Sample records for alaska arctic tundra

  1. Conceptualization and Simulation of the Alaskan Arctic Tundra Landscape Evolution Using the Alaska Thermokarst Model

    NASA Astrophysics Data System (ADS)

    Bolton, W. R.; Lara, M. J.; Genet, H.; Romanovsky, V. E.; McGuire, A. D.

    2016-12-01

    The Arctic, including Alaska, is currently undergoing a change in climate, with observed increases in both mean surface temperature and precipitation. The combination of these increases in precipitation and temperature has resulted in a permafrost condition that is susceptible to thermokarst. Changes in the landscape due to thermokarst takes place whenever ice-rich permafrost thaws and the land surface subsides due to the volume loss when ground-ice transitions to water. The important processes associated with thermokarst include surface ponding, changes in topography, vegetation distribution, soil moisture conditions, drainage patterns, and related erosion. The Alaska Thermokarst Model (ATM) is a large-scale, state-and-transition model designed to simulate transitions between landscape units affected by thermokarst disturbance. The ATM using a frame-based methodology to track cohorts transitions and their respective proportions within each model grid cell. In the arctic tundra environment, the ATM tracks thermokarst related transitions among wetland tundra, graminoid tundra,shrub tundra and lakes. The transition from one cohort to another due to thermokarst processes can take place if thaw reaches ice-rich ground layers either due to pulse disturbance or due to gradual active layer deepening that eventually results in penetration of the protective layer. The protective layer buffers the ice-rich soils from the land surface and is critical to determine how susceptible an area is to thermokarst degradation. The initial landcover distribution is based upon analysis of compiled remote sensing data sets at 30-m resolution. Remote sensing analysis and field measurements from previous and ongoing studies are used to determine the ice-content of the soil, the drainage efficiency (or the ability of the landscape to store or transport water), the cumulative probability of thermokarst initiation, distance from rivers, lake dynamics (increasing, decreasing, or stable), and

  2. Identification of unrecognized tundra fire events on the north slope of Alaska

    USGS Publications Warehouse

    Jones, Benjamin M.; Breen, Amy L.; Gaglioti, Benjamin V.; Mann, Daniel H.; Rocha, Adrian V.; Grosse, Guido; Arp, Christopher D.; Kunz, Michael L.; Walker, Donald A.

    2013-01-01

    Characteristics of the natural fire regime are poorly resolved in the Arctic, even though fire may play an important role cycling carbon stored in tundra vegetation and soils to the atmosphere. In the course of studying vegetation and permafrost-terrain characteristics along a chronosequence of tundra burn sites from AD 1977, 1993, and 2007 on the North Slope of Alaska, we discovered two large, previously unrecognized tundra fires. The Meade River fire burned an estimated 500 km2 and the Ketik River fire burned an estimated 1200 km2. Based on radiocarbon dating of charred twigs, analysis of historic aerial photography, and regional climate proxy data, these fires likely occurred between AD 1880 and 1920. Together, these events double the estimated burn area on the North Slope of Alaska over the last ~100 to 130 years. Assessment of vegetation succession along the century-scale chronosequence of tundra fire disturbances demonstrates for the first time on the North Slope of Alaska that tundra fires can facilitate the invasion of tundra by shrubs. Degradation of ice-rich permafrost was also evident at the fire sites and likely aided in the presumed changes of the tundra vegetation postfire. Other previously unrecognized tundra fire events likely exist in Alaska and other Arctic regions and identification of these sites is important for better understanding disturbance regimes and carbon cycling in Arctic tundra.

  3. Tundra landform and vegetation productivity trend maps for the Arctic Coastal Plain of northern Alaska

    NASA Astrophysics Data System (ADS)

    Lara, Mark J.; Nitze, Ingmar; Grosse, Guido; McGuire, A. David

    2018-04-01

    Arctic tundra landscapes are composed of a complex mosaic of patterned ground features, varying in soil moisture, vegetation composition, and surface hydrology over small spatial scales (10-100 m). The importance of microtopography and associated geomorphic landforms in influencing ecosystem structure and function is well founded, however, spatial data products describing local to regional scale distribution of patterned ground or polygonal tundra geomorphology are largely unavailable. Thus, our understanding of local impacts on regional scale processes (e.g., carbon dynamics) may be limited. We produced two key spatiotemporal datasets spanning the Arctic Coastal Plain of northern Alaska (~60,000 km2) to evaluate climate-geomorphological controls on arctic tundra productivity change, using (1) a novel 30 m classification of polygonal tundra geomorphology and (2) decadal-trends in surface greenness using the Landsat archive (1999-2014). These datasets can be easily integrated and adapted in an array of local to regional applications such as (1) upscaling plot-level measurements (e.g., carbon/energy fluxes), (2) mapping of soils, vegetation, or permafrost, and/or (3) initializing ecosystem biogeochemistry, hydrology, and/or habitat modeling.

  4. Tundra landform and vegetation productivity trend maps for the Arctic Coastal Plain of northern Alaska

    PubMed Central

    Lara, Mark J.; Nitze, Ingmar; Grosse, Guido; McGuire, A. David

    2018-01-01

    Arctic tundra landscapes are composed of a complex mosaic of patterned ground features, varying in soil moisture, vegetation composition, and surface hydrology over small spatial scales (10–100 m). The importance of microtopography and associated geomorphic landforms in influencing ecosystem structure and function is well founded, however, spatial data products describing local to regional scale distribution of patterned ground or polygonal tundra geomorphology are largely unavailable. Thus, our understanding of local impacts on regional scale processes (e.g., carbon dynamics) may be limited. We produced two key spatiotemporal datasets spanning the Arctic Coastal Plain of northern Alaska (~60,000 km2) to evaluate climate-geomorphological controls on arctic tundra productivity change, using (1) a novel 30 m classification of polygonal tundra geomorphology and (2) decadal-trends in surface greenness using the Landsat archive (1999–2014). These datasets can be easily integrated and adapted in an array of local to regional applications such as (1) upscaling plot-level measurements (e.g., carbon/energy fluxes), (2) mapping of soils, vegetation, or permafrost, and/or (3) initializing ecosystem biogeochemistry, hydrology, and/or habitat modeling. PMID:29633984

  5. Tundra landform and vegetation productivity trend maps for the Arctic Coastal Plain of northern Alaska.

    PubMed

    Lara, Mark J; Nitze, Ingmar; Grosse, Guido; McGuire, A David

    2018-04-10

    Arctic tundra landscapes are composed of a complex mosaic of patterned ground features, varying in soil moisture, vegetation composition, and surface hydrology over small spatial scales (10-100 m). The importance of microtopography and associated geomorphic landforms in influencing ecosystem structure and function is well founded, however, spatial data products describing local to regional scale distribution of patterned ground or polygonal tundra geomorphology are largely unavailable. Thus, our understanding of local impacts on regional scale processes (e.g., carbon dynamics) may be limited. We produced two key spatiotemporal datasets spanning the Arctic Coastal Plain of northern Alaska (~60,000 km 2 ) to evaluate climate-geomorphological controls on arctic tundra productivity change, using (1) a novel 30 m classification of polygonal tundra geomorphology and (2) decadal-trends in surface greenness using the Landsat archive (1999-2014). These datasets can be easily integrated and adapted in an array of local to regional applications such as (1) upscaling plot-level measurements (e.g., carbon/energy fluxes), (2) mapping of soils, vegetation, or permafrost, and/or (3) initializing ecosystem biogeochemistry, hydrology, and/or habitat modeling.

  6. Tundra landform and vegetation productivity trend maps for the Arctic Coastal Plain of northern Alaska

    USGS Publications Warehouse

    Lara, Mark J.; Nitze, Ingmar; Grosse, Guido; McGuire, A. David

    2018-01-01

    Arctic tundra landscapes are composed of a complex mosaic of patterned ground features, varying in soil moisture, vegetation composition, and surface hydrology over small spatial scales (10–100 m). The importance of microtopography and associated geomorphic landforms in influencing ecosystem structure and function is well founded, however, spatial data products describing local to regional scale distribution of patterned ground or polygonal tundra geomorphology are largely unavailable. Thus, our understanding of local impacts on regional scale processes (e.g., carbon dynamics) may be limited. We produced two key spatiotemporal datasets spanning the Arctic Coastal Plain of northern Alaska (~60,000 km2) to evaluate climate-geomorphological controls on arctic tundra productivity change, using (1) a novel 30 m classification of polygonal tundra geomorphology and (2) decadal-trends in surface greenness using the Landsat archive (1999–2014). These datasets can be easily integrated and adapted in an array of local to regional applications such as (1) upscaling plot-level measurements (e.g., carbon/energy fluxes), (2) mapping of soils, vegetation, or permafrost, and/or (3) initializing ecosystem biogeochemistry, hydrology, and/or habitat modeling.

  7. Methane emissions from Alaska Arctic tundra - An assessment of local spatial variability

    NASA Technical Reports Server (NTRS)

    Morrissey, L. A.; Livingston, G. P.

    1992-01-01

    The findings of an extensive midsummer survey of CH4 emissions measurements representing the Alaska Arctic tundra are presented. Variability in rates of emissions was similar in magnitude on local and regional scales, ranging from 0 to 286.5 mg/sq m/d overall and often varying across two orders of magnitude within 0.5 m distances. Primary control on rates of emission was determined by the substrate and position of the water table relative to the surface. Emission rates in the Arctic Foothills ranged from 0.2 mg/sq m/d for tussock tundra to 55.53 mg/sq m/d over wet meadows. Plant-mediated release of CH4 to the atmosphere was directly proportional to green leaf area and represented 92-98 percent of the total emission rates over vegetated sites. The results suggest the current published emission rates may have overestimated the contribution of boreal ecosystems to the global CH4 budget by several fold.

  8. Tundra Rehabilitation in Alaska's Arctic

    NASA Astrophysics Data System (ADS)

    Lynn, L. A.

    2012-12-01

    Oil exploration in Alaska's Arctic has been conducted for more than 40 years, resulting in over 3,640 ha of gravel fill placed for roads, pads, and airstrips to support the industry. Likewise, tundra disturbance from burying power lines and by tundra vehicle travel are also common. Rehabilitation of disturbed sites began around 2002, with well over 150 ha that has been previously treated or is currently being rehabilitated. Two primary goals of rehabilitation efforts have been 1) revegetation by indigenous species, and 2) limiting thermokarst. Early efforts were concerned that removing gravel and having exposed bare ground would lead to extensive subsidence and eolian erosion. Native grass cultivars (e.g. Poa glauca, Arctagrostis latifolia, and Festuca rubra) were seeded to create vegetation cover quickly with the expectation that these grasses would survive only temporarily. The root masses and leaf litter were also expected to trap indigenous seed to enhance natural recolonization by indigenous plants. Due to the remote location of these sites, many of which are only accessible by helicopter, most are visited only two to three times following cultivation treatments, providing a limited data pool. At many sites, the total live seeded grass cover declined about 15% over the first 5¬-6 years (from around 30% to 15% cover), while total live indigenous vascular cover increased from no or trace cover to an average of 10% cover in that time. Cover of indigenous vascular plants at sites that were not seeded with native grass cultivars averaged just less than 10% after 10 years, showing no appreciable difference between the two approaches. Final surface elevations at the sites affect local hydrology and soil moisture. Other factors that influence the success of vegetation cover are proximity to the Arctic coast (salt effects), depth of remaining gravel, and changes in characteristics of the near-surface soil. Further development of rehabilitation techniques and the

  9. THE HYDRAULIC CHARACTERISTICS AND GEOCHEMISTRY OF HYPORHEIC AND PARAFLUVIAL ZONES IN ARCTIC TUNDRA STREAMS, NORTH SLOPE, ALASKA

    EPA Science Inventory

    Sodium bromide and Rhodamine WT were used as conservative tracers to examine the hydrologic characteristics of seven tundra streams in Arctic Alaska, during the summers of 1994-1996. Continuous tracer additions were conducted in seven rivers ranging from 1st to 5th order with sam...

  10. Carbon dioxide sources from Alaska driven by increasing early winter respiration from Arctic tundra

    PubMed Central

    Lindaas, Jakob; Benmergui, Joshua; Luus, Kristina A.; Chang, Rachel Y.-W.; Daube, Bruce C.; Euskirchen, Eugénie S.; Karion, Anna; Miller, John B.; Miller, Scot M.; Parazoo, Nicholas C.; Randerson, James T.; Sweeney, Colm; Thoning, Kirk; Veraverbeke, Sander; Miller, Charles E.; Wofsy, Steven C.

    2017-01-01

    High-latitude ecosystems have the capacity to release large amounts of carbon dioxide (CO2) to the atmosphere in response to increasing temperatures, representing a potentially significant positive feedback within the climate system. Here, we combine aircraft and tower observations of atmospheric CO2 with remote sensing data and meteorological products to derive temporally and spatially resolved year-round CO2 fluxes across Alaska during 2012–2014. We find that tundra ecosystems were a net source of CO2 to the atmosphere annually, with especially high rates of respiration during early winter (October through December). Long-term records at Barrow, AK, suggest that CO2 emission rates from North Slope tundra have increased during the October through December period by 73% ± 11% since 1975, and are correlated with rising summer temperatures. Together, these results imply increasing early winter respiration and net annual emission of CO2 in Alaska, in response to climate warming. Our results provide evidence that the decadal-scale increase in the amplitude of the CO2 seasonal cycle may be linked with increasing biogenic emissions in the Arctic, following the growing season. Early winter respiration was not well simulated by the Earth System Models used to forecast future carbon fluxes in recent climate assessments. Therefore, these assessments may underestimate the carbon release from Arctic soils in response to a warming climate. PMID:28484001

  11. Carbon dioxide sources from Alaska driven by increasing early winter respiration from Arctic tundra.

    PubMed

    Commane, Róisín; Lindaas, Jakob; Benmergui, Joshua; Luus, Kristina A; Chang, Rachel Y-W; Daube, Bruce C; Euskirchen, Eugénie S; Henderson, John M; Karion, Anna; Miller, John B; Miller, Scot M; Parazoo, Nicholas C; Randerson, James T; Sweeney, Colm; Tans, Pieter; Thoning, Kirk; Veraverbeke, Sander; Miller, Charles E; Wofsy, Steven C

    2017-05-23

    High-latitude ecosystems have the capacity to release large amounts of carbon dioxide (CO 2 ) to the atmosphere in response to increasing temperatures, representing a potentially significant positive feedback within the climate system. Here, we combine aircraft and tower observations of atmospheric CO 2 with remote sensing data and meteorological products to derive temporally and spatially resolved year-round CO 2 fluxes across Alaska during 2012-2014. We find that tundra ecosystems were a net source of CO 2 to the atmosphere annually, with especially high rates of respiration during early winter (October through December). Long-term records at Barrow, AK, suggest that CO 2 emission rates from North Slope tundra have increased during the October through December period by 73% ± 11% since 1975, and are correlated with rising summer temperatures. Together, these results imply increasing early winter respiration and net annual emission of CO 2 in Alaska, in response to climate warming. Our results provide evidence that the decadal-scale increase in the amplitude of the CO 2 seasonal cycle may be linked with increasing biogenic emissions in the Arctic, following the growing season. Early winter respiration was not well simulated by the Earth System Models used to forecast future carbon fluxes in recent climate assessments. Therefore, these assessments may underestimate the carbon release from Arctic soils in response to a warming climate.

  12. Carbon dioxide sources from Alaska driven by increasing early winter respiration from Arctic tundra

    NASA Astrophysics Data System (ADS)

    Commane, Róisín; Lindaas, Jakob; Benmergui, Joshua; Luus, Kristina A.; Chang, Rachel Y.-W.; Daube, Bruce C.; Euskirchen, Eugénie S.; Henderson, John M.; Karion, Anna; Miller, John B.; Miller, Scot M.; Parazoo, Nicholas C.; Randerson, James T.; Sweeney, Colm; Tans, Pieter; Thoning, Kirk; Veraverbeke, Sander; Miller, Charles E.; Wofsy, Steven C.

    2017-05-01

    High-latitude ecosystems have the capacity to release large amounts of carbon dioxide (CO2) to the atmosphere in response to increasing temperatures, representing a potentially significant positive feedback within the climate system. Here, we combine aircraft and tower observations of atmospheric CO2 with remote sensing data and meteorological products to derive temporally and spatially resolved year-round CO2 fluxes across Alaska during 2012-2014. We find that tundra ecosystems were a net source of CO2 to the atmosphere annually, with especially high rates of respiration during early winter (October through December). Long-term records at Barrow, AK, suggest that CO2 emission rates from North Slope tundra have increased during the October through December period by 73% ± 11% since 1975, and are correlated with rising summer temperatures. Together, these results imply increasing early winter respiration and net annual emission of CO2 in Alaska, in response to climate warming. Our results provide evidence that the decadal-scale increase in the amplitude of the CO2 seasonal cycle may be linked with increasing biogenic emissions in the Arctic, following the growing season. Early winter respiration was not well simulated by the Earth System Models used to forecast future carbon fluxes in recent climate assessments. Therefore, these assessments may underestimate the carbon release from Arctic soils in response to a warming climate.

  13. The Alaska Arctic Vegetation Archive (AVA-AK)

    Treesearch

    Donald A. Walker; Amy L. Breen; Lisa A. Druckenmiller; Lisa W. Wirth; Will Fisher; Martha K. Raynolds; Jozef Šibík; Marilyn D. Walker; Stephan Hennekens; Keith Boggs; Tina Boucher; Marcel Buchhorn; Helga Bültmann; David J. Cooper; Fred J.A Daniëls; Scott J. Davidson; James J. Ebersole; Sara C. Elmendorf; Howard E. Epstein; William A. Gould; Robert D. Hollister; Colleen M. Iversen; M. Torre Jorgenson; Anja Kade; Michael T. Lee; William H. MacKenzie; Robert K. Peet; Jana L. Peirce; Udo Schickhoff; Victoria L. Sloan; Stephen S. Talbot; Craig E. Tweedie; Sandra Villarreal; Patrick J. Webber; Donatella Zona

    2016-01-01

    The Alaska Arctic Vegetation Archive (AVA-AK, GIVD-ID: NA-US-014) is a free, publically available database archive of vegetation-plot data from the Arctic tundra region of northern Alaska. The archive currently contains 24 datasets with 3,026 non-overlapping plots. Of these, 74% have geolocation data with 25-m or better precision. Species cover data and header data are...

  14. Carbon loss from an unprecedented Arctic tundra wildfire.

    PubMed

    Mack, Michelle C; Bret-Harte, M Syndonia; Hollingsworth, Teresa N; Jandt, Randi R; Schuur, Edward A G; Shaver, Gaius R; Verbyla, David L

    2011-07-27

    Arctic tundra soils store large amounts of carbon (C) in organic soil layers hundreds to thousands of years old that insulate, and in some cases maintain, permafrost soils. Fire has been largely absent from most of this biome since the early Holocene epoch, but its frequency and extent are increasing, probably in response to climate warming. The effect of fires on the C balance of tundra landscapes, however, remains largely unknown. The Anaktuvuk River fire in 2007 burned 1,039 square kilometres of Alaska's Arctic slope, making it the largest fire on record for the tundra biome and doubling the cumulative area burned since 1950 (ref. 5). Here we report that tundra ecosystems lost 2,016 ± 435 g C m(-2) in the fire, an amount two orders of magnitude larger than annual net C exchange in undisturbed tundra. Sixty per cent of this C loss was from soil organic matter, and radiocarbon dating of residual soil layers revealed that the maximum age of soil C lost was 50 years. Scaled to the entire burned area, the fire released approximately 2.1 teragrams of C to the atmosphere, an amount similar in magnitude to the annual net C sink for the entire Arctic tundra biome averaged over the last quarter of the twentieth century. The magnitude of ecosystem C lost by fire, relative to both ecosystem and biome-scale fluxes, demonstrates that a climate-driven increase in tundra fire disturbance may represent a positive feedback, potentially offsetting Arctic greening and influencing the net C balance of the tundra biome.

  15. Predicting Changes in Arctic Tundra Vegetation: Towards an Understanding of Plant Trait Uncertainty

    NASA Astrophysics Data System (ADS)

    Euskirchen, E. S.; Serbin, S.; Carman, T.; Iversen, C. M.; Salmon, V.; Helene, G.; McGuire, A. D.

    2017-12-01

    Arctic tundra plant communities are currently undergoing unprecedented changes in both composition and distribution under a warming climate. Predicting how these dynamics may play out in the future is important since these vegetation shifts impact both biogeochemical and biogeophysical processes. More precise estimates of these future vegetation shifts is a key challenge due to both a scarcity of data with which to parameterize vegetation models, particularly in the Arctic, as well as a limited understanding of the importance of each of the model parameters and how they may vary over space and time. Here, we incorporate newly available field data from arctic Alaska into a dynamic vegetation model specifically developed to take into account a particularly wide array of plant species as well as the permafrost soils of the arctic tundra (the Terrestrial Ecosystem Model with Dynamic Vegetation and Dynamic Organic Soil, Terrestrial Ecosystem Model; DVM-DOS-TEM). We integrate the model within the Predicative Ecosystem Analyzer (PEcAn), an open-source integrated ecological bioinformatics toolbox that facilitates the flows of information into and out of process models and model-data integration. We use PEcAn to evaluate the plant functional traits that contribute most to model variability based on a sensitivity analysis. We perform this analysis for the dominant types of tundra in arctic Alaska, including heath, shrub, tussock and wet sedge tundra. The results from this analysis will help inform future data collection in arctic tundra and reduce model uncertainty, thereby improving our ability to simulate Arctic vegetation structure and function in response to global change.

  16. Synthesis of soil geochemical characteristics and organic carbon degradation in Arctic polygon tundra, Barrow, Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jianqiu; RoyChowdhury, Taniya; Herndon, Elizabeth

    This is a synthesis data product that reports (1) the results of soil geochemical characterization and (2) organic carbon degradation in low temperature soil incubations on cores collected on the NGEE Arctic Study Area near Utqiaġvik (Barrow), Alaska. The study area consists of thaw lakes, drained thaw lake basins and interstitial tundra with a polygonal landscape of microtopographic features created by ice wedges. Integrated geochemical and organic carbon degradation data from 9 individual soil cores are included in the synthesis product.

  17. Climate Variations and Alaska Tundra Vegetation Productivity Declines in Spring

    NASA Astrophysics Data System (ADS)

    Bhatt, U. S.; Walker, D. A.; Bieniek, P.; Raynolds, M. K.; Epstein, H. E.; Comiso, J. C.; Pinzon, J. E.; Tucker, C. J.

    2015-12-01

    While sea ice has continued to decline, vegetation productivity increases have declined particularly during spring in Alaska as well as many parts of the Arctic tundra. To understand the processes behind these features we investigate spring climate variations that includes temperature, circulation patterns, and snow cover to determine how these may be contributing to spring browning. This study employs remotely sensed weekly 25-km sea ice concentration, weekly surface temperature, and bi-weekly NDVI from 1982 to 2014. Maximum NDVI (MaxNDVI, Maximum Normalized Difference Vegetation Index), Time Integrated NDVI (TI-NDVI), Summer Warmth Index (SWI, sum of degree months above freezing during May-August), atmospheric reanalysis data, dynamically downscaled climate data, meteorological station data, and snow water equivalent (GlobSnow, assimilated snow data set). We analyzed the data for the full period (1982-2014) and for two sub-periods (1982-1998 and 1999-2014), which were chosen based on the declining Alaska SWI since 1998. MaxNDVI has increased from 1982-2014 over most of the Arctic but has declined from 1999 to 2014 southwest Alaska. TI-NDVI has trends that are similar to those for MaxNDVI for the full period but display widespread declines over the 1999-2014 period. Therefore, as the MaxNDVI has continued to increase overall for the Arctic, TI-NDVI has been declining since 1999 and these declines are particularly noteworthy during spring in Alaska. Spring declines in Alaska have been linked to increased spring snow cover that can delay greenup (Bieniek et al. 2015) but recent ground observations suggest that after an initial warming and greening, late season freezing temperature are damaging the plants. The late season freezing temperature hypothesis will be explored with meteorological climate/weather data sets for Alaska tundra regions. References P.A. Bieniek, US Bhatt, DA Walker, MK Raynolds, JC Comiso, HE Epstein, JE Pinzon, CJ Tucker, RL Thoman, H Tran, N M

  18. Future distribution of tundra refugia in northern Alaska

    USGS Publications Warehouse

    Hope, Andrew G.; Waltari, Eric; Payer, David C.; Cook, Joseph A.; Talbot, Sandra L.

    2013-01-01

    Climate change in the Arctic is a growing concern for natural resource conservation and management as a result of accelerated warming and associated shifts in the distribution and abundance of northern species. We introduce a predictive framework for assessing the future extent of Arctic tundra and boreal biomes in northern Alaska. We use geo-referenced museum specimens to predict the velocity of distributional change into the next century and compare predicted tundra refugial areas with current land-use. The reliability of predicted distributions, including differences between fundamental and realized niches, for two groups of species is strengthened by fossils and genetic signatures of demographic shifts. Evolutionary responses to environmental change through the late Quaternary are generally consistent with past distribution models. Predicted future refugia overlap managed areas and indicate potential hotspots for tundra diversity. To effectively assess future refugia, variable responses among closely related species to climate change warrants careful consideration of both evolutionary and ecological histories.

  19. Chloroform Emissions from the Arctic Tundra

    NASA Astrophysics Data System (ADS)

    Abel, T.; Rhew, R. C.; Teh, Y.; Atwood, A.; Mazeas, O.

    2006-12-01

    The global budget of atmospheric chloroform (CHCl3) has many uncertainties, especially regarding the magnitude of its natural and anthropogenic sources. CHCl3 has an atmospheric lifetime of ~0.5 years based on reaction with hydroxyl radical and a north to south interhemispheric gradient of 2-3. Thus, a majority of CHCl3 emissions comes from the Northern Hemisphere, with half or more of the emissions emanating from 30-90 °N. The production of CHCl3 has been observed in microalgae, termite mounds, forest soils, rice paddies and temperate peatlands, but direct flux measurements are very limited. Here we report CHCl3 emissions measured from the Arctic tundra during the 2005 and 2006 growing seasons near Barrow, Alaska (n=60) and Toolik Lake, Alaska (n=16). These sites encompassed a range of vegetation zones, from wet sedge coastal tundra to upland tussock tundra. Fluxes were highly variable, ranging from 0 to 260 nmol m-2 d-1 and showed no clear trends with microtopography or time of season, although many of the highest fluxes were found at the moist meadow sites. Chloroform fluxes did not correlate with methane or methyl halide fluxes. A rough extrapolation based on average observed fluxes suggests that the tundra globally can account for 1-2% of the total estimated source of atmospheric chloroform.

  20. Look again: Revising ideas about the greening of Alaska’s arctic tundra

    Treesearch

    Geoffrey Koch; Robert Pattison

    2017-01-01

    Alaska’s Arctic tundra is one of the most rapidly warming regions in the world. For years, scientists have been working to interpret the effects of its changing climate and determine what these changes may mean for the rest of the planet. Coarse-scale satellite imagery of much of this region shows the tundra is becoming greener. This has been widely attributed to shrub...

  1. Mapping wildfire burn severity in the Arctic Tundra from downsampled MODIS data

    USGS Publications Warehouse

    Kolden, Crystal A.; Rogan, John

    2013-01-01

    Wildfires are historically infrequent in the arctic tundra, but are projected to increase with climate warming. Fire effects on tundra ecosystems are poorly understood and difficult to quantify in a remote region where a short growing season severely limits ground data collection. Remote sensing has been widely utilized to characterize wildfire regimes, but primarily from the Landsat sensor, which has limited data acquisition in the Arctic. Here, coarse-resolution remotely sensed data are assessed as a means to quantify wildfire burn severity of the 2007 Anaktuvuk River Fire in Alaska, the largest tundra wildfire ever recorded on Alaska's North Slope. Data from Landsat Thematic Mapper (TM) and downsampled Moderate-resolution Imaging Spectroradiometer (MODIS) were processed to spectral indices and correlated to observed metrics of surface, subsurface, and comprehensive burn severity. Spectral indices were strongly correlated to surface severity (maximum R2 = 0.88) and slightly less strongly correlated to substrate severity. Downsampled MODIS data showed a decrease in severity one year post-fire, corroborating rapid vegetation regeneration observed on the burned site. These results indicate that widely-used spectral indices and downsampled coarse-resolution data provide a reasonable supplement to often-limited ground data collection for analysis and long-term monitoring of wildfire effects in arctic ecosystems.

  2. Arctic Tundra Greening and Browning at Circumpolar and Regional Scales

    NASA Astrophysics Data System (ADS)

    Epstein, H. E.; Bhatt, U. S.; Walker, D. A.; Raynolds, M. K.; Yang, X.

    2017-12-01

    Remote sensing data have historically been used to assess the dynamics of arctic tundra vegetation. Until recently the scientific literature has largely described the "greening" of the Arctic; from a remote sensing perspective, an increase in the Normalized Difference Vegetation Index (NDVI), or a similar satellite-based vegetation index. Vegetation increases have been heterogeneous throughout the Arctic, and were reported to be up to 25% in certain areas over a 30-year timespan. However, more recently, arctic tundra vegetation dynamics have gotten more complex, with observations of more widespread tundra "browning" being reported. We used a combination of remote sensing data, including the Global Inventory Monitoring and Modeling System (GIMMS), as well as higher spatial resolution Landsat data, to evaluate the spatio-temporal patterns of arctic tundra vegetation dynamics (greening and browning) at circumpolar and regional scales over the past 3-4 decades. At the circumpolar scale, we focus on the spatial heterogeneity (by tundra subzone and continent) of tundra browning over the past 5-15 years, followed by a more recent recovery (greening since 2015). Landsat time series allow us to evaluate the landscape-scale heterogeneity of tundra greening and browning for northern Alaska and the Yamal Peninsula in northwestern Siberia, Russia. Multi-dataset analyses reveal that tundra greening and browning (i.e. increases or decreases in the NDVI respectively) are generated by different sets of processes. Tundra greening is largely a result of either climate warming, lengthening of the growing season, or responses to disturbances, such as fires, landslides, and freeze-thaw processes. Browning on the other hand tends to be more event-driven, such as the shorter-term decline in vegetation due to fire, insect defoliation, consumption by larger herbivores, or extreme weather events (e.g. winter warming or early summer frost damage). Browning can also be caused by local or

  3. Tundra biome research in Alaska: the structure and function of cold-dominated ecosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, J.; West, G.C.

    1970-11-01

    The objective of the Tundra Biome Program is to acquire a basic understanding of tundra, both alpine and arctic, and taiga. Collectively these are referred to as the cold-dominated ecosystems. The program's broad objectives are threefold: To develop a predictive understanding of how the wet arctic tundra ecosystem operates, particularly as exemplified in the Barrow, Alaska, area; to obtain the necessary data base from the variety of cold-dominated ecosystem types represented in the United States, so that their behavior can be modeled and simulated, and the results compared with similar studies underway in other circumpolar countries; to bring basic environmentalmore » knowledge to bear on problems of degradation, maintenance, and restoration of the temperature-sensitive and cold-dominated tundra/taiga ecosystems. (GRA)« less

  4. Will Arctic ground squirrels impede or accelerate climate-induced vegetation changes to the Arctic tundra?

    NASA Astrophysics Data System (ADS)

    Dalton, J.; Flower, C. E.; Brown, J.; Gonzalez-Meler, M. A.; Whelan, C.

    2014-12-01

    Considerable attention has been given to the climate feedbacks associated with predicted vegetation shifts in the Arctic tundra in response to global environmental change. However, little is known regarding the extent to which consumers can facilitate or respond to shrub expansion. Arctic ground squirrels, the largest and most northern ground squirrel, are abundant and widespread throughout the North American tundra. Their broad diet of seeds, flowers, herbage, bird's eggs and meat speaks to the need to breed, feed, and fatten in a span of some 12-16 weeks that separate their 8-9 month bouts of hibernation with the potential consequence to impact ecosystem dynamics. Therefore Arctic ground squirrels are a good candidate to evaluate whether consumers are mere responders (bottom-up effects) or drivers (top-down) of the observed and predicted vegetation changes. As a start towards this question, we measured the foraging intensity (giving-up densities) of Arctic ground squirrels in experimental food patches within which the squirrels experience diminishing returns as they seek the raisins and peanuts that we provided at the Toolik Lake field station in northern Alaska. If the squirrels show their highest feeding intensity in the shrubs, they may impede vegetation shifts by slowing the establishment and expansion of shrubs in the tundra. Conversely, if they show their lowest feeding intensity within shrub dominated areas, they may accelerate vegetation shifts. We found neither. Feeding intensity varied most among transects and times of day, and least along a tundra-to-shrub vegetation gradient. This suggests that the impacts of squirrels will be heterogeneous - in places responders and in others drivers. We should not be surprised then to see patches of accelerated and impeded vegetation changes in the tundra ecosystem. Some of these patterns may be predictable from the foraging behavior of Arctic ground squirrels.

  5. Trends in NDVI and tundra community composition in the Arctic of NE Alaska between 1984 and 2009

    Treesearch

    Robert R. Pattison; Janet C. Jorgenson; Martha K. Raynolds; Jeffery M. Welker

    2015-01-01

    As Arctic ecosystems experience increases in surface air temperatures, plot-level analyses of tundra vegetation composition suggest that there are important changes occurring in tundra communities that are typified by increases in shrubs and declines in non-vascular species. At the same time analyses of NDVI indicate that the Arctic tundra is greening. Few studies have...

  6. Modeled change in carbon balance between 1970-2100 of a polygonal arctic tundra ecosystem near Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Lara, M. J.; McGuire, A. D.; Euskirchen, E. S.; Sloan, V. L.; Iversen, C. M.; Norby, R. J.; Genet, H.; Zhang, Y.; Yuan, F.

    2013-12-01

    Northern permafrost regions are estimated to cover 16% of the global soil area and account for approximately 50% of the global belowground organic carbon pool. However, there are considerable uncertainties regarding the fate of this soil carbon pool with projected climate warming over the next century. In northern Alaska, nearly 65% of the terrestrial surface is composed of polygonal tundra, where microtopographic position (i.e. high center, low center, trough) varies surface hydrology, plant community composition, and biogeochemical cycling, over small (<5m) spatial scales. Due to large spatial heterogeneity and other non-linear responses of soil carbon to altered thermal regime, it is difficult to accurately estimate the fate of terrestrial carbon balance over decadal time-scales without explicitly considering the dynamically coupled processes driving permafrost dynamics, community structure, and ecosystem function. We use a new version of the terrestrial ecosystem model (TEM), which couples a dynamic vegetation and dynamic organic soil model (DVM-DOS-TEM). This large-scale ecosystem model is designed to study interactions among carbon and nitrogen cycling, vegetation composition, and soil physical properties, including permafrost and active layer dynamics. The model is parameterized and calibrated using data specific to the local climate, vegetation, and soils within various polygon land cover types (i.e. high center & rim, low center, trough) collected from sites (71.28°N 156.60° W) on the arctic coastal plain near Barrow, Alaska to estimate the likely change in carbon balance between 1970 and 2100 in this landscape. Model outputs are scaled across the Barrow Peninsula using the distribution of polygonal tundra land cover types, described by a land cover classification of 26.9 km2, using a 2008 multi-spectral QuickBird satellite image. The polygonal tundra land cover classification found high center & rims to represent 37.5% of the study area, low centers 19

  7. Frequent Fires in Ancient Shrub Tundra: Implications of Paleorecords for Arctic Environmental Change

    PubMed Central

    Higuera, Philip E.; Brubaker, Linda B.; Anderson, Patricia M.; Brown, Thomas A.; Kennedy, Alison T.; Hu, Feng Sheng

    2008-01-01

    Understanding feedbacks between terrestrial and atmospheric systems is vital for predicting the consequences of global change, particularly in the rapidly changing Arctic. Fire is a key process in this context, but the consequences of altered fire regimes in tundra ecosystems are rarely considered, largely because tundra fires occur infrequently on the modern landscape. We present paleoecological data that indicate frequent tundra fires in northcentral Alaska between 14,000 and 10,000 years ago. Charcoal and pollen from lake sediments reveal that ancient birch-dominated shrub tundra burned as often as modern boreal forests in the region, every 144 years on average (+/− 90 s.d.; n = 44). Although paleoclimate interpretations and data from modern tundra fires suggest that increased burning was aided by low effective moisture, vegetation cover clearly played a critical role in facilitating the paleofires by creating an abundance of fine fuels. These records suggest that greater fire activity will likely accompany temperature-related increases in shrub-dominated tundra predicted for the 21st century and beyond. Increased tundra burning will have broad impacts on physical and biological systems as well as on land-atmosphere interactions in the Arctic, including the potential to release stored organic carbon to the atmosphere. PMID:18320025

  8. The Alaska Arctic Vegetation Archive (AVA-AK)

    DOE PAGES

    Walker, Donald; Breen, Amy; Druckenmiller, Lisa; ...

    2016-05-17

    The Alaska Arctic Vegetation Archive (AVA-AK, GIVD-ID: NA-US-014) is a free, publically available database archive of vegetation-plot data from the Arctic tundra region of northern Alaska. The archive currently contains 24 datasets with 3,026 non-overlapping plots. Of these, 74% have geolocation data with 25-m or better precision. Species cover data and header data are stored in a Turboveg database. A standardized Pan Arctic Species List provides a consistent nomenclature for vascular plants, bryophytes, and lichens in the archive. A web-based online Alaska Arctic Geoecological Atlas (AGA-AK) allows viewing and downloading the species data in a variety of formats, and providesmore » access to a wide variety of ancillary data. We conducted a preliminary cluster analysis of the first 16 datasets (1,613 plots) to examine how the spectrum of derived clusters is related to the suite of datasets, habitat types, and environmental gradients. Here, we present the contents of the archive, assess its strengths and weaknesses, and provide three supplementary files that include the data dictionary, a list of habitat types, an overview of the datasets, and details of the cluster analysis.« less

  9. The Alaska Arctic Vegetation Archive (AVA-AK)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Donald; Breen, Amy; Druckenmiller, Lisa

    The Alaska Arctic Vegetation Archive (AVA-AK, GIVD-ID: NA-US-014) is a free, publically available database archive of vegetation-plot data from the Arctic tundra region of northern Alaska. The archive currently contains 24 datasets with 3,026 non-overlapping plots. Of these, 74% have geolocation data with 25-m or better precision. Species cover data and header data are stored in a Turboveg database. A standardized Pan Arctic Species List provides a consistent nomenclature for vascular plants, bryophytes, and lichens in the archive. A web-based online Alaska Arctic Geoecological Atlas (AGA-AK) allows viewing and downloading the species data in a variety of formats, and providesmore » access to a wide variety of ancillary data. We conducted a preliminary cluster analysis of the first 16 datasets (1,613 plots) to examine how the spectrum of derived clusters is related to the suite of datasets, habitat types, and environmental gradients. Here, we present the contents of the archive, assess its strengths and weaknesses, and provide three supplementary files that include the data dictionary, a list of habitat types, an overview of the datasets, and details of the cluster analysis.« less

  10. Changes in tundra vascular plant biomass over thirty years at Imnavait Creek, Alaska.

    NASA Astrophysics Data System (ADS)

    Bret-Harte, M. S.; Euskirchen, E. S.; Edgar, C.; Huebner, D. C.; Okano, K.; Tucker, C.; Genet, H.; Ray, P. M.; Shaver, G. R.

    2014-12-01

    Understanding the magnitude of, and controls over, CO2 and water fluxes in arctic ecosystems is essential for accurate assessment and prediction of their responses to climate change. In 2013, we harvested vegetation and soils in the most common plant community types located in the source areas for fluxes measured by eddy covariance towers located in three representative Alaska tundra ecosystems along a toposequence (a ridge site composed of heath tundra and moist non-acidic tundra, a mid-slope site composed of moist acidic tussock tundra, and a valley bottom fen site composed of wet sedge tundra and moist acidic tundra) at Imnavait Creek, Alaska. While the purpose of this harvest was to relate biomass and production to estimates of overall net ecosystem CO2 exchange (NEE), gross primary productivity (GPP) and ecosystem respiration (ER) obtained by micrometeorological methods, it also afforded an opportunity to compare with biomass harvests done in the 1980s in moist acidic tundra at Imnavait Creek; there have been no other harvests than ours at Imnavait since then. Our data showed that plant biomass and production were greatest in the tussock tundra at the mid-slope tower, and least in the wet sedge community at the fen tower, while plant diversity was greatest in the communities at the ridge site. Aboveground biomass of vascular plants in our 2013 harvest in moist acidic tundra was nearly three times higher than that measured approximately thirty years earlier in three harvests of nearby areas at Imnavait Creek, due to an increase in the biomass of shrubs and graminoids. Comparison with other biomass harvests from the vicinity of Toolik Field Station indicate that vascular plant biomass in moist acidic tundra has increased over this time period, with the greatest increase evident by the mid-1990s, and a more gradual increase through to the present time, despite no obvious increase in air temperature as seen in data from nearby climate stations. These data will be

  11. Decrease of lichens in Arctic ecosystems: the role of wildfire, caribou, reindeer, competition and climate in north-western Alaska

    Treesearch

    Kyle Joly; Randi R. Jandt; David R. Klein

    2009-01-01

    We review and present a synthesis of the existing research dealing with changing Arctic tundra ecosystems, in relation to caribou and reindeer winter ranges. Whereas pan-Arctic studies have documented the effects on tundra vegetation from simulated climate change, we draw upon recent long-term regional studies in Alaska that have documented the actual, on-the-ground...

  12. Hg Storage and Mobility in Tundra Soils of Northern Alaska

    NASA Astrophysics Data System (ADS)

    Olson, C.; Obrist, D.

    2017-12-01

    Atmospheric mercury (Hg) can be transported over long distances to remote regions such as the Arctic where it can then deposit and temporarily be stored in soils. This research aims to improve the understanding of terrestrial Hg storage and mobility in the arctic tundra, a large receptor area for atmospheric deposition and a major source of Hg to the Arctic Ocean. We aim to characterize spatial Hg pool sizes across various tundra sites and to quantify the mobility of Hg from thawing tundra soils using laboratory mobility experiments. Active layer and permafrost soil samples were collected in the summer of 2014 and 2015 at the Toolik Field Station in northern Alaska (68° 38' N) and along a 200 km transect extending from Toolik to the Arctic Ocean. Soil samples were analyzed for total Hg concentration, bulk density, and major and trace elements. Hg pool sizes were estimated by scaling up Hg soil concentrations using soil bulk density measurements. Mobility of Hg in tundra soils was quantified by shaking soil samples with ultrapure Milli-Q® water as an extracting solution for 24 and 72 hours. Additionally, meltwater samples were collected for analysis when present. The extracted supernatant was analyzed for total Hg, dissolved organic carbon, cations and anions, redox, and ph. Mobility of Hg from soil was calculated using Hg concentrations determined in solid soil samples and in supernatant of soil solution samples. Results of this study show Hg levels in tundra mineral soils that are 2-5 times higher than those observed at temperate sites closer to pollution sources. Most of the soil Hg was located in mineral horizons where Hg mass accounted for 72% of the total soil pool. Soil Hg pool sizes across the tundra sites were highly variable (166 - 1,365 g ha-1; avg. 419 g ha-1) due to the heterogeneity in soil type, bulk density, depth to frozen layer, and soil Hg concentration. Preliminary results from the laboratory experiment show higher mobility of Hg in mineral

  13. Year-round Regional CO2 Fluxes from Boreal and Tundra Ecosystems in Alaska

    NASA Astrophysics Data System (ADS)

    Commane, R.; Lindaas, J.; Benmergui, J. S.; Luus, K. A.; Chang, R. Y. W.; Daube, B. C.; Euskirchen, E. S.; Henderson, J.; Karion, A.; Miller, J. B.; Miller, S. M.; Parazoo, N.; Randerson, J. T.; Sweeney, C.; Tans, P. P.; Thoning, K. W.; Veraverbeke, S.; Miller, C. E.; Wofsy, S. C.

    2016-12-01

    High-latitude ecosystems could release large amounts of carbon dioxide (CO2) to the atmosphere in a warmer climate. We derive temporally and spatially resolved year-round CO2 fluxes in Alaska from a synthesis of airborne and tower CO2 observations in 2012-2014. We find that tundra ecosystems were net sources of atmospheric CO2. We discuss these flux estimates in the context of long-term CO2 measurements at Barrow, AK, to asses the long term trend in carbon fluxes in the Arctic. Many Earth System Models incorrectly simulate net carbon uptake in Alaska presently. Our results imply that annual net emission of CO2 to the atmosphere may have increased markedly in this region of the Arctic in response to warming climate, supporting the view that climate-carbon feedback is strongly positive in the high Arctic.

  14. Assessment of Fire Occurrence and Future Fire Potential in Arctic Alaska

    NASA Astrophysics Data System (ADS)

    French, N. H. F.; Jenkins, L. K.; Loboda, T. V.; Bourgeau-Chavez, L. L.; Whitley, M. A.

    2014-12-01

    An analysis of the occurrence of fire in Alaskan tundra was completed using the relatively complete historical record of fire for the region from 1950 to 2013. Spatial fire data for Alaskan tundra regions were obtained from the Alaska Large Fire Database for the region defined from vegetation and ecoregion maps. A detailed presentation of fire records available for assessing the fire regime of the tundra regions of Alaska as well as results evaluating fire size, seasonality, and general geographic and temporal trends is included. Assessment of future fire potential was determined for three future climate scenarios at four locations across the Alaskan tundra using the Canadian Forest Fire Weather Index (FWI). Canadian Earth System Model (CanESM2) weather variables were used for historical (1850-2005) and future (2006-2100) time periods. The database includes 908 fire points and 463 fire polygons within the 482,931 km2 of Alaskan tundra. Based on the polygon database 25,656 km2 (6,340,000 acres) has burned across the six tundra ecoregions since 1950. Approximately 87% of tundra fires start in June and July across all ecoregions. Combining information from the polygon and points data records, the estimated average fire size for fire in the Alaskan Arctic region is 28.1 km2 (7,070 acres), which is much smaller than in the adjacent boreal forest region, averaging 203 km2 for high fire years. The largest fire in the database is the Imuruk Basin Fire which burned 1,680 km2 in 1954 in the Seward Peninsula region (Table 1). Assessment of future fire potential shows that, in comparison with the historical fire record, fire occurrence in Alaskan tundra is expected to increase under all three climate scenarios. Occurrences of high fire weather danger (>10 FWI) are projected to increase in frequency and magnitude in all regions modeled. The changes in fire weather conditions are expected to vary from one region to another in seasonal occurrence as well as severity and frequency

  15. Observed and Potential Responses of Upland Tundra Ecosystems to a Changing Climate: Results from the Arctic Long-Term Ecological Research Project, North Slope, Alaska, USA

    NASA Astrophysics Data System (ADS)

    Bowden, W. B.

    2014-12-01

    The Arctic is one of the most rapidly changing biomes on earth. Research at the Toolik Field Station by the Arctic Long-Term Ecological Research project provides a perspective on changes that are impacting the upland tussock tundra region of the North Slope of Alaska, a region that is typical of ~15% of the arctic region. The arctic is responding to a combination of long-term, gradual changes (presses) and short-term, event-driven changes (pulses). The most important press, of course, is the persistent rise in average annual air temperature observed in most places (though not at Toolik). Associated with this increase in SAT is a well-documented increase in shallow permafrost temperature (which is observed around Toolik). Our long-term research shows that this trend will favor taller and more productive shrub and grass vegetation. Higher SAT translates to earlier spring breakup and later onset of winter. This change in seasonality is affecting interactions between shrub leaf-out, insect emergence, and bird nesting. Persistent and more frequent droughts are having important impacts on the ability of Arctic grayling - the top consumer is most upland tundra streams - to survive and has the potential to block their ability to migrate to essential overwintering lakes. The interaction between temperature (which is changing) and light (which is not) creates a "seasonal asynchrony" that may be increasing the loading of nutrients - notably nitrate - to upland tundra streams late in the season, with impacts that we do not fully understand yet. The upland tundra environment is also responding to an increasing frequency of pulses, most notably wildfires and the development of thermo-erosional failures (TEFs). Wildfires transfer large quantities of carbon and nitrogen directly to the atmosphere. TEFs may deliver large quantities of sediment and nutrients to streams and lakes. Currently these pulse disturbances seem to be having only limited, local impacts. However, as shallow

  16. Analysis of state of vehicular scars on Arctic Tundra, Alaska

    NASA Technical Reports Server (NTRS)

    Lathram, E. H.

    1974-01-01

    Identification on ERTS images of severe vehicular scars in the northern Alaska tundra suggests that, if such scars are of an intensity or have spread to a dimension such that they can be resolved by ERTS sensors (20 meters), they can be identified and their state monitored by the use of ERTS images. Field review of the state of vehicular scars in the Umiat area indicates that all are revegetating at varying rates and are approaching a stable state.

  17. Recent Arctic tundra fire initiates widespread thermokarst development.

    PubMed

    Jones, Benjamin M; Grosse, Guido; Arp, Christopher D; Miller, Eric; Liu, Lin; Hayes, Daniel J; Larsen, Christopher F

    2015-10-29

    Fire-induced permafrost degradation is well documented in boreal forests, but the role of fires in initiating thermokarst development in Arctic tundra is less well understood. Here we show that Arctic tundra fires may induce widespread thaw subsidence of permafrost terrain in the first seven years following the disturbance. Quantitative analysis of airborne LiDAR data acquired two and seven years post-fire, detected permafrost thaw subsidence across 34% of the burned tundra area studied, compared to less than 1% in similar undisturbed, ice-rich tundra terrain units. The variability in thermokarst development appears to be influenced by the interaction of tundra fire burn severity and near-surface, ground-ice content. Subsidence was greatest in severely burned, ice-rich upland terrain (yedoma), accounting for ~50% of the detected subsidence, despite representing only 30% of the fire disturbed study area. Microtopography increased by 340% in this terrain unit as a result of ice wedge degradation. Increases in the frequency, magnitude, and severity of tundra fires will contribute to future thermokarst development and associated landscape change in Arctic tundra regions.

  18. Recent Arctic tundra fire initiates widespread thermokarst development

    PubMed Central

    Jones, Benjamin M.; Grosse, Guido; Arp, Christopher D.; Miller, Eric; Liu, Lin; Hayes, Daniel J.; Larsen, Christopher F.

    2015-01-01

    Fire-induced permafrost degradation is well documented in boreal forests, but the role of fires in initiating thermokarst development in Arctic tundra is less well understood. Here we show that Arctic tundra fires may induce widespread thaw subsidence of permafrost terrain in the first seven years following the disturbance. Quantitative analysis of airborne LiDAR data acquired two and seven years post-fire, detected permafrost thaw subsidence across 34% of the burned tundra area studied, compared to less than 1% in similar undisturbed, ice-rich tundra terrain units. The variability in thermokarst development appears to be influenced by the interaction of tundra fire burn severity and near-surface, ground-ice content. Subsidence was greatest in severely burned, ice-rich upland terrain (yedoma), accounting for ~50% of the detected subsidence, despite representing only 30% of the fire disturbed study area. Microtopography increased by 340% in this terrain unit as a result of ice wedge degradation. Increases in the frequency, magnitude, and severity of tundra fires will contribute to future thermokarst development and associated landscape change in Arctic tundra regions. PMID:26511650

  19. Recent Arctic tundra fire initiates widespread thermokarst development

    DOE PAGES

    Jones, Benjamin M.; Grosse, Guido; Arp, Christopher D.; ...

    2015-10-29

    Fire-induced permafrost degradation is well documented in boreal forests, but the role of fires in initiating thermokarst development in Arctic tundra is less well understood. Here we show that Arctic tundra fires may induce widespread thaw subsidence of permafrost terrain in the first seven years following the disturbance. Quantitative analysis of airborne LiDAR data acquired two and seven years post-fire, detected permafrost thaw subsidence across 34% of the burned tundra area studied, compared to less than 1% in similar undisturbed, ice-rich tundra terrain units. The variability in thermokarst development appears to be influenced by the interaction of tundra fire burnmore » severity and near-surface, ground-ice content. Subsidence was greatest in severely burned, ice-rich upland terrain (yedoma), accounting for -50% of the detected subsidence, despite representing only 30% of the fire disturbed study area. Microtopography increased by 340% in this terrain unit as a result of ice wedge degradation. Increases in the frequency, magnitude, and severity of tundra fires will contribute to future thermokarst development and associated landscape change in Arctic tundra regions.« less

  20. Recent Arctic tundra fire initiates widespread thermokarst development

    USGS Publications Warehouse

    Jones, Benjamin M.; Grosse, Guido; Arp, Christopher D.; Miller, Eric K.; Liu, Lingli; Hayes, Daniel J.; Larsen, Christopher F.

    2015-01-01

    Fire-induced permafrost degradation is well documented in boreal forests, but the role of fires in initiating thermokarst development in Arctic tundra is less well understood. Here we show that Arctic tundra fires may induce widespread thaw subsidence of permafrost terrain in the first seven years following the disturbance. Quantitative analysis of airborne LiDAR data acquired two and seven years post-fire, detected permafrost thaw subsidence across 34% of the burned tundra area studied, compared to less than 1% in similar undisturbed, ice-rich tundra terrain units. The variability in thermokarst development appears to be influenced by the interaction of tundra fire burn severity and near-surface, ground-ice content. Subsidence was greatest in severely burned, ice-rich upland terrain (yedoma), accounting for ~50% of the detected subsidence, despite representing only 30% of the fire disturbed study area. Microtopography increased by 340% in this terrain unit as a result of ice wedge degradation. Increases in the frequency, magnitude, and severity of tundra fires will contribute to future thermokarst development and associated landscape change in Arctic tundra regions.

  1. Reduced arctic tundra productivity linked with landform and climate change interactions.

    PubMed

    Lara, Mark J; Nitze, Ingmar; Grosse, Guido; Martin, Philip; McGuire, A David

    2018-02-05

    Arctic tundra ecosystems have experienced unprecedented change associated with climate warming over recent decades. Across the Pan-Arctic, vegetation productivity and surface greenness have trended positively over the period of satellite observation. However, since 2011 these trends have slowed considerably, showing signs of browning in many regions. It is unclear what factors are driving this change and which regions/landforms will be most sensitive to future browning. Here we provide evidence linking decadal patterns in arctic greening and browning with regional climate change and local permafrost-driven landscape heterogeneity. We analyzed the spatial variability of decadal-scale trends in surface greenness across the Arctic Coastal Plain of northern Alaska (~60,000 km²) using the Landsat archive (1999-2014), in combination with novel 30 m classifications of polygonal tundra and regional watersheds, finding landscape heterogeneity and regional climate change to be the most important factors controlling historical greenness trends. Browning was linked to increased temperature and precipitation, with the exception of young landforms (developed following lake drainage), which will likely continue to green. Spatiotemporal model forecasting suggests carbon uptake potential to be reduced in response to warmer and/or wetter climatic conditions, potentially increasing the net loss of carbon to the atmosphere, at a greater degree than previously expected.

  2. Reduced arctic tundra productivity linked with landform and climate change interactions

    USGS Publications Warehouse

    Lara, Mark J.; Nitze, Ingmar; Grosse, Guido; Martin, Philip; McGuire, A. David

    2018-01-01

    Arctic tundra ecosystems have experienced unprecedented change associated with climate warming over recent decades. Across the Pan-Arctic, vegetation productivity and surface greenness have trended positively over the period of satellite observation. However, since 2011 these trends have slowed considerably, showing signs of browning in many regions. It is unclear what factors are driving this change and which regions/landforms will be most sensitive to future browning. Here we provide evidence linking decadal patterns in arctic greening and browning with regional climate change and local permafrost-driven landscape heterogeneity. We analyzed the spatial variability of decadal-scale trends in surface greenness across the Arctic Coastal Plain of northern Alaska (~60,000 km²) using the Landsat archive (1999–2014), in combination with novel 30 m classifications of polygonal tundra and regional watersheds, finding landscape heterogeneity and regional climate change to be the most important factors controlling historical greenness trends. Browning was linked to increased temperature and precipitation, with the exception of young landforms (developed following lake drainage), which will likely continue to green. Spatiotemporal model forecasting suggests carbon uptake potential to be reduced in response to warmer and/or wetter climatic conditions, potentially increasing the net loss of carbon to the atmosphere, at a greater degree than previously expected.

  3. The temperature response of methane emission in Arctic wet sedge tundra

    NASA Astrophysics Data System (ADS)

    Lim, Edward; Zona, Donatella

    2015-04-01

    Since the last glacial maximum Arctic tundra soils have acted as an important carbon sink, having accumulated carbon under cold, anaerobic conditions (Zona et al. 2009). Several studies indicate that recent climate warming has altered this balance, with the Arctic tundra now posited to be a significant annual source of atmospheric methane (CH4) (McGuire et al. 2012). Nonetheless, the response of Arctic tundra CH4 fluxes to continued climate warming remains uncertain. Laboratory and field studies indicate that CH4 fluxes are temperature sensitive, thus accurate calculation of the temperature sensitivity is vital for the prediction of future CH4 emission. For this, the increase in reaction rate over a 10°C range (Q10) is frequently used, with single fixed Q10 values (between 2 and 4) commonly incorporated into climate-carbon cycle models. However, the temperature sensitivity of CH4 emission can vary considerably depending on factors such as vegetation composition, water table and season. This promotes the use of spatially and seasonally variable Q10 values for accurate CH4 flux estimation under different future climate change scenarios. This study investigates the temperature sensitivity (Q10) of Arctic tundra methane fluxes, using an extensive number of soil cores (48) extracted from wet sedge polygonal tundra (Barrow Experimental Observatory, Alaska). 'Wet' and 'dry' cores were taken from the centre and raised perimeter of ice-wedge polygons, where the water tables are 0cm and -15cm respectively. Cores were incubated in two controlled environment chambers (University of Sheffield, UK) for 12 weeks under different thaw depth treatments (control and control + 6.8cm), water tables (surface and -15cm), and CO2 concentrations (400ppm and 850ppm) in a multifactorial manner. Chamber temperature was gradually increased from -5°C to 20°C, then gradually decreased to -5°C, with each temperature stage lasting one week. Average CH4 fluxes from 'dry' cores were consistently

  4. NDVI as a predictor of canopy arthropod biomass in the Alaskan arctic tundra.

    PubMed

    Sweet, Shannan K; Asmus, Ashley; Rich, Matthew E; Wingfield, John; Gough, Laura; Boelman, Natalie T

    2015-04-01

    The physical and biological responses to rapid arctic warming are proving acute, and as such, there is a need to monitor, understand, and predict ecological responses over large spatial and temporal scales. The use of the normalized difference vegetation index (NDVI) acquired from airborne and satellite sensors addresses this need, as it is widely used as a tool for detecting and quantifying spatial and temporal dynamics of tundra vegetation cover, productivity, and phenology. Such extensive use of the NDVI to quantify vegetation characteristics suggests that it may be similarly applied to characterizing primary and secondary consumer communities. Here, we develop empirical models to predict canopy arthropod biomass with canopy-level measurements of the NDVI both across and within distinct tundra vegetation communities over four growing seasons in the Arctic Foothills region of the Brooks Range, Alaska, USA. When canopy arthropod biomass is predicted with the NDVI across all four growing seasons, our overall model that includes all four vegetation communities explains 63% of the variance in canopy arthropod biomass, whereas our models specific to each of the four vegetation communities explain 74% (moist tussock tundra), 82% (erect shrub tundra), 84% (riparian shrub tundra), and 87% (dwarf shrub tundra) of the observed variation in canopy arthropod biomass. Our field-based study suggests that measurements of the NDVI made from air- and spaceborne sensors may be able to quantify spatial and temporal variation in canopy arthropod biomass at landscape to regional scales.

  5. Distinct temperature sensitivity among taiga and tundra shrubs in Alaska

    NASA Astrophysics Data System (ADS)

    Andreu-Hayles, L.; Anchukaitis, K. J.; D'Arrigo, R.

    2014-12-01

    Shrub expansion into Arctic and alpine tundra ecosystems is well documented, mostly over the last 50 years, based on remote sensing data, aerial photography, and in-situ observations. Warming temperatures are considered the main driver of the observed change in shrub vegetation patterns. Here, we assess the relationship between temperatures and shrub growth from five populations of Salix spp. (willow) and Alnus spp. (alder) in Alaska growing within the tundra and the boreal forest (~taiga) using dendrochronological techniques. The three tundra shrub sites are located on the Dalton Highway north from Toolik Lake (~69ºN 148ºW), whereas the two taiga shrub sites are located closer to Fairbanks at the Twelve Mile Summit site (~65ºN 146ºW). Because shrub ages vary among the studied populations lead to different time spans for the ring-width chronologies generated, a common period with available satellite data spanning from 1982 to 2010 was selected for this study. All tundra shrub chronologies shared a strong positive response to summer temperatures despite growing in heterogeneous site conditions and belonging to different species. In contrast, in the taiga, summer temperatures enhance willow growth, whereas alder growth appears almost insensitive to temperature over the interval studied. Extending the analyses back in time, a very strong positive relationship was found between alder ring-width and June temperatures prior to 1970. This phenomenon, a weakening of the previously existing relationship between growth and temperatures, was also detected in white spruce (Picea glauca) growing at the same site, and it is known in the literature as the 'divergence problem'. Thus, at this taiga location, alder shrubs and trees seem to have similar growth patterns. Summer temperatures no longer seem to enhance taiga alder growth. Shrubs of different species exposed to the same climatic conditions can exhibit varied growth responses. The distinct temperature sensitivities

  6. InSAR detects increase in surface subsidence caused by an Arctic tundra fire

    USGS Publications Warehouse

    Liu, Lin; Jafarov, Elchin E.; Schaefer, Kevin M.; Jones, Benjamin M.; Zebker, Howard A.; Williams, Christopher A.; Rogan, John; Zhang, Tingjun

    2014-01-01

    Wildfire is a major disturbance in the Arctic tundra and boreal forests, having a significant impact on soil hydrology, carbon cycling, and permafrost dynamics. This study explores the use of the microwave Interferometric Synthetic Aperture Radar (InSAR) technique to map and quantify ground surface subsidence caused by the Anaktuvuk River fire on the North Slope of Alaska. We detected an increase of up to 8 cm of thaw-season ground subsidence after the fire, which is due to a combination of thickened active layer and permafrost thaw subsidence. Our results illustrate the effectiveness and potential of using InSAR to quantify fire impacts on the Arctic tundra, especially in regions underlain by ice-rich permafrost. Our study also suggests that surface subsidence is a more comprehensive indicator of fire impacts on ice-rich permafrost terrain than changes in active layer thickness alone.

  7. Effect of Thaw Depth on Fluxes of CO2 and CH4 in Manipulated Arctic Coastal Tundra of Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Kim, Y.

    2014-12-01

    Changes in CO2 and CH4 emissions represent one of the most significant consequences of drastic climate change in the Arctic, by way of thawing permafrost, a deepened active layer, and decline of thermokarst lakes in the Arctic. This study conducted flux-measurements of CO2 and CH4, as well as environmental factors such as temperature, moisture, and thaw depth, as part of a water table manipulation experiment in the Arctic coastal plain tundra of Barrow, Alaska during autumn. The manipulation treatment consisted of draining, controlling, and flooding treated sections by adjusting standing water. Inundation increased CH4 emission by a factor of 4.3 compared to non-flooded sections. This may be due to the decomposition of organic matter under a limited oxygen environment by saturated standing water. On the other hand, CO2 emission in the dry section was 3.9-fold higher than in others. CH4 emission tends to increase with deeper thaw depth, which strongly depends on the water table; however, CO2 emission is not related to thaw depth. Quotients of global warming potential (GWPCO2) (dry/control) and GWPCH4 (wet/control) increased by 464 and 148 %, respectively, and GWPCH4 (dry/control) declined by 66 %. This suggests that CO2 emission in a drained section is enhanced by soil and ecosystem respiration, and CH4 emission in a flooded area is likely stimulated under an anoxic environment by inundated standing water. The findings of this manipulation experiment during the autumn period demonstrate the different production processes of CO2 and CH4, as well as different global warming potentials, coupled with change in thaw depth. Thus the outcomes imply that the expansion of tundra lakes leads the enhancement of CH4 release, and the disappearance of the lakes causes the stimulated CO2 production in response to the Arctic climate change.

  8. Pathways of anaerobic organic matter decomposition in tundra soils from Barrow, Alaska

    DOE PAGES

    Herndon, Elizabeth M.; Mann, Benjamin F.; Chowdhury, Taniya Roy; ...

    2015-11-23

    Arctic tundra soils store a large quantity of organic carbon that is susceptible to decomposition and release to the atmosphere as methane (CH 4) and carbon dioxide (CO 2) under a warming climate. Anaerobic processes that generate CH 4 and CO 2 remain unclear because previous studies have focused on aerobic decomposition pathways. To predict releases of CO 2 and CH 4 from tundra soils, it is necessary to identify pathways of soil organic matter decomposition under the anoxic conditions that are prevalent in Arctic ecosystems. Here molecular and spectroscopic techniques were used to monitor biological degradation of water-extractable organicmore » carbon (WEOC) during anoxic incubation of tundra soils from a region of continuous permafrost in northern Alaska. Organic and mineral soils from the tundra active layer were incubated at –2, +4, or +8°C for up to 60 days to mimic the short-term thaw season. Results suggest that, under anoxic conditions, fermentation converted complex organic molecules into simple organic acids that were used in concomitant Fe-reduction and acetoclastic methanogenesis reactions. Nonaromatic compounds increased over time as WEOC increased. Organic acid metabolites initially accumulated in soils but were mostly depleted by day 60 because organic acids were consumed to produce Fe(II), CO 2, and CH 4. We conclude that fermentation of nonprotected organic matter facilitates methanogenesis and Fe reduction reactions, and that the proportion of organic acids consumed by methanogenesis increases relative to Fe reduction with increasing temperature. As a result, the decomposition pathways observed in this study are important to consider in numerical modeling of greenhouse gas production in the Arctic.« less

  9. Winter and early spring CO2 efflux from tundra communities of northern Alaska

    NASA Astrophysics Data System (ADS)

    Fahnestock, J. T.; Jones, M. H.; Brooks, P. D.; Walker, D. A.; Welker, J. M.

    1998-11-01

    Carbon dioxide concentrations through snow were measured in different arctic tundra communities on the North Slope of Alaska during winter and early spring of 1996. Subnivean CO2 concentrations were always higher than atmospheric CO2. A steady state diffusion model was used to generate conservative estimates of CO2 flux to the atmosphere. The magnitude of CO2 efflux differed with tundra community type, and rates of carbon release increased from March to May. Winter CO2 efflux was highest in riparian and snow bed communities and lowest in dry heath, upland tussock, and wet sedge communities. Snow generally accrues earlier in winter and is deeper in riparian and snow bed communities compared with other tundra communities, which are typically windswept and do not accumulate much snow during the winter. These results support the hypothesis that early and deep snow accumulation may insulate microbial populations from very cold temperatures, allowing sites with earlier snow cover to sustain higher levels of activity throughout winter compared to communities that have later developing snow cover. Extrapolating our estimates of CO2 efflux to the entire snow-covered season indicates that total carbon flux during winter in the Arctic is 13-109 kg CO2-C ha-1, depending on the vegetation community type. Wintertime CO2 flux is a potentially important, yet largely overlooked, part of the annual carbon cycle of tundra, and carbon release during winter should be accounted for in estimates of annual carbon balance in arctic ecosystems.

  10. Winter and early spring CO2 efflux from tundra communities of northern Alaska

    USGS Publications Warehouse

    Fahnestock, J.T.; Jones, M.H.; Brooks, P.D.; Walker, D.A.; Welker, J.M.

    1998-01-01

    Carbon dioxide concentrations through snow were measured in different arctic tundra communities on the North Slope of Alaska during winter and early spring of 1996. Subnivean CO2 concentrations were always higher than atmospheric CO2. A steady state diffusion model was used to generate conservative estimates of CO2 flux to the atmosphere. The magnitude of CO2 efflux differed with tundra community type, and rates of carbon release increased from March to May. Winter CO2 efflux was highest in riparian and snow bed communities and lowest in dry heath, upland tussock, and wet sedge communities. Snow generally accrues earlier in winter and is deeper in riparian and snow bed communities compared with other tundra communities, which are typically windswept and do not accumulate much snow during the winter. These results support the hypothesis that early and deep snow accumulation may insulate microbial populations from very cold temperatures, allowing sites with earlier snow cover to sustain higher levels of activity throughout winter compared to communities that have later developing snow cover. Extrapolating our estimates of CO2 efflux to the entire snow-covered season indicates that total carbon flux during winter in the Arctic is 13-109 kg CO2-C ha-1, depending on the vegetation community type. Wintertime CO2 flux is a potentially important, yet largely overlooked, part of the annual carbon cycle of tundra, and carbon release during winter should be accounted for in estimates of annual carbon balance in arctic ecosystems. Copyright 1998 by the American Geophysical Union.

  11. Temporal Variation of NDVI and the Drivers of Climate Variables in the Arctic Tundra Transition Zone

    NASA Astrophysics Data System (ADS)

    Lee, J.; Ryu, Y.; Lee, Y. K.

    2016-12-01

    The Arctic is a sensitive region to temperature, which is drastically increasing with climate change. Vegetation in transition zones of the sub-arctic tundra biome are most sensitive to the warming climate, as temperature in the Arctic ecosystem is one of important limiting factors of vegetation growth and decomposition. Previous research in the transition zone show that there is a difference of sensible heat flux (21 Wm-2), Leaf Area Index increase from 0.58 - 2.76 and canopy height from 0.1 - 6.1m across dwarf and tall shrubs to forest, however, we lack understanding of NDVI trend of this zone. To better understand the vegetation in transition zones of the arctic ecosystem, we analyze the long-term trend of NDVI (AVHRR 3g GIMMs data), temperature and precipitation (Climate Research Unit data) trend from 1982 - 2010 in Council, Alaska that is a region where arctic tundra is transitioning to boreal forest. We also analyze how the climatic factors, temperature or precipitation, affect NDVI. Annual precipitation had the highest interannual variability compared to temperature and NDVI. There was an overall decreasing trend of annual maximum NDVI (y = -0.0019x+4.7). During 1982 to 2003, NDVI and temperature had a similar pattern, but when temperature suddenly jumped to 13.2°C in 2004, NDVI and precipitation declined. This study highlights that temperature increase does not always lead to greening, but after a certain threshold they may cause damage to sub-arctic tundra vegetation.

  12. Mercury in the Arctic tundra snowpack: temporal and spatial concentration patterns and trace gas exchanges

    NASA Astrophysics Data System (ADS)

    Agnan, Yannick; Douglas, Thomas A.; Helmig, Detlev; Hueber, Jacques; Obrist, Daniel

    2018-06-01

    In the Arctic, the snowpack forms the major interface between atmospheric and terrestrial cycling of mercury (Hg), a global pollutant. We investigated Hg dynamics in an interior Arctic tundra snowpack in northern Alaska during two winter seasons. Using a snow tower system to monitor Hg trace gas exchange, we observed consistent concentration declines of gaseous elemental Hg (Hg0gas) from the atmosphere to the snowpack to soils. The snowpack itself was unlikely a direct sink for atmospheric Hg0gas. In addition, there was no evidence of photochemical reduction of HgII to Hg0gas in the tundra snowpack, with the exception of short periods during late winter in the uppermost snow layer. The patterns in this interior Arctic snowpack thus differ substantially from observations in Arctic coastal and temperate snowpacks. We consistently measured low concentrations of both total and dissolved Hg in snowpack throughout the two seasons. Chemical tracers showed that Hg was mainly associated with local mineral dust and regional marine sea spray inputs. Mass balance calculations show that the snowpack represents a small reservoir of Hg, resulting in low inputs during snowmelt. Taken together, the results from this study suggest that interior Arctic snowpacks are negligible sources of Hg to the Arctic.

  13. Landscape topography structures the soil microbiome in arctic polygonal tundra

    DOE PAGES

    Taş, Neslihan; Prestat, Emmanuel; Wang, Shi; ...

    2018-02-22

    Global temperature increases are resulting in thaw of permafrost soil in the arctic with increased emission of greenhouse gases (GHGs). Soil microorganisms are responsible for degradation of the trapped organic carbon (C) in permafrost and emission of GHG as it thaws. However, environmental factors governing microbial degradation of soil C and GHG emissions are poorly understood. Here we determined the functional potential of soil microbiomes in arctic tundra across a cryoperturbed polygonal landscape in Barrow, Alaska. Using a combination of metagenome sequencing and gas flux measurements, we found that the soil microbiome composition, diversity and functional potential varied across themore » polygon transect and that specific microbes and functional genes were correlated to GHG measurements. Several draft genomes of novel species were obtained with genes encoding enzymes involved in cycling of complex organic compounds. These results have larger implications for prediction of the influence of the soil microbiome on soil C flux from arctic regions undergoing environmental change.« less

  14. Landscape topography structures the soil microbiome in arctic polygonal tundra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taş, Neslihan; Prestat, Emmanuel; Wang, Shi

    Global temperature increases are resulting in thaw of permafrost soil in the arctic with increased emission of greenhouse gases (GHGs). Soil microorganisms are responsible for degradation of the trapped organic carbon (C) in permafrost and emission of GHG as it thaws. However, environmental factors governing microbial degradation of soil C and GHG emissions are poorly understood. Here we determined the functional potential of soil microbiomes in arctic tundra across a cryoperturbed polygonal landscape in Barrow, Alaska. Using a combination of metagenome sequencing and gas flux measurements, we found that the soil microbiome composition, diversity and functional potential varied across themore » polygon transect and that specific microbes and functional genes were correlated to GHG measurements. Several draft genomes of novel species were obtained with genes encoding enzymes involved in cycling of complex organic compounds. These results have larger implications for prediction of the influence of the soil microbiome on soil C flux from arctic regions undergoing environmental change.« less

  15. How will Shrub Expansion Impact Soil Carbon Sequestration in Arctic Tundra?

    NASA Astrophysics Data System (ADS)

    Czimczik, C. I.; Holden, S. R.; He, Y.; Randerson, J. T.

    2015-12-01

    Multiple lines of evidence suggest that plant productivity, and especially shrub abundance, is increasing in the Arctic in response to climate change. This greening is substantiated by increases in the Normalized Difference Vegetation Index, repeat photography and field observations. The implications of a greener Arctic on carbon sequestration by tundra ecosystems remain poorly understood. Here, we explore existing datasets of plant productivity and soil carbon stocks to quantify how greening, and in particular an expansion of woody shrubs, may translate to the sequestration of carbon in arctic soils. As an estimate of carbon storage in arctic tundra soils, we used the Northern Circumpolar Soil Carbon Database v2. As estimates of tundra type and productivity, we used the Circumpolar Arctic Vegetation map as well as the MODIS and Landsat Vegetation Continuous Fields, and MODIS GPP/NPP (MOD17) products. Preliminary findings suggest that in graminoid tundra and erect-shrub tundra higher shrub abundance is associated with greater soil carbon stocks. However, this relationship between shrub abundance and soil carbon is not apparent in prostrate-shrub tundra, or when comparing across graminoid tundra, erect-shrub tundra and prostrate-shrub tundra. Uncertainties originate from the extreme spatial (vertical and horizontal) heterogeneity of organic matter distribution in cryoturbated soils, the fact that (some) permafrost carbon stocks, e.g. yedoma, reflect previous rather than current vegetative cover, and small sample sizes, esp. in the High Arctic. Using Vegetation Continuous Fields and MODIS GPP/NPP (MOD17), we develop quantitative trajectories of soil carbon storage as a function of shrub cover and plant productivity in the Arctic (>60°N). We then compare our greening-derived carbon sequestration estimates to projected losses of carbon from thawing permafrost. Our findings will reduce uncertainties in the magnitude and timing of the carbon-climate feedback from the

  16. The Contribution of Mosses to the Complex Pattern of Diurnal and Seasonal Metabolism the wet Coastal Tundra Ecosystems Near Barrow Alaska.

    NASA Astrophysics Data System (ADS)

    Zona, D.; Oechel, W.; Hastings, S.; Oberbauer, S.; Kopetz, I.; Ikawa, H.

    2006-12-01

    Despite the abundance and importance bryophytes in the Alaskan Arctic tundra there is relatively little information on the role of these plants in determining the CO2 fluxes of Arctic tundra and, in particular, the environmental controls and climate change sensitivities of current and future photosynthesis in Arctic mosses. Studies in the tundra biome during the IBP program implicated high light together with high temperature as causes of decreases in photosynthesis in arctic mosses. Several authors have reported midday depression of moss photosynthesis due to high irradiance, even under optimum temperature and fully hydrated conditions. The focus of this study is to understand the role of Sphagnum ssp. mosses of various species, the dominant moss in the Alaska coastal wet Tundra on the total ecosystem carbon exchange throughout the season and in particular soon after snowmelt when the ecosystem is a carbon source. Our hypothesis is that the ecosystem carbon source activity during this critical period may be a result of sensitivity of mosses to light and photoinhibition in the absence of the protective canopy layer of vascular plants. In this study we measured daily courses of photosynthesis and fluorescence in the moss layer and we compare it to the total ecosystem carbon fluxes determined by the eddy covariance technique. The measurements were conducted in wet coastal tundra from June 2006, right after the snow melt, to August 2006 in the Biological Experimental Observatory (BEO) in Barrow, Alaska. The photosynthesis in the moss layer was found to be strongly inhibited when the radiation exceeded 800 ìmol m-2 s-1. Mosses remained fully hydrated throughout the season, precluding drying as a cause of decreased photosynthesis. Dark-adapted fluorescence measurements (Fv/Fm) showed a relatively low value (0.6) right after the snow melt, and remained fairly stable throughout the season. This low value was previously reported as characteristic of photoinhibited

  17. Arctic tundra greening and browning (2007-2013) based on satellite-observed solar-induced fluorescence data

    NASA Astrophysics Data System (ADS)

    Fu, D.; Su, F.; Wang, J.

    2017-12-01

    More accurate evaluation of the state of Arctic tundra vegetation is important for our understanding of Arctic and global systems. Arctic tundra greening has been reported, increasing vegetation cover and productivity in many regions, but browning has been also reported, based on satellite-observed Normalized Difference Vegetation Index (NDVI) from 2011 until recently. Here we demonstrate a satellite-based method of estimating tundra greenness trend. A more direct indicator of greenness (spatially downscaling solar-induced fluorescence, SIF) was used to analyze the spatial and temporal patterns of Arctic tundra greenness trends based on ordinary least square regression (2007-2013). Meanwhile, two other greenness indices were used for the comparison, which were two NDVI products: GIMMS NDVI3g, and MOD13Q1 Collection 6. Generally, the Arctic tundra was not consistently greening, browning also existed. For the spatial trends, the results showed that most parts of the Arctic tundra below 75ºN was browning (-0.0098 mW/m2/sr/nm/year) using SIF, whereas spatially heterogeneous trends (greening or browning) were obtained based on the two NDVI products. For the temporal trends, the greenness value of Eurasia Arctic tundra is higher than Northern America and the whole Arctic tundra for the three greenness indices. From 2010, the Arctic tundra was greening based on MOD13Q1, whereas is browning using GIMMS NDVI3g. However, the Arctic tundra was obviously browning using SIF data. This study demonstrates a way of investigating the variation of Arctic tundra vegetation via new satellite-observed data.

  18. Landsat time series analysis documents beaver migration into permafrost landscapes of arctic Alaska

    NASA Astrophysics Data System (ADS)

    Jones, B. M.; Tape, K. D.; Nitze, I.; Arp, C. D.; Grosse, G.; Zimmerman, C. E.

    2017-12-01

    Landscape-scale impacts of climate change in the Arctic include increases in growing season length, shrubby vegetation, winter river discharge, snowfall, summer and winter water temperatures, and decreases in river and lake ice thickness. Combined, these changes may have created conditions that are suitable for beaver colonization of low Arctic tundra regions. We developed a semi-automated workflow that analyzes Landsat imagery time series to determine the extent to which beavers may have colonized permafrost landscapes in arctic Alaska since 1999. We tested this approach on the Lower Noatak, Wulik, and Kivalina river watersheds in northwest Alaska and identified 83 locations representing potential beaver activity. Seventy locations indicated wetting trends and 13 indicated drying trends. Verification of each site using high-resolution satellite imagery showed that 80 % of the wetting locations represented beaver activity (damming and pond formation), 11 % were unrelated to beavers, and 9 % could not readily be distinguished as being beaver related or not. For the drying locations, 31 % represented beaver activity (pond drying due to dam abandonment), 62 % were unrelated to beavers, and 7 % were undetermined. Comparison of the beaver activity database with historic aerial photography from ca. 1950 and ca. 1980 indicates that beavers have recently colonized or recolonized riparian corridors in northwest Alaska. Remote sensing time series observations associated with the migration of beavers in permafrost landscapes in arctic Alaska include thermokarst lake expansion and drainage, thaw slump initiation, ice wedge degradation, thermokarst shore fen development, and possibly development of lake and river taliks. Additionally, beaver colonization in the Arctic may alter channel courses, thermal regimes, hyporheic flow, riparian vegetation, and winter ice regimes that could impact ecosystem structure and function in this region. In particular, the combination of beaver

  19. [Nitrogen bio-cycle in the alpine tundra ecosystem of Changbai Mountain and its comparison with arctic tundra].

    PubMed

    Wei, Jing; Zhao, Jing-zhu; Deng, Hong-bing; Wu, Gang; Hao, Ying-jie; Shang, Wen-yan

    2005-03-01

    The nitrogen bio-cycle was discussed in the alpine tundra ecosystem of Changbai Mountain through compartment model. The alpine tundra of Changbai Mountain was compared with Arctic tundra by the common ratio of genus and species in this paper. It was found that the 89.3% of genus and 58.6% of species was the common between Changbai alpine tundra and Arctic tundra while 95.5% of lichen genus and 58.7% lichen species, 82.1% of moss genus and 76.3% of moss species, 93.1% of vascular bundle genus and 40.5% of vascular bundle species were the common, respectively, which made vegetation type or community to be similar between Changbai alpine tundra and Arctic tundra. The total storage of nitrogen was 65220.6 t in the vegetation-plant system of Changbai Mountain, of which soil pool amounted to 99.3%. The nitrogen storage of each compartment was as follows: the vegetation pool, litterfall pool and soil pool were 237.4 t, 145.3 t and 64837.9 t respectively. The transferable amounts of nitrogen were 131.7 t x a(-1), 58 t/a and 73.7 t x a(-1) in the aboveground plant, belowground root system and litterfall of alpine tundra ecosystem of Changbai Mountain.

  20. Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution.

    PubMed

    Obrist, Daniel; Agnan, Yannick; Jiskra, Martin; Olson, Christine L; Colegrove, Dominique P; Hueber, Jacques; Moore, Christopher W; Sonke, Jeroen E; Helmig, Detlev

    2017-07-12

    Anthropogenic activities have led to large-scale mercury (Hg) pollution in the Arctic. It has been suggested that sea-salt-induced chemical cycling of Hg (through 'atmospheric mercury depletion events', or AMDEs) and wet deposition via precipitation are sources of Hg to the Arctic in its oxidized form (Hg(ii)). However, there is little evidence for the occurrence of AMDEs outside of coastal regions, and their importance to net Hg deposition has been questioned. Furthermore, wet-deposition measurements in the Arctic showed some of the lowest levels of Hg deposition via precipitation worldwide, raising questions as to the sources of high Arctic Hg loading. Here we present a comprehensive Hg-deposition mass-balance study, and show that most of the Hg (about 70%) in the interior Arctic tundra is derived from gaseous elemental Hg (Hg(0)) deposition, with only minor contributions from the deposition of Hg(ii) via precipitation or AMDEs. We find that deposition of Hg(0)-the form ubiquitously present in the global atmosphere-occurs throughout the year, and that it is enhanced in summer through the uptake of Hg(0) by vegetation. Tundra uptake of gaseous Hg(0) leads to high soil Hg concentrations, with Hg masses greatly exceeding the levels found in temperate soils. Our concurrent Hg stable isotope measurements in the atmosphere, snowpack, vegetation and soils support our finding that Hg(0) dominates as a source to the tundra. Hg concentration and stable isotope data from an inland-to-coastal transect show high soil Hg concentrations consistently derived from Hg(0), suggesting that the Arctic tundra might be a globally important Hg sink. We suggest that the high tundra soil Hg concentrations might also explain why Arctic rivers annually transport large amounts of Hg to the Arctic Ocean.

  1. Prevalence, transmission, and genetic diversity of blood parasites infecting tundra-nesting geese in Alaska

    USGS Publications Warehouse

    Ramey, Andy M.; Reed, John A.; Schmutz, Joel A.; Fondell, Tom F.; Meixell, Brandt W.; Hupp, Jerry W.; Ward, David H.; Terenzi, John; Ely, Craig R.

    2014-01-01

    A total of 842 blood samples collected from five species of tundra-nesting geese in Alaska was screened for haemosporidian parasites using molecular techniques. Parasites of the generaLeucocytozoon Danilewsky, 1890, Haemoproteus Kruse, 1890, and Plasmodium Marchiafava and Celli, 1885 were detected in 169 (20%), 3 (<1%), and 0 (0%) samples, respectively. Occupancy modeling was used to estimate prevalence of Leucocytozoon parasites and assess variation relative to species, age, sex, geographic area, year, and decade. Species, age, and decade were identified as important in explaining differences in prevalence of Leucocytozoonparasites. Leucocytozoon parasites were detected in goslings sampled along the Arctic Coastal Plain using both historic and contemporary samples, which provided support for transmission in the North American Arctic. In contrast, lack of detection of Haemoproteus and Plasmodiumparasites in goslings (n = 238) provided evidence to suggest that the transmission of parasites of these genera may not occur among waterfowl using tundra habitats in Alaska, or alternatively, may only occur at low levels. Five haemosporidian genetic lineages shared among different species of geese sampled from two geographic areas were indicative of interspecies parasite transmission and supported broad parasite or vector distributions. However, identicalLeucocytozoon and Haemoproteus lineages on public databases were limited to waterfowl hosts suggesting constraints in the range of parasite hosts.

  2. Open tundra persist, but arctic features decline-Vegetation changes in the warming Fennoscandian tundra.

    PubMed

    Vuorinen, Katariina E M; Oksanen, Lauri; Oksanen, Tarja; Pyykönen, Anni; Olofsson, Johan; Virtanen, Risto

    2017-09-01

    In the forest-tundra ecotone of the North Fennoscandian inland, summer and winter temperatures have increased by two to three centigrades since 1965, which is expected to result in major vegetation changes. To document the expected expansion of woodlands and scrublands and its impact on the arctic vegetation, we repeated a vegetation transect study conducted in 1976 in the Darju, spanning from woodland to a summit, 200 m above the tree line. Contrary to our expectations, tree line movement was not detected, and there was no increase in willows or shrubby mountain birches, either. Nevertheless, the stability of tundra was apparent. Small-sized, poorly competing arctic species had declined, lichen cover had decreased, and vascular plants, especially evergreen ericoid dwarf shrubs, had gained ground. The novel climate seems to favour competitive clonal species and species thriving in closed vegetation, creating a community hostile for seedling establishment, but equally hostile for many arctic species, too. Preventing trees and shrubs from invading the tundra is thus not sufficient for conserving arctic biota in the changing climate. The only dependable cure is to stop the global warming. © 2017 John Wiley & Sons Ltd.

  3. Nitrate is an important nitrogen source for Arctic tundra plants.

    PubMed

    Liu, Xue-Yan; Koba, Keisuke; Koyama, Lina A; Hobbie, Sarah E; Weiss, Marissa S; Inagaki, Yoshiyuki; Shaver, Gaius R; Giblin, Anne E; Hobara, Satoru; Nadelhoffer, Knute J; Sommerkorn, Martin; Rastetter, Edward B; Kling, George W; Laundre, James A; Yano, Yuriko; Makabe, Akiko; Yano, Midori; Liu, Cong-Qiang

    2018-03-27

    Plant nitrogen (N) use is a key component of the N cycle in terrestrial ecosystems. The supply of N to plants affects community species composition and ecosystem processes such as photosynthesis and carbon (C) accumulation. However, the availabilities and relative importance of different N forms to plants are not well understood. While nitrate (NO 3 - ) is a major N form used by plants worldwide, it is discounted as a N source for Arctic tundra plants because of extremely low NO 3 - concentrations in Arctic tundra soils, undetectable soil nitrification, and plant-tissue NO 3 - that is typically below detection limits. Here we reexamine NO 3 - use by tundra plants using a sensitive denitrifier method to analyze plant-tissue NO 3 - Soil-derived NO 3 - was detected in tundra plant tissues, and tundra plants took up soil NO 3 - at comparable rates to plants from relatively NO 3 - -rich ecosystems in other biomes. Nitrate assimilation determined by 15 N enrichments of leaf NO 3 - relative to soil NO 3 - accounted for 4 to 52% (as estimated by a Bayesian isotope-mixing model) of species-specific total leaf N of Alaskan tundra plants. Our finding that in situ soil NO 3 - availability for tundra plants is high has important implications for Arctic ecosystems, not only in determining species compositions, but also in determining the loss of N from soils via leaching and denitrification. Plant N uptake and soil N losses can strongly influence C uptake and accumulation in tundra soils. Accordingly, this evidence of NO 3 - availability in tundra soils is crucial for predicting C storage in tundra. Copyright © 2018 the Author(s). Published by PNAS.

  4. Large CO 2 and CH 4 emissions from polygonal tundra during spring thaw in northern Alaska

    DOE PAGES

    Raz-Yaseef, Naama; Torn, Margaret S.; Wu, Yuxin; ...

    2016-12-05

    The few prethaw observations of tundra carbon fluxes suggest that there may be large spring releases, but little is known about the scale and underlying mechanisms of this phenomenon. To address these questions, we combined in this paper ecosystem eddy flux measurements from two towers near Barrow, Alaska, with mechanistic soil-core thawing experiment. During a 2 week period prior to snowmelt in 2014, large fluxes were measured, reducing net summer uptake of CO 2 by 46% and adding 6% to cumulative CH 4 emissions. Emission pulses were linked to unique rain-on-snow events enhancing soil cracking. Controlled laboratory experiment revealed thatmore » as surface ice thaws, an immediate, large pulse of trapped gases is emitted. Finally, these results suggest that the Arctic CO 2 and CH 4 spring pulse is a delayed release of biogenic gas production from the previous fall and that the pulse can be large enough to offset a significant fraction of the moderate Arctic tundra carbon sink.« less

  5. Nitrate is an important nitrogen source for Arctic tundra plants

    PubMed Central

    Liu, Xue-Yan; Koyama, Lina A.; Weiss, Marissa S.; Inagaki, Yoshiyuki; Shaver, Gaius R.; Giblin, Anne E.; Hobara, Satoru; Nadelhoffer, Knute J.; Sommerkorn, Martin; Rastetter, Edward B.; Kling, George W.; Laundre, James A.; Yano, Yuriko; Makabe, Akiko; Yano, Midori; Liu, Cong-Qiang

    2018-01-01

    Plant nitrogen (N) use is a key component of the N cycle in terrestrial ecosystems. The supply of N to plants affects community species composition and ecosystem processes such as photosynthesis and carbon (C) accumulation. However, the availabilities and relative importance of different N forms to plants are not well understood. While nitrate (NO3−) is a major N form used by plants worldwide, it is discounted as a N source for Arctic tundra plants because of extremely low NO3− concentrations in Arctic tundra soils, undetectable soil nitrification, and plant-tissue NO3− that is typically below detection limits. Here we reexamine NO3− use by tundra plants using a sensitive denitrifier method to analyze plant-tissue NO3−. Soil-derived NO3− was detected in tundra plant tissues, and tundra plants took up soil NO3− at comparable rates to plants from relatively NO3−-rich ecosystems in other biomes. Nitrate assimilation determined by 15N enrichments of leaf NO3− relative to soil NO3− accounted for 4 to 52% (as estimated by a Bayesian isotope-mixing model) of species-specific total leaf N of Alaskan tundra plants. Our finding that in situ soil NO3− availability for tundra plants is high has important implications for Arctic ecosystems, not only in determining species compositions, but also in determining the loss of N from soils via leaching and denitrification. Plant N uptake and soil N losses can strongly influence C uptake and accumulation in tundra soils. Accordingly, this evidence of NO3− availability in tundra soils is crucial for predicting C storage in tundra. PMID:29540568

  6. Critical review of mercury fates and contamination in the Arctic tundra ecosystem.

    PubMed

    Poissant, Laurier; Zhang, Hong H; Canário, João; Constant, Philippe

    2008-08-01

    Mercury (Hg) contamination in tundra region has raised substantial concerns, especially since the first report of atmospheric mercury depletion events (AMDEs) in the Polar Regions. During the past decade, steady progress has been made in the research of Hg cycling in the Polar Regions. This has generated a unique opportunity to survey the whole Arctic in respect to Hg issue and to find out new discoveries. However, there are still considerable knowledge gaps and debates on the fate of Hg in the Arctic and Antarctica, especially regarding the importance and significance of AMDEs vs. net Hg loadings and other processes that burden Hg in the Arctic. Some studies argued that climate warming since the last century has exerted profound effects on the limnology of High Arctic lakes, including substantial increases in autochthonous primary productivity which increased in sedimentary Hg, whereas some others pointed out the importance of the formation and postdeposition crystallographic history of the snow and ice crystals in determining the fate and concentration of mercury in the cryosphere in addition to AMDEs. Is mercury re-emitted back to the atmosphere after AMDEs? Is Hg methylation effective in the Arctic tundra? Where the sources of MeHg are? What is its fate? Is this stimulated by human made? This paper presents a critical review about the fate of Hg in the Arctic tundra, such as pathways and process of Hg delivery into the Arctic ecosystem; Hg concentrations in freshwater and marine ecosystems; Hg concentrations in terrestrial biota; trophic transfer of Hg and bioaccumulation of Hg through food chain. This critical review of mercury fates and contamination in the Arctic tundra ecosystem is assessing the impacts and potential risks of Hg contamination on the health of Arctic people and the global northern environment by highlighting and "perspectiving" the various mercury processes and concentrations found in the Arctic tundra.

  7. The Response of Tundra to Biophysical Changes Ten Years Following the Anaktuvuk River Fire, Arctic Foothills, Alaska.

    NASA Astrophysics Data System (ADS)

    Jones, B. M.; Miller, E. A.; Jandt, R.; Baughman, C. A.

    2017-12-01

    Ten years following a large and severe wildfire in the arctic foothills of the Brooks Range, Alaska, tundra is experiencing rapid biophysical changes. Plant communities are responding to primary disturbance by fire but also to ground-ice melt, terrain subsidence, and apparent increase in soil drainage or evapotranspiration.The Anaktuvuk River Fire burned about 104,000 ha in 2007, spreading over broad ranges in soils, topography, hydrography, and permafrost features. Fourteen marked transects were measured between 2008-2011 and again in 2017 for cover of ground-layer vegetation, tall shrub abundance, thaw depth, and soil properties. A complementary set of 11 reference transects surrounding the burn was also sampled.We observed much higher rates of thermokarst inside the burn than out. Even low severity burn areas experienced noticeable thaw subsidence. Mean annual ground temperature at 1 m depth has warmed 1.5°C relative to unburned tundra. In cases ice wedge troughs have deepened by more than 1 m in areas underlain by yedoma soils. Troughs were characterized by cracking soil and slumping tussocks, often into ponded water. Troughs and degraded ice features appear to be draining adjacent polygon centers leading to a general drying of the tundra. Tussockgrasses inside the burn continue to grow and flower vigorously, suggesting a continued flush of soil nutrients. Post-fire accumulation of organic material is generally <5 cm of mostly moss and plant litter. Species of tall willow are responding by increases in stature and colonization of thermokarst areas.Other studies suggest that tundra north of the Brooks Range is responding to climate change with widespread expansion of and dominance by tall shrubs. Our observations from the Anaktuvuk River Burn, as well as at several other older burns, suggest that fire greatly accelerates this succession. Records and observations suggest that lightning and ignitions are becoming more frequent north of the Brooks Range

  8. Reproductive ecology of tundra swans on the Arctic National Wildlife Refuge, Alaska

    USGS Publications Warehouse

    Monda, Matthew J.; Ratti, John T.; McCabe, Thomas R.

    1994-01-01

    Management of tundra swans (Cygnus columbianus) is hampered by a lack of information on their nesting and brood-rearing ecology. We studied tundra swan nesting and brood-rearing ecology on the Arctic National Wildlife Refuge (ANWR), Alaska, 1988-90. Nest success was 58% (n = 31) in 1988, 83% (n = 36) in 1989, 84% (n = 43) in 1990, and 76% (n = 110) for the 3 years. Nests were located predominately in marshes dominated by sheathed pondweed (Potamogeton vaginatus), mare's tail (Hippuris vulgaris), and Hoppner sedge (Carex subspathacea), or by pendent grass (Arctophila fulva), water sedge (C. aquatilis), and tall cotton grass (Eriophorum angustifolium). Nests were seldom located in upland or partially vegetated habitats and were near coastal lagoons or large coastal lakes. Incubating swans were easily disturbed by ground observers and left their nests when we were 500-2,000 m from the nest. Swans did not cover eggs with nest material prior to departure; thus, eggs were vulnerable to avain predation and thermal stress. Brood-foraging sites on the Kongakut Delta (n = 41) were frequently in aquatic-marsh (59%) and saline graminoid-shrub (29%) habitats, occasionally in graminoid-marsh (7%) and partially vegetated (5%) habitats, and absent from upland, graminoid-shrub-water sedge, and graminoid-shrub-cotton grass habitats. Brood-foraging sites on the Canning Delta (n = 35) were frequently in graminoid-marsh (46%), graminoid-shrub-water sedge (26%), and aquatic-marsh (23%) habitats, occasionally in graminoid-shrub-cotton grass (3%) and upland habitats (3%), and absent from saline graminoid-shrub and partially vegetated habitats. Young cygnets grazed in terrestrial habitats more frequently than older broods on the Kongakut (P = 0.003) and Canning (P = 0.053) deltas. Wetlands with sheathed pondweed were uncommon but preferred by broods (P = 0.001). Using field experiments, we evaluated effects of swan grazing and fertilization from feces on aboveground biomass production and

  9. Possible causes of Arctic Tundra Vegetation Productivity Declines

    NASA Astrophysics Data System (ADS)

    Bhatt, U. S.; Walker, D. A.; Raynolds, M. K.; Bieniek, P.; Epstein, H. E.; Comiso, J. C.; Pinzon, J. E.; Tucker, C. J.

    2017-12-01

    Three decades of remotely sensed Normalized Difference Vegetation Index (NDVI) data document an overall increase in Arctic tundra vegetation greenness but the trends display considerable spatial variability. Pan-Arctic tundra vegetation greening is associated with increases in summer warmth that are, in large-part, driven by summer sea-ice retreat along Arctic coasts. Trends covering the period 1982-2016 are overall positive for summer open water, Summer Warmth Index (SWI, the sum of the degree months above zero from May-August), MaxNDVI (peak NDVI) and time integrated NDVI (TI-NDVI, sum of biweekly NDVI above 0.05 from May-September). Upon closer examination, it is clear that not all regions have positive trends, for example, there is an area of cooling in western Eurasia, which is broadly co-located with maxNDVI and TI-NDVI declines. While sea ice decline has continued over the satellite record, summer landsurface temperatures and vegetation productivity measures have not simply increased. Regional differences between warming and greening trends suggest that it is likely that multiple processes influence vegetation productivity beyond secular greening with increased summer warmth. This paper will present Pan-Arctic and regional analyses of the NDVI data in the context of climate drivers. Other possible drivers of vegetation productivity decline will be discussed such as increased standing water, delayed spring snow-melt, and winter thaw events. The status and limitations of data sets and modeling needed to advance our understanding of tundra vegetation productivity will be summarized and will serve as a starting point for planning the next steps in this topic. Methodical multi-disciplinary synthesis research that jointly considers vegetation type, permafrost conditions, altitude, as well as climate factors such as temperature, heat and moisture transport, and timing of snowfall and spring snowmelt is needed to better understand recent tundra vegetation

  10. Summer temperature increase has distinct effects on the ectomycorrhizal fungal communities of moist tussock and dry tundra in Arctic Alaska

    PubMed Central

    Morgado, Luis N; Semenova, Tatiana A; Welker, Jeffrey M; Walker, Marilyn D; Smets, Erik; Geml, József

    2015-01-01

    Arctic regions are experiencing the greatest rates of climate warming on the planet and marked changes have already been observed in terrestrial arctic ecosystems. While most studies have focused on the effects of warming on arctic vegetation and nutrient cycling, little is known about how belowground communities, such as fungi root-associated, respond to warming. Here, we investigate how long-term summer warming affects ectomycorrhizal (ECM) fungal communities. We used Ion Torrent sequencing of the rDNA internal transcribed spacer 2 (ITS2) region to compare ECM fungal communities in plots with and without long-term experimental warming in both dry and moist tussock tundra. Cortinarius was the most OTU-rich genus in the moist tundra, while the most diverse genus in the dry tundra was Tomentella. On the diversity level, in the moist tundra we found significant differences in community composition, and a sharp decrease in the richness of ECM fungi due to warming. On the functional level, our results indicate that warming induces shifts in the extramatrical properties of the communities, where the species with medium-distance exploration type seem to be favored with potential implications for the mobilization of different nutrient pools in the soil. In the dry tundra, neither community richness nor community composition was significantly altered by warming, similar to what had been observed in ECM host plants. There was, however, a marginally significant increase in OTUs identified as ECM fungi with the medium-distance exploration type in the warmed plots. Linking our findings of decreasing richness with previous results of increasing ECM fungal biomass suggests that certain ECM species are favored by warming and may become more abundant, while many other species may go locally extinct due to direct or indirect effects of warming. Such compositional shifts in the community might affect nutrient cycling and soil organic C storage. PMID:25156129

  11. Cold season emissions dominate the Arctic tundra methane budget

    NASA Astrophysics Data System (ADS)

    Zona, Donatella; Gioli, Beniamino; Commane, Róisín; Lindaas, Jakob; Wofsy, Steven C.; Miller, Charles E.; Dinardo, Steven J.; Dengel, Sigrid; Sweeney, Colm; Karion, Anna; Chang, Rachel Y.-W.; Henderson, John M.; Murphy, Patrick C.; Goodrich, Jordan P.; Moreaux, Virginie; Liljedahl, Anna; Watts, Jennifer D.; Kimball, John S.; Lipson, David A.; Oechel, Walter C.

    2016-01-01

    Arctic terrestrial ecosystems are major global sources of methane (CH4); hence, it is important to understand the seasonal and climatic controls on CH4 emissions from these systems. Here, we report year-round CH4 emissions from Alaskan Arctic tundra eddy flux sites and regional fluxes derived from aircraft data. We find that emissions during the cold season (September to May) account for ≥50% of the annual CH4 flux, with the highest emissions from noninundated upland tundra. A major fraction of cold season emissions occur during the "zero curtain" period, when subsurface soil temperatures are poised near 0 °C. The zero curtain may persist longer than the growing season, and CH4 emissions are enhanced when the duration is extended by a deep thawed layer as can occur with thick snow cover. Regional scale fluxes of CH4 derived from aircraft data demonstrate the large spatial extent of late season CH4 emissions. Scaled to the circumpolar Arctic, cold season fluxes from tundra total 12 ± 5 (95% confidence interval) Tg CH4 y-1, ∼25% of global emissions from extratropical wetlands, or ∼6% of total global wetland methane emissions. The dominance of late-season emissions, sensitivity to soil environmental conditions, and importance of dry tundra are not currently simulated in most global climate models. Because Arctic warming disproportionally impacts the cold season, our results suggest that higher cold-season CH4 emissions will result from observed and predicted increases in snow thickness, active layer depth, and soil temperature, representing important positive feedbacks on climate warming.

  12. Cold season emissions dominate the Arctic tundra methane budget.

    PubMed

    Zona, Donatella; Gioli, Beniamino; Commane, Róisín; Lindaas, Jakob; Wofsy, Steven C; Miller, Charles E; Dinardo, Steven J; Dengel, Sigrid; Sweeney, Colm; Karion, Anna; Chang, Rachel Y-W; Henderson, John M; Murphy, Patrick C; Goodrich, Jordan P; Moreaux, Virginie; Liljedahl, Anna; Watts, Jennifer D; Kimball, John S; Lipson, David A; Oechel, Walter C

    2016-01-05

    Arctic terrestrial ecosystems are major global sources of methane (CH4); hence, it is important to understand the seasonal and climatic controls on CH4 emissions from these systems. Here, we report year-round CH4 emissions from Alaskan Arctic tundra eddy flux sites and regional fluxes derived from aircraft data. We find that emissions during the cold season (September to May) account for ≥ 50% of the annual CH4 flux, with the highest emissions from noninundated upland tundra. A major fraction of cold season emissions occur during the "zero curtain" period, when subsurface soil temperatures are poised near 0 °C. The zero curtain may persist longer than the growing season, and CH4 emissions are enhanced when the duration is extended by a deep thawed layer as can occur with thick snow cover. Regional scale fluxes of CH4 derived from aircraft data demonstrate the large spatial extent of late season CH4 emissions. Scaled to the circumpolar Arctic, cold season fluxes from tundra total 12 ± 5 (95% confidence interval) Tg CH4 y(-1), ∼ 25% of global emissions from extratropical wetlands, or ∼ 6% of total global wetland methane emissions. The dominance of late-season emissions, sensitivity to soil environmental conditions, and importance of dry tundra are not currently simulated in most global climate models. Because Arctic warming disproportionally impacts the cold season, our results suggest that higher cold-season CH4 emissions will result from observed and predicted increases in snow thickness, active layer depth, and soil temperature, representing important positive feedbacks on climate warming.

  13. Shrub sensitivity to recent warming across Arctic Alaska from dendrochronological and remote sensing records

    NASA Astrophysics Data System (ADS)

    Andreu-Hayles, Laia; Gaglioti, Benjamin V.; D'Arrigo, Rosanne; Anchukaitis, Kevin J.; Goetz, Scott

    2017-04-01

    Shrub expansion into Arctic and alpine tundra ecosystems has been documented during the last several decades based on repeat aerial photography, remote sensing, and ground-truthed estimates of vegetation cover. Today, summer temperatures limit the northern limit of Arctic shrubs, and warmer summers have been shown to have higher NDVI in shrub tundra zones. Although global warming has been considered the main driver of shrub expansion, soil types, shrub species and non-linear responses can moderate how sensitive shrub growth is to climate warming. Here, we assess the sensitivity of shrub growth to inter-annual climate variability using a newly generated network of 18 shrub ring-width chronologies in the tundra regions of the North Slope of Alaska. We then test whether the dendroclimatic patterns we observe at individual sites are representative of the broader region using remotely sensed productivity data (NDVI). The common period of both satellite and shrub ring data from all sites was 1982 to 2010. Instrumental daily data from Toolik Lake and interpolated products was compared to detrended growth rates of Salix spp. (willow) and Alnus sp. (alder), located on and to the west of the Dalton Highway ( 68-70°N 148°W). Whereas summer temperatures were found to enhance shrub growth, warm temperatures outside the core of the growing season have the inverse effect in some chronologies. All tundra shrub chronologies shared a common strong positive response to summer temperatures despite growing in heterogeneous site conditions and belonging to different species. In this work we will discuss shrub climate sensitive across Alaska and how NDVI data compared to the shrub ring-width network.

  14. Characterization of iron oxide nanoparticle films at the air–water interface in Arctic tundra waters

    DOE PAGES

    Jubb, Aaron M.; Eskelsen, Jeremy R.; Yin, Xiangping Lisa; ...

    2018-04-04

    Here, massive amounts of organic carbon have accumulated in Arctic permafrost and soils due to anoxic and low temperature conditions that limit aerobic microbial respiration. Alternative electron acceptors are thus required for microbes to degrade organic carbon in these soils. Iron or iron oxides have been recognized to play an important role in carbon cycle processes in Arctic soils, although the exact form and role as an electron acceptor or donor remain poorly understood. Here, Arctic biofilms collected during the summers of 2016 and 2017 from tundra surface waters on the Seward Peninsula of western Alaska were characterized with amore » suite of microscopic and spectroscopic methods. We hypothesized that these films contain redox-active minerals bound to biological polymers. The major components of the films were found to be iron oxide nanoparticle aggregates associated with extracellular polymeric substances. The observed mineral phases varied between films collected in different years with magnetite (Fe 2+Fe 2 3+O 4) nanoparticles (<5 nm) predominantly identified in the 2016 films, while for films collected in 2017 ferrihydrite-like amorphous iron oxyhydroxides were found. While the exact formation mechanism of these Artic iron oxide films remains to be explored, the presence of magnetite and other iron oxide/oxyhydroxide nanoparticles at the air–water interface may represent a previously unknown source of electron acceptors for continual anaerobic microbial respiration of organic carbon within poorly drained Arctic tundra.« less

  15. Characterization of iron oxide nanoparticle films at the air–water interface in Arctic tundra waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jubb, Aaron M.; Eskelsen, Jeremy R.; Yin, Xiangping Lisa

    Here, massive amounts of organic carbon have accumulated in Arctic permafrost and soils due to anoxic and low temperature conditions that limit aerobic microbial respiration. Alternative electron acceptors are thus required for microbes to degrade organic carbon in these soils. Iron or iron oxides have been recognized to play an important role in carbon cycle processes in Arctic soils, although the exact form and role as an electron acceptor or donor remain poorly understood. Here, Arctic biofilms collected during the summers of 2016 and 2017 from tundra surface waters on the Seward Peninsula of western Alaska were characterized with amore » suite of microscopic and spectroscopic methods. We hypothesized that these films contain redox-active minerals bound to biological polymers. The major components of the films were found to be iron oxide nanoparticle aggregates associated with extracellular polymeric substances. The observed mineral phases varied between films collected in different years with magnetite (Fe 2+Fe 2 3+O 4) nanoparticles (<5 nm) predominantly identified in the 2016 films, while for films collected in 2017 ferrihydrite-like amorphous iron oxyhydroxides were found. While the exact formation mechanism of these Artic iron oxide films remains to be explored, the presence of magnetite and other iron oxide/oxyhydroxide nanoparticles at the air–water interface may represent a previously unknown source of electron acceptors for continual anaerobic microbial respiration of organic carbon within poorly drained Arctic tundra.« less

  16. Diversification of Nitrogen Sources in Various Tundra Vegetation Types in the High Arctic

    PubMed Central

    Skrzypek, Grzegorz; Wojtuń, Bronisław; Richter, Dorota; Jakubas, Dariusz; Wojczulanis-Jakubas, Katarzyna; Samecka-Cymerman, Aleksandra

    2015-01-01

    Low nitrogen availability in the high Arctic represents a major constraint for plant growth, which limits the tundra capacity for carbon retention and determines tundra vegetation types. The limited terrestrial nitrogen (N) pool in the tundra is augmented significantly by nesting seabirds, such as the planktivorous Little Auk (Alle alle). Therefore, N delivered by these birds may significantly influence the N cycling in the tundra locally and the carbon budget more globally. Moreover, should these birds experience substantial negative environmental pressure associated with climate change, this will adversely influence the tundra N-budget. Hence, assessment of bird-originated N-input to the tundra is important for understanding biological cycles in polar regions. This study analyzed the stable nitrogen composition of the three main N-sources in the High Arctic and in numerous plants that access different N-pools in ten tundra vegetation types in an experimental catchment in Hornsund (Svalbard). The percentage of the total tundra N-pool provided by birds, ranged from 0–21% in Patterned-ground tundra to 100% in Ornithocoprophilous tundra. The total N-pool utilized by tundra plants in the studied catchment was built in 36% by birds, 38% by atmospheric deposition, and 26% by atmospheric N2-fixation. The stable nitrogen isotope mixing mass balance, in contrast to direct methods that measure actual deposition, indicates the ratio between the actual N-loads acquired by plants from different N-sources. Our results enhance our understanding of the importance of different N-sources in the Arctic tundra and the used methodological approach can be applied elsewhere. PMID:26376204

  17. Diversification of Nitrogen Sources in Various Tundra Vegetation Types in the High Arctic.

    PubMed

    Skrzypek, Grzegorz; Wojtuń, Bronisław; Richter, Dorota; Jakubas, Dariusz; Wojczulanis-Jakubas, Katarzyna; Samecka-Cymerman, Aleksandra

    2015-01-01

    Low nitrogen availability in the high Arctic represents a major constraint for plant growth, which limits the tundra capacity for carbon retention and determines tundra vegetation types. The limited terrestrial nitrogen (N) pool in the tundra is augmented significantly by nesting seabirds, such as the planktivorous Little Auk (Alle alle). Therefore, N delivered by these birds may significantly influence the N cycling in the tundra locally and the carbon budget more globally. Moreover, should these birds experience substantial negative environmental pressure associated with climate change, this will adversely influence the tundra N-budget. Hence, assessment of bird-originated N-input to the tundra is important for understanding biological cycles in polar regions. This study analyzed the stable nitrogen composition of the three main N-sources in the High Arctic and in numerous plants that access different N-pools in ten tundra vegetation types in an experimental catchment in Hornsund (Svalbard). The percentage of the total tundra N-pool provided by birds, ranged from 0-21% in Patterned-ground tundra to 100% in Ornithocoprophilous tundra. The total N-pool utilized by tundra plants in the studied catchment was built in 36% by birds, 38% by atmospheric deposition, and 26% by atmospheric N2-fixation. The stable nitrogen isotope mixing mass balance, in contrast to direct methods that measure actual deposition, indicates the ratio between the actual N-loads acquired by plants from different N-sources. Our results enhance our understanding of the importance of different N-sources in the Arctic tundra and the used methodological approach can be applied elsewhere.

  18. Cold season emissions dominate the Arctic tundra methane budget

    PubMed Central

    Zona, Donatella; Gioli, Beniamino; Lindaas, Jakob; Wofsy, Steven C.; Miller, Charles E.; Dinardo, Steven J.; Dengel, Sigrid; Sweeney, Colm; Karion, Anna; Chang, Rachel Y.-W.; Henderson, John M.; Murphy, Patrick C.; Goodrich, Jordan P.; Moreaux, Virginie; Liljedahl, Anna; Watts, Jennifer D.; Kimball, John S.; Lipson, David A.; Oechel, Walter C.

    2016-01-01

    Arctic terrestrial ecosystems are major global sources of methane (CH4); hence, it is important to understand the seasonal and climatic controls on CH4 emissions from these systems. Here, we report year-round CH4 emissions from Alaskan Arctic tundra eddy flux sites and regional fluxes derived from aircraft data. We find that emissions during the cold season (September to May) account for ≥50% of the annual CH4 flux, with the highest emissions from noninundated upland tundra. A major fraction of cold season emissions occur during the “zero curtain” period, when subsurface soil temperatures are poised near 0 °C. The zero curtain may persist longer than the growing season, and CH4 emissions are enhanced when the duration is extended by a deep thawed layer as can occur with thick snow cover. Regional scale fluxes of CH4 derived from aircraft data demonstrate the large spatial extent of late season CH4 emissions. Scaled to the circumpolar Arctic, cold season fluxes from tundra total 12 ± 5 (95% confidence interval) Tg CH4 y−1, ∼25% of global emissions from extratropical wetlands, or ∼6% of total global wetland methane emissions. The dominance of late-season emissions, sensitivity to soil environmental conditions, and importance of dry tundra are not currently simulated in most global climate models. Because Arctic warming disproportionally impacts the cold season, our results suggest that higher cold-season CH4 emissions will result from observed and predicted increases in snow thickness, active layer depth, and soil temperature, representing important positive feedbacks on climate warming. PMID:26699476

  19. Cold season emissions dominate the Arctic tundra methane budget

    DOE PAGES

    Zona, Donatella; Gioli, Beniamino; Commane, Róisín; ...

    2015-12-22

    Arctic terrestrial ecosystems are major global sources of methane (CH 4); hence, it is important to understand the seasonal and climatic controls on CH 4 emissions from these systems. Here, we report year-round CH 4 emissions from Alaskan Arctic tundra eddy flux sites and regional fluxes derived from aircraft data. We find that emissions during the cold season (September to May) account for ≥ 50% of the annual CH 4 flux, with the highest emissions from noninundated upland tundra. A major fraction of cold season emissions occur during the “zero curtain” period, when subsurface soil temperatures are poised near 0more » °C. The zero curtain may persist longer than the growing season, and CH 4 emissions are enhanced when the duration is extended by a deep thawed layer as can occur with thick snow cover. Regional scale fluxes of CH 4 derived from aircraft data demonstrate the large spatial extent of late season CH 4 emissions. Scaled to the circumpolar Arctic, cold season fluxes from tundra total 12 ± 5 (95% confidence interval) Tg CH 4 y –1, ~25% of global emissions from extratropical wetlands, or ~6% of total global wetland methane emissions. Here, the dominance of late-season emissions, sensitivity to soil environmental conditions, and importance of dry tundra are not currently simulated in most global climate models. Because Arctic warming disproportionally impacts the cold season, our results suggest that higher cold-season CH 4 emissions will result from observed and predicted increases in snow thickness, active layer depth, and soil temperature, representing important positive feedbacks on climate warming.« less

  20. Large CO 2 and CH 4 emissions from polygonal tundra during spring thaw in northern Alaska: Spring Pulse Emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raz-Yaseef, Naama; Torn, Margaret S.; Wu, Yuxin

    The few prethaw observations of tundra carbon fluxes suggest that there may be large spring releases, but little Is lmown about the scale and underlying mechanisms of this phenomenon. To address these questions, we combined ecosystem eddy flux measurements from two towers near Barrow, Alaska, with mechanistic soil-core thawing experiment During a 2week period prior to snowmelt In 2014, large fluxes were measured, reducing net summer uptake of CO2 by 46% and adding 6% to cumulative CH4 emissions. Emission pulses were linked to unique rain-on-snow events enhancing soli cracking. Controlled laboratory experiment revealed that as surface Ice thaws, an immediate,more » large pulse of trapped gases Is emitted. These results suggest that the Arctic C02 and CH4 spring pulse is a delayed release of biogenic gas production from the previous fall and that the pulse can be large enough to offset a significant fraction of the moderate Arctic tundra carbon sink.« less

  1. Dynamics of Aboveground Phytomass of the Circumpolar Arctic Tundra During the Past Three Decades

    NASA Technical Reports Server (NTRS)

    Epstein, Howard E.; Raynolds, Martha K.; Walker, Donald A.; Bhatt, Uma S.; Tucker, Compton J.; Pinzon, Jorge E.

    2012-01-01

    Numerous studies have evaluated the dynamics of Arctic tundra vegetation throughout the past few decades, using remotely sensed proxies of vegetation, such as the normalized difference vegetation index (NDVI). While extremely useful, these coarse-scale satellite-derived measurements give us minimal information with regard to how these changes are being expressed on the ground, in terms of tundra structure and function. In this analysis, we used a strong regression model between NDVI and aboveground tundra phytomass, developed from extensive field-harvested measurements of vegetation biomass, to estimate the biomass dynamics of the circumpolar Arctic tundra over the period of continuous satellite records (1982-2010). We found that the southernmost tundra subzones (C-E) dominate the increases in biomass, ranging from 20 to 26%, although there was a high degree of heterogeneity across regions, floristic provinces, and vegetation types. The estimated increase in carbon of the aboveground live vegetation of 0.40 Pg C over the past three decades is substantial, although quite small relative to anthropogenic C emissions. However, a 19.8% average increase in aboveground biomass has major implications for nearly all aspects of tundra ecosystems including hydrology, active layer depths, permafrost regimes, wildlife and human use of Arctic landscapes. While spatially extensive on-the-ground measurements of tundra biomass were conducted in the development of this analysis, validation is still impossible without more repeated, long-term monitoring of Arctic tundra biomass in the field.

  2. The nature of spatial transitions in the Arctic.

    Treesearch

    H. E. Epstein; J. Beringer; W. A. Gould; A. H. Lloyd; C. D. Thompson; F. S. Chapin III; G. J. Michaelson; C. L. Ping; T. S. Rupp; D. A. Walker

    2004-01-01

    Aim Describe the spatial and temporal properties of transitions in the Arctic and develop a conceptual understanding of the nature of these spatial transitions in the face of directional environmental change. Location Arctic tundra ecosystems of the North Slope of Alaska and the tundraforest region of the Seward Peninsula, Alaska. Methods We synthesize information from...

  3. The unseen iceberg: Plant roots in arctic tundra

    USGS Publications Warehouse

    Iverson, Colleen M.; Sloan, Victoria L.; Sullivan, Patrick F.; Euskirchen, E.S.; McGuire, A. David; Norby, Richard J.; Walker, Anthony P.; Warren, Jeffrey M.; Wullschleger, Stan D.

    2015-01-01

    Plant roots play a critical role in ecosystem function in arctic tundra, but root dynamics in these ecosystems are poorly understood. To address this knowledge gap, we synthesized available literature on tundra roots, including their distribution, dynamics and contribution to ecosystem carbon and nutrient fluxes, and highlighted key aspects of their representation in terrestrial biosphere models. Across all tundra ecosystems, belowground plant biomass exceeded aboveground biomass, with the exception of polar desert tundra. Roots were shallowly distributed in the thin layer of soil that thaws annually, and were often found in surface organic soil horizons. Root traits – including distribution, chemistry, anatomy and resource partitioning – play an important role in controlling plant species competition, and therefore ecosystem carbon and nutrient fluxes, under changing climatic conditions, but have only been quantified for a small fraction of tundra plants. Further, the annual production and mortality of fine roots are key components of ecosystem processes in tundra, but extant data are sparse. Tundra root traits and dynamics should be the focus of future research efforts. Better representation of the dynamics and characteristics of tundra roots will improve the utility of models for the evaluation of the responses of tundra ecosystems to changing environmental conditions.

  4. The unseen iceberg: plant roots in arctic tundra.

    PubMed

    Iversen, Colleen M; Sloan, Victoria L; Sullivan, Patrick F; Euskirchen, Eugenie S; McGuire, A David; Norby, Richard J; Walker, Anthony P; Warren, Jeffrey M; Wullschleger, Stan D

    2015-01-01

    Plant roots play a critical role in ecosystem function in arctic tundra, but root dynamics in these ecosystems are poorly understood. To address this knowledge gap, we synthesized available literature on tundra roots, including their distribution, dynamics and contribution to ecosystem carbon and nutrient fluxes, and highlighted key aspects of their representation in terrestrial biosphere models. Across all tundra ecosystems, belowground plant biomass exceeded aboveground biomass, with the exception of polar desert tundra. Roots were shallowly distributed in the thin layer of soil that thaws annually, and were often found in surface organic soil horizons. Root traits - including distribution, chemistry, anatomy and resource partitioning - play an important role in controlling plant species competition, and therefore ecosystem carbon and nutrient fluxes, under changing climatic conditions, but have only been quantified for a small fraction of tundra plants. Further, the annual production and mortality of fine roots are key components of ecosystem processes in tundra, but extant data are sparse. Tundra root traits and dynamics should be the focus of future research efforts. Better representation of the dynamics and characteristics of tundra roots will improve the utility of models for the evaluation of the responses of tundra ecosystems to changing environmental conditions. No claim to original US Government works New Phytologist © 2014 New Phytologist Trust.

  5. Range expansion of moose in arctic Alaska linked to warming and increased shrub habitat

    USGS Publications Warehouse

    Tape, Ken D.; Gustine, David D.; Reuss, Roger W.; Adams, Layne G.; Clark, Jason A.

    2016-01-01

    Twentieth century warming has increased vegetation productivity and shrub cover across northern tundra and treeline regions, but effects on terrestrial wildlife have not been demonstrated on a comparable scale. During this period, Alaskan moose (Alces alces gigas) extended their range from the boreal forest into tundra riparian shrub habitat; similar extensions have been observed in Canada (A. a. andersoni) and Eurasia (A. a. alces). Northern moose distribution is thought to be limited by forage availability above the snow in late winter, so the observed increase in shrub habitat could be causing the northward moose establishment, but a previous hypothesis suggested that hunting cessation triggered moose establishment. Here, we use recent changes in shrub cover and empirical relationships between shrub height and growing season temperature to estimate available moose habitat in Arctic Alaska c. 1860. We estimate that riparian shrubs were approximately 1.1 m tall c. 1860, greatly reducing the available forage above the snowpack, compared to 2 m tall in 2009. We believe that increases in riparian shrub habitat after 1860 allowed moose to colonize tundra regions of Alaska hundreds of kilometers north and west of previous distribution limits. The northern shift in the distribution of moose, like that of snowshoe hares, has been in response to the spread of their shrub habitat in the Arctic, but at the same time, herbivores have likely had pronounced impacts on the structure and function of these shrub communities. These northward range shifts are a bellwether for other boreal species and their associated predators.

  6. Summer temperature increase has distinct effects on the ectomycorrhizal fungal communities of moist tussock and dry tundra in Arctic Alaska.

    PubMed

    Morgado, Luis N; Semenova, Tatiana A; Welker, Jeffrey M; Walker, Marilyn D; Smets, Erik; Geml, József

    2015-02-01

    Arctic regions are experiencing the greatest rates of climate warming on the planet and marked changes have already been observed in terrestrial arctic ecosystems. While most studies have focused on the effects of warming on arctic vegetation and nutrient cycling, little is known about how belowground communities, such as fungi root-associated, respond to warming. Here, we investigate how long-term summer warming affects ectomycorrhizal (ECM) fungal communities. We used Ion Torrent sequencing of the rDNA internal transcribed spacer 2 (ITS2) region to compare ECM fungal communities in plots with and without long-term experimental warming in both dry and moist tussock tundra. Cortinarius was the most OTU-rich genus in the moist tundra, while the most diverse genus in the dry tundra was Tomentella. On the diversity level, in the moist tundra we found significant differences in community composition, and a sharp decrease in the richness of ECM fungi due to warming. On the functional level, our results indicate that warming induces shifts in the extramatrical properties of the communities, where the species with medium-distance exploration type seem to be favored with potential implications for the mobilization of different nutrient pools in the soil. In the dry tundra, neither community richness nor community composition was significantly altered by warming, similar to what had been observed in ECM host plants. There was, however, a marginally significant increase in OTUs identified as ECM fungi with the medium-distance exploration type in the warmed plots. Linking our findings of decreasing richness with previous results of increasing ECM fungal biomass suggests that certain ECM species are favored by warming and may become more abundant, while many other species may go locally extinct due to direct or indirect effects of warming. Such compositional shifts in the community might affect nutrient cycling and soil organic C storage. © 2014 The Authors. Global Change

  7. Differential ecophysiological response of deciduous shrubs and a graminoid to long-term experimental snow reductions and additions in moist acidic tundra, northern Alaska

    Treesearch

    Robert R. Pattison; Jeffrey M. Welker

    2014-01-01

    Changes in winter precipitation that include both decreases and increases in winter snow are underway across the Arctic. In this study, we used a 14-year experiment that has increased and decreased winter snow in the moist acidic tussock tundra of northern Alaska to understand impacts of variation in winter snow depth on summer leaf-level ecophysiology of two deciduous...

  8. Microbial Community Response to Warming and Correlations to Organic Carbon Degradation in an Arctic Tundra Soil

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Yang, S.; Zhou, J.; Wullschleger, S. D.; Graham, D. E.; Yang, Y.; Gu, B.

    2016-12-01

    Climate warming increases microbial activity and thus decomposition of soil organic carbon (SOC) stored in Arctic tundra, but changes in microbial community and its correlations to SOC decomposition are poorly understood. Using a microbial functional gene array (GeoChip 5.0), we examined the microbial functional community structure changes with temperature (-2 and +8 °C) in an anoxic incubation experiment with a high-centered polygon trough soil from Barrow, Alaska. Through a 122-day incubation, we show that functional community structure was significantly altered (P < 0.05) by 8 °C warming, with functional diversity decreasing in response to warming and rapid degradation of the labile soil organic substrates. In contrast, microbial community structure was largely unchanged by -2 °C incubation. In the organic layer soil, gene abundances associated with fermentation, methanogenesis, and iron reduction all decreased significantly (P < 0.05) following the incubation at 8 °C. These observations corroborate strongly with decreased methane and reducing sugar production rates and iron reduction during the incubation. These results demonstrate a rapid and sensitive microbial response to increasing soil temperature, and suggest important roles of microbial communities in moderating SOC degradation and iron cycling in warming Arctic tundra.

  9. The response of Arctic vegetation and soils following an unusually severe tundra fire.

    PubMed

    Bret-Harte, M Syndonia; Mack, Michelle C; Shaver, Gaius R; Huebner, Diane C; Johnston, Miriam; Mojica, Camilo A; Pizano, Camila; Reiskind, Julia A

    2013-08-19

    Fire causes dramatic short-term changes in vegetation and ecosystem function, and may promote rapid vegetation change by creating recruitment opportunities. Climate warming likely will increase the frequency of wildfire in the Arctic, where it is not common now. In 2007, the unusually severe Anaktuvuk River fire burned 1039 km(2) of tundra on Alaska's North Slope. Four years later, we harvested plant biomass and soils across a gradient of burn severity, to assess recovery. In burned areas, above-ground net primary productivity of vascular plants equalled that in unburned areas, though total live biomass was less. Graminoid biomass had recovered to unburned levels, but shrubs had not. Virtually all vascular plant biomass had resprouted from surviving underground parts; no non-native species were seen. However, bryophytes were mostly disturbance-adapted species, and non-vascular biomass had recovered less than vascular plant biomass. Soil nitrogen availability did not differ between burned and unburned sites. Graminoids showed allocation changes consistent with nitrogen stress. These patterns are similar to those seen following other, smaller tundra fires. Soil nitrogen limitation and the persistence of resprouters will likely lead to recovery of mixed shrub-sedge tussock tundra, unless permafrost thaws, as climate warms, more extensively than has yet occurred.

  10. The response of Arctic vegetation and soils following an unusually severe tundra fire

    PubMed Central

    Bret-Harte, M. Syndonia; Mack, Michelle C.; Shaver, Gaius R.; Huebner, Diane C.; Johnston, Miriam; Mojica, Camilo A.; Pizano, Camila; Reiskind, Julia A.

    2013-01-01

    Fire causes dramatic short-term changes in vegetation and ecosystem function, and may promote rapid vegetation change by creating recruitment opportunities. Climate warming likely will increase the frequency of wildfire in the Arctic, where it is not common now. In 2007, the unusually severe Anaktuvuk River fire burned 1039 km2 of tundra on Alaska's North Slope. Four years later, we harvested plant biomass and soils across a gradient of burn severity, to assess recovery. In burned areas, above-ground net primary productivity of vascular plants equalled that in unburned areas, though total live biomass was less. Graminoid biomass had recovered to unburned levels, but shrubs had not. Virtually all vascular plant biomass had resprouted from surviving underground parts; no non-native species were seen. However, bryophytes were mostly disturbance-adapted species, and non-vascular biomass had recovered less than vascular plant biomass. Soil nitrogen availability did not differ between burned and unburned sites. Graminoids showed allocation changes consistent with nitrogen stress. These patterns are similar to those seen following other, smaller tundra fires. Soil nitrogen limitation and the persistence of resprouters will likely lead to recovery of mixed shrub–sedge tussock tundra, unless permafrost thaws, as climate warms, more extensively than has yet occurred. PMID:23836794

  11. Influence of iron redox cycling on organo-mineral associations in arctic tundra soils

    NASA Astrophysics Data System (ADS)

    Herndon, E.; AlBashaireh, A.; Duroe, K.; Singer, D. M.

    2016-12-01

    Geochemical interactions between soil organic matter and minerals influence decomposition in many environments but remain poorly understood in arctic tundra systems. In tundra soils that are periodically to persistently saturated, the accumulation of iron oxyhydroxides and organo-iron precipitates at redox interfaces may inhibit decomposition by binding organic molecules and protecting them from microbial degradation. Here, we couple synchrotron-source spectroscopic techniques with chemical sequential extractions and physical density fractionations to evaluate the spatial distribution and speciation of Fe-bearing phases and associated organic matter in organic and mineral horizons of the seasonally thawed active layer in tundra soils from northern Alaska. Mineral-associated organic matter comprised 63 ± 9% of soil organic carbon stored in the active layer of ice wedge polygons. Ferrous iron produced in anoxic mineral horizons diffused upwards and precipitated as poorly-crystalline oxyhydroxides and organic-bound Fe(III) in the organic horizons. Ferrihydrite and goethite were present as coatings on mineral grains and plant debris and in aggregates with clays and particulate organic matter. Organic matter released through acid-dissolution of iron oxides may represent a small pool of readily-degradable organic molecules temporarily stabilized by sorption to iron oxyhydroxide surfaces, while larger quantities of particulate organic carbon and humic-like substances may be physically protected from decomposition by Fe-oxide coatings and aggregation. We conclude that formation of poorly-crystalline and crystalline iron oxides at redox interfaces contributes to mineral protection of organic matter through sorption, aggregation, and co-precipitation reactions. Further study of organo-mineral associations is necessary to determine the net impact of mineral-stabilization on carbon storage in rapidly warming arctic ecosystems.

  12. Changing snow cover in tundra ecosystems tips the Arctic carbon balance

    NASA Astrophysics Data System (ADS)

    Zona, D.; Hufkens, K.; Gioli, B.; Kalhori, A. A. M.; Oechel, W. C.

    2014-12-01

    The Arctic environment has witnessed important changes due to global warming, resulting in increased surface air temperatures and rain events which both exacerbate snow cover deterioration (Semmens et al, 2013; Rennert et al, 2009; White et al, 2007; Min et al, 2008; Sharp et al, 2013; Schaeffer et al, 2013). Snow cover duration is declining by almost 20% per decade, a far higher rate than model estimates (Derksen and Brown, 2012). Concomitant with increasing temperatures and decreasing snow cover duration, the length of the arctic growing season is reported to have increased by 1.1 - 4.9 days per decade since 1951 (Menzel et al, 2006), and, plant productivity and CO2 uptake from arctic vegetation are strongly influenced by changes in growing season length (Myneni et al., 1997; Schaefer et al., 2005; Euskirchen et al., 2006). Based on more than a decade of eddy flux measurements in Arctic tundra ecosystems across the North slope of Alaska, and remotely sensed snow cover data, we show that earlier snow melt in the spring increase C uptake while an extended snow free period in autumn is associated with a higher C loss. Here we present the impacts of changes in snow cover dynamics between spring and autumn in arctic tundra ecosystems on the carbon dynamics and net C balance of the Alaskan Arctic. ReferencesDerksen, C., Brown R. (2012) Geophys. Res. Lett., doi:10.1029/2012GL053387 Euskirchen, E.S., et al. (2006) Glob. Change Biol., 12, 731-750. Menzel, A., et al. 2006. Glob. Change Biol., 12, 1969-1976. Min SK, Zhang X, Zweirs F (2008) Science 320: 518-520. Rennert K J, Roe G, Putkonen J and Bitz C M (2009) J. Clim. 22 2302-15. Schaefer, K., Denning A.S., Leonard O. (2005) Global Biogeochem. Cycles, 19, GB3017. Schaeffer, S. M., Sharp, E., Schimel, J. P. & Welker, J. M. (2013). Soil- plant N processes in a High Arctic ecosystem, NW Greenland are altered by long-term experimental warming and higher rainfall. Glob. Change Biol., 11, 3529-39. doi: 10.1111/gcb.12318

  13. Can antibrowsing defense regulate the spread of woody vegetation in arctic tundra?

    USGS Publications Warehouse

    Bryant, John P.; Joly, Kyle; Chapin, F. Stuart; DeAngelis, Donald L.; Kielland, Knut

    2014-01-01

    Global climate warming is projected to promote the increase of woody plants, especially shrubs, in arctic tundra. Many factors may affect the extent of this increase, including browsing by mammals. We hypothesize that across the Arctic the effect of browsing will vary because of regional variation in antibrowsing chemical defense. Using birch (Betula) as a case study, we propose that browsing is unlikely to retard birch expansion in the region extending eastward from the Lena River in central Siberia across Beringia and the continental tundra of central and eastern Canada where the more effectively defended resin birches predominate. Browsing is more likely to retard birch expansion in tundra west of the Lena to Fennoscandia, Iceland, Greenland and South Baffin Island where the less effectively defended non-resin birches predominate. Evidence from the literature supports this hypothesis. We further suggest that the effect of warming on the supply of plant-available nitrogen will not significantly change either this pan-Arctic pattern of variation in antibrowsing defense or the resultant effect that browsing has on birch expansion in tundra. However, within central and east Beringia warming-caused increases in plant-available nitrogen combined with wildfire could initiate amplifying feedback loops that could accelerate shrubification of tundra by the more effectively defended resin birches. This accelerated shrubification of tundra by resin birch, if extensive, could reduce the food supply of caribou causing population declines. We conclude with a brief discussion of modeling methods that show promise in projecting invasion of tundra by woody plants.

  14. Measurements of NO(x) and NO(y) concentrations and fluxes over Arctic tundra

    NASA Technical Reports Server (NTRS)

    Bakwin, Peter S.; Wofsy, Steven C.; Fan, Song-Miao; Fitzjarrald, David R.

    1992-01-01

    Measurements of the atmospheric concentrations of NO, NO2, total NO(y), and O3 were made during the NASA Arctic Boundary Layer Expedition (ABLE 3A) at a remote location in a tundra bog ecosystem in southeastern Alaska during the growing season (July-August 1988). Concentrations of NO(x) and NO(y) were found to be very low compared to other remote continental sites, indicating that anthropogenic influences were small at this site during this time of year. The NO(y) emission rate from the soil were 0.13 +/- 0.05 x 10 exp 9 molecules/sq cm/s. Direct measurements of the flux of total NO(y) were made for the first time, indicating downward flux of NO(y) at all times of day, with maximum deposition of 2.5 +/- 0.9 x 10 exp 9 molecules/sq cm/s in the afternoon. Deposition of HNO3 appears to dominate the atmosphere/surface exchange of NO(y). The mean dry deposition rate of NO(y) to the tundra was 1.8 +/- 1.0 x 10 exp 9 molecules/sq cm/s.

  15. Determining Regional Arctic Tundra Carbon Exchange: A Bottom-Up Approach

    NASA Technical Reports Server (NTRS)

    Huemmrich, Fred

    2006-01-01

    This viewgraph presentation reviews the carbon atmospheric exchange with Arctic tundra. In the Arctic the ecosystem has been a net carbon sink. The project investigates the question of how might climate warming effect high latitude ecosystems and the Earth ecosystems and how to measure the changes.

  16. Effects of long-term nutrient additions on Arctic tundra, stream, and lake ecosystems: beyond NPP.

    PubMed

    Gough, Laura; Bettez, Neil D; Slavik, Karie A; Bowden, William B; Giblin, Anne E; Kling, George W; Laundre, James A; Shaver, Gaius R

    2016-11-01

    Primary producers form the base of food webs but also affect other ecosystem characteristics, such as habitat structure, light availability, and microclimate. Here, we examine changes caused by 5-30+ years of nutrient addition and resulting increases in net primary productivity (NPP) in tundra, streams, and lakes in northern Alaska. The Arctic provides an important opportunity to examine how ecosystems characterized by low diversity and low productivity respond to release from nutrient limitation. We review how responses of algae and plants affect light availability, perennial biotic structures available for consumers, oxygen levels, and temperature. Sometimes, responses were similar across all three ecosystems; e.g., increased NPP significantly reduced light to the substrate following fertilization. Perennial biotic structures increased in tundra and streams but not in lakes, and provided important new habitat niches for consumers as well as other producers. Oxygen and temperature responses also differed. Life history traits (e.g., longevity) of the primary producers along with the fate of detritus drove the responses and recovery. As global change persists and nutrients become more available in the Arctic and elsewhere, incorporating these factors as response variables will enable better prediction of ecosystem changes and feedbacks in this biome and others.

  17. Effects of Climate Warming on Organic Carbon Degradation and Methylmercury Production in an Arctic Tundra Soil

    NASA Astrophysics Data System (ADS)

    Gu, B.; Yang, Z.; Lu, X.; Liang, L.; Graham, D. E.; Wullschleger, S. D.

    2016-12-01

    Climate warming increases microbial activity and stimulates the degradation of stored soil organic carbon (SOC) in Arctic tundra. Studies have shown that the rates of SOC degradation are affected by the substrate quality or chemical composition of SOC, but it remains unclear which pools of SOC are the most vulnerable to rapid breakdown and what mechanisms are involved. Additionally, little is known concerning the effects of warming on microbial mercury methylation and how it is coupled to SOC degradation. Using a suite of analytical techniques, we examined the dynamic consumption and production of labile SOC compounds, including reducing sugars, alcohols, and low-molecular-weight organic acids during an 8-month anoxic incubation with a high-centered polygon trough tundra soil from Barrow, Alaska. We show that reducing sugars and alcohols in thawed permafrost largely account for the initial rapid release of CO2 and CH4 through anaerobic fermentation, whereas the fermentation products such as acetate and formate are subsequently utilized as primary substrates for methanogenesis. Degradation of labile SOC is also found to rapidly fueling the biosynthesis of methylmercury, a potent neurotoxin in tundra soil. Mercury methylation is positively correlated to the production of CH4 and ferrous ion, suggesting the linkages among microbial pathways of methanogenesis, iron reduction, and mercury methylation. Additionally, we found that freshly amended mercury is more bioavailable and susceptible to microbial methylation than preexisting Hg, particularly in the deep mineral soil. These observations suggest that climate warming and permafrost thaw not only impact on the decomposition of stored SOC and emission of greenhouse gases but also increase production of toxic methylmercury in Arctic tundra.

  18. Evapotranspiration across plant types and geomorphological units in polygonal Arctic tundra

    NASA Astrophysics Data System (ADS)

    Raz-Yaseef, Naama; Young-Robertson, Jessica; Rahn, Thom; Sloan, Victoria; Newman, Brent; Wilson, Cathy; Wullschleger, Stan D.; Torn, Margaret S.

    2017-10-01

    Coastal tundra ecosystems are relatively flat, and yet display large spatial variability in ecosystem traits. The microtopographical differences in polygonal geomorphology produce heterogeneity in permafrost depth, soil temperature, soil moisture, soil geochemistry, and plant distribution. Few measurements have been made, however, of how water fluxes vary across polygonal tundra plant types, limiting our ability to understand and model these ecosystems. Our objective was to investigate how plant distribution and geomorphological location affect actual evapotranspiration (ET). These effects are especially critical in light of the rapid change polygonal tundra systems are experiencing with Arctic warming. At a field site near Barrow, Alaska, USA, we investigated the relationships between ET and plant cover in 2014 and 2015. ET was measured at a range of spatial and temporal scales using: (1) An eddy covariance flux tower for continuous landscape-scale monitoring; (2) An automated clear surface chamber over dry vegetation in a fixed location for continuous plot-scale monitoring; and (3) Manual measurements with a clear portable chamber in approximately 60 locations across the landscape. We found that variation in environmental conditions and plant community composition, driven by microtopographical features, has significant influence on ET. Among plant types, ET from moss-covered and inundated areas was more than twice that from other plant types. ET from troughs and low polygonal centers was significantly higher than from high polygonal centers. ET varied seasonally, with peak fluxes of 0.14 mm h-1 in July. Despite 24 hours of daylight in summer, diurnal fluctuations in incoming solar radiation and plant processes produced a diurnal cycle in ET. Combining the patterns we observed with projections for the impact of permafrost degradation on polygonal structure suggests that microtopographic changes associated with permafrost thaw have the potential to alter tundra

  19. Alaska North Slope Tundra Travel Model and Validation Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harry R. Bader; Jacynthe Guimond

    2006-03-01

    The Alaska Department of Natural Resources (DNR), Division of Mining, Land, and Water manages cross-country travel, typically associated with hydrocarbon exploration and development, on Alaska's arctic North Slope. This project is intended to provide natural resource managers with objective, quantitative data to assist decision making regarding opening of the tundra to cross-country travel. DNR designed standardized, controlled field trials, with baseline data, to investigate the relationships present between winter exploration vehicle treatments and the independent variables of ground hardness, snow depth, and snow slab thickness, as they relate to the dependent variables of active layer depth, soil moisture, and photosyntheticallymore » active radiation (a proxy for plant disturbance). Changes in the dependent variables were used as indicators of tundra disturbance. Two main tundra community types were studied: Coastal Plain (wet graminoid/moist sedge shrub) and Foothills (tussock). DNR constructed four models to address physical soil properties: two models for each main community type, one predicting change in depth of active layer and a second predicting change in soil moisture. DNR also investigated the limited potential management utility in using soil temperature, the amount of photosynthetically active radiation (PAR) absorbed by plants, and changes in microphotography as tools for the identification of disturbance in the field. DNR operated under the assumption that changes in the abiotic factors of active layer depth and soil moisture drive alteration in tundra vegetation structure and composition. Statistically significant differences in depth of active layer, soil moisture at a 15 cm depth, soil temperature at a 15 cm depth, and the absorption of photosynthetically active radiation were found among treatment cells and among treatment types. The models were unable to thoroughly investigate the interacting role between snow depth and disturbance due to

  20. AmeriFlux US-ICh Imnavait Creek Watershed Heath Tundra

    DOE Data Explorer

    Bret-Harte, Syndonia [University of Alaska Fairbanks; Euskirchen, Eugenie [University of Alaska Fairbanks; Shaver, Gaius [Marine Biological Laboratory

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-ICh Imnavait Creek Watershed Heath Tundra. Site Description - The Imnavait Creek Watershed Heath Tundra (Ridge Station) is located near Imnavait Creek in Alaska, north of the Brooks Range in the Kuparuk basin near Lake Toolik and the Toolik Field Station. The Kuparuk River has its headwaters in the Brooks Range and drains through northern Alaska into the Arctic Ocean. Within these headwaters lies the Imnavait basin at an average elevation of 930 m. Water tracks run down the hill in parallel zones with a spacing of approximately 10 m. The Ridge Station was deployed at the end of Summer 2007.

  1. Sunlight stimulates methane uptake and nitrous oxide emission from the High Arctic tundra.

    PubMed

    Li, Fangfang; Zhu, Renbin; Bao, Tao; Wang, Qing; Xu, Hua

    2016-12-01

    Many environmental factors affecting methane (CH 4 ) and nitrous oxide (N 2 O) fluxes have been investigated during the processes of carbon and nitrogen transformation in the boreal tundra. However, effects of sunlight on CH 4 and N 2 O fluxes and their budgets were neglected in the boreal tundra. Here, summertime CH 4 and N 2 O fluxes in the presence and total absence of sunlight were investigated at the six tundra sites (DM1-DM6) on Ny-Ålesund in the High Arctic. The mean CH 4 fluxes at the tundra sites ranged from -4.7 to -158.6μg CH 4 m -2 h -1 in the presence of light, indicating that a large CH 4 sink occurred in the tundra soils. However, enhanced CH 4 emission in total absence of light occurred at all the tundra sites. The mean N 2 O fluxes ranged from 7.4 to 14.6μg N 2 O m -2 h -1 in the presence of light, whereas in the absence of light all the tundra sites generally released less N 2 O, and even significant N 2 O uptake occurred there. Soil temperature, chamber temperature and soil moisture showed no significant correlations with tundra CH 4 and N 2 O flux. The presence of sunlight increased tundra CH 4 uptake by 114.2μg CH 4 m -2 h -1 and N 2 O emission by 10.9μg N 2 O m -2 h -1 compared with total absence of light. Overall our results showed that tundra ecosystem switched from CH 4 sink and N 2 O emission source in the presence of light to CH 4 emission source and N 2 O sink in the absence of light. Therefore sunlight had an important effect on CH 4 and N 2 O budgets in the High Arctic tundra. The exclusion of sunlight might overestimate CH 4 budgets, but underestimate N 2 O budgets in the Arctic tundra ecosystem. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Airborne Spectral Measurements of Surface-Atmosphere Anisotropy for Arctic Sea Ice and Tundra

    NASA Technical Reports Server (NTRS)

    Arnold, G. Thomas; Tsay, Si-Chee; King, Michael D.; Li, Jason Y.; Soulen, Peter F.

    1999-01-01

    Angular distributions of spectral reflectance for four common arctic surfaces: snow-covered sea ice, melt-season sea ice, snow-covered tundra, and tundra shortly after snowmelt were measured using an aircraft based, high angular resolution (1-degree) multispectral radiometer. Results indicate bidirectional reflectance is higher for snow-covered sea ice than melt-season sea ice at all wavelengths between 0.47 and 2.3 pm, with the difference increasing with wavelength. Bidirectional reflectance of snow-covered tundra is higher than for snow-free tundra for measurements less than 1.64 pm, with the difference decreasing with wavelength. Bidirectional reflectance patterns of all measured surfaces show maximum reflectance in the forward scattering direction of the principal plane, with identifiable specular reflection for the melt-season sea ice and snow-free tundra cases. The snow-free tundra had the most significant backscatter, and the melt-season sea ice the least. For sea ice, bidirectional reflectance changes due to snowmelt were more significant than differences among the different types of melt-season sea ice. Also the spectral-hemispherical (plane) albedo of each measured arctic surface was computed. Comparing measured nadir reflectance to albedo for sea ice and snow-covered tundra shows albedo underestimated 5-40%, with the largest bias at wavelengths beyond 1 pm. For snow-free tundra, nadir reflectance underestimates plane albedo by about 30-50%.

  3. Changing Arctic ecosystems: resilience of caribou to climatic shifts in the Arctic

    USGS Publications Warehouse

    Gustine, David D.; Adams, Layne G.; Whalen, Mary E.; Pearce, John M.

    2014-01-01

    The U.S. Geological Survey (USGS) Changing Arctic Ecosystems (CAE) initiative strives to inform key resource management decisions for Arctic Alaska by providing scientific information and forecasts for current and future ecosystem response to a warming climate. Over the past 5 years, a focal area for the USGS CAE initiative has been the North Slope of Alaska. This region has experienced a warming trend over the past 60 years, yet the rate of change has been varied across the North Slope, leading scientists to question the future response and resilience of wildlife populations, such as caribou (Rangifer tarandus), that rely on tundra habitats for forage. Future changes in temperature and precipitation to coastal wet sedge and upland low shrub tundra are expected, with unknown consequences for caribou that rely on these plant communities for food. Understanding how future environmental change may affect caribou migration, nutrition, and reproduction is a focal question being addressed by the USGS CAE research. Results will inform management agencies in Alaska and people that rely on caribou for food.

  4. AmeriFlux US-ICs Imnavait Creek Watershed Wet Sedge Tundra

    DOE Data Explorer

    Bret-Harte, Syndonia [University of Alaska Fairbanks; Euskirchen, Eugenie [University of Alaska Fairbanks; Shaver, Gaius [Marine Biological Laboratory

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-ICs Imnavait Creek Watershed Wet Sedge Tundra. Site Description - The Imnavait Creek Watershed Wet Sedge Tundra (Fen Station) is located near Imnavait Creek in Alaska, north of the Brooks Range in the Kuparuk basin near Lake Toolik and the Toolik Field Station. The Kuparuk River has its headwaters in the Brooks Range and drains through northern Alaska into the Arctic Ocean. Within these headwaters lies the Imnavait basin at an average elevation of 930 m. Water tracks run down the hill in parallel zones with a spacing of approximately 10 m. The Fen Station was deployed at the end of Summer 2007.

  5. An assessment of the carbon balance of arctic tundra: comparisons among observations, process models, and atmospheric inversions

    USGS Publications Warehouse

    McGuire, A.D.; Christensen, T.R.; Hayes, D.; Heroult, A.; Euskirchen, E.; Yi, Y.; Kimball, J.S.; Koven, C.; Lafleur, P.; Miller, P.A.; Oechel, W.; Peylin, P.; Williams, M.

    2012-01-01

    Although arctic tundra has been estimated to cover only 8% of the global land surface, the large and potentially labile carbon pools currently stored in tundra soils have the potential for large emissions of carbon (C) under a warming climate. These emissions as radiatively active greenhouse gases in the form of both CO2 and CH4 could amplify global warming. Given the potential sensitivity of these ecosystems to climate change and the expectation that the Arctic will experience appreciable warming over the next century, it is important to assess whether responses of C exchange in tundra regions are likely to enhance or mitigate warming. In this study we compared analyses of C exchange of Arctic tundra between 1990–1999 and 2000–2006 among observations, regional and global applications of process-based terrestrial biosphere models, and atmospheric inversion models. Syntheses of the compilation of flux observations and of inversion model results indicate that the annual exchange of CO2 between arctic tundra and the atmosphere has large uncertainties that cannot be distinguished from neutral balance. The mean estimate from an ensemble of process-based model simulations suggests that arctic tundra acted as a sink for atmospheric CO2 in recent decades, but based on the uncertainty estimates it cannot be determined with confidence whether these ecosystems represent a weak or a strong sink. Tundra was 0.6 °C warmer in the 2000s compared to the 1990s. The central estimates of the observations, process-based models, and inversion models each identify stronger sinks in the 2000s compared with the 1990s. Similarly, the observations and the applications of regional process-based models suggest that CH4 emissions from arctic tundra have increased from the 1990s to 2000s. Based on our analyses of the estimates from observations, process-based models, and inversion models, we estimate that arctic tundra was a sink for atmospheric CO2 of 110 Tg C yr-1 (uncertainty between a

  6. AmeriFlux US-ICt Imnavait Creek Watershed Tussock Tundra

    DOE Data Explorer

    Bret-Harte, Syndonia [University of Alaska Fairbanks; Euskirchen, Eugenie [University of Alaska Fairbanks; Shaver, Gaius [Marine Biological Laboratory

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-ICt Imnavait Creek Watershed Tussock Tundra. Site Description - The Imnavait Creek Watershed Tussock Tundra (Biocomplexity Station) is located near Imnavait Creek in Alaska, north of the Brooks Range in the Kuparuk basin near Lake Toolik and the Toolik Field Station. The Kuparuk River has its headwaters in the Brooks Range and drains through northern Alaska into the Arctic Ocean. Within these headwaters lies the Imnavait basin at an average elevation of 930 m. Water tracks run down the hill in parallel zones with a spacing of approximately 10 m. The Biocomplexity Station was deployed in 2004, and it has been in operation during the melt seasons ever since.

  7. Evidence and Implications of Frequent Fires in Ancient Shrub Tundra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higuera, P E; Brubaker, L B; Anderson, P M

    2008-03-06

    Understanding feedbacks between terrestrial and atmospheric systems is vital for predicting the consequences of global change, particularly in the rapidly changing Arctic. Fire is a key process in this context, but the consequences of altered fire regimes in tundra ecosystems are rarely considered, largely because tundra fires occur infrequently on the modern landscape. We present paleoecological data that indicate frequent tundra fires in northcentral Alaska between 14,000 and 10,000 years ago. Charcoal and pollen from lake sediments reveal that ancient birchdominated shrub tundra burned as often as modern boreal forests in the region, every 144 years on average (+/- 90more » s.d.; n = 44). Although paleoclimate interpretations and data from modern tundra fires suggest that increased burning was aided by low effective moisture, vegetation cover clearly played a critical role in facilitating the paleo-fires by creating an abundance of fine fuels. These records suggest that greater fire activity will likely accompany temperature-related increases in shrub-dominated tundra predicted for the 21st century and beyond. Increased tundra burning will have broad impacts on physical and biological systems as well as land-atmosphere interactions in the Arctic, including the potential to release stored organic carbon to the atmosphere.« less

  8. Post-fire Thermokarst Development Along a Planned Road Corridor in Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Jones, B. M.; Grosse, G.; Larsen, C. F.; Hayes, D. J.; Arp, C. D.; Liu, L.; Miller, E.

    2015-12-01

    Wildfire disturbance in northern high latitude regions is an important factor contributing to ecosystem and landscape change. In permafrost influenced terrain, fire may initiate thermokarst development which impacts hydrology, vegetation, wildlife, carbon storage and infrastructure. In this study we differenced two airborne LiDAR datasets that were acquired in the aftermath of the large and severe Anaktuvuk River tundra fire, which in 2007 burned across a proposed road corridor in Arctic Alaska. The 2009 LiDAR dataset was acquired by the Alaska Department of Transportation in preparation for construction of a gravel road that would connect the Dalton Highway with the logistical camp of Umiat. The 2014 LiDAR dataset was acquired by the USGS to quantify potential post-fire thermokarst development over the first seven years following the tundra fire event. By differencing the two 1 m resolution digital terrain models, we measured permafrost thaw subsidence across 34% of the burned tundra area studied, and observed less than 1% in similar, undisturbed tundra terrain units. Ice-rich, yedoma upland terrain was most susceptible to thermokarst development following the disturbance, accounting for 50% of the areal and volumetric change detected, with some locations subsiding more than six meters over the study period. Calculation of rugosity, or surface roughness, in the two datasets showed a doubling in microtopography on average across the burned portion of the study area, with a 340% increase in yedoma upland terrain. An additional LiDAR dataset was acquired in April 2015 to document the role of thermokarst development on enhanced snow accumulation and subsequent snowmelt runoff within the burn area. Our findings will enable future vulnerability assessments of ice-rich permafrost terrain as a result of shifting disturbance regimes. Such assessments are needed to address questions focused on the impact of permafrost degradation on physical, ecological, and socio

  9. Light-stress avoidance mechanisms in a Sphagnum-dominated wet coastal Arctic tundra ecosystem in Alaska.

    PubMed

    Zona, D; Oechel, Walter C; Richards, James H; Hastings, Steven; Kopetz, Irene; Ikawa, Hiroki; Oberbauer, Steven

    2011-03-01

    The Arctic experiences a high-radiation environment in the summer with 24-hour daylight for more than two months. Damage to plants and ecosystem metabolism can be muted by overcast conditions common in much of the Arctic. However, with climate change, extreme dry years and clearer skies could lead to the risk of increased photoxidation and photoinhibition in Arctic primary producers. Mosses, which often exceed the NPP of vascular plants in Arctic areas, are often understudied. As a result, the effect of specific environmental factors, including light, on these growth forms is poorly understood. Here, we investigated net ecosystem exchange (NEE) at the ecosystem scale, net Sphagnum CO2 exchange (NSE), and photoinhibition to better understand the impact of light on carbon exchange from a moss-dominated coastal tundra ecosystem during the summer season 2006. Sphagnum photosynthesis showed photoinhibition early in the season coupled with low ecosystem NEE. However, later in the season, Sphagnum maintained a significant CO2 uptake, probably for the development of subsurface moss layers protected from strong radiation. We suggest that the compact canopy structure of Sphagnum reduces light penetration to the subsurface layers of the moss mat and thereby protects the active photosynthetic tissues from damage. This stress avoidance mechanism allowed Sphagnum to constitute a significant percentage (up to 60%) of the ecosystem net daytime CO2 uptake at the end of the growing season despite the high levels of radiation experienced.

  10. Photosynthetic response of Eriophorum vaginatum to in situ shrub shading in tussock tundra of northern Alaska

    NASA Astrophysics Data System (ADS)

    Anderson-Smith, A.; Pattison, R.; Sullivan, P.; Welker, J. M.

    2009-12-01

    Eriophorum vaginatum (Cotton Grass) is an important component of moist acidic tussock tundra, a plant community that appears to be undergoing changes in species composition associated with climate warming. This species is one of the most abundant in the arctic tundra, and provides important forage for caribou in their calving grounds on the Arctic Coastal Plain and along their migratory route through the foothills of Alaska. Recently, remote sensing data, repeat photography and plot-level measurements have indicated that shrub abundance is increasing while Eriophorum abundance is either constant or decreasing. One possible explanation for the reduction of Eriophorum while Betula nana is increasing, is that lower light levels in the taller Betula canopy may be constraining Eriophorum photosynthesis and subsequently reducing plant growth. This study measured the effect of shading on the light response of Eriphorum leaf photosynthesis in four different sites near Toolik Lake Alaska during the summer of 2009. Measurements were taken in: 1) a shrub patch within the drift zone of the ITEX long term snow fence experiment, 2) an LTER shade house (50% shading) built in 1989, 3) water track site 1 and water track site 2 (i.e. control areas with no experimental manipulations) Average photosynthetic rates for Eriophorum at a light level of 800 PAR varied from 3.8 to 10.9 umol m-2 s-1 and were not significantly different in shaded and unshaded areas. This study indicates that shading by shrubs does not appear to be altering the light response of Eriophorum nor does long-term shading by itself eliminate Eriophorum from the community. An alternative explanation for the decline of Eriophorum while Betula increases in abundance under changing climates may be related to plant and soil mineral nutrition, plant water relations or biotic processes involving herbivores.

  11. Shrub encroachment in Arctic tundra: Betula nana effects on above- and belowground litter decomposition.

    PubMed

    McLaren, Jennie R; Buckeridge, Kate M; van de Weg, Martine J; Shaver, Gaius R; Schimel, Joshua P; Gough, Laura

    2017-05-01

    Rapid arctic vegetation change as a result of global warming includes an increase in the cover and biomass of deciduous shrubs. Increases in shrub abundance will result in a proportional increase of shrub litter in the litter community, potentially affecting carbon turnover rates in arctic ecosystems. We investigated the effects of leaf and root litter of a deciduous shrub, Betula nana, on decomposition, by examining species-specific decomposition patterns, as well as effects of Betula litter on the decomposition of other species. We conducted a 2-yr decomposition experiment in moist acidic tundra in northern Alaska, where we decomposed three tundra species (Vaccinium vitis-idaea, Rhododendron palustre, and Eriophorum vaginatum) alone and in combination with Betula litter. Decomposition patterns for leaf and root litter were determined using three different measures of decomposition (mass loss, respiration, extracellular enzyme activity). We report faster decomposition of Betula leaf litter compared to other species, with support for species differences coming from all three measures of decomposition. Mixing effects were less consistent among the measures, with negative mixing effects shown only for mass loss. In contrast, there were few species differences or mixing effects for root decomposition. Overall, we attribute longer-term litter mass loss patterns to patterns created by early decomposition processes in the first winter. We note numerous differences for species patterns between leaf and root decomposition, indicating that conclusions from leaf litter experiments should not be extrapolated to below-ground decomposition. The high decomposition rates of Betula leaf litter aboveground, and relatively similar decomposition rates of multiple species below, suggest a potential for increases in turnover in the fast-decomposing carbon pool of leaves and fine roots as the dominance of deciduous shrubs in the Arctic increases, but this outcome may be tempered by

  12. Use of a cable-based system for observing the heterogeneity of vegetation communities in arctic tundra

    NASA Astrophysics Data System (ADS)

    Ahrends, H. E.; Oberbauer, S. F.; Tweedie, C.; Hollister, R. D.

    2010-12-01

    Knowledge of changing tundra vegetation and its response to climate variability is critical for understanding the land-atmosphere-interactions for the Arctic and the global system. However, vegetation characteristics, such as phenology, structure and species composition, are characterized by an extreme heterogeneity at a small scale. Manual observations of these variables are highly time-consuming, labor intensive, subjective, and disturbing to the vegetation. In contrast, recently developed robotic systems (networked infomechanical systems, NIMS) allow for performing non-intrusive spatially integrated measurements of vegetation communities. Within the ITEX (International Tundra Experiment) AON (Arctic Observation Network) project we installed a cable-based sensor system, running over a transect of approximately 50 m length and 2 m width, at two long-term arctic research sites in Alaska. The trolley was initially equipped with instruments recording the distance to vegetation canopy, up- and downwelling short- and longwave radiation, air and surface temperature and spectral reflection. We aim to study the thermal and spectral response of the vegetation communities over a wide range of ecosystem types. We expect that automated observations, covering the spatial heterogeneity of vegetation and surface characteristics, can give a deeper insight in ecosystem functioning and vegetation response to climate. The data can be used for scaling up vegetation characteristics derived from manual measurements and for linking them to aircraft and satellite data and to carbon, water and surface energy budgets measured at the ecosystem scale. Sampling errors due to cable sag are correctable and effects of wind-driven movements can be offset by repeat measurements. First hand-pulled test measurements during summer 2010 show strong heterogeneity of the observation parameters and a variable spectral and thermal response of the plants within the transects. Differences support the

  13. Identifying nitrogen limitations to organic sediments accumulation in various vegetation types of arctic tundra (Hornsund, Svalbard)

    NASA Astrophysics Data System (ADS)

    Skrzypek, G.; Wojtuń, B.; Hua, Q.; Richter, D.; Jakubas, D.; Wojczulanis-Jakubas, K.; Samecka-Cymerman, A.

    2015-12-01

    Arctic and subarctic regions play important roles in the global carbon balance. However, nitrogen (N) deficiency is a major constraint for organic carbon sequestration in the High Arctic. Hence, the identification of the relative contributions from different N-sources is critical for understanding the constraints that limit tundra growth. The stable nitrogen composition of the three main N-sources and numerous plants were analyzed in ten tundra types in the Fuglebekken catchment (Hornsund Fjord, Svalbard, 77°N 15°E). The percentage of the total tundra N-pool provided by seabirds' feces (colonially breeding, planktivorous Alle alle), ranged from 0-21% in Patterned-ground tundra to 100% in Ornithocoprophilous tundra. The total N-pool utilized by tundra plants in the studied catchment was built in 36% by birds, 38% by atmospheric deposition, and 26% by N2-fixation. The results clearly show that N-pool in the tundra is significantly supplemented by nesting seabirds. Thus, if they experienced substantial negative environmental pressure associated with climate change, it would adversely influence the tundra N-budget [1]. The growth rates and the sediment thickness (<15 cm) in different tundra types varied considerably but the tundra age was similar, <450 cal BP. The only exception was Ornithocoprophilous tundra with very diverse ages ranging from 235 to 2300 cal BP and thickness up to 110cm. The growth rates for this tundra (62 cm core, 18 AMS 14C dates) were high (1.5-3.0 mm/yr) between 1568 and 1804 AD and then substantially declined for the period between 1804 and 1929 AD (0.2 mm/yr). These findings deliver an additional argument, that the organic matter accumulation is driven not only directly by climatic conditions but also by birds' contribution to the tundra N-pool. [1] Skrzypek G, Wojtuń B, Richter D, Jakubas D, Wojczulanis-Jakubas K, Samecka-Cymerman A, 2015. Diversification of nitrogen sources in various tundra vegetation types in the high Arctic. PLoS ONE

  14. Carbon loss from an unprecedented Arctic tundra wildfire

    Treesearch

    Michelle C. Mack; M. Syndonia Bret-Harte; Teresa N. Hollingsworth; Randi R. Jandt; Edward A.G. Schuur; Gaius R. Shaver; David L. Verbyla

    2011-01-01

    Arctic tundra soils store large amounts of carbon (C) in organic soil layers hundreds to thousands of years old that insulate, and in some cases maintain, permafrost soils. Fire has been largely absent from most of this biome since the early Holocene epoch, but its frequency and extent are increasing, probably in response to climate warming. The effect of fires on the...

  15. Biotic responses buffer warming-induced soil organic carbon loss in Arctic tundra.

    PubMed

    Liang, Junyi; Xia, Jiangyang; Shi, Zheng; Jiang, Lifen; Ma, Shuang; Lu, Xingjie; Mauritz, Marguerite; Natali, Susan M; Pegoraro, Elaine; Penton, C Ryan; Plaza, César; Salmon, Verity G; Celis, Gerardo; Cole, James R; Konstantinidis, Konstantinos T; Tiedje, James M; Zhou, Jizhong; Schuur, Edward A G; Luo, Yiqi

    2018-05-26

    Climate warming can result in both abiotic (e.g., permafrost thaw) and biotic (e.g., microbial functional genes) changes in Arctic tundra. Recent research has incorporated dynamic permafrost thaw in Earth system models (ESMs) and indicates that Arctic tundra could be a significant future carbon (C) source due to the enhanced decomposition of thawed deep soil C. However, warming-induced biotic changes may influence biologically related parameters and the consequent projections in ESMs. How model parameters associated with biotic responses will change under warming and to what extent these changes affect projected C budgets have not been carefully examined. In this study, we synthesized six data sets over five years from a soil warming experiment at the Eight Mile Lake, Alaska, into the Terrestrial ECOsystem (TECO) model with a probabilistic inversion approach. The TECO model used multiple soil layers to track dynamics of thawed soil under different treatments. Our results show that warming increased light use efficiency of vegetation photosynthesis but decreased baseline (i.e., environment-corrected) turnover rates of SOC in both the fast and slow pools in comparison with those under control. Moreover, the parameter changes generally amplified over time, suggesting processes of gradual physiological acclimation and functional gene shifts of both plants and microbes. The TECO model predicted that field warming from 2009 to 2013 resulted in cumulative C losses of 224 or 87 g m -2 , respectively, without or with changes in those parameters. Thus, warming-induced parameter changes reduced predicted soil C loss by 61%. Our study suggests that it is critical to incorporate biotic changes in ESMs to improve the model performance in predicting C dynamics in permafrost regions. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Wildfires and thunderstorms on Alaska's north slopes

    Treesearch

    Richard J. Barney; Albert L. Comiskey

    1973-01-01

    Existing records show that five wildfires burned more than 1,600 hectares of tundra on Alaska's Arctic Slope. Environmental conditions suitable for lightning, ignition, and burning occur more often than previously recognized at this northern latitude.

  17. Alaska's Living Tundra. Alaska Wildlife Week, 25-29 April 1988. Unit 6: Primary Teacher's Guide; Upper Elementary Teacher's Guide; Junior/Senior High School Teacher's Guide; Supplement.

    ERIC Educational Resources Information Center

    Quinlan, Susan E.

    Despite its cold and barren appearance, Alaska's tundra supports a surprising variety of insects, birds, and mammals. In this document, three teacher's guides (for primary, upper elementary, and junior and senior high schools) and a supplementary resource packet present a comprehensive unit of study on Alaska's living tundra. The five lessons in…

  18. Variation in bird's originating nitrogen availability limits High Arctic tundra development over last 2000 year (Hornsund, Svalbard)

    NASA Astrophysics Data System (ADS)

    Skrzypek, Grzegorz; Wojtuń, Bronisław; Hua, Quan; Richter, Dorota; Jakubas, Dariusz; Wojczulanis-Jakubas, Katarzyna; Samecka-Cymerman, Aleksandra

    2016-04-01

    Arctic and subarctic regions play important roles in the global carbon balance. However, nitrogen (N) deficiency is a major constraint for organic carbon sequestration in the High Arctic. Hence, the identification of the relative contributions from different N-sources is critical for understanding the constraints that limit tundra growth. The stable nitrogen composition of the three main N-sources and numerous plants were analyzed in ten tundra types (including those influenced by seabirds) in the Fuglebekken catchment (Hornsund, Svalbard, 77°N 15°E). The percentage of the total tundra N-pool provided by seabirds' feces (from planktivorous colonially breeding little auks Alle alle), ranged from 0-21% in Patterned-ground tundra to 100% in Ornithocoprophilous tundra. The total N-pool utilized by tundra plants in the studied catchment originated from birds (36%), atmospheric deposition (38%), and N2-fixation (26%). The results clearly show that N-pool in the tundra is significantly supplemented by nesting seabirds. Thus, if they experienced climate change induced substantial negative environmental pressure, it would adversely influence the tundra N-budget (Skrzypek et al. 2015). The growth rates and the sediment thickness (<15cm) in different tundra types varied considerably but the tundra age was similar in the whole area, <450 cal BP. The only exception was Ornithocoprophilous bird-N rich tundra with very diverse ages ranging from 235 to 2300 cal BP and thickness up to 110 cm. The growth rates for this tundra (62 cm core, 18 AMS 14C dates) were high (1.5-3.0 mm/yr) between 1568 and 1804 AD and then substantially declined for the period between 1804 and 1929 AD (0.2 mm/yr). These findings deliver an additional argument, that the organic matter accumulation is driven not only directly by climatic conditions but also by birds' contribution to the tundra N-pool. Skrzypek G, Wojtuń B, Richter D, Jakubas D, Wojczulanis-Jakubas K, Samecka-Cymerman A, 2015

  19. Structural complexity and land-surface energy exchange along a gradient from arctic tundra to boreal forest

    USGS Publications Warehouse

    Thompson, C.; Beringer, J.; Chapin, F. S.; McGuire, A.D.

    2004-01-01

    Question: Current climate changes in the Alaskan Arctic, which are characterized by increases in temperature and length of growing season, could alter vegetation structure, especially through increases in shrub cover or the movement of treeline. These changes in vegetation structure have consequences for the climate system. What is the relationship between structural complexity and partitioning of surface energy along a gradient from tundra through shrub tundra to closed canopy forest? Location: Arctic tundra-boreal forest transition in the Alaskan Arctic. Methods: Along this gradient of increasing canopy complexity, we measured key vegetation characteristics, including community composition, biomass, cover, height, leaf area index and stem area index. We relate these vegetation characteristics to albedo and the partitioning of net radiation into ground, latent, and sensible heating fluxes. Results: Canopy complexity increased along the sequence from tundra to forest due to the addition of new plant functional types. This led to non-linear changes in biomass, cover, and height in the understory. The increased canopy complexity resulted in reduced ground heat fluxes, relatively conserved latent heat fluxes and increased sensible heat fluxes. The localized warming associated with increased sensible heating over more complex canopies may amplify regional warming, causing further vegetation change in the Alaskan Arctic.

  20. Methane emissions from tundra environments in the Yukon-Kuskokwin Delta, Alaska

    NASA Technical Reports Server (NTRS)

    Bartlett, Karen B.; Crill, Patrick M.; Sass, Ronald L.; Harriss, Robert C.; Dise, Nancy B.

    1992-01-01

    This paper reports CH4 flux to the atmosphere from a variety of tundra environments near Bethel, Alaska during the summer months of 1988. Emissions from wet meadow tundra averaged 144 +/- 31 mg/sq m/d and ranged from 15.6 to 426 mg/sq m/d varying with soil moisture and temperature. Flux from the drier upland tundra was about two orders of magnitude lower and averaged 2.3 +/- 1.1 mg/sq m/d. Tundra lakes emit CH4 from the open water surface as well as from fringing aquatic vegetation; the presence of vegetation significantly enhanced flux over open water rates. Calculated diffusive fluxes from open water varied with lake size, the large lakes emitting 3.8 mg/sq m/d and small lakes emitting an average of 77 mg/sq m/d. An updated estimate of global emissions from tundra indicates an annual fluxes of approximately 11 +/- 3 Tg CH4.

  1. Influence of human development and predators on nest survival of tundra birds, Arctic Coastal Plain, Alaska.

    PubMed

    Liebezeit, J R; Kendall, S J; Brown, S; Johnson, C B; Martin, P; McDonald, T L; Payer, D C; Rea, C L; Streever, B; Wildman, A M; Zack, S

    2009-09-01

    Nest predation may influence population dynamics of birds on the Arctic Coastal Plain (ACP) of Alaska, USA. Anthropogenic development on the ACP is increasing, which may attract nest predators by providing artificial sources of food, perches, den sites, and nest sites. Enhanced populations or concentrations of human-subsidized predators may reduce nest survival for tundra-nesting birds. In this study, we tested the hypothesis that nest survival decreases in proximity to human infrastructure. We monitored 1257 nests of 13 shorebird species and 619 nests of four passerine species at seven sites on the ACP from 2002 to 2005. Study sites were chosen to represent a range of distances to infrastructure from 100 m to 80 km. We used Cox proportional hazards regression models to evaluate the effects of background (i.e., natural) factors and infrastructure on nest survival. We documented high spatial and temporal variability in nest survival, and site and year were both included in the best background model. We did not detect an effect of human infrastructure on nest survival for shorebirds as a group. In contrast, we found evidence that risk of predation for passerine nests increased within 5 km of infrastructure. This finding provides quantitative evidence of a relationship between infrastructure and nest survival for breeding passerines on the ACP. A posteriori finer-scale analyses (within oil field sites and individual species) suggested that Red and Red-necked Phalaropes combined (Phalaropus fulicarius, P. lobatus) had lower productivity closer to infrastructure and in areas with higher abundance of subsidized predators. However, we did not detect such a relationship between infrastructure and nest survival for Semipalmated and Pectoral Sandpipers (Calidris pusilla, C. melanotos), the two most abundant shorebirds. High variability in environmental conditions, nest survival, and predator numbers between sites and years may have contributed to these inconsistent results

  2. A methane flux transect along the trans-Alaska pipeline haul road

    NASA Technical Reports Server (NTRS)

    Whalen, S. C.; Reeburgh, W. S.

    1990-01-01

    This paper reports and analyzes methane flux measurements made during the summer of 1987 at 10 km intervals along a north-south direction from Prudhoe Bay to the Arctic Circle in Alaska. Mean CH4 flux from the arctic tundra was 52 mg/sq m/d while that from high-latitude taiga was 11 mg/sq m/d. Fluxes in mg/sq m/d for various plant communities were: wet tundra, 90; low brush-muskeg bog, 45; moist tundra, 31; freshwater ponds, 21; spruce forest, 4.6; and alpine tundra, 0.6. Annual CH4 emission from global tundra and taiga environments is estimated at 38 Tg and 15 Tg, respectively. This is about 46 percent of the wetland emission term of 10 percent of the global atmospheric input.

  3. Microbial Community and Functional Gene Changes in Arctic Tundra Soils in a Microcosm Warming Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ziming; Yang, Sihang; Van Nostrand, Joy D.

    Microbial decomposition of soil organic carbon (SOC) in the thawing Arctic permafrost is one of the most important, but poorly understood, processes in determining the greenhouse gases feedback of tundra ecosystems to climate. Here in this paper, we examine changes in microbial community structure during an anoxic incubation at either –2 or 8 °C for up to 122 days using both an organic and a mineral soil collected from the Barrow Environmental Observatory in northern Alaska, USA. Soils were characterized for SOC chemistry, and GeoChips were used to determine microbial community structure and functional genes associated with C degradation andmore » Fe(III) reduction. We observed notable decreases in functional gene diversity (at P < 0.05) in response to warming at 8 °C, particularly in the organic soil. A number of genes associated with SOC degradation, fermentation, methanogenesis, and iron cycling decreased significantly (P < 0.05) after 122 days of incubation, which coincided well with decreasing labile SOC content, soil respiration, methane production, and iron reduction. The soil type (i.e., organic vs. mineral) and the availability of labile SOC were among the most significant environmental factors impacting the functional community structure. In contrast, the functional structure was largely unchanged in the –2 °C incubation due to low microbial activity resulting in less competition or exclusion. These results demonstrate the vulnerability of SOC in Arctic tundra to warming, facilitated by iron reduction and methanogenesis, and the importance of microbial communities in moderating such vulnerability.« less

  4. Microbial Community and Functional Gene Changes in Arctic Tundra Soils in a Microcosm Warming Experiment

    DOE PAGES

    Yang, Ziming; Yang, Sihang; Van Nostrand, Joy D.; ...

    2017-09-19

    Microbial decomposition of soil organic carbon (SOC) in the thawing Arctic permafrost is one of the most important, but poorly understood, processes in determining the greenhouse gases feedback of tundra ecosystems to climate. Here in this paper, we examine changes in microbial community structure during an anoxic incubation at either –2 or 8 °C for up to 122 days using both an organic and a mineral soil collected from the Barrow Environmental Observatory in northern Alaska, USA. Soils were characterized for SOC chemistry, and GeoChips were used to determine microbial community structure and functional genes associated with C degradation andmore » Fe(III) reduction. We observed notable decreases in functional gene diversity (at P < 0.05) in response to warming at 8 °C, particularly in the organic soil. A number of genes associated with SOC degradation, fermentation, methanogenesis, and iron cycling decreased significantly (P < 0.05) after 122 days of incubation, which coincided well with decreasing labile SOC content, soil respiration, methane production, and iron reduction. The soil type (i.e., organic vs. mineral) and the availability of labile SOC were among the most significant environmental factors impacting the functional community structure. In contrast, the functional structure was largely unchanged in the –2 °C incubation due to low microbial activity resulting in less competition or exclusion. These results demonstrate the vulnerability of SOC in Arctic tundra to warming, facilitated by iron reduction and methanogenesis, and the importance of microbial communities in moderating such vulnerability.« less

  5. Simulating carbon and water fluxes at Arctic and boreal ecosystems in Alaska by optimizing the modified BIOME-BGC with eddy covariance data

    NASA Astrophysics Data System (ADS)

    Ueyama, M.; Kondo, M.; Ichii, K.; Iwata, H.; Euskirchen, E. S.; Zona, D.; Rocha, A. V.; Harazono, Y.; Nakai, T.; Oechel, W. C.

    2013-12-01

    To better predict carbon and water cycles in Arctic ecosystems, we modified a process-based ecosystem model, BIOME-BGC, by introducing new processes: change in active layer depth on permafrost and phenology of tundra vegetation. The modified BIOME-BGC was optimized using an optimization method. The model was constrained using gross primary productivity (GPP) and net ecosystem exchange (NEE) at 23 eddy covariance sites in Alaska, and vegetation/soil carbon from a literature survey. The model was used to simulate regional carbon and water fluxes of Alaska from 1900 to 2011. Simulated regional fluxes were validated with upscaled GPP, ecosystem respiration (RE), and NEE based on two methods: (1) a machine learning technique and (2) a top-down model. Our initial simulation suggests that the original BIOME-BGC with default ecophysiological parameters substantially underestimated GPP and RE for tundra and overestimated those fluxes for boreal forests. We will discuss how optimization using the eddy covariance data impacts the historical simulation by comparing the new version of the model with simulated results from the original BIOME-BGC with default ecophysiological parameters. This suggests that the incorporation of the active layer depth and plant phenology processes is important to include when simulating carbon and water fluxes in Arctic ecosystems.

  6. Below-ground carbon transfer among Betula nana may increase with warming in Arctic tundra.

    PubMed

    Deslippe, Julie R; Simard, Suzanne W

    2011-11-01

    • Shrubs are expanding in Arctic tundra, but the role of mycorrhizal fungi in this process is unknown. We tested the hypothesis that mycorrhizal networks are involved in interplant carbon (C) transfer within a tundra plant community. • Here, we installed below-ground treatments to control for C transfer pathways and conducted a (13)CO(2)-pulse-chase labelling experiment to examine C transfer among and within plant species. • We showed that mycorrhizal networks exist in tundra, and facilitate below-ground transfer of C among Betula nana individuals, but not between or within the other tundra species examined. Total C transfer among conspecific B. nana pairs was 10.7 ± 2.4% of photosynthesis, with the majority of C transferred through rhizomes or root grafts (5.2 ± 5.3%) and mycorrhizal network pathways (4.1 ± 3.3%) and very little through soil pathways (1.4 ± 0.35%). • Below-ground C transfer was of sufficient magnitude to potentially alter plant interactions in Arctic tundra, increasing the competitive ability and mono-dominance of B. nana. C transfer was significantly positively related to ambient temperatures, suggesting that it may act as a positive feedback to ecosystem change as climate warms. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  7. Metals in Racomitrium lanuginosum from Arctic (SW Spitsbergen, Svalbard archipelago) and alpine (Karkonosze, SW Poland) tundra.

    PubMed

    Wojtuń, Bronisław; Samecka-Cymerman, Aleksandra; Kolon, Krzysztof; Kempers, Alexander J

    2018-05-01

    Arctic-alpine tundra habitats are very vulnerable to the input of relatively small amounts of xenobiotics, and thus their level in such areas must be carefully controlled. Therefore, we collected the terrestrial widespread moss Racomitrium lanuginosum (Hedw.) Brid. in Spitsbergen in the Arctic moss lichen tundra and, for comparison, in the Arctic-alpine tundra in the Karkonosze (SW Poland). Concentrations of the elements Cd, Co, Cr, Cu, Fe, Hg, Li, Mn, Mo, Na, Ni, Pb, V, and Zn in this species and in the parent rock material were measured. We tested the following hypothesis: R. lanuginosum from Spitsbergen contains lower metal levels than the species from the Karkonosze collected at altitudes influenced by long-range transport from former Black Triangle industry. Principal component and classification analysis (PCCA) ordination revealed that mosses of Spitsbergen were distinguished by a significantly higher Na concentration of marine spray origin and mosses of Karkonosze were distinguished by significantly higher concentrations of Cd, Cr, Cu, Fe, Hg, Li, Mn, Pb, V, and Zn probably from long-range atmospheric transport. The influence of the polar station with a waste incinerator resulted in significantly higher Co, Li, and Ni concentrations in neighbouring mosses in comparison with this species from other sites. This investigation contributes to the use of R. lanuginosum as a bioindicator for metal contamination in Arctic and alpine tundra regions characterised by severe climate habitats with a restricted number of species. This moss enables the control of pollution usually brought solely by long-range atmospheric transport in high mountains as well as in Arctic areas.

  8. Changing Seasonality of Tundra Vegetation and Associated Climatic Variables

    NASA Astrophysics Data System (ADS)

    Bhatt, U. S.; Walker, D. A.; Raynolds, M. K.; Bieniek, P.; Epstein, H. E.; Comiso, J. C.; Pinzon, J.; Tucker, C. J.; Steele, M.; Ermold, W. S.; Zhang, J.

    2014-12-01

    This study documents changes in the seasonality of tundra vegetation productivity and its associated climate variables using long-term data sets. An overall increase of Pan-Arctic tundra greenness potential corresponds to increased land surface temperatures and declining sea ice concentrations. While sea ice has continued to decline, summer land surface temperature and vegetation productivity increases have stalled during the last decade in parts of the Arctic. To understand the processes behind these features we investigate additional climate parameters. This study employs remotely sensed weekly 25-km sea ice concentration, weekly surface temperature, and bi-weekly NDVI from 1982 to 2013. Maximum NDVI (MaxNDVI, Maximum Normalized Difference Vegetation Index), Time Integrated NDVI (TI-NDVI), Summer Warmth Index (SWI, sum of degree months above freezing during May-August), ocean heat content (PIOMAS, model incorporating ocean data assimilation), and snow water equivalent (GlobSnow, assimilated snow data set) are explored. We analyzed the data for the full period (1982-2013) and for two sub-periods (1982-1998 and 1999-2013), which were chosen based on the declining Pan-Arctic SWI since 1998. MaxNDVI has increased from 1982-2013 over most of the Arctic but has declined from 1999 to 2013 over western Eurasia, northern Canada, and southwest Alaska. TI-NDVI has trends that are similar to those for MaxNDVI for the full period but displays widespread declines over the 1999-2013 period. Therefore, as the MaxNDVI has continued to increase overall for the Arctic, TI-NDVI has been declining since 1999. SWI has large relative increases over the 1982-2013 period in eastern Canada and Greenland and strong declines in western Eurasia and southern Canadian tundra. Weekly Pan-Arctic tundra land surface temperatures warmed throughout the summer during the 1982-1998 period but display midsummer declines from 1999-2013. Weekly snow water equivalent over Arctic tundra has declined over

  9. Arctic tundra and mountain landscapes are persistent sinks of atmospheric CH4

    NASA Astrophysics Data System (ADS)

    Christiansen, Jesper; Winkler, Renato; Juncher Jørgensen, Christian

    2017-04-01

    Recent studies have shown significant rates of net uptake of atmospheric methane (CH4) in Arctic tundra soils. Oxidation of CH4 in these cold, dry soils in the Arctic region can counteract CH4 emissions from wetlands and play a potential important role for the net Arctic CH4 budget. However, significant knowledge gaps exist on the overall magnitude of the net CH4 sink in these cold, dry systems as the spatial and environmental limits for CH4 oxidation has not been determined. In particular, the extent, magnitude and drivers of CH4 oxidation in mountains and alpine landforms, which occupy large land areas in the Arctic and High Arctic has not yet been investigated leaving a potential vast CH4 sink unquantified with major potential implications for our conceptual view of Arctic CH4 budget in a changing climate. Here we present the results from two expeditions in the summers of 2015 and 2016 from Disko Bay and in the pro-glacial landscape in vicinity of the Russell Glacier, Kangerlussuaq, Greenland, respectively. The aim of our work is to determine the magnitude and extent of net uptake of atmospheric CH4 across a variety of previously unexplored dry tundra and post-glacial landforms in the Arctic, i.e. marginal moraines and other glacial features at the Greenland ice sheet as well as mountain tops and outwash plains. We used high-precision, mobile cavity-ring-down spectrometers (e.g. model G4301 GasScouter, Picarro Inc.) to achieve reliable flux estimates in sub-ambient CH4 concentration levels with a 4-minute enclosure time per chamber measurement. Our results show a persistent net uptake of CH4 uptake in these dry, extreme environments that rival the sink strength observed in temperate forest soils, otherwise considered the primary global terrestrial sink of atmospheric CH4. In this dynamic glacial landscape the magnitude of the net CH4 uptake is mainly constrained by recent landscape evolution along glacier margins and meltwater systems. Utilizing the high

  10. Vegetation shifts observed in arctic tundra 17 years after fire

    USGS Publications Warehouse

    Barrett, Kirsten; Rocha, Adrian V.; van de Weg, Martine Janet; Shaver, Gaius

    2012-01-01

    With anticipated climate change, tundra fires are expected to occur more frequently in the future, but data on the long-term effects of fire on tundra vegetation composition are scarce. This study addresses changes in vegetation structure that have persisted for 17 years after a tundra fire on the North Slope of Alaska. Fire-related shifts in vegetation composition were assessed from remote-sensing imagery and ground observations of the burn scar and an adjacent control site. Early-season remotely sensed imagery from the burn scar exhibits a low vegetation index compared with the control site, whereas the late-season signal is slightly higher. The range and maximum vegetation index are greater in the burn scar, although the mean annual values do not differ among the sites. Ground observations revealed a greater abundance of moss in the unburned site, which may account for the high early growing season normalized difference vegetation index (NDVI) anomaly relative to the burn. The abundance of graminoid species and an absence of Betula nana in the post-fire tundra sites may also be responsible for the spectral differences observed in the remotely sensed imagery. The partial replacement of tundra by graminoid-dominated ecosystems has been predicted by the ALFRESCO model of disturbance, climate and vegetation succession.

  11. Long-term Nutrient Fertilization Increases CO2 Loss in Arctic Tundra

    NASA Astrophysics Data System (ADS)

    Graham, L. M.; Natali, S.; Rastetter, E. B.; Shaver, G. R.; Risk, D. A.; Loranty, M. M.; Jastrow, J. D.

    2015-12-01

    As anthropogenic climate change warms the Arctic, organic carbon (C) trapped in permafrost is at an increased risk of being released to the atmosphere as carbon dioxide (CO2). At the same time, higher rates of decomposition may increase nutrient availability and enhance plant growth, leading to an uptake of C that may offset respiratory losses. Arctic tundra ecosystems are highly nitrogen (N) limited, and the indirect effects of warming on nutrient availability will be the most likely outcome of increased temperature on plant productivity. This study aims to understand the effects of nutrient addition on arctic CO2 and H2O exchange in a tundra ecosystem at Toolik Lake Field Station, Alaska. The nutrient addition experiment, which began in 2006, is comprised of 7 fertilization treatments: 0.5, 1, 2, 5, and 10 g m-2 of N as NO3- and NH4+ (1:1) with 0.25, 0.5, 1, 2.5, and 5 g m-2 of phosphorus as PO43-; 5 g m-2 of N as NO3-; 5 g m-2 of N as NH4+, and one control plot. Plot-level CO2 and H2O exchange was measured at 5 light levels 7 times over a four-week period in June and July 2015. We measured ecosystem CO2 and H2O exchange using a rectangular plexiglass chamber (0.49 m2) that was connected to an infrared gas analyzer (LI-840). Other ecosystem variables measured include thaw depth, soil moisture and temperature, and normalized difference vegetation index. After 10 years of nutrient addition, fertilization significantly altered ecosystem C cycling. Soil respiration was greatest in the highest fertilization treatment (2.97 μmol m-2 s-1), increasing linearly with nutrient level at a rate of 0.133 μmol m-2 s-1 per g m-2 of N added (R2=0.914). Net CO2 uptake was greatest under highest fertilization (-2.06 μmol m-2 s-1), decreasing linearly with nutrient addition at a rate of -0.068 μmol m-2 s-1 per g m-2 of N added (R2=0.687). These results suggest that as nutrients become more available under a warmer climate, plant productivity increases may not offset respiratory

  12. Shrub expansion and climate feedbacks in Arctic tundra

    NASA Astrophysics Data System (ADS)

    Loranty, Michael M.; Goetz, Scott J.

    2012-03-01

    Arctic tundra ecosystems stand to play a substantial role in both the magnitude and rate of global climate warming over the coming decades and centuries. The exact nature of this role will be determined by the combined effects of currently amplified rates of climate warming in the Arctic (Serreze et al 2000) and a series of related positive climate feedbacks that include mobilization of permafrost carbon (Schuur et al 2008), decreases in surface albedo (Chapin et al 2005) and evapotranspiration (ET) mediated increases in atmospheric water vapor (Swann et al 2010). Conceptually, these feedback mechanisms are intuitive and readily comprehensible: warming-induced permafrost thaw will make new soil carbon pools accessible for microbial respiration, and increased vegetation productivity, expansion of shrubs in particular, will lower surface reflectance and increase ET. However, our current understanding of these feedback mechanisms relies largely on limited and local field studies and, as such, the quantitative estimates of feedback effects on regional and global climate require spatial upscaling and uncertainty estimates derived from models. Moreover, the feedback mechanisms interact and their combined net effect on climate is highly variable and not well characterized. A recent study by Bonfils et al (2012) is among the first to explicitly examine how shrub expansion in tundra ecosystems will impact regional climate. Using an Earth system model, Bonfils et al find that an idealized 20% increase in shrub cover north of 60°N latitude will lead to annual temperature increases of 0.66 °C and 1.84 °C, respectively, when the shrubs are 0.5 m and 2 m tall. The modeled temperature increases arise from atmospheric heating as a combined consequence of decreased albedo and increased ET. The primary difference between the two cases is associated with the fact that tall shrubs protrude above the snow, thus reducing albedo year round, whereas short shrubs are completely

  13. Importance of Marine-Derived Nutrients Supplied by Planktivorous Seabirds to High Arctic Tundra Plant Communities

    PubMed Central

    Zwolicki, Adrian; Zmudczyńska-Skarbek, Katarzyna; Richard, Pierre; Stempniewicz, Lech

    2016-01-01

    We studied the relative importance of several environmental factors for tundra plant communities in five locations across Svalbard (High Arctic) that differed in geographical location, oceanographic and climatic influence, and soil characteristics. The amount of marine-derived nitrogen in the soil supplied by seabirds was locally the most important of the studied environmental factors influencing the tundra plant community. We found a strong positive correlation between δ15N isotopic values and total N content in the soil, confirming the fundamental role of marine-derived matter to the generally nutrient-poor Arctic tundra ecosystem. We also recorded a strong correlation between the δ15N values of soil and of the tissues of vascular plants and mosses, but not of lichens. The relationship between soil δ15N values and vascular plant cover was linear. In the case of mosses, the percentage ground cover reached maximum around a soil δ 15N value of 8‰, as did plant community diversity. This soil δ15N value clearly separated the occurrence of plants with low nitrogen tolerance (e.g. Salix polaris) from those predominating on high N content soils (e.g. Cerastium arcticum, Poa alpina). Large colonies of planktivorous little auks have a great influence on Arctic tundra vegetation, either through enhancing plant abundance or in shaping plant community composition at a local scale. PMID:27149113

  14. Importance of Marine-Derived Nutrients Supplied by Planktivorous Seabirds to High Arctic Tundra Plant Communities.

    PubMed

    Zwolicki, Adrian; Zmudczyńska-Skarbek, Katarzyna; Richard, Pierre; Stempniewicz, Lech

    2016-01-01

    We studied the relative importance of several environmental factors for tundra plant communities in five locations across Svalbard (High Arctic) that differed in geographical location, oceanographic and climatic influence, and soil characteristics. The amount of marine-derived nitrogen in the soil supplied by seabirds was locally the most important of the studied environmental factors influencing the tundra plant community. We found a strong positive correlation between δ15N isotopic values and total N content in the soil, confirming the fundamental role of marine-derived matter to the generally nutrient-poor Arctic tundra ecosystem. We also recorded a strong correlation between the δ15N values of soil and of the tissues of vascular plants and mosses, but not of lichens. The relationship between soil δ15N values and vascular plant cover was linear. In the case of mosses, the percentage ground cover reached maximum around a soil δ 15N value of 8‰, as did plant community diversity. This soil δ15N value clearly separated the occurrence of plants with low nitrogen tolerance (e.g. Salix polaris) from those predominating on high N content soils (e.g. Cerastium arcticum, Poa alpina). Large colonies of planktivorous little auks have a great influence on Arctic tundra vegetation, either through enhancing plant abundance or in shaping plant community composition at a local scale.

  15. Circumpolar spatio-temporal patterns and contributing climatic factors of wildfire activity in the Arctic tundra from 2001-2015

    NASA Astrophysics Data System (ADS)

    Masrur, Arif; Petrov, Andrey N.; DeGroote, John

    2018-01-01

    Recent years have seen an increased frequency of wildfire events in different parts of Arctic tundra ecosystems. Contemporary studies have largely attributed these wildfire events to the Arctic’s rapidly changing climate and increased atmospheric disturbances (i.e. thunderstorms). However, existing research has primarily examined the wildfire-climate dynamics of individual large wildfire events. No studies have investigated wildfire activity, including climatic drivers, for the entire tundra biome across multiple years, i.e. at the planetary scale. To address this limitation, this paper provides a planetary/circumpolar scale analyses of space-time patterns of tundra wildfire occurrence and climatic association in the Arctic over a 15 year period (2001-2015). In doing so, we have leveraged and analyzed NASA Terra’s MODIS active fire and MERRA climate reanalysis products at multiple temporal scales (decadal, seasonal and monthly). Our exploratory spatial data analysis found that tundra wildfire occurrence was spatially clustered and fire intensity was spatially autocorrelated across the Arctic regions. Most of the wildfire events occurred in the peak summer months (June-August). Our multi-temporal (decadal, seasonal and monthly) scale analyses provide further support to the link between climate variability and wildfire activity. Specifically, we found that warm and dry conditions in the late spring to mid-summer influenced tundra wildfire occurrence, spatio-temporal distribution, and fire intensity. Additionally, reduced average surface precipitation and soil moisture levels in the winter-spring period were associated with increased fire intensity in the following summer. These findings enrich contemporary knowledge on tundra wildfire’s spatial and seasonal patterns, and shed new light on tundra wildfire-climate relationships in the circumpolar context. Furthermore, this first pan-Arctic analysis provides a strong incentive and direction for future studies

  16. Long-term experimental warming alters community composition of ascomycetes in Alaskan moist and dry arctic tundra.

    PubMed

    Semenova, Tatiana A; Morgado, Luis N; Welker, Jeffrey M; Walker, Marilyn D; Smets, Erik; Geml, József

    2015-01-01

    Arctic tundra regions have been responding to global warming with visible changes in plant community composition, including expansion of shrubs and declines in lichens and bryophytes. Even though it is well known that the majority of arctic plants are associated with their symbiotic fungi, how fungal community composition will be different with climate warming remains largely unknown. In this study, we addressed the effects of long-term (18 years) experimental warming on the community composition and taxonomic richness of soil ascomycetes in dry and moist tundra types. Using deep Ion Torrent sequencing, we quantified how OTU assemblage and richness of different orders of Ascomycota changed in response to summer warming. Experimental warming significantly altered ascomycete communities with stronger responses observed in the moist tundra compared with dry tundra. The proportion of several lichenized and moss-associated fungi decreased with warming, while the proportion of several plant and insect pathogens and saprotrophic species was higher in the warming treatment. The observed alterations in both taxonomic and ecological groups of ascomycetes are discussed in relation to previously reported warming-induced shifts in arctic plant communities, including decline in lichens and bryophytes and increase in coverage and biomass of shrubs. © 2014 John Wiley & Sons Ltd.

  17. The footprint of Alaskan tundra fires during the past half-century: implications for surface properties and radiative forcing

    USGS Publications Warehouse

    Rocha, Adrian V.; Loranty, Michael M.; Higuera, Phil E.; Mack, Michelle C.; Hu, Feng Sheng; Jones, Benjamin M.; Breen, Amy L.; Rastetter, Edward B.; Goetz, Scott J.; Shaver, Gus R.

    2012-01-01

    Recent large and frequent fires above the Alaskan arctic circle have forced a reassessment of the ecological and climatological importance of fire in arctic tundra ecosystems. Here we provide a general overview of the occurrence, distribution, and ecological and climate implications of Alaskan tundra fires over the past half-century using spatially explicit climate, fire, vegetation and remote sensing datasets for Alaska. Our analyses highlight the importance of vegetation biomass and environmental conditions in regulating tundra burning, and demonstrate that most tundra ecosystems are susceptible to burn, providing the environmental conditions are right. Over the past two decades, fire perimeters above the arctic circle have increased in size and importance, especially on the North Slope, indicating that future wildfire projections should account for fire regime changes in these regions. Remote sensing data and a literature review of thaw depths indicate that tundra fires have both positive and negative implications for climatic feedbacks including a decadal increase in albedo radiative forcing immediately after a fire, a stimulation of surface greenness and a persistent long-term (>10 year) increase in thaw depth. In order to address the future impact of tundra fires on climate, a better understanding of the control of tundra fire occurrence as well as the long-term impacts on ecosystem carbon cycling will be required.

  18. Changing Arctic ecosystems--the role of ecosystem changes across the Boreal-Arctic transition zone on the distribution and abundance of wildlife populations

    USGS Publications Warehouse

    McNew, Lance; Handel, Colleen M.; Pearce, John; DeGange, Anthony R.; Holland-Bartels, Leslie; Whalen, Mary

    2013-01-01

    Arctic and boreal ecosystems provide important breeding habitat for more than half of North America’s migratory birds as well as many resident species. Northern landscapes are projected to experience more pronounced climate-related changes in habitat than most other regions. These changes include increases in shrub growth, conversion of tundra to forest, alteration of wetlands, shifts in species’ composition, and changes in the frequency and scale of fires and insect outbreaks. Changing habitat conditions, in turn, may have significant effects on the distribution and abundance of wildlife in these critical northern ecosystems. The U.S. Geological Survey (USGS) is conducting studies in the Boreal–Arctic transition zone of Alaska, an environment of accelerated change in this sensitive margin between Arctic tundra and boreal forest.

  19. Analysis Of The Land Surface Temperature And NDVI Using MODIS Data On The Arctic Tundra During The Last Decade

    NASA Astrophysics Data System (ADS)

    Mattar, C.; Duran-Alarcon, C.; Jimenez-Munoz, J. C.; Sobrino, J. A.

    2013-12-01

    The arctic tundra is one of the most sensible biome to climate conditions which has experienced important changes in the spatial distribution of temperature and vegetation in the last decades. In this paper we analyzed the spatio-temporal trend of the Land Surface Temperature (LST) and the Normalized Difference Vegetation Index (NDVI) over the arctic tundra biome during the last decade (2001-2012) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) land products MOD11C3 (LST) and MOD13C2 (NDVI) were used. Anomalies for each variable were analyzed at monthly level, and the magnitude and statistical significance of the trends were computed using the non-parametric tests of Sen's Slope and Mann-Kendal respectively. The results obtained from MODIS LST data showed a significant increase (p-value < 0.05) on surface temperature over the arctic tundra in the last decade. In the case of the NDVI, the trend was positive (increase on NDVI) but statistically not significant (p-value < 0.05). All tundra regions defined in the Circumpolar Arctic Vegetation Map have presented positive and statistically significant trends in NDVI and LST. Values of trends obtained from MODIS data over all the tundra regions were +1.10 [°C/dec] in the case of LST and +0.005 [NDVI value/dec] in the case of NDVI.

  20. Expansion of forest stands into tundra in the Noatak National Preserve, northwest Alaska

    USGS Publications Warehouse

    Suarez, F.; Binkley, Dan; Kaye, Margot W.; Stottlemyer, R.

    1999-01-01

    Temperatures across the northern regions of North America have been increasing for 150 years, and forests have responded to this increase. In the Noatak National Preserve in Alaska, white spruce (Picea glauca [Moench] Voss) forests reach their northern limit, occurring primarily on well-drained sites and as gallery forests along streams. Rolling plateaus of tundra separate the white spruce forests into disjunct stands. We examined patterns of tree age, tree growth, and tree encroachment into tundra ecosystems in six stands along the Agashashok River. Warming over the past 150 years appears to have increased tree growth and resulted in forest expansion into adjacent tundra ecosystems. The forest/tundra ecotone shifted by about 80 to 100 m into the tundra in the past 200 years, as evidenced by declining maximum tree age with distance towards the tundra. The decadal-scale pattern of tree establishment at the farthest extent of trees into the tundra (the tundra-forest ecotone) correlated with the detrended growth index for trees within the forests; climate conditions that led to higher tree growth appeared to foster tree establishment in the tundra. This recent forest expansion has occurred across topographic boundaries, from well-drained soils on slopes onto poorly drained, flatter areas of tundra. Further expansion of the forests may be limited by more severe wind exposure and poor drainage that make the majority of tundra less suitable for trees.

  1. Environmental and vegetation controls on the spatial variability of CH4 emission from wet-sedge and tussock tundra ecosystems in the Arctic.

    PubMed

    McEwing, Katherine Rose; Fisher, James Paul; Zona, Donatella

    Despite multiple studies investigating the environmental controls on CH 4 fluxes from arctic tundra ecosystems, the high spatial variability of CH 4 emissions is not fully understood. This makes the upscaling of CH 4 fluxes from plot to regional scale, particularly challenging. The goal of this study is to refine our knowledge of the spatial variability and controls on CH 4 emission from tundra ecosystems. CH 4 fluxes were measured in four sites across a variety of wet-sedge and tussock tundra ecosystems in Alaska using chambers and a Los Gatos CO 2 and CH 4 gas analyser. All sites were found to be sources of CH 4 , with northern sites (in Barrow) showing similar CH 4 emission rates to the southernmost site (ca. 300 km south, Ivotuk). Gross primary productivity (GPP), water level and soil temperature were the most important environmental controls on CH 4 emission. Greater vascular plant cover was linked with higher CH 4 emission, but this increased emission with increased vascular plant cover was much higher (86 %) in the drier sites, than the wettest sites (30 %), suggesting that transport and/or substrate availability were crucial limiting factors for CH 4 emission in these tundra ecosystems. Overall, this study provides an increased understanding of the fine scale spatial controls on CH 4 flux, in particular the key role that plant cover and GPP play in enhancing CH 4 emissions from tundra soils.

  2. Seasonal Variability of Major Ions and δ13CDIC in Permafrost Watersheds of Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Lehn, G. O.; Jacobson, A. D.; Douglas, T. A.; McClelland, J. W.; Khosh, M. S.; Barker, A. J.

    2011-12-01

    Models and observations predict that climate change will have more severe effects at higher latitudes. Many effects may already be underway. Increasing temperatures are expected to thaw permafrost soils, changing the hydrology and biogeochemistry of Arctic watersheds. These changes are particularly important because permafrost thaw could destabilize a large carbon reservoir, potentially leading to sizable greenhouse gas emissions. Tracking soil thaw and concomitant changes in carbon export are therefore critical to predicting feedbacks between Arctic climate change and global warming. As the climate warms, the seasonally thawed active layer will extend into deeper, previously frozen, mineral-rich soils, increasing the signal of chemical weathering in streams. Historical methods of monitoring active layer thaw depth are labor intensive and may not capture the heterogeneity of Arctic soils, whereas stream geochemistry provides a unique opportunity to integrate signals across vast spatial distances. We present major ion geochemistry and δ13C of dissolved inorganic carbon (DIC) variations that relate to seasonal changes in permafrost thaw depths. Samples were collected from six watersheds on the North Slope of Alaska. All rivers drain continuous permafrost but three drain tussock tundra-dominated watersheds and three drain bare bedrock catchments with minor tundra influences. Water samples were collected from April until October in 2009 and 2010. The major ion and δ13CDIC trends of tundra streams suggest that silicate weathering dominates during the spring melt while carbonate weathering dominates as the active layer deepens in the summer. In tundra streams, early season δ13CDIC values indicate carbonic acid-silicate weathering. Summer δ13CDIC values indicate carbonic acid-carbonate weathering. In both cases, carbonic acid forms from CO2 produced by the microbial decomposition of C3 organic matter. Bedrock streams have nearly constant δ13CDIC values and high

  3. Population structure of two rabies hosts relative to the known distribution of rabies virus variants in Alaska.

    PubMed

    Goldsmith, Elizabeth W; Renshaw, Benjamin; Clement, Christopher J; Himschoot, Elizabeth A; Hundertmark, Kris J; Hueffer, Karsten

    2016-02-01

    For pathogens that infect multiple species, the distinction between reservoir hosts and spillover hosts is often difficult. In Alaska, three variants of the arctic rabies virus exist with distinct spatial distributions. We tested the hypothesis that rabies virus variant distribution corresponds to the population structure of the primary rabies hosts in Alaska, arctic foxes (Vulpes lagopus) and red foxes (Vulpes vulpes) to possibly distinguish reservoir and spillover hosts. We used mitochondrial DNA (mtDNA) sequence and nine microsatellites to assess population structure in those two species. mtDNA structure did not correspond to rabies virus variant structure in either species. Microsatellite analyses gave varying results. Bayesian clustering found two groups of arctic foxes in the coastal tundra region, but for red foxes it identified tundra and boreal types. Spatial Bayesian clustering and spatial principal components analysis identified 3 and 4 groups of arctic foxes, respectively, closely matching the distribution of rabies virus variants in the state. Red foxes, conversely, showed eight clusters comprising two regions (boreal and tundra) with much admixture. These results run contrary to previous beliefs that arctic fox show no fine-scale spatial population structure. While we cannot rule out that the red fox is part of the maintenance host community for rabies in Alaska, the distribution of virus variants appears to be driven primarily by the arctic fox. Therefore, we show that host population genetics can be utilized to distinguish between maintenance and spillover hosts when used in conjunction with other approaches. © 2015 John Wiley & Sons Ltd.

  4. The 1977 tundra fire at Kokolik River, Alaska

    NASA Technical Reports Server (NTRS)

    Hall, D.; Brown, J.; Johnson, L.

    1981-01-01

    During the summer of 1977, fire totaled 44 sq km of tundra vegetation according to measurements using LANDSAT imagery. Based on the experience gained from analysis of this fire using ground observations, satellite imagery, and topographic maps, it appears that natural drainages form effective fire breaks on the subdued relief of the Arctic coastal plain and northern foothills. It is confirmed that the intensity of the fire is related to vegetation type and to the moisture content of the organic rich soils.

  5. Landscape- and decadal-scale changes in the composition and structure of plant communities in the northern foothills of the Brooks Range of Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Mercado-Díaz, J. A.; Gould, W. A.

    2010-12-01

    Scientists have predicted an increase in vascular plant cover in some tundra ecosystems as a result of global climate change. In Arctic Alaska, observational studies have documented increases in shrub cover for some regions; however, only a few studies have provided detailed quantitative evidence supporting the existence such changes. To address these shortcomings, we analyzed plant community data from 156 1m2 vegetation plots located at two 1km2 grids in Toolik Lake, Alaska. This data covered the time period from 1989-2008. After 18 years, we found that the relative abundance of vascular vegetation have increased by 16%, while the relative abundance of nonvascular vegetation decreased by 19%. Mean plant canopy height has experienced an increase from 4.4 cm in 1990 to 6.5 cm in 2008 and the extent and complexity of the canopy have increased over time from about 60% to 80%. Species diversity was also significantly reduced. While major vegetation changes in other tundra regions have been attributed to gradual increases in surface air temperature, changes documented in this study were apparently promoted by increasing soil moisture conditions that resulted from increased summer rainfall in our region. These results support the idea that tundra ecosystems in this region of the Alaskan Arctic are experiencing significant increases in aboveground standing crop and a shift in carbon allocation to vascular plants vs. bryophytes. These changes will likely affect important ecosystem processes like snow re-deposition, winter biological activities, nutrient cycling and could ultimately result in significant feedbacks to climate.

  6. NGEE Arctic Leaf Spectral Reflectance and Transmittance, Barrow, Alaska, 2014-2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shawn Serbin; Wil Lieberman-Cribbin; Kim Ely

    Measurements of full-spectrum (i.e. 350-2500nm) leaf spectral reflectance of Arctic plant species. Data were collected to characterize the leaf-level optical properties and albedo of dominant Arctic tundra species in the Barrow, AK area and to enable trait scaling.

  7. Vegetation-Associated Impacts on Arctic Tundra Bacterial and Microeukaryotic Communities

    PubMed Central

    Shi, Yu; Xiang, Xingjia; Shen, Congcong; Neufeld, Josh D.; Walker, Virginia K.

    2014-01-01

    The Arctic is experiencing rapid vegetation changes, such as shrub and tree line expansion, due to climate warming, as well as increased wetland variability due to hydrological changes associated with permafrost thawing. These changes are of global concern because changes in vegetation may increase tundra soil biogeochemical processes that would significantly enhance atmospheric CO2 concentrations. Predicting the latter will at least partly depend on knowing the structure, functional activities, and distributions of soil microbes among the vegetation types across Arctic landscapes. Here we investigated the bacterial and microeukaryotic community structures in soils from the four principal low Arctic tundra vegetation types: wet sedge, birch hummock, tall birch, and dry heath. Sequencing of rRNA gene fragments indicated that the wet sedge and tall birch communities differed significantly from each other and from those associated with the other two dominant vegetation types. Distinct microbial communities were associated with soil pH, ammonium concentration, carbon/nitrogen (C/N) ratio, and moisture content. In soils with similar moisture contents and pHs (excluding wet sedge), bacterial, fungal, and total eukaryotic communities were correlated with the ammonium concentration, dissolved organic nitrogen (DON) content, and C/N ratio. Operational taxonomic unit (OTU) richness, Faith's phylogenetic diversity, and the Shannon species-level index (H′) were generally lower in the tall birch soil than in soil from the other vegetation types, with pH being strongly correlated with bacterial richness and Faith's phylogenetic diversity. Together, these results suggest that Arctic soil feedback responses to climate change will be vegetation specific not just because of distinctive substrates and environmental characteristics but also, potentially, because of inherent differences in microbial community structure. PMID:25362064

  8. Net carbon exchange across the Arctic tundra-boreal forest transition in Alaska 1981-2000

    USGS Publications Warehouse

    Thompson, Catharine Copass; McGuire, A.D.; Clein, Joy S.; Chapin, F. S.; Beringer, J.

    2006-01-01

    Shifts in the carbon balance of high-latitude ecosystems could result from differential responses of vegetation and soil processes to changing moisture and temperature regimes and to a lengthening of the growing season. Although shrub expansion and northward movement of treeline should increase carbon inputs, the effects of these vegetation changes on net carbon exchange have not been evaluated. We selected low shrub, tall shrub, and forest tundra sites near treeline in northwestern Alaska, representing the major structural transitions expected in response to warming. In these sites, we measured aboveground net primary production (ANPP) and vegetation and soil carbon and nitrogen pools, and used these data to parameterize the Terrestrial Ecosystem Model. We simulated the response of carbon balance components to air temperature and precipitation trends during 1981-2000. In areas experiencing warmer and dryer conditions, Net Primary Production (NPP) decreased and heterotrophic respiration (R H ) increased, leading to a decrease in Net Ecosystem Production (NEP). In warmer and wetter conditions NPP increased, but the response was exceeded by an increase in R H ; therefore, NEP also decreased. Lastly, in colder and wetter regions, the increase in NPP exceeded a small decline in R H , leading to an increase in NEP. The net effect for the region was a slight gain in ecosystem carbon storage over the 20 year period. This research highlights the potential importance of spatial variability in ecosystem responses to climate change in assessing the response of carbon storage in northern Alaska over the last two decades. ?? Springer 2005.

  9. Influence of iron redox cycling on organo-mineral associations in Arctic tundra soil

    DOE PAGES

    Herndon, Elizabeth; Oak Ridge National Lab.; AlBashaireh, Amineh; ...

    2017-03-25

    Arctic tundra stores large quantities of soil organic matter under varying redox conditions. As the climate warms, these carbon reservoirs are susceptible to increased rates of decomposition and release to the atmosphere as the greenhouse gases carbon dioxide (CO 2) and methane (CH 4). Geochemical interactions between soil organic matter and minerals influence decomposition in many environments but remain poorly understood in Arctic tundra systems and are not considered in decomposition models. The accumulation of iron (Fe) oxyhydroxides and organo- iron precipitates at redox interfaces may be particularly important for carbon cycling given that ferric iron [Fe(III)] species can enhancemore » decomposition by serving as terminal electron acceptors in anoxic soils or inhibit microbial decomposition by binding organic molecules. Here in this paper, we examine chemical properties of solid-phase Fe and organic matter in organic and mineral horizons within the seasonally thawed active layer of Arctic tundra on the North Slope of Alaska. Spectroscopic techniques, including micro-X-ray fluorescence ( XRF) mapping, micro-X-ray absorption near-edge structure ( XANES) spectroscopy, and Fourier transform infrared spectroscopy (FTIR), were coupled with chemical sequential extractions and physical density fractionations to evaluate the spatial distribution and speciation of Fe-bearing phases and associated organic matter in soils. Organic horizons were enriched in poorly crystalline and crystalline iron oxides, and approximately 60% of total Fe stored in organic horizons was calculated to derive from upward translocation from anoxic mineral horizons. Ferrihydrite and goethite were present as coatings on mineral grains and plant debris, and in aggregates with clays and particulate organic matter. Minor amounts of ferrous iron [Fe(II)] were present in iron sulfides (i.e., pyrite and greigite) in mineral horizon soils and iron phosphates (vivianite) in organic horizons

  10. Influence of iron redox cycling on organo-mineral associations in Arctic tundra soil

    NASA Astrophysics Data System (ADS)

    Herndon, Elizabeth; AlBashaireh, Amineh; Singer, David; Roy Chowdhury, Taniya; Gu, Baohua; Graham, David

    2017-06-01

    Arctic tundra stores large quantities of soil organic matter under varying redox conditions. As the climate warms, these carbon reservoirs are susceptible to increased rates of decomposition and release to the atmosphere as the greenhouse gases carbon dioxide (CO2) and methane (CH4). Geochemical interactions between soil organic matter and minerals influence decomposition in many environments but remain poorly understood in Arctic tundra systems and are not considered in decomposition models. The accumulation of iron (Fe) oxyhydroxides and organo-iron precipitates at redox interfaces may be particularly important for carbon cycling given that ferric iron [Fe(III)] species can enhance decomposition by serving as terminal electron acceptors in anoxic soils or inhibit microbial decomposition by binding organic molecules. Here, we examine chemical properties of solid-phase Fe and organic matter in organic and mineral horizons within the seasonally thawed active layer of Arctic tundra on the North Slope of Alaska. Spectroscopic techniques, including micro-X-ray fluorescence (μXRF) mapping, micro-X-ray absorption near-edge structure (μXANES) spectroscopy, and Fourier transform infrared spectroscopy (FTIR), were coupled with chemical sequential extractions and physical density fractionations to evaluate the spatial distribution and speciation of Fe-bearing phases and associated organic matter in soils. Organic horizons were enriched in poorly crystalline and crystalline iron oxides, and approximately 60% of total Fe stored in organic horizons was calculated to derive from upward translocation from anoxic mineral horizons. Ferrihydrite and goethite were present as coatings on mineral grains and plant debris, and in aggregates with clays and particulate organic matter. Minor amounts of ferrous iron [Fe(II)] were present in iron sulfides (i.e., pyrite and greigite) in mineral horizon soils and iron phosphates (vivianite) in organic horizons. Concentrations of organic

  11. Influence of iron redox cycling on organo-mineral associations in Arctic tundra soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herndon, Elizabeth; Oak Ridge National Lab.; AlBashaireh, Amineh

    Arctic tundra stores large quantities of soil organic matter under varying redox conditions. As the climate warms, these carbon reservoirs are susceptible to increased rates of decomposition and release to the atmosphere as the greenhouse gases carbon dioxide (CO 2) and methane (CH 4). Geochemical interactions between soil organic matter and minerals influence decomposition in many environments but remain poorly understood in Arctic tundra systems and are not considered in decomposition models. The accumulation of iron (Fe) oxyhydroxides and organo- iron precipitates at redox interfaces may be particularly important for carbon cycling given that ferric iron [Fe(III)] species can enhancemore » decomposition by serving as terminal electron acceptors in anoxic soils or inhibit microbial decomposition by binding organic molecules. Here in this paper, we examine chemical properties of solid-phase Fe and organic matter in organic and mineral horizons within the seasonally thawed active layer of Arctic tundra on the North Slope of Alaska. Spectroscopic techniques, including micro-X-ray fluorescence ( XRF) mapping, micro-X-ray absorption near-edge structure ( XANES) spectroscopy, and Fourier transform infrared spectroscopy (FTIR), were coupled with chemical sequential extractions and physical density fractionations to evaluate the spatial distribution and speciation of Fe-bearing phases and associated organic matter in soils. Organic horizons were enriched in poorly crystalline and crystalline iron oxides, and approximately 60% of total Fe stored in organic horizons was calculated to derive from upward translocation from anoxic mineral horizons. Ferrihydrite and goethite were present as coatings on mineral grains and plant debris, and in aggregates with clays and particulate organic matter. Minor amounts of ferrous iron [Fe(II)] were present in iron sulfides (i.e., pyrite and greigite) in mineral horizon soils and iron phosphates (vivianite) in organic horizons

  12. Utilization of remote sensing in Alaska permafrost studies

    NASA Technical Reports Server (NTRS)

    Hall, D. K.

    1981-01-01

    Permafrost related features such as: aufeis, tundra, thaw lakes and subsurface ice features were studied. LANDSAT imagery was used to measure the extent and distribution of aufeis in Arctic Slope rivers over a period of 7 years. Interannual extent of large aufeis fields was found to vary significantly. Digital LANDSAT data were used to study the short term effects of a tundra fire which burned a 48 sq km area in northwestern Alaska. Vegetation regrowth was inferred from Landsat spectral reflectance increases and compared to in-situ measurements. Aircraft SAR (Synethic Aperture Radar) imagery was used in conjunction with LANDSAT imagery used in conjunction with LANDSAT imagery to qualitatively determine depth categories for thaw lakes in northern Alaska.

  13. Proterozoic geochronological links between the Farewell, Kilbuck, and Arctic Alaska terranes

    USGS Publications Warehouse

    Bradley, Dwight C.; McClelland, William C.; Friedman, Richard M.; O'Sullivan, Paul B.; Layer, Paul; Miller, Marti L.; Dumoulin, Julie A.; Till, Alison B.; Abbott, J. Grant; Bradley, Dan B.; Wooden, Joseph L.

    2014-01-01

    New U-Pb igneous and detrital zircon ages reveal that despite being separated by younger orogens, three of Alaska’s terranes that contain Precambrian rocks—Farewell, Kilbuck, and Arctic Alaska—are related. The Farewell and Kilbuck terranes can be linked by felsic magmatism at ca. 850 Ma and by abundant detrital zircons in the Farewell that overlap the ca. 2010–2085 Ma age range of granitoids in the Kilbuck. The Farewell and Arctic Alaska terranes have already been linked via correlative Neoproterozoic to Devonian carbonate platform deposits that share nearly identical faunas of mixed Siberian and Laurentian affinity. New igneous ages strengthen these ties. Specifically, 988, 979, and 979 Ma metafelsites in the Farewell terrane are close in age to a 971 Ma granitic orthogneiss in the Arctic Alaska terrane. Likewise, 852, 850, 845, and 837 Ma granitic orthogneisses, metafelsite, and rhyolite in the Farewell terrane are similar to the reported 874 to 848 Ma age range of metarhyolites in the Arctic Alaska terrane. The Kilbuck and Arctic Alaska terranes have been previously linked on the basis of provenance: detrital zircons from the Carboniferous Nuka Formation in the Arctic Alaska terrane range from 2013 to 2078 Ma, overlapping the age of Kilbuck granitoids. A new 849 Ma age of a Kilbuck granitoid strengthens the proposed connection. Among the other new results from Kilbuck terrane is a 2085 Ma zircon from a granitoid that now stands as the oldest tightly dated rock in Alaska. We conclude that the Kilbuck, Farewell, and Arctic Alaska terranes were not independent entities with unique geologic histories but instead are related pieces of the circum-Arctic tectonic puzzle.

  14. The Arctic National Wildlife Refuge: An Interdisciplinary Unit.

    ERIC Educational Resources Information Center

    Thieman, Gayle; Geil, Mike

    This paper presents a set of interdisciplinary lessons for teaching about the Arctic National Wildlife Refuge (Alaska). Lessons include a petroleum product treasure hunt, an examination of life without petroleum, the development of a wildlife poster, an exploration of the tundra ecosystem and the plants and animals that live there, identification…

  15. Population Structure of Two Rabies Hosts Relative to the Known Distribution of Rabies Virus Variants in Alaska

    PubMed Central

    Goldsmith, Elizabeth W.; Renshaw, Benjamin; Clement, Christopher J.; Himschoot, Elizabeth A.; Hundertmark, Kris J.; Hueffer, Karsten

    2015-01-01

    For pathogens that infect multiple species the distinction between reservoir hosts and spillover hosts is often difficult. In Alaska, three variants of the arctic rabies virus exist with distinct spatial distributions. We test the hypothesis that rabies virus variant distribution corresponds to the population structure of the primary rabies hosts in Alaska, arctic foxes (Vulpes lagopus) and red foxes (V. vulpes) in order to possibly distinguish reservoir and spill over hosts. We used mitochondrial DNA (mtDNA) sequence and nine microsatellites to assess population structure in those two species. mtDNA structure did not correspond to rabies virus variant structure in either species. Microsatellite analyses gave varying results. Bayesian clustering found 2 groups of arctic foxes in the coastal tundra region, but for red foxes it identified tundra and boreal types. Spatial Bayesian clustering and spatial principal components analysis identified 3 and 4 groups of arctic foxes, respectively, closely matching the distribution of rabies virus variants in the state. Red foxes, conversely, showed eight clusters comprising 2 regions (boreal and tundra) with much admixture. These results run contrary to previous beliefs that arctic fox show no fine-scale spatial population structure. While we cannot rule out that the red fox is part of the maintenance host community for rabies in Alaska, the distribution of virus variants appears to be driven primarily by the artic fox Therefore we show that host population genetics can be utilized to distinguish between maintenance and spillover hosts when used in conjunction with other approaches. PMID:26661691

  16. Fire behavior, weather, and burn severity of the 2007 Anaktuvuk River tundra fire, North Slope, Alaska

    Treesearch

    Benjamin M. Jones; Crystal A. Kolden; Randi Jandt; John T. Abatzoglu; Frank Urban; Christopher D. Arp

    2009-01-01

    In 2007, the Anaktuvuk River Fire (ARF) became the largest recorded tundra fire on the North Slope of Alaska. The ARF burned for nearly three months, consuming more than 100,000 ha. At its peak in early September, the ARF burned at a rate of 7000 ha d-1. The conditions potentially responsible for this large tundra fire include modeled record high...

  17. Tundra ponds of the Yukon Delta, Alaska, and their macroinvertebrate communities.

    USGS Publications Warehouse

    Maciolek, J.A.

    1989-01-01

    The Yukon Delta, a low alluvial tundra in western Alaska, has more than 105 thaw-basin ponds within its 70000 km2 area. In 1984 and 1985, 68 ponds in three interior areas of the Delta were surveyed to determine limnological features, macroinvertebrate fauna, and trophic character. Ponds ranged up to 90 ha in area, 2 m in depth, and 17 m in elevation, and occurred in various temporal stages of growth and senescence. Among the 18 major invertebrate taxa collected, in order of decreasing frequency of occurrence, Trichoptera, Hemiptera, Diptera, Pelecypoda, Isopoda, Coleoptera, Gastropoda, and Oligochaeta were found in over 50% of the ponds. Trichoptera, the only taxon occurring in all ponds, was represented by 22 species of 6 families. The average Delta pond had 6.6 of the nine more common taxa. This measure of faunal richness was similar among study areas but was higher in low-tundra (sea level) ponds and in older ponds on raised tundra. In comparison, lentic invertebrate communities in five other areas of Alaskan and Canadian tundra had fewer taxa and also lower average richness based on occurrence of the same nine taxa.

  18. Vegetation-associated impacts on arctic tundra bacterial and microeukaryotic communities.

    PubMed

    Shi, Yu; Xiang, Xingjia; Shen, Congcong; Chu, Haiyan; Neufeld, Josh D; Walker, Virginia K; Grogan, Paul

    2015-01-01

    The Arctic is experiencing rapid vegetation changes, such as shrub and tree line expansion, due to climate warming, as well as increased wetland variability due to hydrological changes associated with permafrost thawing. These changes are of global concern because changes in vegetation may increase tundra soil biogeochemical processes that would significantly enhance atmospheric CO2 concentrations. Predicting the latter will at least partly depend on knowing the structure, functional activities, and distributions of soil microbes among the vegetation types across Arctic landscapes. Here we investigated the bacterial and microeukaryotic community structures in soils from the four principal low Arctic tundra vegetation types: wet sedge, birch hummock, tall birch, and dry heath. Sequencing of rRNA gene fragments indicated that the wet sedge and tall birch communities differed significantly from each other and from those associated with the other two dominant vegetation types. Distinct microbial communities were associated with soil pH, ammonium concentration, carbon/nitrogen (C/N) ratio, and moisture content. In soils with similar moisture contents and pHs (excluding wet sedge), bacterial, fungal, and total eukaryotic communities were correlated with the ammonium concentration, dissolved organic nitrogen (DON) content, and C/N ratio. Operational taxonomic unit (OTU) richness, Faith's phylogenetic diversity, and the Shannon species-level index (H') were generally lower in the tall birch soil than in soil from the other vegetation types, with pH being strongly correlated with bacterial richness and Faith's phylogenetic diversity. Together, these results suggest that Arctic soil feedback responses to climate change will be vegetation specific not just because of distinctive substrates and environmental characteristics but also, potentially, because of inherent differences in microbial community structure. Copyright © 2015, American Society for Microbiology. All Rights

  19. GROWTH, SURVIVORSHIP, AND REPRODUCTION OF DAPHNIA MIDDENDORFFIANA IN SEVERAL ARCTIC LAKES AND PONDS

    EPA Science Inventory

    The growth, survivorship and reproduction of Arctic region Daphnia middendorffiana was investigated in several lakes and ponds on the tundra in northern Alaska and additionally in a laboratory study. Growth rate equations, reproduction rates and survivorship under natural conditi...

  20. Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems

    USGS Publications Warehouse

    Stow, Douglas A.; Hope, Allen; McGuire, David; Verbyla, David; Gamon, John A.; Huemmrich, Fred; Houston, Stan; Racine, Charles H.; Sturm, Matthew; Tape, Ken D.; Hinzman, Larry D.; Yoshikawa, Kenji; Tweedie, Craig E.; Noyle, Brian; Silapaswan, Cherie; Douglas, David C.; Griffith, Brad; Jia, Gensuo; Howard E. Epstein,; Walker, Donald A.; Daeschner, Scott; Petersen, Aaron; Zhou, Liming; Myneni, Ranga B.

    2004-01-01

    The objective of this paper is to review research conducted over the past decade on the application of multi-temporal remote sensing for monitoring changes of Arctic tundra lands. Emphasis is placed on results from the National Science Foundation Land–Air–Ice Interactions (LAII) program and on optical remote sensing techniques. Case studies demonstrate that ground-level sensors on stationary or moving track platforms and wide-swath imaging sensors on polar orbiting satellites are particularly useful for capturing optical remote sensing data at sufficient frequency to study tundra vegetation dynamics and changes for the cloud prone Arctic. Less frequent imaging with high spatial resolution instruments on aircraft and lower orbiting satellites enable more detailed analyses of land cover change and calibration/validation of coarser resolution observations.The strongest signals of ecosystem change detected thus far appear to correspond to expansion of tundra shrubs and changes in the amount and extent of thaw lakes and ponds. Changes in shrub cover and extent have been documented by modern repeat imaging that matches archived historical aerial photography. NOAA Advanced Very High Resolution Radiometer (AVHRR) time series provide a 20-year record for determining changes in greenness that relates to photosynthetic activity, net primary production, and growing season length. The strong contrast between land materials and surface waters enables changes in lake and pond extent to be readily measured and monitored.

  1. Potential contributions of root decomposition to the nitrogen cycle in arctic forest and tundra.

    PubMed

    Träger, Sabrina; Milbau, Ann; Wilson, Scott D

    2017-12-01

    Plant contributions to the nitrogen (N) cycle from decomposition are likely to be altered by vegetation shifts associated with climate change. Roots account for the majority of soil organic matter input from vegetation, but little is known about differences between vegetation types in their root contributions to nutrient cycling. Here, we examine the potential contribution of fine roots to the N cycle in forest and tundra to gain insight into belowground consequences of the widely observed increase in woody vegetation that accompanies climate change in the Arctic. We combined measurements of root production from minirhizotron images with tissue analysis of roots from differing root diameter and color classes to obtain potential N input following decomposition. In addition, we tested for changes in N concentration of roots during early stages of decomposition, and investigated whether vegetation type (forest or tundra) affected changes in tissue N concentration during decomposition. For completeness, we also present respective measurements of leaves. The potential N input from roots was twofold greater in forest than in tundra, mainly due to greater root production in forest. Potential N input varied with root diameter and color, but this variation tended to be similar in forest and tundra. As for roots, the potential N input from leaves was significantly greater in forest than in tundra. Vegetation type had no effect on changes in root or leaf N concentration after 1 year of decomposition. Our results suggest that shifts in vegetation that accompany climate change in the Arctic will likely increase plant-associated potential N input both belowground and aboveground. In contrast, shifts in vegetation might not alter changes in tissue N concentration during early stages of decomposition. Overall, differences between forest and tundra in potential contribution of decomposing roots to the N cycle reinforce differences between habitats that occur for leaves.

  2. Backscatter from ice growing on shallow tundra lakes near Barrow, Alaska, winter 1991-1992

    NASA Technical Reports Server (NTRS)

    Jeffries, M. O.; Wakabayashi, H.; Weeks, W. F.; Morris, K.

    1993-01-01

    The timing of freeze-up and break-up of Arctic lake ice is a potentially useful environmental indicator that could be monitored using SAR. In order to do this, it is important to understand how the properties and structure of the ice during its growth and decay affect radar backscatter and thus lake ice SAR signatures. The availability of radiometrically and geometrically calibrated digital SAR data time series from the Alaska SAR Facility has made it possible for the first time to quantify lake ice backscatter intensity (sigma(sup o)) variations. This has been done for ice growing on shallow tundra lakes near Barrow, NW Alaska, from initial growth in September 1991 until thawing and decay in June 1992. Field and laboratory observations and measurements of the lake ice were made in late April 1992. The field investigations of the coastal lakes near Barrow confirmed previous findings that, (1) ice frozen to the lake bottom had a dark signature in SAR images, indicating weak backscatter, while, (2) ice that was floating had a bright signature, indicating strong backscatter. At all sites, regardless of whether the ice was grounded or floating, there was a layer of clear, inclusion-free ice overlaying a layer of ice with dense concentrations of vertically oriented tubular bubbles. At some sites, there was a third layer of porous, snow-ice overlaying the clear ice.

  3. Modelling carbon responses of tundra ecosystems to historical and projected climate: Sensitivity of pan-Arctic carbon storage to temporal and spatial variation in climate

    USGS Publications Warehouse

    McGuire, A.D.; Clein, Joy S.; Melillo, J.M.; Kicklighter, D.W.; Meier, R.A.; Vorosmarty, C.J.; Serreze, Mark C.

    2000-01-01

    Historical and projected climate trends for high latitudes show substantial temporal and spatial variability. To identify uncertainties in simulating carbon (C) dynamics for pan-Arctic tundra, we compare the historical and projected responses of tundra C storage from 1921 to 2100 between simulations by the Terrestrial Ecosystem Model (TEM) for the pan-Arctic and the Kuparuk River Basin, which was the focus of an integrated study of C dynamics from 1994 to 1996. In the historical period from 1921 to 1994, the responses of net primary production (NPP) and heterotrophic respiration (RH) simulated for the Kuparuk River Basin and the pan-Arctic are correlated with the same factors; NPP is positively correlated with net nitrogen mineralization (NMIN) and RH is negatively correlated with mean annual soil moisture. In comparison to the historical period, the spatially aggregated responses of NPP and RH for the Kuparuk River Basin and the pan-Arctic in our simulations for the projected period have different sensitivities to temperature, soil moisture and NMIN. In addition to being sensitive to soil moisture during the projected period, RH is also sensitive to temperature and there is a significant correlation between RH and NMIN. We interpret the increases in NPP during the projected period as being driven primarily by increases in NMIN, and that the correlation between NPP and temperature in the projected period is a result primarily of the causal linkage between temperature, RH, and NMIN. Although similar factors appear to be controlling simulated regional-and biome-scale C dynamics, simulated C dynamics at the two scales differ in magnitude with higher increases in C storage simulated for the Kuparuk River Basin than for the pan-Arctic at the end of the historical period and throughout the projected period. Also, the results of the simulations indicate that responses of C storage show different climate sensitivities at regional and pan-Arctic spatial scales and that

  4. Improving understanding of controls on spatial variability in methane fluxes in Arctic tundra

    NASA Astrophysics Data System (ADS)

    Davidson, Scott J.; Sloan, Victoria; Phoenix, Gareth; Wagner, Robert; Oechel, Walter; Zona, Donatella

    2015-04-01

    The Arctic is experiencing rapid climate change relative to the rest of the globe, and this increase in temperature has feedback effects across hydrological and thermal regimes, plant community distribution and carbon stocks within tundra soils. Arctic wetlands account for a significant amount of methane emissions from natural ecosystems to the atmosphere and with further permafrost degradation under a warming climate, these emissions are expected to increase. Methane (CH4) is an extremely important component of the global carbon cycle with a global warming potential 28.5 times greater than carbon dioxide over a 100 year time scale (IPCC, 2013). In order to validate carbon cycle models, modelling methane at broader landscape scales is needed. To date direct measurements of methane have been sporadic in time and space which, while capturing some key controls on the spatial heterogeneity, make it difficult to accurately upscale methane emissions to the landscape and regional scales. This study investigates what is controlling the spatial heterogeneity of methane fluxes across Arctic tundra. We combined over 300 portable chamber observations from 13 micro-topographic positions (with multiple vegetation types) across three locations spanning a 300km latitudinal gradient in Northern Alaska from Barrow to Ivotuk with synchronous measurements of environmental (soil temperature, soil moisture, water table, active layer thaw depth, pH) and vegetation (plant community composition, height, sedge tiller counts) variables to evaluate key controls on methane fluxes. To assess the diurnal variation in CH4 fluxes, we also performed automated chamber measurements in one study site (Barrow) location. Multiple statistical approaches (regression tree and multiple linear regression) were used to identify key controlling variables and their interactions. Methane emissions across all sites ranged from -0.08 to 15.3 mg C-CH4 m-2 hr-1. As expected, soil moisture was the main control

  5. Effect of Tundra Fires on Stream Chemistry in Alaska's Yukon-Kuskokwim Delta

    NASA Astrophysics Data System (ADS)

    Jimmie, J. A.; Mann, P. J.; Schade, J. D.; Natali, S.; Fiske, G.; Holmes, R. M.

    2017-12-01

    Surface air temperatures in the Arctic have been increasing at approximately twice the global average, contributing to myriad changes including shifting vegetation, thawing permafrost, and altered surface and groundwater hydrology. Wildfire frequency and intensity has also been increasing, and in summer 2015, more area burned in the Yukon-Kuskowkwim Delta than in the previous 64 years combined. We investigated the impact of tundra fire on stream water chemistry, and by extension, on the movement of nutrients and organic matter between terrestrial and aquatic ecosystems. Using a high-resolution Digital Elevation Model, we characterized the contributing sub-watershed area at each of our stream water sampling locations and calculated the percent of each sub-watershed that was burned in summer 2015. We found that nitrate, ammonium, and phosphate concentrations increased with burn area in a watershed, indicating that terrestrial inputs of these constituents to aquatic systems increased following fire. Patterns were less striking for dissolved organic carbon and dissolved organic nitrogen, but there was a positive relationship between burn area and the concentration of these constituents as well. These results highlight the significant impact of tundra fires on terrestrial-aquatic linkages in the Arctic, and suggest that these impacts may increase in the future if fire in Arctic and boreal regions continues to become more common.

  6. Tundra plant above-ground biomass and shrub dominance mapped across the North Slope of Alaska

    NASA Astrophysics Data System (ADS)

    Berner, Logan T.; Jantz, Patrick; Tape, Ken D.; Goetz, Scott J.

    2018-03-01

    Arctic tundra is becoming greener and shrubbier due to recent warming. This is impacting climate feedbacks and wildlife, yet the spatial distribution of plant biomass in tundra ecosystems is uncertain. In this study, we mapped plant and shrub above-ground biomass (AGB; kg m-2) and shrub dominance (%; shrub AGB/plant AGB) across the North Slope of Alaska by linking biomass harvests at 28 field sites with 30 m resolution Landsat satellite imagery. We first developed regression models (p < 0.01) to predict plant AGB (r 2 = 0.79) and shrub AGB (r 2 = 0.82) based on the normalized difference vegetation index (NDVI) derived from imagery acquired by Landsat 5 and 7. We then predicted regional plant and shrub AGB by combining these regression models with a regional Landsat NDVI mosaic built from 1721 summer scenes acquired between 2007 and 2016. Our approach employed a Monte Carlo uncertainty analysis that propagated sampling and sensor calibration errors. We estimated that plant AGB averaged 0.74 (0.60, 0.88) kg m-2 (95% CI) and totaled 112 (91, 135) Tg across the region, with shrub AGB accounting for ~43% of regional plant AGB. The new maps capture landscape variation in plant AGB visible in high resolution satellite and aerial imagery, notably shrubby riparian corridors. Modeled shrub AGB was strongly correlated with field measurements of shrub canopy height at 25 sites (rs  = 0.88) and with a regional map of shrub cover (rs  = 0.76). Modeled plant AGB and shrub dominance were higher in shrub tundra than graminoid tundra and increased between areas with the coldest and warmest summer air temperatures, underscoring the fact that future warming has the potential to greatly increase plant AGB and shrub dominance in this region. These new biomass maps provide a unique source of ecological information for a region undergoing rapid environmental change.

  7. Detection of tundra trail damage near Barrow, Alaska using remote imagery

    NASA Astrophysics Data System (ADS)

    Hinkel, K. M.; Eisner, W. R.; Kim, C. J.

    2017-09-01

    In the past several decades, the use of all-terrain vehicles (ATVs) has proliferated in many Arctic communities in North America. One example is the village of Barrow, Alaska. This coastal community has only local roads, so all access to the interior utilizes off-road machines. These 4-wheel vehicles are the primary means of tundra traverse and transport in summer by hunters and berry-pickers, and by village residents accessing summer camps. Traveling cross-country is difficult due to the large number of thermokarst lakes, wetlands, and streams, and tundra trails tend to follow dryer higher ground while avoiding areas of high microrelief such as high-centered ice-wedge polygons. Thus, modern ATV trails tend to follow the margins of drained or partially drained thermokarst lake basins where it is flat and relatively dry, and these trails are heavily used. The deeply-ribbed tires of the heavy and powerful ATVs cause damage by destroying the vegetation and disturbing the underlying organic soil. Exposure of the dark soil enhances summer thaw and leads to local thermokarst of the ice-rich upper permafrost. The damage increases over time as vehicles continue to follow the same track, and sections eventually become unusable; this is especially true where the trail crosses ice-wedge troughs. Deep subsidence in the ponded troughs results in ATV users veering to avoid the wettest area, which leads to a widening of the damaged area. Helicopter surveys, site visits, and collection of ground penetrating radar data were combined with time series analysis of high-resolution aerial and satellite imagery for the period 1955-2014. The analysis reveals that there are 507 km of off-road trails on the Barrow Peninsula. About 50% of the total trail length was developed before 1955 in association with resource extraction, and an additional 40% were formed between 1979 and 2005 by ATVs. Segments of the more modern trail are up to 100 m wide. Damage to the tundra is especially pronounced

  8. The effect of nutrient deposition on bacterial communities in Arctic tundra soil

    Treesearch

    Barbara J. Campbell; Shawn W. Polson; Thomas E. Hanson; Michelle C. Mack; Edward A.G. Schuur

    2010-01-01

    The microbial communities of high-latitude ecosystems are expected to experience rapid changes over the next century due to climate warming and increased deposition of reactive nitrogen, changes that will likely affect microbial community structure and function. In moist acidic tundra (MAT) soils on the North Slope of the Brooks Range, Alaska, substantial losses of C...

  9. Nitrogen Accumulation and Partitioning in High Arctic Tundra from Extreme Atmospheric N Deposition Events

    NASA Astrophysics Data System (ADS)

    Phoenix, G. K.; Osborn, A.; Blaud, A.; Press, M. C.; Choudhary, S.

    2013-12-01

    Arctic ecosystems are threatened by pollution from extreme atmospheric nitrogen (N) deposition events. These events occur from the long-range transport of reactive N from pollution sources at lower latitudes and can deposit up to 80% of the annual N deposition in just a few days. To date, the fate and impacts of these extreme pollutant events has remained unknown. Using a field simulation study, we undertook the first assessment of the fate of acutely deposited N on arctic tundra. Extreme N deposition events were simulated on field plots at Ny-Ålesund, Svalbard (79oN) at rates of 0, 0.04, 0.4 and 1.2 g N m-2 yr-1 applied as NH4NO3 solution over 4 days, with 15N tracers used in the second year to quantify the fate of the deposited N in the plant, soil, microbial and leachate pools. Separate applications of 15NO3- and 15NH4+ were also made to determine the importance of N form in the fate of N. Recovery of the 15N tracer at the end of the first growing season approached 100% of the 15N applied irrespective of treatment level, demonstrating the considerable capacity of High Arctic tundra to capture pollutant N from extreme deposition events. Most incorporation of the 15N was found in bryophytes, followed by the dominant vascular plant (Salix polaris) and the microbial biomass of the soil organic layer. Total recovery remained high in the second growing season (average of 90%), indicating highly conservative N retention. Between the two N forms, recovery of 15NO3- and 15NH4+ were equal in the non-vascular plants, whereas in the vascular plants (particularly Salix polaris) recovery of 15NO3- was four times higher than of 15NH4+. Overall, these findings show that High Arctic tundra has considerable capacity to capture and retain the pollutant N deposited in acute extreme deposition events. Given they can represent much of the annual N deposition, extreme deposition events may be more important than increased chronic N deposition as a pollution source. Furthermore

  10. Initial Conceptualization and Application of the Alaska Thermokarst Model

    NASA Astrophysics Data System (ADS)

    Bolton, W. R.; Lara, M. J.; Genet, H.; Romanovsky, V. E.; McGuire, A. D.

    2015-12-01

    Thermokarst topography forms whenever ice-rich permafrost thaws and the ground subsides due to the volume loss when ground ice transitions to water. The Alaska Thermokarst Model (ATM) is a large-scale, state-and-transition model designed to simulate transitions between landscape units affected by thermokarst disturbance. The ATM uses a frame-based methodology to track transitions and proportion of cohorts within a 1-km2 grid cell. In the arctic tundra environment, the ATM tracks thermokarst-related transitions among wetland tundra, graminoid tundra, shrub tundra, and thermokarst lakes. In the boreal forest environment, the ATM tracks transitions among forested permafrost plateau, thermokarst lakes, collapse scar fens and bogs. The transition from one cohort to another due to thermokarst processes can take place if thaw reaches ice-rich ground layers either due to pulse disturbance (i.e. large precipitation event or fires), or due to gradual active layer deepening that eventually results in penetration of the protective layer. The protective layer buffers the ice-rich soils from the land surface and is critical to determine how susceptible an area is to thermokarst degradation. The rate of terrain transition in our model is determined by a set of rules that are based upon the ice-content of the soil, the drainage efficiency (or the ability of the landscape to store or transport water), the cumulative probability of thermokarst initiation, distance from rivers, lake dynamics (increasing, decreasing, or stable), and other factors. Tundra types are allowed to transition from one type to another (for example, wetland tundra to graminoid tundra) under favorable climatic conditions. In this study, we present our conceptualization and initial simulation results from in the arctic (the Barrow Peninsula) and boreal (the Tanana Flats) regions of Alaska.

  11. Carbon Fluxes in a sub-arctic tundra undergoing permafrost degradation

    NASA Astrophysics Data System (ADS)

    Bracho, R. G.; Webb, E.; Mauritz, M.; Schuur, E. A. G.

    2014-12-01

    As an effect of climate change, temperatures in high latitude regions are increasing faster than in the rest of the world and future projections indicate it will increase between 7°C and 8°C by the end of the 21st century. Permafrost soils store around 1700 Pg of Carbon (C), which is approximately the amount of C stored in terrestrial vegetation and in the atmosphere combined. Sustained warming induces permafrost thaw, leads to a thicker seasonal active layer, and creates subsided patches in the landscape. Carbon that was previously inaccessible to decomposition is thus exposed, increasing the likelihood of positive feedback of CO2 to the atmosphere. We measured C fluxes (Net ecosystem carbon flux, NEE, and Ecosystem respiration, Re) using the eddy covariance approach in a tundra landscape (Eight Mile Lake Watershed, Alaska) undergoing permafrost degradation from the beginning of the growing season in 2008 and throughout most winters until May 2014. This interval encompassed a range of climatic variability that included a deviation of ± 50% from the long term average in growing season precipitation. Active layer depth (thaw depth at the end of the growing season) and subsidence in the footprint were used as indicators of permafrost degradation. Results indicate that annual NEE ranged from a sink of 0.76 MgC ha-1 yr-1 to a source of 0.55 MgC ha-1 yr-1. NEE during the growing seasons fluctuated from 1.1 to 1.8 MgC ha-1 season-1 in net C uptake. Annual NEE was strongly affected by winter Re, which represented between 33% and 45% of the annual value regardless of of the large drop in both air and soil temperature. Parameters from the light response curve (optimum NEE, NEEopt and quantum yield, α) showed a seasonal and interannual variability and were different between the most and least degraded sites in the footprint, which affected the magnitude of the carbon cycle and may have implications for landscape C balance in sub-arctic tundra.

  12. Atmospheric methane sources - Alaskan tundra bogs, an alpine fen, and a subarctic boreal marsh

    NASA Technical Reports Server (NTRS)

    Sebacher, D. I.; Harriss, R. C.; Grice, S. S.; Bartlett, K. B.; Sebacher, S. M.

    1986-01-01

    Methane (CH4) flux measurements from Alaska tundra bogs, an alpine fen, and a subarctic boreal marsh were obtained at field sites ranging from Prudhoe Bay on the coast of the Arctic Ocean to the Alaskan Range south of Fairbanks during August 1984. In the tundra, average CH4 emission rates varied from 4.9 mg CH4 per sq m per day (moist tundra) to 119 mg CH4 per sq m per day (waterlogged tundra). Fluxes averaged 40 mg CH4 per sq m per day from wet tussock meadows in the Brooks Range and 289 mg Ch4 per sq m per day from an alpine fen in the Alaskan Range. The boreal marsh had an average CH4 emission rate of 106 mg CH4 per sq m per day. Significant emissions were detected in tundra areas where peat temperatures were as low as 4 C, and permafrost was only 25 cm below the ground surface. Emission rates from the 17 sites sampled were found to be logarithmically related to water levels at the sites. Extrapolation of the data to an estimate of the total annual CH4 emission from all arctic and boreal wetlands suggests that these ecosystems are a major source of atmospheric CH4 and could account for up to 23 percent of global CH4 emissions from wetlands.

  13. Constraint of soil moisture on CO2 efflux from tundra lichen, moss, and tussock in Council, Alaska, using a hierarchical Bayesian model

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Nishina, K.; Chae, N.; Park, S. J.; Yoon, Y. J.; Lee, B. Y.

    2014-10-01

    The tundra ecosystem is quite vulnerable to drastic climate change in the Arctic, and the quantification of carbon dynamics is of significant importance regarding thawing permafrost, changes to the snow-covered period and snow and shrub community extent, and the decline of sea ice in the Arctic. Here, CO2 efflux measurements using a manual chamber system within a 40 m × 40 m (5 m interval; 81 total points) plot were conducted within dominant tundra vegetation on the Seward Peninsula of Alaska, during the growing seasons of 2011 and 2012, for the assessment of driving parameters of CO2 efflux. We applied a hierarchical Bayesian (HB) model - a function of soil temperature, soil moisture, vegetation type, and thaw depth - to quantify the effects of environmental factors on CO2 efflux and to estimate growing season CO2 emissions. Our results showed that average CO2 efflux in 2011 was 1.4 times higher than in 2012, resulting from the distinct difference in soil moisture between the 2 years. Tussock-dominated CO2 efflux is 1.4 to 2.3 times higher than those measured in lichen and moss communities, revealing tussock as a significant CO2 source in the Arctic, with a wide area distribution on the circumpolar scale. CO2 efflux followed soil temperature nearly exponentially from both the observed data and the posterior medians of the HB model. This reveals that soil temperature regulates the seasonal variation of CO2 efflux and that soil moisture contributes to the interannual variation of CO2 efflux for the two growing seasons in question. Obvious changes in soil moisture during the growing seasons of 2011 and 2012 resulted in an explicit difference between CO2 effluxes - 742 and 539 g CO2 m-2 period-1 for 2011 and 2012, respectively, suggesting the 2012 CO2 emission rate was reduced to 27% (95% credible interval: 17-36%) of the 2011 emission, due to higher soil moisture from severe rain. The estimated growing season CO2 emission rate ranged from 0.86 Mg CO2 in 2012 to 1

  14. Constraint of soil moisture on CO2 efflux from tundra lichen, moss, and tussock in Council, Alaska using a hierarchical Bayesian model

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Nishina, K.; Chae, N.; Park, S.; Yoon, Y.; Lee, B.

    2014-04-01

    The tundra ecosystem is quite vulnerable to drastic climate change in the Arctic, and the quantification of carbon dynamics is of significant importance in response to thawing permafrost, changes in the snow-covered period and snow and shrub community extent, and the decline of sea ice in the Arctic. Here, CO2 efflux measurements using a manual chamber system within a 40 m × 40 m (5 m interval; 81 total points) plot were conducted in dominant tundra vegetation on the Seward Peninsula of Alaska, during the growing seasons of 2011 and 2012, for the assessment of the driving parameters of CO2 efflux. We applied a hierarchical Bayesian (HB) model - which is a function of soil temperature, soil moisture, vegetation type and thaw depth - to quantify the effect of environmental parameters on CO2 efflux, and to estimate growing season CO2 emission. Our results showed that average CO2 efflux in 2011 is 1.4-fold higher than in 2012, resulting from the distinct difference in soil moisture between the two years. Tussock-dominated CO2 efflux is 1.4 to 2.3 times higher than those measured in lichen and moss communities, reflecting tussock as a significant CO2 source in the Arctic, with wide area distribution on a circumpolar scale. CO2 efflux followed soil temperature nearly exponentially from both the observed data and the posterior medians of the HB model. This reveals soil temperature as the most important parameter in regulating CO2 efflux, rather than soil moisture and thaw depth. Obvious changes in soil moisture during the growing seasons of 2011 and 2012 resulted in an explicit difference in CO2 efflux - 742 and 539 g CO2 m-2 period-1 in 2011 and 2012, respectively, suggesting that the 2012 CO2 emission rate was constrained by 27% (95% credible interval: 17-36%) compared to 2011, due to higher soil moisture from severe rain. Estimated growing season CO2 emission rate ranged from 0.86 Mg CO2 period-1 in 2012 to 1.2 Mg CO2 period-1 in 2011 within a 40 m × 40 m plot

  15. CO2 dynamics of tundra ponds in the low-Arctic, Northwest Territories, Canada

    NASA Astrophysics Data System (ADS)

    Buell, Mary-Claire

    Extensive research has gone into measuring changes to the carbon storage capacity of Arctic terrestrial environments as well as large water bodies in order to determine a carbon budget for many regions across the Arctic. Inland Arctic waters such as small lakes and ponds are often excluded from these carbon budgets, however a handful of studies have demonstrated that they can often be significant sources of carbon to the atmosphere. This study investigated the CO2 cycling of tundra ponds in the Daring Lake area, Northwest Territories, Canada (64°52'N, 111°35'W), to determine the role ponds have in the local carbon cycle. Floating chambers, nondispersive infrared (NDIR) sensors and headspace samples were used to estimate carbon fluxes from four selected local ponds. Multiple environmental, chemical and meteorological parameters were also monitored for the duration of the study, which took place during the snow free season of 2013. Average CO2 emissions for the two-month growing season ranged from approximately -0.0035 g CO2-C m-2 d -1 to 0.12 g CO2-C m-2 d-1. The losses of CO2 from the water bodies in the Daring Lake area were approximately 2-7% of the CO2 uptake over vegetated terrestrial tundra during the same two-month period. Results from this study indicated that the production of CO2 in tundra ponds was positively influenced by both increases in air temperature, and the delivery of carbon from their catchments. The relationship found between temperature and carbon emissions suggests that warming Arctic temperatures have the potential to increase carbon emissions from ponds in the future. The findings in this study did not include ebullition gas emissions nor plant mediated transport, therefore these findings are likely underestimates of the total carbon emissions from water bodies in the Daring Lake area. This study emphasizes the need for more research on inland waters in order to improve our understanding of the total impact these waters may have on the

  16. Methane and nitrous oxide fluxes from four tundra ecotopes in Ny-Ålesund of the High Arctic.

    PubMed

    Chen, Qingqing; Zhu, Renbin; Wang, Qing; Xu, Hua

    2014-07-01

    During the summers of 2008 and 2009, net methane (CH₄) and nitrous oxide (N₂O) fluxes were investigated from 4 tundra ecotopes: normal lowland tundra (LT), bird sanctuary tundra (BT), the tundra in an abandoned coal mine (CT) and the tundra in scientific bases (ST) in Ny-Ålesund of the High Arctic. Tundra soils in CT (184.5 ± 40.0 μg CH4/(m²·hr)) and ST (367.6 ± 92.3μg CH4/(m²·hr)) showed high CH4 emissions due to the effects of human activities, whereas high CH4 uptake or low emission occurred in the soils of LT and BT. The lowland tundra soils (mean, -4.4-4.3μg N₂O/(m²·hr)) were weak N₂O sources and even sinks. Bird activity increased N₂O emissions from BT with the mean flux of 7.9μgN2O/(m(2)·hr). The mean N₂O fluxes from CT (45.4 ± 10.2 μg N₂O/(m²·hr)) and ST (78.8 ± 18.5μg N₂O/(m²·hr)) were one order of magnitude higher than those from LT and BT, indicating that human activities significantly increased N₂O emissions from tundra soils. Soil total carbon and water regime were important factors affecting CH₄ fluxes from tundra soils. The N₂O fluxes showed a significant positive correlation with ammonia nitrogen (NH₄(+)-N) contents (r=0.66, p<0.001) at all the observation sites, indicating that ammonia nitrogen (NH₄(+)-N) content acted as a strong predictor for N₂O emissions from tundra soils. The CH4 and N₂O fluxes did not correspond to the temperature variations of soil at 0-15 cm depths. Overall our results implied that human activities might have greater effects on soil CH₄ and N₂O emissions than current climate warming in Ny-Ålesund, High Arctic. Copyright © 2014. Published by Elsevier B.V.

  17. Soil carbon content and CO2 flux along a hydrologic gradient in a High-Arctic tundra lake basin, Northwest Greenland

    NASA Astrophysics Data System (ADS)

    McKnight, J.; Klein, E. S.; Welker, J. M.; Schaeffer, S. M.; Franklin, M.

    2015-12-01

    High Arctic landscapes are composed of watershed basins that vary in size and ecohydrology, but typically have a plant community complex that ranges from dry tundra to moist tundra to wet sedge systems along water body shorelines. The spatial extent of these plant communities reflects mean annual soil moisture and temperature, and is vulnerable to changes in climate conditions. Soil moisture and temperature significantly influence organic matter microbial activity and decomposition, and can affect the fate of soil carbon in tundra soils. Consequently, due to the unique soil carbon differences between tundra plant communities, shifts in their spatial extent may drive future High Arctic biosphere-atmosphere interactions. Understanding this terrestrial-atmosphere trace gas feedback, however, requires quantification of the rates and patterns of CO2 exchange along soil moisture gradients and the associated soil properties. In summer of 2015, soil CO2 flux rate, soil moisture and temperature were measured along a soil moisture gradient spanning three vegetation zones (dry tundra, wet tundra, and wet grassland) in a snow melt-fed lake basin near Thule Greenland. Mean soil temperature during the 2015 growing season was greater in dry tundra than in wet tundra and wet grassland (13.0 ± 1.2, 7.8 ± 0.8, and 5.5 ± 0.9°C, respectively). Mean volumetric soil moisture differed among all three vegetation zones where the soil moisture gradient ranged from 9 % (dry tundra) to 34 % (wet tundra) to 51 % (wet grassland). Mean soil CO2 flux was significantly greater in the wet grassland (1.7 ± 0.1 μmol m-2 s-1) compared to wet tundra (0.9 ± 0.2 μmol m-2 s-1) and dry tundra (1.2 ± 0.2 μmol m-2 s-1). Soil CO2 flux increased and decreased with seasonal warming and cooling of soil temperature. Although soil temperature was an important seasonal driver of soil CO2 flux rates, differences in mean seasonal soil CO2 flux rates among vegetation zones appeared to be a function of the

  18. Changing Arctic ecosystems - measuring and forecasting the response of Alaska's terrestrial ecosystem to a warming climate

    USGS Publications Warehouse

    Pearce, John M.; DeGange, Anthony R.; Flint, Paul L.; Fondell, Tom F.; Gustine, David D.; Holland-Bartels, Leslie E.; Hope, Andrew G.; Hupp, Jerry W.; Koch, Joshua C.; Schmutz, Joel A.; Talbot, Sandra L.; Ward, David; Whalen, Mary E.

    2012-01-01

    The Arctic Coastal Plain of northern Alaska is a complex landscape of lakes, streams, and wetlands scattered across low relief tundra that is underlain by permafrost. This region of the Arctic has experienced a warming trend over the past three decades, leading to thawing of on-shore permafrost and the disappearance of sea ice at an unprecedented rate. The loss of sea ice has increased ocean wave action, leading to higher rates of erosion and salt water inundation of coastal habitats. Warming temperatures also have advanced the overall phenology of the region, including earlier snowmelt, lake ice thaw, and plant growth. As a result, many migratory species now arrive in the Arctic several days earlier in spring than in the 1970s. Predicted warming trends for the future will continue to alter plant growth, ice thaw, and other basic landscape processes. These changes will undoubtedly result in different responses by wildlife (fish, birds, and mammals) and the food they rely upon (plants, invertebrates, and fish). However, the type of response by different wildlife populations and their habitats-either positively or negatively-remains largely unknown.

  19. Bird Communities of the Arctic Shrub Tundra of Yamal: Habitat Specialists and Generalists

    PubMed Central

    Sokolov, Vasiliy; Ehrich, Dorothée; Yoccoz, Nigel G.; Sokolov, Alexander; Lecomte, Nicolas

    2012-01-01

    Background The ratio of habitat generalists to specialists in birds has been suggested as a good indicator of ecosystem changes due to e.g. climate change and other anthropogenic perturbations. Most studies focusing on this functional component of biodiversity originate, however, from temperate regions. The Eurasian Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by domestic reindeer and growing human activity. Methodology/Principal Findings Here we monitored bird communities in a tundra landscape harbouring shrub and open habitats in order to analyse bird habitat relationships and quantify habitat specialization. We used ordination methods to analyse habitat associations and estimated the proportions of specialists in each of the main habitats. Correspondence Analysis identified three main bird communities, inhabiting upland, lowland and dense willow shrubs. We documented a stable structure of communities despite large multiannual variations of bird density (from 90 to 175 pairs/km2). Willow shrub thickets were a hotspot for bird density, but not for species richness. The thickets hosted many specialized species whose main distribution area was south of the tundra. Conclusion/Significance If current arctic changes result in a shrubification of the landscape as many studies suggested, we would expect an increase in the overall bird abundance together with an increase of local specialists, since they are associated with willow thickets. The majority of these species have a southern origin and their increase in abundance would represent a strengthening of the boreal component in the southern tundra, perhaps at the expense of species typical of the subarctic zone, which appear to be generalists within this zone. PMID:23239978

  20. The 1977 tundra fire in the Kokolik River area of Alaska

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Presumably caused by lightning, a large fire occurred due east of Point Lay several kilometers southwest of the Kokolik River, the farthest north a fire was ever fought by Bureau of Land Management personnel in Alaska. The progress and area extent of the fire were determined by analysis of LANDSAT MSS band 5 and 7 imagery. Low altitude observations from helicopter showed the fire burned a range of vegetation and relief types which included low polygonized and upland tussock tundras. The burned area appeared wetter on the surface than the unburned area, due to a lack of moisture absorbing organic matter and the possible release of moisture from the deeper thawed zone. Suggestions for future investigations of the effects of fire on tundra and permafrost terrains are discussed.

  1. Fire-severity effects on plant-fungal interactions after a novel tundra wildfire disturbance: implications for arctic shrub and tree migration.

    PubMed

    Hewitt, Rebecca E; Hollingsworth, Teresa N; Stuart Chapin Iii, F; Lee Taylor, D

    2016-05-11

    Vegetation change in high latitude tundra ecosystems is expected to accelerate due to increased wildfire activity. High-severity fires increase the availability of mineral soil seedbeds, which facilitates recruitment, yet fire also alters soil microbial composition, which could significantly impact seedling establishment. We investigated the effects of fire severity on soil biota and associated effects on plant performance for two plant species predicted to expand into Arctic tundra. We inoculated seedlings in a growth chamber experiment with soils collected from the largest tundra fire recorded in the Arctic and used molecular tools to characterize root-associated fungal communities. Seedling biomass was significantly related to the composition of fungal inoculum. Biomass decreased as fire severity increased and the proportion of pathogenic fungi increased. Our results suggest that effects of fire severity on soil biota reduces seedling performance and thus we hypothesize that in certain ecological contexts fire-severity effects on plant-fungal interactions may dampen the expected increases in tree and shrub establishment after tundra fire.

  2. Shrub Abundance Mapping in Arctic Tundra with Misr

    NASA Astrophysics Data System (ADS)

    Duchesne, R.; Chopping, M. J.; Wang, Z.; Schaaf, C.; Tape, K. D.

    2013-12-01

    Over the last 60 years an increase in shrub abundance has been observed in the Arctic tundra in connection with a rapid surface warming trend. Rapid shrub expansion may have consequences in terms of ecosystem structure and function, albedo, and feedbacks to climate; however, its rate is not yet known. The goal of this research effort is thus to map large scale changes in Arctic tundra vegetation by exploiting the structural signal in moderate resolution satellite remote sensing images from NASA's Multiangle Imaging SpectroRadiometer (MISR), mapped onto a 250m Albers Conic Equal Area grid. We present here large area shrub mapping supported by reference data collated using extensive field inventory data and high resolution panchromatic imagery. MISR Level 1B2 Terrain radiance scenes from the Terra satellite from 15 June-31 July, 2000 - 2010 were converted to surface bidirectional reflectance factors (BRF) using MISR Toolkit routines and the MISR 1 km LAND product BRFs. The red band data in all available cameras were used to invert the RossThick-LiSparse-Reciprocal BRDF model to retrieve kernel weights, model-fitting RMSE, and Weights of Determination. The reference database was constructed using aerial survey, three field campaigns (field inventory for shrub count, cover, mean radius and height), and high resolution imagery. Tall shrub number, mean crown radius, cover, and mean height estimates were obtained from QuickBird and GeoEye panchromatic image chips using the CANAPI algorithm, and calibrated using field-based estimates, thus extending the database to over eight hundred locations. Tall shrub fractional cover maps for the North Slope of Alaska were constructed using the bootstrap forest machine learning algorithm that exploits the surface information provided by MISR. The reference database was divided into two datasets for training and validation. The model derived used a set of 19 independent variables(the three kernel weights, ratios and interaction terms

  3. Tundra plant biomass distribution and environmental constraints on the North Slope of Alaska

    NASA Astrophysics Data System (ADS)

    Berner, L. T.; Jantz, P.; Goetz, S. J.

    2017-12-01

    Rising temperatures are increasing plant productivity and biomass in the Arctic tundra, with pronounced greening having occurred in northern Alaska during recent decades. Increasing plant biomass will drive biogeochemical and biophysical feedback to regional climate; however, the amount and spatial distribution of plant biomass remains highly uncertain in these northern ecosystems. In this study, we mapped both plant aboveground biomass (AGB) and the shrub component across the North Slope of Alaska at 30 m spatial resolution by combining satellite and field measurements, and then examined how the spatial distribution of AGB was constrained by regional climate and local topography. Specifically, we developed regression models for predicting AGB based on the Normalized Difference Vegetation Index (NDVI) derived from Landsat satellite imagery. These regression models incorporated previously published field measurements from 27 tundra locations and showed strong relationships between AGB and peak summer NDVI (r2=0.75-0.80). We then predicted AGB across the study area by combining these regression models with a peak summer NDVI composite mosaic derived from over 2,000 Landsat scenes acquired between 2007 and 2016. We also created uncertainty maps using a Monte Carlo approach. The resulting biomass maps indicated that plant AGB averaged 0.72 kg m-2 (95% CI = 0.50-1.01 kg m-2) and totaled 108 Tg (75-153 Tg) across the domain, with shrub AGB accounting for about 44% of plant AGB. Plant and shrub AGB peaked in riparian areas, where permafrost active layers are generally deeper and nutrients more readily available. Plant and shrub AGB were also strongly influenced by summer temperature, with average plant AGB doubling and shrub AGB quadrupling between areas with the coldest and warmest summers. Furthermore, the contribution of shrub AGB to total plant AGB increased with increasing summer temperatures. Future warming will likely increase plant AGB and the contribution from

  4. Tundra, Chapter 5

    Treesearch

    K. Nadelhoffer; L.H. Geiser

    2011-01-01

    The North American Arctic, comprising the Tundra and Arctic Cordillera ecoregions (CEC 1997, Chapter 2), covers more than 3 million km2 (300 million ha), and accounts for nearly 14 percent of the North American land mass. The North American Arctic also constitutes about 20 percent of the much larger circumpolar Arctic shared by Canada, the United...

  5. Changes in tundra pond limnology: re-sampling Alaskan ponds after 40 years.

    PubMed

    Lougheed, Vanessa L; Butler, Malcolm G; McEwen, Daniel C; Hobbie, John E

    2011-09-01

    The arctic tundra ponds at the International Biological Program (IBP) site in Barrow, AK, were studied extensively in the 1970s; however, very little aquatic research has been conducted there for over three decades. Due to the rapid climate changes already occurring in northern Alaska, identifying any changes in the ponds' structure and function over the past 30-40 years can help identify any potential climate-related impacts. Current research on the IBP ponds has revealed significant changes in the physical, chemical, and biological characteristics of these ponds over time. These changes include increased water temperatures, increased water column nutrient concentrations, the presence of at least one new chironomid species, and increased macrophyte cover. However, we have also observed significant annual variation in many measured variables and caution that this variation must be taken into account when attempting to make statements about longer-term change. The Barrow IBP tundra ponds represent one of the very few locations in the Arctic where long-term data are available on freshwater ecosystem structure and function. Continued monitoring and protection of these invaluable sites is required to help understand the implications of climate change on freshwater ecosystems in the Arctic.

  6. Inundation, sedimentation, and subsidence creates goose habitat along the Arctic coast of Alaska

    USGS Publications Warehouse

    Tape, Ken D.; Flint, Paul L.; Meixell, Brandt W.; Gaglioti, Benjamin V.

    2013-01-01

    The Arctic Coastal Plain of Alaska is characterized by thermokarst lakes and drained lake basins, and the rate of coastal erosion has increased during the last half-century. Portions of the coast are <1 m above sea level for kilometers inland, and are underlain by ice-rich permafrost. Increased storm surges or terrestrial subsidence would therefore expand the area subject to marine inundation. Since 1976, the distribution of molting Black Brant (Branta bernicla nigricans) on the Arctic Coastal Plain has shifted from inland freshwater lakes to coastal marshes, such as those occupying the Smith River and Garry Creek estuaries. We hypothesized that the movement of geese from inland lakes was caused by an expansion of high quality goose forage in coastal areas. We examined the recent history of vegetation and geomorphological changes in coastal goose habitat by combining analysis of time series imagery between 1948 and 2010 with soil stratigraphy dated using bomb-curve radiocarbon. Time series of vertical imagery and in situ verification showed permafrost thaw and subsidence of polygonal tundra. Soil stratigraphy and dating within coastal estuaries showed that non-saline vegetation communities were buried by multiple sedimentation episodes between 1948 and 1995, accompanying a shift toward salt-tolerant vegetation. This sedimentation allowed high quality goose forage plants to expand, thus facilitating the shift in goose distribution. Declining sea ice and the increasing rate of terrestrial inundation, sedimentation, and subsidence in coastal estuaries of Alaska may portend a 'tipping point' whereby inland areas would be transformed into salt marshes.

  7. Decadal changes in north-American tundra plant communities

    NASA Astrophysics Data System (ADS)

    Villarreal, S.; Johnson, D. R.; Webber, P.; Ebert-May, D.; Hollister, R. D.; Tweedie, C. E.

    2013-12-01

    Improving our understanding of how tundra vegetation responds to environmental change over decadal time scales is important. Tundra plants and ecosystems are well-recognized for their susceptibility to be impacted by climate warming; changes in land-atmosphere carbon, water, and energy balance in tundra landscapes have the potential to impact regional to global-scale climate, and relatively few studies examining change in tundra landscapes have spanned decadal time scales. The majority of our understanding of tundra vegetation responses to environmental change has been derived from studies along environmental gradients, experimental manipulations, and modeling. This study synthesizes the rescue and resampling of historic vegetation study sites established during the 1960's and 1970's at three arctic tundra locations (Baffin Island, Canada, Barrow, Alaska, and Atqasuk, Alaska), and one alpine tundra location (Niwot Ridge, Colorado). We conducted a meta-analysis to examine decadal changes in plant community composition, species richness, species evenness, and species diversity at all locations and for three broad soil moisture classes (dry, moist, wet). For all sites, except Baffin Island, change over the last decade was compared with long term change to determine if rates of change have altered over time. Change in plant community composition was most dramatic at Barrow and Baffin Island (P < 0.05), while less change was detected at Niwot Ridge (P < 0.10), and Atqasuk. Plant communities also changed for all soil moisture classes. The rate of change at Barrow and in moist soil classes appears to have quickened over the last decade. Rates of early plant successional change at Baffin Island appear to have quickened relative to rates documented in the mid 1960's. There were no changes in species richness at any of the locations, but there appears to be acceleration in the loss of species richness for dry and moist tundra. Species evenness increased at Atqasuk and in dry

  8. Kaltag fault, northern Yukon, Canada: Constraints on evolution of Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Lane, Larry S.

    1992-07-01

    The Kaltag fault has been linked to several strike-slip models of evolution of the western Arctic Ocean. Hundreds of kilometres of Cretaceous-Tertiary displacement have been hypothesized in models that emplace Arctic Alaska into its present position by either left- or right-lateral strike slip. However, regional-scale displacement is precluded by new potential-field data. Postulated transform emplacement of Arctic Alaska cannot be accommodated by motion on the Kaltag fault or adjacent structures. The Kaltag fault of the northern Yukon is an eastward extrapolation of its namesake in west-central Alaska; however, a connection cannot be demonstrated. Cretaceous-Tertiary displacement on the Alaskan Kaltag fault is probably accommodated elsewhere.

  9. Hydrogen isotope fractionation in leaf waxes in the Alaskan Arctic tundra

    NASA Astrophysics Data System (ADS)

    Daniels, William C.; Russell, James M.; Giblin, Anne E.; Welker, Jeffrey M.; Klein, Eric S.; Huang, Yongsong

    2017-09-01

    Leaf wax hydrogen isotopes (δDwax) are increasingly utilized in terrestrial paleoclimate research. Applications of this proxy must be grounded by studies of the modern controls on δDwax, including the ecophysiological controls on isotope fractionation at both the plant and landscape scales. Several calibration studies suggest a considerably smaller apparent fractionation between source water and waxes (εapp) at high latitudes relative to temperate or tropical locations, with major implications for paleoclimatic interpretations of sedimentary δDwax. Here we investigate apparent fractionation in the Arctic by tracing the isotopic composition of leaf waxes from production in modern plants to deposition in lake sediments using isotopic observations of precipitation, soil and plant waters, living leaf waxes, and waxes in sediment traps in the Brooks Range foothills of northern Alaska. We also analyze a lake surface sediment transect to compare present-day vegetation assemblages to εapp at the watershed scale. Source water and εapp were determined for live specimens of Eriophorum vaginatum (cottongrass) and Betula nana (dwarf birch), two dominant tundra plants in the Brooks Range foothills. The δD of these plants' xylem water closely tracks that of surface soil water, and reflects a summer-biased precipitation source. Leaf water is enriched by 23 ± 15‰ relative to xylem water for E. vaginatum and by 41 ± 19‰ for B. nana. Evapotranspiration modeling indicates that this leaf water enrichment is consistent with the evaporative enrichment expected under the climate conditions of northern Alaska, and that 24-h photosynthesis does not cause excessive leaf water isotope enrichment. The εapp determined for our study species average -89 ± 14‰ and -106 ± 16‰ for B. nana n-alkanes and n-acids, respectively, and -182 ± 10‰ and -154 ± 26‰ for E. vaginatum n-alkanes and n-acids, which are similar to the εapp of related species in temperate and tropical

  10. Intermittent Flooding of Arctic Lagoon Wet Sedge Areas: an investigation of past and future conditions at Arey Lagoon, Eastern Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Gibbs, A.; Erikson, L. H.; Richmond, B. M.

    2017-12-01

    Arctic lagoons and mainland coasts support highly productive ecosystems, where soft substrate and coastal wet sedge fringing the shores act as feeding grounds and nurseries for a variety of marine fish and waterfowl. Much tundra vegetation is intolerant to saltwater flooding, but some vegetation cherished by geese for example, is maintained by flooding one to two times per month. The balance of northern ecosystems such as these may be in jeopardy as the Arctic climate is rapidly changing. In this study, sea level rise and 21st century storms are simulated with a numerical model to evaluate changes in ocean-driven flooding of low-lying tundra and coastal wet sedge that fringe the shores of Arey Lagoon, located in eastern Arctic Alaska. Numerically modeled extreme surge levels are projected to increase from a historical range of 0.5 m - 1.3 m (1976-2010) to 1.0 m - 2.0 m by end-of-century (2011-2100). The maximum storm surge of the projected time-period translates to > 6 km2 of flooded tundra, much of which consists of salt-intolerant vegetation. Monthly flood extents that might be expected to maintain halophytic vegetation were calculated by extracting the maximum monthly water levels of months that had more than 21 days ( 70%) of ice-free conditions. Median monthly water levels are shown to range from 0.46 m in 1981-1990 to 0.91 m by the final decades of the 21st century. The temporal trend is strongly linear (r2 = 0.82). An overlay of these water elevations onto a 10 m resolution elevation model shows that monthly flood extents will increase by 26% by the end of the century compared to the present decade (2011 to 2020) (from 2.86 km2 to 3.60 km2). The rate at which the flood extents are projected to increase will dictate if inland succession of salt-tolerant vegetation will survive. By combining the frequency and magnitude of extreme storm surge events with the progression of modeled monthly inland flood extents, it might be possible to identify areas along this

  11. Constraining estimates of methane emissions from Arctic permafrost regions with CARVE

    NASA Astrophysics Data System (ADS)

    Chang, R. Y.; Karion, A.; Sweeney, C.; Henderson, J.; Mountain, M.; Eluszkiewicz, J.; Luus, K. A.; Lin, J. C.; Dinardo, S.; Miller, C. E.; Wofsy, S. C.

    2013-12-01

    Permafrost in the Arctic contains large carbon pools that are currently non-labile, but can be released to the atmosphere as polar regions warm. In order to predict future climate scenarios, we need to understand the emissions of these greenhouse gases under varying environmental conditions. This study presents in-situ measurements of methane made on board an aircraft during the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE), which sampled over the permafrost regions of Alaska. Using measurements from May to September 2012, seasonal emission rate estimates of methane from tundra are constrained using the Stochastic Time-Inverted Lagrangian Transport model, a Lagrangian particle dispersion model driven by custom polar-WRF fields. Preliminary results suggest that methane emission rates have not greatly increased since the Arctic Boundary Layer Experiment conducted in southwest Alaska in 1988.

  12. Slow recovery of lichen on burned caribou winter range in Alaska tundra: potential influences of climate warming and other disturbance factors

    Treesearch

    Randi Jandt; Kyle Joly; C. Randy Meyers; Charles Racine

    2008-01-01

    Lichen regeneration timelines are needed to establish sound fire management guidelines for caribou (Rangifer tarandus) winter range. Paired burned and unburned permanent vegetative cover transects were established after 1981, 1977, and 1972 tundra fires in northwestern Alaska to document regrowth of tundra vegetation including caribou forage...

  13. Hematology, plasma chemistry, and bacteriology of wild Tundra Swans (Cygnus columbianus) in Alaska.

    PubMed

    Milani, Juliana F; Wilson, Heather; Ziccardi, Michael; LeFebvre, Rance; Scott, Cheryl

    2012-01-01

    Blood and cloacal swabs were collected from 100 (66 female, 34 male) wild Tundra Swans (Cygnus columbianus) molting in northwestern Alaska, USA, 25-28 July 2008, to establish hematologic and serum chemistry reference values and to isolate enteric Salmonella spp. and Escherichia coli O157:H7. Plasma biochemistry and hematology values did not vary significantly by sex or age. Tundra swans had high levels of creatine kinase, lactate dehydrogenase, amylase, and alkaline phosphatase compared with some other avian species (values were up to 7 times greater), possibly indicating capture myopathy. However, concentrations were much lower (up to 8 times lower) than in other waterfowl exposed to similar or more intensive capture methods. White blood cell count and hematocrit values were similar to other waterfowl species, and enteric Salmonella spp. and E. coli O157:H7 were not present among birds sampled. Our data provide the first biochemical, hematologic, and bacteriologic reference values for wild Tundra Swans.

  14. Microbial iron oxidation in the Arctic tundra and its implications for biogeochemical cycling.

    PubMed

    Emerson, David; Scott, Jarrod J; Benes, Joshua; Bowden, William B

    2015-12-01

    The role that neutrophilic iron-oxidizing bacteria play in the Arctic tundra is unknown. This study surveyed chemosynthetic iron-oxidizing communities at the North Slope of Alaska near Toolik Field Station (TFS) at Toolik Lake (lat 68.63, long -149.60). Microbial iron mats were common in submerged habitats with stationary or slowly flowing water, and their greatest areal extent is in coating plant stems and sediments in wet sedge meadows. Some Fe-oxidizing bacteria (FeOB) produce easily recognized sheath or stalk morphotypes that were present and dominant in all the mats we observed. The cool water temperatures (9 to 11°C) and reduced pH (5.0 to 6.6) at all sites kinetically favor microbial iron oxidation. A microbial survey of five sites based on 16S rRNA genes found a predominance of Proteobacteria, with Betaproteobacteria and members of the family Comamonadaceae being the most prevalent operational taxonomic units (OTUs). In relative abundance, clades of lithotrophic FeOB composed 5 to 10% of the communities. OTUs related to cyanobacteria and chloroplasts accounted for 3 to 25% of the communities. Oxygen profiles showed evidence for oxygenic photosynthesis at the surface of some mats, indicating the coexistence of photosynthetic and FeOB populations. The relative abundance of OTUs belonging to putative Fe-reducing bacteria (FeRB) averaged around 11% in the sampled iron mats. Mats incubated anaerobically with 10 mM acetate rapidly initiated Fe reduction, indicating that active iron cycling is likely. The prevalence of iron mats on the tundra might impact the carbon cycle through lithoautotrophic chemosynthesis, anaerobic respiration of organic carbon coupled to iron reduction, and the suppression of methanogenesis, and it potentially influences phosphorus dynamics through the adsorption of phosphorus to iron oxides. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Microbial Iron Oxidation in the Arctic Tundra and Its Implications for Biogeochemical Cycling

    PubMed Central

    Scott, Jarrod J.; Benes, Joshua; Bowden, William B.

    2015-01-01

    The role that neutrophilic iron-oxidizing bacteria play in the Arctic tundra is unknown. This study surveyed chemosynthetic iron-oxidizing communities at the North Slope of Alaska near Toolik Field Station (TFS) at Toolik Lake (lat 68.63, long −149.60). Microbial iron mats were common in submerged habitats with stationary or slowly flowing water, and their greatest areal extent is in coating plant stems and sediments in wet sedge meadows. Some Fe-oxidizing bacteria (FeOB) produce easily recognized sheath or stalk morphotypes that were present and dominant in all the mats we observed. The cool water temperatures (9 to 11°C) and reduced pH (5.0 to 6.6) at all sites kinetically favor microbial iron oxidation. A microbial survey of five sites based on 16S rRNA genes found a predominance of Proteobacteria, with Betaproteobacteria and members of the family Comamonadaceae being the most prevalent operational taxonomic units (OTUs). In relative abundance, clades of lithotrophic FeOB composed 5 to 10% of the communities. OTUs related to cyanobacteria and chloroplasts accounted for 3 to 25% of the communities. Oxygen profiles showed evidence for oxygenic photosynthesis at the surface of some mats, indicating the coexistence of photosynthetic and FeOB populations. The relative abundance of OTUs belonging to putative Fe-reducing bacteria (FeRB) averaged around 11% in the sampled iron mats. Mats incubated anaerobically with 10 mM acetate rapidly initiated Fe reduction, indicating that active iron cycling is likely. The prevalence of iron mats on the tundra might impact the carbon cycle through lithoautotrophic chemosynthesis, anaerobic respiration of organic carbon coupled to iron reduction, and the suppression of methanogenesis, and it potentially influences phosphorus dynamics through the adsorption of phosphorus to iron oxides. PMID:26386054

  16. Tundra Fires in the Noatak National Preserve, Northwestern Alaska, Since 6000 yr BP

    NASA Astrophysics Data System (ADS)

    Chipman, M. L.; Higuera, P. E.; Allen, J.; Rupp, S.; Hu, F. S.

    2008-12-01

    Over 1.7 million hectares of Alaskan tundra have burned over the past 50 years, including the record-setting Anaktuvuk River fire in 2007. Despite this evidence indicating the flammable nature of these ecosystems under warm and dry conditions, land managers and global change scientists lack critical information concerning long-term relationships among fire, climate and tundra vegetation. This knowledge gap limits the ability to assess the response of the tundra fire regime to ongoing and predicted climate warming and potential feedbacks with Earth systems. We utilize macroscopic charcoal from lake-sediment cores to characterize the frequency component of fire regimes in shrub-dominated and herb-dominated tundra ecosystems in northwestern Alaska over the past 6000 years. Here we present the first long-term records of tundra fire regimes from the Noatak National Preserve, a region encompassing some of the most flammable tundra in the state. Results from three lakes indicate that fire has been a consistent process in the region, with fire return intervals (FRIs) ranging from 70 to 800+ years since 6000 yr BP. FRIs were similar between herb- and shrub-dominated tundra sites before ~2000 yr BP, with a mean FRI of 167 yr (95% CI 145-195) Over the past ~2000 years, however, herb- dominated sites burned more frequently (mean FRI 112 yr [95% CI 80-151]) than shrub-dominated sites (mean FRI 247 yr [95% CI 141-377]). At millennial time scales, shifts in historic FRIs were likely related to regional climate changes and/or associated vegetation changes. These results provide a context for resource management and serve to refine the tundra component of an ecosystem model designed to aid land managers in assessing fuels and fire hazards in the context of climatic change.

  17. The effects of climate changes on soil methane oxidation in a dry Arctic tundra

    NASA Astrophysics Data System (ADS)

    D'Imperio, Ludovica

    2014-05-01

    The effects of climate changes on soil methane oxidation in a dry Arctic tundra. Ludovica D'Imperio1, Anders Michelsen1, Christian J. Jørgensen1, Bo Elberling1 1Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Denmark At Northern latitudes climatic changes are predicted to be most pronounced resulting in increasing active layer depth and changes in growing season length, vegetation cover and nutrient cycling. As a consequence of increased temperature, large stocks of carbon stored in the permafrost-affected soils could become available for microbial transformations and under anoxic conditions result in increasing methane production affecting net methane (CH4) budget. Arctic tundra soils also serves as an important sink of atmospheric CH4 by microbial oxidation under aerobic conditions. While several process studies have documented the mechanisms behind both production and emissions of CH4 in arctic ecosystems, an important knowledge gap exists with respect to the in situ dynamics of microbial-driven uptake of CH4 in arctic dry lands which may be enhanced as a consequence of global warming and thereby counterbalancing CH4 emissions from Arctic wetlands. In-situ methane measurements were made in a dry Arctic tundra in Disko Island, Western Greenland, during the summer 2013 to assess the role of seasonal and inter-annual variations in temperatures and snow cover. The experimental set-up included snow fences installed in 2012, allowed investigations of the emissions of GHGs from soil under increased winter snow deposition and ambient field conditions. The soil fluxes of CH4 and CO2 were measured using closed chambers in manipulated plots with increased summer temperatures and shrub removal with or without increased winter precipitation. At the control plots, the averaged seasonal CH4 oxidation rates ranged between -0.05 mg CH4 m-2 hr-1 (end of August) and -0.32 mg CH4 m-2 hr-1 (end of June). In the

  18. Climate Change and Thawing Permafrost in Two Iñupiaq Communities of Alaska's Arctic: Observations, Implications, and Resilience

    NASA Astrophysics Data System (ADS)

    Woodward, A.; Kofinas, G.

    2013-12-01

    For thousands of years the Iñupiat of northern Alaska have relied on ecosystems underlain by permafrost for material and cultural resources. As permafrost thaws across the Arctic, these social-ecological systems are changing rapidly. Community-based research and extensive local knowledge of Iñupiaq villagers offer unique and valuable contributions to understanding permafrost change and its implications for humans. We partnered with two Iñupiaq communities in Alaska's Arctic to investigate current and potential effects of thawing permafrost on social-ecological systems. Anaktuvuk Pass is situated on thaw-stable consolidated gravel in the Brooks Range, while Selawik rests on ice-rich permafrost in Beringia lowland tundra. Using the transdisciplinary approach of resilience theory and mixed geophysical and ethnographic methods, we measured active layer thaw depths and documented local knowledge about climate and permafrost change. Thaw depths were greater overall in Selawik. Residents of both communities reported a variety of changes in surface features, hydrology, weather, flora, and fauna that they attribute to thawing permafrost and / or climate change. Overall, Selawik residents described more numerous and extreme examples of such changes, expressed higher degrees of certainty that change is occurring, and anticipated more significant and negative implications for their way of life than did residents of Anaktuvuk Pass. Of the two villages, Selawik faces greater and more immediate challenges to the resilience of its social-ecological system as permafrost thaws.

  19. Early Wisconsinan (MIS 4) Arctic ground squirrel middens and a squirrel-eye-view of the mammoth-steppe

    NASA Astrophysics Data System (ADS)

    Zazula, Grant D.; Froese, Duane G.; Elias, Scott A.; Kuzmina, Svetlana; Mathewes, Rolf W.

    2011-08-01

    Fossil arctic ground squirrel ( Spermophilus parryii) middens were recovered from ice-rich loess sediments in association with Sheep Creek-Klondike and Dominion Creek tephras (ca 80 ka) exposed in west-central Yukon. These middens provide plant and insect macrofossil evidence for a steppe-tundra ecosystem during the Early Wisconsinan (MIS 4) glacial interval. Midden plant and insect macrofossil data are compared with those previously published for Late Wisconsinan middens dating to ˜25-29 14C ka BP (MIS 3/2) from the region. Although multivariate statistical comparisons suggest differences between the relative abundances of plant macrofossils, the co-occurrence of steppe-tundra plants and insects (e.g., Elymus trachycaulus, Kobresia myosuroides, Artemisia frigida, Phlox hoodii, Connatichela artemisiae) provides evidence for successive reestablishment of the zonal steppe-tundra habitats during cold stages of the Late Pleistocene. Arctic ground squirrels were well adapted to the cold, arid climates, steppe-tundra vegetation and well-drained loessal soils that characterize cold stages of Late Pleistocene Beringia. These glacial conditions enabled arctic ground squirrel populations to expand their range to the interior regions of Alaska and Yukon, including the Klondike, where they are absent today. Arctic ground squirrels have endured numerous Quaternary climate oscillations by retracting populations to disjunct "interglacial refugia" during warm interglacial periods (e.g., south-facing steppe slopes, well-drained arctic and alpine tundra areas) and expanding their distribution across the mammoth-steppe biome during cold, arid glacial intervals.

  20. Modeling Above-Ground Biomass Across Multiple Circum-Arctic Tundra Sites Using High Spatial Resolution Remote Sensing

    NASA Astrophysics Data System (ADS)

    Räsänen, Aleksi; Juutinen, Sari; Aurela, Mika; Virtanen, Tarmo

    2017-04-01

    Biomass is one of the central bio-geophysical variables in Earth observation for tracking plant productivity, and flow of carbon, nutrients, and water. Most of the satellite based biomass mapping exercises in Arctic environments have been performed by using rather coarse spatial resolution data, e.g. Landsat and AVHRR which have spatial resolutions of 30 m and >1 km, respectively. While the coarse resolution images have high temporal resolution, they are incapable of capturing the fragmented nature of tundra environment and fine-scale changes in vegetation and carbon exchange patterns. Very high spatial resolution (VHSR, spatial resolution 0.5-2 m) satellite images have the potential to detect environmental variables with an ecologically sound spatial resolution. The usage of VHSR images has, nevertheless, been modest so far in biomass modeling in the Arctic. Our objectives were to use VHSR for predicting above ground biomass in tundra landscapes, evaluate whether a common predictive model can be applied across circum-Arctic tundra and peatland sites having different types of vegetation, and produce knowledge on distribution of plant functional types (PFT) in these sites. Such model development is dependent on ground-based surveys of vegetation with the same spatial resolution and extent with the VHSR images. In this study, we conducted ground-based surveys of vegetation composition and biomass in four different arctic tundra or peatland areas located in Russia, Canada, and Finland. First, we sorted species into PFTs and developed PFT-specific models to predict biomass on the basis of non-destructive measurements (cover, height). Second, we predicted overall biomass on landscape scale by combinations of single bands and vegetation indices of very high resolution satellite images (QuickBird or WorldView-2 images of the eight sites). We compared area-specific empirical regression models and common models that were applied across all sites. We found that NDVI was

  1. Impacts of Vegetation on CO2 exchange, permafrost thaw depth, and NDVI in Alaskan tundra.

    NASA Astrophysics Data System (ADS)

    Kerr, L.; Steltzer, H.; Natali, S.; Schade, J. D.; Mann, P. J.; Holmes, R. M.; Melton, S.

    2017-12-01

    Changes in terrestrial carbon cycling in response to a warming climate in the Arctic will, in large part, be driven by current and future composition of the plant community. To better understand the variation in plant community structure and impacts on carbon cycling, we examined relationships between vegetation composition, NDVI, CO2 exchange, and permafrost thaw depth in the Yukon Kuskokwim Delta (YKD) in southwest Alaska. Our study sites included lichen-dominated peat plateaus, tussock tundra, fens, and drained lakes. We found a significant and positive relationship between NDVI and net ecosystem exchange across sites. Dominant functional groups across sites included lichen, moss, and graminoid vegetation, but variability in vegetation cover was high both within and across sites. Tussock-dominated tundra, peat plateaus, and drained lakes shared many of the same species, while the fen site had several unique species. Areas with higher lichen cover were associated with low NDVI, low gross primary productivity (GPP), and low net ecosystem exchange (NEE) in comparison with areas with little or no lichen cover. Because lichen comprises a large portion of this region's biomass, it is an important variable to consider in the context of CO2 exchange in the arctic tundra.

  2. Changes in microbial communities along redox gradients in polygonized Arctic wet tundra soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipson, David A.; Raab, Theodore K.; Parker, Melanie

    2015-07-21

    This study investigated how microbial community structure and diversity varied with depth and topography in ice wedge polygons of wet tundra of the Arctic Coastal Plain in northern Alaska, and what soil variables explain these patterns. We observed strong changes in community structure and diversity with depth, and more subtle changes between areas of high and low topography, with the largest differences apparent near the soil surface. These patterns are most strongly correlated with redox gradients (measured using the ratio of reduced Fe to total Fe in acid extracts as a proxy): conditions grew more reducing with depth and weremore » most oxidized in shallow regions of polygon rims. Organic matter and pH also changed with depth and topography, but were less effective predictors of the microbial community structure and relative abundance of specific taxa. Of all other measured variables, lactic acid concentration was the best, in combination with redox, for describing the microbial community. We conclude that redox conditions are the dominant force in shaping microbial communities in this landscape. Oxygen and other electron acceptors allowed for the greatest diversity of microbes: at depth the community was reduced to a simpler core of anaerobes, dominated by fermenters ( Bacteroidetes and Firmicutes).« less

  3. Changes in microbial communities along redox gradients in polygonized Arctic wet tundra soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipson, David A.; Raab, Theodore K.; Parker, Melanie

    2015-08-01

    Summary This study investigated how microbial community structure and diversity varied with depth and topography in ice wedge polygons of wet tundra of the Arctic Coastal Plain in northern Alaska and what soil variables explain these patterns. We observed strong changes in community structure and diversity with depth, and more subtle changes between areas of high and low topography, with the largest differences apparent near the soil surface. These patterns are most strongly correlated with redox gradients (measured using the ratio of reduced Fe to total Fe in acid extracts as a proxy): conditions grew more reducing with depth andmore » were most oxidized in shallow regions of polygon rims. Organic matter and pH also changed with depth and topography but were less effective predictors of the microbial community structure and relative abundance of specific taxa. Of all other measured variables, lactic acid concentration was the best, in combination with redox, for describing the microbial community. We conclude that redox conditions are the dominant force in shaping microbial communities in this landscape. Oxygen and other electron acceptors allowed for the greatest diversity of microbes: at depth the community was reduced to a simpler core of anaerobes,« less

  4. Changes in microbial communities along redox gradients in polygonized Arctic wet tundra soils.

    PubMed

    Lipson, David A; Raab, Theodore K; Parker, Melanie; Kelley, Scott T; Brislawn, Colin J; Jansson, Janet

    2015-08-01

    This study investigated how microbial community structure and diversity varied with depth and topography in ice wedge polygons of wet tundra of the Arctic Coastal Plain in northern Alaska and what soil variables explain these patterns. We observed strong changes in community structure and diversity with depth, and more subtle changes between areas of high and low topography, with the largest differences apparent near the soil surface. These patterns are most strongly correlated with redox gradients (measured using the ratio of reduced Fe to total Fe in acid extracts as a proxy): conditions grew more reducing with depth and were most oxidized in shallow regions of polygon rims. Organic matter and pH also changed with depth and topography but were less effective predictors of the microbial community structure and relative abundance of specific taxa. Of all other measured variables, lactic acid concentration was the best, in combination with redox, for describing the microbial community. We conclude that redox conditions are the dominant force in shaping microbial communities in this landscape. Oxygen and other electron acceptors allowed for the greatest diversity of microbes: at depth the community was reduced to a simpler core of anaerobes, dominated by fermenters (Bacteroidetes and Firmicutes). © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Simulating the effects of soil organic nitrogen and grazing on arctic tundra vegetation dynamics on the Yamal Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Yu, Q.; Epstein, H. E.; Walker, D. A.

    2009-12-01

    Sustainability of tundra vegetation under changing climate on the Yamal Peninsula, northwestern Siberia, home to the world’s largest area of reindeer husbandry, is of crucial importance to the local native community. An integrated investigation is needed for better understanding of the effects of soils, climate change and grazing on tundra vegetation in the Yamal region. In this study we applied a nutrient-based plant community model (ArcVeg) to evaluate how two factors (soil organic nitrogen [SON] levels and grazing) interact to affect tundra responses to climate warming across a latitudinal climatic gradient on the Yamal Peninsula. Model simulations were driven by field-collected soil data and expected grazing patterns along the Yamal Arctic Transect (YAT), within bioclimate subzones C (High Arctic), D (northern Low Arctic) and E (southern Low Arctic). Plant biomass and NPP (net primary productivity) were significantly increased with warmer bioclimate subzones, greater soil nutrient levels and temporal climate warming, while they declined with higher grazing frequency. Temporal climate warming of 2 °C caused an increase of 665 g/m2 in total biomass at the high SON site in subzone E, while only 298 g/m2 in the low SON site. When grazing frequency was also increased, total biomass increased by only 369 g/m2 in the high SON site in contrast to 184 g/m2 in the low SON site in subzone E. When comparing low grazing to high grazing effects on soil organic nitrogen pools over time (Figure 1), higher grazing frequency led to either slower SON accumulation rates or more rapid SON depletion rates. Warming accentuated these differences caused by grazing, suggesting the interaction between grazing and warming may yield greater differences in SON levels across sites. Our results suggest that low SON and grazing may limit plant response to climate change. Interactions among bioclimate subzones, soils, grazing and warming significantly affect plant biomass and productivity in

  6. NGEE Arctic Webcam Photographs, Barrow Environmental Observatory, Barrow, Alaska

    DOE Data Explorer

    Bob Busey; Larry Hinzman

    2012-04-01

    The NGEE Arctic Webcam (PTZ Camera) captures two views of seasonal transitions from its generally south-facing position on a tower located at the Barrow Environmental Observatory near Barrow, Alaska. Images are captured every 30 minutes. Historical images are available for download. The camera is operated by the U.S. DOE sponsored Next Generation Ecosystem Experiments - Arctic (NGEE Arctic) project.

  7. Facies patterns and conodont biogeography in Arctic Alaska and the Canadian Arctic Islands: Evidence against juxtaposition of these areas during early Paleozoic time

    USGS Publications Warehouse

    Dumoulin, Julie A.; Harris, A.G.; Bradley, D.C.; De Freitas, T. A.

    2000-01-01

    Differences in lithofacies and biofacies suggest that lower Paleozoic rocks now exposed in Arctic Alaska and the Canadian Arctic Islands did not form as part of a single depositional system. Lithologic contrasts are noted in shallow- and deep-water strata and are especially marked in Ordovician and Silurian rocks. A widespread intraplatform basin of Early and Middle Ordovician age in northern Alaska has no counterpart in the Canadian Arctic, and the regional drowning and backstepping of the Silurian shelf margin in Canada has no known parallel in northern Alaska. Lower Paleozoic basinal facies in northern Alaska are chiefly siliciclastic, whereas resedimented carbonates are volumetrically important in Canada. Micro- and macrofossil assemblages from northern Alaska contain elements typical of both Siberian and Laurentian biotic provinces; coeval Canadian Arctic assemblages contain Laurentian forms but lack Siberian species. Siberian affinities in northern Alaskan biotas persist from at least Middle Cambrian through Mississippian time and appear to decrease in intensity from present-day west to east. Our lithologic and biogeographic data are most compatible with the hypothesis that northern Alaska-Chukotka formed a discrete tectonic block situated between Siberia and Laurentia in early Paleozoic time. If Arctic Alaska was juxtaposed with the Canadian Arctic prior to opening of the Canada basin, biotic constraints suggest that such juxtaposition took place no earlier than late Paleozoic time.

  8. Soil bacterial community composition altered by increased nutrient availability in Arctic tundra soils

    PubMed Central

    Koyama, Akihiro; Wallenstein, Matthew D.; Simpson, Rodney T.; Moore, John C.

    2014-01-01

    The pool of soil organic carbon (SOC) in the Arctic is disproportionally large compared to those in other biomes. This large quantity of SOC accumulated over millennia due to slow rates of decomposition relative to net primary productivity. Decomposition is constrained by low temperatures and nutrient concentrations, which limit soil microbial activity. We investigated how nutrients limit bacterial and fungal biomass and community composition in organic and mineral soils within moist acidic tussock tundra ecosystems. We sampled two experimental arrays of moist acidic tussock tundra that included fertilized and non-fertilized control plots. One array included plots that had been fertilized annually since 1989 and the other since 2006. Fertilization significantly altered overall bacterial community composition and reduced evenness, to a greater degree in organic than mineral soils, and in the 1989 compared to the 2006 site. The relative abundance of copiotrophic α-Proteobacteria and β-Proteobacteria was higher in fertilized than control soils, and oligotrophic Acidobacteria were less abundant in fertilized than control soils at the 1989 site. Fungal community composition was less sensitive to increased nutrient availability, and fungal responses to fertilization were not consistent between soil horizons and sites. We detected two ectomycorrhizal genera, Russula and Cortinarius spp., associated with shrubs. Their relative abundance was not affected by fertilization despite increased dominance of their host plants in the fertilized plots. Our results indicate that fertilization, which has been commonly used to simulate warming in Arctic tundra, has limited applicability for investigating fungal dynamics under warming. PMID:25324836

  9. Patterned-ground facilitates shrub expansion in Low Arctic tundra

    NASA Astrophysics Data System (ADS)

    Frost, Gerald V.; Epstein, Howard E.; Walker, Donald A.; Matyshak, Georgiy; Ermokhina, Ksenia

    2013-03-01

    Recent expansion of tall shrubs in Low Arctic tundra is widely seen as a response to climate warming, but shrubification is not occurring as a simple function of regional climate trends. We show that establishment of tall alder (Alnus) is strongly facilitated by small, widely distributed cryogenic disturbances associated with patterned-ground landscapes. We identified expanding and newly established shrub stands at two northwest Siberian sites and observed that virtually all new shrubs occurred on bare microsites (‘circles’) that were disturbed by frost-heave. Frost-heave associated with circles is a widespread, annual phenomenon that maintains mosaics of mineral seedbeds with warm soils and few competitors that are immediately available to shrubs during favorable climatic periods. Circle facilitation of alder recruitment also plausibly explains the development of shrublands in which alders are regularly spaced. We conclude that alder abundance and extent have increased rapidly in the northwest Siberian Low Arctic since at least the mid-20th century, despite a lack of summer warming in recent decades. Our results are consistent with findings in the North American Arctic which emphasize that the responsiveness of Low Arctic landscapes to climate change is largely determined by the frequency and extent of disturbance processes that create mineral-rich seedbeds favorable for tall shrub recruitment. Northwest Siberia has high potential for continued expansion of tall shrubs and concomitant changes to ecosystem function, due to the widespread distribution of patterned-ground landscapes.

  10. Arctic tundra shrub invasion and soot deposition: Consequences for spring snowmelt and near-surface air temperatures

    NASA Astrophysics Data System (ADS)

    Strack, John E.; Pielke, Roger A.; Liston, Glen E.

    2007-12-01

    Invasive shrubs and soot pollution both have the potential to alter the surface energy balance and timing of snow melt in the Arctic. Shrubs reduce the amount of snow lost to sublimation on the tundra during the winter leading to a deeper end-of-winter snowpack. The shrubs also enhance the absorption of energy by the snowpack during the melt season by converting incoming solar radiation to longwave radiation and sensible heat. Soot deposition lowers the albedo of the snow, allowing it to more effectively absorb incoming solar radiation and thus melt faster. This study uses the Colorado State University Regional Atmospheric Modeling System version 4.4 (CSU-RAMS 4.4), equipped with an enhanced snow model, to investigate the effects of shrub encroachment and soot deposition on the atmosphere and snowpack in the Kuparuk Basin of Alaska during the May-June melt period. The results of the simulations suggest that a complete invasion of the tundra by shrubs leads to a 2.2°C warming of 3 m air temperatures and a 108 m increase in boundary layer depth during the melt period. The snow-free date also occurred 11 d earlier despite having a larger initial snowpack. The results also show that a decrease in the snow albedo of 0.1, owing to soot pollution, caused the snow-free date to occur 5 d earlier. The soot pollution caused a 1.0°C warming of 3 m air temperatures and a 25 m average deepening of the boundary layer.

  11. Phenological dynamics of arctic tundra vegetation and its implications on satellite imagery interpretation

    NASA Astrophysics Data System (ADS)

    Juutinen, Sari; Aurela, Mika; Mikola, Juha; Räsänen, Aleksi; Virtanen, Tarmo

    2016-04-01

    Remote sensing is a key methodology when monitoring the responses of arctic ecosystems to climatic warming. The short growing season and rapid vegetation development, however, set demands to the timing of image acquisition in the arctic. We used multispectral very high spatial resolution satellite images to study the effect of vegetation phenology on the spectral reflectance and image interpretation in the low arctic tundra in coastal Siberia (Tiksi, 71°35'39"N, 128°53'17"E). The study site mainly consists of peatlands, tussock, dwarf shrub, and grass tundra, and stony areas with some lichen and shrub patches. We tested the hypotheses that (1) plant phenology is responsive to the interannual weather variation and (2) the phenological state of vegetation has an impact on satellite image interpretation and the ability to distinguish between the plant communities. We used an empirical transfer function with temperature sums as drivers to reconstruct daily leaf area index (LAI) for the different plant communities for years 2005, and 2010-2014 based on measured LAI development in summer 2014. Satellite images, taken during growing seasons, were acquired for two years having late and early spring, and short and long growing season, respectively. LAI dynamics showed considerable interannual variation due to weather variation, and particularly the relative contribution of graminoid dominated communities was sensitive to these phenology shifts. We have also analyzed the differences in the reflectance values between the two satellite images taking account the LAI dynamics. These results will increase our understanding of the pitfalls that may arise from the timing of image acquisition when interpreting the vegetation structure in a heterogeneous tundra landscape. Very high spatial resolution multispectral images are available at reasonable cost, but not in high temporal resolution, which may lead to compromises when matching ground truth and the imagery. On the other hand

  12. Modeling leaf phenology variation by groupings of species within and across ecosystems in northern Alaska

    NASA Astrophysics Data System (ADS)

    Euskirchen, E. S.; Carman, T. B.; McGuire, A. D.

    2012-12-01

    The phenology of arctic ecosystems is driven primarily by abiotic forces, with temperature acting as the main determinant of growing season onset and leaf budburst and in the spring. However, while the plant species in arctic ecosystems require differing amounts of accumulated heat for leaf-out, dynamic vegetation models simulated over a regional to global scale typically assume some average leaf-out for all of the species within an ecosystem. Here, we make use of air temperature records and observational data of spring leaf phenology collected across dominant groupings of species (dwarf birch shrubs, willow shrubs, other deciduous shrubs, grasses, sedges, and forbs) in arctic and ecotonal boreal ecosystems in Alaska. We then parameterize a dynamic vegetation model based on these data for four types of tundra ecosystems (heath tundra, shrub tundra, wet sedge tundra, and tussock tundra), as well as ecotonal boreal white spruce forest. This implementation improves the timing of the onset of carbon uptake in the spring, permitting a more accurate assessment of the contribution of each grouping of species to ecosystem performance. Furthermore, this implementation provides a more nuanced perspective on light competition among species and across ecosystems. For example, in the shrub tundra, the sedges and grasses leaf-out before the shade-inducing willow and dwarf birch, thereby providing the sedges and grasses time to accumulate biomass before shading effects arise. Also in the shrub tundra, the forbs leaf-out last, and are therefore, more prone to shading impacts by the taller willow and dwarf birch shrubs. However, in the wet sedge and heath tundra ecosystems, the forbs leaf-out before the shrubs, and are therefore less prone to shading impacts early in the growing season. These findings indicate the importance of leaf phenology data collection by species and across the various ecosystem types within the highly heterogeneous Arctic landscape. These findings also

  13. Age-specific survival of tundra swans on the lower Alaska Peninsula

    USGS Publications Warehouse

    Meixell, Brandt W.; Lindberg, Mark S.; Conn, Paul B.; Dau, Christian P.; Sarvis, John E.; Sowl, Kristine M.

    2013-01-01

    The population of Tundra Swans (Cygnus columbianus columbianus) breeding on the lower Alaska Peninsula represents the southern extremity of the species' range and is uniquely nonmigratory. We used data on recaptures, resightings, and recoveries of neck-collared Tundra Swans on the lower Alaska Peninsula to estimate collar loss, annual apparent survival, and other demographic parameters for the years 1978–1989. Annual collar loss was greater for adult males fitted with either the thinner collar type (0.34) or the thicker collar type (0.15) than for other age/sex classes (thinner: 0.10, thicker: 0.04). The apparent mean probability of survival of adults (0.61) was higher than that of immatures (0.41) and for both age classes varied considerably by year (adult range: 0.44–0.95, immature range: 0.25–0.90). To assess effects of permanent emigration by age and breeding class, we analyzed post hoc the encounter histories of swans known to breed in our study area. The apparent mean survival of known breeders (0.65) was generally higher than that of the entire marked sample but still varied considerably by year (range 0.26–1.00) and indicated that permanent emigration of breeding swans was likely. We suggest that reductions in apparent survival probability were influenced primarily by high and variable rates of permanent emigration and that immigration by swans from elsewhere may be important in sustaining a breeding population at and near Izembek National Wildlife Refuge.

  14. The thin brown line: The crucial role of peat in protecting permafrost in Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Gaglioti, B.; Mann, D. H.; Farquharson, L. M.; Baughman, C. A.; Jones, B. M.; Romanovsky, V. E.; Williams, A. P.; Andreu-Hayles, L.

    2017-12-01

    Ongoing warming threatens to thaw Arctic permafrost and release its stored carbon, which could trigger a permafrost-carbon feedback capable of augmenting global warming. The effects of warming air temperatures on permafrost are complicated by the fact that across much of the Arctic and Subarctic a mat of living plants and decaying litter cover the ground and buffer underlying permafrost from air temperatures. For simplicity here, we refer to this organic mat as "peat". Because this peat modifies heat flow between ground and air, the rate and magnitude of permafrost responses to changing climate - and hence the permafrost-carbon feedback - are partly slaved to the peat layer's slower dynamics. To explore this relationship, we used 14C-age offsets within lake sediments in Alaskan watersheds underlain by yedoma deposits to track the changing responses of permafrost thaw to fluctuating climate as peat accumulated over the last 14,000 years. As the peat layer built up, warming events became less effective at thawing permafrost and releasing ancient carbon. Consistent with this age-offset record, the geological record shows that early in post-glacial times when the peat cover was still thin and limited in extent, warm intervals triggered extensive thermokarst that resulted in rapid aggradation of floodplains. Today in contrast, hillslopes and floodplains remain stable despite rapid warming, probably because of the buffering effects of the extensive peat cover. Another natural experiment is provided by tundra fires like the 2007 Anaktuvuk River fire that removed the peat cover from tundra underlain by continuous permafrost and resulted in widespread thermkarsting. Further support for peat's critical role in protecting permafrost comes from the results of modeling how permafrost temperatures under different peat thicknesses respond to warming air temperature. Although post-industrial warming has not yet surpassed the buffering capacity of 14,000 years of peat buildup in

  15. Arctic biodiversity: Increasing richness accompanies shrinking refugia for a cold-associated tundra fauna

    USGS Publications Warehouse

    Hope, Andrew G.; Waltari, Eric; Malaney, Jason L.; Payer, David C.; Cook, J.A.; Talbot, Sandra L.

    2015-01-01

    As ancestral biodiversity responded dynamically to late-Quaternary climate changes, so are extant organisms responding to the warming trajectory of the Anthropocene. Ecological predictive modeling, statistical hypothesis tests, and genetic signatures of demographic change can provide a powerful integrated toolset for investigating these biodiversity responses to climate change, and relative resiliency across different communities. Within the biotic province of Beringia, we analyzed specimen localities and DNA sequences from 28 mammal species associated with boreal forest and Arctic tundra biomes to assess both historical distributional and evolutionary responses and then forecasted future changes based on statistical assessments of past and present trajectories, and quantified distributional and demographic changes in relation to major management regions within the study area. We addressed three sets of hypotheses associated with aspects of methodological, biological, and socio-political importance by asking (1) what is the consistency among implications of predicted changes based on the results of both ecological and evolutionary analyses; (2) what are the ecological and evolutionary implications of climate change considering either total regional diversity or distinct communities associated with major biomes; and (3) are there differences in management implications across regions? Our results indicate increasing Arctic richness through time that highlights a potential state shift across the Arctic landscape. However, within distinct ecological communities, we found a predicted decline in the range and effective population size of tundra species into several discrete refugial areas. Consistency in results based on a combination of both ecological and evolutionary approaches demonstrates increased statistical confidence by applying cross-discipline comparative analyses to conservation of biodiversity, particularly considering variable management regimes that seek

  16. 21st century tundra shrubification could enhance net carbon uptake of North America Arctic tundra under an RCP8.5 climate trajectory

    NASA Astrophysics Data System (ADS)

    Mekonnen, Zelalem A.; Riley, William J.; Grant, Robert F.

    2018-05-01

    Recent observed shifts in Arctic tundra shrub cover have uncertain impacts on 21st century net ecosystem carbon exchanges. Here we applied a well-tested ecosystem model, ecosys, to examine the effects of North America Arctic tundra plant dynamics on ecosystem carbon balances from 1980–2100 under the RCP8.5 scenario. Tundra productivity was modeled to increase from enhanced carbon fixation and N mineralization under recent and future climates. Between 1982 and 2100 and averaged across the region, predicted increases in relative dominance of woody versus non-woody plants increased ecosystem annual net primary productivity by 244 g C m‑2 that offset concurrent increases in annual heterotrophic respiration (139 g C m‑2), resulting in an increasing net carbon sink over the 21st century. However, smaller increases in seasonal carbon uptake during winter (1 g C m‑2) and autumn (22 g C m‑2) and greater increases in ecosystem respiration (winter (23 g C m‑2) and autumn (47 g C m‑2)) by 2100 versus 1982 resulted in larger carbon losses during these seasons that completely offset the gains in spring (13 g C m‑2) and 25% of the gains in summer (140 g C m‑2). Modeled soil temperatures were predicted to increase more slowly than air temperatures (~0.6 °C for every 1 °C increase in air temperature over the 21st century). This slower soil versus air warming, and thus greater increases in CO2 fixation versus soil respiration rates, also contributed to the tundra remaining a carbon sink through 2100. However, these higher gains versus losses of carbon may be a transient response and not sustainable under further soil warming beyond 2100. Our modeling analysis allows us to extend beyond results from short-term warming experiments, which cannot characterize effects associated with decadal-scale changes in plant communities.

  17. C-N-P interactions control climate driven changes in regional patterns of C storage on the North Slope of Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Yueyang; Rocha, Adrian; Rastetter, Edward

    2016-01-01

    As climate warms, changes in the carbon (C) balance of arctic tundra will play an important role in the global C balance. The C balance of tundra is tightly coupled to the nitrogen (N) and phosphorus (P) cycles because soil organic matter is the principal source of plant-available nutrients and determines the spatial variation of vegetation biomass across the North Slope of Alaska. Warming will accelerate these nutrient cycles, which should stimulate plant growth.

  18. Spatiotemporal Trends in late-Holocene Fire Regimes in Arctic and Boreal Alaska

    NASA Astrophysics Data System (ADS)

    Hoecker, T. J.; Higuera, P. E.; Hu, F.; Kelly, R.

    2015-12-01

    Alaskan arctic and boreal ecosystems are of global importance owing to their sensitivity and feedbacks to directional climate change. Wildfires are a primary driver of boreal carbon balance, and altered fire regimes may significantly impact global climate through the release of stored carbon and changes to surface albedo. Paleoecological records provide a window to how these systems respond to change by revealing climatic and disturbance variability throughout the Holocene. These long-term records highlight the sensitivity of fire regimes to climate and vegetation change, including responses to the relatively warm Medieval Climate Anomaly (MCA), and the relatively cool Little Ice Age (LIA). Over millennial timescales, boreal forests and arctic tundra have been resilient to climate change, but continued directional climate change may result in novel vegetation compositions and fire regimes, with potentially significant implications for global climate. Here we present a spatiotemporal synthesis of 22 published sediment-charcoal records from three Alaskan ecoregions. We add to this network eight records collected in June 2015 from an additional ecoregion. Variability in fire return intervals (FRIs) was quantified within and among ecoregions and climatic periods spanning the past 2 millennia, based on a peak analysis representing local fire events. Preliminary results suggest that fire regimes were responsive to centennial-scale climatic shifts, including the MCA and LIA, but the degree of sensitivity varies by ecoregion. Over the past 2000 years, FRIs were shortest during the MCA, indicating the potential for climate warming to promote high rates of burning. FRIs in tundra regions of northwestern Alaska and in interior boreal forests were 20% shorter during the MCA than during the LIA, and 25% shorter in boreal forest in the south-central Brooks Range. Burning was likely promoted during the warmer, drier MCA through lower fuel moisture. Quantifying fire

  19. Seasonal thaw settlement at drained thermokarst lake basins, Arctic Alaska

    USGS Publications Warehouse

    Liu, Lin; Schaefer, Kevin; Gusmeroli, Alessio; Grosse, Guido; Jones, Benjamin M.; Zhang, Tinjun; Parsekian, Andrew; Zebker, Howard

    2014-01-01

    Drained thermokarst lake basins (DTLBs) are ubiquitous landforms on Arctic tundra lowland. Their dynamic states are seldom investigated, despite their importance for landscape stability, hydrology, nutrient fluxes, and carbon cycling. Here we report results based on high-resolution Interferometric Synthetic Aperture Radar (InSAR) measurements using space-borne data for a study area located on the North Slope of Alaska near Prudhoe Bay, where we focus on the seasonal thaw settlement within DTLBs, averaged between 2006 and 2010. The majority (14) of the 18 DTLBs in the study area exhibited seasonal thaw settlement of 3–4 cm. However, four of the DTLBs examined exceeded 4 cm of thaw settlement, with one basin experiencing up to 12 cm. Combining the InSAR observations with the in situ active layer thickness measured using ground penetrating radar and mechanical probing, we calculated thaw strain, an index of thaw settlement strength along a transect across the basin that underwent large thaw settlement. We found thaw strains of 10–35% at the basin center, suggesting the seasonal melting of ground ice as a possible mechanism for the large settlement. These findings emphasize the dynamic nature of permafrost landforms, demonstrate the capability of the InSAR technique to remotely monitor surface deformation of individual DTLBs, and illustrate the combination of ground-based and remote sensing observations to estimate thaw strain. Our study highlights the need for better description of the spatial heterogeneity of landscape-scale processes for regional assessment of surface dynamics on Arctic coastal lowlands.

  20. Oil development and conservation in Arctic America

    USGS Publications Warehouse

    Reed, J.C.

    1972-01-01

    As in his earlier article to which reference is made, the author stresses the need for more background information and a much greater research effort before problems of environmental protection from oil developments in northern Alaska can be effectively tackled. Meanwhile, there are indications that the earlier estimates of around ten thousand million barrels should be raised-perhaps to about five times as much. There has moreover been a great increate also in the known and probable gas reserves in northern Canada-particularly in the Arctic Archipelago. In spite of planned automation, people will be needed for development-including Eskimos and Indians, whose interests will be widely protected under the Alaska Native Claims Settlement Act of December 1971. The International Biological Programme 'Tundra Biome' projects have accumulated much new information, including the results to be expected from disturbing the tundra seriously, and means of preventing or repairing damage to it. There is much interest in Alaska and Canada in protection of the northern environment, and in the former the US National Environmental Policy Act is already leading to stricter control of some developments. ?? 1972.

  1. Extreme nitrogen deposition can change methane oxidation rate in moist acidic tundra soil in Arctic regions

    NASA Astrophysics Data System (ADS)

    Lee, J.; Kim, J.; Kang, H.

    2017-12-01

    Recently, extreme nitrogen(N) deposition events are observed in Arctic regions where over 90% of the annual N deposition occurred in just a few days. Since Arctic ecosystems are typically N-limited, input of extremely high amount of N could substantially affect ecosystem processes. CH4 is a potent greenhouse gas that has 25 times greater global warming potential than CO2 over a 100-year time frame. Ammonium is known as an inhibitor of methane oxidation and nitrate also shows inhibitory effect on it in temperate ecosystems. However, effects of N addition on Arctic ecosystems are still elusive. We conducted a lab-scale incubation experiment with moist acidic tundra (MAT) soil from Council, Alaska to investigate the effect of extreme N deposition events on methane oxidation. Zero point five % methane was added to the head space to determine the potential methane oxidation rate of MAT soil. Three treatments (NH4NO3-AN, (NH4)2SO4-AS, KNO3-PN) were used to compare effects of ammonium, nitrate and salts. All treatments were added in 3 levels: 10μg N gd.w-1(10), 50μg N gd.w-1(50) and 100μg N gd.w-1(100). AN10 and AN50 increased methane oxidation rate 1.7, 6% respectively. However, AN100 shows -8.5% of inhibitory effect. In AS added samples, all 3 concentrations (AN10, AN50, AN100) stimulated methane oxidation rate with 4.7, 8.9, 4%, respectively. On the contrary, PN50 (-9%) and PN100 (-59.5%) exhibited a significant inhibitory effect. We also analyzed the microbial gene abundance and community structures of methane oxidizing bacteria using a DNA-based fingerprinting method (T-RFLP) Our study results suggest that NH4+ can stimulate methane oxidation in Arctic MAT soil, while NO3- can inhibit methane oxidation significantly.

  2. Using Mid Infrared Spectroscopy to Predict the Decomposability of Soil Organic Matter Stored in Arctic Tundra Soils

    NASA Astrophysics Data System (ADS)

    Matamala, R.; Fan, Z.; Jastrow, J. D.; Liang, C.; Calderon, F.; Michaelson, G.; Ping, C. L.; Mishra, U.; Hofmann, S. M.

    2016-12-01

    The large amounts of organic matter stored in permafrost-region soils are preserved in a relatively undecomposed state by the cold and wet environmental conditions limiting decomposer activity. With pending climate changes and the potential for warming of Arctic soils, there is a need to better understand the amount and potential susceptibility to mineralization of the carbon stored in the soils of this region. Studies have suggested that soil C:N ratio or other indicators based on the molecular composition of soil organic matter could be good predictors of potential decomposability. In this study, we investigated the capability of Fourier-transform mid infrared spectroscopy (MidIR) spectroscopy to predict the evolution of carbon dioxide (CO2) produced by Arctic tundra soils during a 60-day laboratory incubation. Soils collected from four tundra sites on the Coastal Plain, and Arctic Foothills of the North Slope of Alaska were separated into active-layer organic, active-layer mineral, and upper permafrost and incubated at 1, 4, 8 and 16 °C. Carbon dioxide production was measured throughout the incubations. Total soil organic carbon (SOC) and total nitrogen (TN) concentrations, salt (0.5 M K2SO4) extractable organic matter (SEOM), and MidIR spectra of the soils were measured before and after incubation. Multivariate partial least squares (PLS) modeling was used to predict cumulative CO2 production, decay rates, and the other measurements. MidIR reliably estimated SOC and TN and SEOM concentrations. The MidIR prediction models of CO2 production were very good for active-layer mineral and upper permafrost soils and good for the active-layer organic soils. SEOM was also a very good predictor of CO2 produced during the incubations. Analysis of the standardized beta coefficients from the PLS models of CO2 production for the three soil layers indicated a small number (9) of influential spectral bands. Of these, bands associated with O-H and N-H stretch, carbonates, and

  3. Where do the treeless tundra areas of northern highlands fit in the global biome system: toward an ecologically natural subdivision of the tundra biome.

    PubMed

    Virtanen, Risto; Oksanen, Lauri; Oksanen, Tarja; Cohen, Juval; Forbes, Bruce C; Johansen, Bernt; Käyhkö, Jukka; Olofsson, Johan; Pulliainen, Jouni; Tømmervik, Hans

    2016-01-01

    According to some treatises, arctic and alpine sub-biomes are ecologically similar, whereas others find them highly dissimilar. Most peculiarly, large areas of northern tundra highlands fall outside of the two recent subdivisions of the tundra biome. We seek an ecologically natural resolution to this long-standing and far-reaching problem. We studied broad-scale patterns in climate and vegetation along the gradient from Siberian tundra via northernmost Fennoscandia to the alpine habitats of European middle-latitude mountains, as well as explored those patterns within Fennoscandian tundra based on climate-vegetation patterns obtained from a fine-scale vegetation map. Our analyses reveal that ecologically meaningful January-February snow and thermal conditions differ between different types of tundra. High precipitation and mild winter temperatures prevail on middle-latitude mountains, low precipitation and usually cold winters prevail on high-latitude tundra, and Scandinavian mountains show intermediate conditions. Similarly, heath-like plant communities differ clearly between middle latitude mountains (alpine) and high-latitude tundra vegetation, including its altitudinal extension on Scandinavian mountains. Conversely, high abundance of snowbeds and large differences in the composition of dwarf shrub heaths distinguish the Scandinavian mountain tundra from its counterparts in Russia and the north Fennoscandian inland. The European tundra areas fall into three ecologically rather homogeneous categories: the arctic tundra, the oroarctic tundra of northern heights and mountains, and the genuinely alpine tundra of middle-latitude mountains. Attempts to divide the tundra into two sub-biomes have resulted in major discrepancies and confusions, as the oroarctic areas are included in the arctic tundra in some biogeographic maps and in the alpine tundra in others. Our analyses based on climate and vegetation criteria thus seem to resolve the long-standing biome

  4. Metagenomics Reveals Pervasive Bacterial Populations and Reduced Community Diversity across the Alaska Tundra Ecosystem

    DOE PAGES

    Johnston, Eric R.; Rodriguez-R, Luis M.; Luo, Chengwei; ...

    2016-04-25

    revealed that Alaska tundra microbial communities are less diverse and more homogenous across spatial scales than previously anticipated, and provided DNA sequences of abundant populations and genes that would be relevant for future studies of the effects of environmental change on tundra ecosystems.« less

  5. Metagenomics Reveals Pervasive Bacterial Populations and Reduced Community Diversity across the Alaska Tundra Ecosystem.

    PubMed

    Johnston, Eric R; Rodriguez-R, Luis M; Luo, Chengwei; Yuan, Mengting M; Wu, Liyou; He, Zhili; Schuur, Edward A G; Luo, Yiqi; Tiedje, James M; Zhou, Jizhong; Konstantinidis, Konstantinos T

    2016-01-01

    Alaska tundra microbial communities are less diverse and more homogenous across spatial scales than previously anticipated, and provided DNA sequences of abundant populations and genes that would be relevant for future studies of the effects of environmental change on tundra ecosystems.

  6. Metagenomics Reveals Pervasive Bacterial Populations and Reduced Community Diversity across the Alaska Tundra Ecosystem

    PubMed Central

    Johnston, Eric R.; Rodriguez-R, Luis M.; Luo, Chengwei; Yuan, Mengting M.; Wu, Liyou; He, Zhili; Schuur, Edward A. G.; Luo, Yiqi; Tiedje, James M.; Zhou, Jizhong; Konstantinidis, Konstantinos T.

    2016-01-01

    that Alaska tundra microbial communities are less diverse and more homogenous across spatial scales than previously anticipated, and provided DNA sequences of abundant populations and genes that would be relevant for future studies of the effects of environmental change on tundra ecosystems. PMID:27199914

  7. Peak season carbon exchange shifts from a sink to a source following 50+ years of herbivore exclusion in an Arctic tundra ecosystem

    DOE PAGES

    Lara, Mark J.; Johnson, David R.; Andresen, Christian; ...

    2016-08-27

    To date, the majority of our knowledge regarding the impacts of herbivory on arctic ecosystem function has been restricted to short-term (<5 years) exclusion or manipulation experiments. Here, our understanding of long-term responses of sustained herbivory and/or herbivore exclusion on arctic tundra ecosystem function is severely limited.

  8. Peak season carbon exchange shifts from a sink to a source following 50+ years of herbivore exclusion in an Arctic tundra ecosystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lara, Mark J.; Johnson, David R.; Andresen, Christian

    To date, the majority of our knowledge regarding the impacts of herbivory on arctic ecosystem function has been restricted to short-term (<5 years) exclusion or manipulation experiments. Here, our understanding of long-term responses of sustained herbivory and/or herbivore exclusion on arctic tundra ecosystem function is severely limited.

  9. Shrub growth and expansion in the Arctic tundra: an assessment of controlling factors using an evidence-based approach

    NASA Astrophysics Data System (ADS)

    Martin, Andrew C.; Jeffers, Elizabeth S.; Petrokofsky, Gillian; Myers-Smith, Isla; Macias-Fauria, Marc

    2017-08-01

    Woody shrubs have increased in biomass and expanded into new areas throughout the Pan-Arctic tundra biome in recent decades, which has been linked to a biome-wide observed increase in productivity. Experimental, observational, and socio-ecological research suggests that air temperature—and to a lesser degree precipitation—trends have been the predominant drivers of this change. However, a progressive decoupling of these drivers from Arctic vegetation productivity has been reported, and since 2010, vegetation productivity has also been declining. We created a protocol to (a) identify the suite of controls that may be operating on shrub growth and expansion, and (b) characterise the evidence base for controls on Arctic shrub growth and expansion. We found evidence for a suite of 23 proximal controls that operate directly on shrub growth and expansion; the evidence base focused predominantly on just four controls (air temperature, soil moisture, herbivory, and snow dynamics). 65% of evidence was generated in the warmest tundra climes, while 24% was from only one of 28 floristic sectors. Temporal limitations beyond 10 years existed for most controls, while the use of space-for-time approaches was high, with 14% of the evidence derived via experimental approaches. The findings suggest the current evidence base is not sufficiently robust or comprehensive at present to answer key questions of Pan-Arctic shrub change. We suggest future directions that could strengthen the evidence, and lead to an understanding of the key mechanisms driving changes in Arctic shrub environments.

  10. Greater shrub dominance alters breeding habitat and food resources for migratory songbirds in Alaskan arctic tundra.

    PubMed

    Boelman, Natalie T; Gough, Laura; Wingfield, John; Goetz, Scott; Asmus, Ashley; Chmura, Helen E; Krause, Jesse S; Perez, Jonathan H; Sweet, Shannan K; Guay, Kevin C

    2015-04-01

    Climate warming is affecting the Arctic in multiple ways, including via increased dominance of deciduous shrubs. Although many studies have focused on how this vegetation shift is altering nutrient cycling and energy balance, few have explicitly considered effects on tundra fauna, such as the millions of migratory songbirds that breed in northern regions every year. To understand how increasing deciduous shrub dominance may alter breeding songbird habitat, we quantified vegetation and arthropod community characteristics in both graminoid and shrub dominated tundra. We combined measurements of preferred nest site characteristics for Lapland longspurs (Calcarius lapponicus) and Gambel's White-crowned sparrows (Zonotrichia leucophrys gambelii) with modeled predictions for the distribution of plant community types in the Alaskan arctic foothills region for the year 2050. Lapland longspur nests were found in sedge-dominated tussock tundra where shrub height does not exceed 20 cm, whereas White-crowned sparrows nested only under shrubs between 20 cm and 1 m in height, with no preference for shrub species. Shrub canopies had higher canopy-dwelling arthropod availability (i.e. small flies and spiders) but lower ground-dwelling arthropod availability (i.e. large spiders and beetles). Since flies are the birds' preferred prey, increasing shrubs may result in a net enhancement in preferred prey availability. Acknowledging the coarse resolution of existing tundra vegetation models, we predict that by 2050 there will be a northward shift in current White-crowned sparrow habitat range and a 20-60% increase in their preferred habitat extent, while Lapland longspur habitat extent will be equivalently reduced. Our findings can be used to make first approximations of future habitat change for species with similar nesting requirements. However, we contend that as exemplified by this study's findings, existing tundra modeling tools cannot yet simulate the fine-scale habitat

  11. Diurnal patterns of gas-exchange and metabolic pools in tundra plants during three phases of the arctic growing season.

    PubMed

    Patankar, Rajit; Mortazavi, Behzad; Oberbauer, Steven F; Starr, Gregory

    2013-02-01

    Arctic tundra plant communities are subject to a short growing season that is the primary period in which carbon is sequestered for growth and survival. This period is often characterized by 24-h photoperiods for several months a year. To compensate for the short growing season tundra plants may extend their carbon uptake capacity on a diurnal basis, but whether this is true remains unknown. Here, we examined in situ diurnal patterns of physiological activity and foliar metabolites during the early, mid, and late growing season in seven arctic species under light-saturated conditions. We found clear diurnal patterns in photosynthesis and respiration, with midday peaks and midnight lulls indicative of circadian regulation. Diurnal patterns in foliar metabolite concentrations were less distinct between the species and across seasons, suggesting that metabolic pools are likely governed by proximate external factors. This understanding of diurnal physiology will also enhance the parameterization of process-based models, which will aid in better predicting future carbon dynamics for the tundra. This becomes even more critical considering the rapid changes that are occurring circumpolarly that are altering plant community structure, function, and ultimately regional and global carbon budgets.

  12. Recovery and archiving key Arctic Alaska vegetation map and plot data for the Arctic-Boreal Vulnerability Field Experiment (ABoVE)

    NASA Astrophysics Data System (ADS)

    Walker, D. A.; Breen, A. L.; Broderson, D.; Epstein, H. E.; Fisher, W.; Grunblatt, J.; Heinrichs, T.; Raynolds, M. K.; Walker, M. D.; Wirth, L.

    2013-12-01

    Abundant ground-based information will be needed to inform remote-sensing and modeling studies of NASA's Arctic-Boreal Vulnerability Experiment (ABoVE). A large body of plot and map data collected by the Alaska Geobotany Center (AGC) and collaborators from the Arctic regions of Alaska and the circumpolar Arctic over the past several decades is being archived and made accessible to scientists and the public via the Geographic Information Network of Alaska's (GINA's) 'Catalog' display and portal system. We are building two main types of data archives: Vegetation Plot Archive: For the plot information we use a Turboveg database to construct the Alaska portion of the international Arctic Vegetation Archive (AVA) http://www.geobotany.uaf.edu/ava/. High quality plot data and non-digital legacy datasets in danger of being lost have highest priority for entry into the archive. A key aspect of the database is the PanArctic Species List (PASL-1), developed specifically for the AVA to provide a standard of species nomenclature for the entire Arctic biome. A wide variety of reports, documents, and ancillary data are linked to each plot's geographic location. Geoecological Map Archive: This database includes maps and remote sensing products and links to other relevant data associated with the maps, mainly those produced by the Alaska Geobotany Center. Map data include GIS shape files of vegetation, land-cover, soils, landforms and other categorical variables and digital raster data of elevation, multispectral satellite-derived data, and data products and metadata associated with these. The map archive will contain all the information that is currently in the hierarchical Toolik-Arctic Geobotanical Atlas (T-AGA) in Alaska http://www.arcticatlas.org, plus several additions that are in the process of development and will be combined with GINA's already substantial holdings of spatial data from northern Alaska. The Geoecological Atlas Portal uses GINA's Catalog tool to develop a

  13. Organic Carbon Transformation and Mercury Methylation in Tundra Soils from Barrow Alaska

    DOE Data Explorer

    Liang, L.; Wullschleger, Stan; Graham, David; Gu, B.; Yang, Ziming

    2016-04-20

    This dataset includes information on soil labile organic carbon transformation and mercury methylation for tundra soils from Barrow, Alaska. The soil cores were collected from high-centered polygon (trough) at BEO and were incubated under anaerobic laboratory conditions at both freezing and warming temperatures for up to 8 months. Soil organic carbon including reducing sugars, alcohols, and organic acids were analyzed, and CH4 and CO2 emissions were quantified. Net production of methylmercury and Fe(II)/Fe(total) ratio were also measured and provided in this dataset.

  14. Soil nutrients, landscape age, and Sphagno-Eriophoretum vaginati plant communities in Arctic moist-acidic Tundra landscapes

    Treesearch

    Joel Mercado-Diaz; William Gould; Grizelle Gonzalez

    2014-01-01

    Most research exploring the relationship between soil chemistry and vegetation in Alaskan Arctic tundra landscapes has focused on describing differences in soil elemental concentrations (e.g. C, N and P) of areas with contrasting vegetation types or landscape age. In this work we assess the effect of landscape age on physico-chemical parameters in organic and mineral...

  15. The growth of shrubs on high Arctic tundra at Bylot Island: impact on snow physical properties and permafrost thermal regime

    NASA Astrophysics Data System (ADS)

    Domine, Florent; Barrere, Mathieu; Morin, Samuel

    2016-12-01

    With climate warming, shrubs have been observed to grow on Arctic tundra. Their presence is known to increase snow height and is expected to increase the thermal insulating effect of the snowpack. An important consequence would be the warming of the ground, which will accelerate permafrost thaw, providing an important positive feedback to warming. At Bylot Island (73° N, 80° W) in the Canadian high Arctic where bushes of willows (Salix richardsonii Hook) are growing, we have observed the snow stratigraphy and measured the vertical profiles of snow density, thermal conductivity and specific surface area (SSA) in over 20 sites of high Arctic tundra and in willow bushes 20 to 40 cm high. We find that shrubs increase snow height, but only up to their own height. In shrubs, snow density, thermal conductivity and SSA are all significantly lower than on herb tundra. In shrubs, depth hoar which has a low thermal conductivity was observed to grow up to shrub height, while on herb tundra, depth hoar only developed to 5 to 10 cm high. The thermal resistance of the snowpack was in general higher in shrubs than on herb tundra. More signs of melting were observed in shrubs, presumably because stems absorb radiation and provide hotspots that initiate melting. When melting was extensive, thermal conductivity was increased and thermal resistance was reduced, counteracting the observed effect of shrubs in the absence of melting. Simulations of the effect of shrubs on snow properties and on the ground thermal regime were made with the Crocus snow physics model and the ISBA (Interactions between Soil-Biosphere-Atmosphere) land surface scheme, driven by in situ and reanalysis meteorological data. These simulations did not take into account the summer impact of shrubs. They predict that the ground at 5 cm depth at Bylot Island during the 2014-2015 winter would be up to 13 °C warmer in the presence of shrubs. Such warming may however be mitigated by summer effects.

  16. Potential Arctic tundra vegetation shifts in response to changing temperature, precipitation and permafrost thaw

    NASA Astrophysics Data System (ADS)

    van der Kolk, Henk-Jan; Heijmans, Monique M. P. D.; van Huissteden, Jacobus; Pullens, Jeroen W. M.; Berendse, Frank

    2016-11-01

    Over the past decades, vegetation and climate have changed significantly in the Arctic. Deciduous shrub cover is often assumed to expand in tundra landscapes, but more frequent abrupt permafrost thaw resulting in formation of thaw ponds could lead to vegetation shifts towards graminoid-dominated wetland. Which factors drive vegetation changes in the tundra ecosystem are still not sufficiently clear. In this study, the dynamic tundra vegetation model, NUCOM-tundra (NUtrient and COMpetition), was used to evaluate the consequences of climate change scenarios of warming and increasing precipitation for future tundra vegetation change. The model includes three plant functional types (moss, graminoids and shrubs), carbon and nitrogen cycling, water and permafrost dynamics and a simple thaw pond module. Climate scenario simulations were performed for 16 combinations of temperature and precipitation increases in five vegetation types representing a gradient from dry shrub-dominated to moist mixed and wet graminoid-dominated sites. Vegetation composition dynamics in currently mixed vegetation sites were dependent on both temperature and precipitation changes, with warming favouring shrub dominance and increased precipitation favouring graminoid abundance. Climate change simulations based on greenhouse gas emission scenarios in which temperature and precipitation increases were combined showed increases in biomass of both graminoids and shrubs, with graminoids increasing in abundance. The simulations suggest that shrub growth can be limited by very wet soil conditions and low nutrient supply, whereas graminoids have the advantage of being able to grow in a wide range of soil moisture conditions and have access to nutrients in deeper soil layers. Abrupt permafrost thaw initiating thaw pond formation led to complete domination of graminoids. However, due to increased drainage, shrubs could profit from such changes in adjacent areas. Both climate and thaw pond formation

  17. [The processes of methane formation and oxidation in the soils of the Russian arctic tundra].

    PubMed

    Berestovskaia, Iu Iu; Rusanov, I I; Vasil'eva, L V; Pimenov, N V

    2005-01-01

    Methane emission from the following types of tundra soils was studied: coarse humic gleyey loamy cryo soil, peaty gley soil, and peaty gleyey midloamy cryo soil of the arctic tundra. All the soils studied were found to be potential sources of atmospheric methane. The highest values of methane emission were recorded in August at a soil temperature of 8-10 degrees C. Flooded parcels were the sources of atmospheric methane throughout the observation period. The rates of methane production and oxidation in tundra soils of various types at 5 and 15 degrees C were studied by the radioisotope method. Methane oxidation was found to occur in bog water, in the green part of peat moss, and in all the soil horizons studied. Methane formation was recorded in the horizons of peat, in clay with plant roots, and in peaty moss dust of the bogey parcels. At both temperatures, the methane oxidation rate exceeded the rate of methane formation in all the horizons of the mossy-lichen tundra and of the bumpy sinkhole complex. Methanogenesis prevailed only in a sedge-peat moss bog at 15 degrees C. Enrichment bacterial cultures oxidizing methane at 5 and 15 degrees C were obtained. Different types of methanotrophic bacteria were shown to be responsible for methane oxidation under these conditions. A representative of type I methylotrophs oxidized methane at 5 degrees C, and Methylocella tundrae, a psychroactive representative of an acidophilic methanotrophic genus Methylocella, at 15 degrees C.

  18. Arctic tundra shrub invasion and soot deposition: Consequences for spring snowmelt and near-surface air temperatures

    NASA Astrophysics Data System (ADS)

    Strack, John E.

    Invasive shrubs and soot pollution both have the potential to alter the surface energy balance and timing of snow melt in the Arctic. Shrubs reduce the amount of snow lost to sublimation on the tundra during the winter leading to a deeper end-of-winter snowpack. The shrubs also enhance the absorption of energy by the snowpack during the melt season, by converting incoming solar radiation to longwave radiation and sensible heat. This results in a faster rate of snow melt, warmer near-surface air temperatures, and a deeper boundary layer. Soot deposition lowers the albedo of the snow allowing it to more effectively absorb incoming solar radiation and thus melt faster. This study uses the Colorado State University Regional Atmospheric Modeling System version 4.4 (CSU-RAMS 4.4), equipped with an enhanced snow model, to investigate the effects of shrub encroachment and soot deposition on the atmosphere and snowpack in the Kuparuk Basin of Alaska during the May-June melt period. The results of the simulations suggest that a complete invasion of the tundra by shrubs leads to a 1.5 degree C warming of 2-m air temperatures, 17 watts per meter square increase in surface sensible heat flux, and a 108 m increase in boundary layer depth during the melt period. The snow free-date also occurred 11 days earlier despite having a larger initial snowpack. The results also show that a decrease in the snow albedo of 0.1, due to soot pollution, caused the snow-free date to occur five days earlier. The soot pollution caused a 0.5 degree C warming of 2-m air temperatures and a 2 watts per meter square increase in surface sensible heat flux. In addition, the boundary layer averaged 25 m deeper in the polluted snow simulation.

  19. Regional comparison of tundra carbon budget response over the Alaska North Slope to varying environmental conditions as informed by in situ and flux tower measurements, remote sensing and biophysical modeling

    NASA Astrophysics Data System (ADS)

    Shirley, S.; Watts, J. D.; Kimball, J. S.; Zhang, Z.; Poulter, B.; Klene, A. E.; Jones, L. A.; Kim, Y.; Oechel, W. C.; Zona, D.; Euskirchen, E. S.

    2017-12-01

    A warming Arctic climate is contributing to shifts in landscape moisture and temperature regimes, a shortening of the non-frozen season, and increases in the depth of annual active layer. The changing environmental conditions make it difficult to determine whether tundra ecosystems are a carbon sink or source. At present, eddy covariance flux towers and biophysical measurements within the tower footprint provide the most direct assessment of change to the tundra carbon balance. However, these measurements have a limited spatial footprint and exist over relatively short timescales. Thus, terrestrial ecosystem models are needed to provide an improved understanding of how changes in landscape environmental conditions impact regional carbon fluxes. This study examines the primary drivers thought to affect the magnitude and variability of tundra-atmosphere CO2 and CH4 fluxes over the Alaska North Slope. Also investigated is the ability of biophysical models to capture seasonal flux characteristics over the 9 tundra tower sites examined. First, we apply a regression tree approach to ascertain which remotely sensed environmental variables best explain observed variability in the tower fluxes. Next, we compare flux estimates obtained from multiple process models including Terrestrial Carbon Flux (TCF) and the Lund-Potsdam-Jena Wald Schnee und Landschaft (LPJ-wsl), and Soil Moisture Active Passive Level 4 Carbon (SMAP L4_C) products. Our results indicate that out of 7 variables examined vegetation greenness, temperature, and moisture are more significant predictors of carbon flux magnitude over the tundra tower sites. This study found that satellite data-driven models, due to the ability of remote sensing instruments to capture the physical principles and processes driving tundra carbon flux, are more effective at estimating the magnitude and spatiotemporal variability of CO2 and CH4 fluxes in northern high latitude ecosystems.

  20. Tundra fire alters stream water chemistry and benthic invertebrate communities, North Slope, Alaska

    NASA Astrophysics Data System (ADS)

    Allen, A. R.; Bowden, W. B.; Kling, G. W.; Schuett, E.; Kostrzewski, J. M.; Kolden Abatzoglou, C.; Findlay, R. H.

    2010-12-01

    Increased fire frequency and severity are potentially important consequences of climate change in high latitude ecosystems. The 2007 Anaktuvuk River fire, which burned from July until October, is the largest recorded tundra fire from Alaska's north slope (≈1,000 km2). The immediate effects of wildfire on water chemistry and biotic assemblages in tundra streams are heretofore unknown. We hypothesized that a tundra fire would increase inorganic nutrient inputs to P-limited tundra streams, increasing primary production and altering benthic macroinvertebrate community structure. We examined linkages among: 1) percentage of riparian zone and overall watershed vegetation burned, 2) physical, chemical and biological stream characteristics, and 3) macroinvertebrate communities in streams draining burned and unburned watersheds during the summers of 2008 and 2009. Streams in burned watersheds contained higher mean concentrations of soluble reactive phosphorus (SRP), ammonium (NH4+), and dissolved organic carbon (DOC). In contrast, stream nitrate (NO3-) concentrations were lower in burned watersheds. The net result was that the tundra fire did not affect concentrations of dissolved inorganic nitrogen (NH4+ + NO3-). In spite of increased SRP, benthic chlorophyll-a biomass was not elevated. Macroinvertebrate abundances were 1.5 times higher in streams draining burned watersheds; Chironomidae midges, Nematodes, and Nemoura stoneflies showed the greatest increases in abundance. Multivariate multiple regression identified environmental parameters associated with the observed changes in the macroinvertebrate communities. Since we identified stream latitude as a significant predictor variable, latitude was included in the model as a covariate. After removing the variation associated with latitude, 67.3 % of the variance in macroinvertebrate community structure was explained by a subset of 7 predictor variables; DOC, conductivity, mean temperature, NO3-, mean discharge, SRP and NH

  1. Shifting the Arctic Carbon Balance: Effects of a Long-Term Fertilization Experiment and Anomalously Warm Temperatures on Net Ecosystem Exchange in the Alaskan Tundra

    NASA Astrophysics Data System (ADS)

    Ludwig, S.; Natali, S.; Rastetter, E. B.; Shaver, G. R.; Graham, L. M.; Jastrow, J. D.

    2017-12-01

    The arctic is warming at an accelerated rate relative to the globe. Among the predicted consequences of warming temperatures in the arctic are increased gross primary productivity (GPP), ecosystem respiration (ER), and nutrient availability. The net effect of these changes on the carbon (C) cycle and resulting C balance and feedback to climate change remain unclear. Historically the Arctic has been a C sink, but evidence from recent years suggests some regions in the Arctic are becoming C sources. To predict the role of the Arctic in global C cycling, the mechanisms affecting arctic C balances need to be better resolved. We measured net ecosystem exchange (NEE) in a long-term, multi-level, fertilization experiment at Toolik Lake, AK during an anomalously warm summer. We modeled NEE, ER, and GPP using a Bayesian network model. The best-fit model included Q10 temperature functions and linear fertilization functions for both ER and GPP. ER was more strongly affected by temperature and GPP was driven more by fertilization level. As a result, fertilization increased the C sink capacity, but only at moderate and low temperatures. At high temperatures (>28 °C) the NEE modeled for the highest level of fertilization was not significantly different from zero. In contrast, at ambient nutrient levels modeled NEE was significantly below zero (net uptake) until 35 °C, when it becomes neutral. Regardless of the level of fertilization, NEE never decreased with warming. Temperature in low ranges (5-15°C) had no net effect on NEE, whereas NEE began to increase exponentially with temperature after a threshold of 15°C until becoming a net source to the atmosphere at 37°C. Our results indicate that the C sink strength of tundra ecosystems can be increased with small increases in nutrient availability, but that large increase in nutrient availability can switch tundra ecosystems into C sources under warm conditions. Warming temperatures in tundra ecosystems will only decrease C

  2. Changes in Landscape-level Carbon Balance of an Arctic Coastal Plain Tundra Ecosystem Between 1970-2100, in Response to Projected Climate Change

    NASA Astrophysics Data System (ADS)

    Lara, M. J.; McGuire, A. D.; Euskirchen, E. S.; Genet, H.; Sloan, V. L.; Iversen, C. M.; Norby, R. J.; Zhang, Y.; Yuan, F.

    2014-12-01

    Northern permafrost regions are estimated to cover 16% of the global soil area and account for approximately 50% of the global belowground organic carbon pool. However, there are considerable uncertainties regarding the fate of this soil carbon pool with projected climate warming over the next century. In northern Alaska, nearly 65% of the terrestrial surface is composed of polygonal tundra, where geomorphic land cover types such as high-, flat-, and low-center polygons influence local surface hydrology, plant community composition, nutrient and biogeochemical cycling, over small spatial scales. Due to the lack of representation of these fine-scale geomorphic types and ecosystem processes, in large-scale terrestrial ecosystem models, future uncertainties are large for this tundra region. In this study, we use a new version of the terrestrial ecosystem model (TEM), that couples a dynamic vegetation model (in which plant functional types compete for water, nitrogen, and light) with a dynamic soil organic model (in which temperature, moisture, and associated organic/inorganic carbon and nitrogen pools/fluxes vary together in vertically resolved layers) to simulate ecosystem carbon balance. We parameterized and calibrated this model using data specific to the local climate, vegetation, and soil associated with tundra geomorphic types. We extrapolate model results at a 1km2 resolution across the ~1800 km2 Barrow Peninsula using a tundra geomorphology map, describing ten dominant geomorphic tundra types (Lara et al. submitted), to estimate the likely change in landscape-level carbon balance between 1970 and 2100 in response to projected climate change. Preliminary model runs for this region indicated temporal variability in carbon and active layer dynamics, specific to tundra geomorphic type over time. Overall, results suggest that it is important to consider small-scale discrete polygonal tundra geomorphic types that control local structure and function in regional

  3. NGEE Arctic Canopy Spectral Reflectance, Barrow, Alaska, 2014-2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shawn Serbin; Wil Lieberman-Cribbin; Kim Ely

    Measurements of full-spectrum (i.e. 350-2500nm) canopy spectral reflectance of Arctic plant species within the BEO, Barrow, Alaska. Spectra were collected using an Spectra Vista Corporation (SVC) HR-2014i and Spectral Evolution (SE) PSR+ instrument mounted on a tripod or monopod together with a Spectralon white plate to calibrate each measurement under variable illumination conditions. Data were collected in Barrow, Alaska during the 2014 to 2016 period.

  4. Seasonal and Intra-annual Controls on CO 2 Flux in Arctic Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oechel, Walter; Kalhori, Aram

    2015-12-01

    In order to advance the understanding of the patterns and controls on the carbon budget in the Arctic region, San Diego State University has maintained eddy covariance flux towers at three sites in Arctic Alaska, starting in 1997.

  5. Leucocytozoon simondi in Emperor Geese from the Yukon-Kuskokwim Delta in Alaska

    USGS Publications Warehouse

    Hollmen, T.K.; Franson, J.C.; Creekmore, L.H.; Schmutz, J.A.; Fowler, A.C.

    1998-01-01

    We surveyed Emperor Geese (Chen canagica) in western Alaska for avian hematozoa. Blood smears were collected from 134 adults and goslings in late July 1996, on their breeding grounds on the Yukon-Kuskokwim Delta. One of 134 (0.7%) Emperor Geese harbored Leucocytozoon simondi, representing a new host record for this parasite. No other hematozoa were detected. This is one of few reports of avian blood parasites from the arctic tundra.

  6. Leucocytozoon simondi in emperor geese from the Yukon-Kuskokwim delta in Alaska

    USGS Publications Warehouse

    Hollmén, Tuula E.; Franson, J.C.; Creekmore, L.H.; Schmutz, J.A.; Fowler, A.C.

    1998-01-01

    We surveyed Emperor Geese (Chen canagica) in western Alaska for avian hematozoa. Blood smears were collected from 134 adults and goslings in late July 1996, on their breeding grounds on the Yukon-Kuskokwim Delta. One of 134 (0.7%) Emperor Geese harbored Leucocytozoon simondi, representing a new host record for this parasite. No other hematozoa were detected. This is one of few reports of avian blood parasites from the arctic tundra.

  7. Social-Ecological Soundscapes: Examining Aircraft-Harvester-Caribou Conflict in Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Stinchcomb, Taylor R.

    As human development expands across the Arctic, it is crucial to carefully assess the impacts to remote natural ecosystems and to indigenous communities that rely on wild resources for nutritional and cultural wellbeing. Because indigenous communities and wildlife populations are interdependent, assessing how human activities impact traditional harvest practices can advance our understanding of the human dimensions of wildlife management. Indigenous communities across Arctic Alaska have expressed concern over the last four decades that low-flying aircraft interfere with their traditional harvest practices. For example, communities often have testified that aircraft disturb caribou (Rangifer tarandus) and thereby reduce harvest opportunities. Despite this longstanding concern, little research exists on the extent of aircraft activity in Arctic Alaska and on how aircraft affect the behavior and perceptions of harvesters. Therefore, the overarching goal of my research was to highlight the importance of aircraft-harvester conflict in Arctic Alaska and begin to address the issue using a scientific and community-driven approach. In Chapter 1, I demonstrated that conflict between aircraft and indigenous harvesters in Arctic Alaska is a widespread, understudied, and complex issue. By conducting a meta-analysis of the available literature, I quantified the deficiency of scientific knowledge about the impacts of aircraft on rural communities and traditional harvest practices in the Arctic. My results indicated that no peer-reviewed literature has addressed the conflict between low-flying aircraft and traditional harvesters in Arctic Alaska. I speculated that the scale over which aircraft, rural communities, and wildlife interact limits scientists' ability to determine causal relationships and therefore detracts from their interest in researching the human dimension of this social-ecological system. Innovative research approaches like soundscape ecology could begin to

  8. The changing Arctic carbon cycle: using the past to understand terrestrial-aquatic linkages

    NASA Astrophysics Data System (ADS)

    Anderson, N. J.; van Hardenbroek, M.; Jones, V.; McGowan, S.; Langdon, P. G.; Whiteford, E.; Turner, S.; Edwards, M. E.

    2016-12-01

    Predicted shifts in terrestrial vegetation cover associated with Arctic warming are altering the delivery and processing of carbon to aquatic ecosystems. This process could determine whether lakes are net carbon sources or sinks and, because lake density is high in many Arctic areas, may alter regional carbon budgets. Lake sediment records integrate information from within the lake and its catchment and can be used quantify past vegetation shifts associated with known climatic episodes of warmer (Holocene Thermal Maximum) and cooler (Neoglacial) conditions. We analysed sediment cores located in different Arctic vegetation biomes (tundra, shrub, forested) in Greenland, Norway and Alaska and used biochemical (algal pigments, stable isotopes) remains to evaluate whether past vegetation shifts were associated with changes in ecosystem carbon processing and biodiversity. When lake catchments were sparsely vegetated and soil vegetation was limited ultra-violet radiation (UVR) screening pigments indicate clear lake waters, scarce dissolved organic carbon/ matter (DOC/M). Moderate vegetation development (birch scrub in Norway; herb tundra in Greenland) appears to enhance delivery of DOM to lakes, and to stimulate algal production which is apparently linked to heterotrophic carbon processing pathways (e.g. algal mixotrophy, nutrient release via the microbial loop). Mature forest cover (in Alaska and Norway) supressed lake autotrophic production, most likely because coloured DOM delivered from catchment vegetation limited light availability. During wetter periods when mires developed lake carbon processing also changed, indicating that hydrological delivery of terrestrial DOM is also important. Therefore, future changes in Arctic vegetation and precipitation patterns are highly likely to alter the way that arctic ecosystems process carbon. Our approach provides an understanding of how ecosystem diversity and carbon processing respond to past climate change and the difficulty

  9. Tundra shrubification and tree-line advance amplify arctic climate warming: results from an individual-based dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Zhang, Wenxin; Miller, Paul A.; Smith, Benjamin; Wania, Rita; Koenigk, Torben; Döscher, Ralf

    2013-09-01

    One major challenge to the improvement of regional climate scenarios for the northern high latitudes is to understand land surface feedbacks associated with vegetation shifts and ecosystem biogeochemical cycling. We employed a customized, Arctic version of the individual-based dynamic vegetation model LPJ-GUESS to simulate the dynamics of upland and wetland ecosystems under a regional climate model-downscaled future climate projection for the Arctic and Subarctic. The simulated vegetation distribution (1961-1990) agreed well with a composite map of actual arctic vegetation. In the future (2051-2080), a poleward advance of the forest-tundra boundary, an expansion of tall shrub tundra, and a dominance shift from deciduous to evergreen boreal conifer forest over northern Eurasia were simulated. Ecosystems continued to sink carbon for the next few decades, although the size of these sinks diminished by the late 21st century. Hot spots of increased CH4 emission were identified in the peatlands near Hudson Bay and western Siberia. In terms of their net impact on regional climate forcing, positive feedbacks associated with the negative effects of tree-line, shrub cover and forest phenology changes on snow-season albedo, as well as the larger sources of CH4, may potentially dominate over negative feedbacks due to increased carbon sequestration and increased latent heat flux.

  10. Spatial variation and seasonal dynamics of leaf-area index in the arctic tundra-implications for linking ground observations and satellite images

    NASA Astrophysics Data System (ADS)

    Juutinen, Sari; Virtanen, Tarmo; Kondratyev, Vladimir; Laurila, Tuomas; Linkosalmi, Maiju; Mikola, Juha; Nyman, Johanna; Räsänen, Aleksi; Tuovinen, Juha-Pekka; Aurela, Mika

    2017-09-01

    Vegetation in the arctic tundra typically consists of a small-scale mosaic of plant communities, with species differing in growth forms, seasonality, and biogeochemical properties. Characterization of this variation is essential for understanding and modeling the functioning of the arctic tundra in global carbon cycling, as well as for evaluating the resolution requirements for remote sensing. Our objective was to quantify the seasonal development of the leaf-area index (LAI) and its variation among plant communities in the arctic tundra near Tiksi, coastal Siberia, consisting of graminoid, dwarf shrub, moss, and lichen vegetation. We measured the LAI in the field and used two very-high-spatial resolution multispectral satellite images (QuickBird and WorldView-2), acquired at different phenological stages, to predict landscape-scale patterns. We used the empirical relationships between the plant community-specific LAI and degree-day accumulation (0 °C threshold) and quantified the relationship between the LAI and satellite NDVI (normalized difference vegetation index). Due to the temporal difference between the field data and satellite images, the LAI was approximated for the imagery dates, using the empirical model. LAI explained variation in the NDVI values well (R 2 adj. 0.42-0.92). Of the plant functional types, the graminoid LAI showed the largest seasonal amplitudes and was the main cause of the varying spatial patterns of the NDVI and the related LAI between the two images. Our results illustrate how the short growing season, rapid development of the LAI, yearly climatic variation, and timing of the satellite data should be accounted for in matching imagery and field verification data in the Arctic region.

  11. Greater deciduous shrub abundance extends tundra peak season and increases modeled net CO2 uptake.

    PubMed

    Sweet, Shannan K; Griffin, Kevin L; Steltzer, Heidi; Gough, Laura; Boelman, Natalie T

    2015-06-01

    Satellite studies of the terrestrial Arctic report increased summer greening and longer overall growing and peak seasons since the 1980s, which increases productivity and the period of carbon uptake. These trends are attributed to increasing air temperatures and reduced snow cover duration in spring and fall. Concurrently, deciduous shrubs are becoming increasingly abundant in tundra landscapes, which may also impact canopy phenology and productivity. Our aim was to determine the influence of greater deciduous shrub abundance on tundra canopy phenology and subsequent impacts on net ecosystem carbon exchange (NEE) during the growing and peak seasons in the arctic foothills region of Alaska. We compared deciduous shrub-dominated and evergreen/graminoid-dominated community-level canopy phenology throughout the growing season using the normalized difference vegetation index (NDVI). We used a tundra plant-community-specific leaf area index (LAI) model to estimate LAI throughout the green season and a tundra-specific NEE model to estimate the impact of greater deciduous shrub abundance and associated shifts in both leaf area and canopy phenology on tundra carbon flux. We found that deciduous shrub canopies reached the onset of peak greenness 13 days earlier and the onset of senescence 3 days earlier compared to evergreen/graminoid canopies, resulting in a 10-day extension of the peak season. The combined effect of the longer peak season and greater leaf area of deciduous shrub canopies almost tripled the modeled net carbon uptake of deciduous shrub communities compared to evergreen/graminoid communities, while the longer peak season alone resulted in 84% greater carbon uptake in deciduous shrub communities. These results suggest that greater deciduous shrub abundance increases carbon uptake not only due to greater leaf area, but also due to an extension of the period of peak greenness, which extends the period of maximum carbon uptake. © 2015 John Wiley & Sons Ltd.

  12. Nitrogen accumulation and partitioning in a High Arctic tundra ecosystem from extreme atmospheric N deposition events.

    PubMed

    Choudhary, Sonal; Blaud, Aimeric; Osborn, A Mark; Press, Malcolm C; Phoenix, Gareth K

    2016-06-01

    Arctic ecosystems are threatened by pollution from recently detected extreme atmospheric nitrogen (N) deposition events in which up to 90% of the annual N deposition can occur in just a few days. We undertook the first assessment of the fate of N from extreme deposition in High Arctic tundra and are presenting the results from the whole ecosystem (15)N labelling experiment. In 2010, we simulated N depositions at rates of 0, 0.04, 0.4 and 1.2 g Nm(-2)yr(-1), applied as (15)NH4(15)NO3 in Svalbard (79(°)N), during the summer. Separate applications of (15)NO3(-) and (15)NH4(+) were also made to determine the importance of N form in their retention. More than 95% of the total (15)N applied was recovered after one growing season (~90% after two), demonstrating a considerable capacity of Arctic tundra to retain N from these deposition events. Important sinks for the deposited N, regardless of its application rate or form, were non-vascular plants>vascular plants>organic soil>litter>mineral soil, suggesting that non-vascular plants could be the primary component of this ecosystem to undergo measurable changes due to N enrichment from extreme deposition events. Substantial retention of N by soil microbial biomass (70% and 39% of (15)N in organic and mineral horizon, respectively) during the initial partitioning demonstrated their capacity to act as effective buffers for N leaching. Between the two N forms, vascular plants (Salix polaris) in particular showed difference in their N recovery, incorporating four times greater (15)NO3(-) than (15)NH4(+), suggesting deposition rich in nitrate will impact them more. Overall, these findings show that despite the deposition rates being extreme in statistical terms, biologically they do not exceed the capacity of tundra to sequester pollutant N during the growing season. Therefore, current and future extreme events may represent a major source of eutrophication. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  13. A Comparative Review of North American Tundra Delineations

    NASA Technical Reports Server (NTRS)

    Silver, Kirk C.; Carroll, Mark

    2013-01-01

    Recent profound changes have been observed in the Arctic environment, including record low sea ice extents and high latitude greening. Studying the Arctic and how it is changing is an important element of climate change science. The Tundra, an ecoregion of the Arctic, is directly related to climate change due to its effects on the snow ice feedback mechanism and greenhouse gas cycling. Like all ecoregions, the Tundra border is shifting, yet studies and policies require clear delineation of boundaries. There are many options for ecoregion classification systems, as well as resources for creating custom maps. To help decision makers identify the best classification system possible, we present a review of North American Tundra ecoregion delineations and further explore the methodologies, purposes, limitations, and physical properties of five common ecoregion classification systems. We quantitatively compare the corresponding maps by area using a geographic information system.

  14. Inter-annual variability of NDVI in response to long-term warming and fertilization in wet sedge and tussock tundra.

    PubMed

    Boelman, Natalie T; Stieglitz, Marc; Griffin, Kevin L; Shaver, Gaius R

    2005-05-01

    This study explores the relationship between the normalized difference vegetation index (NDVI) and aboveground plant biomass for tussock tundra vegetation and compares it to a previously established NDVI-biomass relationship for wet sedge tundra vegetation. In addition, we explore inter-annual variation in NDVI in both these contrasting vegetation communities. All measurements were taken across long-term experimental treatments in wet sedge and tussock tundra communities at the Toolik Lake Long Term Ecological Research (LTER) site, in northern Alaska. Over 15 years (for wet sedge tundra) and 14 years (for tussock tundra), N and P were applied in factorial experiments (N, P and N+P), air temperature was increased using greenhouses with and without N+P fertilizer, and light intensity was reduced by 50% using shade cloth. during the peak growing seasons of 2001, 2002, and 2003, NDVI measurements were made in both the wet sedge and tussock tundra experimental treatment plots, creating a 3-year time series of inter-annual variation in NDVI. We found that: (1) across all tussock experimental tundra treatments, NDVI is correlated with aboveground plant biomass (r2 = 0.59); (2) NDVI-biomass relationships for tussock and wet sedge tundra communities are community specific, and; (3) NDVI values for tussock tundra communities are typically, but not always, greater than for wet sedge tundra communities across all experimental treatments. We suggest that differences between the response of wet sedge and tussock tundra communities in the same experimental treatments result from the contrasting degree of heterogeneity in species and functional types that characterize each of these Arctic tundra vegetation communities.

  15. Arctic shrubification mediates the impacts of warming climate on changes to tundra vegetation

    NASA Astrophysics Data System (ADS)

    Mod, Heidi K.; Luoto, Miska

    2016-12-01

    Climate change has been observed to expand distributions of woody plants in many areas of arctic and alpine environments—a phenomenon called shrubification. New spatial arrangements of shrubs cause further changes in vegetation via changing dynamics of biotic interactions. However, the mediating influence of shrubification is rarely acknowledged in predictions of tundra vegetation change. Here, we examine possible warming-induced landscape-level vegetation changes in a high-latitude environment using species distribution modelling (SDM), specifically concentrating on the impacts of shrubification on ambient vegetation. First, we produced estimates of current shrub and tree cover and forecasts of their expansion under climate change scenarios to be incorporated to SDMs of 116 vascular plants. Second, the predictions of vegetation change based on the models including only abiotic predictors and the models including abiotic, shrub and tree predictors were compared in a representative test area. Based on our model predictions, abundance of woody plants will expand, thus decreasing predicted species richness, amplifying species turnover and increasing the local extinction risk for ambient vegetation. However, the spatial variation demonstrated in our predictions highlights that tundra vegetation can be expected to show a wide variety of different responses to the combined effects of warming and shrubification, depending on the original plant species pool and environmental conditions. We conclude that realistic forecasts of the future require acknowledging the role of shrubification in warming-induced tundra vegetation change.

  16. 100% Retention of Snowpack Derived Nitrogen Over 10 Years in High Arctic Tundra

    NASA Astrophysics Data System (ADS)

    Choudhary, S.; Tye, A. M.; Young, S. D.; West, H. M.; Phoenix, G. K.

    2013-12-01

    ecosystem sinks for the 15N tracer in the long-term were organic humus soil, followed by bryophytes and then vascular plants, it is concluded that greater N deposition resulting in greater released of N from melting snowpack could significantly enrich the plant N pool and possibly enhance plant growth (with a potential to increase C storage) in the future. Overall, this study shows that high arctic tundra has considerable short- and long term- capacity for retention of snow-melt deposited N, with very tight internal recycling that allows 100% of the initially sequestered N to be retained over 10 years. Such capacity for pollutant N retention may exacerbate the impact that increased N deposition has on high arctic tundra.

  17. The Circumpolar Arctic vegetation map

    USGS Publications Warehouse

    Walker, Donald A.; Raynolds, Martha K.; Daniels, F.J.A.; Einarsson, E.; Elvebakk, A.; Gould, W.A.; Katenin, A.E.; Kholod, S.S.; Markon, C.J.; Melnikov, E.S.; Moskalenko, N.G.; Talbot, S. S.; Yurtsev, B.A.; Bliss, L.C.; Edlund, S.A.; Zoltai, S.C.; Wilhelm, M.; Bay, C.; Gudjonsson, G.; Ananjeva, G.V.; Drozdov, D.S.; Konchenko, L.A.; Korostelev, Y.V.; Ponomareva, O.E.; Matveyeva, N.V.; Safranova, I.N.; Shelkunova, R.; Polezhaev, A.N.; Johansen, B.E.; Maier, H.A.; Murray, D.F.; Fleming, Michael D.; Trahan, N.G.; Charron, T.M.; Lauritzen, S.M.; Vairin, B.A.

    2005-01-01

    Question: What are the major vegetation units in the Arctic, what is their composition, and how are they distributed among major bioclimate subzones and countries? Location: The Arctic tundra region, north of the tree line. Methods: A photo-interpretive approach was used to delineate the vegetation onto an Advanced Very High Resolution Radiometer (AVHRR) base image. Mapping experts within nine Arctic regions prepared draft maps using geographic information technology (ArcInfo) of their portion of the Arctic, and these were later synthesized to make the final map. Area analysis of the map was done according to bioclimate subzones, and country. The integrated mapping procedures resulted in other maps of vegetation, topography, soils, landscapes, lake cover, substrate pH, and above-ground biomass. Results: The final map was published at 1:7 500 000 scale map. Within the Arctic (total area = 7.11 x 106 km 2), about 5.05 ?? 106 km2 is vegetated. The remainder is ice covered. The map legend generally portrays the zonal vegetation within each map polygon. About 26% of the vegetated area is erect shrublands, 18% peaty graminoid tundras, 13% mountain complexes, 12% barrens, 11% mineral graminoid tundras, 11% prostrate-shrub tundras, and 7% wetlands. Canada has by far the most terrain in the High Arctic mostly associated with abundant barren types and prostrate dwarf-shrub tundra, whereas Russia has the largest area in the Low Arctic, predominantly low-shrub tundra. Conclusions: The CAVM is the first vegetation map of an entire global biome at a comparable resolution. The consistent treatment of the vegetation across the circumpolar Arctic, abundant ancillary material, and digital database should promote the application to numerous land-use, and climate-change applications and will make updating the map relatively easy. ?? IAVS; Opulus Press.

  18. Shrub growth response to climate across the North Slope of Alaska

    NASA Astrophysics Data System (ADS)

    Ackerman, D.; Griffin, D.; Finlay, J. C.; Hobbie, S. E.

    2016-12-01

    Warmer temperatures at high latitudes are driving the expansion of woody shrubs in arctic tundra, yielding feedbacks to regional carbon cycling. Accounting for these feedbacks in global climate models will require accurate predictions of the spatial extent of shrub expansion within arctic tundra. While dendroecological approaches have proven useful in understanding how shrubs respond to climate, empirical studies to date are limited in spatial extent, often to just one or two sites within a landscape. A recent meta-analysis of such dendroecological studies hypothesizes that soil moisture is a key variable in determining climate sensitivity of arctic shrub growth. We present the first regional-scale empirical test of this hypothesis by analyzing inter-annual radial growth of deciduous shrubs across soil moisture gradients throughout the North Slope of Alaska. Contrary to expectation, riparian shrubs in high-moisture environments showed no climate sensitivity, while shrubs growing in drier upland sites showed a strong positive growth response to summer temperature. These results proved robust to a variety of detrending functions ranging from conservative (negative exponential) to data adaptive (20-year cubic smoothing spline). These findings call into question the role of soil moisture in determining the climate sensitivity of arctic shrubs and further highlight the importance of unified, regional-scale sampling strategies in understanding climate-vegetation links.

  19. Foods of arctic foxes (Alopex lagopus) during winter and spring in western Alaska

    USGS Publications Warehouse

    Anthony, M.; Barten, N.K.; Seiser, P.E.

    2000-01-01

    During 1986-1991, carcasses of 619 arctic fares (Alopex lagopus) collected from local trappers and at biological field camps on the Yukon-Kuskokwim Delta in western Alaska from November through May were analyzed to determine gastrointestinal contents, age, sex, and body condition. Prey in declining order of importance were small mammals (95% tundra voles, Microtus oeconomus), birds, marine mammals, and fishes. Foxes with small mammal remains in their stomachs were captured farther from the Bering Sea coast ((X) over bar = 5.2 km) than those without small-mammal remains (2.8 km); foxes consuming remains of marine mammals were closer to the coast (1.9 km) than others (4.9 km). Although eggshells had a poor likelihood of occurrence in stomachs, they were found in all months and years. In 1986 and 1987, foxes consumed fewer small mammals than in other years. Mean ages of foxes captured in 1986 (3.7 years) and 1987 (3.2) were greater than in all ether years (1.5). Capture of adults was more common as winter progressed. Indexes of subcutaneous fat decreased annually in April-May and were highest in 1991, when occurrence of carrion of marine mammals was highest.

  20. Twelve Years of Interviews with the Inupiat people of Arctic Alaska: Report from a Community Workshop

    NASA Astrophysics Data System (ADS)

    Eisner, W. R.; Hinkel, K. M.; Cuomo, C.

    2015-12-01

    On 20 August 2015, a workshop was held in Barrow, Alaska, which presented the highlights of 12 years of research connecting local indigenous knowledge of landscape processes with scientific research on arctic lakes, tundra changes, and permafrost stability. Seventy-six Iñupiat elders, hunters, and other knowledge-holders from the North Slope villages of Barrow, Atqasuk, Wainwright, Nuiqsut, and Anaktuvuk Pass were interviewed, and over 75 hours of videotaped interviews were produced. The interviews provided information and observations on landforms, lakes, erosion, permafrost degradation and thermokarst, changes in the environment and in animal behavior, human modification of lakes, tundra damage from 4-wheel off-road vehicles, tundra trail expansion, and other phenomena. Community concerns regarding the impact of environmental change on food procurement, animal migration, human travel routes, and the future of subsistence practices were also prominent themes. Following an interview, each videotaped session was logged. Each time an elder pointed to a location on a map and explained a landscape event/observation or told a story, the time-stamp in the video was recorded. Each logged event consisted of a code and a short account of the observation. From these reference sheets, a Geographic Information System (GIS) dataset was created. A logged account for each videotape, with geographic coordinates, event code, and event description is available for each videotape. The goal of the workshop was to report on our findings, thank the community for their support, and collaboratively develop plans for archiving and disseminating this data. A complete video library and searchable, printed and digital issues of the logging dataset for archiving in the communities were also produced. Discussions with administrative personnel at the Tuzzy Library in Barrow and the Inupiat Heritage Center have enabled us to set standards and develop a timeline for turning over the library of

  1. CO2 and CH4 fluxes along a latitudinal transect in Northern Alaska using eddy covariance technique in challenging conditions: first results of a long term experiment in the Arctic tundra

    NASA Astrophysics Data System (ADS)

    Moreaux, V.; Oechel, W. C.; Losacco, S.; McEwing, R.; Murphy, P.; Zona, D.

    2013-12-01

    Being one of the most sensitive regions on earth, the Arctic is likely to be one of the most affected by global change. Physical changes (drying, snow cover, active layer depth, permafrost thawing, etc.) could create feedbacks in the release of greenhouse gas to the atmosphere. Correlated to the significant increase in air temperature, changes in trace gas balance have already been reported (Oechel et al. 1998). Carbon (C) is currently trapped as organic matter in the permafrost that underlies much of the Arctic. C represents about 30-50% of the global belowground organic carbon pool (Tarnocai et al.2009, Zona et al. 2012). Stored organic matter can form the substrate for significant release of carbon dioxide (CO2) and methane (CH4) to the atmosphere. Ubiquitous arctic wetlands are additional sources of CH4 and CO2 to the atmosphere (Melton et al. 2013). CO2 is important because of the magnitude of its fluxes, and CH4 is of interest since its global warming potential is 23 times higher than the CO2 over a 100-year time horizon. CH4 is produced by the decomposition of dead plant material in anaerobic soils, especially in tundra ponds. Methane release is mostly influenced by temperature, water table, and active layer depth. The spatial and temporal variability results in very large uncertainties of current CH4 fluxes from the Arctic. The sporadic studies available create a generally inadequate baseline from which to determine a change in emissions from this critical and sensitive environment. Here we initiate a large scale, continuously monitored, study of CO2 and CH4 budgets from tundra ecosystems across a latitudinal gradient of more than 400 km. Our main questions for this study are: (i) does the release of CO2 and CH4 from biological and geothermal processes exceed the sink of greenhouse gases from active vegetation and surface organisms? (ii) How does this balance behave over latitudinal and environmental gradients? The observations presented are the result of

  2. Isotopic insights into methane production, oxidation, and emissions in Arctic polygon tundra.

    PubMed

    Vaughn, Lydia J S; Conrad, Mark E; Bill, Markus; Torn, Margaret S

    2016-10-01

    Arctic wetlands are currently net sources of atmospheric CH4 . Due to their complex biogeochemical controls and high spatial and temporal variability, current net CH4 emissions and gross CH4 processes have been difficult to quantify, and their predicted responses to climate change remain uncertain. We investigated CH4 production, oxidation, and surface emissions in Arctic polygon tundra, across a wet-to-dry permafrost degradation gradient from low-centered (intact) to flat- and high-centered (degraded) polygons. From 3 microtopographic positions (polygon centers, rims, and troughs) along the permafrost degradation gradient, we measured surface CH4 and CO2 fluxes, concentrations and stable isotope compositions of CH4 and DIC at three depths in the soil, and soil moisture and temperature. More degraded sites had lower CH4 emissions, a different primary methanogenic pathway, and greater CH4 oxidation than did intact permafrost sites, to a greater degree than soil moisture or temperature could explain. Surface CH4 flux decreased from 64 nmol m(-2)  s(-1) in intact polygons to 7 nmol m(-2)  s(-1) in degraded polygons, and stable isotope signatures of CH4 and DIC showed that acetate cleavage dominated CH4 production in low-centered polygons, while CO2 reduction was the primary pathway in degraded polygons. We see evidence that differences in water flow and vegetation between intact and degraded polygons contributed to these observations. In contrast to many previous studies, these findings document a mechanism whereby permafrost degradation can lead to local decreases in tundra CH4 emissions. © 2016 John Wiley & Sons Ltd.

  3. Isotopic Identification of Nitrate Sources and Cycling in Arctic Tundra Active Layer Soils and Permafrost

    NASA Astrophysics Data System (ADS)

    Heikoop, J. M.; Throckmorton, H.; Newman, B. D.; Perkins, G.; Gard, M.; Iversen, C. M.; Wilson, C. J.; Wullschleger, S. D.

    2014-12-01

    The effect of nitrogen cycling on release of carbon from tundra ecosystems is being studied as part of the US Department of Energy Next Generation Ecosystem Experiment - Arctic project. Sampling and analysis of active layer soil water at the Barrow Environmental Observatory (Alaska, USA) was performed in ancient drained thaw lake basins (DTLBs), drainages, and in polygonal terrain associated with inter-DTLB tundra. Within active layer soils, nitrate was most commonly found above analytical limits of detection in pore water from the unsaturated centers of high-centered polygons. Nitrate has also been detected, though less frequently, in soil water immediately above the frost table of an ancient (14C age of 2000 - 5500 BP) DTLB and in a small drainage adjacent to high-centered polygonal terrain. Nitrate from high-centered polygons had δ15N ranging from -9.2 to +8.5 ‰ and δ18O ranging from -8.4 to +1.4 ‰. The δ15N isotopic range is consistent with microbial mineralization and nitrification of reduced nitrogen sources including ammonium, dissolved organic nitrogen, and soil organic nitrogen. The range in δ18O of nitrate is also consistent with nitrification based on the δ18O of site waters. No evidence for an atmospheric nitrate signal, as defined by δ15N and δ18O of nitrate in snow and snowmelt, is seen. In contrast, nitrate in permafrost appears to be a mixture of pre-industrial atmospheric nitrate (with higher δ15N than modern atmospheric nitrate) and nitrate that is microbial in origin. Massive ice wedges appear to contain larger proportions of snowmelt (based on δ18O of ice) and atmospheric nitrate, whereas textural ice appears to contain a greater proportion of summer precipitation and microbially-derived nitrate. Nitrate from the ancient DTLB and drainage samples also has isotopic signatures that appear to represent a mixture of pre-industrial atmospheric nitrate and nitrate from microbial nitrification, and may, at least in part, be derived from

  4. Stemming the Revolving Door: Teacher Retention and Attrition in Arctic Alaska Schools

    ERIC Educational Resources Information Center

    Kaden, Ute; Patterson, Philip P.; Healy, Joanne; Adams, Barbara L.

    2016-01-01

    Limited research is available concerning teacher retention and teacher attrition in Arctic Alaska. This paper reports survey research findings, which identify factors related to teacher retention and attrition in Alaskan Arctic Native communities. Teacher retention rates (2009-2013) vary widely over time showing no significant trends. Results…

  5. How spatial variation in areal extent and configuration of labile vegetation states affect the riparian bird community in Arctic tundra.

    PubMed

    Henden, John-André; Yoccoz, Nigel G; Ims, Rolf A; Langeland, Knut

    2013-01-01

    The Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by large herbivores and growing human activity. Thickets of tall shrubs represent a conspicuous vegetation state in northern and temperate ecosystems, where it serves important ecological functions, including habitat for wildlife. Thickets are however labile, as tall shrubs respond rapidly to both abiotic and biotic environmental drivers. Our aim was to assess how large-scale spatial variation in willow thicket areal extent, configuration and habitat structure affected bird abundance, occupancy rates and species richness so as to provide an empirical basis for predicting the outcome of environmental change for riparian tundra bird communities. Based on a 4-year count data series, obtained through a large-scale study design in low arctic tundra in northern Norway, statistical hierarchical community models were deployed to assess relations between habitat configuration and bird species occupancy and community richness. We found that species abundance, occupancy and richness were greatly affected by willow areal extent and configuration, habitat features likely to be affected by intense ungulate browsing as well as climate warming. In sum, total species richness was maximized in large and tall willow patches of small to intermediate degree of fragmentation. These community effects were mainly driven by responses in the occupancy rates of species depending on tall willows for foraging and breeding, while species favouring other vegetation states were not affected. In light of the predicted climate driven willow shrub encroachment in riparian tundra habitats, our study predicts that many bird species would increase in abundance, and that the bird community as a whole could become enriched. Conversely, in tundra regions where overabundance of large herbivores leads to decreased areal extent, reduced height and increased fragmentation of willow thickets

  6. How Spatial Variation in Areal Extent and Configuration of Labile Vegetation States Affect the Riparian Bird Community in Arctic Tundra

    PubMed Central

    Henden, John-André; Yoccoz, Nigel G.; Ims, Rolf A.; Langeland, Knut

    2013-01-01

    The Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by large herbivores and growing human activity. Thickets of tall shrubs represent a conspicuous vegetation state in northern and temperate ecosystems, where it serves important ecological functions, including habitat for wildlife. Thickets are however labile, as tall shrubs respond rapidly to both abiotic and biotic environmental drivers. Our aim was to assess how large-scale spatial variation in willow thicket areal extent, configuration and habitat structure affected bird abundance, occupancy rates and species richness so as to provide an empirical basis for predicting the outcome of environmental change for riparian tundra bird communities. Based on a 4-year count data series, obtained through a large-scale study design in low arctic tundra in northern Norway, statistical hierarchical community models were deployed to assess relations between habitat configuration and bird species occupancy and community richness. We found that species abundance, occupancy and richness were greatly affected by willow areal extent and configuration, habitat features likely to be affected by intense ungulate browsing as well as climate warming. In sum, total species richness was maximized in large and tall willow patches of small to intermediate degree of fragmentation. These community effects were mainly driven by responses in the occupancy rates of species depending on tall willows for foraging and breeding, while species favouring other vegetation states were not affected. In light of the predicted climate driven willow shrub encroachment in riparian tundra habitats, our study predicts that many bird species would increase in abundance, and that the bird community as a whole could become enriched. Conversely, in tundra regions where overabundance of large herbivores leads to decreased areal extent, reduced height and increased fragmentation of willow thickets

  7. Rough-legged buzzards, Arctic foxes and red foxes in a tundra ecosystem without rodents.

    PubMed

    Pokrovsky, Ivan; Ehrich, Dorothée; Ims, Rolf A; Kondratyev, Alexander V; Kruckenberg, Helmut; Kulikova, Olga; Mihnevich, Julia; Pokrovskaya, Liya; Shienok, Alexander

    2015-01-01

    Small rodents with multi-annual population cycles strongly influence the dynamics of food webs, and in particular predator-prey interactions, across most of the tundra biome. Rodents are however absent from some arctic islands, and studies on performance of arctic predators under such circumstances may be very instructive since rodent cycles have been predicted to collapse in a warming Arctic. Here we document for the first time how three normally rodent-dependent predator species-rough-legged buzzard, arctic fox and red fox - perform in a low-arctic ecosystem with no rodents. During six years (in 2006-2008 and 2011-2013) we studied diet and breeding performance of these predators in the rodent-free Kolguev Island in Arctic Russia. The rough-legged buzzards, previously known to be a small rodent specialist, have only during the last two decades become established on Kolguev Island. The buzzards successfully breed on the island at stable low density, but with high productivity based on goslings and willow ptarmigan as their main prey - altogether representing a novel ecological situation for this species. Breeding density of arctic fox varied from year to year, but with stable productivity based on mainly geese as prey. The density dynamic of the arctic fox appeared to be correlated with the date of spring arrival of the geese. Red foxes breed regularly on the island but in very low numbers that appear to have been unchanged over a long period - a situation that resemble what has been recently documented from Arctic America. Our study suggests that the three predators found breeding on Kolguev Island possess capacities for shifting to changing circumstances in low-arctic ecosystem as long as other small - medium sized terrestrial herbivores are present in good numbers.

  8. Rough-Legged Buzzards, Arctic Foxes and Red Foxes in a Tundra Ecosystem without Rodents

    PubMed Central

    Pokrovsky, Ivan; Ehrich, Dorothée; Ims, Rolf A.; Kondratyev, Alexander V.; Kruckenberg, Helmut; Kulikova, Olga; Mihnevich, Julia; Pokrovskaya, Liya; Shienok, Alexander

    2015-01-01

    Small rodents with multi-annual population cycles strongly influence the dynamics of food webs, and in particular predator-prey interactions, across most of the tundra biome. Rodents are however absent from some arctic islands, and studies on performance of arctic predators under such circumstances may be very instructive since rodent cycles have been predicted to collapse in a warming Arctic. Here we document for the first time how three normally rodent-dependent predator species—rough-legged buzzard, arctic fox and red fox – perform in a low-arctic ecosystem with no rodents. During six years (in 2006-2008 and 2011-2013) we studied diet and breeding performance of these predators in the rodent-free Kolguev Island in Arctic Russia. The rough-legged buzzards, previously known to be a small rodent specialist, have only during the last two decades become established on Kolguev Island. The buzzards successfully breed on the island at stable low density, but with high productivity based on goslings and willow ptarmigan as their main prey – altogether representing a novel ecological situation for this species. Breeding density of arctic fox varied from year to year, but with stable productivity based on mainly geese as prey. The density dynamic of the arctic fox appeared to be correlated with the date of spring arrival of the geese. Red foxes breed regularly on the island but in very low numbers that appear to have been unchanged over a long period – a situation that resemble what has been recently documented from Arctic America. Our study suggests that the three predators found breeding on Kolguev Island possess capacities for shifting to changing circumstances in low-arctic ecosystem as long as other small - medium sized terrestrial herbivores are present in good numbers. PMID:25692786

  9. Circumpolar arctic tundra biomass and productivity dynamics in response to projected climate change and herbivory.

    PubMed

    Yu, Qin; Epstein, Howard; Engstrom, Ryan; Walker, Donald

    2017-09-01

    Satellite remote sensing data have indicated a general 'greening' trend in the arctic tundra biome. However, the observed changes based on remote sensing are the result of multiple environmental drivers, and the effects of individual controls such as warming, herbivory, and other disturbances on changes in vegetation biomass, community structure, and ecosystem function remain unclear. We apply ArcVeg, an arctic tundra vegetation dynamics model, to estimate potential changes in vegetation biomass and net primary production (NPP) at the plant community and functional type levels. ArcVeg is driven by soil nitrogen output from the Terrestrial Ecosystem Model, existing densities of Rangifer populations, and projected summer temperature changes by the NCAR CCSM4.0 general circulation model across the Arctic. We quantified the changes in aboveground biomass and NPP resulting from (i) observed herbivory only; (ii) projected climate change only; and (iii) coupled effects of projected climate change and herbivory. We evaluated model outputs of the absolute and relative differences in biomass and NPP by country, bioclimate subzone, and floristic province. Estimated potential biomass increases resulting from temperature increase only are approximately 5% greater than the biomass modeled due to coupled warming and herbivory. Such potential increases are greater in areas currently occupied by large or dense Rangifer herds such as the Nenets-occupied regions in Russia (27% greater vegetation increase without herbivores). In addition, herbivory modulates shifts in plant community structure caused by warming. Plant functional types such as shrubs and mosses were affected to a greater degree than other functional types by either warming or herbivory or coupled effects of the two. © 2017 John Wiley & Sons Ltd.

  10. Sea ice, rain-on-snow and tundra reindeer nomadism in Arctic Russia

    PubMed Central

    Kumpula, Timo; Meschtyb, Nina; Laptander, Roza; Macias-Fauria, Marc; Zetterberg, Pentti; Verdonen, Mariana; Kim, Kwang-Yul; Boisvert, Linette N.; Stroeve, Julienne C.; Bartsch, Annett

    2016-01-01

    Sea ice loss is accelerating in the Barents and Kara Seas (BKS). Assessing potential linkages between sea ice retreat/thinning and the region's ancient and unique social–ecological systems is a pressing task. Tundra nomadism remains a vitally important livelihood for indigenous Nenets and their large reindeer herds. Warming summer air temperatures have been linked to more frequent and sustained summer high-pressure systems over West Siberia, Russia, but not to sea ice retreat. At the same time, autumn/winter rain-on-snow (ROS) events have become more frequent and intense. Here, we review evidence for autumn atmospheric warming and precipitation increases over Arctic coastal lands in proximity to BKS ice loss. Two major ROS events during November 2006 and 2013 led to massive winter reindeer mortality episodes on the Yamal Peninsula. Fieldwork with migratory herders has revealed that the ecological and socio-economic impacts from the catastrophic 2013 event will unfold for years to come. The suggested link between sea ice loss, more frequent and intense ROS events and high reindeer mortality has serious implications for the future of tundra Nenets nomadism. PMID:27852939

  11. Sea ice, rain-on-snow and tundra reindeer nomadism in Arctic Russia.

    PubMed

    Forbes, Bruce C; Kumpula, Timo; Meschtyb, Nina; Laptander, Roza; Macias-Fauria, Marc; Zetterberg, Pentti; Verdonen, Mariana; Skarin, Anna; Kim, Kwang-Yul; Boisvert, Linette N; Stroeve, Julienne C; Bartsch, Annett

    2016-11-01

    Sea ice loss is accelerating in the Barents and Kara Seas (BKS). Assessing potential linkages between sea ice retreat/thinning and the region's ancient and unique social-ecological systems is a pressing task. Tundra nomadism remains a vitally important livelihood for indigenous Nenets and their large reindeer herds. Warming summer air temperatures have been linked to more frequent and sustained summer high-pressure systems over West Siberia, Russia, but not to sea ice retreat. At the same time, autumn/winter rain-on-snow (ROS) events have become more frequent and intense. Here, we review evidence for autumn atmospheric warming and precipitation increases over Arctic coastal lands in proximity to BKS ice loss. Two major ROS events during November 2006 and 2013 led to massive winter reindeer mortality episodes on the Yamal Peninsula. Fieldwork with migratory herders has revealed that the ecological and socio-economic impacts from the catastrophic 2013 event will unfold for years to come. The suggested link between sea ice loss, more frequent and intense ROS events and high reindeer mortality has serious implications for the future of tundra Nenets nomadism. © 2016 The Authors.

  12. Effects of Fire on Understory Vegetation Communities in Siberian Boreal Forests and Alaskan Tundra

    NASA Astrophysics Data System (ADS)

    Pena, H., III; Alexander, H. D.; Natali, S.; Loranty, M. M.; Holmes, R. M.; Mack, M. C.; Schade, J. D.; Mann, P. J.; Davydov, S. P.; Frey, B.; Zimov, N.; Jardine, L. E.

    2017-12-01

    Fire is an important disturbance in Arctic ecosystems that is increasing in frequency and severity as a result of climate warming. Fire alters the landscape, changes soil conditions, and influences vegetation regrowth, favoring early-successional plants and those with well-established root systems capable of surviving fire. Post-fire vegetation establishment contributes to the recovery of the soil organic layer (SOL), which insulates the soil and protects soil and permafrost carbon pools. In order to better understand successional dynamics following fire in the Arctic we assessed the short-(years) and long-(decades) term effects of fire on vegetation communities, SOL depth, and thaw depth across fire-affected sites located in two regions of the Arctic- a 76-year old fire scar in a larch forest in Siberia near Cherskiy, Russia, and a 2-year old fire scar in tundra in the Yukon-Kuskokwim Delta, Alaska. We measured species diversity, plant carbon (C) pools, SOL conditions and NDVI at both study areas. As expected, there was a decline in vegetation C pools following fire in Alaskan tundra, and as a result of higher severity fire in Siberian boreal forests. Two years following fire in Alaskan tundra, vegetation C pools decreased six-fold from 600 g C m-2 at unburned areas, to 100 g C m-2 at the 2015 burn areas. In larch forests, understory C pools were three-times lower in stands with high intensity fires (135 g C m-2) compared to those with low intensity fires (415 g C m-2), due to the absence of dwarf birch (Betula nana). Our results illustrate how fire influences vegetation at both early and later stages of succession, which can have cascading effects on SOL development and permafrost integrity, with the potential for release of large C stocks that may further exacerbate climate warming.

  13. Paleolimnologic and modeling perspectives on the physical and ecological sensitivity of Arctic tundra lakes to temperature changes

    NASA Astrophysics Data System (ADS)

    Daniels, W.; Russel, J.; Giblin, A. E.; Longo, W. M.; Morrill, C.; Holland-Stergar, P.; Rose, R.; Huang, Y.

    2016-12-01

    Temperatures are warming rapidly across the Arctic, with the potential to substantially alter freshwater ecosystem structure and functioning. Some important processes, such as allochthonous loading or carbon burial, may respond too slowly to observe in modern monitoring efforts, and therefore require alternative approaches to accurately assess. Here we analyze the physical and ecological sensitivity of Alaska tundra lakes to climate change through the lenses of paleolimnology and lake thermal modeling. We compare a 10,000 year long record of biomarker-inferred temperature change (leaf wax hydrogen isotopes) to independent indicators of lake primary production (chlorophyll a), algal community structure (diatom assemblages), and allochthonous inputs (XRF chemistry) from Lake E5 and Upper Capsule Lake near the Toolik Field Station in Alaska (69 °N, 150 °W). Temperatures varied on the order of 2-5 °C over the last 10,000 years, and warmed 1-2 °C during the post-industrial period. Shifts in diatom communities in both lakes reflect increased lake stratification and lake pH during warmer intervals of the Holocene. While lake stratification is a direct response to temperature, we propose that the pH response is due to a combination of two factors. First, an increase in the length of the ice-free season promotes ventilation of respired CO2 out of the lakes. Thermal modeling suggests that lake ice coverage changes by approximately 6-8 days/°C, and so we expect that ice-cover changed by as much as 3-4 weeks throughout the Holocene. Secondarily, sediment core calcium concentrations suggest increased base cation and alkalinity inputs during warmer periods, most likely due to the thermal-induced deepening of the soil active layer and enhanced carbonate rock weathering. Carbon and chlorophyll concentrations appear negatively correlated with temperature over most the Holocene, attributable to the temperature effect on organic matter respiration, although periods of enhanced

  14. Bacterial community structure and soil properties of a subarctic tundra soil in Council, Alaska.

    PubMed

    Kim, Hye Min; Jung, Ji Young; Yergeau, Etienne; Hwang, Chung Yeon; Hinzman, Larry; Nam, Sungjin; Hong, Soon Gyu; Kim, Ok-Sun; Chun, Jongsik; Lee, Yoo Kyung

    2014-08-01

    The subarctic region is highly responsive and vulnerable to climate change. Understanding the structure of subarctic soil microbial communities is essential for predicting the response of the subarctic soil environment to climate change. To determine the composition of the bacterial community and its relationship with soil properties, we investigated the bacterial community structure and properties of surface soil from the moist acidic tussock tundra in Council, Alaska. We collected 70 soil samples with 25-m intervals between sampling points from 0-10 cm to 10-20 cm depths. The bacterial community was analyzed by pyrosequencing of 16S rRNA genes, and the following soil properties were analyzed: soil moisture content (MC), pH, total carbon (TC), total nitrogen (TN), and inorganic nitrogen (NH4+ and NO3-). The community compositions of the two different depths showed that Alphaproteobacteria decreased with soil depth. Among the soil properties measured, soil pH was the most significant factor correlating with bacterial community in both upper and lower-layer soils. Bacterial community similarity based on jackknifed unweighted unifrac distance showed greater similarity across horizontal layers than through the vertical depth. This study showed that soil depth and pH were the most important soil properties determining bacterial community structure of the subarctic tundra soil in Council, Alaska. © 2014 The Authors. FEMS Microbiology Ecology published by John Wiley & Sons Ltd on behalf of the Federation of European Microbiological Societies.

  15. The Changing Seasonality of Tundra Nutrient Cycling: Implications for Arctic Ecosystem Function

    NASA Astrophysics Data System (ADS)

    Weintraub, M. N.; Steltzer, H.; Sullivan, P.; Schimel, J.; Wallenstein, M. D.; Darrouzet-Nardi, A.; Segal, A. D.

    2011-12-01

    Arctic soils contain large stores of carbon (C) and may act as a significant CO2 source with warming. However, the key to understanding tundra soil processes is nitrogen (N), as both plant growth and decomposition are N limited. However, current models of tundra ecosystems assume that while N limits plant growth, C limits decomposition. In addition, N availability is strongly seasonal with relatively high concentrations early in the growing season followed by a pronounced crash. We need to understand the controls on this seasonality to predict responses to climate change, but there are multiple questions that need answers: 1) What causes the seasonality in N? 2) Does microbial activity switch seasonally between C and N limitation? 3) How will a lengthening of the growing season alter overall ecosystem C and N dynamics, as a result of differential extension of the periods before and after the nutrient crash? We hypothesized that microbial activity is C limited early in the growing season, when N availability is higher and root exudate C is unavailable, and that microbial activity becomes N limited in response to plant N uptake and immobilization stimulated by root C. To address these questions we are conducting an accelerated snow-melt X warming field experiment in an Alaskan moist acidic arctic tundra community, and following plant and soil dynamics. Changes in the timing of C and N interactions in the different treatments will enable us to develop an enhanced mechanistic understanding of why the nutrient crash occurs and what the implications are for a lengthening of the arctic growing season. In 2010 we successfully accelerated snowmelt by 4 days. Both earlier snowmelt and warming accelerated early season plant life history events, with a few exceptions. However, responses to the combined treatment could not always be predicted from single factor effects. End of season life history events occurred later in response to the treatments, again with a few exceptions

  16. Changing Groundwater-Surface Water Interactions Impact Stream Chemistry and Ecology at the Arctic-Boreal Transition in Western Alaska

    NASA Astrophysics Data System (ADS)

    Koch, J. C.; Carey, M.; O'Donnell, J.; Sjoberg, Y.; Zimmerman, C. E.

    2016-12-01

    The arctic-boreal transition zone of Alaska is experiencing rapid change related to unprecedented warming and subsequent loss of permafrost. These changes in turn may affect groundwater-surface water (GW-SW) interactions, biogeochemical cycling, and ecosystem processes. While recent field and modeling studies have improved our understanding of hydrology in watersheds underlain by thawing permafrost, little is known about how these hydrologic shifts will impact bottom-up controls on stream food webs. To address this uncertainty, we are using an integrative experimental design to link GW-SW interactions to stream biogeochemistry and biota in 10 first-order streams in northwest Alaska. These study streams drain watersheds that span several gradients, including elevation, aspect, and vegetation (tundra vs. forest). We have developed a robust, multi-disciplinary data set to characterize GW-SW interactions and to mechanistically link GW-SW dynamics to water quality and the stream ecosystem. Data includes soil hydrology and chemistry; stream discharge, temperature, and inflow rates; water chemistry (including water isotopes, major ions, carbon concentration and isotopes, nutrients and chlorophyll-a), and invertebrate and fish communities. Stream recession curves indicate a decreasing rate later in the summer in some streams, consistent with seasonal thaw in lower elevation and south-facing catchments. Base cation and water isotope chemistry display similar impacts of seasonal thaw and also suggest the dominance of groundwater in many streams. Coupled with estimates of GW-SW exchange at point, reach, and catchment scales, these results will be used to predict how hydrology and water quality are likely to impact fish habitat and growth given continued warming at the arctic-boreal transition.

  17. Short-term herbivory has long-term consequences in warmed and ambient high Arctic tundra

    NASA Astrophysics Data System (ADS)

    Little, Chelsea J.; Cutting, Helen; Alatalo, Juha; Cooper, Elisabeth

    2017-02-01

    Climate change is occurring across the world, with effects varying by ecosystem and region but already occurring quickly in high-latitude and high-altitude regions. Biotic interactions are important in determining ecosystem response to such changes, but few studies have been long-term in nature, especially in the High Arctic. Mesic tundra plots on Svalbard, Norway, were subjected to grazing at two different intensities by captive Barnacle geese from 2003-2005, in a factorial design with warming by Open Top Chambers. Warming manipulations were continued through 2014, when we measured vegetation structure and composition as well as growth and reproduction of three dominant species in the mesic meadow. Significantly more dead vascular plant material was found in warmed compared to ambient plots, regardless of grazing history, but in contrast to many short-term experiments no difference in the amount of living material was found. This has strong implications for nutrient and carbon cycling and could feed back into community productivity. Dominant species showed increased flowering in warmed plots, especially in those plots where grazing had been applied. However, this added sexual reproduction did not translate to substantial shifts in vegetative cover. Forbs and rushes increased slightly in warmed plots regardless of grazing, while the dominant shrub, Salix polaris, generally declined with effects dependent on grazing, and the evergreen shrub Dryas octopetala declined with previous intensive grazing. There were no treatment effects on community diversity or evenness. Thus despite no changes in total live abundance, a typical short-term response to environmental conditions, we found pronounced changes in dead biomass indicating that tundra ecosystem processes respond to medium- to long-term changes in conditions caused by 12 seasons of summer warming. We suggest that while high arctic tundra plant communities are fairly resistant to current levels of climate warming

  18. Summer in the Arctic National Wildlife Refuge

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This colorful image of the Arctic National Wildlife Refuge and the Beaufort Sea was acquired by the Multi-angle Imaging SpectroRadiometer's nadir (vertical-viewing) camera on August 16, 2000, during Terra orbit 3532. The swirling patterns apparent on the Beaufort Sea are small ice floes driven by turbulent water patterns, or eddies, caused by the interactions of water masses of differing salinity and temperature. By this time of year, all of the seasonal ice which surrounds the north coast of Alaska in winter has broken up, although the perennial pack ice remains further north. The morphology of the perennial ice pack's edge varies in response to the prevailing wind. If the wind is blowing strongly toward the perennial pack (that is, to the north), the ice edge will be more compact. In this image the ice edge is diffuse, and the patterns reflected by the ice floes indicate fairly calm weather.

    The Arctic National Wildlife Refuge (often abbreviated to ANWR) was established by President Eisenhower in 1960, and is the largest wildlife refuge in the United States. Animals of the Refuge include the 130,000-member Porcupine caribou herd, 180 species of birds from four continents, wolves, wolverine, polar and grizzly bears, muskoxen, foxes, and over 40 species of coastal and freshwater fish. Although most of ANWR was designated as wilderness in 1980, the area along the coastal plain was set aside so that the oil and gas reserves beneath the tundra could be studied. Drilling remains a topic of contention, and an energy bill allowing North Slope oil development to extend onto the coastal plain of the Refuge was approved by the US House of Representatives on August 2, 2001.

    The Refuge encompasses an impressive variety of arctic and subarctic ecosystems, including coastal lagoons, barrier islands, arctic tundra, and mountainous terrain. Of all these, the arctic tundra is the landscape judged most important for wildlife. From the coast inland to an average of 30

  19. Changing seasonality of Arctic hydrology disrupts key biotic linkages in Arctic aquatic ecosystems.

    NASA Astrophysics Data System (ADS)

    Deegan, L.; MacKenzie, C.; Peterson, B. J.; Fishscape Project

    2011-12-01

    Arctic grayling (Thymallus arcticus) is an important circumpolar species that provide a model system for understanding the impacts of changing seasonality on arctic ecosystem function. Grayling serve as food for other biota, including lake trout, birds and humans, and act as top-down controls in stream ecosystems. In Arctic tundra streams, grayling spend their summers in streams but are obligated to move back into deep overwintering lakes in the fall. Climatic change that affects the seasonality of river hydrology could have a significant impact on grayling populations: grayling may leave overwintering lakes sooner in the spring and return later in the fall due to a longer open water season, but the migration could be disrupted by drought due to increased variability in discharge. In turn, a shorter overwintering season may impact lake trout dynamics in the lakes, which may rely on the seasonal inputs of stream nutrients in the form of migrating grayling into these oligotrophic lakes. To assess how shifting seasonality of Arctic river hydrology may disrupt key trophic linkages within and between lake and stream components of watersheds on the North Slope of the Brooks Mountain Range, Alaska, we have undertaken new work on grayling and lake trout population and food web dynamics. We use Passive Integrated Transponder (PIT) tags coupled with stream-width antenna units to monitor grayling movement across Arctic tundra watersheds during the summer, and into overwintering habitat in the fall. Results indicate that day length may prime grayling migration readiness, but that flooding events are likely the cue grayling use to initiate migration in to overwintering lakes. Many fish used high discharge events in the stream as an opportunity to move into lakes. Stream and lake derived stable isotopes also indicate that lake trout rely on these seasonally transported inputs of stream nutrients for growth. Thus, changes in the seasonality of river hydrology may have broader

  20. Ecological niche modeling of rabies in the changing Arctic of Alaska.

    PubMed

    Huettmann, Falk; Magnuson, Emily Elizabeth; Hueffer, Karsten

    2017-03-20

    Rabies is a disease of global significance including in the circumpolar Arctic. In Alaska enzootic rabies persist in northern and western coastal areas. Only sporadic cases have occurred in areas outside of the regions considered enzootic for the virus, such as the interior of the state and urbanized regions. Here we examine the distribution of diagnosed rabies cases in Alaska, explicit in space and time. We use a geographic information system (GIS), 20 environmental data layers and provide a quantitative non-parsimonious estimate of the predicted ecological niche, based on data mining, machine learning and open access data. We identify ecological correlates and possible drivers that determine the ecological niche of rabies virus in Alaska. More specifically, our models show that rabies cases are closely associated with human infrastructure, and reveal an ecological niche in remote northern wilderness areas. Furthermore a model utilizing climate modeling suggests a reduction of the current ecological niche for detection of rabies virus in Alaska, a state that is disproportionately affected by a changing climate. Our results may help to better inform public health decisions in the future and guide further studies on individual drivers of rabies distribution in the Arctic.

  1. Identification of Geostructures of the Continental Crust Particularly as They Relate to Mineral Resource Evaluation. [Alaska

    NASA Technical Reports Server (NTRS)

    Lathram, E. H. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. A pattern of very old geostructures was recognized, reflecting structures in the crust. This pattern is not peculiar to Alaska, but can be recognized throughout the northern cordillera. A new metallogenic hypothesis for Alaska was developed, based on the relationship of space image linears to known mineral deposits. Using image linear analysis, regional geologic features were also recognized; these features may be used to guide in the location of undiscovered oil and/or gas accumulations in northern Alaska. The effectiveness of ERTS data in enhancing medium and small scale mapping was demonstrated. ERTS data were also used to recognize and monitor the state of large scale vehicular scars on Arctic tundra.

  2. Ground measurements of the hemispherical-directional reflectance of Arctic snow covered tundra for the validation of satellite remote sensing products

    NASA Astrophysics Data System (ADS)

    Ball, C. P.; Marks, A. A.; Green, P.; Mac Arthur, A.; Fox, N.; King, M. D.

    2013-12-01

    Surface albedo is the hemispherical and wavelength integrated reflectance over the visible, near infrared and shortwave infrared regions of the solar spectrum. The albedo of Arctic snow can be in excess of 0.8 and it is a critical component in the global radiation budget because it determines the proportion of solar radiation absorbed, and reflected, over a large part of the Earth's surface. We present here our first results of the angularly resolved surface reflectance of Arctic snow at high solar zenith angles (~80°) suitable for the validation of satellite remote sensing products. The hemispherical directional reflectance factor (HDRF) of Arctic snow covered tundra was measured using the GonioRAdiometric Spectrometer System (GRASS) during a three-week field campaign in Ny-Ålesund, Svalbard, in March/April 2013. The measurements provide one of few existing HDRF datasets at high solar zenith angles for wind-blown Arctic snow covered tundra (conditions typical of the Arctic region), and the first ground-based measure of HDRF at Ny-Ålesund. The HDRF was recorded under clear sky conditions with 10° intervals in view zenith, and 30° intervals in view azimuth, for several typical sites over a wavelength range of 400-1500 nm at 1 nm resolution. Satellite sensors such as MODIS, AVHRR and VIIRS offer a method to monitor the surface albedo with high spatial and temporal resolution. However, snow reflectance is anisotropic and is dependent on view and illumination angle and the wavelength of the incident light. Spaceborne sensors subtend a discrete angle to the target surface and measure radiance over a limited number of narrow spectral bands. Therefore, the derivation of the surface albedo requires accurate knowledge of the surfaces bidirectional reflectance as a function of wavelength. The ultimate accuracy to which satellite sensors are able to measure snow surface properties such as albedo is dependant on the accuracy of the BRDF model, which can only be assessed

  3. Winter precipitation and snow accumulation drive the methane sink or source strength of Arctic tussock tundra.

    PubMed

    Blanc-Betes, Elena; Welker, Jeffrey M; Sturchio, Neil C; Chanton, Jeffrey P; Gonzalez-Meler, Miquel A

    2016-08-01

    Arctic winter precipitation is projected to increase with global warming, but some areas will experience decreases in snow accumulation. Although Arctic CH4 emissions may represent a significant climate forcing feedback, long-term impacts of changes in snow accumulation on CH4 fluxes remain uncertain. We measured ecosystem CH4 fluxes and soil CH4 and CO2 concentrations and (13) C composition to investigate the metabolic pathways and transport mechanisms driving moist acidic tundra CH4 flux over the growing season (Jun-Aug) after 18 years of experimental snow depth increases and decreases. Deeper snow increased soil wetness and warming, reducing soil %O2 levels and increasing thaw depth. Soil moisture, through changes in soil %O2 saturation, determined predominance of methanotrophy or methanogenesis, with soil temperature regulating the ecosystem CH4 sink or source strength. Reduced snow (RS) increased the fraction of oxidized CH4 (Fox) by 75-120% compared to Ambient, switching the system from a small source to a net CH4 sink (21 ± 2 and -31 ± 1 mg CH4  m(-2)  season(-1) at Ambient and RS). Deeper snow reduced Fox by 35-40% and 90-100% in medium- (MS) and high- (HS) snow additions relative to Ambient, contributing to increasing the CH4 source strength of moist acidic tundra (464 ± 15 and 3561 ± 97 mg CH4  m(-2)  season(-1) at MS and HS). Decreases in Fox with deeper snow were partly due to increases in plant-mediated CH4 transport associated with the expansion of tall graminoids. Deeper snow enhanced CH4 production within newly thawed soils, responding mainly to soil warming rather than to increases in acetate fermentation expected from thaw-induced increases in SOC availability. Our results suggest that increased winter precipitation will increase the CH4 source strength of Arctic tundra, but the resulting positive feedback on climate change will depend on the balance between areas with more or less snow accumulation than they are currently

  4. Deposition of ozone to tundra

    NASA Technical Reports Server (NTRS)

    Jacob, D. J.; Fan, S.-M.; Wofsy, S. C.; Spiro, P. A.; Bakwin, P. S.; Ritter, J. A.; Browell, E. V.; Gregory, G. L.; Fitzjarrald, D. R.; Moore, K. E.

    1992-01-01

    Eddy correlation measurements of O3 deposition fluxes to tundra during the Arctic Boundary Layer Expedition (ABLE 3A) are reported. The mean O3 deposition velocity was 0.24 cm/s in the daytime and 0.12 cm/s at night. The day-to-day difference in deposition velocity was driven by both atmospheric stability and surface reactivity. The mean surface resistance to O3 deposition was 2.6 s/cm in the daytime and 3.4 s/cm at night. The relatively low surface resistance at night is attributed to light-insensitive uptake of O3 at dry upland tundra surfaces. The small day-tonight difference in surface resistance is attributed to additional stomatal uptake by wet meadow tundra plants in the daytime. The mean O3 deposition flux to the world north of 60 deg N in July-August is estimated at 8.2 x 10 exp 10 molecules/sq cm/s. Suppression of photochemical loss by small anthropogenic inputs of nitrogen oxides could have a major effect on O3 concentrations in the summertime Arctic troposphere.

  5. Polar Gateways Arctic Circle Sunrise Conference 2008, Barrow, Alaska: IHY-IPY Outreach on Exploration of Polar and Icy Worlds in The Solar System

    NASA Astrophysics Data System (ADS)

    Cooper, John F.; Kauristie, K.; Weatherwax, A. T.; Sheehan, G. W.; Smith, R. W.; Sandahl, I.; Østgaard, N.; Chernouss, S.; Moore, M. H.; Peticolas, L. M.; Senske, D. A.; Thompson, B. J.; Tamppari, L. K.; Lewis, E. M.

    2008-09-01

    Polar, heliophysical, and planetary science topics related to the International Heliophysical and Polar Years 2007-2009 were addressed during this circumpolar video conference hosted January 23-29, 2008 at the new Barrow Arctic Research Center of the Barrow Arctic Science Consortium in Barrow, Alaska. This conference was planned as an IHY-IPY event science outreach event bringing together scientists and educational specialists for the first week of sunrise at subzero Arctic temperatures in Barrow. Science presentations spanned the solar system from the polar Sun to Earth, Moon, Mars, Jupiter, Saturn, and the Kuiper Belt. On-site participants experienced look and feel of icy worlds like Europa and Titan by being in the Barrow tundra and sea ice environment and by going "on the ice" during snowmobile expeditions to the near-shore sea ice environment and to Point Barrow, closest geographic point in the U.S. to the North Pole. Many science presentations were made remotely via video conference or teleconference from Sweden, Norway, Russia, Canada, Antarctica, and the United States, spanning up to thirteen time zones (Alaska to Russia) at various times. Extensive educational outreach activities were conducted with the local Barrow and Alaska North Slope communities and through the NASA Digital Learning Network live from the "top of the world" at Barrow. The Sun-Earth Day team from Goddard, and a videographer from the Passport to Knowledge project, carried out extensive educational interviews with many participants and native Inupiaq Eskimo residents of Barrow. Video and podcast recordings of selected interviews are available at http://sunearthday.nasa.gov/2008/multimedia/podcasts.php. Excerpts from these and other interviews will be included in a new high definition video documentary called "From the Sun to the Stars: The New Science of Heliophysics" from Passport to Knowledge that will later broadcast on NASA TV and other educational networks. Full conference

  6. Polar Gateways Arctic Circle Sunrise Conference 2008, Barrow, Alaska: IHY-IPY Outreach on Exploration of Polar and Icy Worlds in the Solar System

    NASA Technical Reports Server (NTRS)

    Cooper, John F.; Kauristie, Kirsti; Weatherwax, Allan T.; Sheehan, Glenn W.; Smith, Roger W.; Sandahl, Ingrid; Ostgaard, Nikolai; Chernouss, Sergey; Thompson, Barbara J.; Peticolas, Laura; hide

    2008-01-01

    Polar, heliophysical, and planetary science topics related to the International Heliophysical and Polar Years 2007-2009 were addressed during this circumpolar video conference hosted January 23-29, 2808 at the new Barrow Arctic Research Center of the Barrow Arctic Science Consortium in Barrow, Alaska. This conference was planned as an IHY-IPY event science outreach event bringing together scientists and educational specialists for the first week of sunrise at subzero Arctic temperatures in Barrow. Science presentations spanned the solar system from the polar Sun to Earth, Moon, Mars, Jupiter, Saturn, and the Kuiper Belt. On-site participants experienced look and feel of icy worlds like Europa and Titan by being in the Barrow tundra and sea ice environment and by going "on the ice" during snowmobile expeditions to the near-shore sea ice environment and to Point Barrow, closest geographic point in the U.S. to the North Pole. Many science presentations were made remotely via video conference or teleconference from Sweden, Norway, Russia, Canada, Antarctica, and the United States, spanning up to thirteen time zones (Alaska to Russia) at various times. Extensive educational outreach activities were conducted with the local Barrow and Alaska North Slope communities and through the NASA Digital Learning Network live from the "top of the world" at Barrow. The Sun- Earth Day team from Goddard, and a videographer from the Passport to Knowledge project, carried out extensive educational interviews with many participants and native Inupiaq Eskimo residents of Barrow. Video and podcast recordings of selected interviews are available at http://sunearthday.nasa.gov/2008/multimedidpodcasts.php. Excerpts from these and other interviews will be included in a new high definition video documentary called "From the Sun to the Stars: The New Science of Heliophysics" from Passport to Knowledge that will later broadcast on NASA TV and other educational networks. Full conference

  7. The complex Chukchi Borderland region as part of the Arctic Alaska extended margin

    NASA Astrophysics Data System (ADS)

    Saltus, R.; Hutchinson, D. R.; Miller, E. L.

    2017-12-01

    The Chukchi Borderland region (CBR; includes the Chukchi Plateau and its surrounding component elevations) is a physiographically complex and somewhat enigmatic seafloor high adjacent to the broad Chukchi Shelf in the Alaska/Chukotka quadrant of the Amerasian Basin beneath the Arctic Ocean. The CBR includes several physiographic sub-components including the relatively high-standing Northwind Ridge and Northwind Plain as well as a lower-standing northern region (here called the North Chukchi Component Elevation or NCCE) that consists of several un-named knolls, ramps, and benches. The CBR shows numerous N-S physiographic features including ridges and escarpments related to extension. The CBR adjoins the Chukchi Shelf to the south, abuts the Canada Basin to the east, and is separated on the west and north from the Mendeleev and Alpha Ridges by the Chukchi Plain, the Mendeleev Plain, and the Nautilus Basin. Available geophysical data, comparative physiography/geomorphology, and geologic analysis show that the CBR is continuous with Arctic Alaska and the adjoining Chukchi Shelf. CBR, Arctic Alaska, and the Chukchi Shelf share common early Paleozoic basement elements as well as Ellesmerian and younger cover sequences. The CBR owes its complex physiographic and structural character to its central location relative to the multiple extensional domains associated with the multi-stage rift formation of the Amerasian Basin, large igneous province-influenced volcanism associated with the Alpha and Mendeleev regions on the north and west, and hyper-extension of continental crust to the east in the deep Canada Basin. The CBR is often portrayed as an independent tectonic element within Arctic tectonic reconstructions, but we argue that models for the formation of the Amerasian Basin should include the CBR as an integral component of the Arctic Alaska microplate.

  8. Humidification of the Arctic: Effects of more open ocean water on land temperatures and tundra productivity along continental and maritime bioclimate transects

    NASA Astrophysics Data System (ADS)

    Bhatt, U. S.; Walker, D. A.; Raynolds, M. K.; Epstein, H. E.

    2017-12-01

    Amplified Arctic warming linked to declining sea-ice extent led to generally enhanced productivity of the tundra biome during the period 1982-2008. After about 2002, coinciding with a recent precipitous decline in sea ice, large areas of the Arctic began showing reversals of previous positive productivity trends. To better understand these recent vegetation productivity declines and whether they are associated with differences in a general humidification of portions of the Arctic, we focus analysis on two transects with ground information: the more continental North America Arctic Transect (NAAT) and the more maritime Eurasia Arctic Transect (EAT). We compare ground information with satellite-derived trends in open water, summer terrestrial temperatures, and vegetation greenness and changes in continentality of the two transects, as indicated by the differences in the annual maximum and minimum mean monthly temperatures. Areas adjacent to perennial sea ice along in the northern parts of the NAAT exhibit climates with positive trends in summer warmth, but negative greening trends, possibly due to soil drying. Southern parts of the NAAT in the vicinity of more open water show positive greenness trends. Along the EAT, cooling midsummer conditions and reduced greenness appear to be caused by cloudier conditions, and possibly later snow melt during the period of maximum potential photosynthesis. Ground-based environmental and vegetation data indicate that biomass, particularly moss biomass is much greater along the more maritime EAT, indicating a buffering effect of the vegetation that will act to damp productivity as humidification of the Arctic proceeds. This multi-scale analysis is one step in the direction of understanding the drivers of tundra vegetation productivity in the Arctic.

  9. Changes in Nutrients and Primary Production in Barrow Tundra Ponds Over the Past 40 Years

    NASA Astrophysics Data System (ADS)

    Lougheed, V.; Andresen, C.; Hernandez, C.; Miller, N.; Reyes, F.

    2012-12-01

    The Arctic tundra ponds at the International Biological Program (IBP) site in Barrow, Alaska were studied extensively in the 1970's; however, very little research has occurred there since that time. Due to the sensitivity of this region to climate warming, understanding any changes in the ponds' structure and function over the past 40 years can help identify any potential climate-related impacts. The goal of this study was to determine if the structure and function of primary producers had changed through time, and the association between these changes, urban encroachment and nutrient limitation. Nutrient levels, as well as the biomass of aquatic graminoids (Carex aquatilis and Arctophila fulva), phytoplankton and periphyton were determined in the IBP tundra ponds in both 1971-3 and 2010-12, and in 2010-11 from nearby ponds along an anthropogenic disturbance gradient. Uptake of 14C was also used to measure algal primary production in both time periods and nutrient addition experiments were performed to identify the nutrients limiting algal growth. Similar methods were utilized in the past and present studies. Overall, biomass of graminoids, phytoplankton and periphyton was greater in 2010-12 than that observed in the 1970s. This increased biomass was coincident with warmer water temperatures, increased water column nutrients and deeper active layer depth. Biomass of plants and algae was highest in the ponds closest to the village of Barrow, but no effect of urban encroachment was observed at the IBP ponds. Laboratory incubations indicated that nutrient release from thawing permafrost can explain part of these increases in nutrients and has likely contributed to changes in the primary limiting nutrient. Further studies are necessary to better understand the implications of these trends in primary production to nutrient budgets in the Arctic. The Barrow IBP tundra ponds represent one of the very few locations in the Arctic where long-term data are available on

  10. Carbon-Degrading Enzyme Activities Stimulated by Increased Nutrient Availability in Arctic Tundra Soils

    PubMed Central

    Koyama, Akihiro; Wallenstein, Matthew D.; Simpson, Rodney T.; Moore, John C.

    2013-01-01

    Climate-induced warming of the Arctic tundra is expected to increase nutrient availability to soil microbes, which in turn may accelerate soil organic matter (SOM) decomposition. We increased nutrient availability via fertilization to investigate the microbial response via soil enzyme activities. Specifically, we measured potential activities of seven enzymes at four temperatures in three soil profiles (organic, organic/mineral interface, and mineral) from untreated native soils and from soils which had been fertilized with nitrogen (N) and phosphorus (P) since 1989 (23 years) and 2006 (six years). Fertilized plots within the 1989 site received annual additions of 10 g N⋅m-2⋅year-1 and 5 g P⋅m-2⋅year-1. Within the 2006 site, two fertilizer regimes were established – one in which plots received 5 g N⋅m-2⋅year-1 and 2.5 g P⋅m-2⋅year-1 and one in which plots received 10 g N⋅m-2⋅year-1 and 5 g P⋅m-2⋅year-1. The fertilization treatments increased activities of enzymes hydrolyzing carbon (C)-rich compounds but decreased phosphatase activities, especially in the organic soils. Activities of two enzymes that degrade N-rich compounds were not affected by the fertilization treatments. The fertilization treatments increased ratios of enzyme activities degrading C-rich compounds to those for N-rich compounds or phosphate, which could lead to changes in SOM chemistry over the long term and to losses of soil C. Accelerated SOM decomposition caused by increased nutrient availability could significantly offset predicted increased C fixation via stimulated net primary productivity in Arctic tundra ecosystems. PMID:24204773

  11. Applying Lidar and High-Resolution Multispectral Imagery for Improved Quantification and Mapping of Tundra Vegetation Structure and Distribution in the Alaskan Arctic

    NASA Astrophysics Data System (ADS)

    Greaves, Heather E.

    Climate change is disproportionately affecting high northern latitudes, and the extreme temperatures, remoteness, and sheer size of the Arctic tundra biome have always posed challenges that make application of remote sensing technology especially appropriate. Advances in high-resolution remote sensing continually improve our ability to measure characteristics of tundra vegetation communities, which have been difficult to characterize previously due to their low stature and their distribution in complex, heterogeneous patches across large landscapes. In this work, I apply terrestrial lidar, airborne lidar, and high-resolution airborne multispectral imagery to estimate tundra vegetation characteristics for a research area near Toolik Lake, Alaska. Initially, I explored methods for estimating shrub biomass from terrestrial lidar point clouds, finding that a canopy-volume based algorithm performed best. Although shrub biomass estimates derived from airborne lidar data were less accurate than those from terrestrial lidar data, algorithm parameters used to derive biomass estimates were similar for both datasets. Additionally, I found that airborne lidar-based shrub biomass estimates were just as accurate whether calibrated against terrestrial lidar data or harvested shrub biomass--suggesting that terrestrial lidar potentially could replace destructive biomass harvest. Along with smoothed Normalized Differenced Vegetation Index (NDVI) derived from airborne imagery, airborne lidar-derived canopy volume was an important predictor in a Random Forest model trained to estimate shrub biomass across the 12.5 km2 covered by our lidar and imagery data. The resulting 0.80 m resolution shrub biomass maps should provide important benchmarks for change detection in the Toolik area, especially as deciduous shrubs continue to expand in tundra regions. Finally, I applied 33 lidar- and imagery-derived predictor layers in a validated Random Forest modeling approach to map vegetation

  12. The importance of marine vs. human-induced subsidies in the maintenance of an expanding mesocarnivore in the arctic tundra.

    PubMed

    Killengreen, Siw T; Lecomte, Nicolas; Ehrich, Dorothée; Schott, Tino; Yoccoz, Nigel G; Ims, Rolf A

    2011-09-01

    1. Most studies addressing the causes of the recent increases and expansions of mesopredators in many ecosystems have focused on the top-down, releasing effect of extinctions of large apex predators. However, in the case of the northward expansion of the red fox into the arctic tundra, a bottom-up effect of increased resource availability has been proposed, an effect that can counteract prey shortage in the low phase of the multi-annual rodent cycle. Resource subsidies both with marine and with terrestrial origins could potentially be involved. 2. During different phases of a multi-annual rodent cycle, we investigated the seasonal dynamics and spatial pattern of resource use by red foxes across a coast to inland low arctic tundra gradient, Varanger Peninsula, Norway. We employed two complementary methods of diet analyses: stomach contents and stable isotope analysis. 3. We found that inland red foxes primarily subsisted on reindeer carrions during the low phase of a small rodent population cycle. Lemmings became the most important food item towards the peak phase of the rodent cycle, despite being less abundant than sympatric voles. Isotopic signatures of tissue from both predator and prey also revealed that red foxes near the coast used marine-derived subsidies in the winter, but these allochthonous resources did not spillover to adult foxes living beyond 20-25 km from the coast. 4. Although more needs to be learned about the link between increasing primary productivity due to climatic warming and trophic dynamics in tundra ecosystems, we suggest that changes in reindeer management through a bottom-up effect, at least regionally, may have paved the way towards the establishment of a new mesopredator in the tundra biome. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.

  13. Modeling the spatio-temporal variability in subsurface thermal regimes across a low-relief polygonal tundra landscape: Modeling Archive

    DOE Data Explorer

    Kumar, Jitendra; Collier, Nathan; Bisht, Gautam; Mills, Richard T.; Thornton, Peter E.; Iversen, Colleen M.; Romanovsky, Vladimir

    2016-01-27

    This Modeling Archive is in support of an NGEE Arctic discussion paper under review and available at http://www.the-cryosphere-discuss.net/tc-2016-29/. Vast carbon stocks stored in permafrost soils of Arctic tundra are under risk of release to atmosphere under warming climate. Ice--wedge polygons in the low-gradient polygonal tundra create a complex mosaic of microtopographic features. The microtopography plays a critical role in regulating the fine scale variability in thermal and hydrological regimes in the polygonal tundra landscape underlain by continuous permafrost. Modeling of thermal regimes of this sensitive ecosystem is essential for understanding the landscape behaviour under current as well as changing climate. We present here an end-to-end effort for high resolution numerical modeling of thermal hydrology at real-world field sites, utilizing the best available data to characterize and parameterize the models. We develop approaches to model the thermal hydrology of polygonal tundra and apply them at four study sites at Barrow, Alaska spanning across low to transitional to high-centered polygon and representative of broad polygonal tundra landscape. A multi--phase subsurface thermal hydrology model (PFLOTRAN) was developed and applied to study the thermal regimes at four sites. Using high resolution LiDAR DEM, microtopographic features of the landscape were characterized and represented in the high resolution model mesh. Best available soil data from field observations and literature was utilized to represent the complex hetogeneous subsurface in the numerical model. This data collection provides the complete set of input files, forcing data sets and computational meshes for simulations using PFLOTRAN for four sites at Barrow Environmental Observatory. It also document the complete computational workflow for this modeling study to allow verification, reproducibility and follow up studies.

  14. Spatial variation and linkages of soil and vegetation in the Siberian Arctic tundra - coupling field observations with remote sensing data

    NASA Astrophysics Data System (ADS)

    Mikola, Juha; Virtanen, Tarmo; Linkosalmi, Maiju; Vähä, Emmi; Nyman, Johanna; Postanogova, Olga; Räsänen, Aleksi; Kotze, D. Johan; Laurila, Tuomas; Juutinen, Sari; Kondratyev, Vladimir; Aurela, Mika

    2018-05-01

    Arctic tundra ecosystems will play a key role in future climate change due to intensifying permafrost thawing, plant growth and ecosystem carbon exchange, but monitoring these changes may be challenging due to the heterogeneity of Arctic landscapes. We examined spatial variation and linkages of soil and plant attributes in a site of Siberian Arctic tundra in Tiksi, northeast Russia, and evaluated possibilities to capture this variation by remote sensing for the benefit of carbon exchange measurements and landscape extrapolation. We distinguished nine land cover types (LCTs) and to characterize them, sampled 92 study plots for plant and soil attributes in 2014. Moreover, to test if variation in plant and soil attributes can be detected using remote sensing, we produced a normalized difference vegetation index (NDVI) and topographical parameters for each study plot using three very high spatial resolution multispectral satellite images. We found that soils ranged from mineral soils in bare soil and lichen tundra LCTs to soils of high percentage of organic matter (OM) in graminoid tundra, bog, dry fen and wet fen. OM content of the top soil was on average 14 g dm-3 in bare soil and lichen tundra and 89 g dm-3 in other LCTs. Total moss biomass varied from 0 to 820 g m-2, total vascular shoot mass from 7 to 112 g m-2 and vascular leaf area index (LAI) from 0.04 to 0.95 among LCTs. In late summer, soil temperatures at 15 cm depth were on average 14 °C in bare soil and lichen tundra, and varied from 5 to 9 °C in other LCTs. On average, depth of the biologically active, unfrozen soil layer doubled from early July to mid-August. When contrasted across study plots, moss biomass was positively associated with soil OM % and OM content and negatively associated with soil temperature, explaining 14-34 % of variation. Vascular shoot mass and LAI were also positively associated with soil OM content, and LAI with active layer depth, but only explained 6-15 % of variation. NDVI

  15. Energy fluxes retrieval on an Alaskan Arctic and Sub-Arctic vegetation by means MODIS imagery and the DTD method

    NASA Astrophysics Data System (ADS)

    Cristobal, J.; Prakash, A.; Starkenburg, D. P.; Fochesatto, G. J.; Anderson, M. C.; Gens, R.; Kane, D. L.; Kustas, W.; Alfieri, J. G.

    2012-12-01

    Evapotranspiration (ET) plays a significant role in the hydrologic cycle of Arctic and Sub-Arctic basins. Surface-atmosphere exchanges due to ET are estimated from water balance computations to be about 74% of summer precipitation or 50% of annual precipitation. Even though ET is a significant component of the hydrologic cycle in this region, the bulk estimates don't accurately account for spatial and temporal variability due to vegetation type, topography, etc. (Kane and Yang, 2004). Nowadays, remote sensing is the only technology capable of providing the necessary radiometric measurements for the calculation of the ET at global scales and in a feasible economic way, especially in Arctic and Sub-Arctic Alaskan basins with a very sparse network of both meteorological and flux towers. In this work we present the implementation and validation of the Dual-Time-Difference model (Kustas et al., 2001) to retrieve energy fluxes (ET, sensible heat flux, net radiation and soil heat flux) in tundra vegetation in Arctic conditions and in a black spruce (Picea mariana) forest in Sub-Arctic conditions. In order to validate the model in tundra vegetation we used a flux tower from the Imnavait Creek sites of the Arctic Observatory Network (Euskirchen et al. 2012). In the case of the black spruce forest, on September 2011 we installed a flux tower in the University of Alaska Fairbanks north campus that includes an eddy-covariance system as well a net radiometer, air temperature probes, soil heat flux plates, soil moisture sensors and thermistors to fully estimate energy fluxes in the field (see http://www.et.alaska.edu/ for further details). Additionally, in order to upscale energy fluxes into MODIS spatial resolution, a scintillometer was also installed covering 1.2 km across the flux tower. DTD model mainly requires meteorological inputs as well as land surface temperature (LST) and leaf area index (LAI) data, both coming from satellite imagery, at two different times: after

  16. The influence of soil organic matter chemistry and site/soil properties in predicting the decomposability of tundra soils

    NASA Astrophysics Data System (ADS)

    Matamala, R.; Jastrow, J. D.; Fan, Z.; Liang, C.; Calderon, F.; Michaelson, G.; Mishra, U.; Ping, C. L.

    2017-12-01

    With the increase in high latitude warming, there is a need to better understand the potential vulnerability of soil organic matter (SOM) stored in Arctic regions. In this study, we used mid infrared spectroscopy (MidIR) to determine the influence of soil chemistry and site properties in the short-term mineralization potential of SOM stored in tundra soils. Soils from the active and permafrost layers were collected from four tundra sites on the Coastal Plain, and Arctic Foothills of the North Slope of Alaska and were incubated for 60 days at a range of temperatures. Site and soil properties including acidic versus non-acidic tundra, lowland versus upland areas, total soil organic carbon (TOC) and total nitrogen (TN) concentrations, 60-day carbon mineralization potential (CMP), MidIR spectra and the chemical composition of the SOM stored in these soils were determined. Partial least squares (PLS) models for CMP versus MidIR spectra were produced upon splitting the dataset into site and soil properties categories. We found that SOM composition determined by MidIR spectroscopy was most effective in predicting CMP for tundra soils and it was most relevant for the active-layer mineral and upper permafrost soil horizons and/or soils with C concentrations of 10% or lower. Analysis of the factor loadings and standardized beta coefficients from the CMP PLS models indicated that spectral bands associated with clay contents, phenolic OH, aliphatic, silicates, carboxylic acids, and polysaccharides were influential for lower TOC soils, but these bands were less important for higher TOC soils. High TOC soils were influenced by a combination of other factors. Our results suggest that different factors affect the short-term CMP of SOM in tundra soils depending on the amount of TOC present. We show MidIR as a powerful tool for quickly and reasonably estimating the short-term CMP of tundra soils. Widespread application of MidIR measurements to already collected and archived tundra

  17. Calibration and Validation of Tundra Plant Functional Type Fractional Cover Mapping

    NASA Astrophysics Data System (ADS)

    Macander, M. J.; Nelson, P.; Frost, G. V., Jr.

    2017-12-01

    Fractional cover maps are being developed for selected tundra plant functional types (PFTs) across >500,000 sq. km of arctic Alaska and adjacent Canada at 30 m resolution. Training and validation data include a field-based training dataset based on point-intercept sampling method at hundreds of plots spanning bioclimatic and geomorphic gradients. We also compiled 50 blocks of 1-5 cm resolution RGB image mosaics in Alaska (White Mountains, North Slope, and Yukon-Kuskokwim Delta) and the Yukon Territory. The mosaics and associated surface and canopy height models were developed using a consumer drone and structure from motion processing. We summarized both the in situ measurements and drone imagery to determine cover of two PFTs: Low and Tall Deciduous Shrub, and Light Fruticose/Foliose Lichen. We applied these data to train 2 m (limited extent) and 30 m (wall to wall) maps of PFT fractional cover for shrubs and lichen. Predictors for 2 m models were commercial satellite imagery such as WorldView-2 and Worldview-3, analyzed on the ABoVE Science Cloud. Predictors for 30 m models were primarily reflectance composites and spectral metrics developed from Landsat imagery, using Google Earth Engine. We compared the performance of models developed from the in situ and drone-derived training data and identify best practices to improve the performance and efficiency of arctic PFT fractional cover mapping.

  18. New York's TUNDRA.

    ERIC Educational Resources Information Center

    Kalinowski, Thomas

    1983-01-01

    Found at the summit of some of the highest peaks of New York State's Adirondack Mountains are low-growing plants similar, and in many cases, identical to plants growing in the Arctic. Describes these plants and the environment in which they are found. Includes a color plate of alpine tundra plants. (Author/JN)

  19. THE ROLE OF THERMAL REGIMEN IN TUNDRA PLANT COMMUNITY RESTORATION

    EPA Science Inventory

    Mineral extraction activities in the Arctic regions of the world produce long-lasting ecological disturbances. Assisted recovery from such disturbances may require restoration of the tundra thermal regime. We transplanted plugs of entire root zone and live tundra plants to a dist...

  20. Impact of elevated CO2, water table, and temperature changes on CO2 and CH4 fluxes from arctic tundra soils

    NASA Astrophysics Data System (ADS)

    Zona, Donatella; Haynes, Katherine; Deutschman, Douglas; Bryant, Emma; McEwing, Katherine; Davidson, Scott; Oechel, Walter

    2015-04-01

    Large uncertainties still exist on the response of tundra C emissions to future climate due, in part, to the lack of understanding of the interactive effects of potentially controlling variables on C emissions from Arctic ecosystems. In this study we subjected 48 soil cores (without active vegetation) from dominant arctic wetland vegetation types, to a laboratory manipulation of elevated atmospheric CO2, elevated temperature, and altered water table, representing current and future conditions in the Arctic for two growing seasons. To our knowledge this experiment comprised the most extensively replicated manipulation of intact soil cores in the Arctic. The hydrological status of the soil was the most dominant control on both soil CO2 and CH4 emissions. Despite higher soil CO2 emission occurring in the drier plots, substantial CO2 respiration occurred under flooded conditions, suggesting significant anaerobic respirations in these arctic tundra ecosystems. Importantly, a critical control on soil CO2 and CH4 fluxes was the original vascular plant cover. The dissolved organic carbon (DOC) concentration was correlated with cumulative CH4 emissions but not with cumulative CO2 suggesting C quality influenced CH4 production but not soil CO2 emissions. An interactive effect between increased temperature and elevated CO2 on soil CO2 emissions suggested a potential shift of the soils microbial community towards more efficient soil organic matter degraders with warming and elevated CO2. Methane emissions did not decrease over the course of the experiment, even with no input from vegetation. This result indicated that CH4 emissions are not carbon limited in these C rich soils. Overall CH4 emissions represented about 49% of the sum of total C (C-CO2 + C-CH4) emission in the wet treatments, and 15% in the dry treatments, representing a dominant component of the overall C balance from arctic soils.

  1. Ozone and aerosol distributions measured by airborne lidar during the 1988 Arctic Boundary Layer Experiment

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Butler, Carolyn F.; Kooi, Susan A.

    1991-01-01

    Consideration is given to O3 and aerosol distributions measured from an aircraft using a DIAL system in order to study the sources and sinks of gases and aerosols over the tundra regions of Alaska during summer 1988. The tropospheric O3 budget over the Arctic was found to be strongly influenced by stratospheric intrusions. Regions of low aerosol scattering and enhanced O3 mixing ratios were usually correlated with descending air from the upper troposphere or lower stratosphere.

  2. Polar bear maternal den habitat in the Arctic National Wildlife Refuge, Alaska

    USGS Publications Warehouse

    Durner, George M.; Amstrup, Steven C.; Ambrosius, Ken J.

    2006-01-01

    Polar bears (Ursus maritimus) give birth during mid-winter in dens of ice and snow. Denning polar bears subjected to human disturbances may abandon dens before their altricial young can survive the rigors of the Arctic winter. Because the Arctic coastal plain of Alaska is an area of high petroleum potential and contains existing and planned oil field developments, the distribution of polar bear dens on the plain is of interest to land managers. Therefore, as part of a study of denning habitats along the entire Arctic coast of Alaska, we examined high-resolution aerial photographs (n = 1655) of the 7994 km2 coastal plain included in the Arctic National Wildlife Refuge (ANWR) and mapped 3621 km of bank habitat suitable for denning by polar bears. Such habitats were distributed uniformly and comprised 0.29% (23.2 km2) of the coastal plain between the Canning River and the Canadian border. Ground-truth sampling suggested that we had correctly identified 91.5% of bank denning habitats on the ANWR coastal plain. Knowledge of the distribution of these habitats will help facilitate informed management of human activities and minimize disruption of polar bears in maternal dens.

  3. Impact of fire disturbance on soil thermal and carbon dynamics in Alaskan Tundra and Boreal forest ecosystems

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Rastetter, E.; Shaver, G. R.; Rocha, A. V.

    2012-12-01

    In Alaska, fire disturbance is a major component influencing the soil water and energy balance in both tundra and boreal forest ecosystems. Fire-caused changes in soil environment further affect both above- and below-ground carbon cycles depending on different fire severities. Understanding the effects of fire disturbance on soil thermal change requires implicit modeling work on the post-fire soil thawing and freezing processes. In this study, we model the soil temperature profiles in multiple burned and non-burned sites using a well-developed soil thermal model which fully couples soil water and heat transport. The subsequent change in carbon dynamics is analyzed based on site level observations and simulations from the Multiple Element Limitation (MEL) model. With comparison between burned and non-burned sites, we compare and contrast fire effects on soil thermal and carbon dynamics in continuous permafrost (Anaktuvik fire in north slope), discontinuous permafrost (Erickson Creek fire at Hess Creek) and non-permafrost zone (Delta Junction fire in interior Alaska). Then we check the post-fire recovery of soil temperature profiles at sites with different fire severities in both tundra and boreal forest fire areas. We further project the future changes in soil thermal and carbon dynamics using projected climate data from Scenarios Network for Alaska & Arctic Planning (SNAP). This study provides information to improve the understanding of fire disturbance on soil thermal and carbon dynamics and the consequent response under a warming climate.

  4. Biological Chlorine Cycling in Arctic Peat Soils

    NASA Astrophysics Data System (ADS)

    Zlamal, J. E.; Raab, T. K.; Lipson, D.

    2014-12-01

    Soils of the Arctic tundra near Barrow, Alaska are waterlogged and anoxic throughout most of the profile due to underlying permafrost. Microbial communities in these soils are adapted for the dominant anaerobic conditions and are capable of a surprising diversity of metabolic pathways. Anaerobic respiration in this environment warrants further study, particularly in the realm of electron cycling involving chlorine, which preliminary data suggest may play an important role in arctic anaerobic soil respiration. For decades, Cl was rarely studied outside of the context of solvent-contaminated sites due to the widely held belief that it is an inert element. However, Cl has increasingly become recognized as a metabolic player in microbial communities and soil cycling processes. Organic chlorinated compounds (Clorg) can be made by various organisms and used metabolically by others, such as serving as electron acceptors for microbes performing organohalide respiration. Sequencing our arctic soil samples has uncovered multiple genera of microorganisms capable of participating in many Cl-cycling processes including organohalide respiration, chlorinated hydrocarbon degradation, and perchlorate reduction. Metagenomic analysis of these soils has revealed genes for key enzymes of Cl-related metabolic processes such as dehalogenases and haloperoxidases, and close matches to genomes of known organohalide respiring microorganisms from the Dehalococcoides, Dechloromonas, Carboxydothermus, and Anaeromyxobacter genera. A TOX-100 Chlorine Analyzer was used to quantify total Cl in arctic soils, and these data were examined further to separate levels of inorganic Cl compounds and Clorg. Levels of Clorg increased with soil organic matter content, although total Cl levels lack this trend. X-ray Absorption Near Edge Structure (XANES) was used to provide information on the structure of Clorg in arctic soils, showing great diversity with Cl bound to both aromatic and alkyl groups

  5. Snow depth manipulation experiments in a dry and a moist tundra

    NASA Astrophysics Data System (ADS)

    Kwon, M. J.; Czimczik, C. I.; Jung, J. Y.; Kim, M.; Lee, Y. K.; Nam, S.; Wagner, I.

    2017-12-01

    As a result of global warming, precipitation in the Arctic is expected to increase by 25-50% by the end of this century, mostly in the form of snow. However, precipitation patterns vary considerable in space and time, and future precipitation patterns are highly uncertain at local and regional scales. The amount of snowfall (or snow depth) influences a number of ecosystem properties in Arctic ecosystems, such as soil temperature over winter and soil moisture in the following growing season. These modifications then affect rates of carbon-related soil processes and photosynthesis, thus CO2 exchange rates between terrestrial ecosystems and the atmosphere. In this study, we investigate the effects of snow depth on the magnitude, sources and temporal dynamics of CO2 fluxes. We installed snow fences in a dry dwarf-shrub (Cambridge Bay, Canada; 69° N, 105° W) and a moist low-shrub (Council, Alaska, USA; 64° N, 165° W) tundra in summer 2017, and established control, and increased and reduced snow depth plots at each snow fence. Summertime CO2 flux rates (net ecosystem exchange, ecosystem respiration, gross primary production) and the fractions of autotrophic and heterotrophic respiration to ecosystem respiration were measured using manual chambers and radiocarbon signatures. Wintertime CO2 flux rates will be measured using soda lime adsorption technique and forced diffusion chambers. Soil temperature and moisture at multiple depths, as well as changes in soil properties and microbial communities will be also observed, to research whether these changes affect CO2 flux rates or patterns. Our study will elucidate how future snow depth and its impact on soil physical and biogeochemical properties influence the magnitude and sources of tundra-atmosphere CO2 exchange in the rapidly warming Arctic.

  6. Investigation of the Fractal Geometry of Tundra Lake Patterns using Historical Topographic Maps and Satellite Imagery.

    NASA Astrophysics Data System (ADS)

    Kariyawasam, T.; Essa, A.; Gong, M.; Sudakov, I.

    2017-12-01

    Greenhouse gas emissions from tundra lakes are a significant positive feedback to the atmosphere in a changing climate as a pronounced growth of the numbers of tundra lake patterns has been observed in the Arctic region. Detailed knowledge of spatial dynamics of lake patterns in a changing arctic tundra landscape and their geometrical properties is therefore potentially valuable, in order to understand and accurately model the sources of greenhouse gas emissions from boreal permafrost. Our goal is to use a collection of historical topographic maps and satellite imagery of tundra lakes to conduct computational image analyses for examining spatial dynamics of Tundra lake patterns. Our approach is based upon analyzing area-perimeter data of thousands of tundra lakes to compute the fractal dimension to study the tundra lake pattern geometry, which have been used to classify pollen grains by textual patterning (Mander, 2016), vegetation in dryland ecosystems (Mander, 2017) and melt pond patterns (Hohenegger, 2012). By analyzing area - perimeter data for over 900 lakes we find that for both historical topographic maps and current satellite imagery, the fractal dimension D is stable at 1.6 for Tundra lakes with area less than about 100km2. For Tundra lake sizes bigger than 100 km2 fractal dimension takes values close to 2 and less than one indicative of structural changes in Tundra lake pattern geometry. Furthermore the current study did not reveal any percolation transition above some critical threshold in Tundra lake evolution. The results of the study will provide scientists with new data on these aspects of tundra lakes to help characterize the geomorphology of spatial patterns in arctic tundra lakes.

  7. Low-altitude photographic transects of the Arctic network of national park units and Selawik National Wildlife Refuge, Alaska, July 2013

    Treesearch

    Bruce G. Marcot; M. Torre Jorgenson; Anthony R. DeGange

    2014-01-01

    During July 16–18, 2013, low-level photography flights were conducted (with a Cessna 185 with floats and a Cessna 206 with tundra tires) over the five administrative units of the National Park Service Arctic Network (Bering Land Bridge National Preserve, Cape Krusenstern National Monument, Gates of the Arctic National Park and Preserve, Kobuk Valley National Park, and...

  8. Nesting ecology of tundra swans on the coastal Yukon-Kuskokwim Delta, Alaska

    USGS Publications Warehouse

    Babcock, C.A.; Fowler, A.C.; Ely, Craig R.

    2002-01-01

    Nesting ecology of Tundra Swans (Cygnus columbianus columbianus) was studies the Kashunuk River near Old Chevak (61A?26a??N, 165A?27a??W), on the Yukon-Kuskokwim Delta of western Alaska from 1988-2000. Annual variation in snow-melt chronology, nesting phenology, nesting density, clutch size and nest success was examined. The same area (approximately 23 kmA?) was searched each year and nests were found as early as possible in the laying period. Laying initiation dates ranged from 1-27 May and hatch dates from 12 June a?? 4 July among pairs and years of study. The peak arrival of Tundra Swans and the phenology of nest initiation and hatch were highly correlated with the progression of ice and snow melt in spring. Nest density averaged 0.71 kmA? and 89% of nesting pairs hatched at least one egg. Incubation period ranged from 26 to 33 days with a median of 30 days. Clutch size varied significantly among years, driven by a low mean value of 3.4 eggs in 1999. Clutch sizes were generally larger than found in previous investigations on the Yukon-Kuskokwim Delta, and nearly one egg larger than reported for clutches from Alaskaa??s North Slope (=70A?N). There was no indication of reduced clutch size in years of late spring snow melt, although nesting density tended to be lower.

  9. Distribution of breeding shorebirds on the Arctic Coastal Plain of Alaska

    USGS Publications Warehouse

    Johnson, J.A.; Lanctot, Richard B.; Andres, B.A.; Bart, J.R.; Brown, S.C.; Kendall, S.J.; Payer, David C.

    2007-01-01

    Available information on the distribution of breeding shorebirds across the Arctic Coastal Plain of Alaska is dated, fragmented, and limited in scope. Herein, we describe the distribution of 19 shorebird species from data gathered at 407 study plots between 1998 and 2004. This information was collected using a single-visit rapid area search technique during territory establishment and early incubation periods, a time when social displays and vocalizations make the birds highly detectable. We describe the presence or absence of each species, as well as overall numbers of species, providing a regional perspective on shorebird distribution. We compare and contrast our shorebird distribution maps to those of prior studies and describe prominent patterns of shorebird distribution. Our examination of how shorebird distribution and numbers of species varied both latitudinally and longitudinally across the Arctic Coastal Plain of Alaska indicated that most shorebird species occur more frequently in the Beaufort Coastal Plain ecoregion (i.e., closer to the coast) than in the Brooks Foothills ecoregion (i.e., farther inland). Furthermore, the occurrence of several species indicated substantial longitudinal directionality. Species richness at surveyed sites was highest in the western portion of the Beaufort Coastal Plain ecoregion. The broad-scale distribution information we present here is valuable for evaluating potential effects of human development and climate change on Arctic-breeding shorebird populations. ?? The Arctic Institute of North America.

  10. Concept Study: Exploration and Production in Environmentally Sensitive Arctic Areas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirish Patil; Rich Haut; Tom Williams

    2008-12-31

    The Alaska North Slope offers one of the best prospects for increasing U.S. domestic oil and gas production. However, this region faces some of the greatest environmental and logistical challenges to oil and gas production in the world. A number of studies have shown that weather patterns in this region are warming, and the number of days the tundra surface is adequately frozen for tundra travel each year has declined. Operators are not allowed to explore in undeveloped areas until the tundra is sufficiently frozen and adequate snow cover is present. Spring breakup then forces rapid evacuation of the areamore » prior to snowmelt. Using the best available methods, exploration in remote arctic areas can take up to three years to identify a commercial discovery, and then years to build the infrastructure to develop and produce. This makes new exploration costly. It also increases the costs of maintaining field infrastructure, pipeline inspections, and environmental restoration efforts. New technologies are needed, or oil and gas resources may never be developed outside limited exploration stepouts from existing infrastructure. Industry has identified certain low-impact technologies suitable for operations, and has made improvements to reduce the footprint and impact on the environment. Additional improvements are needed for exploration and economic field development and end-of-field restoration. One operator-Anadarko Petroleum Corporation-built a prototype platform for drilling wells in the Arctic that is elevated, modular, and mobile. The system was tested while drilling one of the first hydrate exploration wells in Alaska during 2003-2004. This technology was identified as a potentially enabling technology by the ongoing Joint Industry Program (JIP) Environmentally Friendly Drilling (EFD) program. The EFD is headed by Texas A&M University and the Houston Advanced Research Center (HARC), and is co-funded by the National Energy Technology Laboratory (NETL). The EFD

  11. Den use by arctic foxes (Alopex lagopus) in a subarctic region of western Alaska

    USGS Publications Warehouse

    Anthony, R. Michael

    1996-01-01

    Distribution, abundance, and use of arctic fox dens located in coastal tundra communities of the Yukon–Kuskokwim delta were determined in studies from 1985 to 1990. Dens were denser and less complex than those described in studies conducted above the Arctic Circle. Eighty-three dens of varying complexity were found in the 52-km2 study area. Nineteen dens were used by arctic foxes for whelping or rearing pups. Three females relocated litters to multiple dens; a maximum of four dens were used concurrently by pups from one litter. Although red foxes (Vulpes vulpes) were common in the region, their use of dens in the study area was minimal. Differences in vegetation at den sites and nearby unoccupied sites were minimal. Furthermore, den sites could not be distinguished from non-den sites during aerial surveys.

  12. Increasing shrub abundance and N addition in Arctic tundra affect leaf and root litter decomposition differently

    NASA Astrophysics Data System (ADS)

    McLaren, J.; van de Weg, M. J.; Shaver, G. R.; Gough, L.

    2013-12-01

    Changes in global climate have resulted in a ';greening' of the Arctic as the abundance of deciduous shrub species increases. Consequently, not only the living plant community, but also the litter composition changes, which in turn can affect carbon turnover patterns in the Arctic. We examined effects of changing litter composition (both root and leaf litter) on decomposition rates with a litter bag study, and specifically focused on the impact of deciduous shrub Betula nana litter on litter decomposition from two evergreen shrubs (Ledum palustre, and Vaccinium vitis-idaea) and one graminoid (Eriophorum vaginatum) species. Additionally, we investigated how decomposition was affected by nutrient availability by placing the litterbags in an ambient and a fertilized moist acidic tundra environment. Measurements were carried out seasonally over 2 years (after snow melt, mid-growing season, end growing season). We measured litter mass loss over time, as well as the respiration rates (standardized for temperature and moisture) and temperature sensitivity of litter respiration at the time of harvesting the litter bags. For leaves, Betula litter decomposed faster than the other three species, with Eriophorum leaves decomposing the slowest. This pattern was observed for both mass loss and litter respiration rates, although the differences in respiration became smaller over time. Surprisingly, combining Betula with any other species resulted in slower overall weight loss rates than would be predicted based on monoculture weight loss rates. This contrasted with litter respiration at the time of sampling, which showed a positive mixing effect of adding Betula leaf liter to the other species. Apparently, during the first winter months (September - May) Betula litter decomposition is negatively affected by mixing the species and this legacy can still be observed in the total mass loss results later in the year. For root litter there were fewer effects of species identity on root

  13. Multidecadal Rates of Disturbance- and Climate Change-Induced Land Cover Change in Arctic and Boreal Ecosystems over Western Canada and Alaska Inferred from Dense Landsat Time Series

    NASA Astrophysics Data System (ADS)

    Wang, J.; Sulla-menashe, D. J.; Woodcock, C. E.; Sonnentag, O.; Friedl, M. A.

    2017-12-01

    Rapid climate change in arctic and boreal ecosystems is driving changes to land cover composition, including woody expansion in the arctic tundra, successional shifts following boreal fires, and thaw-induced wetland expansion and forest collapse along the southern limit of permafrost. The impacts of these land cover transformations on the physical climate and the carbon cycle are increasingly well-documented from field and model studies, but there have been few attempts to empirically estimate rates of land cover change at decadal time scale and continental spatial scale. Previous studies have used too coarse spatial resolution or have been too limited in temporal range to enable broad multi-decadal assessment of land cover change. As part of NASA's Arctic Boreal Vulnerability Experiment (ABoVE), we are using dense time series of Landsat remote sensing data to map disturbances and classify land cover types across the ABoVE extended domain (spanning western Canada and Alaska) over the last three decades (1982-2014) at 30 m resolution. We utilize regionally-complete and repeated acquisition high-resolution (<2 m) DigitalGlobe imagery to generate training data from across the region that follows a nested, hierarchical classification scheme encompassing plant functional type and cover density, understory type, wetland status, and land use. Additionally, we crosswalk plot-level field data into our scheme for additional high quality training sites. We use the Continuous Change Detection and Classification algorithm to estimate land cover change dates and temporal-spectral features in the Landsat data. These features are used to train random forest classification models and map land cover and analyze land cover change processes, focusing primarily on tundra "shrubification", post-fire succession, and boreal wetland expansion. We will analyze the high resolution data based on stratified random sampling of our change maps to validate and assess the accuracy of our model

  14. Geochemical drivers of organic matter decomposition in Arctic tundra soils

    DOE PAGES

    Herndon, Elizabeth M.; Yang, Ziming; Graham, David E.; ...

    2015-12-07

    Climate change is warming tundra ecosystems in the Arctic, resulting in the decomposition of previously-frozen soil organic matter (SOM) and release of carbon (C) to the atmosphere; however, the processes that control SOM decomposition and C emissions remain highly uncertain. In this study, we evaluate geochemical factors that influence anaerobic production of carbon dioxide (CO 2) and methane (CH 4) in the active layers of four ice-wedge polygons. Surface and soil pore waters were collected during the annual thaw season over a two-year period in an area containing waterlogged, low-centered polygons and well-drained, high-centered polygons. We report spatial and seasonalmore » patterns of dissolved gases in relation to the geochemical properties of Fe and organic C as determined using spectroscopic and chromatographic techniques. Iron was present as Fe(II) in soil solution near the permafrost boundary but enriched as Fe(III) in the middle of the active layer, similar to dissolved aromatic-C and organic acids. Dissolved CH 4 increased relative to dissolved CO 2 with depth and varied with soil moisture in the middle of the active layer in patterns that were positively correlated with the proportion of dissolved Fe(III) in transitional and low-centered polygon soils but negatively correlated in the drier flat- and high-centered polygons. These results suggest that microbial-mediated Fe oxidation and reduction influence respiration/fermentation of SOM and production of substrates (e.g., low-molecular-weight organic acids) for methanogenesis. As a result, we infer that geochemical differences induced by water saturation dictate microbial products of SOM decomposition, and Fe geochemistry is an important factor regulating methanogenesis in anoxic tundra soils.« less

  15. Flux Tower Eddy Covariance and Meteorological Measurements for Barrow, Alaska: 2012-2016

    DOE Data Explorer

    Dengel, Sigrid; Torn, Margaret; Billesbach, David

    2017-08-24

    The dataset contains half-hourly eddy covariance flux measurements and determinations, companion meteorological measurements, and ancillary data from the flux tower (US-NGB) on the Barrow Environmental Observatory at Barrow (Utqiagvik), Alaska for the period 2012 through 2016. Data have been processed using EddyPro software and screened by the contributor. The flux tower sits in an Arctic coastal tundra ecosystem. This dataset updates a previous dataset by reprocessing a longer period of record in the same manner. Related dataset "Eddy-Covariance and auxiliary measurements, NGEE-Barrow, 2012-2013" DOI:10.5440/1124200.

  16. Effect of Freeze-Thaw Cycles on Soil Nitrogen Reactive Transport in a Polygonal Arctic Tundra Ecosystem at Barrow AK Using 3-D Coupled ALM-PFLOTRAN

    NASA Astrophysics Data System (ADS)

    Yuan, F.; Wang, G.; Painter, S. L.; Tang, G.; Xu, X.; Kumar, J.; Bisht, G.; Hammond, G. E.; Mills, R. T.; Thornton, P. E.; Wullschleger, S. D.

    2017-12-01

    In Arctic tundra ecosystem soil freezing-thawing is one of dominant physical processes through which biogeochemical (e.g., carbon and nitrogen) cycles are tightly coupled. Besides hydraulic transport, freezing-thawing can cause pore water movement and aqueous species gradients, which are additional mechanisms for soil nitrogen (N) reactive-transport in Tundra ecosystem. In this study, we have fully coupled an in-development ESM(i.e., Advanced Climate Model for Energy, ACME)'s Land Model (ALM) aboveground processes with a state-of-the-art massively parallel 3-D subsurface thermal-hydrology and reactive transport code, PFLOTRAN. The resulting coupled ALM-PFLOTRAN model is a Land Surface Model (LSM) capable of resolving 3-D soil thermal-hydrological-biogeochemical cycles. This specific version of PFLOTRAN has incorporated CLM-CN Converging Trophic Cascade (CTC) model and a full and simple but robust soil N cycle. It includes absorption-desorption for soil NH4+ and gas dissolving-degasing process as well. It also implements thermal-hydrology mode codes with three newly-modified freezing-thawing algorithms which can greatly improve computing performance in regarding to numerical stiffness at freezing-point. Here we tested the model in fully 3-D coupled mode at the Next Generation Ecosystem Experiment-Arctic (NGEE-Arctic) field intensive study site at the Barrow Environmental Observatory (BEO), AK. The simulations show that: (1) synchronous coupling of soil thermal-hydrology and biogeochemistry in 3-D can greatly impact ecosystem dynamics across polygonal tundra landscape; and (2) freezing-thawing cycles can add more complexity to the system, resulting in greater mobility of soil N vertically and laterally, depending upon local micro-topography. As a preliminary experiment, the model is also implemented for Pan-Arctic region in 1-D column mode (i.e. no lateral connection), showing significant differences compared to stand-alone ALM. The developed ALM-PFLOTRAN coupling

  17. Changing arctic ecosystems—What is causing the rapid increase of snow geese in northern Alaska?

    USGS Publications Warehouse

    Hupp, Jerry W.; Ward, David H.; Whalen, Mary E.; Pearce, John M.

    2015-09-10

    Through the Changing Arctic Ecosystems (CAE) initiative, the U.S. Geological Survey (USGS) informs key resource management decisions for Arctic Alaska by providing scientific information on current and future ecosystem response to a warming climate. The Arctic Coastal Plain (ACP) of northern Alaska is a key study area within the USGS CAE initiative. This region has experienced a warming trend over the past decades, leading to decreased sea ice, permafrost thaw, and an advancement of spring phenology. The number of birds on the ACP also is changing, marked by increased populations of the four species of geese that nest in the region. The Snow Goose (Chen caerulescens) is the most rapidly increasing of these species. USGS CAE research is quantifying these changes and their implications for management agencies.

  18. Sea Ice, Hydrocarbon Extraction, Rain-on-Snow and Tundra Reindeer Nomadism in Arctic Russia

    NASA Astrophysics Data System (ADS)

    Forbes, B. C.; Kumpula, T.; Meschtyb, N.; Laptander, R.; Macias-Fauria, M.; Zetterberg, P.; Verdonen, M.

    2015-12-01

    It is assumed that retreating sea ice in the Eurasian Arctic will accelerate hydrocarbon development and associated tanker traffic along Russia's Northern Sea Route. However, oil and gas extraction along the Kara and Barents Sea coasts will likely keep developing rapidly regardless of whether the Northwest Eurasian climate continues to warm. Less certain are the real and potential linkages to regional biota and social-ecological systems. Reindeer nomadism continues to be a vitally important livelihood for indigenous tundra Nenets and their large herds of semi-domestic reindeer. Warming summer air temperatures over the NW Russian Arctic have been linked to increases in tundra productivity, longer growing seasons, and accelerated growth of tall deciduous shrubs. These temperature increases have, in turn, been linked to more frequent and sustained summer high-pressure systems over West Siberia, but not to sea ice retreat. At the same time, winters have been warming and rain-on-snow (ROS) events have become more frequent and intense, leading to record-breaking winter and spring mortality of reindeer. What is driving this increase in ROS frequency and intensity is not clear. Recent modelling and simulation have found statistically significant near-surface atmospheric warming and precipitation increases during autumn and winter over Arctic coastal lands in proximity to regions of sea-ice loss. During the winter of 2013-14 an extensive and lasting ROS event led to the starvation of 61,000 reindeer out of a population of ca. 300,000 animals on Yamal Peninsula, West Siberia. Historically, this is the region's largest recorded mortality episode. More than a year later, participatory fieldwork with nomadic herders during spring-summer 2015 revealed that the ecological and socio-economic impacts from this extreme event will unfold for years to come. There is an urgent need to understand whether and how ongoing Barents and Kara Sea ice retreat may affect the region's ancient

  19. Spectral determination of concentrations of functionally diverse pigments in increasingly complex arctic tundra canopies.

    PubMed

    Boelman, Natalie T; Magney, Troy S; Logan, Barry A; Griffin, Kevin L; Eitel, Jan U H; Greaves, Heather; Prager, Case M; Vierling, Lee A

    2016-09-01

    As the Arctic warms, tundra vegetation is becoming taller and more structurally complex, as tall deciduous shrubs become increasingly dominant. Emerging studies reveal that shrubs exhibit photosynthetic resource partitioning, akin to forests, that may need accounting for in the "big leaf" net ecosystem exchange models. We conducted a lab experiment on sun and shade leaves from S. pulchra shrubs to determine the influence of both constitutive (slowly changing bulk carotenoid and chlorophyll pools) and facultative (rapidly changing xanthophyll cycle) pigment pools on a suite of spectral vegetation indices, to devise a rapid means of estimating within canopy resource partitioning. We found that: (1) the PRI of dark-adapted shade leaves (PRIo) was double that of sun leaves, and that PRIo was sensitive to variation among sun and shade leaves in both xanthophyll cycle pool size (V + A + Z) (r (2) = 0.59) and Chla/b (r (2) = 0.64); (2) A corrected PRI (difference between dark and illuminated leaves, ΔPRI) was more sensitive to variation among sun and shade leaves in changes to the epoxidation state of their xanthophyll cycle pigments (dEPS) (r (2) = 0.78, RMSE = 0.007) compared to the uncorrected PRI of illuminated leaves (PRI) (r (2) = 0.34, RMSE = 0.02); and (3) the SR680 index was correlated with each of (V + A + Z), lutein, bulk carotenoids, (V + A + Z)/(Chla + b), and Chla/b (r (2) range = 0.52-0.69). We suggest that ΔPRI be employed as a proxy for facultative pigment dynamics, and the SR680 for the estimation of constitutive pigment pools. We contribute the first Arctic-specific information on disentangling PRI-pigment relationships, and offer insight into how spectral indices can assess resource partitioning within shrub tundra canopies.

  20. Plant phenological responses to a long-term experimental extension of growing season and soil warming in the tussock tundra of Alaska.

    PubMed

    Khorsand Rosa, Roxaneh; Oberbauer, Steven F; Starr, Gregory; Parker La Puma, Inga; Pop, Eric; Ahlquist, Lorraine; Baldwin, Tracey

    2015-12-01

    Climate warming is strongly altering the timing of season initiation and season length in the Arctic. Phenological activities are among the most sensitive plant responses to climate change and have important effects at all levels within the ecosystem. We tested the effects of two experimental treatments, extended growing season via snow removal and extended growing season combined with soil warming, on plant phenology in tussock tundra in Alaska from 1995 through 2003. We specifically monitored the responses of eight species, representing four growth forms: (i) graminoids (Carex bigellowii and Eriophorum vaginatum); (ii) evergreen shrubs (Ledum palustre, Cassiope tetragona, and Vaccinium vitis-idaea); (iii) deciduous shrubs (Betula nana and Salix pulchra); and (iv) forbs (Polygonum bistorta). Our study answered three questions: (i) Do experimental treatments affect the timing of leaf bud break, flowering, and leaf senescence? (ii) Are responses to treatments species-specific and growth form-specific? and (iii) Which environmental factors best predict timing of phenophases? Treatment significantly affected the timing of all three phenophases, although the two experimental treatments did not differ from each other. While phenological events began earlier in the experimental plots relative to the controls, duration of phenophases did not increase. The evergreen shrub, Cassiope tetragona, did not respond to either experimental treatment. While the other species did respond to experimental treatments, the total active period for these species did not increase relative to the control. Air temperature was consistently the best predictor of phenology. Our results imply that some evergreen shrubs (i.e., C. tetragona) will not capitalize on earlier favorable growing conditions, putting them at a competitive disadvantage relative to phenotypically plastic deciduous shrubs. Our findings also suggest that an early onset of the growing season as a result of decreased snow cover

  1. Inter-annual variability of year-round NEE over 18 years, and environmental controls on seasonal patterns at an arctic wet sedge tundra, CMDL Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Kalhori, A. A. M.; Oechel, W. C.; Goodrich, J. P.; Gioli, B.; Burba, G. G.; Shen, S. S. P.; Murphy, P.; Zona, D.

    2016-12-01

    To refine understanding of the total annual carbon balance in the Arctic, it is critical to extend long-term site-level CO2 flux data collection. These data are critical to addressing the environmental controls and processes responsible for temporal variability and seasonal patterns of net ecosystem exchange of CO2 (NEE). This dataset represents the longest running eddy covariance tower in the Arctic, which is located in an Alaskan wet sedge tundra ecosystem and is adjacent to the NOAA Climate Monitoring & Diagnostic Laboratory (CMDL). In addition to analyzing the year-to-year controls on NEE and its long-term trends, this work will complement a parallel study of the 40 year record of CO2 concentration measurements from the NOAA Barrow synoptic sampling station. For long-term, retrospective measurements, missing values are unavoidable, resulting from system failure, sensors icing-up during winter, losing network connections due to the harsh conditions, necessary instrument repairs, etc. Therefore, to analyze the annual sums, diurnal patterns, and seasonal vs. annual fluxes, the choice of gap-filling approach is critical and can dominate the magnitude of uncertainties, especially for periods with long gaps (> 1 month). We have applied different gap-filling methods such as artificial neural networks (ANN), and multiple linear regression (MLR) driven by micrometeorological parameters in an effort to minimize the associated uncertainties. Following gap-filling, a stepwise multiple regression against meteorological drivers including average summer PAR, average air and soil temperature, growing season length, duration of the zero curtain, growing degree days (GDD), date of snow melt, date of freeze up, and length of the summer was applied to determine the parameters that best explain the magnitude and sign of NEE in different seasons. These statistical analyses show that growing degree days were strongly correlated with summer NEE, which increased with higher GDD

  2. Effect of Arctic Amplification on Design Snow Loads in Alaska

    DTIC Science & Technology

    2016-09-01

    snow water equivalent UFC Unified Facilities Criteria UTC Coordinated Universal Time Keywords: Alaska, Arctic amplification, climate change...extreme value analysis, snow loads, snow water equivalent , SWE Acknowledgements: This work was conducted with support from the Strategic... equivalent (SWE) of the snowpack. We acquired SWE data from a number of sources that provide automatic or manual observations, reanalysis data, or

  3. Tropospheric ozone and aerosols measured by airborne lidar during the 1988 Arctic boundary layer experiment

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Butler, Carolyn F.; Kooi, Susan A.

    1991-01-01

    Ozone (O3) and aerosol distributions were measured from an aircraft using a differential absorption lidar (DIAL) system as part of the 1988 NASA Global Tropospheric Experiment - Arctic Boundary Layer Experiment (ABLE-3A) to study the sources and sinks of gases and aerosols over the tundra regions of Alaska during the summer. The tropospheric O3 budget over the Arctic was found to be strongly influenced by stratospheric intrusions. Regions of low aerosol scattering and enhanced O3 mixing ratios were usually correlated with descending air from the upper troposphere or lower stratosphere. Several cases of continental polar air masses were examined during the experiment. The aerosol scattering associated with these air masses was very low, and the atmospheric distribution of aerosols was quite homogeneous for those air masses that had been transported over the ice for greater than or = 3 days. The transition in O3 and aerosol distributions from tundra to marine conditions was examined several times. The aerosol data clearly show an abrupt change in aerosol scattering properties within the mixed layer from lower values over the tundra to generally higher values over the water. The distinct differences in the heights of the mixed layers in the two regions was also readily apparent. Several cases of enhanced O3 were observed during ABLE-3 in conjunction with enhanced aerosol scattering in layers in the free atmosphere. Examples are presented of the large scale variations of O3 and aerosols observed with the airborne lidar system from near the surface to above the tropopause over the Arctic during ABLE-3.

  4. Seasonal patterns in soil N availability in the arctic tundra in response to accelerated snowmelt and warming

    NASA Astrophysics Data System (ADS)

    Darrouzet-Nardi, A.; Wallenstein, M. D.; Steltzer, H.; Sullivan, P.; Melle, C.; Segal, A.; Weintraub, M. N.

    2010-12-01

    Arctic soils contain large stocks of carbon (C) and may act as a significant CO2 source in response to climate warming. However, nitrogen (N) availability limits both plant growth and decomposition in many Arctic sites, and may thus be a key constraint on climate-carbon feedbacks. While current models of tundra ecosystems and their responses to climate change assume that N limits plant growth and C limits decomposition, there is strong evidence to the contrary showing that N can also limit decomposition. For example, the production of both new microbial biomass and enzymes that degrade organic matter appear to be limited by N during the summer. N availability is strongly seasonal: we have previously observed relatively high availability early in the growing season followed by a pronounced crash in tussock tundra soils. To investigate the drivers of N availability throughout the season, we used a field manipulation of tussock tundra growing season length (~4 days acceleration of snowmelt) and air temperature (open top chambers) and a laboratory soil N addition in both early and late season. Nutrient availability throughout the field season was measured at high temporal resolution (25 measurements from soil thaw through early plant senescence). Results from a laboratory experiment in which N was added to early season and late season soils suggests that soil respiration is in fact N limited at both times of the season, though this limitation is temperature dependent with effects most pronounced at 10°C. High-resolution measurements of nutrients in the soil solution and extractable N throughout the season showed that although a nutrient crash in N can be observed mid-season, N availability can still fluctuate later in the season. Finally, effects of the extended growing season and increased air temperature have so far had few effects on soil nutrient N dynamics throughout the summer growing season, suggesting either an insensitivity of N availability to these

  5. Disentangling trophic relationships in a High Arctic tundra ecosystem through food web modeling.

    PubMed

    Legagneux, P; Gauthier, G; Berteaux, D; Bêty, J; Cadieux, M C; Bilodeau, F; Bolduc, E; McKinnon, L; Tarroux, A; Therrien, J F; Morissette, L; Krebs, C J

    2012-07-01

    Determining the manner in which food webs will respond to environmental changes is difficult because the relative importance of top-down vs. bottom-up forces in controlling ecosystems is still debated. This is especially true in the Arctic tundra where, despite relatively simple food webs, it is still unclear which forces dominate in this ecosystem. Our primary goal was to assess the extent to which a tundra food web was dominated by plant-herbivore or predator-prey interactions. Based on a 17-year (1993-2009) study of terrestrial wildlife on Bylot Island, Nunavut, Canada, we developed trophic mass balance models to address this question. Snow Geese were the dominant herbivores in this ecosystem, followed by two sympatric lemming species (brown and collared lemmings). Arctic foxes, weasels, and several species of birds of prey were the dominant predators. Results of our trophic models encompassing 19 functional groups showed that <10% of the annual primary production was consumed by herbivores in most years despite the presence of a large Snow Goose colony, but that 20-100% of the annual herbivore production was consumed by predators. The impact of herbivores on vegetation has also weakened over time, probably due to an increase in primary production. The impact of predators was highest on lemmings, intermediate on passerines, and lowest on geese and shorebirds, but it varied with lemming abundance. Predation of collared lemmings exceeded production in most years and may explain why this species remained at low density. In contrast, the predation rate on brown lemmings varied with prey density and may have contributed to the high-amplitude, periodic fluctuations in the abundance of this species. Our analysis provided little evidence that herbivores are limited by primary production on Bylot Island. In contrast, we measured strong predator-prey interactions, which supports the hypothesis that this food web is primarily controlled by top-down forces. The presence of

  6. Diagnosis of the hydrology of a small Arctic basin at the tundra-taiga transition using a physically based hydrological model

    NASA Astrophysics Data System (ADS)

    Krogh, Sebastian A.; Pomeroy, John W.; Marsh, Philip

    2017-07-01

    A better understanding of cold regions hydrological processes and regimes in transitional environments is critical for predicting future Arctic freshwater fluxes under climate and vegetation change. A physically based hydrological model using the Cold Regions Hydrological Model platform was created for a small Arctic basin in the tundra-taiga transition region. The model represents snow redistribution and sublimation by wind and vegetation, snowmelt energy budget, evapotranspiration, subsurface flow through organic terrain, infiltration to frozen soils, freezing and thawing of soils, permafrost and streamflow routing. The model was used to reconstruct the basin water cycle over 28 years to understand and quantify the mass fluxes controlling its hydrological regime. Model structure and parameters were set from the current understanding of Arctic hydrology, remote sensing, field research in the basin and region, and calibration against streamflow observations. Calibration was restricted to subsurface hydraulic and storage parameters. Multi-objective evaluation of the model using observed streamflow, snow accumulation and ground freeze/thaw state showed adequate simulation. Significant spatial variability in the winter mass fluxes was found between tundra, shrubs and forested sites, particularly due to the substantial blowing snow redistribution and sublimation from the wind-swept upper basin, as well as sublimation of canopy intercepted snow from the forest (about 17% of snowfall). At the basin scale, the model showed that evapotranspiration is the largest loss of water (47%), followed by streamflow (39%) and sublimation (14%). The models streamflow performance sensitivity to a set of parameter was analysed, as well as the mean annual mass balance uncertainty associated with these parameters.

  7. Flux Of Carbon from an Airborne Laboratory (FOCAL): Synergy of airborne and surface measures of carbon emission and isotopologue content from tundra landscape in Alaska

    NASA Astrophysics Data System (ADS)

    Dobosy, R.; Dumas, E.; Sayres, D. S.; Kochendorfer, J.

    2013-12-01

    Arctic tundra, recognized as a potential major source of new atmospheric carbon, is characterized by low topographic relief and small-scale heterogeneity consisting of small lakes and intervening tundra vegetation. This fits well the flux-fragment method (FFM) of analysis of data from low-flying aircraft. The FFM draws on 1)airborne eddy-covariance flux measurements, 2)a classified surface-characteristics map (e.g. open water vs tundra), 3)a footprint model, and 4)companion surface-based eddy-covariance flux measurements. The FOCAL, a collaboration among Harvard University's Anderson Group, NOAA's Atmospheric Turbulence and Diffusion Division (ATDD), and Aurora Flight Sciences, Inc., made coordinated flights in 2013 August with a collaborating surface site. The FOCAL gathers not only flux data for CH4 and CO2 but also the corresponding carbon-isotopologue content of these gases. The surface site provides a continuous sample of carbon flux from interstitial tundra over time throughout the period of the campaign. The FFM draws samples from the aircraft data over many instances of tundra and also open water. From this we will determine how representative the surface site is of the larger area (100 km linear scale), and how much the open water differs from the tundra as a source of carbon.

  8. Vegetation and Environmental Gradients of the Prudhoe Bay Region, Alaska,

    DTIC Science & Technology

    1985-09-01

    to patterned-ground features , gram (IBP) to examine the tundra biome (Brown and the effects on other soil parameters. A major 1975, Tieszen 1978...ment of Environmental, Population and Organismic Biology. The study was initiat- ed in 1973 under the U.S. Tundra Biome portion of the International...contributions to the University of Alaska’s Tundra Biome Center from the Prudhoe Bay Environmental Subcommit- tee of the Alaska Oil and Gas Association

  9. Effect of warming on the degradation and production of low-molecular-weight labile organic carbon in an Arctic tundra soil

    DOE PAGES

    Yang, Ziming; Wullschleger, Stan D.; Liang, Liyuan; ...

    2016-01-16

    The fate of soil organic carbon (SOC) stored in the Arctic permafrost is a key concern as temperatures continue to rise in the northern hemisphere. Studies and conceptual models suggest that SOC degradation is affected by the composition of SOC, but it is unclear exactly what portions of SOC are vulnerable to rapid breakdown and what mechanisms may be controlling SOC degradation upon permafrost thaw. Here, we examine the dynamic consumption and production of labile SOC in an anoxic incubation experiment using soil samples from the active layer at the Barrow Environmental Observatory, Barrow, Alaska, USA. Free-reducing sugars, alcohols, andmore » low-molecular-weight (LMW) organic acids were analyzed during incubation at either –2 or 8 °C for up to 240 days. Results show that simple sugar and alcohol SOC largely account for the initial rapid release of CO 2 and CH 4 through anaerobic fermentation, whereas the fermentation products, acetate and formate, are subsequently utilized as primary substrates for methanogenesis. Iron(III) reduction is correlated to acetate production and methanogenesis, suggesting its important role as an electron acceptor in tundra SOC respiration. These observations are further supported in a glucose addition experiment, in which rapid CO 2 and CH 4 production occurred concurrently with rapid production and consumption of labile organics such as acetate. However, addition of tannic acid, as a more complex organic substrate, showed little influence on the overall production of CO 2 and CH 4 and organic acids. Together our study shows that LMW labile organics in SOC control the initial rapid release of green-house gases upon warming. We thus present a conceptual framework for the labile SOC transformations and their relations to fermentation, iron reduction and methanogenesis, thereby providing the basis for improved model prediction of climate feedbacks in the Arctic.« less

  10. Linkage between seasonal hydrology and carbon flux dynamics in tundra ponds: Samoylov Island, Lena River Delta, Siberia

    NASA Astrophysics Data System (ADS)

    Abnizova, Anna; Bornemann, Niko; Boike, Julia

    2010-05-01

    Arctic ponds have been recently recognized as being highly sensitive to changing climate. To date, ponds and lakes are disappearing in Alaska, Siberia and Canadian High Arctic because of climate warming (Fitzgerald et al. 2003; Smith et al. 2005; and Smol et al. 2007). While numerous limnological studies have been done on arctic ponds located in the Canadian High Arctic (Douglas and Smol, 1994; Hamilton et al. 2001; Lim et al., 2001), there is a limited number of studies on tundra ponds located in other circumpolar environments (e.g. Northern Siberia). Duff et al. (1999) describes tundra lakes in northern Russia as clear, dilute, oligotrophic lakes with low nutrients and dissolved organic carbon concentration. While numerous ponds and lakes exists in the Lena River Delta averaging to 2120 lakes of all sizes for every 1000 km2, no studies have been done to understand carbon flux dynamics of these freshwater ecosystems. In this study hydrological monitoring based on water balance framework was applied to a series of ponds and lakes located on Samoylov Island, 120 km south of the Arctic Ocean in the southern central Lena River Delta (72° 22' N, 126 ° 30' E) from July to September 2008. To better understand spatial differences in pond hydrology and carbon flux dynamics, the physical and biochemical data was collected from 42 tundra ponds. The selection of the ponds was based on their size (small, medium, large) and depth values ranging from 10 to 120 cm. The estimation of the seasonal water budget in 2008 showed that losses through evapotranspiration were offset by similar precipitation inputs and resulted in the equilibrium storage values in the study ponds prior to the freeze-back. Preliminary analysis showed that more than 50% of the ponds had DOC > 6.5 mg/l which exceeds average value of other Arctic ponds reported in literature (Duff et al. 1999 and Hamilton et al. 2001). Elevated DOC concentrations (> 8 mg/l) were found in the small and medium ponds with depth

  11. A model of growth and carbon storage in Eriophorum Vaginatum L.

    NASA Astrophysics Data System (ADS)

    Curasi, S. R.; Rocha, A. V.; Bolster, D.; Fetcher, N.; Parker, T.

    2016-12-01

    Eriophorum Vaginatum L. is a rhizomatous, tussock forming, perennial sedge commonly found in Arctic tundra environments. Tussocks are well suited to harsh nutrient poor environments and tussock tundra is common in Alaska, Canada and Northeastern Russia accounting for 24% of Arctic land area. Tussocks play important roles in Arctic ecosystem biogeochemistry and C storage. However, the environmental and biological factors controlling their size, distribution across the landscape and growth are poorly understood as a result of their growth form and slow growth rate ( 150 years). In order to better understand the role of tussocks in tussock tundra ecosystem C stocks and the potential impacts of climate change on tussock tundra we amassed data from a core site at Toolik field station in North Slope Alaska as well as other Arctic locations. Using this information we constructed a model of carbon storage and growth in E. Vaginatum. We conclude that environmental conditions and the physical properties of the tussock growth form control the rate of tussock growth and retention of C. This work highlights the role of plant growth forms in the retention of tundra ecosystem C stocks. It also has broader applicability to those interested in predicating the impacts of climate change and shifts in vegetation species composition on C storage and fuel loading as well as broader vegetation modeling efforts in tundra ecosystems.

  12. Snow-mediated ptarmigan browsing and shrub expansion in arctic Alaska

    Treesearch

    Ken D. Tape; Rachel Lord; Hans-Peter Marshall; Roger W. Ruess

    2010-01-01

    Large, late-winter ptarmigan migrations heavily impact the shoot, plant, and patch architecture of shrubs that remain above the snow surface. Ptarmigan browsing on arctic shrubs was assessed in the vicinity of Toolik Lake, on the north side of the Brooks Range in Alaska. Data were collected in early May 2007, at maximum snow depth, after the bulk of the ptarmigan...

  13. Observing Arctic Ecology using Networked Infomechanical Systems

    NASA Astrophysics Data System (ADS)

    Healey, N. C.; Oberbauer, S. F.; Hollister, R. D.; Tweedie, C. E.; Welker, J. M.; Gould, W. A.

    2012-12-01

    Understanding ecological dynamics is important for investigation into the potential impacts of climate change in the Arctic. Established in the early 1990's, the International Tundra Experiment (ITEX) began observational inquiry of plant phenology, plant growth, community composition, and ecosystem properties as part of a greater effort to study changes across the Arctic. Unfortunately, these observations are labor intensive and time consuming, greatly limiting their frequency and spatial coverage. We have expanded the capability of ITEX to analyze ecological phenomenon with improved spatial and temporal resolution through the use of Networked Infomechanical Systems (NIMS) as part of the Arctic Observing Network (AON) program. The systems exhibit customizable infrastructure that supports a high level of versatility in sensor arrays in combination with information technology that allows for adaptable configurations to numerous environmental observation applications. We observe stereo and static time-lapse photography, air and surface temperature, incoming and outgoing long and short wave radiation, net radiation, and hyperspectral reflectance that provides critical information to understanding how vegetation in the Arctic is responding to ambient climate conditions. These measurements are conducted concurrent with ongoing manual measurements using ITEX protocols. Our NIMS travels at a rate of three centimeters per second while suspended on steel cables that are ~1 m from the surface spanning transects ~50 m in length. The transects are located to span soil moisture gradients across a variety of land cover types including dry heath, moist acidic tussock tundra, shrub tundra, wet meadows, dry meadows, and water tracks. We have deployed NIMS at four locations on the North Slope of Alaska, USA associated with 1 km2 ARCSS vegetation study grids including Barrow, Atqasuk, Toolik Lake, and Imnavait Creek. A fifth system has been deployed in Thule, Greenland beginning in

  14. Organic layer serves as a hotspot of microbial activity and abundance in Arctic tundra soils.

    PubMed

    Lee, Seung-Hoon; Jang, Inyoung; Chae, Namyi; Choi, Taejin; Kang, Hojeong

    2013-02-01

    Tundra ecosystem is of importance for its high accumulation of organic carbon and vulnerability to future climate change. Microorganisms play a key role in carbon dynamics of the tundra ecosystem by mineralizing organic carbon. We assessed both ecosystem process rates and community structure of Bacteria, Archaea, and Fungi in different soil layers (surface organic layer and subsurface mineral soil) in an Arctic soil ecosystem located at Spitsbergen, Svalbard during the summer of 2008 by using biochemical and molecular analyses, such as enzymatic assay, terminal restriction fragment length polymorphism (T-RFLP), quantitative polymerase chain reaction (qPCR), and pyrosequencing. Activity of hydrolytic enzymes showed difference according to soil type. For all three microbial communities, the average gene copy number did not significantly differ between soil types. However, archaeal diversities appeared to differ according to soil type, whereas bacterial and fungal diversity indices did not show any variation. Correlation analysis between biogeochemical and microbial parameters exhibited a discriminating pattern according to microbial or soil types. Analysis of the microbial community structure showed that bacterial and archaeal communities have different profiles with unique phylotypes in terms of soil types. Water content and hydrolytic enzymes were found to be related with the structure of bacterial and archaeal communities, whereas soil organic matter (SOM) and total organic carbon (TOC) were related with bacterial communities. The overall results of this study indicate that microbial enzyme activity were generally higher in the organic layer than in mineral soils and that bacterial and archaeal communities differed between the organic layer and mineral soils in the Arctic region. Compared to mineral soil, peat-covered organic layer may represent a hotspot for secondary productivity and nutrient cycling in this ecosystem.

  15. Dynamics of the recovery of damaged tundra vegetation: preliminary results of revegetation experiments of maritime tundra with Elymus mollis on Adak Island, Alaska. Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amundsen, C C; McCord, R A

    1982-08-01

    The vegetation of the central Aleutian Islands, Alaska is maritime tundra (Amundsen, 1977). While maritime tundra is not characterized by the presence of permafrost, the soil temperatures remain low (5 to 7/sup 0/C) year-round (Williams, 1980). The low soil temperature, a high level of soil moisture, and a low level of incident solar radiation are thought to delay the development of the vegetation. Natural revegetation of natural or man made open areas is relatively slow. Disturbed areas from World War II military activity are not completely revegetated after almost 40 years. Because of the windy and wet climate of themore » region, exposed soil is unstable and subject to extensive freeze-thaw action and erosion. Insults to the vegetation, both marine and aeolian, are common. Successful reproduction by seed is uncommon among species of this flora. The primary means of reproduction appears to be by vegetative propagules which are usually fragments of the shoot and rhizome. While the transport of the fragments by wind and water aids in the dispersal of the propagules, the same action often removes these fragments from open areas. This later activity further delays the revegetation of open and disturbed areas. Elymus mollis Trin. is the most successful major native species found to date as it fragments due to wind and water action and transplants easily. Transplanting experiments with sprigs of Elymus mollis Trin. have been conducted on Adak Island, Alaska since 1977. Preliminary results indicate that Elymus mollis may be transplanted for revegetation with a survival rate of at least 90 percent. Experiments were set up in 1979 to determine appropriate planting density, sprig rhizome length, and best time of year for transplanting. Preliminary results for these experiments are reported here.« less

  16. Impact of seabird activity on nitrous oxide and methane fluxes from High Arctic tundra in Svalbard, Norway

    NASA Astrophysics Data System (ADS)

    Zhu, Renbin; Chen, Qingqing; Ding, Wei; Xu, Hua

    2012-12-01

    In this study, tundra N2O and CH4 fluxes were measured from one seabird sanctuary (SBT) and two non-seabird colonies (NST-I and NST-II) in Ny-Ålesund (79°55'N, 11°56'E), Svalbard during the summers of 2008 and 2009. N2O and CH4 fluxes from SBT showed large temporal and spatial variations depending on the intensity of seabird activity. High seabird activity sites showed large N2O and CH4 emissions while low N2O and CH4 emissions, even CH4 uptake occurred at medium and low seabird activity sites. Overall the mean fluxes were 18.3 ± 3.6 μg N2O m-2 h-1 and 53.5 ± 20.3 μg CH4 m-2 h-1 from tundra SBT whereas tundra NST-I and NST-II represented a relatively weak N2O source (8.3 ± 13.2 μg N2O m-2 h-1) and strong CH4 sink (-82.8 ± 22.3 μg CH4 m-2 h-1). Seabird activity was the strongest control of N2O and CH4 fluxes compared with soil temperature and moisture, and high N2O and CH4 emissions were created by soil physical and chemical processes (the sufficient supply of nutrients NH4+-N, NO3--N, total nitrogen, total phosphorus and total carbon from seabird guano, seabird tramp and appropriate water content) related to the seabird activity. Our work suggests that tundra ecosystems impacted by seabird activity are the potential "hotspots" for N2O and CH4 emissions although these sources have been largely neglected at present. Furthermore the combination of seabird activity and warming climate will likely further enhance N2O and CH4 emissions from the High Arctic tundra.

  17. Spatiotemporal variability in surface energy balance across tundra, snow and ice in Greenland.

    PubMed

    Lund, Magnus; Stiegler, Christian; Abermann, Jakob; Citterio, Michele; Hansen, Birger U; van As, Dirk

    2017-02-01

    The surface energy balance (SEB) is essential for understanding the coupled cryosphere-atmosphere system in the Arctic. In this study, we investigate the spatiotemporal variability in SEB across tundra, snow and ice. During the snow-free period, the main energy sink for ice sites is surface melt. For tundra, energy is used for sensible and latent heat flux and soil heat flux leading to permafrost thaw. Longer snow-free period increases melting of the Greenland Ice Sheet and glaciers and may promote tundra permafrost thaw. During winter, clouds have a warming effect across surface types whereas during summer clouds have a cooling effect over tundra and a warming effect over ice, reflecting the spatial variation in albedo. The complex interactions between factors affecting SEB across surface types remain a challenge for understanding current and future conditions. Extended monitoring activities coupled with modelling efforts are essential for assessing the impact of warming in the Arctic.

  18. Sea ice-induced cold air advection as a mechanism controlling tundra primary productivity

    NASA Astrophysics Data System (ADS)

    Macias-Fauria, M.; Karlsen, S. R.

    2015-12-01

    The recent sharp decline in Arctic sea ice extent, concentration, and volume leaves urgent questions regarding its effects on ecological processes. Changes in tundra productivity have been associated with sea ice dynamics on the basis that most tundra ecosystems lay close to the sea. Although some studies have addressed the potential effect of sea ice decline on the primary productivity of terrestrial arctic ecosystems (Bhatt et al., 2010), a clear picture of the mechanisms and patterns linking both processes remains elusive. We hypothesised that sea ice might influence tundra productivity through 1) cold air advection during the growing season (direct/weather effect) or 2) changes in regional climate induced by changes in sea ice (indirect/climate effect). We present a test on the direct/weather effect hypothesis: that is, tundra productivity is coupled with sea ice when sea ice remains close enough from land vegetation during the growing season for cold air advection to limit temperatures locally. We employed weekly MODIS-derived Normalised Difference Vegetation Index (as a proxy for primary productivity) and sea ice data at a spatial resolution of 232m for the period 2000-2014 (included), covering the Svalbard Archipelago. Our results suggest that sea ice-induced cold air advection is a likely mechanism to explain patterns of NDVI trends and heterogeneous spatial dynamics in the Svalbard archipelago. The mechanism offers the potential to explain sea ice/tundra productivity dynamics in other Arctic areas.

  19. The impact of fire on nitrogen availability in the Yukon Kuskokwim Delta, Alaska

    NASA Astrophysics Data System (ADS)

    Jardine, L.; Natali, S.; Schade, J. D.; Holmes, R. M.; Mann, P. J.; Pena, H., III

    2017-12-01

    Rising temperatures and changing precipitation patterns in the Arctic are increasing the severity and frequency of fires, resulting in direct and indirect changes to permafrost ecosystems. Due to slow rates of decomposition, nitrogen (N) is a highly limiting resource in tundra. The availability of N can be substantially altered following fire as a direct result of combustion of organic matter and also due to long-term changes in ecosystem structure and function. It is critical to understand both the short- (years) and long (decades)-term effects of fire on N availability because of the role of N in arctic ecosystems. In order to better understand the availability of N following fire, we collected active layer and permafrost soil and vegetation samples from unburned, 2015 burn scars, and 1972 burn scars in peat plateau tundra in the Yukon Kuskokwim Delta, Alaska. We measured carbon (C) and nitrogen (N) concentrations and pools in plants and soils, and soil organic matter content, extractable inorganic N and potentially mineralizable N in active layer (0-30 cm) and surface permafrost (to 100 cm). We found that active layer N concentrations were significantly lower in the two-year burn, but N concentrations in the 45-year burn were comparable to that of unburned tundra. The levels of ammonium in the active layer were nearly three times higher in both the two- and in the 45-year-old burns, while extractable nitrate was low (<3 ug/L) at all sites. These results suggest that ammonium is retained for decades following its initial post-fire increase or that new pools of ammonium are becoming available as a result of fire-mediated permafrost thaw or microbial community changes. These results suggest that 45 years after disturbance by fire, there is still a large potential for N assimilation, nitrification, or nitrous oxide production in tundra ecosystems. These findings are especially relevant as fire regimes intensify across the Arctic, which may have long

  20. Vole abundance and reindeer carcasses determine breeding activity of Arctic foxes in low Arctic Yamal, Russia.

    PubMed

    Ehrich, Dorothee; Cerezo, Maite; Rodnikova, Anna Y; Sokolova, Natalya A; Fuglei, Eva; Shtro, Victor G; Sokolov, Aleksandr A

    2017-09-16

    High latitude ecosystems are at present changing rapidly under the influence of climate warming, and specialized Arctic species at the southern margin of the Arctic may be particularly affected. The Arctic fox (Vulpes lagopus), a small mammalian predator endemic to northern tundra areas, is able to exploit different resources in the context of varying tundra ecosystems. Although generally widespread, it is critically endangered in subarctic Fennoscandia, where a fading out of the characteristic lemming cycles and competition with abundant red foxes have been identified as main threats. We studied an Arctic fox population at the Erkuta Tundra Monitoring site in low Arctic Yamal (Russia) during 10 years in order to determine which resources support the breeding activity in this population. In the study area, lemmings have been rare during the last 15 years and red foxes are nearly absent, creating an interesting contrast to the situation in Fennoscandia. Arctic fox was breeding in nine of the 10 years of the study. The number of active dens was on average 2.6 (range 0-6) per 100 km 2 and increased with small rodent abundance. It was also higher after winters with many reindeer carcasses, which occurred when mortality was unusually high due to icy pastures following rain-on-snow events. Average litter size was 5.2 (SD = 2.1). Scat dissection suggested that small rodents (mostly Microtus spp.) were the most important prey category. Prey remains observed at dens show that birds, notably waterfowl, were also an important resource in summer. The Arctic fox in southern Yamal, which is part of a species-rich low Arctic food web, seems at present able to cope with a state shift of the small rodent community from high amplitude cyclicity with lemming dominated peaks, to a vole community with low amplitude fluctuations. The estimated breeding parameters characterized the population as intermediate between the lemming fox and the coastal fox ecotype. Only continued

  1. The role of deep nitrogen and dynamic rooting profiles on vegetation dynamics and productivity in response to permafrost thaw and climate change in Arctic tundra

    NASA Astrophysics Data System (ADS)

    Hewitt, R. E.; Helene, G.; Taylor, D. L.; McGuire, A. D.; Mack, M. C.

    2017-12-01

    The release of permafrost-derived nitrogen (N) has the potential to fertilize tundra vegetation, modulating plant competition, stimulating productivity, and offsetting carbon losses from thawing permafrost. Dynamic rooting, mycorrhizal interactions, and coupling of N availability and root N uptake have been identified as gaps in ecosystem models. As a first step towards understanding whether Arctic plants can access deep permafrost-derived N, we characterized rooting profiles and quantified acquisition of 15N tracer applied at the permafrost boundary by moist acidic tundra plants subjected to almost three decades of warming at Toolik Lake, Alaska. In the ambient control plots the vegetation biomass is distributed between five plant functional types (PFTs): sedges, evergreen and deciduous shrubs, mosses and in lower abundance, forbs. The warming treatment has resulted in the increase of deciduous shrub biomass and the loss of sedges, evergreen shrubs, and mosses. We harvested roots by depth increment down to the top of the permafrost. Roots were classified by size class and PFT. The average thaw depth in the warmed plots was 58.3 cm ± 6.4 S.E., close to 18 cm deeper than the average thaw depth in the ambient plots (40.8 cm ± 1.8 S.E.). Across treatments the deepest rooting species was Rubus chamaemorus (ambient 40.8 cm ± 1.8 S.E., warmed 50.3 cm ± 9.8 S.E.), a non-mycorrhizal forb, followed by Eriophorum vaginatum, a non-mycorrhizal sedge. Ectomycorrhizal deciduous and ericoid mycorrhizal evergreen shrubs were rooted at more shallow depths. Deeply rooted non-mycorrhizal species had the greatest uptake of 15N tracer within 24 hours across treatments. Tracer uptake was greatest for roots of E. vaginatum in ambient plots and R. chamaemorus in warmed plots. Root profiles were integrated into a process-based ecosystem model coupled with a dynamic vegetation model. Functions modeling dynamic rooting profile relative to thaw depth were implemented for each PFT. The

  2. Pan-Arctic modelling of net ecosystem exchange of CO2

    PubMed Central

    Shaver, G. R.; Rastetter, E. B.; Salmon, V.; Street, L. E.; van de Weg, M. J.; Rocha, A.; van Wijk, M. T.; Williams, M.

    2013-01-01

    Net ecosystem exchange (NEE) of C varies greatly among Arctic ecosystems. Here, we show that approximately 75 per cent of this variation can be accounted for in a single regression model that predicts NEE as a function of leaf area index (LAI), air temperature and photosynthetically active radiation (PAR). The model was developed in concert with a survey of the light response of NEE in Arctic and subarctic tundras in Alaska, Greenland, Svalbard and Sweden. Model parametrizations based on data collected in one part of the Arctic can be used to predict NEE in other parts of the Arctic with accuracy similar to that of predictions based on data collected in the same site where NEE is predicted. The principal requirement for the dataset is that it should contain a sufficiently wide range of measurements of NEE at both high and low values of LAI, air temperature and PAR, to properly constrain the estimates of model parameters. Canopy N content can also be substituted for leaf area in predicting NEE, with equal or greater accuracy, but substitution of soil temperature for air temperature does not improve predictions. Overall, the results suggest a remarkable convergence in regulation of NEE in diverse ecosystem types throughout the Arctic. PMID:23836790

  3. Blood lead concentrations in Alaskan tundra swans: linking breeding and wintering areas with satellite telemetry.

    PubMed

    Ely, Craig R; Franson, J Christian

    2014-04-01

    Tundra swans (Cygnus columbianus) like many waterfowl species are susceptible to lead (Pb) poisoning, and Pb-induced mortality has been reported from many areas of their wintering range. Little is known however about Pb levels throughout the annual cycle of tundra swans, especially during summer when birds are on remote northern breeding areas where they are less likely to be exposed to anthropogenic sources of Pb. Our objective was to document summer Pb levels in tundra swans throughout their breeding range in Alaska to determine if there were population-specific differences in blood Pb concentrations that might pose a threat to swans and to humans that may consume them. We measured blood Pb concentrations in tundra swans at five locations in Alaska, representing birds that winter in both the Pacific Flyway and Atlantic Flyway. We also marked swans at each location with satellite transmitters and coded neck bands, to identify staging and wintering sites and determine if winter site use correlated with summer Pb concentrations. Blood Pb levels were generally low (<0.2 μg/ml) in swans across all breeding areas. Pb levels were lower in cygnets than adults, suggesting that swans were likely exposed to Pb on wintering areas or on return migration to Alaska, rather than on the summer breeding grounds. Blood Pb levels varied significantly across the five breeding areas, with highest concentrations in birds on the North Slope of Alaska (wintering in the Atlantic Flyway), and lowest in birds from the lower Alaska Peninsula that rarely migrate south for winter.

  4. Blood lead concentrations in Alaskan tundra swans: linking breeding and wintering areas with satellite telemetry

    USGS Publications Warehouse

    Ely, Craig R.; Franson, Christian

    2014-01-01

    Tundra swans (Cygnus columbianus) like many waterfowl species are susceptible to lead (Pb) poisoning, and Pb-induced mortality has been reported from many areas of their wintering range. Little is known however about Pb levels throughout the annual cycle of tundra swans, especially during summer when birds are on remote northern breeding areas where they are less likely to be exposed to anthropogenic sources of Pb. Our objective was to document summer Pb levels in tundra swans throughout their breeding range in Alaska to determine if there were population-specific differences in blood Pb concentrations that might pose a threat to swans and to humans that may consume them. We measured blood Pb concentrations in tundra swans at five locations in Alaska, representing birds that winter in both the Pacific Flyway and Atlantic Flyway. We also marked swans at each location with satellite transmitters and coded neck bands, to identify staging and wintering sites and determine if winter site use correlated with summer Pb concentrations. Blood Pb levels were generally low ( < 0.2 μg/ml) in swans across all breeding areas. Pb levels were lower in cygnets than adults, suggesting that swans were likely exposed to Pb on wintering areas or on return migration to Alaska, rather than on the summer breeding grounds. Blood Pb levels varied significantly across the five breeding areas, with highest concentrations in birds on the North Slope of Alaska (wintering in the Atlantic Flyway), and lowest in birds from the lower Alaska Peninsula that rarely migrate south for winter.

  5. Wave climate and trends along the eastern Chukchi Arctic Alaska coast

    USGS Publications Warehouse

    Erikson, L.H.; Storlazzi, C.D.; Jensen, R.E.

    2011-01-01

    Due in large part to the difficulty of obtaining measurements in the Arctic, little is known about the wave climate along the coast of Arctic Alaska. In this study, numerical model simulations encompassing 40 years of wave hind-casts were used to assess mean and extreme wave conditions. Results indicate that the wave climate was strongly modulated by large-scale atmospheric circulation patterns and that mean and extreme wave heights and periods exhibited increasing trends in both the sea and swell frequency bands over the time-period studied (1954-2004). Model simulations also indicate that the upward trend was not due to a decrease in the minimum icepack extent. ?? 2011 ASCE.

  6. Surface energy exchanges along a tundra-forest transition and feedbacks to climate

    USGS Publications Warehouse

    Beringer, J.; Chapin, F. S.; Thompson, Catharine Copass; McGuire, A.D.

    2005-01-01

    Surface energy exchanges were measured in a sequence of five sites representing the major vegetation types in the transition from arctic tundra to forest. This is the major transition in vegetation structure in northern high latitudes. We examined the influence of vegetation structure on the rates of sensible heating and evapotranspiration to assess the potential feedbacks to climate if high-latitude warming were to change the distribution of these vegetation types. Measurements were made at Council on the Seward Peninsula, Alaska, at representative tundra, low shrub, tall shrub, woodland (treeline), and boreal forest sites. Structural differences across the transition from tundra to forest included an increase in the leaf area index (LAI) from 0.52 to 2.76, an increase in canopy height from 0.1 to 6.1 m, and a general increase in canopy complexity. These changes in vegetation structure resulted in a decrease in albedo from 0.19 to 0.10 as well as changes to the partitioning of energy at the surface. Bulk surface resistance to water vapor flux remained virtually constant across sites, apparently because the combined soil and moss evaporation decreased while transpiration increased along the transect from tundra to forest. In general, sites became relatively warmer and drier along the transect with the convective fluxes being increasingly dominated by sensible heating, as evident by an increasing Bowen ratio from 0.94 to 1.22. The difference in growing season average daily sensible heating between tundra and forest was 21 W m-2. Fluxes changed non-linearly along the transition, with both shrubs and trees substantially enhancing heat transfer to the atmosphere. These changes in vegetation structure that increase sensible heating could feed back to enhance warming at local to regional scales. The magnitude of these vegetation effects on potential high-latitude warming is two to three times greater than suggested by previous modeling studies. ?? 2005 Elsevier B.V. All

  7. The Arctic Vegetation Type Change retrieved from Spaceborne Observations and its Influence on the Simulation of Permafrost Thawing

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Wang, Z.

    2017-12-01

    The vegetation types change in Arctic has been studied using 10 years of MODIS land cover product (MCD12Q1). The shrub expansion is observed in Alaska and Northeast Asia, while shrub fraction decreases in North Canada and Southwest Arctic Eurasia. The total Arctic shrub fraction increases 3% in 10 years. The tundra decreases where the shrub expands, and thrives where the shrub retreats. In order to isolate the influence of the vegetation dynamic on the permafrost thawing, the Arctic terrestrial ecosystem in recent decades will be simulated using the Community Land Model (CLM) with and without the vegetation type changes. The energy and carbon exchange on the land surface will also be simulated and compared. Acknowledgement: This work was supported by the Korea Polar Research Institute (KOPRI, PN17081) and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2015R1C1A2A01054800).

  8. Arctic Tundra Soils: A Microbial Feast That Shrubs Will Cease

    NASA Astrophysics Data System (ADS)

    Machmuller, M.; Calderon, F.; Cotrufo, M. F.; Lynch, L.; Paul, E. A.; Wallenstein, M. D.

    2016-12-01

    Rapid climate warming may already be driving rapid decomposition of the vast stocks of carbon in Arctic tundra soils. However, stimulated decomposition may also release nitrogen and support increased plant productivity, potentially counteracting soil carbon losses. At the same time, these two processes interact, with plant derived carbon potentially fueling soil microbes to attack soil organic matter (SOM) to acquire nitrogen- a process known as priming. Thus, differences in the physiology, stoichiometry and microbial interactions among plant species could affect climate-carbon feedbacks. To reconcile these interactive mechanisms, we examined how vegetation type (Betula nana and Eriophorum vaginatum) and fertilization (short-term and long-term) influenced the decomposition of native SOM after labile carbon and nutrient addition. We hypothesized that labile carbon inputs would stimulate the loss of native SOM, but the magnitude of this effect would be indirectly related to soil nitrogen concentrations (e.g. SOM priming would be highest in N-limited soils). We added isotopically enriched (13C) glucose and ammonium nitrate to soils under shrub (B. nana) and tussock (E. vaginatum) vegetation. We found that nitrogen additions stimulated priming only in tussock soils, characterized by lower nutrient concentrations and microbial biomass (p<0.05). There was no evidence of priming in soils that had been fertilized for >20yrs. Rather, we found that long-term fertilization shifted SOM chemistry towards a greater abundance of recalcitrant SOM, lower microbial biomass, and decreased SOM respiration (p<0.05). Our results suggest that, in the short-term, the magnitude of SOM priming is dependent on vegetation and soil nitrogen concentrations, but this effect may not persist if shrubs increase in abundance under climate warming. Therefore, including nitrogen as a control on SOM decomposition and priming is critical to accurately model the effects of climate change on arctic carbon

  9. L-band InSAR Penetration Depth Experiment, North Slope Alaska

    NASA Astrophysics Data System (ADS)

    Muskett, Reginald

    2017-04-01

    Since the first spacecraft-based synthetic aperture radar (SAR) mission NASA's SEASAT in 1978 radars have been flown in Low Earth Orbit (LEO) by other national space agencies including the Canadian Space Agency, European Space Agency, India Space Research Organization and the Japanese Aerospace Exploration Agency. Improvements in electronics, miniaturization and production have allowed for the deployment of SAR systems on aircraft for usage in agriculture, hazards assessment, land-use management and planning, meteorology, oceanography and surveillance. LEO SAR systems still provide a range of needful and timely information on large and small-scale weather conditions like those found across the Arctic where ground-base weather radars currently provide limited coverage. For investigators of solid-earth deformation attention must be given to the atmosphere on Interferometric SAR (InSAR) by aircraft and spacecraft multi-pass operations. Because radar has the capability to penetrate earth materials at frequencies from the P- to X-band attention must be given to the frequency dependent penetration depth and volume scattering. This is the focus of our new research project: to test the penetration depth of L-band SAR/InSAR by aircraft and spacecraft systems at a test site in Arctic Alaska using multi-frequency analysis and progressive burial of radar mesh-reflectors at measured depths below tundra while monitoring environmental conditions. Knowledge of the L-band penetration depth on lowland Arctic tundra is necessary to constrain analysis of carbon mass balance and hazardous conditions arising form permafrost degradation and thaw, surface heave and subsidence and thermokarst formation at local and regional scales.

  10. NGEE Arctic TIR and Digital Photos, Drained Thaw Lake Basin, Barrow, Alaska, July 2015

    DOE Data Explorer

    Shawn Serbin; Wil Lieberman-Cribbin; Kim Ely; Alistair Rogers

    2016-11-01

    FLIR thermal infrared (TIR), digital camera photos, and plot notes across the Barrow, Alaska DTLB site. Data were collected together with measurements of canopy spectral reflectance (see associated metadata record (NGEE Arctic HR1024i Canopy Spectral Reflectance, Drained Thaw Lake Basin, Barrow, Alaska, July 2015 ). Data contained within this archive include exported FLIR images (analyzed with FLIR-Tools), digital photos, TIR report, and sample notes. Further TIR image analysis can be conducted in FLIR-Tools.

  11. Habitat selection by tundra swans on Northern Alaska breeding grounds

    USGS Publications Warehouse

    Earnst, Susan L.; Rothe, T.

    2004-01-01

    Habitat selection by the Tundra Swan (Cygnus columbianus columbianus) was evaluated on the Colville River Delta prior to oil field development (1982-1989). Tundra Swan territories comprised a lake, used for refuge and foraging, and terrestrial habitats and ponds near the lakea??s perimeter used for foraging and nesting. Tundra swan sightings from early and late summer aerial surveys were used to investigate habitat selection at the territory and within-territory scale. At the territory or lake scale, swan sightings/lake increased with lake size, and increased from discrete to tapped (i.e., connected to a river channel) to drained lakes within size categories. Overall, 49% of the variation in swan sightings/lake was explained by lake size and type, a size-x-type interaction term, and the proportion of lake perimeter comprised of Halophytic Ponds and Halophytic Wet Meadows. At the within-territory or within-lake scale, foraging swans significantly selected Halophytic Ponds, Halophytic Wet Meadows, and Fresh Ponds relative to Uplands; nesting swans significantly selected Halophytic Ponds and significantly avoided Fresh Wet Meadows relative to Uplands. Vegetation sampling indicated that sites used by Tundra Swans on river channels and tapped lakes were significantly more likely to have Sheathed Pondweed (Potamogeton vaginatus) than control sites. The three major components of Tundra Swan diet were Carex sedges, Sheathed Pondweed, and algae, together comprising 85% of identifiable plant fragments in feces.

  12. Diurnal and seasonal patterns of ecosystem CO{sub 2} efflux from upland tundra in the foothills of the Brooks Range, Alaska, U.S.A.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oberbauer, S.F.; Gillespie, C.T.; Cheng, Weixin

    1996-08-01

    Carbon dioxide efflux and soil microenvironment were measured in three upland tundra communities in the foothills of the Brooks Range in arctic Alaska to determine the magnitude of CO{sub 2} efflux rates and the relative importance of the belowground factors that influence them. Gas exchange and soil microenvironment measurements were made weekly between 14 June and 31 July 1990. The study communities included lichen-heath, a sparse community vegetated by lichens and dwarf ericaceous shrubs on rocky soils, moist Cassiope dwarf-shrub heath tundra, dominated by Carex and evergreen and deciduous shrubs on relatively deep organic soils, and dry Cassiope dwarf-shrub heathmore » of stone-stripe areas, which was of intermediate character. Rates of CO{sub 2} efflux were similar for the three communities until mid-season when they peaked at rates between 4.9 and 5.9 g m{sup {minus}2} d{sup {minus}1}. Following the mid-season peak, the rates in all three communities declined, particularly in the lichen-heath. Seasonal patterns of CO{sub 2} efflux, soil temperature, and soil moisture suggest changing limitations to CO{sub 2} efflux, soil temperature, and soil moisture suggest changing limitations to CO{sub 2} efflux over the course of the season. Rates of carbon dioxide efflux followed changes in soil temperature early in the season when soil moisture was highest. Mid-season efflux appeared to be limited by soil, moss, and lichen hydration until the end of July, when temperature again limited efflux. Differences between the communities were related to microenvironmental differences and probable differences in carbon quality. The presence of peat-forming mosses is suggested to play an important role in differences in efflux and micro-environment among the communities. 32 refs., 3 figs., 4 tab.« less

  13. Recognition and characterization of networks of water bodies in the Arctic ice-wedge polygonal tundra using high-resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Skurikhin, A. N.; Gangodagamage, C.; Rowland, J. C.; Wilson, C. J.

    2013-12-01

    Arctic lowland landscapes underlain by permafrost are often characterized by polygon-like patterns such as ice-wedge polygons outlined by networks of ice wedges and complemented with polygon rims, troughs, shallow ponds and thermokarst lakes. Polygonal patterns and corresponding features are relatively easy to recognize in high spatial resolution satellite imagery by a human, but their automated recognition is challenging due to the variability in their spectral appearance, the irregularity of individual trough spacing and orientation within the patterns, and a lack of unique spectral response attributable to troughs with widths commonly between 1 m and 2 m. Accurate identification of fine scale elements of ice-wedge polygonal tundra is important as their imprecise recognition may bias estimates of water, heat and carbon fluxes in large-scale climate models. Our focus is on the problem of identification of Arctic polygonal tundra fine-scale landscape elements (as small as 1 m - 2 m width). The challenge of the considered problem is that while large water bodies (e.g. lakes and rivers) can be recognized based on spectral response, reliable recognition of troughs is more difficult. Troughs do not have unique spectral signature, their appearance is noisy (edges are not strong), their width is small, and they often form connected networks with ponds and lakes, and thus they have overlapping spectral response with other water bodies and surrounding non-water bodies. We present a semi-automated approach to identify and classify Arctic polygonal tundra landscape components across the range of spatial scales, such as troughs, ponds, river- and lake-like objects, using high spatial resolution satellite imagery. The novelty of the approach lies in: (1) the combined use of segmentation and shape-based classification to identify a broad range of water bodies, including troughs, and (2) the use of high-resolution WorldView-2 satellite imagery (with resolution of 0.6 m) for this

  14. Impacts of vegetation cover on soil respiration in a North Eastern Siberian tundra landscape

    NASA Astrophysics Data System (ADS)

    Curasi, S. R.; Rocha, A. V.; Natali, S.

    2017-12-01

    Changes in Arctic tundra vegetation composition will help determine the future carbon (C) balance of these systems under conditions of climate change. Changes in Arctic tundra vegetation communities will alter both the productivity and the type and quality of organic matter inputs to soil in these systems. Tundra soil decomposition rates are controlled by both the environmental conditions and the organic matter inputs into the system. In order to investigate the impact of vegetation cover on soil respiration and ecosystem C cycling more broadly we surveyed and sampled a number of sites overlain by different vegetation types and with varying levels of shrub cover in a tundra landscape along the eastern bank of the Kolyma River (Sakha Republic, Russia). We then began a long-term incubation of these soils under different temperature treatments. We conclude that site level conditions as well as vegetation cover and growth form play an important role in influencing soil respiration. This work highlights the role vegetation growth forms and productivity may play in the balance of future tundra ecosystem C cycling. It has broader applicability to those interested in predicating the impacts of climate change and shifts in vegetation species composition on the tundra C cycle.

  15. Modeling the spatiotemporal variability in subsurface thermal regimes across a low-relief polygonal tundra landscape

    DOE PAGES

    Kumar, Jitendra; Collier, Nathan; Bisht, Gautam; ...

    2016-09-27

    Vast carbon stocks stored in permafrost soils of Arctic tundra are under risk of release to the atmosphere under warming climate scenarios. Ice-wedge polygons in the low-gradient polygonal tundra create a complex mosaic of microtopographic features. This microtopography plays a critical role in regulating the fine-scale variability in thermal and hydrological regimes in the polygonal tundra landscape underlain by continuous permafrost. Modeling of thermal regimes of this sensitive ecosystem is essential for understanding the landscape behavior under the current as well as changing climate. Here, we present an end-to-end effort for high-resolution numerical modeling of thermal hydrology at real-world fieldmore » sites, utilizing the best available data to characterize and parameterize the models. We also develop approaches to model the thermal hydrology of polygonal tundra and apply them at four study sites near Barrow, Alaska, spanning across low to transitional to high-centered polygons, representing a broad polygonal tundra landscape. A multiphase subsurface thermal hydrology model (PFLOTRAN) was developed and applied to study the thermal regimes at four sites. Using a high-resolution lidar digital elevation model (DEM), microtopographic features of the landscape were characterized and represented in the high-resolution model mesh. The best available soil data from field observations and literature were utilized to represent the complex heterogeneous subsurface in the numerical model. Simulation results demonstrate the ability of the developed modeling approach to capture – without recourse to model calibration – several aspects of the complex thermal regimes across the sites, and provide insights into the critical role of polygonal tundra microtopography in regulating the thermal dynamics of the carbon-rich permafrost soils. Moreover, areas of significant disagreement between model results and observations highlight the importance of field

  16. Quantifying the historic and future distribution of fire in Alaskan tundra ecosystems

    NASA Astrophysics Data System (ADS)

    Young, A. M.; Higuera, P. E.; Duffy, P. A.

    2012-12-01

    During the past 60 years fire has been relatively rare and small in size within tundra ecosystems. However, historical observations and paleoecological evidence indicates that fire regimes vary widely across Alaskan tundra, in both space and time. These lines of evidence suggest that fire occupies a highly specified niche or ecological space in Alaskan tundra, which may change significantly with future climate warming. The objective of this research was to quantify the relationships between fire occurrence and different seasonal climate variables, and to begin to make inferences about future distributions of fire across the tundra landscape. The results of this research will ultimately contribute to the goal of summarizing the linkages that exist among climate, vegetation, and fire in the historical record, and for making predictions concerning fire disturbance in tundra ecosystems throughout the next century. Historic tundra fires occurred non-randomly across space, and a relationship exists between fire occurrence and warm, dry climates. We quantified this relationship with generalized boosting models (GBM) using datasets of downscaled temperature and precipitation (2 km, 1971-2000), and historic records of tundra area burned (1950-2010). The GBM used six seasonal climate variables, focused on growing season temperature and precipitation, to predict the probability of fire occurrence over the 1950-2010 time period. To understand implications of these historic relationships given ongoing climate warming, we constructed future climatologies of temperature and precipitation for the five GCMs which performed best in Alaska under the IPCC AR4 A1B (middle-of-the-road) emissions scenario for the time period 2021-2050. The GBM performed well predicting the observed spatial distribution of tundra area burned, capturing key regions which experienced the most fire activity from 1950-2010. The mean temperature of the warmest month (MeanMaxTemp) was the most influential

  17. Physiological and ecological effects of increasing temperature on fish production in lakes of Arctic Alaska

    USGS Publications Warehouse

    Carey, Michael P.; Zimmerman, Christian E.

    2014-01-01

    Lake ecosystems in the Arctic are changing rapidly due to climate warming. Lakes are sensitive integrators of climate-induced changes and prominent features across the Arctic landscape, especially in lowland permafrost regions such as the Arctic Coastal Plain of Alaska. Despite many studies on the implications of climate warming, how fish populations will respond to lake changes is uncertain for Arctic ecosystems. Least Cisco (Coregonus sardinella) is a bellwether for Arctic lakes as an important consumer and prey resource. To explore the consequences of climate warming, we used a bioenergetics model to simulate changes in Least Cisco production under future climate scenarios for lakes on the Arctic Coastal Plain. First, we used current temperatures to fit Least Cisco consumption to observed annual growth. We then estimated growth, holding food availability, and then feeding rate constant, for future projections of temperature. Projected warmer water temperatures resulted in reduced Least Cisco production, especially for larger size classes, when food availability was held constant. While holding feeding rate constant, production of Least Cisco increased under all future scenarios with progressively more growth in warmer temperatures. Higher variability occurred with longer projections of time mirroring the expanding uncertainty in climate predictions further into the future. In addition to direct temperature effects on Least Cisco growth, we also considered changes in lake ice phenology and prey resources for Least Cisco. A shorter period of ice cover resulted in increased production, similar to warming temperatures. Altering prey quality had a larger effect on fish production in summer than winter and increased relative growth of younger rather than older age classes of Least Cisco. Overall, we predicted increased production of Least Cisco due to climate warming in lakes of Arctic Alaska. Understanding the implications of increased production of Least Cisco to

  18. Physiological and ecological effects of increasing temperature on fish production in lakes of Arctic Alaska.

    PubMed

    Carey, Michael P; Zimmerman, Christian E

    2014-05-01

    Lake ecosystems in the Arctic are changing rapidly due to climate warming. Lakes are sensitive integrators of climate-induced changes and prominent features across the Arctic landscape, especially in lowland permafrost regions such as the Arctic Coastal Plain of Alaska. Despite many studies on the implications of climate warming, how fish populations will respond to lake changes is uncertain for Arctic ecosystems. Least Cisco (Coregonus sardinella) is a bellwether for Arctic lakes as an important consumer and prey resource. To explore the consequences of climate warming, we used a bioenergetics model to simulate changes in Least Cisco production under future climate scenarios for lakes on the Arctic Coastal Plain. First, we used current temperatures to fit Least Cisco consumption to observed annual growth. We then estimated growth, holding food availability, and then feeding rate constant, for future projections of temperature. Projected warmer water temperatures resulted in reduced Least Cisco production, especially for larger size classes, when food availability was held constant. While holding feeding rate constant, production of Least Cisco increased under all future scenarios with progressively more growth in warmer temperatures. Higher variability occurred with longer projections of time mirroring the expanding uncertainty in climate predictions further into the future. In addition to direct temperature effects on Least Cisco growth, we also considered changes in lake ice phenology and prey resources for Least Cisco. A shorter period of ice cover resulted in increased production, similar to warming temperatures. Altering prey quality had a larger effect on fish production in summer than winter and increased relative growth of younger rather than older age classes of Least Cisco. Overall, we predicted increased production of Least Cisco due to climate warming in lakes of Arctic Alaska. Understanding the implications of increased production of Least Cisco to

  19. Active layer hydrology in an arctic tundra ecosystem: quantifying water sources and cycling using water stable isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Throckmorton, Heather M.; Newman, Brent D.; Heikoop, Jeffrey M.

    Climate change and thawing permafrost in the Arctic will significantly alter landscape hydro-geomorphology and the distribution of soil moisture, which will have cascading effects on climate feedbacks (CO 2 and CH 4) and plant and microbial communities. Fundamental processes critical to predicting active layer hydrology are not well understood. This study applied water stable isotope techniques (δ 2H and δ 18O) to infer sources and mixing of active layer waters in a polygonal tundra landscape in Barrow, Alaska (USA), in August and September of 2012. Results suggested that winter precipitation did not contribute substantially to surface waters or subsurface activemore » layer pore waters measured in August and September. Summer rain was the main source of water to the active layer, with seasonal ice melt contributing to deeper pore waters later in the season. Surface water evaporation was evident in August from a characteristic isotopic fractionation slope (δ 2H vs δ 18O). Freeze-out isotopic fractionation effects in frozen active layer samples and textural permafrost were indistinguishable from evaporation fractionation, emphasizing the importance of considering the most likely processes in water isotope studies, in systems where both evaporation and freeze-out occur in close proximity. The fractionation observed in frozen active layer ice was not observed in liquid active layer pore waters. Such a discrepancy between frozen and liquid active layer samples suggests mixing of meltwater, likely due to slow melting of seasonal ice. In conclusion, this research provides insight into fundamental processes relating to sources and mixing of active layer waters, which should be considered in process-based fine-scale and intermediate-scale hydrologic models.« less

  20. Active layer hydrology in an arctic tundra ecosystem: quantifying water sources and cycling using water stable isotopes

    DOE PAGES

    Throckmorton, Heather M.; Newman, Brent D.; Heikoop, Jeffrey M.; ...

    2016-04-16

    Climate change and thawing permafrost in the Arctic will significantly alter landscape hydro-geomorphology and the distribution of soil moisture, which will have cascading effects on climate feedbacks (CO 2 and CH 4) and plant and microbial communities. Fundamental processes critical to predicting active layer hydrology are not well understood. This study applied water stable isotope techniques (δ 2H and δ 18O) to infer sources and mixing of active layer waters in a polygonal tundra landscape in Barrow, Alaska (USA), in August and September of 2012. Results suggested that winter precipitation did not contribute substantially to surface waters or subsurface activemore » layer pore waters measured in August and September. Summer rain was the main source of water to the active layer, with seasonal ice melt contributing to deeper pore waters later in the season. Surface water evaporation was evident in August from a characteristic isotopic fractionation slope (δ 2H vs δ 18O). Freeze-out isotopic fractionation effects in frozen active layer samples and textural permafrost were indistinguishable from evaporation fractionation, emphasizing the importance of considering the most likely processes in water isotope studies, in systems where both evaporation and freeze-out occur in close proximity. The fractionation observed in frozen active layer ice was not observed in liquid active layer pore waters. Such a discrepancy between frozen and liquid active layer samples suggests mixing of meltwater, likely due to slow melting of seasonal ice. In conclusion, this research provides insight into fundamental processes relating to sources and mixing of active layer waters, which should be considered in process-based fine-scale and intermediate-scale hydrologic models.« less

  1. Soil Surface Organic Layers in Alaska's Arctic Foothills: Development, Distribution and Microclimatic Feedbacks

    NASA Astrophysics Data System (ADS)

    Baughman, C. A.; Mann, D. H.; Verbyla, D.; Valentine, D.; Kunz, M. L.; Heiser, P. A.

    2013-12-01

    Accumulated organic matter at the ground surface plays an important role in arctic ecosystems. These soil surface organic layers (SSOLs) influence temperature, moisture, and chemistry in the underlying mineral soil and, on a global basis, comprise enormous stores of labile carbon. Understanding the dynamics of SSOLs is prerequisite to modeling the responses of arctic ecosystem processes to climate changes. Here, we ask three questions regarding SSOLs in the Arctic Foothills in northern Alaska: 1) What environmental factors control their spatial distribution? 2) How long do they take to form? 3) What is the relationship between SSOL thickness and mineral soil temperature through the growing season? The best topographically-controlled predictors of SSOL thickness and spatial distribution are duration of sunlight during the growing-season, upslope drainage area, slope gradient, and elevation. SSOLs begin to form within several decades following disturbance but require 500-700 years to reach equilibrium states. Once formed, mature SSOLs lower peak growing-season temperature and mean annual temperature in the underlying mineral horizon by 8° and 3° C respectively, which reduces available growing degree days within the upper mineral soil by nearly 80%. How ongoing climate change in northern Alaska will affect the region's SSOLs is an open and potentially crucial question.

  2. Aeolian stratigraphy describes ice-age paleoenvironments in unglaciated Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Gaglioti, Benjamin V.; Mann, Daniel H.; Groves, Pamela; Kunz, Michael L.; Farquharson, Louise M.; Reanier, Richard E.; Jones, Benjamin M.; Wooller, Matthew J.

    2018-02-01

    Terrestrial paleoenvironmental records with high dating resolution extending into the last ice age are rare from the western Arctic. Such records can test the synchronicity and extent of ice-age climatic events and define how Arctic landscapes respond to rapid climate changes. Here we describe the stratigraphy and sedimentology of a yedoma deposit in Arctic Alaska (the Carter Section) dating to between 37,000 and 9000 calibrated radiocarbon years BP (37-9 ka) and containing detailed records of loess and sand-sheet sedimentation, soil development, carbon storage, and permafrost dynamics. Alternation between sand-sheet and loess deposition provides a proxy for the extent and activity of the Ikpikpuk Sand Sea (ISS), a large dune field located immediately upwind. Warm, moist interstadial times (ca. 37, 36.3-32.5, and 15-13 ka) triggered floodplain aggradation, permafrost thaw, reduced loess deposition, increased vegetation cover, and rapid soil development accompanied by enhanced carbon storage. During the Last Glacial Maximum (LGM, ca. 28-18 ka), rapid loess deposition took place on a landscape where vegetation was sparse and non-woody. The most intense aeolian activity occurred after the LGM between ca. 18 and 15 ka when sand sheets fringing the ISS expanded over the site, possibly in response to increasingly droughty conditions as summers warmed and active layers deepened. With the exception of this lagged LGM response, the record of aeolian activity at the Carter Section correlates with other paleoenvironmental records from unglaciated Siberia and Alaska. Overall, rapid shifts in geomorphology, soils, vegetation, and permafrost portray an ice-age landscape where, in contrast to the Holocene, environmental change was chronic and dominated by aeolian processes.

  3. Ionospheric Correction in Using ALOS PALSAR InSAR Data for Monitoring Permafrost Subsidence associated with an Arctic Tundra Fire

    NASA Astrophysics Data System (ADS)

    Liao, H.; Meyer, F. J.; Liu, L.

    2017-12-01

    Tundra fires have important ecological impacts on vegetation succession, carbon cycling, and permafrost dynamics. Recent research has demonstrated that SAR Interferometry (InSAR) is a useful tool for quantifying surface subsidence caused by permafrost degradation and tundra fires. Many of these studies have relied on L-band SAR data due to its ability to remain relatively high coherence in the changing Arctic environment. L-band SAR data, however, are susceptive to ionospheric effects. Traditionally, permafrost-related InSAR studies dealt with ionospheric artifacts by either throwing away ionosphere-contaminated data or by fitting and removing low-order polynomial surfaces from affected images. Discarding data samples is always luxurious and risky, as the number of SAR images is limited and the incurred reduction of temporal sampling might hinder the retrieval of important short-term dynamics in active layer and permafrost. Baseline fitting relies on the assumption that ionospheric signals large spatial scales, an assumption that is often violated in polar regions. To improve upon this situation, we propose the integration of the split-spectrum ionospheric correction technique into permafrost-related InSAR processing workflows. We demonstrate its performance for correcting L-band SAR data in permafrost zones. For the Anaktuvuk River fire area, Alaska, 6 out of 15 ALOS-1 PALSAR scenes used by Liu et al. 2014 were found to be contaminated by ionospheric signals. We extracted the ionospheric phase screens for all contaminated data. We derive their power spectra and provide information on the typical magnitudes and spatial structures of identified phase screens. With the ionosphere corrected data we revisit a model that was developed by Liu et.al (2014) to estimate pre-fire and post-fire thaw-season subsidence for the Anaktuvuk River fire region. We will demonstrate that for our area of interest ionospheric correction leads to improvements of the InSAR-based permafrost

  4. Projected changes in wildlife habitats in Arctic natural areas of northwest Alaska

    Treesearch

    Bruce G. Marcot; M.Torre Jorgenson; James P. Lawler; Colleen M. Handel; Anthony R. DeGange

    2015-01-01

    We project the effects of transitional changes among 60 vegetation and other land cover types (Becotypes^) in northwest Alaska over the 21st century on habitats of 162 bird and 39 mammal species known or expected to occur regularly in the region. This analysis, encompassing a broad suite of arctic and boreal wildlife species, entailed building wildlifehabitat matrices...

  5. Millennial-scale variability in Holocene aquatic productivity from Burial Lake, Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Finkenbinder, Matthew S.; Abbott, Mark B.; Stoner, Joseph S.; Ortiz, Joseph D.; Finney, Bruce P.; Dorfman, Jason M.; Stansell, Nathan D.

    2018-05-01

    Holocene records of lacustrine primary production are commonly used to reconstruct past changes in environmental and climatic conditions. While several methods exist to infer paleoproductivity trends, few studies to date have applied multiple geochemical indices in the same core sequence from Arctic lakes to evaluate their fidelity and sensitivity to specific climate variables over long (Holocene length) timescales. In this study, we evaluate sub-century to millennial-scale fluctuations in paleoproductivity over the Holocene using geochemical (biogenic opal and sedimentary chlorin) analyses of sediments from Burial Lake in the western Brooks Range, Alaska. Large fluctuations in opal and related proxies occur at millennial timescales over the last 10,000 years. We interpret the changes in opal to result from variability in diatom productivity, which is indirectly mediated by climate primarily through changes in the duration of the ice-free growing season and the availability of limiting nutrients at this oligotrophic, tundra lake. Comparison of the opal and sedimentary chlorin record, which is correlated with TOC, shows contrasting patterns on both short (century to multi-century) and relatively long (millennial) time scales. The concentration of opal far exceeds that of TOC and variations in sediment dry bulk density, driven by changes in the accumulation of opal, are likely responsible in part for the variations in sedimentary chlorin. Further, C/N ratio values indicate a mixed algal-terrestrial source of sedimentary organic matter. This result highlights the complexity in the climatic interpretation of sedimentary chlorin as an index of whole lake production, because the signal is prone to dilution/concentration from opal and also reflects a combination of aquatic and terrestrial production. Time series analysis of the productivity records indicates the presence of a significant ∼1500-yr oscillation in opal concentration, which has been found in North Atlantic

  6. Plot-scale evidence of tundra vegetation change and links to recent summer warming

    Treesearch

    Sarah C. Elmendorf; Gregory H.R. Henry; Robert D. Hollister; Robert G. Bjork; Noemie Boulanger-Lapointe; Elisabeth J. Cooper; Johannes H.C. Cornelissen; Thomas A. Day; Ellen Dorrepaal; Tatiana G. Elumeeva; Mike Gill; William A. Gould; John Harte; David S. Hik; Annika Hofgaard; David R. Johnson; Jill F. Johnstone; Ingijorg Svala Jonsdottir; Janet C. Jorgenson; Kari Klanderud; Julia A. Klein; Saewan Koh; Gaku Kudo; Mark Lara; Esther Levesque; Borgthor Magnusson; Jeremy L. May; Joel A. Mercado; Anders Michelsen; Ulf Molau; Isla H. Myers-Smith; Steven F. Oberbauer; Vladimir G. Onipchenko; Christian Rixen; Niels Martin Schmidt; Gaius R. Shaver; Marko J. Spasojevic; Pora Ellen Porhallsdottir; Anne Tolvanen; Tiffany Troxler; Craig E. Tweedie; Sandra Villareal; Carl-Henrik Wahren; Xanthe Walker; Patrick J. Webber; Jeffrey M. Welker; Sonja Wipf

    2012-01-01

    Temperature is increasing at unprecedented rates across most of the tundra biome1. Remote-sensing data indicate that contemporary climate warming has already resulted in increased productivity over much of the Arctic2,3, but plot-based evidence for vegetation transformation is not widespread. We analysed change in tundra vegetation surveyed between 1980 and 2010 in 158...

  7. Exchange of CO2 in Arctic tundra: impacts of meteorological variations and biological disturbance

    NASA Astrophysics Data System (ADS)

    López-Blanco, Efrén; Lund, Magnus; Williams, Mathew; Tamstorf, Mikkel P.; Westergaard-Nielsen, Andreas; Exbrayat, Jean-François; Hansen, Birger U.; Christensen, Torben R.

    2017-10-01

    An improvement in our process-based understanding of carbon (C) exchange in the Arctic and its climate sensitivity is critically needed for understanding the response of tundra ecosystems to a changing climate. In this context, we analysed the net ecosystem exchange (NEE) of CO2 in West Greenland tundra (64° N) across eight snow-free periods in 8 consecutive years, and characterized the key processes of net ecosystem exchange and its two main modulating components: gross primary production (GPP) and ecosystem respiration (Reco). Overall, the ecosystem acted as a consistent sink of CO2, accumulating -30 g C m-2 on average (range of -17 to -41 g C m-2) during the years 2008-2015, except 2011 (source of 41 g C m-2), which was associated with a major pest outbreak. The results do not reveal a marked meteorological effect on the net CO2 uptake despite the high interannual variability in the timing of snowmelt and the start and duration of the growing season. The ranges in annual GPP (-182 to -316 g C m-2) and Reco (144 to 279 g C m-2) were > 5 fold larger than the range in NEE. Gross fluxes were also more variable (coefficients of variation are 3.6 and 4.1 % respectively) than for NEE (0.7 %). GPP and Reco were sensitive to insolation and temperature, and there was a tendency towards larger GPP and Reco during warmer and wetter years. The relative lack of sensitivity of NEE to meteorology was a result of the correlated response of GPP and Reco. During the snow-free season of the anomalous year of 2011, a biological disturbance related to a larvae outbreak reduced GPP more strongly than Reco. With continued warming temperatures and longer growing seasons, tundra systems will increase rates of C cycling. However, shifts in sink strength will likely be triggered by factors such as biological disturbances, events that will challenge our forecasting of C states.

  8. Assessment of undiscovered petroleum resources of the Arctic Alaska Petroleum Province

    USGS Publications Warehouse

    Houseknecht, David W.; Bird, Kenneth J.; Garrity, Christopher P.

    2012-01-01

    The Arctic Alaska Petroleum Province encompasses all lands and adjacent continental shelf areas north of the Brooks Range-Herald arch tectonic belts and south of the northern (outboard) margin of the Alaska rift shoulder. Even though only a small part is thoroughly explored, it is one of the most prolific petroleum provinces in North America, with total known resources (cumulative production plus proved reserves) of about 28 billion barrels of oil equivalent. For assessment purposes, the province is divided into a platform assessment unit, comprising the Alaska rift shoulder and its relatively undeformed flanks, and a fold-and-thrust belt assessment unit, comprising the deformed area north of the Brooks Range and Herald arch tectonic belts. Mean estimates of undiscovered, technically recoverable resources include nearly 28 billion barrels of oil and 122 trillion cubic feet of nonassociated gas in the platform assessment unit and 2 billion barrels of oil and 59 trillion cubic feet of nonassociated gas in the fold-and-thrust belt assessment unit.

  9. Seasonal and Inter-annual Phenological Varibility is Greatest in Low-Arctic and Wet Sites Across the North Slope of Alaska as Observed from Multiple Remote Sensing Platforms

    NASA Astrophysics Data System (ADS)

    Vargas, S. A., Jr.; Andresen, C. G.; May, J. L.; Oberbauer, S. F.; Hollister, R. D.; Tweedie, C. E.

    2017-12-01

    The Arctic is experiencing among the most dramatic impacts from climate variability on the planet. Arctic plant phenology has been identified as an ideal indicator of climate change impacts and provides great insight into seasonal and inter-annual vegetative trends and their responses to such changes. Traditionally, phenology has been quantified using satellite-based systems and plot-level observations but each approach presents limitations especially in high latitude regions. Mid-scale systems (e.g. automated sensor platforms and trams) have shown to provide alternative, and in most cases, cheaper solutions with comparable results to those acquired traditionally. This study contributes to the US Arctic Observing Network (AON) and assesses the effectiveness of using digital images acquired from pheno-cams, a kite aerial photography (KAP) system, and plot-level images (PLI) in their capacity to assess phenological variability (e.g. snow melt, greening and end-of-season) for dominant vegetation communities present at two sites in both Utqiagvik and Atqasuk, Alaska, namely the Mobile Instrumented Sensor Platform (MISP) and the Circum-arctic Active Layer Monitoring (CALM) grids. RGB indices (e.g. GEI and %G) acquired from these methods were compared to the normalized difference vegetation index (NDVI) calculated from multispectral ground-based reflectance measurements, which has been identified and used as a proxy of primary productivity across multiple ecosystems including the Arctic. The 5 years of growing season data collected generally resulted with stronger Pearson's correlations between indices located in plots containing higher soil moisture versus those that were drier. Future studies will extend platform inter-comparison to the satellite level by scaling trends to MODIS land surface products. Trends documented thus far, however, suggest that the long-term changes in satellite NDVI for these study areas, could be a direct response from wet tundra landscapes.

  10. Reconstruction of past methane availability in an Arctic Alaska wetland indicates climate influenced methane release during the past ~12,000 years

    USGS Publications Warehouse

    Wooller, Matthew J.; Pohlman, John W.; Gaglioti, Benjamin V.; Langdon, Peter; Jones, Miriam; Anthony, Katey M. Walter; Becker, Kevin W.; Hinrichs, Kai-Uwe; Elvert, Marcus

    2012-01-01

    Atmospheric contributions of methane from Arctic wetlands during the Holocene are dynamic and linked to climate oscillations. However, long-term records linking climate variability to methane availability in Arctic wetlands are lacking. We present a multi-proxy ~12,000 year paleoecological reconstruction of intermittent methane availability from a radiocarbon-dated sediment core (LQ-West) taken from a shallow tundra lake (Qalluuraq Lake) in Arctic Alaska. Specifically, stable carbon isotopic values of photosynthetic biomarkers and methane are utilized to estimate the proportional contribution of methane-derived carbon to lake-sediment-preserved benthic (chironomids) and pelagic (cladocerans) components over the last ~12,000 years. These results were compared to temperature, hydrologic, and habitat reconstructions from the same site using chironomid assemblage data, oxygen isotopes of chironomid head capsules, and radiocarbon ages of plant macrofossils. Cladoceran ephippia from ~4,000 cal year BP sediments have δ13C values that range from ~−39 to −31‰, suggesting peak methane carbon assimilation at that time. These low δ13C values coincide with an apparent decrease in effective moisture and development of a wetland that included Sphagnum subsecundum. Incorporation of methane-derived carbon by chironomids and cladocerans decreased from ~2,500 to 1,500 cal year BP, coinciding with a temperature decrease. Live-collected chironomids with a radiocarbon age of 1,640 cal year BP, and fossil chironomids from 1,500 cal year BP in the core illustrate that ‘old’ carbon has also contributed to the development of the aquatic ecosystem since ~1,500 cal year BP. The relatively low δ13C values of aquatic invertebrates (as low as −40.5‰) provide evidence of methane incorporation by lake invertebrates, and suggest intermittent climate-linked methane release from the lake throughout the Holocene.

  11. Recovery of Three Arctic Stream Reaches From Experimental Nutrient Enrichment.

    NASA Astrophysics Data System (ADS)

    Green, A. C.; Benstead, J. P.; Deegan, L. A.; Peterson, B. J.; Bowden, W. B.; Huryn, A. D.; Slavik, K.; Hershey, A. E.

    2005-05-01

    We examined multi-year patterns in community recovery from experimental low-concentration nutrient (N+P and P only) enrichment in three reaches of two Arctic tundra streams (Kuparuk River and Oksrukuyik Creek) on the North Slope of Alaska (USA). Rates of recovery varied among community components and depended on duration of enrichment (2 to 13 consecutive growing seasons). Biomass and C:P ratio of epilithic algae returned to reference levels rapidly (within 2 years), regardless of enrichment duration. Bryophyte cover, which increased greatly after long-term enrichment (>8 years), recovered to reference levels only after 7 years, when a storm scoured most remnant moss in the recovering reach. Persistence of bryophytes slowed recovery rates of insect taxa that had either been positively (e.g., Ephemerella, most chironomid taxa) or negatively (e.g., Orthocladius rivulorum) affected by this shift in dominant primary producer and its consequence for benthic habitat. Growth of Arctic grayling (adults and young-of-year), the top predator, returned to reference rates within two years. Recovery of these Arctic stream ecosystems from nutrient enrichment was consequently controlled largely by interactions between duration of enrichment and physical disturbance, mediated through physical habitat shifts caused by bryophytes.

  12. Arctic and Arctic-like rabies viruses: distribution, phylogeny and evolutionary history

    PubMed Central

    KUZMIN, I. V.; HUGHES, G. J.; BOTVINKIN, A. D.; GRIBENCHA, S. G.; RUPPRECHT, C. E.

    2008-01-01

    SUMMARY Forty-one newly sequenced isolates of Arctic and Arctic-like rabies viruses, were genetically compared to each other and to those available from GenBank. Four phylogenetic lineages of Arctic viruses were identified. Arctic-1 viruses circulate in Ontario, Arctic-2 viruses circulate in Siberia and Alaska, Arctic-3 viruses circulate circumpolarly, and a newly described lineage Arctic-4 circulates locally in Alaska. The oldest available isolates from Siberia (between 1950 and 1960) belong to the Arctic-2 and Arctic-3 lineages and share 98·6–99·2% N gene identity with contemporary viruses. Two lineages of Arctic-like viruses were identified in southern Asia and the Middle East (Arctic-like-1) and eastern Asia (Arctic-like-2). A time-scaled tree demonstrates that the time of the most recent common ancestor (TMRCA) of Arctic and Arctic-like viruses is dated between 1255 and 1786. Evolution of the Arctic viruses has occurred through a northerly spread. The Arctic-like-2 lineage diverged first, whereas Arctic viruses share a TMRCA with Arctic-like-1 viruses. PMID:17599781

  13. Arctic and Arctic-like rabies viruses: distribution, phylogeny and evolutionary history.

    PubMed

    Kuzmin, I V; Hughes, G J; Botvinkin, A D; Gribencha, S G; Rupprecht, C E

    2008-04-01

    Forty-one newly sequenced isolates of Arctic and Arctic-like rabies viruses, were genetically compared to each other and to those available from GenBank. Four phylogenetic lineages of Arctic viruses were identified. Arctic-1 viruses circulate in Ontario, Arctic-2 viruses circulate in Siberia and Alaska, Arctic-3 viruses circulate circumpolarly, and a newly described lineage Arctic-4 circulates locally in Alaska. The oldest available isolates from Siberia (between 1950 and 1960) belong to the Arctic-2 and Arctic-3 lineages and share 98.6-99.2% N gene identity with contemporary viruses. Two lineages of Arctic-like viruses were identified in southern Asia and the Middle East (Arctic-like-1) and eastern Asia (Arctic-like-2). A time-scaled tree demonstrates that the time of the most recent common ancestor (TMRCA) of Arctic and Arctic-like viruses is dated between 1255 and 1786. Evolution of the Arctic viruses has occurred through a northerly spread. The Arctic-like-2 lineage diverged first, whereas Arctic viruses share a TMRCA with Arctic-like-1 viruses.

  14. Soil bacterial community and functional shifts in response to altered snowpack in moist acidic tundra of northern Alaska

    NASA Astrophysics Data System (ADS)

    Ricketts, Michael P.; Poretsky, Rachel S.; Welker, Jeffrey M.; Gonzalez-Meler, Miquel A.

    2016-09-01

    Soil microbial communities play a central role in the cycling of carbon (C) in Arctic tundra ecosystems, which contain a large portion of the global C pool. Climate change predictions for Arctic regions include increased temperature and precipitation (i.e. more snow), resulting in increased winter soil insulation, increased soil temperature and moisture, and shifting plant community composition. We utilized an 18-year snow fence study site designed to examine the effects of increased winter precipitation on Arctic tundra soil bacterial communities within the context of expected ecosystem response to climate change. Soil was collected from three pre-established treatment zones representing varying degrees of snow accumulation, where deep snow ˜ 100 % and intermediate snow ˜ 50 % increased snowpack relative to the control, and low snow ˜ 25 % decreased snowpack relative to the control. Soil physical properties (temperature, moisture, active layer thaw depth) were measured, and samples were analysed for C concentration, nitrogen (N) concentration, and pH. Soil microbial community DNA was extracted and the 16S rRNA gene was sequenced to reveal phylogenetic community differences between samples and determine how soil bacterial communities might respond (structurally and functionally) to changes in winter precipitation and soil chemistry. We analysed relative abundance changes of the six most abundant phyla (ranging from 82 to 96 % of total detected phyla per sample) and found four (Acidobacteria, Actinobacteria, Verrucomicrobia, and Chloroflexi) responded to deepened snow. All six phyla correlated with at least one of the soil chemical properties (% C, % N, C : N, pH); however, a single predictor was not identified, suggesting that each bacterial phylum responds differently to soil characteristics. Overall, bacterial community structure (beta diversity) was found to be associated with snow accumulation treatment and all soil chemical properties

  15. Tracking and unpacking rapid Arctic change: Indicators of community health and sustainability in northern Alaska and links to cryospheric change

    NASA Astrophysics Data System (ADS)

    Eicken, H.; Sam, J. M.; Mueller-stoffels, M.; Lovecraft, A. L.; Fresco, N. L.

    2017-12-01

    Tracking and responding to rapid Arctic change benefits from time series of indicator variables that describe the state of the system and can inform anticipatory action. A key challenge is to identify and monitor sets of indicators that capture relevant variability, trends, and transitions in social-environmental systems. We present findings from participatory scenarios focused on community health and sustainability in northern Alaska. In a series of workshops in 2015 and 2016 (Kotzebue workshop photo shown below), over 50 experts, mostly local, identified determinants of community health and sustainability by 2040 in the Northwest Arctic and North Slope Boroughs, Alaska. Drawing on further research, an initial set of factors and uncertainties was refined and prioritized into a total of 20 key drivers, ranging from governance issues to socio-economic and environmental factors. The research team then developed sets of future projections that describe plausible outcomes by mid-century for each of these drivers. A plausibility and consistency analysis of all pairwise combinations of these projections (following Mueller-Stoffels and Eicken, In: North by 2020 - Perspectives on Alaska's Changing Social-Ecological Systems, University of Alaska Press, 2011) resulted in the identification of robust scenarios. The latter were further reviewed by workshop participants, and a set of indicator variables, including indicators of relevant cryospheric change, was identified to help track trajectories towards plausible future states. Publically accessible recorded data only exist for a subset of the more than 70 indicators, reaching back a few years to several decades. For several indicators, the sampling rate or time series length are insufficient for tracking of and response to change. A core set of variables has been identified that meets indicator requirements and can serve as a tool for Alaska Arctic communities in adapting to or mitigating rapid change affecting community

  16. Molecular Detection of Hematozoa Infections in Tundra Swans Relative to Migration Patterns and Ecological Conditions at Breeding Grounds

    PubMed Central

    Ramey, Andrew M.; Ely, Craig R.; Schmutz, Joel A.; Pearce, John M.; Heard, Darryl J.

    2012-01-01

    Tundra swans (Cygnus columbianus) are broadly distributed in North America, use a wide variety of habitats, and exhibit diverse migration strategies. We investigated patterns of hematozoa infection in three populations of tundra swans that breed in Alaska using satellite tracking to infer host movement and molecular techniques to assess the prevalence and genetic diversity of parasites. We evaluated whether migratory patterns and environmental conditions at breeding areas explain the prevalence of blood parasites in migratory birds by contrasting the fit of competing models formulated in an occupancy modeling framework and calculating the detection probability of the top model using Akaike Information Criterion (AIC). We described genetic diversity of blood parasites in each population of swans by calculating the number of unique parasite haplotypes observed. Blood parasite infection was significantly different between populations of Alaska tundra swans, with the highest estimated prevalence occurring among birds occupying breeding areas with lower mean daily wind speeds and higher daily summer temperatures. Models including covariates of wind speed and temperature during summer months at breeding grounds better predicted hematozoa prevalence than those that included annual migration distance or duration. Genetic diversity of blood parasites in populations of tundra swans appeared to be relative to hematozoa prevalence. Our results suggest ecological conditions at breeding grounds may explain differences of hematozoa infection among populations of tundra swans that breed in Alaska. PMID:23049862

  17. Molecular detection of hematozoa infections in tundra swans relative to migration patterns and ecological conditions at breeding grounds

    USGS Publications Warehouse

    Ramey, Andrew M.; Ely, Craig R.; Schmutz, Joel A.; Pearce, John M.; Heard, Darryl J.

    2012-01-01

    Tundra swans (Cygnus columbianus) are broadly distributed in North America, use a wide variety of habitats, and exhibit diverse migration strategies. We investigated patterns of hematozoa infection in three populations of tundra swans that breed in Alaska using satellite tracking to infer host movement and molecular techniques to assess the prevalence and genetic diversity of parasites. We evaluated whether migratory patterns and environmental conditions at breeding areas explain the prevalence of blood parasites in migratory birds by contrasting the fit of competing models formulated in an occupancy modeling framework and calculating the detection probability of the top model using Akaike Information Criterion (AIC). We described genetic diversity of blood parasites in each population of swans by calculating the number of unique parasite haplotypes observed. Blood parasite infection was significantly different between populations of Alaska tundra swans, with the highest estimated prevalence occurring among birds occupying breeding areas with lower mean daily wind speeds and higher daily summer temperatures. Models including covariates of wind speed and temperature during summer months at breeding grounds better predicted hematozoa prevalence than those that included annual migration distance or duration. Genetic diversity of blood parasites in populations of tundra swans appeared to be relative to hematozoa prevalence. Our results suggest ecological conditions at breeding grounds may explain differences of hematozoa infection among populations of tundra swans that breed in Alaska.

  18. Molecular detection of hematozoa infections in tundra swans relative to migration patterns and ecological conditions at breeding grounds.

    PubMed

    Ramey, Andrew M; Ely, Craig R; Schmutz, Joel A; Pearce, John M; Heard, Darryl J

    2012-01-01

    Tundra swans (Cygnus columbianus) are broadly distributed in North America, use a wide variety of habitats, and exhibit diverse migration strategies. We investigated patterns of hematozoa infection in three populations of tundra swans that breed in Alaska using satellite tracking to infer host movement and molecular techniques to assess the prevalence and genetic diversity of parasites. We evaluated whether migratory patterns and environmental conditions at breeding areas explain the prevalence of blood parasites in migratory birds by contrasting the fit of competing models formulated in an occupancy modeling framework and calculating the detection probability of the top model using Akaike Information Criterion (AIC). We described genetic diversity of blood parasites in each population of swans by calculating the number of unique parasite haplotypes observed. Blood parasite infection was significantly different between populations of Alaska tundra swans, with the highest estimated prevalence occurring among birds occupying breeding areas with lower mean daily wind speeds and higher daily summer temperatures. Models including covariates of wind speed and temperature during summer months at breeding grounds better predicted hematozoa prevalence than those that included annual migration distance or duration. Genetic diversity of blood parasites in populations of tundra swans appeared to be relative to hematozoa prevalence. Our results suggest ecological conditions at breeding grounds may explain differences of hematozoa infection among populations of tundra swans that breed in Alaska.

  19. L-band InSAR Penetration Depth Experiment, North Slope Alaska

    NASA Astrophysics Data System (ADS)

    Muskett, R. R.

    2017-12-01

    Since the first spacecraft-based synthetic aperture radar (SAR) mission NASA's SEASAT in 1978 radars have been flown in Low Earth Orbit (LEO) by other national space agencies including the Canadian Space Agency, European Space Agency, India Space Research Organization and the Japanese Aerospace Exploration Agency. Improvements in electronics, miniaturization and production have allowed for the deployment of SAR systems on aircraft for usage in agriculture, hazards assessment, land-use management and planning, meteorology, oceanography and surveillance. LEO SAR systems still provide a range of needful and timely information on large and small-scale weather conditions like those found across the Arctic where ground-base weather radars currently provide limited coverage. For investigators of solid-earth deformation attention must be given to the atmosphere on Interferometric SAR (InSAR) by aircraft and spacecraft multi-pass operations. Because radar has the capability to penetrate earth materials at frequencies from the P- to X-band attention must be given to the frequency dependent penetration depth and volume scattering. This is the focus of our new research project: to test the penetration depth of L-band SAR/InSAR by aircraft and spacecraft systems at a test site in Arctic Alaska using multi-frequency analysis and progressive burial of radar mesh-reflectors at measured depths below tundra while monitoring environmental conditions. Knowledge of the L-band penetration depth on lowland Arctic tundra is necessary to constrain analysis of carbon mass balance and hazardous conditions arising form permafrost degradation and thaw, surface heave and subsidence and thermokarst formation at local and regional scales. Ref.: Geoscience and Environment Protection, vol. 5, no. 3, p. 14-30, 2017. DOI: 10.4236/gep.2017.53002.

  20. U.S. Tundra Biome-International Biological Program. U.S. Tundra Biome Publication List.

    DTIC Science & Technology

    1983-09-01

    Stairs and R.D. Mitchell, Eds.). Columbus: Ohio State University Press, pp. 179-232. /Bib 34-2495/ Miller, P.C. sod L.L. Tieszen (1972) A preliminary...mosses. Ohio Journal of Science, 74(l): 55-59. (1820) /Bib 32-2806/ Rastorfer, J.R. (1976) Caloric values of three Alaskan-Arctic mosses. The Bryologist...and M.K. Yousef (1978) Energy expenditures in reindeer walking on roads and tundra. Canadian Journal of Zoology, 56(2): 215-223. (4053) /Bib 32-3645

  1. Physiological and ecological effects of increasing temperature on fish production in lakes of Arctic Alaska

    PubMed Central

    Carey, Michael P; Zimmerman, Christian E

    2014-01-01

    Lake ecosystems in the Arctic are changing rapidly due to climate warming. Lakes are sensitive integrators of climate-induced changes and prominent features across the Arctic landscape, especially in lowland permafrost regions such as the Arctic Coastal Plain of Alaska. Despite many studies on the implications of climate warming, how fish populations will respond to lake changes is uncertain for Arctic ecosystems. Least Cisco (Coregonus sardinella) is a bellwether for Arctic lakes as an important consumer and prey resource. To explore the consequences of climate warming, we used a bioenergetics model to simulate changes in Least Cisco production under future climate scenarios for lakes on the Arctic Coastal Plain. First, we used current temperatures to fit Least Cisco consumption to observed annual growth. We then estimated growth, holding food availability, and then feeding rate constant, for future projections of temperature. Projected warmer water temperatures resulted in reduced Least Cisco production, especially for larger size classes, when food availability was held constant. While holding feeding rate constant, production of Least Cisco increased under all future scenarios with progressively more growth in warmer temperatures. Higher variability occurred with longer projections of time mirroring the expanding uncertainty in climate predictions further into the future. In addition to direct temperature effects on Least Cisco growth, we also considered changes in lake ice phenology and prey resources for Least Cisco. A shorter period of ice cover resulted in increased production, similar to warming temperatures. Altering prey quality had a larger effect on fish production in summer than winter and increased relative growth of younger rather than older age classes of Least Cisco. Overall, we predicted increased production of Least Cisco due to climate warming in lakes of Arctic Alaska. Understanding the implications of increased production of Least Cisco to

  2. Landscape variability of vegetation change across the forest to tundra transition of central Canada

    NASA Astrophysics Data System (ADS)

    Bonney, Mitchell Thurston

    Widespread vegetation productivity increases in tundra ecosystems and stagnation, or even productivity decreases, in boreal forest ecosystems have been detected from coarse-scale remote sensing observations over the last few decades. However, finer-scale Landsat studies have shown that these changes are heterogeneous and may be related to landscape and regional variability in climate, land cover, topography and moisture. In this study, a Landsat Normalized Difference Vegetation Index (NDVI) time-series (1984-2016) was examined for a study area spanning the entirety of the sub-Arctic boreal forest to Low Arctic tundra transition of central Canada (i.e., Yellowknife to the Arctic Ocean). NDVI trend analysis indicated that 27% of un-masked pixels in the study area exhibited a significant (p < 0.05) trend and virtually all (99.3%) of those pixels were greening. Greening pixels were most common in the northern tundra zone and the southern forest-tundra ecotone zone. NDVI trends were positive throughout the study area, but were smallest in the forest zone and largest in the northern tundra zone. These results were supported by ground validation, which found a strong relationship (R2 = 0.81) between bulk vegetation volume (BVV) and NDVI for non-tree functional groups in the North Slave region of Northwest Territories. Field observations indicate that alder (Alnus spp.) shrublands and open woodland sites with shrubby understories were most likely to exhibit greening in that area. Random Forest (RF) modelling of the relationship between NDVI trends and environmental variables found that the magnitude and direction of trends differed across the forest to tundra transition. Increased summer temperatures, shrubland and forest land cover, closer proximity to major drainage systems, longer distances from major lakes and lower elevations were generally more important and associated with larger positive NDVI trends. These findings indicate that the largest positive NDVI trends

  3. Trophic pathways supporting Arctic grayling in a small stream on the Arctic Coastal Plain, Alaska

    USGS Publications Warehouse

    McFarland, Jason J.; Wipfli, Mark S.; Whitman, Matthew S.

    2018-01-01

    Beaded streams are prominent across the Arctic Coastal Plain (ACP) of Alaska, yet prey flow and food web dynamics supporting fish inhabiting these streams are poorly understood. Arctic grayling (Thymallus arcticus) are a widely distributed upper-level consumer on the ACP and migrate into beaded streams to forage during the short 3-month open-water season. We investigated energy pathways and key prey resources that support grayling in a representative beaded stream, Crea Creek. We measured terrestrial invertebrates entering the stream from predominant riparian vegetation types, prey types supporting a range of fish size classes, and how riparian plants and fish size influenced foraging habits. We found that riparian plants influenced the quantity of terrestrial invertebrates entering Crea Creek; however, these differences were not reflected in fish diets. Prey type and size ingested varied with grayling size and season. Small grayling (<15 cm fork length (FL)) consumed mostly aquatic invertebrates early in the summer, and terrestrial invertebrates later in summer, while larger fish (>15 cm FL) foraged most heavily on ninespine stickleback (Pungitius pungitius) throughout the summer, indicating that grayling can be insectivorous and piscivorous, depending on size. These findings underscore the potential importance of small streams in Arctic ecosystems as key summer foraging habitats for fish. Understanding trophic pathways supporting stream fishes in these systems will help interpret whether and how petroleum development and climate change may affect energy flow and stream productivity, terrestrial–aquatic linkages and fishes in Arctic ecosystems.

  4. Late Proterozoic-Paleozoic evolution of the Arctic Alaska-Chukotka terrane based on U-Pb igneous and detrital zircon ages: Implications for Neoproterozoic paleogeographic reconstructions

    USGS Publications Warehouse

    Amato, J.M.; Toro, J.; Miller, E.L.; Gehrels, G.E.; Farmer, G.L.; Gottlieb, E.S.; Till, A.B.

    2009-01-01

    The Seward Peninsula of northwestern Alaska is part of the Arctic Alaska-Chukotka terrane, a crustal fragment exotic to western Laurentia with an uncertain origin and pre-Mesozoic evolution. U-Pb zircon geochronology on deformed igneous rocks reveals a previously unknown intermediate-felsic volcanic event at 870 Ma, coeval with rift-related magmatism associated with early breakup of eastern Rodinia. Orthogneiss bodies on Seward Peninsula yielded numerous 680 Ma U-Pb ages. The Arctic Alaska-Chukotka terrane has pre-Neoproterozoic basement based on Mesoproterozoic Nd model ages from both 870 Ma and 680 Ma igneous rocks, and detrital zircon ages between 2.0 and 1.0 Ga in overlying cover rocks. Small-volume magmatism occurred in Devonian time, based on U-Pb dating of granitic rocks. U-Pb dating of detrital zircons in 12 samples of metamorphosed Paleozoic siliciclastic cover rocks to this basement indicates that the dominant zircon age populations in the 934 zircons analyzed are found in the range 700-540 Ma, with prominent peaks at 720-660 Ma, 620-590 Ma, 560-510 Ma, 485 Ma, and 440-400 Ma. Devonian- and Pennsylvanian-age peaks are present in the samples with the youngest detrital zircons. These data show that the Seward Peninsula is exotic to western Laurentia because of the abundance of Neoproterozoic detrital zircons, which are rare or absent in Lower Paleozoic Cordilleran continental shelf rocks. Maximum depositional ages inferred from the youngest detrital age peaks include latest Proterozoic-Early Cambrian, Cambrian, Ordovician, Silurian, Devonian, and Pennsylvanian. These maximum depositional ages overlap with conodont ages reported from fossiliferous carbonate rocks on Seward Peninsula. The distinctive features of the Arctic Alaska-Chukotka terrane include Neoproterozoic felsic magmatic rocks intruding 2.0-1.1 Ga crust overlain by Paleozoic carbonate rocks and Paleozoic siliciclastic rocks with Neoproterozoic detrital zircons. The Neoproterozoic ages are

  5. Landscape topography structures the soil microbiome in arctic polygonal tundra.

    PubMed

    Taş, Neslihan; Prestat, Emmanuel; Wang, Shi; Wu, Yuxin; Ulrich, Craig; Kneafsey, Timothy; Tringe, Susannah G; Torn, Margaret S; Hubbard, Susan S; Jansson, Janet K

    2018-02-22

    In the Arctic, environmental factors governing microbial degradation of soil carbon (C) in active layer and permafrost are poorly understood. Here we determined the functional potential of soil microbiomes horizontally and vertically across a cryoperturbed polygonal landscape in Alaska. With comparative metagenomics, genome binning of novel microbes, and gas flux measurements we show that microbial greenhouse gas (GHG) production is strongly correlated to landscape topography. Active layer and permafrost harbor contrasting microbiomes, with increasing amounts of Actinobacteria correlating with decreasing soil C in permafrost. While microbial functions such as fermentation and methanogenesis were dominant in wetter polygons, in drier polygons genes for C mineralization and CH 4 oxidation were abundant. The active layer microbiome was poised to assimilate N and not to release N 2 O, reflecting low N 2 O flux measurements. These results provide mechanistic links of microbial metabolism to GHG fluxes that are needed for the refinement of model predictions.

  6. Connecting Indigenous Knowledge to Thaw Lake Cycle Research on the Arctic Coastal Plain of Alaska

    NASA Astrophysics Data System (ADS)

    Eisner, W. R.; Cuomo, C. J.; Hinkel, K. M.; Jones, B. M.; Hurd, J.

    2005-12-01

    Thaw lakes cover about 20% of the Arctic Coastal Plain of Alaska. Another 26% is scarred by basins that form when lakes drain, and these drained thaw-lake basins are sites for preferential carbon accumulation as plant biomass. Recent studies in the continuous permafrost zone of Western Siberia suggest that lakes have been expanding in the past several decades in response to regional warming. Anticipated regional warming would likely mobilize sequestered soil organic carbon, resulting in the emission of CO2 and CH4. Our understanding of the processes leading to thaw lake formation, expansion, and drainage in northern Alaska has been limited because models are specific to the flat, young Outer (seaward) Coastal Plain comprising 1/3 of the region. Furthermore, spatial and temporal analysis of lake dynamics is largely restricted to the period since 1948, when aerial photographs first became available across large regions of the Coastal Plain. In order to fill these gaps, we have been interviewing Iñupiaq elders, hunters, and berry pickers from the villages of Atqasuk and Barrow. The objective of these interviews is to obtain accounts of lake formation, expansion and drainage that have occurred within living or oral memory, and extend the record back several generations. To date, we have interviewed fifteen Iñupiat; most of these are people who travel the tundra frequently and have done so for decades. They have first-hand experience of lake drainage, sea cliff and river bank erosion, permafrost degradation, and other landscape changes. Many informants expressed concern that landscape changes are occurring at an increasingly rapid rate. They have identified lakes that have drained, areas where the permafrost is thawing, and places where the sea and river coastline is eroding. We have been able to corroborate reports of lake drainage from our informants with a series of aerial photographs, satellite images, and radiocarbon dates. In many instances, the elders have

  7. Delineation of Tundra Swan Cygnus c. columbianus populations in North America: geographic boundaries and interchange

    USGS Publications Warehouse

    Ely, Craig R.; Sladen, William J. L.; Wilson, Heather M.; Savage, Susan E.; Sowl, Kristine M.; Henry, Bill; Schwitters, Mike; Snowden, James

    2014-01-01

    North American Tundra Swans Cygnus c. columbianus are composed of two wellrecognised populations: an Eastern Population (EP) that breeds across northern Canada and north of the Brooks Range in Alaska, which migrates to the eastern seaboard of the United States, and a Western Population (WP) that breeds in coastal regions of Alaska south of the Brooks Range and migrates to western North America. We present results of a recent major ringing effort from across the breeding range in Alaska to provide a better definition of the geographic extent of the migratory divide in Alaska. We also reassess the staging and winter distributions of these populations based on locations of birds tracked using satellite transmitters, and recent recoveries and sightings of neck-collared birds. Summer sympatry of EP and WP Tundra Swans is very limited, and largely confined to a small area in northwest Alaska. Autumn migration pathways of EP and WP Tundra swans abut in southwest Saskatchewan, a region where migrating WP birds turn west, and EP birds deviate abruptly eastward. Overall, from 1989 to 2013 inclusive, 2.6% of recoveries or resightings reported to the USGS Bird Banding Laboratory were of birds that moved from the domain of the population in which they were initially captured to within the range of the other population; a proportion roughly comparable to the results of Limpert et al. (1991) for years before 1990. Of the 70 cross-boundary movements reported since 1989, 39% were of birds marked on breeding areas and 61% were of birds marked on wintering areas. Dispersing swans (i.e. those that made crossboundary movements) did not differ with respect to age or sex from those that did not move between populations. The Brooks Range in northern Alaska effectively separates the two populations within Alaska, but climate-induced changes in tundra breeding habitats and losses of wetlands on staging areas may alter the distribution for both of these populations.

  8. Atmospheric deposition and critical loads for nitrogen and metals in Arctic Alaska: Review and current status

    USGS Publications Warehouse

    Linder, Greg L.; Brumbaugh, William G.; Neitlich, Peter; Little, Edward

    2013-01-01

    To protect important resources under their bureau’s purview, the United States National Park Service’s (NPS) Arctic Network (ARCN) has developed a series of “vital signs” that are to be periodically monitored. One of these vital signs focuses on wet and dry deposition of atmospheric chemicals and further, the establishment of critical load (CL) values (thresholds for ecological effects based on cumulative depositional loadings) for nitrogen (N), sulfur, and metals. As part of the ARCN terrestrial monitoring programs, samples of the feather moss Hylocomium splendens are being col- lected and analyzed as a cost-effective means to monitor atmospheric pollutant deposition in this region. Ultimately, moss data combined with refined CL values might be used to help guide future regulation of atmospheric contaminant sources potentially impacting Arctic Alaska. But first, additional long-term studies are needed to determine patterns of contaminant deposition as measured by moss biomonitors and to quantify ecosystem responses at particular loadings/ ranges of contaminants within Arctic Alaska. Herein we briefly summarize 1) current regulatory guidance related to CL values 2) derivation of CL models for N and metals, 3) use of mosses as biomonitors of atmospheric deposition and loadings, 4) preliminary analysis of vulnerabilities and risks associated with CL estimates for N, 5) preliminary analysis of existing data for characterization of CL values for N for interior Alaska and 6) implications for managers and future research needs.

  9. When winners become losers: Predicted nonlinear responses of arctic birds to increasing woody vegetation

    USGS Publications Warehouse

    Thompson, Sarah J.; Handel, Colleen M.; Richardson, Rachel M.; McNew, Lance B.

    2016-01-01

    Climate change is facilitating rapid changes in the composition and distribution of vegetation at northern latitudes, raising questions about the responses of wildlife that rely on arctic ecosystems. One widely observed change occurring in arctic tundra ecosystems is an increasing dominance of deciduous shrub vegetation. Our goals were to examine the tolerance of arctic-nesting bird species to existing gradients of vegetation along the boreal forest-tundra ecotone, to predict the abundance of species across different heights and densities of shrubs, and to identify species that will be most or least responsive to ongoing expansion of shrubs in tundra ecosystems. We conducted 1,208 point counts on 12 study blocks from 2012–2014 in northwestern Alaska, using repeated surveys to account for imperfect detection of birds. We considered the importance of shrub height, density of low and tall shrubs (i.e. shrubs >0.5 m tall), percent of ground cover attributed to shrubs (including dwarf shrubs <0.5 m tall), and percent of herbaceous plant cover in predicting bird abundance. Among 17 species considered, only gray-cheeked thrush (Catharus minimus) abundance was associated with the highest values of all shrub metrics in its top predictive model. All other species either declined in abundance in response to one or more shrub metrics or reached a threshold where further increases in shrubs did not contribute to greater abundance. In many instances the relationship between avian abundance and shrubs was nonlinear, with predicted abundance peaking at moderate values of the covariate, then declining at high values. In particular, a large number of species were responsive to increasing values of average shrub height with six species having highest abundance at near-zero values of shrub height and abundance of four other species decreasing once heights reached moderate values (≤ 33 cm). Our findings suggest that increases in shrub cover and density will negatively affect

  10. When Winners Become Losers: Predicted Nonlinear Responses of Arctic Birds to Increasing Woody Vegetation

    PubMed Central

    Thompson, Sarah J.; Handel, Colleen M.; Richardson, Rachel M.; McNew, Lance B.

    2016-01-01

    Climate change is facilitating rapid changes in the composition and distribution of vegetation at northern latitudes, raising questions about the responses of wildlife that rely on arctic ecosystems. One widely observed change occurring in arctic tundra ecosystems is an increasing dominance of deciduous shrub vegetation. Our goals were to examine the tolerance of arctic-nesting bird species to existing gradients of vegetation along the boreal forest-tundra ecotone, to predict the abundance of species across different heights and densities of shrubs, and to identify species that will be most or least responsive to ongoing expansion of shrubs in tundra ecosystems. We conducted 1,208 point counts on 12 study blocks from 2012–2014 in northwestern Alaska, using repeated surveys to account for imperfect detection of birds. We considered the importance of shrub height, density of low and tall shrubs (i.e. shrubs >0.5 m tall), percent of ground cover attributed to shrubs (including dwarf shrubs <0.5 m tall), and percent of herbaceous plant cover in predicting bird abundance. Among 17 species considered, only gray-cheeked thrush (Catharus minimus) abundance was associated with the highest values of all shrub metrics in its top predictive model. All other species either declined in abundance in response to one or more shrub metrics or reached a threshold where further increases in shrubs did not contribute to greater abundance. In many instances the relationship between avian abundance and shrubs was nonlinear, with predicted abundance peaking at moderate values of the covariate, then declining at high values. In particular, a large number of species were responsive to increasing values of average shrub height with six species having highest abundance at near-zero values of shrub height and abundance of four other species decreasing once heights reached moderate values (≤ 33 cm). Our findings suggest that increases in shrub cover and density will negatively affect

  11. Genetics, recruitment, and migration patterns of Arctic Cisco (Coregonus autumnalis) in the Colville River, Alaska and Mackenzie River, Canada

    USGS Publications Warehouse

    Zimmerman, Christian E.; Ramey, Andy M.; Turner, S.; Mueter, Franz J.; Murphy, S.; Nielsen, Jennifer L.

    2013-01-01

    Arctic cisco Coregonus autumnalis have a complex anadromous life history, many aspects of which remain poorly understood. Some life history traits of Arctic cisco from the Colville River, Alaska, and Mackenzie River basin, Canada, were investigated using molecular genetics, harvest data, and otolith microchemistry. The Mackenzie hypothesis, which suggests that Arctic cisco found in Alaskan waters originate from the Mackenzie River system, was tested using 11 microsatellite loci and a single mitochondrial DNA gene. No genetic differentiation was found among sample collections from the Colville River and the Mackenzie River system using molecular markers (P > 0.19 in all comparisons). Model-based clustering methods also supported genetic admixture between sample collections from the Colville River and Mackenzie River basin. A reanalysis of recruitment patterns to Alaska, which included data from recent warm periods and suspected changes in atmospheric circulation patterns, still finds that recruitment is correlated to wind conditions. Otolith microchemistry (Sr/Ca ratios) confirmed repeated, annual movements of Arctic cisco between low-salinity habitats in winter and marine waters in summer.

  12. Isotopic identification of soil and permafrost nitrate sources in an Arctic tundra ecosystem

    DOE PAGES

    Heikoop, Jeffrey M.; Throckmorton, Heather M.; Newman, Brent D.; ...

    2015-06-08

    The nitrate (NO₃⁻) dual isotope approach was applied to snowmelt, tundra active layer pore waters, and underlying permafrost in Barrow, Alaska, USA, to distinguish between NO₃⁻ derived from at NO₃⁻ signal with δ¹⁵N averaging –4.8 ± 1.0‰ (standard error of the mean) and δ¹⁸O averaging 70.2 ±1.7‰. In active layer pore waters, NO₃⁻ primarily occurred at concentrations suitable for isotopic analysis in the relatively dry and oxic centers of high-centered polygons. The average δ¹⁵N and δ¹⁸O of NO₃⁻ from high-centered polygons were 0.5 ± 1.1‰ and –4.1 ± 0.6‰, respectively. When compared to the δ¹⁵N of reduced nitrogen (N) sources,more » and the δ¹⁸O of soil pore waters, it was evident that NO₃⁻ in high-centered polygons was primarily from microbial nitrification. Permafrost NO₃⁻ had δ¹⁵N ranging from approximately –6‰ to 10‰, similar to atmospheric and microbial NO₃⁻, and highly variable δ¹⁸O ranging from approximately –2‰ to 38‰. Permafrost ice wedges contained a significant atmospheric component of NO₃⁻, while permafrost textural ice contained a greater proportion of microbially derived NO₃⁻. Large-scale permafrost thaw in this environment would release NO₃⁻ with a δ¹⁸O signature intermediate to that of atmospheric and microbial NO₃. Consequently, while atmospheric and microbial sources can be readily distinguished by the NO₃⁻ dual isotope technique in tundra environments, attribution of NO₃⁻ from thawing permafrost will not be straightforward. The NO₃⁻ isotopic signature, however, appears useful in identifying NO₃⁻ sources in extant permafrost ice.« less

  13. Brominated flame retardants in polar bears (Ursus maritimus) from Alaska, the Canadian Arctic, East Greenland, and Svalbard.

    PubMed

    Muir, Derek C G; Backus, Sean; Derocher, Andrew E; Dietz, Rune; Evans, Thomas J; Gabrielsen, Geir W; Nagy, John; Norstrom, Ross J; Sonne, Christian; Stirling, Ian; Taylor, Mitch K; Letcher, Robert J

    2006-01-15

    Polybrominated diphenyl ethers (PBDEs) were determined in adipose tissue of adult and subadult female polar bears sampled between 1999 and 2002 from sub-populations in Arctic Canada, eastern Greenland, and Svalbard, and in males and females collected from 1994 to 2002 in northwestern Alaska. Only 4 congeners (BDE47, 99, 100, and 153) were consistently identified in all samples. BDE47 was the major PBDE congener representing from 65% to 82% of the sum (sigma) PBDEs. Age was not a significant covariate for individual PBDEs or sigmaPBDE. Higher proportions of BDE 99, 100, and 153 were generally found in samples from the Canadian Arctic than from Svalbard or the Bering-Chukchi Sea area of Alaska. Geometric mean sigmaPBDE concentrations were highest for female polar bear fat samples collected from Svalbard (50 ng/g lipid weight (lw)) and East Greenland (70 ng/g lw). Significantly lower sigmaPBDE concentrations were found in fat of bears from Canada and Alaska (means ranging from 7.6 to 22 ng/g lw).

  14. Contrasting above- and belowground organic matter decomposition and carbon and nitrogen dynamics in response to warming in High Arctic tundra.

    PubMed

    Blok, Daan; Faucherre, Samuel; Banyasz, Imre; Rinnan, Riikka; Michelsen, Anders; Elberling, Bo

    2018-06-01

    Tundra regions are projected to warm rapidly during the coming decades. The tundra biome holds the largest terrestrial carbon pool, largely contained in frozen permafrost soils. With warming, these permafrost soils may thaw and become available for microbial decomposition, potentially providing a positive feedback to global warming. Warming may directly stimulate microbial metabolism but may also indirectly stimulate organic matter turnover through increased plant productivity by soil priming from root exudates and accelerated litter turnover rates. Here, we assess the impacts of experimental warming on turnover rates of leaf litter, active layer soil and thawed permafrost sediment in two high-arctic tundra heath sites in NE-Greenland, either dominated by evergreen or deciduous shrubs. We incubated shrub leaf litter on the surface of control and warmed plots for 1 and 2 years. Active layer soil was collected from the plots to assess the effects of 8 years of field warming on soil carbon stocks. Finally, we incubated open cores filled with newly thawed permafrost soil for 2 years in the active layer of the same plots. After field incubation, we measured basal respiration rates of recovered thawed permafrost cores in the lab. Warming significantly reduced litter mass loss by 26% after 1 year incubation, but differences in litter mass loss among treatments disappeared after 2 years incubation. Warming also reduced litter nitrogen mineralization and decreased the litter carbon to nitrogen ratio. Active layer soil carbon stocks were reduced 15% by warming, while soil dissolved nitrogen was reduced by half in warmed plots. Warming had a positive legacy effect on carbon turnover rates in thawed permafrost cores, with 10% higher respiration rates measured in cores from warmed plots. These results demonstrate that warming may have contrasting effects on above- and belowground tundra carbon turnover, possibly governed by microbial resource availability. © 2017 John

  15. Inter-annual Variability in Tundra Phenology Captured with Digital Photography

    NASA Astrophysics Data System (ADS)

    Melendez, M.; Vargas, S. A.; Tweedie, C. E.

    2012-12-01

    The need to improve multi-scale phenological monitoring of arctic terrestrial ecosystems has been a persistent research challenge. Although there has been a range of advances in remote sensing capacities over the past decade, these present costly, and sometimes logistically challenging and technically demanding solutions for arctic terrestrial ecosystems. In this poster and undergraduate research project, we demonstrate how seasonal and inter-annual variability in landscape phenology can be derived for multiple tundra ecosystems using a low-cost and low-tech kite aerial photography (KAP) system that has been developed as a contribution to the US Arctic Observing Network. Seasonal landscape phenology was observed over the Networked Info-Mechanical Systems (NIMS) grids (2 x 50 meters) located in Barrow and Atqasuk, Alaska using imagery acquired with KAP and analyzed for a range of greenness indices. Preliminary results showed that the 2G-RB greenness index correlated the best with NDVI values calculated from ground based hyperspectral reflectance measurements. 2012 had the highest 2G-RB greenness index values for both Barrow and Atqasuk sites, which correlated well with NDVI values acquired from ground-based hyperspectral reflectance measurements. Wet vegetation types showed the most interannual variability at the Atqasuk site based on the 2G-RB greenness index while in Barrow the moist vegetation types showed the most interannual variability. These results show that vegetation indices similar to those acquired from hyperspectral remote sensing platforms can be derived using low-cost and low-tech techniques. Further analysis using these same techniques is required in order to link relatively small scale vegetation dynamics measured with KAP with those documented at large scales using satellite imagery.

  16. Multispectral remote observations of hydrologic features on the North Slope of Alaska

    NASA Technical Reports Server (NTRS)

    Hall, D. K.; Bryan, M. L.

    1977-01-01

    Visible and near-infrared satellite data and active and passive microwave aircraft data are used to analyze some hydrologic features in Arctic Alaska. The following features have been studied: the small thaw lakes on the Arctic Coastal Plain (oriented lakes), Chandalar Lake in the Brooks Range, several North Slope rivers, surface water on the tundra, and snowcover on the North Slope and in the Brooks Range. Passive microwave brightness temperatures (T sub b) as seen on Electrically Scanned Microwave Radiometer (ESMR) imagery are shown to increase with increasing ice thickness on all of the lakes studied. Aufeis, an important hydrologic parameter in the Arctic, is observable in the Sagavanirktok River channel on April ESMR imagery. LANDSAT imagery with better (80 m) resolution is useful for measuring aufeis extent using band 5 imagery obtained just after snowmelt in June. It is shown that the extent of aufeis (as measured on LANDSAT imagery) varies with meteorological conditions and, therefore, may be a useful indicator of annual climate fluctuations on the North Slope. Snow and ice breakup has been traced from the Brooks Range Mountains to the Arctic Ocean Coast using LANDSAT band 7 imagery in May when melting begins in the mountains.

  17. Alaska Arctic marine fish ecology catalog

    USGS Publications Warehouse

    Thorsteinson, Lyman K.; Love, Milton S.

    2016-08-08

    The marine fishes in waters of the United States north of the Bering Strait have received new and increased scientific attention over the past decade (2005–15) in conjunction with frontier qualities of the region and societal concerns about the effects of Arctic climate change. Commercial fisheries are negligible in the Chukchi and Beaufort Seas, but many marine species have important traditional and cultural values to Alaska Native residents. Although baseline conditions are rapidly changing, effective decisions about research and monitoring investments must be based on reliable information and plausible future scenarios. For the first time, this synthesis presents a comprehensive evaluation of the marine fish fauna from both seas in a single reference. Although many unknowns and uncertainties remain in the scientific understanding, information presented here is foundational with respect to understanding marine ecosystems and addressing dual missions of the U.S. Department of the Interior for energy development and resource conservation. 

  18. Predicting breeding shorebird distributions on the Arctic Coastal Plain of Alaska

    USGS Publications Warehouse

    Saalfeld, Sarah T.; Lanctot, Richard B.; Brown, Stephen C.; Saalfeld, David T.; Johnson, James A.; Andres, Brad A.; Bart, Jonathan R.

    2013-01-01

    The Arctic Coastal Plain (ACP) of Alaska is an important region for millions of migrating and nesting shorebirds. However, this region is threatened by climate change and increased human development (e.g., oil and gas production) that have the potential to greatly impact shorebird populations and breeding habitat in the near future. Because historic data on shorebird distributions in the ACP are very coarse and incomplete, we sought to develop detailed, contemporary distribution maps so that the potential impacts of climate-mediated changes and development could be ascertained. To do this, we developed and mapped habitat suitability indices for eight species of shorebirds (Black-bellied Plover [Pluvialis squatarola], American Golden-Plover [Pluvialis dominica], Semipalmated Sandpiper [Calidris pusilla], Pectoral Sandpiper [Calidris melanotos], Dunlin [Calidris alpina], Long-billed Dowitcher [Limnodromus scolopaceus], Red-necked Phalarope [Phalaropus lobatus], and Red Phalarope [Phalaropus fulicarius]) that commonly breed within the ACP of Alaska. These habitat suitability models were based on 767 plots surveyed during nine years between 1998 and 2008 (surveys were not conducted in 2003 and 2005), using single-visit rapid area searches during territory establishment and incubation (8 June, 1 July). Species specific habitat suitability indices were developed and mapped using presence-only modeling techniques (partitioned Mahalanobis distance) and landscape environmental variables. For most species, habitat suitability was greater at lower elevations (i.e., near the coast and river deltas) and lower within upland habitats. Accuracy of models was high for all species, ranging from 65 -98%. Our models predicted that the largest fraction of suitable habitat for the majority of species occurred within the National Petroleum Reserve-Alaska, with highly suitable habitat also occurring within coastal areas of the Arctic National Wildlife Refuge west to Prudhoe Bay.

  19. Soil moisture and soil temperature variability among three plant communities in a High Arctic Lake Basin

    NASA Astrophysics Data System (ADS)

    Davis, M. L.; Konkel, J.; Welker, J. M.; Schaeffer, S. M.

    2017-12-01

    Soil moisture and soil temperature are critical to plant community distribution and soil carbon cycle processes in High Arctic tundra. As environmental drivers of soil biochemical processes, the predictability of soil moisture and soil temperature by vegetation zone in High Arctic landscapes has significant implications for the use of satellite imagery and vegetation distribution maps to estimate of soil gas flux rates. During the 2017 growing season, we monitored soil moisture and soil temperature weekly at 48 sites in dry tundra, moist tundra, and wet grassland vegetation zones in a High Arctic lake basin. Soil temperature in all three communities reflected fluctuations in air temperature throughout the season. Mean soil temperature was highest in the dry tundra community at 10.5±0.6ºC, however, did not differ between moist tundra and wet grassland communities (2.7±0.6 and 3.1±0.5ºC, respectively). Mean volumetric soil moisture differed significantly among all three plant communities with the lowest and highest soil moisture measured in the dry tundra and wet grassland (30±1.2 and 65±2.7%), respectively. For all three communities, soil moisture was highest during the early season snow melt. Soil moisture in wet grassland remained high with no significant change throughout the season, while significant drying occurred in dry tundra. The most significant change in soil moisture was measured in moist tundra, ranging from 61 to 35%. Our results show different gradients in soil moisture variability within each plant community where: 1) soil moisture was lowest in dry tundra with little change, 2) highest in wet grassland with negligible change, and 3) variable in moist tundra which slowly dried but remained moist. Consistently high soil moisture in wet grassland restricts this plant community to areas with no significant drying during summer. The moist tundra occupies the intermediary areas between wet grassland and dry tundra and experiences the widest range

  20. Bioremediation of petroleum spills in Arctic and Sub-Arctic environments

    DOT National Transportation Integrated Search

    1989-11-01

    Unaided rehabilitation of petroleum spills can affect tundra soils for up to 30 years. Effects of oil spills on Sub-Arctic forest soils last for at least a decade. Natural remediation is slow because of the cold dominated climate and short growing se...

  1. Simulating the Permafrost Distribution on the Seward Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    Busey, R.; Hinzman, L. D.; Yoshikawa, K.; Liston, G. E.

    2005-12-01

    Permafrost extent has been estimated using an equivalent latitude / elevation model based upon good climate, terrain and soil property data. This research extends a previously developed model to a relatively data sparse region. We are applying the general equivalent attitude model developed for Caribou-Poker Creeks Research Watershed over the much larger area of the Seward Peninsula, Alaska. This region of sub-Arctic Alaska is a proxy for a warmer Arctic due to the broad expanses of tussock tundra, invading shrubs and fragile permafrost with average temperatures just below freezing. The equivalent latitude model combines elevation, slope, and aspect with snow cover, where the snow cover distribution was defined using MicroMet and SnowModel. Source data for the distributed snow model came from meteorological stations across the Seward Peninsula from the National Weather Service, SNOTEL, RAWS, and our own stations. Simulations of permafrost extent will enable us to compare the current distribution to that existing during past climates and estimate the future state of permafrost on the Seward Peninsula. The broadest impacts to the terrestrial arctic regions will result through consequent effects of changing permafrost structure and extent. As the climate differentially warms in summer and winter, the permafrost will become warmer, the active layer (the layer of soil above the permafrost that annually experiences freeze and thaw) will become thicker, the lower boundary of permafrost will become shallower and permafrost extent will decrease in area. These simple structural changes will affect every aspect of the surface water and energy balances. As permafrost extent decreases, there is more infiltration to groundwater. This has significant impacts on large and small scales.

  2. Inventory of montane-nesting birds in the Arctic Network of National Parks, Alaska

    USGS Publications Warehouse

    Tibbitts, T.L.; Ruthrauff, D.R.; Gill, Robert E.; Handel, Colleen M.

    2006-01-01

    The Alaska Science Center of the U.S. Geological Survey conducted an inventory of birds in montane areas of the four northern parks in the Arctic Network of National Parks, Alaska. This effort represents the first comprehensive assessment of breeding range and habitat associations for the majority of avian species in the Arctic Network. Ultimately, these data provide a framework upon which to design future monitoring programs.A stratified random sampling design was used to select sample plots (n = 73 plots) that were allocated in proportion to the availability of ecological subsections. Point counts (n = 1,652) were conducted to quantify abundance, distribution, and habitat associations of birds. Field work occurred over three years (2001 to 2003) during two-week-long sessions in late May through early June that coincided with peak courtship activity of breeding birds.Totals of 53 species were recorded in Cape Krusenstern National Monument, 91 in Noatak National Preserve, 57 in Kobuk Valley National Park, and 96 in Gates of the Arctic National Park and Preserve. Substantial proportions of species in individual parks are considered species of conservation concern (18 to 26%) or species of stewardship responsibility of the land managers in the region (8 to 18%). The most commonly detected passerines on point counts included Redpoll spp. (Carduelis flammea and C. hornemanni), Savannah Sparrow (Passerculus sandwichensis), and American Tree Sparrow (Spizella arborea). The most numerous shorebirds were American Golden-Plover (Pluvialis dominica), Wilson’s Snipe (Gallinago delicata), and Whimbrel (Numenius phaeopus). Most species were detected at low rates, reflecting the low breeding densities (and/or low detectabilities) of birds in the montane Arctic. Suites of species were associated with particular ranges of elevation and showed strong associations with particular habitat types.

  3. Modeling carbon-nutrient interactions during the early recovery of tundra after fire.

    PubMed

    Jiang, Yueyang; Rastetter, Edward B; Rocha, Adrian V; Pearce, Andrea R; Kwiatkowski, Bonnie L; Shaver, Gaius R

    2015-09-01

    Fire frequency has dramatically increased in the tundra of northern Alaska, USA, which has major implications for the carbon budget of the region and the functioning of these ecosystems, which support important wildlife species. We investigated the postfire succession of plant and soil carbon (C), nitrogen (N), and phosphorus (P) fluxes and stocks along a burn severity gradient in the 2007 Anaktuvuk River fire scar in northern Alaska. Modeling results indicated that the early regrowth of postfire tundra vegetation was limited primarily by its canopy photosynthetic potential, rather than nutrient availability, because of the initially low leaf area and relatively high inorganic N and P concentrations in soil. Our simulations indicated that the postfire recovery of tundra vegetation was sustained predominantly by the uptake of residual inorganic N (i.e., in the remaining ash), and the redistribution of N and P from soil organic matter to vegetation. Although residual nutrients in ash were higher in the severe burn than the moderate burn, the moderate burn recovered faster because of the higher remaining biomass and consequent photosynthetic potential. Residual nutrients in ash allowed both burn sites to recover and exceed the unburned site in both aboveground biomass and production five years after the fire. The investigation of interactions among postfire C, N, and P cycles has contributed to a mechanistic understanding of the response of tundra ecosystems to fire disturbance. Our study provided insight on how the trajectory of recovery of tundra from wildfire is regulated during early succession.

  4. Temperature data acquired from the DOI/GTN-P Deep Borehole Array on the Arctic Slope of Alaska, 1973-2013

    USGS Publications Warehouse

    Clow, Gary D.

    2014-01-01

    System (GTOS). The data will also be useful for refining our basic understanding of the physical conditions in permafrost in Arctic Alaska, as well as providing important information for validating predictive models used for climate impact assessments. The processed data are available from the Advanced Cooperative Arctic Data and Information Service (ACADIS) repository at doi:10.5065/D6N014HK.

  5. Engaging Local Communities in Arctic Observing Networks: A Collaborative Shoreline Change Risk WebGIS for Alaska's Arctic Slope Region

    NASA Astrophysics Data System (ADS)

    Brady, M.

    2017-12-01

    This study engaged local community stakeholders in Alaska's Arctic Slope Region to develop a web-based shoreline change risk geographic information system (WebGIS) in collaboration with the North Slope Borough and its residents. The value of the effort includes rich spatial documentation of local risks across the vast, remote, and rapidly changing shoreline, and identification of local manager information needs to direct WebGIS development. The study advances our understanding of shoreline change problems from the perspective of local Arctic communities beyond municipal impacts while building decision support. Over fifty local residents in three communities with collective coastal knowledge that extends across the National Petroleum Reserve - Alaska and Arctic National Wildlife Refuge shared their perspectives on hard copy maps. Sixteen managers provided usability perceptions of a beta WebGIS with shoreline change susceptibility information summarized at relevant asset locations such as subsistence camps. The hard copy maps with 300 "problem places" were digitized for analysis, which revealed problems across the coastline, especially challenges to boating for subsistence hunting such as shoaling cutting off access and creating hazards. The usability workshop revealed specific information needs including the need to monitor impacts at decommissioned national defense radar sites repurposed by locals to centralize oil and gas activity. These results were analyzed using an Instructional Systems Design (ISD) framework consisting of front-end and formative WebGIS evaluation phases. The front-end evaluation is the local input on hard copy maps, which provided local verification of coastal risks. The formative evaluation is the usability workshop with managers, which informed WebGIS development while promoting user buy-in. In terms of product and process, the local knowledge and information needs collected are significant because they establish local engagement with the

  6. Temperature response of respiration across heterogeneous microtopography in the Arctic tundra, Utqiaġvik, Alaska

    NASA Astrophysics Data System (ADS)

    Wilkman, E.; Zona, D.; Tang, Y.; Gioli, B.; Lipson, D.; Oechel, W. C.

    2017-12-01

    The response of ecosystem respiration to warming in the Arctic is not well constrained, partly due to the presence of ice-wedge polygons in continuous permafrost areas. These formations lead to substantial variation in vegetation, soil moisture, water table, and active layer depth over the meter scale that can drive respiratory carbon loss. Accurate calculations of in-situ temperature sensitivities (Q10) are vital for the prediction of future Arctic emissions, and while the eddy covariance technique has commonly been used to determine the diurnal and season patterns of net ecosystem exchange (NEE) of CO2, the lack of suitable dark periods in the Arctic summer has limited our ability to estimate and interpret ecosystem respiration. To therefore improve our understanding of and define controls on ecosystem respiration, we directly compared CO2 fluxes measured from automated chambers across the main local polygonised landscape forms (high and low centers, polygon rims, and polygon troughs) to estimates from an adjacent eddy covariance tower. Low-centered polygons and polygon troughs had the greatest cumulative respiration rates, and ecosystem type appeared to be the most important explanatory variable for these rates. Despite the difference in absolute respiration rates, Q10 was surprisingly similar across all microtopographic features, despite contrasting water levels and vegetation types. Conversely, Q10 varied temporally, with higher values during the early and late summer and lower values during the peak growing season. Finally, good agreement was found between chamber and tower based Q10 estimates during the peak growing season. Overall, this study suggests that it is possible to simplify estimates of the temperature sensitivity of respiration across heterogeneous landscapes, but that seasonal changes in Q10 should be incorporated into current and future model simulations.

  7. A Paleo Perspective on Arctic and Mid-latitude Linkages from a Southeast Alaska Ice Core

    NASA Astrophysics Data System (ADS)

    Porter, S. E.; Mosley-Thompson, E.; Thompson, L. G.; Bolzan, J. F.

    2017-12-01

    Recent extreme weather events in the Northern Hemisphere have been linked to anomalously amplified jet stream patterns, North Pacific marine heatwaves, retreating Arctic sea ice extent, and/or the combination thereof. The role of the Arctic in influencing mid-latitude weather and extreme events is a burgeoning topic of climate research that is limited primarily to the recent decades in which Arctic amplification and shrinking Arctic sea ice extent are occurring. Paleo-proxy data afford an opportunity to place the changing Arctic and its far-reaching climatic consequences in the longer context of Earth's climate history and allow identification of time periods with conditions analogous to the present. Ice core-derived annual net accumulation from the Bona-Churchill (BC) ice core, retrieved in 2002 from the Wrangell-St. Elias mountain range in southeast Alaska, is used to explore the historical characteristics of the regional North Pacific climate and the further afield teleconnections. Variability of accumulation on BC is driven primarily by shifts in the position of the Aleutian Low which influences the available moisture sources for the drill site. The accumulation record is also related to sea surface temperatures in the Gulf of Alaska, defined here by the North Pacific Mode and somewhat colloquially as the North Pacific "blob". Thus due to its connection with the Aleutian Low and North Pacific sea surface temperatures, this uniquely situated ice core record indirectly captures the phasing of troughs and ridges in the polar jet stream over North America, and thereby facilitates examination of the atmospheric wave structure prior to the instrumental record. The relationships among the ice core accumulation record and various North Pacific climate features are presented along with evidence identifying specific time periods possibly characterized by persistently amplified wave patterns.

  8. Rising plant-mediated methane emissions from arctic wetlands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andresen, Christian G.; Lara, Mark J.; Tweedie, Craig E.

    Plant-mediated CH 4 flux is an important pathway for land–atmosphere CH 4 emissions, but the magnitude, timing, and environmental controls, spanning scales of space and time, remain poorly understood in arctic tundra wetlands, particularly under the long-term effects of climate change. CH 4 fluxes were measured in situ during peak growing season for the dominant aquatic emergent plants in the Alaskan arctic coastal plain, Carex aquatilis and Arctophila fulva, to assess the magnitude and species-specific controls on CH 4 flux. Plant biomass was a strong predictor of A. fulva CH 4 flux while water depth and thaw depth were copredictorsmore » for C. aquatilis CH 4 flux. Here, we used plant and environmental data from 1971 to 1972 from the historic International Biological Program (IBP) research site near Barrow, Alaska, which we resampled in 2010–2013, to quantify changes in plant biomass and thaw depth, and used these to estimate species-specific decadal-scale changes in CH 4 fluxes. A ~60% increase in CH 4 flux was estimated from the observed plant biomass and thaw depth increases in tundra ponds over the past 40 years. In spite of our covering only ~5% of the landscape, we estimate that aquatic C. aquatilis and A. fulva account for two-thirds of the total regional CH 4 flux of the Barrow Peninsula. The regionally observed increases in plant biomass and active layer thickening over the past 40 years not only have major implications for energy and water balance, but also have significantly altered land–atmosphere CH 4 emissions for this region, potentially acting as a positive feedback to climate warming.« less

  9. Rising plant-mediated methane emissions from arctic wetlands

    DOE PAGES

    Andresen, Christian G.; Lara, Mark J.; Tweedie, Craig E.; ...

    2016-09-14

    Plant-mediated CH 4 flux is an important pathway for land–atmosphere CH 4 emissions, but the magnitude, timing, and environmental controls, spanning scales of space and time, remain poorly understood in arctic tundra wetlands, particularly under the long-term effects of climate change. CH 4 fluxes were measured in situ during peak growing season for the dominant aquatic emergent plants in the Alaskan arctic coastal plain, Carex aquatilis and Arctophila fulva, to assess the magnitude and species-specific controls on CH 4 flux. Plant biomass was a strong predictor of A. fulva CH 4 flux while water depth and thaw depth were copredictorsmore » for C. aquatilis CH 4 flux. Here, we used plant and environmental data from 1971 to 1972 from the historic International Biological Program (IBP) research site near Barrow, Alaska, which we resampled in 2010–2013, to quantify changes in plant biomass and thaw depth, and used these to estimate species-specific decadal-scale changes in CH 4 fluxes. A ~60% increase in CH 4 flux was estimated from the observed plant biomass and thaw depth increases in tundra ponds over the past 40 years. In spite of our covering only ~5% of the landscape, we estimate that aquatic C. aquatilis and A. fulva account for two-thirds of the total regional CH 4 flux of the Barrow Peninsula. The regionally observed increases in plant biomass and active layer thickening over the past 40 years not only have major implications for energy and water balance, but also have significantly altered land–atmosphere CH 4 emissions for this region, potentially acting as a positive feedback to climate warming.« less

  10. A potential loss of carbon associated with greater plant growth in the European Arctic

    NASA Astrophysics Data System (ADS)

    Hartley, Iain P.; Garnett, Mark H.; Sommerkorn, Martin; Hopkins, David W.; Fletcher, Benjamin J.; Sloan, Victoria L.; Phoenix, Gareth K.; Wookey, Philip A.

    2012-12-01

    Rapid warming is expected to increase plant growth in the Arctic, and result in trees gradually colonizing tundra. Models predict that enhanced carbon (C) storage in plant biomass may help offset atmospheric CO2 increases and reduce rates of climate change. However, in some Arctic ecosystems, high plant productivity is associated with rapid cycling and low storage of soil C (refs , , ); thus, as plant growth increases, soil C may be lost through enhanced decomposition. Here we show that, in northern Sweden, total ecosystem C storage is greater in tundra heath (owing to greater soil C stocks) than in more productive mountain-birch forest. Furthermore, we demonstrate that in the forest, high plant activity during the middle of the growing season stimulates the decomposition of older soil organic matter. Such a response, referred to as positive priming, helps explain the low soil C storage in the forest when compared with the tundra. We suggest that, as more productive forest communities colonize tundra, the decomposition of the large C stocks in tundra soils could be stimulated. Thus, counter-intuitively, increased plant growth in the European Arctic could result in C being released to the atmosphere, accelerating climate change.

  11. The lab and the land: overcoming the Arctic in Cold War Alaska.

    PubMed

    Farish, Matthew

    2013-03-01

    The militarization of Alaska during and after World War II created an extraordinary set of new facilities. But it also reshaped the imaginative role of Alaska as a hostile environment, where an antagonistic form of nature could be defeated with the appropriate combination of technology and training. One of the crucial sites for this reformulation was the Arctic Aeromedical Laboratory, based at Ladd Air Force Base in Fairbanks. In the first two decades of the Cold War, its employees conducted numerous experiments on acclimatization and survival. The laboratory is now best known for an infamous set of tests involving the application of radioactive tracers to indigenous Alaskans--experiments publicized by post-Cold War panels established to evaluate the tragic history of atomic-era human subject research. But little else has been written about the laboratory's relationship with the populations and landscapes that it targeted for study. This essay presents the laboratory as critical to Alaska's history and the history of the Cold War sciences. A consideration of the laboratory's various projects also reveals a consistent fascination with race. Alaskan Natives were enrolled in experiments because their bodies were understood to hold clues to the mysteries of northern nature. A scientific solution would aid American military campaigns not only in Alaska, but in cold climates everywhere.

  12. Two mechanisms of aquatic and terrestrial habitat change along an Alaskan Arctic coastline

    USGS Publications Warehouse

    Arp, Christopher D.; Jones, Benjamin M.; Schmutz, Joel A.; Urban, Frank E.; Jorgenson, M. Torre

    2010-01-01

    Arctic habitats at the interface between land and sea are particularly vulnerable to climate change. The northern Teshekpuk Lake Special Area (N-TLSA), a coastal plain ecosystem along the Beaufort Sea in northern Alaska, provides habitat for migratory waterbirds, caribou, and potentially, denning polar bears. The 60-km coastline of N-TLSA is experiencing increasing rates of coastline erosion and storm surge flooding far inland resulting in lake drainage and conversion of freshwater lakes to estuaries. These physical mechanisms are affecting upland tundra as well. To better understand how these processes are affecting habitat, we analyzed long-term observational records coupled with recent short-term monitoring. Nearly the entire coastline has accelerating rates of erosion ranging from 6 m/year from 1955 to 1979 and most recently peaking at 17 m/year from 2007 to 2009, yet an intensive monitoring site along a higher bluff (3–6 masl) suggested high interannual variability. The frequency and magnitude of storm events appears to be increasing along this coastline and these patterns correspond to a greater number of lake tapping and flooding events since 2000. For the entire N-TLSA, we estimate that 6% of the landscape consists of salt-burned tundra, while 41% is prone to storm surge flooding. This offset may indicate the relative frequency of low-magnitude flood events along the coastal fringe. Monitoring of coastline lakes confirms that moderate westerly storms create extensive flooding, while easterly storms have negligible effects on lakes and low-lying tundra. This study of two interacting physical mechanisms, coastal erosion and storm surge flooding, provides an important example of the complexities and data needs for predicting habitat change and biological responses along Arctic land–ocean interfaces.

  13. Herbivore Impact on Tundra Plant Community Dynamics Using Long-term Remote Sensing Observation

    NASA Astrophysics Data System (ADS)

    Yu, Q.; Engstrom, R.; Shiklomanov, N. I.

    2014-12-01

    Arctic tundra biome is now experiencing dramatic environmental changes accentuated by summer sea-ice decline, permafrost thaw, and shrub expansion. Multi-decadal time-series of the Normalized Difference Vegetation Index (NDVI, a spectral metric of vegetation productivity) shows an overall "greening" trend across the Arctic tundra biome. Regional trends in climate plausibly explain large-scale patterns of increasing plant productivity, as diminished summer sea-ice extent warms the adjacent land causing tundra vegetation to respond positively (increased photosynthetic aboveground biomass). However, at more local scales, there is a great deal of spatial variability in NDVI trends that likely reflects differences in hydrology and soil conditions, disturbance history, and use by wildlife and humans. Particularly, habitat use by large herbivores, such as reindeer and caribou, has large impacts on vegetation dynamics at local and regional scales, but the role of herbivores in modulating the response of vegetation to warming climate has received little attention. This study investigates regional tundra plant community dynamics within inhabits of different sizes of wild caribou/reindeer herds across the Arctic using GIMMS NDVI (Normalized Difference Vegetation Index) 3g data product. The Taimyr herd in Russia is one of the largest herds in the world with a population increase from 450,000 in 1975 to about 1 million animals in 2000. The population of the porcupine caribou herd has fluctuated in the past three decades between 100,000 and 180,000. Time-series of the maximum NDVI within the inhabit area of the Taimyr herd has increased about 2% per decade over the past three decades, while within the inhabit area of the Porcupine herd the maximum NDVI has increased about 5% per decade. Our results indicate that the impact of large herbivores can be detected from space and further analyses on seasonal dynamics of vegetation indices and herbivore behavior may provide more

  14. Changing Arctic ecosystems: ecology of loons in a changing Arctic

    USGS Publications Warehouse

    Uher-Koch, Brian; Schmutz, Joel; Whalen, Mary; Pearce, John M.

    2014-01-01

    The U.S. Geological Survey (USGS) Changing Arctic Ecosystems (CAE) initiative informs key resource management decisions for Arctic Alaska by providing scientific information on current and future ecosystem response to a changing climate. From 2010 to 2014, a key study area for the USGS CAE initiative has been the Arctic Coastal Plain of northern Alaska. This region has experienced rapid warming during the past 30 years, leading to the thawing of permafrost and changes to lake and river systems. These changes, and projections of continued change, have raised questions about effects on wildlife populations that rely on northern lake ecosystems, such as loons. Loons rely on freshwater lakes for nesting habitat and the fish and invertebrates inhabiting the lakes for food. Loons live within the National Petroleum Reserve-Alaska (NPR-A) on Alaska’s northern coast, where oil and gas development is expected to increase. Research by the USGS examines how breeding loons use the Arctic lake ecosystem and the capacity of loons to adapt to future landscape change.

  15. Ice-age megafauna in Arctic Alaska: extinction, invasion, survival

    USGS Publications Warehouse

    Mann, Daniel H.; Groves, Pamela; Kunz, Michael L.; Reanier, Richard E.; Gaglioti, Benjamin V.

    2013-01-01

    Radical restructuring of the terrestrial, large mammal fauna living in arctic Alaska occurred between 14,000 and 10,000 years ago at the end of the last ice age. Steppe bison, horse, and woolly mammoth became extinct, moose and humans invaded, while muskox and caribou persisted. The ice age megafauna was more diverse in species and possibly contained 6× more individual animals than live in the region today. Megafaunal biomass during the last ice age may have been 30× greater than present. Horse was the dominant species in terms of number of individuals. Lions, short-faced bears, wolves, and possibly grizzly bears comprised the predator/scavenger guild. The youngest mammoth so far discovered lived ca 13,800 years ago, while horses and bison persisted on the North Slope until at least 12,500 years ago during the Younger Dryas cold interval. The first people arrived on the North Slope ca 13,500 years ago. Bone-isotope measurements and foot-loading characteristics suggest megafaunal niches were segregated along a moisture gradient, with the surviving species (muskox and caribou) utilizing the warmer and moister portions of the vegetation mosaic. As the ice age ended, the moisture gradient shifted and eliminated habitats utilized by the dryland, grazing species (bison, horse, mammoth). The proximate cause for this change was regional paludification, the spread of organic soil horizons and peat. End-Pleistocene extinctions in arctic Alaska represent local, not global extinctions since the megafaunal species lost there persisted to later times elsewhere. Hunting seems unlikely as the cause of these extinctions, but it cannot be ruled out as the final blow to megafaunal populations that were already functionally extinct by the time humans arrived in the region.

  16. Ice-age megafauna in Arctic Alaska: extinction, invasion, survival

    NASA Astrophysics Data System (ADS)

    Mann, Daniel H.; Groves, Pamela; Kunz, Michael L.; Reanier, Richard E.; Gaglioti, Benjamin V.

    2013-06-01

    Radical restructuring of the terrestrial, large mammal fauna living in arctic Alaska occurred between 14,000 and 10,000 years ago at the end of the last ice age. Steppe bison, horse, and woolly mammoth became extinct, moose and humans invaded, while muskox and caribou persisted. The ice age megafauna was more diverse in species and possibly contained 6× more individual animals than live in the region today. Megafaunal biomass during the last ice age may have been 30× greater than present. Horse was the dominant species in terms of number of individuals. Lions, short-faced bears, wolves, and possibly grizzly bears comprised the predator/scavenger guild. The youngest mammoth so far discovered lived ca 13,800 years ago, while horses and bison persisted on the North Slope until at least 12,500 years ago during the Younger Dryas cold interval. The first people arrived on the North Slope ca 13,500 years ago. Bone-isotope measurements and foot-loading characteristics suggest megafaunal niches were segregated along a moisture gradient, with the surviving species (muskox and caribou) utilizing the warmer and moister portions of the vegetation mosaic. As the ice age ended, the moisture gradient shifted and eliminated habitats utilized by the dryland, grazing species (bison, horse, mammoth). The proximate cause for this change was regional paludification, the spread of organic soil horizons and peat. End-Pleistocene extinctions in arctic Alaska represent local, not global extinctions since the megafaunal species lost there persisted to later times elsewhere. Hunting seems unlikely as the cause of these extinctions, but it cannot be ruled out as the final blow to megafaunal populations that were already functionally extinct by the time humans arrived in the region.

  17. Ecohydrologic Changes due to Tree Expansion into Tundra in the Polar Urals, Russia

    NASA Astrophysics Data System (ADS)

    Ivanov, V. Y.; Wang, J.; El Sharif, H. A.; Liu, D.; Sheshukov, A. Y.; Mazepa, V.; Shiyatov, S.; Sokolov, A.

    2017-12-01

    The Arctic has been warming at an accelerating rate over the last several decades and the changing climate has caused the invasion of trees and shrubs into tundra across the polar regions of Alaska, Canada, and Russia. These vegetation changes may have the potential to impact regional hydrology and climate. This study aims to develop mechanistic and quantitative understanding of implications of forest encroachment into tundra. Specifically, for several areas with well-documented larch and spruce expansion in the Polar Urals and southern Yamal Peninsula of Russia over 1960-2010s, we hypothesize that the encroachment process alters the seasonality of energy budget characterized by enhanced total evapotranspiration and concomitant subsurface warming. We are collecting a comprehensive set of field observational data on micrometeorology, snow conditions, radiative fluxes, tree sap flows, soil temperature, moisture, and heat fluxes, and active layer thickness. A novel model of maximum entropy production (MEP) is used to derive the surface energy budgets as the partition of radiative fluxes into turbulent and conductive heat fluxes across the ecotone interface. We are presenting preliminary findings that illustrate the identified differences of seasonal snow and heat budget regimes for two contrasting sites: one of which has experienced a recent tree encroachment, while for the other this process has not yet occurred. Observed and modeled heat fluxes are used to inform a comprehensive physical model to study the impact of vegetation encroachment process on the permafrost dynamics.

  18. CARVE Measurements of Atmospheric Methane Concentrations and Emissions in Arctic and Boreal Alaska

    NASA Astrophysics Data System (ADS)

    Miller, C. E.; Miller, J. B.; Chang, R. Y.; Sweeney, C.; Karion, A.; Wofsy, S. C.; Henderson, J.; Eluszkiewicz, J.; Mountain, M.; Oechel, W. C.

    2013-12-01

    The Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) is a NASA Earth Ventures (EV-1) investigation designed to quantify correlations between atmospheric and surface state variables for the Alaskan terrestrial ecosystems through intensive seasonal aircraft campaigns, ground-based observations, and analysis sustained over a 5-year mission. CARVE bridges critical gaps in our knowledge and understanding of Arctic ecosystems, linkages between the Arctic hydrologic and terrestrial carbon cycles, and the feedbacks from fires and thawing permafrost. We present CARVE airborne measurements of spatial and temporal patterns in atmospheric CH4 concentrations and estimated surface-atmosphere emissions for Arctic and Boreal Alaska. Continuous in situ CH4, CO2 and CO data are supplemented by periodic whole air flask samples from which 13CH4 and non-methane hydrocarbons are used to assess the relative contributions of wetlands, fossil fuel combustion, and oil and gas production to the observed CH4 signals. The CARVE project has also initiated monthly 14CH4 sampling at Barrow, AK (BRW) and the CARVE Tower in Fox, AK (CRV) to evaluate seasonal changes in the fraction of old carbon being mobilized via methanogenesis.

  19. Provenance and petrofacies, Upper Devonian sandstones, Philip Smith Mountains and Arctic quandrangles, Brooks Range, Alaska: Final report, Project No. 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, A.V.; Coney, P.J.

    1987-11-01

    Late Devonian sandstone beds are exposed as allochthonous sequences that extend for over 1000 km along the east-west strike of the Brooks Range in northern Alaska. These horizons, at least in part, record Late Devonian tectonism and deposition along the southern margin of the Arctic Alaska block. This study identifies clastic petrofacies in the western Philip Smith Mountains and southern Arctic quadrangles and infers the composition of the source terrane. The paleogeography is not known and the original distribution of lithofacies is uncertain, owing to the extensive post-depositional tectonism. In the study area the sandstones are exposed along rugged mountainmore » tops and high ridges. Although exposures are excellent, access is often difficult. Samples were collected from exposures near the western end of the Chandalar Shelf, Atigun Pass, and the Atigun River valley in the Philip Smith Mountains quadrangle and from the Crow Nest Creek and Ottertail Creek areas in the Arctic quadrangle. 34 refs., 17 figs.« less

  20. Role of Siderophores in Dissimilatory Iron Reduction in Arctic Soils : Effect of Direct Amendment of Siderophores to Arctic Soil

    NASA Astrophysics Data System (ADS)

    Srinivas, A. J.; Dinsdale, E. A.; Lipson, D.

    2014-12-01

    Dissimilatory iron reduction (DIR), where ferric iron (Fe3+) is reduced to ferrous iron (Fe2+) anaerobically, is an important respiratory pathway used by soil bacteria. DIR contributes to carbon dioxide (CO2) efflux from the wet sedge tundra biome in the Arctic Coastal Plain (ACP) in Alaska, and could competitively inhibit the production of methane, a stronger greenhouse gas than CO2, from arctic soils. The occurrence of DIR as a dominant anaerobic process depends on the availability of substantial levels of Fe3+ in soils. Siderophores are metabolites made by microbes to dissolve Fe3+ from soil minerals in iron deficient systems, making Fe3+ soluble for micronutrient uptake. However, as the ACP is not iron deficient, siderophores in arctic soils may play a vital role in anaerobic respiration by dissolving Fe3+ for DIR. We studied the effects of direct siderophore addition to arctic soils through a field study conducted in Barrow, Alaska, and a laboratory incubation study conducted at San Diego State University. In the field experiment, 50μM deferroxamine mesylate (a siderophore), 50μM trisodium nitrilotriacetate (an organic chelator) or an equal volume of water was added to isolated experimental plots, replicated in clusters across the landscape. Fe2+ concentrations were measured in soil pore water samples collected periodically to measure DIR over time in each. In the laboratory experiment, frozen soil samples obtained from drained thaw lake basins in the ACP, were cut into cores and treated with the above-mentioned compounds to the same final concentrations. Along with measuring Fe2+ concentrations, CO2 output was also measured to monitor DIR over time in each core. Experimental addition of siderophores to soils in both the field and laboratory resulted in increased concentrations of soluble Fe3+ and a sustained increase in Fe2+concentrations over time, along with increased respiration rates in siderophore-amended cores. These results show increased DIR in

  1. Plant traits and trait-based vegetation modeling in the Arctic

    NASA Astrophysics Data System (ADS)

    Xu, C.; Sevanto, S.; Iversen, C. M.; Salmon, V. G.; Rogers, A.; Wullschleger, S.; Wilson, C. J.

    2017-12-01

    Arctic tundra environments are characterized by extremely cold temperatures, strong winds, short growing season and thin, nutrient-poor soil layer impacted by permafrost. To survive in this environment vascular plants have developed traits that simultaneously promote high productivity under favorable environments, and survival in harsh conditions. To improve representation of Arctic tundra vegetation in Earth System Models we surveyed plant trait data bases for key trait parameters that influence modeled ecosystem carbon balance, and compared the traits within plant families occurring in the boreal, temperate and arctic zones. The parameters include photosynthetic carbon uptake efficiency (Vcmax and Jmax), root:shoot ratio, and root and leaf nitrogen content, and we focused on woody shrubs. Our results suggest that root nitrogen content in non-nitrogen fixing tundra shrubs is lower than in representatives of the same families in the boreal or temperate zone. High tissue nitrogen concentrations have been related to high vulnerability to drought. The low root nitrogen concentrations in tundra shrubs may thus be an indication of acclimation to shallow soils, and frequent freezing that has a similar impact on the plant conductive tissue as drought. With current nitrogen availability, nitrogen limitation reduces the benefits of increased temperatures and longer growing seasons to the tundra ecosystem carbon balance. Thawing of permafrost will increase nitrogen availability, and promote plant growth and carbon uptake, but it could also make the shrubs more vulnerable to freeze-thaw cycles, with the overall result of reduced shrub coverage. The final outcome of warming temperatures and thawing of permafrost on tundra shrubs will thus depend on the relative speed of warming and plant acclimation.

  2. Squeezing the arctic carbon balloon

    Treesearch

    Evan S. Kane

    2012-01-01

    The advancement of trees into Arctic tundra can increase total aboveground carbon storage. A study now shows, however, that greater plant growth also enhances belowground decomposition, resulting in a net loss of carbon from the ecosystem.

  3. Chemical and spectroscopic analyses of organic matter transformation in warming tundra soils

    NASA Astrophysics Data System (ADS)

    Herndon, E.; Roy Chowdhury, T.; Mann, B. F.; Graham, D. E.; Bargar, J.; Gu, B.; Liang, L.

    2013-12-01

    Many tundra soils are currently major carbon sinks; however, an increase in temperature may shift these systems to C sources and create a positive feedback for warming. In order to predict future C release from tundra soils, it is necessary to quantify rates of SOM degradation and to identify the reactants and products of microbial decomposition reactions. In this study, multiple spectroscopic techniques are used to investigate SOM during laboratory incubations of tundra soils. We aim to characterize the chemical transformation of organic matter during decomposition as a function of temperature and geochemistry. Frozen soil cores were obtained from the Barrow Environmental Observatory (BEO) in northern Alaska as part of the Next Generation Ecosystem Experiment Arctic project. To investigate the influence of temperature on organic matter degradation and compositional changes, soil horizons from each core were homogenized and soil material was incubated at -2°C, +4°C, or +8°C. Samples were sacrificed periodically over 100 days, and chemical and physical extractions were used to separate SOM into operationally-defined pools, including light (density < 1.6 g cm-2) and mineral-bound, and water-, acid-, base-, and non-soluble fractions. A suite of wet-chemical and spectroscopic analyses was used to measure CO2 and CH4 formation and soil C compositional changes, including techniques such as Fourier transform infrared spectroscopy, high performance liquid chromatography (HPLC), high resolution mass spectrometry, and X-ray absorption spectroscopy. Detailed chemical and spectroscopic analyses reveal significant differences amongst extracts and with depth in the soil. In general, more organic C was extracted in the base than in the acid and water fractions, and mineral-bound organic C increased with depth. The water-soluble C fraction showed the lowest molar absorptivity of the three extracts and consisted of mostly lower-molecular weight organics. Acid-soluble C increased

  4. Fire in the range of the Western Arctic Caribou Herd

    Treesearch

    Kyle Joly; T. Scott Rupp; Randi R. Jandt; F. Stuart Chapin

    2009-01-01

    Wildfire is the dominant ecological driver in boreal forest ecosystems. Although much less is known, it also affects tundra ecosystems. Fires effectively consume fruticose lichens, the primary winter forage for caribou, in both boreal and tundra ecosystems. We summarize 1950-2007 fire regime data for northwestern Alaska and subregions. We also identified meteorological...

  5. Tundra shrub effects on growing season energy and carbon dioxide exchange

    NASA Astrophysics Data System (ADS)

    Lafleur, Peter M.; Humphreys, Elyn R.

    2018-05-01

    Increased shrub cover on the Arctic tundra is expected to impact ecosystem-atmosphere exchanges of carbon and energy resulting in feedbacks to the climate system, yet few direct measurements of shrub tundra-atmosphere exchanges are available to corroborate expectations. Here we present energy and carbon dioxide (CO2) fluxes measured using the eddy covariance technique over six growing seasons at three closely located tundra sites in Canada’s Low Arctic. The sites are dominated by the tundra shrub Betula glandulosa, but percent cover varies from 17%–60% and average shrub height ranges from 18–59 cm among sites. The site with greatest percent cover and height had greater snow accumulation, but contrary to some expectations, it had similar late-winter albedo and snow melt dates compared to the other two sites. Immediately after snowmelt latent heat fluxes increased more slowly at this site compared to the others. Yet by the end of the growing season there was little difference in cumulative latent heat flux among the sites, suggesting evapotranspiration was not increased with greater shrub cover. In contrast, lower albedo and less soil thaw contributed to greater summer sensible heat flux at the site with greatest shrub cover, resulting in greater total atmospheric heating. Net ecosystem exchange of CO2 revealed the potential for enhanced carbon cycling rates under greater shrub cover. Spring CO2 emissions were greatest at the site with greatest percent cover of shrubs, as was summer net uptake of CO2. The seasonal net sink for CO2 was ~2 times larger at the site with the greatest shrub cover compared to the site with the least shrub cover. These results largely agree with expectations that the growing season feedback to the atmosphere arising from shrub expansion in the Arctic has the potential to be negative for CO2 fluxes but positive for turbulent energy fluxes.

  6. A lake-centric geospatial database to guide research and inform management decisions in an Arctic watershed in northern Alaska experiencing climate and land-use changes

    USGS Publications Warehouse

    Jones, Benjamin M.; Arp, Christopher D.; Whitman, Matthew S.; Nigro, Debora A.; Nitze, Ingmar; Beaver, John; Gadeke, Anne; Zuck, Callie; Liljedahl, Anna K.; Daanen, Ronald; Torvinen, Eric; Fritz, Stacey; Grosse, Guido

    2017-01-01

    Lakes are dominant and diverse landscape features in the Arctic, but conventional land cover classification schemes typically map them as a single uniform class. Here, we present a detailed lake-centric geospatial database for an Arctic watershed in northern Alaska. We developed a GIS dataset consisting of 4362 lakes that provides information on lake morphometry, hydrologic connectivity, surface area dynamics, surrounding terrestrial ecotypes, and other important conditions describing Arctic lakes. Analyzing the geospatial database relative to fish and bird survey data shows relations to lake depth and hydrologic connectivity, which are being used to guide research and aid in the management of aquatic resources in the National Petroleum Reserve in Alaska. Further development of similar geospatial databases is needed to better understand and plan for the impacts of ongoing climate and land-use changes occurring across lake-rich landscapes in the Arctic.

  7. A preliminary classification system for vegetation of Alaska.

    Treesearch

    Leslie A. Viereck; C.T. Dyrness

    1980-01-01

    A hierarchical system, with five levels of resolution, is proposed for classifying Alaska vegetation. The system, which is agglomerative, starts with 415 known Alaska plant communities which are listed and referenced. At the broadest level of resolution the system contains five formations - forest, tundra, shrubland, herbaceous vegetation, and aquatic vegetation.

  8. Potential changes in arctic seasonality and plant communities may impact tundra soil chemistry and carbon dynamics

    NASA Astrophysics Data System (ADS)

    Crow, S.; Cooper, E.; Beilman, D.; Filley, T.; Reimer, P.

    2009-04-01

    On the Svalbard archipelago, as in other high Arctic regions, tundra soil organic matter (SOM) is primarily plant detritus that is largely stabilized by cold, moist conditions and low nitrogen availability. However, the resistance of SOM to decomposition is also influenced by the quality of organic matter inputs to soil. Different plant communities are likely to give different qualities to SOM, especially where lignin-rich woody species encroach into otherwise graminoid and bryophyte-dominated regions. Arctic woody plant species are particularly sensitive to changes in temperature, snow cover, and growing season length. In a changing environment, litter chemistry may emerge as an important control on tundra SOM stabilization. In summer 2007, we collected plant material and soil from the highly-organic upper horizon (appx. 0-5 cm) and the mineral-dominated lower horizon (appx. 5-10cm) from four locations in the southwest facing valleys of Svalbard, Norway. The central goal of the ongoing experiment is to determine whether a greater abundance of woody plants could provide a negative feedback to warming impacts on the carbon (C) balance of Arctic soils. Towards this, we used a combination of plant biopolymer analyses (cupric oxide oxidation and quantification of lignin-derived phenols and cutin/suberin-derived aliphatics) and radiocarbon-based estimates of C longevity and mean residence time (MRT) to characterize potential links between plant type and soil C pools. We found that graminoid species regenerate above- and belowground tissue each year, whereas woody species (Cassiope tetragona and Dryas octopetala) regenerated only leaves yearly. In contrast, C within live branches and roots persisted for 15-18 yr on average. Leaves from woody species remained nearly intact in surface litter for up to 20 yr without being incorporated into the upper soil horizon. Leaves from both graminoid and woody species were concentrated in lignin-derived phenols relative to roots, but

  9. Fall season atypically warm weather event leads to substantial CH4 loss in Arctic ecosystems?

    NASA Astrophysics Data System (ADS)

    Zona, Donatella; Moreaux, Virginie; Liljedahl, Anna; Losacco, Salvatore; Murphy, Patrick; Oechel, Walter

    2014-05-01

    In the last century (during 1875-2008) high-latitudes are warming at a rate of 1.360C century-1, almost 2 times faster than the Northern Hemisphere trend (Bekryaev et al., 2010). This warming has been more intense outside of the summer season, with anomalies of 1.09, 1.59, 1.730C in the fall, winter, and spring season respectively (Bekryaev et al., 2010). This substantial temperature anomalies have the potential to increase the emission of greenhouse gas (CO2 and CH4) fluxes from arctic tundra ecosystems. In particular, CH4 emissions, which are primarily controlled by temperature (in addition to water table), can steeply increase with warming. Despite the potential relevance of CH4 emissions, very few measurements have been performed outside of the growing season across the entire Arctic, due to logistic constrains. Importantly, no flux measurements achieved a temporal and spatial data coverage sufficient to estimate with confidence an annual CH4 emissions from tundra ecosystem in Alaska, and its sensitivity to warming. Fall 2013 was unusually warm in central and northern Alaska. Following a relatively warm summer with dramatically above-average rainfall, the October mean monthly temperatures was the 4th and top warmest in Barrow (1949-2013) and Ivotuk (1998-2013), respectively. As we just upgraded several eddy covariance towers to measure CO2 and CH4 fluxes year-round, the atypical weather conditions of fall 2013 represented a unique chance for testing the sensitivity of CH4 loss to these atypically warm temperatures. All our sites across a latitudinal gradient (from the northern site, Barrow, to the southern site, Ivotuk), presented substantial CH4 loss in the fall. Importantly, in two of these sites (Barrow, Ivotuk) where the fall weather was substantially warmer than the long term trend, fall CH4 emission represented between 44-63% of the June-November cumulative emission. Surprisingly, in the southernmost site (Ivotuk), when the temperature anomaly was the

  10. Recent change of artic tundra ecosystems from a net carbon dioxide sink to a source

    Treesearch

    Walter C. Oechel; Steven J. Hastings; George Vourlitis; Mitchell Jenkins; George Riechers; Nancy Grulke

    1993-01-01

    Arctic tundra has been a net sink for carbon dioxide during historic and recent geological times1-4, and large amounts of carbon are stored in the soils of northern ecosystems. Many regions of the Arctic are warmer now than they have been in the past5-10, and this warming may cause the soil to change from a carbon dioxide...

  11. Digging Deeper: Development and evaluation of an untargeted metabolomics approach to identify biogeochemical hotspots with depth and by vegetation type in Arctic tundra soils

    NASA Astrophysics Data System (ADS)

    Ladd, M.; Wullschleger, S.; Hettich, R.

    2017-12-01

    Elucidating the chemical composition of low molecular weight (LMW) dissolved organic matter (DOM), and monitoring how this bioavailable pool varies over space and time, is critical to understanding the controlling mechanisms that underlie carbon release and storage in Arctic systems. Due to analytical challenges however, relatively little is known about how this complex mixture of small molecules varies with soil depth or how it may be influenced by vegetation. In this study, we evaluated an untargeted metabolomics approach for the characterization of LMW DOM in water extracts, and applied this approach in soil cores (10-cm diam., 30-cm depth), obtained near Barrow, Alaska (71° 16' N) from the organic-rich active layer where the aboveground vegetation was primarily either Carex aquatilis or Eriophorum angustifolium, two species commonly found in tundra systems. We hypothesized that by using a discovery-based approach, spatial patterns of chemical diversity could be identified, enabling the detection of biogeochemical hotspots across scales. LMW DOM profiles from triplicate water extracts were characterized using dual-separation, nano-liquid chromatography (LC) coupled to an electrospray Orbitrap mass spectrometer in positive and negative ion modes. Both LC separations—reversed-phase and hydrophilic interaction chromatography—were achieved with gradient elutions in 15 minutes. Using a precursor and fragment mass measurement accuracy of <5 ppm for singly charged ions, unique features not observed in the blank or control were compared across all samples. Statistically significant differences with depth and between vegetation were determined, and the resulting list of features was matched to online databases. Annotated classes of LMW DOM included plant and microbial metabolites, organic acids, osmolytes, sugars, and simple peptides. Based on the chemical profile, we were able to distinguish between samples at each depth and between vegetation types, suggesting

  12. Characterizing Low Molecular Weight Organic Matter in Arctic Polygonal Tundra Soils to Identify Biogeochemical Hotspots Using a Dual-Separation, High-Resolution Mass Spectrometry Approach

    NASA Astrophysics Data System (ADS)

    Ladd, M.; Wullschleger, S. D.; Iversen, C. M.; Hettich, R.

    2016-12-01

    Reliably modeling biogeochemical processes (e.g. decomposition, plant-microbial competition for nutrients) across spatial or temporal scales requires elucidating the chemical composition of low molecular weight (LMW) dissolved soil organic matter (DOM). Our understanding is limited, however, by the wide-ranging physicochemical properties and high fluxes of these compounds, posing major challenges in detection, isolation, and quantification. Here, we developed and evaluated a sensitive, non-targeted approach to characterize LMW DOM in the Arctic, a unique system that is warming at a rate twice that of the global average and may have significant feedbacks to global C and N cycles. Soil cores were collected from a continuous permafrost, polygonal tundra landscape near Barrow, Alaska (71° 16' N) and sectioned into 5 cm increments. Water and salt extracts from each section were filtered and injected onto C18 reversed-phase or zwitterionic-type hydrophilic interaction chromatography (ZIC-pHILIC) columns for separation. LMW DOM profiles were obtained using high-resolution mass spectrometry (HRMS), and unique features, known and unknown, were characterized by LC retention time, accurate mass (m/z), and molecular fragmentation pattern. Coupling two orthogonal chromatographic separations with HRMS enabled the characterization of hundreds of analytes in a single measurement providing enhanced, high-throughput coverage of LMW DOM from soil extracts. The complexity and relative/absolute intensities of LMW DOM features (e.g. organic acids, amino sugars, peptides) varied across polygon type (high- or low-centered), extract condition, and with depth, providing an information-rich, molecular signal of LMW DOM availability across scales. Comprehensively profiling this complex mixture of small molecules of both biotic and abiotic origin provides a chemical signature of biological function, allowing for more reliable predictions of how discrete, molecular-scale processes may control

  13. Root traits explain observed tundra vegetation nitrogen uptake patterns: Implications for trait-based land models: Tundra N Uptake Model-Data Comparison

    DOE PAGES

    Zhu, Qing; Iversen, Colleen M.; Riley, William J.; ...

    2016-12-23

    Ongoing climate warming will likely perturb vertical distributions of nitrogen availability in tundra soils through enhancing nitrogen mineralization and releasing previously inaccessible nitrogen from frozen permafrost soil. But, arctic tundra responses to such changes are uncertain, because of a lack of vertically explicit nitrogen tracer experiments and untested hypotheses of root nitrogen uptake under the stress of microbial competition implemented in land models. We conducted a vertically explicit 15N tracer experiment for three dominant tundra species to quantify plant N uptake profiles. Then we applied a nutrient competition model (N-COM), which is being integrated into the ACME Land Model, tomore » explain the observations. Observations using an 15N tracer showed that plant N uptake profiles were not consistently related to root biomass density profiles, which challenges the prevailing hypothesis that root density always exerts first-order control on N uptake. By considering essential root traits (e.g., biomass distribution and nutrient uptake kinetics) with an appropriate plant-microbe nutrient competition framework, our model reasonably reproduced the observed patterns of plant N uptake. Additionally, we show that previously applied nutrient competition hypotheses in Earth System Land Models fail to explain the diverse plant N uptake profiles we observed. These results cast doubt on current climate-scale model predictions of arctic plant responses to elevated nitrogen supply under a changing climate and highlight the importance of considering essential root traits in large-scale land models. Finally, we provided suggestions and a short synthesis of data availability for future trait-based land model development.« less

  14. Root traits explain observed tundra vegetation nitrogen uptake patterns: Implications for trait-based land models: Tundra N Uptake Model-Data Comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Qing; Iversen, Colleen M.; Riley, William J.

    Ongoing climate warming will likely perturb vertical distributions of nitrogen availability in tundra soils through enhancing nitrogen mineralization and releasing previously inaccessible nitrogen from frozen permafrost soil. But, arctic tundra responses to such changes are uncertain, because of a lack of vertically explicit nitrogen tracer experiments and untested hypotheses of root nitrogen uptake under the stress of microbial competition implemented in land models. We conducted a vertically explicit 15N tracer experiment for three dominant tundra species to quantify plant N uptake profiles. Then we applied a nutrient competition model (N-COM), which is being integrated into the ACME Land Model, tomore » explain the observations. Observations using an 15N tracer showed that plant N uptake profiles were not consistently related to root biomass density profiles, which challenges the prevailing hypothesis that root density always exerts first-order control on N uptake. By considering essential root traits (e.g., biomass distribution and nutrient uptake kinetics) with an appropriate plant-microbe nutrient competition framework, our model reasonably reproduced the observed patterns of plant N uptake. Additionally, we show that previously applied nutrient competition hypotheses in Earth System Land Models fail to explain the diverse plant N uptake profiles we observed. These results cast doubt on current climate-scale model predictions of arctic plant responses to elevated nitrogen supply under a changing climate and highlight the importance of considering essential root traits in large-scale land models. Finally, we provided suggestions and a short synthesis of data availability for future trait-based land model development.« less

  15. Terrestrial biosphere models underestimate photosynthetic capacity and CO 2 assimilation in the Arctic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, Alistair; Serbin, Shawn P.; Ely, Kim S.

    Terrestrial biosphere models (TBMs) are highly sensitive to model representation of photosynthesis, in particular the parameters maximum carboxylation rate and maximum electron transport rate at 25°C (V c,max.25 and J max.25, respectively). Many TBMs do not include representation of Arctic plants, and those that do rely on understanding and parameterization from temperate species. We then measured photosynthetic CO 2 response curves and leaf nitrogen (N) content in species representing the dominant vascular plant functional types found on the coastal tundra near Barrow, Alaska. The activation energies associated with the temperature response functions of Vc,max and Jmax were 17% lower thanmore » commonly used values. When scaled to 25°C, Vc,max.25 and J max.25 were two- to five-fold higher than the values used to parameterize current TBMs. This high photosynthetic capacity was attributable to a high leaf N content and the high fraction of N invested in Rubisco. Leaf-level modeling demonstrated that current parameterization of TBMs resulted in a two-fold underestimation of the capacity for leaf-level CO 2 assimilation in Arctic vegetation. Our study highlights the poor representation of Arctic photosynthesis in TBMs, and provides the critical data necessary to improve our ability to project the response of the Arctic to global environmental change.« less

  16. Terrestrial biosphere models underestimate photosynthetic capacity and CO 2 assimilation in the Arctic

    DOE PAGES

    Rogers, Alistair; Serbin, Shawn P.; Ely, Kim S.; ...

    2017-09-06

    Terrestrial biosphere models (TBMs) are highly sensitive to model representation of photosynthesis, in particular the parameters maximum carboxylation rate and maximum electron transport rate at 25°C (V c,max.25 and J max.25, respectively). Many TBMs do not include representation of Arctic plants, and those that do rely on understanding and parameterization from temperate species. We then measured photosynthetic CO 2 response curves and leaf nitrogen (N) content in species representing the dominant vascular plant functional types found on the coastal tundra near Barrow, Alaska. The activation energies associated with the temperature response functions of Vc,max and Jmax were 17% lower thanmore » commonly used values. When scaled to 25°C, Vc,max.25 and J max.25 were two- to five-fold higher than the values used to parameterize current TBMs. This high photosynthetic capacity was attributable to a high leaf N content and the high fraction of N invested in Rubisco. Leaf-level modeling demonstrated that current parameterization of TBMs resulted in a two-fold underestimation of the capacity for leaf-level CO 2 assimilation in Arctic vegetation. Our study highlights the poor representation of Arctic photosynthesis in TBMs, and provides the critical data necessary to improve our ability to project the response of the Arctic to global environmental change.« less

  17. A comparison of multi-spectral, multi-angular, and multi-temporal remote sensing datasets for fractional shrub canopy mapping in Arctic Alaska

    USGS Publications Warehouse

    Selkowitz, D.J.

    2010-01-01

    Shrub cover appears to be increasing across many areas of the Arctic tundra biome, and increasing shrub cover in the Arctic has the potential to significantly impact global carbon budgets and the global climate system. For most of the Arctic, however, there is no existing baseline inventory of shrub canopy cover, as existing maps of Arctic vegetation provide little information about the density of shrub cover at a moderate spatial resolution across the region. Remotely-sensed fractional shrub canopy maps can provide this necessary baseline inventory of shrub cover. In this study, we compare the accuracy of fractional shrub canopy (> 0.5 m tall) maps derived from multi-spectral, multi-angular, and multi-temporal datasets from Landsat imagery at 30 m spatial resolution, Moderate Resolution Imaging SpectroRadiometer (MODIS) imagery at 250 m and 500 m spatial resolution, and MultiAngle Imaging Spectroradiometer (MISR) imagery at 275 m spatial resolution for a 1067 km2 study area in Arctic Alaska. The study area is centered at 69 ??N, ranges in elevation from 130 to 770 m, is composed primarily of rolling topography with gentle slopes less than 10??, and is free of glaciers and perennial snow cover. Shrubs > 0.5 m in height cover 2.9% of the study area and are primarily confined to patches associated with specific landscape features. Reference fractional shrub canopy is determined from in situ shrub canopy measurements and a high spatial resolution IKONOS image swath. Regression tree models are constructed to estimate fractional canopy cover at 250 m using different combinations of input data from Landsat, MODIS, and MISR. Results indicate that multi-spectral data provide substantially more accurate estimates of fractional shrub canopy cover than multi-angular or multi-temporal data. Higher spatial resolution datasets also provide more accurate estimates of fractional shrub canopy cover (aggregated to moderate spatial resolutions) than lower spatial resolution datasets

  18. Evidence From Detrital Zircon U-Pb Analysis for Suturing of Pre-Mississippian Terranes in Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Moore, T. E.; Potter, C. J.; O'Sullivan, P. B.; Aleinikoff, J. N.

    2007-12-01

    Detrital zircon U-Pb ages of pre-Mississippian sandstones were determined using SHRIMP and LA-ICPMS techniques for four key geographic parts of the Arctic Alaska terrane, northern Alaska. In the northeastern Brooks Range, a sample of quartz-rich turbidites from the Proterozoic Neroukpuk Quartzite yielded zircon ages ranging from 980 Ma to 2.9 Ga with clusters at 980-1100 Ma, 1680-1850 Ma and 2220-2660 Ma. Quartz and chert-bearing sandstone in the Tulageak well from Ordovician-Silurian argillite in basement beneath the North Slope yielded a broad spectrum of ages between 1.0 to 2.1 Ga and 2.8 Ga, including peaks at 1.0-1.2 and 1.5-1.7 Ga. Paleozoic zircons cluster at 390 and 440 Ma in this sample, indicating it is Devonian. Lithic sandstone from the Silurian Iviagik Group at Cape Dyer on the Lisburne Peninsula yielded a variety of ages from 450 to 1600 Ma, with a large peak at 475-600 Ma and several grains between 1.9 and 2.5 Ga. In contrast to the broad distributions of the latter two samples, zircons in metamorphosed Proterozoic-Cambrian(?) lithic sandstone from the an unnamed metagraywacke unit near Mt. Snowden on the Dalton Highway in the southern Brooks Range are largely 600-650 Ma with lesser clusters at 1050-1200 Ma and 1600-1900 Ga. Samples of quartz-rich Mississippian sandstone at the base of the unconformably overlying Mississippian to Triassic Ellesmerian sequence near three of the pre-Mississippian sample locations were also analyzed. Mississippian sandstones from the West Dease well (near the Tulageak well) and at Cape Dyer on the Lisburne Peninsula display zircon distributions similar to those found in the underlying pre-Mississippian samples, indicating the Mississippian clastic strata are locally derived and that the observed zircon distributions are representative of a broad area. However, the Mississippian Kekiktuk Conglomerate, which rests on the Neroukpuk Quartzite in the northeastern Brooks Range, also contains a variety of ages between 560 and

  19. Combining terrestrial, air-, and space-borne remote sensing for permafrost thaw subsidence change detection in Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Günther, F.; Grosse, G.; Ulrich, M.; Nitze, I.; Sachs, T.; Jones, B. M.

    2017-12-01

    The unique feature of permafrost in the Arctic is the presence of a large amount of ice below the earth surface. Thermal degradation and subsequent permafrost destabilization causes thaw subsidence and thermokarst development. Because these processes are difficult to detect due to the lack of timely and accurate elevation datasets they have received not much attention, despite their potentially global significance through the permafrost carbon feedback. Thanks to remote sensing pioneering works in Alaska and Siberia, widespread thaw subsidence has been documented and is increasingly perceived as a potentially widespread permafrost landscape response to contemporary climate change. Clearly, however, detailed local inventories are required to calibrate regional long and short-term assessments for measuring surface deformation due to permafrost thaw. The objective of our study is to analyze time series of repeat terrestrial, air-, and space borne laser scanning (rLiDAR) for quantification of land surface lowering due to permafrost thaw, which is poorly resolved in terms of recent landscape development in the Arctic. Our work aims at finding commonalities and differences of change or no change on ground-ice-rich primary surfaces that are preserved as uplands, which cover 15 to 20% of the Teshekpuk Lake Special Area on the Arctic Coastal Plain of northern Alaska. Our approach focuses on quantifying modern thaw subsidence and thermokarst rates with high spatial resolution data over several decades as well as high temporal resolution data of inter-annual intervals. Multi-annual measurements of rLiDAR over Arctic Alaska have been made by aircraft in 2016 and in 2015+2017 through on-site surveys during field expeditions. These in situ data serve as a basis for large scale surface change assessments using time series of photogrammetrically derived elevation data from very high resolution historical aerial photographs and modern satellite imagery. The synergistic data fusion

  20. Trends in the normalized difference vegetation index (NDVI) associated with urban development in arctic and subarctic Western Siberia

    NASA Astrophysics Data System (ADS)

    Outten, S.; Miles, V.; Ezau, I.

    2015-12-01

    Changes in normalized difference vegetation index (NDVI) in the high Arctic have been reliably documented, with widespread "greening" (increase in NDVI), specifically along the northern rim of Eurasia and Alaska. Whereas in West Siberia south of 65N, widespread "browning" (decrease in NDVI) has been noted, although the causes remain largely unclear. In this study we report results of statistical analysis of the spatial and temporal changes in NDVI around 28 major urban areas in the arctic and subarctic Western Siberia. Exploration and exploitation of oil and gas reserves has led to rapid industrialization and urban development in the region. This development has significant impact on the environment and particularly in the vegetation cover in and around the urbanized areas. The analysis is based on 15 years (2000-2014) of high-resolution (250 m) Moderate Resolution Imaging Spectroradiometer (MODIS) data acquired for summer months (June through August) over the entire arctic and subarctic Western Siberian region. The analysis shows that the NDVI background trends are generally in agreement with the trends reported in previous coarse-resolution NDVI studies. Our study reveals greening over the arctic (tundra and tundra-forest) part of the region. Simultaneously, the southern (boreal taiga forest) part is browning, with the more densely vegetation areas or areas with highest NDVI, particularly along Ob River showing strong negative trend. The unexpected and interesting finding of the study is statistically robust indication of the accelerated increase of NDVI ("greening") in the older urban areas. Many Siberian cities become greener even against the decrease in the NDVI background. Moreover, interannual variations of urban NDVI are not coherent with the NDVI background variability. We also find that in tundra zones, NDVI values are higher in a 5-10 km buffer zone around the city edge than in rural areas (40 km distance from the city edge), and in taiga in a 5-10 km

  1. Emissions of biogenic sulfur gases from Alaskan tundra

    NASA Technical Reports Server (NTRS)

    Hines, Mark E.; Morrison, Michael C.

    1992-01-01

    Results of sulfur emission measurements made in freshwater and marine wetlands in Alaskan tundra during the Arctic Boundary Layer Expedition 2A (ABLE 3A) in July 1988 are presented. The data indicate that this type of tundra emits very small amounts of gaseous sulfur and, when extrapolated globally, accounts for a very small percentage of the global flux of biogenic sulfur to the atmosphere. Sulfur emissions from marine sites are up to 20-fold greater than fluxes from freshwater habitats and are dominated by dimethyl sulfide (DMS). Highest emissions, with a mean of 6.0 nmol/sq m/h, occurred in water-saturated wet meadow areas. In drier upland tundra sites, highest fluxes occurred in areas inhabited by mixed vegetation and labrador tea at 3.0 nmol/sq m/h and lowest fluxes were from lichen-dominated areas at 0.9 nmol/sq m/h. DMS was the dominant gas emitted from all these sites. Emissions of DMS were highest from intertidal soils inhabited by Carex subspathacea.

  2. The Circumpolar Arctic Vegetation Map: A tool for analysis of change in permafrost regions

    NASA Astrophysics Data System (ADS)

    Walker, D. A.; Raynolds, M. K.; Maier, H. A.

    2003-12-01

    Arctic vegetation occurs beyond the northern limit of trees, in areas that have an Arctic climate and Arctic flora. Here we present an overview of the recently published Circumpolar Arctic Vegetation Map (CAVM), an area analysis of the vegetation map, and a discussion of its potential for analysis of change in the Arctic. Six countries have Arctic tundra vegetation, Canada, Greenland, Iceland, Russia, Norway (Svalbard), and the US (Total Arctic area = 7.1 million km2). Some treeless areas, such as most of Iceland and the Aluetian Islands are excluded from the map because they lack an Arctic climate. The CAVM divides the Arctic into five bioclimate subzones, A thru E (Subzone A is the coldest and Subzone E is the warmest), based on a combination of summer temperature and vegetation. Fifteen vegetation types are mapped based on the dominant plant growth forms. More detailed, plant-community-level, information is contained in the database used to construct the map. The reverse side of the vegetation map has a false-color infrared image constructed from Advanced Very-High Resolution (AVHRR) satellite-derived raster data, and maps of bioclimate subzones, elevation, landscape types, lake cover, substrate chemistry, floristic provinces, the maximum normalized difference vegetation index (NDVI), and aboveground phytomass. The vegetation map was analyzed by vegetation type and biomass for each county, bioclimate subzone, and floristic province. Biomass distribution was analyzed by means of a correlation between aboveground phytomass and the normalized difference vegetation index (NDVI), a remote-sensing index of surface greenness. Biomass on zonal surfaces roughly doubles within each successively warmer subzone, from about 50 g m-2 in Subzone A to 800 g m-2- in Subzone E. But the pattern of vegetation increase is highly variable, and depends on a number of other factors. The most important appears to be the glacial history of the landscape. Areas that were glaciated during

  3. Arctic reconstruction from an Alaskan viewpoint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crane, R.C.

    1985-04-01

    Field, seismic, structural, and stratigraphic data were used to reconstruct the geologic history of the Arctic in 10-m.y. time slices from the present to mid-Jurassic - the initial opening of the Arctic Ocean. A basic assumption is that Lomonosov Ridge, Alpha Ridge, Mendeleyev Ridge, and Chukchi Plateau are all foundered continental plates. Opening of the Arctic occurs in two stages: Late Jurassic - Cretaceous for the Canada basin and Neogene for the Eurasian basin. Opening is facilitated by two subparallel transform shears - the Arctic (Kaltag-Porcupine) on the east and the Chukchi on the west. Deformation is essentially tensional onmore » the Barents side of the Arctic and shear-compressional on the Alaska side. The development of Chutkoya, North Slope, Brooks Range, north-west Canada, Seward Peninsula, and central Alaska can be sequentially related to Arctic opening, modified by impingement on the northern terrane of allochthonous terranes arriving from the south - the Pacific plates of Tintina, Denali, Orca (Prince William-Chugach-Yakutat), Anadyr, Khatyrka, Kolyman, and other minor terranes. The North Slope of Alaska, a passive, rifted, subsided margin, is restored to line up with a similar margin on Alpha Ridge. Northeastern Alaska (the Romanzof Mountain area) lines up opposite the north end of the Sverdrup Rim, near Prince Patrick and Borden Islands.« less

  4. Net ecosystem exchange of CO2 and CH4 in the high arctic (81°N) during the growing season

    NASA Astrophysics Data System (ADS)

    Barker, J. D.; St. Louis, V. L.; Graydon, J. A.; Lehnherr, I.

    2009-12-01

    The role of high arctic ecosystems in the global carbon budget has attracted scientific interest because a) arctic terrestrial ecosystems currently store significant amounts of organic carbon in permafrost and poorly drained tundra soils, and b) the arctic climate system is changing rapidly in response to global warming. The role of the high arctic terrestrial ecosystem as either a source or sink of atmospheric CO2 is unknown, although it is generally assumed that it will become a source of CO2 to the atmosphere as climate change continues to warm the region and previously sequestered organic matter in soils is mineralized as the active layer develops. We will present data on the net ecosystem exchange (NEE) of CO2 from high arctic tundra near Lake Hazen, Quittinirpaaq National Park (81°N) during the 2008 and 2009 growing seasons, collected using an eddy covariance flux tower. This is the first report of NEE from such a northerly latitude. We will also present data on the exchange of CH4 with tundra soils collected using static chambers. The tundra at Lake Hazen was a continuous CO2 sink during the growing season, and is carbon neutral during snow cover conditions in early spring. The CO2 flux correlated strongly with PAR and soil temperature. Despite active layer development at the site during our observation period (11 cm in 2008, 37 cm in 2009), no evidence of a corresponding CO2 pulse to the atmosphere was detected. Soil respiration rates, separately measured using a LiCOR 6400, indicated a correlation between soil respiration and plant cover corresponded. The strong correlation between NEE and vegetation parameters suggests that as vegetation cover increases in the high arctic in response to climate warming, the tundra at Lake Hazen may continue to function as a carbon sink despite continued active layer development. Dry tundra soils always consumed CH4 at our site, suggesting that parts of the high Arctic are actually sinks for this strong greenhouse gas.

  5. Consequences of Changes in Vegetation and Snow Cover for Climate Feedbacks in Alaska and Northwest Canada

    NASA Astrophysics Data System (ADS)

    Euskirchen, E. S.; Breen, A. L.; Bennett, A.; Genet, H.; Lindgren, M.; Kurkowski, T. A.; McGuire, A. D.; Rupp, S. T.

    2016-12-01

    A continuing challenge in global change studies is to determine how land surface changes may impact atmospheric heating. Changes in vegetation and snow cover may lead to feedbacks to climate through changes in surface albedo and energy fluxes between the land and atmosphere. In addition to these biogeophysical feedbacks, biogeochemical feedbacks associated with changes in carbon (C) storage in the vegetation and soils may also influence climate. Here, using a transient biogeographic model (ALFRESCO) and an ecosystem model (DOS-TEM), we quantified the biogeophysical feedbacks due to changes in vegetation and snow cover across continuous permafrost to non-permafrost ecosystems in Alaska and northwest Canada. We also computed the changes in carbon storage in this region to provide a general assessment of the direction of the biogeochemical feedback. We considered four ecoregions, or Landscape Conservations Cooperatives (LCCs; including the Arctic, North Pacific, Western Alaska, and Northwest Boreal). We examined the 90-year period from 2010- 2099 using one future emission scenario (A1B), under outputs from two general circulation models (MPI-ECHAM5 and CCCMA-CGCM3.1). We consider a more comprehensive suite of possible feedbacks to climate due to shifts in vegetation than previous studies, including both boreal and tundra fire, an advance of treeline, reduction in forest cover due to drought, and increases in the distribution of shrub tundra. However, changes in snow cover still provided the dominant positive land surface feedback to atmospheric heating. This positive feedback was partially moderated by an increase in area burned in spruce forests and shrub tundra. Overall, increases in C storage in the vegetation and soils across the study region would act as a negative feedback to climate. By exploring these feedbacks, we can reach a more integrated understanding of the vulnerability of this region to changes in climate.

  6. Analysis on inter-annual variability of CO2 exchange in Arctic tundra: a model-data approach

    NASA Astrophysics Data System (ADS)

    López Blanco, E.; Lund, M.; Christensen, T. R.; Smallman, T. L.; Slevin, D.; Westergaard-Nielsen, A.; Tamstorf, M. P.; Williams, M.

    2017-12-01

    Arctic ecosystems are exposed to rapid changes triggered by the climate variability, thus there is a growing concern about how the carbon (C) exchange balance will respond to climate change. There is a lack of knowledge about the mechanisms that drive the interactions between photosynthesis and ecological respiration with changes in C stocks in the Arctic tundra across full annual cycles. The reduction of uncertainties can be addressed through process-based modelling efforts. Here, we report the independent predictions of net ecosystem exchange (NEE), gross primary production (GPP) and ecosystem respiration (Reco) calculated from the soil-plant-atmosphere (SPA) model across eight years. The model products are validated with observational data obtained from the Greenland Ecosystem Monitoring (GEM) program in West Greenland tundra (64° N). Overall, the model results explain 71%, 73% and 51% of the variance in NEE, GPP and Reco respectively using data on meteorology and local vegetation and soil structure. The estimated leaf area index (LAI) is able to explain 80% of the plant greenness variation, which was used as a plant phenology proxy. The full annual cumulated NEE during the 2008-2015 period was -0.13 g C m-2 on average (range -30.6 to 34.1 g C m-2), while GPP was -214.6 g C m-2 (-126.2 to -332.8 g C m-2) and Reco was 214.4 g C m-2 (213.9 to 302.2 g C m-2). We found that the model supports the main finding from our previous analysis on flux responses to meteorological variations and biological disturbance. Here, large inter-annual variations in GPP and Reco are also compensatory, and so NEE remains stable across climatically diverse snow-free seasons. Further, we note evidence that leaf maintenance and root growth respiration are highly correlated with GPP (R2 = 0.92 and 0.83, p < 0.001), concluding that these relations likely drive the insensitivity of NEE. Interestingly, the model quantifies the contribution of the larvae outbreak occurred in 2011 in about 27

  7. Climate sensitivity of shrub growth across the tundra biome

    NASA Astrophysics Data System (ADS)

    Myers-Smith, Isla H.; Elmendorf, Sarah C.; Beck, Pieter S. A.; Wilmking, Martin; Hallinger, Martin; Blok, Daan; Tape, Ken D.; Rayback, Shelly A.; Macias-Fauria, Marc; Forbes, Bruce C.; Speed, James D. M.; Boulanger-Lapointe, Noémie; Rixen, Christian; Lévesque, Esther; Schmidt, Niels Martin; Baittinger, Claudia; Trant, Andrew J.; Hermanutz, Luise; Collier, Laura Siegwart; Dawes, Melissa A.; Lantz, Trevor C.; Weijers, Stef; Jørgensen, Rasmus Halfdan; Buchwal, Agata; Buras, Allan; Naito, Adam T.; Ravolainen, Virve; Schaepman-Strub, Gabriela; Wheeler, Julia A.; Wipf, Sonja; Guay, Kevin C.; Hik, David S.; Vellend, Mark

    2015-09-01

    Rapid climate warming in the tundra biome has been linked to increasing shrub dominance. Shrub expansion can modify climate by altering surface albedo, energy and water balance, and permafrost, yet the drivers of shrub growth remain poorly understood. Dendroecological data consisting of multi-decadal time series of annual shrub growth provide an underused resource to explore climate-growth relationships. Here, we analyse circumpolar data from 37 Arctic and alpine sites in 9 countries, including 25 species, and ~42,000 annual growth records from 1,821 individuals. Our analyses demonstrate that the sensitivity of shrub growth to climate was: (1) heterogeneous, with European sites showing greater summer temperature sensitivity than North American sites, and (2) higher at sites with greater soil moisture and for taller shrubs (for example, alders and willows) growing at their northern or upper elevational range edges. Across latitude, climate sensitivity of growth was greatest at the boundary between the Low and High Arctic, where permafrost is thawing and most of the global permafrost soil carbon pool is stored. The observed variation in climate-shrub growth relationships should be incorporated into Earth system models to improve future projections of climate change impacts across the tundra biome.

  8. Examining the role of shrub expansion and fire in Arctic plant silica cycling

    NASA Astrophysics Data System (ADS)

    Carey, J.; Fetcher, N.; Parker, T.; Rocha, A. V.; Tang, J.

    2017-12-01

    All terrestrial plants accumulate silica (SiO2) to some degree, although the amount varies by species type, functional group, and environmental conditions. Silica improves overall plant fitness, providing protection from a variety of biotic and abiotic stressors. Plant silica uptake serves to retain silica in terrestrial landscapes, influencing silica export rates from terrestrial to marine systems. These export rates are important because silica is often the limiting nutrient for primary production by phytoplankton in coastal waters. Understanding how terrestrial plant processes influence silica export rates to oceanic systems is of interest on the global scale, but nowhere is this issue more important than in the Arctic, where marine diatoms rely on silica for production in large numbers and terrestrial runoff largely influences marine biogeochemistry. Moreover, the rapid rate of change occurring in the Arctic makes understanding plant silica dynamics timely, although knowledge of plant silica cycling in the region is in its infancy. This work specifically examines how shrub expansion, permafrost thaw, and fire regimes influence plant silica behavior in the Alaskan Arctic. We quantified silica accumulation in above and belowground portions of three main tundra types found in the Arctic (wet sedge, moist acidic, moist non-acidic tundra) and scaled these values to estimate how shrub expansion alters plant silica accumulation rates. Results indicate that shrub expansion via warming will increase silica storage in Arctic land plants due to the higher biomass associated with shrub tundra, whereas conversion of tussock to wet sedge tundra via permafrost thaw would produce the opposite effect in the terrestrial plant BSi pool. We also examined silica behavior in plants exposed to fire, finding that post-fire growth results in elevated plant silica uptake. Such changes in the size of the terrestrial vegetation silica reservoir could have direct consequences for the rates

  9. Morphological and molecular characterization of Sarcocystis arctica-like sarcocysts from the Arctic fox (Vulpes lagopus)from Alaska, USA

    USDA-ARS?s Scientific Manuscript database

    Sarcocystis sarcocysts are common in muscles of herbivores but are rare in muscles of carnivores. Here, we report Sarcocystis arctica-like sarcocysts in muscles of Arctic foxes (Vulpes lagopus) from Alaska, USA for the first time. Tongues of 57 foxes were examined for Sarcocystis infection using sev...

  10. Advancing High Spatial and Spectral Resolution Remote Sensing for Observing Plant Community Response to Environmental Variability and Change in the Alaskan Arctic

    NASA Astrophysics Data System (ADS)

    Vargas Zesati, Sergio A.

    landscape level ecosystem structure and phenological dynamics at multiple temporal scales. Overall, this study has furthered our knowledge of how tundra ecosystems in the Arctic change seasonally and how such change could impact remote sensing studies conducted from multiple platforms and across multiple spatial scales. Additionally, this study also highlights the urgent need for research into the validation of satellite products in order to better understand the causes and consequences of the changing Arctic and its potential effects on global processes. This study focused on sites located in northern Alaska and was formed in collaboration with Florida International University (FIU) and Grand Valley State University (GVSU) as a contribution to the US Arctic Observing Network (AON). All efforts were supported through the National Science Foundation (NSF), the Cyber-ShARE Center of Excellence, and the International Tundra Experiment (ITEX).

  11. Variability of the seasonally integrated normalized difference vegetation index across the north slope of Alaska in the 1990s

    USGS Publications Warehouse

    Stow, D.; Daeschner, Scott; Hope, A.; Douglas, David C.; Petersen, A.; Myneni, Ranga B.; Zhou, L.; Oechel, W.

    2003-01-01

    The interannual variability and trend of above-ground photosynthetic activity of Arctic tundra vegetation in the 1990s is examined for the north slope region of Alaska, based on the seasonally integrated normalized difference vegetation index (SINDVI) derived from local area coverage (LAC) National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) data. Smaller SINDVI values occurred during the three years (1992-1994) following the volcanic eruption of Mt Pinatubo. Even after implementing corrections for this stratospheric aerosol effect and adjusting for changes in radiometric calibration coefficients, an apparent increasing trend of SINDVI in the 1990s is evident for the entire north slope. The most pronounced increase was observed for the foothills physiographical province.

  12. Fourth international circumpolar arctic vegetation mapping workshop

    USGS Publications Warehouse

    Raynolds, Martha K.; Markon, C.J.

    2002-01-01

    During the week of April 10, 2001, the Fourth International Circumpolar Arctic Vegetation Mapping Workshop was held in Moscow, Russia. The purpose of this meeting was to bring together the vegetation scientists working on the Circumpolar Arctic Vegetation Map (CAVM) to (1) review the progress of current mapping activities, (2) discuss and agree upon a standard set of arctic tundra subzones, (3) plan for the production and dissemination of a draft map, and (4) begin work on a legend for the final map.

  13. Biosphere/atmosphere CO2 exchange in tundra ecosystems - Community characteristics and relationships with multispectral surface reflectance

    NASA Technical Reports Server (NTRS)

    Whiting, Gary J.; Bartlett, David S.; Fan, Song-Miao; Bakwin, Peter S.; Wofsy, Steven C.

    1992-01-01

    CO2 exchange rates were measured at selected tundra sites near Bethel, Alaska using portable, climate-controlled, instrumented enclosures. The empirically modeled exchange rate for a representative area of vegetated tundra was 1.2 +/- 1.2 g/sq m/d, compared to a tower-measured exchange over the same time period of 1.1 +.0- 1.2 g/sq m/d. Net exchange in response to varying light levels was compared to wet meadow and dry upland tundra, and to the net exchange measured by the micrometeoroidal tower technique. The multispectral reflectance properties of the sites were measured and related to exchange rates in order to provide a quantitative foundation for the use of satellite remote sensing to monitor biosphere/atmosphere CO2 exchange in the tundra biome.

  14. A Microwave Radiance Assimilation Study for a Tundra Snowpack

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Durand, Michael; Margulis, Steve; England, Anthony

    2010-01-01

    Recent studies have begun exploring the assimilation of microwave radiances for the modeling and retrieval of snow properties. At a point scale, and for short durations (i week), radiance assimilation (RA) results are encouraging. However, in order to determine how practical RA might be for snow retrievals when applied over longer durations, larger spatial scales, and/or different snow types, we must expand the scope of the tests. In this paper we use coincident microwave radiance measurements and station data from a tundra site on the North Slope of Alaska. The field data are from the 3rd Radio-brightness Energy Balance Experiment (REBEX-3) carried out in 1994-95 by the University of Michigan. This dataset will provide a test of RA over months instead of one week, and for a very different type of snow than previous snow RA studies. We will address the following questions: flow well can a snowpack physical model (SM), forced with local weather, match measured conditions for a tundra snowpack?; How well can a microwave emission model, driven by the snowpack model, match measured microwave brightnesses for a tundra snowpack?; How well does RA increase or decrease the fidelity of estimates of snow depth and temperatures for a tundra snowpack?

  15. CLIMATIC EFFECTS ON TUNDRA CARBON STORAGE INFERRED FROM EXPERIMENTAL DATA AND A MODEL

    EPA Science Inventory

    We used a process-based model of ecosystem carbon (C) and nitrogen (N)dynamics, MBL-GEM (Marine Biological Laboratory General Ecosystem Model), to integrated and analyze the results of several experiments that examined the response of arctic tussock tundra to manipulations of CO2...

  16. Chapter 32: Geology and petroleum potential of the Arctic Alaska petroleum province

    USGS Publications Warehouse

    Bird, K.J.; Houseknecht, D.W.

    2011-01-01

    The Arctic Alaska petroleum province encompasses all lands and adjacent continental shelf areas north of the Brooks Range-Herald Arch orogenic belt and south of the northern (outboard) margin of the Beaufort Rift shoulder. Even though only a small part is thoroughly explored, it is one of the most prolific petroleum provinces in North America with total known resources (cumulative production plus proved reserves) of c. 28 BBOE. The province constitutes a significant part of a displaced continental fragment, the Arctic Alaska microplate, that was probably rifted from the Canadian Arctic margin during formation of the Canada Basin. Petroleum prospective rocks in the province, mostly Mississippian and younger, record a sequential geological evolution through passive margin, rift and foreland basin tectonic stages. Significant petroleum source and reservoir rocks were formed during each tectonic stage but it was the foreland basin stage that provided the necessary burial heating to generate petroleum from the source rocks. The lion's share of known petroleum resources in the province occur in combination structural-stratigraphic traps formed as a consequence of rifting and located along the rift shoulder. Since the discovery of the super-giant Prudhoe Bay accumulation in one of these traps in the late 1960s, exploration activity preferentially focused on these types of traps. More recent activity, however, has emphasized the potential for stratigraphic traps and the prospect of a natural gas pipeline in this region has spurred renewed interest in structural traps. For assessment purposes, the province is divided into a Platform assessment unit (AU), comprising the Beaufort Rift shoulder and its relatively undeformed flanks, and a Fold-and-Thrust Belt AU, comprising the deformed area north of the Brooks Range and Herald Arch tectonic belt. Mean estimates of undiscovered, technically recoverable resources include nearly 28 billion barrels of oil (BBO) and 122 trillion

  17. Substrate Geochemistry and Soil Development in Boreal Forest and Tundra Ecosystems in the Yukon-Tanana Upland and Seward Peninsula, Alaska

    USGS Publications Warehouse

    Gough, L.P.; Crock, J.G.; Wang, B.; Day, W.C.; Eberl, D.D.; Sanzolone, R.F.; Lamothe, P.J.

    2008-01-01

    We report on soil development as a function of bedrock type and the presence of loess in two high latitude ecosystems (boreal forest and tundra) and from two regions in Alaska?the Yukon-Tanana Upland (YTU, east-central Alaska) and the Seward Peninsula (SP, far-west coastal Alaska). This approach to the study of 'cold soils' is fundamental to the quantification of regional geochemical landscape patterns. Of the five state factors in this study, bedrock and biota (ecosystem; vegetation zone) vary whereas climate (within each area) and topography are controlled. The influence of time is assumed to be controlled, as these soils are thousands of years old (late Quaternary to Holocene). The primary minerals in soils from YTU, developed over loess and crystalline bedrock (metamorphic and intrusive), are quartz, plagioclase, and 2:1 clays; whereas in the SP, where loess and metasedimentary bedrock (schist and quartzite) predominate, they are quartz and muscovite. The A horizon of both regions is rich in peat. Examination of the ratio of mobile (K2O, CaO, and Fe2O3) to immobile (TiO2) major oxides, within each region, shows that very little difference exists in the chemical weathering of soils developed between the two ecosystems examined. Differences were observed between tundra soils developed in the two regions. These differences are most probably due to the dissimilarity in the geochemical importance of both loess and bedrock. A minimal loss of cadmium with soil depth is seen for soils developed over YTU crystalline bedrock in the boreal forest environments. This trend is related to the mobility of cadmium in these soils as well as to its biogenic cycling. Major differences were observed in the proportion of cadmium and zinc among the A, B, and C horizon material sequestered in various soil fractions as measured by sequential soil extractions. These trends followed such variables as the decrease with depth in organic matter, the change in clay minerals, and the change

  18. 50 CFR Appendix I to Part 37 - Legal Description of the Coastal Plain, Arctic National Wildlife Refuge, Alaska

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 9 2013-10-01 2013-10-01 false Legal Description of the Coastal Plain, Arctic National Wildlife Refuge, Alaska I Appendix I to Part 37 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM...

  19. 50 CFR Appendix I to Part 37 - Legal Description of the Coastal Plain, Arctic National Wildlife Refuge, Alaska

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Legal Description of the Coastal Plain, Arctic National Wildlife Refuge, Alaska I Appendix I to Part 37 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM...

  20. 50 CFR Appendix I to Part 37 - Legal Description of the Coastal Plain, Arctic National Wildlife Refuge, Alaska

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 9 2014-10-01 2014-10-01 false Legal Description of the Coastal Plain, Arctic National Wildlife Refuge, Alaska I Appendix I to Part 37 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM...

  1. 50 CFR Appendix I to Part 37 - Legal Description of the Coastal Plain, Arctic National Wildlife Refuge, Alaska

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 9 2012-10-01 2012-10-01 false Legal Description of the Coastal Plain, Arctic National Wildlife Refuge, Alaska I Appendix I to Part 37 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM...

  2. 50 CFR Appendix I to Part 37 - Legal Description of the Coastal Plain, Arctic National Wildlife Refuge, Alaska

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Legal Description of the Coastal Plain, Arctic National Wildlife Refuge, Alaska I Appendix I to Part 37 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM...

  3. Diurnal and Seasonal Cold Lands Signatures in SSM/I-scale Microwave Radiometry of the North Slope of Alaska

    NASA Technical Reports Server (NTRS)

    Kim, Edward J.; England, Anthony W.; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    In this paper, we explore scaling and data assimilation-related issues associated with utilizing passive microwave satellite observations of Cold Lands-in this case, the climatologically and ecologically sensitive arctic tundra. Our approach expands on our earlier work using a one-year dataset from the Radiobrightness Energy Balance Experiment-3 (REBEX-3). REBEX-3 featured a tower-based SSM/I (Special Sensor Microwave/Imager) simulator deployed on the North Slope of Alaska in 1994-95. Two findings are significant here. First, a comparison of tower and satellite signatures at 19 and 37 GHz strongly suggested that the North Slope is radiometrically homogeneous for spatial scales up to SSM/I footprints (approximately 25 km), an unusual and valuable characteristic for monitoring and retrieving land surface conditions. And second, at the plot scale, signatures of snow/no-snow and freeze/thaw transitions were identifiable for tussock tundra land cover, so that even snow-free frozen tundra could be unambiguously distinguished from tundra covered with dry snow, another unusual and valuable characteristic. We present results from analyzing satellite brightness signatures of selected North Slope pixels corresponding to instrumented sites along a transect from the Brooks Range to the Arctic Ocean. A custom EASE (Equal Area Scalable Earth)-Grid processor was used to extract SSMJI data for every orbit with observations of this region during the 1994-95 year. The resulting high temporal-resolution (4-8 points/day), gridded data were then analyzed for evidence of the same diurnal and seasonal signatures seen at the plot scale (through micrometeorological and/or brightness data). Differences between satellite and tower brightness observations are quantified for various conditions at the REBEX-3 site. Such differences from the less-frequent and/or larger-scale satellite observations represent a form of input 'noise' in data assimilation applications. For the other sites, the

  4. DOES NITROGEN PARTITIONING PROMOTE SPECIES DIVERSITY IN ARCTIC TUSSOCK TUNDRA?

    EPA Science Inventory

    We used 15N soil-labeling techniques to examine how the dominant species in a N-limited, tussock tundra plant community partitioned soil N, and how such partitioning may contribute to community organization. The five most productive species were well differentiated with respect ...

  5. Sources and Fluxes of Atmospheric Methane from Lakes in the Alaskan Arctic

    NASA Astrophysics Data System (ADS)

    Townsend-Small, A.; Akerstrom, F.; Hinkel, K. M.; Arp, C. D.; Beck, R. A.; Grosse, G.; Jones, B. M.; Kim, C.; Lenters, J. D.; Liu, H.; Eisner, W. R.

    2014-12-01

    Climate warming in the Arctic may result in release of carbon dioxide and/or methane from thawing permafrost soils, resulting in a positive feedback to warming. Permafrost thaw may also result in release of methane from previously trapped natural gas. The Arctic landscape is approximately 50% covered by shallow permafrost lakes, and these environments may serve as bellwethers for climate change - carbon cycle feedbacks, since permafrost thaw is generally deeper under lakes than tundra soils. Since 2011, the Circum-Arctic Lakes Observation Network (CALON) project has documented landscape-scale variability in physical and biogeochemical processes of Arctic lakes in permafrost terrain, including carbon cycle feedbacks to climate warming. Here we present a dataset of concentrations, isotope ratios (13C and 2H), and atmospheric fluxes of methane from lakes in Arctic Alaska. Concentrations of methane in lake water ranged from 0.3 to 43 micrograms per liter, or between 6 and 750 times supersaturated with respect to air. Isotopic measurements of dissolved methane indicated that most of the lakes had methane derived from anaerobic organic matter decomposition, but that some lakes may have a small source of methane from fossil fuel sources such as natural gas or coal beds. Concurrent measurements of methane fluxes and dissolved methane concentrations in summer of 2014 will aid in translating routine dissolved measurements into fluxes, and will also elucidate the relative importance of diffusive versus ebulliative fluxes. It is essential that measurements of methane emissions from Arctic lakes be continued long-term to determine whether methane emissions are on the rise, and whether warming of the lakes leads to increased venting of fossil fuel methane from enhanced thaw of permafrost beneath the lakes.

  6. Fifty thousand years of Arctic vegetation and megafaunal diet.

    PubMed

    Willerslev, Eske; Davison, John; Moora, Mari; Zobel, Martin; Coissac, Eric; Edwards, Mary E; Lorenzen, Eline D; Vestergård, Mette; Gussarova, Galina; Haile, James; Craine, Joseph; Gielly, Ludovic; Boessenkool, Sanne; Epp, Laura S; Pearman, Peter B; Cheddadi, Rachid; Murray, David; Bråthen, Kari Anne; Yoccoz, Nigel; Binney, Heather; Cruaud, Corinne; Wincker, Patrick; Goslar, Tomasz; Alsos, Inger Greve; Bellemain, Eva; Brysting, Anne Krag; Elven, Reidar; Sønstebø, Jørn Henrik; Murton, Julian; Sher, Andrei; Rasmussen, Morten; Rønn, Regin; Mourier, Tobias; Cooper, Alan; Austin, Jeremy; Möller, Per; Froese, Duane; Zazula, Grant; Pompanon, François; Rioux, Delphine; Niderkorn, Vincent; Tikhonov, Alexei; Savvinov, Grigoriy; Roberts, Richard G; MacPhee, Ross D E; Gilbert, M Thomas P; Kjær, Kurt H; Orlando, Ludovic; Brochmann, Christian; Taberlet, Pierre

    2014-02-06

    Although it is generally agreed that the Arctic flora is among the youngest and least diverse on Earth, the processes that shaped it are poorly understood. Here we present 50 thousand years (kyr) of Arctic vegetation history, derived from the first large-scale ancient DNA metabarcoding study of circumpolar plant diversity. For this interval we also explore nematode diversity as a proxy for modelling vegetation cover and soil quality, and diets of herbivorous megafaunal mammals, many of which became extinct around 10 kyr bp (before present). For much of the period investigated, Arctic vegetation consisted of dry steppe-tundra dominated by forbs (non-graminoid herbaceous vascular plants). During the Last Glacial Maximum (25-15 kyr bp), diversity declined markedly, although forbs remained dominant. Much changed after 10 kyr bp, with the appearance of moist tundra dominated by woody plants and graminoids. Our analyses indicate that both graminoids and forbs would have featured in megafaunal diets. As such, our findings question the predominance of a Late Quaternary graminoid-dominated Arctic mammoth steppe.

  7. Geospatial analysis of lake and landscape interactions within the Toolik Lake region, North Slope of Alaska

    NASA Astrophysics Data System (ADS)

    Pathak, Prasad A.

    The Arctic region of Alaska is experiencing severe impacts of climate change. The Arctic lakes ecosystems are bound to undergo alterations in its trophic structure and other chemical properties. However, landscape factors controlling the lake influxes were not studied till date. This research has examined the currently existing lake landscape interactions using Remote Sensing and GIS technology. The statistical modeling was carried out using Regression and CART methods. Remote sensing data was applied to derive the required landscape indices. Remote sensing in the Arctic Alaska faces many challenges including persistent cloud cover, low sun angle and limited snow free period. Tundra vegetation types are interspersed and intricate to classify unlike managed forest stands. Therefore, historical studies have remained underachieved with respect thematic accuracies. However, looking at vegetation communities at watershed level and the implementation of expert classification system achieved the accuracies up to 90%. The research has highlighted the probable role of interactions between vegetation root zones, nutrient availability within active zone, as well as importance of permafrost thawing. Multiple regression analyses and Classification Trees were developed to understand relationships between landscape factors with various chemical parameters as well as chlorophyll readings. Spatial properties of Shrubs and Riparian complexes such as complexity of individual patches at watershed level and within proximity of water channels were influential on Chlorophyll production of lakes. Till-age had significant impact on Total Nitrogen contents. Moreover, relatively young tills exhibited significantly positive correlation with concentration of various ions and conductivity of lakes. Similarly, density of patches of Heath complexes was found to be important with respect to Total Phosphorus contents in lakes. All the regression models developed in this study were significant at 95

  8. Polygonal tundra geomorphological change in response to warming alters future CO2 and CH4 flux on the Barrow Peninsula.

    PubMed

    Lara, Mark J; McGuire, A David; Euskirchen, Eugenie S; Tweedie, Craig E; Hinkel, Kenneth M; Skurikhin, Alexei N; Romanovsky, Vladimir E; Grosse, Guido; Bolton, W Robert; Genet, Helene

    2015-04-01

    The landscape of the Barrow Peninsula in northern Alaska is thought to have formed over centuries to millennia, and is now dominated by ice-wedge polygonal tundra that spans drained thaw-lake basins and interstitial tundra. In nearby tundra regions, studies have identified a rapid increase in thermokarst formation (i.e., pits) over recent decades in response to climate warming, facilitating changes in polygonal tundra geomorphology. We assessed the future impact of 100 years of tundra geomorphic change on peak growing season carbon exchange in response to: (i) landscape succession associated with the thaw-lake cycle; and (ii) low, moderate, and extreme scenarios of thermokarst pit formation (10%, 30%, and 50%) reported for Alaskan arctic tundra sites. We developed a 30 × 30 m resolution tundra geomorphology map (overall accuracy:75%; Kappa:0.69) for our ~1800 km² study area composed of ten classes; drained slope, high center polygon, flat-center polygon, low center polygon, coalescent low center polygon, polygon trough, meadow, ponds, rivers, and lakes, to determine their spatial distribution across the Barrow Peninsula. Land-atmosphere CO2 and CH4 flux data were collected for the summers of 2006-2010 at eighty-two sites near Barrow, across the mapped classes. The developed geomorphic map was used for the regional assessment of carbon flux. Results indicate (i) at present during peak growing season on the Barrow Peninsula, CO2 uptake occurs at -902.3 10(6) gC-CO2 day(-1) (uncertainty using 95% CI is between -438.3 and -1366 10(6) gC-CO2 day(-1)) and CH4 flux at 28.9 10(6) gC-CH4 day(-1) (uncertainty using 95% CI is between 12.9 and 44.9 10(6) gC-CH4 day(-1)), (ii) one century of future landscape change associated with the thaw-lake cycle only slightly alter CO2 and CH4 exchange, while (iii) moderate increases in thermokarst pits would strengthen both CO2 uptake (-166.9 10(6) gC-CO2 day(-1)) and CH4 flux (2.8 10(6) gC-CH4 day(-1)) with geomorphic change from low

  9. Polygonal tundra geomorphological change in response to warming alters future CO2 and CH4 flux on the Barrow Peninsula

    USGS Publications Warehouse

    Lara, Mark J.; McGuire, A. David; Euskirchen, Eugénie S.; Tweedie, Craig E.; Hinkel, Kenneth M.; Skurikhin, Alexei N.; Romanovsky, Vladimir E.; Grosse, Guido; Bolton, W. Robert; Genet, Helene

    2015-01-01

    The landscape of the Barrow Peninsula in northern Alaska is thought to have formed over centuries to millennia, and is now dominated by ice-wedge polygonal tundra that spans drained thaw-lake basins and interstitial tundra. In nearby tundra regions, studies have identified a rapid increase in thermokarst formation (i.e., pits) over recent decades in response to climate warming, facilitating changes in polygonal tundra geomorphology. We assessed the future impact of 100 years of tundra geomorphic change on peak growing season carbon exchange in response to: (i) landscape succession associated with the thaw-lake cycle; and (ii) low, moderate, and extreme scenarios of thermokarst pit formation (10%, 30%, and 50%) reported for Alaskan arctic tundra sites. We developed a 30 × 30 m resolution tundra geomorphology map (overall accuracy:75%; Kappa:0.69) for our ~1800 km² study area composed of ten classes; drained slope, high center polygon, flat-center polygon, low center polygon, coalescent low center polygon, polygon trough, meadow, ponds, rivers, and lakes, to determine their spatial distribution across the Barrow Peninsula. Land-atmosphere CO2 and CH4 flux data were collected for the summers of 2006–2010 at eighty-two sites near Barrow, across the mapped classes. The developed geomorphic map was used for the regional assessment of carbon flux. Results indicate (i) at present during peak growing season on the Barrow Peninsula, CO2 uptake occurs at -902.3 106gC-CO2 day−1(uncertainty using 95% CI is between −438.3 and −1366 106gC-CO2 day−1) and CH4 flux at 28.9 106gC-CH4 day−1(uncertainty using 95% CI is between 12.9 and 44.9 106gC-CH4 day−1), (ii) one century of future landscape change associated with the thaw-lake cycle only slightly alter CO2 and CH4 exchange, while (iii) moderate increases in thermokarst pits would strengthen both CO2uptake (−166.9 106gC-CO2 day−1) and CH4 flux (2.8 106gC-CH4 day−1) with geomorphic change from

  10. Breeding habitat associations and predicted distribution of an obligate tundra-breeding bird, Smith's Longspur

    USGS Publications Warehouse

    Wild, Teri C.; Kendall, Steven J.; Guldager, Nikki; Powell, Abby N.

    2015-01-01

    Smith's Longspur (Calcarius pictus) is a species of conservation concern which breeds in Arctic habitats that are expected to be especially vulnerable to climate change. We used bird presence and habitat data from point-transect surveys conducted at 12 sites across the Brooks Range, Alaska, 2003–2009, to identify breeding areas, describe local habitat associations, and identify suitable habitat using a predictive model of Smith's Longspur distribution. Smith's Longspurs were observed at seven sites, where they were associated with a variety of sedge–shrub habitats composed primarily of mosses, sedges, tussocks, and dwarf shrubs; erect shrubs were common but sparse. Nonmetric multidimensional scaling ordination of ground cover revealed positive associations of Smith's Longspur presence with sedges and mosses and a negative association with high cover of shrubs. To model predicted distribution, we used boosted regression trees to relate landscape variables to occurrence. Our model predicted that Smith's Longspurs may occur in valleys and foothills of the northeastern and southeastern mountains and in upland plateaus of the western mountains, and farther west than currently documented, over a predicted area no larger than 15% of the Brooks Range. With climate change, shrubs are expected to grow larger and denser, while soil moisture and moss cover are predicted to decrease. These changes may reduce Smith's Longspur habitat quality and limit distribution in the Brooks Range to poorly drained lowlands and alpine plateaus where sedge–shrub tundra is likely to persist. Conversely, northward advance of shrubs into sedge tundra may create suitable habitat, thus supporting a northward longspur distribution shift.

  11. Capturing Micro-topography of an Arctic Tundra Landscape through Digital Elevation Models (DEMs) Acquired from Various Remote Sensing Platforms

    NASA Astrophysics Data System (ADS)

    Vargas, S. A., Jr.; Tweedie, C. E.; Oberbauer, S. F.

    2013-12-01

    The need to improve the spatial and temporal scaling and extrapolation of plot level measurements of ecosystem structure and function to the landscape level has been identified as a persistent research challenge in the arctic terrestrial sciences. Although there has been a range of advances in remote sensing capabilities on satellite, fixed wing, helicopter and unmanned aerial vehicle platforms over the past decade, these present costly, logistically challenging (especially in the Arctic), technically demanding solutions for applications in an arctic environment. Here, we present a relatively low cost alternative to these platforms that uses kite aerial photography (KAP). Specifically, we demonstrate how digital elevation models (DEMs) were derived from this system for a coastal arctic landscape near Barrow, Alaska. DEMs of this area acquired from other remote sensing platforms such as Terrestrial Laser Scanning (TLS), Airborne Laser Scanning, and satellite imagery were also used in this study to determine accuracy and validity of results. DEMs interpolated using the KAP system were comparable to DEMs derived from the other platforms. For remotely sensing acre to kilometer square areas of interest, KAP has proven to be a low cost solution from which derived products that interface ground and satellite platforms can be developed by users with access to low-tech solutions and a limited knowledge of remote sensing.

  12. Overview of environmental and hydrogeologic conditions at Barrow, Alaska

    USGS Publications Warehouse

    McCarthy, K.A.

    1994-01-01

    To assist the Federal Aviation Administration (FAA) in evaluating the potential effects of environmental contamination at their facility in Barrow, Alaska, a general assessment was made of the hydrologic system is the vicinity of the installation. The City of Barrow is located approximately 16 kilometers southwest of Point Barrow, the northernmost point in Alaska, and therefore lies within the region of continuous permafrost. Migration of surface or shallow- subsurface chemical releases in this environ- ment would be largely restricted by near-surface permafrost to surface water and the upper, suprapermafrost zone of the subsurface. In the arctic climate and tundra terrain of the Barrow area, this shallow environment has a limited capacity to attenuate the effects of either physical disturbances or chemical contamination and is therefore highly susceptible to degradation. Esatkuat Lagoon, the present drink- ing water supply for the City of Barrow, is located approximately 2 kilometers from the FAA facility. This lagoon is the only practical source of drinking water available to the City of Barrow because alternative sources of water in the area are (1) frozen throughout most of the year, (2) insufficient in volume, (3) of poor quality, or (4) too costly to develop and distribute.

  13. Climate Effects on Methylmercury Bioaccumulation Along a Latitudinal Gradient in the Eastern Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Chetelat, J.; Richardson, M.; MacMillan, G. A.; Amyot, M.; Hintelmann, H.; Crump, D.

    2014-12-01

    Recent evidence indicates that inorganic mercury (Hg) loadings to Arctic lakes decline with latitude. However, monomethylmercury (MMHg) concentrations in fish and their prey do not decline in a similar fashion, suggesting that higher latitude lakes are more vulnerable to Hg inputs. Preliminary results will be presented from a three-year study (2012-2015) of climate effects on MMHg bioaccumulation in lakes of the eastern Canadian Arctic. We have investigated mercury transport and accumulation processes in lakes and ponds from three study regions along a latitudinal gradient in climate-controlled ecosystem types in the Canadian Arctic, specifically sub-Arctic taiga, Arctic tundra and polar desert. In each water body, we measured key aspects of MMHg bioaccumulation—MMHg bioavailability to benthic food webs and organism growth rates—as well as how watershed characteristics affect the transport of Hg and organic carbon to lakes. Novel approaches were incorporated including the use of passive samplers (Diffusive Gradient in Thin Film samplers or DGTs) to estimate sediment bioavailable MMHg concentrations and tissue RNA content to compare organism short-term growth rates. A comparison of Arctic tundra and sub-Arctic taiga lakes showed that surface water concentrations of MMHg were strongly and positively correlated to total Hg concentrations both within and among study regions, implying strong control of inorganic Hg supply. Sediment concentrations of bioavailable MMHg were highly variable among lakes, although average concentrations were similar between study regions. Local environmental conditions appear to have a strong influence on sediment potential for MMHg supply. Lake-dwelling Arctic char from tundra lakes had similar or higher total Hg concentrations compared with brook trout from sub-Arctic lakes that were exposed to higher water MMHg concentrations. Potential environmental drivers of these patterns will be discussed. This latitudinal study will provide new

  14. Oblique Aerial Photography of the Arctic Coast of Alaska, Nulavik to Demarcation Point, August 7-10, 2006

    USGS Publications Warehouse

    Gibbs, Ann E.; Richmond, Bruce M.

    2009-01-01

    The Arctic Coastal Plain of northern Alaska, an area of strategic economic importance to the United States, is home to remote Native American communities and encompasses unique habitats of global significance. Coastal erosion along the Arctic coast is chronic and widespread; recent evidence suggests that erosion rates are among the highest in the world (up to ~16 m/yr) and may be accelerating. Coastal erosion adversely impacts energy-related infrastructure, natural shoreline habitats, and Native American communities. Climate change is thought to be a key component of recent environmental changes in the Arctic. Reduced sea-ice cover in the Arctic Ocean is one of the probable mechanisms responsible for increasing coastal exposure to wave attack and the resulting increase in erosion. Extended periods of permafrost melting and associated decrease in bluff cohesion and stability are another possible source of the increase in erosion. Several studies of selected areas on the Alaska coast document past shoreline positions and coastal change, but none have examined the entire North coast systematically. Results from these studies indicate high rates of coastal retreat that vary spatially along the coast. To address the need for a comprehensive and regionally consistent evaluation of shoreline change along the North coast of Alaska, the U.S. Geological Survey (USGS), as part of their Coastal and Marine Geology Program's (CMGP) National Assessment of Shoreline Change Study, is evaluating shoreline change from Peard Bay to the United States/Canadian border, using historical maps and photography and a standardized methodology that is consistent with other shoreline-change studies along the Nation's coastlines (for example, URL http://coastal.er.usgs.gov/shoreline-change/ (last accessed March 2, 2009). This report contains photographs collected during an aerial-reconnaissance survey conducted in support of this study. An accompanying ESRI ArcGIS shape file (and plain-text copy

  15. Terrestrial biosphere models underestimate photosynthetic capacity and CO2 assimilation in the Arctic.

    PubMed

    Rogers, Alistair; Serbin, Shawn P; Ely, Kim S; Sloan, Victoria L; Wullschleger, Stan D

    2017-12-01

    Terrestrial biosphere models (TBMs) are highly sensitive to model representation of photosynthesis, in particular the parameters maximum carboxylation rate and maximum electron transport rate at 25°C (V c,max.25 and J max.25 , respectively). Many TBMs do not include representation of Arctic plants, and those that do rely on understanding and parameterization from temperate species. We measured photosynthetic CO 2 response curves and leaf nitrogen (N) content in species representing the dominant vascular plant functional types found on the coastal tundra near Barrow, Alaska. The activation energies associated with the temperature response functions of V c,max and J max were 17% lower than commonly used values. When scaled to 25°C, V c,max.25 and J max.25 were two- to five-fold higher than the values used to parameterize current TBMs. This high photosynthetic capacity was attributable to a high leaf N content and the high fraction of N invested in Rubisco. Leaf-level modeling demonstrated that current parameterization of TBMs resulted in a two-fold underestimation of the capacity for leaf-level CO 2 assimilation in Arctic vegetation. This study highlights the poor representation of Arctic photosynthesis in TBMs, and provides the critical data necessary to improve our ability to project the response of the Arctic to global environmental change. No claim to original US Government works. New Phytologist © 2017 New Phytologist Trust.

  16. Dynamics of Active Layer Depth across Alaskan Tundra Ecosystems

    NASA Astrophysics Data System (ADS)

    Ma, C.; Zhang, X.; Song, X.; Xu, X.

    2016-12-01

    The thickness of the active layer, near-surface layer of Earth material above permafrost undergoing seasonal freezing and thawing, is of considerable importance in high-latitude environments because most physical, chemical, and biological processes in the permafrost region take place within it. The dynamics of active layer thickness (ALT) result from a combination of various factors including heat transfer, soil water content, soil texture, root density, stem density, moss layer thickness, organic layer thickness, etc. However, the magnitude and controls of ALT in the permafrost region remain uncertain. The purpose of this study is to improve our understanding of the dynamics of ALT across Alaskan tundra ecosystems and their controls at multiple scales, ranging from plots to entire Alaska. This study compiled a comprehensive dataset of ALT at site and regional scales across the Alaskan tundra ecosystems, and further analyzed ALT dynamics and their hierarchical controls. We found that air temperature played a predominant role on the seasonality of ALT, regulated by other physical and chemical factors including soil texture, moisture, and root density. The structural equation modeling (SEM) analysis confirmed the predominant role of physical controls (dominated by heat and soil properties), followed by chemical and biological factors. Then a simple empirical model was developed to reconstruct the ALT across the Alaska. The comparisons against field observational data show that the method used in this study is robust; the reconstructed time-series ALT across Alaska provides a valuable dataset source for understanding ALT and validating large-scale ecosystem models.

  17. Oblique Aerial Photography of the Arctic Coast of Alaska, Cape Sabine to Milne Point, July 16-19, 2009

    USGS Publications Warehouse

    Gibbs, Ann E.; Richmond, Bruce M.

    2010-01-01

    The Arctic Coastal Plain of northern Alaska, an area of strategic economic importance to the United States, is home to remote Native American communities and encompasses unique habitats of global significance. Coastal erosion along the Arctic coast is chronic and widespread; recent evidence suggests that erosion rates are among the highest in the world (as high as ~16 m/yr) and may be accelerating. Coastal erosion adversely impacts energy-related infrastructure, natural shoreline habitats, and Native American communities. Climate change is thought to be a key component of recent environmental changes in the Arctic. Reduced sea-ice cover in the Arctic Ocean is one of the probable mechanisms responsible for increasing coastal exposure to wave attack and the resulting increase in erosion. Extended periods of permafrost melting and associated decreases in bluff cohesion and stability are another possible source of the increase in erosion. Several studies of selected areas on the Alaska coast document past shoreline positions and coastal change, but none have examined the entire North coast systematically. Results from these studies indicate high rates of coastal retreat that vary spatially along the coast. To address the need for a comprehensive and regionally consistent evaluation of shoreline change along the North coast of Alaska, the U.S. Geological Survey (USGS), as part of their Coastal and Marine Geology Program's (CMGP) National Assessment of Shoreline Change Study, is evaluating shoreline change from Peard Bay to the United States/Canadian border, using historical maps and photography and a standardized methodology that is consistent with other shoreline-change studies along the Nation's coastlines (see, for example, http://coastal.er.usgs.gov/shoreline-change/, last accessed February 12, 2010). This is the second in a series of publications containing photographs collected during reconnaissance surveys conducted in support of the National Assessment of

  18. Large-area surveys for black carbon and other light-absorbing impurities in snow: Arctic, Antarctic, North America, China (Invited)

    NASA Astrophysics Data System (ADS)

    Warren, S. G.; Doherty, S. J.; Hegg, D.; Dang, C.; Zhang, R.; Grenfell, T. C.; Brandt, R. E.; Clarke, A. D.; Zatko, M.

    2013-12-01

    Absorption of radiation by ice is extremely weak at visible and near-UV wavelengths, so small amounts of light-absorbing impurities (LAI) in snow can dominate the absorption of sunlight at these wavelengths, reducing the albedo relative to that of pure snow and leading to earlier snowmelt. Snow samples were collected in Alaska, Canada, Greenland, Svalbard, Norway, Russia, and the Arctic Ocean, on tundra, glaciers, ice caps, sea ice, and frozen lakes, and in boreal forests. Snow was collected mostly in spring, when the entire winter snowpack was accessible for sampling. Snow was also collected at 67 sites in western North America. Expeditions from Lanzhou University obtained black carbon (BC) amounts at 84 sites in northeast and northwest China. BC was measured at 3 locations on the Antarctic Plateau, and at 5 sites on East Antarctic sea ice. The snow is melted and filtered; the filters are analyzed in a spectrophotometer. Median BC mixing ratios in snow range over 4 orders of magnitude from 0.2 ng/g in Antarctica to 1000 ng/g in northeast China. Chemical analyses, input to a receptor model, indicate that the major source of BC in most of the Arctic is biomass burning, but industrial sources dominate in Svalbard and the central Arctic Ocean. Non-BC impurities, principally brown (organic) carbon, are typically responsible for ~40% of the visible and ultraviolet absorption. In northeast China BC is the dominant LAI, but in Inner Mongolia soil dominates. When the snow surface layer melts, much of the BC is left at the top of the snowpack rather than carried away in meltwater, thus causing a positive feedback on snowmelt. This process was quantified through field studies in Greenland, Alaska, and Norway, where we found that only 10-30% of the BC is removed with meltwater. The BC content of the Arctic atmosphere has declined markedly since 1989, according to the continuous measurements of near-surface air in Canada, Alaska, and Svalbard. Correspondingly, our recent BC

  19. A Probabilistic Method of Assessing Carbon Accumulation Rate at Imnavait Creek Peatland, Arctic Long Term Ecological Research Station, Alaska

    NASA Technical Reports Server (NTRS)

    Nichols, Jonathan E.; Peteet, Dorothy M.; Frolking, Steve; Karavias, John

    2017-01-01

    Arctic peatlands are an important part of the global carbon cycle, accumulating atmospheric carbon as organic matter since the Late glacial. Current methods for understanding the changing efficiency of the peatland carbon sink rely on peatlands with an undisturbed stratigraphy. Here we present a method of estimating primary carbon accumulation rate from a site where permafrost processes have either vertically or horizontally translocated nearby carbon-rich sediment out of stratigraphic order. Briefly, our new algorithm estimates the probability of the age of deposition of a random increment of sediment in the core. The method assumes that if sediment age is measured at even depth increments, dates are more likely to occur during intervals of higher accumulation rate and vice versa. Multiplying estimated sedimentation rate by measured carbon density yields carbon accumulation rate. We perform this analysis at the Imnavait Creek Peatland, near the Arctic Long Term Ecological Research network site at Toolik Lake, Alaska. Using classical radiocarbon age modeling, we find unreasonably high rates of carbon accumulation at various Holocene intervals. With our new method, we find accumulation rate changes that are in improved agreement within the context of other sites throughout Alaska and the rest of the Circum-Arctic region.

  20. Assimilation of old carbon by stream food webs in arctic Alaska

    NASA Astrophysics Data System (ADS)

    O'Donnell, J. A.; Carey, M.; Xu, X.; Koch, J. C.; Walker, J. C.; Zimmerman, C. E.

    2017-12-01

    Permafrost thaw in arctic and sub-arctic region is mobilizing old carbon (C) from perennially frozen soils, driving the release of old C to the atmosphere and to aquatic ecosystems. Much research has focused on the transport and lability of old dissolved organic C (DOC) as a possible feedback to the climate system following thaw. However, little is known about the role of old C as a source to aquatic food webs in watersheds underlain by thawing permafrost. To quantify the contributions of old C to Arctic stream food-webs, we measured the radiocarbon (Δ14C) and stable isotope (δ13C, δ15N) contents of periphyton, macroinvertebrates, and resident fish species (Arctic Grayling (Thymallus arcticus) and Dolly Varden (Salvelinus malma)). We also characterized the isotopic composition of possible C sources, including DOC, dissolved inorganic carbon (DIC), and soil organic matter. Samples were collected across 10 streams in Arctic Alaska, draining watersheds underlain by varying parent material and ground-ice content, from ice-poor bedrock to ice-rich loess (i.e. Yedoma). Fraction modern (FM) values for Arctic Grayling and Dolly Varden ranged from 0.6720 to 1.0101 (3195 years BP to modern) across all streams, and closely tracked spatial variation in Δ14C content of periphyton. Parent material and ground-ice content appear to govern the age and form of dissolved C sources to stream biota. For instance, in watersheds underlain by ice-poor bedrock, old DIC (< 5000 years BP) was the dominant C source to stream biota, reflecting contributions from carbonate weathering and soil respiration. In streams draining ice-rich Yedoma, high concentrations of younger DOC were the primary C source to stream biota, reflecting leaching of DOC from saturated, peaty soils of the active layer. These findings highlight the importance of permafrost characteristics as a control on subsurface hydrology and the delivery of aged C to surface waters. Given the large stores Pleistocene-aged organic

  1. Reconstruction of fire history of the Yukon-Kuskokwim Delta, Alaska

    NASA Astrophysics Data System (ADS)

    Sae-lim, J.; Mann, P. J.; Russell, J. M.; Natali, S.; Vachula, R. S.; Schade, J. D.; Holmes, R. M.

    2017-12-01

    Wildfire is an important disturbance in Arctic ecosystems and can cause abrupt perturbations in global carbon cycling and atmospheric chemistry. Over the next few decades, arctic fire frequency, intensity and extent is projected to increase due to anthropogenic climate change, as regional air temperatures are increasing at more than twice the global average. In order to more accurately predict the anthropogenic impacts of climate change on tundra fire regimes, it is critical to have detailed knowledge of the natural frequency and extent of past wildfires. However, reliable historical records only extend back a few hundred years, whereas climatic shifts have affected fire regimes for thousands of years. In this work we analyzed a lake sediment core collected from the Yukon-Kuskokwim (YK) Delta, Alaska, a region that has recently experienced fire and is predicted to see increasing fire frequency in the near future. Our primary lake site is situated adjacent to recent burned areas, providing a `calibration' point and also attesting to the sensitivity of the sites. We used charcoal counts alongside geochemical measurements (C:N, 13C, 15N, 210Pb, X-ray fluorescence analyses of elemental chemistry) to reconstruct past fire history and ecosystem responses during the late Holocene. Average C (%C) and N concentrations (%N) in the core were 8.10 ±0.74% and 0.48 ±0.05%, resulting in C:N ratios of 16.80 ±0.74. The values are generally stable, with no obvious trend in C, N or C:N with depth; however, fluctuations in sediment composition in other nearby lake sediment cores possibly suggests shifts in lake conditions (oxic, anoxic) over time that might result from paleofires. This study provides a baseline for estimated fire return intervals in the YK Delta that will support more accurate projections of tundra fire frequencies under a changing climate.

  2. Assessing the Tundra-taiga Boundary with Multi-Sensor Satellite Data

    NASA Technical Reports Server (NTRS)

    Ranson, K. J.; Sun, G.; Kharuk, V. I.; Kovacs, K.

    2004-01-01

    Monitoring the dynamics of the circumpolar boreal forest (taiga) and Arctic tundra boundary is important for understanding the causes and consequences of changes observed in these areas. This ecotone, the world's largest, stretches for over 13,400 km and marks the transition between the northern limits of forests and the southern margin of the tundra. Because of the inaccessibility and large extent of this zone, remote sensing data can play an important role for mapping the characteristics and monitoring the dynamics. Basic understanding of the capabilities of existing space borne instruments for these purposes is required. In this study we examined the use of several remote sensing techniques for identifying the existing tundra- taiga ecotone. These include Landsat-7, MISR, MODIS and RADARSAT data. Historical cover maps, recent forest stand measurements and high-resolution IKONOS images were used for local ground truth. It was found that a tundra-taiga transitional area can be characterized using multi- spectral Landsat ETM+ summer images, multi-angle MISR red band reflectance images, RADARSAT images with larger incidence angle, or multi-temporal and multi-spectral MODIS data. Because of different resolutions and spectral regions covered, the transition zone maps derived from different data types were not identical, but the general patterns were consistent.

  3. Landscape Change Detected Over A 60 Year Period In The Arctic National Wildlife Refuge, Alaska, Using High Resolution Aerial Photographs And Satellite Images

    NASA Astrophysics Data System (ADS)

    Jorgenson, J. C.; Jorgenson, M. T.; Boldenow, M.; Orndahl, K. M.

    2016-12-01

    We documented landscape change over a 60 year period in the Arctic National Wildlife Refuge in northeastern Alaska using aerial photographs and satellite images. We used a stratified random sample to allow inference to the whole refuge (78,050 km2), with five random sites in each of seven ecoregions. Each site (2 km2) had a systematic grid of 100 points for a total of 3500 points. We chose study sites in the overlap area covered by acceptable imagery in three time periods: aerial photographs from 1947 - 1955 and 1978 - 1988, Quick Bird and IKONOS satellite images from 2000 - 2007.At each point a 10 meter radius circle was visually evaluated in ARC-MAP for each time period for vegetation type, disturbance, presence of ice wedge polygon microtopography and surface water. A landscape change category was assigned to each point based on differences detected between the three periods. Change types were assigned for time interval 1, interval 2 and overall. Additional explanatory variables included elevation, slope, aspect, geology, physiography and temperature. Overall, 23% of points changed over the study period. Fire was the most common change agent, affecting 28% of the Boreal Forest points. The next most common change was degradation of soil ice wedges (thermokarst), detected at 12% of the points on the North Slope Tundra. The other most common changes included increase in cover of trees or shrubs (7% of Boreal Forest and Brooks Range points) and erosion or deposition on river floodplains and at the Beaufort Sea coast. Changes on the North Slope Tundra tended to be related to landscape wetting, mainly thermokarst. Changes in the Boreal Forest tended to involve landscape drying, including fire, reduced area of lakes and tree increase on wet sites. The second time interval coincided with a shift towards a warmer climate and had greater change in several categories including thermokarst, lake changes and tree and shrub increase.

  4. High seroprevalence of antibodies to avian influenza viruses among wild waterfowl in Alaska: implications for surveillance

    USGS Publications Warehouse

    Wilson, Heather M.; Hall, Jeffery S.; Flint, Paul L.; Franson, J. Christian; Ely, Craig R.; Schmutz, Joel A.; Samuel, Michael D.

    2013-01-01

    We examined seroprevalence (presence of detectable antibodies in serum) for avian influenza viruses (AIV) among 4,485 birds, from 11 species of wild waterfowl in Alaska (1998–2010), sampled during breeding/molting periods. Seroprevalence varied among species (highest in eiders (Somateria and Polysticta species), and emperor geese (Chen canagica)), ages (adults higher than juveniles), across geographic locations (highest in the Arctic and Alaska Peninsula) and among years in tundra swans (Cygnus columbianus). All seroprevalence rates in excess of 60% were found in marine-dependent species. Seroprevalence was much higher than AIV infection based on rRT-PCR or virus isolation alone. Because pre-existing AIV antibodies can infer some protection against highly pathogenic AIV (HPAI H5N1), our results imply that some wild waterfowl in Alaska could be protected from lethal HPAIV infections. Seroprevalence should be considered in deciphering patterns of exposure, differential infection, and rates of AIV transmission. Our results suggest surveillance programs include species and populations with high AIV seroprevalences, in addition to those with high infection rates. Serologic testing, including examination of serotype-specific antibodies throughout the annual cycle, would help to better assess spatial and temporal patterns of AIV transmission and overall disease dynamics.

  5. High Seroprevalence of Antibodies to Avian Influenza Viruses among Wild Waterfowl in Alaska: Implications for Surveillance

    PubMed Central

    Wilson, Heather M.; Hall, Jeffery S.; Flint, Paul L.; Franson, J. Christian; Ely, Craig R.; Schmutz, Joel A.; Samuel, Michael D.

    2013-01-01

    We examined seroprevalence (presence of detectable antibodies in serum) for avian influenza viruses (AIV) among 4,485 birds, from 11 species of wild waterfowl in Alaska (1998–2010), sampled during breeding/molting periods. Seroprevalence varied among species (highest in eiders (Somateria and Polysticta species), and emperor geese (Chen canagica)), ages (adults higher than juveniles), across geographic locations (highest in the Arctic and Alaska Peninsula) and among years in tundra swans (Cygnus columbianus). All seroprevalence rates in excess of 60% were found in marine-dependent species. Seroprevalence was much higher than AIV infection based on rRT-PCR or virus isolation alone. Because pre-existing AIV antibodies can infer some protection against highly pathogenic AIV (HPAI H5N1), our results imply that some wild waterfowl in Alaska could be protected from lethal HPAIV infections. Seroprevalence should be considered in deciphering patterns of exposure, differential infection, and rates of AIV transmission. Our results suggest surveillance programs include species and populations with high AIV seroprevalences, in addition to those with high infection rates. Serologic testing, including examination of serotype-specific antibodies throughout the annual cycle, would help to better assess spatial and temporal patterns of AIV transmission and overall disease dynamics. PMID:23472177

  6. Shifting balance of thermokarst lake ice regimes across the Arctic Coastal Plain of northern Alaska

    USGS Publications Warehouse

    Arp, Christopher D.; Jones, Benjamin M.; Lu, Zong; Whitman, Matthew S.

    2012-01-01

    The balance of thermokarst lakes with bedfast- and floating-ice regimes across Arctic lowlands regulates heat storage, permafrost thaw, winter-water supply, and over-wintering aquatic habitat. Using a time-series of late-winter synthetic aperture radar (SAR) imagery to distinguish lake ice regimes in two regions of the Arctic Coastal Plain of northern Alaska from 2003–2011, we found that 18% of the lakes had intermittent ice regimes, varying between bedfast-ice and floating-ice conditions. Comparing this dataset with a radar-based lake classification from 1980 showed that 16% of the bedfast-ice lakes had shifted to floating-ice regimes. A simulated lake ice thinning trend of 1.5 cm/yr since 1978 is believed to be the primary factor driving this form of lake change. The most profound impacts of this regime shift in Arctic lakes may be an increase in the landscape-scale thermal offset created by additional lake heat storage and its role in talik development in otherwise continuous permafrost as well as increases in over-winter aquatic habitat and winter-water supply.

  7. Warming Effects on Enzyme Activities are Predominant in Sub-surface Soils of an Arctic Tundra Ecosystem over 6-Year Field Manipulation

    NASA Astrophysics Data System (ADS)

    Kang, H.; Seo, J.; Kim, M.; Jung, J. Y.; Lee, Y. K.

    2017-12-01

    Arctic tundra ecosystems are of great importance because they store a large amount of carbon as un-decomposed organic matter. Global climate change is expected to affect enzyme activities and heterotrophic respiration in Arctic soils, which may accelerate greenhouse gas (GHG) emission through positive biological feedbacks. Unlike laboratory-based incubation experiments, field measurements often show different warming effects on decomposition of organic carbon and releases of GHGs. In the present study, we conducted a field-based warming experiment in Cambridge Bay, Canada (69°07'48″N, 105°03'36″W) by employing passive chambers during growing seasons over 6 years. A suite of enzyme activities (ß-glucosidase, cellobiohydrolase, N-acetylglucosaminidase, leucine aminopeptidase and phenol oxidase), microbial community structure (NGS), microbial abundances (gene copy numbers of bacteria and fungi), and soil chemical properties have been monitored in two depths (0-5 cm and 5-10 cm) of tundra soils, which were exposed to four different treatments (`control', `warming-only', `water-addition only', and both `warming and water-addition'). Phenol oxidase activity increased substantially, and bacterial community structure and abundance changed in the early stage (after 1 year's warming manipulation), but these changes disappeared afterwards. Most hydrolases were enhanced in surface soils by `water-addition only' over the period. However, the long-term effects of warming appeared in sub-surface soils where both `warming only' and `warming and water addition' increased hydrolase activities. Overall results of this study indicate that the warming effects on enzyme activities in surface soils are only short-term (phenol oxidase) or masked by water-limitation (hydrolases). However, hydrolases activities in sub-surface soils are more strongly enhanced than surface soils by warming, probably due to the lack of water limitation. Meanwhile, negative correlations between hydrolase

  8. Challenges in modelling isoprene and monoterpene emission dynamics of Arctic plants: a case study from a subarctic tundra heath

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Schurgers, Guy; Valolahti, Hanna; Faubert, Patrick; Tiiva, Päivi; Michelsen, Anders; Rinnan, Riikka

    2016-12-01

    The Arctic is warming at twice the global average speed, and the warming-induced increases in biogenic volatile organic compounds (BVOCs) emissions from Arctic plants are expected to be drastic. The current global models' estimations of minimal BVOC emissions from the Arctic are based on very few observations and have been challenged increasingly by field data. This study applied a dynamic ecosystem model, LPJ-GUESS, as a platform to investigate short-term and long-term BVOC emission responses to Arctic climate warming. Field observations in a subarctic tundra heath with long-term (13-year) warming treatments were extensively used for parameterizing and evaluating BVOC-related processes (photosynthesis, emission responses to temperature and vegetation composition). We propose an adjusted temperature (T) response curve for Arctic plants with much stronger T sensitivity than the commonly used algorithms for large-scale modelling. The simulated emission responses to 2 °C warming between the adjusted and original T response curves were evaluated against the observed warming responses (WRs) at short-term scales. Moreover, the model responses to warming by 4 and 8 °C were also investigated as a sensitivity test. The model showed reasonable agreement to the observed vegetation CO2 fluxes in the main growing season as well as day-to-day variability of isoprene and monoterpene emissions. The observed relatively high WRs were better captured by the adjusted T response curve than by the common one. During 1999-2012, the modelled annual mean isoprene and monoterpene emissions were 20 and 8 mg C m-2 yr-1, with an increase by 55 and 57 % for 2 °C summertime warming, respectively. Warming by 4 and 8 °C for the same period further elevated isoprene emission for all years, but the impacts on monoterpene emissions levelled off during the last few years. At hour-day scale, the WRs seem to be strongly impacted by canopy air T, while at the day-year scale, the WRs are a combined

  9. Arctic Oases? - River Aufeis Maintain Perennial Groundwater Habitat in the Arctic

    NASA Astrophysics Data System (ADS)

    Huryn, A. D.; Gooseff, M. N.; Briggs, M. A.; Terry, N.; Kendrick, M.; Hendrickson, P. J.; Grunewald, E. D.

    2017-12-01

    Aufeis are massive accumulations of ice found along many arctic rivers, with aufeis on some Alaskan rivers covering 20+ km2 and attaining thicknesses of 5+ m. Although aufeis are prominent landscape features, understanding of their ecology is poor. We propose that aufeis function as summer oases by providing meltwater and nutrients to downstream habitats and winter oases due to insulating layers of ice that maintain below-ground freshwater habitat that would otherwise be frozen in regions of continuous permafrost. To gain information about the ecological roles of aufeis, we installed 50 1-m deep wells in a 1.5 km2aufeis field along the Kuparuk River, an arctic tundra river in Alaska. We assessed the predictions that aufeis provide perennially-unfrozen, below-ground habitat for a specialized invertebrate community while functioning as hot spots for nutrient regeneration. Surface geophysical measurements made during the time of maximum ice thickness in 2017 indicated most of the Kuparuk feature was underlain by several meters of shallow frozen cobbles that were further underlain by a 10 m thick+ zone of thawed material. Ground penetrating radar and surface nuclear magnetic resonance data indicated several spatially-discrete thawed preferential flow zones through the shallow frozen sediment layer that may result from groundwater upwelling observed flowing through fractures in the icepack. Freshwater invertebrates sampled from the wells represent a rich community consisting of flatworms, annelids, copepods, ostracods, chironomids (Krenosmittia, Trichotanypus) and stoneflies. Although the potential for below-ground NH4+ and NO3-regeneration was indicated, analyses were complicated bya surprisingly strong and dynamic coupling of surface and below-ground water.

  10. Long-term experimental warming alters nitrogen-cycling communities but site factors remain the primary drivers of community structure in high arctic tundra soils.

    PubMed

    Walker, Jennifer K M; Egger, Keith N; Henry, Gregory H R

    2008-09-01

    Arctic air temperatures are expected to rise significantly over the next century. Experimental warming of arctic tundra has been shown to increase plant productivity and cause community shifts and may also alter microbial community structure. Hence, the objective of this study was to determine whether experimental warming caused shifts in soil microbial communities by measuring changes in the frequency, relative abundance and/or richness of nosZ and nifH genotypes. Five sites at a high arctic coastal lowland were subjected to a 13-year warming experiment using open-top chambers (OTCs). Sites differed by dominant plant community, soil parent material and/or moisture regimen. Six soil cores were collected from each of four replicate OTC and ambient plots at each site and subdivided into upper and lower samples. Differences in frequency and relative abundance of terminal restriction fragments were assessed graphically by two-way cluster analysis and tested statistically with permutational multivariate analysis of variance (ANOVA). Genotypic richness was compared using factorial ANOVA. The genotype frequency, relative abundance and genotype richness of both nosZ and nifH communities differed significantly by site, and by OTC treatment and/or depth at some sites. The site that showed the most pronounced treatment effect was a wet sedge meadow, where community structure and genotype richness of both nosZ and nifH were significantly affected by warming. Although warming was an important factor affecting these communities at some sites at this high arctic lowland, overall, site factors were the main determinants of community structure.

  11. Uniform shrub growth response to June temperature across the North Slope of Alaska

    NASA Astrophysics Data System (ADS)

    Ackerman, Daniel E.; Griffin, Daniel; Hobbie, Sarah E.; Popham, Kelly; Jones, Erin; Finlay, Jacques C.

    2018-04-01

    The expansion of woody shrubs in arctic tundra alters many aspects of high-latitude ecosystems, including carbon cycling and wildlife habitat. Dendroecology, the study of annual growth increments in woody plants, has shown promise in revealing how climate and environmental conditions interact with shrub growth to affect these key ecosystem properties. However, a predictive understanding of how shrub growth response to climate varies across the heterogeneous landscape remains elusive. Here we use individual-based mixed effects modeling to analyze 19 624 annual growth ring measurements in the stems of Salix pulchra (Cham.), a rapidly expanding deciduous shrub. Stem samples were collected at six sites throughout the North Slope of Alaska. Sites spanned four landscapes that varied in time since glaciation and hence in soil properties, such as nutrient availability, that we expected would modulate shrub growth response to climate. Ring growth was remarkably coherent among sites and responded positively to mean June temperature. The strength of this climate response varied slightly among glacial landscapes, but in contrast to expectations, this variability was not systematically correlated with landscape age. Additionally, shrubs at all sites exhibited diminishing marginal growth gains in response to increasing temperatures, indicative of alternative growth limiting mechanisms in particularly warm years, such as temperature-induced moisture limitation. Our results reveal a regionally-coherent and robust shrub growth response to early season growing temperature, with local soil properties contributing only a minor influence on shrub growth. Our conclusions strengthen predictions of changes to wildlife habitat and improve the representation of tundra vegetation dynamics in earth systems models in response to future arctic warming.

  12. Historical and Projected Trends in Landscape Drivers Affecting Carbon Dynamics in Alaska

    DOE PAGES

    Pastick, Neal J.; Duffy, Paul; Genet, Hélène; ...

    2017-04-08

    Modern climate change in Alaska has resulted in widespread thawing of permafrost, increased fire activity, and extensive changes in vegetation characteristics that have significant consequences for socio-ecological systems. Despite observations of the heightened sensitivity of these systems to change, there has not been a comprehensive assessment of factors that drive ecosystem changes throughout Alaska. In this paper, we present research that improves our understanding of the main drivers of the spatiotemporal patterns of carbon dynamics using in situ observations, remote sensing data, and an array of modeling techniques. In the last 60 years, Alaska has seen a large increase inmore » mean annual air temperature (1.7 °C), with the greatest warming occurring over winter and spring. Warming trends are projected to continue throughout the 21st century and will likely result in landscape-level changes to ecosystem structure and function. Wetlands, mainly bogs and fens, which are currently estimated to cover 12.5% of the landscape, strongly influence exchange of methane between Alaska's ecosystems and the atmosphere and are expected to be affected by thawing permafrost and shifts in hydrology. Simulations suggest the current proportion of near-surface (within 1 m) and deep (within 5 m) permafrost extent will be reduced by 9–74% and 33–55% by the end of the 21st century, respectively. Since 2000, an average of 678,595 ha/yr was burned, more than twice the annual average during 1950–1999. The largest increase in fire activity is projected for the boreal forest, which could result in a reduction in late-successional spruce forest (8–44%) and an increase in early-succession deciduous forest (25–113%) that would mediate future fire activity and weaken permafrost stability in the region. Climate warming will also affect vegetation communities across arctic regions, where the coverage of deciduous forest could increase (223–620%), shrub tundra may increase (4

  13. Historical and projected trends in landscape drivers affecting carbon dynamics in Alaska

    USGS Publications Warehouse

    Pastick, Neal J.; Duffy, Paul A.; Genet, Hélène; Rupp, T. Scott; Wylie, Bruce K.; Johnson, Kristofer; Jorgenson, M. Torre; Bliss, Norman B.; McGuire, Anthony David; Jafarov, Elchin; Knight, Joseph F.

    2017-01-01

    Modern climate change in Alaska has resulted in widespread thawing of permafrost, increased fire activity, and extensive changes in vegetation characteristics that have significant consequences for socioecological systems. Despite observations of the heightened sensitivity of these systems to change, there has not been a comprehensive assessment of factors that drive ecosystem changes throughout Alaska. Here we present research that improves our understanding of the main drivers of the spatiotemporal patterns of carbon dynamics using in situ observations, remote sensing data, and an array of modeling techniques. In the last 60 yr, Alaska has seen a large increase in mean annual air temperature (1.7°C), with the greatest warming occurring over winter and spring. Warming trends are projected to continue throughout the 21st century and will likely result in landscape-level changes to ecosystem structure and function. Wetlands, mainly bogs and fens, which are currently estimated to cover 12.5% of the landscape, strongly influence exchange of methane between Alaska's ecosystems and the atmosphere and are expected to be affected by thawing permafrost and shifts in hydrology. Simulations suggest the current proportion of near-surface (within 1 m) and deep (within 5 m) permafrost extent will be reduced by 9–74% and 33–55% by the end of the 21st century, respectively. Since 2000, an average of 678 595 ha/yr was burned, more than twice the annual average during 1950–1999. The largest increase in fire activity is projected for the boreal forest, which could result in a reduction in late-successional spruce forest (8–44%) and an increase in early-successional deciduous forest (25–113%) that would mediate future fire activity and weaken permafrost stability in the region. Climate warming will also affect vegetation communities across arctic regions, where the coverage of deciduous forest could increase (223–620%), shrub tundra may increase (4–21%), and

  14. Response of Carbon Fluxes to Soil Moisture Variability across an Alaskan Tundra Landscape

    NASA Astrophysics Data System (ADS)

    Melton, S.; Natali, S.; Schade, J. D.; Holmes, R. M.; Mann, P. J.; Fiske, G. J.

    2017-12-01

    Soils in arctic and sub-arctic permafrost regions store large amounts of carbon (C), which is becoming more biologically available as soils warm and permafrost thaws. Microbial decay of organic forms of C can result in the production and emission of carbon dioxide (CO2) and methane (CH4), and the amount and form of C released into the atmosphere depend on organic matter composition and soil conditions. Soil moisture, which is a strong driver of microbial processes, varies spatially and temporally across tundra landscapes and may change dramatically as a result of permafrost thaw. The Yukon-Kuskokwim Delta (YKD) of Alaska is underlain by discontinuous permafrost and is particularly vulnerable to permafrost thaw and soil moisture changes associated with thaw. As permafrost thaws, some areas may dry as drainage increases with increasing thaw depth. Alternatively, permafrost thaw may lead to ground subsidence and saturation of previously dry soils. Our objective was to investigate patterns in C storage and processing across the landscape and in response to changes in soil moisture in the YKD. We analyzed soil C pools (0-30 cm) and CO2 and CH4 concentrations in soils from sites of different land cover and landscape position, including moist and dry peat plateaus, high and low intensity burned plateaus, fens, and drained lakes. We also conducted aerobic and anaerobic soil incubations to determine changes in CO2 and CH4 production under a range of soil moisture conditions. Soils from burned plateaus, which were drier and had lower C content than unburned soils, had higher CO2 production (per g soil) than unburned soils during aerobic incubations. Both increased and decreased moisture reduced CO2 production from soils. Soil drying increased net CH4 uptake in all aerobically-incubated burned soils, and wetting resulted in CH4 emissions from low intensity burn soils. CO2 and CH4 production from fen soils were higher than from the other landscape positions analyzed here. Our

  15. Reproduction and seedling establishment of Picea glauca across the northernmost forest-tundra region in Canada.

    PubMed

    Walker, Xanthe; Henry, Gregory H R; McLeod, Katherine; Hofgaard, Annika

    2012-10-01

    The northern boundary of boreal forest and the ranges of tree species are expected to shift northward in response to climate warming, which will result in a decrease in the albedo of areas currently covered by tundra vegetation, an increase in terrestrial carbon sequestration, and an alteration of biodiversity in the current Low Arctic. Central to the prediction of forest expansion is an increase in the reproductive capacity and establishment of individual trees. We assessed cone production, seed viability, and transplanted seedling success of Picea glauca (Moench.) Voss. (white spruce) in the early 1990s and again in the late 2000s at four forest stand sites and eight tree island sites (clonal populations beyond present treeline) in the Mackenzie Delta region of the Northwest Territories, Canada. Over the past 20 years, average temperatures in this region have increased by 0.9 °C. This area has the northernmost forest-tundra ecotone in North America and is one of the few circumpolar regions where the northern limit of conifer trees reaches the Arctic Ocean. We found that cone production and seed viability did not change between the two periods of examination and that both variables decreased northward across the forest-tundra ecotone. Nevertheless, white spruce individuals at the northern limit of the forest-tundra ecotone produced viable seeds. Furthermore, transplanted seedlings were able to survive in the northernmost sites for 15 years, but there were no signs of natural regeneration. These results indicate that if climatic conditions continue to ameliorate, reproductive output will likely increase, but seedling establishment and forest expansion within the forest-tundra of this region is unlikely to occur without the availability of suitable recruitment sites. Processes that affect the availability of recruitment sites are likely to be important elsewhere in the circumpolar ecotone, and should be incorporated into models and predictions of climate change

  16. The Arctic Research Consortium of the United States (ARCUS): Connecting Arctic Research

    NASA Astrophysics Data System (ADS)

    Rich, R. H.; Wiggins, H. V.; Creek, K. R.; Sheffield Guy, L.

    2015-12-01

    This presentation will highlight the recent activities of the Arctic Research Consortium of the United States (ARCUS) to connect Arctic research. ARCUS is a nonprofit membership organization of universities and institutions that have a substantial commitment to research in the Arctic. ARCUS was formed in 1988 to serve as a forum for planning, facilitating, coordinating, and implementing interdisciplinary studies of the Arctic; to act as a synthesizer and disseminator of scientific information on arctic research; and to educate scientists and the general public about the needs and opportunities for research in the Arctic. ARCUS, in collaboration with the broader science community, relevant agencies and organizations, and other stakeholders, coordinates science planning and educational activities across disciplinary and organizational boundaries. Examples of ARCUS projects include: Arctic Sea Ice Outlook - an international effort that provides monthly summer reports synthesizing community estimates of the expected sea ice minimum. Sea Ice for Walrus Outlook - a resource for Alaska Native subsistence hunters, coastal communities, and others that provides weekly reports with information on sea ice conditions relevant to walrus in Alaska waters. PolarTREC (Teachers and Researchers Exploring and Collaborating) - a program whereby K-12 educators and researchers work together in hands-on field experiences in the Arctic and Antarctic to advance polar science education. ArcticInfo mailing list, Witness the Arctic newsletter, and the Arctic Calendar - communication tools for the arctic science community to keep apprised of relevant news, meetings, and announcements. Coordination for the Study of Environmental Arctic Change (SEARCH) program, which aims to provide scientific understanding of arctic environmental change to help society understand and respond to a rapidly changing Arctic. More information about these and other ARCUS activities can be found at the ARCUS website at

  17. Belowground Plant Dynamics Across an Arctic Landscape

    NASA Astrophysics Data System (ADS)

    Salmon, V. G.; Iversen, C. M.; Breen, A. L.; Thornton, P. E.; Wullschleger, S.

    2017-12-01

    High-latitude ecosystems are made up of a mosaic of different plant communities, all of which are exposed to warming at a rate double that observed in ecosystems at lower latitudes. Arctic regions are an important component of global Earth system models due to the large amounts of soil carbon (C) currently stored in permafrost as well their potential for increased plant C sequestration under warmer conditions. Losses of C from thawing and decomposing permafrost may be offset by increased plant productivity, but plant allocation to belowground structures and acquisition of limiting nutrients remain key sources of uncertainty in these ecosystems. The relationship between belowground plant traits and environmental conditions is not well understood, nor are tradeoffs between above- and belowground plant traits. To address these knowledge gaps, we sampled above- and belowground plant tissues along the Kougarok Hillslope on the Seward Peninsula, Alaska. The vegetation communities sampled included Alder shrubland, willow birch tundra, tussock tundra, dwarf shrub lichen tundra, and non-acidic mountain complex. Within each plant community, aboveground biomass was quantified and specific leaf area, leaf chemistry (%C, %N, %P and δ15N), and wood density were measured. Belowground fine-root biomass and rooting depth distribution were also determined at the community level. Fine roots from shrubs and graminoids were separated so that specific root area, diameter, and chemistry (%C, %N, %P and δ15N) could be assessed for these contrasting plant functional types. Initial findings indicate fine root biomass pools across the widely varying plant communities are constrained by soil depth, regardless of whether the rooting zone is restricted by permafrost or rock. The presence of Alnus viridis subspp. fruticosa, a deciduous shrub that facilitates nitrogen (N) fixation within its root nodules by Frankia bacteria, in Alder shrubland and willow birch tundra communities was associated

  18. Mineral and whole-rock compositions of seawater-dominated hydrothermal alteration at the Arctic volcanogenic massive sulfide prospect, Alaska

    USGS Publications Warehouse

    Schmidt, J.M.

    1988-01-01

    The Arctic volcanogenic massive sulfide prospect, located in the Ambler mineral district of northwestern Alaska, includes three types of hydrothermally altered rocks overlying, underlying, and interlayered with semimassive sulfide mineralization. Hydrothermal alteration of wall rocks and deposition of sulfide and gangue minerals were contemporaneous with Late Devonian of Early Mississippian basalt-rhyolite volcanism. Alteration developed asymmetrically around a linear fissure, suggesting fracture control of ore fluids rather than a point source. Microprobe analyses of phyllosilicates from the Arctic area indicate two discrete mineral populations. These differences in mineral chemistry are the result of differences in protolith composition caused by hydrothermal alteration-metasomatism. -from Author

  19. Arctic Research Plan: FY2017-2021

    USGS Publications Warehouse

    Starkweather, Sandy; Jeffries, Martin O; Stephenson, Simon; Anderson, Rebecca D.; Jones, Benjamin M.; Loehman, Rachel A.; von Biela, Vanessa R.

    2016-01-01

    The United States is an Arctic nation—Americans depend on the Arctic for biodiversity and climate regulation and for natural resources. America’s Arctic—Alaska—is at the forefront of rapid climate, environmental, and socio-economic changes that are testing the resilience and sustainability of communities and ecosystems. Research to increase fundamental understanding of these changes is needed to inform sound, science-based decision- and policy-making and to develop appropriate solutions for Alaska and the Arctic region as a whole. Created by an Act of Congress in 1984, and since 2010 a subcommittee of the National Science and Technology Council (NSTC) in the Executive Office of the President, the Interagency Arctic Research Policy Committee (IARPC) plays a critical role in advancing scientific knowledge and understanding of the changing Arctic and its impacts far beyond the boundaries of the Arctic. Comprising 14 Federal agencies, offices, and departments, IARPC is responsible for the implementation of a 5-year Arctic Research Plan in consultation with the U.S. Arctic Research Commission, the Governor of the State of Alaska, residents of the Arctic, the private sector, and public interest groups.

  20. Constraining predictions of tundra permafrost and vegetation through model-data feedbacks and data-assimilation

    NASA Astrophysics Data System (ADS)

    Davidson, C. D.; Dietze, M.

    2011-12-01

    Arctic climate is warming at a rate disproportionate to the rest of the world, and recent interest has emerged in using terrestrial biosphere models to understand and predict the response of tundra ecosystems to such warming. Of particular interest are the potential feedbacks between permafrost melting, plant community dynamics, and biogeochemical cycles. Here, we report on efforts to calibrate and validate version 2 of the Ecosystem Demography model (ED2) for the Alaskan tundra and on the use of model analyses to motivate targeted field measurements. ED2 is a terrestrial biosphere model unique in its ability to scale physiological and plant community dynamics to regional levels. We began by assessing the ability of ED2's land surface model to capture permafrost thermodynamics and hydrology. Simulations at Barrow and Toolik Lake, Alaska bore several incongruities with observed data, with soil temperatures significantly higher and soil moisture lower than observed. Modifications were made to increase the soil column depth and to simulate the effect of wind compaction on snow density, and in turn, the insulation of winter soils. In addition to these changes, a new soil class was created to represent unique characteristics within the organic horizon of tundra soils. Together these changes significantly improved permafrost dynamics without substantially altering dynamics in the temperate region. To capture tundra vegetation dynamics, tundra species were classified into three plant functional types (graminoid, deciduous shrub, evergreen shrub). ED2 was then iteratively calibrated for the tundra using the Predictive Ecosystem Analyzer (PEcAn), a scientific workflow and ecoinformatics toolbox developed to aid model parameterization and analysis. Initial parameter estimates were derived from a formal Bayesian meta-analysis of compiled plant trait data. Sensitivity analyses and variance decomposition demonstrated that model uncertainties were driven by the minimum