazardous waste stream. (authors)

  3. Aerial view of the Kennedy Space Center Visitor Center

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This Shuttle/Gantry mockup and Post Show Dome anchor the northeast corner of the Kennedy Space Center Visitor Complex. The Astronaut Memorial is located just above. Sprawling across 70 acres on Florida's Space Coast, the complex is located off State Road 405, NASA Parkway, six miles inside the Space Center entrance. The building at the upper left is the Theater Complex. Other exhibits and buildings on the site are the Center for Space Education, Cafeteria, Space Flight Exhibit Building, Souvenir Sales Building, Spaceport Central, Ticket Pavilion and Center for Space Education.

  4. Space Operations Learning Center

    NASA Technical Reports Server (NTRS)

    Lui, Ben; Milner, Barbara; Binebrink, Dan; Kuok, Heng

    2012-01-01

    The Space Operations Learning Center (SOLC) is a tool that provides an online learning environment where students can learn science, technology, engineering, and mathematics (STEM) through a series of training modules. SOLC is also an effective media for NASA to showcase its contributions to the general public. SOLC is a Web-based environment with a learning platform for students to understand STEM through interactive modules in various engineering topics. SOLC is unique in its approach to develop learning materials to teach schoolaged students the basic concepts of space operations. SOLC utilizes the latest Web and software technologies to present this educational content in a fun and engaging way for all grade levels. SOLC uses animations, streaming video, cartoon characters, audio narration, interactive games and more to deliver educational concepts. The Web portal organizes all of these training modules in an easily accessible way for visitors worldwide. SOLC provides multiple training modules on various topics. At the time of this reporting, seven modules have been developed: Space Communication, Flight Dynamics, Information Processing, Mission Operations, Kids Zone 1, Kids Zone 2, and Save The Forest. For the first four modules, each contains three components: Flight Training, Flight License, and Fly It! Kids Zone 1 and 2 include a number of educational videos and games designed specifically for grades K-6. Save The Forest is a space operations mission with four simulations and activities to complete, optimized for new touch screen technology. The Kids Zone 1 module has recently been ported to Facebook to attract wider audience.

  5. Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Griffin, Amanda

    2012-01-01

    Among 2011's many accomplishments, we safely retired the Space Shuttle Program after 30 incredible years; completed the International Space Station and are taking steps to enable it to reach its full potential as a multi-purpose laboratory; and helped to expand scientific knowledge with missions like Aquarius, GRAIL, and the Mars Science Laboratory. Responding to national budget challenges, we are prioritizing critical capabilities and divesting ourselves of assets no longer needed for NASA's future exploration programs. Since these facilities do not have to be maintained or demolished, the government saves money. At the same time, our commercial partners save money because they do not have to build new facilities. It is a win-win for everyone. Moving forward, 2012 will be even more historically significant as we celebrate the 50th Anniversary of Kennedy Space Center. In the coming year, KSC will facilitate commercial transportation to low-Earth orbit and support the evolution of the Space Launch System and Orion crew vehicle as they ready for exploration missions, which will shape how human beings view the universe. While NASA's Vision is to lead scientific and technological advances in aeronautics and space for a Nation on the frontier of discovery KSC's vision is to be the world's preeminent launch complex for government and commercial space access, enabling the world to explore and work in space. KSC's Mission is to safely manage, develop, integrate, and sustain space systems through partnerships that enable innovative, diverse access to space and inspires the Nation's future explorers.

  6. Immune system-tumour efficiency ratio as a new oncological index for radiotherapy treatment optimization.

    PubMed

    Sotolongo-Grau, O; Rodríguez-Pérez, D; Santos-Miranda, J A; Sotolongo-Costa, O; Antoranz, J C

    2009-12-01

    A dynamical system model for tumour-immune system interaction together with a method to mimic radiation therapy are proposed. A large population of virtual patients is simulated following an ideal radiation treatment. A characteristic parameter, the immune system-tumor efficiency ratio (ISTER) is introduced. ISTER dependence of treatment success and other features are studied. Radiotherapy treatment dose optimization, following ALARA (As Low As Reasonably Achievable) criterion, as well as a patient classification are drawn from the statistics results. PMID:19584118

  7. Idaho National Engineering and Environmental Laboratory Radiological Control Performance Indicator Report; Fourth Quarter - Calendar Year 1997

    SciTech Connect

    Hinckley, F.L.

    1998-02-01

    The INEEL Radiological Control Performance Indicator Report is provided quarterly, in accordance with Article 133 of the INEEL Radiological Control Manual. Indicators are used to measure performance of the Radiological Control Program and as a motivation for improvement, not as goals in themselves. These indicators should be used by management as tools to focus priorities, attention, and adherence to As-Low-As-Reasonably-Achievable (ALARA) practices.

  8. Decontamination demonstration facility (D. D. F) modularization/mobility study

    SciTech Connect

    FitzPatrick, V.F.; Butts, H.L.; Moles, R.G.; Lundgren, R.A.

    1980-11-01

    The component decontamination technology, developed under the DOE sponsored TRU Waste Decontamination Program, has potential benefits to nuclear utility owners in four strategic areas: (1) Meeting ALARA Criteria for Maintenance/Operations; (2) Management of wastes and waste forms; (3) Accident Response; (4) Decommissioning. The most significant step in transferring this technology directly to the nuclear industry is embodied in the TMI Decontamination Demonstration Facility (D.D.F.).

  9. W-320 waste retrieval sluicing system transfer line flushing volume and frequency calculation

    SciTech Connect

    Bailey, J.W.

    1997-04-07

    The calculations contained in this analysis document establish the technical basis for the volume, frequency, and flushing fluid to be utilized for routine Waste Retrieval Sluicing System (WRSS) process line flushes. The WRSS was installed by Project W-320, Tank 241-C-106 Sluicing. The double contained pipelines being flushed have 4 inch stainless steel primary pipes. The flushes are intended to prevent hydrogen buildup in the transfer lines and to provide ALARA conditions for maintenance personnel.

  10. Engineering report for simulated riser installation

    SciTech Connect

    Brevick, C.H., Westinghouse Hanford

    1996-05-09

    The simulated riser installation field tests demonstrated that new access ports (risers) can be installed safely, quickly, and economically in the concrete domes of existing underground single- shell waste storage tanks by utilizing proven rotary drilling equipment and vacuum excavation techniques. The new riser installation will seal against water intrusion, provide as table riser anchored to the tank dome, and be installed in accordance with ALARA principles. The information contained in the report will apply to actual riser installation activity in the future.

  11. Immune system-tumour efficiency ratio as a new oncological index for radiotherapy treatment optimization.

    PubMed

    Sotolongo-Grau, O; Rodríguez-Pérez, D; Santos-Miranda, J A; Sotolongo-Costa, O; Antoranz, J C

    2009-12-01

    A dynamical system model for tumour-immune system interaction together with a method to mimic radiation therapy are proposed. A large population of virtual patients is simulated following an ideal radiation treatment. A characteristic parameter, the immune system-tumor efficiency ratio (ISTER) is introduced. ISTER dependence of treatment success and other features are studied. Radiotherapy treatment dose optimization, following ALARA (As Low As Reasonably Achievable) criterion, as well as a patient classification are drawn from the statistics results.

  12. National Center for Supercomputer Applications

    NASA Technical Reports Server (NTRS)

    Arrott, Matthew

    1991-01-01

    Viewgraphs on the National Center for Supercomputer Applications are presented. The objective is to develop comprehensive computational research environments through the use of evolving software technology.

  13. Center for Advanced Space Propulsion

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Center for Advanced Space Propulsion (CASP) is part of the University of Tennessee-Calspan Center for Aerospace Research (CAR). It was formed in 1985 to take advantage of the extensive research faculty and staff of the University of Tennessee and Calspan Corporation. It is also one of sixteen NASA sponsored Centers established to facilitate the Commercial Development of Space. Based on investigators' qualifications in propulsion system development, and matching industries' strong intent, the Center focused its efforts in the following technical areas: advanced chemical propulsion, electric propulsion, AI/Expert systems, fluids management in microgravity, and propulsion materials processing. This annual report focuses its discussion in these technical areas.

  14. Optical Measurement Center Status

    NASA Technical Reports Server (NTRS)

    Rodriguez, H.; Abercromby, K.; Mulrooney, M.; Barker, E.

    2007-01-01

    Beginning in 2005, an optical measurement center (OMC) was created to measure the photometric signatures of debris pieces. Initially, the OMC was equipped with a 300 W xenon arc lamp, a SBIG 512 x 512 ST8X MEI CCD camera with standard Johnson filters, and a Lynx 6 robotic arm with five degrees of freedom. As research progressed, modifications were made to the equipment. A customized rotary table was built to overcome the robot s limitation of 180 degree wrist rotation and provide complete 360 degree rotation with little human interaction. This change allowed an initial phase angle (source-object-camera angle) of roughly 5 degrees to be adjusted to 7, 10, 15, 18, 20, 25, or 28 degrees. Additionally, the Johnson R and I CCD filters were replaced with the standard astronomical filters suite (Bessell R,I). In an effort to reduce object saturation, the two generic aperture stops were replaced with neutral density filters. Initially data were taken with aluminum debris pieces from the European Space Operations Centre ESOC2 ground test and more recently with samples from a thermal multi-layered insulation (MLI) commonly used on rocket bodies and satellites. The ESOC2 data provided light curve analysis for one type of material but many different shapes, including flat, bent, curled, folded, and torn. The MLI samples are roughly the same size and shape, but have different surfaces that give rise to interesting photometric light curves. In addition, filter photometry was conducted on the MLI pieces, a process that also will be used on the ESOC2 samples. While obtaining light curve data an anomalous drop in intensity was observed when the table revolved through the second 180 degree rotation. Investigation revealed that the robot s wrist rotation is not reliable past 80 degrees, thus the object may be at slightly different angles at the 180 degree transition. To limit this effect, the initial rotation position begins with the object s minimal surface area facing the camera.

  15. ROSAT Science Data Center

    NASA Technical Reports Server (NTRS)

    Murray, Stephen; Pisarski, Ryszard L. (Technical Monitor)

    2001-01-01

    This report provides a summary of the Smithsonian Astrophysical Observatory (SAO) ROSAT SCIENCE DATA CENTER (RSDC) activities for the recent years of our contract. Details have already been reported in the monthly reports. The SAO was responsible for the High Resolution Imager (HRI) detector on ROSAT. We also provided and supported the HRI standard analysis software used in the pipeline processing (SASS). Working with our colleagues at the Max Planck in Garching Germany (MPE), we fixed bugs and provided enhancements. The last major effort in this area was the port from VMS/VAX to VMS/ALPHA architecture. In 1998, a timing bug was found in the HRI standard processing system which degraded the positional accuracy because events accessed incorrect aspect solutions. The bug was fixed and we developed off-line correction routines and provided them to the community. The Post Reduction Off-line Software (PROS) package was developed by SAO and runs in the IRAF environment. Although in recent years PROS was not a contractual responsibility of the RSDC, we continued to maintain the system and provided new capabilities such as the ability to deal with simulated AXAF data in preparation for the NASA call for proposals for Chandra. Our most recent activities in this area included the debugging necessary for newer versions of IRAF which broke some of our software. At SAO we have an operating version of PROS and hope to release a patch even though almost all functionality that was lost was subsequently recovered via an IRAF patch (i.e. most of our problems were caused by an IRAF bug).

  16. Satellite medical centers project

    NASA Astrophysics Data System (ADS)

    Aggarwal, Arvind

    2002-08-01

    World class health care for common man at low affordable cost: anywhere, anytime The project envisages to set up a national network of satellite Medical centers. Each SMC would be manned by doctors, nurses and technicians, six doctors, six nurses, six technicians would be required to provide 24 hour cover, each SMC would operate 24 hours x 7 days. It would be equipped with the Digital telemedicine devices for capturing clinical patient information and investigations in the form of voice, images and data and create an audiovisual text file - a virtual Digital patient. Through the broad band connectivity the virtual patient can be sent to the central hub, manned by specialists, specialists from several specialists sitting together can view the virtual patient and provide a specialized opinion, they can see the virtual patient, see the examination on line through video conference or even PCs, talk to the patient and the doctor at the SMC and controlle capturing of information during examination and investigations of the patient at the SMC - thus creating a virtual Digital consultant at the SMC. Central hub shall be connected to the doctors and consultants in remote locations or tertiary care hospitals any where in the world, thus creating a virtual hub the hierarchical system shall provide upgradation of knowledge to thedoctors in central hub and smc and thus continued medical education and benefit the patient thru the world class treatment in the smc located at his door step. SMC shall be set up by franchisee who shall get safe business opportunity with high returns, patients shall get Low cost user friendly worldclass health care anywhere anytime, Doctors can get better meaningful selfemplyment with better earnings, flexibility of working time and place. SMC shall provide a wide variety of services from primary care to world class Global consultation for difficult patients.

  17. Assessment/Advisement Center Handbook for Community College Testing Centers.

    ERIC Educational Resources Information Center

    Hilgendorf, Erik

    Developed by the Assessment/Advisement Center (AAC) at Missouri's Crowder College (CC), this handbook is designed as a model for other community college testing and advisement centers in establishing assessment policies and practices. First, an introduction is provided, describing changes in the role of assessment since the advent of on-line…

  18. 5. Log calving barn (center), loafing shed (right of center), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Log calving barn (center), loafing shed (right of center), and wood-frame garage (far right). View to southwest. - William & Lucina Bowe Ranch, County Road 44, 0.1 mile northeast of Big Hole River Bridge, Melrose, Silver Bow County, MT

  19. PACE Center: A Mobile Career Information and Exploration Center.

    ERIC Educational Resources Information Center

    Bingham County Career Education, Blackfoot, ID.

    An innovative component of the Federally-sponsored Bingham County career education project is the Programed Activities for Career Exploration (PACE) Center, a mobile unit offering programed student activities to assist individual students in career planning. The mobile center visits each high school in the county; the sophomore year is selected as…

  20. Westinghouse Hanford Company health and safety performance report. Fourth quarter calendar year 1994

    SciTech Connect

    Lansing, K.A.

    1995-03-01

    Detailed information pertaining to As Low As Reasonably Achievable/Contamination Control Improvement Project (ALARA/CCIP) activities are outlined. Improved commitment to the WHC ALARA/CCIP Program was experienced throughout FY 1994. During CY 1994, 17 of 19 sitewide ALARA performance goals were completed on or ahead of schedule. Estimated total exposure by facility for CY 1994 is listed in tables by organization code for each dosimeter frequency. Facilities/areas continue to utilize the capabilities of the RPR tracking system in conjunction with the present site management action-tracking system to manage deficiencies, trend performance, and develop improved preventive efforts. Detailed information pertaining to occupational injuries/illnesses are provided. The Industrial Safety and Hygiene programs are described which have generated several key initiatives that are believed responsible for improved safety performance. A breakdown of CY 1994 occupational injuries/illnesses by type, affected body group, cause, job type, age/gender, and facility is provided. The contributing experience of each WHC division/department in attaining this significant improvement is described along with tables charting specific trends. The Radiological Control Program is on schedule to meet all RL Site Management System milestones and program commitments.

  1. Safety at the Waste Isolation Pilot Plant

    SciTech Connect

    Wu, Chuan-Fu

    1992-12-31

    The Waste Isolation Pilot Plant (WIPP) is a Department of Energy (DOE) project designed to demonstrate safe disposal of transuranic (TRU) wastes in the excavations of a salt bed situated 2,150 feet underground. The operational philosophy of the WIPP is threefold: to start clean and stay clean, to meet or exceed regulatory requirements, and to keep radiation exposures as low as reasonably achievable (ALARA). The well-being of the public, the environment, and the workers is the project`s first priority. Extensive safety measures have been and will continue to be taken throughout all phases of project activities. This paper describes the major elements of the WIPP safety program which includes a training program with special emphasis on safety, for operations, maintenance, engineering, and all technical support positions; a TRU Package Transporter-II (TRUPACT-II) for safe transportation of TRU waste; radiation protection programs; a volatile organic compound (VOC) monitoring program; and an ALARA committee to oversee and provide guidance to ALARA activities.

  2. Idaho National Engineering Laboratory Radiological Control performance indicator report: First quarter, calendar year 1995

    SciTech Connect

    Aitken, S.B.

    1995-07-01

    The INEL Radiological Control Performance Indicator Report is provided quarterly, inaccordance with Article 133 of the INEL Radiological Control Manual. Indicators are used as a measure of performance of the Radiological Control Program and as a motivation for improvement, not as a goal in themselves. These indicators should be used by management to assist in focusing priorities and attention and adherence to As-Low-As-Reasonably-Achievable (ALARA) practices. The ALARA Committees establish ALARA goals for the INEL based on forecasts and goals provided by each facility organizational manager or supervisor.Performance goals are realistic and measurable. Stringent goals are set at least annually to reflect expected workloads and improvement of radiological performance. Goals higher than previous goals may occasionally be set due to changes in work scope or mission. The INEL Radiological Control Performance Indicators consist of: Collective dose in person-rem; average worker dose, maximum dose to a worker, and maximum neutron dose to a worker;the number of skin and clothing contaminations, including the number of contaminated wounds and facial contaminations; the number of radioactive material intakes; the area of Contamination, High Contamination, and Airborne Radioactivity Areas in square feet; and airborne radioactivity events and spills.

  3. Towards a harmonized approach for risk assessment of genotoxic carcinogens in the European Union.

    PubMed

    Crebelli, Riccardo

    2006-01-01

    The EU Scientific Committees have considered in the past the use of matematical models for human cancer risk estimation not adequately supported by the available scientific knowledge. Therefore, the advice given to risk managers was to reduce the exposure as far as possible, following the as low as reasonably achievable (ALARA) principle. However, ALARA does not allow to set priorities for risk management, as it does not take into consideration carcinogenic potency and level of human exposure. For this reason the European Food Safety Authority (EFSA) has identified as a priority task the development of a transparent, scientically justifiable and harmonized approach for risk assessment of genotoxic carcinogens. This approach, proposed at the end of 2005, is based on the definition of the (MOE), i.e. the relationship between a given point of the dose reponse curve in the animal and human exposure. As point of comparison EFSA recommends the BMDL10, i.e. the lower limit of the confidence interval of the Benchmark Dose associated with an incidence of 10% of induced tumors. Based on current scientific knowkedge, EFSA concluded that a MOE of 10000 or greater is associated with a low risk and low priority for risk management actions. The approach proposed does not replace the ALARA. It should find application on food contaminants, process by-product, and other substances unintentionally present in food. On the other hand, it is not intended to provide a tool for the definition of tolerable intake levels for genotoxic carcinogens deliberately added to food.

  4. NASA New England Outreach Center

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The NASA New England Outreach Center in Nashua, New Hampshire was established to serve as a catalyst for heightening regional business awareness of NASA procurement, technology and commercialization opportunities. Emphasis is placed on small business participation, with the highest priority given to small disadvantaged businesses, women-owned businesses, HUBZone businesses, service disabled veteran owned businesses, and historically black colleges and universities and minority institutions. The Center assists firms and organizations to understand NASA requirements and to develop strategies to capture NASA related procurement and technology opportunities. The establishment of the NASA Outreach Center serves to stimulate business in a historically underserved area. NASA direct business awards have traditionally been highly present in the West, Midwest, South, and Southeast areas of the United States. The Center guides and assists businesses and organizations in the northeast to target opportunities within NASA and its prime contractors and capture business and technology opportunities. The Center employs an array of technology access, one-on-one meetings, seminars, site visits, and targeted conferences to acquaint Northeast firms and organizations with representatives from NASA and its prime contractors to learn about and discuss opportunities to do business and access the inventory of NASA technology. This stimulus of interaction also provides firms and organizations the opportunity to propose the use of their developed technology and ideas for current and future requirements at NASA. The Center provides a complement to the NASA Northeast Regional Technology Transfer Center in developing prospects for commercialization of NASA technology. In addition, the Center responds to local requests for assistance and NASA material and documents, and is available to address immediate concerns and needs in assessing opportunities, timely support to interact with NASA Centers on

  5. Clean Energy Application Center

    SciTech Connect

    Freihaut, Jim

    2013-09-30

    The Mid Atlantic Clean Energy Application Center (MACEAC), managed by The Penn State College of Engineering, serves the six states in the Mid-Atlantic region (Pennsylvania, New Jersey, Delaware, Maryland, Virginia and West Virginia) plus the District of Columbia. The goals of the Mid-Atlantic CEAC are to promote the adoption of Combined Heat and Power (CHP), Waste Heat Recovery (WHR) and District Energy Systems (DES) in the Mid Atlantic area through education and technical support to more than 1,200 regional industry and government representatives in the region. The successful promotion of these technologies by the MACEAC was accomplished through the following efforts; (1)The MACEAC developed a series of technology transfer networks with State energy and environmental offices, Association of Energy Engineers local chapters, local community development organizations, utilities and, Penn State Department of Architectural Engineering alumni and their firms to effectively educate local practitioners about the energy utilization, environmental and economic advantages of CHP, WHR and DES; (2) Completed assessments of the regional technical and market potential for CHP, WHR and DE technologies application in the context of state specific energy prices, state energy and efficiency portfolio development. The studies were completed for Pennsylvania, New Jersey and Maryland and included a set of incentive adoption probability models used as a to guide during implementation discussions with State energy policy makers; (3) Using the technical and market assessments and adoption incentive models, the Mid Atlantic CEAC developed regional strategic action plans for the promotion of CHP Application technology for Pennsylvania, New Jersey and Maryland; (4) The CHP market assessment and incentive adoption model information was discussed, on a continuing basis, with relevant state agencies, policy makers and Public Utility Commission organizations resulting in CHP favorable incentive

  6. Saving Energy at Data Centers

    SciTech Connect

    2007-10-12

    Data centers provide mission-critical computing functions essential to the daily operation of top U.S. economic, scientific, and technological organizations. These data centers consume large amounts of energy to run and maintain their computer systems, servers, and associated high-performance components.

  7. Teachers' Centers Exchange Directory, 1980.

    ERIC Educational Resources Information Center

    Lance, Jeanne; Piper, Barbara

    This directory lists those American teacher centers that are in touch with the Teachers' Centers Exchange. All 116 entries in the directory are written in a common format. This is intended to help readers make comparisons and select individual ideas rather than to adopt whole models. Each listing is headed by the name, address, and phone number of…

  8. Center for Space Microelectronics Technology

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The 1990 technical report of the Jet Propulsion Laboratory Center for Space Microelectronics Technology summarizes the technical accomplishments, publications, presentations, and patents of the center during 1990. The report lists 130 publications, 226 presentations, and 87 new technology reports and patents.

  9. Spherical Torus Center Stack Design

    SciTech Connect

    C. Neumeyer; P. Heitzenroeder; C. Kessel; M. Ono; M. Peng; J. Schmidt; R. Woolley; I. Zatz

    2002-01-18

    The low aspect ratio spherical torus (ST) configuration requires that the center stack design be optimized within a limited available space, using materials within their established allowables. This paper presents center stack design methods developed by the National Spherical Torus Experiment (NSTX) Project Team during the initial design of NSTX, and more recently for studies of a possible next-step ST (NSST) device.

  10. Center for space microelectronics technology

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The 1992 Technical Report of the Jet Propulsion Laboratory Center for Space Microelectronics Technology summarizes the technical accomplishments, publications, presentations, and patents of the center during the past year. The report lists 187 publications, 253 presentations, and 111 new technology reports and patents in the areas of solid-state devices, photonics, advanced computing, and custom microcircuits.

  11. GROUND WATER TECHNICAL SUPPORT CENTER

    EPA Science Inventory

    EPA's Office of Research and Development operates a Ground Water Technical Support Center (GWTSC). The Center provides support on issues regarding subsurface contamination, contaminant fluxes to other media (e.g., surface water or air), and ecosystem restoration. The GWTSC creat...

  12. HRSA: Find a Health Center

    MedlinePlus

    ... box Or you can try to start a search with any other close or appropriate keyword. HELP: 877-464-4772, 8 a.m. to 8 p.m. ET, weekdays (except federal holidays) HRSA Contact Center Close × Center Name Close ... Filters Select filters to narrow the search results. After filters have been selected, go to ...

  13. Center for Space Microelectronics Technology

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The 1991 Technical Report of the Jet Propulsion Laboratory Center for Space Microelectronics Technology summarizes the technical accomplishments, publications, presentations, and patents of the Center during the past year. The report lists 193 publications, 211 presentations, and 125 new technology reports and patents.

  14. The Validity of Assessment Centers.

    ERIC Educational Resources Information Center

    Thornton, George C., III

    This paper summarizes a review of the recent literature in search of evidence for the validity of industrial assessment centers. The topic is divided into two parts: (1) the evidence regarding the validity of several of the individual assessment techniques that are used in industrial assessment centers; and (2) the evidence concerning the validity…

  15. Learning Centers: Development and Operation.

    ERIC Educational Resources Information Center

    Bennie, Frances

    There has been in recent years a growing acceptance of individualized learning concepts. Learning Centers have come to be viewed as an economical and viable strategy for accommodating diverse learning styles and needs. This book provides the educator with an understanding of the learning center concept, its origins, present manifestations, and…

  16. Launch Vehicle Control Center Architectures

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Epps, Amy; Woodruff, Van; Vachon, Michael Jacob; Monreal, Julio; Levesque, Marl; Williams, Randall; Mclaughlin, Tom

    2014-01-01

    Launch vehicles within the international community vary greatly in their configuration and processing. Each launch site has a unique processing flow based on the specific launch vehicle configuration. Launch and flight operations are managed through a set of control centers associated with each launch site. Each launch site has a control center for launch operations; however flight operations support varies from being co-located with the launch site to being shared with the space vehicle control center. There is also a nuance of some having an engineering support center which may be co-located with either the launch or flight control center, or in a separate geographical location altogether. A survey of control center architectures is presented for various launch vehicles including the NASA Space Launch System (SLS), United Launch Alliance (ULA) Atlas V and Delta IV, and the European Space Agency (ESA) Ariane 5. Each of these control center architectures shares some similarities in basic structure while differences in functional distribution also exist. The driving functions which lead to these factors are considered and a model of control center architectures is proposed which supports these commonalities and variations.

  17. Day Care Center Enrichment Program.

    ERIC Educational Resources Information Center

    West Virginia State Dept. of Welfare, Charleston.

    This guide to a West Virginia Department of Welfare project for upgrading the quality of day care centers throughout the state presents samples of the forms used in the program, accompanied by a brief description of the program's format, requirements and procedures. The Day Care Center Enrichment Program provides a monetary incentive for…

  18. 78 FR 14549 - National Contact Center; Information Collection; National Contact Center Customer Evaluation Survey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-06

    ... ADMINISTRATION National Contact Center; Information Collection; National Contact Center Customer Evaluation Survey AGENCY: Contact Center Services, Federal Citizen Information Center, Office of Citizen Services... requirement regarding the National Contact Center customer evaluation surveys. In this request, the...

  19. Radiation safety analysis of the ISS bone densitometer

    NASA Astrophysics Data System (ADS)

    Todd, Paul; Vellinger, John C.; Barton, Kenneth; Faget, Paul

    A Bone Densitometer (BD) has been developed for installation on the International Space Station (ISS) with delivery by the Space-X Dragon spacecraft planned for mid 2014. After initial tests on orbit the BD will be used in longitudinal measurements of bone mineral density in experimental mice as a means of evaluating countermeasures to bone loss. The BD determines bone mineral density (and other radiographic parameters) by dual energy x-ray absorptiometry (DEXA). In a single mouse DEXA “scan” its 80 kV x-ray tube is operated for 15 seconds at 35 kV and 3 seconds at 80 kV in four repetitions, giving the subject a total dose of 2.5 mSv. The BD is a modification of a commercial mouse DEXA product known as PIXImus(TM). Before qualifying the BD for utilization on ISS it was necessary to evaluate its radiation safety features and any level of risk to ISS crew members. The BD design reorients the PIXImus so that it fits in an EXPRESS locker on ISS with the x-ray beam directed into the crew aisle. ISS regulation SSP 51700 considers the production of ionizing radiation to be a catastrophic-level hazard. Accidental exposure is prevented by three independent levels of on-off control as required for a catastrophic hazard. The ALARA (As Low as Reasonably Achievable) principle was applied to the BD hazard just as would be done on the ground, so deliberate exposure is limited by lead shielding according to ALARA. Hot spots around the BD were identified by environmental dosimetry using a Ludlum 9DP pressurized ionization chamber survey meter. Various thicknesses of lead were applied to the BD housing in areas where highest dose-per-scan readings were made. It was concluded that 0.4 mm of lead shielding at strategic locations, adding only a few kg of mass to the payload, would accomplish ALARA. With shielding in place the BD now exposes a crew member floating 40 cm away to less than 0.08 microSv per mouse scan. There is an upper limit of 20 scans per day, or 1.6 microSv per day

  20. Aerial view of the Kennedy Space Center Visitor Center

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Kennedy Space Center Visitor Complex, shown in this aerial view looking east, sprawls across 70 acres on Florida's Space Coast. It is located off State Road 405, NASA Parkway, six miles inside the Space Center entrance. SR 405 can be seen at the top left of the photo. In the foreground is the display of rockets that have played a significant role in the growth of the space program. Just above that, left to right, can be seen the Theater Complex, Space Flight Exhibit Building and Spaceport Central. Other buildings clustered at the center are the Cafeteria, Souvenir Sales Building, and Ticket Pavilion. To the left of the Theater Complex are the Astronaut Memorial, the Post Show Dome, and the Shuttle/Gantry mockup. Not seen in the photo is the Center for Space Education.

  1. Computer Center: Setting Up a Microcomputer Center--1 Person's Perspective.

    ERIC Educational Resources Information Center

    Duhrkopf, Richard, Ed.; Collins, Michael, A. J., Ed.

    1988-01-01

    Considers eight components to be considered in setting up a microcomputer center for use with college classes. Discussions include hardware, software, physical facility, furniture, technical support, personnel, continuing financial expenditures, and security. (CW)

  2. Aerial view of the Kennedy Space Center Visitor Center

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Kennedy Space Center Visitor Center, shown in this aerial view looking northwest, sprawls across 70 acres on Florida's Space Coast and is located off State Road 405, NASA Parkway, six miles inside the Space Center entrance. SR 405 can be seen at the top of the photo (left to right). Just below the roadway, from left, can be seen the Center for Space Education, the Theater Complex, Astronaut Memorial, the Post Show Dome, and Shuttle/Gantry mockup. In front of the theater complex are a cluster of buildings that include the Cafeteria, Space Flight Exhibit Building, Souvenir Sales Building, Spaceport Central, and Ticket Pavilion. At the left of the complex are various rockets that have played a significant role in the growth of the space program. Beyond the roadway can be seen the Banana River.

  3. Aerial view of the Kennedy Space Center Visitor Center

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Kennedy Space Center Visitor Center, shown in this aerial view looking south, sprawls across 70 acres on Florida's Space Coast , and is located off State Road 405, NASA Parkway, six miles inside the Space Center entrance. SR 405 can be seen at the bottom of the photo. Just above the roadway, from left can be seen the Shuttle/Gantry mockup; the Post Show Dome; the Astronaut Memorial; and to the far right, the Center for Space Education. Behind the Memorial are a cluster of buildings that include the Theater Complex, Cafeteria, Space Flight Exhibit Building, Souvenir Sales Building, Spaceport Central, and Ticket Pavilion. At the upper right are various rockets that have played a significant role in the growth of the space program.

  4. Prediction of Weather Related Center Delays

    NASA Technical Reports Server (NTRS)

    Deepak, Kulkarni; Banavar, Sridhar

    2008-01-01

    This paper presents results of an initial study of relations between national delay, center level delays and weather. The results presented in the paper indicate: (a) the methodology used for estimating the delay at the national level can be extended to estimate delays caused by a center and delays experienced by a center, (b)delays caused by a center can be predicted using that center's Weather Impacted Traffic Index (WITI) whereas delays experienced by a center are best predicted using WITI of that center and that of a few prominent centers (c) there is differential impact of weather of different centers on center delays.

  5. NASA Ames Research Center Overview

    NASA Technical Reports Server (NTRS)

    Boyd, Jack

    2006-01-01

    A general overview of the NASA Ames Research Center is presented. The topics include: 1) First Century of Flight, 1903-2003; 2) NACA Research Centers; 3) 65 Years of Innovation; 4) Ames Projects; 5) NASA Ames Research Center Today-founded; 6) Astrobiology; 7) SOFIA; 8) To Explore the Universe and Search for Life: Kepler: The Search for Habitable Planets; 9) Crew Exploration Vehicle/Crew Launch Vehicle; 10) Lunar Crater Observation and Sensing Satellite (LCROSS); 11) Thermal Protection Materials and Arc-Jet Facility; 12) Information Science & Technology; 13) Project Columbia Integration and Installation; 14) Air Traffic Management/Air Traffic Control; and 15) New Models-UARC.

  6. Emergency Operations Center ribbon cutting

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Center Director Gene Goldman and special guests celebrate the opening of the site's new Emergency Operations Center on June 2. Participants included (l t r): Steven Cooper, deputy director of the National Weather Service Southern Region; Tom Luedtke, NASA associate administrator for institutions and management; Charles Scales, NASA associate deputy administrator; Mississippi Gov. Haley Barbour; Gene Goldman, director of Stennis Space Center; Jack Forsythe, NASA assistant administrator for the Office of Security and Program Protection; Dr. Richard Williams, NASA chief health and medical officer; and Weldon Starks, president of Starks Contracting Company Inc. of Biloxi.

  7. MIT Space Engineering Research Center

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.; Miller, David W.

    1990-01-01

    The Space Engineering Research Center (SERC) at MIT, started in Jul. 1988, has completed two years of research. The Center is approaching the operational phase of its first testbed, is midway through the construction of a second testbed, and is in the design phase of a third. We presently have seven participating faculty, four participating staff members, ten graduate students, and numerous undergraduates. This report reviews the testbed programs, individual graduate research, other SERC activities not funded by the Center, interaction with non-MIT organizations, and SERC milestones. Published papers made possible by SERC funding are included at the end of the report.

  8. The Center Master Plan For NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Bigach, Kristin M.

    2004-01-01

    The Center Master Plan for NASA Glenn Research Center is a comprehensive survey of NASA Glenn's current facility assets and a vision of how we see the facilities will change over the next 20 years in order to support the changing NASA Mission. This Center Master Plan is a vital management tool used by all organizations for making near term decisions and in future planning. During the summer of 2004, I worked with Joseph Morris, the Chief Architect in the Facilities Division, on beginning this Center Master Planning Process. The previous Master Plan was completed by the Center in 1985 and contained general information on the background of the facility as well as maps detailing environmental and historic records, land use, utilities, etc. The new Master Plan is required for the Center by NASA headquarters and will include similar types of information as used in the past. The new study will provide additional features including showing how individual buildings are linked to the programs and missions that they serve. The Master Plan will show practical future options for the facility s assets with a twenty year look ahead. The Plan will be electronically retrievable so that it becomes a communications tool for Center personnel. A Center Master Plan, although required, is very beneficial to NASA Glenn Research Center in aiding management with the future direction of the campus. Keeping up-to-date information and future plans readily available to all of NASA Glenn will insure that future real property development efficiently and effectively supports the missions camed out and supported by the Center. A Center Master Plan will also facilitate coordination with Center supported programs, stakeholders, and customers. In addition, it will provide a basis for cooperative planning with local and other governmental organizations and ultimately ensure that future budgets include the Center program needs described in the plan. This will ensure that development plans are safe

  9. Johnson Space Center 2012 Highlights

    NASA Video Gallery

    The year has seen many highlights at NASA’s Johnson Space Center, Houston in the realm of human spaceflight exploration, international and commercial partnerships, and research and technology dev...

  10. Kennedy Space Center Design Visualization

    NASA Technical Reports Server (NTRS)

    Humeniuk, Bob

    2013-01-01

    Perform simulations of ground operations leading up to launch at Kennedy Space Center and Vandenberg Air Force Base in CA since 1987. We use 3D Laser Scanning, Modeling and Simulations to verify that operations are feasible, efficient and safe.

  11. Human-Centered Design Capability

    NASA Technical Reports Server (NTRS)

    Fitts, David J.; Howard, Robert

    2009-01-01

    For NASA, human-centered design (HCD) seeks opportunities to mitigate the challenges of living and working in space in order to enhance human productivity and well-being. Direct design participation during the development stage is difficult, however, during project formulation, a HCD approach can lead to better more cost-effective products. HCD can also help a program enter the development stage with a clear vision for product acquisition. HCD tools for clarifying design intent are listed. To infuse HCD into the spaceflight lifecycle the Space and Life Sciences Directorate developed the Habitability Design Center. The Center has collaborated successfully with program and project design teams and with JSC's Engineering Directorate. This presentation discusses HCD capabilities and depicts the Center's design examples and capabilities.

  12. Oceans and Human Health Center

    MedlinePlus

    ocean and human health science can help prevent disease outbreaks and improve public health through a deeper understanding of the causes ... our Center and the field of oceans and human health science. More Research Learn about the research ...

  13. National Center on Elder Abuse

    MedlinePlus

    ... Research Synthesize and disseminate high quality research on elder abuse to encourage the translation of research into practice. ... to further the field for those interested in elder abuse identification and prevention. What’s Happening National Center on ...

  14. School-Based Health Centers

    MedlinePlus

    ... C., serving more than 2 million students in preschool through 12th grade. Centers usually are inside a ... Help Your Teen Succeed in High School 504 Education Plans Getting Involved at Your Child's School Gifted ...

  15. Kennedy Space Center Payload Processing

    NASA Technical Reports Server (NTRS)

    Lawson, Ronnie; Engler, Tom; Colloredo, Scott; Zide, Alan

    2011-01-01

    This slide presentation reviews the payload processing functions at Kennedy Space Center. It details some of the payloads processed at KSC, the typical processing tasks, the facilities available for processing payloads, and the capabilities and customer services that are available.

  16. Ames research center publications, 1975

    NASA Technical Reports Server (NTRS)

    Sherwood, B. R. (Compiler)

    1977-01-01

    This bibliography cites 851 documents by Ames Research Center personnel and contractors which appeared in formal NASA publications, journals, books, patents, and contractor reports in 1975, or not included in previous annual bibliographies. An author index is provided.

  17. Ames Research Center Publications-1976

    NASA Technical Reports Server (NTRS)

    Sherwood, B.

    1978-01-01

    Bibliography of the publications of Ames Research Center authors and contractors, which appeared in formal NASA publications, journal articles, books, chapters of books, patents, and contractor reports. Covers 1976.

  18. Business management of headache centers.

    PubMed

    Nappi, G; Micieli, G; Cavallini, A; Rossi, G; Rossi, G; Rossi, F

    1998-02-01

    Economic evaluation of the costs and benefits of a headache center or unit has become very important for headache specialists. Many of the problems concerning this "financial" approach to headache derive from the model of organization of the Headache Unit, which is dependent on the various approaches to healthcare practiced in the country considered. So far there are two models of headache center that are generally considered: the hospital-based center and the independent center. An argument favoring hospital-based headache clinics is the lower costs, primarily because of their functional connection with the services of a general hospital, i.e., neuroradiology, neurophysiology, routine laboratory analysis, etc. Another is that the headache specialist has the possibility to visit the patients presenting to the emergency room in the acute phase of headache. Independent clinics have greater costs, but are equally as effective as hospital-based models. PMID:9533678

  19. Ten-Minute Super Centers.

    ERIC Educational Resources Information Center

    Lutz, Charlene Howells; Briles, Patricia

    1983-01-01

    Four student minicenters, concerning friendship, good grooming, good housekeeping, and fitness, are described. Reproducible materials to be used in the centers are included as well as instructions and suggestions. (CJ)

  20. Technology Development Center at NICT

    NASA Technical Reports Server (NTRS)

    Takefuji, Kazuhiro; Ujihara, Hideki

    2013-01-01

    The National Institute of Information and Communications Technology (NICT) is developing and testing VLBI technologies and conducts observations with this new equipment. This report gives an overview of the Technology Development Center (TDC) at NICT and summarizes recent activities.

  1. PSI-Center Validation Studies

    NASA Astrophysics Data System (ADS)

    Nelson, B. A.; Akcay, C.; Glasser, A. H.; Hansen, C. J.; Jarboe, T. R.; Marklin, G. J.; Milroy, R. D.; Morgan, K. D.; Norgaard, P. C.; Shumlak, U.; Sutherland, D. A.; Victor, B. S.; Sovinec, C. R.; O'Bryan, J. B.; Held, E. D.; Ji, J.-Y.; Lukin, V. S.

    2014-10-01

    The Plasma Science and Innovation Center (PSI-Center - http://www.psicenter.org) supports collaborating validation platform experiments with 3D extended MHD simulations using the NIMROD, HiFi, and PSI-TET codes. Collaborators include the Bellan Plasma Group (Caltech), CTH (Auburn U), HBT-EP (Columbia), HIT-SI (U Wash-UW), LTX (PPPL), MAST (Culham), Pegasus (U Wisc-Madison), SSX (Swarthmore College), TCSU (UW), and ZaP/ZaP-HD (UW). The PSI-Center is exploring application of validation metrics between experimental data and simulations results. Biorthogonal decomposition (BOD) is used to compare experiments with simulations. BOD separates data sets into spatial and temporal structures, giving greater weight to dominant structures. Several BOD metrics are being formulated with the goal of quantitive validation. Results from these simulation and validation studies, as well as an overview of the PSI-Center status will be presented.

  2. Center for Beam Physics, 1993

    SciTech Connect

    Not Available

    1994-05-01

    The Center for Beam Physics is a multi-disciplinary research and development unit in the Accelerator and Fusion Research Division at Lawrence Berkeley Laboratory. At the heart of the Center`s mission is the fundamental quest for mechanisms of acceleration, radiation and focusing of energy. Dedicated to exploring the frontiers of the physics of (and with) particle and photon beams, its primary mission is to promote the science and technology of the production, manipulation, storage and control systems of charged particles and photons. The Center serves this mission via conceptual studies, theoretical and experimental research, design and development, institutional project involvement, external collaborations, association with industry and technology transfer. This roster provides a glimpse at the scientists, engineers, technical support, students, and administrative staff that make up this team and a flavor of their multifaceted activities during 1993.

  3. Center for Creative Studies, Detroit

    ERIC Educational Resources Information Center

    AIA Journal, 1976

    1976-01-01

    One of the ten buildings chosen to receive 1976 AIA honor awards, the arts center houses the departments of sculpture, painting, graphics, advertising art, photography, and industrial design. (Author/MLF)

  4. Poison control center - emergency number

    MedlinePlus

    For a POISON EMERGENCY call: 1-800-222-1222 ANYWHERE IN THE UNITED STATES This national hotline number will let you ... is a free and confidential service. All local poison control centers in the United States use this ...

  5. Italy INAF Analysis Center Report

    NASA Technical Reports Server (NTRS)

    Negusini, M.; Sarti, P.

    2013-01-01

    This report summarizes the activity of the Italian INAF VLBI Analysis Center. Our Analysis Center is located in Bologna, Italy and belongs to the Institute of Radioastronomy, which is part of the National Institute of Astrophysics. IRA runs the observatories of Medicina and Noto, where two 32-m VLBI AZ-EL telescopes are situated. This report contains the AC's VLBI data analysis activities and shortly outlines the investigations into the co-locations of space geodetic instruments.

  6. Germinal Centers without T Cells

    PubMed Central

    de Vinuesa, Carola García; Cook, Matthew C.; Ball, Jennifer; Drew, Marion; Sunners, Yvonne; Cascalho, Marilia; Wabl, Matthias; Klaus, Gerry G.B.; MacLennan, Ian C.M.

    2000-01-01

    Germinal centers are critical for affinity maturation of antibody (Ab) responses. This process allows the production of high-efficiency neutralizing Ab that protects against virus infection and bacterial exotoxins. In germinal centers, responding B cells selectively mutate the genes that encode their receptors for antigen. This process can change Ab affinity and specificity. The mutated cells that produce high-affinity Ab are selected to become Ab-forming or memory B cells, whereas cells that have lost affinity or acquired autoreactivity are eliminated. Normally, T cells are critical for germinal center formation and subsequent B cell selection. Both processes involve engagement of CD40 on B cells by T cells. This report describes how high-affinity B cells can be induced to form large germinal centers in response to (4-hydroxy-3-nitrophenyl) acetyl (NP)-Ficoll in the absence of T cells or signaling through CD40 or CD28. This requires extensive cross-linking of the B cell receptors, and a frequency of antigen-specific B cells of at least 1 in 1,000. These germinal centers abort dramatically at the time when mutated high-affinity B cells are normally selected by T cells. Thus, there is a fail-safe mechanism against autoreactivity, even in the event of thymus-independent germinal center formation. PMID:10662794

  7. The Research Role of a National Center.

    ERIC Educational Resources Information Center

    Silberman, Harry F.

    The functional role of a national center for vocational education depends on the people doing the work; consequently, the center sets its own agenda when it makes personal decisions. A center's role should include two elements: in setting its own research agenda, a center should take a broad perspective on vocational education; and a center should…

  8. E E Centers around the USA.

    ERIC Educational Resources Information Center

    Nolan, Karen

    1980-01-01

    Describes the school programs, teacher workshops and other activities of four environmental education centers: Audubon Center, Greenwich, Connecticut; Whitetail Environmental Center, New Cumberland, Pennsylvania; Junior Museum and Nature Center, Lee County, Florida; and Wave Hill Center for Environmental Studies, Bronx, New York. (WB)

  9. 49 CFR 193.2441 - Control center.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...: FEDERAL SAFETY STANDARDS Equipment Vaporization Equipment § 193.2441 Control center. Each LNG plant must... than one control center is located at an LNG Plant, each control center must have more than one means of communication with each other center. (e) Each control center must have a means of communicating...

  10. Aerial view of the Kennedy Space Center Visitor Center

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Kennedy Space Center Visitor Complex, shown in this aerial view looking south, sprawls across 70 acres on Florida's Space Coast. It is located off State Road 405, NASA Parkway, six miles inside the Space Center entrance. SR 405 can be seen at the bottom of the photo. Just above the roadway, from left, can be seen the Shuttle/Gantry mockup, the Post Show Dome, the Astronaut Memorial, and to the far right, the Center for Space Education. Behind the Memorial are a cluster of buildings that include the Theater Complex, Cafeteria, Space Flight Exhibit Building, Souvenir Sales Building, Spaceport Central, and Ticket Pavilion. At the upper right of the site is a display of rockets that have played a significant role in the growth of the space program. Parking lots span the width of the complex on the south side.

  11. The Goddard Earth Sciences and Technology Center (GEST Center)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The following is a technical report of the progress made under Cooperative Agreement NCC5494, the Goddard Earth Sciences and Technology Center (GEST). The period covered by this report is October 1, 2001 through December 31, 2001. GEST is a consortium of scientists and engineers, led by the University of Maryland, Baltimore County (UMBC), to conduct scientific research in Earth and information sciences and related technologies in collaboration with the NASA Goddard Space Flight Center (GSFC). GEST was established through a cooperative agreement signed May 11, 2000, following a competitive procurement process initiated by GSFC.

  12. Finding Communities by Their Centers

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Zhao, Pei; Li, Ping; Zhang, Kai; Zhang, Jie

    2016-04-01

    Detecting communities or clusters in a real-world, networked system is of considerable interest in various fields such as sociology, biology, physics, engineering science, and interdisciplinary subjects, with significant efforts devoted in recent years. Many existing algorithms are only designed to identify the composition of communities, but not the structures. Whereas we believe that the local structures of communities can also shed important light on their detection. In this work, we develop a simple yet effective approach that simultaneously uncovers communities and their centers. The idea is based on the premise that organization of a community generally can be viewed as a high-density node surrounded by neighbors with lower densities, and community centers reside far apart from each other. We propose so-called “community centrality” to quantify likelihood of a node being the community centers in such a landscape, and then propagate multiple, significant center likelihood throughout the network via a diffusion process. Our approach is an efficient linear algorithm, and has demonstrated superior performance on a wide spectrum of synthetic and real world networks especially those with sparse connections amongst the community centers.

  13. Finding Communities by Their Centers

    PubMed Central

    Chen, Yan; Zhao, Pei; Li, Ping; Zhang, Kai; Zhang, Jie

    2016-01-01

    Detecting communities or clusters in a real-world, networked system is of considerable interest in various fields such as sociology, biology, physics, engineering science, and interdisciplinary subjects, with significant efforts devoted in recent years. Many existing algorithms are only designed to identify the composition of communities, but not the structures. Whereas we believe that the local structures of communities can also shed important light on their detection. In this work, we develop a simple yet effective approach that simultaneously uncovers communities and their centers. The idea is based on the premise that organization of a community generally can be viewed as a high-density node surrounded by neighbors with lower densities, and community centers reside far apart from each other. We propose so-called “community centrality” to quantify likelihood of a node being the community centers in such a landscape, and then propagate multiple, significant center likelihood throughout the network via a diffusion process. Our approach is an efficient linear algorithm, and has demonstrated superior performance on a wide spectrum of synthetic and real world networks especially those with sparse connections amongst the community centers. PMID:27053090

  14. Finding Communities by Their Centers.

    PubMed

    Chen, Yan; Zhao, Pei; Li, Ping; Zhang, Kai; Zhang, Jie

    2016-01-01

    Detecting communities or clusters in a real-world, networked system is of considerable interest in various fields such as sociology, biology, physics, engineering science, and interdisciplinary subjects, with significant efforts devoted in recent years. Many existing algorithms are only designed to identify the composition of communities, but not the structures. Whereas we believe that the local structures of communities can also shed important light on their detection. In this work, we develop a simple yet effective approach that simultaneously uncovers communities and their centers. The idea is based on the premise that organization of a community generally can be viewed as a high-density node surrounded by neighbors with lower densities, and community centers reside far apart from each other. We propose so-called "community centrality" to quantify likelihood of a node being the community centers in such a landscape, and then propagate multiple, significant center likelihood throughout the network via a diffusion process. Our approach is an efficient linear algorithm, and has demonstrated superior performance on a wide spectrum of synthetic and real world networks especially those with sparse connections amongst the community centers. PMID:27053090

  15. Creating Theory: Moving Tutors to the Center.

    ERIC Educational Resources Information Center

    Dinitz, Sue; Kiedaisch, Jean

    2003-01-01

    Presents three tutors' contributions to writing center theory. Shows how writing center theory can be enriched by including tutor voices and perspectives. Discusses the importance of including tutors in the construction of writing center theory. (SG)

  16. National Institutes of Health, Clinical Center

    MedlinePlus

    ... Resources Available for NIH Researchers More NIH Blood Bank Clinical Center patients need over 30 units of ... on social media: NIH Clinical Center NIH Blood Bank @NIHClinicalCntr @CCMedEd Clinical Center TV Privacy Statement | Accessibility | ...

  17. Center for Computational Structures Technology

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Perry, Ferman W.

    1995-01-01

    The Center for Computational Structures Technology (CST) is intended to serve as a focal point for the diverse CST research activities. The CST activities include the use of numerical simulation and artificial intelligence methods in modeling, analysis, sensitivity studies, and optimization of flight-vehicle structures. The Center is located at NASA Langley and is an integral part of the School of Engineering and Applied Science of the University of Virginia. The key elements of the Center are: (1) conducting innovative research on advanced topics of CST; (2) acting as pathfinder by demonstrating to the research community what can be done (high-potential, high-risk research); (3) strong collaboration with NASA scientists and researchers from universities and other government laboratories; and (4) rapid dissemination of CST to industry, through integration of industrial personnel into the ongoing research efforts.

  18. Starting a Day Care Center: The Day Care Center Handbook.

    ERIC Educational Resources Information Center

    Checkett, Donald

    Designed to be of help to individuals and groups seeking to establish a day care center in the metropolitan St. Louis area, this manual calls attention to important and basic information which must be taken into account if planning is to produce tangible results. Following a brief section defining commonly used terms referring to organized…

  19. NASA(Field Center Based) Technology Commercialization Centers

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Under the direction of the IC(sup 2) Institute, the Johnson Technology Commercialization Center has met or exceeded all planned milestones and metrics during the first two and a half years of the NTCC program. The Center has established itself as an agent for technology transfer and economic development in- the Clear Lake community, and is positioned to continue as a stand-alone operation. This report presents data on the experimental JTCC program, including all objective measures tracked over its duration. While the metrics are all positive, the data indicates a shortage of NASA technologies with strong commercial potential, barriers to the identification and transfer of technologies which may have potential, and small financial return to NASA via royalty-bearing licenses. The Center has not yet reached the goal of self-sufficiency based on rental income, and remains dependent on NASA funding. The most important issues raised by the report are the need for broader and deeper community participation in the Center, technology sourcing beyond JSC, and the form of future funding which will be appropriate.

  20. The Savannah River Technology Center Research and Development Climatology Center

    SciTech Connect

    Kurzeja, R.J.

    1995-12-31

    The Environmental Technology Section (ETS) of the Savannah River Technology Center (SRTC) built and has operated the Climatology Site (CS) for almost 10 years. The Climatology Site provides a wide variety of meteorological support functions for Savannah River Site (SRS) operations and research. This document describes the Climatology Site facility to familiarize present and potential users with its capabilities.

  1. Evaluating Your Campus Mail Center Security.

    ERIC Educational Resources Information Center

    Weiner, Mitchell D.

    2003-01-01

    Describes five strategies to consider when evaluating the security of a campus mail center: mail center efficiency, electronic tracking, identifying dangerous mail, training, and continuity planning. (EV)

  2. The Fermilab Particle Astrophysics Center

    SciTech Connect

    Not Available

    2004-11-01

    The Particle Astrophysics Center was established in fall of 2004. Fermilab director Michael S. Witherell has named Fermilab cosmologist Edward ''Rocky'' Kolb as its first director. The Center will function as an intellectual focus for particle astrophysics at Fermilab, bringing together the Theoretical and Experimental Astrophysics Groups. It also encompasses existing astrophysics projects, including the Sloan Digital Sky Survey, the Cryogenic Dark Matter Search, and the Pierre Auger Cosmic Ray Observatory, as well as proposed projects, including the SuperNova Acceleration Probe to study dark energy as part of the Joint Dark Energy Mission, and the ground-based Dark Energy Survey aimed at measuring the dark energy equation of state.

  3. Worldwide activities on the reduction of occupational exposure at nuclear power plants

    SciTech Connect

    Kahn, T.A.; Baum, J.W.

    1988-06-01

    This report is based on analysis of an informational data base set up at the Brookhaven National Laboratory ALARA Center. It is part of a project sponsored by the US Nuclear Regulatory Commission to monitor and evaluate research on dose reduction at nuclear power plants in the US and abroad. The main benefits to be expected from reducing occupational exposures are highlighted in the report, the chief causes of elevated doses are identified, and effective approaches to minimize radiation exposures are proposed. A wide range of research activity is covered, including plant chemistry, cobalt reduction techniques, stress corrosion cracking, decontamination, remote tools and devices, and robotics. Advanced reactors, which are designed for low radiation exposures, are examined, and health physics technology programs which have been effective in reducing occupational exposure at various utilities are discussed. The highlights of the programs on dose reduction conducted by a number of countries are described, and comparisons are made of the collective occupational radiation dose equivalents for selected countries. The short and long term trends such studies are pointing to are evaluated. It is concluded that the efforts to improve dose reduction, both in the US and abroad, remain in a healthy state but require continuing encouragement and further development.

  4. Calculation of Absorbed Dose in Target Tissue and Equivalent Dose in Sensitive Tissues of Patients Treated by BNCT Using MCNP4C

    NASA Astrophysics Data System (ADS)

    Zamani, M.; Kasesaz, Y.; Khalafi, H.; Pooya, S. M. Hosseini

    Boron Neutron Capture Therapy (BNCT) is used for treatment of many diseases, including brain tumors, in many medical centers. In this method, a target area (e.g., head of patient) is irradiated by some optimized and suitable neutron fields such as research nuclear reactors. Aiming at protection of healthy tissues which are located in the vicinity of irradiated tissue, and based on the ALARA principle, it is required to prevent unnecessary exposure of these vital organs. In this study, by using numerical simulation method (MCNP4C Code), the absorbed dose in target tissue and the equiavalent dose in different sensitive tissues of a patiant treated by BNCT, are calculated. For this purpose, we have used the parameters of MIRD Standard Phantom. Equiavelent dose in 11 sensitive organs, located in the vicinity of target, and total equivalent dose in whole body, have been calculated. The results show that the absorbed dose in tumor and normal tissue of brain equal to 30.35 Gy and 0.19 Gy, respectively. Also, total equivalent dose in 11 sensitive organs, other than tumor and normal tissue of brain, is equal to 14 mGy. The maximum equivalent doses in organs, other than brain and tumor, appear to the tissues of lungs and thyroid and are equal to 7.35 mSv and 3.00 mSv, respectively.

  5. Determining the applicability of the Landauer nanoDot as a general public dosimeter in a research imaging facility.

    PubMed

    Charlton, Michael A; Thoreson, Kelly F; Cerecero, Jennifer A

    2012-11-01

    The Research Imaging Institute (RII) building at the University of Texas Health Science Center at San Antonio (UTHSCSA) houses two cyclotron particle accelerators, positron emission tomography (PET) machines, and a fluoroscopic unit. As part of the radiation protection program (RPP) and meeting the standard for achieving ALARA (as low as reasonably achievable), it is essential to minimize the ionizing radiation exposure to the general public through the use of controlled areas and area dose monitoring. Currently, thirty-four whole body Luxel+ dosimeters, manufactured by Landauer, are being used in various locations within the RII to monitor dose to the general public. The intent of this research was to determine if the nanoDot, a single point dosimeter, can be used as a general public dosimeter in a diagnostic facility. This was tested by first verifying characteristics of the nanoDot dosimeter including dose linearity, dose rate dependence, angular dependence, and energy dependence. Then, the response of the nanoDot dosimeter to the Luxel+ dosimeter when placed in a continuous, low dose environment was investigated. Finally, the nanoDot was checked for appropriate response in an acute, high dose environment. Based on the results, the current recommendation is that the nanoDot should not replace the Luxel+ dosimeter without further work to determine the energy spectra in the RII building and without considering the limitation of the microStar reader, portable on-site OSL reader, at doses below 0.1 mGy (10 mrad). PMID:23026976

  6. Idaho National Engineering and Environmental Laboratory radiological control performance indicator report. First quarter -- calendar year 1998

    SciTech Connect

    Hinckley, F.L.

    1998-05-01

    This document provides a report and an analysis of the Radiological Control Performance Indicators through the first Quarter of Calendar Year 1998 (CH-98) for Lockheed Martin Idaho Technologies Company (LMITCO). LMITCO is the prime contractor at the Idaho National Engineering and Environmental Laboratory (INEEL). This Performance Indicator Report is provided in accordance with Article 133 of the INEEL Radiological Control Manual. These indicators should be used by management as tools to focus priorities, attention, and adherence to As-Low-As-Reasonably-Achievable (ALARA) practices. The INEEL collective occupational radiation deep dose is 12.426 person-rem year to date, compared to a quarterly goal of 16.2 person-rem. In comparison to last year, the site dose goal has been reduced mainly due to work scope reductions at the Idaho Nuclear Technologies and Engineering Center (INTEC), formerly the Idaho Chemical Processing Plant. Due to unforeseen increases in shipments to the Radioactive Waste Management Complex, the authors anticipate additional dose increases and will reflect these changes in the next quarter report.

  7. Data base on dose reduction research projects for nuclear power plants. Volume 5

    SciTech Connect

    Khan, T.A.; Yu, C.K.; Roecklein, A.K.

    1994-05-01

    This is the fifth volume in a series of reports that provide information on dose reduction research and health physics technology or nuclear power plants. The information is taken from two of several databases maintained by Brookhaven National Laboratory`s ALARA Center for the Nuclear Regulatory Commission. The research section of the report covers dose reduction projects that are in the experimental or developmental phase. It includes topics such as steam generator degradation, decontamination, robotics, improvements in reactor materials, and inspection techniques. The section on health physics technology discusses dose reduction efforts that are in place or in the process of being implemented at nuclear power plants. A total of 105 new or updated projects are described. All project abstracts from this report are available to nuclear industry professionals with access to a fax machine through the ACEFAX system or a computer with a modem and the proper communications software through the ACE system. Detailed descriptions of how to access all the databases electronically are in the appendices of the report.

  8. Learner-Centered Online Instruction

    ERIC Educational Resources Information Center

    McCombs, Barbara

    2015-01-01

    This chapter offers a theoretical rationale and an explanation of evidence for using research-validated, learner-centered principles and practices in online course development, highlighting the evidence-based practices that have been used successfully to develop online courses that engage and retain students.

  9. Directions in Center Director Training

    ERIC Educational Resources Information Center

    Bloom, Paula Jorde; Vinci, Yasmina; Rafanello, Donna; Donohue, Chip

    2011-01-01

    Exchange invited some of the leading trend watchers in the arena of director training to share their insights on the current state and future directions in this country. This article presents the authors' insights on the directions in center director training. They also share their views on whether the amount of and quality of training out there…

  10. Remote Science Operation Center research

    NASA Technical Reports Server (NTRS)

    Banks, P. M.

    1986-01-01

    Progress in the following areas is discussed: the design, planning and operation of a remote science payload operations control center; design and planning of a data link via satellite; and the design and prototyping of an advanced workstation environment for multi-media (3-D computer aided design/computer aided engineering, voice, video, text) communications and operations.

  11. High-Rising Rec Centers.

    ERIC Educational Resources Information Center

    Whitney, Tim

    2000-01-01

    Examines how tight urban sites can yield sports spaces that favorably compare to their more rural campus counterparts. Potential areas of concern when recreation centers are reconfigured into high-rise structures are highlighted, including building codes, building access, noise control, building costs, and lighting. (GR)

  12. NREL National Bioenergy Center Overview

    SciTech Connect

    2012-01-01

    The demand for clean, sustainable, secure energy is growing... and the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is answering the call. NREL's National bioenergy Center is pioneering biofuels research and development and accelerating the pace these technologies move into the marketplace.

  13. The Web Resource Collaboration Center

    ERIC Educational Resources Information Center

    Dunlap, Joanna C.

    2004-01-01

    The Web Resource Collaboration Center (WRCC) is a web-based tool developed to help software engineers build their own web-based learning and performance support systems. Designed using various online communication and collaboration technologies, the WRCC enables people to: (1) build a learning and professional development resource that provides…

  14. A Person Centered Communication Workshop

    ERIC Educational Resources Information Center

    Boyd, John D.

    1977-01-01

    A person centered communication workshop was developed to help aspiring facilitators achieve a set of listening and responding skills with which to initiate and/or sustain facilitative interactions. The workshop has been helpful to teachers, teacher aides, counselors, speech-audiology therapists, and pupil personnel workers. (LBH)

  15. A Tale of Three Centers

    ERIC Educational Resources Information Center

    Lubey, Lynn; Huffman, Dennis; Grinberg, Nancy

    2011-01-01

    Prince George's Community College has developed three distinct models for off-campus centers. Examination of each model reveals the impact of variables such as location, ownership, design, target audience for a particular site (student demographics, community needs, and access issues), the role of partnerships with other institutions, and…

  16. LEARNING AND INSTRUCTIONAL RESOURCES CENTER.

    ERIC Educational Resources Information Center

    THARP, CHARLES D.

    A DESCRIPTION OF THE INCEPTION, OBJECTIVES, OPERATION, EQUIPMENT, AND PERSONNEL OF THE LEARNING AND INSTRUCTIONAL RESOURCES CENTER OF THE UNIVERSITY OF MIAMI IS GIVEN. FACULTY COMMITTEES WERE APPOINTED AT THE UNIVERSITY OF MIAMI TO WORK OUT THE PHILOSOPHY OF A NEW DIVISION WITHIN THE UNIVERSITY WHICH WOULD MEET THE PROBLEMS OF THE INADEQUACY OF…

  17. The Work-Centered Couple.

    ERIC Educational Resources Information Center

    Sperry, Len; Carlson, Jon

    1991-01-01

    Sketches taxonomy of work-centered couple. Briefly describes five couple types: the dual-career couple, the commuting couple, the military couple, the executive couple, and the family business couple. Notes that issues of work and career can greatly impact the lives of these couples. Encourages family psychology to further explore this area of…

  18. Kepler Science Operations Center Architecture

    NASA Technical Reports Server (NTRS)

    Middour, Christopher; Klaus, Todd; Jenkins, Jon; Pletcher, David; Cote, Miles; Chandrasekaran, Hema; Wohler, Bill; Girouard, Forrest; Gunter, Jay P.; Uddin, Kamal; Allen, Christopher; Hall, Jennifer; Ibrahim, Khadeejah; Clarke, Bruce; Li, Jie; McCauliff, Sean; Quintana, Elisa; Sommers, Jeneen; Stroozas, Brett; Tenenbaum, Peter; Twicken, Joseph; Wu, Hayley; Caldwell, Doug; Bryson, Stephen; Bhavsar,Paresh

    2010-01-01

    We give an overview of the operational concepts and architecture of the Kepler Science Data Pipeline. Designed, developed, operated, and maintained by the Science Operations Center (SOC) at NASA Ames Research Center, the Kepler Science Data Pipeline is central element of the Kepler Ground Data System. The SOC charter is to analyze stellar photometric data from the Kepler spacecraft and report results to the Kepler Science Office for further analysis. We describe how this is accomplished via the Kepler Science Data Pipeline, including the hardware infrastructure, scientific algorithms, and operational procedures. The SOC consists of an office at Ames Research Center, software development and operations departments, and a data center that hosts the computers required to perform data analysis. We discuss the high-performance, parallel computing software modules of the Kepler Science Data Pipeline that perform transit photometry, pixel-level calibration, systematic error-correction, attitude determination, stellar target management, and instrument characterization. We explain how data processing environments are divided to support operational processing and test needs. We explain the operational timelines for data processing and the data constructs that flow into the Kepler Science Data Pipeline.

  19. School Centered Evidence Based Accountability

    ERIC Educational Resources Information Center

    Milligan, Charles

    2015-01-01

    Achievement scores drive much of the effort in today's accountability system, however, there is much more that occurs in every school, every day. School Centered Evidence Based Accountability can be used from micro to macro giving School Boards and Administration a process for monitoring the results of the entire school operation effectively and…

  20. Resource Centers for Gifted Education.

    ERIC Educational Resources Information Center

    Clark, Linda R.; And Others

    1995-01-01

    Shared Information Services is a state-operated network of four resource centers for gifted education in Indiana. The network provides support in the areas of program development, teacher education, classroom teaching resources, and program evaluation. A variety of library and technical assistance services is provided to teachers and others by…

  1. An International Development Technology Center

    ERIC Educational Resources Information Center

    Morgan, Robert P.

    1969-01-01

    Main focus of the Center is "the application of science and technology to the solution of problems faced by people in less-developed areas of the world. Adapted from paper presented at ASEE Annual Meeting, The Pennsylvania State University, June, 1969. (Author/WM)

  2. Student Centered Curriculum: Elementary School

    ERIC Educational Resources Information Center

    Rondone, Atria

    2014-01-01

    Student-centered learning has an important place in education because it fosters student engagement and allows the traditional micromanaging teacher to transform into a guide. The current education model emphasizes teacher control and curriculum based on standardized testing, which stunts students' natural learning processes. This study…

  3. The National Conservation Training Center.

    ERIC Educational Resources Information Center

    Cohn, Jeffrey P.

    2000-01-01

    Describes the National Conservation Training Center (NCTC) which provides a host of benefits for fish and wildlife pros and includes classrooms, laboratories, and residential lodges. Provides information about some of the courses offered such as how to use global positioning systems and water quality testing. (ASK)

  4. Instructional Materials Centers; Selected Readings.

    ERIC Educational Resources Information Center

    Pearson, Neville P.; Butler, Lucius

    Revolutionary innovation in the traditional school library has produced "the media center", where--in addition to books--films, television, tapes, and multimedia displays are available to increase student learning. This book represents a collection of eighty-three articles from library journals dealing with library science in its modern form. The…

  5. Instructional Materials Centers; Annotated Bibliography.

    ERIC Educational Resources Information Center

    Poli, Rosario, Comp.

    An annotated bibliography lists 74 articles and reports on instructional materials centers (IMC) which appeared from 1967-70. The articles deal with such topics as the purposes of an IMC, guidelines for setting up an IMC, and the relationship of an IMC to technology. Most articles deal with use of an IMC on an elementary or secondary level, but…

  6. Osteochondroses: Diseases of Growth Centers.

    ERIC Educational Resources Information Center

    Pappas, Arthur M.

    1989-01-01

    Many growth center disorders may be associated with athletic activities like Little League baseball and year-round gymnastics. Osteochondroses are developmental disorders usually diagnosed in growing children and associated with anatomic sites undergoing transition from cartilage to bone. Radiographic methods of diagnosing these problems are…

  7. Rocket center Peenemuende - Personal memories

    NASA Technical Reports Server (NTRS)

    Dannenberg, Konrad; Stuhlinger, Ernst

    1993-01-01

    A brief history of Peenemuende, the rocket center where Von Braun and his team developed the A-4 (V-2) rocket under German Army auspices, and the Air Force developed the V-1 (buzz bomb), wire-guided bombs, and rocket planes, is presented. Emphasis is placed on the expansion of operations beginning in 1942.

  8. Kepler Science Operations Center architecture

    NASA Astrophysics Data System (ADS)

    Middour, Christopher; Klaus, Todd C.; Jenkins, Jon; Pletcher, David; Cote, Miles; Chandrasekaran, Hema; Wohler, Bill; Girouard, Forrest; Gunter, Jay P.; Uddin, Kamal; Allen, Christopher; Hall, Jennifer; Ibrahim, Khadeejah; Clarke, Bruce; Li, Jie; McCauliff, Sean; Quintana, Elisa; Sommers, Jeneen; Stroozas, Brett; Tenenbaum, Peter; Twicken, Joseph; Wu, Hayley; Caldwell, Doug; Bryson, Stephen; Bhavsar, Paresh; Wu, Michael; Stamper, Brian; Trombly, Terry; Page, Christopher; Santiago, Elaine

    2010-07-01

    We give an overview of the operational concepts and architecture of the Kepler Science Processing Pipeline. Designed, developed, operated, and maintained by the Kepler Science Operations Center (SOC) at NASA Ames Research Center, the Science Processing Pipeline is a central element of the Kepler Ground Data System. The SOC consists of an office at Ames Research Center, software development and operations departments, and a data center which hosts the computers required to perform data analysis. The SOC's charter is to analyze stellar photometric data from the Kepler spacecraft and report results to the Kepler Science Office for further analysis. We describe how this is accomplished via the Kepler Science Processing Pipeline, including the hardware infrastructure, scientific algorithms, and operational procedures. We present the high-performance, parallel computing software modules of the pipeline that perform transit photometry, pixel-level calibration, systematic error correction, attitude determination, stellar target management, and instrument characterization. We show how data processing environments are divided to support operational processing and test needs. We explain the operational timelines for data processing and the data constructs that flow into the Kepler Science Processing Pipeline.

  9. Writing Centers in 2020--Gone!

    ERIC Educational Resources Information Center

    Bateman, Thomas L.

    Technology brought the writing center to life because of the word processor, but new technology is actually going to create robotic life that thinks with us, for us, to us. It will offer portability all from a microchip stored in a coat pocket. Technology will continue to expedite today's hurry up world, and this will carry over into the writer's…

  10. Colorado Learning Disabilities Research Center.

    ERIC Educational Resources Information Center

    DeFries, J. C.; And Others

    1997-01-01

    Results obtained from the center's six research projects are reviewed, including research on psychometric assessment of twins with reading disabilities, reading and language processes, attention deficit-hyperactivity disorder and executive functions, linkage analysis and physical mapping, computer-based remediation of reading disabilities, and…

  11. NREL National Bioenergy Center Overview

    SciTech Connect

    Foust, Thomas; Pienkos, Phil; Sluiter, Justin; Magrini, Kim; McMillan, Jim

    2014-07-28

    The demand for clean, sustainable, secure energy is growing... and the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is answering the call. NREL's National Bioenergy Center is pioneering biofuels research and development and accelerating the pace these technologies move into the marketplace.

  12. Child-Centered Play Therapy

    ERIC Educational Resources Information Center

    VanFleet, Rise; Sywulak, Andrea E.; Sniscak, Cynthia Caparosa

    2010-01-01

    Highly practical, instructive, and authoritative, this book vividly describes how to conduct child-centered play therapy. The authors are master clinicians who explain core therapeutic principles and techniques, using rich case material to illustrate treatment of a wide range of difficulties. The focus is on nondirective interventions that allow…

  13. Flexible Space Takes Center Stage.

    ERIC Educational Resources Information Center

    Jackson, Lisa M.

    1997-01-01

    Design flexibility allows a new auditorium at an Illinois high school to be three theaters in one. While the large auditorium supports 1,200 seats, two rotating platforms can divide the large space into a 240-seat small theater and a 240-seat recital hall, leaving a 720-seat auditorium in the center. (MLF)

  14. Environmental Learning Centers: A Template.

    ERIC Educational Resources Information Center

    Vozick, Eric

    1999-01-01

    Provides a working model, or template, for community-based environmental learning centers (ELCs). The template presents a philosophy as well as a plan for staff and administration operations, educational programming, and financial support. The template also addresses "green" construction and maintenance of buildings and grounds and includes a…

  15. Center for Advanced Computational Technology

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.

    2000-01-01

    The Center for Advanced Computational Technology (ACT) was established to serve as a focal point for diverse research activities pertaining to application of advanced computational technology to future aerospace systems. These activities include the use of numerical simulations, artificial intelligence methods, multimedia and synthetic environments, and computational intelligence, in the modeling, analysis, sensitivity studies, optimization, design and operation of future aerospace systems. The Center is located at NASA Langley and is an integral part of the School of Engineering and Applied Science of the University of Virginia. The Center has four specific objectives: 1) conduct innovative research on applications of advanced computational technology to aerospace systems; 2) act as pathfinder by demonstrating to the research community what can be done (high-potential, high-risk research); 3) help in identifying future directions of research in support of the aeronautical and space missions of the twenty-first century; and 4) help in the rapid transfer of research results to industry and in broadening awareness among researchers and engineers of the state-of-the-art in applications of advanced computational technology to the analysis, design prototyping and operations of aerospace and other high-performance engineering systems. In addition to research, Center activities include helping in the planning and coordination of the activities of a multi-center team of NASA and JPL researchers who are developing an intelligent synthesis environment for future aerospace systems; organizing workshops and national symposia; as well as writing state-of-the-art monographs and NASA special publications on timely topics.

  16. Counseling Services in Adult Day Care Centers.

    ERIC Educational Resources Information Center

    Zaki, Gamal; Zaki, Sylvia

    Federal support for adult day care centers began in the United States approximately 10 years ago. To examine the counseling practices in the adult day care centers across the country and to explore how the services are affected by the staffing patterns at these centers, 135 centers completed a questionnaire. The questionnaire addressed…

  17. (Center of excellence: Microlaser microscope)

    SciTech Connect

    Webb, R.H.

    1992-01-01

    This Center-of-Excellence grant has two components: development of an imaging system based on microlaser arrays forms a central project among a group of laser diagnostic and therapeutic efforts primarily funded outside the grant. In these first 8 months we have set up the Microlaser Microscope using small microlaser arrays. We have emphasized the basics of microlaser handling and electronic addressing and the optics of the microscope. Details of electronics and optics given here will be used in the larger arrays which should be available soon. After a description of the central Microlaser Microscope project, we touch briefly on the other projects of the Center, which have been outstandingly fruitful this year. Publications are necessarily concerned with the smaller projects, since the Microlaser Microscope is in its early stages.

  18. AXAF Science Center: User Support

    NASA Astrophysics Data System (ADS)

    Wilkes, B. J.

    1997-05-01

    The purpose of the AXAF Science Center (ASC) is to provide the support required by the science community to realize fully the potential of the Advanced X-ray Astrophysics Facility (AXAF). We maintain expertise on all aspects of the AXAF mission from submitting a proposal to the receipt and analysis of data by a guest observer. We interface with the observers and the operations center (co-located in Cambridge) in the planning and scheduling of observations and with the instrument teams on the calibration and status of the detectors. We will develop, export and support portable analysis software to allow users to analyse their own data. The User Support Group is the main interface between the ASC and the astronomical community. The facilities provided by the ASC to help potential guest observers will be reviewed in this presentation, including how to: learn about the satellite and instruments, plan observations, access our help-desk.

  19. The Fort Collins Science Center

    USGS Publications Warehouse

    Wilson, Juliette T.; Banowetz, Michele M.

    2012-01-01

    With a focus on biological research, the U.S. Geological Survey Fort Collins Science Center (FORT) develops and disseminates science-based information and tools to support natural resource decision-making. This brochure succinctly describes the integrated science capabilities, products, and services that the FORT science community offers across the disciplines of aquatic systems, ecosystem dynamics, information science, invasive species science, policy analysis and social science assistance, and trust species and habitats.

  20. Northeast Regional Planetary Data Center

    NASA Technical Reports Server (NTRS)

    Schultz, Peter H.; Saunders, Stephen (Technical Monitor)

    2005-01-01

    In 1980, the Northeast Planetary Data Center (NEPDC) was established with Tim Mutch as its Director. The Center was originally located in the Sciences Library due to space limitations but moved to the Lincoln Field Building in 1983 where it could serve the Planetary Group and outside visitors more effectively. In 1984 Dr. Peter Schultz moved to Brown University and became its Director after serving in a similar capacity at the Lunar and Planetary Institute since 1976. Debbie Glavin has served as the Data Center Coordinator since 1982. Initially the NEPDC was build around Tim Mutch's research collection of Lunar Orbiter and Mariner 9 images with only partial sets of Apollo and Viking materials. Its collection was broadened and deepened as the Director (PHS) searched for materials to fill in gaps. Two important acquisitions included the transfer of a Viking collection from a previous PI in Tucson and the donation of surplused lunar materials (Apollo) from the USGS/Menlo Park prior to its building being torn down. Later additions included the pipeline of distributed materials such as the Viking photomosaic series and certain Magellan products. Not all materials sent to Brown, however, found their way to the Data Center, e.g., Voyager prints and negatives. In addition to the NEPDC, the planetary research collection is separately maintained in conjunction with past and ongoing mission activities. These materials (e.g., Viking, Magellan, Galileo, MGS mission products) are housed elsewhere and maintained independently from the NEPDC. They are unavailable to other researchers, educators, and general public. Consequently, the NEPDC represents the only generally accessible reference collection for use by researchers, students, faculty, educators, and general public in the Northeast corridor.

  1. Center Pivot Irrigated Agriculture, Libya

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A view of the Faregh Agricultural Station in the Great Calanscio Sand Sea, Libya (26.5N, 22.0E) about 300 miles southeast of Benghazi. A pattern of water wells have been drilled several miles apart to support a quarter mile center-pivot-swing-arm agricultural irrigation system. The crop grown is alfalfa which is eaten on location by flocks of sheep following the swing arm as it rotates. At maturity, the sheep are flown to market throughout Libya.

  2. Kennedy Space Center exercise program

    NASA Technical Reports Server (NTRS)

    Hoffman, Cristy

    1993-01-01

    The Kennedy Space Center (KSC) Fitness Program began in Feb. 1993. The program is managed by the Biomedical Operations and Research Office and operated by the Bionetics Corporation. The facilities and programs are offered to civil servants, all contractors, temporary duty assignment (TDY) participants, and retirees. All users must first have a medical clearance. A computer-generated check-in system is used to monitor participant usage. Various aspects of the program are discussed.

  3. Clean Energy Solutions Center (Presentation)

    SciTech Connect

    Reategui, S.

    2012-07-01

    The Clean Energy Ministerial launched the Clean Energy Solutions Center in April, 2011 for major economy countries, led by Australia and U.S. with other CEM partners. Partnership with UN-Energy is extending scope to support all developing countries: 1. Enhance resources on policies relating to energy access, small to medium enterprises (SMEs), and financing programs; 2. Offer expert policy assistance to all countries; 3. Expand peer to peer learning, training, and deployment and policy data for developing countries.

  4. John F. Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The John F. Kennedy Space Center, America's spaceport, is located along Florida's eastern shore on Cape Canaveral. Established as NASA's Launch Operations Center on July 1, 1962, the center has been the site of launching all U.S. human space flight missions, from the early days of Project Mercury to the space shuttle and the next generation of vehicles. In addition, the center is home to NASA's Launch Services Program, which coordinates all expendable vehicle launches carrying a NASA payload.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 32.6 by 51.2 kilometers (20.2 by 32.2 miles) Location: 28.6 degrees North latitude, 80.6 degrees West longitude Orientation: North at top Image Data: ASTER bands 3, 2, and 1 Original Data Resolution: 15 meters (49

  5. New England Compounding Center Indictment.

    PubMed

    Cabaleiro, Joe

    2015-01-01

    This article is a review of the lapses in compliance with United States Pharmacopeia standards and pharmacy law as alleged by the New England Compounding Center indictment. This indictment was a result of an outbreak of fungal meningitis traced to fungal contamination of compounded methylprednisolone suspension for epidural steroid injections. This article is also intended as a gap analysis for compounders to review compliance at their own facility, and, if necessary, take the appropriate steps to implement best practices. PMID:26685489

  6. Center for Nanophase Materials Sciences

    NASA Astrophysics Data System (ADS)

    Horton, Linda

    2002-10-01

    The Center for Nanophase Materials Sciences (CNMS) will be a user facility with a strong component of joint, collaborative research. CNMS is being developed, together with the scientific community, with support from DOE's Office of Basic Energy Sciences. The Center will provide a thriving, multidisciplinary environment for research as well as the education of students and postdoctoral scholars. It will be co-located with the Spallation Neutron Source (SNS) and the Joint Institute for Neutron Sciences (JINS). The CNMS will integrate nanoscale research with neutron science, synthesis science, and theory/modeling/simulation, bringing together four areas in which the United States has clear national research and educational needs. The Center's research will be organized under three scientific thrusts: nano-dimensioned "soft" materials (including organic, hybrid, and interfacial nanophases); complex "hard" materials systems (including the crosscutting areas of interfaces and reduced dimensionality that become scientifically critical on the nanoscale); and theory/modeling/simulation. This presentation will summarize the progress towards identification of the specific research focus topics for the Center. Currently proposed topics, based on two workshops with the potential user community, include catalysis, nanomagnetism, synthetic and bio-inspired macromolecular materials, nanophase biomaterials, nanofluidics, optics/photonics, carbon-based nanostructures, collective behavior, nanoscale interface science, virtual synthesis and nanomaterials design, and electronic structure, correlations, and transport. In addition, the proposed 80,000 square foot facility (wet/dry labs, nanofabrication clean rooms, and offices) and the associated technical equipment will be described. The CNMS is scheduled to begin construction in spring, 2003. Initial operations are planned for late in 2004.

  7. Densities of Galcatic Center Clouds

    NASA Astrophysics Data System (ADS)

    Barnes, Jonathan; Mills, Elisabeth A. C.; Morris, Mark

    2015-01-01

    The central 300 parsecs of the Galaxy is full of giant molecular clouds containing 107 solar masses worth of gas. However, our Galactic center is not forming as many stars as we think it can, based on the amount of molecular gas in this region. By studying the densities of the Galactic center clouds we hope to better understand why there is not much star formation occurring. Using data from the Green Bank and MOPRA telescopes we have observed multiple rotation transitions of HC3N and its 13C isotopologues. By measuring the integrated intensity of the HC3N we are able to calculate the densities of these giant molecular clouds. The measured intensities are used with a radiative transfer code called RADEX, to determine volume densities. Our initial results suggest that there may be either less dense or cooler gas in these clouds that previously thought. If there is a significant quantity of gas less dense than 104 molecules/cm3, this could explain the lack of ongoing star formation in these clouds, and might also suggest a shorter timescale for dynamical disruption of theses clouds. In the future, we plan to improve these results by observing additional HC3N transitions, allowing us better to constrain the relative contributions of multiple temperature and density components in Galactic center clouds.

  8. Densities of Galactic Center Clouds

    NASA Astrophysics Data System (ADS)

    Barnes, Jonathan; Mills, Elisabeth A. C.; Morris, Mark R.

    2015-04-01

    The central 300 parsecs of the Galaxy is full of giant molecular clouds containing 107 solar masses worth of gas. However, our Galactic center is not forming as many stars as we think it can, based on the amount of molecular gas in this region. By studying the densities of the Galactic center clouds we hope to better understand why there is not much star formation occurring. Using data from the Green Bank and MOPRA telescopes we have observed multiple rotation transitions of HC3N and its 13C isotopologues. By measuring the integrated intensity of the HC3 N we are able to calculate the densities of these giant molecular clouds. The measured intensities are used with a radiative transfer code called RADEX, to determine volume densities. Our initial results suggest that there may be either less dense or cooler gas in these clouds that previously thought. If there is a significant quantity of gas less dense than 104 molecules/cm3 , this could explain the lack of ongoing star formation in these clouds, and might also suggest a shorter timescale for dynamical disruption of theses clouds. In the future, we plan to improve these results by observing additional HC3N transitions, allowing us better to constrain the relative contributions of multiple temperature and density components in Galactic center clouds.

  9. Northern Prairie Wildlife Research Center

    USGS Publications Warehouse

    ,

    2009-01-01

    The Northern Prairie Wildlife Research Center (NPWRC) conducts integrated research to fulfill the Department of the Interior's responsibilities to the Nation's natural resources. Located on 600 acres along the James River Valley near Jamestown, North Dakota, the NPWRC develops and disseminates scientific information needed to understand, conserve, and wisely manage the Nation's biological resources. Research emphasis is primarily on midcontinental plant and animal species and ecosystems of the United States. During the center's 40-year history, its scientists have earned an international reputation for leadership and expertise on the biology of waterfowl and grassland birds, wetland ecology and classification, mammalian behavior and ecology, grassland ecosystems, and application of statistics and geographic information systems. To address current science challenges, NPWRC scientists collaborate with researchers from other U.S. Geological Survey centers and disciplines (Biology, Geography, Geology, and Water) and with biologists and managers in the Department of the Interior (DOI), other Federal agencies, State agencies, universities, and nongovernmental organizations. Expanding upon its scientific expertise and leadership, the NPWRC is moving in new directions, including invasive plant species, restoration of native habitats, carbon sequestration and marketing, and ungulate management on DOI lands.

  10. Process Engineering Technology Center Initiative

    NASA Technical Reports Server (NTRS)

    Centeno, Martha A.

    2001-01-01

    NASA's Kennedy Space Center (KSC) is developing as a world-class Spaceport Technology Center (STC). From a process engineering (PE) perspective, the facilities used for flight hardware processing at KSC are NASA's premier factories. The products of these factories are safe, successful shuttle and expendable vehicle launches carrying state-of-the-art payloads. PE is devoted to process design, process management, and process improvement, rather than product design. PE also emphasizes the relationships of workers with systems and processes. Thus, it is difficult to speak of having a laboratory for PE at KSC because the entire facility is practically a laboratory when observed from a macro level perspective. However, it becomes necessary, at times, to show and display how KSC has benefited from PE and how KSC has contributed to the development of PE; hence, it has been proposed that a Process Engineering Technology Center (PETC) be developed to offer a place with a centralized focus on PE projects, and a place where KSC's PE capabilities can be showcased, and a venue where new Process Engineering technologies can be investigated and tested. Graphics for showcasing PE capabilities have been designed, and two initial test beds for PE technology research have been identified. Specifically, one test bed will look into the use of wearable computers with head mounted displays to deliver work instructions; the other test bed will look into developing simulation models that can be assembled into one to create a hierarchical model.

  11. National space test centers - Lewis Research Center Facilities

    NASA Technical Reports Server (NTRS)

    Roskilly, Ronald R.

    1990-01-01

    The Lewis Research Center, NASA, presently has a number of test facilities that constitute a significant national space test resource. It is expected this capability will continue to find wide application in work involving this country's future in space. Testing from basic research to applied technology, to systems development, to ground support will be performed, supporting such activities as Space Station Freedom, the Space Exploration Initiative, Mission to Planet Earth, and many others. The major space test facilities at both Cleveland and Lewis' Plum Brook Station are described. Primary emphasis is on space propulsion facilities; other facilities of importance in space power and microgravity are also included.

  12. The Japanese science education centers.

    PubMed

    Glass, B

    1966-10-14

    These six Japanese science education centers signify a sweeping reform of elementary and secondary school science teaching. They achieve their striking results because they are established on a permanent, local basis and are supported mainly by the local boards of education. They have avoided control by pedagogues and specialists in "education." Instead, they are operated by trained scientists and experienced school teachers who work together to devise programs specially suited to the needs of their teachers. With small and practicable steps, the teachers improve their understanding of methods which they can readily test in their own classrooms rooms and laboratories. The laboratory equipment in the science education centers is only slightly superior to that which the teachers have in their own schools, but superior enough to make them desire to improve their own facilities. Major facilities, such as x-ray machines, electron microscopes, telescopes (15-cm), and machine shops, as well as good working collections of minerals and fossils, and adequate greenhouses, permit the teachers to work with more expensive equipment, to gain a firsthand knowledge of its operation, and to bring groups of students to the center to observe what such instruments make possible. The use of American experimental course content improvement programs is widespread. Every science education center I visited is using PSSC, CHEMS, CBA, BSCS, or ESCP materials and studying the philosophy of these programs. Yet no center is entirely dependent on these programs, but uses them critically to supplement and improve its own courses. The emphasis is on good laboratory and field teaching as a basis for understanding scientific methods and concepts. Science as investigation and inquiry, instead of treatment solely as an authoritative body of facts, is coming into its own. The few defects of the science education centers of Japan inhere in the educational situation itself. The centers are at present

  13. Liquid cooled data center design selection

    DOEpatents

    Chainer, Timothy J.; Iyengar, Madhusudan K.; Parida, Pritish R.

    2016-09-13

    Input data, specifying aspects of a thermal design of a liquid cooled data center, is obtained. The input data includes data indicative of ambient outdoor temperature for a location of the data center; and/or data representing workload power dissipation for the data center. The input data is evaluated to obtain performance of the data center thermal design. The performance includes cooling energy usage; and/or one pertinent temperature associated with the data center. The performance of the data center thermal design is output.

  14. Venus' center of mass - center of figure displacement and implications

    NASA Technical Reports Server (NTRS)

    Bindschadler, D. L.; Schubert, G.

    1993-01-01

    Earth, Moon, Mars, and Venus all have centers of mass (C.M.) that are displaced from their centers of figure (C.F.) by amounts which range from 340 meters (Venus) to 2.5 km (Mars). These offsets have all been calculated from the first degree terms in spherical harmonic expansions of topography. We describe an alternate method for calculating C.M. - C.F. offsets directly from a global topographic data set and apply it to Venus. Using Magellan altimetry, we find that Venus' C.F. is displaced approximately 280 meters from its C.M. in the direction of Western Aphrodite Terra (4.4 deg S, 135.8 deg E). We investigate several simple models for this offset and find that it is most consistent with thickened crust in Ovda and Thetis Regiones (which constitute most of W. Aphrodite). The location of the C.F. offset also places constraints on the degree of crustal thickening in Western Ishtar Terra and/or this highland's mode of origin. We favor a model in which offset due to thick crust in Western Ishtar Terra is balanced by an opposing offset due to cold, downwelling mantle material beneath the highland.

  15. The Northeast Climate Science Center

    NASA Astrophysics Data System (ADS)

    Ratnaswamy, M. J.; Palmer, R. N.; Morelli, T.; Staudinger, M.; Holland, A. R.

    2013-12-01

    The Department of Interior Northeast Climate Science Center (NE CSC) is part of a federal network of eight Climate Science Centers created to provide scientific information, tools, and techniques that managers and other parties interested in land, water, wildlife and cultural resources can use to anticipate, monitor, and adapt to climate change. Recognizing the critical threats, unique climate challenges, and expansive and diverse nature of the northeast region, the University of Massachusetts Amherst, College of Menominee Nation, Columbia University, Marine Biological Laboratory, University of Minnesota, University of Missouri Columbia, and University of Wisconsin-Madison have formed a consortium to host the NE CSC. This partnership with the U.S. Geological Survey climate science center network provides wide-reaching expertise, resources, and established professional collaborations in both climate science and natural and cultural resources management. This interdisciplinary approach is needed for successfully meeting the regional needs for climate impact assessment, adaptive management, education, and stakeholder outreach throughout the northeast region. Thus, the NE CSC conducts research, both through its general funds and its annual competitive award process, that responds to the needs of natural resource management partners that exist, in part or whole, within the NE CSC bounds. This domain includes the North Atlantic, Upper Midwest and Great Lakes, Eastern Tallgrass and Big Rivers, and Appalachian Landscape Conservation Cooperatives (LCCs), among other management stakeholders. For example, researchers are developing techniques to monitor tree range dynamics as affected by natural disturbances which can enable adaptation of projected climate impacts; conducting a Designing Sustainable Landscapes project to assess the capability of current and potential future landscapes in the Northeast to provide integral ecosystems and suitable habitat for a suite of

  16. Process Engineering Technology Center Initiative

    NASA Technical Reports Server (NTRS)

    Centeno, Martha A.

    2002-01-01

    NASA's Kennedy Space Center (KSC) is developing as a world-class Spaceport Technology Center (STC). From a process engineering (PE) perspective, the facilities used for flight hardware processing at KSC are NASA's premier factories. The products of these factories are safe, successful shuttle and expendable vehicle launches carrying state-of-the-art payloads. PE is devoted to process design, process management, and process improvement, rather than product design. PE also emphasizes the relationships of workers with systems and processes. Thus, it is difficult to speak of having a laboratory for PE at K.S.C. because the entire facility is practically a laboratory when observed from a macro level perspective. However, it becomes necessary, at times, to show and display how K.S.C. has benefited from PE and how K.S.C. has contributed to the development of PE; hence, it has been proposed that a Process Engineering Technology Center (PETC) be developed to offer a place with a centralized focus on PE projects, and a place where K.S.C.'s PE capabilities can be showcased, and a venue where new Process Engineering technologies can be investigated and tested. Graphics for showcasing PE capabilities have been designed, and two initial test beds for PE technology research have been identified. Specifically, one test bed will look into the use of wearable computers with head mounted displays to deliver work instructions; the other test bed will look into developing simulation models that can be assembled into one to create a hierarchical model.

  17. Kennedy Space Center Spaceport Analysis

    NASA Technical Reports Server (NTRS)

    Wary, Samantha A.

    2013-01-01

    Until the Shuttle Atlantis' final landing on July 21, 2011, Kennedy Space Center (KSC) served as NASA's main spaceport, which is a launch and landing facility for rockets and spacecraft that are attempting to enter orbit. Many of the facilities at KSC were created to assist the Shuttle Program. One of the most important and used facilities is the Shuttle Landing Facility (SLF), This was the main landing area for the return of the shuttle after her mission in space. · However, the SLF has also been used for a number of other projects including straight-line testing by Gibbs Racing, weather data collection by NOAA, and an airfield for the KSC helicopters. This runway is three miles long with control tower at midfield and a fire department located at the end in care of an emergency. This facility, which was part of the great space race, will continue to be used for historical events as Kennedy begins to commercialize its facilities. KSC continues to be an important spaceport to the government, and it will transform into an important spaceport for the commercial industry as well. During my internship at KSC's Center Planning and Development Directorate, I had the opportunity to be a part of the negotiation team working on the agreement for Space Florida to control the Shuttle Landing Facility. This gave me the opportunity to learn about all the changes that are occurring here at Kennedy Space Center. Through various meetings, I discovered the Master Plan and its focus is to transform the existing facilities that were primarily used for the Shuttle Program, to support government operations and commercial flights in the future. This. idea is also in a new strategic business plan and completion of a space industry market analysis. All of these different documentations were brought to my attention and I. saw how they came together in the discussions of transitioning the SLF to a commercial operator, Space Florida. After attending meetings and partaking in discussions for

  18. National Severe Storms Forecast Center

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The principal mission of the National Severe Storms Forecast Center (NSSFC) is to maintain a continuous watch of weather developments that are capable of producing severe local storms, including tornadoes, and to prepare and issue messages designated as either Weather Outlooks or Tornado or Severe Thunderstorm Watches for dissemination to the public and aviation services. In addition to its assigned responsibility at the national level, the NSSFC is involved in a number of programs at the regional and local levels. Subsequent subsections and paragraphs describe the NSSFC, its users, inputs, outputs, interfaces, capabilities, workload, problem areas, and future plans in more detail.

  19. Remote Operations Control Center (ROCC)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Undergraduate students Kristina Wines and Dena Renzo at Rensselaer Poloytech Institute (RPI) in Troy, NY, monitor the progress of the Isothermal Dendritic Growth Experiment (IDGE) during the U.S. Microgravity Payload-4 (USMP-4) mission (STS-87), Nov. 19 - Dec.5, 1997). Remote Operations Control Center (ROCC) like this one will become more common during operations with the International Space Station. The Isothermal Dendritic Growth Experiment (IDGE), flown on three Space Shuttle missions, is yielding new insights into virtually all industrially relevant metal and alloy forming operations. Photo credit: Rensselaer Polytechnic Institute (RPI)

  20. X-33 Flight Operations Center

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In response to Clause 17 of the Cooperative Agreement NCC8-115, Lockheed Martin Skunk Works has compiled an Annual Performance Report of the X-33/RLV Program. This report consists of individual reports from all industry team members, as well as NASA team centers. Contract award was announced on July 2, 1996 and the first milestone was hand delivered to NASA MSFC on July 17, 1996. With the dedication of the launch site, and continuing excellence in technological achievement, the third year of the Cooperative Agreement has been one of outstanding accomplishment and excitement.

  1. Joint Center for Artificial Photosynthesis

    SciTech Connect

    Koval, Carl; Lee, Kenny; Houle, Frances; Lewis, Nate

    2013-12-10

    The Joint Center for Artificial Photosynthesis (JCAP) is the nation's largest research program dedicated to the development of an artificial solar-fuel generation technology. Established in 2010 as a U.S. Department of Energy (DOE) Energy Innovation Hub, JCAP aims to find a cost-effective method to produce fuels using only sunlight, water, and carbon dioxide as inputs. JCAP brings together more than 140 top scientists and researchers from the California Institute of Technology and its lead partner, Berkeley Lab, along with collaborators from the SLAC National Accelerator Laboratory, and the University of California campuses at Irvine and San Diego.

  2. Joint Center for Artificial Photosynthesis

    ScienceCinema

    Koval, Carl; Lee, Kenny; Houle, Frances; Lewis, Nate

    2016-07-12

    The Joint Center for Artificial Photosynthesis (JCAP) is the nation's largest research program dedicated to the development of an artificial solar-fuel generation technology. Established in 2010 as a U.S. Department of Energy (DOE) Energy Innovation Hub, JCAP aims to find a cost-effective method to produce fuels using only sunlight, water, and carbon dioxide as inputs. JCAP brings together more than 140 top scientists and researchers from the California Institute of Technology and its lead partner, Berkeley Lab, along with collaborators from the SLAC National Accelerator Laboratory, and the University of California campuses at Irvine and San Diego.

  3. Air Risk Information Support Center

    SciTech Connect

    Shoaf, C.R.; Guth, D.J.

    1990-12-31

    The Air Risk Information Support Center (Air RISC) was initiated in early 1988 by the US Environmental Protection Agency`s (EPA) Office of Health and Environmental Assessment (OHEA) and the Office of Air Quality Planning and Standards (OAQPS) as a technology transfer effort that would focus on providing information to state and local environmental agencies and to EPA Regional Offices in the areas of health, risk, and exposure assessment for toxic air pollutants. Technical information is fostered and disseminated by Air RISCs three primary activities: (1) a {open_quotes}hotline{close_quotes}, (2) quick turn-around technical assistance projects, and (3) general technical guidance projects. 1 ref., 2 figs.

  4. NASA's engineering research centers and interdisciplinary education

    NASA Technical Reports Server (NTRS)

    Johnston, Gordon I.

    1990-01-01

    A new program of interactive education between NASA and the academic community aims to improve research and education, provide long-term, stable funding, and support cross-disciplinary and multi-disciplinary research. The mission of NASA's Office of Aeronautics, Exploration and Technology (OAET) is discussed and it is pointed out that the OAET conducts about 10 percent of its total R&D program at U.S. universities. Other NASA university-based programs are listed including the Office of Commercial Programs Centers for the Commercial Development of Space (CCDS) and the National Space Grant program. The importance of university space engineering centers and the selection of the nine current centers are discussed. A detailed composite description is provided of the University Space Engineering Research Centers. Other specialized centers are described such as the Center for Space Construction, the Mars Mission Research Center, and the Center for Intelligent Robotic Systems for Space Exploration. Approaches to educational outreach are discussed.

  5. How To Build an Online Learning Center.

    ERIC Educational Resources Information Center

    Boxer, Kenneth M.; Johnson, Bernardine

    2002-01-01

    The Global Learning Center was launched by W. R. Grace, a global speciality chemicals company, in 2001. The center is organized around core competencies, with lists of approved training programs, recommended reading lists, strategy guides, and a rental library. (JOW)

  6. 78 FR 25457 - Health Center Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Health Resources and Services Administration Health Center Program AGENCY: Health... Center, Inc. for provision of services in Gwinnett County, Georgia. SUMMARY: The Health Resources...

  7. The National Institutes of Health Clinical Center

    MedlinePlus

    ... for the better at the Clinical Center. Annie Brown of Washington, DC, has experienced recurrent pain crises ... Winford , a Texan, was 25 years old when he first came to the Clinical Center in 1988. ...

  8. Competitive Intelligence and the Information Center.

    ERIC Educational Resources Information Center

    Greene, H. Frances

    1988-01-01

    Examines the competitive intelligence approach to corporate information gathering, and discusses how it differs from the traditional library information center approach. Steps for developing a competitive intelligence system in the library information center are suggested. (33 references) (MES)

  9. NASA Dryden's Educator and Visitor Centers Reopen

    NASA Video Gallery

    The City of Palmdale, NASA's Dryden Flight Research Center and the AERO Institute recently hosted the reopening of NASA Dryden's Educator Resource and Visitor Centers. Now housed at the AERO Instit...

  10. Midwest Clean Energy Application Center

    SciTech Connect

    Cuttica, John; Haefke, Cliff

    2013-12-31

    The Midwest Clean Energy Application Center (CEAC) was one of eight regional centers that promoted and assisted in transforming the market for combined heat and power (CHP), waste heat to power (WHP), and district energy (DE) technologies and concepts throughout the United States between October 1, 2009 and December 31, 2013. The key services the CEACs provided included: Market Opportunity Analyses – Supporting analyses of CHP market opportunities in diverse markets including industrial, federal, institutional, and commercial sectors. Education and Outreach – Providing information on the energy and non-energy benefits and applications of CHP to state and local policy makers, regulators, energy end-users, trade associations and others. Information was shared on the Midwest CEAC website: www.midwestcleanergy.org. Technical Assistance – Providing technical assistance to end-users and stakeholders to help them consider CHP, waste heat to power, and/or district energy with CHP in their facility and to help them through the project development process from initial CHP screening to installation. The Midwest CEAC provided services to the Midwest Region that included the states of Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin.

  11. Reinventing the academic health center.

    PubMed

    Kirch, Darrell G; Grigsby, R Kevin; Zolko, Wayne W; Moskowitz, Jay; Hefner, David S; Souba, Wiley W; Carubia, Josephine M; Baron, Steven D

    2005-11-01

    Academic health centers have faced well-documented internal and external challenges over the last decade, putting pressure on organizational leaders to develop new strategies to improve performance while simultaneously addressing employee morale, patient satisfaction, educational outcomes, and research growth. In the aftermath of a failed merger, new leaders of The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center encountered a climate of readiness for a transformational change. In a case study of this process, nine critical success factors are described that contributed to significant performance improvement: performing a campus-wide cultural assessment and acting decisively on the results; making values explicit and active in everyday decisions; aligning corporate structure and governance to unify the academic enterprise and health system; aligning the next tier of administrative structure and function; fostering collaboration and accountability-the creation of unified campus teams; articulating a succinct, highly focused, and compelling vision and strategic plan; using the tools of mission-based management to realign resources; focusing leadership recruitment on organizational fit; and "growing your own" through broad-based leadership development. Outcomes assessment data for academic, research, and clinical performance showed significant gains between 2000 and 2004. Organizational transformation as a result of the nine factors is possible in other institutional settings and can facilitate a focus on crucial quality initiatives. PMID:16249294

  12. Center symmetry and area laws

    NASA Astrophysics Data System (ADS)

    Cohen, Thomas D.

    2014-08-01

    SU(Nc) gauge theories containing matter fields may be invariant under transformations of some subgroup of the ZNc center; the maximum such subgroup is Zp, with p depending on Nc and the representations of the various matter fields in the theory. Confining SU(Nc) gauge theories in either 3+1 or 2+1 space-time dimensions and with matter fields in any representation have string tensions for representation R given by σR=σfp/R(p -pR)g(pR(p-pR))(p -1)g(p-1) with pR=nRmod(p), where σf is the string tension for the fundamental representation, g is a positive finite function and nR is the n-ality of R. This implies that a necessary condition for a theory in this class to have an area law is invariance of the theory under a nontrivial subgroup of the center. Significantly, these results depend on p regardless of the value of Nc.

  13. Reinventing the academic health center.

    PubMed

    Kirch, Darrell G; Grigsby, R Kevin; Zolko, Wayne W; Moskowitz, Jay; Hefner, David S; Souba, Wiley W; Carubia, Josephine M; Baron, Steven D

    2005-11-01

    Academic health centers have faced well-documented internal and external challenges over the last decade, putting pressure on organizational leaders to develop new strategies to improve performance while simultaneously addressing employee morale, patient satisfaction, educational outcomes, and research growth. In the aftermath of a failed merger, new leaders of The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center encountered a climate of readiness for a transformational change. In a case study of this process, nine critical success factors are described that contributed to significant performance improvement: performing a campus-wide cultural assessment and acting decisively on the results; making values explicit and active in everyday decisions; aligning corporate structure and governance to unify the academic enterprise and health system; aligning the next tier of administrative structure and function; fostering collaboration and accountability-the creation of unified campus teams; articulating a succinct, highly focused, and compelling vision and strategic plan; using the tools of mission-based management to realign resources; focusing leadership recruitment on organizational fit; and "growing your own" through broad-based leadership development. Outcomes assessment data for academic, research, and clinical performance showed significant gains between 2000 and 2004. Organizational transformation as a result of the nine factors is possible in other institutional settings and can facilitate a focus on crucial quality initiatives.

  14. Photosynthetic reaction centers in bacteria

    SciTech Connect

    Norris, J.R. Univ. of Chicago, IL ); Schiffer, M. )

    1990-07-30

    The photochemistry of photosynthesis begins in complexes called reaction centers. These have become model systems to study the fundamental process by which plants and bacteria convert and store solar energy as chemical free energy. In green plants, photosynthesis occurs in two systems, each of which contains a different reaction center, working in series. In one, known as photosystem 1, oxidized nicotinamide adenine dinucleotide phosphate (NADP[sup +]) is reduced to NADPH for use in a series of dark reactions called the Calvin cycle, named for Nobel Laureate Melvin Calvin, by which carbon dioxide is converted into useful fuels such as carbohydrates and sugars. In the other half of the photosynthetic machinery of green plants, called photosystem 2, water is oxidized to produce molecular oxygen. A different form of photosynthesis occurs in photosynthetic bacteria, which typically live at the bottom of ponds and feed on organic debris. Two main types of photosynthetic bacteria exist: purple and green. Neither type liberates oxygen from water. Instead, the bacteria feed on organic media or inorganic materials, such as sulfides, which are easier to reduce or oxidize than carbon dioxide or water. Perhaps in consequence, their photosynthetic machinery is simpler than that of green, oxygen-evolving plants and their primary photochemistry is better understood.

  15. Hermes flight control center: Definition status

    NASA Astrophysics Data System (ADS)

    Letalle, Pierre

    1990-10-01

    The Hermes Flight Control Center (HFCC) located in Toulouse (France) is described. The center is the third in the world after the American center in Houston and the Soviet center in Kaliningrad. All the Hermes elements, both on board and on the ground will be coordinated by the HFCC for all phases of each mission. Aspects of the detailed definition phase still in the requirements analysis subphase are described. Diagrams are used to illustrate the interplay between the different systems.

  16. Venus' center of figure-center of mass offset

    NASA Technical Reports Server (NTRS)

    Bindschadler, Duane L.; Schubert, Gerald; Ford, Peter G.

    1994-01-01

    Magellan altimetry data reveal that the center of figure (CF) of Venus is displaced approximately 280 m from its center of mass (CM) toward 4.4 deg S, 135.8 deg E, a location in Aphrodite Terra. This offset is smaller than those of other terrestrial planets but larger than the estimated error, which is no more than a few tens of meters. We examine the possibility that the CF-CM offset is related to specific geologic provinces on Venus by deriving three simple models for the offset: a thick-crust model, a hotspot model, and a thick-lithosphere model. The offset caused by a region of thick crust depends upon the region's extent, the crust-mantle density contrast, and the thickness of excess crust. A hotspot-related offset depends on the extent of the thermally anomalous region and the magnitude of the thermal anomaly. Offset due to a region of thick lithosphere depends upon the extent of the region, the average temperature contrast across the lithosphere, and the amount of excess lithosphere. We apply the three models to Venus plateau-shaped highlands, volcanic rises, and lowlands, respectively, in an attempt to match the observed CF-CM offset location and magnitude. The influence of most volcanic rises and of Ishtar Terra on the CF-CM offset must be quite small if we are to explain the direction of the observed offset. The lack of influence of volcanic rises can be explained if the related thermal anomalies are limited to a few hundred degrees or less and are plume-shaped (i.e., characterized by a flattened sublithospheric `head' with a narrow cylindrical feeder `tail'). The unimportance of Ishtar Terra is most easily explained if it lies atop a significant mantle downwelling.

  17. ASIDIC Survey of Information Center Services.

    ERIC Educational Resources Information Center

    Williams, Martha E.; Stewart, Alan K.

    A survey was made as a result of a need identified by the Association of Scientific Information Dissemination Center's (ASIDIC) Cooperative Data Management Committee (CDMC). The committee believed that an informal network of cooperative arrangements between centers could reduce the burden of individual centers and permit greater specialization…

  18. Providing a Learning-Centered Instructional Environment.

    ERIC Educational Resources Information Center

    Evans, Ruby

    This paper describes efforts made by the faculty at Santa Fe Community College (Florida) to provide a learning-centered instructional environment for students in an introductory statistics class. Innovation in instruction has been stressed as institutions switch from "teacher-centered classrooms" to "student-centered classrooms." The incorporation…

  19. Student-Centered Learning in Higher Education

    ERIC Educational Resources Information Center

    Wright, Gloria Brown

    2011-01-01

    In her book, "Learner-Centered Teaching", Maryellen Weimer contrasts the practices of teacher-centered college teaching and student-centered college teaching in terms of (1) the balance of power in the classroom, (2) the function of the course content, (3) the role of the teacher versus the role of the student, (4) the responsibility of learning,…

  20. Planning Log for an Educational Shopping Center

    ERIC Educational Resources Information Center

    De Bernardis, Amo

    1975-01-01

    A chronology of the events leading up to the beginning of campus construction for the new Rock Creek Center of Portland Community College. All planning events from June 1968 to January 1976 are listed. The Center is designed as an educational shopping center that maximizes the college-community interface. (DC)

  1. 14 CFR 1206.400 - Information Centers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Information Centers. 1206.400 Section 1206... TO MEMBERS OF THE PUBLIC Location for Inspection and Request of Agency Records § 1206.400 Information Centers. NASA will maintain Information Centers as set forth in this subpart....

  2. Coordinating Educational Assessment Across College Centers.

    ERIC Educational Resources Information Center

    Churchill, Ruth; And Others

    An operational model developed as a result of a systematic analysis of three distinctly different Antioch centers--Juarez Lincoln University, Philadelphia Graduate Center, and Antioch-New England (the Keene Center)--is presented. Juarez Lincoln offers a 15-month program leading to the Master of Education degree. Many of the students are Mexican…

  3. Department of Defense Information Analysis Centers.

    ERIC Educational Resources Information Center

    Rothschild, M. Cecilia

    1987-01-01

    Describes the establishment of Department of Defense (DOD) information analysis centers and discusses their purpose and activities, how they differ from special libraries and other information centers, and some problems resulting from the communication of classified information. A list of existing information analysis centers is provided. (CLB)

  4. Teachers' Centers Exchange. Directory Supplement 1978.

    ERIC Educational Resources Information Center

    Lance, Jeanne; Piper, Barbara

    In this supplement to a previously published Teachers' Center Exchange Directory (April 1977), 55 additional teacher centers are described. These descriptions include the name of the contact person at each center, the program offered, resources, staff, participation, fees and credit, affiliation, support, decision making, and publications. (JD)

  5. 30 CFR 75.825 - Power centers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Power centers. 75.825 Section 75.825 Mineral....825 Power centers. (a) Main disconnecting switch. The power center supplying high voltage power to the..., de-energizes input to all power transformers. (b) Trailing cable disconnecting device. In addition...

  6. The Beginnings of a Nature Center.

    ERIC Educational Resources Information Center

    Cherem, Gabriel J.; And Others

    This guide is a comprehensive interpretive plan for the development of a nature center. Although the plan centers on a proposed nature center, the ideas included in the guide can be applied to other situations. The guide deals with all aspects of planning and is divided into seven chapters. Chapter 1, Visitorship, looks at the people who attend…

  7. Current status of drug information centers.

    PubMed

    Beaird, S L; Coley, R M; Crea, K A

    1992-01-01

    The current status of drug information centers in the United States and trends that have developed over the past two decades were studied. In February 1990, questionnaires were sent to 218 pharmacist-operated drug information centers nationwide. The centers were identified through previously published directories and the ASHP electronic bulletin board PharmNet. The survey consisted of 182 questions designed to gather updated data on each drug information center. Responses to each question were coded individually, and data were analyzed by using a statistical analysis program. One hundred fifty-four drug information centers responded; of these, 130 provided usable responses. The results showed that the number of drug information centers has increased compared with earlier surveys. Also, the centers handle substantially larger workloads. Few drug information centers indicate a fee-for-service system. Computer use and online searching by drug information centers have increased. Most of the centers participate in the formal education of pharmacy students. Increases in the number of drug information centers and in their workload substantiate the growing importance of these centers to the health-care professions.

  8. 49 CFR 193.2441 - Control center.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Control center. 193.2441 Section 193.2441...: FEDERAL SAFETY STANDARDS Equipment Vaporization Equipment § 193.2441 Control center. Each LNG plant must have a control center from which operations and warning devices are monitored as required by this...

  9. 49 CFR 193.2441 - Control center.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Control center. 193.2441 Section 193.2441...: FEDERAL SAFETY STANDARDS Equipment Vaporization Equipment § 193.2441 Control center. Each LNG plant must have a control center from which operations and warning devices are monitored as required by this...

  10. 49 CFR 193.2441 - Control center.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Control center. 193.2441 Section 193.2441...: FEDERAL SAFETY STANDARDS Equipment Vaporization Equipment § 193.2441 Control center. Each LNG plant must have a control center from which operations and warning devices are monitored as required by this...

  11. E-Learning and Virtual Science Centers

    ERIC Educational Resources Information Center

    Hin, Leo Tan Wee, Ed.; Subramaniam, R., Ed.

    2005-01-01

    "E-Learning and Virtual Science Centers" addresses an aspect of Web-based education that has not attracted sufficient attention in the international research literature--that of virtual science centers, the cyberspace annex of traditional science centers. It is the first book to be published on the rapidly advancing field of science education.…

  12. Communication Patterns in a Biomedical Research Center

    ERIC Educational Resources Information Center

    Gorry, G. Anthony; And Others

    1978-01-01

    Studies of the communication patterns among scientists in a biomedical research center should help in the assessment of the center's impact on research processes. Such a study at the National Heart and Blood Vessel Research and Demonstration Center (NRDC) at Baylor College of Medicine is reported. (LBH)

  13. NATURE CENTERS AND OUTDOOR EDUCATION FACILITIES.

    ERIC Educational Resources Information Center

    National Audubon Society, New York, NY.

    A PARTIAL LIST OF NATURE CENTERS AND OUTDOOR EDUCATION FACILITIES IN THE UNITED STATES ARE INCLUDED IN THIS DIRECTORY. AN INTRODUCTORY SECTION DESCRIBES THE GENERAL NATURE OF THE FACILITIES INCLUDED IN TYPICAL CENTERS. TYPES OF CENTERS INCLUDE MUSEUMS, NATURE SANCTUARIES, ARBORETUMS, CAMPS, AND LABORATORIES. ITEMS ARE LISTED ALPHABETICALLY BY…

  14. 49 CFR 193.2441 - Control center.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Control center. 193.2441 Section 193.2441...: FEDERAL SAFETY STANDARDS Equipment Vaporization Equipment § 193.2441 Control center. Each LNG plant must have a control center from which operations and warning devices are monitored as required by this...

  15. ATE Regional Centers: CCRC Final Report

    ERIC Educational Resources Information Center

    Reid, Monica; Jacobs, Jim; Ivanier, Analia; Morest, Vanessa Smith

    2007-01-01

    The purpose of this research study was to determine the role of regional centers in the Advanced Technical Education (ATE) program of the National Science Foundation (NSF). Conducted by the Community College Research Center (CCRC), the researchers began by asking whether the concept of a regional center was unique and useful to NSF's goals of…

  16. Cooperative Data Management for Information Centers.

    ERIC Educational Resources Information Center

    Williams, Martha E.

    The Association of Information Dissemination Centers (ASIDIC) formed the Cooperative Data Management Committee to address the problems of information center operators and data base suppliers. The number of operating centers in the U.S. is limited and their future expansion in numbers and in type of services, will depend on the education of users.…

  17. Clean Energy Solutions Center Services (Fact Sheet)

    SciTech Connect

    Not Available

    2014-04-01

    The Clean Energy Solutions Center (Solutions Center) helps governments, advisors and analysts create policies and programs that advance the deployment of clean energy technologies. The Solutions Center partners with international organizations to provide online training, expert assistance, and technical resources on clean energy policy.

  18. 49 CFR 230.114 - Wheel centers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Wheel centers. 230.114 Section 230.114... Tenders Wheels and Tires § 230.114 Wheel centers. (a) Filling blocks and shims. Driving and trailing wheel... and the wheel center, not more than two thicknesses of shims may be used, one of which must...

  19. 49 CFR 230.114 - Wheel centers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Wheel centers. 230.114 Section 230.114... Tenders Wheels and Tires § 230.114 Wheel centers. (a) Filling blocks and shims. Driving and trailing wheel... and the wheel center, not more than two thicknesses of shims may be used, one of which must...

  20. 49 CFR 230.114 - Wheel centers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Wheel centers. 230.114 Section 230.114... Tenders Wheels and Tires § 230.114 Wheel centers. (a) Filling blocks and shims. Driving and trailing wheel... and the wheel center, not more than two thicknesses of shims may be used, one of which must...

  1. 49 CFR 230.114 - Wheel centers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Wheel centers. 230.114 Section 230.114... Tenders Wheels and Tires § 230.114 Wheel centers. (a) Filling blocks and shims. Driving and trailing wheel... and the wheel center, not more than two thicknesses of shims may be used, one of which must...

  2. 49 CFR 230.114 - Wheel centers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Wheel centers. 230.114 Section 230.114... Tenders Wheels and Tires § 230.114 Wheel centers. (a) Filling blocks and shims. Driving and trailing wheel... and the wheel center, not more than two thicknesses of shims may be used, one of which must...

  3. Rio Grande Youth Care Center. Final Report.

    ERIC Educational Resources Information Center

    1974

    A non-profit counseling and referral center, the Center was established in 1972 to alleviate delinquency problems in Los Lunas (New Mexico), with special reference to Chicanos. The Center used specific direct youth services to identify: barriers to services for Chicanos in Los Lunas and to provide referral services to overcome those barriers;…

  4. Agency Training Centers for Federal Employees.

    ERIC Educational Resources Information Center

    Civil Service Commission, Washington, DC. Bureau of Training.

    Planned to provide management and training officials throughout the Federal Government with up-to-date information on agency operated training centers, this directory gives, for each center, the purpose, programs or courses offered, eligibility for attendance, and sources for further information. Ten regional centers of the Civil Service…

  5. Academic Specialization and Contemporary University Humanities Centers

    ERIC Educational Resources Information Center

    Brownley, Martine W.

    2012-01-01

    Given the academic specialization endemic today in humanities disciplines, some of the most important work of humanities centers has become promoting education about the humanities in general. After charting the rise of humanities centers in the US, three characteristics of centers that enable their advancement of larger concerns of the humanities…

  6. 30 CFR 75.825 - Power centers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Power centers. 75.825 Section 75.825 Mineral....825 Power centers. (a) Main disconnecting switch. The power center supplying high voltage power to the..., de-energizes input to all power transformers. (b) Trailing cable disconnecting device. In addition...

  7. 30 CFR 75.825 - Power centers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Power centers. 75.825 Section 75.825 Mineral....825 Power centers. (a) Main disconnecting switch. The power center supplying high voltage power to the..., de-energizes input to all power transformers. (b) Trailing cable disconnecting device. In addition...

  8. 30 CFR 75.825 - Power centers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Power centers. 75.825 Section 75.825 Mineral....825 Power centers. (a) Main disconnecting switch. The power center supplying high voltage power to the..., de-energizes input to all power transformers. (b) Trailing cable disconnecting device. In addition...

  9. 30 CFR 75.825 - Power centers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Power centers. 75.825 Section 75.825 Mineral....825 Power centers. (a) Main disconnecting switch. The power center supplying high voltage power to the..., de-energizes input to all power transformers. (b) Trailing cable disconnecting device. In addition...

  10. The Poison Control Center--Its Role

    ERIC Educational Resources Information Center

    Manoguerra, Anthony S.

    1976-01-01

    Poison Control Centers are being utilized by more schools of pharmacy each year as training sites for students. This paper discusses what such a center is, its services, changes anticipated in the poison center system in the next several years and how they may influence pharmacy education, specifically as it relates to clinical toxicology.…

  11. Une maison de culture (A Culture Center).

    ERIC Educational Resources Information Center

    Mourlevat, Alain

    1980-01-01

    Describes the "Culture Center" designed by Le Corbusier and located in Firminy, France. The role of the center in arousing intellectual curiosity in people living in a technological age is discussed. The audience of this culture center, young people, and the types of activities directed toward them are described. (AMH)

  12. The Kennedy Center's Coming of Age.

    ERIC Educational Resources Information Center

    Baumeister, Alfred A.

    1996-01-01

    Describes the history of the John F. Kennedy Center for Research on Human Development at the Peabody College of Vanderbilt University, which focuses its research on problems related to mental retardation. The center is unique among 12 federally funded Mental Retardation Research Centers because it is exclusively identified with a college of…

  13. Improving Student Persistence at the Genesis Center

    ERIC Educational Resources Information Center

    Fritz, Nancy; Alsabek, Barbara Piccirilli

    2010-01-01

    The Genesis Center is a community-based adult education center located in Providence, Rhode Island. Founded in 1982 to assist immigrants and refugees from Southeast Asia in their transition to life in the United States, the Genesis Center now provides adult education, job training, and child care services to people who have immigrated from all…

  14. Client Perceptions of a University Writing Center.

    ERIC Educational Resources Information Center

    Stave, Anna M.

    To understand how university students view writing centers, writing consultants, and themselves as writers, a study was conducted at the Syracuse University Writing Consultation Center (New York). The Center provides a free consultation service based on the peer conferencing model of collaborative learning. Sixty students who participated in the…

  15. PREFACE: Galactic Center Workshop 2006

    NASA Astrophysics Data System (ADS)

    Schödel, Rainer; Bower, Geoffrey C.; Muno, Michael P.; Nayakshin, Sergei; Ott, Thomas

    2006-12-01

    We are pleased to present the proceedings from the Galactic Center Workshop 2006—From the Center of the Milky Way to Nearby Low-Luminosity Galactic Nuclei. The conference took place in the Physikzentrum, Bad Honnef, Germany, on 18 to 22 April 2006. It is the third workshop of this kind, following the Galactic Center Workshops held 1998 in Tucson, Arizona, and 2002 in Kona, Hawaii. The center of the Milky Way is the only galactic nucleus of a fairly common spiral galaxy that can be observed in great detail. With a distance of roughly 8 kpc, the resolution that can currently be achieved is of the order 40 mpc/8000 AU in the X-ray domain, 2 mpc/400 AU in the near-infrared, and 0.01 mpc/1 AU with VLBI in the millimeter domain. This is two to three orders of magnitude better than for any comparable nearby galaxy, making thus the center of the Milky Way thetemplate object for the general physical interpretation of the phenomena that can be observed in galactic nuclei. We recommend the summary article News from the year 2006 Galactic Centre workshopby Mark Morris and Sergei Nayakshin—who also gave the summary talk of the conference—to the reader in order to obtain a first, concise overview of the results presented at the workshop and some of the currently most exciting—and debated—developments in recent GC research. While the workshops held in 1998 and 2002 were dedicated solely to the center of the Milky Way, the field of view was widened in Bad Honnef to include nearby low-luminosity nuclei. This new feature followed the realization that not only the GC serves as a template for understanding extragalactic nuclei, but that the latter can also provide the context and broader statistical base for understanding the center of our Milky Way. This concerns especially the accretion and emission processes related to the Sagittarius A*, the manifestation of the super massive black hole in the GC, but also the surprising observation of great numbers of massive, young

  16. PREFACE: Galactic Center Workshop 2006

    NASA Astrophysics Data System (ADS)

    Schödel, Rainer; Bower, Geoffrey C.; Muno, Michael P.; Nayakshin, Sergei; Ott, Thomas

    2006-12-01

    We are pleased to present the proceedings from the Galactic Center Workshop 2006—From the Center of the Milky Way to Nearby Low-Luminosity Galactic Nuclei. The conference took place in the Physikzentrum, Bad Honnef, Germany, on 18 to 22 April 2006. It is the third workshop of this kind, following the Galactic Center Workshops held 1998 in Tucson, Arizona, and 2002 in Kona, Hawaii. The center of the Milky Way is the only galactic nucleus of a fairly common spiral galaxy that can be observed in great detail. With a distance of roughly 8 kpc, the resolution that can currently be achieved is of the order 40 mpc/8000 AU in the X-ray domain, 2 mpc/400 AU in the near-infrared, and 0.01 mpc/1 AU with VLBI in the millimeter domain. This is two to three orders of magnitude better than for any comparable nearby galaxy, making thus the center of the Milky Way thetemplate object for the general physical interpretation of the phenomena that can be observed in galactic nuclei. We recommend the summary article News from the year 2006 Galactic Centre workshopby Mark Morris and Sergei Nayakshin—who also gave the summary talk of the conference—to the reader in order to obtain a first, concise overview of the results presented at the workshop and some of the currently most exciting—and debated—developments in recent GC research. While the workshops held in 1998 and 2002 were dedicated solely to the center of the Milky Way, the field of view was widened in Bad Honnef to include nearby low-luminosity nuclei. This new feature followed the realization that not only the GC serves as a template for understanding extragalactic nuclei, but that the latter can also provide the context and broader statistical base for understanding the center of our Milky Way. This concerns especially the accretion and emission processes related to the Sagittarius A*, the manifestation of the super massive black hole in the GC, but also the surprising observation of great numbers of massive, young

  17. Galactic Center Fly-in

    NASA Astrophysics Data System (ADS)

    Hanson, A.; Fu, C.-W.; Li, Y.; Frisch, P. C.

    2006-06-01

    Beginning with the familiar constellations of the night sky, we present a multispectral zoom into the core of the Milky Way Galaxy. After traveling over seven orders of magnitude in spatial scale, we discover the violent phenomena occurring within one light year of the Black Hole at the Galactic Core. This animated zoom includes data with wavelengths from radio to X-ray, and is based entirely on data or models that have been aligned at all spatial scales in order to provide a single continuous visual trip into the Center of the Milky Way Galaxy. The visualization challenge has been to align and choreograph data acquired over a wide range of wavelength and spatial scales, and obtain a new scientific as well as educational perspective of the dense core of our Galaxy.

  18. The MAVEN Science Data Center

    NASA Astrophysics Data System (ADS)

    De Wolfe, A. W.; Harter, B.; Kokkonen, K.; Staley, B.; Christofferson, R.

    2015-12-01

    The Mars Atmospheric and Volatile Evolution (MAVEN) mission has been collecting data at Mars since September 2014. MAVEN's science data is hosted at the Science Data Center at the Laboratory for Atmospheric & Space Physics (LASP), where we use many different technologies to provide the science community with access to the data. Our website contains applications built with Highcharts, AngularJS, D3.js, and PostgreSQL to access and visualize data and metadata, allowing visitors to the site to preview the science data, see variations in data volume over the mission, search a timeline of mission events and perform complex queries to discover science data. This presentation will summarize the current data available, the data access mechanisms we provide, the benefits of the various technologies we've chosen and the lessons we've learned along the way.

  19. Southern Energy Efficiency Center (SEEC)

    SciTech Connect

    Vieira, Robin; Sonne, Jeffrey; Withers, Charles; Cummings, James; Verdict, Malcolm; Roberts, Sydney

    2009-09-30

    The Southern Energy Efficiency Center (SEEC) builds collaborative partnerships with: state and local governments and their program support offices, the building delivery industry (designers, contractors, realtors and commissioning agents), product manufacturers and their supply chains, utilities and their program implementers, consumers and other stakeholders in order to forge a strong regional network of building energy efficiency allies. Through a project Steering Committee composed of the state energy offices and building industry stakeholders, the SEEC works to establish consensus-based goals, priorities and strategies at the regional, state and local levels that will materially advance the deployment of high-performance “beyond code” buildings. In its first Phase, SEEC will provide limited technical and policy support assistance, training, certification and education to a wide spectrum of the building construction, codes and standards, and the consumer marketplace.

  20. Renewable Energy in Fitness Centers

    SciTech Connect

    Chvala, William D.

    2009-09-30

    All military installations have goals for implementing renewable energy projects, but not all have abundant solar energy or have massive feedstock for a large biomass plant. They must build up their renewable portfolio one project at it a time where they make the most sense – most of the time through small projects on specific buildings. During the last few years, Pacific Northwest National Laboratory (PNNL) provided project support to Army Installation Management Command Southeast Region (IMCOM-Southeast) installations. One of the building types visited, the physical fitness center (PFC), almost always yield project ideas. The building lends itself to a number of different technologies, and the high traffic nature is the perfect place to craft an educational message for users and demonstrate an installation’s commitment to sustainable energy development.

  1. Ohio Advanced Energy Manufacturing Center

    SciTech Connect

    Kimberly Gibson; Mark Norfolk

    2012-07-30

    The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry

  2. User-centered ecotourism development.

    PubMed

    Talsma, L; Molenbroek, J F M

    2012-01-01

    The transfer of knowledge in an ecotourism project is never a one-way affair. An approach connected to bottom-up development is the submersion into another culture, while creating a new organizational structure. For co-creation, patterns that are often latent, such as leadership roles, the association with business, or even the color of education can be revealed by carefully facilitated brainstorms or workshops. Especially in countries with a different hierarchical structure, such as Indonesia compared to Holland, a careful analysis is needed before starting cooperation. Although a case is only a temporary view on a situation and not a guarantee for a truly sustainable system, the bottom-up approach tested has interesting starting points for an ecotourism system. Two cases were conducted in Bali, Indonesia, which resulted in guidelines on how to approach user-centered ecotourism development.

  3. Saudi payload specialists during tour of center

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Sultan Salman Abdelazize Al-Saud and Abdulmohsen Hamad Al-Bassan, payload specialists from Saudi Arabia, are briefed in one of the mission control center support rooms by Kathleen V. Cannon (facing camera), payloads officer. Looking on is Erlinda Stevenson, secretary in the payload specialist coordination office (29713); Visitors tour the payload operations control center (POCC) in the mission control center during a Spacelab 3 simulation (29714); Visitors pose for picture in one of the Mission Control Center support rooms (29715); Visitors briefed by Kathleen V. Cannon (right) in one of the Mission Control Center support rooms. Erlinda Stevenson is also pictured (29716).

  4. Center for Advanced Separation Technology

    SciTech Connect

    Honaker, Rick

    2013-09-30

    The U.S. is the largest producer of mining products in the world. In 2011, U.S. mining operations contributed a total of $232 billion to the nation’s GDP plus $138 billion in labor income. Of this the coal mining industry contributed a total of $97.5 billion to GDP plus $53 billion in labor income. Despite these contributions, the industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, CAST is now a five-university consortium – Virginia Tech, West Virginia University, University of Kentucky, University of Utah and Montana Tech, - that is supported through U.S. DOE Cooperative Agreement No. DE-FE0000699, Center for Advanced Separation Technology. Much of the research to be conducted with Cooperative Agreement funds will be longer term, high-risk, basic research and will be carried out in two broad areas: Advanced Pre-Combustion Clean Coal Technologies and Gas-Gas Separations. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the five member universities. These were reviewed and the selected proposals were forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed below by category, along with abstracts from their final reports.

  5. Liquid Cooling in Data Centers

    SciTech Connect

    Cader, Tahir; Sorell,, Vali; Westra, Levi; Marquez, Andres

    2009-05-01

    Semiconductor manufacturers have aggressively attacked the problem of escalating microprocessor power consumption levels. Today, server manufacturers can purchase microprocessors that currently have power consumption levels capped at 100W maximum. However, total server power levels continue to increase, with the increase in power consumption coming from the supportin chipsets, memory, and other components. In turn, full rack heat loads are very aggressivley climbing as well, and this is making it increasingly difficult and cost-prohibitive for facility owners to cool these high power racks. As a result, facilities owners are turning to alternative, and more energy efficient, cooling solutions that deploy liquids in one form or another. The paper discusses the advent of the adoption of liquid-cooling in high performance computing centers. An overview of the following competing rack-based, liquid-cooling, technologies is provided: in-row, above rack, refrigerated/enclosed rack, rear door heat exchanger, and device-level (i.e., chip-level). Preparation for a liquid-cooled data center, retroft and greenfield (new), is discussed, with a focus on the key issues that are common to all liquid-cooling technologies that depend upon the delivery of water to the rack (or in some deployments, a Coolant Distribution Unit). The paper then discusses, in some detail, the actual implementation and deployment of a liquid device-level cooled (spray cooled) supercomputer at the Pacific Northwest National Laboratory. Initial results from a successful 30 day compliance test show excellent hardware stability, operating system (OS) and software stack stability, application stability and performance, and an availability level that exceeded expectations at 99.94%. The liquid-cooled supercomputer achieved a peak performance of 9.287 TeraFlops, which placed it at number 101 in the June 2007 Top500 fastest supercomputers worldwide. Long-term performance and energy efficiency testing is

  6. 78 FR 30303 - National Contact Center; Submission for OMB Review; National Contact Center Customer Evaluation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-22

    ... in the Federal Register at 78 FR 14549, on March 6, 2013. No comments were received. DATES: Submit... ADMINISTRATION National Contact Center; Submission for OMB Review; National Contact Center Customer Evaluation Survey AGENCY: Contact Center Services, Federal Citizen Information Center, Office of Citizen...

  7. The Morgantown Energy Technology Center`s particulate cleanup program

    SciTech Connect

    Dennis, R.A.

    1995-12-01

    The development of integrated gasification combined cycle (IGCC) and pressurized fluidized-bed combustion (PFBC) power systems has made it possible to use coal while still protecting the environment. Such power systems significantly reduce the pollutants associated with coal-fired plants built before the 1970s. This superior environmental performance and related high system efficiency is possible, in part, because particulate gas-stream cleanup is conducted at high-temperature and high-pressure process conditions. A main objective of the Particulate Cleanup Program at the Morgantown Energy Technology Center (METC) is to ensure the success of the CCT demonstration projects. METC`s Particulate Cleanup Program supports research, development, and demonstration in three areas: (1) filter-system development, (2) barrier-filter component development, and (3) ash and char characterization. The support is through contracted research, cooperative agreements, Cooperative Research And Development Agreements (CRADAs), and METC`s own in-house research. This paper describes METC`s Particulate Cleanup Program.

  8. Reader-Centered Technical Writing

    NASA Astrophysics Data System (ADS)

    Narayanan, M.

    2012-12-01

    Technical writing is an essential part of professional communication and in recent years it has shifted from a genre-based approach. Formerly, technical writing primarily focused on generating templates of documents and sometimes it was creating or reproducing traditional forms with minor modifications and updates. Now, technical writing looks at the situations surrounding the need to write. This involves deep thinking about the goals and objectives of the project on hand. Furthermore, one observes that it is very important for any participatory process to have the full support of management. This support needs to be well understood and believed by employees. Professional writing may be very persuasive in some cases. When presented in the appropriate context, technical writing can persuade a company to improve work conditions ensuring employee safety and timely production. However, one must recognize that lot of professional writing still continues to make use of reports and instruction manuals. Normally, technical and professional writing addresses four aspects. Objective: The need for generating a given professionally written technical document and the goals the document is expected to achieve and accomplish. Clientele: The clientele who will utilize the technical document. This may include the people in the organization. This may also include "unintended readers." Customers: The population that may be affected by the content of the technical document generated. This includes the stakeholders who will be influenced. Environment: The background in which the document is created. Also, the nature of the situation that warranted the generation of the document. Swiss Psychologist Jean Piaget's view of Learning focuses on three aspects. The author likes to extend Jean Piaget's ideas to students, who are asked to prepare and submit Reader-Centered Technical Writing reports and exercises. Assimilation: Writers may benefit specifically, by assimilating a new object into

  9. Satisloh centering technology developments past to present

    NASA Astrophysics Data System (ADS)

    Leitz, Ernst Michael; Moos, Steffen

    2015-10-01

    The centering of an optical lens is the grinding of its edge profile or contour in relationship to its optical axis. This is required to ensure that the lens vertex and radial centers are accurately positioned within an optical system. Centering influences the imaging performance and contrast of an optical system. Historically, lens centering has been a purely manual process. Along its 62 years of assembling centering machines, Satisloh introduced several technological milestones to improve the accuracy and quality of this process. During this time more than 2.500 centering machines were assembled. The development went from bell clamping and diamond grinding to Laser alignment, exchange chuckor -spindle systems, to multi axis CNC machines with integrated metrology and automatic loading systems. With the new centering machine C300, several improvements for the clamping and grinding process were introduced. These improvements include a user friendly software to support the operator, a coolant manifold and "force grinding" technology to ensure excellent grinding quality and process stability. They also include an air bearing directly driven centering spindle to provide a large working range of lenses made of all optical materials and diameters from below 10 mm to 300 mm. The clamping force can be programmed between 7 N and 1200 N to safely center lenses made of delicate materials. The smaller C50 centering machine for lenses below 50 mm diameter is available with an optional CNC loading system for automated production.

  10. The North American ALMA Science Center

    NASA Astrophysics Data System (ADS)

    Lonsdale, Carol J.; Hibbard, J. E.; Staff, NAASC

    2010-01-01

    The North American ALMA Science Center at the National Radio Astronomy Observatory, NRAO, in Charlottesville, Virginia, in partnership with the Herzberg Institute of Astrophysics in Victoria, Canada, will support the North American community in their observations with the Atacama Large Millimeter Array, ALMA. Our goal is to promote successful observations with ALMA for both novice users, with no experience in either interferometry or millimeter astronomy, and experts alike. We will describe the services that the Science Center will provide for the community, from education about the capabilities of ALMA, though proposal preparation to data analysis. The Science Center will host a website with a Helpdesk that includes FAQs and a growing knowledgebase of ALMA expertise, and will support extensive demos and tutorials on observation preparation and data reduction with ALMA. The Science Center also promotes science-themed meetings. The staff of the Science Center will provide expert assistance for observers at all stages of development and execution of their program. There are visitor and postdoc opportunities at the Science Center. The North American ALMA Science Center is one of three regional centers around the globe that will support ALMA observations. Our partners are the European ALMA Regional Center at ESO in Garching, Germany, and the East Asian ALMA Region Center in Tokyo, Japan.

  11. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    SciTech Connect

    M.A. Ebadian

    1999-10-31

    The Deactivation and Decommissioning (D&D) Technology Assessment Program (TAP) was developed to provide detailed, comparable data for environmental technologies and to disseminate this data to D&D professionals in a manner that will facilitate the review and selection of technologies to perform decontamination and decommissioning. The objectives for this project include the following: Determine technology needs through review of the Site Technology Coordination Group (STCG) information and other applicable websites and needs databases; Perform a detailed review of industries that perform similar activities as those required in D&D operations to identify additional technologies; Define the technology assessment program for characterization and waste management problem sets; Define the data management program for characterization, dismantlement, and waste management problem sets; Evaluate baseline and innovative technologies under standard test conditions at Florida International University's Hemispheric Center for Environmental Technology (FIU-HCET) and other locations and collect data in the areas of performance, cost, health and safety, operations and maintenance, and primary and secondary waste generation; Continue to locate, verify, and incorporate technology performance data from other sources into the multimedia information system; and Develop the conceptual design for a dismantlement technology decision analysis tool for dismantlement technologies.

  12. WIMPs at the galactic center

    SciTech Connect

    Agrawal, Prateek; Batell, Brian; Fox, Patrick J.; Harnik, Roni

    2015-05-07

    Simple models of weakly interacting massive particles (WIMPs) predict dark matter annihilations into pairs of electroweak gauge bosons, Higgses or tops, which through their subsequent cascade decays produce a spectrum of gamma rays. Intriguingly, an excess in gamma rays coming from near the Galactic center has been consistently observed in Fermi data. A recent analysis by the Fermi collaboration confirms these earlier results. Taking into account the systematic uncertainties in the modelling of the gamma ray backgrounds, we show for the first time that this excess can be well fit by these final states. In particular, for annihilations to (WW, ZZ, hh, tt{sup -bar}), dark matter with mass between threshold and approximately (165, 190, 280, 310) GeV gives an acceptable fit. The fit range for bb{sup -bar} is also enlarged to 35 GeV≲m{sub χ}≲165 GeV. These are to be compared to previous fits that concluded only much lighter dark matter annihilating into b, τ, and light quark final states could describe the excess. We demonstrate that simple, well-motivated models of WIMP dark matter including a thermal-relic neutralino of the MSSM, Higgs portal models, as well as other simplified models can explain the excess.

  13. Human-Centered Saliency Detection.

    PubMed

    Liu, Zhenbao; Wang, Xiao; Bu, Shuhui

    2016-06-01

    We introduce a new concept for detecting the saliency of 3-D shapes, that is, human-centered saliency (HCS) detection on the surface of shapes, whereby a given shape is analyzed not based on geometric or topological features directly obtained from the shape itself, but by studying how a human uses the object. Using virtual agents to simulate the ways in which humans interact with objects helps to understand shapes and detect their salient parts in relation to their functions. HCS detection is less affected by inconsistencies between the geometry or topology of the analyzed 3-D shapes. The potential benefit of the proposed method is that it is adaptable to variable shapes with the same semantics, as well as being robust against a geometrical and topological noise. Given a 3-D shape, its salient part is detected by automatically selecting a corresponding agent and making them interact with each other. Their adaption and alignment depend on an optimization framework and a training process. We demonstrate the detected salient parts for different types of objects together with the stability thereof. The salient parts can be used for important vision tasks, such as 3-D shape retrieval. PMID:26571539

  14. The MAVEN Science Data Center

    NASA Astrophysics Data System (ADS)

    De Wolfe, A. W.; Dorey, M.; Larsen, K. W.; Christofferson, R.; Lindholm, D. M.

    2014-12-01

    The Mars Atmospheric and Volatile Evolution (MAVEN) mission will enter Mars orbit in September 2014. MAVEN's science data is hosted at the Science Data Center at the Laboratory for Atmospheric & Space Physics (LASP), where we use many different technologies to provide the MAVEN team with access to the data while keeping the data secure. The internal SDC software is written in Python, and provides data access to the team via Flask web services. Our website contains applications built with Highcharts, AngularJS, D3.js, and PostgreSQL to access and visualize data and metadata, allowing the team to preview the science data, see variations in data volume over the mission, search a timeline of mission events and perform complex queries to discover science data. In case of emergency, our data is backed up locally and archived in Amazon Glacier. This presentation will summarize the benefits of the various technologies we've chosen and the lessons we've learned along the way.

  15. The ICSU World Data Centers

    NASA Astrophysics Data System (ADS)

    Ruttenberg, Stan

    Data, data. Who's got the data? Why can't I find them? If I do find them, why can't I get them? If I do get them, why is the format wrong? Why are they printed or published instead of in a computer-readable medium? Why is it so expensive to get the excerpt I want instead of 1,000 tapes? Why is the documentation missing or incomplete? Why do we spend good science money on data management? What are the National and World Data centers anyway? What can they do for me?There are two responses to these questions—“just because,” or “do you want the short answer or the long answer?” Just because is an unsatisfactory answer, yet it contains a kernel of truth. The long story is sure to glaze the eyes of the reader over, so I will attempt a short discussion. Apologies for tracing ground known to some of you, and for touches of whimsy. An exegesis of data matters calls for imaginative treatment to get your attention at the start to induce you, gentle reader, to continue.

  16. ESF Mine Power Center Platforms

    SciTech Connect

    T.A. Misiak

    2000-02-10

    The purpose and objective of this analysis is to structurally evaluate the existing Exploratory Studies Facility (ESF) mine power center (MPC) support frames and to design service platforms that will attach to the MPC support frames. This analysis follows the Development Plan titled ''Produce Additional Design for Title 111 Evaluation Report'' (CRWMS M&O 1999a). This analysis satisfies design recommended in the ''Title III Evaluation Report for the Surface and Subsurface Power System'' (CRWMS M&O 1999b, Section 7.6) and concurred with in the ''System Safety Evaluation of Title 111 Evaluation Reports Recommended Work'' (Gwyn 1999, Section 10.1.1). This analysis does not constitute a level-3 deliverable, a level-4 milestone, or a supporting work product. This document is not being prepared in support of the Monitored Geologic Repository (MGR) Site Recommendation (SR), Environmental Impact Statement (EIS), or License Application (LA) and should not be cited as a reference in the MGR SR, EIS, or LA.

  17. The Virtual Mission Operations Center

    NASA Technical Reports Server (NTRS)

    Moore, Mike; Fox, Jeffrey

    1994-01-01

    Spacecraft management is becoming more human intensive as spacecraft become more complex and as operations costs are growing accordingly. Several automation approaches have been proposed to lower these costs. However, most of these approaches are not flexible enough in the operations processes and levels of automation that they support. This paper presents a concept called the Virtual Mission Operations Center (VMOC) that provides highly flexible support for dynamic spacecraft management processes and automation. In a VMOC, operations personnel can be shared among missions, the operations team can change personnel and their locations, and automation can be added and removed as appropriate. The VMOC employs a form of on-demand supervisory control called management by exception to free operators from having to actively monitor their system. The VMOC extends management by exception, however, so that distributed, dynamic teams can work together. The VMOC uses work-group computing concepts and groupware tools to provide a team infrastructure, and it employs user agents to allow operators to define and control system automation.

  18. WIMPs at the galactic center

    SciTech Connect

    Agrawal, Prateek; Batell, Brian; Fox, Patrick J.; Harnik, Roni

    2015-05-07

    Simple models of weakly interacting massive particles (WIMPs) predict dark matter annihilations into pairs of electroweak gauge bosons, Higgses or tops, which through their subsequent cascade decays produce a spectrum of gamma rays. Intriguingly, an excess in gamma rays coming from near the Galactic center has been consistently observed in Fermi data. A recent analysis by the Fermi collaboration confirms these earlier results. Taking into account the systematic uncertainties in the modelling of the gamma ray backgrounds, we show for the first time that this excess can be well fit by these final states. In particular, for annihilations to (WW, ZZ, hh, tt¯), dark matter with mass between threshold and approximately (165, 190, 280, 310) GeV gives an acceptable fit. The fit range for bb¯ is also enlarged to 35 GeV ≲ mχ ≲ 165 GeV. These are to be compared to previous fits that concluded only much lighter dark matter annihilating into b, τ, and light quark final states could describe the excess. We demonstrate that simple, well-motivated models of WIMP dark matter including a thermal-relic neutralino of the MSSM, Higgs portal models, as well as other simplified models can explain the excess.

  19. WIMPs at the galactic center

    DOE PAGESBeta

    Agrawal, Prateek; Batell, Brian; Fox, Patrick J.; Harnik, Roni

    2015-05-07

    Simple models of weakly interacting massive particles (WIMPs) predict dark matter annihilations into pairs of electroweak gauge bosons, Higgses or tops, which through their subsequent cascade decays produce a spectrum of gamma rays. Intriguingly, an excess in gamma rays coming from near the Galactic center has been consistently observed in Fermi data. A recent analysis by the Fermi collaboration confirms these earlier results. Taking into account the systematic uncertainties in the modelling of the gamma ray backgrounds, we show for the first time that this excess can be well fit by these final states. In particular, for annihilations to (WW,more » ZZ, hh, tt¯), dark matter with mass between threshold and approximately (165, 190, 280, 310) GeV gives an acceptable fit. The fit range for bb¯ is also enlarged to 35 GeV ≲ mχ ≲ 165 GeV. These are to be compared to previous fits that concluded only much lighter dark matter annihilating into b, τ, and light quark final states could describe the excess. We demonstrate that simple, well-motivated models of WIMP dark matter including a thermal-relic neutralino of the MSSM, Higgs portal models, as well as other simplified models can explain the excess.« less

  20. WIMPs at the galactic center

    SciTech Connect

    Agrawal, Prateek; Fox, Patrick J.; Harnik, Roni; Batell, Brian E-mail: brian.batell@cern.ch E-mail: roni@fnal.gov

    2015-05-01

    Simple models of weakly interacting massive particles (WIMPs) predict dark matter annihilations into pairs of electroweak gauge bosons, Higgses or tops, which through their subsequent cascade decays produce a spectrum of gamma rays. Intriguingly, an excess in gamma rays coming from near the Galactic center has been consistently observed in Fermi data. A recent analysis by the Fermi collaboration confirms these earlier results. Taking into account the systematic uncertainties in the modelling of the gamma ray backgrounds, we show for the first time that this excess can be well fit by these final states. In particular, for annihilations to (WW, ZZ, hh, t t-bar ), dark matter with mass between threshold and approximately (165, 190, 280, 310) GeV gives an acceptable fit. The fit range for b b-bar is also enlarged to 35 GeV ∼< m{sub χ} ∼< 165 GeV. These are to be compared to previous fits that concluded only much lighter dark matter annihilating into b, τ, and light quark final states could describe the excess. We demonstrate that simple, well-motivated models of WIMP dark matter including a thermal-relic neutralino of the MSSM, Higgs portal models, as well as other simplified models can explain the excess.