Sample records for alaska fairbanks geophysical

  1. About Us | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Division of Geological & Geophysical Surveys (DGGS) 3354 College Road, Fairbanks, AK 99709 Phone: (907 Division also administers the 11-member Alaska Seismic Hazards Safety Commission. Accomplishments The . Department of Natural Resources, Division of Geological & Geophysical Surveys (DGGS) 3354 College Road

  2. 77 FR 61559 - Proposed Flood Elevation Determinations for Fairbanks North Star Borough, Alaska, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-10

    ... Elevation Determinations for Fairbanks North Star Borough, Alaska, and Incorporated Areas AGENCY: Federal... for Fairbanks North Star Borough, Alaska, and Incorporated Areas. DATES: This withdrawal is effective... Fairbanks North Star Borough, Alaska. FEMA is withdrawing the proposed rulemaking and intends to publish a...

  3. Fact Book 1992: University of Alaska Fairbanks.

    ERIC Educational Resources Information Center

    Gaylord, Thomas; And Others

    This publication presents information on the University of Alaska Fairbanks in seven sections. The first section, "Historical and General Information" details the legal establishment, mission, historical highlights, map, organizational structure, accreditation, Board of Regents, Standing Committees and advisory groups, songs, presidents…

  4. Publications - GMC 314 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    , and 01-TN1474 of the True North Gold Mine of the Fairbanks mining district, Alaska Authors: Unknown True North Gold Mine of the Fairbanks mining district, Alaska: Alaska Division of Geological &

  5. Fact Book 1991, University of Alaska Fairbanks.

    ERIC Educational Resources Information Center

    Gaylord, Thomas; And Others

    This fact book contains detailed student, faculty, academic, and financial information about the University of Alaska, Fairbanks. The book is divided into seven sections: (1) general information; (2) academic information; (3) student information; (4) faculty and staff information; (5) budget and financial information; (6) research and public…

  6. STUDY OF THE SUBARCTIC HEAT ISLAND AT FAIRBANKS, ALASKA

    EPA Science Inventory

    The heat island associated with the City of Fairbanks, Alaska was studied as a means of isolating the effects of self-heating modified radiative transfer from other causes of heat islands. Minimal winter insolation virtually eliminated the effects of variable albedo and the daily...

  7. Snow-depth and water-equivalent data for the Fairbanks area, Alaska, spring 1995

    USGS Publications Warehouse

    Plumb, E.W.; Lilly, M.R.

    1996-01-01

    Snow depths at 34 sites and snow-water equivalents at 13 sites in the Fairbanks area were monitored during the 1995 snowmelt period (March 30 to April 26) in the spring of 1995. The U.S. Geological Survey conducted this study in cooperation with the Fairbanks International Airport, the University of Alaska Fairbanks, the Alaska Department of Natural Resources-Division of Mining and Water Management, the U.S Army, Alaska, and the U.S. Army Corps of Engineers-Alaska District. These data were collected to provide information about potential recharge of the ground-and surface-water systems during the snowmelt period in the Fairbanks area. This information is needed by companion geohydrologic studies of areas with known or suspected contaminants in the subsurface. Data-collection sites selected had open, boggy, wooded, or brushy vegetation cover and had different slope aspects. The deepest snow at any site, 27.1 inches, was recorded on April 1, 1995; the shallowest snow measured that day was 19.1 inches. The snow-water equivalents at these two sites were 5.9 inches and 4.5 inches, respectively. Snow depths and water equivalents were comparatively greater at open and bog sites than at wooded or brushy sites. Snow depths and water equivalents at all sites decreased throughout the measuring period. The decrease was more rapid at open and boggy sites than at wooded and brushy sites. Snow had completely disappeared from all sites by April 26, 1995.

  8. Publications - GMC 306 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    the Old Dog Prospect of Treasure Creek of the Fairbanks mining district, Alaska Authors: Duncan, Bill Exploration 1996 drill and geochemical results from the Old Dog Prospect of Treasure Creek of the Fairbanks

  9. Publications - PDF 96-17 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska the Fairbanks Mining District, Alaska, scale 1:63,360 (15.0 M) Digital Geospatial Data Digital © 2010 Webmaster State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State

  10. ASBESTOS RELEASE FROM THE DEMOLITION OF TWO SCHOOLS IN FAIRBANKS, ALASKA

    EPA Science Inventory

    Two elementary schools on Fort Wainwright Army Base in Fairbanks, Alaska were demolished during the Summer of 1992. rior to demolition, all friable asbestos was removed from the buildings in accordance with the applicable U.S. EPA's asbestos NESHAP. he primary objective of the st...

  11. Staff - Gina Graham | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Gina Graham Gina Graham Position: Geologist, Mineral Resources Address: 3354 College Road Fairbanks, AK Resources, Division of Geological & Geophysical Surveys (DGGS) 3354 College Road, Fairbanks, AK 99709

  12. Staff - Scott W. Crass | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Position: Analyst/Programmer, Volcanology Address: 3354 College Road Fairbanks, AK 99709-3707 Phone: (907 Geological & Geophysical Surveys (DGGS) 3354 College Road, Fairbanks, AK 99709 Phone: (907) 451-5000 Fax

  13. Geophysical Institute. Biennial report, 1993-1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-01-01

    The 1993-1994 Geophysical Institute Biennial Report was published in November 1995 by the Geophysical Institute of the University of Alaska Fairbanks. It contains an overview of the Geophysical Institute, the Director`s Note, and research presentations concerning the following subjects: Scientific Predictions, Space Physics, Atmospheric Sciences, Snow, Ice and Permafrost, Tectonics and Sedimentation, Seismology, Volcanology, Remote Sensing, and other projects.

  14. Staff - Patricia E. Gallagher | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Fairbanks and is currently working toward becoming a certified GIS professional. Position: GIS Analyst professional. Professional Experience 2013-present - Cartographer/GIS Analyst, State of Alaska, Division of

  15. Alaska Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Murray, Tom; Read, Cyrus

    2008-01-01

    Steam plume from the 2006 eruption of Augustine volcano in Cook Inlet, Alaska. Explosive ash-producing eruptions from Alaska's 40+ historically active volcanoes pose hazards to aviation, including commercial aircraft flying the busy North Pacific routes between North America and Asia. The Alaska Volcano Observatory (AVO) monitors these volcanoes to provide forecasts of eruptive activity. AVO is a joint program of the U.S. Geological Survey (USGS), the Geophysical Institute of the University of Alaska Fairbanks (UAFGI), and the State of Alaska Division of Geological and Geophysical Surveys (ADGGS). AVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Augustine volcano and AVO at http://www.avo.alaska.edu.

  16. Auroral Infrasound Observed at I53US at Fairbanks, Alaska

    NASA Astrophysics Data System (ADS)

    Wilson, C. R.; Olson, J. V.

    2003-12-01

    In this presentation we will describe two different types of auroral infrasound recently observed at Fairbanks, Alaska in the pass band from 0.015 to 0.10 Hz. Infrasound signals associated with auroral activity (AIW) have been observed in Fairbanks over the past 30 years with infrasonic microphone arrays. The installation of the new CTBT/IMS infrasonic array, I53US, at Fairbanks has resulted in a greatly increased quality of the infrasonic data with which to study natural sources of infrasound. In the historical data at Fairbanks all the auroral infrasonic waves (AIW) detected were found to be the result of bow waves that are generated by supersonic motion of auroral arcs that contain strong electrojet currents. This infrasound is highly anisotropic, moving in the same direction as that of the auroral arc. AIW bow waves observed in 2003 at I53US will be described. Recently at I53US we have observed many events of very high trace velocity that are comprised of continuous, highly coherent wave trains. These waves occur in the morning hours at times of strong auroral activity. This new type of very high trace velocity AIW appears to be associated with pulsating auroral displays. Pulsating auroras occur predominantly after magnetic midnight (10:00 UT at Fairbanks). They are a usual part of the recovery phase of auroral substorms and are produced by energetic electrons precipitating into the atmosphere. Given proper dark, cloudless sky conditions during the AIW events, bright pulsating auroral forms were sometimes visible overhead.

  17. Alaska road weather project : technical performance assessment report Fairbanks field demonstration 2013-2014.

    DOT National Transportation Integrated Search

    2014-02-01

    The Alaska Department of Transportation and Public Facilities began implementation of a Maintenance Decision Support System in an : effort to improve snow and ice control in the Fairbanks area. As part of the project the reliability of the weather fo...

  18. Publications - IC 46 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey ; Aeromagnetic; Aeromagnetic Survey; Airborne Geophysical Survey; Antimony; Arsenic; Arsenopyrite; Base Metals ; Electromagnetic Data; Electromagnetic Survey; Exploration; Fairbanks Mining District; Fort Knox Mine; Fortymile

  19. Going the Extra Mile: Supporting Distance Education at University of Alaska Fairbanks

    ERIC Educational Resources Information Center

    Hahn, Suzan; Lehman, Lisa; Dupras, Rheba

    2007-01-01

    The Elmer E. Rasmuson Library at the University of Alaska Fairbanks has a long history of supporting distance education through state-of-the-art, remote access services. Harsh climate conditions (heavy snowfall and icing, high winds, and extreme temperatures), rugged terrain, limited road and telephone systems, and permafrost that prevents the…

  20. Staff - Jean A. Riordan | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Penland Pkwy Anchorage, AK 99508 Phone: (907)754-3596 Fax: (907)696-0078 Email: jean.riordan@alaska.gov , Fairbanks, AK 99709 Phone: (907) 451-5000 Fax: (907) 451-5050 Contact DGGS Privacy Copyright State of Alaska

  1. 78 FR 48638 - Approval and Promulgation of State Implementation Plans: Alaska; Fairbanks Carbon Monoxide...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-09

    ... Promulgation of State Implementation Plans: Alaska; Fairbanks Carbon Monoxide Limited Maintenance Plan AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: The EPA is proposing to approve a carbon... carbon monoxide National Ambient Air Quality Standards through the second 10- year maintenance period...

  2. Chena River Lakes Project, Fairbanks, Alaska. Overview of Tanana River Monitoring Research Studies Near Fairbanks, Alaska.

    DTIC Science & Technology

    1984-01-01

    concentration-depth profiles for suspended sand sizes at Fairbanks gauge . 5.1 Apparent downstream migration of main channel loops upstream of Goose Island, 1938...at the Fairbanks gauging station is plotted in Figure 3.1. Table 3.1 shows year-by-year and period-of-record statistics for mean, minimum and maximum...Associated Relationships Figure 3.3 shows a plot of stage vs. discharge data for the Fairbanks gauging station.* There has been considerable scatter

  3. Rural Alaska Coal Bed Methane: Application of New Technologies to Explore and Produce Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David O. Ogbe; Shirish L. Patil; Doug Reynolds

    2005-06-30

    The Petroleum Development Laboratory, University of Alaska Fairbanks prepared this report. The US Department of Energy NETL sponsored this project through the Arctic Energy Technology Development Laboratory (AETDL) of the University of Alaska Fairbanks. The financial support of the AETDL is gratefully acknowledged. We also acknowledge the co-operation from the other investigators, including James G. Clough of the State of Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys; Art Clark, Charles Barker and Ed Weeks of the USGS; Beth Mclean and Robert Fisk of the Bureau of Land Management. James Ferguson and David Ogbe carried out themore » pre-drilling economic analysis, and Doug Reynolds conducted post drilling economic analysis. We also acknowledge the support received from Eric Opstad of Elko International, LLC; Anchorage, Alaska who provided a comprehensive AFE (Authorization for Expenditure) for pilot well drilling and completion at Fort Yukon. This report was prepared by David Ogbe, Shirish Patil, Doug Reynolds, and Santanu Khataniar of the University of Alaska Fairbanks, and James Clough of the Alaska Division of Geological and Geophysical Survey. The following research assistants, Kanhaiyalal Patel, Amy Rodman, and Michael Olaniran worked on this project.« less

  4. Publications - AR 2006 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2006 main content DGGS AR 2006 Publication Details Title: Alaska Division of Geological & Geophysical Surveys Annual

  5. Publications - AR 2000 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2000 main content DGGS AR 2000 Publication Details Title: Alaska Division of Geological & Geophysical Surveys Annual

  6. Publications - AR 2003 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2003 main content DGGS AR 2003 Publication Details Title: Alaska Division of Geological & Geophysical Surveys Annual

  7. Publications - AR 2004 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2004 main content DGGS AR 2004 Publication Details Title: Alaska Division of Geological & Geophysical Surveys Annual

  8. Staff - Nina T. Harun | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    mapping of the Upper Jurassic Naknek Formation in a footwall syncline associated with the Bruin Bay fault Ivishak Formation in the northeastern Brooks Range, Alaska: University of Alaska Fairbanks, M.S. thesis Triassic Ivishak Formation in the Sadlerochit Mountains, northeastern Alaska: Alaska Division of Geological

  9. Beyond "Classroom" Technology: The Equipment Circulation Program at Rasmuson Library, University of Alaska Fairbanks

    ERIC Educational Resources Information Center

    Jensen, Karen

    2008-01-01

    The library at the University of Alaska Fairbanks offers a unique equipment lending program through its Circulation Desk. The program features a wide array of equipment types, generous circulation policies, and unrestricted borrowing, enabling students, staff, and faculty to experiment with the latest in audio, video, and computer technologies,…

  10. Ground-water and surface-water elevations in the Fairbanks International Airport area, Alaska, 1990-94

    USGS Publications Warehouse

    Claar, D.V.; Lilly, M.R.

    1995-01-01

    Ground-water and surface-water elevation data were collected at 52 sites from 1990 to 1994 by the U.S. Geological Survey in cooperation with the Alaska Department of Transportation and Public Facilities, Fairbanks International Airport. Water elevations were measured in 32 ground-water observation wells and at 20 surface-water sites to help characterize the geohydrology of the Fairbanks International Airport area. From 1990 to 1993, data were collected in the vicinity of the former fire-training area at the airport. From 1993 to 1994, the data-collection area was expanded to include the entire airport area.

  11. Publications - AR 2011-F | Alaska Division of Geological & Geophysical

    Science.gov Websites

    project descriptions, in DGGS Staff, Alaska Division of Geological & Geophysical Surveys Annual Report Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2011-F main

  12. Publications - AR 2010-E | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Communications FY11 project descriptions, in DGGS Staff, Alaska Division of Geological & Geophysical Surveys Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2010-E main

  13. Publications - AR 2010-A | Alaska Division of Geological & Geophysical

    Science.gov Websites

    FY11 project descriptions, in DGGS Staff, Alaska Division of Geological & Geophysical Surveys Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2010-A main

  14. Publications - AR 2010-F | Alaska Division of Geological & Geophysical

    Science.gov Websites

    project descriptions, in DGGS Staff, Alaska Division of Geological & Geophysical Surveys Annual Report Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2010-F main

  15. Publications - AR 2010 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical DGGS AR 2010 Publication Details Title: Alaska Division of Geological & Geophysical Surveys Annual Report Authors: DGGS Staff Publication Date: Jan 2011 Publisher: Alaska Division of Geological &

  16. Publications - MP 157 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Alaska, containing the communities of Fairbanks, Fort Yukon, and Eagle, scale 1:500,000 (79.0 M) Sheet 7 ; Mineral Prospect; Mountain Leather; Tremolite; Ultramafic; geoscientificInformation Top of Page Department

  17. Publications - RDF 2015-8 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    from the Tonsina area, Valdez Quadrangle, Alaska: Alaska Division of Geological & Geophysical Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  18. Publications - SR 60 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey ; Aeromagnetic Survey; Airborne Geophysical Survey; Alaska Highway Corridor; Alaska Peninsula; Alaska, State of ; Bismuth; Chalcopyrite; Chandalar Mining District; Cleary Summit; Coal; Conductivity Survey; Construction

  19. Publications - IC 60 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey (500.0 K) Keywords Admiralty Island; Aeromagnetic Data; Aeromagnetic Map; Aeromagnetic Survey; Airborne Geophysical Survey; Alaska Highway Corridor; Alaska Peninsula; Alaska, State of; Ambler; Ambler Mineral Belt

  20. Water-elevation, stream-discharge, and ground-water quality data in the Alaska Railroad Industrial Area, Fairbanks, Alaska, May 1993 to May 1995

    USGS Publications Warehouse

    Kriegler, A.T.; Lilly, M.R.

    1995-01-01

    From May 1993 to May 1995, the U.S. Geological Survey in cooperation with the Alaska Department of Natural Resources, Division of Mining and Water Management collected data on ground-water and surface-water elevations, stream discharge, and ground-water quality in the Alaska Railroad Industrial area in Fairbanks, Alaska. The data- collection efforts were coordinated with environmental efforts being made in the study area by the Alaska Railroad Corporation. These data were collected as part of an effort to characterize the hydrogeology of the Alaska Railroad Industrial area and to define the extent of petroleum hydrocarbons in the area. Ground-water data were collected at 52 observation wells, surface-water data at 12 sites, stream discharge data at 9 sites, and chemical water-quality data at 32 observation wells.

  1. Renewed unrest at Mount Spurr Volcano, Alaska

    USGS Publications Warehouse

    Power, John A.

    2004-01-01

    The Alaska Volcano Observatory (AVO),a cooperative program of the U.S. Geological Survey, the University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys, has detected unrest at Mount Spurr volcano, located about 125 km west of Anchorage, Alaska, at the northeast end of the Aleutian volcanic arc.This activity consists of increased seismicity melting of the summit ice cap, and substantial rates of C02 and H2S emission.The current unrest is centered beneath the volcano's 3374-m-high summit, whose last known eruption was 5000–6000 years ago. Since then, Crater Peak, 2309 m in elevation and 4 km to the south, has been the active vent. Recent eruptions occurred in 1953 and 1992.

  2. Publications - GMC 263 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications GMC 263 main content DGGS GMC 263 Publication Details Title: Map location and geological logs of core for 1994 diamond drill

  3. Publications - NL 2002-1 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical 2002 Publisher: Alaska Division of Geological & Geophysical Surveys Ordering Info: Download below Reference DGGS Staff, and Werdon, M.B., 2002, Alaska GeoSurvey News - Geologic Investigations in the Salcha

  4. Publications - AR 2011-E | Alaska Division of Geological & Geophysical

    Science.gov Websites

    , Geologic Communications FY12 project descriptions, in DGGS Staff, Alaska Division of Geological & Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2011-E main

  5. Hydrologic information for land-use planning; Fairbanks vicinity, Alaska

    USGS Publications Warehouse

    Nelson, Gordon L.

    1978-01-01

    The flood plain on the Chena and Tanana Rivers near Fairbanks, Alaska, has abundant water in rivers and in an unconfined alluvial aquifer. The principal source of ground water is the Tanana River, from which ground water flows northwesterly to the Chena River. Transmissivity of the aquifer commonly exceed 100 ,000 sq ft. The shallow water table (less than 15 ft below land surface), high hydraulic conductivity of the sediments and cold soil give the flood plain a high susceptibility to pollution by onsite sewerage systems. The Environmental Protection Agency recommended maximum concentrations for drinking water may be exceeded in surface water for manganese and bacteria and in ground water for iron, manganese, and bacteria. Residents of the uplands obtain water principally from a widely-distributed fractured schist aquifer. The aquifer is recharged by local infiltration of precipitation and is drained by springs on the lower slopes and by ground-water flow to alluvial aquifers of the valleys. The annual base flow from basins in the uplands ranged from 3,000 to 100,000 gallons per acre; the smallest base flows occur in basins nearest the city of Fairbanks. The thick silt cover and great depth to the water table give much of the uplands a low susceptibility to pollution by onsite sewage disposal. Ground water is locally high in nitrate, arsenic, iron , and manganese. (Woodard-USGS)

  6. Staff - April M. Woolery | Alaska Division of Geological & Geophysical

    Science.gov Websites

    SurveysA> Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Publications Search Statewide Maps New Releases Sales Interactive Maps Databases Sections Geologic Geologic Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey

  7. Publications - GMC 1 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications GMC 1 main content Itkillik #1 well Authors: Amerada Hess Corporation, and Chemical and Geological Laboratories of Alaska

  8. Geohydrology and ground-water geochemistry at a sub-arctic landfill, Fairbanks, Alaska

    USGS Publications Warehouse

    Downey, J.S.

    1990-01-01

    The Fairbanks-North Star Borough, Alaska, landfill is located on silt, sand, and gravel deposits of the Tanana River flood plain, about 3 miles south of the city of Fairbanks water supply wells. The landfill has been in operation for about 25 years in this sub-arctic region of discontinuous permafrost. The cold climate limits biological activity within the landfill with corresponding low gas and leachate production. Chloride concentrations, specific conductance, water temperature, and earth conductivity measurements indicate a small plume of leachate flowing to the northwest from the landfill. The leachate remains near the water table as it flows northwestward toward a drainage ditch. Results of computer modeling of this local hydrologic system indicate that some of the leachate may be discharging to the ditch. Chemical data show that higher-than-background concentrations of several ions are present in the plume. However, the concentrations appear to be reduced to background levels within a short distance along the path of groundwater flow from the landfill, and thus the leachate is not expected to affect the water supply wells. (USGS)

  9. Publications - AR 2005 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Publications Geologic Materials Center General Information Inventory Monthly Report Hours and Location Policy Report Authors: DGGS Staff Publication Date: Feb 2006 Publisher: Alaska Division of Geological & Geological & Geophysical Surveys Annual Report: Alaska Division of Geological & Geophysical Surveys

  10. Publications - AR 2009 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Publications Geologic Materials Center General Information Inventory Monthly Report Hours and Location Policy Report Authors: DGGS Staff Publication Date: Jan 2010 Publisher: Alaska Division of Geological & Geological & Geophysical Surveys Annual Report: Alaska Division of Geological & Geophysical Surveys

  11. Publications - AR 2010-D | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2010-D main content DGGS AR 2010-D Publication Details Title: Volcanology FY11 project descriptions Authors: Nye, C.J

  12. Publications - AR 2011-D | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2011-D main content DGGS AR 2011-D Publication Details Title: Volcanology FY12 project descriptions Authors: Nye, C.J

  13. Publications - GMC 193 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical materials: Alaska State F #1, washed cuttings (13,980' - 13,990'); West Mikkelsen State #1, Canning River

  14. Publications - GMC 410 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    ) Keywords Geochemistry; Rare Earth Elements Top of Page Department of Natural Resources, Division of Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  15. Publications - GMC 409 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    ) Keywords Geochemistry; Rare Earth Elements Top of Page Department of Natural Resources, Division of Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  16. Publications - GMC 183 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical materials: AK State C #1, Bush Federal #1, Echooka Unit #1, Fin Creek Unit #1, E. De K. Leffingwell #1, Nora

  17. Publications - GMC 370 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    (249.0 K) Keywords Rare Earth Elements Top of Page Department of Natural Resources, Division of Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  18. Publications - GMC 159 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical State #1, Kuparuk Unit #1, Mikkelsen Bay State 13-09-19, Ravik State #1, Pt. Thomson Unit #2, West

  19. Publications - GMC 53C | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Paleozoic through Tertiary sandstones, North Slope, Alaska Authors: Alaska Research Associates Publication through Tertiary sandstones, North Slope, Alaska: Alaska Division of Geological & Geophysical Surveys

  20. Publications - RDF 2015-5 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska

  1. Publications - RI 2009-2 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska

  2. Publications - RDF 2016-3 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska

  3. Publications - RDF 2016-5 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska

  4. Publications - RDF 2014-22 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska

  5. Publications - DDS 4 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Datasets of Alaska: Alaska Division of Geological & Geophysical Surveys Digital Data Series 4, http ; Alaska Statewide Maps; Alaska, State of; Digital Elevation Model; Digital Surface Model (DSM); Geologic

  6. Publications - GMC 85 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a ) well Authors: Unknown Publication Date: 1988 Publisher: Alaska Division of Geological & Geophysical (Orion) well: Alaska Division of Geological & Geophysical Surveys Geologic Materials Center Data

  7. Publications - GMC 89 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a ) well Authors: Unknown Publication Date: 1988 Publisher: Alaska Division of Geological & Geophysical (Mars) well: Alaska Division of Geological & Geophysical Surveys Geologic Materials Center Data

  8. Publications - RDF 2015-16 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    rocks collected in 2015 in the Wrangellia mineral assessment area, Alaska: Alaska Division of Geological Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  9. Publications - RDF 2015-9 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    samples from the Zane Hills, Hughes and Shungnak quadrangles, Alaska: Alaska Division of Geological & Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  10. Publications - GPR 2016-1 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Geologic Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey electromagnetic and magnetic airborne geophysical survey data compilation Authors: Burns, L.E., Fugro Airborne geophysical survey data compilation: Alaska Division of Geological & Geophysical Surveys Geophysical

  11. Publications - MP 142 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  12. Publications - SR 70 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  13. Publications - MP 38 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  14. Publications - SR 45 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  15. Publications - MP 43 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  16. Publications - MP 149 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  17. Publications - RDF 2015-7 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    , Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the northeastern Alaska Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  18. Publications - GPR 2015-4 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Geologic Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey airborne geophysical survey data compilation Authors: Burns, L.E., Geoterrex-Dighem, Stevens Exploration airborne geophysical survey data compilation: Alaska Division of Geological & Geophysical Surveys

  19. Publications - RDF 2010-2 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Prospect; Trace Elements; Trace Metals; Triassic; Wrangellia Terrane; geoscientificInformation Top of Page Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  20. Publications - RDF 2015-6 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Sediments; Trace Elements; Trace Geochemical; Trace Metals; geoscientificInformation Top of Page Department Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  1. Publications - GPR 2015-3 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Geologic Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey electromagnetic and magnetic airborne geophysical survey data compilation Authors: Burns, L.E., Fugro Airborne magnetic airborne geophysical survey data compilation: Alaska Division of Geological & Geophysical

  2. Publications - PDF 88-8 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    content DGGS PDF 88-8 Publication Details Title: Alaska's mineral industry 1987: Executive summary Authors , Alaska's mineral industry 1987: Executive summary: Alaska Division of Geological & Geophysical Surveys

  3. Publications - GMC 395 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    investigations of the diatom stratigraphy of Borehole TA8, Portage Alaska: Alaska Division of Geological & Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical DGGS GMC 395 Publication Details Title: Preliminary investigations of the diatom stratigraphy of

  4. Publications - RDF 2012-3 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Assessment Project; Trace Elements; geoscientificInformation Top of Page Department of Natural Resources Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  5. Publications - RDF 2005-4 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    District; Trace Elements; Trace Metals; Tungsten; Uranium; Vanadium; Yttrium; Zinc; Zirconium Top of Page Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  6. Publications - RDF 2016-2 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    , Major-oxide and trace-element geochemistry of mafic rocks in the Carboniferous Lisburne Group, Ivishak Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  7. Publications - RDF 2000-4 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Oxides; Palladium; Platinum; Rare Earth Elements; STATEMAP Project; Trace Metals Top of Page Department Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  8. Publications - IC 35 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS IC 35 Publication Details Title: Alaska's mineral industry 1991: A summary Authors: Bundtzen, T.K ., 1992, Alaska's mineral industry 1991: A summary: Alaska Division of Geological & Geophysical

  9. Publications - IC 36 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS IC 36 Publication Details Title: Alaska's mineral industry 1992: A summary Authors: Swainbank, R.C ., 1993, Alaska's mineral industry 1992: A summary: Alaska Division of Geological & Geophysical

  10. Publications - PDF 89-7 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    content DGGS PDF 89-7 Publication Details Title: Summary of Alaska's mineral industry in 1988 Authors , Summary of Alaska's mineral industry in 1988: Alaska Division of Geological & Geophysical Surveys

  11. Publications - PDF 90-10 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    content DGGS PDF 90-10 Publication Details Title: Summary of Alaska's mineral industry in 1989 Authors , Summary of Alaska's mineral industry in 1989: Alaska Division of Geological & Geophysical Surveys

  12. Publications - GMC 267 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a well materials Authors: Unknown Publication Date: 1996 Publisher: Alaska Division of Geological & Alaska North Slope well materials: Alaska Division of Geological & Geophysical Surveys Geologic

  13. Publications - SR 37 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska Section; Resource Assessment; Tyonek Formation; Type Section Top of Page Department of Natural Resources State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home

  14. Publications - RDF 2004-2 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    ; Trace Elements; Trace Metals; Tungsten; Vanadium; Yttrium; Zinc; Zirconium Top of Page Department of Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  15. Publications - IC 17 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS IC 17 Publication Details Title: Coal resources of Alaska Authors: Alaska Division of Geological Statewide Bibliographic Reference Alaska Division of Geological & Geophysical Surveys, 1983, Coal Alaska Statewide Maps; Coal; Healy; Resource Assessment; Usibelli Mine Top of Page Department of Natural

  16. Publications - GMC 152 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    ') from the Alaska Consolidated Oil Iniskin Unit Beal #1 well Authors: Unknown Publication Date: 1990 Consolidated Oil Iniskin Unit Beal #1 well: Alaska Division of Geological & Geophysical Surveys Geologic

  17. Publications - GMC 189 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 189 Publication Details Title: Apatite and zircon fission track analyses of 9 selected wells analyses of 9 selected wells in the NPRA, Alaska: Alaska Division of Geological & Geophysical Surveys

  18. Publications - GMC 377 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Quadrangle, Alaska: 1977-1980 Drill holes (Drill Logs and Assay Records) Authors: U.S. Borax Publication Date : 1977-1980 Drill holes (Drill Logs and Assay Records): Alaska Division of Geological & Geophysical

  19. Publications - RI 94-28 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Fault, southcentral Alaska Authors: Combellick, R.A., Cruse, G.R., and Hammond, W.R. Publication Date profiles across the Castle Mountain Fault, southcentral Alaska: Alaska Division of Geological & Fault, southcentral Alaska, scale 1:40,000 (715.0 M) Keywords Castle Mountain Fault; Faults; Geophysical

  20. Alaska Division of Geological and Geophysical Surveys

    Science.gov Websites

    ; Divison of Geological & Geophysical Surveys> Engineering Geology Coastal Hazards Alaska's extensive shorelines are incompletely mapped and under-instrumented for the evaluation of coastal dynamics. The Coastal communities Updates to the Alaska Coastal Profile Tool including data in Norton Sound and St. Lawrence Island

  1. Publications - IC 51 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey Photography; Aeromagnetic; Aeromagnetic Data; Aeromagnetic Survey; Airborne Geophysical Survey; Alaska Data; Apparent Resistivity Map; Apparent Resistivity Survey; Arctic Deposit; Arsenic; Arsenopyrite

  2. Publications - GMC 195 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Oil NPRA Tunalik #1 well, Western Alaska Authors: Worrall, D.M., and Shell Oil Company Publication Reference Worrall, D.M., and Shell Oil Company, 1992, Evaluation of basalt samples (17,859-17,888') from the Husky Oil NPRA Tunalik #1 well, Western Alaska: Alaska Division of Geological & Geophysical Surveys

  3. Publications - AR 2011-A | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Communications Alaska Geologic Data Index (AGDI) Volcanology Alaska Volcano Observatory (AVO) Mineral Resources Alaska MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates STATEMAP Program information Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2011-A main

  4. Publications - AR 2010-B | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Communications Alaska Geologic Data Index (AGDI) Volcanology Alaska Volcano Observatory (AVO) Mineral Resources Alaska MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates STATEMAP Program information Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2010-B main

  5. Publications - AR 2011-B | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Communications Alaska Geologic Data Index (AGDI) Volcanology Alaska Volcano Observatory (AVO) Mineral Resources Alaska MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates STATEMAP Program information Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2011-B main

  6. Publications - PDF 98-36A | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Oxides; Rocks; STATEMAP Project; Trace Elements Top of Page Department of Natural Resources, Division of Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  7. The College Hill Chronicles: How the University of Alaska Came of Age.

    ERIC Educational Resources Information Center

    Davis, Neil

    This volume relates the founding and subsequent history of the University of Alaska in Fairbanks. It is written by a retired former student and lifelong faculty member in the geophysics department. Divided into major sections, the first covers the site, early Alaskan history, founding of the school when the focus was on agriculture and mining, the…

  8. Selected environmental and geohydrologic reports for the Fort Wainwright and Fairbanks areas, Alaska as of July 1995

    USGS Publications Warehouse

    Lilly, M.R.; DePalma, K.L.; Benson, S.L.

    1995-01-01

    As part of its effort to help collect data and gather information for geohydrologic investigations, the U.S. Geological Survey (USGS) collects and reviews environmental and technical reports relating to geology, hydrology, and geohydrology. The USGS investigation efforts are coordinated with ongoing technical investigations by the Water Research Center of the University of Alaska Fairbanks and the U.S. Army Cold Regions Research and Engineering Laboratory. One project objective for Fort Wainwright includes maintaining a library of report references for USGS project use and for use by the U.S. Army, Alaska (USARAK), USARAK contractors, and other Federal and State agencies. This report presents an annotated bibliography of reports relating to the project study area or geohydrologic processes important to investigations in the study area.

  9. Publications - MP 126 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS MP 126 Publication Details Title: 400 MHz ground-penetrating radar, Itkillik River, North Slope , Itkillik River, North Slope, Alaska: Alaska Division of Geological & Geophysical Surveys Miscellaneous , North Slope, Alaska, scale 1:100 (8.6 M) Keywords Fluvial; Ground-Penetrating Radar; Itkillik River

  10. Publications - MP 8 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates STATEMAP Program information Geologic DGGS MP 8 Publication Details Title: Geothermal resources of Alaska Authors: Motyka, R.J., Moorman, M.A , S.A., 1983, Geothermal resources of Alaska: Alaska Division of Geological & Geophysical Surveys

  11. Staff - Susan S. Seitz | Alaska Division of Geological & Geophysical

    Science.gov Websites

    , 2017, Geologic Photos of Alaska: Alaska Division of Geological & Geophysical Surveys Digital Data ., Seitz, S.S., and Mulliken, K.M., 2016, Digital compilation of geochemical data for historical samples (presentation): Digital Mapping Techniques Workshop, Champaign, Illinois, May 20-23, 2012: Alaska Division of

  12. Publications - AR 2010-C | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska content DGGS AR 2010-C Publication Details Title: Engineering Geology FY11 project descriptions Authors , Engineering Geology FY11 project descriptions, in DGGS Staff, Alaska Division of Geological & Geophysical

  13. Publications - GMC 87 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    : Unknown Publication Date: 1988 Publisher: Alaska Division of Geological & Geophysical Surveys Total . Bibliographic Reference Unknown, 1988, Capillary pressure test data for 14 North Slope wells: Alaska Division of

  14. Publications - IC 40 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS IC 40 Publication Details Title: Alaska's mineral industry 1994: A summary Authors: Swainbank, R.C mineral industry 1994: A summary: Alaska Division of Geological & Geophysical Surveys Information

  15. Energy Resources | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Alaska MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates Sponsors' Proposals STATEMAP content Energy Resources Additional information Energy Resources Posters and Presentations Gas Hydrates Sponsors' Proposals Energy Resources Staff Projects The Alaska Division of Geological & Geophysical

  16. Publications - SR 51 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    & Geophysical Surveys Comments: Your help is crucial in the compilation of future Alaska Minerals Resources; Fluorine; Geophysics; Germanium; Gold; Heap Leach; Iron; Jade; Lead; Lode; Mercury; Minerals

  17. Publications - IC 58 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS IC 58 Publication Details Title: Alaska's mineral industry 2008: A summary Authors: Szumigala, D.J summary: Alaska Division of Geological & Geophysical Surveys Information Circular 58, 15 p. http

  18. Publications - NL 2006-1 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Liberty Bell, western Bonnifield mining district geophysical tract Authors: DGGS Staff, and Athey, J.E inventory Liberty Bell, western Bonnifield mining district geophysical tract: Alaska Division of Geological

  19. Publications - IC 39 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS IC 39 Publication Details Title: Alaska's mineral industry 1993: A summary Authors: Bundtzen, T.K 1993: A summary: Alaska Division of Geological & Geophysical Surveys Information Circular 39, 11 p

  20. Publications - IC 41 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS IC 41 Publication Details Title: Alaska's mineral industry 1995: A summary Authors: Bundtzen, T.K 1995: A summary: Alaska Division of Geological & Geophysical Surveys Information Circular 41, 12 p

  1. Ground-water and surface-water elevations in the Fairbanks International Airport area, Alaska, 1990-96, and selected geohydrologic report references

    USGS Publications Warehouse

    Claar, David V.; Lilly, Michael R.

    1997-01-01

    Ground-water and surface-water elevation data were collected at 61 sites from 1990 to 1996 by the U.S. Geological Survey in cooperation with the Alaska Department of Transportation and Public Facilities, Fairbanks International Airport. Water-surface elevations were measured in 41 ground-water observation wells and at 20 surface-water sites to help characterize the geohydrology of the Fairbanks International Airport area. From 1990 to 1993, data were collected in the vicinity of the former fire-training area at the airport. From 1993 to 1996, the data-collection area was expanded to include the entire airport area. The total number of data-collection sites varied each year because of changing project objectives and increased understanding of the geohydrology in the area.

  2. Publications - PDF 87-2 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    content DGGS PDF 87-2 Publication Details Title: Alaska's mineral industry 1986: Executive summary Authors : Executive summary: Alaska Division of Geological & Geophysical Surveys Public Data File 87-2, 5 p. http

  3. Publications - GMC 48 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a DGGS GMC 48 Publication Details Title: Palynology of the Susie Unit #1 well, North Slope, Alaska , Palynology of the Susie Unit #1 well, North Slope, Alaska: Alaska Division of Geological & Geophysical

  4. Publications - GMC 119 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a (Corona) well Authors: Unknown Publication Date: 1989 Publisher: Alaska Division of Geological & from OCS Y-0871-1 (Corona) well: Alaska Division of Geological & Geophysical Surveys Geologic

  5. Publications - GMC 381 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 381 Publication Details Title: 1974 summary report of exploration activities, Orange Hill information. Quadrangle(s): Nabesna Bibliographic Reference Trautwein, C.M., 2010, 1974 summary report of exploration activities, Orange Hill, Alaska: Alaska Division of Geological & Geophysical Surveys Geologic

  6. Publications - AR 2014 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Home About Us Director's Office Alaska Statutes Annual Reports Employment Staff Directory and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a ; Geophysical Surveys Annual Report 2014 Authors: DGGS Staff Publication Date: Jan 2015 Publisher: Alaska

  7. Publications - RI 2011-3B | Alaska Division of Geological & Geophysical

    Science.gov Websites

    structural cross sections for the Kavik River map area, Alaska Authors: Wallace, W.K., Wartes, M.A., Decker Kavik River map area, Alaska: Alaska Division of Geological & Geophysical Surveys Report of area, Alaska (144.0 M) Sheet 2 Interpretations of seismic reflection data and structural cross sections

  8. Publications - GMC 261 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a ') of the ARCO Alaska Inc. Jones Island #1 well Authors: Unknown Publication Date: 1996 Publisher well: Alaska Division of Geological & Geophysical Surveys Geologic Materials Center Data Report 261

  9. 40 CFR 81.302 - Alaska.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Fairbanks N. Star Borough Area other than portion of Fairbanks urban area designated Nonattainment Kobuk... Unclassifiable/Attainment Denali Borough Fairbanks North Star Borough Nome Census Area North Slope Borough... Alaska Intrastate: Denali Borough Unclassifiable/Attainment. Fairbanks North Star Borough Unclassifiable...

  10. 40 CFR 81.302 - Alaska.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Fairbanks N. Star Borough Area other than portion of Fairbanks urban area designated Nonattainment Kobuk... Denali Borough Fairbanks North Star Borough Nome Census Area North Slope Borough Northwest Arctic Borough... Northern Alaska Intrastate: Denali Borough Unclassifiable/Attainment. Fairbanks North Star Borough...

  11. Publications - IC 50 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey ic050.pdf (999.0 K) Keywords Aeromagnetic; Aeromagnetic Map; Aeromagnetic Survey; Alaska Peninsula ; Coal; Conductivity Survey; Construction Materials; Copper; Cretaceous; Delta River; Diamonds; Drilling

  12. Publications - RI 2001-1A | Alaska Division of Geological & Geophysical

    Science.gov Websites

    content DGGS RI 2001-1A Publication Details Title: Bedrock geologic map of the Chulitna region the Chulitna region, southcentral Alaska: Alaska Division of Geological & Geophysical Surveys ; Other Oversized Sheets Sheet 1 Bedrock geologic map of the Chulitna region, southcentral Alaska, scale 1

  13. Publications - DDS 5 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Geologic Data Index (AGDI) Volcanology Alaska Volcano Observatory (AVO) Mineral Resources Alaska's Mineral MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates STATEMAP Program information Geologic Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications DDS 5 main content

  14. Publications - MP 146 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Geologic Data Index (AGDI) Volcanology Alaska Volcano Observatory (AVO) Mineral Resources Alaska's Mineral MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates STATEMAP Program information Geologic Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications MP 146 main content

  15. Publications - MP 159 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Geologic Data Index (AGDI) Volcanology Alaska Volcano Observatory (AVO) Mineral Resources Alaska's Mineral MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates STATEMAP Program information Geologic Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications MP 159 main content

  16. Geophysical identification and geological Implications of the Southern Alaska Magnetic Trough

    USGS Publications Warehouse

    Saltus, R.W.; Hudson, T.L.; Wilson, Frederic H.

    2003-01-01

    The southern Alaska magnetic trough (SAMT) is one of the fundamental, crustal-scale, magnetic features of Alaska. It is readily recognized on 10 km upward-continued aeromagnetic maps of the state. The arcuate SAMT ranges from 30 to 100 km wide and extends in two separate segments along the southern Alaska margin for about 1200 km onshore (from near the Alaska/Canada border at about 60 degrees north latitude to the Bering Sea) and may continue an additional 500 km or more offshore (in the southern Bering Sea). The SAMT is bordered to the south by the southern Alaska magnetic high (SAMH) produced by strongly magnetic crust and to the north by a magnetically quiet zone that reflects weakly magnetic interior Alaska crust. Geophysically, the SAMT is more than just the north-side dipole low associated with the SAMH. Several modes of analysis, including examination of magnetic potential (pseudogravity) and profile modeling, indicate that the source of this magnetic trough is a discrete, crustal-scale body. Geologically, the western portion of the SAMT coincides to a large degree with collapsed Mesozoic Kahiltna flysch basin. This poster presents our geophysical evidence for the extent and geometry of this magnetic feature as well as initial geological synthesis and combined geologic/geophysical modeling to examine the implications of this feature for the broad scale tectonic framework of southern Alaska.

  17. Publications - SR 67 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS SR 67 Publication Details Title: Alaska's mineral industry 2011 - exploration activity Authors the mineral industry. Please take time to fill out the current mining and mineral activity - exploration activity: Alaska Division of Geological & Geophysical Surveys Special Report 67, 10 p. http

  18. Hyperspectral surveying for mineral resources in Alaska

    USGS Publications Warehouse

    Kokaly, Raymond F.; Graham, Garth E.; Hoefen, Todd M.; Kelley, Karen D.; Johnson, Michaela R.; Hubbard, Bernard E.

    2016-07-07

    Alaska is a major producer of base and precious metals and has a high potential for additional undiscovered mineral resources. However, discovery is hindered by Alaska’s vast size, remoteness, and rugged terrain. New methods are needed to overcome these obstacles in order to fully evaluate Alaska’s geology and mineral resource potential. Hyperspectral surveying is one method that can be used to rapidly acquire data about the distributions of surficial materials, including different types of bedrock and ground cover. In 2014, the U.S. Geological Survey began the Alaska Hyperspectral Project to assess the applicability of this method in Alaska. The primary study area is a remote part of the eastern Alaska Range where porphyry deposits are exposed. In collaboration with the Alaska Division of Geological and Geophysical Surveys, the University of Alaska Fairbanks, and the National Park Service, the U.S. Geological Survey is collecting and analyzing hyperspectral data with the goals of enhancing geologic mapping and developing methods to identify and characterize mineral deposits elsewhere in Alaska.

  19. Publications - GMC 79 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a Island #A-3) well Authors: Unknown Publication Date: 1988 Publisher: Alaska Division of Geological & Western BF-57 #1 (Seal Island #A-3) well: Alaska Division of Geological & Geophysical Surveys Geologic

  20. Publications - GMC 319 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 319 Publication Details Title: Porotechnology data and cation exchange capacity data Authors and cation exchange capacity data: Alaska Division of Geological & Geophysical Surveys Geologic

  1. Publications - GMC 312 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 312 Publication Details Title: Conventional porosity and permeability data of 24 Cook Inlet Reference Alaska Division of Geological & Geophysical Surveys, 2004, Conventional porosity and

  2. Antimony ore in the Fairbanks district, Alaska

    USGS Publications Warehouse

    Killeen, Pemberton Lewis; Mertie, John B.

    1951-01-01

    Antimony-bearing ores in the Fairbanks district, Alaska, are found principally in two areas, the extremities of which are at points 10 miles west and 23 miles northeast of Fairbanks; and one of two minor areas lies along this same trend 30 miles farther to the northeast. These areas are probably only local manifestations of mineralization that affected a much broader area and formed antimony-bearing deposits in neighboring districts, the closest of which is 50 miles away. The ores were exposed largely as a result of lode gold mining, but at two periods in the past, high prices for antimony ore warranted an independent production and about 2500 tons of stibnite ore was shipped. The sulfide deposits occupy the same fractures along which a gold-quartz mineralization of greater economic importance occurred; and both are probably genetically related to igneous rocks which intrude the schistose country rock. The sulfide is in part contemporaneous with some late-stage quartz in which it occurs as disseminated crystals; and in part the latest filling in the mineralized zones where it forms kidney-shaped masses of essentially solid sulfide. One extremely long mass must have contained nearly 100 tons of ore, but the average of the larger kidneys is closer to several tons. Much of the ore is stibnite, with quartz as a minor impurity, and assays show the tenor to vary from 40 to 65 percent antimony. Sulphantimonites are less abundant but likewise occur as disseminated crystals and as kidney-shaped bodies. Antimony oxides appear on the weathered surface and along fractures within the sulfide ore. Deposits containing either stibnite or sulphantimonite are known at more than 50 localities, but only eighteen have produced ore and the bulk of this came from the mines. The geology of the deposit, and the nature, extent, and period of the workings are covered in the detailed descriptions of individual occurrences. Several geologic and economic factors, which greatly affect

  3. The chemical characteristics of ground water near Fairbanks, Alaska: A section in Geologic studies in Alaska by the U.S. Geological Survey, 1998

    USGS Publications Warehouse

    Farmer, G. Lang; Goldfarb, Richard J.; Lilly, Michael R.; Bolton, Bob; Meier, Allen L.; Sanzolone, Richard F.

    2000-01-01

    Major- and trace-element abundances, and Sr and Pb isotopic compositions, of ground waters in and near Fairbanks, Alaska, were determined to characterize their chemical characteristics and to assess the factors controlling variations in dissolved arsenic concentrations. Collected samples show majorelement (Ca>Mg>Na>K) and strontium and lead isotopic compositions characteristic of waters that have interacted with lithologies comprising the Fairbanks Schist. Dissolved arsenic concentrations are not highly correlated with the abundances of other major and trace elements in these waters; however, waters with high arsenic concentrations (5.4 to 450 parts per billion) tend to have relatively high concentrations of antimony (as much as 1.7 ppb). The correlation between arsenic and antimony suggests that both elements were derived from the oxidation of hypogene sulfide minerals (arsenopyrite) that originally formed within the Fairbanks Schist during hydrothermal activity associated with the emplacement of Cretaceous granitic rocks. Variations in measured arsenic concentrations are due, in part, to the variations in the original abundance of upgradient sulfide minerals from a given well or spring. However, speciation studies on the ground water containing the highest concentration of arsenic in this study (450 ppb) demonstrate that the arsenic occurs primarily in its reduced form (As(III)). In agreement with previous studies, we conclude that relatively reducing ground waters have the highest potential for high arsenic concentrations due to greater mobility of As(III) relative to its oxidized counterpart (As(V)). In light of this conclusion, additional studies are being undertaken to determine how seasonal variations in ground-water redox affect arsenic mobility

  4. Publications - GMC 166 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    : Unknown Publication Date: 1990 Publisher: Alaska Division of Geological & Geophysical Surveys Total . Bibliographic Reference Unknown, 1990, Vitrinite reflectance data of cuttings (2400'-8680') and of core (7895

  5. GeoFORCE Alaska, A Successful Summer Exploring Alaska's Geology

    NASA Astrophysics Data System (ADS)

    Wartes, D.

    2012-12-01

    Thirty years old this summer, RAHI, the Rural Alaska Honors Institute is a statewide, six-week, summer college-preparatory bridge program at the University of Alaska Fairbanks for Alaska Native and rural high school juniors and seniors. This summer, in collaboration with the University of Texas Austin, the Rural Alaska Honors Institute launched a new program, GeoFORCE Alaska. This outreach initiative is designed to increase the number and diversity of students pursuing STEM degree programs and entering the future high-tech workforce. It uses Earth science to entice kids to get excited about dinosaurs, volcanoes and earthquakes, and includes physics, chemistry, math, biology and other sciences. Students were recruited from the Alaska's Arctic North Slope schools, in 8th grade to begin the annual program of approximately 8 days, the summer before their 9th grade year and then remain in the program for all four years of high school. They must maintain a B or better grade average and participate in all GeoFORCE events. The culmination is an exciting field event each summer. Over the four-year period, events will include trips to Fairbanks and Anchorage, Arizona, Oregon and the Appalachians. All trips focus on Earth science and include a 100+ page guidebook, with tests every night culminating with a final exam. GeoFORCE Alaska was begun by the University of Alaska Fairbanks in partnership with the University of Texas at Austin, which has had tremendous success with GeoFORCE Texas. GeoFORCE Alaska is managed by UAF's long-standing Rural Alaska Honors Institute, that has been successfully providing intense STEM educational opportunities for Alaskan high school students for over 30 years. The program will add a new cohort of 9th graders each year for the next four years. By the summer of 2015, GeoFORCE Alaska is targeting a capacity of 160 students in grades 9th through 12th. Join us to find out more about this exciting new initiative, which is enticing young Alaska Native

  6. Publications - GMC 339 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    petrography from petrographic thin sections of core (4759'-4894') Authors: Unknown Publication Date: Feb 2007 thin sections of core (4759'-4894'): Alaska Division of Geological & Geophysical Surveys Geologic

  7. Publications - DDS 3 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Division of Geological & Geophysical Surveys Digital Data Series 3, http://doi.org/10.14509/qff. http Combellick, R.A., 2012, Quaternary faults and folds in Alaska: A digital database, 31 p., 1 sheet, 1 map of Alaska (Plafker and others, 1994), 1 p. Digital Geospatial Data Digital Geospatial Data QFF

  8. Publications - GMC 131 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and core from the Chevron USA Inc. Eagle Creek #1 well Authors: Unknown Publication Date: 1989 Inc. Eagle Creek #1 well: Alaska Division of Geological & Geophysical Surveys Geologic Materials

  9. Publications - GMC 371 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Property under Northwest Explorations joint venture ownership - (1970 to 2005) and plan of operation (2006 - (1970 to 2005) and plan of operation (2006): Alaska Division of Geological & Geophysical Surveys

  10. An Undergraduate Designed VLF Receiver: Findings from an Auroral Flight in Fairbanks, Alaska

    NASA Astrophysics Data System (ADS)

    Hernandez, E.; Behrend, C. C.; Fenton, A.; Mathur, S.; Greer, M.; Bering, E., III

    2017-12-01

    The fluctuating state of the D-region ionosphere creates electromagnetic oscillations in the very low frequency (VLF) range. These naturally occurring VLF waves, or sferics, can have distinct features and intensities which can be measured to describe state of the plasma in the D-region. These features are more prominent during geomagnetic events—such as the aurora. To investigate these waves, this team redesigned and fabricated a VLF receiver with an air-core loop antenna. The receiver was attached to a 1500-gram latex balloon and flown during a moderate auroral event on the 15th of March, 217 in Fairbanks, Alaska. Using MATLAB to make different graphs of the data, such as spectrograms, the sferics received on that night can be visualized and interpreted. Through the VLF spectrum, this poster will provide an interpretation of the D-region and describe the events of the flight (natural and manmade).

  11. Air drying of softwood lumber, Fairbanks, Alaska.

    Treesearch

    George R Sampson; Forrest A. Ruppert

    1985-01-01

    Air-drying rates for two stacks of 2-inch-thick white spruce were observed in the Fairbanks area during summer 1982. The air-drying rate for the same size lumber was also observed during winter 1982-83. Very little drying occurred during the winter. Drying rates in summer were correlated with average daily temperature and average daily dew point to derive predictive...

  12. Publications - GMC 227 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    core (5,127-6,481') from the Texaco Inc. Colville Delta #3 Authors: Unknown Publication Date: 1994 Texaco Inc. Colville Delta #3: Alaska Division of Geological & Geophysical Surveys Geologic Materials

  13. Publications - GMC 259 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    core (6,467-6,515.8') from the Exxon Corporation Thetis Island #1 well Authors: Unknown Publication ') from the Exxon Corporation Thetis Island #1 well: Alaska Division of Geological & Geophysical

  14. Publications - GMC 229 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    core (6,144-6,419') from the Texaco Inc. Colville Delta #2 well Authors: Unknown Publication Date: 1994 Texaco Inc. Colville Delta #2 well: Alaska Division of Geological & Geophysical Surveys Geologic

  15. Publications - GMC 223 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    core (7,880-8,750') of the Texaco Oil Colville Delta #1 well Authors: Unknown Publication Date: 1994 Texaco Oil Colville Delta #1 well: Alaska Division of Geological & Geophysical Surveys Geologic

  16. Publications - PDF 95-33D | Alaska Division of Geological & Geophysical

    Science.gov Websites

    D-1, C-1, and part of the B-1 quadrangles, east-central Alaska Authors: Pinney, D.S., Clough, J.G ., Reifenstuhl, R.R., and Liss, S.A., 1995, Derivative geologic materials map of the Charley River D-1, C-1, and part of the B-1 quadrangles, east-central Alaska: Alaska Division of Geological & Geophysical

  17. Links | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Alaska MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates Sponsors' Proposals STATEMAP . National Geothermal Data System (NGDS) The National Geothermal Data System (NGDS) is a catalog of documents and datasets that provide information about geothermal resources. Geophysical Institute Seismology

  18. Southern Alaska Coastal Relief Model

    NASA Astrophysics Data System (ADS)

    Lim, E.; Eakins, B.; Wigley, R.

    2009-12-01

    The National Geophysical Data Center (NGDC), an office of the National Oceanic and Atmospheric Administration (NOAA), in conjunction with the Cooperative Institute for Research in Environmental Sciences (CIRES) at the University of Colorado at Boulder, has developed a 24 arc-second integrated bathymetric-topographic digital elevation model of Southern Alaska. This Coastal Relief Model (CRM) was generated from diverse digital datasets that were obtained from NGDC, the United States Geological Survey, and other U.S. and international agencies. The CRM spans 170° to 230° E and 48.5° to 66.5° N, including the Gulf of Alaska, Bering Sea, Aleutian Islands, and Alaska’s largest communities: Anchorage, Fairbanks, and Juneau. The CRM provides a framework for enabling scientists to refine tsunami propagation and ocean circulation modeling through increased resolution of geomorphologic features. It may also be useful for benthic habitat research, weather forecasting, and environmental stewardship. Shaded-relief image of the Southern Alaska Coastal Relief Model.

  19. Publications - GMC 400 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    , Kashwitna Lake #1, Little Su #1, Sheep Creek #1, and Slats #1 coal-bed methane wells Authors: Posey, C.M methane wells: Alaska Division of Geological & Geophysical Surveys Geologic Materials Center Data

  20. Publications - GMC 213 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    ') of the Shell Western E & P Inc. OCS Y-1275-1 (Popcorn #1) well Authors: Unknown Publication Date E & P Inc. OCS Y-1275-1 (Popcorn #1) well: Alaska Division of Geological & Geophysical

  1. Publications - GMC 282 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 282 Publication Details Title: Geochemical analysis of cuttings (11440'-11500') from the Exxon '-11500') from the Exxon Company U.S.A. OCS Y-0191-2 well: Alaska Division of Geological & Geophysical

  2. Publications - GMC 191 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    (3,489'-3,511') from the Union Oil Co. of California Ruby State #1 well Authors: Unknown Publication Date the Union Oil Co. of California Ruby State #1 well: Alaska Division of Geological & Geophysical

  3. Publications - GMC 218 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    ') of the Shell Western E & P Inc. OCS Y-1482-1 (Klondike #1) well Authors: Unknown Publication Date Western E & P Inc. OCS Y-1482-1 (Klondike #1) well: Alaska Division of Geological & Geophysical

  4. Alaska Division of Geological and Geophysical Surveys

    Science.gov Websites

    Name Title Gabriel Wolken, Ph.D. Program Manager Katreen Wikstrom Jones M.Sc. Geologist Research flood forecasting) rely on a quantitative assessment of distributed snow thickness and stored water . 2015. End-of-winter snow depth variability on glaciers in Alaska. Journal of Geophysical Research

  5. Publications - GMC 6 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    , George Publication Date: 1977 Publisher: Alaska Division of Geological & Geophysical Surveys Total . Bibliographic Reference Marshall, Thomas, and Claypool, George, 1977, Pyrolysis - organic carbon studies for the

  6. Publications - GMC 18 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Authors: Unknown Publication Date: Unknown Publisher: Alaska Division of Geological & Geophysical information. Bibliographic Reference Unknown, [n.d.], Geochemical analysis (total organic carbon, rock-eval

  7. Publications - GMC 46 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    wells Authors: Unknown Publication Date: 1984 Publisher: Alaska Division of Geological & Geophysical information. Bibliographic Reference Unknown, 1984, Shale bulk density analysis of cuttings from 10 North

  8. Publications - RI 97-15C | Alaska Division of Geological & Geophysical

    Science.gov Websites

    content DGGS RI 97-15C Publication Details Title: Surficial geologic map of the Tanana B-1 Quadrangle geologic map of the Tanana B-1 Quadrangle, central Alaska: Alaska Division of Geological & Geophysical Maps & Other Oversized Sheets Sheet 1 Surficial geologic map of the Tanana B-1 Quadrangle, Central

  9. Publications - GMC 71 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS GMC 71 Publication Details Title: Visual kerogens and rock evaluation pyrolysis determinations for evaluation pyrolysis determinations for 16 North Slope wells: Alaska Division of Geological & Geophysical

  10. Compositional Analysis of Fine Particulate Matter in Fairbanks, Alaska

    NASA Astrophysics Data System (ADS)

    Nattinger, K.; Simpson, W. R.; Huff, D.

    2015-12-01

    Fairbanks, AK experiences extreme pollution episodes that result in winter violations of the fine particulate matter (PM2.5) National Ambient Air Quality Standards. This poses a significant health risk for the inhabitants of the area. These high levels result from trapping of pollution in a very shallow boundary layer due to local meteorology, but the role of primary (direct emission) of particulate matter versus secondary production (in the atmosphere) of particulate matter is not understood. Analysis of the PM2.5 composition is being conducted to provide insight into sources, trends, and chemistry. Methods are developed to convert carbon data from IMPROVE (post-2009 analysis method) to NIOSH (pre-2009 method) utilizing blank subtraction, sampler bias adjustment, and inter-method correlations from co-located samples. By converting all carbon measurements to a consistent basis, long-term trends can be analyzed. The approach shows excellent mass closure between PM2.5 mass reconstructed from constituents and gravimetric-analyzed mass. This approach could be utilized in other US locations where the carbon analysis methods also changed. Results include organic and inorganic fractional mass percentages, analyzed over an eight-year period for two testing sites in Fairbanks and two in the nearby city of North Pole. We focus on the wintertime (Nov—Feb) period when most air quality violations occur and find that the particles consist primarily of organic carbon, with smaller percentages of sulfate, elemental carbon, ammonium, and nitrate. The Fairbanks area PM2.5 organic carbon / elemental carbon partitioning matches the source profile of wood smoke. North Pole and Fairbanks PM2.5 have significant compositional differences, with North Pole having a larger percentage of organic matter. Mass loadings in SO42-, NO3-, and total PM2.5 mass correlate with temperature. Multi-year temporal trends show little if any change with a strong effect from temperature. Insights from this

  11. Publications - GMC 39 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    the Pan Am David River #1-A Authors: Unknown Publication Date: 1982 Publisher: Alaska Division of Geological & Geophysical Surveys Comments: Publication date is estimated. Total Price: $3.00 Ordering

  12. Science for Alaska: Public Understanding of University Research Priorities

    NASA Astrophysics Data System (ADS)

    Campbell, D.

    2015-12-01

    Science for Alaska: Public Understanding of Science D. L. Campbell11University of Alaska Fairbanks, USA Around 200 people brave 40-below-zero temperatures to listen to university researchers and scientists give lectures about their work at an event called the Science for Alaska Lecture Series, hosted by the University of Alaska Fairbanks Geophysical Institute. It is held once a week, for six weeks during the coldest part of a Fairbanks, Alaska, winter. The topics range from space physics to remote sensing. The lectures last for 45 minutes with 15 minutes for audience questions and answers. It has been popular for about 20 years and is one of many public outreach efforts of the institute. The scientists are careful in their preparations for presentations and GI's Public Relations staff chooses the speakers based on topic, diversity and public interest. The staff also considers the speaker's ability to speak to a general audience, based on style, clarity and experience. I conducted a qualitative research project to find out about the people who attended the event, why they attend and what they do with the information they hear about. The participants were volunteers who attended the event and either stayed after the lectures for an interview or signed up to be contacted later. I used used an interview technique with open-ended questions, recorded and transcribed the interview. I identified themes in the interviews, using narrative analysis. Preliminary data show that the lecture series is a form of entertainment for people who are highly educated and work in demanding and stressful jobs. They come with family and friends. Sometimes it's a date with a significant other. Others want to expose their children to science. The findings are in keeping with the current literature that suggests that public events meant to increase public understanding of science instead draws like-minded people. The findings are different from Campbell's hypothesis that attendance was based

  13. Publications - GMC 292 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and core chips (13760'-13820') of Union Oil Company of California Clam Gulch Unit #1 Authors: Marathon Oil Company Publication Date: 2000 Publisher: Alaska Division of Geological & Geophysical Surveys information. Bibliographic Reference Marathon Oil Company, 2000, Hydrocarbon extraction gas chromatograph

  14. Publications - GMC 75 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS GMC 75 Publication Details Title: Vitrinite reflectance data for the Chevron U.S.A. Inc. Eagle Chevron U.S.A. Inc. Eagle Creek #1 well: Alaska Division of Geological & Geophysical Surveys Geologic

  15. Alaska Department of Natural Resources

    Science.gov Websites

    , Fairbanks, Alaska 99709 Phone: 907-822-5534, Fax: 907-451-2690 Delta Area Office PO Box 1149, Delta Junction Fairbanks Office 3700 Airport Way, Fairbanks, AK 99709-4613 Phone: 907-451-2695, Fax: 907-451-2754 Delta Junction Office PO Box 318, Delta Junction, AK 99737 Phone: 907-895-2113, Fax: 907-895-5043 Southeast

  16. Publications - GMC 106 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a microfossils from cuttings of Hemi Springs State #1 well Authors: Unknown Publication Date: 1989 Publisher Springs State #1 well: Alaska Division of Geological & Geophysical Surveys Geologic Materials Center

  17. Publications - GMC 104 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a microfossils from cuttings of Kavearak Point 32-25 well Authors: Unknown Publication Date: 1988 Publisher Point 32-25 well: Alaska Division of Geological & Geophysical Surveys Geologic Materials Center Data

  18. Publications - GMC 105 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a microfossils from cuttings of Gwydyr Bay State #2 well Authors: Unknown Publication Date: 1989 Publisher Bay State #2 well: Alaska Division of Geological & Geophysical Surveys Geologic Materials Center

  19. Publications - IC 44 ed. 2004 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in Map; Aeromagnetic Survey; Airborne Geophysical Survey; Alaska, State of; Bibliography; Coastal and

  20. Alaska Department of Labor Office of the Commissioner

    Science.gov Websites

    , Drygas spent nearly a decade as General Counsel to the Alaska District Council of Laborers, where she , property, commercial, and insurance law. Drygas is a lifelong Alaskan who was born and raised in Fairbanks . She earned a Bachelor's degree in history from the University of Alaska Fairbanks, and a Juris Doctor

  1. Cross-section, velocity, and bedload data at two erosion sites on the Tanana River near Fairbanks, Alaska, 1979

    USGS Publications Warehouse

    Burrows, Robert L.

    1980-01-01

    In an effort to relate river processes to vertical and lateral erosion at two sites on the Tanana River in the vicinity of Fairbanks, Alaska, measurements of depth, velocity, and bedload-transport rates were made at several sections at each site. To facilitate comparison of the river processes and ongoing erosion, compilation and graphic presentation of the velocity distributions and bedload-transport rates are presented in conjunction with cross-section configuration immediately adjacent to the area of erosion. Dry sieve analyses of the bedload samples give particle-size distribution. Approximately 85 to 95% of the material in transport at both sites was in the sand range (>0.062 millimeter <2.0 millimeter). (USGS)

  2. Publications - GMC 235 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    reflectance data from cuttings (1,890-11,060') of the Texaco Inc. West Kurupa Unit #1 well Authors: Bird, Ken , and Pawlewicz, Mark Publication Date: 1994 Publisher: Alaska Division of Geological & Geophysical information. Bibliographic Reference Bird, Ken, and Pawlewicz, Mark, 1994, Rock-eval data from cuttings (580

  3. Publications - GMC 216 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a report of the U.S. Navy Fish Creek # 1 well Authors: Core Laboratories Publication Date: 1993 Publisher Fish Creek # 1 well: Alaska Division of Geological & Geophysical Surveys Geologic Materials Center

  4. Postseismic Transient after the 2002 Denali Fault Earthquake from VLBI Measurements at Fairbanks

    NASA Technical Reports Server (NTRS)

    MacMillan, Daniel; Cohen, Steven

    2004-01-01

    The VLBI antenna (GILCREEK) at Fairbanks, Alaska observes in networks routinely twice a week with operational networks and on additional days with other networks on a more uneven basis. The Fairbanks antenna position is about 150 km north of the Denali fault and from the earthquake epicenter. We examine the transient behavior of the estimated VLBI position during the year following the earthquake to determine how the rate of change of postseismic deformation has changed. This is compared with what is seen in the GPS site position series.

  5. Publications - GMC 424 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a , grain density, and petrologic analyses of core from the E. Simpson Test Well #2 well Authors: Nordaq Test Well #2 well: Alaska Division of Geological & Geophysical Surveys Geologic Materials Center

  6. Publications - GMC 57 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    from the Standard Oil Company of California Nimiuk Pt. #1 well Authors: Leverson, John, and American Stratigraphic Company Publication Date: 1977 Publisher: Alaska Division of Geological & Geophysical Surveys information. Bibliographic Reference Leverson, John, and American Stratigraphic Company, 1977, A mineral

  7. Use of new and old technologies and methods by the Alaska Volcano Observatory during the 2006 eruption of Augustine Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Murray, T. L.; Nye, C. J.; Eichelberger, J. C.

    2006-12-01

    The recent eruption of Augustine Volcano was the first significant volcanic event in Cook Inlet, Alaska since 1992. In contrast to eruptions at remote Alaskan volcanoes that mainly affect aviation, ash from previous eruptions of Augustine has affected communities surrounding Cook Inlet, home to over half of Alaska's population. The 2006 eruption validated much of AVO's advance preparation, underscored the need to quickly react when a problem or opportunity developed, and once again demonstrated that while technology provides us with wonderful tools, professional relationships, especially during times of crisis, are still important. Long-term multi-parametric instrumental monitoring and background geological and geophysical studies represent the most fundamental aspect of preparing for any eruption. Once significant unrest was detected, AVO augmented the existing real-time network with additional instrumentation including web cameras. GPS and broadband seismometers that recorded data on site were also quickly installed as their data would be crucial for post-eruption research. Prior to 2006, most of most of AVO's eruption response plans and protocols had focused on the threat to aviation rather than ground-based hazards. However, the relationships and protocols developed for the aviation threat were sufficient to be adapted to the ash fall hazard, though it is apparent that more work, both scientific and with response procedures, is needed. Similarly, protocols were quickly developed for warning of a flank- collapse induced tsunami. Information flow within the observatory was greatly facilitated by an internal web site that had been developed and refined specifically for eruption response. Because AVO is a partnership of 3 agencies (U.S. Geological Survey, University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys) with offices in both Fairbanks and Anchorage, web and internet-facing data servers provided

  8. Publications - GMC 17 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a vitrinite reflectance) from Exxon Pt. Thompson #3 well Authors: AMOCO Publication Date: 1983 Publisher #3 well: Alaska Division of Geological & Geophysical Surveys Geologic Materials Center Data

  9. Publications - GMC 146 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    concentrates from the following 2 NPRA core tuff samples: U.S. Navy Umiat Test #1 (510.5 feet); Umiat Test #11 geochronology studies on biotite concentrates from the following 2 NPRA core tuff samples: U.S. Navy Umiat Test #1 (510.5 feet); Umiat Test #11 (488 feet): Alaska Division of Geological & Geophysical Surveys

  10. Geochemical controls of elevated arsenic concentrations in groundwater, Ester Dome, Fairbanks district, Alaska

    USGS Publications Warehouse

    Verplanck, P.L.; Mueller, S.H.; Goldfarb, R.J.; Nordstrom, D. Kirk; Youcha, E.K.

    2008-01-01

    Ester Dome, an upland area near Fairbanks, Alaska, was chosen for a detailed hydrogeochemical study because of the previously reported elevated arsenic in groundwater, and the presence of a large set of wells amenable to detailed sampling. Ester Dome lies within the Fairbanks mining district, where gold-bearing quartz veins, typically containing 2-3??vol.% sulfide minerals (arsenopyrite, stibnite, and pyrite), have been mined both underground and in open cuts. Gold-bearing veins on Ester Dome occur in shear zones and the sulfide minerals in these veins have been crushed to fine-grained material by syn- or post-mineralization movement. Groundwater at Ester Dome is circumneutral, Ca-HCO3 to Ca-SO4 type, and ranges from dilute (specific conductance of 48????S/cm) to more concentrated (specific conductance as high as 2070????S/cm). In general, solute concentrations increase down hydrologic gradient. Redox species indicate that the groundwaters range from oxic to sub-oxic (low dissolved oxygen, Fe(III) reduction, no SO4 reduction). Waters with the highest Fe concentrations, as high as 10.7??mg/L, are the most anoxic. Dissolved As concentrations range from < 1 to 1160????g/L, with a median value of 146????g/L. Arsenic concentrations are not correlated with specific conductance or Fe concentrations, suggesting that neither groundwater residence time, nor reductive dissolution of iron oxyhydroxides, control the arsenic chemistry. Furthermore, As concentrations do not covary with other constituents that form anions and oxyanions in solution (e.g., HCO3, Mo, F, or U) such that desorption of arsenic from clays or oxides also does not control arsenic mobility. Oxidation of arsenopyrite and dissolution of scorodite, in the near-surface environment appears to be the primary control of dissolved As in this upland area. More specifically, the elevated As concentrations are spatially associated with sulfidized shear zones and localities of gold-bearing quartz veins. Consistent with

  11. Drilling and Testing the DOI041A Coalbed Methane Well, Fort Yukon, Alaska

    USGS Publications Warehouse

    Clark, Arthur; Barker, Charles E.; Weeks, Edwin P.

    2009-01-01

    The need for affordable energy sources is acute in rural communities of Alaska where costly diesel fuel must be delivered by barge or plane for power generation. Additionally, the transport, transfer, and storage of fuel pose great difficulty in these regions. Although small-scale energy development in remote Arctic locations presents unique challenges, identifying and developing economic, local sources of energy remains a high priority for state and local government. Many areas in rural Alaska contain widespread coal resources that may contain significant amounts of coalbed methane (CBM) that, when extracted, could be used for power generation. However, in many of these areas, little is known concerning the properties that control CBM occurrence and production, including coal bed geometry, coalbed gas content and saturation, reservoir permeability and pressure, and water chemistry. Therefore, drilling and testing to collect these data are required to accurately assess the viability of CBM as a potential energy source in most locations. In 2004, the U.S. Geological Survey (USGS) and Bureau of Land Management (BLM), in cooperation with the U.S. Department of Energy (DOE), the Alaska Department of Geological and Geophysical Surveys (DGGS), the University of Alaska Fairbanks (UAF), the Doyon Native Corporation, and the village of Fort Yukon, organized and funded the drilling of a well at Fort Yukon, Alaska to test coal beds for CBM developmental potential. Fort Yukon is a town of about 600 people and is composed mostly of Gwich'in Athabascan Native Americans. It is located near the center of the Yukon Flats Basin, approximately 145 mi northeast of Fairbanks.

  12. Publications - GMC 96 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a Corp.) North cook Inlet Unit A-12 (A-15) well Authors: Core Laboratories Publication Date: 1988 Unit A-12 (A-15) well: Alaska Division of Geological & Geophysical Surveys Geologic Materials

  13. Publications - GMC 78 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a DGGS GMC 78 Publication Details Title: Vitrinite reflectance data for OCS-Y-0344-1 (Mukluk #1) well ) well: Alaska Division of Geological & Geophysical Surveys Geologic Materials Center Data Report 78

  14. Publications - GMC 368 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Hill, Titaluk Test #1, N. Inigok #1, Drew Pt. #1, Gubik Test #1, Inigok #1 and Oumalik Test #1 wells . Dalton #1, Seabee #1, Sentinel Hill, Titaluk Test #1, N. Inigok #1, Drew Pt. #1, Gubik Test #1, Inigok #1 and Oumalik Test #1 wells: Alaska Division of Geological & Geophysical Surveys Geologic Materials

  15. Publications - GMC 384 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Bay St #13-09-19, W Mikkelsen St #1, and Sag River St #1, Lisburne to total depth Authors: Boyer, D , Thin section photomicrographs and descriptions for Mikkelsen Bay St #13-09-19, W Mikkelsen St #1, and Sag River St #1, Lisburne to total depth: Alaska Division of Geological & Geophysical Surveys

  16. 78 FR 11988 - Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ...-management process involving the Service, the Alaska Department of Fish and Game, and Alaska Native... developed under a co-management process involving the Service, the Alaska Department of Fish and Game, and... Fish and Game's request to expand the Fairbanks North Star Borough excluded area to include the Central...

  17. Site selection feasibility for a solar energy system on the Fairbanks Federal Building

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A feasibility study was performed for the installation of a solar energy system on the Federal Building in Fairbanks, Alaska, a multifloor office building with an enclosed parking garge. The study consisted of determining the collectable solar energy at the Fairbanks site on a monthly basis and comparing this to the monthly building heating load. Potential conventional fuel savings were calculated on a monthly basis and the overall economics of the solar system applications were considered. Possible solar system design considerations, collector and other system installation details, interface of the solar system with the conventional HVAC systems, and possible control modes were all addressed. Conclusions, recommendations and study details are presented.

  18. Mineral Resources | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    and geophysical framework of Alaska as it pertains to the mineral resources of the state. Summary maps and reports illustrate the geology of the state's prospective mineral terranes and provide data on the location, type, and potential of the state's mineral resources. These data aid in the state's management of

  19. Alaska Volcano Observatory at 20

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.

    2008-12-01

    research opportunities for Russian and American students. AVO was a three-way partnership of the federal and state geological surveys and the state university from the start. This was not a flowering of ecumenism but was rather at the insistence of the Alaska congressional delegation. Such shared enterprises are not managerially convenient, but they do bring a diversity of roles, thinking, and expertise that would not otherwise be possible. Through AVO, the USGS performs its federally mandated role in natural hazard mitigation and draws on expertise available from its network of volcano observatories. The Alaska Division of Geological and Geophysical Surveys performs a similar role at the state level and, in the tradition of state surveys, provides important public communications, state data base, and mapping functions. The University of Alaska Fairbanks brought seismological, remote sensing, geodetic, petrological, and physical volcanological expertise, and uniquely within US academia was able to engage students directly in volcano observatory activities. Although this "model" cannot be adopted in total elsewhere, it has served to point the USGS Volcano Hazards Program in a direction of greater openness and inclusiveness.

  20. Preliminary hydraulic analysis and implications for restoration of Noyes Slough, Fairbanks, Alaska

    USGS Publications Warehouse

    Burrows, Robert L.; Langley, Dustin E.; Evetts, David M.

    2000-01-01

    The present-day channels of the Chena River and Noyes Slough in downtown Fairbanks, Alaska, were formed as sloughs of the Tanana River, and part of the flow of the Tanana River occupied these waterways. Flow in these channels was reduced after the completion of Moose Creek Dike in 1945, and flow in the Chena River was affected by regulation from the Chena River Lakes Flood Control Project, which was completed in 1980. In 1981, flow in the Chena River was regulated for the first time by Moose Creek Dam, located about 20 miles upstream from Fairbanks. Constructed as part of the Chena River Lakes Flood Control Project, the dam was designed to reduce maximum flows to 12,000 cubic feet per second in downtown Fairbanks. Cross-section measurements made near the entrance to Noyes Slough show that the channel bed of the Chena River has been downcutting, thereby reducing the magnitude and duration of flow in the slough. Consequently the slough slowly is drying up. The slough provides habitat for wildlife such as ducks, beaver, and muskrat and is a fishery for anadromous and other resident species. Beavers have built 10 dams in the slough. Declining flow in the slough may endanger the remaining habitat. Residents of the community wish to restore flow in Noyes Slough to create a clean, flowing waterway during normal summer flows. The desire is to enhance the slough as a fishery and habitat for other wildlife and for recreational boating. During this study, existing and new data were compiled to determine past and present hydraulic interaction between the Chena River and Noyes Slough. The U.S. Army Corps of Engineers Hydrologic Engineering Center River Analysis System (HECRAS) computer program was used to construct a model to use in evaluating alternatives for increasing flow in the slough. Under present conditions, the Chena must flow at about 2,400 cubic feet per second or more for flow to enter Noyes Slough. In an average year, water flows in Noyes Slough for 106 days during

  1. Publications - SR 65 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    ; Geophysical Surveys Comments: Your help is crucial in the compilation of future Alaska Minerals Reports. The quality and completeness of the information in these annual reports is dependent on input from all members of the mineral industry. Please take time to fill out the current mining and mineral activity

  2. Publications - SR 52 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    ; Geophysical Surveys Comments: Your help is crucial in the compilation of future Alaska Minerals Reports. The quality and completeness of the information in these annual reports is dependent on input from all members of the mineral industry. Please take time to fill out the current mining and mineral activity

  3. Staff - Alicja Wypych | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Resources Address: 3354 College Road Fairbanks, AK 99709-3707 Phone: (907)451-5016 Fax: (907)451-5050 Email ) 3354 College Road, Fairbanks, AK 99709 Phone: (907) 451-5000 Fax: (907) 451-5050 Contact DGGS Privacy

  4. Staff - Melanie B. Werdon | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Resources Address: 3354 College Road Fairbanks, AK 99709-3707 Phone: (907)451-5082 Fax: (907)451-5050 Email ) 3354 College Road, Fairbanks, AK 99709 Phone: (907) 451-5000 Fax: (907) 451-5050 Contact DGGS Privacy

  5. Response of the Alaska Volcano Observatory to Public Inquiry Concerning the 2006 Eruption of Augustine Volcano, Cook Inlet, Alaska

    NASA Astrophysics Data System (ADS)

    Adleman, J. N.

    2006-12-01

    The 2006 eruption of Augustine Volcano provided the Alaska Volcano Observatory (AVO) with an opportunity to test its newly renovated Operations Center (Ops) at the Alaska Science Center in Anchorage. Because of the demand for interagency operations and public communication, Ops became the hub of Augustine monitoring activity, twenty-four hours a day, seven days a week, from January 10 through May 19, 2006. During this time, Ops was staffed by 17 USGS AVO staff, and over two dozen Fairbanks-based AVO staff from the Alaska Department of Geological and Geophysical Surveys and the University of Alaska Fairbanks Geophysical Institute and USGS Volcano Hazards Program staff from outside Alaska. This group engaged in communicating with the public, media, and other responding agencies throughout the eruption. Before and during the eruption, reference sheets - ;including daily talking - were created, vetted, and distributed to prepare staff for questions about the volcano. These resources were compiled into a binder stationed at each Ops phone and available through the AVO computer network. In this way, AVO was able to provide a comprehensive, uniform, and timely response to callers and emails at all three of its cooperative organizations statewide. AVO was proactive in scheduling an Information Scientist for interviews on-site with Anchorage television stations and newspapers several times a week. Scientists available, willing, and able to speak clearly about the current activity were crucial to AVO's response. On January 19, 2006, two public meetings were held in Homer, 120 kilometers northeast of Augustine Volcano. AVO, the West Coast Alaska Tsunami Warning Center, and the Kenai Peninsula Borough Office of Emergency Management gave brief presentations explaining their roles in eruption response. Representatives from several local, state, and federal agencies were also available. In addition to communicating with the public by daily media interviews and phone calls to Ops

  6. Alaska Volcano Observatory Seismic Network Data Availability

    NASA Astrophysics Data System (ADS)

    Dixon, J. P.; Haney, M. M.; McNutt, S. R.; Power, J. A.; Prejean, S. G.; Searcy, C. K.; Stihler, S. D.; West, M. E.

    2009-12-01

    The Alaska Volcano Observatory (AVO) established in 1988 as a cooperative program of the U.S. Geological Survey, the Geophysical Institute at the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, monitors active volcanoes in Alaska. Thirty-three volcanoes are currently monitored by a seismograph network consisting of 193 stations, of which 40 are three-component stations. The current state of AVO’s seismic network, and data processing and availability are summarized in the annual AVO seismological bulletin, Catalog of Earthquake Hypocenters at Alaska Volcanoes, published as a USGS Data Series (most recent at http://pubs.usgs.gov/ds/467). Despite a rich seismic data set for 12 VEI 2 or greater eruptions, and over 80,000 located earthquakes in the last 21 years, the volcanic seismicity in the Aleutian Arc remains understudied. Initially, AVO seismic data were only provided via a data supplement as part of the annual bulletin, or upon request. Over the last few years, AVO has made seismic data more available with the objective of increasing volcano seismic research on the Aleutian Arc. The complete AVO earthquake catalog data are now available through the annual AVO bulletin and have been submitted monthly to the on-line Advanced National Seismic System (ANSS) composite catalog since 2008. Segmented waveform data for all catalog earthquakes are available upon request and efforts are underway to make this archive web accessible as well. Continuous data were first archived using a tape backup, but the availability of low cost digital storage media made a waveform backup of continuous data a reality. Currently the continuous AVO waveform data can be found in several forms. Since late 2002, AVO has burned all continuous waveform data to DVDs, as well as storing these data in Antelope databases at the Geophysical Institute. Beginning in 2005, data have been available through a Winston Wave Server housed at the USGS in

  7. Staff - Ken A. Woods | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Communications Address: 3354 College Road Fairbanks, AK 99709-3707 Phone: (907)451-5022 Fax: (907)451-5050 Email ) 3354 College Road, Fairbanks, AK 99709 Phone: (907) 451-5000 Fax: (907) 451-5050 Contact DGGS Privacy

  8. DefenseLink Special: Stryker Brigade Returns to Fort Wainwright, Alaska

    Science.gov Websites

    Fort Wainwright, Alaska, Dec. 13, 2006. Defense Dept. photo by William D. Moss More Photos Leaders command ceremony in Fairbanks, Alaska, Dec. 14, 2006. Defense Dept. photo by William D. Moss More Photos

  9. Science plan for the Alaska SAR facility program. Phase 1: Data from the first European sensing satellite, ERS-1

    NASA Technical Reports Server (NTRS)

    Carsey, Frank D.

    1989-01-01

    Science objectives, opportunities and requirements are discussed for the utilization of data from the Synthetic Aperture Radar (SAR) on the European First Remote Sensing Satellite, to be flown by the European Space Agency in the early 1990s. The principal applications of the imaging data are in studies of geophysical processes taking place within the direct-reception area of the Alaska SAR Facility in Fairbanks, Alaska, essentially the area within 2000 km of the receiver. The primary research that will be supported by these data include studies of the oceanography and sea ice phenomena of Alaskan and adjacent polar waters and the geology, glaciology, hydrology, and ecology of the region. These studies focus on the area within the reception mask of ASF, and numerous connections are made to global processes and thus to the observation and understanding of global change. Processes within the station reception area both affect and are affected by global phenomena, in some cases quite critically. Requirements for data processing and archiving systems, prelaunch research, and image processing for geophysical product generation are discussed.

  10. Valuing Residential Energy Efficiency in Two Alaska Real Estate Markets: A Hedonic Approach

    NASA Astrophysics Data System (ADS)

    Pride, Dominique J.

    Alaska households have high home energy consumption and expenditures. Improving the energy efficiency of the housing stock can reduce home energy consumption, thereby reducing home energy expenditures and CO2 emissions. Improving the energy efficiency of a home may also increase its transaction price if the energy efficiency improvements are capitalized into the value of the home. The relationship between energy efficiency and transaction prices in the Fairbanks and Anchorage, Alaska residential real estate markets is examined. Using a hedonic pricing framework and difference-in-differences analysis, the impact of the Alaska Home Energy Rebate program on the transaction prices of single-family homes in the Fairbanks and Anchorage housing markets from 2008 through 2015 is examined. The results indicate that compared to homes that did not complete the program, homes that completed the program sell for a statistically significant price premium between 15.1% and 15.5% in the Fairbanks market and between 5% and 11% in the Anchorage market. A hedonic pricing framework is used to relate energy efficiency ratings and transaction prices of homes in the Fairbanks and Anchorage residential real estate markets from 2008 through 2015. The results indicate that homes with above-average energy efficiency ratings sell for a statistically significant price premium between 6.9% and 17.5% in the Fairbanks market and between 1.8% and 6.0% in the Anchorage market.

  11. Timber resource statistics for the Fairbanks block, Tanana inventory unit, Alaska, 1970.

    Treesearch

    Karl M. Hegg

    1975-01-01

    This report for the 3-million-acre Fairbanks block is the first of four on the 14-million-acre Tanana Valley inventory unit. Observations are made on forest condition, defect, stand regeneration, fire history, and present use. Data are provided for an operable noncommercial forest land category as well as for standard Forest Survey area and volume statistics....

  12. Publications - Advanced Search | Alaska Division of Geological &

    Science.gov Websites

    publications released by the University of Alaska Fairbanks, Mineral Industry Research Laboratory USBM Island Seguam Selawik Seldovia Seward Shishmaref Shungnak Simeonof Island Sitka Skagway Sleetmute Solomon

  13. The geophysical character of southern Alaska - Implications for crustal evolution

    USGS Publications Warehouse

    Saltus, R.W.; Hudson, T.L.; Wilson, Frederic H.

    2007-01-01

    The southern Alaska continental margin has undergone a long and complicated history of plate convergence, subduction, accretion, and margin-parallel displacements. The crustal character of this continental margin is discernible through combined analysis of aeromagnetic and gravity data with key constraints from previous seismic interpretation. Regional magnetic data are particularly useful in defining broad geophysical domains. One of these domains, the south Alaska magnetic high, is the focus of this study. It is an intense and continuous magnetic high up to 200 km wide and ∼1500 km long extending from the Canadian border in the Wrangell Mountains west and southwest through Cook Inlet to the Bering Sea shelf. Crustal thickness beneath the south Alaska magnetic high is commonly 40–50 km. Gravity analysis indicates that the south Alaska magnetic high crust is dense. The south Alaska magnetic high spatially coincides with the Peninsular and Wrangellia terranes. The thick, dense, and magnetic character of this domain requires significant amounts of mafic rocks at intermediate to deep crustal levels. In Wrangellia these mafic rocks are likely to have been emplaced during Middle and (or) Late Triassic Nikolai Greenstone volcanism. In the Peninsular terrane, the most extensive period of mafic magmatism now known was associated with the Early Jurassic Talkeetna Formation volcanic arc. Thus the thick, dense, and magnetic character of the south Alaska magnetic high crust apparently developed as the response to mafic magmatism in both extensional (Wrangellia) and subduction-related arc (Peninsular terrane) settings. The south Alaska magnetic high is therefore a composite crustal feature. At least in Wrangellia, the crust was probably of average thickness (30 km) or greater prior to Triassic mafic magmatism. Up to 20 km (40%) of its present thickness may be due to the addition of Triassic mafic magmas. Throughout the south Alaska magnetic high, significant crustal growth

  14. Monitoring Start of Season in Alaska

    NASA Astrophysics Data System (ADS)

    Robin, J.; Dubayah, R.; Sparrow, E.; Levine, E.

    2006-12-01

    In biomes that have distinct winter seasons, start of spring phenological events, specifically timing of budburst and green-up of leaves, coincides with transpiration. Seasons leave annual signatures that reflect the dynamic nature of the hydrologic cycle and link the different spheres of the Earth system. This paper evaluates whether continuity between AVHRR and MODIS normalized difference vegetation index (NDVI) is achievable for monitoring land surface phenology, specifically start of season (SOS), in Alaska. Additionally, two thresholds, one based on NDVI and the other on accumulated growing degree-days (GDD), are compared to determine which most accurately predicts SOS for Fairbanks. Ratio of maximum greenness at SOS was computed from biweekly AVHRR and MODIS composites for 2001 through 2004 for Anchorage and Fairbanks regions. SOS dates were determined from annual green-up observations made by GLOBE students. Results showed that different processing as well as spectral characteristics of each sensor restrict continuity between the two datasets. MODIS values were consistently higher and had less inter-annual variability during the height of the growing season than corresponding AVHRR values. Furthermore, a threshold of 131-175 accumulated GDD was a better predictor of SOS for Fairbanks than a NDVI threshold applied to AVHRR and MODIS datasets. The NDVI threshold was developed from biweekly AVHRR composites from 1982 through 2004 and corresponding annual green-up observations at University of Alaska-Fairbanks (UAF). The GDD threshold was developed from 20+ years of historic daily mean air temperature data and the same green-up observations. SOS dates computed with the GDD threshold most closely resembled actual green-up dates observed by GLOBE students and UAF researchers. Overall, biweekly composites and effects of clouds, snow, and conifers limit the ability of NDVI to monitor phenological changes in Alaska.

  15. Yesterday Still Lives...Our Native People Remember Alaska.

    ERIC Educational Resources Information Center

    DeMarco, Pat, Ed.; And Others

    In the summer of 1978, seven teenagers and several staff members from the Fairbanks Native Association-Johnson O'Malley program set out to record some of Alaska's past by interviewing a number of older Alaska Natives and writing their biographical sketches. Some of the students spent a week along the Yukon River taping and photographing people;…

  16. Summary of 2012 reconnaissance field studies related to the petroleum geology of the Nenana Basin, interior Alaska

    USGS Publications Warehouse

    Wartes, Marwan A.; Gillis, Robert J.; Herriott, Trystan M.; Stanley, Richard G.; Helmold, Kenneth P.; Peterson, C. Shaun; Benowitz, Jeffrey A.

    2013-01-01

    The Alaska Division of Geological & Geophysical Surveys (DGGS) recently initiated a multi-year review of the hydrocarbon potential of frontier sedimentary basins in Alaska (Swenson and others, 2012). In collaboration with the Alaska Division of Oil & Gas and the U.S. Geological Survey we conducted reconnaissance field studies in two basins with recognized natural gas potential—the Susitna basin and the Nenana basin (LePain and others, 2012). This paper summarizes our initial work on the Nenana basin; a brief summary of our work in the Susitna basin can be found in Gillis and others (in press). During early May 2012, we conducted ten days of helicopter-supported fieldwork and reconnaissance sampling along the northern Alaska Range foothills and Yukon–Tanana upland near Fairbanks (fig. 1). The goal of this work was to improve our understanding of the geologic development of the Nenana basin and to collect a suite of samples to better evaluate hydrocarbon potential. Most laboratory analyses have not yet been completed, so this preliminary report serves as a summary of field data and sets the framework for future, more comprehensive analysis to be presented in later publications.

  17. Sharing Ideas. Southeast Alaska Cultures: Teaching Ideas and Resource Information.

    ERIC Educational Resources Information Center

    Hinckley, Kay, Comp.; Kleinert, Jean, Comp.

    The product of two 1975 workshops held in Southeastern Alaska (Fairbanks and Sitka), this publication presents the following: (1) papers (written by the educators in attendance at the workshops) which address education methods and concepts relevant to the culture of Southeastern Alaska ("Tlingit Sea Lion Parable"; "Using Local…

  18. Hydrology and Climatology of the Caribou-Poker Creeks Research Watershed, Alaska,

    DTIC Science & Technology

    1982-10-01

    system the watershed falls within the Inter- dense brush of willow, alder and dwarf birch in ior Alaska Forest ( Taiga ) designation. open forests near...and C.T. Cushwina (1973) Research stream flow characteristics in the discontinuous opportunities and needs in the Taiga of Alaska. permafrost zone of...edition. taiga research watershed. Institute of Water Re- linkenson, W.M. nB. Lotspeich and lW. Mueller sources, University of Alaska, Fairbanks, Alaska

  19. Virtual Reality Visualization of Permafrost Dynamics Along a Transect Through Northern Alaska

    NASA Astrophysics Data System (ADS)

    Chappell, G. G.; Brody, B.; Webb, P.; Chord, J.; Romanovsky, V.; Tipenko, G.

    2004-12-01

    Understanding permafrost dynamics poses a significant challenge for researchers and planners. Our project uses nontraditional visualization tools to create a 3-D interactive virtual-reality environment in which permafrost dynamics can be explored and experimented with. We have incorporated a numerical soil temperature model by Gennadiy Tipenko and Vladimir Romanovsky of the Geophysical institute at the University of Alaska Fairbanks into an animated tour in space and time in the virtual reality facility of the Arctic Region Supercomputing Center at the University of Alaska Fairbanks. The software is being written by undergraduate interns Patrick Webb and Jordanna Chord under the direction of Professors Chappell and Brody. When using our software, the user appears to be surrounded by a 3-D computer-generated model of the state of Alaska. The eastern portion of the state is displaced upward from the western portion. The data are represented on an animated vertical strip running between the two parts, as if eastern Alaska were raised up, and the soil at the cut could be viewed. We use coloring to highlight significant properties and features of the soil: temperature, the active layer, etc. The user can view data from various parts of the state simply by walking to the appropriate location in the model, or by using a flying-style interface to cover longer distances. Using a control panel, the user can also alter the time, viewing the data for a particular date, or watching the data change with time: a high-speed movie in which long-term changes in permafrost are readily apparent. In the second phase of the project, we connect the visualization directly to the model, running in real time. We allow the user to manipulate the input data and get immediate visual feedback. For example, the user might specify the kind and placement of ground cover, by ``painting'' snowpack, plant species, or fire damage, and be able to see the effect on permafrost stability with no

  20. Radiometric age file for Alaska: A section in The United States Geological Survey in Alaska: Accomplishments during 1980

    USGS Publications Warehouse

    Shew, Nora B.; Wilson, Frederic H.

    1982-01-01

    The Alaska radiometric age file of the Branch of Alaskan Geology is a computer-based compilation of radiometric dates from the state of Alaska and the western parts of the Yukon Territory and British Columbia. More than 1800 age determinations from over 250 references have been entered in the file. References date back to 1958 and include both published and unpublished sources. The file is the outgrowth of an original radiometric age file compiled by Don Grybeck and students at the University of Alaska-Fairbanks (Turner and others, 1975).

  1. The Alaska Volcano Observatory Website a Tool for Information Management and Dissemination

    NASA Astrophysics Data System (ADS)

    Snedigar, S. F.; Cameron, C. E.; Nye, C. J.

    2006-12-01

    The Alaska Volcano Observatory's (AVO's) website served as a primary information management tool during the 2006 eruption of Augustine Volcano. The AVO website is dynamically generated from a database back- end. This system enabled AVO to quickly and easily update the website, and provide content based on user- queries to the database. During the Augustine eruption, the new AVO website was heavily used by members of the public (up to 19 million hits per day), and this was largely because the AVO public pages were an excellent source of up-to-date information. There are two different, yet fully integrated parts of the website. An external, public site (www.avo.alaska.edu) allows the general public to track eruptive activity by viewing the latest photographs, webcam images, webicorder graphs, and official information releases about activity at the volcano, as well as maps, previous eruption information, bibliographies, and rich information about other Alaska volcanoes. The internal half of the website hosts diverse geophysical and geological data (as browse images) in a format equally accessible by AVO staff in different locations. In addition, an observation log allows users to enter information about anything from satellite passes to seismic activity to ash fall reports into a searchable database. The individual(s) on duty at the watch office use forms on the internal website to post a summary of the latest activity directly to the public website, ensuring that the public website is always up to date. The internal website also serves as a starting point for monitoring Alaska's volcanoes. AVO's extensive image database allows AVO personnel to upload many photos, diagrams, and videos which are then available to be browsed by anyone in the AVO community. Selected images are viewable from the public page. The primary webserver is housed at the University of Alaska Fairbanks, and holds a MySQL database with over 200 tables and several thousand lines of php code gluing

  2. Alaska GeoFORCE, A New Geologic Adventure in Alaska

    NASA Astrophysics Data System (ADS)

    Wartes, D.

    2011-12-01

    RAHI, the Rural Alaska Honors Institute is a statewide, six-week, summer college-preparatory bridge program at the University of Alaska Fairbanks for Alaska Native and rural high school juniors and seniors. A program of rigorous academic activity combines with social, cultural, and recreational activities. Students are purposely stretched beyond their comfort levels academically and socially to prepare for the big step from home or village to a large culturally western urban campus. This summer RAHI is launching a new program, GeoFORCE Alaska. This outreach initiative is designed to increase the number and diversity of students pursuing STEM degree programs and entering the future high-tech workforce. It uses Earth science as the hook because most kids get excited about dinosaurs, volcanoes and earthquakes, but it includes physics, chemistry, math, biology and other sciences. Students will be recruited, initially from the Arctic North Slope schools, in the 8th grade to begin the annual program of approximately 8 days, the summer before their 9th grade year and then remain in the program for all four years of high school. They must maintain a B or better grade average and participate in all GeoFORCE events. The carrot on the end of the stick is an exciting field event each summer. Over the four-year period, events will include trips to Fairbanks, Arizona, Oregon and the Appalachians. All trips are focused on Earth science and include a 100+ page guidebook, with tests every night culminating with a final exam. GeoFORCE Alaska is being launched by UAF in partnership with the University of Texas at Austin, which has had tremendous success with GeoFORCE Texas. GeoFORCE Alaska will be managed by UAF's long-standing Rural Alaska Honors Insitute (RAHI) that has been successfully providing intense STEM educational opportunities for Alaskan high school students for almost 30 years. The Texas program, with adjustments for differences in culture and environment, will be

  3. Alaskan Auroral All-Sky Images on the World Wide Web

    NASA Technical Reports Server (NTRS)

    Stenbaek-Nielsen, H. C.

    1997-01-01

    In response to a 1995 NASA SPDS announcement of support for preservation and distribution of important data sets online, the Geophysical Institute, University of Alaska Fairbanks, Alaska, proposed to provide World Wide Web access to the Poker Flat Auroral All-sky Camera images in real time. The Poker auroral all-sky camera is located in the Davis Science Operation Center at Poker Flat Rocket Range about 30 miles north-east of Fairbanks, Alaska, and is connected, through a microwave link, with the Geophysical Institute where we maintain the data base linked to the Web. To protect the low light-level all-sky TV camera from damage due to excessive light, we only operate during the winter season when the moon is down. The camera and data acquisition is now fully computer controlled. Digital images are transmitted each minute to the Web linked data base where the data are available in a number of different presentations: (1) Individual JPEG compressed images (1 minute resolution); (2) Time lapse MPEG movie of the stored images; and (3) A meridional plot of the entire night activity.

  4. Publications of the Volcano Hazards Program 2010

    USGS Publications Warehouse

    Nathenson, Manuel

    2012-01-01

    The Volcano Hazards Program of the U.S. Geological Survey (USGS) is part of the Geologic Hazards Assessments subactivity as funded by Congressional appropriation. Investigations are carried out in the USGS and with cooperators at the Alaska Division of Geological and Geophysical Surveys, University of Alaska Fairbanks Geophysical Institute, University of Hawaii Manoa and Hilo, University of Utah, and University of Washington Geophysics Program. This report lists publications from all these institutions. Only published papers and maps are included here; numerous abstracts presented at scientific meetings are omitted. Publication dates are based on year of issue, with no attempt to assign them to fiscal year.

  5. Publications of the Volcano Hazards Program 2011

    USGS Publications Warehouse

    Nathenson, Manuel

    2013-01-01

    The Volcano Hazards Program of the U.S. Geological Survey (USGS) is part of the Geologic Hazards Assessments subactivity, as funded by Congressional appropriation. Investigations are carried out by the USGS and with cooperators at the Alaska Division of Geological and Geophysical Surveys, University of Alaska Fairbanks Geophysical Institute, University of Hawaii Manoa and Hilo, University of Utah, and University of Washington Geophysics Program. This report lists publications from all these institutions. Only published papers and maps are included here; abstracts presented at scientific meetings are omitted. Publication dates are based on year of issue, with no attempt to assign them to fiscal year.

  6. Publications of the Volcano Hazards Program 2012

    USGS Publications Warehouse

    Nathenson, Manuel

    2014-01-01

    The Volcano Hazards Program of the U.S. Geological Survey (USGS) is part of the Geologic Hazards Assessments subactivity, as funded by Congressional appropriation. Investigations are carried out by the USGS and with cooperators at the Alaska Division of Geological and Geophysical Surveys, University of Alaska Fairbanks Geophysical Institute, University of Hawaii Manoa and Hilo, University of Utah, and University of Washington Geophysics Program. This report lists publications from all of these institutions. Only published papers and maps are included here; abstracts presented at scientific meetings are omitted. Publication dates are based on year of issue, with no attempt to assign them to a fiscal year.

  7. Publications of the Volcano Hazards Program 2009

    USGS Publications Warehouse

    Nathenson, Manuel

    2011-01-01

    The Volcano Hazards Program of the U.S. Geological Survey (USGS) is part of the Geologic Hazards Assessments subactivity as funded by congressional appropriation. Investigations are carried out in the USGS and with cooperators at the Alaska Division of Geological and Geophysical Surveys, University of Alaska Fairbanks Geophysical Institute, University of Hawaii Manoa and Hilo, University of Utah, and University of Washington Geophysics Program. This report lists publications from all these institutions. Only published papers and maps are included here; numerous abstracts presented at scientific meetings are omitted. Publications dates are based on year of issue, with no attempt to assign them to fiscal year.

  8. Publications of Volcano Hazards Program 2000

    USGS Publications Warehouse

    Nathenson, Manuel

    2001-01-01

    The Volcano Hazards Program of the U.S. Geological Survey (USGS) is part of the Geologic Hazards Assessments subactivity as funded by Congressional appropriation. Investigations are carried out in the Geology and Hydrology Disciplines of the USGS and with cooperators at the Alaska Division of Geological and Geophysical Surveys, University of Alaska Fairbanks Geophysical Institute, University of Utah, and University of Washington Geophysics Program. This report lists publications from all these institutions. This report contains only published papers and maps; numerous abstracts produced for presentations at scientific meetings have not been included. Publications are included based on date of publication with no attempt to assign them to Fiscal Year.

  9. Publications of the Volcano Hazards Program 1997

    USGS Publications Warehouse

    Nathenson, Manuel

    1998-01-01

    The Volcano Hazards Program of the U.S. Geological Survey (USGS) is part of the Geologic Hazards Assessments subactivity as funded by Congressional appropriation. Investigations are carried out in the Geologic and Water Resources Divisions of the USGS and with cooperators at the Alaska Division of Geological and Geophysical Surveys, University of Alaska Fairbanks Geophysical Institute, University of Utah, and University of Washington Geophysics Program. This report lists publications from all these institutions. This report contains only published papers and maps; numerous abstracts produced for presentations at scientific meetings have not been included. Publications are included based on date of publication with no attempt to assign them to Fiscal Year.

  10. Measurement of Near-Surface Carbon Dioxide Concentrations with an Open-Path Tunable Diode Laser Sensor and a Non-Dispersive Infrared Sensor at the Bonanza Creek Long Term Ecological Research Site near Fairbanks, Alaska

    NASA Astrophysics Data System (ADS)

    Bailey, D. M.; Caine, K. M.; Miller, J. H. H.

    2016-12-01

    Continuous collection of carbon dioxide (CO2) concentrations is imperative in understanding seasonal and inter-annual variability of carbon feedbacks above thawing permafrost. Permafrost makes up one-quarter of the Earth's terrestrial surface and has the potential to release twice the amount of carbon than is currently in the atmosphere if global temperatures continue to increase. A collaborative effort with the University of Alaska - Fairbanks, NASA Goddard Space Flight Center, and our group at George Washington University is underway to monitor these feedbacks near Fairbanks, Alaska. In June 2016, we deployed an open-path tunable diode laser sensor along with a non-dispersive infrared (NDIR) sensor at the Bonanza Creek Long Term Ecological Research Site as an exploratory study for their use in collecting near-surface CO2 concentrations above thawing permafrost. The open-path instrument (OPI) collected spatially-integrated measurements approximately 1.5 meters above the surface of a young thermokarst bog over a 15-day period whereas the NDIR sensor collected localized measurements 1 meter above the surface for 16 days. Near-continuous measurements were achieved with the NDIR sensor which was limited only by the availability of solar-produced power. The OPI measurements were further limited by maintaining laser alignment under changing environmental conditions. However, the campaign achieved a nearly 80% duty cycle for the entire test period. Here we compare both the localized and spatially-integrated carbon dioxide measurements and their observed diurnal concentration cycles, whose magnitude showed a strong dependence on daily weather at the test site.

  11. Geochemistry and geophysics field maps used during the USGS 2011 field season in southwest Alaska

    USGS Publications Warehouse

    Giles, Stuart A.

    2013-01-01

    The US Geological Survey (USGS) has been studying a variety of geochemical and geophyscial assessment techniques for concealed mineral deposits. The 2011 field season for this project took place in southwest Alaska, northeast of Bristol Bay between Dillingham and Iliamna Lake. Four maps were created for the geochemistry and geophysics teams to use during field activities.

  12. IMPROVING SCIENCE EDUCATION AND CAREER OPPORTUNITIES IN RURAL ALASKA:The Synergistic Connection between Educational Outreach Efforts in the Copper Valley, Alaska.

    NASA Astrophysics Data System (ADS)

    Solie, D. J.; McCarthy, S.

    2004-12-01

    The objective of the High frequency Active Auroral Research Program (HAARP) Education Outreach is to enhance the science education opportunities in the Copper Valley region in Alaska. In the process, we also educate local residents about HAARP and its research. Funded jointly by US Air Force and Navy, HAARP is located at Gakona Alaska, a very rural region of central Alaska with a predominantly Native population. The main instrument at HAARP is a vertically directed, phased array RF transmitter which is primarily an ionospheric research tool, however, its geophysical research applications range from terrestrial to near-space. Research is conducted at HAARP in collaboration with scientists and institutions world-wide. The HAARP Education Outreach Program, run through the University of Alaska Geophysical Institute has been active for over six years and in that time has become an integral part of science education in the Copper Valley for residents of all ages. HAARP education outreach efforts are through direct involvement in local schools in the Copper River School District (CRSD) and the Prince William Sound Community College (PWSCC), as well as public lectures and workshops, and intern and student research programs. These outreach efforts require cooperation and coordination between the CRSD, PWSCC, the University of Alaska Fairbanks Physics Department and the NSF sponsored Alaska Native Science & Engineering Program (ANSEP) and HAARP researchers. The HAARP Outreach program also works with other organizations promoting science education in the region, such as the National Park Service (Wrangell- St. Elias National Park) and the Wrangell Institute for Science and Environment (WISE) a newly formed regional non-profit organization. We work closely with teachers in the schools, adapting to their needs and the particular scientific topic they are covering at the time. Because of time and logistic constraints, outreach visits to schools are episodic, occurring roughly

  13. High-Latitude Wintertime Urban Pollution: Particulate Matter Composition and Temporal Trends in Fairbanks, Alaska

    NASA Astrophysics Data System (ADS)

    Simpson, W. R.; Nattinger, K.; Hooper, M.

    2017-12-01

    High latitude cities often experience severe pollution episodes during wintertime exacerbated by thermal inversion trapping of pollutant emissions. Fairbanks, Alaska is an extreme example of this problem, currently being classified by the US Environmental Protection Agency (EPA) as a "serious" non-attainment area for fine particulate matter (PM2.5). For this reason, we have studied the chemical composition of PM2.5 at multiple EPA monitoring sites in the non-attainment area from 2006 to the present. The chemical composition is dominated by organic carbon with lesser amounts of black carbon and inorganic ionic species such as ammonium, sulfate, and nitrate. We find large spatial differences in composition and amount of PM2.5 that indicate a different mix of sources in residential areas as compared to the city center. Specifically, the difference in composition is consistent with increased wood smoke source in the residential areas. The extent to which organic matter could be secondary (formed through conversion of emitted gases) is also an area needing study. Ammonium sulfate is responsible for about a fifth to a quarter of the particles mass during the darkest months, possibly indicating a non-photochemical source of sulfate, but the chemical mechanism for this possible transformation is unclear. Therefore, we quantified the relationship between particulate sulfate concentrations and gas-phase sulfur dioxide concentrations along with particulate metals and inferred particulate acidity with the hopes that these data can assist in elucidation of the mechanism of particulate sulfate formation. We also analyze temporal trends in PM2.5 composition in an attempt to understand how the problem is changing over time and find most trends are small despite regulatory changes. Improving mechanistic understanding of particulate formation under cold and dark conditions could assist in reducing air-quality-related health effects.

  14. Stable Isotopic Constraints on the Geographic Sources of Marijuana in Alaska

    NASA Astrophysics Data System (ADS)

    Booth, A. L.; Wooller, M. J.; Haubenstock, N. A.; Howe, T. A.

    2007-12-01

    Marijuana in Alaska can have numerous sources. Confiscated plants are known to originate either from within the state (e.g., Fairbanks and the Matanuska-Susitna Valley) or from numerous areas outside the state (e.g., Latin America, Canada and the contiguous United States). Latin America reportedly supplies a large percentage of the marijuana currently distributed in the lower 48 states of the U.S.A. However, in more remote areas of the country such as Fairbanks, Alaska, the supply proportions from different geographic areas are not well known. This is due to an insufficient ability to trace source regions from which confiscated marijuana was originally grown. As such, we have analyzed multiple stable isotopes (C, N, O and H) preserved in marijuana samples to identify the likely geographic source from which the marijuana originated (Drug Enforcement Agency license # RW0324551). These samples were confiscated in Fairbanks, Alaska and supplied to us by the University of Alaska Fairbanks (UAF) Police Department. Among 36 marijuana plant samples, we found an unexpectedly large range in the stable carbon isotope compositions (‰13C = -62.2‰ to -24.4‰), with twelve of the 36 samples exhibiting exceedingly low δ13C (-36.1‰ to -62.2‰) relative to typical δ13C of other C3 plants. Interior growing conditions (e.g., hydroponics and/or greenhouses) and a variety of CO2 sources (e.g., CO2 from tanks and fermentation CO2 generators) frequently supplied to growing marijuana to improve yields may account for these exceptionally low δ13C values. Stable oxygen and hydrogen isotope compositions (δ18O and δD vs. V-SMOW) of the marijuana samples were found to range from 10.0‰ to 27.6‰ and -197.1‰ to -134.9‰ respectively. The large range of values suggests that the samples originated from multiple sources ranging from low to high latitudes. δ15N of the marijuana samples also exhibited a large range (-7.0‰ to 14.8‰). This project has implications for the

  15. Near-Simultaneous Measurement of Ground Level Carbon Dioxide and Methane Concentrations with an Open-Path Tunable Diode Laser Sensor at the Bonanza Creek Long Term Ecological Research site near Fairbanks, Alaska

    NASA Astrophysics Data System (ADS)

    Bailey, D. M.; Miller, J. H. H.

    2017-12-01

    Beyond anthropogenic carbon emissions, the increase in atmospheric carbon from natural feedbacks such as thawing permafrost poses a risk to the global climate as global temperatures continue to increase. Permafrost is formally defined as soil that is continuously frozen for 24 consecutive months. These soils comprise nearly twenty-five percent of the Earth's terrestrial surface and possess twice the amount of carbon currently in the atmosphere. Continuous collection of carbon dioxide (CO2) and methane (CH4) concentrations is imperative in understanding seasonal and inter-annual variability of carbon feedbacks above thawing permafrost. A multi-year collaborative effort with the University of Alaska - Fairbanks, NASA Goddard Space Flight Center, and our group at George Washington University is underway to monitor these feedbacks near Fairbanks, Alaska. In June 2017, we deployed two open-path tunable diode laser sensors at the Bonanza Long Term Ecological Research Site for measurement of CO2 and CH4 concentrations. The open-path instrument (OPI) is an inexpensive, low-power sensor that collects spatially-integrated measurements of target molecules approximately 1.5 meters above ground level. With a total power burden of 18 W, the sensors ran exclusively on solar power for 15 days in a young thermokarst bog and 3.5 days at a rich fen site. Here we report on initial retrieval of diurnal cycles from each field site and compare our spatially-integrated measurements of CO2 and CH4. For CO2, the magnitude of the diurnal cycles show a strong dependence on daily weather at both field sites. These laser measurements are complemented by point measurements of CO2, temperature, pressure, and humidity made along the laser's optical path by non-dispersive infrared (NDIR) sensors.

  16. Publications of the Volcano Hazards Program 2005

    USGS Publications Warehouse

    Nathenson, Manuel

    2007-01-01

    The Volcano Hazards Program of the U.S. Geological Survey (USGS) is part of the Geologic Hazards Assessments subactivity as funded by Congressional appropriation. Investigations are carried out in the Geology and Hydrology Disciplines of the USGS and with cooperators at the Alaska Division of Geological and Geophysical Surveys, University of Alaska Fairbanks Geophysical Institute, University of Hawaii Hilo, University of Utah, and University of Washington Geophysics Program. This report lists publications from all these institutions. This report contains only published papers and maps; numerous abstracts produced for presentations at scientific meetings have not been included. Publications are included based on date of publication with no attempt to assign them to Fiscal Year.

  17. Publications of the Volcano Hazards Program 2002

    USGS Publications Warehouse

    Nathenson, Manuel

    2004-01-01

    The Volcano Hazards Program of the U.S. Geological Survey (USGS) is part of the Geologic Hazards Assessments subactivity as funded by Congressional appropriation. Investigations are carried out in the Geology and Hydrology Disciplines of the USGS and with cooperators at the Alaska Division of Geological and Geophysical Surveys, University of Alaska Fairbanks Geophysical Institute, University of Hawaii Hilo, University of Utah, and University of Washington Geophysics Program. This report lists publications from all these institutions. This report contains only published papers and maps; numerous abstracts produced for presentations at scientific meetings have not been included. Publications are included based on date of publication with no attempt to assign them to Fiscal Year.

  18. Publications of the Volcano Hazards Program 2006

    USGS Publications Warehouse

    Nathenson, Manuel

    2008-01-01

    The Volcano Hazards Program of the U.S. Geological Survey (USGS) is part of the Geologic Hazards Assessments subactivity as funded by Congressional appropriation. Investigations are carried out in the Geology and Hydrology Disciplines of the USGS and with cooperators at the Alaska Division of Geological and Geophysical Surveys, University of Alaska Fairbanks Geophysical Institute, University of Hawaii Hilo, University of Utah, and University of Washington Geophysics Program. This report lists publications from all these institutions. This report contains only published papers and maps; numerous abstracts produced for presentations at scientific meetings have not been included. Publications are included based on date of publication with no attempt to assign them to Fiscal Year.

  19. Publications of the Volcano Hazards Program 2007

    USGS Publications Warehouse

    Nathenson, Manuel

    2009-01-01

    The Volcano Hazards Program of the U.S. Geological Survey (USGS) is part of the Geologic Hazards Assessments subactivity as funded by Congressional appropriation. Investigations are carried out in the Geology and Hydrology Disciplines of the USGS and with cooperators at the Alaska Division of Geological and Geophysical Surveys, University of Alaska Fairbanks Geophysical Institute, University of Hawaii Hilo, University of Utah, and University of Washington Geophysics Program. This report lists publications from all these institutions. This report contains only published papers and maps; numerous abstracts produced for presentations at scientific meetings have not been included. Publications are included based on date of publication with no attempt to assign them to Fiscal Year.

  20. Publications of the Volcano Hazards Program 2004

    USGS Publications Warehouse

    Nathenson, Manuel

    2006-01-01

    The Volcano Hazards Program of the U.S. Geological Survey (USGS) is part of the Geologic Hazards Assessments subactivity as funded by Congressional appropriation. Investigations are carried out in the Geology and Hydrology Disciplines of the USGS and with cooperators at the Alaska Division of Geological and Geophysical Surveys, University of Alaska Fairbanks Geophysical Institute, University of Hawaii Hilo, University of Utah, and University of Washington Geophysics Program. This report lists publications from all these institutions. This bibliographic report contains only published papers and maps; numerous abstracts produced for presentations at scientific meetings have not been included. Publications are included based on date of publication with no attempt to assign them to Fiscal Year.

  1. Publications of the Volcano Hazards Program 2001

    USGS Publications Warehouse

    Nathenson, Manuel

    2002-01-01

    The Volcano Hazards Program of the U.S. Geological Survey (USGS) is part of the Geologic Hazards Assessments subactivity as funded by Congressional appropriation. Investigations are carried out in the Geology and Hydrology Disciplines of the USGS and with cooperators at the Alaska Division of Geological and Geophysical Surveys, University of Alaska Fairbanks Geophysical Institute, University of Hawaii Hilo, University of Utah, and University of Washington Geophysics Program. This report lists publications from all these institutions. This report contains only published papers and maps; numerous abstracts produced for presentations at scientific meetings have not been included. Publications are included based on date of publication with no attempt to assign them to Fiscal Year.

  2. Publications of the Volcano Hazards Program 2008

    USGS Publications Warehouse

    Nathenson, Manuel

    2010-01-01

    The Volcano Hazards Program of the U.S. Geological Survey (USGS) is part of the Geologic Hazards Assessments subactivity as funded by Congressional appropriation. Investigations are carried out in the Geology and Hydrology Disciplines of the USGS and with cooperators at the Alaska Division of Geological and Geophysical Surveys, University of Alaska Fairbanks Geophysical Institute, University of Hawaii Manoa and Hilo, University of Utah, and University of Washington Geophysics Program. This report lists publications from all these institutions. This report contains only published papers and maps; numerous abstracts produced for presentations at scientific meetings have not been included. Publications are included based on date of publication with no attempt to assign them to Fiscal Year.

  3. Estimating consumer willingness to pay a price premium for Alaska secondary wood products.

    Treesearch

    Geoffrey H. Donovan; David L. Nicholls

    2003-01-01

    Dichotomous choice contingent valuation survey techniques were used to estimate mean willingness to pay (WTP) a price premium for made-in-Alaska secondary wood products. Respondents were asked to compare two superficially identical end tables, one made in China and one made in Alaska. The surveys were administered at home shows in Anchorage, Fairbanks, and Sitka in...

  4. Traditional Ecological Knowledge of Stem Concepts in Informal and Place-Based Western Educational Systems: Lessons from the North Slope, Alaska

    ERIC Educational Resources Information Center

    Nicholas-Figueroa, Linda

    2017-01-01

    Upon regaining the right to direct education at the local level, the North Slope Borough (NSB) of Alaska incorporated Inupiat educational philosophies into the educational system. The NSB in partnership with the University of Alaska Fairbanks established Ilisagvik College, the only tribal college in Alaska. Ilisagvik College seeks to broaden…

  5. Publications - RDF 2007-1 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    ://doi.org/10.14509/15759 Publication Products Report Report Information rdf2007_001.pdf (443.0 K) Digital Geospatial Data Digital Geospatial Data Fairbanks Mining District Geochemical Data Data File Format File Size

  6. How Winter Time Atmospheric Stability Influences PM2.5 Concentration in Different Complex Terrains; Beijing in China vs Fairbanks in Alaska

    NASA Astrophysics Data System (ADS)

    Karandana Gamalathge, T. D.; Green, M.

    2017-12-01

    Consequences of air pollution is known to majority of the global population. Small particles or aerosols play a significant role in global climate change, and increasing the number of people suffer from poor health. Specially during winter seasons, people live in valleys or close to mountains experience hazy conditions and severe health problems. As a result, aerosol related research works have gained more attention over the last couple of decades. We considered PM2.5-particulate matter less than 2.5 µm of aerodynamic diameter, to see how PM2.5 varies with different atmospheric conditions during winter seasons over two different regions of the world. We selected five winter seasons from November to February from 2011 to 2015 both in Beijing and in Fairbanks. Both locations can be considered as complex terrains, as those regions are surrounded by or close to mountains. Using University of Wyoming's sounding data, we calculated a parameter called Heat Deficit (HD). Higher HD is associated with less turbulence, thus high PM2.5 concentration. On the other hand, low HD is associated with high turbulence, thus low PM2.5 concentration. So, we considered HD as a measure of stability in the region of interest. Despite geographical differences, Fairbanks was covered by snow every day over the study period while Beijing had almost no snow cover. Analysis was done in two ways, with and without paying attention to precipitation. HD was also evaluated with different levels of PM2.5, set up to multiples of average PM2.5 concentration. This was done to check whether HD correlates well with a particular range of PM2.5. A day of precipitation for Fairbanks was considered to be when the daily snowfall >1 inch, while for Beijing when any type of daily precipitation >0.1 inch. Precipitation for Beijing was rare and only 9 days were met even with the 0.1 inch criteria while Fairbanks had 61 days of exceeding the 1 inch criteria. Results revealed that precipitation doesn't impact the

  7. Logistic Requirements and Capabilities for Response to Oil Pollution in Alaska

    DTIC Science & Technology

    1975-03-01

    C-118 (Liftmaster) • C-124 (Globemaster) • C-131 (Cargomaster) • C-130 ( Hercules ) • HH-3 helicopter I Air force planes are stationed at either...St. Marys S - S S - Red Devil S S S Pairbanks Fairbanks Hdqts. P p p p p Big Delta P s S s F Tanacross P p p s p Fort Yukon P p p s - Bettles ...Alaska (1) in 1970: Anchorage Aniak Annette Bethel Big Delta Cold Bay Bettles Cordova Fairbanks Farewell Fort Yukon Galena Gulkana Homer

  8. A multi-scale permafrost investigation along the Alaska Highway Corridor based on airborne electromagnetic and auxiliary geophysical data

    NASA Astrophysics Data System (ADS)

    Minsley, B. J.; Kass, M. A.; Bloss, B.; Pastick, N.; Panda, S. K.; Smith, B. D.; Abraham, J. D.; Burns, L. E.

    2012-12-01

    More than 8000 square kilometers of airborne electromagnetic (AEM) data were acquired along the Alaska Highway Corridor in 2005-2006 by the Alaska Department of Natural Resources Division of Geological and Geophysical Surveys. Because this large AEM dataset covers diverse geologic and permafrost settings, it is an excellent testbed for studying the electrical geophysical response from a wide range of subsurface conditions. These data have been used in several recent investigations of geology, permafrost, and infrastructure along the highway corridor. In this study, we build on existing interpretations of permafrost features by re-inverting the AEM data using traditional least squares inversion techniques as well as recently developed stochastic methods aimed at quantifying uncertainty in geophysical data. Ground-based geophysical measurements, including time-domain electromagnetic soundings, surface nuclear magnetic resonance soundings, and shallow frequency-domain electromagnetic profiles, have also been acquired to help validate and extend the AEM interpretations. Here, we focus on the integration of different types of data to yield an improved characterization of permafrost, including: methods to discriminate between geologic and thermal controls on resistivity; identifying relationships between shallow resistivity and active layer thickness by incorporating auxiliary remote sensing data and ground-based measurements; quantifying apparent slope-aspect-resistivity relationships, where south-facing slopes appear less resistive than north-facing slopes within similar geologic settings; and investigating an observed decrease in resistivity beneath several areas associated with recent fires.

  9. Increasing insect reactions in Alaska: is this related to changing climate?

    PubMed

    Demain, Jeffrey G; Gessner, Bradford D; McLaughlin, Joseph B; Sikes, Derek S; Foote, J Timothy

    2009-01-01

    In 2006, Fairbanks, AK, reported its first cases of fatal anaphylaxis as a result of Hymenoptera stings concurrent with an increase in insect reactions observed throughout the state. This study was designed to determine whether Alaska medical visits for insect reactions have increased. We conducted a retrospective review of three independent patient databases in Alaska to identify trends of patients seeking medical care for adverse reactions after insect-related events. For each database, an insect reaction was defined as a claim for the International Classification of Diseases, Ninth Edition (ICD-9), codes E9053, E906.4, and 989.5. Increases in insect reactions in each region were compared with temperature changes in the same region. Each database revealed a statistically significant trend in patients seeking care for insect reactions. Fairbanks Memorial Hospital Emergency Department reported a fourfold increase in patients in 2006 compared with previous years (1992-2005). The Allergy, Asthma, and Immunology Center of Alaska reported a threefold increase in patients from 1999 to 2002 to 2003 to 2007. A retrospective review of the Alaska Medicaid database from 1999 to 2006 showed increases in medical claims for insect reactions among all regions, with the largest percentage of increases occurring in the most northern areas. Increases in insect reactions in Alaska have occurred after increases in annual and winter temperatures, and these findings may be causally related.

  10. Alaska. Part I: Bibliographies, History and Natural Sciences.

    ERIC Educational Resources Information Center

    Hubbard, Terry E., Comp.

    The bibliographies in this series constitute a preliminary guide to the circulating and reference Alaskana collection of the Elmer E. Rasmuson library at the University of Alaska, Fairbanks. The material was selected using the triple criteria of information value, availability, and suitability for a small general interest collection. No childrens'…

  11. Sections | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    State Employees DGGS State of Alaska search Department of Natural Resources, Division of Geological & Communications Alaska Geologic Data Index (AGDI) Volcanology Alaska Volcano Observatory (AVO) Mineral Resources Alaska MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates Sponsors' Proposals STATEMAP

  12. Calculating Total Electron Content under the presence of the Aurora Borealis in Fairbanks, Alaska, and Kiruna, Sweden.

    NASA Astrophysics Data System (ADS)

    Ahmad, H.; Ehteshami, A.; Edgar, B.

    2015-12-01

    With the presence of the ionosphere and plasmasphere interacting with geomagnetic storms, scattering effects can be seen by the signals sent to and by GPS/GLONASS satellites. To quantify this dispersive effect, scientists look into what the culprit is that causes this signal bias on an atomic level. Results have shown that the concentration of oscillating electrons is directly proportional to the amount of bias the signal from a point on earth to a GPS satellite witnesses. This is called the Total Electron Content (TEC) of a specified path, measured in electrons per meters squared (. In this project, the process of collecting and analyzing TEC units was kept the same as the previous methods while keeping the cost below $3,000. Using a dual-frequency GNSS receiver from Javad, Triumph-2, the project team recorded a series of 24 hour interval data logs as the receiver stored incoming signals from any reachable satellite. Because of the dispersive media in the ionosphere, the signal witnesses a bend in its path causing a delay, called the Slant TEC (sTEC). Using libraries from GPStk and TEQC, we analyzed RINEX files to view the differential phase and differential pseudorange frequency to compute slant TEC units (sTECU). Using the obtained data, we analyzed the difference between the sTEC units collected in Houston, Texas to the ones collected in Fairbanks, Alaska. Afterwards, the project will continue on another balloon in Kiruna, Sweden at the Esrange Space Center. The receiver will be in flight this time on a 48 hour flight.

  13. Alaska Tidal Datum Portal | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Engineering Geology Alaska Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Portal Unambiguous vertical datums in the coastal environment are critical to the evaluation of natural human life, property, and the coastal environment. January 2017 - Update Summary Alaska Tidal Datum

  14. Satellite monitoring of remote volcanoes improves study efforts in Alaska

    NASA Astrophysics Data System (ADS)

    Dean, K.; Servilla, M.; Roach, A.; Foster, B.; Engle, K.

    Satellite monitoring of remote volcanoes is greatly benefitting the Alaska Volcano Observatory (AVO), and last year's eruption of the Okmok Volcano in the Aleutian Islands is a good case in point. The facility was able to issue and refine warnings of the eruption and related activity quickly, something that could not have been done using conventional seismic surveillance techniques, since seismometers have not been installed at these locations.AVO monitors about 100 active volcanoes in the North Pacific (NOPAC) region, but only a handful are observed by costly and logistically complex conventional means. The region is remote and vast, about 5000 × 2500 km, extending from Alaska west to the Kamchatka Peninsula in Russia (Figure 1). Warnings are transmitted to local communities and airlines that might be endangered by eruptions. More than 70,000 passenger and cargo flights fly over the region annually, and airborne volcanic ash is a threat to them. Many remote eruptions have been detected shortly after the initial magmatic activity using satellite data, and eruption clouds have been tracked across air traffic routes. Within minutes after eruptions are detected, information is relayed to government agencies, private companies, and the general public using telephone, fax, and e-mail. Monitoring of volcanoes using satellite image data involves direct reception, real-time monitoring, and data analysis. Two satellite data receiving stations, located at the Geophysical Institute, University of Alaska Fairbanks (UAF), are capable of receiving data from the advanced very high resolution radiometer (AVHRR) on National Oceanic and Atmospheric Administration (NOAA) polar orbiting satellites and from synthetic aperture radar (SAR) equipped satellites.

  15. BIOREMEDIATION FIELD EVALUATION: EIELSON AIR FORCE BASE, ALASKA (EPA/540/R-95/533)

    EPA Science Inventory

    This publication, one of a series presenting the findings of the Bioremediation Field Initiatives bioremediation field evaluations, provides a detailed summary of the evaluation conducted at the Eielson Air Force Base (AFB) Superfund site in Fairbanks, Alaska. At this site, the ...

  16. The Alaska Lake Ice and Snow Observatory Network (ALISON): Hands-on Experiential K- 12 Learning in the North

    NASA Astrophysics Data System (ADS)

    Morris, K.; Jeffries, M.

    2008-12-01

    The Alaska Lake Ice and Snow Observatory Network (ALISON) was initiated by Martin Jeffries (UAF polar scientist), Delena Norris-Tull (UAF education professor) and Ron Reihl (middle school science teacher, Fairbanks North Star Borough School District). The snow and ice measurement protocols were developed in 1999-2000 at the Poker Flat Research Range (PFRR) by Geophysical Institute, University of Alaska scientists and tested by home school teacher/students in winter 2001-2002 in Fairbanks, AK. The project was launched in 2002 with seven sites around the state (PFRR, Fairbanks, Barrow, Mystic Lake, Nome, Shageluk and Wasilla). The project reached its broadest distribution in 2005-2006 with 22 sites. The schools range from urban (Wasilla) to primarily Alaska native villages (Shageluk). They include public schools, charter schools, home schooled students and parents, informal educators and citizen scientists. The grade levels range from upper elementary to high school. Well over a thousand students have participated in ALISON since its inception. Equipment is provided to the observers at each site. Measurements include ice thickness (with a hot wire ice thickness gauge), snow depth and snow temperature (surface and base). Snow samples are taken and snow density derived. Snow variables are used to calculate the conductive heat flux through the ice and snow cover to the atmosphere. All data are available on the Web site. The students and teachers are scientific partners in the study of lake ice processes, contributing to new scientific knowledge and understanding while also learning science by doing science with familiar and abundant materials. Each autumn, scientists visit each location to work with the teachers and students, helping them to set up the study site, showing them how to make the measurements and enter the data into the computer, and discussing snow, ice and polar environmental change. A number of 'veteran' teachers are now setting up the study sites on

  17. Publications - GMC 171 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Arco Alaska Inc. Delta State #2 well Authors: Pawlewicz, Mark Publication Date: 1990 Publisher: Alaska , Vitrinite reflectance data of cuttings (3270'-10760') from the Arco Alaska Inc. Delta State #2 well: Alaska

  18. Late Holocene ice wedges near Fairbanks, Alaska, USA: Environmental setting and history of growth

    USGS Publications Warehouse

    Hamilton, T.D.; Ager, T.A.; Robinson, S.W.

    1983-01-01

    Test trenches excavated into muskeg near Fairbanks in 1969 exposed a polygonal network of active ice wedges. The wedges occur in peat that has accumulated since about 3500 yr BP and have grown episodically as the permafrost table fluctuated in response to fires, other local site conditions and perhaps regional climatic changes. Radiocarbon dates suggest one or two episodes of ice-wedge growth between about 3500 and 2000 yr BP as woody peat accumulated at the site. Subsequent wedge truncation evidently followed a fire that charred the peat. Younger peat exhibits facies changes between sedge-rich components that filled troughs over the ice wedges and woody bryophytic deposits that formed beyond the troughs. A final episode of wedge development took place within the past few hundred years. Pollen data from the site indicate that boreal forest was present throughout the past 6000 yr, but that it underwent a gradual transition from a predominantly deciduous to a spruce-dominated assemblage. This change may reflect either local site conditions or a more general climatic shift to cooler, moister summers in late Holocene time. The history of ice-wedge growth shows that wedges can form and grow to more than 1 m apparent width under mean annual temperatures that probably are close to those of the Fairbanks area today (-3.5°C) and under vegetation cover similar to that of the interior Alaskan boreal forest. The commonly held belief that ice wedges develop only below mean annual air temperatures of -6 to -8°C in the zone of continuous permafrost is invalid.

  19. 2013 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Dixon, James P.; Cameron, Cheryl; McGimsey, Robert G.; Neal, Christina A.; Waythomas, Chris

    2015-08-14

    The Alaska Volcano Observatory (AVO) responded to eruptions, volcanic unrest or suspected unrest, and seismic events at 18 volcanic centers in Alaska during 2013. Beginning with the 2013 AVO Summary of Events, the annual description of the AVO seismograph network and activity, once a stand-alone publication, is now part of this report. Because of this change, the annual summary now contains an expanded description of seismic activity at Alaskan volcanoes. Eruptions occurred at three volcanic centers in 2013: Pavlof Volcano in May and June, Mount Veniaminof Volcano in June through December, and Cleveland Volcano throughout the year. None of these three eruptive events resulted in 24-hour staffing at AVO facilities in Anchorage or Fairbanks.

  20. Publications - MP 156 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska /29446 Publication Products Report Report Information mp156.pdf (126.0 K) Digital Geospatial Data Digital State of Alaska © 2010 Webmaster State of Alaska myAlaska My Government Resident Business in Alaska

  1. Earthquake Hazard and Risk in Alaska

    NASA Astrophysics Data System (ADS)

    Black Porto, N.; Nyst, M.

    2014-12-01

    Alaska is one of the most seismically active and tectonically diverse regions in the United States. To examine risk, we have updated the seismic hazard model in Alaska. The current RMS Alaska hazard model is based on the 2007 probabilistic seismic hazard maps for Alaska (Wesson et al., 2007; Boyd et al., 2007). The 2015 RMS model will update several key source parameters, including: extending the earthquake catalog, implementing a new set of crustal faults, updating the subduction zone geometry and reoccurrence rate. First, we extend the earthquake catalog to 2013; decluster the catalog, and compute new background rates. We then create a crustal fault model, based on the Alaska 2012 fault and fold database. This new model increased the number of crustal faults from ten in 2007, to 91 faults in the 2015 model. This includes the addition of: the western Denali, Cook Inlet folds near Anchorage, and thrust faults near Fairbanks. Previously the subduction zone was modeled at a uniform depth. In this update, we model the intraslab as a series of deep stepping events. We also use the best available data, such as Slab 1.0, to update the geometry of the subduction zone. The city of Anchorage represents 80% of the risk exposure in Alaska. In the 2007 model, the hazard in Alaska was dominated by the frequent rate of magnitude 7 to 8 events (Gutenberg-Richter distribution), and large magnitude 8+ events had a low reoccurrence rate (Characteristic) and therefore didn't contribute as highly to the overall risk. We will review these reoccurrence rates, and will present the results and impact to Anchorage. We will compare our hazard update to the 2007 USGS hazard map, and discuss the changes and drivers for these changes. Finally, we will examine the impact model changes have on Alaska earthquake risk. Consider risk metrics include average annual loss, an annualized expected loss level used by insurers to determine the costs of earthquake insurance (and premium levels), and the

  2. Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Publications Search Statewide Maps New Releases Sales Interactive Maps Databases Sections Geologic hazards to buildings, roads, bridges, and other installations and structures (AS 41.08.020). Headlines New release! Active faults and seismic hazards in Alaska - MP 160 New release! The Alaska Volcano Observatory

  3. 7. Contextual view of Fairbanks Company, looking north along Division ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Contextual view of Fairbanks Company, looking north along Division Street, showing relationship of factory to surrounding buildings and railroad - Fairbanks Company, 202 Division Street, Rome, Floyd County, GA

  4. Publications - GMC 222 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a BP Exploration (Alaska) Inc. Malguk #1 well Authors: Unknown Publication Date: 1994 Publisher: Alaska reflectance data from cuttings (440-11,375') of the BP Exploration (Alaska) Inc. Malguk #1 well: Alaska

  5. Publications - MP 150 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska larger work. Please see DDS 3 for more information. Digital Geospatial Data Digital Geospatial Data Business in Alaska Visiting Alaska State Employees

  6. Publications - RI 2011-4 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska district, Circle Quadrangle, Alaska, scale 1:50,000 (16.0 M) Digital Geospatial Data Digital Geospatial Business in Alaska Visiting Alaska State Employees

  7. Publications - GMC 167 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a Arco Alaska W. Mikkelsen Unit #2 well Authors: Pawlewicz, Mark Publication Date: 1990 Publisher: Alaska , Vitrinite reflectance data of cuttings (6160'-11030') from the Arco Alaska W. Mikkelsen Unit #2 well: Alaska

  8. Publications - GMC 257 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a ARCO Alaska Inc. Colville River #1 well Authors: Unknown Publication Date: 1995 Publisher: Alaska reflectance data from cuttings (1,470-7,300') of the ARCO Alaska Inc. Colville River #1 well: Alaska Division

  9. Publications - GMC 258 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a ARCO Alaska Inc. Kuukpik #3 well Authors: Unknown Publication Date: 1995 Publisher: Alaska Division of from cuttings (3,220-6,570') of the ARCO Alaska Inc. Kuukpik #3 well: Alaska Division of Geological

  10. Publications - RI 2009-3 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska , northeastern Brooks Range, Alaska, scale 1:63,360 (129.0 M) Digital Geospatial Data Digital Geospatial Data Resident Business in Alaska Visiting Alaska State Employees

  11. Publications - GMC 254 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a ARCO Alaska Inc. Cirque #2 well Authors: Unknown Publication Date: 1995 Publisher: Alaska Division of from cuttings (2,200-7,660') of the ARCO Alaska Inc. Cirque #2 well: Alaska Division of Geological &

  12. Publications - GMC 272 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a ') from the ARCO Alaska Inc. Till #1 well Authors: Unknown Publication Date: 1996 Publisher: Alaska reflectance maceral data of cuttings (3,100-6,975') from the ARCO Alaska Inc. Till #1 well: Alaska Division of

  13. Publications - GMC 255 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a ARCO Alaska Inc. Rock Flour #1 well Authors: Unknown Publication Date: 1995 Publisher: Alaska Division reflectance data from cuttings (1,600-7,170') of the ARCO Alaska Inc. Rock Flour #1 well: Alaska Division of

  14. Publications - GMC 238 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a ARCO Alaska Inc. Fiord #1 well Authors: Unknown Publication Date: 1994 Publisher: Alaska Division of from cuttings (1,250-10,250') of the ARCO Alaska Inc. Fiord #1 well: Alaska Division of Geological &

  15. Publications - GMC 388 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 388 Publication Details Title: Core photographs of the Cominco DDH-1 through DDH-4 boreholes the Cominco DDH-1 through DDH-4 boreholes, NAP Cu-Zn Prospect, Dillingham Quadrangle, Alaska: Alaska Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska

  16. Publications - GMC 336 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Oil Company OCS Y-0197-1 (Tern Island #3) at the Alaska GMC Authors: Shell Oil Company, and Alaska information. Quadrangle(s): Alaska Statewide Bibliographic Reference Shell Oil Company, and Alaska Geological Materials Center, 2006, Core Photographs (12915'-13361.5') dated June 2003 of the Shell Oil Company OCS Y

  17. Publications - GMC 16 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska Geologic Data Index (AGDI) Volcanology Alaska Volcano Observatory (AVO) Mineral Resources Alaska's Mineral and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a

  18. Publications - GMC 417 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    the Sun Prospect, Ambler Mining District, Survey Pass Quadrangle, Alaska Authors: ALS Minerals Sun Prospect, Ambler Mining District, Survey Pass Quadrangle, Alaska: Alaska Division of Geological

  19. Publications - SR 32 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS SR 32 Publication Details Title: Oil and gas basins map of Alaska Authors: Ehm, Arlen Publication ): Alaska Statewide Bibliographic Reference Ehm, Arlen, 1983, Oil and gas basins map of Alaska: Alaska Sheets Sheet 1 Oil and gas basins map of Alaska, scale 1:2,500,000 (21.0 M) Keywords Alaska Statewide

  20. Publications - DDS 7 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in Alaska DGGS DDS 7 Publication Details Title: Alaska Coastal Profile Tool (ACPT) Authors: DGGS Staff ): Alaska Statewide Bibliographic Reference DGGS Staff, 2014, Alaska Coastal Profile Tool (ACPT): Alaska

  1. Photovoltaic energy system at an Alaskan site. Research report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, D.K.; Briggs, R.W.

    1991-01-01

    The study presented herein provides information gathered over several years on the availability of solar energy and its utilization by a photovoltaic (PV) system installed near Fairbanks (65 N latitude) to demonstrate its feasibility. The study addresses both theoretical and experimental investigations on the potential of solar energy for interior Alaska. Three theoretical approaches are described for calculation solar radiation using American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE), Liu-Jordan, and Collares-Pereira and Rabl models. Computer programs for these theories have been included in the Appendix of the report. The actual test setup of a PV system withmore » all its auxiliary components installed in Haystack (near Fairbanks) and the electrical loads run by it have been described in detail. Four and one-half years of solar radiation measurements and operational experience with the system are documented. Finally, comparisons are made between the measured solar radiation with previous measurements done at the Geophysical Institute of the University of Alaska Fairbanks, and the calculated values from the three models cited earlier. The information from the study should be useful to interested users in interior Alaska and perhaps to other countries of the world located in similar northern latitudes.« less

  2. Publications - GMC 138 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    . OCS Y-0211-1 (Yakutat #1) well Authors: Unknown Publication Date: 1989 Publisher: Alaska Division of of cuttings from the Arco Alaska Inc. OCS Y-0211-1 (Yakutat #1) well: Alaska Division of Geological

  3. Implications of research on lodgepole pine introduction in interior Alaska.

    Treesearch

    John N. Alden

    1988-01-01

    Growth, winter injury, and mortality were evaluated for 12-year-old trees of 11 subarctic lodgepole pine provenances and a jack pine provenance at Fairbanks, Alaska. Provenances from northeast British Columbia grew more than 0.003 cubic meter of wood per tree annually from 9 to 12 years after outplanting. The species sustained snow damage and winter injury, however,...

  4. Delivering a lab experience to students in remote road-less locations in Alaska

    NASA Astrophysics Data System (ADS)

    Spencer, Vanessa; Solie, Daniel

    2010-02-01

    Bush Physics is a pilot physics course offered by the University of Alaska, Fairbanks. Taught both as a distance delivery course for rural students and as a traditional course to students in Fairbanks, it is designed to prepare rural (predominantly Alaska Native) students for success in STEM programs. While the lecture portion is successfully distance-delivered using teleconference, delivering the laboratory portion effectively has been more challenging. Bush Physics has been taught twice previously to a total of 24 students who otherwise would not have had access to physics instruction. Methods utilized to help distance education students complete the laboratory credit include mailing equipment kits, emailing pictures and video descriptions, travel to certain villages to do experiments during weekends and utilizing on-site mentors. Past results and feedback have improved the laboratory section for spring 2010. We plan to use testing and student surveys to begin to quantify improvement in student mathematical ability and reasoning. )

  5. MAPTEACH | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Alaska's Cultural Heritage) is a hands-on education program for middle and high school students in Alaska computer-based maps of scientific, cultural and personal significance. The project emphasizes the

  6. 6. Contextual view of Fairbanks Company, looking south along Division ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Contextual view of Fairbanks Company, looking south along Division Street, showing relationship of factory to surrounding area, 213, 215, & 217 Division Street appear on right side of street - Fairbanks Company, 202 Division Street, Rome, Floyd County, GA

  7. Publications - GMC 246 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    -13,652') and from core (12,310-12,332') of the Exxon Corporation Alaska State J #1 well Authors: Unknown (12,310-12,332') of the Exxon Corporation Alaska State J #1 well: Alaska Division of Geological &

  8. Publications - GMC 266 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    ') and of core (7,769-7,788') from the Arco Alaska Inc. OCS Y-0747-1 (Cabot #1) well Authors: Unknown -7,788') from the Arco Alaska Inc. OCS Y-0747-1 (Cabot #1) well: Alaska Division of Geological &

  9. Publications - RI 2015-7 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska content DGGS RI 2015-7 Publication Details Title: Surficial geology of the Tyonek area, south-central of the Tyonek area, south-central Tyonek Quadrangle, Alaska: Alaska Division of Geological &

  10. Publications - GMC 178 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    samples from the following 5 wells on the North Slope of Alaska: Lisburne Test Well #1, Seabee Test Well the following 5 wells on the North Slope of Alaska: Lisburne Test Well #1, Seabee Test Well #1, Alaska

  11. Presentations - Wypych, Alicja and others, 2015 | Alaska Division of

    Science.gov Websites

    Geological & Geophysical Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of (AVO) Mineral Resources Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem

  12. Environmental Impact Statement for the Modernization and Enhancement of Ranges, Airspace, and Training Areas in the Joint Pacific Alaska Range Complex in Alaska. Volume 2 - Appendices A through L

    DTIC Science & Technology

    2013-06-01

    enhanC;enwnlswonld ~nahle reoJ istk. jolll l training artd ta.~ti 1g to sup pori omergi ng tedwolo~ttt.», respond lo recent balllefiold...The military uses the JPARC to conduct testing and training and lo support joint exercises and mission rehearsals. The JPARC was originally developed...68th Ave. and Elmore Rd.) 4477 Pike’s Landing.Road Anchorage, Alaska 99507-2599 Fairbanks, Alaska 99709 I 0 a.m. to noon and I :00 lo 5:00p.m. I 0

  13. Vegetation and paleoclimate of the last interglacial period, central Alaska

    USGS Publications Warehouse

    Muhs, D.R.; Ager, T.A.; Beget, J.E.

    2001-01-01

    The last interglacial period is thought to be the last time global climate was significantly warmer than present. New stratigraphic studies at Eva Creek, near Fairbanks, Alaska indicate a complex last interglacial record wherein periods of loess deposition alternated with periods of soil formation. The Eva Forest Bed appears to have formed about the time of or after deposition of the Old Crow tephra (dated to ??? 160 to ??? 120 ka), and is therefore correlated with the last interglacial period. Pollen, macrofossils, and soils from the Eva Forest Bed indicate that boreal forest was the dominant vegetation and precipitation may have been greater than present around Fairbanks during the peak of the last interglacial period. A new compilation of last interglacial localities indicates that boreal forest was extensive over interior Alaska and Yukon Territory. Boreal forest also extended beyond its present range onto the Seward and Baldwin Peninsulas, and probably migrated to higher elevations, now occupied by tundra, in the interior. Comparison of last interglacial pollen and macrofossil data with atmospheric general circulation model results shows both agreement and disagreement. Model results of warmer-than-present summers are in agreement with fossil data. However, numerous localities with boreal forest records are in conflict with model reconstructions of an extensive cool steppe in interior Alaska and much of Yukon Territory during the last interglacial. ?? 2000 Elsevier Science Ltd.

  14. Gas Hydrates | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    R&D Program USGS Energy Resources Program Industry and professional associations AAPG - Energy Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska collaboratively with federal, university, and industry researchers to assess Alaska's gas hydrate resource

  15. Publications - GMC 162 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a Unit Zappa #1 well Authors: Unknown Publication Date: 1990 Publisher: Alaska Division of Geological the Alaska Consolidated Oil Iniskin Unit Zappa #1 well: Alaska Division of Geological &

  16. Publications - GMC 376 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska DGGS GMC 376 Publication Details Title: NWE Drill Logs for the Orange Hill Property, Nabesna Quadrangle , Alaska: 1973 and 1974 Drill holes No. 112 through No. 123 Authors: Northwest Explorations Publication

  17. Publications - GMC 389 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska DGGS GMC 389 Publication Details Title: Core photographs, assay results, and 1988 drill logs from the Cominco DDH-1 through DDH-4 boreholes, Shadow Prospect, Tyonek Quadrangle, Alaska Authors: Millrock

  18. Publications - PIR 2008-1 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    investigations in the Brooks Range Foothills and North Slope, Alaska: Alaska Division of Geological & interpretations of the Nanushuk Formation exposed along the Colville River near the confluences with the Awuna and Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska

  19. Publications - GMC 390 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska DGGS GMC 390 Publication Details Title: Drill logs (1987) from the Cominco Upper Discovery DDH-1 and Lower Discovery DDH-1 through DDH-5 boreholes, Mt. Estelle Prospect, Tyonek Quadrangle, Alaska Authors

  20. Dispersal of white spruce seed on Willow Island in interior Alaska.

    Treesearch

    Andrew Youngblood; Timothy A. Max

    1992-01-01

    The seasonal and spatial patterns of dispersal of white spruce (Picea glauca (Moench) Voss) seed were studied from 1986 to 1989 in floodplain stands along the Tanana River near Fairbanks, Alaska. Analysis of the 1987 crop showed that production of filled seed was strongly related to estimated production of total seed and unrelated to selected stand...

  1. Timber resource statistics for the Tanana inventory unit, Alaska, 1971-75.

    Treesearch

    Willem W.S. Van Hees

    1984-01-01

    Statistics on forest area, total gross and net timber volumes, and annual net growth and mortality are presented for the 1971-75 timber inventory of the Tanana unit, Alaska. This report summarizes statistics previously published for the four inventory blocks of the unit: Fairbanks, Kantishna, Upper Tanana, and Wood-Salcha. Timberland area is estimated at 2.19 million...

  2. Lessons Taught, Lessons Learned. Teachers' Reflections on Schooling in Rural Alaska.

    ERIC Educational Resources Information Center

    Barnhardt, Ray, Ed.; Tonsmeire, J. Kelly, Ed.

    This collection contains 15 essays by teachers who participated in the First Annual Rural Alaska Instructional Improvement Academy in Fairbanks in May 1987. The essays were written as a follow-up to the academy, based on the teachers' reflections on their own experiences in rural schools as well as on the academy workshops they attended and on the…

  3. Presentations - Twelker, Evan and others, 2014 | Alaska Division of

    Science.gov Websites

    magmatic Ni-Cu-Co-PGE system in the Talkeetna Mountains, central Alaska (poster): Society of Economic Geological & Geophysical Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of

  4. Publications - DDS 8 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS DDS 8 Publication Details Title: Alaska Volcano Observatory geochemical database Authors: Cameron ., Snedigar, S.F., and Nye, C.J., 2014, Alaska Volcano Observatory geochemical database: Alaska Division of ://doi.org/10.14509/29120 Publication Products Interactive Interactive Database Alaska Volcano Observatory

  5. Publications - GMC 232 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska DGGS GMC 232 Publication Details Title: Petrographic analysis and formation damage potential of core Reference Hickey, J.J., 1994, Petrographic analysis and formation damage potential of core plugs (12,017

  6. Publications - GMC 413 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Spectrometer) data of Triassic and Carboniferous outcrop samples from the Karen Creek, Ivishak, and Nuka Resolution ICP Mass Spectrometer) data of Triassic and Carboniferous outcrop samples from the Karen Creek

  7. Publications - GMC 351 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 351 Publication Details Title: Geochemical analysis of Alaska North Slope NPR-A oil samples at Reservoir, and North Slope Borough US Navy South Barrow #12 - Sag River Reservoir Authors: Organic analysis of Alaska North Slope NPR-A oil samples at the Alaska GMC from: Umiat (generic) Nanushuk Reservoir

  8. Publications - GMC 139 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a . OCS Y-0113-1 (Ibis #1) well Authors: Unknown Publication Date: 1989 Publisher: Alaska Division of of cuttings from the Arco Alaska Inc. OCS Y-0113-1 (Ibis #1) well: Alaska Division of Geological &

  9. Preliminary investigation of gold mineralization in the Pedro Dome-Cleary Summit area, Fairbanks district, Alaska

    USGS Publications Warehouse

    Pilkington, H.D.; Forbes, R.B.; Hawkins, D.B.; Chapman, R.M.; Swainbank, R.C.

    1969-01-01

    Anomalous gold values in mineralized veins and hydrothermally altered quartz-mica schist in the Pedro Dome-Cleary Summit area of the Fairbanks district suggest the presence of numerous small low- to high-grade lodes. Anomalous concentrations of gold were found to exist in the wall rocks adjacent to mineralized veins. In general, the gold concentration gradients in these wall rocks are much too steep to increase appreciably the mineable width of the veins. Anomalous gold values were also detected in bedrock samples taken by means of a power auger on the Murphy Dome Road along the southwest extension of the Pedro Dome-Cleary Summit mineralized belt.

  10. Publications - PIR 2003-1 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    , Alluvial facies and paleosols in the Cretaceous Nanushuk formation, Kanayut River, North Slope, Alaska Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska content DGGS PIR 2003-1 Publication Details Title: Alluvial facies and paleosols in the Cretaceous

  11. Publications - GMC 93 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a Alaska Inc. ARCO/Ciri Funny River #1 well Authors: Makada, R. Publication Date: 1988 Publisher: Alaska , Vitrinite reflectance data of ditch cuttings from the ARCO Alaska Inc. ARCO/Ciri Funny River #1 well: Alaska

  12. Presentations - Twelker, Evan and Lande, Lauren, 2015 | Alaska Division of

    Science.gov Websites

    Geological & Geophysical Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of (AVO) Mineral Resources Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem

  13. Publications - GMC 430 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    : Formation hardness of Hemlock Formation cores after immersion in water and oil based fracturing fluids; and mechanics: Formation hardness of Hemlock Formation cores after immersion in water and oil based fracturing Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska

  14. Publications - GMC 303 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 303 Publication Details Title: The facies of the Ivishak Formation from conventional core , The facies of the Ivishak Formation from conventional core descriptions, electric logs, and Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska

  15. Publications - GMC 273 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    holes received at the GMC (1 box, holes N1 through N8) of the INEXCO Mining Company Nikolai Project , holes N1 through N8) of the INEXCO Mining Company Nikolai Project, McCarthy, Alaska that consist of core Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska

  16. Staff - Evan Twelker | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    : Senior Geologist, Northern Associates. Livengood intrusion-related gold project, Interior Alaska 2005 , Geologic mapping in the Richardson-Uncle Sam area, interior Alaska (presentation): Alaska Miners

  17. About Us - Employment | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska researching Alaska's geology and implementing technological tools to efficiently collect, interpret, publish

  18. Publications - GMC 47 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    , Alaska Peninsula, Alaska Authors: Shell Oil Company Publication Date: 1982 Publisher: Alaska Division of publication sales page for more information. Bibliographic Reference Shell Oil Company, 1982

  19. Publications - PIR 2009-7 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska content DGGS PIR 2009-7 Publication Details Title: Geologic map of the Kanayut River area, Chandler Lake ., and Burns, P.C., 2009, Geologic map of the Kanayut River area, Chandler Lake Quadrangle, Alaska

  20. Summary of climatic data for the Bonanza Creek Experimental Forest, interior Alaska.

    Treesearch

    Richard J. Barney; Erwin R. Berglund

    1973-01-01

    A summary of climatic data during the 1968-71 growing seasons is presented for the subarctic Bonanza Creek Experimental Forest located near Fairbanks, Alaska. Data were obtained from three weather station sites at elevations of 1,650, 1,150, and 550 feet from May until September each year. Data are for relative humidity, rainfall, and maximum, minimum, and mean...

  1. Publications - AR 1981-82 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Oversized Sheets Plate 1 Significant mineral deposits and prospects in Alaska (9.7 M) Plate 2 Major active claim blocks and development projects in Alaska, scale 1:2,500,000 (22.0 M) Plate 3 Mining claim recording districts of Alaska, scale 1:500,000 (6.9 M) Plate 4 Peat resource map of Alaska, scale 1

  2. Automated system for smoke dispersion prediction due to wild fires in Alaska

    NASA Astrophysics Data System (ADS)

    Kulchitsky, A.; Stuefer, M.; Higbie, L.; Newby, G.

    2007-12-01

    Community climate models have enabled development of specific environmental forecast systems. The University of Alaska (UAF) smoke group was created to adapt a smoke forecast system to the Alaska region. The US Forest Service (USFS) Missoula Fire Science Lab had developed a smoke forecast system based on the Weather Research and Forecasting (WRF) Model including chemistry (WRF/Chem). Following the successful experience of USFS, which runs their model operationally for the contiguous U.S., we develop a similar system for Alaska in collaboration with scientists from the USFS Missoula Fire Science Lab. Wildfires are a significant source of air pollution in Alaska because the climate and vegetation favor annual summer fires that burn huge areas. Extreme cases occurred in 2004, when an area larger than Maryland (more than 25000~km2) burned. Small smoke particles with a diameter less than 10~μm can penetrate deep into lungs causing health problems. Smoke also creates a severe restriction to air transport and has tremendous economical effect. The smoke dispersion and forecast system for Alaska was developed at the Geophysical Institute (GI) and the Arctic Region Supercomputing Center (ARSC), both at University of Alaska Fairbanks (UAF). They will help the public and plan activities a few days in advance to avoid dangerous smoke exposure. The availability of modern high performance supercomputers at ARSC allows us to create and run high-resolution, WRF-based smoke dispersion forecast for the entire State of Alaska. The core of the system is a Python program that manages the independent pieces. Our adapted Alaska system performs the following steps \\begin{itemize} Calculate the medium-resolution weather forecast using WRF/Met. Adapt the near real-time satellite-derived wildfire location and extent data that are received via direct broadcast from UAF's "Geographic Information Network of Alaska" (GINA) Calculate fuel moisture using WRF forecasts and National Fire Danger

  3. Publications - RDF 2015-14 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    content DGGS RDF 2015-14 Publication Details Title: Jumbo Dome, interior Alaska: Whole-rock, major- and , 2015, Jumbo Dome, interior Alaska: Whole-rock, major- and trace-element analyses: Alaska Division of

  4. Publications - GMC 84 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    - 11,230' for the Alaska Consolidated Oil Iniskin Unit Zappa #1 well Authors: Bujak Davies Group ' for the Alaska Consolidated Oil Iniskin Unit Zappa #1 well: Alaska Division of Geological &

  5. Resistance and resilience of floating mat fens in interior Alaska following airboat disturbance

    Treesearch

    Amy Zacheis; Kate Doran

    2009-01-01

    The floating mat fens of the Tanana Flats in interior Alaska are productive wetlands near the urban center of Fairbanks. Airboat traffic has created a network of trails through the floating vegetation mats. We established protected areas along established trails, which allowed for measurement of plant community resistance to airboat traffic and resilience following...

  6. Regeneration alternatives for upland white spruce after buring and logging in interior Alaska

    Treesearch

    R. V. Densmore; G. P. Juday; John C. Zasada

    1999-01-01

    Site-preparation and regeneration methods for white spruce (Picea glaucu (Meench) Voss) were tested near Fairbanks Alaska, on two upland sites which had been burned in a wildfire and salvage logged. After 5 and 10 years, white spruce regeneration did not differ among the four scarification methods but tended to be lower without scarification....

  7. Publications - SR 64 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    , L.A., and Hughes, R.A. Publication Date: Dec 2010 Publisher: Alaska Division of Geological & ., Harbo, L.A., and Hughes, R.A., 2010, Alaska's mineral industry 2009: Alaska Division of Geological &

  8. Publications - IC 42 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS IC 42 Publication Details Title: Alaska's mineral industry 1996: A summary Authors: Swainbank, R.C ., Bundtzen, T.K., Clough, A.H., and Henning, M.W., 1997, Alaska's mineral industry 1996: A summary: Alaska

  9. Publications - PDF 91-6 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    content DGGS PDF 91-6 Publication Details Title: Summary of Alaska's mineral industry for 1990 Authors ., Bundtzen, T.K., and Wood, J.E., 1991, Summary of Alaska's mineral industry for 1990: Alaska Division of

  10. Nesting biology of Lesser Canada Geese, Branta canadensis parvipes, along the Tanana River, Alaska

    Treesearch

    Craig R. Ely; John M. Pearce; Roger W. Ruess

    2008-01-01

    Lesser Canada Geese (Brania canadensis parvipes) are widespread throughout interior regions of Alaska and Canada, yet there have been no published studies documenting basic aspects of their nesting biology. We conducted a study to determine reproductive parameters of Lesser Canada Geese nesting along the Tanana River near the city of Fairbanks, in...

  11. Publications - PIR 2008-1A | Alaska Division of Geological & Geophysical

    Science.gov Websites

    of recent geologic field investigations in the Brooks Range Foothills and North Slope, Alaska: Alaska Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska ; Tectonics; Thermal History; Thrust; Toolik River; Torok Formation; Turbidites; Turonian; Valanginian Top of

  12. Staff - David L. LePain | Alaska Division of Geological & Geophysical

    Science.gov Websites

    geothermal energy sources for local use in Alaska: Summary of available information: Alaska Division of fuel and geothermal energy sources for local use in Alaska: Summary of available information: Alaska , J.G., Fossil fuel and geothermal energy sources for local use in Alaska: Summary of available

  13. Publications - GMC 237 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    ARCO Alaska Inc. Sunfish #1 well Authors: Unknown Publication Date: 1994 Publisher: Alaska Division of publication sales page for more information. Bibliographic Reference Unknown, 1994, Vitrinite reflectance data

  14. Publications - PIR 2008-1C | Alaska Division of Geological & Geophysical

    Science.gov Websites

    investigations in the Brooks Range Foothills and North Slope, Alaska: Alaska Division of Geological & Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska content DGGS PIR 2008-1C Publication Details Title: Evaluation of stratigraphic continuity between the

  15. Publications - GMC 244 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Ridge Unit #1 well Authors: DGSI, Inc. Publication Date: 1995 Publisher: Alaska Division of Geological Union Oil Company of California Trail Ridge Unit #1 well: Alaska Division of Geological &

  16. Publications - GMC 372 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 372 Publication Details Title: 1928 Alaska Nebesna Corporation drill logs and assay records Nebesna Corporation drill logs and assay records for the Orange Hill Property, Nabesna Quadrangle, Alaska

  17. Robotic weather balloon launchers spread in Alaska

    NASA Astrophysics Data System (ADS)

    Rosen, Julia

    2018-04-01

    Last week, things began stirring inside the truck-size box that sat among melting piles of snow at the airport in Fairbanks, Alaska. Before long, the roof of the box yawned open and a weather balloon took off into the sunny afternoon, instruments dangling. The entire launch was triggered with the touch of a button, 5 kilometers away at an office of the National Weather Service (NWS). The flight was smooth, just one of hundreds of twice-daily balloon launches around the world that radio back crucial data for weather forecasts. But most of those balloons are launched by people; the robotic launchers, which are rolling out across Alaska, are proving to be controversial. NWS says the autolaunchers will save money and free up staff to work on more pressing matters. But representatives of the employee union question their reliability, and say they will hasten the end of Alaska's remote weather offices, where forecasting duties and hours have already been slashed.

  18. Publications - PIR 2015-5-8 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    lower sandstone member of the Upper Jurassic Naknek Formation, northern Chinitna Bay, Alaska, in Wartes member of the Upper Jurassic Naknek Formation, northern Chinitna Bay, Alaska Authors: Wartes, M.A Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska

  19. Publications - PIR 2015-5-4 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    facies analysis of the Lower Jurassic Talkeetna Formation, north Chinitna Bay, Alaska, in Wartes, M.A of the Lower Jurassic Talkeetna Formation, north Chinitna Bay, Alaska Authors: Bull, K.F. Publication Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska

  20. Alaska shorefast ice: Interfacing geophysics with local sea ice knowledge and use

    NASA Astrophysics Data System (ADS)

    Druckenmiller, Matthew L.

    This thesis interfaces geophysical techniques with local and traditional knowledge (LTK) of indigenous ice experts to track and evaluate coastal sea ice conditions over annual and inter-annual timescales. A novel approach is presented for consulting LTK alongside a systematic study of where, when, and how the community of Barrow, Alaska uses the ice cover. The goal of this research is to improve our understanding of and abilities to monitor the processes that govern the state and dynamics of shorefast sea ice in the Chukchi Sea and use of ice by the community. Shorefast ice stability and community strategies for safe hunting provide a framework for data collection and knowledge sharing that reveals how nuanced observations by Inupiat ice experts relate to identifying hazards. In particular, shorefast ice break-out events represent a significant threat to the lives of hunters. Fault tree analysis (FTA) is used to combine local and time-specific observations of ice conditions by both geophysical instruments and local experts, and to evaluate how ice features, atmospheric and oceanic forces, and local to regional processes interact to cause break-out events. Each year, the Barrow community builds trails across shorefast ice for use during the spring whaling season. In collaboration with hunters, a systematic multi-year survey (2007--2011) was performed to map these trails and measure ice thickness along them. Relationships between ice conditions and hunter strategies that guide trail placement and risk assessment are explored. In addition, trail surveys provide a meaningful and consistent approach to monitoring the thickness distribution of shorefast ice, while establishing a baseline for assessing future environmental change and potential impacts to the community. Coastal communities in the region have proven highly adaptive in their ability to safely and successfully hunt from sea ice over the last 30 years as significant changes have been observed in the ice zone

  1. Publications - GMC 382 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 382 Publication Details Title: 1974 NWE Orange Hill, Alaska specimen index: Cross reference of Reference Northwest Explorations, 2010, 1974 NWE Orange Hill, Alaska specimen index: Cross reference of

  2. Publications - GMC 198 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    , Alaska Authors: O'Sullivan, P.B., and Murphy, John Publication Date: 1992 Publisher: Alaska Division of publication sales page for more information. Bibliographic Reference O'Sullivan, P.B., and Murphy, John, 1992

  3. Publications - GMC 113 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    foot interval of Sullivan #2 well Authors: Bujak Davies Group Publication Date: 1989 Publisher: Alaska , Vitrinite reflectance data and analysis of the 1,680 - 11,600 foot interval of Sullivan #2 well: Alaska

  4. Publications - GMC 241 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    ARCO Alaska Inc. Kuparuk River Unit 36-10-7 #1 (Bermuda #1) well Authors: Unknown Publication Date Reference Unknown, 1995, Vitrinite reflectance data from cuttings (700-6,760') of the ARCO Alaska Inc

  5. Staff - Kenneth R. Papp | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Alaska MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates STATEMAP Program information Alaska Energy Authority, and the Curator of the Geologic Materials Center (2009-2015). Position: Division survey-wide interface for geologists to publish digital map data (DGGS) Established the Alaska Energy

  6. Publications - RDF 2008-2 v. 1.0.1 | Alaska Division of Geological &

    Science.gov Websites

    Geophysical Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska

  7. Differences in human versus lightning fires between urban and rural areas of the boreal forest in interior Alaska

    USGS Publications Warehouse

    Calef, Monika; Varvak, Anna; McGuire, A. David

    2017-01-01

    In western North America, the carbon-rich boreal forest is experiencing warmer temperatures, drier conditions and larger and more frequent wildfires. However, the fire regime is also affected by direct human activities through suppression, ignition, and land use changes. Models are important predictive tools for understanding future conditions but they are based on regional generalizations of wildfire behavior and weather that do not adequately account for the complexity of human–fire interactions. To achieve a better understanding of the intensity of human influence on fires in this sparsely populated area and to quantify differences between human and lightning fires, we analyzed fires by both ignition types in regard to human proximity in urban (the Fairbanks subregion) and rural areas of interior Alaska using spatial (Geographic Information Systems) and quantitative analysis methods. We found substantial differences in drivers of wildfire: while increases in fire ignitions and area burned were caused by lightning in rural interior Alaska, in the Fairbanks subregion these increases were due to human fires, especially in the wildland urban interface. Lightning fires are starting earlier and fires are burning longer, which is much more pronounced in the Fairbanks subregion than in rural areas. Human fires differed from lightning fires in several ways: they started closer to settlements and highways, burned for a shorter duration, were concentrated in the Fairbanks subregion, and often occurred outside the brief seasonal window for lightning fires. This study provides important insights that improve our understanding of the direct human influence on recently observed changes in wildfire regime with implications for both fire modeling and fire management.

  8. Publications - GMC 184 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Unit #1, Anchor Point #1, Coal Bay State #1 Authors: Unknown Publication Date: 1991 Publisher: Alaska : South Diamond Gulch Unit #1, South Caribou Hill Unit #1, Anchor Point #1, Coal Bay State #1: Alaska

  9. A Survey of Road Construction and Maintenance Problems in Central Alaska.

    DTIC Science & Technology

    1976-10-01

    recent natural disasters, such as the earthquake of 1964 and the Fairbanks flood in 1967, seriously set back the Alaskan highway program for several...problems as classifica- tion of natural road building materials, prevention of culvert icing, measurement of subgrade temperature, maintenance of slopes...Scarcity of clays or other material suitable for use as a binder in gravel surfacings poses additional problems throughout Alaska. Dust and stones

  10. Publications - SR 46 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    , R.C., Wood, J.E., and Clough, A.H. Publication Date: 1991 Publisher: Alaska Division of Geological , R.C., Wood, J.E., and Clough, A.H., 1991, Alaska's mineral industry 1991: Alaska Division of ; Beryllium; Bismuth; Ceramics; Chromium; Coal; Cobalt; Construction Materials; Copper; Cultural Resources

  11. Publications - GMC 81 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a Company Long Island #1 well Authors: Unknown Publication Date: 1988 Publisher: Alaska Division of for the Sohio Alaska Petroleum Company Long Island #1 well: Alaska Division of Geological &

  12. Publications - DDS 6 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Publications Geologic Materials Center General Information Inventory Monthly Report Hours and Location Policy DGGS DDS 6 Publication Details Title: Historically active volcanoes of Alaska Authors: Cameron, C.E , C.E., and Schaefer, J.R., 2016, Historically active volcanoes of Alaska: Alaska Division of Geological

  13. Publications - AR 2011-C | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska content DGGS AR 2011-C Publication Details Title: Engineering Geology FY12 project descriptions Authors Combellick, R.A., 2012, Engineering Geology FY12 project descriptions, in DGGS Staff, Alaska Division of

  14. Publications - AR 1981 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Sheets Maps & Other Oversized Sheets Plate 1 Significant mineral deposits and prospects in Alaska (6.8 M) Plate 2 Major active claim blocks and development projects in Alaska, scale 1:42,240 (13.0 M

  15. Publications - GMC 352 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    , Alaska as based from core samples from the following wells: North Cook Inlet Unit A-02; Middle Ground , Chemostratigraphy of Oligo-Miocene sequences in Cook Inlet, Alaska as based from core samples from the following

  16. Geologic Map of Central (Interior) Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Dover, James H.; Bradley, Dwight C.; Weber, Florence R.; Bundtzen, Thomas K.; Haeussler, Peter J.

    1998-01-01

    Introduction: This map and associated digital databases are the result of a compilation and reinterpretation of published and unpublished 1:250,000- and limited 1:125,000- and 1:63,360-scale mapping. The map area covers approximately 416,000 sq km (134,000 sq mi) and encompasses 25 1:250,000-scale quadrangles in central Alaska. The compilation was done as part of the U.S. Geological Survey National Surveys and Analysis project, whose goal is nationwide assemble geologic, geochemical, geophysical, and other data. This map is an early product of an effort that will eventually encompass all of Alaska, and is the result of an agreement with the Alaska Department of Natural Resources, Division of Oil And Gas, to provide data on interior basins in Alaska. A paper version of the three map sheets has been published as USGS Open-File Report 98-133. Two geophysical maps that cover the identical area have been published earlier: 'Bouguer gravity map of Interior Alaska' (Meyer and others, 1996); and 'Merged aeromagnetic map of Interior Alaska' (Meyer and Saltus, 1995). These two publications are supplied in the 'geophys' directory of this report.

  17. Improving Sanitation and Health in Rural Alaska

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.

    2013-01-01

    In rural Alaskan communities personal health is threatened by energy costs and limited access to clean water, wastewater management, and adequate nutrition. Fuel-­-based energy systems are significant factors in determining local accessibility to clean water, sanitation and food. Increasing fuel costs induce a scarcity of access and impact residents' health. The University of Alaska Fairbanks (UAF) School of Natural Resources and Agricultural Sciences (SNRAS), NASA's Ames Research Center, and USDA Agricultural Research Service (ARS) have joined forces to develop high-efficiency, low­-energy consuming techniques for water treatment and food production in rural circumpolar communities. Methods intended for exploration of space and establishment of settlements on the Moon or Mars will ultimately benefit Earth's communities in the circumpolar north. The initial phase of collaboration is completed. Researchers from NASA Ames Research Center and SNRAS, funded by the USDA­-ARS, tested a simple, reliable, low-energy sewage treatment system to recycle wastewater for use in food production and other reuse options in communities. The system extracted up to 70% of the water from sewage and rejected up to 92% of ions in the sewage with no carryover of toxic effects. Biological testing showed that plant growth using recovered water in the nutrient solution was equivalent to that using high-purity distilled water. With successful demonstration that the low energy consuming wastewater treatment system can provide safe water for communities and food production, the team is ready to move forward to a full-scale production testbed. The SNRAS/NASA team (including Alaska students) will design a prototype to match water processing rates and food production to meet rural community sanitation needs and nutritional preferences. This system would be operated in Fairbanks at the University of Alaska through SNRAS. Long­-term performance will be validated and operational needs of the

  18. Publications - GMC 310 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    approximations of core (4,309.5'-4,409') from the BP Exploration (Alaska) Inc. Milne Point G-1 well Authors UCS approximations of core (4,309.5'-4,409') from the BP Exploration (Alaska) Inc. Milne Point G-1

  19. Publications - RDF 2012-1 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska content DGGS RDF 2012-1 Publication Details Title: Palynological analysis of 228 outcrop samples from the ., 2012, Palynological analysis of 228 outcrop samples from the Kenai, Seldovia, and Tyonek quadrangles

  20. Publications - RDF 2003-2 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    geochemical data from rocks collected in the Big Delta Quadrangle, Alaska in 2002 Authors: Werdon, M.B . Quadrangle(s): Big Delta Bibliographic Reference Werdon, M.B., Newberry, R.J., Athey, J.E., Szumigala, D.J -element, and geochemical data from rocks collected in the Big Delta Quadrangle, Alaska in 2002: Alaska

  1. Publications - SR 47 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a , T.K., Clough, A.H., Hansen, E.W., and Nelson, M.G. Publication Date: 1993 Publisher: Alaska Division ., Clough, A.H., Hansen, E.W., and Nelson, M.G., 1993, Alaska's mineral industry 1992: Alaska Division of

  2. Publications - SR 48 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a , R.C., Clough, A.H., Henning, M.W., and Hansen, E.W. Publication Date: 1994 Publisher: Alaska Division ., Swainbank, R.C., Clough, A.H., Henning, M.W., and Hansen, E.W., 1994, Alaska's mineral industry 1993: Alaska

  3. Publications - SR 49 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a , T.K., Clough, A.H., Henning, M.W., and Hansen, E.W. Publication Date: 1995 Publisher: Alaska Division ., Bundtzen, T.K., Clough, A.H., Henning, M.W., and Hansen, E.W., 1995, Alaska's mineral industry 1994: Alaska

  4. Publications - RI 2013-2 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    content DGGS RI 2013-2 Publication Details Title: Surficial-geologic map of the Livengood area, central Burns, P.A.C., 2013, Surficial-geologic map of the Livengood area, central Alaska: Alaska Division of Sheet 1 Surficial-geologic map of the Livengood area, central Alaska, scale 1:50,000 (30.0 M) Digital

  5. Publications - PIR 2008-3B | Alaska Division of Geological & Geophysical

    Science.gov Websites

    , Delta Junction to Dot Lake, Alaska Authors: Reger, R.D., and Solie, D.N. Publication Date: Dec 2008 : Download below or please see our publication sales page for more information. Quadrangle(s): Big Delta , Alaska Highway corridor, Delta Junction to Dot Lake, Alaska: Alaska Division of Geological &

  6. Publications - GPR 2015-5 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Geologic Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey electromagnetic and magnetic airborne geophysical survey data compilation Authors: Burns, L.E., Geoterrex-Dighem Graham, G.R.C., 2015, Livengood mining district electromagnetic and magnetic airborne geophysical survey

  7. Volcanic ash plume identification using polarization lidar: Augustine eruption, Alaska

    USGS Publications Warehouse

    Sassen, Kenneth; Zhu, Jiang; Webley, Peter W.; Dean, K.; Cobb, Patrick

    2007-01-01

    During mid January to early February 2006, a series of explosive eruptions occurred at the Augustine volcanic island off the southern coast of Alaska. By early February a plume of volcanic ash was transported northward into the interior of Alaska. Satellite imagery and Puff volcanic ash transport model predictions confirm that the aerosol plume passed over a polarization lidar (0.694 mm wavelength) site at the Arctic Facility for Atmospheric Remote Sensing at the University of Alaska Fairbanks. For the first time, lidar linear depolarization ratios of 0.10 – 0.15 were measured in a fresh tropospheric volcanic plume, demonstrating that the nonspherical glass and mineral particles typical of volcanic eruptions generate strong laser depolarization. Thus, polarization lidars can identify the volcanic ash plumes that pose a threat to jet air traffic from the ground, aircraft, or potentially from Earth orbit.

  8. Staff - Simone Montayne | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Preservation Workshop Professional Experience Metadata - Simone compiles all of the division's metadata files Professional Activities Website and database administrator for the Association of American State Geologists

  9. Publications - GPR 2015-6 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Geologic Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey content DGGS GPR 2015-6 Click to enlarge Publication Details Title: Airborne magnetic geophysical survey ., Graham, Gina, and Goldak Airborne Surveys, 2015, Airborne magnetic geophysical survey of the Tanacross

  10. Glacier Change and Biologic Succession: a new Alaska Summer Research Academy (ASRA) Science Camp Module for Grades 8-12 in Glacier Bay National Park, Alaska

    NASA Astrophysics Data System (ADS)

    Connor, C. L.; Drake, J.; Good, C.; Fatland, R.; Hakala, M.; Woodford, R.; Donohoe, R.; Brenner, R.; Moriarty, T.

    2008-12-01

    During the summer of 2008, university faculty and instructors from southeast Alaska joined the University Alaska Fairbanks(UAF)Alaska Summer Research Academy(ASRA)to initiate a 12-day module on glacier change and biologic succession in Glacier Bay National Park. Nine students from Alaska, Colorado, Massachusetts, and Texas, made field observations and collected data while learning about tidewater glacier dynamics, plant succession, post-glacial uplift, and habitat use of terrestrial and marine vertebrates and invertebrates in this dynamic landscape that was covered by 6,000 km2 of ice just 250 years ago. ASRA students located their study sites using GPS and created maps in GIS and GOOGLE Earth. They deployed salinometers and temperature sensors to collect vertical profiles of seawater characteristics up-bay near active tidewater glacier termini and down-bay in completely deglaciated coves. ASRA student data was then compared with data collected during the same time period by Juneau undergraduates working on the SEAMONSTER project in Mendenhall Lake. ASRA students traversed actively forming, up-bay recessional moraines devoid of vegetation, and the fully reforested Little Ice Age terminal moraine near Park Headquarters in the lower bay region. Students surveyed marine organisms living between supratidal and subtidal zones near glaciers and far from glaciers, and compared up-bay and down-bay communities. Students made observations and logged sightings of bird populations and terrestrial mammals in a linear traverse from the bay's northwestern most fjord near Mt. Fairweather for 120 km to the bay's entrance, south of Park Headquarters at Bartlett Cove. One student constructed an ROV and was able to deploy a video camera and capture changing silt concentrations in the water column as well as marine life on the fjord bottom. Students also observed exhumed Neoglacial spruce forests and visited outcrops of Silurian reef faunas, now fossilized in Alexander terrane

  11. Publications - GMC 380 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Publications Geologic Materials Center General Information Inventory Monthly Report Hours and Location Policy DGGS GMC 380 Publication Details Title: 1974 control survey report for Orange Hill, Alaska Authors ): Nabesna Bibliographic Reference Smith, W.H., 2010, 1974 control survey report for Orange Hill, Alaska

  12. Publications - AR 2012 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Home About Us Director's Office Alaska Statutes Annual Reports Employment Staff Directory and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a Report Authors: DGGS Staff Publication Date: Jan 2013 Publisher: Alaska Division of Geological &

  13. Publications - AR 2013 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Home About Us Director's Office Alaska Statutes Annual Reports Employment Staff Directory and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a Report Authors: DGGS Staff Publication Date: Jan 2014 Publisher: Alaska Division of Geological &

  14. The Denali EarthScope Education Partnership: Creating Opportunities for Learning About Solid Earth Processes in Alaska and Beyond.

    NASA Astrophysics Data System (ADS)

    Roush, J. J.; Hansen, R. A.

    2003-12-01

    The Geophysical Institute of the University of Alaska Fairbanks, in partnership with Denali National Park and Preserve, has begun an education outreach program that will create learning opportunities in solid earth geophysics for a wide sector of the public. We will capitalize upon a unique coincidence of heightened public interest in earthquakes (due to the M 7.9 Denali Fault event of Nov. 3rd, 2002), the startup of the EarthScope experiment, and the construction of the Denali Science & Learning Center, a premiere facility for science education located just 43 miles from the epicenter of the Denali Fault earthquake. Real-time data and current research results from EarthScope installations and science projects in Alaska will be used to engage students and teachers, national park visitors, and the general public in a discovery process that will enhance public understanding of tectonics, seismicity and volcanism along the boundary between the Pacific and North American plates. Activities will take place in five program areas, which are: 1) museum displays and exhibits, 2) outreach via print publications and electronic media, 3) curriculum development to enhance K-12 earth science education, 4) teacher training to develop earth science expertise among K-12 educators, and 5) interaction between scientists and the public. In order to engage the over 1 million annual visitors to Denali, as well as people throughout Alaska, project activities will correspond with the opening of the Denali Science and Learning Center in 2004. An electronic interactive kiosk is being constructed to provide public access to real-time data from seismic and geodetic monitoring networks in Alaska, as well as cutting edge visualizations of solid earth processes. A series of print publications and a website providing access to real-time seismic and geodetic data will be developed for park visitors and the general public, highlighting EarthScope science in Alaska. A suite of curriculum modules

  15. Publications - PIR 2007-1 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska content DGGS PIR 2007-1 Publication Details Title: Geologic map of the Siksikpuk River area, Chandler Lake ., Harris, E.E., Finzel, E.S., Reifenstuhl, R.R., and Loveland, A.M., 2007, Geologic map of the Siksikpuk

  16. Publications - RI 2014-4 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska content DGGS RI 2014-4 RI 2014-4 thumbnail Publication Details Title: Geologic map of the south-central ., Wartes, M.A., Loveland, A.M., and Hubbard, T.D., 2014, Geologic map of the south-central Sagavanirktok

  17. Nesting biology of Lesser Canada Geese, Branta canadensis parvipes, along the Tanana River, Alaska

    USGS Publications Warehouse

    Ely, Craig R.; Pearce, J.M.; Ruess, Roger W.

    2008-01-01

    Lesser Canada Geese (Branta canadensis parvipes) are widespread throughout interior regions of Alaska and Canada, yet there have been no published studies documenting basic aspects of their nesting biology. We conducted a study to determine reproductive parameters of Lesser Canada Geese nesting along the Tanana River near the city of Fairbanks, in interior Alaska. Fieldwork was conducted in May of 2003, and consisted of locating nests along the riparian corridor between Fairbanks and Northpole, Alaska. Nests were found on gravel islands and shore habitats along the Tanana River, and were most commonly observed among driftwood logs associated with patches of alder (Alnus spp.) and willow (Salix spp.). Peak of nest initiation was 3-8 May, with a range from 27 April to 20 May; renesting was likely. Clutches ranged in size from 2 to 7 eggs and averaged 4.6 eggs. There was a negative correlation between clutch size and date of nest initiation. Egg size (mean mass = 128 g) was similar to other medium-sized Canada Geese. A positive correlation between egg size and clutch size was likely related to female age. Nineteen of 28 nests (68%) were active when visited; nests located on islands with nesting Mew Gulls (Larus canus) were more likely to be active than nests located elsewhere. Evidence at nest sites implicated Bald Eagles (Haliaeetus leucocephalus) and Red Foxes (Vulpes vulpes) as nest predators.

  18. Publications - PIR 2008-1G | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Wartes, M.A., and Decker, P.L., eds., Preliminary results of recent geologic field investigations in the Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska content DGGS PIR 2008-1G Publication Details Title: Turonian-Campanian strata east of the Trans-Alaska

  19. Publications - GMC 133 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a Production Company Albert Kaloa #1 well Authors: Edison, T.A. Publication Date: 1989 Publisher: Alaska , Vitrinite reflectance data of cuttings from the Amoco Production Company Albert Kaloa #1 well: Alaska

  20. Publications - GMC 134 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a Oil Corporation Moquawkie #1 well Authors: Edison, T.A. Publication Date: 1989 Publisher: Alaska , Vitrinite reflectance data of cuttings and core from the Mobil Oil Corporation Moquawkie #1 well: Alaska

  1. Publications - GMC 169 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a Pan American Napatuk Creek #1 well Authors: Pawlewicz, Mark Publication Date: 1990 Publisher: Alaska , Vitrinite reflectance data of cuttings (6000'-14870') from the Pan American Napatuk Creek #1 well: Alaska

  2. Publications - GMC 279 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 279 Publication Details Title: Geochemistry of oil show intervals from ARCO Alaska Inc. Fiord #3 and Fiord #3A Authors: Piggott, Neil, and LGC Geochemistry Publication Date: 1998 Publisher , and LGC Geochemistry, 1998, Geochemistry of oil show intervals from ARCO Alaska Inc. Fiord #3 and

  3. Publications - GMC 239 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a Conoco Inc. Sequoia #1 well Authors: Unknown Publication Date: 1994 Publisher: Alaska Division of from cuttings (1,700-8,190') of the Conoco Inc. Sequoia #1 well: Alaska Division of Geological &

  4. Publications - GMC 168 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a Home Oil Co. Bush Fed #1 well Authors: Pawlewicz, Mark Publication Date: 1990 Publisher: Alaska , Vitrinite reflectance data of cuttings (5390'-14850') from the Home Oil Co. Bush Fed #1 well: Alaska

  5. Publications - GMC 132 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a . Kustatan River #1 well Authors: Edison, T.A. Publication Date: 1989 Publisher: Alaska Division of data of cuttings from the Shell Oil Co. Kustatan River #1 well: Alaska Division of Geological &

  6. Publications - GMC 172 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a Texaco Inc. East Kurupa Unit #1 well Authors: Pawlewicz, Mark Publication Date: 1990 Publisher: Alaska , Vitrinite reflectance data of cuttings (800'-12610') from the Texaco Inc. East Kurupa Unit #1 well: Alaska

  7. Core Angular Momentum and the IERS Sub-Centers Activity for Monitoring Global Geophysical Fluids. Part 1; Core Angular Momentum and Earth Rotation

    NASA Technical Reports Server (NTRS)

    Song, Xia-Dong; Chao, Benjamin (Technical Monitor)

    1999-01-01

    The part of the grant was to use recordings of seismic waves travelling through the earth's core (PKP waves) to study the inner core rotation and constraints on possible density anomalies in the fluid core. The shapes and relative arrival times of such waves associated with a common source were used to reduce the uncertainties in source location and excitation and the effect of unknown mantle structure. The major effort of the project is to assemble historical seismograms with long observing base lines. We have found original paper records of SSI earthquakes at COL between 1951 and 1966 in a warehouse of the U.S. Geological Survey office in Golden, Colorado, extending the previous measurements at COL by Song and Richards [1996] further back 15 years. Also in Alaska, the University of Alaska, Fairbanks Geophysical Institute (UAFGI) has been operating the Alaskan Seismic Network with over 100 stations since the late 1960s. Virtually complete archives of seismograms are still available at UAFGI. Unfortunately, most of the archives are in microchip form (develocorders), for which the use of waveforms is impossible. Paper seismograms (helicorders) are available for a limited number of stations, and digital recordings of analog signals started around 1989. Of the paper records obtained, stations at Gilmore Dome (GLM, very close to COL), Yukon (FYU), McKinley (MCK), and Sheep Creek Mountain (SCM) have the most complete continuous recordings.

  8. Publications - GMC 151 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a Gulf Oil Corp. Point Mcintyre #1 well Authors: Unknown Publication Date: 1990 Publisher: Alaska reflectance data of cuttings (3,540-11,850) from the Gulf Oil Corp. Point Mcintyre #1 well: Alaska Division of

  9. Publications - GMC 118 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a Company OCS Y-0849-2 (Hammerhead #2) well Authors: Unknown Publication Date: 1989 Publisher: Alaska reflectance data of cuttings from the Union Oil Company OCS Y-0849-2 (Hammerhead #2) well: Alaska Division of

  10. Publications - GMC 177 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a . Navy Umiat Test Well #11 Authors: Bujak Davies Group Publication Date: 1990 Publisher: Alaska Division , Palynological analysis of core (342.9'-1037') from the U.S. Navy Umiat Test Well #11: Alaska Division of

  11. Publications - GMC 387 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Resources, 2011, Core descriptions and assay results from the Cominco DDH-1 through DDH-5 boreholes, NAP Cu Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska DGGS GMC 387 Publication Details Title: Core descriptions and assay results from the Cominco DDH-1

  12. Publications - GMC 397 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    : Apache Corp., Alaska Division of Oil and Gas, and Weatherford Laboratories Publication Date: Nov 2011 Apache Corp., Alaska Division of Oil and Gas, and Weatherford Laboratories, 2011, Porosity and Files gmc397.pdf (2.8 M) gmc397.zip (24.2 M) Keywords Cook Inlet Basin; Oil and Gas; Permeability

  13. Publications - GMC 302 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    following northern Alaska exploratory wells: Husky Oil NPRA Operations (U.S. Navy) East Teshekpuk #1 (7090 -7180), and Husky Oil NPRA Operations (U.S. Navy) West Fish Creek #1 (5520-5780) and (7460-7580 northern Alaska exploratory wells: Husky Oil NPRA Operations (U.S. Navy) East Teshekpuk #1 (7090-7180), and

  14. About Us - Alaska Statutes | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Geologic Hazards in Alaska MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates Sponsors potential of Alaskan land for production of metals, minerals, fuels, and geothermal resources; the locations declaration of sources, see 4 1, ch. 175, SLA 1980, in the legislative policy on geothermal re- Temporary and

  15. Publications - GMC 74 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    well, North Slope, Alaska Authors: Unknown Publication Date: 1988 Publisher: Alaska Division of publication sales page for more information. Bibliographic Reference Unknown, 1988, Vitrinite reflectance data

  16. International Volcanological Field School in Kamchatka and Alaska: Experiencing Language, Culture, Environment, and Active Volcanoes

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.; Gordeev, E.; Ivanov, B.; Izbekov, P.; Kasahara, M.; Melnikov, D.; Selyangin, O.; Vesna, Y.

    2003-12-01

    The Kamchatka State University of Education, University of Alaska Fairbanks, and Hokkaido University are developing an international field school focused on explosive volcanism of the North Pacific. An experimental first session was held on Mutnovsky and Gorely Volcanoes in Kamchatka during August 2003. Objectives of the school are to:(1) Acquaint students with the chemical and physical processes of explosive volcanism, through first-hand experience with some of the most spectacular volcanic features on Earth; (2) Expose students to different concepts and approaches to volcanology; (3) Expand students' ability to function in a harsh environment and to bridge barriers in language and culture; (4) Build long-lasting collaborations in research among students and in teaching and research among faculty in the North Pacific region. Both undergraduate and graduate students from Russia, the United States, and Japan participated. The school was based at a mountain hut situated between Gorely and Mutnovsky Volcanoes and accessible by all-terrain truck. Day trips were conducted to summit craters of both volcanoes, flank lava flows, fumarole fields, ignimbrite exposures, and a geothermal area and power plant. During the evenings and on days of bad weather, the school faculty conducted lectures on various topics of volcanology in either Russian or English, with translation. Although subjects were taught at the undergraduate level, lectures led to further discussion with more advanced students. Graduate students participated by describing their research activities to the undergraduates. A final session at a geophysical field station permitted demonstration of instrumentation and presentations requiring sophisticated graphics in more comfortable surroundings. Plans are underway to make this school an annual offering for academic credit in the Valley of Ten Thousand Smokes, Alaska and in Kamchatka. The course will be targeted at undergraduates with a strong interest in and

  17. Publications - DDS 10 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in Alaska Products Interactive Interactive Map Alaska Tsunami Inundation Maps Keywords Coastal and River; Geologic

  18. Publications - GMC 364 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Alaska: Drew Pt #1, East Simpson Test Well #1, East Simpson #2, Ikpikpuk #1, J.W. Dalton #1, Seabee #1 , Topogoruk Test #1, and W. Dease #1 Authors: Talisman Energy Inc., and Core Laboratories Publication Date Properties Study on Core samples from 8 wells in Alaska: Drew Pt #1, East Simpson Test Well #1, East Simpson

  19. Effects of moisture limitation on tree growth in upland and floodplain forest ecosystems in interior Alaska

    Treesearch

    John. Yarie

    2008-01-01

    The objective of this study was to examine the impact of summer throughfall on the growth of trees, at upland and floodplain locations, in the vicinity of Fairbanks, Alaska. Corrugated clear plastic covers were installed under the canopy of floodplain balsam poplar/white spruce stands and upland hardwood/white spruce stands to control soil moisture recharge as a result...

  20. RadNet Air Data From Fairbanks, AK

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Fairbanks, AL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  1. STATEMAP - Geologic Mapping Advisory Board | Alaska Division of Geological

    Science.gov Websites

    backgrounds and a broad spectrum of experience in Alaska, have agreed to serve on the advisory board. The & Geophysical SurveysA> Skip to content State of Alaska myAlaska My Government Resident Annual Reports Employment Staff Directory Publications Search Statewide Maps New Releases Sales

  2. Publications - IC 52 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey ; Aerial Photography; Aeromagnetic; Aeromagnetic Data; Aeromagnetic Survey; Airborne Geophysical Survey Resistivity Data; Apparent Resistivity Map; Apparent Resistivity Survey; Arctic Deposit; Arsenic; Arsenopyrite

  3. Publications - SR 61 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey K) Keywords Admiralty Island; Aeromagnetic Data; Aeromagnetic Survey; Airborne Geophysical Survey Dome; Conductivity Survey; Construction Materials; Copper; Core Drilling; Council; Crushed Gravel

  4. Publications - PDF 99-24A | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Alaska, scale 1:63,360 (6.9 M) Keywords Ar-Ar; Bedrock; Bedrock Geology; Generalized; Geologic; Geologic Map; Geology; Gold; Lode; Non-Metals; Paleontology; Plutonic; Plutonic Hosted; STATEMAP Project

  5. Publications - IC 54 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS IC 54 Publication Details Title: Alaska's mineral industry 2006: A summary Authors: Szumigala, D.J Bibliographic Reference Szumigala, D.J., and Hughes, R.A., 2007, Alaska's mineral industry 2006: A summary

  6. Publications - GMC 92 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Oil Company Beaver Creek Unit #4 well Authors: Makada, R. Publication Date: 1988 Publisher: Alaska , Vitrinite reflectance data of ditch cuttings from the Marathon Oil Company Beaver Creek Unit #4 well: Alaska

  7. Publications - SR 63 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    , R.A., and Harbo, L.A. Publication Date: Nov 2009 Publisher: Alaska Division of Geological & Bibliographic Reference Szumigala, D.J., Hughes, R.A., and Harbo, L.A., 2009, Alaska's mineral industry 2008

  8. Publications - SR 62 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    , R.A., and Harbo, L.A. Publication Date: Nov 2008 Publisher: Alaska Division of Geological & Bibliographic Reference Szumigala, D.J., Hughes, R.A., and Harbo, L.A., 2008, Alaska's mineral industry 2007

  9. Wood and coal cofiring in interior Alaska: utilizing woody biomass from wildland defensible-space fire treatments and other sources.

    Treesearch

    David L. Nicholls; Stephen E. Patterson; Erin Uloth

    2006-01-01

    Cofiring wood and coal at Fairbanks, Alaska, area electrical generation facilities represents an opportunity to use woody biomass from clearings within the borough's wildland-urban interface and from other sources, such as sawmill residues and woody material intended for landfills. Potential benefits of cofiring include air quality improvements, reduced greenhouse...

  10. Chaparral Model 60 Infrasound Sensor Evaluation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slad, George William; Merchant, Bion J.

    2016-03-01

    Sandia National Laboratories has tested and evaluated an infrasound sensor, the Model 60 manufactured by Chaparral Physics, a Division of Geophysical Institute of the University of Alaska, Fairbanks. The purpose of the infrasound sensor evaluation was to determine a measured sensitivity, transfer function, power, self-noise, dynamic range, and seismic sensitivity. The Model 60 infrasound sensor is a new sensor developed by Chaparral Physics intended to be a small, rugged sensor used in more flexible application conditions.

  11. Publications - RI 2005-1B | Alaska Division of Geological & Geophysical

    Science.gov Websites

    half of the Solomon C-5 Quadrangle, Seward Peninsula, Alaska Authors: Werdon, M.B., Newberry, R.J publication sales page for more information. Quadrangle(s): Solomon Bibliographic Reference Werdon, M.B area, northern half of the Solomon C-5 Quadrangle, Seward Peninsula, Alaska: Alaska Division of

  12. Publications - RI 2005-1C | Alaska Division of Geological & Geophysical

    Science.gov Websites

    half of the Solomon C-5 Quadrangle, Seward Peninsula, Alaska Authors: Stevens, D.S.P. Publication Date ): Solomon Bibliographic Reference Stevens, D.S.P., 2005, Surficial geologic map of the Big Hurrah area , northern half of the Solomon C-5 Quadrangle, Seward Peninsula, Alaska: Alaska Division of Geological &

  13. Publications - SR 69 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    , J.E., Freeman, L.K., Harbo, L.A., and Lasley, P.S. Publication Date: Nov 2014 Publisher: Alaska Reference Athey, J.E., Freeman, L.K., Harbo, L.A., and Lasley, P.S., 2014, Alaska's mineral industry 2013

  14. Publications - GMC 88 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    the following four North Slope wells: Long Island #1; Alaska State F-1; Topagoruk Test Well #1; and four core chips from the following four North Slope wells: Long Island #1; Alaska State F-1; Topagoruk

  15. Publications - PIR 2015-5-5 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    ., 2015, Stratigraphic reconnaissance of the Middle Jurassic Red Glacier Formation, Tuxedni Group, at Red Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska content DGGS PIR 2015-5-5 Publication Details Title: Stratigraphic reconnaissance of the Middle Jurassic

  16. Publications - RI 97-15B | Alaska Division of Geological & Geophysical

    Science.gov Websites

    content DGGS RI 97-15B Publication Details Title: Interpretive geologic bedrock map of the Tanana B-1 ., 1997, Interpretive geologic bedrock map of the Tanana B-1 Quadrangle, central Alaska: Alaska Division bedrock map of the Tanana B-1 Quadrangle, Central Alaska, scale 1:63,360 (8.3 M) Digital Geospatial Data

  17. Publications - RI 2004-1C | Alaska Division of Geological & Geophysical

    Science.gov Websites

    , Big Delta Quadrangle, Alaska Authors: Reger, R.D., Burns, P.C., and Staft, L.A. Publication Date: Dec Delta Bibliographic Reference Reger, R.D., Burns, P.C., and Staft, L.A., 2008, Surficial-geologic map of the Salcha River-Pogo area, Big Delta Quadrangle, Alaska: Alaska Division of Geological &

  18. Publications - RI 2015-6 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    ., Schwab, C.E., Silva, S.R., Smith, T.E., and Zehner, R.E. Publication Date: Sep 2015 Publisher: Alaska , C.E., Silva, S.R., Smith, T.E., and Zehner, R.E., 2015, Geologic maps of the eastern Alaska Range

  19. Publications - DDS 11 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Publications Geologic Materials Center General Information Inventory Monthly Report Hours and Location Policy DGGS DDS 11 Publication Details Title: Geologic Materials Center Inventory Authors: DGGS Staff ): Alaska Statewide Bibliographic Reference DGGS Staff, 2016, Geologic Materials Center Inventory: Alaska

  20. Publications - PIR 2008-1B | Alaska Division of Geological & Geophysical

    Science.gov Websites

    ., Preliminary results of recent geologic field investigations in the Brooks Range Foothills and North Slope Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska content DGGS PIR 2008-1B Publication Details Title: Measured section and facies analysis of the Lower

  1. Bumble Bees (Hymenoptera: Apidae: Bombus spp.) of Interior Alaska: Species Composition, Distribution, Seasonal Biology, and Parasites

    PubMed Central

    Pampell, Rehanon; Pantoja, Alberto; Holloway, Patricia; Knight, Charles; Ranft, Richard

    2015-01-01

    Abstract Background Despite the ecological and agricultural significance of bumble bees in Alaska, very little is known and published about this important group at the regional level. The objectives of this study were to provide baseline data on species composition, distribution, seasonal biology, and parasites of the genus Bombus at three major agricultural locations within Alaska: Fairbanks, Delta Junction, and Palmer, to lay the groundwork for future research on bumble bee pollination in Alaska. New information A total of 8,250 bumble bees representing 18 species was collected from agricultural settings near Delta Junction, Fairbanks, and Palmer, Alaska in 2009 and 2010. Of the 8,250 specimens, 51% were queens, 32.7% were workers, and 16.2% were males. The species composition and relative abundances varied among sites and years. Delta Junction had the highest relative abundance of bumble bees, representing 51.6% of the specimens collected; the other two locations, Fairbanks and Palmer represented 26.5% and 21.8% of the overall catch respectively. The species collected were: Bombus bohemicus Seidl 1837 (= B. ashtoni (Cresson 1864)), B. balteatus Dahlbom 1832, B. bifarius Cresson 1878, B. centralis Cresson 1864, B. cryptarum (Fabricius 1775) (=B. moderatus Cresson 1863), B. distinguendus Morawitz 1869, B. flavidus Eversmann 1852 (=B. fernaldae Franklin 1911), B. flavifrons Cresson 1863, B. frigidus Smith 1854, B. insularis (Smith 1861), B. jonellus (Kirby 1802), B. melanopygus Nylander 1848, B. mixtus Cresson 1878, B. neoboreus Sladen 1919, B. occidentalis Greene 1858, B. perplexus Cresson 1863, B. rufocinctus Cresson 1863, and B. sylvicola Kirby 1837. Overall, the most common bumble bees near agricultural lands were B. centralis, B. frigidus, B. jonellus, B. melanopygus, B. mixtus, and B. occidentalis. Species' relative population densities and local diversity were highly variable from year to year. Bombus occidentalis, believed to be in decline in the Pacific

  2. Publications - RI 2011-3A | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska content DGGS RI 2011-3A Publication Details Title: Geologic map of the Kavik River area, northeastern ., Delaney, P.R., LePain, D.L., and Carson, E.C., 2011, Geologic map of the Kavik River area, northeastern

  3. Publications - PDF 95-33A | Alaska Division of Geological & Geophysical

    Science.gov Websites

    the B-1 quadrangles, east-central Alaska Authors: Clough, J.G., Reifenstuhl, R.R., Mull, C.G., Pinney -1, C-1, and part of the B-1 quadrangles, east-central Alaska: Alaska Division of Geological & :63,360 (10.0 M) Sheet 2 Geologic map of the Charley River C-1 and part of the B-1 Quadrangle, east

  4. Links - Helpful Tools | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in Systems Alaska Tidal Datum Portal For Alaska's coastal communities, an understanding and awareness of local tidal datums is critical to assessing vulnerability and planning responses to coastal geohazards

  5. Interactive controls of herbivory and fluvial dynamics on landscape vegetation patterns on the Tanana River floodplain, interior Alaska.

    Treesearch

    Lem G. Butler; Knut Kielland; T. Scott Rupp; Thomas A. Hanley

    2007-01-01

    We examined the interactive effects of mammalian herbivory and fluvial dynamics on vegetation dynamics and composition along the Tanana River in interior Alaska between Fairbanks and Manley Hot Springs. We used a spatially explicit model of landscape dynamics (ALFRESCO) to simulate vegetation changes on a 1-year time-step. The model was run for 250 years and was...

  6. Publications - GMC 77 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a California Leffingwell #1 well Authors: Unknown Publication Date: 1988 Publisher: Alaska Division of for the Union Oil Company of California Leffingwell #1 well: Alaska Division of Geological &

  7. Publications - GMC 90 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a -1 (Hammerhead) well Authors: Unknown Publication Date: 1988 Publisher: Alaska Division of Geological for the Union Oil Company OCS-Y-0849-1 (Hammerhead) well: Alaska Division of Geological &

  8. Publications - PDF 96-16 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska fbx_prelim_geology Shapefile 6.5 M Metadata - Read me Keywords Age Dates; Antimony; Ar-Ar; Bedrock; Bedrock Geology ; Birch Hill Sequence; Bismuth; Chatanika Terrane; Construction Materials; Derivative; Economic Geology

  9. Publications - GMC 76 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a -1 (Antares #1) well Authors: Unknown Publication Date: 1988 Publisher: Alaska Division of Geological for the Exxon corporation OCS-Y-0280-1 (Antares #1) well: Alaska Division of Geological &

  10. Publications - GMC 44 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a DGGS GMC 44 Publication Details Title: Carbon isotope analysis of carbonates from Ahtna #1 well, Copper of carbonates from Ahtna #1 well, Copper River Valley, Alaska: Alaska Division of Geological &

  11. Publications - GMC 80 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a California Tungak Creek #1 well Authors: Unknown Publication Date: 1988 Publisher: Alaska Division of for the Union Oil Company of California Tungak Creek #1 well: Alaska Division of Geological &

  12. Publications - GMC 83 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS GMC 83 Publication Details Title: Rock-eval pyrolysis data and interpretation for the Alaska and Ruth Laboratories, Inc., 1988, Rock-eval pyrolysis data and interpretation for the Alaska Information gmc083.pdf (274.0 K) Keywords Pyrolysis; Rock-Eval Pyrolysis Top of Page Department of Natural

  13. Workshop on the Martian Northern Plains: Sedimentological, periglacial, and paleoclimatic evolution

    NASA Technical Reports Server (NTRS)

    Kargel, J. S. (Editor); Parker, T. J. (Editor); Moore, J. M. (Editor)

    1993-01-01

    The penultimate meeting in the Mars Surface and Atmosphere Through Time (MSATT) series of workshops was held on the campus of the University of Alaska in Fairbanks, Alaska, 12-13 Aug. 1993. This meeting, entitled 'The Martian Northern Plains: Sedimentological, Periglacial, and Paleoclimatic Evolution,' hosted by the Geophysical Institute at the University of Alaska, was designed to help foster an exchange of ideas among researchers of the Mars science community and the terrestrial glacial and periglacial science community. The technical sessions of the workshop were complemented by field trips to the Alaska Range and to the Fairbanks area and a low-altitude chartered overflight to the Arctic Costal Plain, so that, including these trips, the meeting lasted from 9-14 Aug. 1993. The meeting, field trips, and overflight were organized and partially funded by the Lunar and Planetary Institute and the MSATT Study Group. The major share of logistical support was provided by the Publications and Program Services Department of the Lunar and Planetary Institute. The workshop site was selected to allow easy access to field exposures of active glaciers and glacial and periglacial landforms. In all, 25 scientists attended the workshop, 24 scientists (plus 4 guests and the meeting coordinator) participated in the field trips, and 18 took part in the overflight. This meeting reaffirmed the value of expertly led geologic field trips conducted in association with topical workshops.

  14. Airborne electromagnetic and magnetic geophysical survey data of the Yukon Flats and Fort Wainwright areas, central Alaska, June 2010

    USGS Publications Warehouse

    Ball, Lyndsay B.; Smith, Bruce D.; Minsley, Burke J.; Abraham, Jared D.; Voss, Clifford I.; Astley, Beth N.; Deszcz-Pan, Maria; Cannia, James C.

    2011-01-01

    In June 2010, the U.S. Geological Survey conducted airborne electromagnetic and magnetic surveys of the Yukon Flats and Fort Wainwright study areas in central Alaska. These data were collected to estimate the three-dimensional distribution of permafrost at the time of the survey. These data were also collected to evaluate the effectiveness of these geophysical methods at mapping permafrost geometry and to better define the physical properties of the subsurface in discontinuous permafrost areas. This report releases digital data associated with these surveys. Inverted resistivity depth sections are also provided in this data release, and data processing and inversion methods are discussed.

  15. Publications - GMC 94 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a Oil Company Clam Gulch 1-X well Authors: Makada, R. Publication Date: 1988 Publisher: Alaska Division , Vitrinite reflectance data of ditch cuttings from the Marathon Oil Company Clam Gulch 1-X well: Alaska

  16. Publications - GMC 97 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a Inlet Unit A-2 well Authors: Core Laboratories Publication Date: 1988 Publisher: Alaska Division of of the Phillips Petroleum Company North Cook Inlet Unit A-2 well: Alaska Division of Geological &

  17. Malaspina Glacier, Alaska

    NASA Image and Video Library

    2002-02-26

    This image from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra satellite covers an area of 55 by 40 kilometers (34 by 25 miles) over the southwest part of the Malaspina Glacier and Icy Bay in Alaska. The composite of infrared and visible bands results in the snow and ice appearing light blue, dense vegetation is yellow-orange and green, and less vegetated, gravelly areas are in orange. According to Dr. Dennis Trabant (U.S. Geological Survey, Fairbanks, Alaska), the Malaspina Glacier is thinning. Its terminal moraine protects it from contact with the open ocean; without the moraine, or if sea level rises sufficiently to reconnect the glacier with the ocean, the glacier would start calving and retreat significantly. ASTER data are being used to help monitor the size and movement of some 15,000 tidal and piedmont glaciers in Alaska. Evidence derived from ASTER and many other satellite and ground-based measurements suggests that only a few dozen Alaskan glaciers are advancing. The overwhelming majority of them are retreating. This ASTER image was acquired on June 8, 2001. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next six years to map and monitor the changing surface of our planet. http://photojournal.jpl.nasa.gov/catalog/PIA03475

  18. Publications - GMC 33 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a DGGS GMC 33 Publication Details Title: Heavy mineral analysis of the ARCO Prudhoe Bay Unit #NGI-07 well , 1982, Heavy mineral analysis of the ARCO Prudhoe Bay Unit #NGI-07 well, North Slope, Alaska: Alaska

  19. Publications - MP 141 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS MP 141 Publication Details Title: Quaternary faults and folds in Alaska: A digital database Combellick, R.A., 2012, Quaternary faults and folds in Alaska: A digital database, in Koehler, R.D Quaternary faults, scale 1:3,700,000 (63.0 M) Digital Geospatial Data Digital Geospatial Data Quaternary

  20. Detecting a liquid and solid H2O layer by geophysical methods

    NASA Astrophysics Data System (ADS)

    Yoshikawa, K.; Romanovsky, V.; Tsapin, A.; Brown, J.

    2002-12-01

    The objective is to detect the hydrological and cryological structure of the cold continuous permafrost subsurface using geophysical methods. We believe that a lot of water potentially exists as solid and liquid phases underground on Mars. It is likely that the liquid fluid would be high in saline concentration (brine). The ground freezing process involves many hydrological processes including enrichment of the brine layer. The brine layer is an important environment for ancient and/or current life to exist on terrestrial permafrost regions. The existence of a Martian brine layer would increase the possibility of the existence of life, as on Earth. In situ electric resistivity measurement will be the most efficient method to determine brine layer as well as massive H2O ice in the permafrost. However, the wiring configuration is unlikely to operate on the remote planetary surface. Satellite-born Radar and/or EM methods will be the most accessible methods for detecting the hydrological and cryological structure. We are testing several geophysical methods at the brine layer site in Barrow and massive pingo ice site in Fairbanks, Alaska. The radar system is affected by the dielectric properties of subsurface materials, which allows for evidence of liquid phase in the frozen ground. The dielectric constant varies greatly between liquid water and frozen ground. The depth of the terrestrial (and probably Martian) brine layer is frequently located deeper than the maximum detecting depth of the impulse type of the ground penetrating radar system. Once we develop a radar system with a deeper penetrating capability (Lower frequency), the dispersion of the ground ice will be the key function for interpretation of these signals. We will improve and use radar signals to understand the hydrological and cryological structure in the permafrost. The core samples and borehole temperature data validate these radar signals.

  1. Publications - PDF 99-24D | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska ; Engineering; Engineering Geologic Map; Engineering Geology; Geologic Map; Geology; Land Subsidence; Landslide

  2. Geophysical applications for arctic/subarctic transportation planning.

    DOT National Transportation Integrated Search

    2014-07-01

    This report describes a series of geophysical surveys conducted in conjunction with : geotechnical investigations carried out by the Alaska Department of Transportation and Public : Facilities. The purpose of the study was to evaluate the value of an...

  3. A Prototype Two-tier Mentoring Program for Undergraduate Summer Interns from Minority-Serving Institutions at the University of Alaska Fairbanks

    NASA Astrophysics Data System (ADS)

    Gens, R.; Prakash, A.; Ozbay, G.; Sriharan, S.; Balazs, M. S.; Chittambakkam, A.; Starkenburg, D. P.; Waigl, C.; Cook, S.; Ferguson, A.; Foster, K.; Jones, E.; Kluge, A.; Stilson, K.

    2013-12-01

    The University of Alaska Fairbanks (UAF) is partnering with Delaware State University, Virginia State University, Elizabeth City State University, Bethune-Cookman University, and Morgan State University on a U.S. Department of Agriculture - National Institute for Food and Agriculture funded grant for ';Enhancing Geographic Information System Education and Delivery through Collaboration: Curricula Design, Faculty, Staff, and Student Training and Development, and Extension Services'. As a part of this grant, in summer 2013, UAF hosted a week long workshop followed by an intense two week undergraduate internship program. Six undergraduate students from partnering Universities worked with UAF graduate students as their direct mentors. This cohort of undergraduate mentees and graduate student mentors were in-turn counseled by the two UAF principal investigators who served as ';super-mentors'. The role of each person in the two-tier mentoring system was well defined. The super-mentors ensured that there was consistency in the way the internship was setup and resources were allocated. They also ensured that there were no technical glitches in the research projects and that there was healthy communication and interaction among participants. Mentors worked with the mentees ahead of time in outlining a project that aligned with the mentees research interest, provided basic reading material to the interns to get oriented, prepared the datasets required to start the project, and guided the undergraduates throughout the internship. Undergraduates gained hands-on experience in geospatial data collection and application of tools in their projects related to mapping geomorphology, landcover, geothermal sites, fires, and meteorological conditions. Further, they shared their research results and experiences with a broad university-wide audience at the end of the internship period. All participants met at lunch-time for a daily science talk from external speakers. The program offered

  4. Workplan for U.S. Geological Survey hydrologic data-collection and support activities on Fort Wainwright, Alaska, 1994-97

    USGS Publications Warehouse

    Claar, David V.; Lilly, Michael R.

    1999-01-01

    The U.S. Army Alaska is responsible for environmental activities on Fort Wainwright near Fairbanks, Alaska. In order to better meet the needs of environmental investigations, the Army requires geohydrologic information about the Fort Wainwright area. Since 1994, the U.S. Geological Survey has been working in cooperation with the U.S. Army Alaska and the U.S. Army Corps of Engineers to investigate the geohydrology of the Fort Wainwright area. The primary objectives of the study are to collect basic ground-water and surface-water data and to support ongoing environmental investigations by other agencies. This report is the workplan describing the technical methods used by the USGS to meet these objectives. It includes details on field procedures, data collection, and analyses of water samples.

  5. Alaska Synthetic Aperture Radar (SAR) Facility science data processing architecture

    NASA Technical Reports Server (NTRS)

    Hilland, Jeffrey E.; Bicknell, Thomas; Miller, Carol L.

    1991-01-01

    The paper describes the architecture of the Alaska SAR Facility (ASF) at Fairbanks, being developed to generate science data products for supporting research in sea ice motion, ice classification, sea-ice-ocean interaction, glacier behavior, ocean waves, and hydrological and geological study areas. Special attention is given to the individual substructures of the ASF: the Receiving Ground Station (RGS), the SAR Processor System, and the Interactive Image Analysis System. The SAR data will be linked to the RGS by the ESA ERS-1 and ERS-2, the Japanese ERS-1, and the Canadian Radarsat.

  6. Structural health monitoring and condition assessment of Chulitna River Bridge : sensor selection and field installation report.

    DOT National Transportation Integrated Search

    2012-12-01

    The Chulitna River Bridge, built in 1970, is located at Historic Mile Post 132.7 on the Alaska Parks Highway between Fairbanks and Anchorage, Alaska. The Parks : Highway is the most direct route connecting Anchorage, Fairbanks, and Prudhoe Bay. Heavy...

  7. Division of Forestry Directory

    Science.gov Websites

    Regional Regional Forester Tim Dabney tim.dabney@alaska.gov (907) 761-6238 Fairbanks/Delta Area Fairbanks Sanford, Fire Management Officer (907) 451-2634 edward.sanford@alaska.gov Delta Office P.O. Box 1149 Delta

  8. Strategic plan for the Turner-Fairbank Highway Research Center.

    DOT National Transportation Integrated Search

    2014-01-01

    Located in McLean, VA, the Turner-Fairbank Highway Research Center (TFHRC), is the Federal Highway Administrations (FHWA) core facility for research, development, and technology within the broader transportation research community. This document d...

  9. Publications - PDF 99-24C | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska :63,360 (6.7 M) Keywords Geologic Map; Geology; Geomorphology; Glacial; STATEMAP Project; Slope Instability; Surficial; Surficial Geologic Map; Surficial Geology Top of Page Department of Natural Resources

  10. Publications - GPR 2011-4 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Geologic Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey content DGGS GPR 2011-4 Publication Details Title: Iditarod survey area: Airborne magnetic and ., Fugro Airborne Surveys Corp., and Fugro GeoServices, Inc., 2015, Iditarod survey area: Airborne magnetic

  11. Publications - GPR 2014-4 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Geologic Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey content DGGS GPR 2014-4 Publication Details Title: Farewell and Middle Styx survey areas: Project report , Inc., 2015, Farewell and Middle Styx survey areas: Project report, interpretation maps, EM anomalies

  12. Publications - PDF 99-24B | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska (6.4 M) Keywords Ar-Ar; Bedrock; Bedrock Geologic Map; Bedrock Geology; Economic Geology; Geochronology ; Geologic; Geologic Map; Geology; Gold; Lode; Plutonic; Plutonic Hosted; Porphyry; STATEMAP Project; Silver

  13. Publications - PIR 2015-3 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications PIR 2015-3 main content DGGS PIR 2015-3 Publication Details Title: Overview of 2014 energy-focused studies in Susitna of Geological & Geophysical Surveys Preliminary Interpretive Report 2015-3, 34 p. http://doi.org

  14. Publications - RI 2005-1D | Alaska Division of Geological & Geophysical

    Science.gov Websites

    content DGGS RI 2005-1D Publication Details Title: Geologic map of the Council Area, Solomon D-4 and publication sales page for more information. Quadrangle(s): Bendeleben; Solomon Bibliographic Reference Council Area, Solomon D-4 and Bendeleben A-4 quadrangles, Seward Peninsula, Alaska: Alaska Division of

  15. Publications - GMC 55 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications GMC 55 main content DGGS GMC 55 Publication Details Title: Geochemical report TOC/rock-eval pyrolysis results for Louisiana ; Geophysical Surveys Geologic Materials Center Data Report 55, 18 p. http://doi.org/10.14509/19198 Publication

  16. 1. Historic American Buildings Survey, P. Kent Fairbanks, Photographer August, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Historic American Buildings Survey, P. Kent Fairbanks, Photographer August, 1968 WEST (FRONT) ELEVATION. - Spring City Area Study, Public School, Fourth & E Streets, Spring City, Sanpete County, UT

  17. 1. Historic American Buildings Survey, P. Kent Fairbanks, Photographer August, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Historic American Buildings Survey, P. Kent Fairbanks, Photographer August, 1968 SOUTH (FRONT) ELEVATION. - Spring City Area Study, Bishop's Storehouse, Fourth & E Streets, Spring City, Sanpete County, UT

  18. Publications - RI 2005-1A | Alaska Division of Geological & Geophysical

    Science.gov Websites

    the Solomon C-5 Quadrangle, Seward Peninsula, Alaska Authors: Werdon, M.B., Stevens, D.S.P., Newberry please see our publication sales page for more information. Quadrangle(s): Solomon Bibliographic , Geologic map of the Big Hurrah area, northern half of the Solomon C-5 Quadrangle, Seward Peninsula, Alaska

  19. Publications - PIR 2001-3C | Alaska Division of Geological & Geophysical

    Science.gov Websites

    content DGGS PIR 2001-3C Publication Details Title: Surficial-geologic map of the Eagle A-2 Quadrangle publication sales page for more information. Quadrangle(s): Eagle Bibliographic Reference Pinney, D.S., 2001 , Surficial-geologic map of the Eagle A-2 Quadrangle, Fortymile mining district, Alaska: Alaska Division of

  20. 75 FR 76294 - Radio Broadcasting Services; Fairbanks, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-08

    ... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 73 [DA 10-2211; MB Docket No. 10-81; RM-11600] Radio Broadcasting Services; Fairbanks, AK AGENCY: Federal Communications Commission. ACTION: Final rule. SUMMARY... Subjects in 47 CFR Part 73 Radio, Radio broadcasting. 0 For the reasons discussed in the preamble, the...

  1. Publications - RI 2005-1F | Alaska Division of Geological & Geophysical

    Science.gov Websites

    content DGGS RI 2005-1F Publication Details Title: Surficial geologic map of the Council Area, Solomon D-4 ): Bendeleben; Solomon Bibliographic Reference Stevens, D.S.P., 2005, Surficial geologic map of the Council Area , Solomon D-4 and Bendeleben A-4 quadrangles, Seward Peninsula, Alaska: Alaska Division of Geological &

  2. Publications - PIR 2001-3A | Alaska Division of Geological & Geophysical

    Science.gov Websites

    content DGGS PIR 2001-3A Publication Details Title: Geologic map of the Eagle A-2 Quadrangle, Fortymile ): Eagle Bibliographic Reference Werdon, M.B., Newberry, R.J., Szumigala, D.J., and Pinney, D.S., 2001 , Geologic map of the Eagle A-2 Quadrangle, Fortymile mining district, Alaska: Alaska Division of Geological

  3. Publications - RI 97-15A | Alaska Division of Geological & Geophysical

    Science.gov Websites

    content DGGS RI 97-15A Publication Details Title: Geologic map of the Tanana B-1 Quadrangle, central ., and Weber, F.R., 1997, Geologic map of the Tanana B-1 Quadrangle, central Alaska: Alaska Division of ; Other Oversized Sheets Maps & Other Oversized Sheets Sheet 1 Geologic map of the Tanana B-1

  4. Publications - RDF 2015-15 v. 1.1 | Alaska Division of Geological &

    Science.gov Websites

    geochemical data from rocks collected in 2015 in the Tok area, Tanacross A-5, A-6, and parts of adjacent rocks collected in 2015 in the Tok area, Tanacross A-5, A-6, and parts of adjacent quadrangles, Alaska Geophysical Surveys Skip to content State of Alaska myAlaska My Government Resident Business in

  5. Publications - AR 2015 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Publications Search Statewide Maps New Releases Sales Interactive Maps Databases Sections Geologic publication sales page for more information. Quadrangle(s): Alaska General Bibliographic Reference DGGS Staff

  6. Publications - GMC 402 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Authors: Full Metal Minerals Publication Date: Aug 2012 Publisher: Alaska Division of Geological & information. Quadrangle(s): Talkeetna Mountains Bibliographic Reference Full Metal Minerals, 2012, Borehole

  7. Publications - GMC 403 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    mining district, Alaska Authors: Full Metal Minerals, and Calista Corporation Publication Date: Aug 2012 Reference Full Metal Minerals, and Calista Corporation, 2012, Borehole inventory, assay results, drilling

  8. Publications - GMC 256 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    in the Paint River drainage of southwest Alaska Authors: Unknown Publication Date: 1995 Publisher or please see our publication sales page for more information. Bibliographic Reference Unknown, 1995

  9. Publications - GMC 367 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    . Minerals Management Service, and Core Laboratories Publication Date: Aug 2009 Publisher: Alaska Division of Bibliographic Reference U.S. Minerals Management Service, and Core Laboratories, 2009, Sidewall core analyses

  10. Publications - GMC 355 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 355 Publication Details Title: Bristol Bay Native Corp iron, titanium, platinum Kemuk Mountain ): Alaska Statewide Bibliographic Reference ALS Chemex, 2008, Bristol Bay Native Corp iron, titanium

  11. Staff - Karri R. Sicard | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Raw Data File 2017-5, 26 p. http://doi.org/10.14509/29727 Todd, Erin, Kylander-Clark, Andrew, Wypych Geological & Geophysical Surveys Raw Data File 2017-2, 7 p. http://doi.org/10.14509/29717 Wypych, Alicja ; Geophysical Surveys Raw Data File 2016-9, 3 p. http://doi.org/10.14509/29685 Twelker, Evan, Freeman, L.K

  12. Publications - GMC 369 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 369 Publication Details Title: Pyramid Project: Aleut-Quintana-Duval Joint Venture Report on Project: Aleut-Quintana-Duval Joint Venture Report on 1975 Drill Programme: Alaska Division of Geological

  13. Publications - GMC 214 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Chevron USA Inc. OCS Y-0996-1 (Diamond #1) well Authors: Unknown Publication Date: 1993 Publisher: Alaska see our publication sales page for more information. Bibliographic Reference Unknown, 1993, Vitrinite

  14. Publications - GMC 165 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    4678.5') from North Cook Inlet Unit A-2 well Authors: Unknown Publication Date: 1990 Publisher: Alaska see our publication sales page for more information. Bibliographic Reference Unknown, 1990, Velocity

  15. Publications - GMC 251 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 251 Publication Details Title: Whole rock vitrinite reflectance data from NPRA wells Authors . Bibliographic Reference Unknown, 1995, Whole rock vitrinite reflectance data from NPRA wells: Alaska Division of

  16. Maintenance of influenza A viruses and antibody response in mallards (Anas platyrhynchos) sampled during the non-breeding season in Alaska

    PubMed Central

    Lindberg, Mark S.; Meixell, Brandt W.; Smith, Kyle R.; Puryear, Wendy B.; Davis, Kimberly R.; Runstadler, Jonathan A.; Stallknecht, David E.; Ramey, Andrew M.

    2017-01-01

    Prevalence of influenza A virus (IAV) infections in northern-breeding waterfowl has previously been reported to reach an annual peak during late summer or autumn; however, little is known about IAV infection dynamics in waterfowl populations persisting at high-latitude regions such as Alaska, during winter. We captured mallards (Anas platyrhynchos) throughout the non-breeding season (August–April) of 2012–2015 in Fairbanks and Anchorage, the two largest cities in Alaska, to assess patterns of IAV infection and antibody production using molecular methods and a standard serologic assay. In addition, we used virus isolation, genetic sequencing, and a virus microneutralization assay to characterize viral subtypes and to evaluate the immune response of mallards captured on multiple occasions through time. We captured 923 mallards during three successive sampling years: Fairbanks in 2012/13 and 2013/14, and Anchorage in 2014/15. Prevalence varied by age, season, and year/site with high and relatively stable estimates throughout the non-breeding season. Infected birds were detected in all locations/seasons except early-winter in Fairbanks during 2013/14. IAVs with 17 combinations of hemagglutinin (H1–5, H7–9, H11, H12) and neuraminidase (N1–6, N8, N9) subtypes were isolated. Antibodies to IAVs were detected throughout autumn and winter for all sampling locations and years, however, seroprevalence was higher among adults and varied among years. Mallards exhibited individual heterogeneity with regard to immune response, providing instances of both seroconversion and seroreversion to detected viral subtypes. The probability that an individual transitioned from one serostatus to another varied by age, with juvenile mallards having higher rates of seroconversion and seroreversion than adults. Our study provides evidence that a diversity of IAVs circulate in populations of mallards wintering at urban locations in Alaska, and we suggest waterfowl wintering at high

  17. Maintenance of influenza A viruses and antibody response in mallards (Anas platyrhynchos) sampled during the non-breeding season in Alaska

    USGS Publications Warehouse

    Spivey, Timothy; Lindberg, Mark S.; Meixell, Brandt W.; Smith, Kyle R.; Puryear, Wendy Blay; Davis, Kimberly R.; Runstadler, Jonathan A.; Stallknecht, David E.; Ramey, Andy M.

    2017-01-01

    Prevalence of influenza A virus (IAV) infections in northern-breeding waterfowl has previously been reported to reach an annual peak during late summer or autumn; however, little is known about IAV infection dynamics in waterfowl populations persisting at high-latitude regions such as Alaska, during winter. We captured mallards (Anas platyrhynchos) throughout the non-breeding season (August–April) of 2012–2015 in Fairbanks and Anchorage, the two largest cities in Alaska, to assess patterns of IAV infection and antibody production using molecular methods and a standard serologic assay. In addition, we used virus isolation, genetic sequencing, and a virus microneutralization assay to characterize viral subtypes and to evaluate the immune response of mallards captured on multiple occasions through time. We captured 923 mallards during three successive sampling years: Fairbanks in 2012/13 and 2013/14, and Anchorage in 2014/15. Prevalence varied by age, season, and year/site with high and relatively stable estimates throughout the non-breeding season. Infected birds were detected in all locations/seasons except early-winter in Fairbanks during 2013/14. IAVs with 17 combinations of hemagglutinin (H1–5, H7–9, H11, H12) and neuraminidase (N1–6, N8, N9) subtypes were isolated. Antibodies to IAVs were detected throughout autumn and winter for all sampling locations and years, however, seroprevalence was higher among adults and varied among years. Mallards exhibited individual heterogeneity with regard to immune response, providing instances of both seroconversion and seroreversion to detected viral subtypes. The probability that an individual transitioned from one serostatus to another varied by age, with juvenile mallards having higher rates of seroconversion and seroreversion than adults. Our study provides evidence that a diversity of IAVs circulate in populations of mallards wintering at urban locations in Alaska, and we suggest waterfowl wintering at high

  18. Publications - GMC 335 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 335 Publication Details Title: Geochemical analysis of core (3340'-3625') from the BP Reference ExxonMobil, 2006, Geochemical analysis of core (3340'-3625') from the BP Exploration (Alaska) Inc

  19. Publications - GMC 362 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 362 Publication Details Title: QFT (Fluorescence) Characterization for Inigok #1, Milne Pt (Fluorescence) Characterization for Inigok #1, Milne Pt Unit KR #A-01, Itkillik Unit #1 wells: Alaska Division

  20. Publications - GMC 116 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    hydrocarbon data) of cuttings from OCS Y-0849-1 (Hammerhead #1) well Authors: Unocal Corporation Publication data) of cuttings from OCS Y-0849-1 (Hammerhead #1) well: Alaska Division of Geological &

  1. Publications - GMC 427 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 427 Publication Details Title: Gas Chromatography coupled to Tandem Mass Spectrometry (GC/MS Tandem Mass Spectrometry (GC/MS/MS) analyses of cuttings for 16 Arctic Slope wells: Alaska Division of

  2. Publications - GMC 221 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    core (6,196-6,571') of the Amerada Hess Corporation Colville Delta 25 #1 well Authors: Unknown ') of the Amerada Hess Corporation Colville Delta 25 #1 well: Alaska Division of Geological &

  3. Publications - GMC 332 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 332 Publication Details Title: X-Ray Diffraction analysis and flow testing of Hemlock information. Quadrangle(s): Alaska Statewide Bibliographic Reference BJ Services Company , 2006, X-Ray

  4. Publications - GMC 293 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    exploratory hole, Healy A-6 Quadrangle, Alaska Authors: Kennecott Exploration Publication Date: 2000 Publisher Exploration, 2000, Geologic log of the Kennecott Exploration McCallie Creek MC-1 exploratory hole, Healy A-6

  5. Publications - GMC 135 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 135 Publication Details Title: Vitrinite reflectance data and a description of organic matter description of organic matter of cuttings from the Pan American Chuitna River State 3193 #1 well: Alaska

  6. Publications - GMC 349 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    '-4710') from the Tenneco OCS Y-0338-1 (Phoenix #1) well Authors: Humble Geochemical Services Publication cuttings samples (4650'-4710') from the Tenneco OCS Y-0338-1 (Phoenix #1) well: Alaska Division of

  7. Publications - GMC 333 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    following six wells from the North Slope region, Alaska: Amethyst State #1, Awuna #1, Oumalik Test #1, Susie ., 2006, Apatite Fission Track analysis of cutting samples from the following six wells from the North

  8. Publications - GMC 291 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 291 Publication Details Title: Geologic log of and measured air-dry gas content desorption Reference State of Alaska, and Seamount, D.T., 2000, Geologic log of and measured air-dry gas content

  9. Publications - GMC 373 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 373 Publication Details Title: 1964 Bear Creek Mining Company drill logs and assay records for and assay records for the Orange Hill Property, Nabesna Quadrangle, Alaska: Drill holes OH #1 and OH

  10. 40 CFR 81.302 - Alaska.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... District Northwest Arctic Borough Southeast Fairbanks Election District Upper Yukon Election District Yukon... Election District Northwest Arctic Borough Southeast Fairbanks Election District Upper Yukon Election... Nome Census Area North Slope Borough Northwest Arctic Borough Southeast Fairbanks Census Area Yukon...

  11. 40 CFR 81.302 - Alaska.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Fairbanks N. Star Borough Area other than portion of Fairbanks urban area designated Nonattainment Kobuk... Unclassifiable/Attainment Denali Borough Fairbanks North Star Borough Nome Census Area North Slope Borough... Star Borough Unclassifiable/Attainment. Nome Census Area Unclassifiable/Attainment. North Slope Borough...

  12. Clean Air Act oversight: field hearings. Hearings before the Committee on Environment and Public Works, United States Senate, Ninety-Seventh Congress, First Session, June 27, 1981 Seattle, Washington, June 30, 1981 Randolph, Vermont, July 1, 1981 Albany, New York, July 1, 1981 Fairbanks, Alaska, Part 7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-01-01

    Part 7 of the field hearings report covers hearings held on June 27, 1981 in Seattle, Washington, June 30, 1981 in Randolph, Vermont, July 1, 1981 in Albany, NY, and also July 1, 1981 in Fairbanks, Alaska. A total of 122 witnesses appeared to express their views on reauthorizing the Clean Air Act and to suggest possible amendments. Witnesses represented federal and state agencies, local businesses, and public interest groups. Witnesses were asked to address the issues of health standards, the Prevention of Significant Deterioration rule, all air pollutants and the effects, and the lack of clear responsibility and flexibilitymore » in the Clean Air Act. Present at the Albany meeting were representatives from the Canadian government, which is concerned with the problem of transboundary pollution. The record includes the testimony and supporting materials submitted for the record. (DCK)« less

  13. Publications - GMC 225 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    following Alaskan arctic White Hills oil and gas wells: ARCO Alaska Inc. Kavik #1 (75' - 9540'); and BP O'Sullivan, P.B., 1994, Apatite fission track data derived from cuttings of the following Alaskan arctic

  14. Publications - GMC 219 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Paul G. Benedum Nulato Unit #1 well Authors: Murphy, J.M. Publication Date: 1993 Publisher: Alaska , Apatite fission track data of cuttings (1,000-11,500') from the Paul G. Benedum Nulato Unit #1 well

  15. Results from the April 2009 Gulf of Alaska Line Transect Survey (GOALS) in the Navy Training Exercise Area

    DTIC Science & Technology

    2010-05-01

    Fairbanks. Stafford , K. M., D. K. Mellinger, S. E. Moore, and C. G. Fox. 2007. Seasonal variability and detection range modeling of baleen whale ...hours/day surveying a total of 3,519 km (1,900 nmi) and recorded 49 acoustic iv   detections of sperm whales (Physeter macrocephalus) and killer...Alaska have been used to record calls from blue , humpback and fin whales throughout the year ( Stafford et al. 2007). Despite the challenges of

  16. Publications - GMC 129 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 129 Publication Details Title: Visual kerogen and TAI data of select cuttings and core from , Visual kerogen and TAI data of select cuttings and core from the Chevron USA Inc. Akulik #1 well: Alaska

  17. Publications - GMC 271 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    ') and of core (9,683-9,694') from the ARCO Alaska Inc. Tulaga #1 well Authors: Unknown Publication Date Reference Unknown, 1996, Vitrinite reflectance maceral data of cuttings (1,200-11,742') and of core (9,683

  18. Publications - GMC 307 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 307 Publication Details Title: Porosity and permeability data derived from core chips of the and permeability data derived from core chips of the ARCO Alaska Inc. Tarn # 2 (5,517.15'-5,643.15

  19. Publications - GMC 268 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 268 Publication Details Title: Whole oil-gas chromatogram of Prudhoe Bay Sadlerochit oil from Unknown, 1996, Whole oil-gas chromatogram of Prudhoe Bay Sadlerochit oil from the BP Exploration (Alaska

  20. Public Health Nursing: Public Health Centers

    Science.gov Websites

    Locations Anchorage-based Itinerants Bethel Craig Delta Junction Dillingham Fairbanks Homer Juneau Kenai agencies with state grant assistance Frontier Region Delta Junction Dillingham Fairbanks Kodiak Nome Tok [back to top] Delta Junction Public Health Center 2857 Alaska Hwy, Room 210 Delta Junction, Alaska 99737