Science.gov

Sample records for alaska fire service

  1. State of Alaska Fire Service Training. Instructor Certification Standards.

    ERIC Educational Resources Information Center

    Hagevig, William

    Designed for local Alaskan fire departments, this pamphlet provides the criteria and qualifications for certificates of firefighter instructors (basic, advanced, master), a list of approved subject categories for each level of certification, sample certification applications, a list of resource publications, and a training course outline (basic…

  2. Alaska and Yukon Fires

    Atmospheric Science Data Center

    2014-05-15

    article title:  Smoke Signals from the Alaska and Yukon Fires   ... the Yukon Territory from mid-June to mid-July, 2004. Thick smoke particles filled the air during these fires, prompting Alaskan officials to issue air quality warnings. Some of the smoke from these fires was detected as far away as New Hampshire. These ...

  3. Customer Service in Alaska.

    ERIC Educational Resources Information Center

    Ogliore, Judy

    1997-01-01

    Examines how the child support enforcement program in Alaska has responded to the challenges of distance, weather, and cultural differences through training representatives, making waiting areas more comfortable, conducting random customer evaluation of services, establishing travel hubs in regional offices and meeting with community leaders and…

  4. FIRE SERVICE TRAINING.

    ERIC Educational Resources Information Center

    BERNDT, WILLIAM M.; AND OTHERS

    STUDENTS MAY USE THIS REVISED MANUAL IN FIRE STATION OR TRAINING CENTER EXTENSION PROGRAMS FOR IMPROVING THE COMPETENCIES AND SKILLS OF LOCAL FIRE PERSONNEL IN THE SPECIALIZED FIELD OF FIRE SERVICE. IT WAS DEVELOPED BY A STATEWIDE COMMITTEE OF FIRE-FIGHTING CONSULTANTS AND ADVISORY GROUPS. THE 26 CHAPTERS PROVIDE BOTH BASIC AND ADVANCED TECHNICAL…

  5. Forest Fires Produce Dense Smoke over Alaska

    NASA Technical Reports Server (NTRS)

    2005-01-01

    On August 14, 2005, the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite captured this stunning image of forest fires raging across the width of Alaska. Smoke from scores of fires (marked in red) filled the state's broad central valley and poured out to sea. Hemmed in by mountains to the north and the south, the smoke spreads westward and spills out over the Bering and Chukchi Seas (image left). More than a hundred fires were burning across the state as of August 14. Air quality warnings have been issued for about 90 percent of the Interior, according to the August 12 report from the Alaska Department of Environmental Conservation's Division of Air Quality. Conditions have ranged from 'very unhealthy' to 'hazardous' over the weekend in many locations, including Fairbanks. A large area of high atmospheric pressure spread over much of the state, keeping temperatures high and reducing winds that would clear the air.

  6. Variability in the Geographic Distribution of Fires in Interior Alaska Considering Cause, Human Proximity, and Level of Suppression

    NASA Astrophysics Data System (ADS)

    Calef, M. P.; Varvak, A.; McGuire, A. D.; Chapin, T.

    2015-12-01

    The boreal forest of Interior Alaska is characterized by frequent extensive wildfires that have been mapped for the past 70 years. Simple predictions based on this record indicate that area burned will increase as a response to climate warming in Alaska. However, two additional factors have affected the area burned in this time record: the Pacific Decadal Oscillation (PDO) switched from cool and moist to warm and dry in the late 1970s and the Alaska Fire Service instituted a fire suppression policy in the late 1980s. Using Geographic Information Systems (GIS) and statistics, this presentation evaluates the variability in area burned and fire ignitions in Interior Alaska in space and time with particular emphasis on the human influence via ignition and suppression. Our analysis shows that while area burned has been increasing by 2.4% per year, the number of lightning ignitions has decreased by 1.9 ignitions per year. Human ignitions account for 50% of all fire ignitions in Interior Alaska and are clearly influenced by human proximity: human fires mostly occur close to settlements, highways and in intense fire suppression zones (which are in turn close to human settlements and roads); fires close to settlements, highways and in intense fire suppression zones burn much shorter than fires further away from this sphere of human influence; and 60% of all human fire ignitions in Interior Alaska are concentrated in the Fairbanks area and thereby strongly influence regional analyses. Fire suppression has effectively reduced area burned since it was implemented but the PDO change has also had some influence. Finally, we found that human fires start earlier in the year and burn for a shorter duration than lightning fires. This study provides insights into the importance of human behavior as well as regional climate patterns as large-scale controls on fires over time and across the Alaskan boreal forest.

  7. Automated system for smoke dispersion prediction due to wild fires in Alaska

    NASA Astrophysics Data System (ADS)

    Kulchitsky, A.; Stuefer, M.; Higbie, L.; Newby, G.

    2007-12-01

    Community climate models have enabled development of specific environmental forecast systems. The University of Alaska (UAF) smoke group was created to adapt a smoke forecast system to the Alaska region. The US Forest Service (USFS) Missoula Fire Science Lab had developed a smoke forecast system based on the Weather Research and Forecasting (WRF) Model including chemistry (WRF/Chem). Following the successful experience of USFS, which runs their model operationally for the contiguous U.S., we develop a similar system for Alaska in collaboration with scientists from the USFS Missoula Fire Science Lab. Wildfires are a significant source of air pollution in Alaska because the climate and vegetation favor annual summer fires that burn huge areas. Extreme cases occurred in 2004, when an area larger than Maryland (more than 25000~km2) burned. Small smoke particles with a diameter less than 10~μm can penetrate deep into lungs causing health problems. Smoke also creates a severe restriction to air transport and has tremendous economical effect. The smoke dispersion and forecast system for Alaska was developed at the Geophysical Institute (GI) and the Arctic Region Supercomputing Center (ARSC), both at University of Alaska Fairbanks (UAF). They will help the public and plan activities a few days in advance to avoid dangerous smoke exposure. The availability of modern high performance supercomputers at ARSC allows us to create and run high-resolution, WRF-based smoke dispersion forecast for the entire State of Alaska. The core of the system is a Python program that manages the independent pieces. Our adapted Alaska system performs the following steps \\begin{itemize} Calculate the medium-resolution weather forecast using WRF/Met. Adapt the near real-time satellite-derived wildfire location and extent data that are received via direct broadcast from UAF's "Geographic Information Network of Alaska" (GINA) Calculate fuel moisture using WRF forecasts and National Fire Danger

  8. FIRE SERVICE TRAINING, LEARNER'S WORKBOOK, BASIC COURSE.

    ERIC Educational Resources Information Center

    BERNDT, WILLIAM M.; AND OTHERS

    STUDENTS MAY USE THIS STUDY GUIDE IN A 34-HOUR FIRE SERVICE TRAINING EXTENSION PROGRAM TO IMPROVE THEIR COMPETENCIES AND SKILLS IN THE SPECIALIZED FIELD OF FIRE SERVICE. IT WAS DEVELOPED BY A STATEWIDE COMMITTEE OF FIRE FIGHTING CONSULTANTS AND ADVISORY GROUPS. THE 26 ASSIGNMENT SHEETS, KEYED TO THE CHAPTERS IN THE FIRE SERVICE TRAINING…

  9. 76 FR 59420 - Proposed Information Collection; Alaska Guide Service Evaluation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-26

    ... Fish and Wildlife Service Proposed Information Collection; Alaska Guide Service Evaluation AGENCY: Fish... Service Evaluation) to help us evaluate commercial guide services on our national wildlife refuges in the.... Data OMB Control Number: 1018-0141. Title: Alaska Guide Service Evaluation. Service Form Number(s):...

  10. Fire behavior, weather, and burn severity of the 2007 anaktuvuk river tundra fire, North Slope, Alaska

    USGS Publications Warehouse

    Jones, B.; Kolden, C.; Jandt, R.; Abatzoglou, J.; Urban, F.; Arp, C.

    2009-01-01

    In 2007, the Anaktuvuk River Fire (ARF) became the largest recorded tundra fire on the North Slope of Alaska. The ARF burned for nearly three months, consuming more than 100,000 ha. At its peak in early September, the ARF burned at a rate of 7000 ha d-1. The conditions potentially responsible for this large tundra fire include modeled record high summer temperature and record low summer precipitation, a late-season high-pressure system located over the Beaufort Sea, extremely dry soil conditions throughout the summer, and sustained southerly winds during the period of vegetation senescence. Burn severity mapping revealed that more than 80% of the ARF burned at moderate to extreme severity, while the nearby Kuparuk River Fire remained small and burned at predominantly (80%) low severity. While this study provides information that may aid in the prediction of future large tundra fires in northern Alaska, the fact that three other tundra fires that occurred in 2007 combined to burn less than 1000 ha suggests site specific complexities associated with tundra fires on the North Slope, which may hamper the development of tundra fire forecasting models.

  11. Fire Service Training. Fire Stream Practices. (Revised).

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Community Colleges, Raleigh.

    One of a set of fourteen instructional outlines for use in a course to train novice firemen, this guide covers the topic of fire streams. The various types of fire streams are identified as well as the methods used to produce them, emphasizing the operation of nozzles and the different kinds of friction loss. Designed to be used with the Robert J.…

  12. FIRE SERVICE TRAINING, INSTRUCTOR'S MANUAL, BASIC COURSE.

    ERIC Educational Resources Information Center

    BERNDT, WILLIAM M.; AND OTHERS

    INSTRUCTORS CAN USE THIS MANUAL IN CONDUCTING A 34-HOUR FIRE STATION OR TRAINING CENTER EXTENSION PROGRAM TO IMPROVE THE COMPETENCIES AND SKILLS OF LOCAL FIRE PERSONNEL IN THE SPECIALIZED FIELD OF FIRE SERVICE. IT WAS DEVELOPED BY A STATEWIDE COMMITTEE OF FIRE FIGHTING CONSULTANTS AND ADVISORY GROUPS. THE 26 TEACHING GUIDES PROVIDE INSTRUCTIONAL…

  13. The detection and interpretation of fire-disturbed boreal forest ecosystems in Alaska using spaceborne SAR data

    SciTech Connect

    Bourgeau-Chavez, L.L.; Kasischke, E.S.; French, N.H.F. )

    1993-06-01

    There is great interest in the ability to remotely monitor changes in boreal forest ecosystems for the understanding and balancing of the global carbon budget. The purpose of this study is to evaluate the utility of spaceborne synthetic aperture radar (SAR), particularly the ERS-1 C-VV SAR, for the detection and interpretation of fire-disturbed boreal forest ecosystems in the state of Alaska. The Alaska Fire Service has provided fire maps and records for comparison with the SAR data. Preliminary results have found that the following all have an influence on the detectability of a fire-scar (1) the time elapsed since the fire occurred, (2) the season in which the SAR data is collected, and (3) the geomorphology of the landscape in which the fire occurred. This paper demonstrates the usefulness of SAR in the estimation of the areal extent of fires. It also evaluates the potential usefulness of SAR in providing information on the spatial variability of bum intensity.

  14. Alaska's Changing Fire Regime - Implications for the Vulnerability of Its Boreal Forests

    NASA Technical Reports Server (NTRS)

    Kasischke, E. S.; Hoy, E. E.; Verbyla, D. L.; Rupp, T. S.; Duffy, P. A.; McGuire, A. D.; Murphy, K. A.; Jandt, R.; Barnes, J. L.; Calef, M.; Turetsky, M. R.

    2010-01-01

    A synthesis was carried out to examine Alaska s boreal forest fire regime. During the 2000s, an average of 767 000 ha/year burned, 50% higher than in any previous decade since the 1940s. Over the past 60 years, there was a decrease in the number of lightning-ignited fires, an increase in extreme lightning-ignited fire events, an increase in human-ignited fires, and a decrease in the number of extreme human-ignited fire events. The fraction of area burned from humanignited fires fell from 26% for the 1950s and 1960s to 5% for the 1990s and 2000s, a result from the change in fire policy that gave the highest suppression priorities to fire events that occurred near human settlements. The amount of area burned during late-season fires increased over the past two decades. Deeper burning of surface organic layers in black spruce (Picea mariana (Mill.) BSP) forests occurred during late-growing-season fires and on more well-drained sites. These trends all point to black spruce forests becoming increasingly vulnerable to the combined changes of key characteristics of Alaska s fire regime, except on poorly drained sites, which are resistant to deep burning. The implications of these fire regime changes to the vulnerability and resilience of Alaska s boreal forests and land and fire management are discussed.

  15. 77 FR 30320 - National Park Service Alaska Region's Subsistence Resource Commission

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-22

    ... National Park Service National Park Service Alaska Region's Subsistence Resource Commission AGENCY: National Park Service, Interior. ACTION: Notice of open public meeting and teleconference for the National Park Service (NPS) Alaska Region's Subsistence Resource Commission (SRC) program. SUMMARY: The Gates...

  16. 76 FR 1458 - Public Meeting for the National Park Service Alaska Region's Subsistence Resource Commission (SRC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-10

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR National Park Service Public Meeting for the National Park Service Alaska Region's Subsistence Resource... National Park Service Alaska Region's Subsistence Resource Commission (SRC) program. SUMMARY: The...

  17. Vulnerability and adaptation to climate-related fire impacts in rural and urban interior Alaska

    USGS Publications Warehouse

    Trainor, Sarah F.; Calef, Monika; Natcher, David; Chapin, F. Stuart, III; McGuire, Anthony; Huntington, Orville; Duffy, Paul A; Rupp, T. Scott; DeWilde, La'Ona; Kwart, Mary; Fresco, Nancy; Lovecraft, Amy Lauren

    2009-01-01

    This paper explores whether fundamental differences exist between urban and rural vulnerability to climate-induced changes in the fire regime of interior Alaska. We further examine how communities and fire managers have responded to these changes and what additional adaptations could be put in place. We engage a variety of social science methods, including demographic analysis, semi-structured interviews, surveys, workshops and observations of public meetings. This work is part of an interdisciplinary study of feedback and interactions between climate, vegetation, fire and human components of the Boreal forest social–ecological system of interior Alaska. We have learned that although urban and rural communities in interior Alaska face similar increased exposure to wildfire as a result of climate change, important differences exist in their sensitivity to these biophysical, climate-induced changes. In particular, reliance on wild foods, delayed suppression response, financial resources and institutional connections vary between urban and rural communities. These differences depend largely on social, economic and institutional factors, and are not necessarily related to biophysical climate impacts per se. Fire management and suppression action motivated by political, economic or other pressures can serve as unintentional or indirect adaptation to climate change. However, this indirect response alone may not sufficiently reduce vulnerability to a changing fire regime. More deliberate and strategic responses may be required, given the magnitude of the expected climate change and the likelihood of an intensification of the fire regime in interior Alaska.

  18. Persistent Effects of Fire Severity on Early Successional Forests in Interior Alaska

    NASA Technical Reports Server (NTRS)

    Shenoy, Aditi; Johnstone, Jill F.; Kasischke, Eric S.; Kielland, Knut

    2011-01-01

    There has been a recent increase in the frequency and extent of wildfires in interior Alaska, and this trend is predicted to continue under a warming climate. Although less well documented, corresponding increases in fire severity are expected. Previous research from boreal forests in Alaska and western Canada indicate that severe fire promotes the recruitment of deciduous tree species and decreases the relative abundance of black spruce (Picea mariana) immediately after fire. Here we extend these observations by (1) examining changes in patterns of aspen and spruce density and biomass that occurred during the first two decades of post-fire succession, and (2) comparing patterns of tree composition in relation to variations in post-fire organic layer depth in four burned black spruce forests in interior Alaska after 10-20 years of succession.Wefound that initial effects of fire severity on recruitment and establishment of aspen and black spruce were maintained by subsequent effects of organic layer depth and initial plant biomass on plant growth during post-fire succession. The proportional contribution of aspen (Populus tremuloides) to total stand biomass remained above 90% during the first and second decades of succession in severely burned sites, while in lightly burned sites the proportional contribution of aspen was reduced due to a 40- fold increase in spruce biomass in these sites. Relationships between organic layer depth and stem density and biomass were consistently negative for aspen, and positive or neutral for black spruce in all four burns. Our results suggest that initial effects of post-fire organic layer depths on deciduous recruitment are likely to translate into a prolonged phase of deciduous dominance during post-fire succession in severely burned stands. This shift in vegetation distribution has important implications for climate-albedo feedbacks, future fire regime, wildlife habitat quality and natural resources for indigenous subsistence

  19. 46 CFR 107.235 - Servicing of hand portable fire extinguishers, semi-portable fire extinguishers and fixed fire...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Servicing of hand portable fire extinguishers, semi... CERTIFICATION Inspection and Certification § 107.235 Servicing of hand portable fire extinguishers, semi-portable fire extinguishers and fixed fire-extinguishing systems. (a) Each hand portable fire...

  20. 46 CFR 107.235 - Servicing of hand portable fire extinguishers, semi-portable fire extinguishers and fixed fire...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Servicing of hand portable fire extinguishers, semi... CERTIFICATION Inspection and Certification § 107.235 Servicing of hand portable fire extinguishers, semi-portable fire extinguishers and fixed fire-extinguishing systems. (a) Each hand portable fire...

  1. Modeling the effects of fire severity on soil organic horizons and forest composition in Interior Alaska

    NASA Astrophysics Data System (ADS)

    Genet, H.; Barrett, K. M.; Johnstone, J. F.; McGuire, A. D.; Yuan, F.; Euskirchen, E. S.; Kasischke, E. S.; Rupp, S. T.; Turetsky, M. R.

    2012-12-01

    The fire regime in the boreal region of interior Alaska has been intensifying in terms of both area burned and severity over the last three decades. Based on projections of climate change, this trend is expected to continue throughout the 21st century. Fire causes abrupt changes in energy, nutrient and water balances influencing habitat and vegetation composition. An important factor influencing these changes is the reduction of the soil organic horizon because of differential regeneration capabilities of conifer and evergreen shrubs vs. deciduous and herbaceous vegetation on organic vs. mineral soils. The goal of this study is to develop a prognostic model to simulate the effects of fire severity on soil organic horizons and to evaluate its long-term consequences on forest composition in interior Alaska. Existing field observations were analyzed to build a predictive model of the depth of burning of soil organic horizon after a fire. The model is driven by data sets of fire occurrence, climate, and topography. Post-fire vegetation succession was simulated as a function of post-fire organic horizon depth. The fire severity and post-fire vegetation succession models were then implemented within a biogeochemistry model, the process-based Terrestrial Ecosystem Model. Simulations for 21st century climate scenarios at a 1 by 1km resolution for the Alaska Yukon River Basin were conducted to evaluate the effects of considering vs. ignoring post-fire vegetation succession on carbon dynamics. The results of these simulations indicate that it is important for ecosystem models to represent the influence of fire severity on post-fire vegetation succession in order to fully understand the consequences of changes in climate and disturbance regimes on boreal ecosystems.

  2. Fire Service Training. Rope Practices. (Revised).

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Community Colleges, Raleigh.

    One of a set of fourteen instructional outlines for use in a course to train novice fireman, this guide covers the topic of rope usage. Developed from and designed to be used with the Brady Firefighting Service Transparencies on rope and the International Fire Service Training Association Manual No. 101, "Forcible Entry, Rope and Portable…

  3. NWS Alaska Sea Ice Program: Operations and Decision Support Services

    NASA Astrophysics Data System (ADS)

    Schreck, M. B.; Nelson, J. A., Jr.; Heim, R.

    2015-12-01

    The National Weather Service's Alaska Sea Ice Program is designed to service customers and partners operating and planning operations within Alaska waters. The Alaska Sea Ice Program offers daily sea ice and sea surface temperature analysis products. The program also delivers a five day sea ice forecast 3 times each week, provides a 3 month sea ice outlook at the end of each month, and has staff available to respond to sea ice related information inquiries. These analysis and forecast products are utilized by many entities around the state of Alaska and nationally for safety of navigation and community strategic planning. The list of current customers stem from academia and research institutions, to local state and federal agencies, to resupply barges, to coastal subsistence hunters, to gold dredgers, to fisheries, to the general public. Due to a longer sea ice free season over recent years, activity in the waters around Alaska has increased. This has led to a rise in decision support services from the Alaska Sea Ice Program. The ASIP is in constant contact with the National Ice Center as well as the United States Coast Guard (USCG) for safety of navigation. In the past, the ASIP provided briefings to the USCG when in support of search and rescue efforts. Currently, not only does that support remain, but our team is also briefing on sea ice outlooks into the next few months. As traffic in the Arctic increases, the ASIP will be called upon to provide more and more services on varying time scales to meet customer needs. This talk will address the many facets of the current Alaska Sea Ice Program as well as delve into what we see as the future of the ASIP.

  4. Willow Shrub Expansion Following Tundra Fires in Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Racine, C.

    2010-12-01

    Climate warming in the Arctic is predicted to result in the expansion of woody shrubs and increased frequency and size of tundra fires. How will fire influence this shrub expansion? Over a period of 32 years, following a 1977 tundra fire in the central Seward Peninsula, we sampled seven times the post-fire vegetation at eight permanently marked sites on a long (2 Km) hillslope (Nimrod Hill). We had previously sampled vegetation here in 1973 prior to the fire. By 2001, 24 years post-fire conspicuous willow shrubs (mostly Salix pulchra) had increased in numbers, size and cover over the entire slope in moist tussock-shrub tundra, well-drained heath, and wet meadow. Prior to fire, willow on this slope was largely restricted to small drainages or watertracks. Willows here have originated from both seed and vegetative resprouting - the latter mostly in moist tussock-shrub tundra from willows resprouting within one to three years post-fire. With fire-induced removal of vascular plant competition and Spagnum moss cover and litter in tussock-shrub tundra, both seedling and resprouting willows have grown rapidly to overtop tussocks by 30-40 cm. Similar rapid post-fire resprouting of willows has been observed in tussock-shrub tundra after the 2007 Anaktuvuk River tundra fire and after the 1977 tundra fires in the Noatak River basin. On Nimrod Hill the most striking willow expansion has occurred on the severely burned and well-drained backslope where willow establishment from seed 5-10 years after fire has resulted in up to 40% cover of rapidly growing willows of both upright and spreading growth form. At several sites along the slope there is evidence of continuing willow expansion from seedlings 24 to 32 years post-fire, when we might expect the effects of fire on seedbeds would have ceased. We conclude that tundra fire may promote shrub expansion in the Arctic.

  5. Carbon-sequestration and ecosystem services in the boreal ecoregion of Alaska

    NASA Astrophysics Data System (ADS)

    Wang, B.; Manies, K.; Labay, K.; Johnson, W. N.; Harden, J. W.

    2011-12-01

    Managing public lands for carbon (C) sequestration is increasingly discussed as a component of national carbon policies. However, management of public land to facilitate carbon sequestration must be considered in the context of other management mandates and the effects on other ecosystem services. Of the United States Fish and Wildlife Service's (USFWS) National Wildlife Refuge lands in Alaska, about 35% are in the boreal ecoregion; primarily in the Intermountain and the Alaska Range Transition ecoregions. These refuges were established to conserve wildlife habitat, fulfill treaty obligations, provide for continued subsistence uses, and ensure necessary water quality and quantity. One of the major factors in determining ecosystem distribution in the boreal ecoregion is disturbance. Fire is the dominant disturbance for Alaska's boreal region. Most USFWS refuge lands are managed with "limited" suppression, where fires burn naturally and are monitored to assure the protection of human life, property, and site specific values (such as historical or religious). However, there is increasing interest in biomass harvest and combustion for local energy production. Harvest and fire can have differing effects on both the spatial and temporal aspects of carbon storage. The current biomass harvest for energy production proposals are considered to be C neutral because they focus on "hazardous" biomass which would burn naturally or in a prescribed burn. The goal of this effort is to explore the relation between C storage and other public land management priorities, as well as, to explore how disturbance type (fire and harvest) affect C storage and boreal ecosystem distribution in the context of wildlife habitat and subsistence use management priorities. We present a conceptual model that defines the linkages among these management priorities, a data gap analysis, and scenarios to be evaluated.

  6. Fire Behavior. Fire Service Certification Series. Unit FSCS-FF-3-80.

    ERIC Educational Resources Information Center

    Pribyl, Paul F.

    This training unit on fire behavior is part of a 17-unit course package written to aid instructions in the development, teaching, and evaluation of fire fighters in the Wisconsin Fire Service Certification Series. The purpose stated for the 8.5-hour unit is to assist fire fighters in gaining an understanding of fire behavior--chemistry of the…

  7. Elevated Blood Lead Levels Among Fire Assay Workers and Their Children in Alaska, 2010-2011.

    PubMed

    Porter, Kimberly A; Kirk, Cassandra; Fearey, Donna; Castrodale, Louisa J; Verbrugge, David; McLaughlin, Joseph

    2015-01-01

    In October 2010, an employee at Facility A in Alaska that performs fire assay analysis, an industrial technique that uses lead-containing flux to obtain metals from pulverized rocks, was reported to the Alaska Section of Epidemiology (SOE) with an elevated blood lead level (BLL) ≥10 micrograms per deciliter (μg/dL). The SOE initiated an investigation; investigators interviewed employees, offered blood lead screening to employees and their families, and observed a visit to the industrial facility by the Alaska Occupational Safety and Health Section (AKOSH). Among the 15 employees with known work responsibilities, 12 had an elevated BLL at least once from October 2010 through February 2011. Of these 12 employees, 10 reported working in the fire assay room. Four children of employees had BLLs ≥5 μg/dL. Employees working in Facility A's fire assay room were likely exposed to lead at work and could have brought lead home. AKOSH inspectors reported that they could not share their consultative report with SOE investigators because of the confidentiality requirements of a federal regulation, which hampered Alaska SOE investigators from fully characterizing the lead exposure standards. PMID:26327721

  8. Quantifying fire-wide carbon emissions in interior Alaska using field measurements and Landsat imagery

    NASA Astrophysics Data System (ADS)

    Rogers, B. M.; Veraverbeke, S.; Azzari, G.; Czimczik, C. I.; Holden, S. R.; Mouteva, G. O.; Sedano, F.; Treseder, K. K.; Randerson, J. T.

    2014-08-01

    Carbon emissions from boreal forest fires are projected to increase with continued warming and constitute a potentially significant positive feedback to climate change. The highest consistent combustion levels are reported in interior Alaska and can be highly variable depending on the consumption of soil organic matter. Here we present an approach for quantifying emissions within a fire perimeter using remote sensing of fire severity. Combustion from belowground and aboveground pools was quantified at 22 sites (17 black spruce and five white spruce-aspen) within the 2010 Gilles Creek burn in interior Alaska, constrained by data from eight unburned sites. We applied allometric equations and estimates of consumption to calculate carbon losses from aboveground vegetation. The position of adventitious spruce roots within the soil column, together with estimated prefire bulk density and carbon concentrations, was used to quantify belowground combustion. The differenced Normalized Burn Ratio (dNBR) exhibited a clear but nonlinear relationship with combustion that differed by forest type. We used a multiple regression model based on transformed dNBR and deciduous fraction to scale carbon emissions to the fire perimeter, and a Monte Carlo framework to assess uncertainty. Because of low-severity and unburned patches, mean combustion across the fire perimeter (1.98 ± 0.34 kg C m-2) was considerably less than within a defined core burn area (2.67 ± 0.40 kg C m-2) and the mean at field sites (2.88 ± 0.23 kg C m-2). These areas constitute a significant fraction of burn perimeters in Alaska but are generally not accounted for in regional-scale estimates. Although total combustion in black spruce was slightly lower than in white spruce-aspen forests, black spruce covered most of the fire perimeter (62%) and contributed the majority (67 ± 16%) of total emissions. Increases in spring albedo were found to be a viable alternative to dNBR for modeling emissions.

  9. Fire Streams. Fire Service Certification Series. Unit FSCS-FF-10-80.

    ERIC Educational Resources Information Center

    Pribyl, Paul F.

    This training unit on fire streams is part of a 17-unit course package written to aid instructors in the development, teaching, and evaluation of fire fighters in the Wisconsin Fire Service Certification Series. The purpose stated for the 8-hour unit is to provide the fire fighters with an understanding of the characteristics, use, and application…

  10. Suggested Guide for Fire Service Standard Operating Procedures.

    ERIC Educational Resources Information Center

    Gillett, Merl; Hertzler, Simon L.

    Suggested guidelines for the development of fire service standard operating procedures are presented in this document. Section topics are as follow: chain of command; communications; emergency response; apparatus; fire service training; disaster response; aircraft fire safety; mutual aid; national reporting system (example reporting forms);…

  11. Daily burned area and carbon emissions from boreal fires in Alaska

    NASA Astrophysics Data System (ADS)

    Veraverbeke, S.; Rogers, B. M.; Randerson, J. T.

    2014-12-01

    Boreal fires burn carbon-rich organic soils, thereby releasing large quantities of trace gases and aerosols that influence atmospheric composition and climate. To better understand the factors regulating boreal fire emissions, we developed a statistical model of carbon consumption by fire for Alaska with a spatial resolution of 500 m and a temporal resolution of one day. We used the model to estimate variability in carbon emissions between 2001 and 2012. Daily burned area was mapped using imagery from the Moderate Resolution Imaging Spectroradiometer combined with perimeters from the Alaska Large Fire Database. Carbon consumption was calibrated using available field measurements from black spruce forests in Alaska. We built two nonlinear multiplicative models to separately predict above- and belowground carbon consumption by fire in response to environmental variables including elevation, day of burning within the fire season, pre-fire tree cover and the differenced normalized burn ratio (dNBR). Higher belowground consumption occurred later in the season and for mid-elevation regions. Aboveground and belowground consumption also increased as a function of tree cover and the dNBR, suggesting a causal link between the processes regulating these two components of consumption. Between 2001 and 2012, the median fuel consumption was 2.48 kg C m-2 and the median pixel-based uncertainty (SD of prediction error) was 0.38 kg C m-2. There were considerable amounts of burning in other cover types than black spruce and consumption in pure black spruce stands was generally higher. Fuel consumption originated primarily from the belowground fraction (median = 2.30 kg C m-2 for all cover types and 2.63 kg C m-2 for pure black spruce stands). Total carbon emissions varied considerably from year to year, with the highest emissions occurring during 2004 (67 Tg C), 2005 (44 Tg C), 2009 (25 Tg C), and 2002 (16 Tg C) and a mean of 14 Tg C per year between 2001 and 2012. Our analysis

  12. PREFER: a European service providing forest fire management support products

    NASA Astrophysics Data System (ADS)

    Eftychidis, George; Laneve, Giovanni; Ferrucci, Fabrizio; Sebastian Lopez, Ana; Lourenco, Louciano; Clandillon, Stephen; Tampellini, Lucia; Hirn, Barbara; Diagourtas, Dimitris; Leventakis, George

    2015-06-01

    PREFER is a Copernicus project of the EC-FP7 program which aims developing spatial information products that may support fire prevention and burned areas restoration decisions and establish a relevant web-based regional service for making these products available to fire management stakeholders. The service focuses to the Mediterranean region, where fire risk is high and damages from wildfires are quite important, and develop its products for pilot areas located in Spain, Portugal, Italy, France and Greece. PREFER aims to allow fire managers to have access to online resources, which shall facilitate fire prevention measures, fire hazard and risk assessment, estimation of fire impact and damages caused by wildfire as well as support monitoring of post-fire regeneration and vegetation recovery. It makes use of a variety of products delivered by space borne sensors and develop seasonal and daily products using multi-payload, multi-scale and multi-temporal analysis of EO data. The PREFER Service portfolio consists of two main suite of products. The first refers to mapping products for supporting decisions concerning the Preparedness/Prevention Phase (ISP Service). The service delivers Fuel, Hazard and Fire risk maps for this purpose. Furthermore the PREFER portfolio includes Post-fire vegetation recovery, burn scar maps, damage severity and 3D fire damage assessment products in order to support relative assessments required in context of the Recovery/Reconstruction Phase (ISR Service) of fire management.

  13. The Effect of Burn Severity on Short-Term Post-Fire Boreal Vegetation Recovery in Interior Alaska

    NASA Astrophysics Data System (ADS)

    Oyler, J. W.; Smithwick, E.; Mack, M. C.

    2008-12-01

    Fire is the dominant disturbance in the interior boreal region of Alaska and is predicted to increase with climate warming. This variation in the boreal fire regime could play a critical role in climate feedbacks by altering forest productivity and succession and, consequently, biogeochemical cycling, carbon sequestration, and surface energy fluxes. Due to limited fine-scale studies, however, it is not known how increased burn severity (i.e.-amount of organic material consumed) alters post-fire recovery of vegetation productivity, nor how the relationship between severity and post-fire recovery varies across heterogeneous landscapes. In examining fires from the 2004 Alaska fire season (n=72), the objective of this research was to determine how between and within fire variation in burn severity and related variables (pre-fire vegetation, elevation, insolation, etc.) mediates short-term post-fire recovery at the regional scale (i.e.-interior Alaska) and at the landscape scale (i.e.-a single fire complex).The Normalized Burn Ratio was used to measure burn severity and MODIS NDVI was used as a proxy for vegetation recovery. For the between fire analysis, remotely sensed data was overlaid on the fire perimeters in a GIS to create a multivariate dataset with variables aggregated by fire. The dependent variables for each fire were percent NDVI growing season change from 2003 to 2005 (i.e.-productivity drop) and from 2005 to 2007 (i.e.-productivity recovery), while the independent variables included mean dNBR, elevation, and insolation, and percentages of pre-fire land cover types. This dataset was explored in a geovisualization application (GeoViz Toolkit) to help interpret a more detailed adjusted R-square multivariate regression.The top 3 models (R-square ~ 0.60) for the productivity drop per fire showed that fires in higher elevations and containing higher percentages of pre-fire conifer forest were correlated with larger drops in NDVI. In contrast, the models for

  14. Spatiotemporal variation of surface shortwave forcing from fire-induced albedo change in interior Alaska

    USGS Publications Warehouse

    Huang, Shengli; Dahal, Devendra; Liu, Heping; Jin, Suming; Young, Claudia J.; Liu, Shuang; Liu, Shu-Guang

    2015-01-01

    The albedo change caused by both fires and subsequent succession is spatially heterogeneous, leading to the need to assess the spatiotemporal variation of surface shortwave forcing (SSF) as a component to quantify the climate impacts of high-latitude fires. We used an image reconstruction approach to compare postfire albedo with the albedo assuming fires had not occurred. Combining the fire-caused albedo change from the 2001-2010 fires in interior Alaska and the monthly surface incoming solar radiation, we examined the spatiotemporal variation of SSF in the early successional stage of around 10 years. Our results showed that while postfire albedo generally increased in fall, winter, and spring, some burned areas could show an albedo decrease during these seasons. In summer, the albedo increased for several years and then declined again. The spring SSF distribution did not show a latitudinal decrease from south to north as previously reported. The results also indicated that although the SSF is usually largely negative in the early successional years, it may not be significant during the first postfire year. The annual 2005-2010 SSF for the 2004 fire scars was -1.30, -4.40, -3.31, -4.00, -3.42, and -2.47 Wm-2. The integrated annual SSF map showed significant spatial variation with a mean of -3.15 Wm-2 and a standard deviation of 3.26 Wm-2, 16% of burned areas having positive SSF. Our results suggest that boreal deciduous fires would be less positive for climate change than boreal evergreen fires. Future research is needed to comprehensively investigate the spatiotemporal radiative and non-radiative forcings to determine the effect of boreal fires on climate.

  15. Fire Hose, Nozzles and Applicances. Fire Service Certification Series. Unit FSCS-FF-8-80.

    ERIC Educational Resources Information Center

    Pribyl, Paul F.

    This training unit on fire hose, nozzles, and appliances is part of a 17-unit course package written to aid instructors in the development, teaching, and evaluation of fire fighters in the Wisconsin Fire Service Certification Series. The purpose stated for the 18-hour unit is to present accepted hose practices that meet federal standards and can…

  16. Can Tree Ring Analyses Predict Resilience of Black Spruce Forests to Fire in Interior Alaska?

    NASA Astrophysics Data System (ADS)

    Walker, X. J.; Johnstone, J. F.; Mack, M. C.

    2015-12-01

    Climate change has increased the occurrence, severity, and impact of disturbances on forested ecosystems worldwide. As such there is a growing need to identify factors that contribute to an ecosystem's ability to recover from disturbance, commonly referred to as ecosystem resilience. In trees, drought-induced growth declines may signal decreased ecosystem resilience if mature trees are able to survive in stressful environmental conditions that do not permit successful post-disturbance recruitment and survival. Here we explore links between ecosystem resilience and the growth-climate relationships of pre-fire trees, specifically drought stress signals, across topographic moisture gradients within the boreal forest. We sampled 72 recently (2004) burned black spruce stands within interior Alaska and found the proportion of black spruce relative to deciduous trees decreased post-fire, ranging from almost no change to a 90% decrease. The largest shifts in post-fire species composition occurred in sites where trees showed negative growth responses to warm spring temperatures, and shallow post-fire organic layer depths due to dry site conditions or high fire severity. These sites were generally located at warmer and drier landscape positions, suggesting they are less resilient to disturbance than sites at the wetter end of the gradient. Tree growth-climate responses can provide an estimate of stand environmental stress to ongoing climate change and as such are a valuable tool for predicting landscape variations in forest ecosystem resilience and forecasting future forest composition.

  17. Changes in Species, Areal Cover, and Production of Moss across a Fire Chronosequence in Interior Alaska

    USGS Publications Warehouse

    Harden, J.W.; Munster, J.; Manies, K.L.; Mack, M.C.; Bubier, J.L.

    2009-01-01

    In an effort to characterize the species and production rates of various upland mosses and their relationship to both site drainage and time since fire, annual net primary production of six common moss species was measured. Several stands located near Delta Junction, interior Alaska, were located. These stands ranged from one to 116 years since fire in well-drained (dry) and moderately to somewhat poorly drained (wet) black spruce (Picea mariana)-feathermoss systems. Moss species composition varied greatly during the fire cycle, with Ceratodon purpureus dominating the earliest years after a fire, Aulacomnium palustre dominating the transitional and older stages, and Hylocomium splendens dominating the oldest, mature sites. Polytrichum spp. was found at all sites. Average moss cover ranged from <10 percent in the youngest sites to almost 90 percent in the mature sites. Species from the genus Polytrichum were the most productive and contributed up to 30 g m2 of organic matter in one growing season. Least productive was Rhytidium rugosum, which contributed about 1.5 g m2 of organic matter in mature stands. Recovery of moss productivity after fire was not significantly different for wet and dry sites.

  18. AICC - Predictive Services - Outlooks

    Science.gov Websites

    AICC Home Alaska Fire Service About Us Links Contact Us Preparedness Level: 2 June 3, 2016 ... Fire Potential Outlook (476 KB) Thu, Jun 02, 2016 10:22 AKDT Archive (12) 201605 May ...

  19. Daily burned area and carbon emissions from boreal fires in Alaska

    NASA Astrophysics Data System (ADS)

    Veraverbeke, S.; Rogers, B. M.; Randerson, J. T.

    2015-06-01

    Boreal fires burn into carbon-rich organic soils, thereby releasing large quantities of trace gases and aerosols that influence atmospheric composition and climate. To better understand the factors regulating boreal fire emissions, we developed a statistical model of carbon consumption by fire for Alaska with a spatial resolution of 450 m and a temporal resolution of 1 day. We used the model to estimate variability in carbon emissions between 2001 and 2012. Daily burned area was mapped using imagery from the Moderate Resolution Imaging Spectroradiometer combined with perimeters from the Alaska Large Fire Database. Carbon consumption was calibrated using available field measurements from black spruce forests in Alaska. We built two nonlinear multiplicative models to separately predict above- and belowground carbon consumption by fire in response to environmental variables including elevation, day of burning within the fire season, pre-fire tree cover and the differenced normalized burn ratio (dNBR). Higher belowground carbon consumption occurred later in the season and for mid-elevation forests. Topographic slope and aspect did not improve performance of the belowground carbon consumption model. Aboveground and belowground carbon consumption also increased as a function of tree cover and the dNBR, suggesting a causal link between the processes regulating these two components of carbon consumption. Between 2001 and 2012, the median carbon consumption was 2.54 kg C m-2. Burning in land-cover types other than black spruce was considerable and was associated with lower levels of carbon consumption than for pure black spruce stands. Carbon consumption originated primarily from the belowground fraction (median = 2.32 kg C m-2 for all cover types and 2.67 kg C m-2 for pure black spruce stands). Total carbon emissions varied considerably from year to year, with the highest emissions occurring during 2004 (69 Tg C), 2005 (46 Tg C), 2009 (26 Tg C), and 2002 (17 Tg C) and a

  20. Controls on Carbon Consumed by Wildland Fires in the Boreal Forest Region of Alaska

    NASA Astrophysics Data System (ADS)

    Kasischke, E. S.; Hoy, E.; Turetsky, M. R.; Kane, E. S.; French, N. H.; Barrett, K. M.; de Groot, W. J.

    2012-12-01

    The burned area from fires in the boreal forest region of Alaska have been increasing over the past three decades, which will have significant impacts on terrestrial carbon cycling in this region. The most immediate impact from these fires is the consumption of biomass and release of carbon-based trace gases into the atmosphere. A study was conducted where carbon consumed during fires was estimated from 169 different fire events from 2002 to 2008. The fires events used in this study contained 93 percent of the area burned for the study period (6 million ha). We used a new approach to estimate carbon consumed for Alaskan boreal fires which mapped topography and fuel type at a high spatial resolution (60 m), and accounted for the factors that control burning deep burning of surface organic layers present in all fuel types. The estimates of total carbon consumption were substantially higher than those from previous studies, with the highest emissions in 2004 and 2005 (64.7 and 43.5 Tg C, respectively), and average carbon consumption for individual years ranged from 1.48 to 3.04 kg/sq m. Burning of surface organic layer fuels accounted for 84 percent of all emissions. Factors shown to contribute to variations in average fuel consumption between different years included fraction of spruce fuels present and burned area during the season. It was also shown that the dramatic increase in late season fires that occurred in the 2000s was a contributing factor to the high emissions. For aboveground fuels, variations in fuel moisture at the time of burning were also important.

  1. The Role of Women in the Fire Service.

    ERIC Educational Resources Information Center

    Federal Emergency Management Agency, Washington, DC.

    This publication provides information on issues surrounding the entry of women into the fire service. Chapter 1 focuses on the "Women in the Fire Service" seminar held on August 1979. It covers issues and recommendations for programs designed to facilitate the effective use of women. Other sections contain seminar participant opinions on the issue…

  2. Post-fire Thermokarst Development Along a Planned Road Corridor in Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Jones, B. M.; Grosse, G.; Larsen, C. F.; Hayes, D. J.; Arp, C. D.; Liu, L.; Miller, E.

    2015-12-01

    Wildfire disturbance in northern high latitude regions is an important factor contributing to ecosystem and landscape change. In permafrost influenced terrain, fire may initiate thermokarst development which impacts hydrology, vegetation, wildlife, carbon storage and infrastructure. In this study we differenced two airborne LiDAR datasets that were acquired in the aftermath of the large and severe Anaktuvuk River tundra fire, which in 2007 burned across a proposed road corridor in Arctic Alaska. The 2009 LiDAR dataset was acquired by the Alaska Department of Transportation in preparation for construction of a gravel road that would connect the Dalton Highway with the logistical camp of Umiat. The 2014 LiDAR dataset was acquired by the USGS to quantify potential post-fire thermokarst development over the first seven years following the tundra fire event. By differencing the two 1 m resolution digital terrain models, we measured permafrost thaw subsidence across 34% of the burned tundra area studied, and observed less than 1% in similar, undisturbed tundra terrain units. Ice-rich, yedoma upland terrain was most susceptible to thermokarst development following the disturbance, accounting for 50% of the areal and volumetric change detected, with some locations subsiding more than six meters over the study period. Calculation of rugosity, or surface roughness, in the two datasets showed a doubling in microtopography on average across the burned portion of the study area, with a 340% increase in yedoma upland terrain. An additional LiDAR dataset was acquired in April 2015 to document the role of thermokarst development on enhanced snow accumulation and subsequent snowmelt runoff within the burn area. Our findings will enable future vulnerability assessments of ice-rich permafrost terrain as a result of shifting disturbance regimes. Such assessments are needed to address questions focused on the impact of permafrost degradation on physical, ecological, and socio

  3. Predicting Forest Floor Consumption From Wildland Fire in Boreal forests of Alaska

    NASA Astrophysics Data System (ADS)

    Ottmar, R. D.

    2010-12-01

    Forest fires are one of the dominant ecological force shaping the distribution and structure of boreal ecosystems. Many areas of the boreal forests of Alaska often contain deep layers of moss, duff, and peat, resulting in large pools of sequestered carbon and biomass that potentially can burn and smolder for long periods of time during these wildfires creating hazardous smoke episodes for local residents and communities and causing detrimental landscape impacts. Research to quantify forest floor consumption is critical for effective modeling fire effects such as smoke emissions, regional haze, global warming, permafrost melting, erosion, and plant succession. Forest floor reduction was measured at 18 black and white spruce and birch-aspen prescribed fires between 1990-2004 and 24 black and white spruce sites on 6 wildfires during 2003 and 2004. Three of the sites were part of the large international Frostfire project near Fairbanks, Alaska, and were used as an independent test data set. Several forest floor reduction equations were developed, of which one is presented in this presentation. The double parameter equation uses upper forest floor fuel moisture content and preburn forest floor depth as independent variables. The fuel moisture content of the upper forest floor can be obtained from forest floor samples that are collected, oven dried, and weighed to determine gravimetric fuel moisture content. The preburn forest floor depths require onsite measurements to be collected. The forest floor consumption model has been incorporated into Consume, a software package used by land managers and scientists to predict fuel consumption during wildland fires.

  4. Estimating release of carbon from 1990 and 1991 forest fires in Alaska

    NASA Technical Reports Server (NTRS)

    Kaisischke, Eric S.; French, Nancy H. F.; Bourgeau-Chavez, Laura L.; Christensen, N. L., Jr.

    1995-01-01

    An improved method to estimate the amounts of carbon released during fires in the boreal forest zone of Alaska in 1990 and 1991 is described. This method divides the state into 64 distinct physiographic regions and estimates areal extent of five different land covers: two forest types, peat land, tundra, and nonvegetated. The areal extent of each cover type was estimated from a review of topographic maps of each region and observations on the distribution of foreat types within the state. Using previous observations and theoretical models for the two forest types found in interior Alaska, models of biomass accumulation as a function of stand age were developed. Stand age distributions for each region were determined using a statistical distribution based on fire frequency, which was from available long-term historical records. Estimates of the degree of biomass combusted were based on recent field observations as well as research reported in the literature. The location and areal extent of fires in this region for 1990 and 1991 were based on both field observations and analysis of satellite (advanced very high resolution radiometer (AVHRR)) data sets. Estimates of average carbon release for the two study years ranged between 2.54 and 3.00 kg/sq m, which are 2.2 to 2.6 times greater than estimates used in other studies of carbon release through biomass burning in boreal forests. Total average annual carbon release for the two years ranged between 0.012 and 0.018 Pg C/yr, with the lower value resulting from the AVHRR estimates of fire location and area.

  5. El Niño and its impact on fire weather conditions in Alaska

    USGS Publications Warehouse

    Hess, Jason C.; Scott, Carven A.; Hufford, Gary L.; Fleming, Michael D.

    2001-01-01

    Examining the relationship of El Niño to weather patterns in Alaska shows wide climate variances that depend on the teleconnection between the tropics and the northern latitudes. However, the weather patterns exhibited in Alaska during and just after moderate to strong El Niño episodes are generally consistent: above normal temperature and precipitation along the Alaskan coast, and above normal temperature and below normal precipitation in the interior, especially through the winter. The warm, dry conditions in the Alaskan interior increase summer wildfire potential. Statistics on the area burned since 1940 show that 15 out of 17 of the biggest fire years occurred during a moderate to strong El Niño episode. These 15 years account for nearly 63% of the total area burned over the last 58 years. Evidence points to increased dry thunderstorms and associated lightning activity during an El Niño episode; the percentage of total area burned by lightning caused fires during five episodes increased from a normal of less than 40% to a high of about 96%.

  6. Winter habitat use by female caribou in relation to wildland fires in interior Alaska

    USGS Publications Warehouse

    Joly, Kyle; Dale, B.W.; Collins, W.B.; Adams, L.G.

    2003-01-01

    The role of wildland fire in the winter habitat use of caribou (Rangifer tarandus) has long been debated. Fire has been viewed as detrimental to caribou because it destroys the slow-growing climax forage lichens that caribou utilize in winter. Other researchers argued that caribou were not reliant on lichens and that fire may be beneficial, even in the short term. We evaluated the distribution of caribou relative to recent fires (<50 years old) within the current winter range of the Nelchina caribou herd in east-central Alaska. To address issues concerning independence and spatial and temporal scales, we used both conventional very high frequency and global positioning system telemetry to estimate caribou use relative to recent, known-aged burns. In addition, we used two methods to estimate availability of different habitat classes. Caribou used recently burned areas much less than expected, regardless of methodologies used. Moreover, within burns, caribou were more likely to use habitat within 500 m of the burn perimeter than core areas. Methods for determining use and availability did not have large influences on our measures of habitat selectivity.

  7. Influence of Fire on Permafrost in Lowland Forests of the Tanana Flats, Interior Alaska

    NASA Astrophysics Data System (ADS)

    Brown, D. N.; Jorgenson, T.; Douglas, T. A.; Romanovsky, V. E.; Kielland, K.; Euskirchen, E. S.; Ruess, R.

    2014-12-01

    The degradation of ice-rich permafrost in lowland ecosystems may have particularly strong ecological impacts due to the potential for thaw settlement and subsequent water impoundment. We examined the effects of fire disturbance on permafrost across a chronosequence of fire scars (1930-2010) in the forested areas of collapse-scar bog complexes in the Tanana Flats of Interior Alaska, and utilized a thermal permafrost model (GIPL) to assess the roles of soil physical properties and historic climate. Field-based calculations of potential thaw settlement following the loss of ice-rich permafrost ranged from 0.4 m to 0.9 m. This subsidence would cause the surface elevations of current day forests to drop, on average, to 0.1 m below the surface water level of adjacent collapse-scar bogs, likely resulting in water impoundment. However, the vulnerability of permafrost to deep thawing and talik formation was variable among fire scars due to heterogeneity in organic layer thickness, soil texture, moisture, and associated thermal properties. Simulated reductions in organic layer thickness predicted talik formation in peat and silt loam-dominated soils, but not in sandy loams. The vulnerability of permafrost to talik formation increased under the climatic conditions since 1970, which were characterized by higher air temperatures. Pronounced permafrost thawing occurred during periods of high snow accumulation, whereas periods of low snow accumulation appeared to facilitate permafrost recovery. Simulations of the complete removal of the organic layer (high severity fire) in silt loam-dominated sites suggested the long-term loss of permafrost under the climate of the last century. Overall, the influence of fire on permafrost in these lowland ecosystems appears to be dependent on soil physical properties, fire severity, and climatic conditions.

  8. Effects of Future Warming and Fire Regime Change on Boreal Soil Organic Horizons and Permafrost Dynamics in Interior Alaska

    NASA Astrophysics Data System (ADS)

    Yuan, F.; McGuire, A. D.; Yi, S.; Euskirchen, E. S.; Rupp, T. S.; Breen, A. L.; Kurkowski, T.; Kasischke, E. S.; Harden, J. W.

    2011-12-01

    There is evidence that ongoing climate change is affecting fire frequency, extent, and severity in the interior boreal region of Alaska, and these changes are likely to continue into the future. In this study we couple a landscape fire dynamics model with an ecosystem model in an application to evaluate the long term effects of changes in climate and fire regime on soil organic horizons and permafrost dynamics in interior Alaska. Changes in fire regime were simulated by the Alaska Frame-based Ecosystem Code (ALFRESCO) model driven by downscaled GCM climate outputs from CCCMA-CGCM3.1 and MPI ECHAM5 models using the A1B scenario at 1km x 1 km resolution for the Yukon River Basin in Alaska. The outputs of ALFRESCO were used to drive the dynamic organic soil version of the Terrestrial Ecosystem Model (DOS-TEM). ALFRESCO simulated fire activity would be enhanced through the middle of the 21st Century, after which fire activity would revert to pre-1990 levels because of a shift in forest composition (i.e., fuels) to a greater fraction of deciduous forest. The model framework estimated that the fibrous organic horizon would lose C through the middle of the 21st Century for the warmer ECHAM5 scenario, but would gain C throughout the 21st Century for the CCCMA scenario. The amorphous organic horizon lost C through the 21st Century for both scenarios. The active layer deepened across the basin from about 1 m to between 1.6 and 1.8 m by the middle of the century and then returned to current depth by the end of the 21st Century. These results suggest that it is important to couple changes in the soil organic horizons of boreal ecosystems to permafrost dynamics in order to fully understand the effects of changes in climate and fire regime on regional boreal ecosystem C storage.

  9. Modeling soil thermal and carbon dynamics of a fire chronosequence in interior Alaska

    USGS Publications Warehouse

    Zhuang, Q.; McGuire, A.D.; O'Neill, K. P.; Harden, J.W.; Romanovsky, V.E.; Yarie, J.

    2003-01-01

    In this study, the dynamics of soil thermal, hydrologic, and ecosystem processes were coupled to project how the carbon budgets of boreal forests will respond to changes in atmospheric CO2, climate, and fire disturbance. The ability of the model to simulate gross primary production and ecosystem respiration was verified for a mature black spruce ecosystem in Canada, the age-dependent pattern of the simulated vegetation carbon was verified with inventory data on aboveground growth of Alaskan black spruce forests, and the model was applied to a postfire chronosequence in interior Alaska. The comparison between the simulated soil temperature and field-based estimates during the growing season (May to September) of 1997 revealed that the model was able to accurately simulate monthly temperatures at 10 cm (R > 0.93) for control and burned stands of the fire chronosequence. Similarly, the simulated and field-based estimates of soil respiration for control and burned stands were correlated (R = 0.84 and 0.74 for control and burned stands, respectively). The simulated and observed decadal to century-scale dynamics of soil temperature and carbon dynamics, which are represented by mean monthly values of these variables during the growing season, were correlated among stands (R = 0.93 and 0.71 for soil temperature at 20- and 10-cm depths, R = 0.95 and 0.91 for soil respiration and soil carbon, respectively). Sensitivity analyses indicate that along with differences in fire and climate history a number of other factors influence the response of carbon dynamics to fire disturbance. These factors include nitrogen fixation, the growth of moss, changes in the depth of the organic layer, soil drainage, and fire severity.

  10. Fire Service Training. Firefighting Procedures. (Revised).

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Community Colleges, Raleigh.

    One of a set of fourteen instructional outlines for use in a course to train novice firemen, this guide covers firefighting procedures and principles. Emphasis is placed on pre-fire planning, the techniques for applying a plan to a course of action, and the selection of proper fire fighting procedures to meet specific needs. Besides the methods of…

  11. 76 FR 56221 - Notice of Public Meeting for the National Park Service (NPS) Alaska Region's Subsistence Resource...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-12

    ... National Park Service Notice of Public Meeting for the National Park Service (NPS) Alaska Region's... subsistence management issues. The NPS SRC program is authorized under Title VIII, Section 808 of the Alaska... Park SRC will meet at the Nondalton Community Center, (907) 294-2288 in Nondalton, Alaska on...

  12. The changing role of leadership in the fire service.

    PubMed

    Calo, Joseph

    2012-01-01

    The role of the modem fire service is evolving drastically and today's leaders must have the courage, tenacity, and perseverance to embrace and prepare for substantial change in an industry heavily steeped in almost two centuries of tradition that's historically resistant to new ways of doing things. Moreover, from an individual perspective, fire service professionals must personally prepare themselves to lead the emergency response industry in the years ahead. Fire service leaders will be faced with new and different challenges. The roles and responsibilities of our profession are changing and becoming more complex. Many common practices currently done in the fire service today will require innovative solutions in the future. To lead our firefighters, not only into dangerous environments, but through these changing times, the professional fire officer will need to be functionally educated, current with new tactics to combat changing conditions, and possess an understanding of leadership principles such as emotional intelligence, leadership style, and leadership theory. This foundation will help today's fire officers become tomorrow's fire service professionals. PMID:23980492

  13. Edaphic and microclimatic controls over permafrost response to fire in interior Alaska

    NASA Astrophysics Data System (ADS)

    Nossov, Dana R.; Torre Jorgenson, M.; Kielland, Knut; Kanevskiy, Mikhail Z.

    2013-09-01

    Discontinuous permafrost in the North American boreal forest is strongly influenced by the effects of ecological succession on the accumulation of surface organic matter, making permafrost vulnerable to degradation resulting from fire disturbance. To assess factors affecting permafrost degradation after wildfire, we compared vegetation composition and soil properties between recently burned and unburned sites across three soil landscapes (rocky uplands, silty uplands, and sandy lowlands) situated within the Yukon Flats and Yukon-Tanana Uplands in interior Alaska. Mean annual air temperatures at our study sites from 2011 to 2012 were relatively cold (-5.5 ° C) and favorable to permafrost formation. Burning of mature evergreen forests with thick moss covers caused replacement by colonizing species in severely burned areas and recovery of pre-fire understory vegetation in moderately burned areas. Surface organic layer thickness strongly affected thermal regimes and thaw depths. On average, fire caused a five-fold decrease in mean surface organic layer thickness, a doubling of water storage in the active layer, a doubling of thaw depth, an increase in soil temperature at the surface (-0.6 to +2.1 ° C) and at 1 m depth (-1.7 to +0.4 ° C), and a two-fold increase in net soil heat input. Degradation of the upper permafrost occurred at all burned sites, but differences in soil texture and moisture among soil landscapes allowed permafrost to persist beneath the active layer in the silty uplands, whereas a talik of unknown depth developed in the rocky uplands and a thin talik developed in the sandy lowlands. A changing climate and fire regime would undoubtedly influence permafrost in the boreal forest, but the patterns of degradation or stabilization would vary considerably across the discontinuous permafrost zone due to differences in microclimate, successional patterns, and soil characteristics.

  14. Alaska

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this spectacular MODIS image from November 7, 2001, the skies are clear over Alaska, revealing winter's advance. Perhaps the most interesting feature of the image is in its center; in blue against the rugged white backdrop of the Alaska Range, Denali, or Mt. McKinley, casts its massive shadow in the fading daylight. At 20,322 ft (6,194m), Denali is the highest point in North America. South of Denali, Cook Inlet appears flooded with sediment, turning the waters a muddy brown. To the east, where the Chugach Mountains meet the Gulf of Alaska, and to the west, across the Aleutian Range of the Alaska Peninsula, the bright blue and green swirls indicate populations of microscopic marine plants called phytoplankton. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  15. Alaska

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this spectacular MODIS image from November 7, 2001, the skies are clear over Alaska, revealing winter's advance. Perhaps the most interesting feature of the image is in its center; in blue against the rugged white backdrop of the Alaska Range, Denali, or Mt. McKinley, casts its massive shadow in the fading daylight. At 20,322 ft (6,194m), Denali is the highest point in North America. South of Denali, Cook Inlet appears flooded with sediment, turning the waters a muddy brown. To the east, where the Chugach Mountains meet the Gulf of Alaska, and to the west, across the Aleutian Range of the Alaska Peninsula, the bright blue and green swirls indicate populations of microscopic marine plants called phytoplankton.

  16. Tundra fire alters stream water chemistry and benthic invertebrate communities, North Slope, Alaska

    NASA Astrophysics Data System (ADS)

    Allen, A. R.; Bowden, W. B.; Kling, G. W.; Schuett, E.; Kostrzewski, J. M.; Kolden Abatzoglou, C.; Findlay, R. H.

    2010-12-01

    Increased fire frequency and severity are potentially important consequences of climate change in high latitude ecosystems. The 2007 Anaktuvuk River fire, which burned from July until October, is the largest recorded tundra fire from Alaska's north slope (≈1,000 km2). The immediate effects of wildfire on water chemistry and biotic assemblages in tundra streams are heretofore unknown. We hypothesized that a tundra fire would increase inorganic nutrient inputs to P-limited tundra streams, increasing primary production and altering benthic macroinvertebrate community structure. We examined linkages among: 1) percentage of riparian zone and overall watershed vegetation burned, 2) physical, chemical and biological stream characteristics, and 3) macroinvertebrate communities in streams draining burned and unburned watersheds during the summers of 2008 and 2009. Streams in burned watersheds contained higher mean concentrations of soluble reactive phosphorus (SRP), ammonium (NH4+), and dissolved organic carbon (DOC). In contrast, stream nitrate (NO3-) concentrations were lower in burned watersheds. The net result was that the tundra fire did not affect concentrations of dissolved inorganic nitrogen (NH4+ + NO3-). In spite of increased SRP, benthic chlorophyll-a biomass was not elevated. Macroinvertebrate abundances were 1.5 times higher in streams draining burned watersheds; Chironomidae midges, Nematodes, and Nemoura stoneflies showed the greatest increases in abundance. Multivariate multiple regression identified environmental parameters associated with the observed changes in the macroinvertebrate communities. Since we identified stream latitude as a significant predictor variable, latitude was included in the model as a covariate. After removing the variation associated with latitude, 67.3 % of the variance in macroinvertebrate community structure was explained by a subset of 7 predictor variables; DOC, conductivity, mean temperature, NO3-, mean discharge, SRP and NH

  17. 77 FR 58868 - Teleconference for the National Park Service Alaska Region's Subsistence Resource Commission Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-24

    ... National Park Service Teleconference for the National Park Service Alaska Region's Subsistence Resource Commission Program AGENCY: National Park Service, Interior. ACTION: Notice of open public meetings. SUMMARY: The Lake Clark National Park Subsistence Resource Commission (SRC) and the Wrangell-St. Elias...

  18. 77 FR 14828 - Notice of Public Meeting for the National Park Service (NPS) Alaska Region's Subsistence Resource...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-13

    ... Environmental Assessment Update. b. SRC Recommendations. 9. New Business. 10. Federal Subsistence Board Updates. 11. Alaska Board of Game Updates. 12. National Park Service Reports. a. Superintendent Updates....

  19. 75 FR 65377 - Notice of Public Meeting for the National Park Service (NPS) Alaska Region's Subsistence Resource...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ... National Park Service Notice of Public Meeting for the National Park Service (NPS) Alaska Region's... public meeting for the National Park Service (NPS) Alaska Region's Subsistence Resource Commission (SRC) program. SUMMARY: The Gates of the Arctic National Park SRC will meet to develop and continue work on...

  20. Alaska

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Though it's not quite spring, waters in the Gulf of Alaska (right) appear to be blooming with plant life in this true-color MODIS image from March 4, 2002. East of the Alaska Peninsula (bottom center), blue-green swirls surround Kodiak Island. These colors are the result of light reflecting off chlorophyll and other pigments in tiny marine plants called phytoplankton. The bloom extends southward and clear dividing line can be seen west to east, where the bloom disappears over the deeper waters of the Aleutian Trench. North in Cook Inlet, large amounts of red clay sediment are turning the water brown. To the east, more colorful swirls stretch out from Prince William Sound, and may be a mixture of clay sediment from the Copper River and phytoplankton. Arcing across the top left of the image, the snow-covered Brooks Range towers over Alaska's North Slope. Frozen rivers trace white ribbons across the winter landscape. The mighty Yukon River traverses the entire state, beginning at the right edge of the image (a little way down from the top) running all the way over to the Bering Sea, still locked in ice. In the high-resolution image, the circular, snow-filled calderas of two volcanoes are apparent along the Alaska Peninsula. In Bristol Bay (to the west of the Peninsula) and in a couple of the semi-clear areas in the Bering Sea, it appears that there may be an ice algae bloom along the sharp ice edge (see high resolution image for better details). Ground-based observations from the area have revealed that an under-ice bloom often starts as early as February in this region and then seeds the more typical spring bloom later in the season.

  1. Fire effects on soil organic matter content, composition, and nutrients in boreal interior Alaska

    USGS Publications Warehouse

    Neff, J.C.; Harden, J.W.; Gleixner, G.

    2005-01-01

    Boreal ecosystems contain a substantial fraction of the earth's soil carbon stores and are prone to frequent and severe wildfires. In this study, we examine changes in element and organic matter stocks due to a 1999 wildfire in Alaska. One year after the wildfire, burned soils contained between 1071 and 1420 g/m2 less carbon than unburned soils. Burned soils had lower nitrogen than unburned soils, higher calcium, and nearly unchanged potassium, magnesium, and phosphorus stocks. Burned surface soils tended to have higher concentrations of noncombustible elements such as calcium, potassium, magnesium, and phosphorus compared with unburned soils. Combustion losses of carbon were mostly limited to surface dead moss and fibric horizons, with no change in the underlying mineral horizons. Burning caused significant changes in soil organic matter structure, with a 12% higher ratio of carbon to combustible organic matter in surface burned horizons compared with unburned horizons. Pyrolysis gas chromatography - mass spectroscopy also shows preferential volatilization of polysaccharide-derived organic matter and enrichment of lignin-and lipid-derived compounds in surface soils. The chemistry of deeper soil layers in burned and unburned sites was similar, suggesting that immediate fire impacts were restricted to the surface soil horizon. ?? 2005 NRC.

  2. Indian Health Service: A Comprehensive Health Care Program for American Indians and Alaska Natives.

    ERIC Educational Resources Information Center

    Indian Health Service (PHS/HSA), Rockville, MD.

    Comprehensive health care (preventive, curative, rehabilitative, and environmental) for more than 930,000 eligible American Indians and Alaska Natives is the responsibility of the Indian Health Service (IHS). Since 1955, this agency of the U.S. Public Health Service has made notable progress in raising the health status of Indians and Alaska…

  3. Expressway and Freeway Emergencies. California Fire Service Training Program.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento. Bureau of Industrial Education.

    This manual has been prepared to assist in training fire department personnel for extending emergency service on expressways and freeways. Information provided in the manual is designed to answer questions dealing with these topics: (1) Expressway and Freeway Incidents and Operations, (2) Special Expressway and Freeway Problems, (3) Sizing Up…

  4. The costs of climate change: ecosystem services and wildland fires

    EPA Science Inventory

    In this paper we use Habitat Equivalency Analysis (HEA) to monetize the avoided ecosystem services losses due to climate change-induced wildland fires in the U.S. Specifically, we use the U.S. Forest Service’s MC1 dynamic global vegetation model to forecast changes in wildland fi...

  5. Hoarding: Issues for the Fire Service

    MedlinePlus

    ... develop intervention strategies. Some even serve as the intervention/response mecha - nism for hoarding situations. Hoarding Task Forces are often made up of mental health providers, building representatives, community service providers, faith ... are more likely to bring about positive outcomes ...

  6. Fire Fighter Level I-II-III [and] Practical Skills Test. Wisconsin Fire Service Certification Series. Final Revision.

    ERIC Educational Resources Information Center

    Pribyl, Paul F.

    Practical skills tests are provided for fire fighter trainees in the Wisconsin Fire Service Certification Series, Fire Fighter Levels I, II, and III. A course introduction appears first and contains this information: recommended instructional sequence, required facilities, instructional methodology, requirements for certification, course…

  7. Annual Live Code Tsunami Warning System tests improve EAS services in Alaska

    NASA Astrophysics Data System (ADS)

    Preller, C. C.; Albanese, S.; Grueber, M.; Osiensky, J. M.; Curtis, J. C.

    2014-12-01

    The National Weather Service, in partnership with the State of Alaska Division of Homeland Security and Emergency Management (DHSEM) and the Alaska Broadcasters Association (ABA), has made tremendous improvements to Alaska's Emergency Alert System (EAS) with the use of an annual live code Tsunami System test. The annual test has been implemented since 2007 during the 3rd week of March commemorating the Great Alaska Earthquake of 1964 and promoting Tsunami Preparedness Week. Due to the antiquity of hardware, this test had always been conducted state-wide. This resulted in over-warn testing large areas of the largest state with no tsunami risk. The philosophy being that through over-warning, the most rural high risk areas would be warned. In 2012, the State of Alaska upgraded their dissemination hardware and the NWS was able to limit the test to a regional area eliminating most of the unthreatened areas from the test. While this occurred with several great successes, it also exposed a myriad of unknown problems and challenges. In addition, the NWS and the State of Alaska, with support from the National Tsunami Hazard Mitigation Committee (NTHMP), has engaged in an aggressive education, outreach, and mitigation campaign with Alaska's coastal high-risk community Emergency Managers. The resultant situation has produced a tight team between local Emergency Managers, State Emergency Managers and Emergency Operations Center, the NWS' National Tsunami Warning Center, NWS' Weather Forecast Offices and Regional Managers, and Alaska's Broadcasters coming together as a dynamic and creative problem solving force. This poster will address the leaps of progress as well as the upcoming hurdles. Ultimately, live code testing is improving how we warn and save lives and property during the shortest fuse disaster his planet offers; the tsunami.

  8. 77 FR 59662 - National Park Service Alaska Region's Subsistence Resource Commission Program; Open Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ...The Aniakchak National Monument Subsistence Resource Commission (SRC) will meet to develop and continue work on National Park Service (NPS) subsistence program recommendations and other related subsistence management issues. The NPS SRC program is authorized under Title VIII, Section 808 of the Alaska National Interest Lands Conservation Act, Public Law 96-487, to operate in accordance with......

  9. 75 FR 51103 - Notice of Public Meetings for the National Park Service (NPS) Alaska Region's Subsistence...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ...The Lake Clark National Park SRC, Aniakchak National Monument SRC and Wrangell-St. Elias SRC plan to meet to develop and continue work on National Park Service (NPS) subsistence hunting program recommendations and other related subsistence management issues. The NPS SRC program is authorized under Title VIII, Section 808 of the Alaska National Interest Lands Conservation Act, Public Law......

  10. Protective Breathing Apparatus. Fire Service Certification Series. Unit FSCS-FF-6-80.

    ERIC Educational Resources Information Center

    Pribyl, Paul F.

    This training unit on protective breathing apparatus is part of a 17-unit course package written to aid instructors in the development, teaching, and evaluation of fire fighters in the Wisconsin Fire Service Certification Series. The purpose stated for the 10-hour unit is to enable the fire fighter to perform routine fire fighting and rescue…

  11. Inspection. Fire Service Certification Series. Unit FSCS-FF-17-81.

    ERIC Educational Resources Information Center

    Pribyl, Paul F.

    This training unit on inspection is part of a 17-unit course package written to aid instructors in the development, teaching, and evaluation of fire fighters in the Wisconsin Fire Service Certification Series. The purpose stated for the 4.5-hour unit is to give the fire fighters an insight into their responsibilities concerning fire prevention and…

  12. Thresholds controlling shifts in forest cover types in the boreal region of Interior Alaska: inter- actions between climate, fire and edaphic factors

    NASA Astrophysics Data System (ADS)

    Kasischke, E. S.; Johnstone, J. F.; Rupp, S.; Duffy, P. A.; Kielland, K.; Chapin, F. S.

    2007-12-01

    There is a general consensus that future warming in the North American Boreal Region will cause a reduction in coniferous species common to cool, wet sites and an increase in deciduous/coniferous species found on warmer drier sites. In addition, it is believed that much of the change in forest cover will occur during secondary succession following disturbance and that the frequency of disturbance is likely to increase in response to climate warming; however, neither the rate at forest cover will change, nor the mechanisms thereof are well understood. Here, we summarize results from recent studies in Alaska that are being carried out as part of the Bonanza Creek Long Term Ecological Research Project and research being funded by the Joint Fire Science Program and NASA. We have examined factors important in regulating the change in the extent of black spruce (Picea mariana), a dominant forest type across the North American boreal region. Depth of burning of the surface organic layer is a fire severity measure that is important in regulating the post-fire environment in black spruce forests. In particular, seeds from deciduous trees have extremely low germination rates in post-fire organic soils that are greater than 3 cm deep. In addition, we found the growth of deciduous species in burned stands is inversely proportional to the depth of the remaining organic soil, with the highest growth observed on sites with exposed mineral soils. Other factors controlling seedling survival and growth include soil temperature and moisture, nutrient availability, and the fact that deciduous and coniferous species have different capabilities in absorbing different forms of soil nitrogen. These additional factors are also controlled by the amount of organic soil remaining after the fire. Finally, our research has shown that the depth of the remaining organic soil after fires is controlled both by topography and climate, with the frequency of sites with organic layers shallower than 3

  13. DynCorp Tricities Services, Inc. Hanford fire department FY 1998 annual work plan

    SciTech Connect

    Good, D.E.

    1997-08-19

    The mission of the Hanford Fire Department (HFD) is to support the safe and timely cleanup of the Hanford site by providing fire suppression, fire prevention, emergency rescue, emergency medical service, and hazardous materials response; and to be capable of dealing with and terminating emergency situations which could threaten the operations, employees, or interest of the U.S. Department of Energy operated Hanford site. This includes response to surrounding fire departments/districts under mutual aid and state mobilization agreements and fire fighting, hazardous materials, and ambulance support to Washington Public Power Supply System (Supply System) and various commercial entities operating on site through Requests for Service from DOE-RL. This fire department also provides site fire marshal overview authority, fire system testing and maintenance, respiratory protection services, building tours and inspections, ignitable and reactive waste site inspections, prefire planning, and employee fire prevention education. This plan provides a program overview, program baselines, and schedule baseline.

  14. Spatiotemporal patterns of tundra fires: late-Quaternary charcoal records from Alaska

    NASA Astrophysics Data System (ADS)

    Chipman, M. L.; Hudspith, V.; Higuera, P. E.; Duffy, P. A.; Kelly, R.; Oswald, W. W.; Hu, F. S.

    2015-07-01

    Anthropogenic climate change has altered many ecosystem processes in the Arctic tundra and may have resulted in unprecedented fire activity. Evaluating the significance of recent fires requires knowledge from the paleofire record because observational data in the Arctic span only several decades, much shorter than the natural fire rotation in Arctic tundra regions. Here we report results of charcoal analysis on lake sediments from four Alaskan lakes to infer the broad spatial and temporal patterns of tundra-fire occurrence over the past 35 000 years. Background charcoal accumulation rates are low in all records (range is 0-0.05 pieces cm-2 yr-1), suggesting minimal biomass burning across our study areas. Charcoal peak analysis reveals that the mean fire-return interval (FRI; years between consecutive fire events) ranged from ca. 1650 to 6050 years at our sites, and that the most recent fire events occurred from ca. 880 to 7030 years ago, except for the CE 2007 Anaktuvuk River Fire. These mean FRI estimates are longer than the fire rotation periods estimated for the past 63 years in the areas surrounding three of the four study lakes. This result suggests that the frequency of tundra burning was higher over the recent past compared to the late Quaternary in some tundra regions. However, the ranges of FRI estimates from our paleofire records overlap with the expected values based on fire-rotation-period estimates from the observational fire data, and the differences are statistically insignificant. Together with previous tundra-fire reconstructions, these data suggest that the rate of tundra burning was spatially variable and that fires were extremely rare in our study areas throughout the late Quaternary. Given the rarity of tundra burning over multiple millennia in our study areas and the pronounced effects of fire on tundra ecosystem processes such as carbon cycling, dramatic tundra ecosystem changes are expected if anthropogenic climate change leads to more

  15. Interactive effects of fire, soil climate, and moss on CO2 fluxes in black spruce ecosystems of interior Alaska

    USGS Publications Warehouse

    O'Donnell, J. A.; Turetsky, M.R.; Harden, J.W.; Manies, K.L.; Pruett, L.E.; Shetler, G.; Neff, J.C.

    2009-01-01

    Fire is an important control on the carbon (C) balance of the boreal forest region. Here, we present findings from two complementary studies that examine how fire modifies soil organic matter properties, and how these modifications influence rates of decomposition and C exchange in black spruce (Picea mariana) ecosystems of interior Alaska. First, we used laboratory incubations to explore soil temperature, moisture, and vegetation effects on CO2 and DOC production rates in burned and unburned soils from three study regions in interior Alaska. Second, at one of the study regions used in the incubation experiments, we conducted intensive field measurements of net ecosystem exchange (NEE) and ecosystem respiration (ER) across an unreplicated factorial design of burning (2 year post-fire versus unburned sites) and drainage class (upland forest versus peatland sites). Our laboratory study showed that burning reduced the sensitivity of decomposition to increased temperature, most likely by inducing moisture or substrate quality limitations on decomposition rates. Burning also reduced the decomposability of Sphagnum-derived organic matter, increased the hydrophobicity of feather moss-derived organic matter, and increased the ratio of dissolved organic carbon (DOC) to total dissolved nitrogen (TDN) in both the upland and peatland sites. At the ecosystem scale, our field measurements indicate that the surface organic soil was generally wetter in burned than in unburned sites, whereas soil temperature was not different between the burned and unburned sites. Analysis of variance results showed that ER varied with soil drainage class but not by burn status, averaging 0.9 ?? 0.1 and 1.4 ?? 0.1 g C m-2d-1 in the upland and peatland sites, respectively. However, a more complex general linear model showed that ER was controlled by an interaction between soil temperature, moisture, and burn status, and in general was less variable over time in the burned than in the unburned sites

  16. Recovery of aboveground plant biomass and productivity after fire in mesic and dry black spruce forests of interior Alaska

    USGS Publications Warehouse

    Mack, M.C.; Treseder, K.K.; Manies, K.L.; Harden, J.W.; Schuur, E.A.G.; Vogel, J.G.; Randerson, J.T.; Chapin, F. S., III

    2008-01-01

    Plant biomass accumulation and productivity are important determinants of ecosystem carbon (C) balance during post-fire succession. In boreal black spruce (Picea mariana) forests near Delta Junction, Alaska, we quantified aboveground plant biomass and net primary productivity (ANPP) for 4 years after a 1999 wildfire in a well-drained (dry) site, and also across a dry and a moderately well-drained (mesic) chronosequence of sites that varied in time since fire (2 to ???116 years). Four years after fire, total biomass at the 1999 burn site had increased exponentially to 160 ?? 21 g m-2 (mean ?? 1SE) and vascular ANPP had recovered to 138 ?? 32 g m-2 y -1, which was not different than that of a nearby unburned stand (160 ?? 48 g m-2 y-1) that had similar pre-fire stand structure and understory composition. Production in the young site was dominated by re-sprouting graminoids, whereas production in the unburned site was dominated by black spruce. On the dry and mesic chronosequences, total biomass pools, including overstory and understory vascular and non-vascular plants, and lichens, increased logarithmically (dry) or linearly (mesic) with increasing site age, reaching a maximum of 2469 ?? 180 (dry) and 4008 ?? 233 g m-2 (mesic) in mature stands. Biomass differences were primarily due to higher tree density in the mesic sites because mass per tree was similar between sites. ANPP of vascular and non-vascular plants increased linearly over time in the mesic chronosequence to 335 ?? 68 g m-2 y -1 in the mature site, but in the dry chronosequence it peaked at 410 ?? 43 g m-2 y-1 in a 15-year-old stand dominated by deciduous trees and shrubs. Key factors regulating biomass accumulation and production in these ecosystems appear to be the abundance and composition of re-sprouting species early in succession, the abundance of deciduous trees and shrubs in intermediate aged stands, and the density of black spruce across all stand ages. A better understanding of the controls

  17. Modeling the effects of fire severity and climate warming on active layer and soil carbon dynamics of black spruce forests across the landscape in interior Alaska

    USGS Publications Warehouse

    Genet, H.; McGuire, Anthony David; Barrett, K.; Breen, A.; Euskirchen, E.S.; Johnstone, J.F.; Kasischke, E.S.; Melvin, A.M.; Bennett, A.; Mack, M.C.; Rupp, T.S.; Schuur, A.E.G.; Turetsky, M.R.; Yuan, F.

    2013-01-01

    There is a substantial amount of carbon stored in the permafrost soils of boreal forest ecosystems, where it is currently protected from decomposition. The surface organic horizons insulate the deeper soil from variations in atmospheric temperature. The removal of these insulating horizons through consumption by fire increases the vulnerability of permafrost to thaw, and the carbon stored in permafrost to decomposition. In this study we ask how warming and fire regime may influence spatial and temporal changes in active layer and carbon dynamics across a boreal forest landscape in interior Alaska. To address this question, we (1) developed and tested a predictive model of the effect of fire severity on soil organic horizons that depends on landscape-level conditions and (2) used this model to evaluate the long-term consequences of warming and changes in fire regime on active layer and soil carbon dynamics of black spruce forests across interior Alaska. The predictive model of fire severity, designed from the analysis of field observations, reproduces the effect of local topography (landform category, the slope angle and aspect and flow accumulation), weather conditions (drought index, soil moisture) and fire characteristics (day of year and size of the fire) on the reduction of the organic layer caused by fire. The integration of the fire severity model into an ecosystem process-based model allowed us to document the relative importance and interactions among local topography, fire regime and climate warming on active layer and soil carbon dynamics. Lowlands were more resistant to severe fires and climate warming, showing smaller increases in active layer thickness and soil carbon loss compared to drier flat uplands and slopes. In simulations that included the effects of both warming and fire at the regional scale, fire was primarily responsible for a reduction in organic layer thickness of 0.06 m on average by 2100 that led to an increase in active layer thickness

  18. Modeling the effects of fire severity and climate warming on active layer thickness and soil carbon storage of black spruce forests across the landscape in interior Alaska

    NASA Astrophysics Data System (ADS)

    Genet, H.; McGuire, A. D.; Barrett, K.; Breen, A.; Euskirchen, E. S.; Johnstone, J. F.; Kasischke, E. S.; Melvin, A. M.; Bennett, A.; Mack, M. C.; Rupp, T. S.; Schuur, A. E. G.; Turetsky, M. R.; Yuan, F.

    2013-12-01

    There is a substantial amount of carbon stored in the permafrost soils of boreal forest ecosystems, where it is currently protected from decomposition. The surface organic horizons insulate the deeper soil from variations in atmospheric temperature. The removal of these insulating horizons through consumption by fire increases the vulnerability of permafrost to thaw, and the carbon stored in permafrost to decomposition. In this study we ask how warming and fire regime may influence spatial and temporal changes in active layer and carbon dynamics across a boreal forest landscape in interior Alaska. To address this question, we (1) developed and tested a predictive model of the effect of fire severity on soil organic horizons that depends on landscape-level conditions and (2) used this model to evaluate the long-term consequences of warming and changes in fire regime on active layer and soil carbon dynamics of black spruce forests across interior Alaska. The predictive model of fire severity, designed from the analysis of field observations, reproduces the effect of local topography (landform category, the slope angle and aspect and flow accumulation), weather conditions (drought index, soil moisture) and fire characteristics (day of year and size of the fire) on the reduction of the organic layer caused by fire. The integration of the fire severity model into an ecosystem process-based model allowed us to document the relative importance and interactions among local topography, fire regime and climate warming on active layer and soil carbon dynamics. Lowlands were more resistant to severe fires and climate warming, showing smaller increases in active layer thickness and soil carbon loss compared to drier flat uplands and slopes. In simulations that included the effects of both warming and fire at the regional scale, fire was primarily responsible for a reduction in organic layer thickness of 0.06 m on average by 2100 that led to an increase in active layer thickness

  19. Modeling the effects of fire severity and climate warming on active layer thickness and soil carbon storage of black spruce forests across the landscape in interior Alaska

    SciTech Connect

    Genet, Helene; McGuire, A. David; Barrett, K.; Breen, Amy; Euskirchen, Eugenie S; Johnstone, J. F.; Kasischke, Eric S.; Melvin, A. M.; Bennett, A.; Mack, M. C.; Rupp, Scott T.; Schuur, Edward; Turetsky, M. R.; Yuan, Fengming

    2013-01-01

    There is a substantial amount of carbon stored in the permafrost soils of boreal forest ecosystems, where it is currently protected from decomposition. The surface organic horizons insulate the deeper soil from variations in atmospheric temperature. The removal of these insulating horizons through consumption by fire increases the vulnerability of permafrost to thaw, and the carbon stored in permafrost to decomposition. In this study we ask how warming and fire regime may influence spatial and temporal changes in active layer and carbon dynamics across a boreal forest landscape in interior Alaska. To address this question, we (1) developed and tested a predictive model of the effect of fire severity on soil organic horizons that depends on landscape-level conditions and (2) used this model to evaluate the long-term consequences of warming and changes in fire regime on active layer and soil carbon dynamics of black spruce forests across interior Alaska. The predictive model of fire severity, designed from the analysis of field observations, reproduces the effect of local topography (landform category, the slope angle and aspect and flow accumulation), weather conditions (drought index, soil moisture) and fire characteristics (day of year and size of the fire) on the reduction of the organic layercaused by fire. The integration of the fire severity model into an ecosystem process-based model allowed us to document the relative importance and interactions among local topography, fire regime and climate warming on active layer and soil carbon dynamics. Lowlands were more resistant to severe fires and climate warming, showing smaller increases in active layer thickness and soil carbon loss compared to drier flat uplands and slopes. In simulations that included the effects of both warming and fire at the regional scale, fire was primarily responsible for a reduction in organic layer thickness of 0.06 m on average by 2100 that led to an increase in active layer thickness

  20. LAPS Lidar Measurements at the ARM Alaska Northslope Site (Support to FIRE Project)

    NASA Technical Reports Server (NTRS)

    Philbrick, C. Russell; Lysak, Daniel B., Jr.; Petach, Tomas M.; Esposito, Steven T.; Mulik, Karoline R.

    1998-01-01

    This report consists of data summaries of the results obtained during the May 1998 measurement period at Barrow Alaska. This report does not contain any data interpretation or analysis of the results which will follow this activity. This report is forwarded with a data set on magnetic media which contains the reduced data from the LAPS lidar in 15 minute intervals. The data was obtained during the period 15-30 May 1998. The measurement period overlapped with several aircraft flights conducted by NASA as part of the FIRE project. The report contains a summary list of the data obtained plus figures that have been prepared to help visualize the measurement periods. The order of the presentation is as follows: Section 1. A copy of the Statement of Work for the planned activity of the second measurement period at the ARM Northslope site is provided. Section 2. A list of the data collection periods shows the number of one minute data records stored during each hour of operation and the corresponding size (Mbytes) of the one hour data folders. The folder and file names are composed from the year, month, day, hour and minute. The date/time information is given in UTC for easier comparison with other data sets. Section 3. A set of 4 comparisons between the LAPS lidar results and the sondes released by the ARM scientists from a location nearby the lidar. The lidar results show the +/- 1 sigma statistical error on each of the independent 75 m altitude bins of the data. This set of 4 comparisons was used to set and validate the calibration value which was then used for the complete data set. Section 4. A set of false color figures with up to 10 hours of specific humidity measurements are shown in each graph. Two days of measurements are shown on each page. These plots are crude representations of the data and permit a survey which indicates when the clouds were very low or where interesting events may occur in the results. These plots are prepared using the real time sequence

  1. VEGETATION MEDIATED THE IMPACTS OF POSTGLACIAL CLIMATIC CHANGE ON FIRE REGIMES IN THE SOUTHCENTRAL BROOKS RANGE, ALASKA

    SciTech Connect

    Higuera, P E; Brubaker, L B; Anderson, P M; Hu, F S; Brown, T A

    2008-10-28

    We examine direct and indirect impacts of millennial-scale climatic change on fire regimes in the southcentral Brooks Range, Alaska, using four lake-sediment records and existing paleoclimate interpretations. New techniques are introduced to identify charcoal peaks semi-objectively and detect statistical differences in fire regimes. Peaks in charcoal accumulation rates (CHARs) provide estimates of fire return intervals (FRIs) which are compared between vegetation zones described by fossil pollen and stomata. Climatic warming from ca 15-9 ka BP (calendar years before CE 1950) coincides with shifts in vegetation from herb tundra to shrub tundra to deciduous woodlands, all novel species assemblages relative to modern vegetation. Two sites cover this period and show increased CHARs and decreased FRIs with the transition from herb to shrub tundra ca 13.3-14.3 ka BP. Short FRIs in the Betula-dominated shrub tundra (mean [m] FRI 144 yr; 95% CI 119-170) primarily reflect the effects of flammable, continuous fuels on the fire regime. FRIs increased significantly with the transition to Populus-dominated deciduous woodlands ca 10.5 ka BP (mFRI 251 yr [158-352]), despite evidence of warmer- and drier-than-present summers. We attribute reduced fire activity under these conditions to low flammability of deciduous fuels. Three sites record the mid to late Holocene, when cooler and moister conditions allowed Picea glauca forest-tundra and P. mariana boreal forests to establish ca 8 and 5.5 ka BP. Forest-tundra FRIs did not differ significantly from the previous period (mFRIs range from 131-238 yr), but FRIs decreased with the transition to boreal forest (mFRI 145 yr [129-163]). Overall, fire-regime shifts in the study area showed greater correspondence with vegetation characteristics than with inferred climate, and we conclude that vegetation mediated the impacts of millennial-scale climatic change on fire regimes by modifying landscape flammability. Our findings emphasize the

  2. Potential shifts in dominant forest cover in interior Alaska driven by variations in fire severity

    USGS Publications Warehouse

    Barrett, K.; McGuire, A.D.; Hoy, E.E.; Kasischke, E.S.

    2011-01-01

    Large fire years in which >1% of the landscape burns are becoming more frequent in the Alaskan (USA) interior, with four large fire years in the past 10 years, and 79 000 km2 (17% of the region) burned since 2000. We modeled fire severity conditions for the entire area burned in large fires during a large fire year (2004) to determine the factors that are most important in estimating severity and to identify areas affected by deep-burning fires. In addition to standard methods of assessing severity using spectral information, we incorporated information regarding topography, spatial pattern of burning, and instantaneous characteristics such as fire weather and fire radiative power. Ensemble techniques using regression trees as a base learner were able to determine fire severity successfully using spectral data in concert with other relevant geospatial data. This method was successful in estimating average conditions, but it underestimated the range of severity. This new approach was used to identify black spruce stands that experienced intermediate-to high-severity fires in 2004 and are therefore susceptible to a shift in regrowth toward deciduous dominance or mixed dominance. Based on the output of the severity model, we estimate that 39% (???4000 km2) of all burned black spruce stands in 2004 had <10 cm of residual organic layer and may be susceptible a postfire shift in plant functional type dominance, as well as permafrost loss. If the fraction of area susceptible to deciduous regeneration is constant for large fire years, the effect of such years in the most recent decade has been to reduce black spruce stands by 4.2% and to increase areas dominated or co-dominated by deciduous forest stands by 20%. Such disturbance-driven modifications have the potential to affect the carbon cycle and climate system at regional to global scales. ?? 2011 by the Ecological Society of America.

  3. 78 FR 14589 - Notice of Open Public Meetings for the National Park Service (NPS) Alaska Region's Subsistence...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-06

    ... School in Ambler, AK. SRC meeting locations and dates may change based on inclement weather or... National Park Service Notice of Open Public Meetings for the National Park Service (NPS) Alaska Region's Subsistence Resource Commission (SRC) Program for Calendar Year 2013 AGENCY: National Park Service,...

  4. Climate change, fire management, and ecological services in the southwestern US

    USGS Publications Warehouse

    Hurteau, Matthew D.; Bradford, John B.; Fulé, Peter Z.; Taylor, Alan H.; Martin, Katherine L.

    2013-01-01

    The diverse forest types of the southwestern US are inseparable from fire. Across climate zones in California, Nevada, Arizona, and New Mexico, fire suppression has left many forest types out of sync with their historic fire regimes. As a result, high fuel loads place them at risk of severe fire, particularly as fire activity increases due to climate change. A legacy of fire exclusion coupled with a warming climate has led to increasingly large and severe wildfires in many southwest forest types. Climate change projections include an extended fire season length due to earlier snowmelt and a general drying trend due to rising temperatures. This suggests the future will be warmer and drier regardless of changes in precipitation. Hotter, drier conditions are likely to increase forest flammability, at least initially. Changes in climate alone have the potential to alter the distribution of vegetation types within the region, and climate-driven shifts in vegetation distribution are likely to be accelerated when coupled with stand-replacing fire. Regardless of the rate of change, the interaction of climate and fire and their effects on Southwest ecosystems will alter the provisioning of ecosystem services, including carbon storage and biodiversity. Interactions between climate, fire, and vegetation growth provide a source of great uncertainty in projecting future fire activity in the region, as post-fire forest recovery is strongly influenced by climate and subsequent fire frequency. Severe fire can be mitigated with fuels management including prescribed fire, thinning, and wildfire management, but new strategies are needed to ensure the effectiveness of treatments across landscapes. We review the current understanding of the relationship between fire and climate in the Southwest, both historical and projected. We then discuss the potential implications of climate change for fire management and examine the potential effects of climate change and fire on ecosystem

  5. Health-hazard evaluation report HETA 86-132-1780, Alyeska Pipeline Service Company, Valdez, Alaska

    SciTech Connect

    Apol, A.G.; Singal, M.

    1987-02-01

    A study was made of employee exposure to oil sludge and vapors during oil-sludge removal and maintenance activities at the Alyeska Pipeline Service Company's Ballast Water Treatment Facility, Valdez, Alaska. Total hydrocarbons, except benzene, toluene, and xylene, showed concentrations from 371 to 1228mg/m3. Of eight maintenance workers, five reported headache, dizziness, or nausea when working without a respirator. The authors conclude that workers were potentially exposed to benzene vapors and total hydrocarbon vapors exceeding the evaluation criteria for these substances. The authors recommend the use of respiratory protection measures to reduce exposures during work operations.

  6. Fire, grazing history, lichen abundance, and winter distribution of caribou in Alaska's taiga

    USGS Publications Warehouse

    Collins, W.B.; Dale, B.W.; Adams, L.G.; McElwain, D.E.; Joly, Kyle

    2011-01-01

    In the early 1990s the Nelchina Caribou (Rangifer tarandus) Herd (NCH) began a dramatic shift to its current winter range, migrating at least an additional 100 km beyond its historic range. We evaluated the impacts of fire and grazing history on lichen abundance and subsequent use and distribution by the NCH. Historic (prior to 1990) and current (2002) winter ranges of the NCH had similar vascular vegetation, lichen cover (P = 0.491), and fire histories (P = 0.535), but the former range had significantly less forage lichen biomass as a result of grazing by caribou. Biomass of forage lichens was twice as great overall (P = 0.031) and 4 times greater in caribou selected sites on the current range than in the historic range, greatly increasing availability to caribou. Caribou on the current range selected for stands with >20% lichen cover (P < 0.001), greater than 1,250 kg/ha (P < 0.001) forage lichen biomass and stands older than 80 yr postfire (P < 0.001). After fires, forage lichen cover and biomass seldom recovered sufficiently to attract caribou grazing until after ???60 yr, and, as a group, primary forage lichen species did not reach maximum abundance until 180 yr postfire. Recovery following overgrazing can occur much more quickly because lichen cover, albeit mostly fragments, and organic substrates remain present. Our results provide benchmarks for wildlife managers assessing condition of caribou winter range and predicting effects of fires on lichen abundance and caribou distribution. Of our measurements of cover and biomass by species, densities and heights of trees, elevation, slope and aspect, only percentage cover by Cladonia amaurocraea, Cladina rangiferina, Flavocetraria cuculata, and lowbush cranberry (Vaccinium vitis-idaea) were necessary for predicting caribou use of winter range. ?? 2011 The Wildlife Society.

  7. Interannual variability of nitrogen oxides emissions from boreal fires in Siberia and Alaska during 1996-2011 as observed from space

    NASA Astrophysics Data System (ADS)

    Tanimoto, Hiroshi; Ikeda, Kohei; Folkert Boersma, K.; van der A, Ronald J.; Garivait, Savitri

    2015-06-01

    Past studies suggest that forest fires contribute significantly to the formation of ozone in the troposphere. However, the emissions of ozone precursors from wildfires, and the mechanisms involved in ozone production from boreal fires, are very complicated. Moreover, an evaluation of the role of forest fires is prevented by the lack of direct observations of the ozone precursor, nitrogen oxides (NOx), and large uncertainties exist in the emissions inventories currently used for modelling. A comprehensive understanding of the important processes and factors involving wildfires has thus been unobtainable. We made 16 year consistent analyses of NOx emissions from boreal wildfires by using satellite observations of tropospheric nitrogen dioxides (NO2) from 1996 to 2011. We report substantial interannual variability of tropospheric NO2 originating from large boreal fires over Siberia in 1998, 2002, 2003, 2006, and 2008; and over Alaska in 2004, 2005, and 2009. Monthly comparisons of NO2 enhancements with fire radiative power (FRP) show reasonably strong correlation, suggesting that FRP is a better proxy than burned area for boreal fire NOx emissions. We provide space-based constraints on NOx emission factors (EFs) for Siberian and Alaskan fires. Although the associated uncertainty is relatively large, the derived EFs fall into a in reasonably agreeable range with those previously determined by in situ ground-based and airborne observations over these regions.

  8. Interactions between soil thermal and hydrological dynamics in the response of Alaska ecosystems to fire disturbance

    USGS Publications Warehouse

    Yi, Shuhua; McGuire, Anthony; Harden, Jennifer; Kasischke, Eric; Manies, Kristen L.; Hinzman, Larry; Liljedahl, Anna K.; Randerson, J.; Liu, Heping; Romanovsky, V.adimir E; Marchenko, Sergey S.; Kim, Yongwon

    2009-01-01

    Soil temperature and moisture are important factors that control many ecosystem processes. However, interactions between soil thermal and hydrological processes are not adequately understood in cold regions, where the frozen soil, fire disturbance, and soil drainage play important roles in controlling interactions among these processes. These interactions were investigated with a new ecosystem model framework, the dynamic organic soil version of the Terrestrial Ecosystem Model, that incorporates an efficient and stable numerical scheme for simulating soil thermal and hydrological dynamics within soil profiles that contain a live moss horizon, fibrous and amorphous organic horizons, and mineral soil horizons. The performance of the model was evaluated for a tundra burn site that had both preburn and postburn measurements, two black spruce fire chronosequences (representing space-for-time substitutions in well and intermediately drained conditions), and a poorly drained black spruce site. Although space-for-time substitutions present challenges in model-data comparison, the model demonstrates substantial ability in simulating the dynamics of evapotranspiration, soil temperature, active layer depth, soil moisture, and water table depth in response to both climate variability and fire disturbance. Several differences between model simulations and field measurements identified key challenges for evaluating/improving model performance that include (1) proper representation of discrepancies between air temperature and ground surface temperature; (2) minimization of precipitation biases in the driving data sets; (3) improvement of the measurement accuracy of soil moisture in surface organic horizons; and (4) proper specification of organic horizon depth/properties, and soil thermal conductivity.

  9. Interactions between soil thermal and hydrological dynamics in the response of Alaska ecosystems to fire disturbance

    USGS Publications Warehouse

    Yi, S.; McGuire, A.D.; Harden, J.; Kasischke, E.; Manies, K.; Hinzman, L.; Liljedahl, A.; Randerson, J.; Liu, H.; Romanovsky, V.; Marchenko, S.; Kim, Y.

    2009-01-01

    Soil temperature and moisture are important factors that control many ecosystem processes. However, interactions between soil thermal and hydrological processes are not adequately understood in cold regions, where the frozen soil, fire disturbance, and soil drainage play important roles in controlling interactions among these processes. These interactions were investigated with a new ecosystem model framework, the dynamic organic soil version of the Terrestrial Ecosystem Model, that incorporates an efficient and stable numerical scheme for simulating soil thermal and hydrological dynamics within soil profiles that contain a live moss horizon, fibrous and amorphous organic horizons, and mineral soil horizons. The performance of the model was evaluated for a tundra burn site that had both preburn and postbura measurements, two black spruce fire chronosequences (representing space-for-time substitutions in well and intermediately drained conditions), and a poorly drained black spruce site. Although space-for-time substitutions present challenges in modeldata comparison, the model demonstrates substantial ability in simulating the dynamics of ??vapotranspiration, soil temperature, active layer depth, soil moisture, and water table depth in response to both climate variability and fire disturbance. Several differences between model simulations and field measurements identified key challenges for evaluating/improving model performance that include (1) proper representation of discrepancies between air temperature and ground surface temperature; (2) minimization of precipitation biases in the driving data sets; (3) improvement of the measurement accuracy of soil moisture in surface organic horizons; and (4) proper specification of organic horizon depth/properties, and soil thermal conductivity. Copyright 2009 by the American Geophysical Union.

  10. Safety. Fire Service Certification Series. Unit FSCS-FF-2-80.

    ERIC Educational Resources Information Center

    Pribyl, Paul F.

    This training unit on safety is part of a 17-unit course package written to aid instructors in the development, teaching, and evaluation of fire fighters in the Wisconsin Fire Service Certification Series. The purpose stated for the 4-hour unit is to assist firefighters in understanding the hazards of their profession and some methods of reducing…

  11. Guidelines for Fire Service Education Programs in Community and Junior Colleges.

    ERIC Educational Resources Information Center

    Favreau, Donald F.

    This report serves as a guideline for fire service education. For men filling the estimated 10,000 opportunities in career fire department organizations each year in the 1970s, it is necessary that they receive a supplement to department-level training in drills and skills. Knowledge of hydraulics, chemistry, mechanical engineering, law…

  12. Water Supply. Fire Service Certification Series. Unit FSCS-FF-9-80.

    ERIC Educational Resources Information Center

    Pribyl, Paul F.

    This training unit on water supply is part of a 17-unit course package written to aid instructors in the development, teaching, and evaluation of fire fighters in the Wisconsin Fire Service Certification Series. The purpose stated for the 4-hour unit is to assist the firefighter in the proper use of water supplies and the understanding of the…

  13. Information-Seeking and Sharing Behaviors among Fire Service Field Staff Instructors: A Qualitative Study

    ERIC Educational Resources Information Center

    Ruan, Lian J.

    2011-01-01

    Fire service field staff instructors seek and share information and use information sources during their instructional work of teaching, training and curriculum development. This study is the first attempt to study their information-seeking and sharing behaviors, which have not previously been investigated empirically. Twenty-five fire service…

  14. Black carbon aerosol dynamics and isotopic composition in Alaska linked with boreal fire emissions and depth of burn in organic soils

    NASA Astrophysics Data System (ADS)

    Mouteva, G. O.; Czimczik, C. I.; Fahrni, S. M.; Wiggins, E. B.; Rogers, B. M.; Veraverbeke, S.; Xu, X.; Santos, G. M.; Henderson, J.; Miller, C. E.; Randerson, J. T.

    2015-11-01

    Black carbon (BC) aerosol emitted by boreal fires has the potential to accelerate losses of snow and ice in many areas of the Arctic, yet the importance of this source relative to fossil fuel BC emissions from lower latitudes remains uncertain. Here we present measurements of the isotopic composition of BC and organic carbon (OC) aerosols collected at two locations in interior Alaska during the summer of 2013, as part of NASA's Carbon in Arctic Reservoirs Vulnerability Experiment. We isolated BC from fine air particulate matter (PM2.5) and measured its radiocarbon (Δ14C) content with accelerator mass spectrometry. We show that fires were the dominant contributor to variability in carbonaceous aerosol mass in interior Alaska during the summer by comparing our measurements with satellite data, measurements from an aerosol network and predicted concentrations from a fire inventory coupled to an atmospheric transport model. The Δ14C of BC from boreal fires was 131 ± 52‰ in the year 2013 when the Δ14C of atmospheric CO2 was 23 ± 3‰, corresponding to a mean fuel age of 20 years. Fire-emitted OC had a similar Δ14C (99 ± 21‰) as BC, but during background (low fire) periods OC (45 to 51‰) was more positive than BC (-354 to -57‰). We also analyzed the carbon and nitrogen elemental and stable isotopic composition of the PM2.5. Fire-emitted aerosol had an elevated carbon to nitrogen (C/N) ratio (29 ± 2) and δ15N (16 ± 4‰). Aerosol Δ14C and δ13C measurements were consistent with a mean depth of burning in organic soil horizons of 20 cm (and a range of 8 to 47 cm). Our measurements of fire-emitted BC and PM2.5 composition constrain the end-member of boreal forest fire contributions to aerosol deposition in the Arctic and may ultimately reduce uncertainties related to the impact of a changing boreal fire regime on the climate system.

  15. LANDSAT digital analysis of the initial recovery of the Kokolik River tundra fire area, Alaska

    NASA Technical Reports Server (NTRS)

    Hall, D. K.; Ormsby, J. P.; Johnson, L.; Brown, J. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. Considerable regrowth of vegetation was observed between August 1977 and August 1978, both in the field and through analysis of LANDSAT near infrared digital data. The spectral reflectances in the burned areas were found to increase with the age of the burn in a one year period due to vegetation regrowth. Regrowth was particularly evident in the lightly burned portions of the burned area. Image analysis techniques using the AOIPS system permitted delineation of burn severity categories. The conditions and type of ground cover prior to the fire influenced the severity of burning, as did the direction of the winds while the burning was in progress as determined from field and LANDSAT observations. More severe burning was induced by winds blowing in the northeastern and southeastern portions of the burned area.

  16. Enabling Scientific and Technological Improvements to Meet Core Partner Service Requirements in Alaska - An Arctic Test Bed

    NASA Astrophysics Data System (ADS)

    Petrescu, E. M.; Scott, C. A.

    2014-12-01

    NOAA/NWS Test beds, such as the Joint Hurricane Test Bed (Miami, FL) and the Hazardous Weather Test Bed (Norman, OK) have been highly effective in meeting unique or pressing science and service challenges for the NWS. NWS Alaska Region leadership has developed plans for a significant enhancement to our operational forecast and decision support capabilities in Alaska to address the emerging requirements of the Arctic: An Arctic Test Bed. Historically, the complexity of forecast operations and the inherent challenges in Alaska have not been addressed well by the R&D programs and projects that support the CONUS regions of the NWS. In addition, there are unique science,technology, and support challenges (e.g., sea ice forecasts and arctic drilling prospects) and opportunities (Bilateral agreements with Canada, Russia, and Norway) that would best be worked through Alaska operations. A dedicated test bed will provide a mechanism to transfer technology, research results, and observations advances into operations in a timely and effective manner in support of Weather Ready Nation goals and to enhance decision support services in Alaska. A NOAA Arctic Test Bed will provide a crucial nexus for ensuring NOAA's developers understand Alaska's needs, which are often cross disciplinary (atmosphere, ocean, cryosphere, and hydrologic), to improve NOAA's responsiveness to its Arctic-related science and service priorities among the NWS and OAR (CPO and ESRL), and enable better leveraging of other research initiatives and data sources external to NOAA, including academia, other government agencies, and the private sector, which are particular to the polar region (e.g., WWRP Polar Prediction Project). Organization, capabilities and opportunities will be presentation.

  17. Fires

    MedlinePlus

    Whether a fire happens in your home or in the wild, it can be very dangerous. Fire spreads quickly. There is no time to gather ... a phone call. In just two minutes, a fire can become life-threatening. In five minutes, a ...

  18. In the wake of suicide: Developing guidelines for suicide postvention in fire service.

    PubMed

    Gulliver, Suzy Bird; Pennington, Michelle L; Leto, Frank; Cammarata, Claire; Ostiguy, William; Zavodny, Cynthia; Flynn, Elisa J; Kimbrel, Nathan A

    2016-01-01

    This project aimed to develop a standard operating procedure (SOP) for suicide postvention in Fire Service. First, an existing SOP was refined through expert review. Next, focus groups were conducted with fire departments lacking a peer suicide postvention SOP; feedback obtained guided revisions. The current article describes the iterative process used to evaluate and revise a Suicide Postvention SOP into a Postvention guideline that is available for implementation and evaluation. Postventions assist survivors in grief and bereavement and attempt to prevent additional negative outcomes. The implementation of suicide postvention guidelines will increase behavioral wellness within Fire Service. PMID:26332212

  19. In the wake of suicide: Developing guidelines for suicide postvention in fire service

    PubMed Central

    Gulliver, Suzy Bird; Pennington, Michelle L.; Leto, Frank; Cammarata, Claire; Ostiguy, William; Zavodny, Cynthia; Flynn, Elisa J.; Kimbrel, Nathan A.

    2016-01-01

    ABSTRACT This project aimed to develop a standard operating procedure (SOP) for suicide postvention in Fire Service. First, an existing SOP was refined through expert review. Next, focus groups were conducted with fire departments lacking a peer suicide postvention SOP; feedback obtained guided revisions. The current article describes the iterative process used to evaluate and revise a Suicide Postvention SOP into a Postvention guideline that is available for implementation and evaluation. Postventions assist survivors in grief and bereavement and attempt to prevent additional negative outcomes. The implementation of suicide postvention guidelines will increase behavioral wellness within Fire Service. PMID:26332212

  20. Providing Culturally Competent Services for American Indian and Alaska Native Veterans to Reduce Health Care Disparities

    PubMed Central

    Kaufman, Carol E.; Kaufmann, L. Jeanne; Brooks, Elizabeth; Shore, Jay H.

    2014-01-01

    Objectives. We conducted an exploratory study to determine what organizational characteristics predict the provision of culturally competent services for American Indian and Alaska Native (AI/AN) veterans in Department of Veterans Affairs (VA) health facilities. Methods. In 2011 to 2012, we adapted the Organizational Readiness to Change Assessment (ORCA) for a survey of 27 VA facilities in the Western Region to assess organizational readiness and capacity to adopt and implement native-specific services and to profile the availability of AI/AN veteran programs and interest in and resources for such programs. Results. Several ORCA subscales (Program Needs, Leader’s Practices, and Communication) statistically significantly predicted whether VA staff perceived that their facilities were meeting the needs of AI/AN veterans. However, none predicted greater implementation of native-specific services. Conclusions. Our findings may aid in developing strategies for adopting and implementing promising native-specific programs and services for AI/AN veterans, and may be generalizable for other veteran groups. PMID:25100420

  1. The Public Health Foundation of Health Services for American Indians & Alaska Natives

    PubMed Central

    2014-01-01

    The integration of public health practices with federal health care for American Indians and Alaska Natives (AI/ANs) largely derives from three major factors: the sovereign nature of AI/AN tribes, the sociocultural characteristics exhibited by the tribes, and that AI/ANs are distinct populations residing in defined geographic areas. The earliest services consisted of smallpox vaccination to a few AI/AN groups, a purely public health endeavor. Later, emphasis on public health was codified in the Snyder Act of 1921, which provided for, among other things, conservation of the health of AI/AN persons. Attention to the community was greatly expanded with the 1955 transfer of the Indian Health Service from the US Department of the Interior to the Public Health Service and has continued with the assumption of program operations by many tribes themselves. We trace developments in integration of community and public health practices in the provision of federal health care services for AI/AN persons and discuss recent trends. PMID:24758580

  2. Effects of fire on the thermal stability of permafrost in lowland and upland black spruce forests of interior Alaska in a changing climate

    USGS Publications Warehouse

    Jafarov, Elchin E.; Romanovsky, Vladimir E.; Genet, Helene; McGuire, Anthony David; Marchenko, Sergey S.

    2013-01-01

    Fire is an important factor controlling the composition and thickness of the organic layer in the black spruce forest ecosystems of interior Alaska. Fire that burns the organic layer can trigger dramatic changes in the underlying permafrost, leading to accelerated ground thawing within a relatively short time. In this study, we addressed the following questions. (1) Which factors determine post-fire ground temperature dynamics in lowland and upland black spruce forests? (2) What levels of burn severity will cause irreversible permafrost degradation in these ecosystems? We evaluated these questions in a transient modeling–sensitivity analysis framework to assess the sensitivity of permafrost to climate, burn severity, soil organic layer thickness, and soil moisture content in lowland (with thick organic layers, ~80 cm) and upland (with thin organic layers, ~30 cm) black spruce ecosystems. The results indicate that climate warming accompanied by fire disturbance could significantly accelerate permafrost degradation. In upland black spruce forest, permafrost could completely degrade in an 18 m soil column within 120 years of a severe fire in an unchanging climate. In contrast, in a lowland black spruce forest, permafrost is more resilient to disturbance and can persist under a combination of moderate burn severity and climate warming.

  3. The effects of fire on the thermal stability of permafrost in lowland and upland black spruce forests of interior Alaska in a changing climate

    NASA Astrophysics Data System (ADS)

    Jafarov, E. E.; Romanovsky, V. E.; Genet, H.; McGuire, A. D.; Marchenko, S. S.

    2013-09-01

    Fire is an important factor controlling the composition and thickness of the organic layer in the black spruce forest ecosystems of interior Alaska. Fire that burns the organic layer can trigger dramatic changes in the underlying permafrost, leading to accelerated ground thawing within a relatively short time. In this study, we addressed the following questions. (1) Which factors determine post-fire ground temperature dynamics in lowland and upland black spruce forests? (2) What levels of burn severity will cause irreversible permafrost degradation in these ecosystems? We evaluated these questions in a transient modeling-sensitivity analysis framework to assess the sensitivity of permafrost to climate, burn severity, soil organic layer thickness, and soil moisture content in lowland (with thick organic layers, ˜80 cm) and upland (with thin organic layers, ˜30 cm) black spruce ecosystems. The results indicate that climate warming accompanied by fire disturbance could significantly accelerate permafrost degradation. In upland black spruce forest, permafrost could completely degrade in an 18 m soil column within 120 years of a severe fire in an unchanging climate. In contrast, in a lowland black spruce forest, permafrost is more resilient to disturbance and can persist under a combination of moderate burn severity and climate warming.

  4. Soil data from fire and permafrost-thaw chronosequences in upland Picea mariana stands near Hess Creek and Tok, interior Alaska

    USGS Publications Warehouse

    O'Donnell, Jonathan A.; Harden, Jennifer W.; Manies, Kristen L.; Jorgenson, M. Torre; Kanevskiy, Mikhail; Xu, Xiaomei

    2013-01-01

    Soils of the Northern Circumpolar Permafrost region harbor 1,672 petagrams (Pg) (1 Pg = 1,000,000,000 kilograms) of organic carbon (OC), nearly 50 percent of the global belowground OC pool (Tarnocai and others, 2009). Of that soil OC, nearly 88 percent is presently stored in perennially frozen ground. Recent climate warming at northern latitudes has resulted in warming and thawing of permafrost in many regions (Osterkamp, 2007), which might mobilize OC stocks from associated soil reservoirs via decomposition, leaching, or erosion. Warming also has increased the magnitude and severity of wildfires in the boreal region (Turetsky and others, 2011), which might exacerbate rates of permafrost degradation relative to warming alone. Given the size and vulnerability of the soil OC pool in permafrost soils, permafrost thaw will likely function as a strong positive feedback to the climate system (Koven and others, 2011; Schaefer and others, 2011). In this report, we report soil OC inventories from two upland fire chronosequences located near Hess Creek and Tok in Interior Alaska. We sampled organic and mineral soils in the top 2 meters (m) across a range of stand ages to evaluate the effects of wildfire and permafrost thaw on soil C dynamics. These data were used to parameterize a simple process-based fire-permafrost-carbon model, which is described in detail by O’Donnell and others (2011a, b). Model simulations examine long-term changes in soil OC storage in response to fire, permafrost thaw, and climate change. These data also have been used in other papers, including Harden and others (2012), which examines C recovery post-fire, and Johnson and others (2011), which synthesizes data within the Alaska Soil Carbon Database. Findings from these studies highlight the importance of climate and disturbance (wildfire, permafrost thaw) on soil C storage, and loss of soil C from high-latitude ecosystems.

  5. Fire service and first responder thermal imaging camera (TIC) advances and standards

    NASA Astrophysics Data System (ADS)

    Konsin, Lawrence S.; Nixdorff, Stuart

    2007-04-01

    Fire Service and First Responder Thermal Imaging Camera (TIC) applications are growing, saving lives and preventing injury and property damage. Firefighters face a wide range of serious hazards. TICs help mitigate the risks by protecting Firefighters and preventing injury, while reducing time spent fighting the fire and resources needed to do so. Most fire safety equipment is covered by performance standards. Fire TICs, however, are not covered by such standards and are also subject to inadequate operational performance and insufficient user training. Meanwhile, advancements in Fire TICs and lower costs are driving product demand. The need for a Fire TIC Standard was spurred in late 2004 through a Government sponsored Workshop where experts from the First Responder community, component manufacturers, firefighter training, and those doing research on TICs discussed strategies, technologies, procedures, best practices and R&D that could improve Fire TICs. The workshop identified pressing image quality, performance metrics, and standards issues. Durability and ruggedness metrics and standard testing methods were also seen as important, as was TIC training and certification of end-users. A progress report on several efforts in these areas and their impact on the IR sensor industry will be given. This paper is a follow up to the SPIE Orlando 2004 paper on Fire TIC usage (entitled Emergency Responders' Critical Infrared) which explored the technological development of this IR industry segment from the viewpoint of the end user, in light of the studies and reports that had established TICs as a mission critical tool for firefighters.

  6. Chemical and Microphysical Properties of Particles in Aged Forest Fire Plumes From Alaska and Western Canada Observed Over the Northeastern U.S.

    NASA Astrophysics Data System (ADS)

    Brock, C. A.; Wollny, A. G.; Cooper, O. R.; Fehsenfeld, F. C.; de Gouw, J. A.; Hudson, P. K.; Matthew, B. M.; Middlebrook, A. M.; Murphy, D. M.; Simsons, C.; Stohl, A.; Warneke, C.; Peltier, R.; Sulivan, A.; Weber, R. J.; Wilson, J. C.

    2004-12-01

    During the Intercontinental Transport and Chemical Transformation - New England Air Quality Study (ITCT-NEAQS 2004) in July and August 2004 several forest fires plumes were observed over the northeastern U.S. and southeastern Canada. Satellite data and trajectory analyses indicate that the plumes originated from forest fires burning in Alaska and western Canada. In-situ measurements of the aged forest fire smoke were made on board the NOAA WP-3D research aircraft during several flights over a period of 2 weeks. Concentrations of volatile organic compounds (VOCs) and the chemical composition of single aerosol particles in air masses containing forest fire smoke show significant differences compared to background air or to pollution from urban and industrial sources and unambiguously identify the smoke plumes. Particle size distributions from 0.004 to 8 um were measured with one second resolution in the aged forest fire smoke. The smoke was characterized by mass-weighted diameters between 0.6 and 1 um--much larger than secondary particles typical of urban and industrial sources. Particle volume concentrations were among the highest seen within the ITCT-NEAQS 2004 project, and regional visibility and air quality were significantly affected by the transported smoke. Quantitative compositional measurements were made of the non-refractory fraction of submicron particles, as well as of submicron inorganic ionic compounds and water soluble organic mass, within the forest fire plumes. The submicron aerosol particles in the biomass plumes were largely carbonaceous with very little sulfate, ammonium, or nitrate. A fraction of this carbonaceous material was soluble in water and likely contained oxygenated organic species.

  7. The effect of fire and permafrost interactions on soil carbon accumulation in an upland black spruce ecosystem of interior Alaska: Implications for post-thaw carbon loss

    USGS Publications Warehouse

    O'Donnell, J. A.; Harden, J.W.; McGuire, A.D.; Kanevskiy, M.Z.; Jorgenson, M.T.; Xu, X.

    2011-01-01

    High-latitude regions store large amounts of organic carbon (OC) in active-layer soils and permafrost, accounting for nearly half of the global belowground OC pool. In the boreal region, recent warming has promoted changes in the fire regime, which may exacerbate rates of permafrost thaw and alter soil OC dynamics in both organic and mineral soil. We examined how interactions between fire and permafrost govern rates of soil OC accumulation in organic horizons, mineral soil of the active layer, and near-surface permafrost in a black spruce ecosystem of interior Alaska. To estimate OC accumulation rates, we used chronosequence, radiocarbon, and modeling approaches. We also developed a simple model to track long-term changes in soil OC stocks over past fire cycles and to evaluate the response of OC stocks to future changes in the fire regime. Our chronosequence and radiocarbon data indicate that OC turnover varies with soil depth, with fastest turnover occurring in shallow organic horizons (~60 years) and slowest turnover in near-surface permafrost (>3000 years). Modeling analysis indicates that OC accumulation in organic horizons was strongly governed by carbon losses via combustion and burial of charred remains in deep organic horizons. OC accumulation in mineral soil was influenced by active layer depth, which determined the proportion of mineral OC in a thawed or frozen state and thus, determined loss rates via decomposition. Our model results suggest that future changes in fire regime will result in substantial reductions in OC stocks, largely from the deep organic horizon. Additional OC losses will result from fire-induced thawing of near-surface permafrost. From these findings, we conclude that the vulnerability of deep OC stocks to future warming is closely linked to the sensitivity of permafrost to wildfire disturbance. ?? 2010 Blackwell Publishing Ltd.

  8. Amount and Lability of Dissolved Organic Carbon Entering Arctic Streams from Landscapes Disturbed by Fire and Thermokarst Terrain, North Slope, Alaska

    NASA Astrophysics Data System (ADS)

    Larouche, J. R.; Abbott, B. W.; Jones, J.; Bowden, W. B.

    2011-12-01

    The arctic climate is warming, which will have important impacts on stream ecosystems. In the Alaskan arctic, fire frequency and thermokarst formation (permafrost degradation and collapse) have become more common. Our previous research shows that these processes have important hydrologic and biogeochemical effects on streams including increased export of inorganic nutrients and sediment, both of which alter the metabolism and nutrient dynamics of impacted streams. Another potential impact of thermokarst and fire is the increased delivery of biologically reactive dissolved organic matter (DOM) to streams. We studied how fire and thermokarst formation affect the rate of DOM delivery and the input of labile DOM to streams in arctic Alaska. Recent work in both thermokarst and fire-impacted streams suggest an increase in dissolved organic carbon (DOC) as the summer progresses. We characterized the reactivity of DOC entering streams disturbed by thermokarst and burned conditions. Initial results of DOC decomposition rates suggest that thermokarst waters contain a higher fraction of labile DOC compared to water tracks and headwater streams. During the summer of 2011, we monitored streams at the watershed and individual thermokarst feature scale for inorganic nutrients, sediment, major cations, alkalinity, and DOC concentration and lability. We characterized potential DOC lability by sampling a time series (0, 10, and 40 d) of water samples from common sources that had been inoculated initially with the same microbial community and enriched with nutrients to stimulate maximum decomposition of the DOC. Specific Ultraviolet Absorbance (SUVA) was used to characterize DOC quality as a function of aromaticity. Four of the watersheds we sampled were affected by the 2007 Anaktuvuk River Burn, one of which experienced subsequent thermokarst formation, and two watersheds are reference sites. Determining rates of DOC decomposition and the potential controlling factors from streams

  9. The Affordable Care Act and Implications for Health Care Services for American Indian and Alaska Native Individuals

    PubMed Central

    Ross, Raven E.; Garfield, Lauren D.; Brown, Derek S.; Raghavan, Ramesh

    2016-01-01

    American Indian and Alaska Native (AI/AN) populations report poor physical and mental health outcomes while tribal health providers and the Indian Health Service (IHS) operate in a climate of significant under funding. Understanding how the Patient Protection and Affordable Care Act (ACA) affects Native American tribes and the IHS is critical to addressing the improvement of the overall access, quality, and cost of health care within AI/AN communities. This paper summarizes the ACA provisions that directly and/or indirectly affect the service delivery of health care provided by tribes and the IHS. PMID:26548665

  10. The Affordable Care Act and Implications for Health Care Services for American Indian and Alaska Native Individuals.

    PubMed

    Ross, Raven E; Garfield, Lauren D; Brown, Derek S; Raghavan, Ramesh

    2015-11-01

    American Indian and Alaska Native (AI/AN) populations report poor physical and mental health outcomes while tribal health providers and the Indian Health Service (IHS) operate in a climate of significant under funding. Understanding how the Patient Protection and Affordable Care Act (ACA) affects Native American tribes and the IHS is critical to addressing the improvement of the overall access, quality, and cost of health care within AI/AN communities. This paper summarizes the ACA provisions that directly and/or indirectly affect the service delivery of health care provided by tribes and the IHS. PMID:26548665

  11. Extreme sacrifice: sudden cardiac death in the US Fire Service

    PubMed Central

    2013-01-01

    Firefighting is a hazardous profession which has claimed on average the lives of 105 US firefighters per year for the past decade. The leading cause of line-of-duty mortality is sudden cardiac death, which accounts for approximately 45% of all firefighter duty-related fatalities. Strenuous physical activity, emotional stress, and environmental pollutants all strain the cardiovascular system, and each can increase the risk of sudden cardiac events in susceptible individuals. Sudden cardiac death is more likely to occur during or shortly after emergency duties such as fire suppression, despite the fact that these duties comprise a relatively small proportion of firefighters' annual duties. Additionally, cardiac events are more likely to occur in firefighters who possess an excess of traditional risk factors for cardiovascular disease along with underlying atherosclerosis and/or structural heart disease. In this review, we propose a theoretical model for the interaction between underlying cardiovascular disease in firefighters and the multifactorial physiological strain of firefighting. PMID:23849605

  12. From Fire Observations to Smoke Plume Forecasting in the MACC Services

    NASA Astrophysics Data System (ADS)

    Kaiser, Johannes W.; Benedetti, A.; Flemming, J.; Morcrette, J.-J.; Heil, A.; Schultz, M. G.; van der Werf, G. R.; Wooster, M. J.

    2011-01-01

    The MACC project is implementing atmospheric monitoring and forecasting services for the global and Euro- pean domains as part of the GMES programme. Smoke plumes are monitored by assimilating observations of aerosol optical depth and various trace gases. Biomass burning is monitored in real time by assimilating observations of fire radiative power (FRP) from five satellite- based instruments. The global monitoring capability is demonstrated with a near real time fire and smoke analysis for South America, where a threefold increase of biomass burning has been detected in 2010 compared to 2009. Furthermore, an anomalously flat diurnal cycle has been recorded for the Russian wildfires of July and August 2010. This can be interpreted as a characteristic of peaty soil burning, which entails particularly large emissions. The global aerosol service was able to forecast, with three days lead time, an air quality threshold transgression in Finland that resulted from the Russian fires.

  13. Collaboration and Interconnectivity: Nottinghamshire Fire and Rescue Services and Higher Education Institutions in Nottingham

    ERIC Educational Resources Information Center

    Murphy, Peter; Greenhalgh, Kirsten; Parkin, Craig

    2013-01-01

    This article will describe the developing relationship between Nottinghamshire Fire and Rescue Services and the two higher education institutions in Nottingham. It will chronicle how a very traditional relationship has been transformed, initially by a simple consultancy project, into a much closer working relationship characterised by a much…

  14. Users guide for SAMM: A prototype southeast Alaska multiresource model. Forest Service general technical report

    SciTech Connect

    Weyermann, D.L.; Fight, R.D.; Garrett, F.D.

    1991-08-01

    This paper instructs resource analysts on using the southeast Alaska multiresource model (SAMM). SAMM is an interactive microcomputer program that allows users to explore relations among several resources in southeast Alaska (timber, anadromous fish, deer, and hydrology) and the effects of timber management activities (logging, thinning, and road building) on those relations and resources. This guide assists users in installing SAMM on a microcomputer, developing input data files, making simulation runs, and strong output data for external analysis and graphic display.

  15. An Architecture for Automated Fire Detection Early Warning System Based on Geoprocessing Service Composition

    NASA Astrophysics Data System (ADS)

    Samadzadegan, F.; Saber, M.; Zahmatkesh, H.; Joze Ghazi Khanlou, H.

    2013-09-01

    Rapidly discovering, sharing, integrating and applying geospatial information are key issues in the domain of emergency response and disaster management. Due to the distributed nature of data and processing resources in disaster management, utilizing a Service Oriented Architecture (SOA) to take advantages of workflow of services provides an efficient, flexible and reliable implementations to encounter different hazardous situation. The implementation specification of the Web Processing Service (WPS) has guided geospatial data processing in a Service Oriented Architecture (SOA) platform to become a widely accepted solution for processing remotely sensed data on the web. This paper presents an architecture design based on OGC web services for automated workflow for acquisition, processing remotely sensed data, detecting fire and sending notifications to the authorities. A basic architecture and its building blocks for an automated fire detection early warning system are represented using web-based processing of remote sensing imageries utilizing MODIS data. A composition of WPS processes is proposed as a WPS service to extract fire events from MODIS data. Subsequently, the paper highlights the role of WPS as a middleware interface in the domain of geospatial web service technology that can be used to invoke a large variety of geoprocessing operations and chaining of other web services as an engine of composition. The applicability of proposed architecture by a real world fire event detection and notification use case is evaluated. A GeoPortal client with open-source software was developed to manage data, metadata, processes, and authorities. Investigating feasibility and benefits of proposed framework shows that this framework can be used for wide area of geospatial applications specially disaster management and environmental monitoring.

  16. Field investigation source area ST58 old Quartermaster service station, Eielson Air Force Base, Alaska

    SciTech Connect

    Liikala, T.L.; Evans, J.C.

    1995-01-01

    Source area ST58 is the site of the old Quartermaster service station at Eielson Air Force Base, Alaska. The source area is one of several Source Evaluation Report sites being investigated by Pacific Northwest Laboratory for the US Air Force as candidates for no further remedial action, interim removal action, or a remedial investigation/feasibility study under a Federal Facilities Agreement. The purpose of this work was to characterize source area ST58 and excavate the most contaminated soils for use in composting treatability studies. A field investigation was conducted to determine the nature and extent of soil contamination. The field investigation entailed a records search; grid node location, surface geophysical, and soil gas surveys; and test pit soil sampling. Soil excavation followed based on the results of the field investigation. The site was backfilled with clean soil. Results from this work indicate close spatial correlation between screening instruments, used during the field investigation and soil excavation, and laboratory analyses. Gasoline was identified as the main subsurface contaminant based on the soil gas surveys and test pit soil sampling. A center of contamination was located near the northcentral portion of the source area, and a center was located in the northwestern comer. The contamination typically occurred near or below a former soil horizon probably as a result of surface spills and leaks from discontinuities and/or breaks in the underground piping. Piping locations were delineated during the surface geophysical surveys and corresponded very well to unscaled drawings of the site. The high subsurface concentrations of gasoline detected in the northwestern comer of the source area probably reflect ground-water contamination and/or possibly floating product.

  17. Multiple Site Evaluation of a Dynamic Organic Soil Model for Analyzing Carbon Responses of Terrestrial Ecosystems to Climate Change and Fire Disturbance in Interior Alaska

    NASA Astrophysics Data System (ADS)

    Yuan, F.; Yi, S.; McGuire, D.; Johnson, K. D.; Liang, J.; Kasischke, E.; Harden, J. W.

    2009-12-01

    Regional scale analysis of ecosystem carbon (C) dynamics requires extensive evaluation of ecosystem models to reliably predict C responses to climate change and disturbance. This study presents a multiple site evaluation of the dynamic organic soil version of the Terrestrial Ecosystem Model (DOS-TEM) for the linkages among plant growth and organic soil C dynamics in taiga of four terrestrial vegetation types (black spruce, white spruce, broad-leaved deciduous forest, and upland tundra) in the Interior Alaska. We assembled vegetation biomass and soil C data from the literature and from forest inventory and soil surveys in the study region. Vegetation types in both well-drained and poorly-drained landscape positions were considered separately because of their contrasting growth and soil C storage characteristics. These data were first used to calibrate the model, and then the model dynamics were evaluated using available forest inventory and soil survey data (e.g. organic horizon data) to assess the ability of the model to capture the effects of climate variability and fire disturbance on C dynamics across the region. Our model development and integrative evaluation of simulated C dynamics provides a sound foundation for the application of DOS-TEM to analyze the response of C in the region to projected changes in climate and fire disturbance.

  18. GFAS fire emissions and smoke in the Copernicus Atmosphere Monitoring Service

    NASA Astrophysics Data System (ADS)

    Kaiser, Johannes W.; Andela, Niels; Benedetti, Angela; He, Jiangping; Heil, Angelika; Inness, Antje; Paugam, Ronan; Remy, Samuel; Trigo, Isabel; van der Werf, Guido R.; Wooster, Martin J.

    2015-04-01

    We present the latest developments of the Global Fire Assimilation System (GFAS), which has been implemented by the MACC-III project in order to provide accurate biomass burning emission estimates for real time and retrospective atmospheric composition monitoring and forecasting, and climate monitoring. It is now part of the EU's operational Copernicus Atmosphere Monitoring Service (CAMS). Accurate fire emissions have been shown to be a crucial input for air quality forecasts even when satellite-based atmospheric observations are being assimilated. On the other hand, comparisons of the simulated smoke plumes and data assimilation of atmospheric observations with ECMWF's Integrated Forecasting System (IFS) provide information on the accuracy of the bottom-up fire emission estimates. GFAS calculates the global dry matter combustion rate and injection height estimates from satellite observations of fire radiative power. Emission rates for forty smoke constituents are subsequently calculated from the dry matter combustion rate with resolutions of 0.1deg and 1 day. The emission estimates of GFAS are used for the operational monitoring and forecasting of global and regional atmospheric composition and air quality in CAMS. The emisson estimates have been validated against atmospheric smoke plume observations of aerosol optical depth, carbon monoxide, ozone, nitrogen dioxide and formaldehyde using the atmospheric models of MACC-III. The simulated smoke plumes are largely consistent with satellite-based and in-situ observations. However, distinct systematic differences appear. New developments of GFAS include the provision of Fire Radiative Power (FRP) products from the geostationary GOES satellites, the calculation of diurnal fire cycles for individual days and grid cells, and a bias correction for periods with more sparse satellite data coverage. Further developments address the viewing angle-dependence of the satellite observations and an improved land cover / fire typ

  19. From strange bedfellows to natural allies: the shifting allegiance of fire service organisations in the push for federal fire-safe cigarette legislation

    PubMed Central

    Barbeau, E; Kelder, G; Ahmed, S; Mantuefel, V; Balbach, E

    2005-01-01

    Background: Cigarettes are the leading cause of fatal fires in the USA and are associated with one in four fire deaths. Although the technology needed to make fire-safe cigarettes has been available for many years, progress has been slow on legislative and regulatory fronts to require the tobacco industry to manufacture fire-safe cigarettes. Method and results: We conducted a case study, drawing on data from tobacco industry documents, archives, and key informant interviews to investigate tobacco industry strategies for thwarting fire-safe cigarette legislation in the US Congress. We apply a theoretical framework that posits that policymaking is the product of three sets of forces: interests, institutions, and ideas, to examine tobacco industry behaviour, with a special focus on their and others' attempts to court fire service organisations, including firefighters' unions as allies. We discuss the implications of our findings for future policy efforts related to fire-safe cigarettes and other tobacco control issues. Conclusions: Tobacco control advocates ought to: continue efforts to align key interest groups, including the firefighters unions; contest tobacco industry "diversionary" science tactics; and pursue a state based legislative strategy for fire-safe cigarettes, building towards national legislation. PMID:16183985

  20. Plans for Dropout Prevention and Special School Support Services for American Indian and Alaska Native Students.

    ERIC Educational Resources Information Center

    Reyhner, Jon

    American Indian and Alaska Native students have the highest dropout rate among all ethnic or racial groups, about 30%. Many studies have focused on the supposed deficits of students who drop out, such as intelligence, school attendance, and parental income. Less attention has been given to the deficits of schools and teachers pushing out Native…

  1. 76 FR 21404 - National Park Service Alaska Region's Subsistence Resource Commission (SRC) Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR..., to operate in accordance with the provisions of the Federal Advisory Committee Act. Public... Reports 9. Public and Other Agency Comments 10. Federal Subsistence Board Update 11. Alaska Board of...

  2. 76 FR 8378 - National Park Service Alaska Region's Subsistence Resource Commission (SRC) Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-14

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR... in accordance with the provisions of the Federal Advisory Committee Act. Public Availability of... Agency Comments 10. Federal Subsistence Board Update 11. Alaska Board of Game Update 12. Old Business...

  3. 75 FR 26273 - Notice of Public Meeting and Teleconference for the National Park Service Alaska Region's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-11

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF THE INTERIOR..., to operate in accordance with the provisions of the Federal Advisory Committee Act. Public.... Federal Subsistence Board Update. 10. Alaska Board of Game Update. 11. Old Business. a. Nabesna Road...

  4. Grant award to the Division of Mental Health and Developmental Disabilities, Department of Health and Social Services, State of Alaska. Center for Substance Abuse Treatment (CSAT), Center for Mental Health Services (CMHS), Substance Abuse and Mental Health Services Administration (SAMHSA), HHS. Availability of grant funds for the Division of Mental Health and Developmental Disabilities, Department of Health and Social Services, State of Alaska.

    PubMed

    1999-04-16

    This notice is to inform the public that CSAT and CMHS are making available approximately $5,000,000 for an award in FY 1999 to the Division of Mental Health and Developmental Disabilities, Department of Health and Social Services, State of Alaska to support development, implementation, and evaluation of a comprehensive, seamless system of care for persons with co-occurring substance abuse (including alcohol and other drugs) and mental health disorders in Anchorage, Alaska, and its environs. CSAT and CMHS will make this award if the application is recommended for approval by the Initial Review Group and the CSAT and CMHS National Advisory Councils. This is not a formal request for applications; assistance will be provided only to the Alaska Division of Mental Health and Developmental Disabilities. Eligibility for this program is limited to the State of Alaska, as specified in Congressional report language, in recognition of primacy of its responsibility for, and interest in, providing for the needs of its citizens, and because the success of the program will depend upon the authority and ability to broadly coordinate the variety of resources essential for full program success. The State has committed itself to moving certain mental health services from their extant institutional bases to community bases, and, simultaneously, changing from parallel systems of service delivery--for substance abuse and mental health problems--to an approach designed to deliver services seamlessly to persons with comorbidity. Alaska needs a high level of systemic competence in delivering these services due, in great part, to its climate (resulting in deaths of homeless comorbid persons), and to the requirements of its proposed systems changes. The proposed project presents a unique opportunity for SAMHSA and its Centers to learn, first hand, how the transition from parallel systems to a seamless system of care can be accomplished in a small city in a rural/frontier State, and at what

  5. Fire and Smoke Monitoring at NOAA' Satellite Service; Applications to Smoke Forecasting

    NASA Astrophysics Data System (ADS)

    Stephens, G.; Ruminski, M.

    2005-12-01

    The Hazard Mapping System (HMS), developed and run operationally by NOAA's Satellite Services Division (SSD), is a multiplatform remote sensing approach to detecting fires and smoke over the US and adjacent areas of Canada and Mexico. The system utilizes sensors on 7 different NOAA and NASA satellites. Automated detection algorithms are employed for each of the satellites for the fire detects while smoke is delineated by an image analyst. Analyses are quality control by an analyst who inspects all available imagery and automated fire detects, deleting suspected false detects and adding fires that the automated routines miss. Graphical, text, and GIS compatible analyses are posted to a web site as soon as updates are performed, and a final product for a given day is posted early the following morning. All products are archived at NOAA's National Geophysical Data Center. Areal extent of detectable smoke is outlined using animated visible imagery, for input to a dispersion and transport model, the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT), developed by NOAA's Air Resources Laboratory (ARL). Resulting smoke forecasts will soon be used as input to NOAA's Air Quality forecasts. The GOES Aerosol and Smoke Product (GASP) is an experimental GOES imagery based aerosol optical depth (AOD) product developed by the NESDIS Office of Research and Applications, being implemented for evaluation by the NESDIS Satellite Analysis Branch for use in smoke and volcanic ash monitoring. Currently, research is underway in NESDIS' Office of Research and Applications to objectivize smoke delineation using GASP and MODIS AOD retrievals. NOAA's Operational Significant Event Imagery (OSEI) program processes satellite imagery of environmentally significant events, including fire, smoke and volcanic ash, visible in operational satellite data. This imagery is often referred to by fire managers and air quality agencies. Future plans include the integration of high resolution

  6. Gummi-Bears On Fire! Bringing Students and Scientists Together at the Alaska Summer Research Academy (ASRA)

    NASA Astrophysics Data System (ADS)

    Drake, J.; Schamel, D.; Fisher, P.; Terschak, J. A.; Stelling, P.; Almberg, L.; Phillips, E.; Forner, M.; Gregory, D.

    2002-12-01

    When a gummi-bear is introduced into hot potassium chlorate there is a powerful reaction. This is analogous to the response we have seen to the Alaska Summer Research Academy (ASRA). ASRA is a residential science research camp supported by the College of Science, Engineering and Mathematics at the University of Alaska Fairbanks. The hallmark of ASRA is the opportunity for small groups of 4 or fewer students, ages 10-17, to conduct scientific research and participate in engineering design projects with university faculty and researchers as mentors. Participating scientists, engineers, faculty, graduate students, and K-12 teachers from a variety of disciplines design individual research units and guide the students through designing and constructing a project, collecting data, and synthesizing results. The week-long camp culminates with the students from each project making a formal presentation to the camp and public. In its second year ASRA is already a huge success, quadrupling in size from 21 students in 2001 to 89 students in 2002. Due to a high percentage of returning students, we anticipate there will be a waiting list next year. This presentation contains perspectives from administrators, instructors, staff, and students. Based on our experience we feel there is a large potential demand for education and public outreach (EPO) in university settings. We believe the quality and depth of the ASRA experience directly contributes to the success of a worthwhile EPO program. ASRA will be portrayed as a useful model for EPO at other institutions.

  7. Needs assessment for fire department services and resources for the Los Alamos National Laboratory, Los Alamos, New Mexico. Final report

    SciTech Connect

    1995-11-15

    This report has been developed in response to a request from the Los Alamos National Laboratory (LANL) to evaluate the need for fire department services so as to enable the Laboratory to plan effective fire protection and thereby: meet LANL`s regulatory and contractual obligations; interface with the Department of Energy (DOE) and other agencies on matters relating to fire and emergency services; and ensure appropriate protection of the community and environment. This study is an outgrowth of the 1993 Fire Department Needs Assessment (prepared for DOE) but is developed from the LANL perspective. Input has been received from cognizant and responsible representatives at LANL, DOE, Los Alamos County (LAC) and the Los Alamos Fire Department (LAFD).

  8. An Integrated Model for Identifying Linkages Between the Management of Fuel Treatments, Fire and Ecosystem Services

    NASA Astrophysics Data System (ADS)

    Bart, R. R.; Anderson, S.; Moritz, M.; Plantinga, A.; Tague, C.

    2015-12-01

    Vegetation fuel treatments (e.g. thinning, prescribed burning) are a frequent tool for managing fire-prone landscapes. However, predicting how fuel treatments may affect future wildfire risk and associated ecosystem services, such as forest water availability and streamflow, remains a challenge. This challenge is in part due to the large range of conditions under which fuel treatments may be implemented, as response is likely to vary with species type, rates of vegetation regrowth, meteorological conditions and physiographic properties of the treated site. It is also due to insufficient understanding of how social factors such as political pressure, public demands and economic constraints affect fuel management decisions. To examine the feedbacks between ecological and social dimensions of fuel treatments, we present an integrated model that links a biophysical model that simulates vegetation and hydrology (RHESSys), a fire spread model (WMFire) and an empirical fuel treatment model that accounts for agency decision-making. We use this model to investigate how management decisions affect landscape fuel loads, which in turn affect fire severity and ecosystem services, which feedback to management decisions on fuel treatments. We hypothesize that this latter effect will be driven by salience theory, which predicts that fuel treatments are more likely to occur following major wildfire events. The integrated model provides a flexible framework for answering novel questions about fuel treatments that span social and ecological domains, areas that have previously been treated separately.

  9. Risk perceptions and behavioral context: U.S. Forest Service fire management professionals

    USGS Publications Warehouse

    Taylor, Jonathan G.; Carpenter, Edwin H.; Cortner, Hanna J.; Cleaves, David A.

    1989-01-01

    Fire managers from the U.S. Forest Service were surveyed to determine which decision factors most strongly influenced their fire‐risk decisions. Safety, the resources at risk, public opinion, and the reliability of information were important influences on these decisions. This research allowed direct comparison between fire managers’ perceptions of factor importance and how their fire‐risk decisions changed in response to those factors. These risk decisions were highly responsive to changes in context (an escaped wildfire decision versus a prescribed burning decision) as well as to changing factors. The results demonstrate the utility of using scenarios in risk research and the vital importance of context in studying risk‐taking behavior. Research which attempts to remove risk decisions from their real‐world context may well distort the nature of risk‐taking behavior.

  10. Fire Promotes Pollinator Visitation: Implications for Ameliorating Declines of Pollination Services

    PubMed Central

    Van Nuland, Michael E.; Haag, Elliot N.; Bryant, Jessica A. M.; Read, Quentin D.; Klein, Robert N.; Douglas, Morgan J.; Gorman, Courtney E.; Greenwell, Trey D.; Busby, Mark W.; Collins, Jonathan; LeRoy, Joseph T.; Schuchmann, George; Schweitzer, Jennifer A.; Bailey, Joseph K.

    2013-01-01

    Pollinators serve critical roles for the functioning of terrestrial ecosystems, and have an estimated annual value of over $150 billion for global agriculture. Mounting evidence from agricultural systems reveals that pollinators are declining in many regions of the world, and with a lack of information on whether pollinator communities in natural systems are following similar trends, identifying factors which support pollinator visitation and services are important for ameliorating the effects of the current global pollinator crisis. We investigated how fire affects resource structure and how that variation influences floral pollinator communities by comparing burn versus control treatments in a southeastern USA old-field system. We hypothesized and found a positive relationship between fire and plant density of a native forb, Verbesina alternifolia, as well as a significant difference in floral visitation of V. alternifolia between burn and control treatments. V. alternifolia density was 44% greater and floral visitation was 54% greater in burned treatments relative to control sites. When the density of V. alternifolia was experimentally reduced in the burn sites to equivalent densities observed in control sites, floral visitation in burned sites declined to rates found in control sites. Our results indicate that plant density is a proximal mechanism by which an imposed fire regime can indirectly impact floral visitation, suggesting its usefulness as a tool for management of pollination services. Although concerns surround the negative impacts of management, indirect positive effects may provide an important direction to explore for managing future ecological and conservation issues. Studies examining the interaction among resource concentration, plant apparency, and how fire affects the evolutionary consequences of altered patterns of floral visitation are overdue. PMID:24265787

  11. Fire promotes pollinator visitation: implications for ameliorating declines of pollination services.

    PubMed

    Van Nuland, Michael E; Haag, Elliot N; Bryant, Jessica A M; Read, Quentin D; Klein, Robert N; Douglas, Morgan J; Gorman, Courtney E; Greenwell, Trey D; Busby, Mark W; Collins, Jonathan; Leroy, Joseph T; Schuchmann, George; Schweitzer, Jennifer A; Bailey, Joseph K

    2013-01-01

    Pollinators serve critical roles for the functioning of terrestrial ecosystems, and have an estimated annual value of over $150 billion for global agriculture. Mounting evidence from agricultural systems reveals that pollinators are declining in many regions of the world, and with a lack of information on whether pollinator communities in natural systems are following similar trends, identifying factors which support pollinator visitation and services are important for ameliorating the effects of the current global pollinator crisis. We investigated how fire affects resource structure and how that variation influences floral pollinator communities by comparing burn versus control treatments in a southeastern USA old-field system. We hypothesized and found a positive relationship between fire and plant density of a native forb, Verbesina alternifolia, as well as a significant difference in floral visitation of V. alternifolia between burn and control treatments. V. alternifolia density was 44% greater and floral visitation was 54% greater in burned treatments relative to control sites. When the density of V. alternifolia was experimentally reduced in the burn sites to equivalent densities observed in control sites, floral visitation in burned sites declined to rates found in control sites. Our results indicate that plant density is a proximal mechanism by which an imposed fire regime can indirectly impact floral visitation, suggesting its usefulness as a tool for management of pollination services. Although concerns surround the negative impacts of management, indirect positive effects may provide an important direction to explore for managing future ecological and conservation issues. Studies examining the interaction among resource concentration, plant apparency, and how fire affects the evolutionary consequences of altered patterns of floral visitation are overdue. PMID:24265787

  12. Active Fire Mapping Program

    MedlinePlus

    ... Incidents (Home) New Large Incidents Fire Detection Maps MODIS Satellite Imagery VIIRS Satellite Imagery Fire Detection GIS ... Data Web Services Latest Detected Fire Activity Other MODIS Products Frequently Asked Questions About Active Fire Maps ...

  13. FIRE_ACE_ER2_MAS

    Atmospheric Science Data Center

    2015-10-28

    ... First ISCCP Regional Experiment (FIRE) Arctic Cloud Experiment (ACE) NASA ER-2 Moderate Resolution Imaging ... SSFR Location:  Northern Alaska Arctic Ocean Spatial Coverage:  Fairbanks, Alaska and the surrounding ...

  14. Risk of PTSD in service members who were fired upon by the enemy is higher in those who also returned fire.

    PubMed

    McLay, Robert N; Mantanona, Christy; Ram, Vasudha; Webb-Murphy, Jennifer; Klam, Warren; Johnston, Scott

    2014-09-01

    An unusual characteristic of the recent wars in Iraq and Afghanistan is that, because of attacks by snipers and improvised explosive devices (IED), many U.S. service members may come under attack without having exchanged fire. It was hypothesized that this would be associated with greater severity of post-traumatic stress disorder (PTSD) symptoms. The severity of self-reported symptoms of PTSD and depression were examined among service members who reported being shot at or attacked by an IED, those who had these experiences but who also shot at the enemy, and those who reported neither experience. Results showed that those with neither exposure reported the lowest symptom severity, but, contrary to expectations, service members who had been attacked but not shot at the enemy had less severe symptoms than those who had exchanged fire. This may support findings from earlier generations of veterans that shooting at or killing the enemy may be a particularly traumatic experience. PMID:25181716

  15. Report on audit of fire and emergency medical services cost sharing between the Department of Energy and Los Alamos County

    SciTech Connect

    1995-10-02

    Los Alamos County was created in 1964 as a response to a Congressional mandate, promulgated in the Atomic Energy Act of 1954. Because the county came into existence via the Atomic Energy Act, the Department provided fire and emergency medical services. In the intervening years, however, the Department and the county have worked toward making the county self-sufficient. The contract for fire and emergency medical services represented a step in the direction of self-sufficiency by requiring the county to begin paying for its share of the related costs. The purpose of the audit was to determine if the costs for fire and emergency medical services were shared appropriately commensurate with the use of the services.

  16. Wildfire policy and management in England: an evolving response from Fire and Rescue Services, forestry and cross-sector groups

    PubMed Central

    McMorrow, Julia; Aylen, Jonathan

    2016-01-01

    Severe wildfires are an intermittent problem in England. The paper presents the first analysis of wildfire policy, showing its halting evolution over two decades. First efforts to coordinate wildfire management came from local fire operation groups, where stakeholders such as fire services, land owners and amenity groups shared knowledge and equipment to tackle the problem. A variety of structures and informal management solutions emerged in response to local needs. Knowledge of wildfire accumulated within regional and national wildfire forums and academic networks. Only later did the need for central emergency planning and the response to climate change produce a national policy response. Fire statistics have allowed wildfires to be spatially evidenced on a national scale only since 2009. National awareness of wildfire was spurred by the 2011 fire season, and the high-impact Swinley Forest fire, which threatened critical infrastructure and communities within 50 miles of London. Severe wildfire was included in the National Risk Register for the first time in 2013. Cross-sector approaches to wildfire proved difficult as government responsibility is fragmented along the hazard chain. Stakeholders such as the Forestry Commission pioneered good practice in adaptive land management to build fire resilience into UK forests. The grass-roots evolution of participatory solutions has also been a key enabling process. A coordinated policy is now needed to identify best practice and to promote understanding of the role of fire in the ecosystem. This article is part of a themed issue ‘The interaction of fire and mankind’. PMID:27216511

  17. Wildfire policy and management in England: an evolving response from Fire and Rescue Services, forestry and cross-sector groups.

    PubMed

    Gazzard, Rob; McMorrow, Julia; Aylen, Jonathan

    2016-06-01

    Severe wildfires are an intermittent problem in England. The paper presents the first analysis of wildfire policy, showing its halting evolution over two decades. First efforts to coordinate wildfire management came from local fire operation groups, where stakeholders such as fire services, land owners and amenity groups shared knowledge and equipment to tackle the problem. A variety of structures and informal management solutions emerged in response to local needs. Knowledge of wildfire accumulated within regional and national wildfire forums and academic networks. Only later did the need for central emergency planning and the response to climate change produce a national policy response. Fire statistics have allowed wildfires to be spatially evidenced on a national scale only since 2009. National awareness of wildfire was spurred by the 2011 fire season, and the high-impact Swinley Forest fire, which threatened critical infrastructure and communities within 50 miles of London. Severe wildfire was included in the National Risk Register for the first time in 2013. Cross-sector approaches to wildfire proved difficult as government responsibility is fragmented along the hazard chain. Stakeholders such as the Forestry Commission pioneered good practice in adaptive land management to build fire resilience into UK forests. The grass-roots evolution of participatory solutions has also been a key enabling process. A coordinated policy is now needed to identify best practice and to promote understanding of the role of fire in the ecosystem.This article is part of a themed issue 'The interaction of fire and mankind'. PMID:27216511

  18. Compliance testing of the Clear AFS Power Plant, coal-fired boiler 1, Clear AFS, Alaska. Final report, 18-23 April 1989

    SciTech Connect

    Scott, P.T.

    1989-10-01

    The 13 MWS/DE through HQ AFSPACECOM/SG requested AFOEHL Quality Function conduct source emission testing of the Clear AFS Power Plant to determine compliance with applicable Alaska Air Quality Control Codes. The Alaska Department of Environmental Conservation required testing of one representative boiler for permit compliance and to determine operating limitations for each boiler. At 80,000 lbs steam/hour particulate emission were within emission limits allowed by the State of Alaska.

  19. Gulf of Alaska, Alaska

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This MODIS true-color image shows the Gulf of Alaska and Kodiak Island, the partially snow-covered island in roughly the center of the image. Credit: Jacques Descloitres, MODIS Land Rapid Response Team

  20. The Work of the Bureau of Education for the Natives of Alaska. Bulletin, 1921, No. 35

    ERIC Educational Resources Information Center

    Bureau of Education, Department of the Interior, 1921

    1921-01-01

    The work of the Bureau of Education for the natives of Alaska includes the Alaska school service, the Alaska medical service, and the Alaska reindeer service, with a field force in Alaska, in 1920, of 6 superintendents, 133 teachers, 9 physicians, and 13 nurses. This bulletin provides details on the following topics: (1) Extent of territory; (2)…

  1. Alaska Interagency Ecosystem Health Work Group

    USGS Publications Warehouse

    Shasby, Mark

    2009-01-01

    The Alaska Interagency Ecosystem Health Work Group is a community of practice that recognizes the interconnections between the health of ecosystems, wildlife, and humans and meets to facilitate the exchange of ideas, data, and research opportunities. Membership includes the Alaska Native Tribal Health Consortium, U.S. Geological Survey, Alaska Department of Environmental Conservation, Alaska Department of Health and Social Services, Centers for Disease Control and Prevention, U.S. Fish and Wildlife Service, Alaska Sea Life Center, U.S. Environmental Protection Agency, and Alaska Department of Fish and Game.

  2. An examination of the benefits of health promotion programs for the national fire service

    PubMed Central

    2013-01-01

    Background Firefighters suffer from high prevalence of obesity, substandard fitness, and cardiovascular-related deaths. There have been a limited number of firefighter health promotion programs that have been developed and empirically-tested for this important occupational group. We evaluated the health of firefighters from departments with well-developed health promotion programs and compared them with those from departments not having such programs using a large national sample of career fire departments that varied in size and mission. We measured a broad array of important individual firefighter health outcomes (e.g., body composition, physical activity, and general and behavioral health) consistent with national fire service goals and addressed significant statistical limitations unaccounted for in previous studies. Methods Using the approach of purposive sampling of heterogeneous instances, we selected and conducted a national evaluation of 10 departments already implementing wellness and fitness programs (Wellness Approach; WA) with 10 departments that did not (Standard). Participants were 1,002 male firefighters (WA n = 522; Standard n = 480) who underwent assessments including body composition, fitness, and general/behavioral health (e.g., injury, depressive symptoms). Results Firefighters in WA departments were healthier than their Standard department counterparts. For example, they were less likely to be obese (adjusted [A]OR = 0.58; 95% CI = 0.41-0.82), more likely to meet endurance capacity standards for firefighting (AOR = 5.19; 95% CI = 2.49-10.83) and have higher estimated VO2max (40.7 ± 0.6 vs. 37.5 ± 1.3 for firefighters in Standard departments; p = 0.001). In addition, WA firefighter were substantially less likely to smoke (AOR = 0.30; 95% CI = 0.17-0.54) or ever have been diagnosed with an anxiety disorder (AOR = 0.27; 95% CI = 0.14-0.52) and they expressed higher job satisfaction across several domains. However, WA firefighters were somewhat

  3. Fall rates of prescribed fire-killed ponderosa pine. Forest Service research paper

    SciTech Connect

    Harrington, M.G.

    1996-05-01

    Fall rates of prescribed fire-killed ponderosa pine were evaluated relative to tree and fire damage characteristics. High crown scorch and short survival time after fire injury were factors leading to a high probability of early tree fall. The role of chemical defense mechanisms is discussed. Results apply to prescribed-fire injured, second-growth ponderosa pine less than 16 inches diameter at breast height.

  4. Challenges to providing quality substance abuse treatment services for American Indian and Alaska native communities: perspectives of staff from 18 treatment centers

    PubMed Central

    2014-01-01

    Background Substance abuse continues to exact a significant toll, despite promising advancements in treatment, and American Indian and Alaska Native (AI/AN) communities remain disproportionately impacted. Understanding the challenges to providing quality substance abuse treatment to AI/AN communities could ultimately result in more effective treatment interventions, but no multi-site studies have examined this important issue. Methods This qualitative study examined the challenges of providing substance abuse treatment services for American Indian and Alaska Native (AI/AN) communities. We conducted key informant interviews and focus groups at 18 substance abuse treatment programs serving AI/AN communities. Seventy-six service participants (21 individuals in clinical administrative positions and 55 front-line clinicians) participated in the project. Interview transcripts were coded to identify key themes. Results We found that the challenges of bringing effective substance abuse treatment to AI/AN communities fell into three broad categories: challenges associated with providing clinical services, those associated with the infrastructure of treatment settings, and those associated with the greater service/treatment system. These sets of challenges interact to form a highly complex set of conditions for the delivery of these services. Conclusions Our findings suggest that substance abuse treatment services for AI/AN communities require more integrated, individualized, comprehensive, and longer-term approaches to care. Our three categories of challenges provide a useful framework for eliciting challenges to providing quality substance abuse treatment in other substance abuse treatment settings. PMID:24938281

  5. Training and Education in the Fire Services (Proceedings of a Symposium, April 8-9 1970).

    ERIC Educational Resources Information Center

    National Academy of Sciences-National Research Council, Washington, DC. Div. of Engineering.

    Issues in the improvement of training for fire fighters and officer personnel were taken up in ten symposium papers. Session I covered legal and other constraints that affect what a fire fighter should know; and current practices in volunteer, rural, and municipal fire fighter training in the United States. Papers from the other sessions dealt…

  6. A phenomenological analysis of disaster-related experiences in fire and emergency medical services personnel.

    PubMed

    De Soir, Erik; Knarren, Marcia; Zech, Emmanuelle; Mylle, Jacques; Kleber, Rolf; van der Hart, Onno

    2012-04-01

    This article explores the experiences of fire and Emergency Medical Services (EMS) personnel during and immediately after a technological event using a phenomenological approach. Personnel engaged in the rescue operations during and immediately after the Ghislenghien gas explosion reflected upon their experiences in their responses to a specially designed, self-reporting questionnaire that included open-ended questions. Firefighters reported more perceived threat and direct exposure to death than did EMS personnel. Qualitative analysis indicates that the central characteristics of this potentially traumatizing event were the suddenness and massiveness of the impact, and the fact that it involved young victims and/or multiple deaths. With regard to emotions, powerlessness, horror, fear, a sense of apocalypse, and grief were experienced by both firefighters and EMS personnel. Firefighters noted that the death of colleagues, the involvement of friends and family, the massive impact, and exposure to the burned victims were most shocking. Emergency Medical Services personnel and in-hospital staff reported the impact, the confrontation with death, the involvement of friends and family, and the pain, suffering, and screaming of burned victims as the most shocking aspects of this event. Qualitative differences in the lived experiences of firefighters, EMS personnel, and in-hospital staff might be explained by differences in life threat, contact with death, and various degrees of training. PMID:22587814

  7. 75 FR 13139 - Notice of Public Meetings for the National Park Service Alaska Region's Subsistence Resource...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ... 5 p.m. at the National Park Service Northwest Arctic Heritage Center, Kotzebue, AK. The meeting may..., April 28, 2010, from 9 a.m. to 10 p.m. at the Inupiat Heritage Center in Barrow, AK, (907) 852-0422....

  8. 77 FR 4581 - Alaska Region's Subsistence Resource Commission (SRC) Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-30

    ... National Park Service Visitor's Center, Port Alsworth, Alaska, (907) 781-2218, on Wednesday, February 22... National Park Service Alaska Region's Subsistence Resource Commission (SRC) Program AGENCY: National Park Service, Interior. ACTION: Notice of public meeting for the National Park Service (NPS) Alaska...

  9. 25 CFR 142.5 - Who determines the rates and conditions of service of the Alaska Resupply Operation?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... INTERIOR FINANCIAL ACTIVITIES ALASKA RESUPPLY OPERATION § 142.5 Who determines the rates and conditions of... within the industry, as well as any appropriate specialized warehouse, handling and storage charges....

  10. The Indian Health Service approach to alcoholism among American Indians and Alaska Natives.

    PubMed Central

    Rhoades, E R; Mason, R D; Eddy, P; Smith, E M; Burns, T R

    1988-01-01

    The transfer to the Indian Health Service (IHS) of 158 alcohol treatment programs that had been administered by the National Institute on Alcohol Abuse and Alcoholism began in 1978. Today, approximately 300 alcohol and substance abuse treatment programs offer services to American Indians, among them primary residential treatment, halfway houses, outreach, and aftercare. This system provides a national network upon which additional activities may be established. Along with increasing its attention to health promotion and disease prevention, the IHS has moved toward the prevention of alcoholism. A variety of preventive programs are in place that emphasize improved self-image, value and attitude clarification, decision-making, and physical and emotional effects of alcohol and substance abuse. Many begin as Head Start programs and continue through adulthood. In 1986, after consulting with both academic and tribal experts, the IHS devised a strategic plan for alcoholism control that stresses comprehensive care and prevention activities; it serves as a guide for further program development. The Secretary of Health and Human Services created a Task Force on Indian Alcoholism in 1986 to serve as a coordinating body for activities carried out by the IHS and other agencies and units of the Department. Passage of the Anti-Drug Abuse Act in 1986 added resources for the development of adolescent treatment centers and, more importantly, for community-based pre- and post-residential care for youths and their families. Concomitant with these initiatives have been several instances of increased attention by various tribes to the problem of alcoholism.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3141956

  11. 50 CFR 32.21 - Alaska.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 9 2014-10-01 2014-10-01 false Alaska. 32.21 Section 32.21 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM HUNTING AND FISHING Refuge-Specific Regulations for Hunting and Fishing § 32.21 Alaska. Alaska refuges are opened to...

  12. The Indian Health Service approach to alcoholism among American Indians and Alaska Natives.

    PubMed

    Rhoades, E R; Mason, R D; Eddy, P; Smith, E M; Burns, T R

    1988-01-01

    The transfer to the Indian Health Service (IHS) of 158 alcohol treatment programs that had been administered by the National Institute on Alcohol Abuse and Alcoholism began in 1978. Today, approximately 300 alcohol and substance abuse treatment programs offer services to American Indians, among them primary residential treatment, halfway houses, outreach, and aftercare. This system provides a national network upon which additional activities may be established. Along with increasing its attention to health promotion and disease prevention, the IHS has moved toward the prevention of alcoholism. A variety of preventive programs are in place that emphasize improved self-image, value and attitude clarification, decision-making, and physical and emotional effects of alcohol and substance abuse. Many begin as Head Start programs and continue through adulthood. In 1986, after consulting with both academic and tribal experts, the IHS devised a strategic plan for alcoholism control that stresses comprehensive care and prevention activities; it serves as a guide for further program development. The Secretary of Health and Human Services created a Task Force on Indian Alcoholism in 1986 to serve as a coordinating body for activities carried out by the IHS and other agencies and units of the Department. Passage of the Anti-Drug Abuse Act in 1986 added resources for the development of adolescent treatment centers and, more importantly, for community-based pre- and post-residential care for youths and their families. Concomitant with these initiatives have been several instances of increased attention by various tribes to the problem of alcoholism. The IHS strategic plan, together with the Secretary's initiative, the Anti-Drug Act, and tribal actions, has added substantial momentum to efforts directed at controlling alcoholism among American Indians. Although the mortality rate from alcoholism is about four times greater for the American Indian population than for the entire U

  13. Rural Alaska Mentoring Project (RAMP)

    ERIC Educational Resources Information Center

    Cash, Terry

    2011-01-01

    For over two years the National Dropout Prevention Center (NDPC) at Clemson University has been supporting the Lower Kuskokwim School District (LKSD) in NW Alaska with their efforts to reduce high school dropout in 23 remote Yup'ik Eskimo villages. The Rural Alaska Mentoring Project (RAMP) provides school-based E-mentoring services to 164…

  14. Analysis of Plume Impingement Effects from Orion Crew Service Module Dual Reaction Control System Engine Firings

    NASA Technical Reports Server (NTRS)

    Prisbell, Andrew; Marichalar, J.; Lumpkin, F.; LeBeau, G.

    2010-01-01

    Plume impingement effects on the Orion Crew Service Module (CSM) were analyzed for various dual Reaction Control System (RCS) engine firings and various configurations of the solar arrays. The study was performed using a decoupled computational fluid dynamics (CFD) and Direct Simulation Monte Carlo (DSMC) approach. This approach included a single jet plume solution for the R1E RCS engine computed with the General Aerodynamic Simulation Program (GASP) CFD code. The CFD solution was used to create an inflow surface for the DSMC solution based on the Bird continuum breakdown parameter. The DSMC solution was then used to model the dual RCS plume impingement effects on the entire CSM geometry with deployed solar arrays. However, because the continuum breakdown parameter of 0.5 could not be achieved due to geometrical constraints and because high resolution in the plume shock interaction region is desired, a focused DSMC simulation modeling only the plumes and the shock interaction region was performed. This high resolution intermediate solution was then used as the inflow to the larger DSMC solution to obtain plume impingement heating, forces, and moments on the CSM and the solar arrays for a total of 21 cases that were analyzed. The results of these simulations were used to populate the Orion CSM Aerothermal Database.

  15. Analysis of Plume Impingement Effects from Orion Crew Service Module Dual Reaction Control System Engine Firings

    NASA Astrophysics Data System (ADS)

    Prisbell, A.; Marichalar, J.; Lumpkin, F.; LeBeau, G.

    2011-05-01

    Plume impingement effects on the Orion Crew Service Module (CSM) were analyzed for various dual Reaction Control System (RCS) engine firings and various configurations of the solar arrays. The study was performed using a decoupled computational fluid dynamics (CFD) and Direct Simulation Monte Carlo (DSMC) approach. This approach included a single jet plume solution for the R1E RCS engine computed with the General Aerodynamic Simulation Program (GASP) CFD code. The CFD solution was used to create an inflow surface for the DSMC solution based on the Bird continuum breakdown parameter. The DSMC solution was then used to model the dual RCS plume impingement effects on the entire CSM geometry with deployed solar arrays. However, because the continuum breakdown parameter of 0.05 could not be achieved due to geometrical constraints and because high resolution in the plume shock interaction region is desired, a focused DSMC simulation modeling only the plumes and the shock interaction region was performed. This high resolution intermediate solution was then used as the inflow to the larger DSMC solution to obtain plume impingement heating, forces, and moments on the CSM and the solar arrays for a total of 21 cases that were analyzed. The results of these simulations were used to populate the Orion CSM Aerothermal Database.

  16. Integrated services to support detection, prevention and planning of the agricultural-forest-rural land against fires

    NASA Astrophysics Data System (ADS)

    Scipioni, A.; Tagliaferri, F.

    2009-04-01

    Objective of the document is to define lines of development and distribution of the services to support detection, prevention and planning of the agricultural-forest-rural land against fire. The services will be a valid support on hand of the Regional and National Administrations involved in the agricultural-forest-rural activities (Ministry of Agricultural and Forestry Policies, National Forest Police, ecc..), through the employment of the SIAN "National Agricultural Informative System", that is the integrated national information system for the entire agriculture, forestry and fisheries Administration. The services proposals would be distributed through the GIS (Geographic Information Systems) of the SIAN: the GIS database is a single nation-wide digital graphic database consisting of: - Ortophotos: Aerial images of approz. 45 km2 each with ground resolution of 50 cm; - Cadastral maps: Land maps; - Thematic layers: Land use and crops identification The GIS services can take full advantage of the benefits of SIAN architectural model designed for best integration and interoperability with other Central and Local P.A. bodies whose main items are: - Integration of information from different sources; - Maintainance of the internal coeherence of any integrated information; - Flexibility with respect to technical or organizational changes The "innovative "services described below could be useful to support the development of institutional tasks of public Agencies and Administrations (es. Regions or Civil Protection agencies) according to than previewed from the D.Lgs. 173/98. Services of support to the management of the phenomenon of wildland fires The activities outlined in below figure, don't have a linear and defined temporal sequence, but a dynamic and time integration. It guarantees not only the integrated use of the various information, but also the value of every product, for level of accuracy, coherence and timeliness of the information. Description of four main

  17. Web service tools in the era of forest fire management and elimination

    NASA Astrophysics Data System (ADS)

    Poursanidis, Dimitris; Kochilakis, Giorgos; Chrysoulakis, Nektarios; Varella, Vasiliki; Kotroni, Vassiliki; Eftychidis, Giorgos; Lagouvardos, Kostas

    2014-10-01

    Wildfires in forests and forested areas in South Europe, North America, Central Asia and Australia are a diachronic threat with crucial ecological, economic and social impacts. Last decade the frequency, the magnitude and the intensity of fires have increased even more because of the climate change. An efficient response to such disasters requires an effective planning, with an early detection system of the ignition area and an accurate prediction of fire propagation to support the rapid response mechanisms. For this reason, information systems able to predict and visualize the behavior of fires, are valuable tools for fire fighting. Such systems, able also to perform simulations that evaluate the fire development scenarios, based on weather conditions, become valuable Decision Support Tools for fire mitigation planning. A Web-based Information System (WIS) developed in the framework of the FLIRE (Floods and fire risk assessment and management) project, a LIFE+ co-funded by the European Commission research, is presented in this study. The FLIRE WIS use forest fuel maps which have been developed by using generalized fuel maps, satellite data and in-situ observations. Furthermore, it leverages data from meteorological stations and weather forecast from numerical models to feed the fire propagation model with the necessary for the simulations inputs and to visualize the model's results for user defined time periods and steps. The user has real-time access to FLIRE WIS via any web browser from any platform (PC, Laptop, Tablet, Smartphone).

  18. 77 FR 4578 - Alaska Region's Subsistence Resource Commission (SRC) Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-30

    ... National Park Service Alaska Region's Subsistence Resource Commission (SRC) Program AGENCY: National Park Service, Interior. ACTION: Notice of public meeting for the National Park Service (NPS) Alaska Region's... management issues. The NPS SRC program is authorized under Title VIII, Section 808 of the Alaska...

  19. The North Slope of Alaska and Adjacent Arctic Ocean (NSA/AAO) cart site begins operation: Collaboration with SHEBA and FIRE

    SciTech Connect

    Zak, D. B.; Church, H.; Ivey, M.; Yellowhorse, L.; Zirzow, J.; Widener, K. B.; Rhodes, P.; Turney, C.; Koontz, A.; Stamnes, K.; Storvold, R.; Eide, H. A.; Utley, P.; Eagan, R.; Cook, D.; Hart, D.; Wesely, M.

    2000-04-04

    Since the 1997 Atmospheric Radiation Measurement (ARM) Science Team Meeting, the North Slope of Alaska and Adjacent Arctic Ocean (NSA/AAO) Cloud and Radiation Testbed (CART) site has come into being. Much has happened even since the 1998 Science Team Meeting at which this paper was presented. To maximize its usefulness, this paper has been updated to include developments through July 1998.

  20. Testing of Elmendorf Air Force Base heat and power plant, gas-fired boilers 3 and 5, Elmendorf Air Force Base, Alaska. Final report, 21-29 April 1992

    SciTech Connect

    Cintron-Ocasio, R.A.

    1992-10-01

    A source emission testing for criteria pollutants was conducted on gas-fired boilers 3 and 5 at the Elmendorf AFB Heat and Power Plant during 21-29 April 1992 by the Air Quality Function of Armstrong Laboratory. The State of Alaska has indicated it will approve a permit modification to allow operation of the Heat and Power Plant boilers in excess of 60% of the nameplant design capacity upon source emissions compliance. This report contains a detailed evaluation of each pollutant and a comparison of the two boilers. Boiler 5 was selected as the most efficient boiler while boiler 3 was the least efficient. Results demonstrated that both boilers generated approximately the same amount of pollutants.

  1. Alaska Center for Climate Assessment and Policy: Partnering with Decision-Makers in Climate Change Adaptation

    NASA Astrophysics Data System (ADS)

    White, D.; Trainor, S.; Walsh, J.; Gerlach, C.

    2008-12-01

    The Alaska Center for Climate Assessment and Policy (ACCAP; www.uaf.edu/accap) is one of several, NOAA funded, Regional Integrated Science and Policy (RISA) programs nation-wide (http://www.climate.noaa.gov/cpo_pa/risa/). Our mission is to assess the socio-economic and biophysical impacts of climate variability in Alaska, make this information available to local and regional decision-makers, and improve the ability of Alaskans to adapt to a changing climate. We partner with the University of Alaska?s Scenario Network for Alaska Planning (SNAP; http://www.snap.uaf.edu/), state and local government, state and federal agencies, industry, and non-profit organizations to communicate accurate and up-to-date climate science and assist in formulating adaptation and mitigation plans. ACCAP and SNAP scientists are members of the Governor?s Climate Change Sub-Cabinet Adaptation and Mitigation Advisory and Technical Working Groups (http://www.climatechange.alaska.gov/), and apply their scientific expertise to provide down-scaled, state-wide maps of temperature and precipitation projections for these groups. An ACCAP scientist also serves as co-chair for the Fairbanks North Star Borough Climate Change Task Force, assisting this group as they work through the five-step model for climate change planning put forward by the International Council for Local Environmental Initiatives (http://www.investfairbanks.com/Taskforces/climate.php). ACCAP scientists work closely with federal resource managers in on a range of projects including: partnering with the U.S. Fish and Wildlife Service to analyze hydrologic changes associated with climate change and related ecological impacts and wildlife management and development issues on Alaska?s North Slope; partnering with members of the Alaska Interagency Wildland Fire Coordinating Group in statistical modeling to predict seasonal wildfire activity and coordinate fire suppression resources state-wide; and working with Alaska Native Elders and

  2. The association of aerobic fitness with injuries in the fire service.

    PubMed

    Poplin, Gerald S; Roe, Denise J; Peate, Wayne; Harris, Robin B; Burgess, Jefferey L

    2014-01-15

    The aim of the present study was to understand the risk of injury in relation to fitness in a retrospective occupational cohort of firefighters in Tucson, Arizona, from 2005 to 2009. Annual medical evaluations and injury surveillance data were linked to compare levels of aerobic fitness in injured employees with those in noninjured employees. The individual outcomes evaluated included all injuries, exercise-related injuries, and sprains and strains. Time-to-event analyses were conducted to determine the association between levels of fitness and injury likelihood. Fitness, defined by relative aerobic capacity (Vo2max), was associated with injury risk. Persons in the lowest fitness level category (Vo2max <43 mL/kg/minute) were 2.2 times more likely (95% confidence interval: 1.72, 2.88) to sustain injury than were those in the highest fitness level category (Vo2max >48 mL/kg/minute). Those with a Vo2max between 43 and 48 mL/kg/minute were 1.38 times (95% confidence interval: 1.06, 1.78) more likely to incur injury. Hazard ratios were found to be greater for sprains and strains. Our results suggest that improving relative aerobic capacity by 1 metabolic equivalent of task (approximately 3.5 mL/kg/minute) reduces the risk of any injury by 14%. These findings illustrate the importance of fitness in reducing the risk of injury in physically demanding occupations, such as the fire service, and support the need to provide dedicated resources for structured fitness programming and the promotion of injury prevention strategies to people in those fields. PMID:24186973

  3. Implementing watershed investment programs to restore fire-adapted forests for watershed services

    NASA Astrophysics Data System (ADS)

    Springer, A. E.

    2013-12-01

    Payments for ecosystems services and watershed investment programs have created new solutions for restoring upland fire-adapted forests to support downstream surface-water and groundwater uses. Water from upland forests supports not only a significant percentage of the public water supplies in the U.S., but also extensive riparian, aquatic, and groundwater dependent ecosystems. Many rare, endemic, threatened, and endangered species are supported by the surface-water and groundwater generated from the forested uplands. In the Ponderosa pine forests of the Southwestern U.S., post Euro-American settlement forest management practices, coupled with climate change, has significantly impacted watershed functionality by increasing vegetation cover and associated evapotranspiration and decreasing runoff and groundwater recharge. A large Collaborative Forest Landscape Restoration Program project known as the Four Forests Restoration Initiative is developing landscape scale processes to make the forests connected to these watersheds more resilient. However, there are challenges in financing the initial forest treatments and subsequent maintenance treatments while garnering supportive public opinion to forest thinning projects. A solution called the Flagstaff Watershed Protection Project is utilizing City tax dollars collected through a public bond to finance forest treatments. Exit polling from the bond election documented the reasons for the 73 % affirmative vote on the bond measure. These forest treatments have included in their actions restoration of associated ephemeral stream channels and spring ecosystems, but resources still need to be identified for these actions. A statewide strategy for developing additional forest restoration resources outside of the federal financing is being explored by state and local business and governmental leaders. Coordination, synthesis, and modeling supported by a NSF Water Sustainability and Climate project has been instrumental in

  4. Forestry timber typing. Tanana demonstration project, Alaska ASVT. [Alaska

    NASA Technical Reports Server (NTRS)

    Morrissey, L. A.; Ambrosia, V. G.

    1982-01-01

    The feasibility of using LANDSAT digital data in conjunction with topographic data to delineate commercial forests by stand size and crown closure in the Tanana River basin of Alaska was tested. A modified clustering approach using two LANDSAT dates to generate an initial forest type classification was then refined with topographic data. To further demonstrate the ability of remotely sensed data in a fire protection planning framework, the timber type data were subsequently integrated with terrain information to generate a fire hazard map of the study area. This map provides valuable assistance in initial attack planning, determining equipment accessibility, and fire growth modeling. The resulting data sets were incorporated into the Alaska Department of Natural Resources geographic information system for subsequent utilization.

  5. UNIT, ALASKA.

    ERIC Educational Resources Information Center

    Louisiana Arts and Science Center, Baton Rouge.

    THE UNIT DESCRIBED IN THIS BOOKLET DEALS WITH THE GEOGRAPHY OF ALASKA. THE UNIT IS PRESENTED IN OUTLINE FORM. THE FIRST SECTION DEALS PRINCIPALLY WITH THE PHYSICAL GEOGRAPHY OF ALASKA. DISCUSSED ARE (1) THE SIZE, (2) THE MAJOR LAND REGIONS, (3) THE MOUNTAINS, VOLCANOES, GLACIERS, AND RIVERS, (4) THE NATURAL RESOURCES, AND (5) THE CLIMATE. THE…

  6. Response of the engraver beetle, IPS perturbatus, to semiochemicals in white spruce stands of interior Alaska. Forest Service research paper

    SciTech Connect

    Werner, R.A.

    1993-05-01

    Field tests on the efficacy of various scolytid bark beetle pheromones to attract Ips perturbatus (Eichhoff) were conducted from 1977 through 1992 in stands of white spruce (Picea glauca (Moench) Voss) in interior Alaska. Several pheromones attracted high numbers of I. perturbatus and species of the predator Thanasimus to baited funnel traps. Test results also indicated that attacks by I. perturbatus may be deferred by certain semiochemicals.

  7. Culturally Responsive Guidelines for Alaska Public Libraries.

    ERIC Educational Resources Information Center

    Alaska Univ., Fairbanks. Alaska Native Knowledge Network.

    These guidelines are predicated on the belief that culturally appropriate service to indigenous peoples is a fundamental principle of Alaska public libraries. While the impetus for developing the guidelines was service to the Alaska Native community, they can also be applied to other cultural groups. A culturally responsive library environment is…

  8. The Operational Use of Suomi National Polar-Orbiting Partnership (S-NPP) Satellite Information in Alaska

    NASA Astrophysics Data System (ADS)

    Scott, C. A.; Goldberg, M.

    2014-12-01

    The National Weather Service (NWS), Alaska Region (AR) provides warnings, forecasts and information for an area greater than 20% of the size of the continental United States. This region experiences an incredible diversity of weather phenomena, yet ironically is one of the more data-sparse areas in the world. Polar orbiting satellite-borne sensors offer one of the most cost effective means of gaining repetitive information over this data-sparse region to provide insight on Alaskan weather and the environment on scales ranging from synoptic to mesoscale in a systematic manner. Because of Alaska's high latitude location, polar orbiting satellites can provide coverage about every two hours at high resolution. The Suomi National Polar-orbiting Partnership (S-NPP) Satellite, equipped with a new generation of satellite sensors to better monitor, detect, and track weather and the environment was launched October 2011. Through partnership through the with NESDIS JPSS, the University of Alaska - Geographical Information Network of Alaska (GINA), the NWS Alaska Region was able to gain timely access to the Visible Infrared Imaging Radiometer Suite (VIIRS) imagery from S-NPP. The imagery was quickly integrated into forecast operations across the spectrum of NWS Alaska areas of responsibility. The VIIRS has provided a number of new or improved capabilities for detecting low cloud/fog, snow cover, volcanic ash, fire hotspots/smoke, flooding due to river ice break up, and sea ice and ice-free passages. In addition the Alaska Region has successfully exploited the 750 m spatial resolution of the VIIRS/Near Constant Contrast (NCC) low-light visible measurements. Forecasters have also begun the integration of NOAA Unique Cross-track Infrared Sounder (CrIS)/Advanced Technology Microwave Sounder (ATMS) Processing System (NUCAPS) Soundings in AWIPS-II operations at WFO Fairbanks and Anchorage, the Alaska Aviation Weather Unit (AAWU) and the Alaska Region, Regional Operations Center (ROC

  9. PEACETIME RADIATION HAZARDS IN THE FIRE SERVICE, BASIC COURSE, RESOURCE MANUAL.

    ERIC Educational Resources Information Center

    BERNDT, WILLIAM

    FOR USE BY FIREMEN AND OTHER EMERGENCY PERSONNEL WHO MAY HAVE TO DEAL WITH FIRES OR SIMILAR EMERGENCIES INVOLVING RADIATION HAZARDS, THIS MANUAL IS CORRELATED WITH THE FOLLOWING INSTRUCTIONAL MATERIALS FOR THE 15-HOUR COURSE -- (1) AN INSTRUCTOR'S GUIDE (VT 002 117), (2) A STUDENT STUDY GUIDE (VT 001 878), AND (3) A SET OF TWENTY-TWO 20- BY…

  10. 22 CHARTS TO ACCOMPANY PEACETIME RADIATION HAZARDS IN THE FIRE SERVICE--BASIC COURSE.

    ERIC Educational Resources Information Center

    Atomic Energy Commission, Washington, DC. Office of Industrial Relations.

    A SET OF TWENTY-TWO 20-BY-28 INCH CHARTS ILLUSTRATING ASPECTS OF RADIATION SUCH AS TYPES, EFFECTS OF EXPOSURE, SHIELDS, WARNING SIGNS, REACTORS, THE CHAIN REACTION PROCESS, AND FIRE-FIGHTING PROCEDURES IS TO BE USED WITH (1) RESOURCE MANUAL (VT 001 337), (2) INSTRUCTOR'S GUIDE (VT 002 117), (3) STUDENT STUDY GUIDE (VT 001 878), (4) ORIENTATION…

  11. PEACETIME RADIATION HAZARDS IN THE FIRE SERVICE, BASIC COURSE, INSTRUCTOR'S GUIDE.

    ERIC Educational Resources Information Center

    BERNDT, WILLIAM; AND OTHERS

    THE 12 TEACHING GUIDES INCLUDED ARE CORRELATED WITH THE "RESOURCE MANUAL" (VT 001 337), "STUDY GUIDE" (VT 001 878), AND A SET OF TWENTY-TWO 20- BY 28-INCH CHARTS (OE84022) DESIGNED TO BE PRESENTED TO FIREMEN IN A 15-HOUR COURSE AS A PART OF THEIR BASIC FIRE TRAINING. THEY ARE CONCERNED WITH HAZARDS RESULTING FROM THE PRESENCE OF RADIOACTIVE…

  12. PEACETIME RADIATION HAZARDS IN THE FIRE SERVICE, BASIC COURSE, STUDY GUIDE.

    ERIC Educational Resources Information Center

    Atomic Energy Commission, Washington, DC.

    THE ASSIGNMENT SHEETS INCLUDED ARE CORRELATED WITH THE INSTRUCTOR'S GUIDE (VT 002 117), THE RESOURCE MANUAL (VT 001 337), AND A SET OF TWENTY-TWO 20- BY 28-INCH CHARTS (OE 84002). THE MATERIAL IS DESIGNED TO BE PRESENTED TO FIREMEN IN A 15-HOUR COURSE AS A PART OF THEIR BASIC FIRE TRAINING AND IS CONCERNED WITH THE HAZARDS RESULTING FROM THE…

  13. Soils, vegetation, and woody debris data from the 2001 Survey Line fire and a comparable unburned site, Tanana Flats region, Alaska

    USGS Publications Warehouse

    Manies, Kristen L.; Harden, Jennifer W.; Holingsworth, Teresa N.

    2014-01-01

    This report describes the collection and processing methodologies for samples obtained at two sites within Interior Alaska: (1) a location within the 2001 Survey Line burn, and (2) an unburned location, selected as a control. In 2002 and 2004 U.S. Geological Survey investigators measured soil properties including, but not limited to, bulk density, volumetric water content, carbon content, and nitrogen content from samples obtained from these sites. Stand properties, such as tree density, the amount of woody debris, and understory vegetation, were also measured and are presented in this report.

  14. Coordination and establishment of centralized facilities and services for the University of Alaska ERTS survey of the Alaskan environment

    NASA Technical Reports Server (NTRS)

    Belon, A. E. (Principal Investigator); Miller, J. M.

    1973-01-01

    The author has identified the following significant results. Scene 1072-21173 of the Anaktuvuk Pass region of the Brooks Range, Alaska, was studied from the point of view of a resource survey for purposes of land use planning as part of the effort to develop ERTS data processing and interpretation techniques. Other data sources and surface observations were utilized to produce a resource survey of a remote and undeveloped region of Alaska. Three vegetative types are apparent: moist tundra, low brush, and high brush. Watersheds are easily defined on the multispectral imagery. Features related indirectly to economic minerals are discernible from ERTS-1 imagery supported by ground truth data. These include mountains, outwash plains and alluvial deposits, drainage patterns, lineaments and probable bedding planes. This region falls within present land class categories which are not inconsistent with the imperatives of the resources. These land class categories include native village withdrawals, regional deficiency area, national interest study area for possible inclusion in a national system, public interest areas, utility corridor, and state land selection.

  15. 78 FR 75321 - Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-11

    ...The U.S. Fish and Wildlife Service (Service or we) proposes migratory bird subsistence harvest regulations in Alaska for the 2014 season. These regulations would enable the continuation of customary and traditional subsistence uses of migratory birds in Alaska and prescribe regional information on when and where the harvesting of birds may occur. These regulations were developed under a......

  16. Coordination and establishment of centralized facilities and services of the University of Alaska ERTS survey of the Alaskan environment

    NASA Technical Reports Server (NTRS)

    Belon, A. E. (Principal Investigator); Miller, J. M.

    1973-01-01

    The author has identified the following significant results. The objective of this project is to provide a focus for the entire University of Alaska ERTS-1 effort (12 projects covering 10 disciplines and involving 8 research institutes and science departments). Activities have been concentrated on the implementation of the project's three primary functions: (1) coordination and management of the U of A ERTS-1 program, including management of the flow of data and data products; (2) acquisition, installation, test, operation, and maintanence of centralized facilities for processing ERTS-1, aircraft, and ground truth data; and (3) development of photographic and digital techniques for processing and interpreting ERTS-1 and aircraft data. With minor exceptions these three functions are now well-established and working smoothly.

  17. 43 CFR 3101.5-3 - Alaska wildlife areas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... § 3101.5-3 Alaska wildlife areas. No lands within a refuge in Alaska open to leasing shall be available until the Fish and Wildlife Service has first completed compatability determinations. ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Alaska wildlife areas. 3101.5-3...

  18. 43 CFR 3101.5-3 - Alaska wildlife areas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... § 3101.5-3 Alaska wildlife areas. No lands within a refuge in Alaska open to leasing shall be available until the Fish and Wildlife Service has first completed compatability determinations. ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Alaska wildlife areas. 3101.5-3...

  19. 43 CFR 3101.5-3 - Alaska wildlife areas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... § 3101.5-3 Alaska wildlife areas. No lands within a refuge in Alaska open to leasing shall be available until the Fish and Wildlife Service has first completed compatability determinations. ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Alaska wildlife areas. 3101.5-3...

  20. Distance Learning in Alaska's Rural Schools.

    ERIC Educational Resources Information Center

    Bramble, William J.

    1986-01-01

    The distance education and instructional technology projects that have been undertaken in Alaska over the last decade are detailed in this paper. The basic services offered by the "Learn Alaska Network" are described in relation to three user groups: K-12 education; postsecondary education; and general public education and information. The audio…

  1. Fire Prevention Inspection Procedures.

    ERIC Educational Resources Information Center

    Pribyl, Paul F.

    Lesson plans are provided for a fire prevention inspection course of the Wisconsin Fire Service Training program. Objectives for the course are to enable students to describe and conduct fire prevention inspections, to identify and correct hazards common to most occupancies, to understand the types of building construction and occupancy, and to…

  2. Fire Department Emergency Response

    SciTech Connect

    Blanchard, A.; Bell, K.; Kelly, J.; Hudson, J.

    1997-09-01

    In 1995 the SRS Fire Department published the initial Operations Basis Document (OBD). This document was one of the first of its kind in the DOE complex and was widely distributed and reviewed. This plan described a multi-mission Fire Department which provided fire, emergency medical, hazardous material spill, and technical rescue services.

  3. 76 FR 57763 - Alaska Region's Subsistence Resource Commission (SRC) Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-16

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR National Park Service Alaska Region's Subsistence Resource Commission (SRC) Program AGENCY: National Park Service, Interior. ACTION: Notice of public meeting for the National Park Service (NPS) Alaska...

  4. Mediation of Fire-Climate Linkages by Vegetation Types in Alaskan Arctic Tundra Ecosystems: Impacts of Model Uncertainty on GCM-Based Forecasts of Future Fire Activity

    NASA Astrophysics Data System (ADS)

    Duffy, P.; Higuera, P. E.; Young, A. M.; Hu, F.; Dietze, M.

    2014-12-01

    Fire is a powerful landscape scale disturbance agent in tundra ecosystems. Impacts on biophysical properties (e.g. albedo) and biogeochemical function (e.g. carbon flux) underscore the need to better quantify fire-climate linkages in tundra ecosystems as climate change accelerates at northern high latitudes. In this context, a critical question is "How does the functional linkage between climate and fire vary across spatial domains dominated by different vegetation types?" We address this question with BLM-Alaska Fire Service area burned data (http://fire.ak.blm.gov/predsvcs/maps.php) used in conjunction with downscaled historical climate data from the Scenarios Network for Alaska Planning (http://www.snap.uaf.edu/data.php) to develop gradient boosting models of annual area burned in Alaska tundra ecosystems. The sparse historical fire records in the Arctic necessitate explicit quantification of model uncertainty associated with the development of statistical analyses. In this work, model uncertainty is depicted through the construction of separate models depicting fire-climate relationships for regions defined by the graminoid, shrub, and wetland tundra vegetation classes (Circumpolar Arctic Vegetation Map: http://www.geobotany.uaf.edu/cavm/). Non-linear relationships between annual area burned and climate variables are depicted with partial dependence functions. Our results show that vegetation-specific models result in different non-linear relationships between climate and fire. Precipitation variables generally had higher relative influence scores than temperature; however, differences between the magnitude of the scores were greater when models were built with monthly (versus seasonal) explanatory variables. Key threshold values for climate variables are identified. The impact of model uncertainty on forecasts of future fire activity was quantified using output from five different AR5/CMIP5 General Circulation Models. Model uncertainty corresponding to

  5. The Arctic Research Mapping Application (ARMAP) Partners with the Alaska Data Integration Working Group (ADIwg) to Develop an Interagency Web Service Standard for Sharing Project Tracking

    NASA Astrophysics Data System (ADS)

    Cody, R. P.; Kassin, A.; Graves Gaylord, A.; Manley, W. F.; Franco, J. C.; Dover, M.; Garcia-Lavigne, D.; Score, R.; Tweedie, C. E.

    2011-12-01

    The Arctic Research Mapping Application (ARMAP) has partnered with the Alaska Data Integration Working Group (ADIwg) to develop and implement an interagency standard for project tracking (who's doing what, when and where in the region) with RESTful (Respresentational State Transfer) web services. This standard is derived from the Federal Geographic Data Committee and International Standards Organization's XML-based metadata standard. It allows for free open access to high-level project information from various entities and government agencies. The standard has been utilized in the development and enhancement of the ARMAP 2D application (http://armap.org) which allows users to search for research projects by location, year, funding program, keyword, investigator, and discipline, among other variables. Key information about each project is displayed within the application with links to web pages that provide additional information. The ARMAP 2D application has been significantly enhanced to include support for multiple projections, improved base maps, additional reference data layers, and optimization for better performance. The additional functionality of this tool will increase awareness of projects funded by numerous entities in the Arctic, enhance coordination for logistics support, help identify geographic gaps in research efforts and potentially foster more collaboration amongst researchers working in the region.

  6. 75 FR 3888 - Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-25

    ... Register on November 20, 2009 (74 FR 60228), to propose migratory bird subsistence harvest regulations in... Fish and Wildlife Service 50 CFR Part 92 RIN 1018-AW67 Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska During the 2010 Season AGENCY: Fish and Wildlife...

  7. ALASKA VILLAGE DEMONSTRATION PROJECTS

    EPA Science Inventory

    Two demonstration projects were built as authorized by Section 113 of PL 92-500. Modular construction was used to provide central utility systems which included water supply, laundry, bathing, saunas, and wastewater treatment. Service to homes was by vehicular delivery. Fire dest...

  8. Alaska Resource Data File, Noatak Quadrangle, Alaska

    USGS Publications Warehouse

    Grybeck, Donald J.; Dumoulin, Julie A.

    2006-01-01

    This report gives descriptions of the mineral occurrences in the Noatak 1:250,000-scale quadrangle, Alaska. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  9. 76 FR 29707 - Fishing Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-23

    ... Program for the Southeast Alaska Purse Seine Salmon Fishery AGENCY: National Marine Fisheries Service... an industry fee system to repay a $23.5 million loan for the Southeast Alaska Purse Seine Salmon... Mail: Paul Marx, Chief, Financial Services Division, NMFS, Attn: SE Alaska Purse Seine...

  10. Fighting Forest Fires

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Firefly is an airborne system for imaging forest fires. It uses satellite-based navigation for greater positioning accuracy and offers timeliness in fire location data delivery with on board data processing and a direct aircraft-to-fire camp communications link. Developed by Jet Propulsion Laboratory and the USFS, it has an infrared line scanner to identify fire boundaries and an infrared sensor system that can penetrate smoke to image the ground. Firefly is an outgrowth of a previous collaboration that produced FLAME, an airborne fire mapping instrument. Further refinements are anticipated by NASA and the United States Forest Service (USFS).

  11. Using NDVI to assess departure from average greenness and its relation to fire business. Forest Service general technical report

    SciTech Connect

    Burgan, R.E.; Hartford, R.A.; Eidenshink, J.C.

    1996-04-01

    Satellite-derived vegetation greenness maps of the contiguous United States have been available to fire managers since 1989. This report describes a new map, departure from average, which is designed to compare current-year vegetation greenness to average greenness for the same time of year and describes it relationship to fire business.

  12. Multi-criteria site selection for fire services: the interaction with analytic hierarchy process and geographic information systems

    NASA Astrophysics Data System (ADS)

    Erden, T.; Coşkun, M. Z.

    2010-10-01

    This study combines AHP and GIS to provide decision makers with a model to ensure optimal site location(s) for fire stations selected. The roles of AHP and GIS in determining optimal locations are explained, criteria for site selection are outlined, and case study results for finding the optimal fire station locations in Istanbul, Turkey are included. The city of Istanbul has about 13 million residents and is the largest and most populated city in Turkey. The rapid and constant growth of Istanbul has resulted in the increased number of fire related cases. Fire incidents tend to increase year by year in parallel with city expansion, population and hazardous material facilities. Istanbul has seen a rise in reported fire incidents from 12 769 in 1994 to 30 089 in 2009 according to the interim report of Istanbul Metropolitan Municipality Department of Fire Brigade. The average response time was approximately 7 min 3 s in 2009. The goal of this study is to propose optimal sites for new fire station creation to allow the Fire Brigade in Istanbul to reduce the average response time to 5 min or less. After determining the necessity of suggesting additional fire stations, the following steps are taken into account: six criteria are considered in this analysis. They are: High Population Density (HPD); Proximity to Main Roads (PMR); Distance from Existing Fire Stations (DEF); Distance from Hazardous Material Facilities (DHM); Wooden Building Density (WBD); and Distance from the Areas Subjected to Earthquake Risk (DER). DHM criterion, with the weight of 40%, is the most important criterion in this analysis. The remaining criteria have a weight range from 9% to 16%. Moreover, the following steps are performed: representation of criterion map layers in GIS environment; classification of raster datasets; calculating the result raster map (suitability map for potential fire stations); and offering a model that supports decision makers in selecting fire station sites. The existing

  13. 78 FR 29331 - Proposed Information Collection; Comment Request; Western Alaska Community Development Quota Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-20

    ... Service monitors the reported catch to assure that quotas are not being exceeded. Information is collected... Alaska Community Development Quota Program AGENCY: National Oceanic and Atmospheric Administration (NOAA... current information collection. The Western Alaska Community Development Quota (CDQ) Program is...

  14. National fire management policy

    SciTech Connect

    Wakimoto, R.H. )

    1990-10-01

    A Fire Management Policy Review Team was established in 1988, with representatives from the US Forest Service, National Park Service, Bureau of Land Management, Bureau of Indian Affairs and the US Fish and Wildlife Service, with the purpose of reviewing current policies governing national park and wilderness fire management. The author outlines the goals of the review team and discusses the seven final issues that summarized the team's findings.

  15. Vapor pressure deficit controls on fire ignition and fire spread in boreal forest ecosystems

    NASA Astrophysics Data System (ADS)

    Sedano, F.; Randerson, J. T.

    2014-01-01

    Climate-driven changes in the fire regime within boreal forest ecosystems are likely to have important effects on carbon cycling and species composition. In the context of improving fire management options and developing more realistic scenarios of future change, it is important to understand how meteorology regulates different fire processes, including ignition, daily fire spread rates, and cumulative annual burned area. Here we combined MODIS active fires (MCD14ML), MODIS imagery (MOD13A1) and ancillary historic fire perimeter information to produce a dataset of daily fire spread maps of Alaska for the period 2002-2011. This approach provided a spatial and temporally continuous representation of fire progression and a precise identification of ignition and extinction locations and dates for each wildfire. The fire-spread maps were analyzed together with daily vapor pressure deficit (VPD) observations from the North American Regional Reanalysis (NARR) and lightning strikes from the Alaska Lightning Detection Network (ALDN). We found a significant relationship between daily VPD and probability that a lightning strike would develop into a fire ignition. In the first 5 days after ignition, above average VPD increased the probability that fires would grow to large or very large sizes. Strong relationships also were identified between VPD and burned area at several levels of temporal and spatial aggregation. As a consequence of regional coherence in meteorology, ignition, daily fire spread rates, and fire extinction events were often synchronized across different fires in interior Alaska. At a regional scale, the sum of positive VPD anomalies during the fire season was positively correlated with annual burned area during the NARR era (1979-2011; R2 = 0.45). Some of the largest fires we mapped had slow initial growth, indicating opportunities may exist for suppression efforts to adaptively manage these forests for climate change. The results of our spatiotemporal

  16. Wild Fire Emissions for the NOAA Operational HYSPLIT Smoke Model

    NASA Astrophysics Data System (ADS)

    Huang, H. C.; ONeill, S. M.; Ruminski, M.; Shafran, P.; McQueen, J.; DiMego, G.; Kondragunta, S.; Gorline, J.; Huang, J. P.; Stunder, B.; Stein, A. F.; Stajner, I.; Upadhayay, S.; Larkin, N. K.

    2015-12-01

    Particulate Matter (PM) generated from forest fires often lead to degraded visibility and unhealthy air quality in nearby and downstream areas. To provide near-real time PM information to the state and local agencies, the NOAA/National Weather Service (NWS) operational HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) smoke modeling system (NWS/HYSPLIT smoke) provides the forecast of smoke concentration resulting from fire emissions driven by the NWS North American Model 12 km weather predictions. The NWS/HYSPLIT smoke incorporates the U.S. Forest Service BlueSky Smoke Modeling Framework (BlueSky) to provide smoke fire emissions along with the input fire locations from the NOAA National Environmental Satellite, Data, and Information Service (NESDIS)'s Hazard Mapping System fire and smoke detection system. Experienced analysts inspect satellite imagery from multiple sensors onboard geostationary and orbital satellites to identify the location, size and duration of smoke emissions for the model. NWS/HYSPLIT smoke is being updated to use a newer version of USFS BlueSky. The updated BlueSky incorporates the Fuel Characteristic Classification System version 2 (FCCS2) over the continental U.S. and Alaska. FCCS2 includes a more detailed description of fuel loadings with additional plant type categories. The updated BlueSky also utilizes an improved fuel consumption model and fire emission production system. For the period of August 2014 and June 2015, NWS/HYSPLIT smoke simulations show that fire smoke emissions with updated BlueSky are stronger than the current operational BlueSky in the Northwest U.S. For the same comparisons, weaker fire smoke emissions from the updated BlueSky were observed over the middle and eastern part of the U.S. A statistical evaluation of NWS/HYSPLIT smoke predicted total column concentration compared to NOAA NESDIS GOES EAST Aerosol Smoke Product retrievals is underway. Preliminary results show that using the newer version

  17. Airborne forest fire research

    NASA Technical Reports Server (NTRS)

    Mattingly, G. S.

    1974-01-01

    The research relating to airborne fire fighting systems is reviewed to provide NASA/Langley Research Center with current information on the use of aircraft in forest fire operations, and to identify research requirements for future operations. A literature survey, interview of forest fire service personnel, analysis and synthesis of data from research reports and independent conclusions, and recommendations for future NASA-LRC programs are included.

  18. Industrial Fire Brigade Training.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Community Colleges, Raleigh.

    Organized as a teaching outline for an industrial plant fire brigade course, this manual contains a rationale for an industrial plant brigade as an adjunct to the local firefighting services; information to the instructor concerning the implementation of an industrial fire brigade program; and a teaching outline consisting of eleven sections: (1)…

  19. Analysis of Alaska hydro power development

    SciTech Connect

    Sieber, O.V.

    1983-12-01

    Alaska leads the world in terms of total potential for hydropower development, yet Alaska is 91% dependent on fossil fuels. A mix of gas, diesel and coal-fired power plants generate all but 9% of its electricity. This dependence on fossil fuels stems from the abundance of cheap gas, coal and oil-nonrenewable resources that are becoming more costly. Hydro power is also costly; however, most hydro projects are justified by long term returns. Once the water hits the turbine in a hydro project, the operating and maintenance cost is practically nil. The successful completion of two complex thin-arch concrete dams and several other hydro projects are discussed in order to meet Alaska's power demand.

  20. Unpacking the Placement of American Indian and Alaska Native Students in Special Education Programs and Services in the Early Grades: School Readiness as a Predictive Variable

    ERIC Educational Resources Information Center

    Hibel, Jacob; Faircloth, Susan C.; Farkas, George

    2008-01-01

    In this article, Jacob Hibel, Susan Faircloth, and George Farkas investigate the persistent finding that American Indian and Alaska Native (AI/AN) students are overrepresented in special education. Using data from the kindergarten cohort of the Early Childhood Longitudinal Study, the authors compare the third-grade special education placement rate…

  1. Hyperspectral surveying for mineral resources in Alaska

    USGS Publications Warehouse

    Kokaly, Raymond F.; Graham, Garth E.; Hoefen, Todd M.; Kelley, Karen D.; Johnson, Michaela R.; Hubbard, Bernard E.

    2016-01-01

    Alaska is a major producer of base and precious metals and has a high potential for additional undiscovered mineral resources. However, discovery is hindered by Alaska’s vast size, remoteness, and rugged terrain. New methods are needed to overcome these obstacles in order to fully evaluate Alaska’s geology and mineral resource potential. Hyperspectral surveying is one method that can be used to rapidly acquire data about the distributions of surficial materials, including different types of bedrock and ground cover. In 2014, the U.S. Geological Survey began the Alaska Hyperspectral Project to assess the applicability of this method in Alaska. The primary study area is a remote part of the eastern Alaska Range where porphyry deposits are exposed. In collaboration with the Alaska Division of Geological and Geophysical Surveys, the University of Alaska Fairbanks, and the National Park Service, the U.S. Geological Survey is collecting and analyzing hyperspectral data with the goals of enhancing geologic mapping and developing methods to identify and characterize mineral deposits elsewhere in Alaska.

  2. The State of Adolescent Health in Alaska.

    ERIC Educational Resources Information Center

    Alaska State Office of the Commissioner, Juneau.

    A survey was conducted to provide a profile of the health status and risk behaviors of youth in Alaska. The goal was to develop a statewide database which, when coupled with morbidity and mortality data, would provide information that would allow those who plan and develop services at state and local levels to better target those services. During…

  3. Photo series for quantifying fuels and assessing fire risk in giant sequoia groves. Forest Service general technical report

    SciTech Connect

    Weise, D.R.; Gelobter, A.; Haase, S.M.; Sackett, S.S.

    1997-03-01

    Fuels and stand inventory data are presented for giant sequoia by using 18 different photos located in giant sequoia/mixed conifer stands in the Sierra Nevada of California. Total fuel loading ranges from 7 to 72 tons/acre. The stands have been subjected to a variety of disturbances including timbers harvesting, wildfire, prescribed fire, and recreational use. Fire behavior predictions were made by using 10th, 50th, and 90th percentile weather conditions and the inventoried fuels information. The long-term visual impacts of the various management activities can also be partially assessed with this photo series.

  4. Fire Protection for Rural Communities.

    ERIC Educational Resources Information Center

    Hagevig, William A.

    Fire protection in rural Alaskan communities depends on individual home fire prevention and protection rather than on the services offered by a centralized fire department. Even when help is summoned to extinguish a blaze, aid does not come in the form of a cadre of highly trained firefighters; it comes instead from whomever happens to be in the…

  5. Factors associated with pilot fatalities in work-related aircraft crashes--Alaska, 1990-1999.

    PubMed

    2002-04-26

    Despite its large geographic area, Alaska has only 12,200 miles of public roads, and 90% of the state's communities are not connected to a highway system. Commuter and air-taxi flights are essential for transportation of passengers and delivery of goods, services, and mail to outlying communities (Figure 1). Because of the substantial progress in decreasing fatalities in the fishing and logging industries, aviation crashes are the leading cause of occupational death in Alaska. During 1990-1999, aircraft crashes in Alaska caused 107 deaths among workers classified as civilian pilots. This is equivalent to 410 fatalities per 100,000 pilots each year, approximately five times the death rate for all U.S. pilots and approximately 100 times the death rate for all U.S. workers. As part of a collaborative aviation safety initiative that CDC's National Institute for Occupational Safety and Health (NIOSH) is implementing with the Federal Aviation Administration (FAA), the National Transportation Safety Board (NTSB), and the National Weather Service, CDC analyzed data from NTSB crash reports to determine factors associated with pilot fatalities in work-related aviation crashes in Alaska. This report summarizes the result of this analysis, which found that the following factors were associated with pilot fatalities: crashes involving a post-crash fire, flights in darkness or weather conditions requiring instrument use, crashes occurring away from an airport, and crashes in which the pilot was not using a shoulder restraint. Additional pilot training, improved fuel systems that are less likely to ignite in crashes, and company policies that discourage flying in poor weather conditions might help decrease pilot fatalities. More detailed analyses of crash data, collaborations with aircraft operators to improve safety, and evaluation of new technologies are needed. PMID:12004985

  6. Alaska's Economy: What's Ahead?

    ERIC Educational Resources Information Center

    Alaska Review of Social and Economic Conditions, 1987

    1987-01-01

    This review describes Alaska's economic boom of the early 1980s, the current recession, and economic projections for the 1990s. Alaska's economy is largely influenced by oil prices, since petroleum revenues make up 80% of the state government's unrestricted general fund revenues. Expansive state spending was responsible for most of Alaska's…

  7. Alaska Natives & the Land.

    ERIC Educational Resources Information Center

    Arnold, Robert D.; And Others

    Pursuant to the Native land claims within Alaska, this compilation of background data and interpretive materials relevant to a fair resolution of the Alaska Native problem seeks to record data and information on the Native peoples; the land and resources of Alaska and their uses by the people in the past and present; land ownership; and future…

  8. Forest Fire Mapping

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Fire Logistics Airborne Mapping Equipment (FLAME) system, mounted in a twin-engine and airplane operated by the U.S. Forest Service (USFS) of the U.S. Department of Agriculture (USDA), is an airborne instrument for detecting and pinpointing forest fires that might escape ground detection. The FLAME equipment rack includes the operator interface, a video monitor, the system's control panel and film output. FLAME's fire detection sensor is an infrared line scanner system that identifies fire boundaries. Sensor's information is correlated with the aircraft's position and altitude at the time the infrared imagery is acquired to fix the fire's location on a map. System can be sent to a fire locale anywhere in the U.S. at the request of a regional forester. USFS felt a need for a more advanced system to deliver timely fire information to fire management personnel in the decade of the 1990s. The Jet Propulsion Laboratory (JPL) conducted a study, jointly sponsored by NASA and USDA, on what advanced technologies might be employed to produce an end-to-end thermal infrared fire detection and mapping system. That led to initiation of the Firefly system, currently in development at JPL and targeted for operational service beginning in 1992. Firefly will employ satellite-reference position fixing and provide performance superior to FLAME.

  9. Building Blocks: The Next Steps for Supporting Alaska's Young Children and Their Families.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education and Early Development, Juneau.

    As part of the ongoing efforts in the state of Alaska to improve the health and well-being of the state's young children, the Alaska Departments of Education and Early Development and Health and Social Services are collaborating to develop a plan to address the critical outcomes and strategies that will support and improve the lives of Alaska's…

  10. 36 CFR 223.201 - Limitations on unprocessed timber harvested in Alaska.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... timber harvested in Alaska. 223.201 Section 223.201 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER The Forest Resources... Alaska. Unprocessed timber from National Forest System lands in Alaska may not be exported from...

  11. Development and Evaluation of Curriculum and Media to Train Part-Time Fire Service Instructors in Rural Areas.

    ERIC Educational Resources Information Center

    Kloss, Frank E.

    The report briefly describes a project whose purpose was to provide guidance and training for rural volunteer fire chiefs and firefighters in Wisconsin to increase the knowledge and skills they use to protect lives and property. The training was provided by part-time instructors who taught and demonstrated the courses and curriculum to suit the…

  12. Multisensor Fire Observations

    NASA Technical Reports Server (NTRS)

    Boquist, C.

    2004-01-01

    This DVD includes animations of multisensor fire observations from the following satellite sources: Landsat, GOES, TOMS, Terra, QuikSCAT, and TRMM. Some of the animations are included in multiple versions of a short video presentation on the DVD which focuses on the Hayman, Rodeo-Chediski, and Biscuit fires during the 2002 North American fire season. In one version of the presentation, MODIS, TRMM, GOES, and QuikSCAT data are incorporated into the animations of these wildfires. These data products provided rain, wind, cloud, and aerosol data on the fires, and monitored the smoke and destruction created by them. Another presentation on the DVD consists of a panel discussion, in which experts from academia, NASA, and the U.S. Forest Service answer questions on the role of NASA in fighting forest fires, the role of the Terra satellite and its instruments, including the Moderate Resolution Imaging Spectroradiometer (MODIS), in fire fighting decision making, and the role of fire in the Earth's climate. The third section of the DVD features several animations of fires over the years 2001-2003, including animations of global and North American fires, and specific fires from 2003 in California, Washington, Montana, and Arizona.

  13. Effectiveness of polyethylene sheeting in controlling spruce beetles ( coleoptera: scolytidae') in infested stacks of spruce firewood in Alaska. Forest Service research paper

    SciTech Connect

    Holsten, E.H.; Werner, R.A.

    1993-06-01

    The covering stacks of spruce firewood with either clear or black polyethylene sheeting does not raise log temperatures high enough to kill spruce beetle brood in the logs. Based on the results of the study, the authors do not recommend the use of polyethylene sheeting as a remedial measure for the reduction of spruce beetle brood in infested firewood or log decks in south-central Alaska.

  14. Climate Change Implications to Vegetation Production in Alaska

    NASA Technical Reports Server (NTRS)

    Neigh, Christopher S.R.

    2008-01-01

    Investigation of long-term meteorological satellite data revealed statistically significant vegetation response to climate drivers of temperature, precipitation and solar radiation with exclusion of fire disturbance in Alaska. Abiotic trends were correlated to satellite remote sensing observations of normalized difference vegetation index to understand biophysical processes that could impact ecosystem carbon storage. Warming resulted in disparate trajectories for vegetation growth due to precipitation and photosynthetically active radiation variation. Interior spruce forest low lands in late summer through winter had precipitation deficit which resulted in extensive fire disturbance and browning of undisturbed vegetation with reduced post-fire recovery while Northern slope moist alpine tundra had increased production due to warmer-wetter conditions during the late 1990s and early 2000s. Coupled investigation of Alaska s vegetation response to warming climate found spatially dynamic abiotic processes with vegetation browning not a result from increased fire disturbance.

  15. EarthScope's Transportable Array in Alaska and Western Canada

    NASA Astrophysics Data System (ADS)

    Enders, M.; Miner, J.; Bierma, R. M.; Busby, R.

    2015-12-01

    EarthScope's Transportable Array (TA) in Alaska and Canada is an ongoing deployment of 261 high quality broadband seismographs. The Alaska TA is the continuation of the rolling TA/USArray deployment of 400 broadband seismographs in the lower 48 contiguous states and builds on the success of the TA project there. The TA in Alaska and Canada is operated by the IRIS Consortium on behalf of the National Science Foundation as part of the EarthScope program. By Sept 2015, it is anticipated that the TA network in Alaska and Canada will be operating 105 stations. During the summer 2015, TA field crews comprised of IRIS and HTSI station specialists, as well as representatives from our partner agencies the Alaska Earthquake Center and the Alaska Volcano Observatory and engineers from the UNAVCO Plate Boundary Observatory will have completed a total of 36 new station installations. Additionally, we will have completed upgrades at 9 existing Alaska Earthquake Center stations with borehole seismometers and the adoption of an additional 35 existing stations. As the array doubles in Alaska, IRIS continues to collaborate closely with other network operators, universities and research consortia in Alaska and Canada including the Alaska Earthquake Center (AEC), the Alaska Volcano Observatory (AVO), the UNAVCO Plate Boundary Observatory (PBO), the National Tsunami Warning Center (NTWC), Natural Resources Canada (NRCAN), Canadian Hazard Information Service (CHIS), the Yukon Geologic Survey (YGS), the Pacific Geoscience Center of the Geologic Survey, Yukon College and others. During FY14 and FY15 the TA has completed upgrade work at 20 Alaska Earthquake Center stations and 2 AVO stations, TA has co-located borehole seismometers at 5 existing PBO GPS stations to augment the EarthScope observatory. We present an overview of deployment plan and the status through 2015. The performance of new Alaska TA stations including improvements to existing stations is described.

  16. 75 FR 7515 - Environmental Documents Prepared for Proposed Mineral Exploration on the Alaska Outer Continental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    ... Outer Continental Shelf AGENCY: Minerals Management Service (MMS), Interior. ACTION: Notice of the... proposed on the Alaska Outer Continental Shelf (OCS). FOR FURTHER INFORMATION CONTACT: Minerals...

  17. Child Care Services and the NYS Uniform Fire Prevention and Building Code: A Building Code Examination of Child Day Care Services Which Are Regulated by the NYS Department of Social Services with Particular Attention to Day Care Centers and the Role of the Local Authority Having Jurisdiction.

    ERIC Educational Resources Information Center

    New York State Div. of Code Enforcement and Administration, Albany.

    This course manual details the Uniform Fire Prevention and Building Code of New York State and how it affects child care services, particularly day care centers. The sections of the manual, each detailing a part of the code, are: (1) Introduction, Scope, Registration, and Definitions and Facilities Regulated by the New York Department of Social…

  18. Twig and foliar biomass estimation equations for major plant species in the Tanana River basin of interior Alaska. Forest Service research paper

    SciTech Connect

    Yarie, J.; Mead, B.R.

    1988-09-01

    Equations are presented for estimating the twig, foliage, and combined biomass for 58 plant species in interior Alaska. The equations can be used for estimating biomass from percentage of the foliar cover of 10-centimeter layers in a vertical profile from 0 to 6 meters. Few differences were found in regressions of the same species between layers except when the ratio of foliar-to-twig biomass changed drastically between layers, for example, Rosa acicularis Lindl. Eighteen species were tested for regression differences between years. Thirteen showed no significant differences, five were different. Of these five, three were feather mosses for which live and dead biomass are easily confused when measured.

  19. 78 FR 41942 - Alaska; Major Disaster and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-12

    ... Unemployment Assistance (DUA); 97.046, Fire Management Assistance Grant; 97.048, Disaster Housing Assistance to... Assistance--Disaster Housing Operations for Individuals and Households; 97.050, Presidentially Declared... SECURITY Federal Emergency Management Agency Alaska; Major Disaster and Related Determinations...

  20. The Development and Application of a Harmonized Burned Area Data Set for North America to Assess the Effects of Fire Disturbance on the Continental Carbon Budget

    NASA Astrophysics Data System (ADS)

    Chen, G.; Hayes, D. J.

    2014-12-01

    Fires burn an annual average of about 40,000 km2 in Canada and the U.S., making it an important feature of North American ecosystems through renewing ecosystem conditions and vegetation dynamics. Fire disturbances substantially modify ecosystem carbon dynamics both temporally and spatially. Ecosystems generally lose carbon for several years to decades following fire disturbance, but our understanding of the duration and dynamics of post-disturbance carbon fluxes remains limited. Owing to the prevailing collection of inventory data for fire burn area, intensity, distribution, and associated carbon-related parameters in North America, we are able to more accurately estimate carbon dynamics following fire disturbances. In our study, we integrated four major fire datasets (i.e., U.S. Monitoring Trends in Burn Severity dataset, Bureau of Land Management Alaska Fire Service dataset, and Canadian National Fire Database, and GFEDv3.1 fire dataset) and other auxiliary data to generate a comprehensive and continuous burned area history dataset, which covers the 1920 to 2012 time period and is gridded at quarter-degree resolution for the North American continent. Driven by this new dataset, we used the Terrestrial Ecosystem Model (TEM6.0) to simulate the impacts of fire disturbance on carbon dynamics across North American ecosystems. The results indicate that large amount of carbon was emitted due to fire disturbances during the study period, especially for the boreal ecosystems with slow recovery. The modeling results were also evaluated with the field measurements along a fire chronosequence and compared to estimates from other approaches.

  1. Contribution of peat fires to the 2015 Indonesian fires

    NASA Astrophysics Data System (ADS)

    Kaiser, Johannes W.; Heil, Angelika; Wooster, Martin J.; van der Werf, Guido R.

    2016-04-01

    Indonesia experienced widespread fires and severe air quality degradation due to smoke during September and October 2015. The fires are thought to have originated from the combination of El-Niño-induced drought and human activities. Fires ignited for land clearing escaped into drained peatlands and burned until the onset of the monsoonal rain. In addition to the health impact, these fires are thought to have emitted large amounts of greenhouse gases, e.g. more than Japan over the entire year. The Copernicus Atmosphere Monitoring Service (CAMS) has detected and quantified the fires with the Global Fire Assimilation System (GFAS) and the smoke dispersion with the Chemistry-Integrated Forecasting System (C-IFS) in near real time. GFAS and C-IFS are constrained by satellite-based observations of fire and smoke constituents, respectively. The distinction between peat and above-ground fires is a crucial and difficult step in fire emission estimation as it introduces errors of up to one order of magnitude. Here, we quantify the contribution of peat fires to the total emission flux of the 2015 Indonesian fires by (1) using an improved peat map in GFAS and (2) analysing the observed diurnal cycle of the fire activity as represented in a new development for GFAS. Furthermore, we link the fires occurrence to economic activity by analysing the coincidence with concessions for palm oil plantations and other industrial forest uses.

  2. Alaska Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Murray, Tom; Read, Cyrus

    2008-01-01

    Steam plume from the 2006 eruption of Augustine volcano in Cook Inlet, Alaska. Explosive ash-producing eruptions from Alaska's 40+ historically active volcanoes pose hazards to aviation, including commercial aircraft flying the busy North Pacific routes between North America and Asia. The Alaska Volcano Observatory (AVO) monitors these volcanoes to provide forecasts of eruptive activity. AVO is a joint program of the U.S. Geological Survey (USGS), the Geophysical Institute of the University of Alaska Fairbanks (UAFGI), and the State of Alaska Division of Geological and Geophysical Surveys (ADGGS). AVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Augustine volcano and AVO at http://www.avo.alaska.edu.

  3. 14 CFR 91.323 - Increased maximum certificated weights for certain airplanes operated in Alaska.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Civil Air Regulations (14 CFR part 4a, 1964 ed.) if that airplane is operated in the State of Alaska by... certificated weight of an airplane type certificated under Aeronautics Bulletin No. 7-A of the U.S. Department... management, fire detection, and fire suppression activities concerning public lands. (b) The...

  4. 14 CFR 91.323 - Increased maximum certificated weights for certain airplanes operated in Alaska.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Civil Air Regulations (14 CFR part 4a, 1964 ed.) if that airplane is operated in the State of Alaska by... certificated weight of an airplane type certificated under Aeronautics Bulletin No. 7-A of the U.S. Department... management, fire detection, and fire suppression activities concerning public lands. (b) The...

  5. Alaska's renewable energy potential.

    SciTech Connect

    Not Available

    2009-02-01

    This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.

  6. American Indians and Alaska Natives with Disabilities.

    ERIC Educational Resources Information Center

    Johnson, Marilyn J.

    American Indian and Alaska Native children with special needs experience the same ineffective and inefficient services as other minority language children. This paper discusses the special needs of Native children, assessment and curriculum issues, and recommendations for improvement. It provides statistics for various categories of handicaps and…

  7. Fire Monitoring - The use of medium resolution satellites (AVHRR, MODIS, TET) for long time series processing and the implementation in User Driven Applications and Services

    NASA Astrophysics Data System (ADS)

    Fuchs, E.-M.; Stein, E.; Strunz, G.; Strobl, C.; Frey, C.

    2015-04-01

    This paper introduces fire monitoring works of two different projects, namely TIMELINE (TIMe Series Processing of Medium Resolution Earth Observation Data assessing Long -Term Dynamics In our Natural Environment) and PHAROS (Project on a Multi-Hazard Open Platform for Satellite Based Downstream Services). It describes the evolution from algorithm development from in applied research to the implementation in user driven applications and systems. Concerning TIMELINE, the focus of the work lies on hot spot detection. A detailed description of the choice of a suitable algorithm (round robin approach) will be given. Moreover, strengths and weaknesses of the AVHRR sensor for hot spot detection, a literature review, the study areas and the selected approach will be highlighted. The evaluation showed that the contextual algorithm performed best, and will therefore be used for final implementation. Concerning the PHAROS project, the key aspect is on the use of satellite-based information to provide valuable support to all phases of disaster management. The project focuses on developing a pre-operational sustainable service platform that integrates space-based EO (Earth Observation), terrestrial sensors and communication and navigation assets to enhance the availability of services and products following a multi-hazard approach.

  8. How does a servant leader fuel the service fire? A multilevel model of servant leadership, individual self identity, group competition climate, and customer service performance.

    PubMed

    Chen, Zhijun; Zhu, Jing; Zhou, Mingjian

    2015-03-01

    Building on a social identity framework, our cross-level process model explains how a manager's servant leadership affects frontline employees' service performance, measured as service quality, customer-focused citizenship behavior, and customer-oriented prosocial behavior. Among a sample of 238 hairstylists in 30 salons and 470 of their customers, we found that hair stylists' self-identity embedded in the group, namely, self-efficacy and group identification, partially mediated the positive effect of salon managers' servant leadership on stylists' service performance as rated by the customers, after taking into account the positive influence of transformational leadership. Moreover, group competition climate strengthened the positive relationship between self-efficacy and service performance. PMID:25314366

  9. 78 FR 62005 - Fisheries of the Exclusive Economic Zone Off Alaska; Pollock in Statistical Area 630 in the Gulf...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-11

    ...; Pollock in Statistical Area 630 in the Gulf of Alaska AGENCY: National Marine Fisheries Service (NMFS...: NMFS is prohibiting directed fishing for pollock in Statistical Area 630 in the Gulf of Alaska (GOA... the Fishery Management Plan for Groundfish of the Gulf of Alaska (FMP) prepared by the North...

  10. The Effect of Alaska's Home Visitation Program for High-Risk Families on Trends in Abuse and Neglect

    ERIC Educational Resources Information Center

    Gessner, Bradford D.

    2008-01-01

    Objectives: At 6 sites serving 21 communities, Alaska implemented Healthy Families Alaska, a home visitation program using paraprofessionals designed to decrease child abuse and neglect. The primary study objective was to compare changes over time in Child Protective Services outcomes by Healthy Families Alaska enrollment status. Methods:…

  11. Alaska Library Directory, 1996.

    ERIC Educational Resources Information Center

    Jennings, Mary, Ed.

    This directory of Alaska's Libraries lists: members of the Alaska Library Association (AkLA) Executive Council and Committee Chairs; State Board of Education members; members of the Governor's Advisory Council on Libraries; school, academic and public libraries and their addresses, phone and fax numbers, and contact persons; personal,…

  12. Alaska geothermal bibliography

    SciTech Connect

    Liss, S.A.; Motyka, R.J.; Nye, C.J.

    1987-05-01

    The Alaska geothermal bibliography lists all publications, through 1986, that discuss any facet of geothermal energy in Alaska. In addition, selected publications about geology, geophysics, hydrology, volcanology, etc., which discuss areas where geothermal resources are located are included, though the geothermal resource itself may not be mentioned. The bibliography contains 748 entries.

  13. Renewable Energy in Alaska

    SciTech Connect

    Not Available

    2013-03-01

    This report examines the opportunities, challenges, and costs associated with renewable energy implementation in Alaska and provides strategies that position Alaska's accumulating knowledge in renewable energy development for export to the rapidly growing energy/electric markets of the developing world.

  14. South Central Alaska

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Glacial silt along the Copper River in Alaska is picked up by the wind and carried out over the Gulf of Alaska. This true-color MODIS image from October 26, 2001, shows a large gray dust plume spreading out over the Gulf. West of the Copper River Delta, Cook Inlet is full of sediment.

  15. Understory Fires

    NASA Video Gallery

    The flames of understory fires in the southern Amazon reach on average only a few feet tall, but the fire type can claim anywhere from 10 to 50 percent of a burn area's trees. Credit: NASA/Doug Morton

  16. Texas Fires

    Atmospheric Science Data Center

    2014-05-15

    article title:  Wind-Whipped Fires in East Texas     View Larger Image ... western side of the storm stoked fires throughout eastern Texas, which was already suffering from the worst one-year drought on record ...

  17. 36 CFR 211.5 - Emergency fire suppression assistance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of Forest Service fire protection facilities under the following conditions: (1) If a prescribed fire... consideration of the fire's continuing threat to National Forest System lands or resources. (2) When requested... administered by the Forest Service without regard to the fire's threat to National Forest System lands...

  18. Fire Detector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    An early warning fire detection sensor developed for NASA's Space Shuttle Orbiter is being evaluated as a possible hazard prevention system for mining operations. The incipient Fire Detector represents an advancement over commercially available smoke detectors in that it senses and signals the presence of a fire condition before the appearance of flame and smoke, offering an extra margin of safety.

  19. Vulnerability of National Park Service beaches to inundation during a direct hurricane landfall: Fire Island National Seashore

    USGS Publications Warehouse

    Stockdon, Hilary F.; Thompson, David M.

    2007-01-01

    Waves and storm surge associated with strong tropical storms are part of the natural process of barrier-island evolution and can cause extensive morphologic changes in coastal parks, leading to reduced visitor accessibility and enjoyment. Even at Fire Island National Seashore, a barrier-island coastal park in New York where extratropical storms (northeasters) dominate storm activity, the beaches are vulnerable to the powerful, sand-moving forces of hurricanes. The vulnerability of park beaches to inundation, and associated extreme coastal change, during a direct hurricane landfall can be assessed by comparing the elevations of storm-induced mean-water levels (storm surge) to the elevations of the crest of the sand dune that defines the beach system. Maps detailing the inundation potential for Category 1-4 hurricanes can be used by park managers to determine the relative vulnerability of various barrier-island parks and to assess which areas of a particular park are more susceptible to inundation and extreme coastal changes.

  20. 29 CFR 570.54 - Forest fire fighting and forest fire prevention occupations, timber tract occupations, forestry...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., timber tract occupations, forestry service occupations, logging occupations, and occupations in the... § 570.54 Forest fire fighting and forest fire prevention occupations, timber tract occupations, forestry... forest fire fighting and forest fire prevention, in timber tracts, in forestry services, logging, and...

  1. 29 CFR 570.54 - Forest fire fighting and forest fire prevention occupations, timber tract occupations, forestry...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., timber tract occupations, forestry service occupations, logging occupations, and occupations in the... § 570.54 Forest fire fighting and forest fire prevention occupations, timber tract occupations, forestry... forest fire fighting and forest fire prevention, in timber tracts, in forestry services, logging, and...

  2. 29 CFR 570.54 - Forest fire fighting and forest fire prevention occupations, timber tract occupations, forestry...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., timber tract occupations, forestry service occupations, logging occupations, and occupations in the... § 570.54 Forest fire fighting and forest fire prevention occupations, timber tract occupations, forestry... forest fire fighting and forest fire prevention, in timber tracts, in forestry services, logging, and...

  3. 29 CFR 570.54 - Forest fire fighting and forest fire prevention occupations, timber tract occupations, forestry...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., timber tract occupations, forestry service occupations, logging occupations, and occupations in the... § 570.54 Forest fire fighting and forest fire prevention occupations, timber tract occupations, forestry... forest fire fighting and forest fire prevention, in timber tracts, in forestry services, logging, and...

  4. Alaska Problem Resource Manual: Alaska Future Problem Solving Program. Alaska Problem 1985-86.

    ERIC Educational Resources Information Center

    Gorsuch, Marjorie, Ed.

    "Alaska's Image in the Lower 48," is the theme selected by a Blue Ribbon panel of state and national leaders who felt that it was important for students to explore the relationship between Alaska's outside image and the effect of that image on the federal programs/policies that impact Alaska. An overview of Alaska is presented first in this…

  5. Fire in High Buildings. Fire Study No. 21.

    ERIC Educational Resources Information Center

    Galbreath, M.

    Research into and measures of fire protection with regard to high building design are discussed with suggestions for proper building equipment, materials, and planning. The study outlines how smoke and toxic gases spread in high buildings through stairs, service shafts, air handling and heating equipment. The problems of basement fires, means of…

  6. Alexander Archipelago, Southeastern Alaska

    NASA Technical Reports Server (NTRS)

    2002-01-01

    West of British Columbia, Canada, and south of the Yukon Territory, the southeastern coastline of Alaska trails off into the islands of the Alexander Archipelago. The area is rugged and contains many long, U-shaped, glaciated valleys, many of which terminate at tidewater. The Alexander Archipelago is home to Glacier Bay National Park. The large bay that has two forks on its northern end is Glacier Bay itself. The eastern fork is Muir inlet, into which runs the Muir glacier, named for the famous Scottish-born naturalist John Muir. Glacier Bay opens up into the Icy Strait. The large, solid white area to the west is Brady Icefield, which terminates at the southern end in Brady's Glacier. To locate more interesting features from Glacier Bay National Park, take a look at the park service map. As recently as two hundred years ago, a massive ice field extended into Icy Strait and filled the Glacier Bay. Since that time, the area has experienced rapid deglaciation, with many large glaciers retreating 40, 60, even 80 km. While temperatures have increased in the region, it is still unclear whether the rapid recession is part of the natural cycle of tidewater glaciers or is an indicator of longer-term climate change. For more on Glacier Bay and climate change, read an online paper by Dr. Dorothy Hall, a MODIS Associate Science Team Member. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  7. Spatial patterns of cadmium and lead deposition on and adjacent to National Park Service lands in the vicinity of Red Dog Mine, Alaska.

    PubMed

    Hasselbach, L; Ver Hoef, J M; Ford, J; Neitlich, P; Crecelius, E; Berryman, S; Wolk, B; Bohle, T

    2005-09-15

    Heavy metal escapement associated with ore trucks is known to occur along the DeLong Mountain Regional Transportation System (DMTS) haul road corridor in Cape Krusenstern National Monument, northwest Alaska. Heavy metal concentrations in Hylocomium splendens moss (n = 226) were used in geostatistical models to predict the extent and pattern of atmospheric deposition of Cd and Pb on Monument lands. A stratified grid-based sample design was used with more intensive sampling near mine-related activity areas. Spatial predictions were used to produce maps of concentration patterns, and to estimate the total area in 10 moss concentration categories. Heavy metal levels in moss were highest immediately adjacent to the DMTS haul road (Cd > 24 mg/kg dw; Pb > 900 mg/kg dw). Spatial regression analyses indicated that heavy metal deposition decreased with the log of distance from the DMTS haul road and the DMTS port site. Analysis of subsurface soil suggested that observed patterns of heavy metal deposition reflected in moss were not attributable to subsurface lithology at the sample points. Further, moss Pb concentrations throughout the northern half of the study area were high relative to concentrations previously reported from other Arctic Alaska sites. Collectively, these findings indicate the presence of mine-related heavy metal deposition throughout the northern portion of Cape Krusenstern National Monument. Geospatial analyses suggest that the Pb depositional area extends 25 km north of the haul road to the Kisimilot/Iyikrok hills, and possibly beyond. More study is needed to determine whether higher moss heavy metal concentrations in the northernmost portion of the study area reflect deposition from mining-related activities, weathering from mineralized Pb/Zn outcrops in the broader region, or a combination of the two. South of the DMTS haul road, airborne deposition appears to be constrained by the Tahinichok Mountains. Heavy metal levels continue to diminish south of

  8. Directory of workers in the fire field

    NASA Technical Reports Server (NTRS)

    Kuvshinoff, B. W.; Mcleod, S. B.; Katz, R. G.

    1973-01-01

    A directory was compiled to provide a list of workers engaged in fire research, their addresses and affiliations, and their principal fields of activity. The initial criteria for the selection of names for the directory are recent contributions to fire literature, teaching of subjects relevant to fire science, or participation in or support of fire research programs. With some exceptions, fire service personnel and fire protection engineers were excluded because directories already exist for these professionals. Also excluded are investigators engaged principally in studies of propulsion, combustion, and explosion phenomena, because these areas of study are somewhat aside from the main focus of fire research. For purposes of the directory, fire science is taken to be the body of knowledge, art, and skill related to the investigation, analysis, and interpretation of the phenomena of unwanted fires and the evaluation of materials methods, systems, and equipment related to fire safety, prevention, detection, and suppression.

  9. Alaska marine ice atlas

    SciTech Connect

    LaBelle, J.C.; Wise, J.L.; Voelker, R.P.; Schulze, R.H.; Wohl, G.M.

    1982-01-01

    A comprehensive Atlas of Alaska marine ice is presented. It includes information on pack and landfast sea ice and calving tidewater glacier ice. It also gives information on ice and related environmental conditions collected over several years time and indicates the normal and extreme conditions that might be expected in Alaska coastal waters. Much of the information on ice conditions in Alaska coastal waters has emanated from research activities in outer continental shelf regions under assessment for oil and gas exploration and development potential. (DMC)

  10. Alaska Resource Data File, Wiseman quadrangle, Alaska

    USGS Publications Warehouse

    Britton, Joe M.

    2003-01-01

    Descriptions of the mineral occurrences shown on the accompanying figure follow. See U.S. Geological Survey (1996) for a description of the information content of each field in the records. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  11. Libraries in Alaska: MedlinePlus

    MedlinePlus

    ... this page: https://medlineplus.gov/libraries/alaska.html Libraries in Alaska To use the sharing features on ... JavaScript. Anchorage University of Alaska Anchorage Alaska Medical Library 3211 Providence Drive Anchorage, AK 99508-8176 907- ...

  12. NOAA's Improved Fire and Smoke Analysis, A Global Disaster Information Network Initiative

    NASA Astrophysics Data System (ADS)

    Stephens, G.; McNamara, D. P.; Fennimore, R.; Ramsay, B. H.; Ruminski, M.; Ruminski, M.

    2001-05-01

    The National Environmental Satellite, Data, and Information Service (NESDIS) of The National Oceanic and Atmospheric Administration (NOAA) produces a smoke and fire monitoring product based on environmental satellite data. In response to an initiative by NOAA's Global Disaster Information Network (GDIN), NESDIS is in the process of enhancing this product to better serve the needs of its customers. Environmental satellitescan detect and monitor hot spots and smoke associated with wildfires. Infrared and visible band sensors on NESDIS' Geostationary Operational Environmental Satellites (GOES)and Polar Orbiting Operational Environmental Satellites (POES) can delineate hot spots and smoke, respectively, resulting from fire activity. In response to requirements of the Fire Weather Program of the National Weather Service (NWS), NESDIS currently twice per day produces a product delineating hot spots and smoke for selected limited geographic areas of the Continental United States (CONUS). GOES and POES imagery is analyzed on an image display system, and a graphical depiction of smoke and hot spot areas is drawn by the analyst. The product is disseminated as imagery via the Internet, and is utilized by Incident Meteorologists, SPC personnel, and U.S. Forest Service fire managers. In response to formally expressed requirements of the NWS, and informal requests from many other users, including federal, state, and local fire management agencies, for a more frequent, spatially accurate product covering all of CONUS and Alaska, GDIN has initiated a program to enhance NOAA's smoke and fire products. The Satellite Services Division (SSD) of NESDIS' Office of Satellite Data Processing and Distribution is developing the Hazard Mapping System (HMS) based on these requirements. It will use data from GOES, POES, and the Defense Meteorological Satellite Program's (DMSP) On Line Scanner, which can detect hot spots at night. Automated hot spot and smoke detections will be provided by the

  13. Alaska: A frontier divided

    SciTech Connect

    O'Dell, R. )

    1986-09-01

    The superlatives surrounding Alaska are legion. Within the borders of the 49th US state are some of the world's greatest concentrations of waterfowl, bald eagles, fur seals, walrus, sea lions, otters, and the famous Kodiak brown bear. Alaska features the highest peak of North America, the 20,320-foot Mount McKinley, and the longest archipelago of small islands, the Aleutians. The state holds the greatest percentage of protected wilderness per capita in the world. The expanse of some Alaskan glaciers dwarfs entire countries. Like the periodic advance and retreat of its glaciers, Alaska appears with some regularity on the national US agenda. It last achieved prominence when President Jimmy Carter signed the Alaska National Interest Lands Conservation Act in 1980. Since then the conflict between environmental protection and economic development has been played out throughout the state, and Congress is expected to turn to Alaskan issues again in its next sessions.

  14. 36 CFR 13.976 - Fire.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Fire. 13.976 Section 13.976 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK... (fda) § 13.976 Fire. Lighting or maintaining a fire is prohibited in the FDA except— (a) In...

  15. 36 CFR 13.976 - Fire.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Fire. 13.976 Section 13.976 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK... (fda) § 13.976 Fire. Lighting or maintaining a fire is prohibited in the FDA except— (a) In...

  16. 46 CFR 176.810 - Fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...; (3) Operation of the fire main system and checking of the pressure at the most remote and highest outlets; (4) Testing of each fire hose to a test pressure equivalent to its maximum service pressure; (5..., and hydrostatic pressure tests. Table 176.810(b)(2)—Semiportable and Fixed Fire Extinguishing...

  17. 46 CFR 176.810 - Fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...; (3) Operation of the fire main system and checking of the pressure at the most remote and highest outlets; (4) Testing of each fire hose to a test pressure equivalent to its maximum service pressure; (5..., and hydrostatic pressure tests. Table 176.810(b)(2)—Semiportable and Fixed Fire Extinguishing...

  18. 49 CFR 193.2611 - Fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Fire protection. 193.2611 Section 193.2611...: FEDERAL SAFETY STANDARDS Maintenance § 193.2611 Fire protection. (a) Maintenance activities on fire... and is returned to service in a reasonable period of time. (b) Access routes for movement of...

  19. 49 CFR 193.2611 - Fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Fire protection. 193.2611 Section 193.2611...: FEDERAL SAFETY STANDARDS Maintenance § 193.2611 Fire protection. (a) Maintenance activities on fire... and is returned to service in a reasonable period of time. (b) Access routes for movement of...

  20. 49 CFR 193.2611 - Fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Fire protection. 193.2611 Section 193.2611...: FEDERAL SAFETY STANDARDS Maintenance § 193.2611 Fire protection. (a) Maintenance activities on fire... and is returned to service in a reasonable period of time. (b) Access routes for movement of...

  1. 36 CFR 13.976 - Fire.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Fire. 13.976 Section 13.976 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK... (fda) § 13.976 Fire. Lighting or maintaining a fire is prohibited in the FDA except— (a) In...

  2. 36 CFR 13.976 - Fire.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Fire. 13.976 Section 13.976 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK... (fda) § 13.976 Fire. Lighting or maintaining a fire is prohibited in the FDA except— (a) In...

  3. 36 CFR 13.976 - Fire.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Fire. 13.976 Section 13.976 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK... (fda) § 13.976 Fire. Lighting or maintaining a fire is prohibited in the FDA except— (a) In...

  4. 49 CFR 193.2611 - Fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Fire protection. 193.2611 Section 193.2611...: FEDERAL SAFETY STANDARDS Maintenance § 193.2611 Fire protection. (a) Maintenance activities on fire control equipment must be scheduled so that a minimum of equipment is taken out of service at any one...

  5. 49 CFR 193.2611 - Fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Fire protection. 193.2611 Section 193.2611...: FEDERAL SAFETY STANDARDS Maintenance § 193.2611 Fire protection. (a) Maintenance activities on fire control equipment must be scheduled so that a minimum of equipment is taken out of service at any one...

  6. 50 CFR Table I to Part 36 - Summary Listing the National Wildlife Refuges in Alaska as established by the Alaska Lands Act...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Summary Listing the National Wildlife Refuges in Alaska as established by the Alaska Lands Act, Pub. L. 96-487, December 2, 1980 I Table I to Part 36 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE...

  7. Fire clay

    USGS Publications Warehouse

    Virta, R.L.

    2006-01-01

    In 2005, six companies mined fire clay in Missouri, Ohio and South Carolina. Production was estimate to be 300 kt with a value of $8.3 million. Missouri was the leading producer state followed by Ohio and South Carolina. For the third consecutive year, sales and use of fire clays have been relatively unchanged. For the next few years, sales of fire clay is forecasted to remain around 300 kt/a.

  8. Fire clay

    USGS Publications Warehouse

    Virta, R.L.

    2011-01-01

    The article discusses the latest developments in the fire clay industry, particularly in the U.S., as of June 2011. It claims that the leading fire clay producer in the U.S. is the state of Missouri. The other major producers include California, Texas and Washington. It reports that the use of heavy clay products made of fire clay like brick, cement and lightweight aggregate has increased slightly in 2010.

  9. Fire clay

    USGS Publications Warehouse

    Virta, R.L.

    2013-01-01

    Four companies mined fire clay in three states in 2012. Production, based on a preliminary survey of the fire clay industry, was estimated to be 230 kt (254,000 st) valued at $6.98 million, an increase from 215 kt (237,000 st) valued at $6.15 million in 2011. Missouri was the leading producing state, followed by Colorado and Texas, in decreasing order by quantity. The number of companies mining fire clay declined in 2012 because several common clay producers that occasionally mine fire clay indicated that they did not do so in 2012.

  10. Alaska Resource Data File, Point Lay quadrangle, Alaska

    USGS Publications Warehouse

    Grybeck, Donald J.

    2006-01-01

    This report gives descriptions of the mineral occurrences in the Point Lay 1:250,000-scale quadrangle, Alaska. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  11. Fire protection program fiscal year 1997 site support program plan - Hanford fire department

    SciTech Connect

    Good, D.E., Westinghouse Hanford

    1996-07-01

    The mission of the Hanford Fires Department (HFD) is to support the safe and timely cleanup of the Hanford Site by providing fire suppression, fire prevention, emergency rescue, emergency medical service, and hazardous materials response; and to be capable of dealing with and terminating situations which could threaten the operations, employees, or interest of the US Department of Energy operated Hanford Site. this includes response to surrounding fire department districts under mutual aids agreements and contractual fire fighting, hazardous materials, and ambulance support to Washington Public Power Supply System (Supply System) and various commercial entities operating on site. the fire department also provides site fire marshal overview authority, fire system testing, and maintenance, respiratory protection services, building tours and inspections, ignitable and reactive waste site inspections, prefire planning, and employee fire prevention and education.

  12. Extensive mapping of coastal change in Alaska by Landsat time-series analysis, 1972-2013 (Invited)

    NASA Astrophysics Data System (ADS)

    Macander, M. J.; Swingley, C. S.; Reynolds, J.

    2013-12-01

    The landscape-scale effects of coastal storms on Alaska's Bering Sea and Gulf of Alaska coasts includes coastal erosion, migration of spits and barrier islands, breaching of coastal lakes and lagoons, and inundation and salt-kill of vegetation. Large changes in coastal storm frequency and intensity are expected due to climate change and reduced sea-ice extent. Storms have a wide range of impacts on carbon fluxes and on fish and wildlife resources, infrastructure siting and operation, and emergency response planning. In areas experiencing moderate to large effects, changes can be mapped by analyzing trends in time series of Landsat imagery from Landsat 1 through Landsat 8. ABR, Inc.--Environmental Research & Services and the Western Alaska Landscape Conservation Cooperative are performing a time-series trend analysis for over 22,000 kilometers of coastline along the Bering Sea and Gulf of Alaska. The archive of Landsat imagery covers the time period 1972-present. For a pilot study area in Kotzebue Sound, we conducted a regression analysis of changes in near-infrared reflectance to identify areas with significant changes in coastal features, 1972-2011. Suitable ice- and cloud-free Landsat imagery was obtained for 28 of the 40 years during the period. The approach captured several coastal changes over the 40-year study period, including coastal erosion exceeding the 60-m pixel resolution of the Multispectral Scanner (MSS) data and migrations of coastal spits and estuarine channels. In addition several lake drainage events were identified, mostly inland from the coastal zone. Analysis of shorter, decadal time periods produced noisier results that were generally consistent with the long-term trend analysis. Unusual conditions at the start or end of the time-series can strongly influence decadal results. Based on these results the study is being scaled up to map coastal change for over 22,000 kilometers of coastline along the Bering Sea and Gulf of Alaska coast. The

  13. Angora Fire, Lake Tahoe

    NASA Technical Reports Server (NTRS)

    2007-01-01

    On the weekend of June 23, 2007, a wildfire broke out south of Lake Tahoe, which stretches across the California-Nevada border. By June 28, the Angora Fire had burned more than 200 homes and forced some 2,000 residents to evacuate, according to The Seattle Times and the Central Valley Business Times. On June 27, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this image of the burn scar left by the Angora fire. The burn scar is dark gray, or charcoal. Water bodies, including the southern tip of Lake Tahoe and Fallen Leaf Lake, are pale silvery blue, the silver color a result of sunlight reflecting off the surface of the water. Vegetation ranges in color from dark to bright green. Streets are light gray, and the customary pattern of meandering residential streets and cul-de-sacs appears throughout the image, including the area that burned. The burn scar shows where the fire obliterated some of the residential areas just east of Fallen Leaf Lake. According to news reports, the U.S. Forest Service had expressed optimism about containing the fire within a week of the outbreak, but a few days after the fire started, it jumped a defense, forcing the evacuation of hundreds more residents. Strong winds that had been forecast for June 27, however, did not materialize, allowing firefighters to regain ground in controlling the blaze. On June 27, authorities hoped that the fire would be completely contained by July 3. According to estimates provided in the daily report from the National Interagency Fire Center, the fire had burned 3,100 acres (about 12.5 square kilometers) and was about 55 percent contained as of June 28. Some mandatory evacuations remained in effect. NASA image by Jesse Allen, using data provided courtesy of the NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team.

  14. Evaluation of Integrating the Invasive Species Forecasting System to Support National Park Service Decisions on Fire Management Activities and Invasive Plant Species Control

    NASA Technical Reports Server (NTRS)

    Ma, Peter; Morisette, T.; Rodman, Ann; McClure, Craig; Pedelty, Jeff; Benson, Nate; Paintner, Kara; Most, Neal; Ullah, Asad; Cai, Weijie; Rocca, Monique; Silverman, Joel; Schunase, John L.

    2007-01-01

    The USGS and NASA, in conjunction with Colorado State University, George Mason University and other partners, have developed the Invasive Species Forecasting System (ISFS), a flexible tool that capitalizes on NASA's remote sensing resource to produce dynamic habitat maps of invasive terrestrial plant species across the United States. In 2006 ISFS was adopted to generate predictive invasive habitat maps to benefit noxious plant and fire management teams in three major National Park systems: The Greater Yellowstone Area (Yellowstone / Grand Tetons National Parks), Sequoia and Kings Canyon National Park, and interior Alaskan (between Denali, Gates of The Arctic and Yukon-Charley). One of the objectives of this study is to explore how the ISFS enhances decision support apparatus in use by National Park management teams. The first step with each park system was to work closely with park managers to select top-priority invasive species. Specific species were chosen for each study area based on management priorities, availability of observational data, and their potential for invasion after fire disturbances. Once focal species were selected, sources of presence/absence data were collected from previous surveys for each species in and around the Parks. Using logistic regression to couple presence/absence points with environmental data layers, the first round of ISFS habitat suitability maps were generated for each National Park system and presented during park visits over the summer of 2006. This first engagement provided a demonstration of what the park service can expect from ISFS and initiated the ongoing dialog on how the parks can best utilized the system to enhance their decisions related to invasive species control. During the park visits it was discovered that separate "expert opinion" maps would provide a valuable baseline to compare against the ISFS model output. Opinion maps are a means of spatially representing qualitative knowledge into a quantitative two

  15. Estimating the Impact of the 2004 Alaskan Forest Fires on Episodic Particulate Matter Pollution over the Eastern United States through Assimilation of Satellite Derived Aerosol Optical Depths in a Regional Air Quality Model

    EPA Science Inventory

    During the summer of 2004, extensive wildfires burned in Alaska and western Canada; the fires were the largest on record for Alaska. Smoke from these fires was observed over the continental United States in satellite images. Recent studies have quantified the impacts of the long-...

  16. Alaska Resource Data File: Chignik quadrangle, Alaska

    USGS Publications Warehouse

    Pilcher, Steven H.

    2000-01-01

    Descriptions of the mineral occurrences can be found in the report. See U.S. Geological Survey (1996) for a description of the information content of each field in the records. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska. There is a website from which you can obtain the data for this report in text and Filemaker Pro formats

  17. Assessing European wild fire vulnerability

    NASA Astrophysics Data System (ADS)

    Oehler, F.; Oliveira, S.; Barredo, J. I.; Camia, A.; Ayanz, J. San Miguel; Pettenella, D.; Mavsar, R.

    2012-04-01

    Wild fire vulnerability is a measure of potential socio-economic damage caused by a fire in a specific area. As such it is an important component of long-term fire risk management, helping policy-makers take informed decisions about adequate expenditures for fire prevention and suppression, and to target those regions at highest risk. This paper presents a first approach to assess wild fire vulnerability at the European level. A conservative approach was chosen that assesses the cost of restoring the previous land cover after a potential fire. Based on the CORINE Land Cover, a restoration cost was established for each land cover class at country level, and an average restoration time was assigned according to the recovery capacity of the land cover. The damage caused by fire was then assessed by discounting the cost of restoring the previous land cover over the restoration period. Three different vulnerability scenarios were considered assuming low, medium and high fire severity causing different levels of damage. Over Europe, the potential damage of wild land fires ranges from 10 - 13, 732 Euro*ha-1*yr-1 for low fire severity, 32 - 45,772 Euro*ha-1*yr-1 for medium fire severity and 54 - 77,812 Euro*ha-1*yr-1 for high fire severity. The least vulnerable are natural grasslands, moors and heathland and sclerophyllous vegetation, while the highest cost occurs for restoring broad-leaved forest. Preliminary validation comparing these estimates with official damage assessments for past fires shows reasonable results. The restoration cost approach allows for a straightforward, data extensive assessment of fire vulnerability at European level. A disadvantage is the inherent simplification of the evaluation procedure with the underestimation of non-markets goods and services. Thus, a second approach has been developed, valuing individual wild land goods and services and assessing their annual flow which is lost for a certain period of time in case of a fire event. However

  18. Comprehensive Health Care Program for American Indians & Alaska Natives.

    ERIC Educational Resources Information Center

    Indian Health Service (PHS/HSA), Rockville, MD.

    This booklet summarizes programs of the Indian Health Service (IHS). The IHS was created in 1954 as part of the Public Health Service when responsibility for American Indian and Alaska Native health care was transferred from the Department of the Interior's Bureau of Indian Affairs to the Department of Health, Education, and Welfare. The goal of…

  19. Arizona Fires

    Atmospheric Science Data Center

    2014-05-15

    ... the second largest fire in Arizona history. More than 2,000 people are working to contain the fire, which is being driven by high winds and ... bright desert background. The areas with no data (shown in black and present at the oblique angles) are locations where the variable ...

  20. Returning Fire

    ERIC Educational Resources Information Center

    Gould, Jon B.

    2007-01-01

    Last December saw another predictable report from the Foundation for Individual Rights in Education (FIRE), a self-described watchdog group, highlighting how higher education is supposedly under siege from a politically correct plague of so-called hate-speech codes. In that report, FIRE declared that as many as 96 percent of top-ranked colleges…

  1. Fire Power

    ERIC Educational Resources Information Center

    Denker, Deb; West, Lee

    2009-01-01

    For education administrators, campus fires are not only a distressing loss, but also a stark reminder that a campus faces risks that require special vigilance. In many ways, campuses resemble small communities, with areas for living, working and relaxing. A residence hall fire may raise the specter of careless youth, often with the complication of…

  2. Siberian Fires

    Atmospheric Science Data Center

    2013-04-16

    ... of fires across Siberia and the Russian Far East, northeast China and northern Mongolia. Fires in Eastern Siberia have been increasing in ... spatial contrast. The heights correspond to elevations above sea level. Taking into account the surface elevation, the smoke plumes range ...

  3. Investigation on the impacts of low-sulfur fuel used in residential heating and oil-fired power plants on PM2.5-concentrations and its composition in Fairbanks, Alaska

    NASA Astrophysics Data System (ADS)

    Leelasakultum, Ketsiri

    The effects of using low-sulfur fuel for oil-heating and oil-burning facilities on the PM2.5-concentrations at breathing level in an Alaska city surrounded by vast forested areas were examined with the Weather Research and Forecasting model coupled with chemistry packages that were modified for the subarctic. Simulations were performed in forecast mode for a cold season using the National Emission Inventory 2008 and alternatively emissions that represent the use of low-sulfur fuel for oil-heating and oil-burning facilities while keeping the emissions of other sources the same as in the reference simulation. The simulations suggest that introducing low-sulfur fuel would decrease the monthly mean 24h-averaged PM2.5-concentrations over the city's PM2.5-nonattainment area by 4%, 9%, 8%, 6%, 5% and 7% in October, November, December, January, February and March, respectively. The quarterly mean relative response factors for PM2.5-concentrations of 0.96 indicate that with a design value of 44.7microg/m3. introducing low-sulfur fuel would lead to a new design value of 42.9microg/m 3 that still exceeds the US National Ambient Air Quality Standard of 35microg/m3. The magnitude of the relation between the relative response of sulfate and nitrate changes differs with temperature. The simulations suggest that in the city, PM2.5-concentrations would decrease more on days with low atmospheric boundary layer heights, low hydrometeor mixing ratio, low downward shortwave radiation and low temperatures. Furthermore, a literature review of other emission control measure studies is given, and recommendations for future studies are made based on the findings.

  4. Climate Change Implications to Vegetation Production in Alaska

    NASA Astrophysics Data System (ADS)

    Neigh, C. S.

    2008-12-01

    Investigation of long-term NOAA series of Advanced Very High Resolution Radiometer normalized difference vegetation index (NDVI) data from 1982 through 2005 revealed statistically significant vegetation response to climate drivers of temperature, precipitation and solar radiation with exclusion of fire disturbance. Abiotic trends were calculated and correlated to satellite remote sensing observations of vegetation productivity to understand biophysical processes that could impact ecosystem carbon storage. Warming throughout Alaska resulted in disparate trajectories for vegetation growth due to precipitation and photosynthetically active radiation variation. Interior spruce forest low lands in late summer had precipitation deficit which resulted in extensive fire disturbance and browning of undisturbed vegetation with reduced post-fire recovery in burned sites; while Northern slope alpine and moist tundra had increased production due to warmer-wetter conditions during the late 1990s and early 2000s. Coupled investigation of vegetation's response to warming climate in Alaska found spatially dynamic processes with and without fire disturbance observed from coarse resolution satellite instruments. Future effort will simulate carbon cycle process with fire disturbance to understand spatially variant source-sink distribution of Alaskan ecosystems.

  5. Boreal wildfire emissions from Alaska, USA and Zabaikalsky krai, Russia 2002-2012

    NASA Astrophysics Data System (ADS)

    Barrett, Kirsten

    2015-04-01

    Boreal forests are the largest terrestrial biome, and account for 27% of global forest cover and a major sink of atmospheric carbon. Increasing wildfire activity in some boreal regions threatens accumulated carbon stocks through combustion, decomposition, and reduced potential for future uptake. There is substantial spatial variability in boreal wildfire characteristics, particularly at the continental scale, which results from differences in climate and vegetation composition between boreal forests in Eurasia and North America. Quantifying boreal wildfire characteristics such as frequency and intensity at a global scale is possible using active fire detection datasets such as those available from AVHRR and MODIS. This study uses the MODIS MCD14ML to compare wildfire emissions (calculated from Fire Radiative Energy) from Interior Alaska, USA and Zabaikalsky krai, Russia between 2002 and 2012. Both regions have experienced increasing fire frequency and severity over the last several decades, likely in response to changing temperature and precipitation regimes. The two regions are similar in size and cumulative emissions, but boreal wildfires in Alaska are generally more intense and produce more emissions per unit area. Wildfire emissions in the Alaskan Interior are also higher due to a longer "residence time" of fires, which may smoulder in the duff layer for several weeks after a front has passed. This "residual burning" accounted for an average of 64% of active fire detections in Interior Alaska, and 47% of those from Zabaikalye, although interannual variability was substantial. The fraction of residual burning was higher in both regions during larger fire years, when presumably more biomass is available to sustain combustion. The relationship between burned area and fraction of residual burning was stronger in Alaska, possibly due to a greater tendency for ground fires to smoulder in thick duff layers found in black spruce-sphagnum dominated areas. Although

  6. 46 CFR 28.315 - Fire pumps, fire mains, fire hydrants, and fire hoses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Fire pumps, fire mains, fire hydrants, and fire hoses... After September 15, 1991, and That Operate With More Than 16 Individuals on Board § 28.315 Fire pumps, fire mains, fire hydrants, and fire hoses. (a) Each vessel 36 feet (11.8 meters) or more in length...

  7. 46 CFR 28.820 - Fire pumps, fire mains, fire hydrants, and fire hoses.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Fire pumps, fire mains, fire hydrants, and fire hoses... REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.820 Fire pumps, fire mains, fire hydrants, and fire hoses. (a) Each vessel must be equipped with a self-priming, power driven...

  8. 46 CFR 28.820 - Fire pumps, fire mains, fire hydrants, and fire hoses.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Fire pumps, fire mains, fire hydrants, and fire hoses... REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.820 Fire pumps, fire mains, fire hydrants, and fire hoses. (a) Each vessel must be equipped with a self-priming, power driven...

  9. Impact of fire disturbance on soil thermal and carbon dynamics in Alaskan Tundra and Boreal forest ecosystems

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Rastetter, E.; Shaver, G. R.; Rocha, A. V.

    2012-12-01

    In Alaska, fire disturbance is a major component influencing the soil water and energy balance in both tundra and boreal forest ecosystems. Fire-caused changes in soil environment further affect both above- and below-ground carbon cycles depending on different fire severities. Understanding the effects of fire disturbance on soil thermal change requires implicit modeling work on the post-fire soil thawing and freezing processes. In this study, we model the soil temperature profiles in multiple burned and non-burned sites using a well-developed soil thermal model which fully couples soil water and heat transport. The subsequent change in carbon dynamics is analyzed based on site level observations and simulations from the Multiple Element Limitation (MEL) model. With comparison between burned and non-burned sites, we compare and contrast fire effects on soil thermal and carbon dynamics in continuous permafrost (Anaktuvik fire in north slope), discontinuous permafrost (Erickson Creek fire at Hess Creek) and non-permafrost zone (Delta Junction fire in interior Alaska). Then we check the post-fire recovery of soil temperature profiles at sites with different fire severities in both tundra and boreal forest fire areas. We further project the future changes in soil thermal and carbon dynamics using projected climate data from Scenarios Network for Alaska & Arctic Planning (SNAP). This study provides information to improve the understanding of fire disturbance on soil thermal and carbon dynamics and the consequent response under a warming climate.

  10. Flood frequency in Alaska

    USGS Publications Warehouse

    Childers, J.M.

    1970-01-01

    Records of peak discharge at 183 sites were used to study flood frequency in Alaska. The vast size of Alaska, its great ranges of physiography, and the lack of data for much of the State precluded a comprehensive analysis of all flood determinants. Peak stream discharges, where gaging-station records were available, were analyzed for 2-year, 5-year, 10-year, 25-year, and 50-year average-recurrence intervals. A regional analysis of the flood characteristics by multiple-regression methods gave a set of equations that can be used to estimate floods of selected recurrence intervals up to 50 years for any site on any stream in Alaska. The equations relate floods to drainage-basin characteristics. The study indicates that in Alaska the 50-year flood can be estimated from 10-year gaging- station records with a standard error of 22 percent whereas the 50-year flood can be estimated from the regression equation with a standard error of 53 percent. Also, maximum known floods at more than 500 gaging stations and miscellaneous sites in Alaska were related to drainage-area size. An envelope curve of 500 cubic feet per second per square mile covered all but 2 floods in the State.

  11. 46 CFR 108.403 - Fire extinguishing systems: General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Fire extinguishing systems: General. 108.403 Section 108... DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.403 Fire extinguishing systems: General. (a) Each... motors or generators used for vital services including bilge pumps, fire pumps, or propulsion. (b)...

  12. 46 CFR 108.403 - Fire extinguishing systems: General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Fire extinguishing systems: General. 108.403 Section 108... DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.403 Fire extinguishing systems: General. (a) Each... motors or generators used for vital services including bilge pumps, fire pumps, or propulsion. (b)...

  13. Spacecraft Fire Safety

    NASA Technical Reports Server (NTRS)

    Margle, Janice M. (Editor)

    1987-01-01

    Fire detection, fire standards and testing, fire extinguishment, inerting and atmospheres, fire-related medical science, aircraft fire safety, Space Station safety concerns, microgravity combustion, spacecraft material flammability testing, and metal combustion are among the topics considered.

  14. 77 FR 58492 - Prohibitions Governing Fire

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-21

    ... public property exemption from public notice and comment rulemaking under the APA (July 24, 1971; 36 FR... Forest Service 36 CFR Part 261 RIN 0596-AD08 Prohibitions Governing Fire AGENCY: Forest Service, USDA... Fire. * * * * * (j) Operating or using any internal or external combustion engine without a...

  15. 76 FR 61985 - Fishing Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    ..., NMFS published proposed regulations in the Federal Register (76 FR 29707) to implement the program... Program for the Southeast Alaska Purse Seine Salmon Fishery AGENCY: National Marine Fisheries Service... industry fee system to repay a $23,476,500 loan for the Southeast Alaska Purse Seine Salmon...

  16. 77 FR 39464 - American Indian and Alaska Native Consultation and Coordination Policy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-03

    ... American Indian and Alaska Native Consultation and Coordination Policy AGENCY: Department of Commerce... messenger service: Submit comments to Dee Alexander, Senior Advisor on Native American Affairs Office of..., ``American Indian and Alaska Native Policy of the Department of Commerce,'' promulgated on March 30,...

  17. Alaska State Professional Teaching Practices Commission (PTPC). Annual Report. Fiscal Year 1997.

    ERIC Educational Resources Information Center

    Green, Sanna

    This annual report of the Alaska State Professional Teaching Practices Commission (PTPC) cites activities and services of the PTPC as authorized by Alaska Statutes, Title 14, Chapter 20, Article 5, entitled "The Professional Teaching Practices Act." In general, the Commission handles matters of ethical and professional standards of educators and…

  18. Can a Week Make a Difference? Changing Perceptions about Teaching and Living in Rural Alaska

    ERIC Educational Resources Information Center

    Munsch, T. R.; Boylan, Colin R.

    2008-01-01

    Many Alaskan schools are located in extremely remote or "fly-in" places. These geographical extremes affect the recruitment and retention of teachers to remote rural schools. Through a partnership between the Southwest Region School District of Alaska and the Department of Education at Alaska Pacific University (APU), 14 pre-service teachers…

  19. The Burning of Surface and Deep Peat during Boreal Forest and Peatland Fires: Implications for Fire Behaviour and Global Carbon Cycling

    NASA Astrophysics Data System (ADS)

    Turetsky, M. R.

    2015-12-01

    Fire is increasingly appreciated as a threat to peatlands and their carbon stocks. The global peatland carbon pool exceeds that of global vegetation and is similar to the current atmospheric carbon pool. Under pristine conditions, most of the peat carbon stock is protected from burning, and resistance to fire has increased peat carbon storage in high latitude regions over long time scales. This, in part, is due to the high porosity and storage coefficient of surface peat, which minimizes water table variability and maintains wet conditions even during drought. However, higher levels of disturbance associated with warming and increasing human activities are triggering state changes and the loss of resiliency in some peatland systems. This presentation will summarize information on burn area and severity in peatlands under undisturbed scenarios of hydrologic self-regulation, and will assess the consequences of warming and drying on peatland vegetation and wildfire behaviour. Our goal is to predict where and when peatlands will become more vulnerable to deep smouldering, given the importance of deep peat layers to global carbon cycling, permafrost stability, and a variety of other ecosystem services in northern regions. Results from two major wildfire seasons (2004 in Alaska and 2014 in the Northwest Territories) show that biomass burning in peatlands releases similar amounts of carbon to the atmosphere as patterns of burning in upland forests, but that peatlands are less vulnerable to severe burning that tends to occur in boreal forests during late season fire activity.

  20. 75 FR 40845 - Preventing Deaths and Injuries of Fire Fighters Using Risk Management Principles at Structure Fires

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-14

    ... HUMAN SERVICES Centers for Disease Control and Prevention Preventing Deaths and Injuries of Fire Fighters Using Risk Management Principles at Structure Fires AGENCY: National Institute for Occupational... Fire Fighters Using Risk Management Principles at Structure Fires.'' The final document can be found...

  1. Accretion of southern Alaska

    USGS Publications Warehouse

    Hillhouse, J.W.

    1987-01-01

    Paleomagnetic data from southern Alaska indicate that the Wrangellia and Peninsular terranes collided with central Alaska probably by 65 Ma ago and certainly no later than 55 Ma ago. The accretion of these terranes to the mainland was followed by the arrival of the Ghost Rocks volcanic assemblage at the southern margin of Kodiak Island. Poleward movement of these terranes can be explained by rapid motion of the Kula oceanic plate, mainly from 85 to 43 Ma ago, according to recent reconstructions derived from the hot-spot reference frame. After accretion, much of southwestern Alaska underwent a counterclockwise rotation of about 50 ?? as indicated by paleomagnetic poles from volcanic rocks of Late Cretaceous and Early Tertiary age. Compression between North America and Asia during opening of the North Atlantic (68-44 Ma ago) may account for the rotation. ?? 1987.

  2. Coal-fired diesel generator

    SciTech Connect

    1997-05-01

    The objective of the proposed project is to test the technical, environmental, and economic viability of a coal-fired diesel generator for producing electric power in small power generating markets. Coal for the diesel generator would be provided from existing supplies transported for use in the University`s power plant. A cleanup system would be installed for limiting gaseous and particulate emissions. Electricity and steam produced by the diesel generator would be used to supply the needs of the University. The proposed diesel generator and supporting facilities would occupy approximately 2 acres of land adjacent to existing coal- and oil-fired power plant and research laboratory buildings at the University of Alaska, Fairbanks. The environmental analysis identified that the most notable changes to result from the proposed project would occur in the following areas: power plant configuration at the University of Alaska, Fairbanks; air emissions, water use and discharge, and the quantity of solid waste for disposal; noise levels at the power plant site; and transportation of coal to the power plant. No substantive adverse impacts or environmental concerns were identified in analyzing the effects of these changes.

  3. Mexico Fires

    Atmospheric Science Data Center

    2013-04-18

    article title:  Smoke from Fires in Southern Mexico     View Larger Image ... southern Mexico sent smoke drifting northward over the Gulf of Mexico. These views from the Multi-angle Imaging SpectroRadiometer (MISR) ...

  4. California Fires

    Atmospheric Science Data Center

    2014-05-15

    ... title:  Smoke from Station Fire Blankets Southern California     View Larger Image ... that had not burned in decades, and years of extended drought contributed to the explosive growth of wildfires throughout southern ...

  5. Fire clay

    USGS Publications Warehouse

    Virta, R.L.

    2012-01-01

    Five companies mined fire clay in four states in 2011. Production, based on a preliminary survey of the fire clay industry, was estimated to be 240 kt (265,000 st), valued at $7.68 million, an increase from 216 kt (238,000 st), valued at $6.12 million in 2010. Missouri was the leading producing state, followed by Texas, Washington and Ohio, in decreasing order by quantity.

  6. 2012 Alaska Performance Scholarship Outcomes Report

    ERIC Educational Resources Information Center

    Rae, Brian

    2012-01-01

    As set forth in Alaska Statute 14.43.840, Alaska's Departments of Education & Early Development (EED) and Labor and Workforce Development (DOLWD), the University of Alaska (UA), and the Alaska Commission on Postsecondary Education (ACPE) present this first annual report on the Alaska Performance Scholarship to the public, the Governor,…

  7. Fire Protection Program fiscal year 1996, site support program plan Hanford Fire Department. Revision 2

    SciTech Connect

    Good, D.E.

    1995-09-01

    The mission of the Hanford Fire Department (HFD) is to support the safe and timely cleanup of the Hanford site by providing fire suppression, fire prevention, emergency rescue, emergency medical service, and hazardous materials response; and to be capable of dealing with and terminating emergency situations which could threaten the operations, employees, or interest of the US Department of Energy operated Hanford Site. This includes response to surrounding fire departments/districts under a mutual aid agreement and contractual fire fighting, hazardous materials, and ambulance support to Washington Public Power Supply System (Supply System). The fire department also provides site fire marshal overview authority, fire system testing and maintenance, self-contained breathing apparatus maintenance, building tours and inspections, ignitable and reactive waste site inspections, prefire planning, and employee fire prevention education. This report gives a program overview, technical program baselines, and cost and schedule baseline.

  8. Alaska Mathematics Standards

    ERIC Educational Resources Information Center

    Alaska Department of Education & Early Development, 2012

    2012-01-01

    High academic standards are an important first step in ensuring that all Alaska's students have the tools they need for success. These standards reflect the collaborative work of Alaskan educators and national experts from the nonprofit National Center for the Improvement of Educational Assessment. Further, they are informed by public…

  9. ECOREGIONS OF ALASKA

    EPA Science Inventory

    A map of ecoregions of Alaska has been produced as a framework for organizing and interpreting environmental data for state, national, and international inventory, monitoring, and research efforts. he map and descriptions for 20 ecological regions were derived by synthesizing inf...

  10. Current Ethnomusicology in Alaska.

    ERIC Educational Resources Information Center

    Johnston, Thomas F.

    The systematic study of Eskimo, Indian, and Aleut musical sound and behavior in Alaska, though conceded to be an important part of white efforts to foster understanding between different cultural groups and to maintain the native cultural heritage, has received little attention from Alaskan educators. Most existing ethnomusical studies lack one or…

  11. Seismology Outreach in Alaska

    NASA Astrophysics Data System (ADS)

    Gardine, L.; Tape, C.; West, M. E.

    2014-12-01

    Despite residing in a state with 75% of North American earthquakes and three of the top 15 ever recorded, most Alaskans have limited knowledge about the science of earthquakes. To many, earthquakes are just part of everyday life, and to others, they are barely noticed until a large event happens, and often ignored even then. Alaskans are rugged, resilient people with both strong independence and tight community bonds. Rural villages in Alaska, most of which are inaccessible by road, are underrepresented in outreach efforts. Their remote locations and difficulty of access make outreach fiscally challenging. Teacher retention and small student bodies limit exposure to science and hinder student success in college. The arrival of EarthScope's Transportable Array, the 50th anniversary of the Great Alaska Earthquake, targeted projects with large outreach components, and increased community interest in earthquake knowledge have provided opportunities to spread information across Alaska. We have found that performing hands-on demonstrations, identifying seismological relevance toward career opportunities in Alaska (such as natural resource exploration), and engaging residents through place-based experience have increased the public's interest and awareness of our active home.

  12. Alaska's Cold Desert.

    ERIC Educational Resources Information Center

    Brune, Jeff; And Others

    1996-01-01

    Explores the unique features of Alaska's Arctic ecosystem, with a focus on the special adaptations of plants and animals that enable them to survive in a stressful climate. Reviews the challenges facing public and private land managers who seek to conserve this ecosystem while accommodating growing demands for development. Includes classroom…

  13. Alaska Glaciers and Rivers

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite captured this image on October 7, 2007, showing the Alaska Mountains of south-central Alaska already coated with snow. Purple shadows hang in the lee of the peaks, giving the snow-clad land a crumpled appearance. White gives way to brown on the right side of the image where the mountains yield to the lower-elevation Susitna River Valley. The river itself cuts a silver, winding path through deep green forests and brown wetlands and tundra. Extending from the river valley, are smaller rivers that originated in the Alaska Mountains. The source of these rivers is evident in the image. Smooth white tongues of ice extend into the river valleys, the remnants of the glaciers that carved the valleys into the land. Most of the water flowing into the Gulf of Alaska from the Susitna River comes from these mountain glaciers. Glacier melt also feeds glacier lakes, only one of which is large enough to be visible in this image. Immediately left of the Kahiltna River, the aquamarine waters of Chelatna Lake stand out starkly against the brown and white landscape.

  14. Suicide in Northwest Alaska.

    ERIC Educational Resources Information Center

    Travis, Robert

    1983-01-01

    Between 1975 and 1979 the Alaskan Native suicide rate (90.9 per 100,000) in Northwest Alaska was more than seven times the national average. Alienation, loss of family, low income, alcohol abuse, high unemployment, and more education were factors related to suicidal behavior. Average age for suicidal behavior was 22.5. (Author/MH)

  15. Root-Associated Ectomycorrhizal Fungi Shared by Various Boreal Forest Seedlings Naturally Regenerating after a Fire in Interior Alaska and Correlation of Different Fungi with Host Growth Responses ▿

    PubMed Central

    Bent, Elizabeth; Kiekel, Preston; Brenton, Rebecca; Taylor, D. Lee

    2011-01-01

    after fire and a shift in regenerating vegetation. PMID:21441343

  16. Biologists add fuel to Yellowstone fire

    SciTech Connect

    Stevens, W.K.

    1990-06-01

    Two scientists associated with the National Park Service have completed a 10 year study of forest fires in Yellowstone National Park. They traced back 200 years by studying trees and the park records of rainfall and fires. They state that the park policy of not fighting fires started by lightning has no effect on the forest ecology. Critics of the policy cite the massive destruction of the forest in the 1988 summer fires in Yellowstone as evidence that the policy is misguided. The researchers state that their findings show that their reconstruction of the forest ecology show fighting the fires has no effect on the overall succession.

  17. 46 CFR 28.820 - Fire pumps, fire mains, fire hydrants, and fire hoses.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... water from a hose connected to the highest outlet. The minimum capacity of the power fire pump shall be... 46 Shipping 1 2012-10-01 2012-10-01 false Fire pumps, fire mains, fire hydrants, and fire hoses... REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.820 Fire pumps, fire...

  18. 46 CFR 28.820 - Fire pumps, fire mains, fire hydrants, and fire hoses.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... water from a hose connected to the highest outlet. The minimum capacity of the power fire pump shall be... 46 Shipping 1 2011-10-01 2011-10-01 false Fire pumps, fire mains, fire hydrants, and fire hoses... REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.820 Fire pumps, fire...

  19. 46 CFR 28.820 - Fire pumps, fire mains, fire hydrants, and fire hoses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .../capacity, and is properly equipped to handle both fire fighting and flood control. (b) Each vessel must... 46 Shipping 1 2010-10-01 2010-10-01 false Fire pumps, fire mains, fire hydrants, and fire hoses... REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.820 Fire pumps, fire...

  20. A bill to provide for the treatment of service as a member of the Alaska Territorial Guard during World War II as active service for purposes of retired pay for members of the Armed Forces.

    THOMAS, 111th Congress

    Sen. Murkowski, Lisa [R-AK

    2009-01-28

    01/28/2009 Read twice and referred to the Committee on Armed Services. (text of measure as introduced: CR S997) (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  1. 43 CFR 9212.2 - Fire prevention orders.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR TECHNICAL SERVICES (9000) FIRE MANAGEMENT Wildfire Prevention § 9212.2 Fire prevention orders. (a) To prevent wildfire or facilitate its suppression, an authorized...

  2. 43 CFR 9212.2 - Fire prevention orders.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR TECHNICAL SERVICES (9000) FIRE MANAGEMENT Wildfire Prevention § 9212.2 Fire prevention orders. (a) To prevent wildfire or facilitate its suppression, an authorized...

  3. LANDFIRE: Collaboration for National Fire Fuel Assessment

    USGS Publications Warehouse

    Zhu, Zhi-Liang

    2006-01-01

    The implementation of national fire management policies, such as the National Fire Plan and the Healthy Forest Restoration Act, requires geospatial data of vegetation types and structure, wildland fuels, fire risks, and ecosystem fire regime conditions. Presently, no such data sets are available that can meet these requirements. As a result, the U.S. Department of Agriculture (USDA) Forest Service and the Department of the Interior's land management bureaus (Bureau of Indian Affairs (BIA), Bureau of Land Management (BLM), Fish and Wildlife Service (FWS), and National Park Service (NPS)) have jointly sponsored LANDFIRE, a new research and development project. The primary objective of the project is to develop an integrated and repeatable methodology and produce vegetation, fire, and ecosystem information and predictive models for cost-effective national land management applications. The project is conducted collaboratively by the U.S. Geological Survey (USGS), the USDA Forest Service, and The Nature Conservancy.

  4. Catastrophic Fires in Russian Forests

    NASA Astrophysics Data System (ADS)

    Sukhinin, A. I.; McRae, D. J.; Stocks, B. J.; Conard, S. G.; Hao, W.; Soja, A. J.; Cahoon, D.

    2010-12-01

    We evaluated the contribution of catastrophic fires to the total burned area and the amount of tree mortality in Russia since the 1970’s. Such fires occurred in the central regions of European Russia (1972, 1976, 1989, 2002, 2010), Khabarovsk krai (1976, 1988, 1998), Amur region (1997-2002), Republics of Yakutia and Tuva (2002), Magadan and Kamchatka oblast (1984, 2001, 2010), and Irkutsk, Chita, Amur regions, Buryat, Agin national districts (2003, 2007-08). We define a catastrophic fire as a single high-severity fire that covers more than 10,000 ha and results in total consumption of the litter and humus layers and in high tree mortality, or the simultaneous occurrence of several high-severity fires in a given region with a total area exceeding 10,000 km2. Fires on this scale can cause substantial economic, social and environmental effects, with regional to global impacts. We hypothesize that there is a positive feedback between anticyclone growth and energy release from wildfires burning over large areas. Usually the first blocking anticyclone appears in June in Russia, bringing with it dry weather that increases fire hazard. The anticyclonic pattern has maximum activity in the end of July and disappears around the middle of August. When high fire activity occurs, the anticyclone may strengthen and develop a blocking character that prevents cyclonic patterns from moving into anticyclone-dominated areas, where the fire danger index may be more than six times the average maximum. The likelihood of uncontrolled fire situations developing increases greatly when the fire number and burned area exceed critical values as a function of conditions that favor high intensity fires. In such situations fire suppression by regional forest protection services becomes impossible and federal resources are required. If the appearance of a blocking anticyclone is forecast, active fire prevention and suppression of small fires (most of which appear to be human caused) is critical

  5. Asthma and American Indians/Alaska Natives

    MedlinePlus

    ... Minority Population Profiles > American Indian/Alaska Native > Asthma Asthma and American Indians/Alaska Natives In 2014, 218, ... Native American adults reported that they currently have asthma. American Indian/Alaska Native children are 30% more ...

  6. Griddlestones from Adak Island, Alaska: Their provenance and the biological origins of organic residues from cooking

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Burned stone slabs, historically called griddlestones, were recovered from Components 1 (2390-2590 RCYPB) and 2 (170-415 RCYBP) at archaeological site ADK-011 on Adak Island, Aleutian Islands, Alaska. The griddlestones show evidence of fire exposure and have a dark, often greasy, matrix of decompose...

  7. 76 FR 39857 - Alaska Coastal Management Program Withdrawal From the National Coastal Management Program Under...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... National Oceanic Atmospheric Administration Alaska Coastal Management Program Withdrawal From the National Coastal Management Program Under the Coastal Zone Management Act (CZMA) AGENCY: Office of Ocean and Coastal Resource Management (OCRM), National Ocean Service (NOS), National Oceanic...

  8. Contingent valuation study of the value of reducing fire hazards to old-growth forests in the Pacific northwest. Forest Service research paper

    SciTech Connect

    Loomis, J.B.; Gonzalez-Caban, A.; Gregory, R.

    1996-07-01

    A contingent valuation methodology was applied to old-growth forests and critical habitat units for the Northern Spotted Owl in Oregon to esimate the economic value to the public in knowing that rare and unique ecosystems will be protected from fire for current and future generations. Generalizing to the whole state, the total annual willingness-to-pay of Oregon residents ranges from $49.6 to $99 million. In terms of old-growth forests protected from fire, the value is $28 per acre.

  9. Climate science informs participatory scenario development and applications to decision making in Alaska

    NASA Astrophysics Data System (ADS)

    Welling, L. A.; Winfree, R.; Mow, J.

    2012-12-01

    Climate change presents unprecedented challenges for managing natural and cultural resources into the future. Impacts are expected to be highly consequential but specific effects are difficult to predict, requiring a flexible process for adaptation planning that is tightly coupled to climate science delivery systems. Scenario planning offers a tool for making science-based decisions under uncertainty. The National Park Service (NPS) is working with the Department of the Interior Climate Science Centers (CSCs), the NOAA Regional Integrated Science and Assessment teams (RISAs), and other academic, government, non-profit, and private partners to develop and apply scenarios to long-range planning and decision frameworks. In April 2012, Alaska became the first region of the NPS to complete climate change scenario planning for every national park, preserve, and monument. These areas, which collectively make up two-thirds of the total area of the NPS, are experiencing visible and measurable effects attributable to climate change. For example, thawing sea ice, glaciers and permafrost have resulted in coastal erosion, loss of irreplaceable cultural sites, slope failures, flooding of visitor access routes, and infrastructure damage. With higher temperatures and changed weather patterns, woody vegetation has expanded into northern tundra, spruce and cedar diebacks have occurred in southern Alaska, and wildland fire severity has increased. Working with partners at the Alaska Climate Science Center and the Scenario Network for Alaska Planning the NPS integrates quantitative, model-driven data with qualitative, participatory techniques to scenario creation. The approach enables managers to access and understand current climate change science in a form that is relevant for their decision making. Collaborative workshops conducted over the past two years grouped parks from Alaska's southwest, northwest, southeast, interior and central areas. The emphasis was to identify and connect

  10. Forecasting distribution of numbers of large fires

    USGS Publications Warehouse

    Eidenshink, Jeffery C.; Preisler, Haiganoush K.; Howard, Stephen; Burgan, Robert E.

    2014-01-01

    Systems to estimate forest fire potential commonly utilize one or more indexes that relate to expected fire behavior; however they indicate neither the chance that a large fire will occur, nor the expected number of large fires. That is, they do not quantify the probabilistic nature of fire danger. In this work we use large fire occurrence information from the Monitoring Trends in Burn Severity project, and satellite and surface observations of fuel conditions in the form of the Fire Potential Index, to estimate two aspects of fire danger: 1) the probability that a 1 acre ignition will result in a 100+ acre fire, and 2) the probabilities of having at least 1, 2, 3, or 4 large fires within a Predictive Services Area in the forthcoming week. These statistical processes are the main thrust of the paper and are used to produce two daily national forecasts that are available from the U.S. Geological Survey, Earth Resources Observation and Science Center and via the Wildland Fire Assessment System. A validation study of our forecasts for the 2013 fire season demonstrated good agreement between observed and forecasted values.

  11. Significant Alaska minerals

    SciTech Connect

    Robinson, M.S.; Bundtzen, T.K.

    1982-01-01

    Alaska ranks in the top four states in gold production. About 30.5 million troy oz have been produced from lode and placer deposits. Until 1930, Alaska was among the top 10 states in copper production; in 1981, Kennecott Copper Company had prospects of metal worth at least $7 billion. More than 85% of the 20 million oz of silver derived have been byproducts of copper mining. Nearly all lead production has been as a byproduct of gold milling. Molybdenum is a future Alaskan product; in 1987 production is scheduled to be about 12% of world demand. Uranium deposits discovered in the Southeast are small but of high grade and easily accessible; farther exploration depends on improvement of a depressed market. Little has been done with Alaskan iron and zinc, although large deposits of the latter were discovered. Alaskan jade has a market among craftspeople. A map of the mining districts is included. 2 figures, 1 table.

  12. Coal resources of Alaska

    SciTech Connect

    Sanders, R.B.

    1982-01-01

    In the late 1800s, whaling ships carried Alaskan coal, and it was used to thaw ground for placer gold mining. Unfortunate and costly political maneuvers in the early 1900s delayed coal removal, but the Alaska Railroad and then World War II provided incentives for opening mines. Today, 33 million acres (about 9% of the state) is classified as prospectively valuable for coal, much of it under federal title. Although the state's geology is poorly known, potential for discovery of new fields exists. The US Geological Survey estimates are outdated, although still officially used. The total Alaska onshore coal resource is estimated to be 216 to 4216 billion tons of which 141 billion tons are identified resources; an additional 1430 billion tons are believed to lie beneath Cook Inlet. Transportation over mountain ranges and wetlands is the biggest hurdle for removal. Known coal sources and types are described and mapped. 1 figure.

  13. The Incidence of Infant Physical Abuse in Alaska

    ERIC Educational Resources Information Center

    Gessner, Bradford D.; Moore, Martha; Hamilton, Bernita; Muth, Pam T.

    2004-01-01

    Objectives: To determine the incidence of and risk factors associated with infant (less than 1 year of age) physical abuse in Alaska. Methods: A population-based retrospective cohort study for the 1994-2000 resident birth cohort was conducted by linking data from birth certificates, Child Protective Services, a statewide hospital-based trauma…

  14. 50 CFR 20.132 - Subsistence use in Alaska.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Subsistence use in Alaska. 20.132 Section 20.132 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR... WILDLIFE AND PLANTS (CONTINUED) MIGRATORY BIRD HUNTING Administrative and Miscellaneous Provisions §...

  15. 50 CFR 20.132 - Subsistence use in Alaska.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Subsistence use in Alaska. 20.132 Section 20.132 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR... WILDLIFE AND PLANTS (CONTINUED) MIGRATORY BIRD HUNTING Administrative and Miscellaneous Provisions §...

  16. 77 FR 4579 - Alaska Region's Subsistence Resource Commission (SRC) Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-30

    ... National Park Service Alaska Region's Subsistence Resource Commission (SRC) Program AGENCY: National Park... Subsistence Resource Commission (SRC) program. SUMMARY: The Denali National Park SRC will meet to develop and continue work on NPS subsistence program recommendations and other related subsistence management...

  17. 77 FR 4578 - Alaska Region's Subsistence Resource Commission (SRC) Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-30

    ... National Park Service Alaska Region's Subsistence Resource Commission (SRC) Program AGENCY: National Park... Subsistence Resource Commission (SRC) program. ] SUMMARY: The Wrangell-St. Elias National Park SRC will meet to develop and continue work on NPS subsistence program recommendations and other related...

  18. Long Range Program, Library Development in Alaska 1973-1978.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education, Juneau. Div. of State Libraries.

    A statewide library development program designed to provide total library services to meet educational, informational, and cultural needs of the people of Alaska is outlined in this document. The body of the report is divided into three sections. In the first, the purpose, scope, and development of the plan are summarized. The second section…

  19. FIRE BLIGHT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fire blight, caused by the bacterium Erwinia amylovora, is a destructive disease of apple, pears and woody ornamentals of the rose family. The disease is indigenous to North America and has been studied for more than one century. E. amylovora can infect blossoms, stems, immature fruits, woody branch...

  20. Dalhousie Fire

    ERIC Educational Resources Information Center

    Matthews, Fred W.

    1986-01-01

    Describes steps taken by the Weldon Law Library at Dalhousie University in salvaging books damaged in a major fire, including procedures and processes used in packing, sorting, drying, and cleaning the books. The need for a disaster plan for specific libraries is emphasized, and some suggestions are made. (CDD)

  1. Colorado Fires

    Atmospheric Science Data Center

    2014-05-15

    ... (MISR). The images were captured on June 9, 2002, on the second day of the Hayman fire, when only about 13 percent of the total 137,000 ... x 565 kilometers. They use data from blocks 58 to 61 within World Reference System-2 path 32. MISR was built and is managed by NASA's ...

  2. Appalachian Fires

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image of smoke from forest fires in Virginia, Kentucky, and West Virginia was taken by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) on November 15, 2001. Smoke is visible extending over the Chesapeake Bay. Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  3. Aniakchak Crater, Alaska Peninsula

    USGS Publications Warehouse

    Smith, Walter R.

    1925-01-01

    The discovery of a gigantic crater northwest of Aniakchak Bay (see fig. 11) closes what had been thought to be a wide gap in the extensive series of volcanoes occurring at irregular intervals for nearly 600 miles along the axial line of the Alaska Peninsula and the Aleutian Islands. In this belt there are more active and recently active volcanoes than in all the rest of North America. Exclusive of those on the west side of Cook Inlet, which, however, belong to the same group, this belt contains at least 42 active or well-preserved volcanoes and about half as many mountains suspected or reported to be volcanoes. The locations of some of these mountains and the hot springs on the Alaska Peninsula and the Aleutian Islands are shown on a map prepared by G. A. Waring. Attention has been called to these volcanoes for nearly two centuries, but a record of their activity since the discovery of Alaska is far from being complete, and an adequate description of them as a group has never been written. Owing to their recent activity or unusual scenic beauty, some of the best known of the group are Mounts Katmai, Bogoslof, and Shishaldin, but there are many other beautiful and interesting cones and craters.

  4. FIRE Arctic Clouds Experiment

    NASA Technical Reports Server (NTRS)

    Curry, J. A.; Hobbs, P. V.; King, M. D.; Randall, D. A.; Minnis, P.; Issac, G. A.; Pinto, J. O.; Uttal, T.; Bucholtz, A.; Cripe, D. G.; Gerber, H.; Fairall, C. W.; Garrett, T. J.; Hudson, J.; Intrieri, J. M.; Jakob, C.; Jensen, T.; Lawson, P.; Marcotte, D.; Nguyen, L.

    1998-01-01

    An overview is given of the First ISCCP Regional Experiment (FIRE) Arctic Clouds Experiment that was conducted in the Arctic during April through July, 1998. The principal goal of the field experiment was to gather the data needed to examine the impact of arctic clouds on the radiation exchange between the surface, atmosphere, and space, and to study how the surface influences the evolution of boundary layer clouds. The observations will be used to evaluate and improve climate model parameterizations of cloud and radiation processes, satellite remote sensing of cloud and surface characteristics, and understanding of cloud-radiation feedbacks in the Arctic. The experiment utilized four research aircraft that flew over surface-based observational sites in the Arctic Ocean and Barrow, Alaska. In this paper we describe the programmatic and science objectives of the project, the experimental design (including research platforms and instrumentation), conditions that were encountered during the field experiment, and some highlights of preliminary observations, modelling, and satellite remote sensing studies.

  5. Fire in the Shop!

    ERIC Educational Resources Information Center

    Campbell, Clifton P.; Buchanan, Joseph P.

    1977-01-01

    Fire emergency preparedness measures to take to prevent school fires and to protect against injury and minimize damage when fire does occur are presented. Includes fire safety practices, extinguishers for different classes of fires and their use, and the need for fire safety training in schools. (MF)

  6. 46 CFR 28.315 - Fire pumps, fire mains, fire hydrants, and fire hoses.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... fire pump on a vessel 79 feet (24 meters) or more in length must be capable of delivering water... 46 Shipping 1 2012-10-01 2012-10-01 false Fire pumps, fire mains, fire hydrants, and fire hoses... After September 15, 1991, and That Operate With More Than 16 Individuals on Board § 28.315 Fire...

  7. 46 CFR 28.315 - Fire pumps, fire mains, fire hydrants, and fire hoses.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... fire pump on a vessel 79 feet (24 meters) or more in length must be capable of delivering water... 46 Shipping 1 2011-10-01 2011-10-01 false Fire pumps, fire mains, fire hydrants, and fire hoses... After September 15, 1991, and That Operate With More Than 16 Individuals on Board § 28.315 Fire...

  8. 77 FR 24933 - Hydrographic Services Review Panel Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-26

    ..., tide and water level, and hydrographic products, services and information for the Alaska/Arctic region... regional navigation and geospatial, tide and water level, products, services and information, as well as... navigation, geospatial, tide and water level products, services and information for the Alaska/ Arctic...

  9. Fire Alerts for the Geospatial Web

    NASA Astrophysics Data System (ADS)

    McFerren, Graeme; Roos, Stacey; Terhorst, Andrew

    The Advanced Fire Information System (AFIS) is a joint initiative between CSIR and Eskom, the South African electricity utility. AFIS infers fire occurrences from processed, remotely sensed data and triggers alarms to Eskom operators based on the proximity of fire events to Eskom's infrastructure. We intend on migrating AFIS from a narrowly focussed “black-box” application to one servicing users in multiple fire-related scenarios, enabling rapid development and deployment of new applications through concept-based queries of data and knowledge repositories. Future AFIS versions would supply highly tuned, meaningful and customized fire alerts to users based on an open framework of Geo-spatial Web services, ontologies and software agents. Other Geospatial Web applications may have to follow a similar path via Web services and standards-based architectures, thereby providing the foundation for the Geospatial Web.

  10. Law and Alaska Native Education: The Influence of Federal and State Legislation Upon Education of Rural Alaska Natives.

    ERIC Educational Resources Information Center

    Getches, David H.

    Education for rural Alaska Natives has come along a lengthy and tortuous path. Today the much criticized tripartite system remains in which the Federal, state and local governments deliver educational services. A new state law, S.B. 35, which attempts to decentralize control, raises some serious legal problems because of its inconsistency with…

  11. Multi-scale influence of vapor pressure deficit on fire ignition and spread in boreal forest ecosystems

    NASA Astrophysics Data System (ADS)

    Sedano, F.; Randerson, J. T.

    2014-07-01

    Climate-driven changes in the fire regime within boreal forest ecosystems are likely to have important effects on carbon cycling and species composition. In the context of improving fire management options and developing more realistic scenarios of future change, it is important to understand how meteorology regulates different aspects of fire dynamics, including ignition, daily fire spread, and cumulative annual burned area. Here we combined Moderate-Resolution Imaging Spectroradiometer (MODIS) active fires (MCD14ML), MODIS imagery (MOD13A1) and ancillary historic fire perimeter information to produce a data set of daily fire spread maps for Alaska during 2002-2011. This approach provided a spatial and temporally continuous representation of fire progression and a precise identification of ignition and extinction locations and dates for each wildfire. The fire-spread maps were analyzed with daily vapor pressure deficit (VPD) observations from the North American Regional Reanalysis (NARR) and lightning strikes from the Alaska Lightning Detection Network (ALDN). We found a significant relationship between daily VPD and likelihood that a lightning strike would develop into a fire ignition. In the first week after ignition, above average VPD increased the probability that fires would grow to large or very large sizes. Strong relationships also were identified between VPD and burned area at several levels of temporal and spatial aggregation. As a consequence of regional coherence in meteorology, ignition, daily fire spread, and fire extinction events were often synchronized across different fires in interior Alaska. At a regional scale, the sum of positive VPD anomalies during the fire season was positively correlated with annual burned area during the NARR era (1979-2011; R2 = 0.45). Some of the largest fires we mapped had slow initial growth, indicating opportunities may exist for suppression efforts to adaptively manage these forests for climate change. The results

  12. Food Service Curriculum.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education, Juneau. Div. of Adult and Vocational Education.

    This handbook presents a competency-based curriculum that provides information to teachers and administrators planning a secondary food service program in Alaska. The organization of the handbook is similar to the work stations commonly found in food service operations, although some competency areas, such as sanitation and safety and the care and…

  13. Alaska's Children, 2000. Alaska Head Start State Collaboration Project. Quarterly Report.

    ERIC Educational Resources Information Center

    Douglas, Dorothy, Ed.

    2000-01-01

    This document consists of the two 2000 issues of "Alaska's Children," which provides information on the Alaska Head Start State Collaboration Project and updates on Head Start activities in Alaska. Regular features include a calendar of conferences and meetings, a status report on Alaska's children, reports from the Alaska Children's Trust, and…

  14. 78 FR 53137 - Flint Hills Resources Alaska, LLC, BP Pipelines (Alaska) Inc., ConocoPhillips Transportation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-28

    ... formal complaint against BP Pipelines (Alaska) Inc., ConocoPhillips Transportation Alaska, Inc., and... Energy Regulatory Commission Flint Hills Resources Alaska, LLC, BP Pipelines (Alaska) Inc., ConocoPhillips Transportation Alaska, Inc., ExxonMobil Pipeline Company; Notice of Complaint Take notice that...

  15. 46 CFR 176.810 - Fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...; (3) Operation of the fire main system and checking of the pressure at the most remote and highest outlets; (4) Testing of each fire hose to a test pressure equivalent to its maximum service pressure; (5..., maintenance procedures, and hydrostatic pressure tests. Table 176.810(b)—Semiportable and Fixed...

  16. Fire Detection Organizing Questions

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Verified models of fire precursor transport in low and partial gravity: a. Development of models for large-scale transport in reduced gravity. b. Validated CFD simulations of transport of fire precursors. c. Evaluation of the effect of scale on transport and reduced gravity fires. Advanced fire detection system for gaseous and particulate pre-fire and fire signaturesa: a. Quantification of pre-fire pyrolysis products in microgravity. b. Suite of gas and particulate sensors. c. Reduced gravity evaluation of candidate detector technologies. d. Reduced gravity verification of advanced fire detection system. e. Validated database of fire and pre-fire signatures in low and partial gravity.

  17. Utilization of remote sensing in Alaska permafrost studies

    NASA Technical Reports Server (NTRS)

    Hall, D. K.

    1981-01-01

    Permafrost related features such as: aufeis, tundra, thaw lakes and subsurface ice features were studied. LANDSAT imagery was used to measure the extent and distribution of aufeis in Arctic Slope rivers over a period of 7 years. Interannual extent of large aufeis fields was found to vary significantly. Digital LANDSAT data were used to study the short term effects of a tundra fire which burned a 48 sq km area in northwestern Alaska. Vegetation regrowth was inferred from Landsat spectral reflectance increases and compared to in-situ measurements. Aircraft SAR (Synethic Aperture Radar) imagery was used in conjunction with LANDSAT imagery used in conjunction with LANDSAT imagery to qualitatively determine depth categories for thaw lakes in northern Alaska.

  18. Alaska Native Land Claims. [Textbook].

    ERIC Educational Resources Information Center

    Arnold, Robert D.; And Others

    Written for students at the secondary level, this textbook on Alaska Native land claims includes nine chapters, eight appendices, photographs, maps, graphs, bibliography, and an index. Chapters are titled as follows: (1) Earliest Times (Alaska's first settlers, eighteenth century territories, and other claimants); (2) American Indians and Their…

  19. Preparing Teachers for Rural Alaska.

    ERIC Educational Resources Information Center

    Barnhardt, Ray

    1999-01-01

    This article discusses preparing teachers to teach in rural Alaska. An anecdote illustrates how outsiders who come to work in rural Alaska get into trouble because they are unprepared for conditions unique to the North. These conditions end up being viewed as impediments rather than opportunities. The same is true for the field of education. Of…

  20. Impact of Forest Management on Future Forest Carbon Storage in Alaska Coastal Forests

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Kushch, S. A.

    2014-12-01

    The forest in Coastal Alaska are unique in many ways. Two groups of forest types occur in the Alaska region: boreal and temperate rain forests. About eighty-eight percent of these forests are in public ownership. High proportations of reserved forests and old-growth forests make the forests in coastal Alaska differ from that in other coastal regions. This study is focused on how forest management actions may impact the future carbon stocks and flux in coastal Alaska forests. The Forest Inventory and Analysis (FIA) data collected by US Forest Service are the primary data used for estimation of current carbon storage and projections of future forest carbon storage for all forest carbon pools in Alaska coastal forests under different management scenarios and climate change effect.

  1. Forest health in the Blue Mountains: Science perspectives. A management strategy for fire-adapted ecosystems. Forest Service general technical report

    SciTech Connect

    Mutch, R.W.; Arno, S.F.; Brown, J.K.; Carlson, C.E.; Ottmar, R.D.

    1993-02-01

    The fire-adapted forests of the Blue Mountains are suffering from a forest health problem of catastrophic proportions. The composition of the forest at lower elevations has shifted from historically open-growth stands of primarily ponderosa pine and western larch to stands with dense understories of Douglas-fir and grand fir. Epidemic levels of insect infestations and large wildfires adversely affect visual quality, wildlife habitat, stream sedimentation, and timber values. A management strategy to restore forest health at lower elevations will require that the seral ponderosa pine and western larch stands be managed for much lower tree densities and a more open coniferous understory. A combination of silvicultural partial cutting and prescribed fire on a large scale will be needed to produce the desired future condition of healthy, open, and park-like forests.

  2. A review of potential turbine technology options for improving the off-design performance of direct coal-fired gas turbines in base load service. Second topical report

    SciTech Connect

    Thomas, R.L.

    1988-03-01

    The January, 1988 draft topical report, entitled ``An Assessment of Off-Design Particle Control Performance on Direct Coal-Fired Gas Turbine Systems`` [Ref.1.1], identified the need to assess potential trade-offs in turbine aerodynamic and thermodynamic design which may offer improvements in the performance, operational and maintenance characteristics of open-cycle, direct coal-fired, combustion gas turbines. In this second of a series of three topical reports, an assessment of the technical options posed by the above trade-offs is presented. The assessment is based on the current status of gas turbine technology. Several industry and university experts were contacted to contribute to the study. Literature sources and theoretical considerations are used only to provide additional background and insight to the technology involved.

  3. A review of potential turbine technology options for improving the off-design performance of direct coal-fired gas turbines in base load service

    SciTech Connect

    Thomas, R.L.

    1988-03-01

    The January, 1988 draft topical report, entitled An Assessment of Off-Design Particle Control Performance on Direct Coal-Fired Gas Turbine Systems'' (Ref.1.1), identified the need to assess potential trade-offs in turbine aerodynamic and thermodynamic design which may offer improvements in the performance, operational and maintenance characteristics of open-cycle, direct coal-fired, combustion gas turbines. In this second of a series of three topical reports, an assessment of the technical options posed by the above trade-offs is presented. The assessment is based on the current status of gas turbine technology. Several industry and university experts were contacted to contribute to the study. Literature sources and theoretical considerations are used only to provide additional background and insight to the technology involved.

  4. 75 FR 17370 - Notice of Funds Availability (NOFA) to Invite Applications for the American Indian and Alaska...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ... because there was insufficient response to the NOFA published on August 27, 2009 (74 FR 43665-43669). This... and Alaska Native Credit Outreach Initiative AGENCY: Farm Service Agency, USDA. ACTION: Notice... Alaska Native farmers, ranchers, and youth residing primarily on Indian reservations within...

  5. From Alaska: A 21st Century Story of Indigenous Self-Determination in Urban American Public Education

    ERIC Educational Resources Information Center

    Weinstein, Gail L. Israel

    2014-01-01

    For Alaskan Indigenous people, an acute clash of cultures occurs daily in U.S. public school education. The dynamics used to implement and improve the well-being and graduation outcomes for Alaska Native youth in urban public school are presented. A partnership between Cook Inlet Tribal Council, Inc., an Alaska Native social service nonprofit, and…

  6. Bridging the Great Divide: Connecting Alaska Native Learners and Leaders via "High Touch-High Tech" Distance Learning.

    ERIC Educational Resources Information Center

    Berkshire, Steven; Smith, Gary

    The Rural Alaska Native Adult program of Alaska Pacific University is specifically designed for adult Native learners. Courses in business administration, human services, and teacher education are offered to rural Native adult students via an interactive Internet-based format after an initial 1-week residency. The Internet component is facilitated…

  7. GeoFORCE Alaska, A Successful Summer Exploring Alaska's Geology

    NASA Astrophysics Data System (ADS)

    Wartes, D.

    2012-12-01

    Thirty years old this summer, RAHI, the Rural Alaska Honors Institute is a statewide, six-week, summer college-preparatory bridge program at the University of Alaska Fairbanks for Alaska Native and rural high school juniors and seniors. This summer, in collaboration with the University of Texas Austin, the Rural Alaska Honors Institute launched a new program, GeoFORCE Alaska. This outreach initiative is designed to increase the number and diversity of students pursuing STEM degree programs and entering the future high-tech workforce. It uses Earth science to entice kids to get excited about dinosaurs, volcanoes and earthquakes, and includes physics, chemistry, math, biology and other sciences. Students were recruited from the Alaska's Arctic North Slope schools, in 8th grade to begin the annual program of approximately 8 days, the summer before their 9th grade year and then remain in the program for all four years of high school. They must maintain a B or better grade average and participate in all GeoFORCE events. The culmination is an exciting field event each summer. Over the four-year period, events will include trips to Fairbanks and Anchorage, Arizona, Oregon and the Appalachians. All trips focus on Earth science and include a 100+ page guidebook, with tests every night culminating with a final exam. GeoFORCE Alaska was begun by the University of Alaska Fairbanks in partnership with the University of Texas at Austin, which has had tremendous success with GeoFORCE Texas. GeoFORCE Alaska is managed by UAF's long-standing Rural Alaska Honors Institute, that has been successfully providing intense STEM educational opportunities for Alaskan high school students for over 30 years. The program will add a new cohort of 9th graders each year for the next four years. By the summer of 2015, GeoFORCE Alaska is targeting a capacity of 160 students in grades 9th through 12th. Join us to find out more about this exciting new initiative, which is enticing young Alaska Native

  8. Assessing fire risk in Portugal during the summer fire season

    NASA Astrophysics Data System (ADS)

    Dacamara, C. C.; Pereira, M. G.; Trigo, R. M.

    2009-04-01

    Since 1998, Instituto de Meteorologia, the Portuguese Weather Service has relied on the Canadian Fire Weather Index (FWI) System (van Wagner, 1987) to produce daily forecasts of fire risk. The FWI System consists of six components that account for the effects of fuel moisture and wind on fire behavior. The first three components, i.e. the Fine Fuel Moisture Code (FFMC), the Duff Moisture Code (DMC) and the Drought Code (DC) respectively rate the average moisture content of surface litter, decomposing litter, and organic (humus) layers of the soil. Wind effects are then added to FFMC leading to the Initial Spread Index (ISI) that rates fire spread. The remaining two fuel moisture codes (DMC and DC) are in turn combined to produce the Buildup Index (BUI) that is a rating of the total amount of fuel available for combustion. BUI is finally combined with ISI to produce the Fire Weather Index (FWI) that represents the rate of fire intensity. Classes of fire danger and levels of preparedness are commonly defined on an empirical way for a given region by calibrating the FWI System against wildfire activity as defined by the recorded number of events and by the observed burned area over a given period of time (Bovio and Camia, 1998). It is also a well established fact that distributions of burned areas are heavily skewed to the right and tend to follow distributions of the exponential-type (Cumming, 2001). Based on the described context, a new procedure is presented for calibrating the FWI System during the summer fire season in Portugal. Two datasets were used covering a 28-year period (1980-2007); i) the official Portuguese wildfire database which contains detailed information on fire events occurred in the 18 districts of Continental Portugal and ii) daily values of the six components of the FWI System as derived from reanalyses (Uppala et al., 2005) of the European Centre for Medium-Range Weather Forecasts (ECMWF). Calibration of the FWI System is then performed in two

  9. 2013 Alaska Performance Scholarship Outcomes Report

    ERIC Educational Resources Information Center

    Rae, Brian

    2013-01-01

    In accordance with Alaska statute the departments of Education & Early Development (EED) and Labor and Workforce Development (DOLWD), the University of Alaska (UA), and the Alaska Commission on Postsecondary Education (ACPE) present this second annual report on the Alaska Performance Scholarship (APS). Among the highlights: (1) In the public…

  10. Oregon Fires

    Atmospheric Science Data Center

    2014-05-15

    article title:  Smoke Plumes from the B&B Complex Fires, Oregon     ... The results indicate that the tops of the two main plumes originating from the B&B complex differ in altitude by about 1-2 ... The  animation  depicts a "multi-angle fly-over" of the plumes, and was generated using red-band data from MISR's vertical and ...

  11. New fire diurnal cycle characterizations to improve fire radiative energy assessments made from MODIS observations

    NASA Astrophysics Data System (ADS)

    Andela, N.; Kaiser, J. W.; van der Werf, G. R.; Wooster, M. J.

    2015-08-01

    cycle generally resulted in an overestimation of FRE, while including information on the climatology of the fire diurnal cycle improved FRE estimates. The approach based on knowledge of the climatology of the fire diurnal cycle also improved distribution of FRE over the day, although only when aggregating model results to coarser spatial and/or temporal scale good correlation was found with the full SEVIRI hourly reference data set. We recommend the use of regionally varying fire diurnal cycle information within the Global Fire Assimilation System (GFAS) used in the Copernicus Atmosphere Monitoring Services, which will improve FRE estimates and may allow for further reconciliation of biomass burning emission estimates from different inventories.

  12. Manual for Public School Facilities Fire Prevention and Fire Inspection.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Educational Management Services.

    With the exception of New York City, the New York State Uniform Fire Prevention and Building Code applies to each and every facility owned or operated by a school district or Board of Cooperative Educational Services (BOCES). Section 155.3 of the Regulations of the Commissioner of Education applies to all school buildings except for those within…

  13. Zaca Fire

    NASA Technical Reports Server (NTRS)

    2007-01-01

    On August 7, 2007, the Zaca fire continued to burn in the Los Padres National Forest near Santa Barbara, California. The fire started more than a month ago, on July 4, and has burned 69,800 acres. The fire remains in steep, rocky terrain with poor access. The continued poor access makes containment difficult in the wilderness area on the eastern flank. So far only one outbuilding has been destroyed; but over 450 homes are currently threatened. Over 2300 fire personnel, aided by four air tankers and 15 helicopters, are working to contain this massive fire. Full containment is expected on September 1.

    The image covers 45.2 x 46.1 km, and is centered near 34.6 degrees north latitude, 119.7 degrees west longitude.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra spacecraft. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission

  14. Utilizing Multi-Sensor Fire Detections to Map Fires in the United States

    NASA Astrophysics Data System (ADS)

    Howard, S. M.; Picotte, J. J.; Coan, M. J.

    2014-11-01

    In 2006, the Monitoring Trends in Burn Severity (MTBS) project began a cooperative effort between the US Forest Service (USFS) and the U.S.Geological Survey (USGS) to map and assess burn severity all large fires that have occurred in the United States since 1984. Using Landsat imagery, MTBS is mandated to map wildfire and prescribed fire that meet specific size criteria: greater than 1000 acres in the west and 500 acres in the east, regardless of ownership. Relying mostly on federal and state fire occurrence records, over 15,300 individual fires have been mapped. While mapping recorded fires, an additional 2,700 "unknown" or undocumented fires were discovered and assessed. It has become apparent that there are perhaps thousands of undocumented fires in the US that are yet to be mapped. Fire occurrence records alone are inadequate if MTBS is to provide a comprehensive accounting of fire across the US. Additionally, the sheer number of fires to assess has overwhelmed current manual procedures. To address these problems, the National Aeronautics and Space Administration (NASA) Applied Sciences Program is helping to fund the efforts of the USGS and its MTBS partners (USFS, National Park Service) to develop, and implement a system to automatically identify fires using satellite data. In near real time, USGS will combine active fire satellite detections from MODIS, AVHRR and GOES satellites with Landsat acquisitions. Newly acquired Landsat imagery will be routinely scanned to identify freshly burned area pixels, derive an initial perimeter and tag the burned area with the satellite date and time of detection. Landsat imagery from the early archive will be scanned to identify undocumented fires. Additional automated fire assessment processes will be developed. The USGS will develop these processes using open source software packages in order to provide freely available tools to local land managers providing them with the capability to assess fires at the local level.

  15. The Production and Operational Use of Day-Night Band Imagery in Alaska

    NASA Astrophysics Data System (ADS)

    Stevens, E.

    2015-12-01

    As part of the High Latitude Proving Ground, the Geographic Information Network of Alaska (GINA) at the University of Alaska Fairbanks (UAF) receives data from the Suomi National Polar-orbiting Partnership (SNPP) satellite via direct broadcast antennas in Fairbanks, including data from the SNPP's Visible Infrared Imaging Radiometer Suite (VIIRS) instrument. These data are processed by GINA, and the resulting imagery is delivered in near real-time to the National Weather Service (NWS) in Alaska for use in weather analysis and forecasting. The VIIRS' Day-Night Band (DNB) produces what is functionally visible imagery at night and has been used extensively by operational meteorologists in Alaska, especially during the prolonged darkness of the arctic winter. The DNB has proven to be a powerful tool when combined with other observational and model data sets and has offered NWS meteorologists a more complete picture of weather processes in a region where coverage from surface-based observations is generally poor. Thanks to its high latitude, Alaska benefits from much more frequent coverage in time by polar orbiting satellites such as SNPP and its DNB channel. Also, the sparse population of Alaska and the vast stretches of ocean that surround Alaska on three sides allow meteorological and topographical signatures to be detected by the DNB with minimal interference from anthropogenic sources of light. Examples of how the DNB contributes to the NWS' forecast process in Alaska will be presented and discussed.

  16. Geographic Information Network of Alaska: Real-Time Synoptic Satellite Data for Alaska and the High Arctic, Best Available DEMs, and Highest Available Resolution Imagery for Alaska

    NASA Astrophysics Data System (ADS)

    Heinrichs, T. A.; Sharpton, V. L.; Engle, K. E.; Ledlow, L. L.; Seman, L. E.

    2006-12-01

    In support of the International Polar Year, the Geographic Information Network of Alaska (GINA) intends to make available to researchers three important Arctic data sets. The first is near-real-time synoptic scale data from GINA and NOAA/NESDIS satellite ground stations. GINA operates ground stations that receive direct readout from the AVHRR (1.1-km per pixel resolution) and MODIS (250- to 1000-meter) sensors carried on NOAA and NASA satellites. GINA works in partnership with NOAA/NESDIS's Fairbanks Command and Data Acquisition Station (FCDAS) to distribute real-time data captured by FCDAS facilities in Fairbanks and Barrow, Alaska. AVHRR and Feng Yun 1D (1.1-km) sensors are captured in Fairbanks by FCDAS and distributed by GINA. AVHRR data is captured by FCDAS in Barrow and distributed by GINA. Due to its high latitude, the station mask of the Barrow station extends well beyond the Pole, showing the status in real-time of Arctic basin cloud and sea ice conditions. Second, digital elevation models (DEM) for Alaska vary greatly in quality and availability. The best available DEMs for Alaska will be combined and served through a GINA gateway. Third, the best available imagery for more than three quarters of Alaska is 15-meter pan-sharpened Landsat data. Less than a quarter of the state is covered by 5-meter or better data. The best available imagery for Alaska will be combined and served through a GINA gateway. In accordance with the IPY Subcommittee on Data Policy and Management recommendations, all data will be made available via Open Geospatial Consortium protocols, including Web Mapping, Feature, and Coverage Services. Data will also be made available for download in georeferenced formats such as GeoTIFF, MrSID, or GRID. Metadata will be available though the National Spatial Data Infrastructure via Z39.50 GEO protocols and through evolving web-based metadata standards.

  17. 7 CFR 29.2269 - Fire-cured.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2269 Fire... 7 Agriculture 2 2014-01-01 2014-01-01 false Fire-cured. 29.2269 Section 29.2269 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections,...

  18. 7 CFR 29.2269 - Fire-cured.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2269 Fire... 7 Agriculture 2 2012-01-01 2012-01-01 false Fire-cured. 29.2269 Section 29.2269 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections,...

  19. 7 CFR 29.2269 - Fire-cured.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2269 Fire... 7 Agriculture 2 2011-01-01 2011-01-01 false Fire-cured. 29.2269 Section 29.2269 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections,...

  20. 7 CFR 29.2269 - Fire-cured.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2269 Fire... 7 Agriculture 2 2010-01-01 2010-01-01 false Fire-cured. 29.2269 Section 29.2269 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections,...

  1. 7 CFR 29.2269 - Fire-cured.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2269 Fire... 7 Agriculture 2 2013-01-01 2013-01-01 false Fire-cured. 29.2269 Section 29.2269 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections,...

  2. 43 CFR 9212.2 - Fire prevention orders.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Fire prevention orders. 9212.2 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR TECHNICAL SERVICES (9000) FIRE MANAGEMENT Wildfire Prevention § 9212.2 Fire prevention orders. (a) To prevent wildfire or facilitate its suppression, an authorized...

  3. 43 CFR 9212.2 - Fire prevention orders.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Fire prevention orders. 9212.2 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR TECHNICAL SERVICES (9000) FIRE MANAGEMENT Wildfire Prevention § 9212.2 Fire prevention orders. (a) To prevent wildfire or facilitate its suppression, an authorized...

  4. Fire suppressing apparatus. [sodium fires

    DOEpatents

    Buttrey, K.E.

    1980-12-19

    Apparatus for smothering a liquid sodium fire comprises a pan, a perforated cover on the pan, and tubed depending from the cover and providing communication between the interior of the pan and the ambient atmosphere through the perforations in the cover. Liquid caught in the pan rises above the lower ends of the tubes and thus serves as a barrier which limits the amount of air entering the pan.

  5. Fire Safety Training Handbook.

    ERIC Educational Resources Information Center

    Montgomery County Dept. of Fire and Rescue Services, Rockville, MD. Div. of Fire Prevention.

    Designed for a community fire education effort, particularly in which local volunteers present general information on fire safety to their fellow citizens, this workbook contains nine lessons. Included are an overview of the household fire problem; instruction in basic chemistry and physics of fire, flammable liquids, portable fire extinguishers,…

  6. Fire Protection for Buildings

    ERIC Educational Resources Information Center

    Edmunds, Jane

    1972-01-01

    Reviews attack on fire safety in high rise buildings made by a group of experts representing the iron and steel industry at a recent conference. According to one expert, fire problems are people oriented, which calls for emphasis on fire prevention rather than reliance on fire suppression and for fire pretection to be built into a structure.…

  7. FIRE ALARM SYSTEM OUTDATED.

    ERIC Educational Resources Information Center

    CHANDLER, L.T.

    AN EFFICIENT FIRE ALARM SYSTEM SHOULD--(1) PROVIDE WARNING OF FIRES THAT START IN HIDDEN OR UNOCCUPIED LOCATIONS, (2) INDICATE WHERE THE FIRE IS, (3) GIVE ADVANCE WARNING TO FACULTY AND ADMINISTRATION SO THAT PANIC AND CONFUSION CAN BE AVOIDED AND ORDERLY EVACUATION OCCUR, (4) AUTOMATICALLY NOTIFY CITY FIRE HEADQUARTERS OF THE FIRE, (5) OPERATE BY…

  8. 46 CFR 28.315 - Fire pumps, fire mains, fire hydrants, and fire hoses.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... After September 15, 1991, and That Operate With More Than 16 Individuals on Board § 28.315 Fire pumps, fire mains, fire hydrants, and fire hoses. (a) Each vessel 36 feet (11.8 meters) or more in length must... fire pump on a vessel 79 feet (24 meters) or more in length must be capable of delivering...

  9. 46 CFR 28.315 - Fire pumps, fire mains, fire hydrants, and fire hoses.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... After September 15, 1991, and That Operate With More Than 16 Individuals on Board § 28.315 Fire pumps, fire mains, fire hydrants, and fire hoses. (a) Each vessel 36 feet (11.8 meters) or more in length must... fire pump on a vessel 79 feet (24 meters) or more in length must be capable of delivering...

  10. Vegetation and terrain mapping in Alaska using Landsat MSS and digital terrain data

    USGS Publications Warehouse

    Shasby, Mark; Carneggie, David M.

    1986-01-01

    During the past 5 years, the U.S. Geological Survey's (USGS) Earth Resources Observation Systems (EROS) Data Center Field Office in Anchorage, Alaska has worked cooperatively with Federal and State resource management agencies to produce land-cover and terrain maps for 245 million acres of Alaska. The need for current land-cover information in Alaska comes principally from the mandates of the Alaska National Interest Lands Conservation Act (ANILCA), December 1980, which requires major land management agencies to prepare comprehensive management plans. The land-cover mapping projects integrate digital Landsat data, terrain data, aerial photographs, and field data. The resultant land-cover and terrain maps and associated data bases are used for resource assessment, management, and planning by many Alaskan agencies including the U.S. Fish and Wildlife Service, U.S. Forest Service, Bureau of Land Management, and Alaska Department of Natural Resources. Applications addressed through use of the digital land-cover and terrain data bases range from comprehensive refuge planning to multiphased sampling procedures designed to inventory vegetation statewide. The land-cover mapping programs in Alaska demonstrate the operational utility of digital Landsat data and have resulted in a new land-cover mapping program by the USGS National Mapping Division to compile 1:250,000-scale land-cover maps in Alaska using a common statewide land-cover map legend.

  11. Metamorphic facies map of Alaska

    SciTech Connect

    Dusel-Bacon, C.; O-Rourke, E.F.; Reading, K.E.; Fitch, M.R.; Klute, M.A.

    1985-04-01

    A metamorphic-facies of Alaska has been compiled, following the facies-determination scheme of the Working Group for the Cartography of the Metamorphic Belts of the World. Regionally metamorphosed rocks are divided into facies series where P/T gradients are known and into facies groups where only T is known. Metamorphic rock units also are defined by known or bracketed age(s) of metamorphism. Five regional maps have been prepared at a scale of 1:1,000,000; these maps will provide the basis for a final colored version of the map at a scale of 1:2,500,000. The maps are being prepared by the US Geological Survey in cooperation with the Alaska Division of Geological and Geophysical Surveys. Precambrian metamorphism has been documented on the Seward Peninsula, in the Baird Mountains and the northeastern Kuskokwim Mountains, and in southwestern Alaska. Pre-Ordovician metamorphism affected the rocks in central Alaska and on southern Prince of Wales Island. Mid-Paleozoic metamorphism probably affected the rocks in east-central Alaska. Most of the metamorphic belts in Alaska developed during Mesozoic or early Tertiary time in conjuction with accretion of many terranes. Examples are Jurassic metamorphism in east-central Alaska, Early Cretaceous metamorphism in the southern Brooks Range and along the rim of the Yukon-Kovyukuk basin, and late Cretaceous to early Tertiary metamorphism in the central Alaska Range. Regional thermal metamorphism was associated with multiple episodes of Cretaceous plutonism in southeastern Alaska and with early Tertiary plutonism in the Chugach Mountains. Where possible, metamorphism is related to tectonism. Meeting participants are encouraged to comment on the present version of the metamorphic facies map.

  12. Mapping the Daily Progression of Large Wildland Fires Using MODIS Active Fire Data

    NASA Technical Reports Server (NTRS)

    Veraverbeke, Sander; Sedano, Fernando; Hook, Simon J.; Randerson, James T.; Jin, Yufang; Rogers, Brendan

    2013-01-01

    High temporal resolution information on burned area is a prerequisite for incorporating bottom-up estimates of wildland fire emissions in regional air transport models and for improving models of fire behavior. We used the Moderate Resolution Imaging Spectroradiometer (MODIS) active fire product (MO(Y)D14) as input to a kriging interpolation to derive continuous maps of the evolution of nine large wildland fires. For each fire, local input parameters for the kriging model were defined using variogram analysis. The accuracy of the kriging model was assessed using high resolution daily fire perimeter data available from the U.S. Forest Service. We also assessed the temporal reporting accuracy of the MODIS burned area products (MCD45A1 and MCD64A1). Averaged over the nine fires, the kriging method correctly mapped 73% of the pixels within the accuracy of a single day, compared to 33% for MCD45A1 and 53% for MCD64A1.

  13. Reconstruction of recent climate change in Alaska from the Aurora Peak ice core, central Alaska

    NASA Astrophysics Data System (ADS)

    Tsushima, A.; Matoba, S.; Shiraiwa, T.; Okamoto, S.; Sasaki, H.; Solie, D. J.; Yoshikawa, K.

    2014-04-01

    A 180.17 m ice core was drilled at Aurora Peak in the central part of the Alaska Range, Alaska, in 2008 to allow reconstruction of centennial-scale climate change in the northern North Pacific. The 10 m-depth temperature in the borehole was -2.2 °C, which corresponded to annual mean air temperature at the drilling site. In this ice core, there were many melt-refrozen layers due to high temperature and/or strong insolation during summer seasons. We analyzed stable hydrogen isotopes (δD) and chemical species in the ice core. The ice core age was determined by annual counts of δD and seasonal cycles of Na+, and we used reference horizons of tritium peaks in 1963 and 1964, major volcanic eruptions of Mount Spurr in 1992 and Mount Katmai in 1912, and a large forest fire in 2004 as age controls. Here, we show that the chronology of the Aurora Peak ice core from 95.61 m w.eq. to the top corresponds to the period from 1900 to the summer season of 2008, with a dating error of ±3 years. We estimated that the mean accumulation rate from 1997 to 2007 (except for 2004) was 1.88 m w.eq per year. Our results suggest that temporal variation in δD and annual accumulation rates are strongly related to shifts in the Pacific Decadal Oscillation index (PDOI). The remarkable increase in annual precipitation since the 1970s has likely been the result of enhanced storm activity associated with shifts in the PDOI during winter in the Gulf of Alaska.

  14. Reconstruction of recent climate change in Alaska from the Aurora Peak ice core, central Alaska

    NASA Astrophysics Data System (ADS)

    Tsushima, A.; Matoba, S.; Shiraiwa, T.; Okamoto, S.; Sasaki, H.; Solie, D. J.; Yoshikawa, K.

    2015-02-01

    A 180.17 m ice core was drilled at Aurora Peak in the central part of the Alaska Range, Alaska, in 2008 to allow reconstruction of centennial-scale climate change in the northern North Pacific. The 10 m depth temperature in the borehole was -2.2 °C, which corresponded to the annual mean air temperature at the drilling site. In this ice core, there were many melt-refreeze layers due to high temperature and/or strong insolation during summer seasons. We analyzed stable hydrogen isotopes (δD) and chemical species in the ice core. The ice core age was determined by annual counts of δD and seasonal cycles of Na+, and we used reference horizons of tritium peaks in 1963 and 1964, major volcanic eruptions of Mount Spurr in 1992 and Mount Katmai in 1912, and a large forest fire in 2004 as age controls. Here, we show that the chronology of the Aurora Peak ice core from 95.61 m to the top corresponds to the period from 1900 to the summer season of 2008, with a dating error of ± 3 years. We estimated that the mean accumulation rate from 1997 to 2007 (except for 2004) was 2.04 m w.eq. yr-1. Our results suggest that temporal variations in δD and annual accumulation rates are strongly related to shifts in the Pacific Decadal Oscillation index (PDOI). The remarkable increase in annual precipitation since the 1970s has likely been the result of enhanced storm activity associated with shifts in the PDOI during winter in the Gulf of Alaska.

  15. Home Fires Involving Grills

    MedlinePlus

    ... fires were fueled by gas while 13% used charcoal or other solid fuel. Gas grills were involved ... structure fires and 4,300 outdoor fires annually. Charcoal or other solid-fueled grills were involved in ...

  16. Fire safety at home

    MedlinePlus

    ... over the smoke alarm as needed. Using a fire extinguisher can put out a small fire to keep it from getting out of control. Tips for use include: Keep fire extinguishers in handy locations, at least one on ...

  17. Home Fires Involving Grills

    MedlinePlus

    ... per year, including an average of 3,900 structure fires and 5,100 outside fires. These 8, ... property damage.  Almost all the losses resulted from structure fires.  July was the peak month for grill ...

  18. 76 FR 16807 - Notice of Intent To Collect Fees on Public Land in Tangle Lakes, Alaska, Glennallen Field Office...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-25

    ... Alaska along the Denali Highway at milepost 21.5 and lies within the nationally designated Delta Wild and... 2011. The improvements will provide designated campsites with tables, tent or trailer space and fire... the public through meetings for the update of the Delta Wild and Scenic River management plan....

  19. The influence, implications and feedbacks of an intensifying fire regime in Alaska’s boreal forest

    NASA Astrophysics Data System (ADS)

    Beck, P. S.; Goetz, S. J.; Mack, M. C.; Alexander, H. D.; Randerson, J. T.; Loranty, M. M.; Jin, Y.

    2009-12-01

    Wildfires are the primary disturbance agent in boreal forests. Fires cause short-lived emissions but are followed by decades of vegetative regrowth with water and nutrient cycling modified relative to pre-fire conditions. In addition, surface characteristics change during both the fire event and the ensuing regrowth, thus modify albedo related radiative forcings. Extreme fire years, in terms of the number and intensity of fires and the extent of area burned, have become more prevalent in Alaska as the climate has warmed. Continuation of this trend suggests a new fire regime is likely to change successional trajectories of the boreal landscape and associated feedbacks to climate. Using a newly developed map of deciduous versus evergreen (D:E) tree cover, and a database of fire events, we investigated how increased fire severity in Alaska promotes successional trajectories that favor increased abundance of deciduous trees. The D:E map was created using MODIS observations at 500m spatial resolution and field data on stand composition, combined with higher resolution Landsat imagery. Our results indicate that burn severity influenced the relative abundance of deciduous and evergreen vegetation in the decades following fire, but varied locally with the length of the growing season and other site conditions. We combined these findings with MODIS-derived albedo products and field observations, as well as with modeled estimates of carbon pools, to estimate the changes in carbon storage and radiative forcings associated with vegetation succession following disturbance over the past half century.

  20. An Assessment of Thermokarst Driven Changes in Land Cover of the Tanana Flats Wetland Complex of Alaska from 2009 to 2100 in response to Climate Warming

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Genet, H.; Lara, M. J.; McGuire, A. D.; Roach, J.; Patil, V.; Romanovsky, V. E.; Bolton, W. R.; Rutter, R.

    2014-12-01

    Ongoing climate warming has the potential to affect terrestrial ecosystems and the services they provide to local and regional communities, particularly in high latitude regions. Rising temperatures have increased permafrost vulnerability to thawing. In boreal region, ice-rich permafrost degradation may result in the subsidence of the ground surface and the transition from permafrost plateau forest to wetland ecosystems, with dramatic changes in ecosystem structure and function, e.g. vegetation composition, energy balance, and carbon and nutrient cycles. However, this disturbance is poorly represented in existing ecosystem models. A state-and-transition model, the Alaska Thermokarst Model (ATM), is being developed to predict thermokarst initiation and expansion and to keep track of the associated vegetation transitions in boreal and arctic regions. The drivers of these transitions in the boreal region are highly related to climate, topography, fire disturbance and forest fragmentation. In this study, we applied the ATM in a large wetland complex in Interior Alaska (the Tanana Flats) to predict changes in land cover associated to thermokarst from 2009 to 2100. Preliminary simulations over a 10 km x 10 km area of the Tanana Flats suggests that permafrost plateau forests will decrease by 34.9% and collapse scar fens and bogs will increase by 88.3% in this region. After further testing and refinement of the ATM, a next step will be to couple the ATM with a process-based ecosystem model to evaluate the effects of thermokarst dynamics on carbon dynamics.

  1. The Cerro Grande Fire - From Wildfire Modeling Through the Fire Aftermath

    SciTech Connect

    Rudell, T. M.; Gille, R. W.

    2001-01-01

    The Cerro Grande Fire developed from a prescribed burn by the National Park Service at Bandelier National Monument near Los Alamos, New Mexico. When the burn went out of control and became a wildfire, it attracted worldwide attention because it threatened the birthplace of the atomic bomb, Los Alamos National Laboratory (LANL). Was LANL prepared for a fire? What lessons have been learned?

  2. The Cerro Grande Fire - From Wildlife Modeling Through the Fire Aftermath

    SciTech Connect

    Rudell, T. M.; Gille, R. W.

    2001-01-01

    The Cerro Grande Fire developed from a prescribed burn by the National Park Service at Bandelier National Monument near Los Alamos, New Mexico. When the burn went out of control and became a wildfire, it attracted worldwide attention because it threatened the birthplace of the atomic bomb, Los Alamos National Laboratory (LANL). Was LANL prepared for a fire? What lessons have been learned?

  3. Fire disturbance effects on land surface albedo in Alaskan tundra

    NASA Astrophysics Data System (ADS)

    French, Nancy H. F.; Whitley, Matthew A.; Jenkins, Liza K.

    2016-03-01

    The study uses satellite Moderate Resolution Imaging Spectroradiometer albedo products (MCD43A3) to assess changes in albedo at two sites in the treeless tundra region of Alaska, both within the foothills region of the Brooks Range, the 2007 Anaktuvuk River Fire (ARF) and 2012 Kucher Creek Fire (KCF). Results are compared to each other and other studies to assess the magnitude of albedo change and the longevity of impact of fire on land surface albedo. In both sites there was a marked decrease of albedo in the year following the fire. In the ARF, albedo slowly increased until 4 years after the fire, when it returned to albedo values prior to the fire. For the year immediately after the fire, a threefold difference in the shortwave albedo decrease was found between the two sites. ARF showed a 45.3% decrease, while the KCF showed a 14.1% decrease in shortwave albedo, and albedo is more variable in the KCF site than ARF site 1 year after the fire. These differences are possibly the result of differences in burn severity of the two fires, wherein the ARF burned more completely with more contiguous patches of complete burn than KCF. The impact of fire on average growing season (April-September) surface shortwave forcing in the year following fire is estimated to be 13.24 ± 6.52 W m-2 at the ARF site, a forcing comparable to studies in other treeless ecosystems. Comparison to boreal studies and the implications to energy flux are discussed in the context of future increases in fire occurrence and severity in a warming climate.

  4. Computational fire modeling for aircraft fire research

    SciTech Connect

    Nicolette, V.F.

    1996-11-01

    This report summarizes work performed by Sandia National Laboratories for the Federal Aviation Administration. The technical issues involved in fire modeling for aircraft fire research are identified, as well as computational fire tools for addressing those issues, and the research which is needed to advance those tools in order to address long-range needs. Fire field models are briefly reviewed, and the VULCAN model is selected for further evaluation. Calculations are performed with VULCAN to demonstrate its applicability to aircraft fire problems, and also to gain insight into the complex problem of fires involving aircraft. Simulations are conducted to investigate the influence of fire on an aircraft in a cross-wind. The interaction of the fuselage, wind, fire, and ground plane is investigated. Calculations are also performed utilizing a large eddy simulation (LES) capability to describe the large- scale turbulence instead of the more common k-{epsilon} turbulence model. Additional simulations are performed to investigate the static pressure and velocity distributions around a fuselage in a cross-wind, with and without fire. The results of these simulations provide qualitative insight into the complex interaction of a fuselage, fire, wind, and ground plane. Reasonable quantitative agreement is obtained in the few cases for which data or other modeling results exist Finally, VULCAN is used to quantify the impact of simplifying assumptions inherent in a risk assessment compatible fire model developed for open pool fire environments. The assumptions are seen to be of minor importance for the particular problem analyzed. This work demonstrates the utility of using a fire field model for assessing the limitations of simplified fire models. In conclusion, the application of computational fire modeling tools herein provides both qualitative and quantitative insights into the complex problem of aircraft in fires.

  5. Alaska Athabascan stellar astronomy

    NASA Astrophysics Data System (ADS)

    Cannon, Christopher M.

    Stellar astronomy is a fundamental component of Alaska Athabascan cultures that facilitates time-reckoning, navigation, weather forecasting, and cosmology. Evidence from the linguistic record suggests that a group of stars corresponding to the Big Dipper is the only widely attested constellation across the Northern Athabascan languages. However, instruction from expert Athabascan consultants shows that the correlation of these names with the Big Dipper is only partial. In Alaska Gwich'in, Ahtna, and Upper Tanana languages the Big Dipper is identified as one part of a much larger circumpolar humanoid constellation that spans more than 133 degrees across the sky. The Big Dipper is identified as a tail, while the other remaining asterisms within the humanoid constellation are named using other body part terms. The concept of a whole-sky humanoid constellation provides a single unifying system for mapping the night sky, and the reliance on body-part metaphors renders the system highly mnemonic. By recognizing one part of the constellation the stargazer is immediately able to identify the remaining parts based on an existing mental map of the human body. The circumpolar position of a whole-sky constellation yields a highly functional system that facilitates both navigation and time-reckoning in the subarctic. Northern Athabascan astronomy is not only much richer than previously described; it also provides evidence for a completely novel and previously undocumented way of conceptualizing the sky---one that is unique to the subarctic and uniquely adapted to northern cultures. The concept of a large humanoid constellation may be widespread across the entire subarctic and have great antiquity. In addition, the use of cognate body part terms describing asterisms within humanoid constellations is similarly found in Navajo, suggesting a common ancestor from which Northern and Southern Athabascan stellar naming strategies derived.

  6. Operation IceBridge Alaska

    NASA Astrophysics Data System (ADS)

    Larsen, C.

    2015-12-01

    The University of Alaska Fairbanks (UAF) has flown LiDAR missions for Operation IceBridge in Alaska each year since 2009, expanding upon UAF's airborne laser altimetry program which started in 1994. These observations show that Alaska's regional mass balance is -75+11/-16 Gt yr-1 (1994-2013) (Larsen et al., 2015). A surprising result is that the rate of surface mass loss observed on non-tidewater glaciers in Alaska is extremely high. At these rates, Alaska contributes ~1 mm to global sea level rise every 5 years. Given the present lack of adequate satellite resources, Operation IceBridge airborne surveys by UAF are the most effective and efficient method to monitor this region's impact on global sea level rise. Ice depth measurements using radar sounding have been part of these airborne surveys since 2012. Many of Alaska's tidewater glaciers are bedded significantly below sea level. The depth and extent of glacier beds below sea level are critical factors in the dynamics of tidewater retreat. Improved radar processing tools are being used to predict clutter using forward simulation. This is essential to properly sort out true bed returns, which are often masked or obscured by valley wall returns. This presentation will provide an overview of the program, highlighting recent findings and observations from the most recent campaigns, and focusing on techniques used for the extrapolation of surface elevation changes to regional mass balances.

  7. Fire clay

    USGS Publications Warehouse

    Virta, R.L.

    2004-01-01

    Seven companies mined fire clay in four states during 2003. From 1984 to 1992, production declined to 383 kt (422,000 st) from a high of 1.04 Mt (1.14 million st) as markets for clay-based refractories declined. Since 1992, production levels have been erratic, ranging from 383 kt (422,000 st) in 1992 and 2001 to 583 kt (642,000 st) in 1995. Production in 2003, based on preliminary data, was estimated to be around 450 kt (496,000 st) with a value of about $10.5 million. This was about the same as in 2002. Missouri remained the leading producer state, followed by South Carolina, Ohio and California.

  8. Support Assistants for Fire Emergencies; Student Manual, Part A. Firefighting for Civil Defense Emergencies.

    ERIC Educational Resources Information Center

    International Association of Fire Chiefs, New York, NY.

    A manual intended to help fire departments and Civil Defense organizations train people to support regular fire forces during a national emergency is presented. It contains 11 chapters: Introduction, Modern Weapons and Radioactive Fallout, Role of Fire Service in Civil Defense, Local Fire Department Organization, Role of Support Assistants in…

  9. Do Large Fire Runs Result in More Severe Fires?

    NASA Astrophysics Data System (ADS)

    Morgan, P.; Birch, D.; Kolden, C.; Smith, A. M.

    2013-12-01

    Do large fire runs consistently result in high severity fires, and how do climate, weather topography and fuels influence where they burn severely? We analyzed burn severity on 11,938 polygons representing daily area growth (0.09 - 5559 ha, median 0.75 ha) from 410 days of fire progression totaling more than 141,363 ha from 43 large forest fires from Idaho and Montana that burned 2007-2011. We used burn severity classes interpreted using differenced Normalized Burn Ratio from 30-m Landsat satellite imagery by the Monitoring Trends in Burn Severity project, along with infrared perimeter maps provided by the USDA Forest Service National Infrared Operations. Proportion burned with high severity, likely indicating tree mortality >70%, was not correlated with the daily area growth (Kendall Tau=0.288, p=<0.0001), and no burn severity class was correlated to the size of individual daily areas of growth. Burn severity proportions were variable even when extensive areas burned in a day, with proportion burned moderately commonly about 20%, proportion burned with low severity commonly about 23%, and proportion in high severity or other class more variable. On days of large fire growth, fires burn across areas of varying topography and fuels and under different weather conditions. We use the Random Forest Machine Learning algorithm to analyze burn severity relative to 31 fuel, topography, and weather factors, with weather factors such as temperature and relative humidity based on the 24-hour burn period, all at randomly located points within polygons. Results support our hypothesis that local, bottom-up fuels and topography influences where fires burn severely, while top-down climate and weather more strongly influence area burned, even when large areas burn within a single 24-hour period.

  10. Fire Suppression and Response

    NASA Technical Reports Server (NTRS)

    Ruff, Gary A.

    2004-01-01

    This report is concerned with the following topics regarding fire suppression:What is the relative effectiveness of candidate suppressants to extinguish a representative fire in reduced gravity, including high-O2 mole fraction, low -pressure environments? What are the relative advantages and disadvantages of physically acting and chemically-acting agents in spacecraft fire suppression? What are the O2 mole fraction and absolute pressure below which a fire cannot exist? What effect does gas-phase radiation play in the overall fire and post-fire environments? Are the candidate suppressants effective to extinguish fires on practical solid fuels? What is required to suppress non-flaming fires (smoldering and deep seated fires) in reduced gravity? How can idealized space experiment results be applied to a practical fire scenario? What is the optimal agent deployment strategy for space fire suppression?

  11. Functional profile of black spruce wetlands in Alaska

    SciTech Connect

    Post, R.A.

    1996-09-01

    The profile describes the ecologic context and wetland functions of black spruce (Picea mariana) wetlands (BSWs) covering about 14 million ha of Alaska taiga. Ecologic descriptions include climate, permafrost, landforms, post-Pleistocene vegetation, fire, successional processes, black spruce community types and adaptations, and characteristics of BSWs. The profile describes human activities potentially affecting BSWs and identifies research literature and data gaps generally applicable to BSWs. Hydrologic, water quality, global biogeochemical, and ecologic functions of BSWs, as well as their socioeconomic uses, appear in the profile, along with potential functional indicators, expected sensitivities of functions to fill placement or weltand drainage, and potential mitigation strategies for impacts. Functional analysis separately considers ombrotrophic and minerotrophic BSWs where appropriate. Depending on trophic status, Alaska`s BSWs perform several low-magnitude hydrologic (groundwater discharge and recharge, flow regulation, and erosion control) and ecologic (nutrient export, nutrient cycling, and food-chain support) functions and several substantial water quality (sediment retention, nutrient transformation, nutrient uptake, and contaminant removal), global biogeochemical (carbon cycling and storage), and ecologic (avian and mammalian habitat) functions. BSWs also provide important socioeconomic uses: harvested of wetland-dependent fish, wildlife, and plant resources and active winter recreation.

  12. Fire, humans and landscape. Is there a connection?

    NASA Astrophysics Data System (ADS)

    Valese, Eva; Ascoli, Davide; Conedera, Marco; Held, Alex

    2013-04-01

    Fire evolved on the earth under the direct influence of climate and the accumulation of burnable biomass at various times and spatial scales. As a result, fire regimes depend not only on climatic and biological factors, but also greatly reflect the cultural background of how people do manage ecosystems and fire. A new awareness among scientists and managers has been rising about the ecological role of fire and the necessity to understand its past natural and cultural dynamics in different ecosystems, in order to preserve present ecosystem functionality and minimize management costs and negative impacts. As a consequence we assisted in the last decades to a general shift from the fire control to the fire management approach, where fire prevention, fire danger rating, fire ecology, fire pre-suppression and suppression strategies are fully integrated in the landscape management. Nowadays, a large number of authors recognize that a total suppression strategy, as the one adopted during last decades, leads to a fire paradox: the more we fight for putting out all fires, the more extreme events occur and cause long term damages. The aim of this review is to provide a state of art about the connection between fire, humans and landscape, along time and space. Negative and positive impacts on ecosystem services and values are put in evidence, as well as their incidence on human aptitude to fire use as to fire suppression. In order to capture a consistent fragment of fire history, palaeofires and related palynological studies are considered. They enable a valuable, even if partial, look at the millenary fire regime. Actual strategies and future directions are described in order to show what are the alternatives for living with fire, since removing completely this disturbance from earth is not a option, nor feasible neither advisable. Examples from the world, in particular from the Alps and the Mediterranean basin, are shown for better illustrating the signature of

  13. 48 CFR 452.236-78 - Fire Suppression and Liability.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 4 2014-10-01 2014-10-01 false Fire Suppression and... Fire Suppression and Liability. As prescribed in § 436.578, the following clause may be inserted in contracts awarded for Integrated Resource Service Contracts (IRSC) awarded for the Forest Service....

  14. Improving Student Achievement in Alaska. Alaska Goals 2000 Annual Report, 1997-98.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education, Juneau.

    Alaska Goals 2000 is part of a coordinated, statewide effort to improve public education for all students in Alaska. In 1997-1998, 90% of Alaska's federal funding was used to fund grants to local school districts, and 10% was used to fund state-level activities through the Alaska Department of Education. During 1997-1998, curriculum frameworks and…

  15. 78 FR 73144 - Subsistence Management Program for Public Lands in Alaska; Western Interior Alaska Federal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-05

    ... Subsistence Management Program for Public Lands in Alaska; Western Interior Alaska Federal Subsistence... subsistence uses on Federal public lands and waters in Alaska. The Federal Subsistence Board, which includes... the subsistence management of fish and wildlife on Federal public lands in Alaska. The Board...

  16. Alaska's Children, 1998. Alaska Head Start State Collaboration Project, Quarterly Report.

    ERIC Educational Resources Information Center

    Douglas, Dorothy, Ed.

    1998-01-01

    This document consists of four issues of the quarterly report "Alaska's Children," which provides information on the Alaska Head Start State Collaboration Project and updates on Head Start activities in Alaska. Regular features in the issues include a calendar of conferences and meetings, a status report on Alaska's children, reports from the…

  17. Tree Species Linked to Large Differences in Ecosystem Carbon Distribution in the Boreal Forest of Alaska

    NASA Astrophysics Data System (ADS)

    Melvin, A. M.; Mack, M. C.; Johnstone, J. F.; Schuur, E. A. G.; Genet, H.; McGuire, A. D.

    2014-12-01

    In the boreal forest of Alaska, increased fire severity associated with climate change is altering plant-soil-microbial feedbacks and ecosystem carbon (C) dynamics. The boreal landscape has historically been dominated by black spruce (Picea mariana), a tree species associated with slow C turnover and large soil organic matter (SOM) accumulation. Historically, low severity fires have led to black spruce regeneration post-fire, thereby maintaining slow C cycling rates and large SOM pools. In recent decades however, an increase in high severity fires has led to greater consumption of the soil organic layer (SOL) during fire and subsequent establishment of deciduous tree species in areas previously dominated by black spruce. This shift to a more deciduous dominated landscape has many implications for ecosystem structure and function, as well as feedbacks to global C cycling. To improve our understanding of how boreal tree species affect C cycling, we quantified above- and belowground C stocks and fluxes in adjacent, mid-successional stands of black spruce and Alaska paper birch (Betula neoalaskana) that established following a 1958 fire near Fairbanks, Alaska. Although total ecosystem C pools (aboveground live tree biomass + dead wood + SOL + top 10 cm of mineral soil) were similar for the two stand types, the distribution of C among pools was markedly different. In black spruce, 78% of measured C was found in soil pools, primarily in the SOL, where spruce contained twice the C stored in paper birch (4.8 ± 0.3 vs. 2.4 ± 0.1 kg C m-2). In contrast, aboveground biomass dominated ecosystem C pools in birch forest (6.0 ± 0.3 vs. 2.5 ± 0.2 kg C m-2 in birch and spruce, respectively). Our findings suggest that tree species exert a strong influence over plant-soil-microbial feedbacks and may have long-term effects on ecosystem C sequestration and storage that feedback to the climate system.

  18. Alaska GeoFORCE, A New Geologic Adventure in Alaska

    NASA Astrophysics Data System (ADS)

    Wartes, D.

    2011-12-01

    RAHI, the Rural Alaska Honors Institute is a statewide, six-week, summer college-preparatory bridge program at the University of Alaska Fairbanks for Alaska Native and rural high school juniors and seniors. A program of rigorous academic activity combines with social, cultural, and recreational activities. Students are purposely stretched beyond their comfort levels academically and socially to prepare for the big step from home or village to a large culturally western urban campus. This summer RAHI is launching a new program, GeoFORCE Alaska. This outreach initiative is designed to increase the number and diversity of students pursuing STEM degree programs and entering the future high-tech workforce. It uses Earth science as the hook because most kids get excited about dinosaurs, volcanoes and earthquakes, but it includes physics, chemistry, math, biology and other sciences. Students will be recruited, initially from the Arctic North Slope schools, in the 8th grade to begin the annual program of approximately 8 days, the summer before their 9th grade year and then remain in the program for all four years of high school. They must maintain a B or better grade average and participate in all GeoFORCE events. The carrot on the end of the stick is an exciting field event each summer. Over the four-year period, events will include trips to Fairbanks, Arizona, Oregon and the Appalachians. All trips are focused on Earth science and include a 100+ page guidebook, with tests every night culminating with a final exam. GeoFORCE Alaska is being launched by UAF in partnership with the University of Texas at Austin, which has had tremendous success with GeoFORCE Texas. GeoFORCE Alaska will be managed by UAF's long-standing Rural Alaska Honors Insitute (RAHI) that has been successfully providing intense STEM educational opportunities for Alaskan high school students for almost 30 years. The Texas program, with adjustments for differences in culture and environment, will be

  19. Wildland fire simulation by WRF-Fire

    NASA Astrophysics Data System (ADS)

    Mandel, J.; Beezley, J. D.; Kochanski, A.; Kondratenko, V. Y.; Sousedik, B.

    2010-12-01

    This presentation will give an overview of the principles, algorithms, and features of the coupled atmosphere-wildland fire software WRF-Fire. WRF-Fire consists of a fire-spread model, based on a modified Rothermel's formula implemented by the level-set method, coupled with the Weather Research and Forecasting model (WRF). The code has been publicly released with WRF and it is supported by the developers. The WRF infrastructure is used for parallel execution, with additional improvements. In addition to the input of standard atmospheric data, the WRF Preprocessing System (WPS) has been extended for the input of high-resolution topography and fuel data. The fuel models can be easily modified by the user. The components of the wind and of the terrain gradient are interpolated to the fire model mesh by accurate formulas which respect grid staggering. Ignition models include point, drip-torch line, and, in near future, a developed fire perimeter from standard web sources, with an atmosphere spin-up. Companion presentations will describe a validation on the FireFlux experiment, and a simulation of a real wildland fire in a terrain with sharp gradients. This work was supported by NSF grants CNS-0719641 and ATM-0835579. Simulation of the FireFlux grass fire experiment (Clements et al., 2007) in WRF-Fire.

  20. Profile: American Indian/Alaska Native

    MedlinePlus

    ... million American Indians and Alaska Natives. Typically, this urban clientele has less accessibility to hospitals; health clinics ... IHS and tribal health programs. Studies on the urban American Indian and Alaska Native population have documented ...

  1. 76 FR 53151 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-25

    ... Kuskokwim Corporation, Successor in Interest to Red Devil Incorporated. The decision approves the surface... Devil, Alaska, and are located in: Seward Meridian, Alaska T. 22 N., R. 44 W., Secs. 27 to 34,...

  2. With All My Relations: Counseling American Indians and Alaska Natives within a Familial Context

    ERIC Educational Resources Information Center

    Harper, Faith G.

    2011-01-01

    Statistics show that two thirds of American Indians and Alaska Natives (AIs/ANs) live outside of tribal areas, and 50% of those individuals who seek counseling services will not use tribal resources. There is a strong likelihood that counselors will have the opportunity to provide services to AI/AN clients. The review of the academic literature…

  3. 75 FR 67695 - Notice of Intent To Expand Implementation of the TRICARE Program in Alaska

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-03

    ... Prime Service Areas in the state of Alaska. Eligible TRICARE beneficiaries will be permitted to enroll in Prime with assignment to Military Treatment Facility (MTF) Primary Care Managers (PCMs) consistent... civilian preferred provider network. The program will be offered to the Prime Service Areas around the...

  4. 76 FR 80903 - Notice of Intent To Expand Implementation of the TRICARE® Program in Alaska

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ... the Anchorage Prime Service Area of Alaska. Eligible TRICARE beneficiaries will be permitted to enroll in Prime with assignment to Military Treatment Facility (MTF) Primary Care Managers (PCMs) consistent... civilian preferred provider network. The initial expansion included the Prime Service Areas around...

  5. The Politics of Education Provision in Rural Native Alaska: The Case of Yukon Village

    ERIC Educational Resources Information Center

    Dinero, Steven

    2004-01-01

    In this paper, I address the role of educational service provision as a mode of post-colonial assimilation and encapsulation in Native Alaska (USA). I argue that these services have historically served State interests above local interests, implemented with little regard for indigenous values or priorities. The role of education provision in one…

  6. A Survey of Timber Impacted Schools and Communities in Southeast Alaska.

    ERIC Educational Resources Information Center

    South East Regional Resource Center, Juneau, AK.

    This survey examines the impact of reduced timber harvests and mill closures by the U.S. Forest Service on timber-dependent schools and communities in the Tongass National Forest in southeast Alaska. One purpose was to recommend educational programs and services that are necessary to remediate these impacts on children. Between 1990 and 1995,…

  7. Fire Patterns and Drivers of Fires in the West African Tropical Forest

    NASA Astrophysics Data System (ADS)

    Dwomoh, F. K.; Wimberly, M. C.

    2015-12-01

    The West African tropical forest (referred to as the Upper Guinean forest, UGF), is a global biodiversity hotspot providing vital ecosystem services for the region's socio-economic and environmental wellbeing. It is also one of the most fragmented and human-modified tropical forest ecosystems, with the only remaining large patches of original forests contained in protected areas. However, these remnant forests are susceptible to continued fire-mediated degradation and forest loss due to intense climatic, demographic and land use pressures. We analyzed human and climatic drivers of fire activity in the sub-region to better understand the spatial and temporal patterns of these risks. We utilized MODIS active fire and burned area products to identify fire activity within the sub-region. We measured climatic variability using TRMM rainfall data and derived indicators of human land use from a variety of geospatial datasets. We used a boosted regression trees model to determine the influences of predictor variables on fire activity. Our analyses indicated that the spatial and temporal variability of precipitation is a key driving factor of fire activity in the UGF. Anthropogenic effects on fire activity in the area were evident through the influences of agriculture and low-density populations. These human footprints in the landscape make forests more susceptible to fires through forest fragmentation, degradation, and fire spread from agricultural areas. Forested protected areas within the forest savanna mosaic experienced frequent fires, whereas the more humid forest areas located in the south and south-western portions of the study area had fewer fires as these rainforests tend to offer some buffering against fire encroachment. These results improve characterization of UGF fire regime and expand our understanding of the spatio-temporal dynamics of tropical forest fires in response to human and climatic pressures.

  8. Children and Home Fires

    MedlinePlus

    CHILDREN AND HOME FIRES Fast Facts Children under the age of five are twice as likely to die in a home fire than the rest of the population, and child-playing fires are the leading cause of fire deaths among ...

  9. Fire Safety Technician

    ERIC Educational Resources Information Center

    Moore, Pam

    2007-01-01

    Fire protection is one of the most important considerations in the construction and operation of industrial plants and commercial buildings. Fire insurance rates are determined by fire probability factors, such as the type of construction, ease of transporting personnel, and the quality and quantity of fire protection equipment available. Because…

  10. Improving Sanitation and Health in Rural Alaska

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.

    2013-01-01

    In rural Alaskan communities personal health is threatened by energy costs and limited access to clean water, wastewater management, and adequate nutrition. Fuel-­-based energy systems are significant factors in determining local accessibility to clean water, sanitation and food. Increasing fuel costs induce a scarcity of access and impact residents' health. The University of Alaska Fairbanks (UAF) School of Natural Resources and Agricultural Sciences (SNRAS), NASA's Ames Research Center, and USDA Agricultural Research Service (ARS) have joined forces to develop high-efficiency, low­-energy consuming techniques for water treatment and food production in rural circumpolar communities. Methods intended for exploration of space and establishment of settlements on the Moon or Mars will ultimately benefit Earth's communities in the circumpolar north. The initial phase of collaboration is completed. Researchers from NASA Ames Research Center and SNRAS, funded by the USDA­-ARS, tested a simple, reliable, low-energy sewage treatment system to recycle wastewater for use in food production and other reuse options in communities. The system extracted up to 70% of the water from sewage and rejected up to 92% of ions in the sewage with no carryover of toxic effects. Biological testing showed that plant growth using recovered water in the nutrient solution was equivalent to that using high-purity distilled water. With successful demonstration that the low energy consuming wastewater treatment system can provide safe water for communities and food production, the team is ready to move forward to a full-scale production testbed. The SNRAS/NASA team (including Alaska students) will design a prototype to match water processing rates and food production to meet rural community sanitation needs and nutritional preferences. This system would be operated in Fairbanks at the University of Alaska through SNRAS. Long­-term performance will be validated and operational needs of the

  11. Malaspina Glacier, Alaska

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra satellite covers an area of 55 by 40 kilometers (34 by 25 miles) over the southwest part of the Malaspina Glacier and Icy Bay in Alaska. The composite of infrared and visible bands results in the snow and ice appearing light blue, dense vegetation is yellow-orange and green, and less vegetated, gravelly areas are in orange. According to Dr. Dennis Trabant (U.S. Geological Survey, Fairbanks, Alaska), the Malaspina Glacier is thinning. Its terminal moraine protects it from contact with the open ocean; without the moraine, or if sea level rises sufficiently to reconnect the glacier with the ocean, the glacier would start calving and retreat significantly. ASTER data are being used to help monitor the size and movement of some 15,000 tidal and piedmont glaciers in Alaska. Evidence derived from ASTER and many other satellite and ground-based measurements suggests that only a few dozen Alaskan glaciers are advancing. The overwhelming majority of them are retreating.

    This ASTER image was acquired on June 8, 2001. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next six years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and

  12. ICE FOG ABATEMENT AND POLLUTION REDUCTION AT A SUBARCTIC COAL-FIRED HEATING PLANT

    EPA Science Inventory

    An experimental cooler-condenser system was constructed at the coal-fired heating and electric plant on the Fairbanks campus of the University of Alaska to evaluate its potential to reduce ice fog and other pollutant stack emissions in a subarctic environment. This experiment adv...

  13. Montana Fires

    Atmospheric Science Data Center

    2014-05-15

    ... degrees); the instrument has nine different cameras viewing Earth at different angles. The smoke is far more visible when seen at this ... measures 25 kilometers (16 miles) in diameter. The storm was beginning to weaken, and 24 hours later the National Weather Service downgraded ...

  14. 76 FR 31613 - NIOSH Fire Fighter Fatality Investigation and Prevention Program (FFFIPP)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ... HUMAN SERVICES Centers for Disease Control and Prevention NIOSH Fire Fighter Fatality Investigation and... progress and future directions of the NIOSH Fire Fighter Fatality Investigation and Prevention Program... and expectations of the U.S. fire service, and to identify ways in which the program can be...

  15. Ozone Production from the 2004 North American Boreal Fires

    NASA Technical Reports Server (NTRS)

    Pfister, G. G.; Emmons, L. K.; Hess, P. G.; Honrath, R.; Lamarque, J.-F.; Val Martin, M.; Owen, R. C.; Avery, M. A.; Browell, E. V.; Holloway, J. S.; Nedelec, P.; Purvis, R.; Ryerson, T. B.; Sachse, G. W.; Schlager, H.

    2006-01-01

    We examine the ozone production from boreal forest fires based on a case study of wildfires in Alaska and Canada in summer 2004. The model simulations were performed with the chemistry transport model, MOZART-4, and were evaluated by comparison with a comprehensive set of aircraft measurements. In the analysis we use measurements and model simulations of carbon monoxide (CO) and ozone (O3) at the PICO-NARE station located in the Azores within the pathway of North American outflow. The modeled mixing ratios were used to test the robustness of the enhancement ratio deltaO3/deltaCO (defined as the excess O3 mixing ratio normalized by the increase in CO) and the feasibility for using this ratio in estimating the O3 production from the wildfires. Modeled and observed enhancement ratios are about 0.25 ppbv/ppbv which is in the range of values found in the literature, and results in a global net O3 production of 12.9 2 Tg O3 during summer 2004. This matches the net O3 production calculated in the model for a region extending from Alaska to the East Atlantic (9-11 Tg O3) indicating that observations at PICO-NARE representing photochemically well-aged plumes provide a good measure of the O3 production of North American boreal fires. However, net chemical loss of fire related O3 dominates in regions far downwind from the fires (e.g. Europe and Asia) resulting in a global net O3 production of 6 Tg O3 during the same time period. On average, the fires increased the O3 burden (surface-300 mbar) over Alaska and Canada during summer 2004 by about 7-9%, and over Europe by about 2-3%.

  16. Ozone production from the 2004 North American boreal fires

    NASA Astrophysics Data System (ADS)

    Pfister, G. G.; Emmons, L. K.; Hess, P. G.; Honrath, R.; Lamarque, J.-F.; Val Martin, M.; Owen, R. C.; Avery, M. A.; Browell, E. V.; Holloway, J. S.; Nedelec, P.; Purvis, R.; Ryerson, T. B.; Sachse, G. W.; Schlager, H.

    2006-12-01

    We examine the ozone production from boreal forest fires based on a case study of wildfires in Alaska and Canada in summer 2004. The model simulations were performed with the chemistry transport model, MOZART-4, and were evaluated by comparison with a comprehensive set of aircraft measurements. In the analysis we use measurements and model simulations of carbon monoxide (CO) and ozone (O3) at the PICO-NARE station located in the Azores within the pathway of North American outflow. The modeled mixing ratios were used to test the robustness of the enhancement ratio ΔO3/ΔCO (defined as the excess O3 mixing ratio normalized by the increase in CO) and the feasibility for using this ratio in estimating the O3 production from the wildfires. Modeled and observed enhancement ratios are about 0.25 ppbv/ppbv which is in the range of values found in the literature and results in a global net O3 production of 12.9 ± 2 Tg O3 during summer 2004. This matches the net O3 production calculated in the model for a region extending from Alaska to the east Atlantic (9-11 Tg O3) indicating that observations at PICO-NARE representing photochemically well aged plumes provide a good measure of the O3 production of North American boreal fires. However, net chemical loss of fire-related O3 dominates in regions far downwind from the fires (e.g., Europe and Asia) resulting in a global net O3 production of 6 Tg O3 during the same time period. On average, the fires increased the O3 burden (surface -300 mbar) over Alaska and Canada during summer 2004 by about 7-9% and over Europe by about 2-3%.

  17. Alaska: A twenty-first-century petroleum province

    USGS Publications Warehouse

    Bird, K.J.

    2001-01-01

    Alaska, the least explored of all United States regions, is estimated to contain approximately 40% of total U.S. undiscovered, technically recoverable oil and natural-gas resources, based on the most recent U.S. Department of the Interior (U.S. Geological Survey and Minerals Management Service) estimates. Northern Alaska, including the North Slope and adjacent Beaufort and Chukchi continental shelves, holds the lion's share of the total Alaskan endowment of more than 30 billion barrels (4.8 billion m3) of oil and natural-gas liquids plus nearly 200 trillion cubic feet (5.7 trillion m3) of natural gas. This geologically complex region includes prospective strata within passive-margin, rift, and foreland-basin sequences. Multiple source-rock zones have charged several regionally extensive petroleum systems. Extensional and compressional structures provide ample structural objectives. In addition, recent emphasis on stratigraphic traps has demonstrated significant resource potential in shelf and turbidite systems in Jurassic to Tertiary strata. Despite robust potential, northern Alaska remains a risky exploration frontier - a nexus of geologic complexity, harsh economic conditions, and volatile policy issues. Its role as a major petroleum province in this century will depend on continued technological innovations, not only in exploration and drilling operations, but also in development of huge, currently unmarketable natural-gas resources. Ultimately, policy decisions will determine whether exploration of arctic Alaska will proceed.

  18. Fire-walking

    NASA Astrophysics Data System (ADS)

    Willey, David

    2010-09-01

    This article gives a brief history of fire-walking and then deals with the physics behind fire-walking. The author has performed approximately 50 fire-walks, took the data for the world's hottest fire-walk and was, at one time, a world record holder for the longest fire-walk (www.dwilley.com/HDATLTW/Record_Making_Firewalks.html). He currently teaches Physics for the University of Pittsburgh at Johnstown, USA.

  19. Fire-Walking

    ERIC Educational Resources Information Center

    Willey, David

    2010-01-01

    This article gives a brief history of fire-walking and then deals with the physics behind fire-walking. The author has performed approximately 50 fire-walks, took the data for the world's hottest fire-walk and was, at one time, a world record holder for the longest fire-walk (www.dwilley.com/HDATLTW/Record_Making_Firewalks.html). He currently…

  20. Trends in Alaska's People and Economy.

    ERIC Educational Resources Information Center

    Leask, Linda; Killorin, Mary; Martin, Stephanie

    This booklet provides data on Alaska's population, economy, health, education, government, and natural resources, including specific information on Alaska Natives. Since 1960, Alaska's population has tripled and become more diverse, more stable, older, less likely to be male or married, and more concentrated. About 69 percent of the population…

  1. 50 CFR 32.21 - Alaska.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... WILDLIFE REFUGE SYSTEM HUNTING AND FISHING Refuge-Specific Regulations for Hunting and Fishing § 32.21 Alaska. Alaska refuges are opened to hunting, fishing and trapping pursuant to the Alaska National Interest Lands Conservation Act (Pub. L. 96-487, 94 Stat. 2371). Information regarding specific...

  2. Some Books about Alaska Received in 1986.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education, Juneau. Div. of State Libraries.

    This publication is an annotated listing of 143 books about Alaska or the Arctic, received by the Alaska Division of State Libraries in 1986. Most of the material is current or published in recent years, with the exception of government publications. Categories are juvenile, adult non-fiction, adult fiction, and reference. A few Alaska state and…

  3. 33 CFR 80.1705 - Alaska.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Alaska. 80.1705 Section 80.1705 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Alaska § 80.1705 Alaska. The 72 COLREGS shall apply on all the sounds,...

  4. Old Fire/Grand Prix Fire, California

    NASA Technical Reports Server (NTRS)

    2003-01-01

    On November 18, 2003, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite acquired this image of the Old Fire/Grand Prix fire east of Los Angeles. The image is being processed by NASA's Wildfire Response Team and will be sent to the United States Department of Agriculture's Forest Service Remote Sensing Applications Center (RSAC) which provides interpretation services to Burned Area Emergency Response (BAER) teams to assist in mapping the severity of the burned areas. The image combines data from the visible and infrared wavelength regions to highlight the burned areas.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    Michael Abrams at NASA's Jet Propulsion Laboratory (JPL), Pasadena, Calif., is the U.S. science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA's Earth Science Enterprise, a long- term research effort dedicated to

  5. Identifying the main drivers of soil carbon response to climate change in arctic and boreal Alaska.

    NASA Astrophysics Data System (ADS)

    Genet, H.; McGuire, A. D.; He, Y.; Johnson, K.; Wylie, B. K.; Pastick, N. J.; Zhuang, Q.; Zhu, Z.

    2015-12-01

    Boreal and arctic regions represent the largest reservoir of carbon among terrestrial biomes. Most of this carbon is stored deep in the soil in permafrost where frozen organic matter is protected from decomposition. The vulnerability of soil carbon stocks to a changing climate in high latitudes depends on a number of physical and ecological processes. The importance of these processes in controlling the dynamics of soil carbon stocks vary across regions because of variability in vegetation composition, drainage condition, and permafrost characteristics. To better understand the main drivers of the vulnerability of soil carbon stocks to climate change in Alaska, we ran a process-based ecosystem model, the Terrestrial Ecosystem Model. This model explicitly simulates interactions between the carbon cycle and permafrost dynamics and was coupled with a disturbance model and a model of biogenic methane dynamics to assess historical and projected soil carbon dynamics in Alaska, from 1950 to 2100. The uncertainties related to climate, fire regime and atmospheric CO2projections on soil carbon dynamics were quantified by running simulations using climate projections from 2 global circulation models, 3 fossil fuel emission scenarios and 3 alternative fire management scenarios. During the historical period [1950-2009], soil carbon stocks increased by 4.7 TgC/yr in Alaska. Soil carbon stocks decreased in boreal Alaska due to substantial fire activity in the early 2000's. This loss was offset by carbon accumulation in the arctic. Changes in soil carbon stocks from 2010 to 2099 ranged from 8.9 to 25.6 TgC/yr, depending on the climate projections. Soil carbon accumulation was slower in lowlands than in uplands and slower in the boreal than in the arctic regions because of the negative effect of fire activity on soil carbon stocks. Tundra ecosystems were more vulnerable to carbon loss from fire than forest ecosystems because of a lower productivity. As a result, the increase in

  6. Catalog of geological and geophysical data for the National Petroleum Reserve in Alaska

    SciTech Connect

    Ikelman, J.A.

    1986-01-01

    National Geophysical Data Center (NGDC), a unit of the US Department of Commerce/National Oceanic and Atmospheric Administration, is one of several data centers that collectively represent the National Environmental Satellite, Data, and Information Service. NGDC stores terrestrial and marine data collected from around the world. This catalog contains geophysical and geological data available for the National Petroleum Reserve in Alaska. Data includes reflection and refraction seismology, gravity, magnetics, topography, well logs, and geothermics. This catalog is for those interested in the development of Alaska's National Petroleum Reserve. The National Petroleum Reserve in Alaska is located on the Alaskan North Slope. The National Petroleum Reserve program was established in February 1923 by President Warren Harding, who recognized the need for potential domestic sources of oil in the event of a national emergency. The National Petroleum Reserve in Alaska was originally called the Naval Petroleum Reserve No. 4. The Reserve covers about 24 million acres, about the size of Indiana.

  7. Alaska Native Weatherization Training and Jobs Program First Steps Toward Tribal Weatherization – Human Capacity Development

    SciTech Connect

    Wiita, Joanne

    2013-07-30

    The Alaska Native Weatherization Training and Jobs Project expanded weatherization services for tribal members’ homes in southeast Alaska while providing weatherization training and on the job training (OJT) for tribal citizens that lead to jobs and most probably careers in weatherization-related occupations. The program resulted in; (a) 80 Alaska Native citizens provided with skills training in five weatherization training units that were delivered in cooperation with University of Alaska Southeast, in accordance with the U.S. Department of Energy Core Competencies for Weatherization Training that prepared participants for employment in three weatherizationrelated occupations: Installer, Crew Chief, and Auditor; (b) 25 paid OJT training opportunities for trainees who successfully completed the training course; and (c) employed trained personnel that have begun to rehab on over 1,000 housing units for weatherization.

  8. Alaska Pipeline Insulation

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Crude oil moving through the 800-mile Trans-Alaska Pipeline must be kept at a relatively high temperature, about 180 degrees Fahrenheit, to maintain the fluidity of the oil. In Arctic weather, that demands highly effective insulation. General Electric Co.'s Space Division, Valley Forge, Pennsylvania, provided it with a spinoff product called Therm-O-Trol. Shown being installed on the pipeline, Therm-O-Trol is a metal-bonded polyurethane foam especially formulated for Arctic insulation. A second GE spinoff product, Therm-O-Case, solved a related problem involved in bringing hot crude oil from 2,000-foot-deep wells to the surface without transferring oil heat to the surrounding permafrost soil; heat transfer could melt the frozen terrain and cause dislocations that might destroy expensive well casings. Therm-O-Case is a double-walled oil well casing with multi-layered insulation which provides an effective barrier to heat transfer. Therm-O-Trol and Therm-O-Case are members of a family of insulating products which stemmed from technology developed by GE Space Division in heat transferlthermal control work on Gemini, Apollo and other NASA programs.

  9. Alaska Energy Inventory Project: Consolidating Alaska's Energy Resources

    NASA Astrophysics Data System (ADS)

    Papp, K.; Clough, J.; Swenson, R.; Crimp, P.; Hanson, D.; Parker, P.

    2007-12-01

    Alaska has considerable energy resources distributed throughout the state including conventional oil, gas, and coal, and unconventional coalbed and shalebed methane, gas hydrates, geothermal, wind, hydro, and biomass. While much of the known large oil and gas resources are concentrated on the North Slope and in the Cook Inlet regions, the other potential sources of energy are dispersed across a varied landscape from frozen tundra to coastal settings. Despite the presence of these potential energy sources, rural Alaska is mostly dependent upon diesel fuel for both electrical power generation and space heating needs. At considerable cost, large quantities of diesel fuel are transported to more than 150 roadless communities by barge or airplane and stored in large bulk fuel tank farms for winter months when electricity and heat are at peak demands. Recent increases in the price of oil have severely impacted the price of energy throughout Alaska, and especially hard hit are rural communities and remote mines that are off the road system and isolated from integrated electrical power grids. Even though the state has significant conventional gas resources in restricted areas, few communities are located near enough to these resources to directly use natural gas to meet their energy needs. To address this problem, the Alaska Energy Inventory project will (1) inventory and compile all available Alaska energy resource data suitable for electrical power generation and space heating needs including natural gas, coal, coalbed and shalebed methane, gas hydrates, geothermal, wind, hydro, and biomass and (2) identify locations or regions where the most economic energy resource or combination of energy resources can be developed to meet local needs. This data will be accessible through a user-friendly web-based interactive map, based on the Alaska Department of Natural Resources, Land Records Information Section's (LRIS) Alaska Mapper, Google Earth, and Terrago Technologies' Geo

  10. 75 FR 65507 - U.S.-Russia Polar Bear Commission Adopts an Annual Taking Limit for the Alaska-Chukotka Polar...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-25

    ... subsistence purposes based on population models and assumed values of population size and growth rate. These... Alaska-Chukotka Polar Bear Population AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice... Federation on the Conservation and Management of the Alaska-Chukotka Polar Bear Population,'' signed...

  11. Report on the Work of the Bureau of Education for the Natives of Alaska, 1911-12. Bulletin, 1913, No. 36. Whole Number 546

    ERIC Educational Resources Information Center

    United States Bureau of Education, Department of the Interior, 1913

    1913-01-01

    This bulletin presents the annual report of the Alaska division of the Bureau of Education for the fiscal year ended June 30, 1912. During this period the field force of the Alaska school service consisted of 4 district superintendents of schools, 1 assistant superintendent, 108 teachers, 8 physicians (1 of whom also filled another position), 8…

  12. 50 CFR 36.33 - What do I need to know about using cabins and related structures on Alaska National Wildlife...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false What do I need to know about using cabins and related structures on Alaska National Wildlife Refuges? 36.33 Section 36.33 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM ALASKA NATIONAL...

  13. 50 CFR 36.33 - What do I need to know about using cabins and related structures on Alaska National Wildlife...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 9 2012-10-01 2012-10-01 false What do I need to know about using cabins and related structures on Alaska National Wildlife Refuges? 36.33 Section 36.33 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM ALASKA NATIONAL...

  14. Evidence and Implications of Frequent Fires in Ancient Shrub Tundra

    SciTech Connect

    Higuera, P E; Brubaker, L B; Anderson, P M; Brown, T A; Kennedy, A T; Hu, F S

    2008-03-06

    Understanding feedbacks between terrestrial and atmospheric systems is vital for predicting the consequences of global change, particularly in the rapidly changing Arctic. Fire is a key process in this context, but the consequences of altered fire regimes in tundra ecosystems are rarely considered, largely because tundra fires occur infrequently on the modern landscape. We present paleoecological data that indicate frequent tundra fires in northcentral Alaska between 14,000 and 10,000 years ago. Charcoal and pollen from lake sediments reveal that ancient birchdominated shrub tundra burned as often as modern boreal forests in the region, every 144 years on average (+/- 90 s.d.; n = 44). Although paleoclimate interpretations and data from modern tundra fires suggest that increased burning was aided by low effective moisture, vegetation cover clearly played a critical role in facilitating the paleo-fires by creating an abundance of fine fuels. These records suggest that greater fire activity will likely accompany temperature-related increases in shrub-dominated tundra predicted for the 21st century and beyond. Increased tundra burning will have broad impacts on physical and biological systems as well as land-atmosphere interactions in the Arctic, including the potential to release stored organic carbon to the atmosphere.

  15. Evidence for nonuniform permafrost degradation after fire in boreal landscapes

    NASA Astrophysics Data System (ADS)

    Minsley, Burke J.; Pastick, Neal J.; Wylie, Bruce K.; Brown, Dana R. N.; Andy Kass, M.

    2016-02-01

    Fire can be a significant driver of permafrost change in boreal landscapes, altering the availability of soil carbon and nutrients that have important implications for future climate and ecological succession. However, not all landscapes are equally susceptible to fire-induced change. As fire frequency is expected to increase in the high latitudes, methods to understand the vulnerability and resilience of different landscapes to permafrost degradation are needed. We present a combination of multiscale remote sensing, geophysical, and field observations that reveal details of both near-surface (<1 m) and deeper (>1 m) impacts of fire on permafrost. Along 11 transects that span burned-unburned boundaries in different landscape settings within interior Alaska, subsurface electrical resistivity and nuclear magnetic resonance data indicate locations where permafrost appears to be resilient to disturbance from fire, areas where warm permafrost conditions exist that may be most vulnerable to future change, and also areas where permafrost has thawed. High-resolution geophysical data corroborate remote sensing interpretations of near-surface permafrost and also add new high-fidelity details of spatial heterogeneity that extend from the shallow subsurface to depths of about 10 m. Results show that postfire impacts on permafrost can be variable and depend on multiple factors such as fire severity, soil texture, soil moisture, and time since fire.

  16. U.S. Global Climate Change Impacts Report, Alaska Region

    NASA Astrophysics Data System (ADS)

    McGuire, D.

    2009-12-01

    The assessment of the Global Climate Change Impacts in the United States includes analyses of the potential climate change impacts in Alaska. The resulting findings are discussed in this presentation, with the effects on water resources discussed separately. Major findings include: Summers are getting hotter and drier, with increasing evaporation outpacing increased precipitation. Climate changes are already affecting water, energy, transportation, agriculture, ecosystems, and health. These impacts are different from region to region and will grow under projected climate change. Wildfires and insect problems are increasing. Climate plays a key role in determining the extent and severity of insect outbreaks and wildfire. The area burned in North America’s northern forest that spans Alaska and Canada tripled from the 1960s to the 1990s. During the 1990s, south-central Alaska experienced the largest outbreak of spruce bark beetles in the world because of warmer weather in all seasons of the year. Under changing climate conditions, the average area burned per year in Alaska is projected to double by the middle of this century10. By the end of this century, area burned by fire is projected to triple under a moderate greenhouse gas emissions scenario and to quadruple under a higher emissions scenario. Close-bodied lakes are declining in area. A continued decline in the area of surface water would present challenges for the management of natural resources and ecosystems on National Wildlife Refuges in Alaska. These refuges, which cover over 77 million acres (21 percent of Alaska) and comprise 81 percent of the U.S. National Wildlife Refuge System, provide a breeding habitat for millions of waterfowl and shorebirds that winter in the lower 48 states. Permafrost thawing will damage public and private infrastructure. Land subsidence (sinking) associated with the thawing of permafrost presents substantial challenges to engineers attempting to preserve infrastructure in

  17. Fire Severity Filters Regeneration Traits to Shape Community Assembly in Alaska’s Boreal Forest

    PubMed Central

    Bernhardt, Emily L.; Chapin, F. Stuart

    2013-01-01

    Disturbance can both initiate and shape patterns of secondary succession by affecting processes of community assembly. Thus, understanding assembly rules is a key element of predicting ecological responses to changing disturbance regimes. We measured the composition and trait characteristics of plant communities early after widespread wildfires in Alaska to assess how variations in disturbance characteristics influenced the relative success of different plant regeneration strategies. We compared patterns of post-fire community composition and abundance of regeneration traits across a range of fire severities within a single pre-fire forest type– black spruce forests of Interior Alaska. Patterns of community composition, as captured by multivariate ordination with nonmetric multidimensional scaling, were primarily related to gradients in fire severity (biomass combustion and residual vegetation) and secondarily to gradients in soil pH and regional climate. This pattern was apparent in both the full dataset (n = 87 sites) and for a reduced subset of sites (n = 49) that minimized the correlation between site moisture and fire severity. Changes in community composition across the fire-severity gradient in Alaska were strongly correlated to variations in plant regeneration strategy and rooting depth. The tight coupling of fire severity with regeneration traits and vegetation composition after fire supports the hypothesis that disturbance characteristics influence patterns of community assembly by affecting the relative success of different regeneration strategies. This study further demonstrated that variations in disturbance characteristics can dominate over environmental constraints in determining early patterns of community assembly. By affecting the success of regeneration traits, changes in fire regime directly shape the outcomes of community assembly, and thus may override the effects of slower environmental change on boreal forest composition. PMID

  18. Wild Fire Computer Model Helps Firefighters

    SciTech Connect

    Canfield, Jesse

    2012-09-04

    A high-tech computer model called HIGRAD/FIRETEC, the cornerstone of a collaborative effort between U.S. Forest Service Rocky Mountain Research Station and Los Alamos National Laboratory, provides insights that are essential for front-line fire fighters. The science team is looking into levels of bark beetle-induced conditions that lead to drastic changes in fire behavior and how variable or erratic the behavior is likely to be.

  19. Wild Fire Computer Model Helps Firefighters

    ScienceCinema

    Canfield, Jesse

    2014-06-02

    A high-tech computer model called HIGRAD/FIRETEC, the cornerstone of a collaborative effort between U.S. Forest Service Rocky Mountain Research Station and Los Alamos National Laboratory, provides insights that are essential for front-line fire fighters. The science team is looking into levels of bark beetle-induced conditions that lead to drastic changes in fire behavior and how variable or erratic the behavior is likely to be.

  20. Fire safety distances for open pool fires

    NASA Astrophysics Data System (ADS)

    Sudheer, S.; Kumar, Lokendra; Manjunath, B. S.; Pasi, Amit; Meenakshi, G.; Prabhu, S. V.

    2013-11-01

    Fire accidents that carry huge loss with them have increased in the previous two decades than at any time in the history. Hence, there is a need for understanding the safety distances from different fires with different fuels. Fire safety distances are computed for different open pool fires. Diesel, gasoline and hexane are used as fuels for circular pool diameters of 0.5 m, 0.7 m and 1.0 m. A large square pool fire of 4 m × 4 m is also conducted with diesel as a fuel. All the prescribed distances in this study are purely based on the thermal analysis. IR camera is used to get the thermal images of pool fires and there by the irradiance at different locations is computed. The computed irradiance is presented with the threshold heat flux limits for human beings.

  1. 75 FR 33894 - Open Meeting of the Area 7 Taxpayer Advocacy Panel (Including the States of Alaska, California...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-15

    ... Panel is soliciting public comments, ideas, and suggestions on improving customer service at the... Internal Revenue Service Open Meeting of the Area 7 Taxpayer Advocacy Panel (Including the States of Alaska, California, Hawaii, and Nevada) AGENCY: Internal Revenue Service (IRS) Treasury. ACTION: Notice of...

  2. 76 FR 10944 - Open Meeting of the Area 7 Taxpayer Advocacy Panel (Including the States of Alaska, California...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-28

    ... Panel is soliciting public comments, ideas, and suggestions on improving customer service at the... Internal Revenue Service Open Meeting of the Area 7 Taxpayer Advocacy Panel (Including the States of Alaska, California, Hawaii, and Nevada) AGENCY: Internal Revenue Service (IRS) Treasury. ACTION: Notice of...

  3. 75 FR 18956 - Open Meeting of the Area 7 Taxpayer Advocacy Panel (Including the States of Alaska, California...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-13

    ... Panel is soliciting public comments, ideas, and suggestions on improving customer service at the... Internal Revenue Service Open Meeting of the Area 7 Taxpayer Advocacy Panel (Including the States of Alaska, California, Hawaii, and Nevada) AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice of...

  4. Witch Wildland Fire, California

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The October wildfires that plagued southern California were some of the worst on record. One of these, the Witch Wildland fire, burned 198,000 acres north of San Diego, destroying 1125 homes, commercial structures, and outbuildings. Over 3,000 firefighters finally contained the fire two weeks after it started on October 21. Now begins the huge task of planning and implementing mitigation measures to replant and reseed the burned areas. This ASTER image depicts the area after the fire, on November 6; vegetation is green, burned areas are dark red, and urban areas are blue. On the burn severity index image, calculated using infrared and visible bands, red areas are the most severely burned, followed by green and blue. This information can help the US Forest Service to plan post-fire activities.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra spacecraft. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory

  5. Hayman Fire, Colorado

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Hayman forest fire, started on June 8, is continuing to burn in the Pike National Forest, 57 km (35 miles) south-southwest of Denver. According to the U.S. Forest Service, the fire has consumed more than 90,000 acres and has become Colorado's worst fire ever. In this ASTER image, acquired Sunday, June 16, 2002 at 10:30 am MST, the dark blue area is burned vegetation and the green areas are healthy vegetation. Red areas are active fires, and the blue cloud at the top center is smoke. Meteorological clouds are white. The image covers an area of 32.2 x 35.2 km (20.0 x 21.8 miles), and displays ASTER bands 8-3-2 in red, green and blue.

    This image was acquired on June 16, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA's Earth Science Enterprise, a long-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats

  6. Alaska volcanoes guidebook for teachers

    USGS Publications Warehouse

    Adleman, Jennifer N.

    2011-01-01

    Alaska’s volcanoes, like its abundant glaciers, charismatic wildlife, and wild expanses inspire and ignite scientific curiosity and generate an ever-growing source of questions for students in Alaska and throughout the world. Alaska is home to more than 140 volcanoes, which have been active over the last 2 million years. About 90 of these volcanoes have been active within the last 10,000 years and more than 50 of these have been active since about 1700. The volcanoes in Alaska make up well over three-quarters of volcanoes in the United States that have erupted in the last 200 years. In fact, Alaska’s volcanoes erupt so frequently that it is almost guaranteed that an Alaskan will experience a volcanic eruption in his or her lifetime, and it is likely they will experience more than one. It is hard to imagine a better place for students to explore active volcanism and to understand volcanic hazards, phenomena, and global impacts. Previously developed teachers’ guidebooks with an emphasis on the volcanoes in Hawaii Volcanoes National Park (Mattox, 1994) and Mount Rainier National Park in the Cascade Range (Driedger and others, 2005) provide place-based resources and activities for use in other volcanic regions in the United States. Along the lines of this tradition, this guidebook serves to provide locally relevant and useful resources and activities for the exploration of numerous and truly unique volcanic landscapes in Alaska. This guidebook provides supplemental teaching materials to be used by Alaskan students who will be inspired to become educated and prepared for inevitable future volcanic activity in Alaska. The lessons and activities in this guidebook are meant to supplement and enhance existing science content already being taught in grade levels 6–12. Correlations with Alaska State Science Standards and Grade Level Expectations adopted by the Alaska State Department of Education and Early Development (2006) for grades six through eleven are listed at

  7. Monitoring of the effects of fire in North American boreal forests using ERS SAR imagery

    NASA Technical Reports Server (NTRS)

    Kasischke, E. S.; French, N. H. F.; Bourgeau-Chavez, L. L.

    1997-01-01

    ERS synthetic aperture radar (SAR) imagery represents a tool for monitoring the effects of fires in boreal regions. Fire-scar signatures from ERS SAR collected over Canada and Alaska are presented. The temporal variability exhibited throughout the growing season is underlined. The investigation showed that these signatures have a seasonal trend related to the patterns of soil moisture originating from snow melts in the spring and precipitation during the growing season. These signatures appear in all the regions of the North American boreal forest and remain visible for up to 13 years after a fire.

  8. High-resolution records detect human-caused changes to the boreal forest wildfire regime in interior Alaska

    USGS Publications Warehouse

    Gaglioti, Benjamin V.; Mann, Daniel H.; Jones, Benjamin M.; Wooller, Matthew J.; Finney, Bruce P.

    2016-01-01

    Stand-replacing wildfires are a keystone disturbance in the boreal forest, and they are becoming more common as the climate warms. Paleo-fire archives from the wildland–urban interface can quantify the prehistoric fire regime and assess how both human land-use and climate change impact ecosystem dynamics. Here, we use a combination of a sedimentary charcoal record preserved in varved lake sediments (annually layered) and fire scars in living trees to document changes in local fire return intervals (FRIs) and regional fire activity over the last 500 years. Ace Lake is within the boreal forest, located near the town of Fairbanks in interior Alaska, which was settled by gold miners in AD 1902. In the 400 years before settlement, fires occurred near the lake on average every 58 years. After settlement, fires became much more frequent (average every 18  years), and background charcoal flux rates rose to four times their preindustrial levels, indicating a region-wide increase in burning. Despite this surge in burning, the preindustrial boreal forest ecosystem and permafrost in the watershed have remained intact. Although fire suppression has reduced charcoal influx since the 1950s, an aging fuel load experiencing increasingly warm summers may pose management problems for this and other boreal sites that have similar land-use and fire histories. The large human-caused fire events that we identify can be used to test how increasingly common megafires may alter ecosystem dynamics in the future.

  9. Long-term impacts of boreal wildfire on carbon cycling dynamics in Interior Alaska

    NASA Astrophysics Data System (ADS)

    Gaglioti, B.; Mann, D. H.; Finney, B.; Pohlman, J.; Jones, B. M.; Arp, C. D.; Wooller, M. J.

    2013-12-01

    Wildland fire is a major disturbance in the boreal forest, and warming climate will likely increase the frequency and severity of burning. Fires trigger thermokarst, the thawing of permafrost (perennially frozen ground), which can release large amounts of ancient carbon to the atmosphere. But how vulnerable is the organic carbon stored in permafrost in the boreal forest to a changing fire regime? Paleolimnological records can tell us how the landscape actually responded during prehistoric fires and provide a valuable perspective on future events. Here we present a whole-watershed summary of terrestrial and aquatic carbon dynamics during multiple fire and thermokarst disturbances over the last millennia. We use laminated lake sediments laid down in a permanently stratified, thermokarst lake basin in Interior Alaska to decipher the impacts of wildfires on permafrost carbon release from the surrounding watershed. Sediment chronologies based on layer counts, lead and cesium dating, and radiocarbon dating of plant macrofossils, provide a near-annual resolution of environmental changes over the last 1100 years. Charcoal accumulation rates quantified from sediment thin-sections and fire-scarred spruce trees constrain the timing of fires. The variability of permafrost carbon release before and after fires was investigated by analyzing several geochemical indices including radiocarbon dating on the sediment organic matter directly above and below charcoal layers in the sediment stack. The difference between a sediment layers 'true' age of deposition based on layer counts and the apparent radiocarbon age on the same bulk sediment material (radiocarbon age offset) is then used as a proxy for permafrost carbon release. The relative age of permafrost-derived organic carbon entering the lake before and after past fires was determined by radiocarbon age offsets before and after wildfire events. Fires are not the only triggers of permafrost-C release. Thermokarst caused by

  10. Fires Scorch Oregon

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In southwestern Oregon, the Florence Fire (north) and the Sour Biscuit Fire (south) continue to grow explosively. This image from the Landsat 7 Enhanced Thematic Mapper Plus was captured on July 29, 2002. The Florence Fire had grown to 50,000 acres and the Sour Biscuit Fire had grown to 16,000 acres. Numerous evacuation notices remain in effect. Thick smoke from the actively burning eastern perimeter of the Florence Fire is billowing southward and mingling with the Biscuit Fire smoke. Credit:Image provided by the USGS EROS Data Center Satellite Systems Branch.

  11. PERSPECTIVE: Fire on the fringe

    NASA Astrophysics Data System (ADS)

    Pyne, Stephen J.

    2009-09-01

    Stephen J Pyne For the past two decades fire agencies have grappled with a seemingly new and intractable problem. Like the return of smallpox or polio, an issue they thought had vanished reappeared in virulent form. Year by year, the unthinkable became the undeniable: all across many industrial nations settlements began to burn. The earliest formal study followed the 1983 Ash Wednesday fires that swept through southeastern Australia [1]. That report remains definitive: nearly every subsequent inquiry has reaffirmed its conclusions about how houses actually burn and what remedial measures could counter the destruction [2, 3]. In many respects these insights simply adapted to nominal `wildlands' the lessons long learned for urban fire protection. Ban combustible roofing. Plug openings where embers might enter buildings. Establish defensible spaces. Provide firefighters. The larger concern was that wild landscapes and cityscapes were being intermixed in dangerous and unprecedented ways, like some kind of environmental matter and anti-matter. That mingling assumed two different forms. One was typical of developed nations with extensive wildlands in which suburban (or exurban) sprawl pushed against reserved landscapes. In 1987 researchers with the US Forest Service coined a name for this variant, the awkwardly labeled `wildland/urban interface' (WUI) or I-zone [4]. The second pattern found its best expression in Mediterranean Europe. Here agricultural lands were being abandoned, and then partially reclaimed by exurbanites [5]. The upshot for both was an explosion of fuels, houses (and communities) not built according to standard fire codes, and the absence of formal fire brigades [6]. The solution seemed obvious: install standard fire protection measures. More broadly, remove the houses or remove the wildlands. The apparitional fires would vanish as had urban conflagrations before them. In effect, define the problem as one that existing engineering, or techniques

  12. Teshekpuk Lake, Alaska

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This ASTER image of Teshekpuk Lake on Alaska's North Slope, within the National Petroleum Reserve, was acquired on August 15, 2000. It covers an area of 58.7 x 89.9 km, and is centered near 70.4 degrees north latitude, 153 degrees west longitude.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 58.7 by 89.9 kilometers (36.4 by 55.7 miles) Location: 70.4 degrees North latitude, 153 degrees West longitude Orientation: North at top Image Data: ASTER Bands 3, 2, and 1 Original Data Resolution: ASTER 30 meters (98.4 feet) Dates Acquired: August 15, 2000

  13. Alaska Resource Data File, Talkeetna Mountains quadrangle, Alaska

    USGS Publications Warehouse

    Rogers, Robert K.; Schmidt, Jeanine M.

    2003-01-01

    Descriptions of the mineral occurrences shown on the accompanying figure follow. See U.S. Geological Survey (1996) for a description of the information content of each field in the records. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  14. You're it! How to psychologically survive an internal investigation, disciplinary proceeding, or legal action in the police, fire, medical, mental health, legal, or emergency services professions.

    PubMed

    Miller, Laurence

    2009-01-01

    Rightly or wrongly, law enforcement, public safety, medical, mental health, legal, and emergency services professionals may have to face internal investigation, disciplinary measures, license suspension, criminal prosecution, civil lawsuits, and/or personal life disruption related to actions taken in the course of their work. This article describes the main categories of misconduct--or simply mistakes--that can cause different types of professionals to be investigated, charged, prosecuted, and/or sued. It next discusses the kinds of psychological reactions commonly seen in workers who face these kinds of proceedings. Finally, the article offers a set of practical psychological coping strategies and procedural recommendations for dealing with the stresses of an investigation, administrative action, or litigation, and for mitigating their effects on one's life and career. PMID:20437849

  15. Wildland Fire Management Plan for Brookhaven National Laboratory

    SciTech Connect

    Green,T.

    2009-10-23

    This Wildland Fire Management Plan (FMP) for Brookhaven National Lab (BNL) updates the 2003 plan incorporating changes necessary to comply with DOE Order 450.1 and DOE P 450.4, Federal Wildland Fire Management Policy and Program Review; Wildland and Prescribed Fire Management Policy and implementation Procedures Reference Guide. This current plan incorporates changes since the original draft of the FMP that result from new policies on the national level. This update also removes references and dependence on the U.S. Fish & Wildlife Service and Department of the Interior, fully transitioning Wildland Fire Management responsibilities to BNL. The Department of Energy policy for managing wildland fires requires that all areas, managed by the DOE and/or its various contractors, that can sustain fire must have a FMP that details fire management guidelines for operational procedures associated with wild fire, operational, and prescribed fires. Fire management plans provide guidance on fire preparedness, fire prevention, wildfire suppression, and the use of controlled, 'prescribed' fires and mechanical means to control the amount of available combustible material. Values reflected in the BNL Wildland FMP include protecting life and public safety; Lab properties, structures and improvements; cultural and historical sites; neighboring private and public properties; and endangered, threatened, and species of concern. Other values supported by the plan include the enhancement of fire-dependent ecosystems at BNL. This FMP will be reviewed periodically to ensure the fire program advances and evolves with the missions of the DOE and BNL. This Fire Management Plan is presented in a format that coverers all aspects specified by DOE guidance documents which are based on the national template for fire management plans adopted under the National Fire Plan. The DOE is one of the signatory agencies on the National Fire Plan. This FMP is to be used and implemented for the entire BNL site

  16. Mapping fire effects on ash and soil properties. Current knowledge and future perspectives.

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Cerda, Artemi; Strielko, Irina

    2014-05-01

    scales and the future perspectives. References Finley, C.D., Glenn, N.F. (2010) Fire and vegetation type effects on soil hydrophobicity and infiltration in the sagebrussh-steppe: II. Hyperspectral analysis. Journal of Arid Environments, 74: 660-666. Fox, D.A., Maselli, F., Carrega, P. (2008) Using SPOT images and field sampling to map burn severity and vegetation factors affecting post-fire erosion risk. Catena, 75: 326-335. Gimeno-Garcia. E., Andreu., V., Rubio, J.L. (2004) Spatial patterns of soil temperatures during experiemntal fires. Geoderma, 118: 17-34. Hirobe, M., Tokushi, N., Wachrinrat, C., Takeda, H. (2003) Fire history influences on the spatial heterogeneity of soil nitrogen transformations in three adjacent stands in a dry tropical forest in Thailand. Plant and Soil, 249: 309-318. Kokaly, R.F., Rockwell, B.W., Haire, S.L., King, T.V.V. (2007) Characterization of post fire surface cover, soils, and burn severity at the Cerro Grande fire, New Mexico, using hyperspectral and multispectral remote sensing. Remote Sensing of the Environment, 106: 305-325. Lewis, S.A., Hudak, A.T., Ottmar, R.D., Robichaud, P.R., Lentile, L.B., Hood, S.M., Cronan, J.B., Morgan, P. (2012) Using hyperspectral imagery to estimate forest floor consumption from wildfire in boreal forests of Alaska. International Journal of Wildland Fire, 20: 255-271. Lewis, S.A., Robichaud, P.R., Frazier, B.E., Wu, J.Q., Laes, D.Y.M. (2008) Using hyperspectral imagery to predict post-wildfire soil repellency. Geomorphology, 98, 192-205. Miller, J.D., Yool, S. (2002) Mapping forest post-fire canopy consumption in several overstory types using multi-temporal Landsat TM and ETM data. Remote Sensing of the Environment, 82: 481-496. Outeiro, L., Aspero, F., Ubeda, X. (2008) Geostatistical methods to study spatial variability of soil cation after a prescribed fire and rainfall. Catena, 74: 310-320. Parsons, A., Robichaud, P.R., Lewis, S.A., Napper, C., Clark, J.T. (2010) Field guide for mapping post-fire soil

  17. School Fires. Topical Fire Research Series. Volume 8, Issue 1

    ERIC Educational Resources Information Center

    US Department of Homeland Security, 2007

    2007-01-01

    Using the past 3 years of data, for 2003 to 2005, from the National Fire Incident Reporting System (NFIRS) database, the yearly national fire loss for fires on nonadult school properties is estimated at $85 million. Such losses are the result of an estimated annual average of 14,700 fires that required a fire department response. Fires on school…

  18. Tuberculosis among Children in Alaska.

    ERIC Educational Resources Information Center

    Gessner, Bradford D.

    1997-01-01

    The incidence of tuberculosis among Alaskan children under 15 was more than twice the national rate, with Alaska Native children showing a much higher incidence. Children with household exposure to adults with active tuberculosis had a high risk of infection. About 22 percent of pediatric tuberculosis cases were identified through school…

  19. Tularemia in Alaska, 1938 - 2010

    PubMed Central

    2011-01-01

    Tularemia is a serious, potentially life threatening zoonotic disease. The causative agent, Francisella tularensis, is ubiquitous in the Northern hemisphere, including Alaska, where it was first isolated from a rabbit tick (Haemophysalis leporis-palustris) in 1938. Since then, F. tularensis has been isolated from wildlife and humans throughout the state. Serologic surveys have found measurable antibodies with prevalence ranging from < 1% to 50% and 4% to 18% for selected populations of wildlife species and humans, respectively. We reviewed and summarized known literature on tularemia surveillance in Alaska and summarized the epidemiological information on human cases reported to public health officials. Additionally, available F. tularensis isolates from Alaska were analyzed using canonical SNPs and a multi-locus variable-number tandem repeats (VNTR) analysis (MLVA) system. The results show that both F. t. tularensis and F. t. holarctica are present in Alaska and that subtype A.I, the most virulent type, is responsible for most recently reported human clinical cases in the state. PMID:22099502

  20. Tularemia in Alaska, 1938 - 2010.

    PubMed

    Hansen, Cristina M; Vogler, Amy J; Keim, Paul; Wagner, David M; Hueffer, Karsten

    2011-01-01

    Tularemia is a serious, potentially life threatening zoonotic disease. The causative agent, Francisella tularensis, is ubiquitous in the Northern hemisphere, including Alaska, where it was first isolated from a rabbit tick (Haemophysalis leporis-palustris) in 1938. Since then, F. tularensis has been isolated from wildlife and humans throughout the state. Serologic surveys have found measurable antibodies with prevalence ranging from < 1% to 50% and 4% to 18% for selected populations of wildlife species and humans, respectively. We reviewed and summarized known literature on tularemia surveillance in Alaska and summarized the epidemiological information on human cases reported to public health officials. Additionally, available F. tularensis isolates from Alaska were analyzed using canonical SNPs and a multi-locus variable-number tandem repeats (VNTR) analysis (MLVA) system. The results show that both F. t. tularensis and F. t. holarctica are present in Alaska and that subtype A.I, the most virulent type, is responsible for most recently reported human clinical cases in the state. PMID:22099502

  1. A Title I Refinement: Alaska.

    ERIC Educational Resources Information Center

    Hazelton, Alexander E.; And Others

    Through joint planning with a number of school districts and the Region X Title I Technical Assistance Center, and with the help of a Title I Refinement grant, Alaska has developed a system of data storage and retrieval using microcomputers that assists small school districts in the evaluation and reporting of their Title I programs. Although this…

  2. Adventures in the Alaska Economy.

    ERIC Educational Resources Information Center

    Jackstadt, Steve; Huskey, Lee

    This publication was developed to increase students' understanding of basic economic concepts and the historical development of Alaska's economy. Comics depict major historical events as they occurred, but specific characters are fictionalized. Each of nine episodes is accompanied by several pages of explanatory text, which enlarges on the episode…

  3. Leafhoppers and potatoes in Alaska

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research conducted from 2004 to 2006 in the main potato production areas of Alaska resulted in the identification of 41 leafhopper species associated with agricultural settings. Two species, Davisonia snowi (Dorst) and Macrosteles fascifrons (Stål), made up approximately 60% of the total number of i...

  4. Alaska and Bering Sea Bloom

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Alaska was relatively clear as was part of the Bering Sea where the aquamarine bloom is still visible in this SeaWiFS image. Credit: Provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  5. Fires Scorch Oregon

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On Wednesday, August 7, 2002, two large Oregon fires merged into a single massive fire of more than 333,000 acres. In southwest Oregon, the Sour Biscuit fire on the Oregon-California state line, and the larger Florence Fire to its north closed the gap between them and created an enormous blaze that retained the name Biscuit Fire. The fire has burned over the Oregon state line into California. This image of the fires and thick smoke was captured by the landsat 7 Enhanced Thematic Mapper Plus on August 14, 2002. In this false-color iamge, vegetation is green, burned areas are deep magenta, actively burning fire is bright pink, and smoke is blue. Credit:Image provided by the USGS EROS Data Center Satellite Systems Branch.

  6. FIRE Data and Information

    Atmospheric Science Data Center

    2015-11-13

    ... The First ISCCP Regional Experiment ( FIRE ) is a series of field missions which have collected cirrus and marine stratocumulus ... Marine Stratocumulus Home Page FIRE I - Extended Time Observations Home Page SCAR-B Block:  ...

  7. Wildland Fire Safety

    MedlinePlus

    Wildland Fire Safety Every year, wildfires burn across the U.S., and more and more people are living where wildfires ... including garages and sheds. If it can catch fire, don’t let it touch your house, deck ...

  8. South America Fire Observations

    NASA Video Gallery

    From space, we can understand fires in ways that are impossible from the ground. NASA research has contributed to much improved detection of fire for scientific purposes using satellite remote sens...

  9. Factors associated with pilot fatality in work-related aircraft crashes, Alaska, 1990-1999.

    PubMed

    Bensyl, D M; Moran, K; Conway, G A

    2001-12-01

    Work-related aircraft crashes are the leading cause of occupational fatality in Alaska, with civilian pilots having the highest fatality rate (410/100,000/year). To identify factors affecting survivability, the authors examined work-related aircraft crashes that occurred in Alaska in the 1990s (1990-1999), comparing crashes with pilot fatalities to crashes in which the pilot survived. Using data from National Transportation Safety Board reports, the authors carried out logistic regression analysis with the following variables: age, flight experience, use of a shoulder restraint, weather conditions (visual flight vs. instrument flight), light conditions (daylight vs. darkness), type of aircraft (airplane vs. helicopter), postcrash fire, crash location (airport vs. elsewhere), and state of residence. In the main-effects model, significant associations were found between fatality and postcrash fire (adjusted odds ratio (AOR) = 6.43, 95% confidence interval (CI): 2.38, 17.37), poor weather (AOR = 4.11, 95% CI: 2.15, 7.87), and non-Alaska resident status (AOR = 2.10, 95% CI: 1.05, 4.20). Protective effects were seen for shoulder restraint use (AOR = 0.40, 95% CI: 0.21, 0.77) and daylight versus darkness (AOR = 0.50, 95% CI: 0.25, 0.99). The finding that state of residence was associated with survivability offers new information on pilot survivability in work-related aircraft crashes in Alaska. These results may be useful in targeting safety interventions for pilots who fly occupationally in Alaska or in similar environments. PMID:11724720

  10. Hydrogen Fire Imager

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Through NASA's Technology Transfer Office at Stennis Space Center, two SSC engineers were able to market their hand-held fire imager. Called FIRESCAPE, the device allows firefighters to 'see' the invisible flames of hydrogen and alcohol fires in the daylight, as well as to find victims and burning embers in dense smoke and fog. SafetySCAN, which specializes in fire safety electronic products, will make the device the first affordable commercial product for fire imaging.

  11. The human dimension of fire regimes on Earth.

    PubMed

    Bowman, David M J S; Balch, Jennifer; Artaxo, Paulo; Bond, William J; Cochrane, Mark A; D'Antonio, Carla M; Defries, Ruth; Johnston, Fay H; Keeley, Jon E; Krawchuk, Meg A; Kull, Christian A; Mack, Michelle; Moritz, Max A; Pyne, Stephen; Roos, Christopher I; Scott, Andrew C; Sodhi, Navjot S; Swetnam, Thomas W; Whittaker, Robert

    2011-12-01

    Humans and their ancestors are unique in being a fire-making species, but 'natural' (i.e. independent of humans) fires have an ancient, geological history on Earth. Natural fires have influenced biological evolution and global biogeochemical cycles, making fire integral to the functioning of some biomes. Globally, debate rages about the impact on ecosystems of prehistoric human-set fires, with views ranging from catastrophic to negligible. Understanding of the diversity of human fire regimes on Earth in the past, present and future remains rudimentary. It remains uncertain how humans have caused a departure from 'natural' background levels that vary with climate change. Available evidence shows that modern humans can increase or decrease background levels of natural fire activity by clearing forests, promoting grazing, dispersing plants, altering ignition patterns and actively suppressing fires, thereby causing substantial ecosystem changes and loss of biodiversity. Some of these contemporary fire regimes cause substantial economic disruptions owing to the destruction of infrastructure, degradation of ecosystem services, loss of life, and smoke-related health effects. These episodic disasters help frame negative public attitudes towards landscape fires, despite the need for burning to sustain some ecosystems. Greenhouse gas-induced warming and changes in the hydrological cycle may increase the occurrence of large, severe fires, with potentially significant feedbacks to the Earth system. Improved understanding of human fire regimes demands: (1) better data on past and current human influences on fire regimes to enable global comparative analyses, (2) a greater understanding of different cultural traditions of landscape burning and their positive and negative social, economic and ecological effects, and (3) more realistic representations of anthropogenic fire in global vegetation and climate change models. We provide an historical framework to promote understanding

  12. The human dimension of fire regimes on Earth

    USGS Publications Warehouse

    Bowman, David M.J.S.; Balch, Jennifer; Artaxo, Paulo; Bond, William J.; Cochrane, Mark A.; D'Antonio, Carla M.; DeFries, Ruth; Johnston, Fay H.; Keeley, Jon E.; Krawchuk, Meg A.; Kull, Christian A.; Michelle, Mack; Moritz, Max A.; Pyne, Stephen; Roos, Christopher I.; Scott, Andrew C.; Sodhi, Navjot S.; Swetnam, Thomas W.

    2011-01-01

    Humans and their ancestors are unique in being a fire-making species, but 'natural' (i.e. independent of humans) fires have an ancient, geological history on Earth. Natural fires have influenced biological evolution and global biogeochemical cycles, making fire integral to the functioning of some biomes. Globally, debate rages about the impact on ecosystems of prehistoric human-set fires, with views ranging from catastrophic to negligible. Understanding of the diversity of human fire regimes on Earth in the past, present and future remains rudimentary. It remains uncertain how humans have caused a departure from 'natural' background levels that vary with climate change. Available evidence shows that modern humans can increase or decrease background levels of natural fire activity by clearing forests, promoting grazing, dispersing plants, altering ignition patterns and actively suppressing fires, thereby causing substantial ecosystem changes and loss of biodiversity. Some of these contemporary fire regimes cause substantial economic disruptions owing to the destruction of infrastructure, degradation of ecosystem services, loss of life, and smoke-related health effects. These episodic disasters help frame negative public attitudes towards landscape fires, despite the need for burning to sustain some ecosystems. Greenhouse gas-induced warming and changes in the hydrological cycle may increase the occurrence of large, severe fires, with potentially significant feedbacks to the Earth system. Improved understanding of human fire regimes demands: (1) better data on past and current human influences on fire regimes to enable global comparative analyses, (2) a greater understanding of different cultural traditions of landscape burning and their positive and negative social, economic and ecological effects, and (3) more realistic representations of anthropogenic fire in global vegetation and climate change models. We provide an historical framework to promote understanding

  13. Crisis management of fire in the OR.

    PubMed

    Seifert, Patricia C; Peterson, Erik; Graham, Karen

    2015-02-01

    Fire in the OR is a life-threatening emergency that demands prompt, coordinated, and effective interventions. Specific applications of fire protocols and guidelines for perioperative nurses and their interprofessional colleagues may take several approaches. The perioperative nurse’s role is one that can frequently prevent or ameliorate the damaging thermal effects of a fire. For example, to some degree, the nurse can control all three components of the fire triangle: the ignition sources used during surgery (eg, fiberoptic lights, ESU devices), the oxidizers (eg, room air, supplemental oxygen administered during procedures under straight local anesthesia), and the fuel sources (eg, alcohol-based prep solutions). Although all members of the surgical team play an important role, the ability of and the opportunity for the nurse to minimize the risks of fire are important patient safety attributes of the nurse. Team training, rehearsing appropriate actions, and reacting effectively are essential to preparing health care providers to respond in emergent situations and be able to deliver optimal care. In most jurisdictions, any fired--regardless of size--must be reported to the local fire department. Personnel, managers, and administrators should be prepared also for the possibility of participating in postcrisis evaluations by the fire marshal, The Joint Commission, the Occupational Safety and Health Administration, Centers for Medicare & Medicaid Services, and possibly other fire safety-related organizations. Additionally, supplemental information related to investigating a fire is available through the ECRI Institute.28 The ECRI Institute serves as a third-party investigator and can facilitate root-cause analyses, identify whether the crisis ought to be reported and to whom, and assist in restoring clinical operations. PMID:25645041

  14. Volcano seismicity in Alaska

    NASA Astrophysics Data System (ADS)

    Buurman, Helena

    I examine the many facets of volcano seismicity in Alaska: from the short-lived eruption seismicity that is limited to only the few weeks during which a volcano is active, to the seismicity that occurs in the months following an eruption, and finally to the long-term volcano seismicity that occurs in the years in which volcanoes are dormant. I use the rich seismic dataset that was recorded during the 2009 eruption of Redoubt Volcano to examine eruptive volcano seismicity. I show that the progression of magma through the conduit system at Redoubt could be readily tracked by the seismicity. Many of my interpretations benefited greatly from the numerous other datasets collected during the eruption. Rarely was there volcanic activity that did not manifest itself in some way seismically, however, resulting in a remarkably complete chronology within the seismic record of the 2009 eruption. I also use the Redoubt seismic dataset to study post-eruptive seismicity. During the year following the eruption there were a number of unexplained bursts of shallow seismicity that did not culminate in eruptive activity despite closely mirroring seismic signals that had preceded explosions less than a year prior. I show that these episodes of shallow seismicity were in fact related to volcanic processes much deeper in the volcanic edifice by demonstrating that earthquakes that were related to magmatic activity during the eruption were also present during the renewed shallow unrest. These results show that magmatic processes can continue for many months after eruptions end, suggesting that volcanoes can stay active for much longer than previously thought. In the final chapter I characterize volcanic earthquakes on a much broader scale by analyzing a decade of continuous seismic data across 46 volcanoes in the Aleutian arc to search for regional-scale trends in volcano seismicity. I find that volcanic earthquakes below 20 km depth are much more common in the central region of the arc

  15. Fire Education Planning.

    ERIC Educational Resources Information Center

    National Fire Prevention and Control Administration (DOC), Washington, DC.

    This curriculum guide for public fire educators was developed to assist them in planning and implementing fire educational programs for older Americans (over 65), adults, youthful firesetters, and children. This booklet's content is in four parts: (1) Over 65 and Fire Safety discusses five broad questions which provide the framework for planning…

  16. Fire Prevention Education.

    ERIC Educational Resources Information Center

    Ehmann, Jeanne; Claus, William C.

    The fire prevention education bulletin helps schools continue their work to make the home, school, and community safe places in which to live and to help children and young people live in safe ways without developing undue fears. Briefly discussed are the goals of a fire prevention program, who should be concerned with fire prevention education,…

  17. Fire as Technology

    ERIC Educational Resources Information Center

    Rudolph, Robert N.

    2011-01-01

    In this article, the author describes a project that deals with fire production as an aspect of technology. The project challenges students to be survivors in a five-day classroom activity. Students research various materials and methods to produce fire without the use of matches or other modern combustion devices, then must create "fire" to keep…

  18. Fire Safety Fundamentals

    ERIC Educational Resources Information Center

    Roy, Ken

    2004-01-01

    Planning and prevention is the best defense against fires in school. This is particularly true in the science laboratory due to the presence of flammable gases, liquids, combustibles, and other potential sources of fire. Teachers can prevent fires from starting by maintaining prudent lab practices when dealing with combustible and flammable…

  19. Quantifying the Distribution and Landscape Controls of Peatlands and Organic Layer Thickness within Alaska

    NASA Astrophysics Data System (ADS)

    Wylie, B. K.; Pastick, N.; Jorgenson, T.; Nield, S.; Johnson, K. D.

    2014-12-01

    The northern circumpolar region is estimated to contain 50 % of the global belowground carbon pool and is experiencing climate change at rates higher than anywhere else globally. Surface organic horizons associated with these immense carbon pools are important to ecosystem functioning in terms of soil moisture and temperature regulations, permafrost degradation, successional trajectories, and soil respiration levels. However, fire-induced changes to surface organics and their distribution are poorly understood, especially on landscape scales. These ambiguities make future predictions uncertain for these significant carbon pools, which have the potential for significant feedbacks to global warming. Moreover, given the significant impacts and increasing severity and amount of fires in boreal systems, the spatial quantification of post-fire surface organic thickness is important for ecosystem model calibrations and comparisons, and can improve future projections of vegetation types and albedo, carbon stocks and fluxes, and future thaw depths. Here we present the results of pioneering studies that quantified the distribution and controls of peatlands and soil organic layer thickness in Alaska through the use of statistical models, field data, spatial analyses, and remote sensing (Landsat). Our empirical modeling approach enabled us to produce medium-resolution (30-m pixels) maps of peatlands and organic layer thickness throughout Alaska, which is important for land management practices and enhances the understanding of the risk and feedbacks associated with fires and climate feedbacks.

  20. 33 CFR 149.419 - Can the water supply for the helicopter deck fire protection system be part of a fire water system?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Service regulations under 30 CFR 250.803; or (2) The fire main system under § 149.415. (b) If the water... requirements for fire mains in 46 CFR 108.415 through 108.429. ...: DESIGN, CONSTRUCTION, AND EQUIPMENT Firefighting and Fire Protection Equipment Firefighting...