Science.gov

Sample records for alaska geochemical database

  1. Alaska Geochemical Database (AGDB)-Geochemical data for rock, sediment, soil, mineral, and concentrate sample media

    USGS Publications Warehouse

    Granitto, Matthew; Bailey, Elizabeth A.; Schmidt, Jeanine M.; Shew, Nora B.; Gamble, Bruce M.; Labay, Keith A.

    2011-01-01

    The Alaska Geochemical Database (AGDB) was created and designed to compile and integrate geochemical data from Alaska in order to facilitate geologic mapping, petrologic studies, mineral resource assessments, definition of geochemical baseline values and statistics, environmental impact assessments, and studies in medical geology. This Microsoft Access database serves as a data archive in support of present and future Alaskan geologic and geochemical projects, and contains data tables describing historical and new quantitative and qualitative geochemical analyses. The analytical results were determined by 85 laboratory and field analytical methods on 264,095 rock, sediment, soil, mineral and heavy-mineral concentrate samples. Most samples were collected by U.S. Geological Survey (USGS) personnel and analyzed in USGS laboratories or, under contracts, in commercial analytical laboratories. These data represent analyses of samples collected as part of various USGS programs and projects from 1962 to 2009. In addition, mineralogical data from 18,138 nonmagnetic heavy mineral concentrate samples are included in this database. The AGDB includes historical geochemical data originally archived in the USGS Rock Analysis Storage System (RASS) database, used from the mid-1960s through the late 1980s and the USGS PLUTO database used from the mid-1970s through the mid-1990s. All of these data are currently maintained in the Oracle-based National Geochemical Database (NGDB). Retrievals from the NGDB were used to generate most of the AGDB data set. These data were checked for accuracy regarding sample location, sample media type, and analytical methods used. This arduous process of reviewing, verifying and, where necessary, editing all USGS geochemical data resulted in a significantly improved Alaska geochemical dataset. USGS data that were not previously in the NGDB because the data predate the earliest USGS geochemical databases, or were once excluded for programmatic reasons

  2. Alaska Geochemical Database - Mineral Exploration Tool for the 21st Century - PDF of presentation

    USGS Publications Warehouse

    Granitto, Matthew; Schmidt, Jeanine M.; Labay, Keith A.; Shew, Nora B.; Gamble, Bruce M.

    2012-01-01

    The U.S. Geological Survey has created a geochemical database of geologic material samples collected in Alaska. This database is readily accessible to anyone with access to the Internet. Designed as a tool for mineral or environmental assessment, land management, or mineral exploration, the initial version of the Alaska Geochemical Database - U.S. Geological Survey Data Series 637 - contains geochemical, geologic, and geospatial data for 264,158 samples collected from 1962-2009: 108,909 rock samples; 92,701 sediment samples; 48,209 heavy-mineral-concentrate samples; 6,869 soil samples; and 7,470 mineral samples. In addition, the Alaska Geochemical Database contains mineralogic data for 18,138 nonmagnetic-fraction heavy mineral concentrates, making it the first U.S. Geological Survey database of this scope that contains both geochemical and mineralogic data. Examples from the Alaska Range will illustrate potential uses of the Alaska Geochemical Database in mineral exploration. Data from the Alaska Geochemical Database have been extensively checked for accuracy of sample media description, sample site location, and analytical method using U.S. Geological Survey sample-submittal archives and U.S. Geological Survey publications (plus field notebooks and sample site compilation base maps from the Alaska Technical Data Unit in Anchorage, Alaska). The database is also the repository for nearly all previously released U.S. Geological Survey Alaska geochemical datasets. Although the Alaska Geochemical Database is a fully relational database in Microsoft® Access 2003 and 2010 formats, these same data are also provided as a series of spreadsheet files in Microsoft® Excel 2003 and 2010 formats, and as ASCII text files. A DVD version of the Alaska Geochemical Database was released in October 2011, as U.S. Geological Survey Data Series 637, and data downloads are available at http://pubs.usgs.gov/ds/637/. Also, all Alaska Geochemical Database data have been incorporated into

  3. National Geochemical Database, U.S. Geological Survey RASS (Rock Analysis Storage System) geochemical data for Alaska

    USGS Publications Warehouse

    Bailey, E.A.; Smith, D.B.; Abston, C.C.; Granitto, Matthew; Burleigh, K.A.

    1999-01-01

    This dataset contains geochemical data for Alaska produced by the analytical laboratories of the Geologic Division of the U.S. Geological Survey (USGS). These data represent analyses of stream-sediment, heavy-mineral-concentrate (derived from stream sediment), soil, and organic material samples. Most of the data comes from mineral resource investigations conducted in the Alaska Mineral Resource Assessment Program (AMRAP). However, some of the data were produced in support of other USGS programs. The data were originally entered into the in-house Rock Analysis Storage System (RASS) database. The RASS database, which contains over 580,000 data records, was used by the Geologic Division from the early 1970's through the late 1980's to archive geochemical data. Much of the data have been previously published in paper copy USGS Open-File Reports by the submitter or the analyst but some of the data have never been published. Over the years, USGS scientists recognized several problems with the database. The two primary issues were location coordinates (either incorrect or lacking) and sample media (not precisely identified). This dataset represents a re-processing of the original RASS data to make the data accessible in digital format and more user friendly. This re-processing consisted of checking the information on sample media and location against the original sample submittal forms, the original analytical reports, and published reports. As necessary, fields were added to the original data to more fully describe the sample preparation methods used and sample medium analyzed. The actual analytical data were not checked in great detail, but obvious errors were corrected.

  4. Alaska Geochemical Database, Version 2.0 (AGDB2)--including “best value” data compilations for rock, sediment, soil, mineral, and concentrate sample media

    USGS Publications Warehouse

    Granitto, Matthew; Schmidt, Jeanine; Shew, Nora B.; Gamble, Bruce M.; Labay, Keith A.

    2013-01-01

    The Alaska Geochemical Database Version 2.0 (AGDB2) contains new geochemical data compilations in which each geologic material sample has one “best value” determination for each analyzed species, greatly improving speed and efficiency of use. Like the Alaska Geochemical Database (AGDB, http://pubs.usgs.gov/ds/637/) before it, the AGDB2 was created and designed to compile and integrate geochemical data from Alaska in order to facilitate geologic mapping, petrologic studies, mineral resource assessments, definition of geochemical baseline values and statistics, environmental impact assessments, and studies in medical geology. This relational database, created from the Alaska Geochemical Database (AGDB) that was released in 2011, serves as a data archive in support of present and future Alaskan geologic and geochemical projects, and contains data tables in several different formats describing historical and new quantitative and qualitative geochemical analyses. The analytical results were determined by 85 laboratory and field analytical methods on 264,095 rock, sediment, soil, mineral and heavy-mineral concentrate samples. Most samples were collected by U.S. Geological Survey personnel and analyzed in U.S. Geological Survey laboratories or, under contracts, in commercial analytical laboratories. These data represent analyses of samples collected as part of various U.S. Geological Survey programs and projects from 1962 through 2009. In addition, mineralogical data from 18,138 nonmagnetic heavy-mineral concentrate samples are included in this database. The AGDB2 includes historical geochemical data originally archived in the U.S. Geological Survey Rock Analysis Storage System (RASS) database, used from the mid-1960s through the late 1980s and the U.S. Geological Survey PLUTO database used from the mid-1970s through the mid-1990s. All of these data are currently maintained in the National Geochemical Database (NGDB). Retrievals from the NGDB were used to generate

  5. An Alaska Soil Carbon Database

    NASA Astrophysics Data System (ADS)

    Johnson, Kristofer; Harden, Jennifer

    2009-05-01

    Database Collaborator's Meeting; Fairbanks, Alaska, 4 March 2009; Soil carbon pools in northern high-latitude regions and their response to climate changes are highly uncertain, and collaboration is required from field scientists and modelers to establish baseline data for carbon cycle studies. The Global Change Program at the U.S. Geological Survey has funded a 2-year effort to establish a soil carbon network and database for Alaska based on collaborations from numerous institutions. To initiate a community effort, a workshop for the development of an Alaska soil carbon database was held at the University of Alaska Fairbanks. The database will be a resource for spatial and biogeochemical models of Alaska ecosystems and will serve as a prototype for a nationwide community project: the National Soil Carbon Network (http://www.soilcarb.net). Studies will benefit from the combination of multiple academic and government data sets. This collaborative effort is expected to identify data gaps and uncertainties more comprehensively. Future applications of information contained in the database will identify specific vulnerabilities of soil carbon in Alaska to climate change, disturbance, and vegetation change.

  6. Geochemical and isotopic water results, Barrow, Alaska, 2012-2013

    DOE Data Explorer

    Heikoop, Jeff; Wilson, Cathy; Newman, Brent

    2012-07-18

    Data include a large suite of analytes (geochemical and isotopic) for samples collected in Barrow, Alaska (2012-2013). Sample types are indicated, and include soil pore waters, drainage waters, snowmelt, precipitation, and permafrost samples.

  7. TAPIR--Finnish national geochemical baseline database.

    PubMed

    Jarva, Jaana; Tarvainen, Timo; Reinikainen, Jussi; Eklund, Mikael

    2010-09-15

    In Finland, a Government Decree on the Assessment of Soil Contamination and Remediation Needs has generated a need for reliable and readily accessible data on geochemical baseline concentrations in Finnish soils. According to the Decree, baseline concentrations, referring both to the natural geological background concentrations and the diffuse anthropogenic input of substances, shall be taken into account in the soil contamination assessment process. This baseline information is provided in a national geochemical baseline database, TAPIR, that is publicly available via the Internet. Geochemical provinces with elevated baseline concentrations were delineated to provide regional geochemical baseline values. The nationwide geochemical datasets were used to divide Finland into geochemical provinces. Several metals (Co, Cr, Cu, Ni, V, and Zn) showed anomalous concentrations in seven regions that were defined as metal provinces. Arsenic did not follow a similar distribution to any other elements, and four arsenic provinces were separately determined. Nationwide geochemical datasets were not available for some other important elements such as Cd and Pb. Although these elements are included in the TAPIR system, their distribution does not necessarily follow the ones pre-defined for metal and arsenic provinces. Regional geochemical baseline values, presented as upper limit of geochemical variation within the region, can be used as trigger values to assess potential soil contamination. Baseline values have also been used to determine upper and lower guideline values that must be taken into account as a tool in basic risk assessment. If regional geochemical baseline values are available, the national guideline values prescribed in the Decree based on ecological risks can be modified accordingly. The national geochemical baseline database provides scientifically sound, easily accessible and generally accepted information on the baseline values, and it can be used in various

  8. The National Geochemical Survey; database and documentation

    USGS Publications Warehouse

    ,

    2004-01-01

    The USGS, in collaboration with other federal and state government agencies, industry, and academia, is conducting the National Geochemical Survey (NGS) to produce a body of geochemical data for the United States based primarily on stream sediments, analyzed using a consistent set of methods. These data will compose a complete, national-scale geochemical coverage of the US, and will enable construction of geochemical maps, refine estimates of baseline concentrations of chemical elements in the sampled media, and provide context for a wide variety of studies in the geological and environmental sciences. The goal of the NGS is to analyze at least one stream-sediment sample in every 289 km2 area by a single set of analytical methods across the entire nation, with other solid sample media substituted where necessary. The NGS incorporates geochemical data from a variety of sources, including existing analyses in USGS databases, reanalyses of samples in USGS archives, and analyses of newly collected samples. At the present time, the NGS includes data covering ~71% of the land area of the US, including samples in all 50 states. This version of the online report provides complete access to NGS data, describes the history of the project, the methodology used, and presents preliminary geochemical maps for all analyzed elements. Future editions of this and other related reports will include the results of analysis of variance studies, as well as interpretive products related to the NGS data.

  9. Geochemical evidence for a brooks range mineral belt, Alaska

    USGS Publications Warehouse

    Marsh, S.P.; Cathrall, J.B.

    1981-01-01

    Geochemical studies in the central Brooks Range, Alaska, delineate a regional, structurally controlled mineral belt in east-west-trending metamorphic rocks and adjacent metasedimentary rocks. The mineral belt extends eastward from the Ambler River quadrangle to the Chandalar and Philip Smith quadrangles, Alaska, from 147?? to 156??W. longitude, a distance of more than 375 km, and spans a width from 67?? to 69??N. latitude, a distance of more than 222 km. Within this belt are several occurrences of copper and molybdenum mineralization associated with meta-igneous, metasedimentary, and metavolcanic rocks; the geochemical study delineates target areas for additional occurrences. A total of 4677 stream-sediment and 2286 panned-concentrate samples were collected in the central Brooks Range, Alaska, from 1975 to 1979. The -80 mesh ( 2.86) nonmagnetic fraction of the panned concentrates from stream sediment were analyzed by semiquantitative spectrographic methods. Two geochemical suites were recognized in this investigation; a base-metal suite of copper-lead-zinc and a molybdenum suite of molybdenum-tin-tungsten. These suites suggest several types of mineralization within the metamorphic belt. Anomalies in molybdenum with associated Cu and W suggest a potential porphyry molybdenum system associated with meta-igneous rocks. This regional study indicates that areas of metaigneous rocks in the central metamorphic belt are target areas for potential mineralized porphyry systems and that areas of metavolcanic rocks are target areas for potential massive sulfide mineralization. ?? 1981.

  10. Argonne Geothermal Geochemical Database v2.0

    DOE Data Explorer

    Harto, Christopher

    2013-05-22

    A database of geochemical data from potential geothermal sources aggregated from multiple sources as of March 2010. The database contains fields for the location, depth, temperature, pH, total dissolved solids concentration, chemical composition, and date of sampling. A separate tab contains data on non-condensible gas compositions. The database contains records for over 50,000 wells, although many entries are incomplete. Current versions of source documentation are listed in the dataset.

  11. Coal database for Cook Inlet and North Slope, Alaska

    USGS Publications Warehouse

    Stricker, Gary D.; Spear, Brianne D.; Sprowl, Jennifer M.; Dietrich, John D.; McCauley, Michael I.; Kinney, Scott A.

    2011-01-01

    This database is a compilation of published and nonconfidential unpublished coal data from Alaska. Although coal occurs in isolated areas throughout Alaska, this study includes data only from the Cook Inlet and North Slope areas. The data include entries from and interpretations of oil and gas well logs, coal-core geophysical logs (such as density, gamma, and resistivity), seismic shot hole lithology descriptions, measured coal sections, and isolated coal outcrops.

  12. A geochemical perspective of Red Mountain: an unmined volcanogenic massive sulfide deposit in the Alaska Range

    USGS Publications Warehouse

    Giles, Stuart A.; Eppinger, Robert G.

    2014-01-01

    The U.S. Geological Survey (USGS) has investigated the environmental geochemistry of a group of unmined volcanogenic massive sulfide (VMS) deposits in the Bonnifield mining district, Alaska Range, east-central Alaska. The spectacularly colored Red Mountain deposit is the best exposed of these and provides excellent baseline geochemical data for natural environmental impacts of acidic rock drainage, metal dissolution and transport, and acidic salt and metal precipitation from an exposed and undisturbed VMS deposit.

  13. Geochemical databases: minding the pitfalls to avoid the pratfalls

    NASA Astrophysics Data System (ADS)

    Goldstein, S. L.; Hofmann, A. W.

    2011-12-01

    The field of geochemistry has been revolutionized in recent years by the advent of databases (PetDB, GEOROC, NAVDAT, etc). A decade ago, a geochemical synthesis required major time investments in order to compile relatively small amounts of fragmented data from large numbers of publications, Now virtually all of the published data on nearly any solid Earth topic can be downloaded to nearly any desktop computer with a few mouse clicks. Most solid Earth talks at international meetings show data compilations from these databases. Applications of the data are playing an increasingly important role in shaping our thinking about the Earth. They have changed some fundamental ideas about the compositional structure of the Earth (for example, showing that the Earth's "trace element depleted upper mantle" is not so depleted in trace elements). This abundance of riches also poses new risks. Until recently, important details associated with data publication (adequate metadata and quality control information) were given low priority, even in major journals. The online databases preserve whatever has been published, irrespective of quality. "Bad data" arises from many causes, here are a few. Some are associated with sample processing, including incomplete dissolution of refractory trace minerals, or inhomogeneous powders, or contamination of key elements during preparation (for example, this was a problem for lead when gasoline was leaded, and for niobium when tungsten-carbide mills were used to powder samples). Poor analytical quality is a continual problem (for example, when elemental abundances are at near background levels for an analytical method). Errors in published data tables (more common than you think) become bad data in the databases. The accepted values of interlaboratory standards change with time, while the published data based on old values stay the same. Thus the pitfalls associated with the new data accessibility are dangerous in the hands of the inexperienced

  14. Digital release of the Alaska Quaternary fault and fold database

    NASA Astrophysics Data System (ADS)

    Koehler, R. D.; Farrell, R.; Burns, P.; Combellick, R. A.; Weakland, J. R.

    2011-12-01

    The Alaska Division of Geological & Geophysical Surveys (DGGS) has designed a Quaternary fault and fold database for Alaska in conformance with standards defined by the U.S. Geological Survey for the National Quaternary fault and fold database. Alaska is the most seismically active region of the United States, however little information exists on the location, style of deformation, and slip rates of Quaternary faults. Thus, to provide an accurate, user-friendly, reference-based fault inventory to the public, we are producing a digital GIS shapefile of Quaternary fault traces and compiling summary information on each fault. Here, we present relevant information pertaining to the digital GIS shape file and online access and availability of the Alaska database. This database will be useful for engineering geologic studies, geologic, geodetic, and seismic research, and policy planning. The data will also contribute to the fault source database being constructed by the Global Earthquake Model (GEM), Faulted Earth project, which is developing tools to better assess earthquake risk. We derived the initial list of Quaternary active structures from The Neotectonic Map of Alaska (Plafker et al., 1994) and supplemented it with more recent data where available. Due to the limited level of knowledge on Quaternary faults in Alaska, pre-Quaternary fault traces from the Plafker map are shown as a layer in our digital database so users may view a more accurate distribution of mapped faults and to suggest the possibility that some older traces may be active yet un-studied. The database will be updated as new information is developed. We selected each fault by reviewing the literature and georegistered the faults from 1:250,000-scale paper maps contained in 1970's vintage and earlier bedrock maps. However, paper map scales range from 1:20,000 to 1:500,000. Fault parameters in our GIS fault attribute tables include fault name, age, slip rate, slip sense, dip direction, fault line type

  15. Database for volcanic processes and geology of Augustine Volcano, Alaska

    USGS Publications Warehouse

    McIntire, Jacqueline; Ramsey, David W.; Thoms, Evan; Waitt, Richard B.; Beget, James E.

    2012-01-01

    This digital release contains information used to produce the geologic map published as Plate 1 in U.S. Geological Survey Professional Paper 1762 (Waitt and Begét, 2009). The main component of this digital release is a geologic map database prepared using geographic information systems (GIS) applications. This release also contains links to files to view or print the map plate, accompanying measured sections, and main report text from Professional Paper 1762. It should be noted that Augustine Volcano erupted in 2006, after the completion of the geologic mapping shown in Professional Paper 1762 and presented in this database. Information on the 2006 eruption can be found in U.S. Geological Survey Professional Paper 1769. For the most up to date information on the status of Alaska volcanoes, please refer to the U.S. Geological Survey Volcano Hazards Program website.

  16. Geologic Field Notes, Geochemical Analyses, and Field Photographs of Outcrops and Rock Samples from the Big Delta B-1 Quadrangle, East-Central Alaska

    USGS Publications Warehouse

    Day, Warren C.; O'Neill, J. Michael

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Alaska Department of Natural Resources Division of Mining, Land, and Water, has released a geologic map of the Big Delta B-1 quadrangle of east-central Alaska (Day and others, 2007). This companion report presents the major element oxide and trace element geochemical analyses, including those for gold, silver, and base metals, for representative rock units and for grab samples from quartz veins and mineralized zones within the quadrangle. Also included are field station locations, field notes, structural data, and field photographs based primarily on observations by W.C. Day with additions by J.M. O'Neill and B.M. Gamble, all of the U.S. Geological Survey. The data are provided in both Microsoft Excel spread sheet format and as a Microsoft Access database.

  17. Geophysical and geochemical data from the area of the Pebble Cu-Au-Mo porphyry deposit, southwestern Alaska: Contributions to assessment techniques for concealed mineral resources

    USGS Publications Warehouse

    Anderson, E.D.; Smith, S.M.; Giles, S.A.; Granitto, Matthew; Eppinger, R.G.; Bedrosian, P.A.; Shah, A.K.; Kelley, K.D.; Fey, D.L.; Minsley, B.J.; Brown, P.J.

    2011-01-01

    In 2007, the U.S. Geological Survey began a multidisciplinary study in southwest Alaska to investigate the setting and detectability of mineral deposits in concealed volcanic and glacial terranes. The study area hosts the world-class Pebble porphyry Cu-Au-Mo deposit, and through collaboration with the Pebble Limited Partnership, a range of geophysical and geochemical investigations was carried out in proximity to the deposit. The deposit is almost entirely concealed by tundra, glacial deposits, and post-mineralization volcanic rocks. The discovery of mineral resources beneath cover is becoming more important because most of the mineral resources at the surface have already been discovered. Research is needed to identify ways in which to assess for concealed mineral resources. This report presents the uninterpreted geophysical measurements and geochemical and mineralogical analytical data from samples collected during the summer field seasons from 2007 to 2010, and makes the data available in a single Geographic Information System (GIS) database.

  18. Along-Strike Geochemical Variations in the Late Triassic Nikolai Magmatic System, Wrangellia, Central Alaska

    NASA Astrophysics Data System (ADS)

    Wypych, A.; Twelker, E.; Lande, L. L.; Newberry, R.

    2015-12-01

    The Nikolai Basalt and related mafic to ultramafic intrusions are one of the world's most complete and best exposed sections of a large igneous province (Amphitheater Mountains, Alaska), and have been explored for magmatic Ni-Cu-Co-PGE mineralization (Wellgreen deposit in the Kluane Ranges, Yukon Territory, and Eureka zone in the Eastern Alaska Range). The full extent of the basalts and the intrusions, as well as along-strike variations in the geochemical and petrological composition and the causes for those variations has yet to be fully established. To better understand the extent and magmatic architecture of this system, the Alaska Division of Geological & Geophysical Surveys conducted mapping and geochemical investigations of the province from 2013 through 2015 field seasons. We present major and trace element data from whole rock, olivine, and chromite from samples of Triassic basalts and intrusives collected over a 250 km along-strike transect. This data is used to answer questions about variations in magma generation, temperature of crystallization, and degree of fractional crystallization required to produce the Nikolai Basalts. Using chalcophile elements, we examine the history of sulfide solubility, further adding to our understanding of the processes of magma evolution and its influence on the formation of economic mineral deposits. Our initial findings corroborate the presence of two phases of magma generation and eruption, as well as along-strike variation in composition of these phases. We propose that the major along-strike variations are due to differences in amount of cumulate olivine and other late-stage processes. This magmatic architecture has important implications for exploration for magmatic sulfide deposits of nickel-copper and strategic and critical platinum group elements (PGEs) as it can help to better understand the occurrences and point to future possible deposits within the system.

  19. Regional Geochemical Results from the Reanalysis of NURE Stream Sediment Samples - Eagle 3? Quadrangle, East-Central Alaska

    USGS Publications Warehouse

    Crock, J.G.; Briggs, P.H.; Gough, L.P.; Wanty, R.B.; Brown, Z.A.

    2007-01-01

    This report presents reconnaissance geochemical data for a cooperative study in the Fortymile Mining District, east-central Alaska, initiated in 1997. This study has been funded by the U.S. Geological Survey (USGS) Mineral Resources Program. Cooperative funds were provided from various State of Alaska sources through the Alaska Department of Natural Resources. Results presented here represent the initial reconnaissance phase for this multidisciplinary cooperative study. In this phase, 239 sediment samples from the Eagle 3? Quadrangle of east-central Alaska, which had been collected and analyzed for the U.S. Department of Energy's National Uranium Resource Evaluation program (NURE) of the 1970's (Hoffman and Buttleman, 1996; Smith, 1997), are reanalyzed by newer analytical methods that are more sensitive, accurate, and precise (Arbogast, 1996; Taggart, 2002). The main objectives for the reanalysis of these samples were to establish lower limits of determination for some elements and to confirm the NURE data as a reliable predictive reconnaissance tool for future studies in Alaska's Eagle 3? Quadrangle. This study has wide implications for using the archived NURE samples and data throughout Alaska for future studies.

  20. A geochemical sampling technique for use in areas of active alpine glaciation: an application from the central Alaska Range

    USGS Publications Warehouse

    Stephens, G.C.; Evenson, E.B.; Detra, D.E.

    1990-01-01

    In mountainous regions containing extensive glacier systems there is a lack of suitable material for conventional geochemical sampling. As a result, in most geochemical sampling programs a few stream-sediment samples collected at, or near, the terminus of valley glaciers are used to evaluate the mineral potential of the glaciated area. We have developed and tested a technique which utilizes the medial moraines of valley glaciers for systematic geochemical exploration of the glacial catchment area. Moraine sampling provides geochemical information that is site-specific in that geochemical anomalies can be traced directly up-ice to bedrock sources. Traverses were made across the Trident and Susitna glaciers in the central Alaska Range where fine-grained (clay to sand size) samples were collected from each medial moraine. These samples were prepared and chemically analyzed to determine the concentration of specific elements. Fifty pebbles were collected at each moraine for archival purposes and for subsequent lithologic identification. Additionally, fifty cobbles and fifty boulders were examined and described at each sample site to determine the nature and abundance of lithologies present in the catchment area, the extent and nature of visible mineralization, the presence and intensity of hydrothermal alteration and the existence of veins, dikes and other minor structural features. Results from the central Alaska Range have delineated four distinct multi-element anomalies which are a response to potential mineralization up-ice from the medial moraine traverse. By integrating the lithologic, mineralogical and geochemical data the probable geological setting of the geochemical anomalies is determined. ?? 1990.

  1. Geochemical Data for Samples Collected in 2007 Near the Concealed Pebble Porphyry Cu-Au-Mo Deposit, Southwest Alaska

    USGS Publications Warehouse

    Fey, David L.; Granitto, Matthew; Giles, Stuart A.; Smith, Steven M.; Eppinger, Robert G.; Kelley, Karen D.

    2008-01-01

    In the summer of 2007, the U.S. Geological Survey (USGS) began an exploration geochemical research study over the Pebble porphyry copper-gold-molydenum (Cu-Au-Mo) deposit in southwest Alaska. The Pebble deposit is extremely large and is almost entirely concealed by tundra, glacial deposits, and post-Cretaceous volcanic and volcaniclastic rocks. The deposit is presently being explored by Northern Dynasty Minerals, Ltd., and Anglo-American LLC. The USGS undertakes unbiased, broad-scale mineral resource assessments of government lands to provide Congress and citizens with information on national mineral endowment. Research on known deposits is also done to refine and better constrain methods and deposit models for the mineral resource assessments. The Pebble deposit was chosen for this study because it is concealed by surficial cover rocks, it is relatively undisturbed (except for exploration company drill holes), it is a large mineral system, and it is fairly well constrained at depth by the drill hole geology and geochemistry. The goals of the USGS study are (1) to determine whether the concealed deposit can be detected with surface samples, (2) to better understand the processes of metal migration from the deposit to the surface, and (3) to test and develop methods for assessing mineral resources in similar concealed terrains. This report presents analytical results for geochemical samples collected in 2007 from the Pebble deposit and surrounding environs. The analytical data are presented digitally both as an integrated Microsoft 2003 Access? database and as Microsoft 2003 Excel? files. The Pebble deposit is located in southwestern Alaska on state lands about 30 km (18 mi) northwest of the village of Illiamna and 320 km (200 mi) southwest of Anchorage (fig. 1). Elevations in the Pebble area range from 287 m (940 ft) at Frying Pan Lake just south of the deposit to 1146 m (3760 ft) on Kaskanak Mountain about 5 km (5 mi) to the west. The deposit is in an area of

  2. Geochemical evidence for seasonal controls on the transportation of Holocene loess, Matanuska Valley, southern Alaska, USA

    NASA Astrophysics Data System (ADS)

    Muhs, Daniel R.; Budahn, James R.; Skipp, Gary L.; McGeehin, John P.

    2016-06-01

    Loess is a widespread Quaternary deposit in Alaska and loess accretion occurs today in some regions, such as the Matanuska Valley. The source of loess in the Matanuska Valley has been debated for more than seven decades, with the Knik River and the Matanuska River, both to the east, being the leading candidates and the Susitna River, to the west, as a less favorable source. We report here new stratigraphic, mineralogic, and geochemical data that test the competing hypotheses of these river sources. Loess thickness data are consistent with previous studies that show that a source or sources lay to the east, which rules out the Susitna River as a source. Knik and Matanuska River silts can be distinguished using Sc-Th-La, LaN/YbN vs. Eu/Eu∗, Cr/Sc, and As/Sb. Matanuska Valley loess falls clearly within the range of values for these ratios found in Matanuska River silt. Dust storms from the Matanuska River are most common in autumn, when river discharge is at a minimum and silt-rich point bars are exposed, wind speed from the north is beginning to increase after a low-velocity period in summer, snow depth is still minimal, and soil temperatures are still above freezing. Thus, seasonal changes in climate and hydrology emerge as critical factors in the timing of aeolian silt transport in southern Alaska. These findings could be applicable to understanding seasonal controls on Pleistocene loess accretion in Europe, New Zealand, South America, and elsewhere in North America.

  3. Geochemical evidence for seasonal controls on the transportation of Holocene loess, Matanuska Valley, southern Alaska, USA

    USGS Publications Warehouse

    Muhs, Daniel; Budahn, James R.; Skipp, Gary L.; McGeehin, John

    2016-01-01

    Loess is a widespread Quaternary deposit in Alaska and loess accretion occurs today in some regions, such as the Matanuska Valley. The source of loess in the Matanuska Valley has been debated for more than seven decades, with the Knik River and the Matanuska River, both to the east, being the leading candidates and the Susitna River, to the west, as a less favorable source. We report here new stratigraphic, mineralogic, and geochemical data that test the competing hypotheses of these river sources. Loess thickness data are consistent with previous studies that show that a source or sources lay to the east, which rules out the Susitna River as a source. Knik and Matanuska River silts can be distinguished using Sc–Th–La, LaN/YbN vs. Eu/Eu∗, Cr/Sc, and As/Sb. Matanuska Valley loess falls clearly within the range of values for these ratios found in Matanuska River silt. Dust storms from the Matanuska River are most common in autumn, when river discharge is at a minimum and silt-rich point bars are exposed, wind speed from the north is beginning to increase after a low-velocity period in summer, snow depth is still minimal, and soil temperatures are still above freezing. Thus, seasonal changes in climate and hydrology emerge as critical factors in the timing of aeolian silt transport in southern Alaska. These findings could be applicable to understanding seasonal controls on Pleistocene loess accretion in Europe, New Zealand, South America, and elsewhere in North America.

  4. Map and digital database of sedimentary basins and indications of petroleum in the Central Alaska Province

    USGS Publications Warehouse

    Troutman, Sandra M.; Stanley, Richard G.

    2003-01-01

    This database and accompanying text depict historical and modern reported occurrences of petroleum both in wells and at the surface within the boundaries of the Central Alaska Province. These data were compiled from previously published and unpublished sources and were prepared for use in the 2002 U.S. Geological Survey petroleum assessment of Central Alaska, Yukon Flats region. Indications of petroleum are described as oil or gas shows in wells, oil or gas seeps, or outcrops of oil shale or oil-bearing rock and include confirmed and unconfirmed reports. The scale of the source map limits the spatial resolution (scale) of the database to 1:2,500,000 or smaller.

  5. Overcoming Challenges to Making Data Re-Usable: The Example of Geochemical Databases

    NASA Astrophysics Data System (ADS)

    Rivera, T. A.; Lehnert, K. A.; Hsu, L.; Johansson, A. K.

    2011-12-01

    In the early 1990s, the call for systems in which geochemical data could be shared among the research community led to the development of rock-type specific databases, such as PetDB and GEOROC. However, as these and other databases have grown over the last decade, so have the challenges to preserving data integrity, particularly managing of sample metadata. Proper documentation and preservation of metadata are key to qualitative re-use of geochemical data, including the reproduction of the published results. As methodologies advance, and the number of new data-intensive publications increases, the need for documenting and standardizing metadata becomes critical. To date, data managers perform much of the data entry, largely through extracting the geochemical data and associated metadata from publications, as well as performing data quality control and validation. In many cases, especially with legacy data, essential metadata is either missing or becomes a matter of interpretation by the data manager. Following 10 years of data management experience, the Geoinformatics for Geochemistry (GfG) group has recognized four fundamental parameters needed to uphold data reliability: data source, sample information, analytical information, and method-specific information. With the advancement of digital data management and new data policies, the GfG group has begun to solicit the data directly from authors, using templates specifically focused on metadata capture. Once completed, the author uploads the template into the Geochemical Resource Library (GRL), where the data are curated for use by other researchers, educators, and for long-term preservation. From the GRL, a data manager can transfer the data into the appropriate domain database, making them searchable by an expanded audience. Although there are still limitations to the use of the templates, it is an attempt to work more closely with researchers so that the needs for data preservation are communicated and

  6. Geochemical and Sulfur-Isotopic Signatures of Volcanogenic Massive Sulfide Deposits on Prince of Wales Island and Vicinity, Southeastern Alaska

    USGS Publications Warehouse

    Slack, John F.; Shanks, Wayne C.; Karl, Susan M.; Gemery, Pamela A.; Bittenbender, Peter E.; Ridley, W. Ian

    2007-01-01

    Stratabound volcanogenic massive sulfide (VMS) deposits on Prince of Wales Island and vicinity, southeastern Alaska, occur in two volcanosedimentary sequences of Late Proterozoic through Cambrian and of Ordovician through Early Silurian age. This study presents geochemical data on sulfide-rich samples, in situ laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) of sulfide minerals, and sulfur-isotopic analyses of sulfides and sulfates (barite) for identifying and distinguishing between primary sea-floor signatures and later regional metamorphic overprints. These datasets are also used here in an attempt to discriminate the VMS deposits in the older Wales Group from those in the younger Moira Sound unit (new informal name). The Wales Group and its contained VMS deposits have been multiply deformed and metamorphosed from greenschist to amphibolite grade, whereas the Moira Sound unit and related VMS deposits are less deformed and generally less metamorphosed (lower to middle greenschist grade). Variations in the sulfide mineral assemblages and textures of the VMS deposits in both sequences reflect a combination of processes, including primary sea-floor mineralization and sub-sea-floor zone refining, followed by metamorphic recrystallization. Very coarse grained (>1 cm diam) sulfide minerals and abundant pyrrhotite are restricted to VMS deposits in a small area of the Wales Group, at Khayyam and Stumble-On, which record high-grade metamorphism of the sulfides. Geochemical and sulfur-isotopic data distinguish the VMS deposits in the Wales Group from those in the Moira Sound unit. Although base- and precious-metal contents vary widely in sulfide-rich samples from both sequences, samples from the Moira Sound generally have proportionately higher Ag contents relative to base metals and Au. In situ LA-ICP-MS analysis of trace elements in the sulfide minerals suggests that primary sea-floor hydrothermal signatures are preserved in some samples (for

  7. Thematic accuracy of the National Land Cover Database (NLCD) 2001 land cover for Alaska

    USGS Publications Warehouse

    Selkowitz, D.J.; Stehman, S.V.

    2011-01-01

    The National Land Cover Database (NLCD) 2001 Alaska land cover classification is the first 30-m resolution land cover product available covering the entire state of Alaska. The accuracy assessment of the NLCD 2001 Alaska land cover classification employed a geographically stratified three-stage sampling design to select the reference sample of pixels. Reference land cover class labels were determined via fixed wing aircraft, as the high resolution imagery used for determining the reference land cover classification in the conterminous U.S. was not available for most of Alaska. Overall thematic accuracy for the Alaska NLCD was 76.2% (s.e. 2.8%) at Level II (12 classes evaluated) and 83.9% (s.e. 2.1%) at Level I (6 classes evaluated) when agreement was defined as a match between the map class and either the primary or alternate reference class label. When agreement was defined as a match between the map class and primary reference label only, overall accuracy was 59.4% at Level II and 69.3% at Level I. The majority of classification errors occurred at Level I of the classification hierarchy (i.e., misclassifications were generally to a different Level I class, not to a Level II class within the same Level I class). Classification accuracy was higher for more abundant land cover classes and for pixels located in the interior of homogeneous land cover patches. ?? 2011.

  8. A Detailed Geochemical Study of Island Arc Crust: The Talkeetna Arc Section, South-central Alaska

    NASA Astrophysics Data System (ADS)

    Greene, A. R.; Debari, S. M.; Kelemen, P. B.; Clift, P. D.; Blusztajn, J.

    2002-12-01

    The Talkeetna arc section in south-central Alaska is recognized as the exposed upper mantle and crust of an accreted, Late Triassic to Middle Jurassic island arc. Detailed geochemical studies of layered gabbronorite from the middle and lower crust of this arc and a diverse suite of volcanic and plutonic rocks from the middle and upper crust provide crucial data for understanding arc magma evolution. We also present new data on parental magma compositions for the arc. The deepest level of the arc section consists of residual mantle and ultramafic cumulates adjacent to garnet gabbro and basal gabbronorite interlayered with pyroxenite. The middle crust is primarily layered gabbronorite, ranging from anorthosite to pyroxenite in composition, and is the most widespread plutonic lithology. The upper mid crust is a heterogenous assemblage of dioritic to tonalitic rocks mixed with gabbro and intruded by abundant mafic dikes and chilled pillows. The upper crust of the arc is comprised of volcanic rocks of the Talkeetna Formation ranging from basalt to rhyolite. Most of these volcanic rocks have evolved compositions (<5% MgO, Mg# <60) and overlap the composition of intermediate to felsic plutonic rocks (<3.5% MgO, Mg# <45). However, several chilled mafic rocks and one basalt have primitive characteristics (>8% MgO, Mg# >60). Ion microprobe analyses of clinopyroxene in mid-crustal layered gabbronorites have parallel REE patterns with positive-sloping LREE segments (La/Sm(N)=0.05-0.17; mean 0.11) and flat HREE segments (5-25xchondrite; mean 10xchondrite). Liquids in REE equilibrium with the clinopyroxene in these gabbronorite cumulates were calculated in order to constrain parental magmas. These calculated liquids(La/Sm(N)=0.77-1.83; mean 1.26) all fall within the range of dike and volcanic rock(La/Sm(N)=0.78-2.12; mean 1.23) compositions. However, three lavas out of the 44 we have analyzed show strong HREE depletion, which is not observed in any of the liquid compositions

  9. Analyzing legacy U.S. Geological Survey geochemical databases using GIS: applications for a national mineral resource assessment

    USGS Publications Warehouse

    Yager, Douglas B.; Hofstra, Albert H.; Granitto, Matthew

    2012-01-01

    This report emphasizes geographic information system analysis and the display of data stored in the legacy U.S. Geological Survey National Geochemical Database for use in mineral resource investigations. Geochemical analyses of soils, stream sediments, and rocks that are archived in the National Geochemical Database provide an extensive data source for investigating geochemical anomalies. A study area in the Egan Range of east-central Nevada was used to develop a geographic information system analysis methodology for two different geochemical datasets involving detailed (Bureau of Land Management Wilderness) and reconnaissance-scale (National Uranium Resource Evaluation) investigations. ArcGIS was used to analyze and thematically map geochemical information at point locations. Watershed-boundary datasets served as a geographic reference to relate potentially anomalous sample sites with hydrologic unit codes at varying scales. The National Hydrography Dataset was analyzed with Hydrography Event Management and ArcGIS Utility Network Analyst tools to delineate potential sediment-sample provenance along a stream network. These tools can be used to track potential upstream-sediment-contributing areas to a sample site. This methodology identifies geochemically anomalous sample sites, watersheds, and streams that could help focus mineral resource investigations in the field.

  10. National Geochemical Database reformatted data from the National Uranium Resource Evaluation (NURE) Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) program

    USGS Publications Warehouse

    Smith, Steven M.

    1997-01-01

    The National Uranium Resource Evaluation (NURE) Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) program produced a large amount of geochemical data. To fully understand how these data were generated, it is recommended that you read the History of NURE HSSR Program for a summary of the entire program. By the time the NURE program had ended, the HSSR data consisted of 894 separate data files stored with 47 different formats. Many files contained duplication of data found in other files. The University of Oklahoma's Information Systems Programs of the Energy Resources Institute (ISP) was contracted by the Department of Energy to enhance the accessibility and usefulness of the NURE HSSR data. ISP created a single standard-format master file to replace the 894 original files. ISP converted 817 of the 894 original files before its funding apparently ran out. The ISP-reformatted NURE data files have been released by the USGS on CD-ROM (Lower 48 States, Hoffman and Buttleman, 1994; Alaska, Hoffman and Buttleman, 1996). A description of each NURE database field, derived from a draft NURE HSSR data format manual (unpubl. commun., Stan Moll, ISP, Oct 7, 1988), was included in a readme file on each CD-ROM. That original manual was incomplete and assumed that the reformatting process had gone to completion. A lot of vital information was not included. Efforts to correct that manual and the NURE data revealed a large number of problems and missing data. As a result of the frustrating process of cleaning and re-cleaning data from the ISP-reformatted NURE files, a new NURE HSSR data format was developed. This work represents a totally new attempt to reformat the original NURE files into 2 consistent database structures; one for water samples and a second for sediment samples, on a quadrangle by quadrangle basis, from the original NURE files. Although this USGS-reformatted NURE HSSR data format is different than that created by the ISP, many of their ideas were

  11. Geochemical evidence for the origin of late Quaternary loess in central Alaska

    USGS Publications Warehouse

    Muhs, D.R.; Budahn, J.R.

    2006-01-01

    Loess is extensive in central Alaska, but there are uncertainties about its source and the direction of paleo-winds that deposited it. Both northerly and southerly winds have been inferred. The most likely sources of loess are the Tanana River (south), the Nenana River (southeast), and the Yukon River (north). Late Quaternary loess in central Alaska has immobile trace-element compositions (Cr/Sc, Th/Ta, Th/ Sc, Th/U, Eu/Eu*, GdN/YbN) that indicate derivation mostly from the Tanana River. However, other ratios (As/Sb, Zr/Hf, LaN/YbN) and quantitative modeling indicate that the Yukon River was also a source. During the last glacial period, there may have been a longer residence time of the Siberian and Canadian high-pressure cells, along with a strengthened Aleutian low-pressure cell. This would have generated regional-scale northeasterly winds and explains derivation of loess from the Yukon River. However, superim-posed upon this synoptic-scale circulation, there may have been strong, southerly katabatic winds from expanded glaciers on the northern flank of the Alaska Range. These winds could have provided eolian silt from the Tanana River. Yukon River and Tanana River sediments are highly calcareous, whereas Fairbanks-area loess is not. This suggests that carbonate leaching in loess kept ahead of sedimentation and that late Quaternary loess in central Alaska was deposited relatively slowly. ?? 2006 NRC Canada.

  12. The IRHUM database - bioavailable strontium isotope ratios of France for geochemical fingerprinting

    NASA Astrophysics Data System (ADS)

    Willmes, Malte; Moffat, Ian; Grün, Rainer; Armstrong, Richard; Kinsley, Les; McMorrow, Linda

    2013-04-01

    Strontium isotope ratios (87Sr/86Sr) are used as a geochemical tracer in a wide range of fields including archaeology, ecology, soil, food and forensic sciences. These applications are based on the principle that strontium isotopic ratios of materials reflect the geological sources of the strontium, which were available during its formation. Geologic regions with distinct strontium isotope ranges, which depend on their age and composition, can be differentiated. A major constraint for current studies is the lack of robust reference maps to evaluate the strontium isotope ratios measured in the samples. The aim of the IRHUM (isotopic reconstruction of human migration) database is to provide a reference map of bioavailable strontium isotope ratios for continental France. The current dataset contains 400 sample locations covering the major geologic units of the Paris and Aquitaine Basin, the Massif Central, and the Pyrenees. At each site soil and plant samples have been collected to cover the whole range of strontium ratios at a specific location. The database is available online at www.rses.anu.edu.au/research-areas/archaeogeochemistry and contains the bioavailable strontium isotope data as well as major and trace element concentrations for soil and plant samples. Strontium isotopes were analysed using a Neptune multi-collector inductively-coupled plasma mass spectrometer (MC-ICP-MS) and elemental concentrations with a Varian Vista Pro Axial ICP-AES (inductively-coupled plasma atomic emission spectrometer). In addition, IRHUM provides spatial context for each sample, including background geology, field observations and soil descriptions. This metadata allows users to evaluate the suitability of a specific data point for their study. The IRHUM database fills an important gap between high resolution studies from specific sites (e.g. archaeological sites), to the very broad geochemical mapping of Europe. Thus it provides an excellent tool to evaluate the regional context

  13. Composite geochemical database for coalbed methane produced water quality in the Rocky Mountain region.

    PubMed

    Dahm, Katharine G; Guerra, Katie L; Xu, Pei; Drewes, Jörg E

    2011-09-15

    Coalbed methane (CBM) or coalbed natural gas (CBNG) is an unconventional natural gas resource with large reserves in the United States (US) and worldwide. Production is limited by challenges in the management of large volumes of produced water. Due to salinity of CBM produced water, it is commonly reinjected into the subsurface for disposal. Utilization of this nontraditional water source is hindered by limited knowledge of water quality. A composite geochemical database was created with 3255 CBM wellhead entries, covering four basins in the Rocky Mountain region, and resulting in information on 64 parameters and constituents. Database water composition is dominated by sodium bicarbonate and sodium chloride type waters with total dissolved solids concentrations of 150 to 39,260 mg/L. Constituents commonly exceeding standards for drinking, livestock, and irrigation water applications were total dissolved solids (TDS), sodium adsorption ratio (SAR), temperature, iron, and fluoride. Chemical trends in the basins are linked to the type of coal deposits, the rank of the coal deposits, and the proximity of the well to fresh water recharge. These water composition trends based on basin geology, hydrogeology, and methane generation pathway are relevant to predicting water quality compositions for beneficial use applications in CBM-producing basins worldwide.

  14. Whole-rock and sulfide-mineral geochemical data for samples from volcanogenic massive sulfide deposits of the Bonnifield district, east-central Alaska

    USGS Publications Warehouse

    Dusel-Bacon, Cynthia; Slack, John F.; Koenig, Alan E.; Foley, Nora K.; Oscarson, Robert L.; Gans, Kathleen D.

    2011-01-01

    This Open-File Report presents geochemical data for outcrop and drill-core samples from volcanogenic massive sulfide deposits and associated metaigneous and metasedimentary rocks in the Wood River area of the Bonnifield mining district, northern Alaska Range, east-central Alaska. The data consist of major- and trace-element whole-rock geochemical analyses, and major- and trace-element analyses of sulfide minerals determined by electron microprobe and laser ablation—inductively coupled plasma—mass spectrometry (LA-ICP-MS) techniques. The PDF consists of text, appendix explaining the analytical methods used for the analyses presented in the data tables, a sample location map, and seven data tables. The seven tables are also available as spreadsheets in several file formats. Descriptions and discussions of the Bonnifield deposits are given in Dusel-Bacon and others (2004, 2005, 2006, 2007, 2010).

  15. MOSAIC: An organic geochemical and sedimentological database for marine surface sediments

    NASA Astrophysics Data System (ADS)

    Tavagna, Maria Luisa; Usman, Muhammed; De Avelar, Silvania; Eglinton, Timothy

    2015-04-01

    Modern ocean sediments serve as the interface between the biosphere and the geosphere, play a key role in biogeochemical cycles and provide a window on how contemporary processes are written into the sedimentary record. Research over past decades has resulted in a wealth of information on the content and composition of organic matter in marine sediments, with ever-more sophisticated techniques continuing to yield information of greater detail and as an accelerating pace. However, there has been no attempt to synthesize this wealth of information. We are establishing a new database that incorporates information relevant to local, regional and global-scale assessment of the content, source and fate of organic materials accumulating in contemporary marine sediments. In the MOSAIC (Modern Ocean Sediment Archive and Inventory of Carbon) database, particular emphasis is placed on molecular and isotopic information, coupled with relevant contextual information (e.g., sedimentological properties) relevant to elucidating factors that influence the efficiency and nature of organic matter burial. The main features of MOSAIC include: (i) Emphasis on continental margin sediments as major loci of carbon burial, and as the interface between terrestrial and oceanic realms; (ii) Bulk to molecular-level organic geochemical properties and parameters, including concentration and isotopic compositions; (iii) Inclusion of extensive contextual data regarding the depositional setting, in particular with respect to sedimentological and redox characteristics. The ultimate goal is to create an open-access instrument, available on the web, to be utilized for research and education by the international community who can both contribute to, and interrogate the database. The submission will be accomplished by means of a pre-configured table available on the MOSAIC webpage. The information on the filled tables will be checked and eventually imported, via the Structural Query Language (SQL), into

  16. Descriptions of mineral occurrences and interpretation of mineralized rock geochemical data in the Stikine geophysical survey area, Southeastern Alaska

    USGS Publications Warehouse

    Taylor, Cliff D.

    2003-01-01

    Detailed descriptions of some of the more significant mineral occurrences in the Stikine Airborne Geophysical Survey Project Area are presented based upon site-specific examinations by the U.S. Geological Survey in May of 1998. Reconnaissance geochemical data on unmineralized igneous and sedimentary host rocks, and mineralized rocks are also presented and are accompanied by a brief analysis of geochemical signatures typical of each occurrence. Consistent with the stated goal of the geophysical survey; to stimulate exploration for polymetallic massive sulfides similar to the Greens Creek deposit, the majority of the described occurrences are possible members of a belt of Late Triassic mineral deposits that are distributed along the eastern edge of the Alexander terrane in southeastern Alaska. Many of the described occurrences in the Duncan Canal-Zarembo Island area share similarities to the Greens Creek deposit. When considered as a whole, the geology, mineralogy, and geochemistry of these occurrences help to define a transitional portion of the Late Triassic mineral belt where changes in shallow to deeper water stratigraphy and arc-like to rift-related igneous rocks are accompanied by concomitant changes in the size, morphology, and metal endowments of the mineral occurrences. As a result, Late Triassic mineral occurrences in the area appear as: 1) small, discontinuous, structurally controlled stockwork veins in mafic volcanic rocks, 2) small, irregular replacements and stratabound horizons of diagenetic semi-massive sulfides in dolostones and calcareous shales, and as 3) larger, recognizably stratiform accumulations of baritic, semi-massive to massive sulfides at and near the contact between mafic volcanic rocks and overlying sedimentary rocks. Empirical exploration guidelines for Greens Creek-like polymetallic massive sulfide deposits in southeastern Alaska include: 1) a Late Triassic volcano-sedimentary host sequence exhibiting evidence of succession from

  17. Carbon and geochemical properties of cryosols on the North Slope of Alaska

    USGS Publications Warehouse

    Mu, Cuicui; Zhang, Tingjun; Schuster, Paul F.; Schaefer, Kevin; Wickland, Kimberly P.; Repert, Deborah A.; Liu, Lin; Schaefer, Tim; Cheng, Guodong

    2014-01-01

    Cryosols contain roughly 1700 Gt of Soil organic carbon (SOC) roughly double the carbon content of the atmosphere. As global temperature rises and permafrost thaws, this carbon reservoir becomes vulnerable to microbial decomposition, resulting in greenhouse gas emissions that will amplify anthropogenic warming. Improving our understanding of carbon dynamics in thawing permafrost requires more data on carbon and nitrogen content, soil physical and chemical properties and substrate quality in cryosols. We analyzed five permafrost cores obtained from the North Slope of Alaska during the summer of 2009. The relationship between SOC and soil bulk density can be adequately represented by a logarithmic function. Gas fluxes at − 5 °C and 5 °C were measured to calculate the temperature response quotient (Q10). Q10 and the respiration per unit soil C were higher in permafrost-affected soils than that in the active layer, suggesting that decomposition and heterotrophic respiration in cryosols may contribute more to global warming.

  18. Mt. St. Augustine, Alaska: Geochemical evolution of an eastern Aleutian volcanic center

    SciTech Connect

    Johnson, K.E. . Dept. of Geology); Harmon, R.S. . Kingsley Dunham Centre); Moorbath, S. . Dept. of Earth Sciences); Sigmarsson, O. )

    1993-04-01

    Mt. St. Augustine is a calc-alkaline Quaternary volcano, situated within Cook Inlet, Alaska. The island is composed of low- to medium-K andesite and dacite domes and pyroclastic flows. Major element variations indicate the magmatic evolution is dominantly influenced by fractionation and magma-mixing processes. Incompatible element and isotopic compositions suggest that despite its continental location, crustal assimilation is not significant factor in magmatic evolution. Alkali contents for Augustine are generally lower than elsewhere in the Aleutians (e.g. Augustine Cs/Rb = 0.016--0.024, K/Rb = 372--553; Aleutians Cs/Rb = 0.016--0.17, K/Rb = 231--745). Sr- and Nd-isotope ratios encompass narrow ranges ([sup 87]Sr/[sup 86]Sr = 0.70317--0.70343; [sup 143]Nd/[sup 144]Nd = 0.513011--0.513085), characteristic of uncontaminated mantle-derived melts. U-Th disequilibrium isotopic values also indicate little or no assimilation of evolved continental crust. Pb-isotopic ranges are also relatively restricted ([sup 206]Pb/[sup 204]Pb = 18.62--18.82; [sup 207]Pb/[sup 204]Pb = 15.54--15.57; [sup 208]Pb/[sup 204]Pb = 38.18--38.34) and comparison with north Pacific enriched (OIB) and depleted (MORB) mantle sources suggest the incorporation of only a small percentage of subducted terrigenous sediments. A model for Augustine magma genesis is proposed where parental magmas are generated by 5--20% partial melting of a lherzolite mantle with up to a 5% subducted terrigenous sediment component. The major influence of the thickened continental crust is to prevent the ascent and eruption of basaltic magma. The data exhibit no temporal variations, indicating that the magmatic system which produced the historic eruptions is well established.

  19. Factors controlling the geochemical evolution of fumarolic encrustations, Valley of Ten Thousand Smokes, Alaska

    USGS Publications Warehouse

    Kodosky, L.G.; Keith, T.E.C.

    1993-01-01

    Factor and canonical correlation analysis of geochemical data from eight fossil fumaroles suggest that six major factors controlled the formation and evolution of fumarolic encrustations on the 1912 ash-flow sheet in the Valley of Ten Thousand Smokes (VTTS). The six-factor solution model explains a large proportion (low of 74% for Ni to high of 99% for Si) of the individual element data variance. Although the primary fumarolic deposits have been degraded by secondary alteration reactions and up to 75 years of weathering, the relict encrustations still preserve a signature of vapor-phase element transport. This vapor-phase transport probably occurred as halide or oxyhalide species and was significant for As, Sb and Br. At least three, and possibly four, varied temperature leaching events affected the fumarolic deposits. High-temperature gases/liquids heavily altered the ejecta glass and mineral phases adjacent to the fumarolic conduit. As the fumaroles cooled. Fe-rich acidic condensate leached the ejecta and primary fumarolic deposits and resulted in the subsequent precipitation of Fe-hydroxides and/or Fe-oxides. Low- to ambient-temperature leaching and hydration reactions generated abundant hydrated amorphous phases. Up to 87% of the individual element data variance is apparently controlled by the chemistry of the ejecta on which the relict encrustations are found. This matrix chemistry factor illustrates that the primary fumarolic minerals surrounding the active VTTS vents observed by earlier workers have been effectively removed by the dissolution reactions. Element enrichment factors calculated for the VTTS relict encrustations support the statistical factor interpretations. On the average, the relict encrustations are enriched, relative to visibly unaltered matrix protolith, in As, Br, Cr, Sb, Cu, Ni, Pb, Fe, and LOI (an indirect measure of sample H2O content). ?? 1993.

  20. Factors controlling the geochemical evolution of fumarolic encrustations, Valley of Ten Thousand Smokes, Alaska

    NASA Astrophysics Data System (ADS)

    Kodosky, Lawrence G.; Keith, Terry E. C.

    1993-03-01

    Factor and canonical correlation analysis of geochemical data from eight fossil fumaroles suggest that six major factors controlled the formation and evolution of fumarolic encrustations on the 1912 ash-flow sheet in the Valley of Ten Thousand Smokes (VTTS). The six-factor solution model explains a large proportion (low of 74% for Ni to high of 99% for Si) of the individual element data variance. Although the primary fumarolic deposits have been degraded by secondary alteration reactions and up to 75 years of weathering, the relict encrustations still preserve a signature of vapor-phase element transport. This vapor-phase transport probably occurred as halide or oxyhalide species and was significant for As, Sb and Br. At least three, and possibly four, varied temperature leaching events affected the fumarolic deposits. High-temperature gases/liquids heavily altered the ejecta glass and mineral phases adjacent to the fumarolic conduit. As the fumaroles cooled. Fe-rich acidic condensate leached the ejecta and primary fumarolic deposits and resulted in the subsequent precipitation of Fe-hydroxides and/or Fe-oxides. Low- to ambient-temperature leaching and hydration reactions generated abundant hydrated amorphous phases. Up to 87% of the individual element data variance is apparently controlled by the chemistry of the ejecta on which the relict encrustations are found. This matrix chemistry factor illustrates that the primary fumarolic minerals surrounding the active VTTS vents observed by earlier workers have been effectively removed by the dissolution reactions. Element enrichment factors calculated for the VTTS relict encrustations support the statistical factor interpretations. On the average, the relict encrustations are enriched, relative to visibly unaltered matrix protolith, in As, Br, Cr, Sb, Cu, Ni, Pb, Fe, and LOI (an indirect measure of sample H 2O content).

  1. Geochemical controls of elevated arsenic concentrations in groundwater, Ester Dome, Fairbanks district, Alaska

    USGS Publications Warehouse

    Verplanck, P.L.; Mueller, S.H.; Goldfarb, R.J.; Nordstrom, D.K.; Youcha, E.K.

    2008-01-01

    Ester Dome, an upland area near Fairbanks, Alaska, was chosen for a detailed hydrogeochemical study because of the previously reported elevated arsenic in groundwater, and the presence of a large set of wells amenable to detailed sampling. Ester Dome lies within the Fairbanks mining district, where gold-bearing quartz veins, typically containing 2-3??vol.% sulfide minerals (arsenopyrite, stibnite, and pyrite), have been mined both underground and in open cuts. Gold-bearing veins on Ester Dome occur in shear zones and the sulfide minerals in these veins have been crushed to fine-grained material by syn- or post-mineralization movement. Groundwater at Ester Dome is circumneutral, Ca-HCO3 to Ca-SO4 type, and ranges from dilute (specific conductance of 48????S/cm) to more concentrated (specific conductance as high as 2070????S/cm). In general, solute concentrations increase down hydrologic gradient. Redox species indicate that the groundwaters range from oxic to sub-oxic (low dissolved oxygen, Fe(III) reduction, no SO4 reduction). Waters with the highest Fe concentrations, as high as 10.7??mg/L, are the most anoxic. Dissolved As concentrations range from < 1 to 1160????g/L, with a median value of 146????g/L. Arsenic concentrations are not correlated with specific conductance or Fe concentrations, suggesting that neither groundwater residence time, nor reductive dissolution of iron oxyhydroxides, control the arsenic chemistry. Furthermore, As concentrations do not covary with other constituents that form anions and oxyanions in solution (e.g., HCO3, Mo, F, or U) such that desorption of arsenic from clays or oxides also does not control arsenic mobility. Oxidation of arsenopyrite and dissolution of scorodite, in the near-surface environment appears to be the primary control of dissolved As in this upland area. More specifically, the elevated As concentrations are spatially associated with sulfidized shear zones and localities of gold-bearing quartz veins. Consistent with

  2. Regional Geochemical Results from Analyses of Stream-Water, Stream-Sediment, Soil, Soil-Water, Bedrock, and Vegetation Samples, Tangle Lakes District, Alaska

    USGS Publications Warehouse

    Wang, Bronwen; Gough, L.P.; Wanty, R.B.; Lee, G.K.; Vohden, James; O'Neill, J. M.; Kerin, L.J.

    2008-01-01

    We report chemical analyses of stream-water, stream-sediment, soil, soil-water, bedrock, and vegetation samples collected from the headwaters of the Delta River (Tangle Lakes District, Mount Hayes 1:250,000-scale quadrangle) in east-central Alaska for the period June 20-25, 2006. Additionally, we present mineralogic analyses of stream sediment, concentrated by panning. The study area includes the southwestward extent of the Bureau of Land Management (BLM) Delta River Mining District (Bittenbender and others, 2007), including parts of the Delta River Archeological District, and encompasses an area of about 500 km2(approximately bordered by the Denali Highway to the south, near Round Tangle Lake, northward to the foothills of the Alaska Range (fig. 1). The primary focus of this study was the chemical characterization of native materials, especially surface-water and sediment samples, of first-order streams from the headwaters of the Delta River. The impetus for this work was the need, expressed by the Alaska Department of Natural Resources (ADNR), for an inventory of geochemical and hydrogeochemical baseline information about the Delta River Mining District. This information is needed because of a major upturn in exploration, drilling, and general mineral-resources assessments in the region since the late 1990s. Currently, the study area, called the 'MAN Project' area is being explored by Pure Nickel, Inc. (http://www.purenickel.com/s/MAN_Alaska.asp), and includes both Cu-Au-Ag and Ni-Cu-PGE (Pt-Pd-Au-Ag) mining claims. Geochemical data on surface-water, stream-sediment, soil, soil-water, grayleaf willow (Salix glauca L.), and limited bedrock samples are provided along with the analytical methodologies used and panned-concentrate mineralogy. We are releasing the data at this time with only minimal interpretation.

  3. Alaska

    SciTech Connect

    Jones, B.C.; Sears, D.W.

    1981-10-01

    Twenty-five exploratory wells were drilled in Alaska in 1980. Five oil or gas discovery wells were drilled on the North Slope. One hundred and seventeen development and service wells were drilled and completed, primarily in the Prudhoe Bay and Kuparuk River fields on the North Slope. Geologic-geophysical field activity consisted of 115.74 crew months, an increase of almost 50% compared to 1979. These increases affected most of the major basins of the state as industry stepped up preparations for future lease sales. Federal acreage under lease increased slightly, while state lease acreage showed a slight decline. The year's oil production showed a increase of 16%, while gas production was down slightly. The federal land freeze in Alaska showed signs of thawing, as the US Department of Interior asked industry to identify areas of interest onshore for possible future leasing. National Petroleum Reserve in Alaska was opened to private exploration, and petroleum potential of the Arctic Wildlife Refuge will be studied. One outer continental shelf lease sale was held in the eastern Gulf of Alaska, and a series of state and federal lease sales were announced for the next 5 years. 5 figures, 5 tables.

  4. Statistical characterization of a large geochemical database and effect of sample size

    USGS Publications Warehouse

    Zhang, C.; Manheim, F. T.; Hinde, J.; Grossman, J.N.

    2005-01-01

    The authors investigated statistical distributions for concentrations of chemical elements from the National Geochemical Survey (NGS) database of the U.S. Geological Survey. At the time of this study, the NGS data set encompasses 48,544 stream sediment and soil samples from the conterminous United States analyzed by ICP-AES following a 4-acid near-total digestion. This report includes 27 elements: Al, Ca, Fe, K, Mg, Na, P, Ti, Ba, Ce, Co, Cr, Cu, Ga, La, Li, Mn, Nb, Nd, Ni, Pb, Sc, Sr, Th, V, Y and Zn. The goal and challenge for the statistical overview was to delineate chemical distributions in a complex, heterogeneous data set spanning a large geographic range (the conterminous United States), and many different geological provinces and rock types. After declustering to create a uniform spatial sample distribution with 16,511 samples, histograms and quantile-quantile (Q-Q) plots were employed to delineate subpopulations that have coherent chemical and mineral affinities. Probability groupings are discerned by changes in slope (kinks) on the plots. Major rock-forming elements, e.g., Al, Ca, K and Na, tend to display linear segments on normal Q-Q plots. These segments can commonly be linked to petrologic or mineralogical associations. For example, linear segments on K and Na plots reflect dilution of clay minerals by quartz sand (low in K and Na). Minor and trace element relationships are best displayed on lognormal Q-Q plots. These sensitively reflect discrete relationships in subpopulations within the wide range of the data. For example, small but distinctly log-linear subpopulations for Pb, Cu, Zn and Ag are interpreted to represent ore-grade enrichment of naturally occurring minerals such as sulfides. None of the 27 chemical elements could pass the test for either normal or lognormal distribution on the declustered data set. Part of the reasons relate to the presence of mixtures of subpopulations and outliers. Random samples of the data set with successively

  5. Alaska

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Though it's not quite spring, waters in the Gulf of Alaska (right) appear to be blooming with plant life in this true-color MODIS image from March 4, 2002. East of the Alaska Peninsula (bottom center), blue-green swirls surround Kodiak Island. These colors are the result of light reflecting off chlorophyll and other pigments in tiny marine plants called phytoplankton. The bloom extends southward and clear dividing line can be seen west to east, where the bloom disappears over the deeper waters of the Aleutian Trench. North in Cook Inlet, large amounts of red clay sediment are turning the water brown. To the east, more colorful swirls stretch out from Prince William Sound, and may be a mixture of clay sediment from the Copper River and phytoplankton. Arcing across the top left of the image, the snow-covered Brooks Range towers over Alaska's North Slope. Frozen rivers trace white ribbons across the winter landscape. The mighty Yukon River traverses the entire state, beginning at the right edge of the image (a little way down from the top) running all the way over to the Bering Sea, still locked in ice. In the high-resolution image, the circular, snow-filled calderas of two volcanoes are apparent along the Alaska Peninsula. In Bristol Bay (to the west of the Peninsula) and in a couple of the semi-clear areas in the Bering Sea, it appears that there may be an ice algae bloom along the sharp ice edge (see high resolution image for better details). Ground-based observations from the area have revealed that an under-ice bloom often starts as early as February in this region and then seeds the more typical spring bloom later in the season.

  6. Geochemical data for stream-sediment, heavy-mineral-concentrate and rock samples collected from the Fortyseven Creek gold-arsenic-antimony-tungsten prospect, southwestern Alaska

    USGS Publications Warehouse

    Gray, John E.; Lee, G.K.; O'Leary, R. M.; Theodorakos, P.M.

    1999-01-01

    In the summer of 1991, we conducted a reconnaissance geochemical survey around the Fortyseven Creek Au-As-Sb-W prospect that is located in the southwestern part of the Sleetmute quadrangle. At that time, this project was a small part of a more comprehensive Alaska Mineral Resource Assessment Program (AMRAP) study of the Sleemute quadrangle. AMRAP studies were conducted by the U.S. Geological Survey (USGS) to fulfill requirements of the Alaska National Interests Lands Conservation Act (Public Law 96-487, 1980) to survey certain federal lands to determine their mineral potential. Although AMRAP is no longer in operation, this study represents a small topical study that was conducted during the Sleetmute quadrangle AMRAP study. The objective of the Fortyseven Creek work was to characterize the geochemistry of samples collected downstream from the Fortyseven Creek prospect, as well as mineralized and altered rock samples collected from the prospect. In this report, we describe the samples collected in 1991, the methods used for the analysis of the samples, and the geochemical data for these samples. The data in this report are also available in digital form on computer diskette in Gray and others (1999). An interpretation of these data appears in Gray and others (1998).

  7. Geochemical Data for Samples Collected in 2008 Near the Concealed Pebble Porphyry Cu-Au-Mo Deposit, Southwest Alaska

    USGS Publications Warehouse

    Fey, David L.; Granitto, Matthew; Giles, Stuart A.; Smith, Steven M.; Eppinger, Robert G.; Kelley, Karen D.

    2009-01-01

    In the summer of 2007, the U.S. Geological Survey (USGS) began an exploration geochemical research study over the Pebble porphyry copper-gold-molybdenum deposit. This report presents the analytical data collected in 2008. The Pebble deposit is world class in size, and is almost entirely concealed by tundra, glacial deposits, and post-Cretaceous volcanic rocks. The Pebble deposit was chosen for this study because it is concealed by surficial cover rocks, is relatively undisturbed (except for exploration company drill holes), is a large mineral system, and is fairly well-constrained at depth by the drill hole geology and geochemistry. The goals of this study are to 1) determine whether the concealed deposit can be detected with surface samples, 2) better understand the processes of metal migration from the deposit to the surface, and 3) test and develop methods for assessing mineral resources in similar concealed terrains. The analytical data are presented as an integrated Microsoft Access 2003 database and as separate Excel files.

  8. Management of Reclaimed Produced Water in California Enhanced with the Expanded U.S. Geological Survey Produced Waters Geochemical Database

    NASA Astrophysics Data System (ADS)

    Gans, K. D.; Blondes, M. S.; Kharaka, Y. K.; Reidy, M. E.; Conaway, C. H.; Thordsen, J. J.; Rowan, E. L.; Engle, M.

    2015-12-01

    In California, in 2014, every barrel of oil produced also produced 16 barrels of water. Approximately 3.2 billion barrels of water were co-produced with California oil in 2014. Half of California's produced water is generally used for steam and water injection for enhanced oil recovery. The other half (~215,000 acre-feet of water) is available for potential reuse. Concerns about the severe drought, groundwater depletion, and contamination have prompted petroleum operators and water districts to examine the recycling of produced water. Knowledge of the geochemistry of produced waters is valuable in determining the feasibility of produced water reuse. Water with low salinity can be reclaimed for use outside of the petroleum industry (e.g. irrigation, municipal uses, and industrial operations). Since a great proportion of California petroleum wells have produced water with relatively low salinity (generally 10,000-40,000 mg/L TDS), reclaiming produced water could be important as a drought mitigation strategy, especially in the parched southern San Joaquin Valley with many oil fields. The USGS Produced Waters Geochemical Database, available at http://eerscmap.usgs.gov/pwapp, will facilitate studies on the management of produced water for reclamation in California. Expanding on the USGS 2002 database, we have more accurately located California wells. We have added new data for 300 wells in the Sacramento Valley, San Joaquin Valley and the Los Angeles Basin for a total of ~ 1100 wells in California. In addition to the existing (2002) geochemical analyses of major ions and total dissolved solids, the new data also include geochemical analyses of minor ions and stable isotopes. We have added an interactive web map application which allows the user to filter data on chosen fields (e.g. TDS < 35,000 mg/L). Using the web map application as well as more in-depth investigation on the full data set can provide critical insight for better management of produced waters in water

  9. Geochemical data for environmental studies of mineral deposits at Nabesna, Kennecott, Orange Hill, Bond Creek, Bremner, and Gold Hill, Wrangell-St. Elias National Park and Preserve, Alaska

    USGS Publications Warehouse

    Eppinger, R.G.; Briggs, P.H.; Rosenkrans, D.S.; Ballestrazze, Vanessa; Aldir, Jose; Brown, Z.A.; Crock, J.G.; d'Angelo, W. M.; Doughten, M.W.; Fey, D.L.; Hageman, P.L.; Hopkins, R.T.; Knight, R.J.; Malcolm, M.J.; McHugh, J.B.; Meier, A.L.; Motooka, J.M.; O'Leary, R. M.; Roushey, B.H.; Sultley, S.J.; Theodorakos, P.M.; Wilson, S.A.

    1999-01-01

    Environmental geochemical investigations were carried out between 1994 and 1997 in Wrangell-St. Elias National Park and Preserve (WRST), Alaska. Mineralized areas studied include the historic Nabesna gold mine/mill and surrounding areas; the historic Kennecott copper mill area and nearby Bonanza, Erie, Glacier, and Jumbo mines; the historic mill and gold mines in the Bremner district; the active gold placer mines at Gold Hill; and the unmined copper-molybdenum deposits at Orange Hill and Bond Creek. The purpose of the study was to determine the extent of possible environmental hazards associated with these mineralized areas and to establish background and baseline levels for selected elements. Thus, concentrations of a large suite of trace elements were determined to assess metal loadings in the various sample media collected. This report presents the methodology, analytical results, and sample descriptions for water, leachate, sediment, heavy-mineral concentrate, rock, and vegetation (willow) samples collected during these geochemical investigations. An interpretive U.S. Geological Survey Professional Paper incorporating these geochemical data will follow.

  10. Geochemical Database for Intrusive Rocks of North-Central and Northeast Nevada

    USGS Publications Warehouse

    du Bray, Edward A.; Ressel, Michael W.; Barnes, Calvin G.

    2007-01-01

    North-central and northeast Nevada contains numerous large plutons and smaller stocks but also contains many small, shallowly emplaced intrusive bodies, including dikes, sills, and intrusive lava dome complexes. Decades of geologic investigations in the study area demonstrate that many ore deposits, representing diverse ore deposit types, are spatially, and probably temporally and genetically, associated with these igneous intrusions. However, despite the number and importance of igneous intrusions in the study area, no synthesis of geochemical data available for these rocks has been completed. This report presents a synthesis of geochemical data for these rocks. The product represents the first phases of an effort to evaluate the time-space-compositional evolution of Mesozoic and Cenozoic magmatism in the study area and identify genetic associations between magmatism and mineralizing processes in this region.

  11. U-Pb zircon and geochemical evidence for bimodal mid-Paleozoic magmatism and syngenetic base-metal mineralization in the Yukon-Tanana terrane, Alaska

    USGS Publications Warehouse

    Dusel-Bacon, C.; Wooden, J.L.; Hopkins, M.J.

    2004-01-01

    New SHRIMP (sensitive, high-resolution ion microprobe) U-Pb zircon ages and trace element geochemical data for mafic and felsic metaigneous rocks of the pericratonic Yukon-Tanana terrane in east-central Alaska help define the tectonic setting of mid-Paleozoic magmatism and syngenetic hydrothermal Zn-Pb-Ag mineralization along the ancient Pacific margin of North America. We compare data from similar greenschist-facies sequences of bimodal volcanic and subvolcanic rocks associated with carbonaceous and siliciclastic marine sedimentary rocks, in the Wood River area of the Alaska Range and the Salcha River area of the Yukon-Tanana Upland, and from amphibolite-facies augen gneiss and mafic gneiss (amphibolite) in the Goodpaster River area of the upland. Allowing for analytical uncertainties, igneous crystallization age ranges of 376-353 Ma, 378-346 Ma, and 374-358 Ma are indicated by 13 new SHRIMP U-Pb dates for the Wood River, Salcha River, and Goodpaster River areas, respectively. Bimodal magmatism is indicated by Late Devonian crystallization ages for both augen gneiss (371 ?? 3 and 362 ?? 4 Ma) and associated orthoamphibolite (369 ?? 3 Ma) in the upland and by stratigraphic interleaving of mafic and felsic rocks in the Alaska Range. Metabasites in all three study areas have elevated HFSE (high field strength element) and REE (rare earth element) contents indicative of generation in a within-plate (extensional) tectonic setting. Within-plate trace element signatures also are indicated for peralkaline metarhyolites that host the largest volcanogenic massive sulfide deposits of the Bonnifield district in the Wood River area and for metarhyolite tuff interlayered with the carbonaceous Nasina assemblage, which hosts sedimentary exhalative sulfide occurrences in the Salcha River area. Most of the other felsic metaigneous samples from the Alaska Range and the Yukon-Tanana Upland have geochemical signatures that are similar to those of both average upper continental crust

  12. The IRHUM (Isotopic Reconstruction of Human Migration) database - bioavailable strontium isotope ratios for geochemical fingerprinting in France

    NASA Astrophysics Data System (ADS)

    Willmes, M.; McMorrow, L.; Kinsley, L.; Armstrong, R.; Aubert, M.; Eggins, S.; Falguères, C.; Maureille, B.; Moffat, I.; Grün, R.

    2014-03-01

    Strontium isotope ratios (87Sr / 86Sr) are a key geochemical tracer used in a wide range of fields including archaeology, ecology, food and forensic sciences. These applications are based on the principle that the Sr isotopic ratios of natural materials reflect the sources of strontium available during their formation. A major constraint for current studies is the lack of robust reference maps to evaluate the source of strontium isotope ratios measured in the samples. Here we provide a new data set of bioavailable Sr isotope ratios for the major geologic units of France, based on plant and soil samples (Pangaea data repository doi:10.1594/PANGAEA.819142). The IRHUM (Isotopic Reconstruction of Human Migration) database is a web platform to access, explore and map our data set. The database provides the spatial context and metadata for each sample, allowing the user to evaluate the suitability of the sample for their specific study. In addition, it allows users to upload and share their own data sets and data products, which will enhance collaboration across the different research fields. This article describes the sampling and analytical methods used to generate the data set and how to use and access the data set through the IRHUM database. Any interpretation of the isotope data set is outside the scope of this publication.

  13. The IRHUM (Isotopic Reconstruction of Human Migration) database - bioavailable strontium isotope ratios for geochemical fingerprinting in France

    NASA Astrophysics Data System (ADS)

    Willmes, M.; McMorrow, L.; Kinsley, L.; Armstrong, R.; Aubert, M.; Eggins, S.; Falguères, C.; Maureille, B.; Moffat, I.; Grün, R.

    2013-11-01

    Strontium isotope ratios (87Sr/86Sr) are a key geochemical tracer used in a wide range of fields including archaeology, ecology, food and forensic sciences. These applications are based on the principle that the Sr isotopic ratios of natural materials reflect the sources of strontium available during their formation. A major constraint for current studies is the lack of robust reference maps to evaluate the source of strontium isotope ratios measured in the samples. Here we provide a new dataset of bioavailable Sr isotope ratios for the major geologic units of France, based on plant and soil samples (Pangaea data repository doi:10.1594/PANGAEA.819142). The IRHUM (Isotopic Reconstruction of Human Migration) database is a web platform to access, explore and map our dataset. The database provides the spatial context and metadata for each sample, allowing the user to evaluate the suitability of the sample for their specific study. In addition, it allows users to upload and share their own datasets and data products, which will enhance collaboration across the different research fields. This article describes the sampling and analytical methods used to generate the dataset and how to use and access of the dataset through the IRHUM database. Any interpretation of the isotope dataset is outside the scope of this publication.

  14. Reconnaissance geochemical studies in the Bristol Bay, Ugashik, and Karluk quadrangles, Alaska: A section in The United States Geological Survey in Alaska: Accomplishments during 1980

    USGS Publications Warehouse

    Detra, David E.; Detterman, Robert L.; Cox, Dennis P.; Wilson, Frederic H.; Theodore, Ted G.

    1982-01-01

    Geochemical reconnaissance studies in the Bristol Bay, Ugashik, and Karluk quadrangles were completed with collection and analyses of more than 1,200 stream-sediment and heavy mineral-concentrate samples during 1979 and 1980. At least two areas of possible metallic mineral occurrence have been delineated by results of the analyses, geologic fieldwork, and data provided by Bear Creek Mining Company.

  15. Alaska Resource Data File, Noatak Quadrangle, Alaska

    USGS Publications Warehouse

    Grybeck, Donald J.; Dumoulin, Julie A.

    2006-01-01

    This report gives descriptions of the mineral occurrences in the Noatak 1:250,000-scale quadrangle, Alaska. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  16. Recalibration of the Mars Science Laboratory ChemCam instrument with an expanded geochemical database

    DOE PAGES

    Clegg, Samuel M.; Wiens, Roger C.; Anderson, Ryan; ...

    2016-12-24

    The ChemCam Laser-Induced Breakdown Spectroscopy (LIBS) instrument onboard the Mars Science Laboratory (MSL) rover Curiosity has obtained > 300,000 spectra of rock and soil analysis targets since landing at Gale Crater in 2012, and the spectra represent perhaps the largest publicly-available LIBS datasets. The compositions of the major elements, reported as oxides, have been re-calibrated using a laboratory LIBS instrument, Mars-like atmospheric conditions, and a much larger set of standards (408) that span a wider compositional range than previously employed. The new calibration uses a combination of partial least squares (PLS1) and Independent Component Analysis (ICA) algorithms, together with amore » calibration transfer matrix to minimize differences between the conditions under which the standards were analyzed in the laboratory and the conditions on Mars. While the previous model provided good results in the compositional range near the average Mars surface composition, the new model fits the extreme compositions far better. Examples are given for plagioclase feldspars, where silicon was previously significantly over-estimated, and for calcium-sulfate veins, where silicon compositions near zero were inaccurate. Here, the uncertainties of major element abundances are described as a function of the abundances, and are overall significantly lower than the previous model, enabling important new geochemical interpretations of the data.« less

  17. Recalibration of the Mars Science Laboratory ChemCam instrument with an expanded geochemical database

    SciTech Connect

    Clegg, Samuel M.; Wiens, Roger C.; Anderson, Ryan; Forni, Olivier; Frydenvang, Jens; Lasue, Jeremie; Cousin, Agnes; Payré, Valérie; Boucher, Tommy; Dyar, M. Darby; McLennan, Scott M.; Morris, Richard V.; Graff, Trevor G.; Mertzman, Stanley A.; Ehlmann, Bethany L.; Belgacem, Ines; Newsom, Horton; Clark, Ben C.; Melikechi, Noureddine; Mezzacappa, Alissa; McInroy, Rhonda E.; Martinez, Ronald; Gasda, Patrick; Gasnault, Olivier; Maurice, Sylvestre

    2016-12-24

    The ChemCam Laser-Induced Breakdown Spectroscopy (LIBS) instrument onboard the Mars Science Laboratory (MSL) rover Curiosity has obtained > 300,000 spectra of rock and soil analysis targets since landing at Gale Crater in 2012, and the spectra represent perhaps the largest publicly-available LIBS datasets. The compositions of the major elements, reported as oxides, have been re-calibrated using a laboratory LIBS instrument, Mars-like atmospheric conditions, and a much larger set of standards (408) that span a wider compositional range than previously employed. The new calibration uses a combination of partial least squares (PLS1) and Independent Component Analysis (ICA) algorithms, together with a calibration transfer matrix to minimize differences between the conditions under which the standards were analyzed in the laboratory and the conditions on Mars. While the previous model provided good results in the compositional range near the average Mars surface composition, the new model fits the extreme compositions far better. Examples are given for plagioclase feldspars, where silicon was previously significantly over-estimated, and for calcium-sulfate veins, where silicon compositions near zero were inaccurate. Here, the uncertainties of major element abundances are described as a function of the abundances, and are overall significantly lower than the previous model, enabling important new geochemical interpretations of the data.

  18. Geochemical Database for the Boulder Batholith and Its Satellitic Plutons, Southwest Montana

    USGS Publications Warehouse

    du Bray, Edward A.; Lund, Karen; Tilling, Robert I.; Denning, Paul D.; DeWitt, Ed

    2009-01-01

    Geochemical data presented in this report pertain to Cretaceous igneous intrusions of the Boulder batholith and its satellitic plutons in southwest Montana. The geographic area addressed in this compilation is approximately bounded by lats 45.6 deg and 46.7 deg N. and longs 112.75 deg and 111.5 deg W. These data were compiled in order to establish the geologic framework for world-class mineral deposits of the Butte district. Although these deposits and their host rocks have been the subject of many investigations, the petrologic characteristics of associated intrusive rocks have not been systematically compiled, synthesized, or interpreted. Abundant late Mesozoic intrusions in the study area are probably byproducts of subduction-related processes, including back-arc magmatism that prevailed along the west edge of the North American plate during this interval. The ultimate goal of this effort will be an evaluation of the time-space-compositional evolution of Mesozoic magmatism associated with the Boulder batholith and identification of genetic associations between magmatic and mineralizing processes in this region.

  19. Recalibration of the Mars Science Laboratory ChemCam instrument with an expanded geochemical database

    NASA Astrophysics Data System (ADS)

    Clegg, Samuel M.; Wiens, Roger C.; Anderson, Ryan; Forni, Olivier; Frydenvang, Jens; Lasue, Jeremie; Cousin, Agnes; Payré, Valérie; Boucher, Tommy; Dyar, M. Darby; McLennan, Scott M.; Morris, Richard V.; Graff, Trevor G.; Mertzman, Stanley A.; Ehlmann, Bethany L.; Belgacem, Ines; Newsom, Horton; Clark, Ben C.; Melikechi, Noureddine; Mezzacappa, Alissa; McInroy, Rhonda E.; Martinez, Ronald; Gasda, Patrick; Gasnault, Olivier; Maurice, Sylvestre

    2017-03-01

    The ChemCam Laser-Induced Breakdown Spectroscopy (LIBS) instrument onboard the Mars Science Laboratory (MSL) rover Curiosity has obtained > 300,000 spectra of rock and soil analysis targets since landing at Gale Crater in 2012, and the spectra represent perhaps the largest publicly-available LIBS datasets. The compositions of the major elements, reported as oxides (SiO2, TiO2, Al2O3, FeOT, MgO, CaO, Na2O, K2O), have been re-calibrated using a laboratory LIBS instrument, Mars-like atmospheric conditions, and a much larger set of standards (408) that span a wider compositional range than previously employed. The new calibration uses a combination of partial least squares (PLS1) and Independent Component Analysis (ICA) algorithms, together with a calibration transfer matrix to minimize differences between the conditions under which the standards were analyzed in the laboratory and the conditions on Mars. While the previous model provided good results in the compositional range near the average Mars surface composition, the new model fits the extreme compositions far better. Examples are given for plagioclase feldspars, where silicon was significantly over-estimated by the previous model, and for calcium-sulfate veins, where silicon compositions near zero were inaccurate. The uncertainties of major element abundances are described as a function of the abundances, and are overall significantly lower than the previous model, enabling important new geochemical interpretations of the data.

  20. Reconnaissance geologic map and geochemical analyses of stream-sediment and rock samples of the Anchorage A-6 quadrangle, Alaska

    USGS Publications Warehouse

    Clark, Sandra H.B.; Yount, Martha E.

    1972-01-01

    Grateful acknowledgement is given to several persons who made valuable contributions to this report. They include Henry R. Schmoll and Ernest Dobrovolny who mapped the contacts between bedrock and surficial deposits shown in figure 1, David L. Jones who did the paleontological studies, and Susan R. Bartsch and Pamela S. Morse who participated in the geologic mapping and geochemical sampling.

  1. Geological, geochemical, and geophysical survey of the geothermal resources at Hot Springs Bay Valley, Akutan Island, Alaska

    SciTech Connect

    Motyka, R.J.; Wescott, E.M.; Turner, D.L.; Swanson, S.E.; Romick, J.D.; Moorman, M.A.; Poreda, R.J.; Witte, W.; Petzinger, B.; Allely, R.D.

    1985-01-01

    An extensive survey was conducted of the geothermal resource potential of Hot Springs Bay Valley on Akutan Island. A topographic base map was constructed, geologic mapping, geophysical and geochemical surveys were conducted, and the thermal waters and fumarolic gases were analyzed for major and minor element species and stable isotope composition. (ACR)

  2. Chemical and isotopic provenance tracers in ancient copper and bronze artifacts: a geochemical database of copper mines

    NASA Astrophysics Data System (ADS)

    Giunti, I.; Artioli, G.; Giussani, B.; Marelli, M.; Recchia, S.; Angelini, I.; Baumgarten, B.; Omenetto, P.; Villa, I. M.

    2009-04-01

    The provenance of ore minerals used in prehistoric and historic times for copper smelting and extraction is one of the basic questions that archaeologists pose to modern analytical archaeometry [1]. To aid metal provenancing studies, a database of fully characterized Alpine copper mineralisations is being developed as the fundamental reference frame for metal extraction and diffusion in the past. In the early stages of the project, some of the most well known copper deposits in the Western Alps were selected and compared with very different minerogenetic deposits from the French Queyras (Saint Veran) and the Ligurian Apennines (Libiola, Monte Loreto). The fully characterized samples were then analysed by ICP-QMS (inductively coupled plasma-quadrupolar mass spectrometry). The abundances of about 60 minor and trace elements, including most transition metals and chalcophile elements, and the rare earths were measured in all samples. Furthermore, the feasibility of the routine reliable measurement of the 65Cu/63Cu isotope ratio [2] and its eventual use as a possible ore tracer was tested. Multicollector ICP-Mass Spectrometry was used to determine precise Pb isotopic ratios (206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb) and is being used for 65Cu/63Cu ratios as well. Advanced strategies based on multivariate analysis were then used to discriminate the ore mineral provenance. Data were treated with the chemometric software "The Unscrambler Version 9.5" (CAMO AS, Trondheim, Norway). Data pre-treatment, PCA [3] and PLS-DA [4,5] models were performed as implemented in the software. The availability of such unprecedented and complete amount of data of Alpine copper deposits also yields information relevant for the geochemical and minerogenetic intepretation of the deposits themselves. Application of PCA and PLS-DA to the geochemical and isotopic database proved to be a very powerful tool to discriminate the ore source areas with very little ambiguity. The applications to

  3. Implications of Fine-Scale Geochemical Depth Trends in the Active Layer of a Continuous Permafrost Landscape near Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Newman, B. D.; Heikoop, J. M.; Throckmorton, H.; Wilson, C. J.; Wullschleger, S. D.

    2014-12-01

    As part of the US DOE, Office of Science, Next Generation Ecosystem Experiment-Arctic project, we have been using environmental tracers (naturally occurring stable isotopes and geochemical species) to understand hydrological and geochemical processes within polygonal ground in a continuous permafrost area in the Arctic coastal plain. The study site is characterized by a thin zone of active layer development (typically <50 cm). This condition makes it difficult to understand development of geochemical gradients between the near surface and the frost line because traditional sampling using pumping causes mixing which can obscure depth gradients. We have applied a passive approach by using a series of diffusion cells that are installed at different depths within the active zone. The cells are filled with deionized water and over time, they equilibrate with the adjacent active layer water chemistry (ions diffuse into the cell, but the water in the cell does not exchange). Using this approach we have collected a series of fine resolution depth profiles within saturated zones in the active layer. Results over the last three years often show well-developed and sometimes substantial geochemical gradients for multiple analytes. Such gradients imply minimal vertical mixing within the active zone. Reductions in permeability with depth and lack of strong hydrological gradients likely limit vertical mixing. We also noted that the strength of the depth gradients varies across the landscape reflecting differences related to microtopography and drainage conditions. These results suggest that there are likely to be substantial fine-scale depth variations in biogeochemical processes such as methane and carbon dioxide production. Hydrological models should also reflect limited mixing with depth.

  4. Geochemical Database for Igneous Rocks of the Ancestral Cascades Arc - Southern Segment, California and Nevada

    USGS Publications Warehouse

    du Bray, Edward A.; John, David A.; Putirka, Keith; Cousens, Brian L.

    2009-01-01

    Volcanic rocks that form the southern segment of the Cascades magmatic arc are an important manifestation of Cenozoic subduction and associated magmatism in western North America. Until recently, these rocks had been little studied and no systematic compilation of existing composition data had been assembled. This report is a compilation of all available chemical data for igneous rocks that constitute the southern segment of the ancestral Cascades magmatic arc and complement a previously completed companion compilation that pertains to rocks that constitute the northern segment of the arc. Data for more than 2,000 samples from a diversity of sources were identified and incorporated in the database. The association between these igneous rocks and spatially and temporally associated mineral deposits is well established and suggests a probable genetic relationship. The ultimate goal of the related research is an evaluation of the time-space-compositional evolution of magmatism associated with the southern Cascades arc segment and identification of genetic associations between magmatism and mineral deposits in this region.

  5. Aqueous geochemical data from the analysis of stream-water samples collected in June and July 2006-Taylor Mountains 1:250,00-scale quadrangle, Alaska

    USGS Publications Warehouse

    Wang, Bronwen; Mueller, Seth; Stetson, Sarah; Bailey, Elizabeth; Lee, Greg

    2011-01-01

    We report on the chemical analysis of water samples collected from the Taylor Mountains 1:250,000-scale quadrangle, Alaska. Parameters for which data are reported include pH, conductivity, water temperature, major cation and anion concentrations, trace-element concentrations, and dissolved organic-carbon concentrations. Samples were collected as part of a multiyear U.S. Geological Survey project entitled ?Geologic and Mineral Deposit Data for Alaskan Economic Development.? Data presented here are from samples collected in June and July 2006. The data are being released at this time with minimal interpretation. This is the third release of aqueous geochemical data from this project; aqueous geochemical data from samples collected in 2004 and 2005 were published previously. The data in this report augment but do not duplicate or supersede the previous data release. Site selection was based on a regional sampling strategy that focused on first- and second-order drainages. Water sample site selection was based on landscape parameters that included physiography, wetland extent, lithological changes, and a cursory field review of mineralogy from pan concentrates. Stream water in the Taylor Mountains quadrangle is dominated by bicarbonate (HCO3-), although in a few samples more than 50 percent of the anionic charge can be attributed to sulfate (SO42-). The major-cation chemistry ranges from Ca2+/Mg2+ dominated to a mix of Ca2+/Mg2+/Na++K+. Generally, good agreement was found between the major cations and anions in the duplicate samples. Many trace elements in these samples were at or near the analytical method detection limit, but good agreement was found between duplicate samples for elements with detectable concentrations. All field blank major-ion and trace-element concentrations were below detection.

  6. The Kingak shale of northern Alaska-regional variations in organic geochemical properties and petroleum source rock quality

    USGS Publications Warehouse

    Magoon, L.B.; Claypool, G.E.

    1984-01-01

    The Kingak Shale, a thick widespread rock unit in northern Alaska that ranges in age from Early Jurassic through Early Cretaceous, has adequate to good oil source rock potential. This lenticular-shaped rock unit is as much as 1200 m thick near the Jurassic shelf edge, where its present-day burial depth is about 5000 m. Kingak sediment, transported in a southerly direction, was deposited on the then marine continental shelf. The rock unit is predominantly dark gray Shale with some interbeds of thick sandstone and siltstone. The thermal maturity of organic matter in the Kingak Shale ranges from immature (2.0%R0) in the Colville basin toward the south. Its organic carbon and hydrogen contents are highest in the eastern part of northern Alaska south of and around the Kuparuk and Prudhoe Bay oil fields. Carbon isotope data of oils and rock extracts indicate that the Kingak Shale is a source of some North Slope oil, but is probably not the major source. ?? 1984.

  7. Geological, geochemical, and operational summary, aurora well, OCS Y-0943-1, Beaufort Sea, Alaska. Final report

    SciTech Connect

    Paul, L.E.; Choromanski, D.R.; Turner, R.F.; Flett, T.O.; Paul, L.E.

    1994-01-01

    The Aurora well is located just off the coast of the Arctic National Wildlife Refuge (ANWR). The well was spudded November 2, 1987, in 68 ft of water and plugged and abandoned 286 days later on August 30, 1988, after drilling to a total depth (TD) of 18,325 ft below the Kelly Bushing (RKB). The report presents our interpretations of the geologic and geochemical information collected from the Aurora well. Additionally, a significant section of the report is devoted to the operational aspects of drilling the Aurora well.

  8. A lake-centric geospatial database to guide research and inform management decisions in an Arctic watershed in northern Alaska experiencing climate and land-use changes.

    PubMed

    Jones, Benjamin M; Arp, Christopher D; Whitman, Matthew S; Nigro, Debora; Nitze, Ingmar; Beaver, John; Gädeke, Anne; Zuck, Callie; Liljedahl, Anna; Daanen, Ronald; Torvinen, Eric; Fritz, Stacey; Grosse, Guido

    2017-03-25

    Lakes are dominant and diverse landscape features in the Arctic, but conventional land cover classification schemes typically map them as a single uniform class. Here, we present a detailed lake-centric geospatial database for an Arctic watershed in northern Alaska. We developed a GIS dataset consisting of 4362 lakes that provides information on lake morphometry, hydrologic connectivity, surface area dynamics, surrounding terrestrial ecotypes, and other important conditions describing Arctic lakes. Analyzing the geospatial database relative to fish and bird survey data shows relations to lake depth and hydrologic connectivity, which are being used to guide research and aid in the management of aquatic resources in the National Petroleum Reserve in Alaska. Further development of similar geospatial databases is needed to better understand and plan for the impacts of ongoing climate and land-use changes occurring across lake-rich landscapes in the Arctic.

  9. Geologic Map of Central (Interior) Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Dover, James H.; Bradley, Dwight C.; Weber, Florence R.; Bundtzen, Thomas K.; Haeussler, Peter J.

    1998-01-01

    Introduction: This map and associated digital databases are the result of a compilation and reinterpretation of published and unpublished 1:250,000- and limited 1:125,000- and 1:63,360-scale mapping. The map area covers approximately 416,000 sq km (134,000 sq mi) and encompasses 25 1:250,000-scale quadrangles in central Alaska. The compilation was done as part of the U.S. Geological Survey National Surveys and Analysis project, whose goal is nationwide assemble geologic, geochemical, geophysical, and other data. This map is an early product of an effort that will eventually encompass all of Alaska, and is the result of an agreement with the Alaska Department of Natural Resources, Division of Oil And Gas, to provide data on interior basins in Alaska. A paper version of the three map sheets has been published as USGS Open-File Report 98-133. Two geophysical maps that cover the identical area have been published earlier: 'Bouguer gravity map of Interior Alaska' (Meyer and others, 1996); and 'Merged aeromagnetic map of Interior Alaska' (Meyer and Saltus, 1995). These two publications are supplied in the 'geophys' directory of this report.

  10. Mesozoic Magmatism and Base-Metal Mineralization in the Fortymile Mining District, Eastern Alaska - Initial Results of Petrographic, Geochemical, and Isotopic Studies in the Mount Veta Area

    USGS Publications Warehouse

    Dusel-Bacon, Cynthia; Slack, John F.; Aleinikoff, John N.; Mortensen, James K.

    2009-01-01

    We present here the initial results of a petrographic, geochemical, and isotopic study of Mesozoic intrusive rocks and spatially associated Zn-Pb-Ag-Cu-Au prospects in the Fortymile mining district in the southern Eagle quadrangle, Alaska. Analyzed samples include mineralized and unmineralized drill core from 2006 and 2007 exploration by Full Metal Minerals, USA, Inc., at the Little Whiteman (LWM) and Fish prospects, and other mineralized and plutonic samples collected within the mining district is part of the USGS study. Three new ion microprobe U-Pb zircon ages are: 210 +- 3 Ma for quartz diorite from LWM, 187 +- 3 Ma for quartz monzonite from Fish, and 70.5 +- 1.1 Ma for altered rhyolite porphyry from Fish. We also present 11 published and unpublished Mesozoic thermal ionization mass spectrometric U-Pb zircon and titanite ages and whole-rock geochemical data for the Mesozoic plutonic rocks. Late Triassic and Early Jurassic plutons generally have intermediate compositions and are slightly foliated, consistent with synkinematic intrusion. Several Early Jurassic plutons contain magmatic epidote, indicating emplacement of the host plutons at mesozonal crustal depths of greater than 15 km. Trace-element geochemical data indicate an arc origin for the granitoids, with an increase in the crustal component with time. Preliminary study of drill core from the LWM Zn-Pb-Cu-Ag prospect supports a carbonate-replacement model of mineralization. LWM massive sulfides consist of sphalerite, galena, and minor pyrite and chalcopyrite, in a gangue of calcite and lesser quartz; silver resides in Sb-As-Ag sulfosalts and pyrargyrite, and probably in submicroscopic inclusions within galena. Whole-rock analyses of LWM drill cores also show elevated In, an important metal in high-technology products. Hypogene mineralized rocks at Fish, below the secondary Zn-rich zone, are associated with a carbonate host and also may be of replacement origin, or alternatively, may be a magnetite

  11. ARM Quick-looks Database for North Slope Alaska (NSA) sites

    DOE Data Explorer

    Stamnes, Knut [NSA Site Scientist

    From these pages one can monitor parts of the data acquisition process and access daily data visualizations from the different instruments. These data visualizations are produced in near real time automatically and are called Quick-Looks (QLs). The quick-looks contains unofficial data of unknown quality. Once data is released one can obtain the full data-set from any instrument available, and along with that, a statement about the data quality from the ARM archive. The database provides Quick-looks for the Barrow ACRF site (NSA C1), the Atqasuk ACRF site (NSA C2), or the SHEBA ice campaign of 1997 and 1998. As of 12-17-08, the database had more than 528,000 quick-looks available as data figures and data plots. No password is required for Quick-look access. (Specialized Interface)

  12. Preliminary integrated geologic map databases for the United States: Digital data for the reconnaissance bedrock geologic map for the northern Alaska peninsula area, southwest Alaska

    USGS Publications Warehouse

    ,

    2006-01-01

    he growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO export files and as ArcView shape files. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.

  13. Alaska Resource Data File, Point Lay quadrangle, Alaska

    USGS Publications Warehouse

    Grybeck, Donald J.

    2006-01-01

    This report gives descriptions of the mineral occurrences in the Point Lay 1:250,000-scale quadrangle, Alaska. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  14. Towards untangling the changing tectonic and climatic influence on deposition on the Surveyor Fan, Gulf of Alaska: A single grain geochemical and geochronological study

    NASA Astrophysics Data System (ADS)

    Huber, Barbara; Bahlburg, Heinrich; Drewer, Christian

    2016-04-01

    The Surveyor Fan depositional system, Gulf of Alaska, serves as a recorder of onshore processes in the evolving St. Elias orogen, the highest coastal mountain range on earth. Here, the relative contribution of tectonics and climate to clast production and denudation are controversial and need to be determined in detail. Absence of major onshore sediment traps allows fast transport of orogenic sediment to the ocean, minimising modifications of the sediment during transport. Exhumation and climatically controlled variations in glacier type and extent influence denudation rates and the characteristics of the sediments. We apply diverse tools of single grain geochemical provenance analysis to Neogene sediments from IODP 341 expedition sites U1417 (distal Surveyor Fan), U1418 (proximal Surveyor Fan), U1419 (continental slope) and U1420 (continental shelf). This will allow for deriving information about the relative contributions of tectonics and climate on rates and locations of exhumation and denudation as well as their temporal and spatial interplay in the evolving St. Elias orogen. Target of the sampling were sands and silts, covering the Miocene to Pleistocene stratigraphy of the four sites. We apply microprobe analysis for main element geochemistry on different heavy minerals; cathodoluminescence imaging, U/Pb dating and REE and trace element measuring on zircons as well as 40Ar/39Ar dating of hornblende and mica. First analyses point towards dominant sediment sources in the area of the Chugach Metamorphic Complex (CMC). U/Pb dating of zircons of samples in different stratigraphic positions from sites U1417 and U1418 shows peaks in age spectra between ca. 50 and 60 Ma, the youngest being 25.3 Ma ± 0.6 Ma, the oldest 1305.8 ± 38.1 Ma of age. Additional analyses of REE and trace elements from the same zircons imply granitoid sources, mainly granodiorites and tonalites, for most zircons measured. REE and trace element spectra of the 50 to 60 Ma zircons strongly

  15. Preliminary integrated geologic map databases for the United States: Digital data for the geology of southeast Alaska

    USGS Publications Warehouse

    Gehrels, George E.; Berg, Henry C.

    2006-01-01

    The growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO export files and as ArcView shape files. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set of 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.

  16. Management of Water for Unconventional Oil and Gas Operations Enhanced with the Expanded U.S.Geological Survey Produced Waters Geochemical Database

    NASA Astrophysics Data System (ADS)

    Gans, K. D.; Blondes, M. S.; Thordsen, J. J.; Thomas, B.; Reidy, M. E.; Engle, M.; Kharaka, Y. K.; Rowan, E. L.

    2014-12-01

    municipalities and citizens can determine the geochemical nature of deep groundwater supplies, contamination sources, and impacts of hydraulic fracturing. Energy companies can utilize the database for determining the suitability of water reuse and for identifying regions where non-potable hydraulic fracturing water may be obtainable.

  17. Alaska Native Parkinson’s Disease Registry

    DTIC Science & Technology

    2011-06-01

    Investigator Parkinsonism (PS) is a syndrome characterized by tremor , rigidity, slowness of movement, and problems with walking and balance...2. Developing an identification protocol. The primary source of parkinsonism cases will be the Indian Health Service (IHS) provider database, called...of parkinsonism among Alaska Natives. Status: Complete 3. Developing a secure Alaska Native parkinsonism registry database. Status: The database

  18. Aqueous Geochemical Data From the Analysis of Stream-Water Samples Collected in June and July 2005--Taylor Mountains 1:250,000 Scale Quadrangle, Alaska

    USGS Publications Warehouse

    Wang, Bronwen; Mueller, Seth; Stetson, Sarah; Bailey, Elizabeth; Lee, Greg

    2006-01-01

    We report on the chemical analysis of water samples collected from the Taylor Mountains 1:250,000-scale quadrangle. Parameters for which data are reported include pH, conductivity, water temperature, major cation and anion concentrations, trace-element concentrations, and dissolved organic-carbon concentrations. Samples were collected as part of a multiyear U.S. Geological Survey project 'Geologic and Mineral Deposit Data for Alaskan Economic Development.' Data presented here are from samples collected in June and July of 2005. The data are being released at this time with minimal interpretation. This is the second release of aqueous geochemical data from this project; 2004 aqueous geochemical data were published previously (Wang and others, 2006). The data in this report augment but do not duplicate or supersede the previous data release. Site selection was based on a regional sampling strategy that focused on first- and second-order drainages. Water sample site selection was based on landscape parameters that included physiography, wetland extent, lithological changes, and a cursory field review of mineralogy from pan concentrates. Stream water in the Taylor Mountians quadrangle is dominated by bicarbonate (HCO3-), though in a few samples more than 50 percent of the anionic charge can be attributed to sulfate (SO42-). The major-cation chemistry ranges from Ca2+/Mg2+ dominated to a mix of Ca2+/Mg2+/Na++K+. In general, good agreement was found between the major cations and anions in the duplicate samples. Many trace elements in these samples were at or near the analytical method detection limit, but good agreement was found between duplicate samples for elements with detectable concentrations. With the exception of a total mercury concentration of 0.33 ng/L detected in a field blank, field blank major-ion and trace-elements concentrations were below detection.

  19. Hf Isotopes and Geochemical Evidence Constrain the Nature and Sources of Melting During and After Progressive Accretion of the Wrangellia Composite Terrane to the Southern Alaska Margin

    NASA Astrophysics Data System (ADS)

    Todd, E.; Jones, J. V., III; Kylander-Clark, A. R.

    2015-12-01

    Plutonic rocks in the western Alaska Range were emplaced prior to, during, and after accretion of the Wrangellia Composite Terrane (WCT) to the southern Alaska margin (locally, Farewell terrane, FT). Docking between (mostly) oceanic WCT and (mostly) Paleozoic continental FT was done largely by ca. 80 Ma on the basis of youngest detrital zircon ages from an overlapping flysch basin and the oldest post-deformational plutons. Plutons before and during progressive basin closure and terrane accretion (~100-76 Ma) were emplaced in WCT basement or proximal to the WCT-FT margin, are calcalkaline diorite to granite, and likely products of the migrating arc associated with closure of the intervening ocean basin. Plutons emplaced after 76 Ma are organized axially and cross into both sides of the inferred suture zone, suggesting an association with faults formed during crustal shortening and transcurrent deformation. These Late Cretaceous gabbro to granodiorite plutons have arc to collisional affinity, some with "adakitic" compositions, possibly due to crustal thickening associated with WCT collision. In contrast, younger Paleocene plutons are spatially scattered and widespread fractionated granites. Hf isotopes and U/Pb ages were measured in zircons from ~110 to ~30 Ma plutons by LA-ICPMS using the split-stream configuration. Maximum eHf decreases gradually over time (+15 to +12) suggesting either more enriched mantle or an increasing role of crustal components in the melt source and/or during magma ascent and emplacement. However, most Late Cretaceous and a subset of Paleocene plutons have anomalously low eHf (+6 to -2). Paleocene granite isotopes correlate with location and basement type; plutons emplaced in Paleozoic basement have lower eHf compared with those in Mesozoic basement. This pattern, most extreme in Paleocene plutons, is also seen in Cretaceous to Eocene plutons where similar-aged rocks were emplaced in both domains, suggesting strong basement control on Hf

  20. Geochemical Data for Stream-Sediment, Surface-Water, Rock, and Vegetation Samples from Red Mountain (Dry Creek), an Unmined Volcanogenic Massive Sulfide Deposit in the Bonnifield District, Alaska Range, East-Central Alaska

    USGS Publications Warehouse

    Giles, Stuart A.; Eppinger, Robert G.; Granitto, Matthew; Zelenak, Philip P.; Adams, Monique G.; Anthony, Michael W.; Briggs, Paul H.; Gough, Larry P.; Hageman, Philip L.; Hammarstrom, Jane M.; Horton, John D.; Sutley, Stephan J.; Theodorakos, Peter M.; Wolf, Ruth E.

    2007-01-01

    North-central and northeast Nevada contains numerous large plutons and smaller stocks but also contains many small, shallowly emplaced intrusive bodies, including dikes, sills, and intrusive lava dome complexes. Decades of geologic investigations in the study area demonstrate that many ore deposits, representing diverse ore deposit types, are spatially, and probably temporally and genetically, associated with these igneous intrusions. However, despite the number and importance of igneous instrusions in the study area, no synthesis of geochemical data available for these rocks has been completed. This report presents a synthesis of composition and age data for these rocks. The product represents the first phases of an effort to evaluate the time-space-compositional evolution of Mesozoic and Cenozoic magmatism in the study area and identify genetic associations between magmatism and mineralizing processes in this region.

  1. Alaska Resource Data File, Nabesna quadrangle, Alaska

    USGS Publications Warehouse

    Hudson, Travis L.

    2003-01-01

    Descriptions of the mineral occurrences shown on the accompanying figure follow. See U.S. Geological Survey (1996) for a description of the information content of each field in the records. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  2. Alaska Resource Data File, Wiseman quadrangle, Alaska

    USGS Publications Warehouse

    Britton, Joe M.

    2003-01-01

    Descriptions of the mineral occurrences shown on the accompanying figure follow. See U.S. Geological Survey (1996) for a description of the information content of each field in the records. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  3. Alaska Resource Data File, Juneau quadrangle, Alaska

    USGS Publications Warehouse

    Barnett, John C.; Miller, Lance D.

    2003-01-01

    Descriptions of the mineral occurrences shown on the accompanying figure follow. See U.S. Geological Survey (1996) for a description of the information content of each field in the records. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  4. BAID: The Barrow Area Information Database - an interactive web mapping portal and cyberinfrastructure for scientific activities in the vicinity of Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Cody, R. P.; Kassin, A.; Gaylord, A. G.; Tweedie, C. E.

    2013-12-01

    In 2013, the Barrow Area Information Database (BAID, www.baid.utep.edu) project resumed field operations in Barrow, AK. The Barrow area of northern Alaska is one of the most intensely researched locations in the Arctic. BAID is a cyberinfrastructure (CI) that details much of the historic and extant research undertaken within in the Barrow region in a suite of interactive web-based mapping and information portals (geobrowsers). The BAID user community and target audience for BAID is diverse and includes research scientists, science logisticians, land managers, educators, students, and the general public. BAID contains information on more than 11,000 Barrow area research sites that extend back to the 1940's and more than 640 remote sensing images and geospatial datasets. In a web-based setting, users can zoom, pan, query, measure distance, and save or print maps and query results. Data are described with metadata that meet Federal Geographic Data Committee standards and are archived at the University Corporation for Atmospheric Research Earth Observing Laboratory (EOL) where non-proprietary BAID data can be freely downloaded. Highlights for the 2013 season include the addition of more than 2000 additional research sites, providing differential global position system (dGPS) support to visiting scientists, surveying over 80 miles of coastline to document rates of erosion, training of local GIS personal, deployment of a wireless sensor network, and substantial upgrades to the BAID website and web mapping applications.

  5. A comparison of geochemical exploration techniques and sample media within accretionary continental margins: an example from the Pacific Border Ranges, Southern Alaska, U.S.A.

    USGS Publications Warehouse

    Sutley, S.J.; Goldfarb, R.J.; O'Leary, R. M.; Tripp, R.B.

    1990-01-01

    The Pacific Border Ranges of the southern Alaskan Cordillera are composed of a number of allochthonous tectonostratigraphic terranes. Within these terranes are widespread volcanogenic, massive sulfide deposits in and adjacent to portions of accreted ophiolite complexes, bands and disseminations of chromite in accreted island-arc ultramafic rocks, and epigenetic, gold-bearing quartz veins in metamorphosed turbidite sequences. A geochemical pilot study was undertaken to determine the most efficient exploration strategy for locating these types of mineral deposits within the Pacific Border Ranges and other typical convergent continental margin environments. High-density sediment sampling was carried out in first- and second-order stream channels surrounding typical gold, chromite and massive sulfide occurrences. At each site, a stream-sediment and a panned-concentrate sample were collected. In the laboratory, the stream sediments were sieved into coarse-sand, fine- to medium-sand, and silt- to clay-size fractions prior to analysis. One split of the panned concentrates was retained for analysis; a second split was further concentrated by gravity separation in heavy liquids and then divided into magnetic, weakly magnetic and nonmagnetic fractions for analysis. A number of different techniques including atomic absorption spectrometry, inductively coupled plasma atomic emission spectrometry and semi-quantitative emission spectrography were used to analyze the various sample media. Comparison of the various types of sample media shows that in this tectonic environment it is most efficient to include a silt- to clay-size sediment fraction and a panned-concentrate sample. Even with the relatively low detection limits for many elements by plasma spectrometry and atomic absorption spectrometry, anomalies reflecting the presence of gold veins could not be identified in any of the stream-sediment fractions. Unseparated panned-concentrate samples should be analyzed by emission

  6. Digital data for the geologic framework of the Alaska Peninsula, southwest Alaska, and the Alaska Peninsula terrane

    USGS Publications Warehouse

    Wilson, Frederic H.; Detterman, Robert L.; DuBois, Gregory D.

    1999-01-01

    These digital databases are the result of the compilation and reinterpretation of published and unpublished 1:250,000- and 1:63,360-scale mapping. The map area covers approximately 62,000 sq km (23,000 sq mi) in land area and encompasses much of 13 1:250,000-scale quadrangles on the Alaska Peninsula in southwestern Alaska. The compilation was done as part of the U.S. Geological Survey's Alaska Mineral Resource Assessment project (AMRAP), whose goal was create and assemble geologic, geochemical, geophysical, and other data in order to perform mineral resource assessments on a quadrangle, regional or statewide basis. The digital data here was created to assist in the completion of a regional mineral resource assessment of the Alaska Peninsula. Mapping on the Alaska Peninsula under AMRAP began in 1977 in the Chignik and Sutwik Island 1:250,000 quadrangles (Detterman and others, 1981). Continued mapping in the Ugashik, bristol bay, and northwestern Karluk quadrangles (Detterman and others, 1987) began in 1979, followed by the Mount Katmai, eastern Naknek, and northwestern Afognak quadrangles (Riehle and others, 1987; Riehle and others, 1993), the Port Moller, Stepovak bay, and Simeonof Island quadrangles (Wilson and others, 1995) beginning in 1983. Work in the Cold bay and False Pass quadrangles (Wilson and others, 1992 [Superceded by Wilson and others 1997, but not incorporated herein]) began in 1986. The reliability of the geologic mapping is variable, based, in part, on the field time spent in each area of the map, the available support, and the quality of the existing base maps. In addition, our developing understanding of the geology of the Alaska Peninsula required revision of earlier maps, such as the Chignik and Sutwik Island quadrangles map (Detterman and others, 1981) to reflect this new knowledge. We have revised the stratigraphic nomenclature (Detterman and others, 1996) and our assignment of unit names to some rocks has been changed. All geologic maps on

  7. BAID: The Barrow Area Information Database - an interactive web mapping portal and cyberinfrastructure for scientific activities in the vicinity of Barrow, Alaska.

    NASA Astrophysics Data System (ADS)

    Cody, R. P.; Kassin, A.; Kofoed, K. B.; Copenhaver, W.; Laney, C. M.; Gaylord, A. G.; Collins, J. A.; Tweedie, C. E.

    2014-12-01

    The Barrow area of northern Alaska is one of the most intensely researched locations in the Arctic and the Barrow Area Information Database (BAID, www.barrowmapped.org) tracks and facilitates a gamut of research, management, and educational activities in the area. BAID is a cyberinfrastructure (CI) that details much of the historic and extant research undertaken within in the Barrow region in a suite of interactive web-based mapping and information portals (geobrowsers). The BAID user community and target audience for BAID is diverse and includes research scientists, science logisticians, land managers, educators, students, and the general public. BAID contains information on more than 12,000 Barrow area research sites that extend back to the 1940's and more than 640 remote sensing images and geospatial datasets. In a web-based setting, users can zoom, pan, query, measure distance, save or print maps and query results, and filter or view information by space, time, and/or other tags. Data are described with metadata that meet Federal Geographic Data Committee standards and are archived at the University Corporation for Atmospheric Research Earth Observing Laboratory (EOL) where non-proprietary BAID data can be freely downloaded. Recent advances include the addition of more than 2000 new research sites, provision of differential global position system (dGPS) and Unmanned Aerial Vehicle (UAV) support to visiting scientists, surveying over 80 miles of coastline to document rates of erosion, training of local GIS personal to better make use of science in local decision making, deployment and near real time connectivity to a wireless micrometeorological sensor network, links to Barrow area datasets housed at national data archives and substantial upgrades to the BAID website and web mapping applications.

  8. The Alaska resource data files: Mount Katmai (MK) quadrangle

    USGS Publications Warehouse

    Wilson, Frederic H.; Church, Stanley E.; Bickerstaff, Damon P.

    2006-01-01

    This report gives descriptions of the mineral occurrences in the Mount Katmai 1:250,000-scale quadrangle, Alaska. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  9. GIS-based identification of areas with mineral resource potential for six selected deposit groups, Bureau of Land Management Central Yukon Planning Area, Alaska

    USGS Publications Warehouse

    Jones, James V.; Karl, Susan M.; Labay, Keith A.; Shew, Nora B.; Granitto, Matthew; Hayes, Timothy S.; Mauk, Jeffrey L.; Schmidt, Jeanine M.; Todd, Erin; Wang, Bronwen; Werdon, Melanie B.; Yager, Douglas B.

    2015-01-01

    This study has used a data-driven, geographic information system (GIS)-based method for evaluating the mineral resource potential across the large region of the CYPA. This method systematically and simultaneously analyzes geoscience data from multiple geospatially referenced datasets and uses individual subwatersheds (12-digit hydrologic unit codes or HUCs) as the spatial unit of classification. The final map output indicates an estimated potential (high, medium, low) for a given mineral deposit group and indicates the certainty (high, medium, low) of that estimate for any given subwatershed (HUC). Accompanying tables describe the data layers used in each analysis, the values assigned for specific analysis parameters, and the relative weighting of each data layer that contributes to the estimated potential and certainty determinations. Core datasets used include the U.S. Geological Survey (USGS) Alaska Geochemical Database (AGDB2), the Alaska Division of Geologic and Geophysical Surveys Web-based geochemical database, data from an anticipated USGS geologic map of Alaska, and the USGS Alaska Resource Data File. Map plates accompanying this report illustrate the mineral prospectivity for the six deposit groups across the CYPA and estimates of mineral resource potential. There are numerous areas, some of them large, rated with high potential for one or more of the selected deposit groups within the CYPA.

  10. Geologic map of Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Hults, Chad P.; Mull, Charles G.; Karl, Susan M.

    2015-12-31

    This Alaska compilation is unique in that it is integrated with a rich database of information provided in the spatial datasets and standalone attribute databases. Within the spatial files every line and polygon is attributed to its original source; the references to these sources are contained in related tables, as well as in stand-alone tables. Additional attributes include typical lithology, geologic setting, and age range for the map units. Also included are tables of radiometric ages.

  11. Aqueous geochemical data from the analysis of stream-water samples collected in June and August 2008—Taylor Mountains 1:250,000- and Dillingham D-4 1:63,360-scale quadrangles, Alaska

    USGS Publications Warehouse

    Wang, Bronwen; Owens, Victoria; Bailey, Elizabeth; Lee, Greg

    2011-01-01

    We report on the chemical analysis of water samples collected from the Taylor Mountains 1:250,000- and Dillingham D-4 1:63,360-scale quadrangles, Alaska. Reported parameters include pH, conductivity, water temperature, major cation and anion concentrations, and trace-element concentrations. We collected the samples as part of a multiyear U.S. Geological Survey project entitled "Geologic and Mineral Deposit Data for Alaskan Economic Development." Data presented here are from samples collected in June and August 2008. Minimal interpretation accompanies this data release. This is the fourth release of aqueous geochemical data from this project; data from samples collected in 2004, 2005, and 2006 were published previously. The data in this report augment but do not duplicate or supersede the previous data releases. Site selection was based on a regional sampling strategy that focused on first- and second-order drainages. Water sample sites were selected on the basis of landscape parameters that included physiography, wetland extent, lithological changes, and a cursory field review of mineralogy from pan concentrates. Stream water in the study area is dominated by bicarbonate (HCO3-), although in a few samples more than 50 percent of the anionic charge can be attributed to sulfate (SO42-). The major-cation chemistry of these samples ranges from Ca2+-Mg2+ dominated to a mix of Ca2+-Mg2+-Na++K2+. In most cases, analysis of duplicate samples showed good agreement for the major cation and major anions with the exception of the duplicate samples at site 08TA565. At site 08TA565, Ca, Mg, Cl, and CaCO3 exceeded 25 percent and the concentrations of trace elements As, Fe and Mn also exceeded 25 percent in this duplicate pair. Chloride concentration varied by more than 25 percent in 5 of the 11 duplicated samples. Trace-element concentrations in these samples generally were at or near the detection limit for the method used and, except for Co at site 08TA565, generally good

  12. Alaska Resource Data File: Chignik quadrangle, Alaska

    USGS Publications Warehouse

    Pilcher, Steven H.

    2000-01-01

    Descriptions of the mineral occurrences can be found in the report. See U.S. Geological Survey (1996) for a description of the information content of each field in the records. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska. There is a website from which you can obtain the data for this report in text and Filemaker Pro formats

  13. BAID: The Barrow Area Information Database - An Interactive Web Mapping Portal and Cyberinfrastructure Showcasing Scientific Activities in the Vicinity of Barrow, Arctic Alaska.

    NASA Astrophysics Data System (ADS)

    Escarzaga, S. M.; Cody, R. P.; Kassin, A.; Barba, M.; Gaylord, A. G.; Manley, W. F.; Mazza Ramsay, F. D.; Vargas, S. A., Jr.; Tarin, G.; Laney, C. M.; Villarreal, S.; Aiken, Q.; Collins, J. A.; Green, E.; Nelson, L.; Tweedie, C. E.

    2015-12-01

    The Barrow area of northern Alaska is one of the most intensely researched locations in the Arctic and the Barrow Area Information Database (BAID, www.barrowmapped.org) tracks and facilitates a gamut of research, management, and educational activities in the area. BAID is a cyberinfrastructure (CI) that details much of the historic and extant research undertaken within in the Barrow region in a suite of interactive web-based mapping and information portals (geobrowsers). The BAID user community and target audience for BAID is diverse and includes research scientists, science logisticians, land managers, educators, students, and the general public. BAID contains information on more than 12,000 Barrow area research sites that extend back to the 1940's and more than 640 remote sensing images and geospatial datasets. In a web-based setting, users can zoom, pan, query, measure distance, save or print maps and query results, and filter or view information by space, time, and/or other tags. Additionally, data are described with metadata that meet Federal Geographic Data Committee standards. Recent advances include the addition of more than 2000 new research sites, the addition of a query builder user interface allowing rich and complex queries, and provision of differential global position system (dGPS) and high-resolution aerial imagery support to visiting scientists. Recent field surveys include over 80 miles of coastline to document rates of erosion and the collection of high-resolution sonar data for bathymetric mapping of Elson Lagoon and near shore region of the Chukchi Sea. A network of five climate stations has been deployed across the peninsula to serve as a wireless net for the research community and to deliver near real time climatic data to the user community. Local GIS personal have also been trained to better make use of scientific data for local decision making. Links to Barrow area datasets are housed at national data archives and substantial upgrades have

  14. Preliminary integrated geologic map databases for the United States: Digital data for the reconnaissance geologic map of the western Aleutian Islands, Alaska

    USGS Publications Warehouse

    ,

    2006-01-01

    The growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO Exportfiles/ and as ArcView shape files. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.

  15. Preliminary integrated geologic map databases for the United States: Digital data for the reconnaissance geologic map of the lower Yukon River region, Alaska

    USGS Publications Warehouse

    ,

    2006-01-01

    The growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO export files and as ArcView shape files. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.

  16. BAID: The Barrow Area Information Database - an interactive web mapping portal and cyberinfrastructure for scientific activities in the vicinity of Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Cody, R. P.; Kassin, A.; Gaylord, A.; Brown, J.; Tweedie, C. E.

    2012-12-01

    The Barrow area of northern Alaska is one of the most intensely researched locations in the Arctic. The Barrow Area Information Database (BAID, www.baidims.org) is a cyberinfrastructure (CI) that details much of the historic and extant research undertaken within in the Barrow region in a suite of interactive web-based mapping and information portals (geobrowsers). The BAID user community and target audience for BAID is diverse and includes research scientists, science logisticians, land managers, educators, students, and the general public. BAID contains information on more than 9,600 Barrow area research sites that extend back to the 1940's and more than 640 remote sensing images and geospatial datasets. In a web-based setting, users can zoom, pan, query, measure distance, and save or print maps and query results. Data are described with metadata that meet Federal Geographic Data Committee standards and are archived at the University Corporation for Atmospheric Research Earth Observing Laboratory (EOL) where non-proprietary BAID data can be freely downloaded. BAID has been used to: Optimize research site choice; Reduce duplication of science effort; Discover complementary and potentially detrimental research activities in an area of scientific interest; Re-establish historical research sites for resampling efforts assessing change in ecosystem structure and function over time; Exchange knowledge across disciplines and generations; Facilitate communication between western science and traditional ecological knowledge; Provide local residents access to science data that facilitates adaptation to arctic change; (and) Educate the next generation of environmental and computer scientists. This poster describes key activities that will be undertaken over the next three years to provide BAID users with novel software tools to interact with a current and diverse selection of information and data about the Barrow area. Key activities include: 1. Collecting data on research

  17. Preliminary integrated geologic map databases for the United States: Digital data for the generalized bedrock geologic map, Yukon Flats region, east-central Alaska

    USGS Publications Warehouse

    Till, Alison B.; Dumoulin, Julie A.; Phillips, Jeffrey D.; Stanley, Richard G.; Crews, Jessie

    2006-01-01

    The growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO export files and as ArcView shape files. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.

  18. Organic geochemistry data of Alaska

    USGS Publications Warehouse

    complied by Threlkeld, Charles N.; Obuch, Raymond C.; Gunther, G.L.

    2000-01-01

    In order to archive the results of various petroleum geochemical analyses of the Alaska resource assessment, the USGS developed an Alaskan Organic Geochemical Data Base (AOGDB) in 1978 to house the data generated from USGS and subcontracted laboratories. Prior to the AOGDB, the accumulated data resided in a flat data file entitled 'PGS' that was maintained by Petroleum Information Corporation with technical input from the USGS. The information herein is a breakout of the master flat file format into a relational data base table format (akdata).

  19. UNIT, ALASKA.

    ERIC Educational Resources Information Center

    Louisiana Arts and Science Center, Baton Rouge.

    THE UNIT DESCRIBED IN THIS BOOKLET DEALS WITH THE GEOGRAPHY OF ALASKA. THE UNIT IS PRESENTED IN OUTLINE FORM. THE FIRST SECTION DEALS PRINCIPALLY WITH THE PHYSICAL GEOGRAPHY OF ALASKA. DISCUSSED ARE (1) THE SIZE, (2) THE MAJOR LAND REGIONS, (3) THE MOUNTAINS, VOLCANOES, GLACIERS, AND RIVERS, (4) THE NATURAL RESOURCES, AND (5) THE CLIMATE. THE…

  20. Development of an Experimental Database and Theories for Prediction of Thermodynamic Properties of Aqueous Electrolytes and Nonelectrolytes of Geochemical Significance at Supercritical Temperatures and Pressures

    SciTech Connect

    Dr. Everett L. Shock

    2007-02-02

    The reactions that cause transformations in organic compounds in the Earth’s crust remain mysterious despite decades of research into how fossil fuel resources form. A major reason for this persistent mysteriousness is the failure of many researchers to realize the intimate involvement of water in those transformations. Our goal was to overcome this staggering ignorance by developing the means to calculate the consequences of reactions involving organic compounds and water. We pursued this research from 1989 through 2006, and this report focuses on progress between 2002 and 2006. There were two major obstacles that we overcame in the course of this research. On the one hand, we developed new theoretical equations that allow researchers to make these calculations. On the other hand, we critiqued available data and provided sound means to make estimates in the absence of experimental data for hundreds of organic compounds dissolved in water. Finally, we merged these two lines of research into an interactive web site that allows users to do the calculations with the equations and data. We call the web site ORCHYD for: “ORganic Compounds HYDration properties database,” but it is far more than a database since it allows users to make extremely accurate predictions of data that may never have been measured. Our progress greatly exceeded our anticipations, and has permitted many new research investigations that were previously impossible. Despite the abrupt termination of funding for this project by the Department of Energy, we are maintaining the web site for the international scientific community. Major research results were published in eleven scientific papers, so they are all in the public domain. Benefits to the public include a new, rigorous, quantitative approach to testing ideas about the fate of organic compounds dissolved in water. These tests can be applied to geochemistry or to industrial processes. The increasing use of water as a solvent in Green

  1. Reconnaissance for radioactive deposits in Alaska, 1953

    USGS Publications Warehouse

    Matzko, John J.; Bates, Robert G.

    1955-01-01

    During the summer of 1953 the areas investigated for radioactive deposits in Alaska were on Nikolai Creek near Tyonek and on Likes Creek near Seward in south-central Alaska where carnotite-type minerals had been reported; in the headwaters of the Peace River in the eastern part of the Seward Peninsula and at Gold Bench on the South Fork of the Koyukuk River in east-central Alaska, where uranothorianite occurs in places associated with base metal sulfides and hematite; in the vicinity of Port Malmesbury in southeastern Alaska to check a reported occurrence of pitchblende; and, in the Miller House-Circle Hot Springs area of east-central Alaska where geochemical studies were made. No significant lode deposits of radioactive materials were found. However, the placer uranothorianite in the headwaters of the Peace River yet remains as an important lead to bedrock radioactive source materials in Alaska. Tundra cover prevents satisfactory radiometric reconnaissance of the area, and methods of geochemical prospecting such as soil and vegetation sampling may ultimately prove more fruitful in the search for the uranothorianite-sulfide lode source than geophysical methods.

  2. Alaska Resource Data File, Talkeetna Mountains quadrangle, Alaska

    USGS Publications Warehouse

    Rogers, Robert K.; Schmidt, Jeanine M.

    2003-01-01

    Descriptions of the mineral occurrences shown on the accompanying figure follow. See U.S. Geological Survey (1996) for a description of the information content of each field in the records. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  3. Alaska Resource Data File, McCarthy quadrangle, Alaska

    USGS Publications Warehouse

    Hudson, Travis L.

    2003-01-01

    Descriptions of the mineral occurrences shown on the accompanying figure follow. See U.S. Geological Survey (1996) for a description of the information content of each field in the records. The data presented here are maintained as part of a statewide database on mines, prospects and mineral occurrences throughout Alaska.

  4. SEDIMENT GEOCHEMICAL MODEL

    EPA Science Inventory

    Until recently, sediment geochemical models (diagenetic models) have been only able to explain sedimentary flux and concentration profiles for a few simplified geochemical cycles (e.g., nitrogen, carbon and sulfur). However with advances in numerical methods, increased accuracy ...

  5. Eastern Alaska

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this SeaWiFS image of eastern Alaska, the Aleutian Islands, Kodiak Island, Yukon and Tanana rivers are clearly visible. Also visible, but slightly hidden beneath the clouds, is a bloom in Bristol Bay. Credit: Provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  6. GIS-based identification of areas that have resource potential for critical minerals in six Selected Groups of Deposit Types in Alaska

    USGS Publications Warehouse

    Karl, Susan M.; Jones, III, James V.; Hayes, Timothy S.

    2016-11-16

    each 12-digit hydrologic unit through color shading. Accompanying tables describe the data layers employed to score favorability for the presence of each mineral deposit group, the values assigned for specific analysis parameters, and the relative weighting of each data layer that contributes to estimated measures of potential and certainty. Core datasets used include the Alaska Geochemical Database, Version 2.0 (AGDB2); the Alaska Division of Geological & Geophysical Surveys (ADGGS) web-based geochemical database; the digital “Geologic Map of Alaska;” the Alaska Resource Data File (ARDF); and aerial gamma-ray surveys flown as part of the National Uranium Resource Evaluation (NURE) Program by the U.S. Department of Energy.Maps accompanying this report illustrate the scores for estimated mineral resource potential for the six deposit groups for the state of Alaska. Areas that have known potential, as well as new areas that were not previously known to have potential, for the targeted minerals and deposit groups are identified and described. Numerous areas in Alaska, some of them large, have high potential for one or more of the selected groups of deposit types within Alaska.ContributorsMatthew Granitto, Timothy S. Hayes, James V. Jones, III, Susan M. Karl, Keith A. Labay, Jeffrey L. Mauk, Jeanine M. Schmidt, Nora B. Shew, Erin Todd, Bronwen Wang, Melanie B. Werdon, and Douglas B. Yager

  7. The IUGS/IAGC Task Group on Global Geochemical Baselines

    USGS Publications Warehouse

    Smith, David B.; Wang, Xueqiu; Reeder, Shaun; Demetriades, Alecos

    2012-01-01

    The Task Group on Global Geochemical Baselines, operating under the auspices of both the International Union of Geological Sciences (IUGS) and the International Association of Geochemistry (IAGC), has the long-term goal of establishing a global geochemical database to document the concentration and distribution of chemical elements in the Earth’s surface or near-surface environment. The database and accompanying element distribution maps represent a geochemical baseline against which future human-induced or natural changes to the chemistry of the land surface may be recognized and quantified. In order to accomplish this long-term goal, the activities of the Task Group include: (1) developing partnerships with countries conducting broad-scale geochemical mapping studies; (2) providing consultation and training in the form of workshops and short courses; (3) organizing periodic international symposia to foster communication among the geochemical mapping community; (4) developing criteria for certifying those projects whose data are acceptable in a global geochemical database; (5) acting as a repository for data collected by those projects meeting the criteria for standardization; (6) preparing complete metadata for the certified projects; and (7) preparing, ultimately, a global geochemical database. This paper summarizes the history and accomplishments of the Task Group since its first predecessor project was established in 1988.

  8. History and evaluation of national-scale geochemical data sets for the United States

    USGS Publications Warehouse

    Smith, David B.; Smith, Steven M.; Horton, John D.

    2013-01-01

    Six national-scale, or near national-scale, geochemical data sets for soils or stream sediments exist for the United States. The earliest of these, here termed the ‘Shacklette’ data set, was generated by a U.S. Geological Survey (USGS) project conducted from 1961 to 1975. This project used soil collected from a depth of about 20 cm as the sampling medium at 1323 sites throughout the conterminous U.S. The National Uranium Resource Evaluation Hydrogeochemical and Stream Sediment Reconnaissance (NURE-HSSR) Program of the U.S. Department of Energy was conducted from 1975 to 1984 and collected either stream sediments, lake sediments, or soils at more than 378,000 sites in both the conterminous U.S. and Alaska. The sampled area represented about 65% of the nation. The Natural Resources Conservation Service (NRCS), from 1978 to 1982, collected samples from multiple soil horizons at sites within the major crop-growing regions of the conterminous U.S. This data set contains analyses of more than 3000 samples. The National Geochemical Survey, a USGS project conducted from 1997 to 2009, used a subset of the NURE-HSSR archival samples as its starting point and then collected primarily stream sediments, with occasional soils, in the parts of the U.S. not covered by the NURE-HSSR Program. This data set contains chemical analyses for more than 70,000 samples. The USGS, in collaboration with the Mexican Geological Survey and the Geological Survey of Canada, initiated soil sampling for the North American Soil Geochemical Landscapes Project in 2007. Sampling of three horizons or depths at more than 4800 sites in the U.S. was completed in 2010, and chemical analyses are currently ongoing. The NRCS initiated a project in the 1990s to analyze the various soil horizons from selected pedons throughout the U.S. This data set currently contains data from more than 1400 sites. This paper (1) discusses each data set in terms of its purpose, sample collection protocols, and analytical

  9. Geologic studies in Alaska by the U.S. Geological Survey, 1996

    USGS Publications Warehouse

    Gray, John E.; Riehle, James R.

    1998-01-01

    This collection of 12 papers continues the annual series of U.S. Geological Survey (USGS) reports on geologic investigations in Alaska. The annual volume presents results from new or ongoing studies in Alaska that are of interest to scientists in academia, industry, land and resource managers, and the general public. The Geological Studies in Alaska volume reports the results of studies that cover a broad spectrum of earth science topics from many parts of the state (fig. 1).The papers in this volume are organized under the topics Environment and Climate, Resources, and Geologic Framework, in order to reflect the objectives and scope of USGS programs that are currently active in Alaska. Environmental studies are the focus of two articles in this volume: One study addresses the relation between glaciers and aquatic habitat on the Kenai River and another study evaluates the geochemistry of water draining chromite deposits in Alaska. Two papers address mineral resources in southwestern Alaska including a geochemical study of the Fortyseven Creek prospect and a geological and geochemical study of the Stuyahok area. Eight geologic framework studies apply a variety of techniques to a wide range of subjects throughout Alaska, including biostratigraphy, geochemistry, geochronology, paleomagnetism, sedimentology, and tectonics.Two bibliographies at the end of the volume list reports about Alaska in USGS publications released in 1996 and reports about Alaska by USGS authors in non-USGS publications in 1996.

  10. The State of Adolescent Health in Alaska.

    ERIC Educational Resources Information Center

    Alaska State Office of the Commissioner, Juneau.

    A survey was conducted to provide a profile of the health status and risk behaviors of youth in Alaska. The goal was to develop a statewide database which, when coupled with morbidity and mortality data, would provide information that would allow those who plan and develop services at state and local levels to better target those services. During…

  11. Lead isotope database of unpublished results from sulfide mineral occurrences-California, Idaho, Oregon, and Washington

    USGS Publications Warehouse

    Church, S.E.

    2010-01-01

    The Pb isotope database for sulfide deposits and occurrences in the Western United States was funded by the Mineral Resources Program, U.S. Geological Survey (USGS). Reports on Pb isotope data from Alaska were published in Church and others (1987a) and Gaccetta and Church (1989). The primary objectives of the project were three-fold: * To utilize Pb isotope signatures, in conjunction with the regional mapping, to assess the relative ages and to categorize the types of deposits studied, * To relate the Pb isotope and trace-element geochemical signatures of specific deposits and occurrences to ore-forming processes, and * To use the Pb isotope data to correlate lithotectonic terranes within the northern Cordillera. The report by Church and others (1987b) shows how this fingerprinting methodology can be applied to trace the offset of lithostratigraphic terranes

  12. DNA-based methods of geochemical prospecting

    DOEpatents

    Ashby, Matthew [Mill Valley, CA

    2011-12-06

    The present invention relates to methods for performing surveys of the genetic diversity of a population. The invention also relates to methods for performing genetic analyses of a population. The invention further relates to methods for the creation of databases comprising the survey information and the databases created by these methods. The invention also relates to methods for analyzing the information to correlate the presence of nucleic acid markers with desired parameters in a sample. These methods have application in the fields of geochemical exploration, agriculture, bioremediation, environmental analysis, clinical microbiology, forensic science and medicine.

  13. Alaska's Children, 1997.

    ERIC Educational Resources Information Center

    Douglas, Dorothy, Ed.

    1997-01-01

    These four issues of the "Alaska's Children" provide information on the activities of the Alaska Head Start State Collaboration Project and other Head Start activities. Legal and policy changes affecting the education of young children in Alaska are also discussed. The Spring 1997 issue includes articles on brain development and the…

  14. Alaska's Economy: What's Ahead?

    ERIC Educational Resources Information Center

    Alaska Review of Social and Economic Conditions, 1987

    1987-01-01

    This review describes Alaska's economic boom of the early 1980s, the current recession, and economic projections for the 1990s. Alaska's economy is largely influenced by oil prices, since petroleum revenues make up 80% of the state government's unrestricted general fund revenues. Expansive state spending was responsible for most of Alaska's…

  15. Alaska Natives & the Land.

    ERIC Educational Resources Information Center

    Arnold, Robert D.; And Others

    Pursuant to the Native land claims within Alaska, this compilation of background data and interpretive materials relevant to a fair resolution of the Alaska Native problem seeks to record data and information on the Native peoples; the land and resources of Alaska and their uses by the people in the past and present; land ownership; and future…

  16. Central Colorado Assessment Project (CCAP)-Geochemical data for rock, sediment, soil, and concentrate sample media

    USGS Publications Warehouse

    Granitto, Matthew; DeWitt, Ed H.; Klein, Terry L.

    2010-01-01

    This database was initiated, designed, and populated to collect and integrate geochemical data from central Colorado in order to facilitate geologic mapping, petrologic studies, mineral resource assessment, definition of geochemical baseline values and statistics, environmental impact assessment, and medical geology. The Microsoft Access database serves as a geochemical data warehouse in support of the Central Colorado Assessment Project (CCAP) and contains data tables describing historical and new quantitative and qualitative geochemical analyses determined by 70 analytical laboratory and field methods for 47,478 rock, sediment, soil, and heavy-mineral concentrate samples. Most samples were collected by U.S. Geological Survey (USGS) personnel and analyzed either in the analytical laboratories of the USGS or by contract with commercial analytical laboratories. These data represent analyses of samples collected as part of various USGS programs and projects. In addition, geochemical data from 7,470 sediment and soil samples collected and analyzed under the Atomic Energy Commission National Uranium Resource Evaluation (NURE) Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) program (henceforth called NURE) have been included in this database. In addition to data from 2,377 samples collected and analyzed under CCAP, this dataset includes archived geochemical data originally entered into the in-house Rock Analysis Storage System (RASS) database (used by the USGS from the mid-1960s through the late 1980s) and the in-house PLUTO database (used by the USGS from the mid-1970s through the mid-1990s). All of these data are maintained in the Oracle-based National Geochemical Database (NGDB). Retrievals from the NGDB and from the NURE database were used to generate most of this dataset. In addition, USGS data that have been excluded previously from the NGDB because the data predate earliest USGS geochemical databases, or were once excluded for programmatic reasons

  17. Database creation, data quality assessment, and geochemical maps (phase V, deliverable 59)—Final report on compilation and validation of geochemical data: Chapter D in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Eppinger, Robert G.; Giles, Stuart A.; Lee, Gregory K.; Smith, Steven M.

    2015-01-01

    The geochemical sample media collected by the BGS and BRGM under the PRISM-I contract included rock, sediment, regolith, and soil samples. Details on sample collection procedures are in unpublished reports available from PRISM. These samples were analyzed under PRISM-I contract by ALS Chemex Laboratories using various combinations of modern methods including fire-assay inductively coupled plasma-atomic emission spectrometry (ICPAES) and ICP-mass spectrometry (ICP-MS) for Au; multi-acid digestion, atomic absorption spectroscopy (AAS) for Ag and As; 47-element, four-acid digestion, ICP-MS; 27-element, fouracid digestion, ICP-AES; special four-acid ICP-MS techniques for Pt and B; fire assay followed by ICP-AES for platinum-group elements; whole-rock analyses by wavelength dispersive X-ray fluorescence (XRF); special techniques for loss-on-ignition, inorganic C, and total S; and special ore-grade AAS techniques for Ag, Au, Cu, Ni, Pb, and Zn. Around 30,000 samples were analyzed by at least one technique. However, it is stressed here that: (1) there was no common sample medium collected at all sites, likely due to the vast geological and geomorphologic differences across the country, (2) the sample site distribution is very irregular, likely due in part to access constraints and sand dune cover, and (3) there was no common across-the-board trace element analytical package used for all samples. These three aspects fundamentally affect the ability to produce country-wide geochemical maps of Mauritania. Gold (Au), silver (Ag), and arsenic (As) were the three elements that were most commonly analyzed.

  18. Human Impacts on Wildfires in Interior Alaska

    NASA Astrophysics Data System (ADS)

    Calef, M. P.; McGuire, A. D.; Chapin, F. S.; Dewilde, L.

    2004-12-01

    The effects of human activities on the fire regime of high latitude ecosystems, which has not been well investigated, has the potential to influence water, energy, and carbon dioxide exchange with the atmosphere by influencing land cover and ecosystem dynamics. In this study we assessed the potential footprint of human presence on fire regime in Interior Alaska by investigating three research questions: 1) Does the type of fire ignition (human or lightning) have a significant impact on fire size?; 2) Does human impact on fire regime vary with population size?; and 3) Does distance from towns, roads or rivers affect fire size and ignition? To evaluate these questions, we overlaid the large-firescar database (fires >0.4 km2 for 1988-2002) and the fire ignition database (1956-2000) of the Alaska Fire Service with towns (all named settlements), major roads, and major rivers in Interior Alaska. Currently, humans are responsible for high fire frequency near towns and roads; however, human caused fires are generally much smaller than lightning ignited fires. Human impact on fire regime is a function of town size, and distance to roads and to a lesser extent rivers play an important role as they allow humans access to remote areas. Thus, it is clear that human activities influence fire regime in localized areas of Interior Alaska. Our next challenge is to evaluate if these effects of humans on the fire regime influence water, energy, and carbon dioxide exchange at the regional scale.

  19. Alaska Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Murray, Tom; Read, Cyrus

    2008-01-01

    Steam plume from the 2006 eruption of Augustine volcano in Cook Inlet, Alaska. Explosive ash-producing eruptions from Alaska's 40+ historically active volcanoes pose hazards to aviation, including commercial aircraft flying the busy North Pacific routes between North America and Asia. The Alaska Volcano Observatory (AVO) monitors these volcanoes to provide forecasts of eruptive activity. AVO is a joint program of the U.S. Geological Survey (USGS), the Geophysical Institute of the University of Alaska Fairbanks (UAFGI), and the State of Alaska Division of Geological and Geophysical Surveys (ADGGS). AVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Augustine volcano and AVO at http://www.avo.alaska.edu.

  20. Alaska's renewable energy potential.

    SciTech Connect

    Not Available

    2009-02-01

    This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.

  1. Alaska Native Parkinson’s Disease Registry

    DTIC Science & Technology

    2010-11-01

    1-0001 Brian A Trimble, MD Alaska Native Parkinson’s Disease Registry Principal Investigator A. Introduction Parkinsonism (PS) is a syndrome...characterized by tremor , rigidity, slowness of movement, and problems with walking and balance. Parkinson’s disease is the most common form of PS... parkinsonism cases will be the Indian Health Service (IHS) provider database, called the Resource and Patient Management System (RPMS), but the protocol will

  2. Alaska Native Parkinson’s Disease Registry

    DTIC Science & Technology

    2009-11-01

    W81XWH-07-1-0001 Brian A Trimble, MD Alaska Native Parkinson’s Disease Registry Principal Investigator A. Introduction Parkinsonism (PS) is a...syndrome characterized by tremor , rigidity, slowness of movement, and problems with walking and balance. Parkinson’s disease is the most common form...protocol. The primary source of parkinsonism cases will be the Indian Health Service (IHS) provider database, called the Resource and Patient Management

  3. Alaska Native Parkinson’s Disease Registry

    DTIC Science & Technology

    2012-07-01

    Investigator 4 A. Introduction Parkinsonism (PS) is a syndrome characterized by tremor , rigidity, slowness of movement, and problems with walking...2011. The aims of this project are: Specific Aim 1: Identify cases of parkinsonism among Alaska Native people and populate a secure electronic...registry database. Specific Aim 2: Provide education on parkinsonism and its treatment to primary care physicians and other health care providers

  4. Earthquake Hazard and Risk in Alaska

    NASA Astrophysics Data System (ADS)

    Black Porto, N.; Nyst, M.

    2014-12-01

    Alaska is one of the most seismically active and tectonically diverse regions in the United States. To examine risk, we have updated the seismic hazard model in Alaska. The current RMS Alaska hazard model is based on the 2007 probabilistic seismic hazard maps for Alaska (Wesson et al., 2007; Boyd et al., 2007). The 2015 RMS model will update several key source parameters, including: extending the earthquake catalog, implementing a new set of crustal faults, updating the subduction zone geometry and reoccurrence rate. First, we extend the earthquake catalog to 2013; decluster the catalog, and compute new background rates. We then create a crustal fault model, based on the Alaska 2012 fault and fold database. This new model increased the number of crustal faults from ten in 2007, to 91 faults in the 2015 model. This includes the addition of: the western Denali, Cook Inlet folds near Anchorage, and thrust faults near Fairbanks. Previously the subduction zone was modeled at a uniform depth. In this update, we model the intraslab as a series of deep stepping events. We also use the best available data, such as Slab 1.0, to update the geometry of the subduction zone. The city of Anchorage represents 80% of the risk exposure in Alaska. In the 2007 model, the hazard in Alaska was dominated by the frequent rate of magnitude 7 to 8 events (Gutenberg-Richter distribution), and large magnitude 8+ events had a low reoccurrence rate (Characteristic) and therefore didn't contribute as highly to the overall risk. We will review these reoccurrence rates, and will present the results and impact to Anchorage. We will compare our hazard update to the 2007 USGS hazard map, and discuss the changes and drivers for these changes. Finally, we will examine the impact model changes have on Alaska earthquake risk. Consider risk metrics include average annual loss, an annualized expected loss level used by insurers to determine the costs of earthquake insurance (and premium levels), and the

  5. Geochemistry and geophysics field maps used during the USGS 2011 field season in southwest Alaska

    USGS Publications Warehouse

    Giles, Stuart A.

    2013-01-01

    The US Geological Survey (USGS) has been studying a variety of geochemical and geophyscial assessment techniques for concealed mineral deposits. The 2011 field season for this project took place in southwest Alaska, northeast of Bristol Bay between Dillingham and Iliamna Lake. Four maps were created for the geochemistry and geophysics teams to use during field activities.

  6. Geochemical modeling: a review

    SciTech Connect

    Jenne, E.A.

    1981-06-01

    Two general families of geochemical models presently exist. The ion speciation-solubility group of geochemical models contain submodels to first calculate a distribution of aqueous species and to secondly test the hypothesis that the water is near equilibrium with particular solid phases. These models may or may not calculate the adsorption of dissolved constituents and simulate the dissolution and precipitation (mass transfer) of solid phases. Another family of geochemical models, the reaction path models, simulates the stepwise precipitation of solid phases as a result of reacting specified amounts of water and rock. Reaction path models first perform an aqueous speciation of the dissolved constituents of the water, test solubility hypotheses, then perform the reaction path modeling. Certain improvements in the present versions of these models would enhance their value and usefulness to applications in nuclear-waste isolation, etc. Mass-transfer calculations of limited extent are certainly within the capabilities of state-of-the-art models. However, the reaction path models require an expansion of their thermodynamic data bases and systematic validation before they are generally accepted.

  7. New geothermal database for Utah

    USGS Publications Warehouse

    Blackett, Robert E.; ,

    1993-01-01

    The Utah Geological Survey complied a preliminary database consisting of over 800 records on thermal wells and springs in Utah with temperatures of 20??C or greater. Each record consists of 35 fields, including location of the well or spring, temperature, depth, flow-rate, and chemical analyses of water samples. Developed for applications on personal computers, the database will be useful for geochemical, statistical, and other geothermal related studies. A preliminary map of thermal wells and springs in Utah, which accompanies the database, could eventually incorporate heat-flow information, bottom-hole temperatures from oil and gas wells, traces of Quaternary faults, and locations of young volcanic centers.

  8. Alaska geothermal bibliography

    SciTech Connect

    Liss, S.A.; Motyka, R.J.; Nye, C.J.

    1987-05-01

    The Alaska geothermal bibliography lists all publications, through 1986, that discuss any facet of geothermal energy in Alaska. In addition, selected publications about geology, geophysics, hydrology, volcanology, etc., which discuss areas where geothermal resources are located are included, though the geothermal resource itself may not be mentioned. The bibliography contains 748 entries.

  9. Renewable Energy in Alaska

    SciTech Connect

    Not Available

    2013-03-01

    This report examines the opportunities, challenges, and costs associated with renewable energy implementation in Alaska and provides strategies that position Alaska's accumulating knowledge in renewable energy development for export to the rapidly growing energy/electric markets of the developing world.

  10. Alaska Problem Resource Manual: Alaska Future Problem Solving Program. Alaska Problem 1985-86.

    ERIC Educational Resources Information Center

    Gorsuch, Marjorie, Ed.

    "Alaska's Image in the Lower 48," is the theme selected by a Blue Ribbon panel of state and national leaders who felt that it was important for students to explore the relationship between Alaska's outside image and the effect of that image on the federal programs/policies that impact Alaska. An overview of Alaska is presented first in…

  11. 2006 Compilation of Alaska Gravity Data and Historical Reports

    USGS Publications Warehouse

    Saltus, Richard W.; Brown, Philip J.; Morin, Robert L.; Hill, Patricia L.

    2008-01-01

    Gravity anomalies provide fundamental geophysical information about Earth structure and dynamics. To increase geologic and geodynamic understanding of Alaska, the U.S. Geological Survey (USGS) has collected and processed Alaska gravity data for the past 50 years. This report introduces and describes an integrated, State-wide gravity database and provides accompanying gravity calculation tools to assist in its application. Additional information includes gravity base station descriptions and digital scans of historical USGS reports. The gravity calculation tools enable the user to reduce new gravity data in a consistent manner for combination with the existing database. This database has sufficient resolution to define the regional gravity anomalies of Alaska. Interpretation of regional gravity anomalies in parts of the State are hampered by the lack of local isostatic compensation in both southern and northern Alaska. However, when filtered appropriately, the Alaska gravity data show regional features having geologic significance. These features include gravity lows caused by low-density rocks of Cenozoic basins, flysch belts, and felsic intrusions, as well as many gravity highs associated with high-density mafic and ultramafic complexes.

  12. Libraries in Alaska: MedlinePlus

    MedlinePlus

    ... this page: https://medlineplus.gov/libraries/alaska.html Libraries in Alaska To use the sharing features on ... JavaScript. Anchorage University of Alaska Anchorage Alaska Medical Library 3211 Providence Drive Anchorage, AK 99508-8176 907- ...

  13. UAFSmoke Modeling in Alaska

    NASA Astrophysics Data System (ADS)

    Stuefer, M.; Grell, G.; Freitas, S.; Newby, G.

    2008-12-01

    Alaska wildfires have strong impact on air pollution on regional Arctic, Sub-Arctic and even hemispheric scales. In response to a high number of wildfires in Alaska, emphasis has been placed on developing a forecast system for wildfire smoke dispersion in Alaska. We have developed a University of Alaska Fairbanks WRF/Chem smoke (UAFSmoke) dispersion system, which has been adapted and initialized with source data suitable for Alaska. UAFSmoke system modules include detection of wildfire location and area using Alaska Fire Service information and satellite remote sensing data from the MODIS instrument. The fire emissions are derived from above ground biomass fuel load data in one-kilometer resolution. WRF/Chem Version 3 with online chemistry and online plume dynamics represents the core of the UAFSmoke system. Besides wildfire emissions and NOAA's Global Forecast System meteorology, WRF/Chem initial and boundary conditions are updated with anthropogenic and sea salt emission data from the Georgia Institute of Technology-Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) Model. System runs are performed at the Arctic Region Supercomputing Center's Sun Opteron cluster "Midnight". During the 2008 fire season once daily UAFSmoke runs were presented at a dedicated webpage at http://smoke.arsc.edu. We present examples from these routine runs and from the extreme 2004 Alaska wildfire season.

  14. Alaska marine ice atlas

    SciTech Connect

    LaBelle, J.C.; Wise, J.L.; Voelker, R.P.; Schulze, R.H.; Wohl, G.M.

    1982-01-01

    A comprehensive Atlas of Alaska marine ice is presented. It includes information on pack and landfast sea ice and calving tidewater glacier ice. It also gives information on ice and related environmental conditions collected over several years time and indicates the normal and extreme conditions that might be expected in Alaska coastal waters. Much of the information on ice conditions in Alaska coastal waters has emanated from research activities in outer continental shelf regions under assessment for oil and gas exploration and development potential. (DMC)

  15. Alaska geology revealed

    USGS Publications Warehouse

    Wilson, Frederic H.; Labay, Keith A.

    2016-11-09

    This map shows the generalized geology of Alaska, which helps us to understand where potential mineral deposits and energy resources might be found, define ecosystems, and ultimately, teach us about the earth history of the State. Rock units are grouped in very broad categories on the basis of age and general rock type. A much more detailed and fully referenced presentation of the geology of Alaska is available in the Geologic Map of Alaska (http://dx.doi.org/10.3133/sim3340). This product represents the simplification of thousands of individual rock units into just 39 broad groups. Even with this generalization, the sheer complexity of Alaskan geology remains evident.

  16. Alaska telemedicine: growth through collaboration.

    PubMed

    Patricoski, Chris

    2004-12-01

    The last thirty years have brought the introduction and expansion of telecommunications to rural and remote Alaska. The intellectual and financial investment of earlier projects, the more recent AFHCAN Project and the Universal Service Administrative Company Rural Health Care Division (RHCD) has sparked a new era in telemedicine and telecommunication across Alaska. This spark has been flamed by the dedication and collaboration of leaders at he highest levels of organizations such as: AFHCAN member organizations, AFHCAN Office, Alaska Clinical Engineering Services, Alaska Federal Health Care Partnership, Alaska Federal Health Care Partnership Office, Alaska Native health Board, Alaska Native Tribal health Consortium, Alaska Telehealth Advisory Council, AT&T Alascom, GCI Inc., Health care providers throughout the state of Alaska, Indian Health Service, U.S. Department of Health and Human Services, Office of U.S. Senator Ted Steens, State of Alaska, U.S. Department of Homeland Security--United States Coast Guard, United States Department of Agriculture, United States Department of Defense--Air Force and Army, United States Department of Veterans Affairs, University of Alaska, and University of Alaska Anchorage. Alaska now has one of the largest telemedicine programs in the world. As Alaska moves system now in place become self-sustaining, and 2) collaborating with all stakeholders in promoting the growth of an integrated, state-wide telemedicine network.

  17. Alaska: A frontier divided

    SciTech Connect

    O'Dell, R. )

    1986-09-01

    The superlatives surrounding Alaska are legion. Within the borders of the 49th US state are some of the world's greatest concentrations of waterfowl, bald eagles, fur seals, walrus, sea lions, otters, and the famous Kodiak brown bear. Alaska features the highest peak of North America, the 20,320-foot Mount McKinley, and the longest archipelago of small islands, the Aleutians. The state holds the greatest percentage of protected wilderness per capita in the world. The expanse of some Alaskan glaciers dwarfs entire countries. Like the periodic advance and retreat of its glaciers, Alaska appears with some regularity on the national US agenda. It last achieved prominence when President Jimmy Carter signed the Alaska National Interest Lands Conservation Act in 1980. Since then the conflict between environmental protection and economic development has been played out throughout the state, and Congress is expected to turn to Alaskan issues again in its next sessions.

  18. Hawkweed Control in Alaska

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several hawkweed species from Europe have escaped ornamental planting and have colonized roadsides and grasslands in south central and southeast Alaska. These plants form near monotypic stands, reducing plant diversity and decreasing pasture productivity. A replicated greenhouse study was conducted ...

  19. National uranium resource evaluation: Dixon Entrance Quadrangle, Alaska

    SciTech Connect

    Anderson, J.R.; Krause, K.J.

    1982-04-01

    The Dixon Entrance Quadrangle (1:250,000 scale, Alaska-Canada Topographic series) includes southern islands of Southeast Alaska as well as the northern tip of the Queen Charlotte Islands of British Columbia. The Alaska portion of the quadrangle was evaluated to identify and delineate environments favorable for uranium deposits using criteria developed for the National Uranium Resource Evaluation program. The evaluation is based on data from aerial and ground radiometric surveys, geochemical sampling, published geologic reports, and helicopter-supported surface reconnaissance. Bed rock is mostly masked by surficial cover, and detailed geologic maps are available for only a small part of the quadrangle. Known uranium deposits are associated with the Bokan Mountain peralkaline granite stock of Devonian age from which uranium and thorium ore have been produced and which is considered favorable for autometasomatic uranium deposits. Orthomagmatic, pegmatitic, magmatic-hydrothermal, and contact-metasomatic environments related to the Bokan Mountain granite are considered unfavorable because they do not appear to meet grade or tonnage criteria. Additional uranium occurrences and uranium radiometric and geochemical anomalies were discovered away from the Bokan Mountain granite, but none appeared related to granitic complexes similar to Bokan Mountain. No other geologic environments that meet favorability criteria for the occurrence of uranium deposits were found by the reconnaissance-level field investigations conducted in the quadrangle. The Forrester Island US Wildlife Refuge was not evaluated.

  20. Thermal evolution of sedimentary basins in Alaska

    USGS Publications Warehouse

    Johnsson, Mark J.; Howell, D.G.

    1996-01-01

    The complex tectonic collage of Alaska is reflected in the conjunction of rocks of widely varying thermal maturity. Indicators of the level of thermal maturity of rocks exposed at the surface, such as vitrinite reflectance and conodont color alteration index, can help constrain the tectonic evolution of such complex regions and, when combined with petrographic, modern heat flow, thermogeochronologic, and isotopic data, allow for the detailed evaluation of a region?s burial and uplift history. We have collected and assembled nearly 10,000 vitrinite-reflectance and conodont-color-alteration index values from the literature, previous U.S. Geological Survey investigations, and our own studies in Alaska. This database allows for the first synthesis of thermal maturity on a broadly regional scale. Post-accretionary sedimentary basins in Alaska show wide variability in terms of thermal maturity. The Tertiary interior basins, as well as some of the forearc and backarc basins associated with the Aleutian Arc, are presently at their greatest depth of burial, with immature rocks exposed at the surface. Other basins, such as some backarc basins on the Alaska Peninsula, show higher thermal maturities, indicating modest uplift, perhaps in conjunction with higher geothermal gradients related to the arc itself. Cretaceous ?flysch? basins, such as the Yukon-Koyukuk basin, are at much higher thermal maturity, reflecting great amounts of uplift perhaps associated with compressional regimes generated through terrane accretion. Many sedimentary basins in Alaska, such as the Yukon-Koyukuk and Colville basins, show higher thermal maturity at basin margins, perhaps reflecting greater uplift of the margins in response to isostatic unloading, owing to erosion of the hinterland adjacent to the basin or to compressional stresses adjacent to basin margins.

  1. Alaska looks HOT!

    SciTech Connect

    Belcher, J.

    1997-07-01

    Production in Alaska has been sluggish in recent years, with activity in the Prudhoe Bay region in the North Slope on a steady decline. Alaska North Slope (ANS) production topped out in 1988 at 2.037 MMbo/d, with 1.6 MMbo/d from Prudhoe Bay. This year operators expect to produce 788 Mbo/d from Prudhoe Bay, falling to 739 Mbo/d next year. ANS production as a whole should reach 1.3 MMbo/d this year, sliding to 1.29 MMbo/d in 1998. These declining numbers had industry officials and politicians talking about the early death of the Trans-Alaskan Pipeline System-the vital link between ANS crude and markets. But enhanced drilling technology coupled with a vastly improved relationship between the state government and industry have made development in Alaska more economical and attractive. Alaska`s Democratic Gov. Tommy Knowles is fond of telling industry {open_quotes}we`re open for business.{close_quotes} New discoveries on the North Slope and in the Cook Inlet are bringing a renewed sense of optimism to the Alaska exploration and production industry. Attempts by Congress to lift a moratorium on exploration and production activity in the Arctic National Wildlife Refuge (ANWR) have been thwarted thus far, but momentum appears to be with proponents of ANWR drilling.

  2. Global geochemical problems

    NASA Technical Reports Server (NTRS)

    Harriss, R. C.

    1980-01-01

    Application of remote sensing techniques to the solution of geochemical problems is considered with emphasis on the 'carbon-cycle'. The problem of carbon dioxide sinks and the areal extent of coral reefs are treated. In order to assess the problems cited it is suggested that remote sensing techniques be utilized to: (1)monitor globally the carbonate and bicarbonate concentrations in surface waters of the world ocean; (2)monitor the freshwater and oceanic biomass and associated dissolved organic carbon; (3) inventory the coral reef areas and types and the associated oceanographic climatic conditions; and (4)measure the heavy metal fluxes from forested and vegetated areas, from volcanos, from different types of crustal rocks, from soils, and from sea surfaces.

  3. [Microbial geochemical calcium cycle].

    PubMed

    Zavarzin, G A

    2002-01-01

    The participation of microorganisms in the geochemical calcium cycle is the most important factor maintaining neutral conditions on the Earth. This cycle has profound influence on the fate of inorganic carbon, and, thereby, on the removal of CO2 from the atmosphere. The major part of calcium deposits was formed in the Precambrian, when prokaryotic biosphere predominated. After that, calcium recycling based on biogenic deposition by skeletal organisms became the main process. Among prokaryotes, only a few representatives, e.g., cyanobacteria, exhibit a special calcium function. The geochemical calcium cycle is made possible by the universal features of bacteria involved in biologically mediated reactions and is determined by the activities of microbial communities. In the prokaryotic system, the calcium cycle begins with the leaching of igneous rock predominantly through the action of the community of organotrophic organisms. The release of carbon dioxide to the soil air by organotrophic aerobes leads to leaching with carbonic acid and soda salinization. Under anoxic conditions, of major importance is the organic acid production by primary anaerobes (fermentative microorganisms). Calcium carbonate is precipitated by secondary anaerobes (sulfate reducers) and to a smaller degree by methanogens. The role of the cyanobacterial community in carbonate deposition is exposed by stromatolites, which are the most common organo-sedimentary Precambrian structures. Deposition of carbonates in cyanobacterial mats as a consequence of photoassimilation of CO2 does not appear to be a significant process. It is argued that carbonates were deposited at the boundary between the "soda continent", which emerged as a result of subaerial leaching with carbonic acid, and the ocean containing Ca2+. Such ecotones provided favorable conditions for the development of the benthic cyanobacterial community, which was a precursor of stromatolites.

  4. Geochemical Speciation Mass Transfer

    SciTech Connect

    1985-12-01

    PHREEQC is designed to model geochemical reactions. Based on an ion association aqueous model, PHREEQC can calculate pH, redox potential, and mass transfer as a function of reaction progress. It can be used to describe geochemical processes for both far-field and near-field performance assessment and to evaluate data acquisition needs and test data. It can also calculate the composition of solutions in equilibrium with multiple phases. The data base, including elements, aqueous species, and mineral phases, is independent of the program and is completely user-definable. PHREEQC requires thermodynamic data for each solid, gaseous, or dissolved chemical species being modeled. The two data bases, PREPHR and DEQPAK7, supplied with PHREEQC are for testing purposes only and should not be applied to real problems without first being carefully examined. The conceptual model embodied in PHREEQC is the ion-association model of Pearson and Noronha. In this model a set of mass action equations are established for each ion pair (and controlling solid phases when making mass transfer calculations) along with a set of mass balance equations for each element considered. These sets of equations are coupled using activity coefficient values for each aqueous species and solved using a continued fraction approach for the mass balances combined with a modified Newton-Raphson technique for all other equations. The activity coefficient expressions in PHREEQC include the extended Debye-Huckel, WATEQ Debye-Huckel, and Davies equations from the original United States Geological Survey version of the program. The auxiliary preprocessor program PHTL, which is derived from EQTL, converts EQ3/6 thermodynamic data to PHREEQC format so that the two programs can be compared. PHREEQC can be used to determine solubility limits on the radionuclides present in the waste form. These solubility constraints may be input to the WAPPA leach model.

  5. Controls on OIB and MORB Geochemical Variabilty

    NASA Astrophysics Data System (ADS)

    Shorttle, O.; Maclennan, J.

    2014-12-01

    The geochemical variability preserved in Ocean Island and Mid-ocean ridge basalt (MORB) is a key tracer of the magmatic storage and transport processes they experience during their ascent through the mantle and crust. The effect of these processes is to collapse the huge diversity of melt compositions predicted to form during polybaric fractional melting of a lithologically heterogeneous mantle, into the narrow range we see expressed in most ocean island and mid-ocean ridge settings. Magma mixing can therefore be seen as contaminating the variance structure of primitive mantle melts, akin to the way in which wall-rock assimilation contaminates melts by chemical addition. The key observation from the melt inclusion and whole-rock records from ocean islands such as Iceland, is that as crystallisation proceeds mixing in magma chambers progressively reduces geochemical variability, until by ~5wt% MgO almost all primary chemical diversity has been lost. These chemical systematics allow us to extend the observations made at ocean islands to make predictions about how mixing processes should operate in MORB generally and the key factors controlling mixing efficiency: melt flow out of the mantle, crustal thickness, magma supply rate, and by extension spreading rate, and mantle potential temperature. However, with its low sampling density, the global MORB database does not easily allow testing of these hypotheses. We have developed a novel geospatial statistical analysis to bridge the gap between observations made on a small scale - at single ocean islands and ridge segments - to the entire global dataset of MORB chemistry. By analysing the geochemical variance in MORB over a range of bandwidths we have captured the ~200km lengthscale at which the simple relationships between geochemical variability and MgO appear. Our results demonstrate that on short lengthscales mantle chemical structure and magmatic processes operate coherently in destruction of geochemical variability

  6. Environmental Applications of Geochemical Modeling

    NASA Astrophysics Data System (ADS)

    Zhu, Chen; Anderson, Greg

    2002-05-01

    This book discusses the application of geochemical models to environmental practice and studies, through the use of numerous case studies of real-world environmental problems, such as acid mine drainage, pit lake chemistry, nuclear waste disposal, and landfill leachates. In each example the authors clearly define the environmental threat in question; explain how geochemical modeling may help solve the problem posed; and advise the reader how to prepare input files for geochemical modeling codes and interpret the results in terms of meeting regulatory requirements.

  7. Biofuel Database

    National Institute of Standards and Technology Data Gateway

    Biofuel Database (Web, free access)   This database brings together structural, biological, and thermodynamic data for enzymes that are either in current use or are being considered for use in the production of biofuels.

  8. Modeling Low-temperature Geochemical Processes

    NASA Astrophysics Data System (ADS)

    Nordstrom, D. K.

    2003-12-01

    modeling groundwater chemistry: (i) "forward modeling," which predicts water compositions from hypothesized reactions and user assumptions and (ii) "inverse modeling," which uses water, mineral, and isotopic compositions to constrain hypothesized reactions. These approaches simply reflect the amount of information one has to work with. With minimal information on a site, a modeler is forced to rely on forward modeling. Optimal information would include detailed mineralogy on drill cores or well cuttings combined with detailed water analyses at varying depths and sufficient spatial distribution to follow geochemical reactions and mixing of waters along defined flow paths. With optimal information, a modeler will depend on inverse modeling.This chapter outlines the main concepts and key developments in the field of geochemical modeling for low-temperature environments and illustrates their use with examples. It proceeds with a short discussion of what modeling is, continues with concepts and definitions commonly used, and follows with a short history of geochemical models, a discussion of databases, the codes that embody models, and recent examples of how these codes have been used in water-rock interactions. An important new stage of development seems to have been reached in this field with questions of reliability and validity of models. Future work will be obligated to document ranges of certainty and sources of uncertainty, sensitivity of models and codes to parameter errors and assumptions, propagation of errors, and delineation of the range of applicability.

  9. Database Administrator

    ERIC Educational Resources Information Center

    Moore, Pam

    2010-01-01

    The Internet and electronic commerce (e-commerce) generate lots of data. Data must be stored, organized, and managed. Database administrators, or DBAs, work with database software to find ways to do this. They identify user needs, set up computer databases, and test systems. They ensure that systems perform as they should and add people to the…

  10. Map, tables, and summary of fossil and isotopic age data, Mount Hayes Quadrangle, eastern Alaska range, Alaska

    USGS Publications Warehouse

    Nokleberg, Warren J.; Aleinikoff, John N.; Dutro, J. Thomas; Lanphere, Marvin A.; Silberling, Norman J.; Silva, Steven R.; Smith, Thomas E.; Turner, Donald L.

    1992-01-01

    This report describes, summarizes, and interprets all known bedrock fossil and isotopic age studies for the Mount Hayes quadrangle, eastern Alaska Range, Alaska. The accompanying map shows the location of all known bedrock fossil and isotopic sample localities in the quadrangle on a generalized geologic base map. These fossil and isotopic age data are obtained from new studies, unpublished data of the U.S. Geological Survey, contributed unpublished data, and published data. This report is one result of a five-year mineral resource assessment of the quadrangle that was done during the summers of 1978 through 1982, with additional topical studiesin 1985 and 1986. This report is one part of a folio on the geological, geochemical, geophysical, and mineral-resource assessment studies of the quadrangle prepared as part of the Alaskan Mineral Resource Assessment Program (AMRAP) of the U.S. Geological Survey.

  11. Accretion of southern Alaska

    USGS Publications Warehouse

    Hillhouse, J.W.

    1987-01-01

    Paleomagnetic data from southern Alaska indicate that the Wrangellia and Peninsular terranes collided with central Alaska probably by 65 Ma ago and certainly no later than 55 Ma ago. The accretion of these terranes to the mainland was followed by the arrival of the Ghost Rocks volcanic assemblage at the southern margin of Kodiak Island. Poleward movement of these terranes can be explained by rapid motion of the Kula oceanic plate, mainly from 85 to 43 Ma ago, according to recent reconstructions derived from the hot-spot reference frame. After accretion, much of southwestern Alaska underwent a counterclockwise rotation of about 50 ?? as indicated by paleomagnetic poles from volcanic rocks of Late Cretaceous and Early Tertiary age. Compression between North America and Asia during opening of the North Atlantic (68-44 Ma ago) may account for the rotation. ?? 1987.

  12. A possible Younger Dryas record in southeastern Alaska

    SciTech Connect

    Engstrom, D.R.; Hansen, B.C.S.; Wright, H.E. Jr. )

    1990-12-07

    A stratigraphic record of climatic cooling equal in timing and severity to the Younger Dryas event of the North Atlantic region has been obtained form lacustrine sediments in the Glacier Bay area of southeastern Alaska. Fossil pollen show that a late Wisconsin pine parkland was replaced about 10,800 years ago by shrub- and herb-dominated tundra, which lasted until about 9,800 years ago. This vegetational change is matched by geochemical evidence for loss of organic matter from catchment soils and increased mineral erosion. If this event represents the Younger Dryas, then an explanation for a hemisphere-wide propagation of a North Atlantic climatic perturbation must be sought.

  13. 2012 Alaska Performance Scholarship Outcomes Report

    ERIC Educational Resources Information Center

    Rae, Brian

    2012-01-01

    As set forth in Alaska Statute 14.43.840, Alaska's Departments of Education & Early Development (EED) and Labor and Workforce Development (DOLWD), the University of Alaska (UA), and the Alaska Commission on Postsecondary Education (ACPE) present this first annual report on the Alaska Performance Scholarship to the public, the Governor, and the…

  14. USGS Alaska State Mosaic

    USGS Publications Warehouse

    ,

    2008-01-01

    The Alaska State Mosaic consists of portions of scenes from the Multi-Resolution Land Characteristics 2001 (MRLC 2001) collection. The 172 selected scenes have been geometrically and radiometrically aligned to produce a seamless, relatively cloud-free image of the State. The scenes were acquired between July 1999 and September 2002, resampled to 120-meter pixels, and cropped to the State boundary. They were reprojected into a standard Alaska Albers projection with the U.S. National Elevation Dataset (NED) used to correct for relief.

  15. Exploration computer applications to primary dispersion halos: Kougarok tin prospect, Seward Peninsula, Alaska, USA

    USGS Publications Warehouse

    Reid, Jeffrey C.

    1989-01-01

    Computer processing and high resolution graphics display of geochemical data were used to quickly, accurately, and efficiently obtain important decision-making information for tin (cassiterite) exploration, Seward Peninsula, Alaska (USA). Primary geochemical dispersion patterns were determined for tin-bearing intrusive granite phases of Late Cretaceous age with exploration bedrock lithogeochemistry at the Kougarok tin prospect. Expensive diamond drilling footage was required to reach exploration objectives. Recognition of element distribution and dispersion patterns was useful in subsurface interpretation and correlation, and to aid location of other holes.

  16. A geochemical atlas of North Carolina, USA

    USGS Publications Warehouse

    Reid, J.C.

    1993-01-01

    A geochemical atlas of North Carolina, U.S.A., was prepared using National Uranium Resource Evaluation (NURE) stream-sediment data. Before termination of the NURE program, sampling of nearly the entire state (48,666 square miles of land area) was completed and geochemical analyses were obtained. The NURE data are applicable to mineral exploration, agriculture, waste disposal siting issues, health, and environmental studies. Applications in state government include resource surveys to assist mineral exploration by identifying geochemical anomalies and areas of mineralization. Agriculture seeks to identify areas with favorable (or unfavorable) conditions for plant growth, disease, and crop productivity. Trace elements such as cobalt, copper, chromium, iron, manganese, zinc, and molybdenum must be present within narrow ranges in soils for optimum growth and productivity. Trace elements as a contributing factor to disease are of concern to health professionals. Industry can use pH and conductivity data for water samples to site facilities which require specific water quality. The North Carolina NURE database consists of stream-sediment samples, groundwater samples, and stream-water analyses. The statewide database consists of 6,744 stream-sediment sites, 5,778 groundwater sample sites, and 295 stream-water sites. Neutron activation analyses were provided for U, Br, Cl, F, Mn, Na, Al, V, Dy in groundwater and stream water, and for U, Th, Hf, Ce, Fe, Mn, Na, Sc, Ti, V, Al, Dy, Eu, La, Sm, Yb, and Lu in stream sediments. Supplemental analyses by other techniques were reported on U (extractable), Ag, As, Ba, Be, Ca, Co, Cr, Cu, K, Li, Mg, Mo, Nb, Ni, P, Pb, Se, Sn, Sr, W, Y, and Zn for 4,619 stream-sediment samples. A small subset of 334 stream samples was analyzed for gold. The goal of the atlas was to make available the statewide NURE data with minimal interpretation to enable prospective users to modify and manipulate the data for their end use. The atlas provides only

  17. Alaska's Cold Desert.

    ERIC Educational Resources Information Center

    Brune, Jeff; And Others

    1996-01-01

    Explores the unique features of Alaska's Arctic ecosystem, with a focus on the special adaptations of plants and animals that enable them to survive in a stressful climate. Reviews the challenges facing public and private land managers who seek to conserve this ecosystem while accommodating growing demands for development. Includes classroom…

  18. Alaska Mathematics Standards

    ERIC Educational Resources Information Center

    Alaska Department of Education & Early Development, 2012

    2012-01-01

    High academic standards are an important first step in ensuring that all Alaska's students have the tools they need for success. These standards reflect the collaborative work of Alaskan educators and national experts from the nonprofit National Center for the Improvement of Educational Assessment. Further, they are informed by public comments.…

  19. Alaska Glaciers and Rivers

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite captured this image on October 7, 2007, showing the Alaska Mountains of south-central Alaska already coated with snow. Purple shadows hang in the lee of the peaks, giving the snow-clad land a crumpled appearance. White gives way to brown on the right side of the image where the mountains yield to the lower-elevation Susitna River Valley. The river itself cuts a silver, winding path through deep green forests and brown wetlands and tundra. Extending from the river valley, are smaller rivers that originated in the Alaska Mountains. The source of these rivers is evident in the image. Smooth white tongues of ice extend into the river valleys, the remnants of the glaciers that carved the valleys into the land. Most of the water flowing into the Gulf of Alaska from the Susitna River comes from these mountain glaciers. Glacier melt also feeds glacier lakes, only one of which is large enough to be visible in this image. Immediately left of the Kahiltna River, the aquamarine waters of Chelatna Lake stand out starkly against the brown and white landscape.

  20. Venetie, Alaska energy assessment.

    SciTech Connect

    Jensen, Richard Pearson; Baca, Michael J.; Schenkman, Benjamin L.; Brainard, James Robert

    2013-07-01

    This report summarizes the Energy Assessment performed for Venetie, Alaska using the principals of an Energy Surety Microgrid (ESM) The report covers a brief overview of the principals of ESM, a site characterization of Venetie, a review of the consequence modeling, some preliminary recommendations, and a basic cost analysis.

  1. Alaska's Logging Camp School.

    ERIC Educational Resources Information Center

    Millward, Robert E.

    1999-01-01

    A visit to Ketchikan, Alaska, reveals a floating, one-teacher logging-camp school that uses multiage grouping and interdisciplinary teaching. There are 10 students. The school gym and playground, bunkhouse, fuel tanks, mess hall, and students' homes bob up and down and are often moved to other sites. (MLH)

  2. Seismology Outreach in Alaska

    NASA Astrophysics Data System (ADS)

    Gardine, L.; Tape, C.; West, M. E.

    2014-12-01

    Despite residing in a state with 75% of North American earthquakes and three of the top 15 ever recorded, most Alaskans have limited knowledge about the science of earthquakes. To many, earthquakes are just part of everyday life, and to others, they are barely noticed until a large event happens, and often ignored even then. Alaskans are rugged, resilient people with both strong independence and tight community bonds. Rural villages in Alaska, most of which are inaccessible by road, are underrepresented in outreach efforts. Their remote locations and difficulty of access make outreach fiscally challenging. Teacher retention and small student bodies limit exposure to science and hinder student success in college. The arrival of EarthScope's Transportable Array, the 50th anniversary of the Great Alaska Earthquake, targeted projects with large outreach components, and increased community interest in earthquake knowledge have provided opportunities to spread information across Alaska. We have found that performing hands-on demonstrations, identifying seismological relevance toward career opportunities in Alaska (such as natural resource exploration), and engaging residents through place-based experience have increased the public's interest and awareness of our active home.

  3. Nature of the Coast Batholith, Southeastern Alaska: Are there Archean analogs

    NASA Technical Reports Server (NTRS)

    Barker, Fred; Arth, J. G.

    1988-01-01

    The comparison of Phanerozoic Andean margins and their possible Archean analogs was made. Geochemical and isotopic data was presented for the episodic intrusion of the elongate, continental margin Coast batholith of southeastern Alaska and British Columbia. The batholith was characterized as having been formed in direct response to subduction in accreted terranes of oceanic or slope origin. It was concluded that there were good analogs of the Coast batholith in Archean plutonic suites.

  4. Image Databases.

    ERIC Educational Resources Information Center

    Pettersson, Rune

    Different kinds of pictorial databases are described with respect to aims, user groups, search possibilities, storage, and distribution. Some specific examples are given for databases used for the following purposes: (1) labor markets for artists; (2) document management; (3) telling a story; (4) preservation (archives and museums); (5) research;…

  5. Maize databases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter is a succinct overview of maize data held in the species-specific database MaizeGDB (the Maize Genomics and Genetics Database), and selected multi-species data repositories, such as Gramene/Ensembl Plants, Phytozome, UniProt and the National Center for Biotechnology Information (NCBI), ...

  6. Genome databases

    SciTech Connect

    Courteau, J.

    1991-10-11

    Since the Genome Project began several years ago, a plethora of databases have been developed or are in the works. They range from the massive Genome Data Base at Johns Hopkins University, the central repository of all gene mapping information, to small databases focusing on single chromosomes or organisms. Some are publicly available, others are essentially private electronic lab notebooks. Still others limit access to a consortium of researchers working on, say, a single human chromosome. An increasing number incorporate sophisticated search and analytical software, while others operate as little more than data lists. In consultation with numerous experts in the field, a list has been compiled of some key genome-related databases. The list was not limited to map and sequence databases but also included the tools investigators use to interpret and elucidate genetic data, such as protein sequence and protein structure databases. Because a major goal of the Genome Project is to map and sequence the genomes of several experimental animals, including E. coli, yeast, fruit fly, nematode, and mouse, the available databases for those organisms are listed as well. The author also includes several databases that are still under development - including some ambitious efforts that go beyond data compilation to create what are being called electronic research communities, enabling many users, rather than just one or a few curators, to add or edit the data and tag it as raw or confirmed.

  7. Coal resources of Alaska

    SciTech Connect

    Sanders, R.B.

    1982-01-01

    In the late 1800s, whaling ships carried Alaskan coal, and it was used to thaw ground for placer gold mining. Unfortunate and costly political maneuvers in the early 1900s delayed coal removal, but the Alaska Railroad and then World War II provided incentives for opening mines. Today, 33 million acres (about 9% of the state) is classified as prospectively valuable for coal, much of it under federal title. Although the state's geology is poorly known, potential for discovery of new fields exists. The US Geological Survey estimates are outdated, although still officially used. The total Alaska onshore coal resource is estimated to be 216 to 4216 billion tons of which 141 billion tons are identified resources; an additional 1430 billion tons are believed to lie beneath Cook Inlet. Transportation over mountain ranges and wetlands is the biggest hurdle for removal. Known coal sources and types are described and mapped. 1 figure.

  8. Seabirds in Alaska

    USGS Publications Warehouse

    Hatch, Scott A.; Piatt, John F.

    1995-01-01

    Techniques for monitoring seabird populations vary according to habitat types and the breeding behavior of individual species (Hatch and Hatch 1978, 1989; Byrd et al. 1983). An affordable monitoring program can include but a few of the 1,300 seabird colonies identified in Alaska, and since the mid-1970's, monitoring effotrts have emphasized a small selection of surface-feeding and diving species, primarily kittiwakes (Rissa spp.) and murres (Uria spp.). Little or no information on trends is available for other seabirds (Hatch 1993a). The existing monitoring program occurs largely on sites within the Alaska Maritime National Wildlife Refuge, which was established primarily for the conservation of marine birds. Data are collected by refuge staff, other state and federal agencies, private organizations, university faculty, and students.

  9. Late Pleistocene and Holocene tephrostratigraphy of interior Alaska and Yukon: Key beds and chronologies over the past 30,000 years

    NASA Astrophysics Data System (ADS)

    Davies, Lauren J.; Jensen, Britta J. L.; Froese, Duane G.; Wallace, Kristi L.

    2016-08-01

    The Aleutian Arc-Alaska Peninsula and Wrangell volcanic field are the main source areas for tephra deposits found across Alaska and northern Canada, and increasingly, tephra from these eruptions have been found further afield in North America, Greenland, and Europe. However, there have been no broad scale reviews of the Late Pleistocene and Holocene tephrostratigraphy for this region since the 1980s, and this lack of data is hindering progress in identifying these tephra both locally and regionally. To address this gap and the variable quality of associated geochemical and chronological data, we undertake a detailed review of the latest Pleistocene to Holocene tephra found in interior Alaska and Yukon. This paper discusses nineteen tephra that have distributions beyond southwest Alaska and that have the potential to become, or already are, important regional markers. This includes three 'modern' events from the 20th century, ten with limited data availability but potentially broad distributions, and six that are widely reported in interior Alaska and Yukon. Each tephra is assessed in terms of chronology, geochemistry and distribution, with new Bayesian age estimates and geochemical data when possible. This includes new major-element geochemical data for Crater Peak 1992, Redoubt 1989-90, and two andesitic tephra from St Michael Island (Tephra D), as well as revised age estimates for Dawson tephra, Oshetna, Hayes set H, Aniakchak CFE II, and the White River Ashes, northern and eastern lobes.

  10. 2013 Alaska Performance Scholarship Outcomes Report

    ERIC Educational Resources Information Center

    Rae, Brian

    2013-01-01

    In accordance with Alaska statute the departments of Education & Early Development (EED) and Labor and Workforce Development (DOLWD), the University of Alaska (UA), and the Alaska Commission on Postsecondary Education (ACPE) present this second annual report on the Alaska Performance Scholarship (APS). Among the highlights: (1) In the public…

  11. Rural Alaska Mentoring Project (RAMP)

    ERIC Educational Resources Information Center

    Cash, Terry

    2011-01-01

    For over two years the National Dropout Prevention Center (NDPC) at Clemson University has been supporting the Lower Kuskokwim School District (LKSD) in NW Alaska with their efforts to reduce high school dropout in 23 remote Yup'ik Eskimo villages. The Rural Alaska Mentoring Project (RAMP) provides school-based E-mentoring services to 164…

  12. Alaska provides icy training ground

    SciTech Connect

    Rintoul, B.

    1983-04-01

    Offshore oil drilling platforms and oil exploration off the coast of Alaska are discussed. Sohio is investigating the feasibility of platform supporters from shore such as icebreakers and air-cushion vehicles. At Prudhoe Bay Arco is embarking on the first tertiary oil recovery project to take place on Alaska's North Slope.

  13. Alaska High Altitude Photography Program

    NASA Technical Reports Server (NTRS)

    Petersen, Earl V.; Knutson, Martin A.; Ekstrand, Robert E.

    1986-01-01

    In 1978, the Alaska High Altitude Photography Program was initiated to obtain simultaneous black and white and color IR aerial photography of Alaska. Dual RC-10 and Zeiss camera systems were used for this program on NASA's U-2 and WB-57F, respectively. Data collection, handling, and distribution are discussed as well as general applications and the current status.

  14. MetPetDB: A database for metamorphic geochemistry

    NASA Astrophysics Data System (ADS)

    Spear, Frank S.; Hallett, Benjamin; Pyle, Joseph M.; Adalı, Sibel; Szymanski, Boleslaw K.; Waters, Anthony; Linder, Zak; Pearce, Shawn O.; Fyffe, Matthew; Goldfarb, Dennis; Glickenhouse, Nickolas; Buletti, Heather

    2009-12-01

    We present a data model for the initial implementation of MetPetDB, a geochemical database specific to metamorphic rock samples. The database is designed around the concept of preservation of spatial relationships, at all scales, of chemical analyses and their textural setting. Objects in the database (samples) represent physical rock samples; each sample may contain one or more subsamples with associated geochemical and image data. Samples, subsamples, geochemical data, and images are described with attributes (some required, some optional); these attributes also serve as search delimiters. All data in the database are classified as published (i.e., archived or published data), public or private. Public and published data may be freely searched and downloaded. All private data is owned; permission to view, edit, download and otherwise manipulate private data may be granted only by the data owner; all such editing operations are recorded by the database to create a data version log. The sharing of data permissions among a group of collaborators researching a common sample is done by the sample owner through the project manager. User interaction with MetPetDB is hosted by a web-based platform based upon the Java servlet application programming interface, with the PostgreSQL relational database. The database web portal includes modules that allow the user to interact with the database: registered users may save and download public and published data, upload private data, create projects, and assign permission levels to project collaborators. An Image Viewer module provides for spatial integration of image and geochemical data. A toolkit consisting of plotting and geochemical calculation software for data analysis and a mobile application for viewing the public and published data is being developed. Future issues to address include population of the database, integration with other geochemical databases, development of the analysis toolkit, creation of data models for

  15. GeoFORCE Alaska, A Successful Summer Exploring Alaska's Geology

    NASA Astrophysics Data System (ADS)

    Wartes, D.

    2012-12-01

    Thirty years old this summer, RAHI, the Rural Alaska Honors Institute is a statewide, six-week, summer college-preparatory bridge program at the University of Alaska Fairbanks for Alaska Native and rural high school juniors and seniors. This summer, in collaboration with the University of Texas Austin, the Rural Alaska Honors Institute launched a new program, GeoFORCE Alaska. This outreach initiative is designed to increase the number and diversity of students pursuing STEM degree programs and entering the future high-tech workforce. It uses Earth science to entice kids to get excited about dinosaurs, volcanoes and earthquakes, and includes physics, chemistry, math, biology and other sciences. Students were recruited from the Alaska's Arctic North Slope schools, in 8th grade to begin the annual program of approximately 8 days, the summer before their 9th grade year and then remain in the program for all four years of high school. They must maintain a B or better grade average and participate in all GeoFORCE events. The culmination is an exciting field event each summer. Over the four-year period, events will include trips to Fairbanks and Anchorage, Arizona, Oregon and the Appalachians. All trips focus on Earth science and include a 100+ page guidebook, with tests every night culminating with a final exam. GeoFORCE Alaska was begun by the University of Alaska Fairbanks in partnership with the University of Texas at Austin, which has had tremendous success with GeoFORCE Texas. GeoFORCE Alaska is managed by UAF's long-standing Rural Alaska Honors Institute, that has been successfully providing intense STEM educational opportunities for Alaskan high school students for over 30 years. The program will add a new cohort of 9th graders each year for the next four years. By the summer of 2015, GeoFORCE Alaska is targeting a capacity of 160 students in grades 9th through 12th. Join us to find out more about this exciting new initiative, which is enticing young Alaska Native

  16. Experiment Databases

    NASA Astrophysics Data System (ADS)

    Vanschoren, Joaquin; Blockeel, Hendrik

    Next to running machine learning algorithms based on inductive queries, much can be learned by immediately querying the combined results of many prior studies. Indeed, all around the globe, thousands of machine learning experiments are being executed on a daily basis, generating a constant stream of empirical information on machine learning techniques. While the information contained in these experiments might have many uses beyond their original intent, results are typically described very concisely in papers and discarded afterwards. If we properly store and organize these results in central databases, they can be immediately reused for further analysis, thus boosting future research. In this chapter, we propose the use of experiment databases: databases designed to collect all the necessary details of these experiments, and to intelligently organize them in online repositories to enable fast and thorough analysis of a myriad of collected results. They constitute an additional, queriable source of empirical meta-data based on principled descriptions of algorithm executions, without reimplementing the algorithms in an inductive database. As such, they engender a very dynamic, collaborative approach to experimentation, in which experiments can be freely shared, linked together, and immediately reused by researchers all over the world. They can be set up for personal use, to share results within a lab or to create open, community-wide repositories. Here, we provide a high-level overview of their design, and use an existing experiment database to answer various interesting research questions about machine learning algorithms and to verify a number of recent studies.

  17. Geologic framework of the Alaska Peninsula, southwest Alaska, and the Alaska Peninsula terrane

    USGS Publications Warehouse

    Wilson, Frederic H.; Detterman, Robert L.; DuBois, Gregory D.

    2015-01-01

    The boundaries separating the Alaska Peninsula terrane from other terranes are commonly indistinct or poorly defined. A few boundaries have been defined at major faults, although the extensions of these faults are speculative through some areas. The west side of the Alaska Peninsula terrane is overlapped by Tertiary sedimentary and volcanic rocks and Quaternary deposits.

  18. Geochemical cycles of atmospheric gases

    NASA Technical Reports Server (NTRS)

    Walker, J. C. G.; Drever, J. I.

    1988-01-01

    The processes that control the atmosphere and atmospheric changes are reviewed. The geochemical cycles of water vapor, nitrogen, carbon dioxide, oxygen, and minor atmospheric constituents are examined. Changes in atmospheric chemistry with time are discussed using evidence from the rock record and analysis of the present atmosphere. The role of biological evolution in the history of the atmosphere and projected changes in the future atmosphere are considered.

  19. Geologic Map Database of Texas

    USGS Publications Warehouse

    Stoeser, Douglas B.; Shock, Nancy; Green, Gregory N.; Dumonceaux, Gayle M.; Heran, William D.

    2005-01-01

    The purpose of this report is to release a digital geologic map database for the State of Texas. This database was compiled for the U.S. Geological Survey (USGS) Minerals Program, National Surveys and Analysis Project, whose goal is a nationwide assemblage of geologic, geochemical, geophysical, and other data. This release makes the geologic data from the Geologic Map of Texas available in digital format. Original clear film positives provided by the Texas Bureau of Economic Geology were photographically enlarged onto Mylar film. These films were scanned, georeferenced, digitized, and attributed by Geologic Data Systems (GDS), Inc., Denver, Colorado. Project oversight and quality control was the responsibility of the U.S. Geological Survey. ESRI ArcInfo coverages, AMLs, and shapefiles are provided.

  20. Solubility Database

    National Institute of Standards and Technology Data Gateway

    SRD 106 IUPAC-NIST Solubility Database (Web, free access)   These solubilities are compiled from 18 volumes (Click here for List) of the International Union for Pure and Applied Chemistry(IUPAC)-NIST Solubility Data Series. The database includes liquid-liquid, solid-liquid, and gas-liquid systems. Typical solvents and solutes include water, seawater, heavy water, inorganic compounds, and a variety of organic compounds such as hydrocarbons, halogenated hydrocarbons, alcohols, acids, esters and nitrogen compounds. There are over 67,500 solubility measurements and over 1800 references.

  1. Geospatial analysis identifies critical mineral-resource potential in Alaska

    USGS Publications Warehouse

    Karl, Susan; Labay, Keith; Jacques, Katherine; Landowski, Claire

    2017-03-03

    Alaska consists of more than 663,000 square miles (1,717,000 square kilometers) of land—more than a sixth of the total area of the United States—and large tracts of it have not been systematically studied or sampled for mineral-resource potential. Many regions of the State are known to have significant mineral-resource potential, and there are currently six operating mines in the State along with numerous active mineral exploration projects. The U.S. Geological Survey and the Alaska Division of Geological & Geophysical Surveys have developed a new geospatial tool that integrates and analyzes publicly available databases of geologic information and estimates the mineral-resource potential for critical minerals, which was recently used to evaluate Alaska. The results of the analyses highlight areas that have known mineral deposits and also reveal areas that were not previously considered to be prospective for these deposit types. These results will inform land management decisions by Federal, State, and private landholders, and will also help guide future exploration activities and scientific investigations in Alaska.

  2. Metamorphic facies map of Alaska

    SciTech Connect

    Dusel-Bacon, C.; O-Rourke, E.F.; Reading, K.E.; Fitch, M.R.; Klute, M.A.

    1985-04-01

    A metamorphic-facies of Alaska has been compiled, following the facies-determination scheme of the Working Group for the Cartography of the Metamorphic Belts of the World. Regionally metamorphosed rocks are divided into facies series where P/T gradients are known and into facies groups where only T is known. Metamorphic rock units also are defined by known or bracketed age(s) of metamorphism. Five regional maps have been prepared at a scale of 1:1,000,000; these maps will provide the basis for a final colored version of the map at a scale of 1:2,500,000. The maps are being prepared by the US Geological Survey in cooperation with the Alaska Division of Geological and Geophysical Surveys. Precambrian metamorphism has been documented on the Seward Peninsula, in the Baird Mountains and the northeastern Kuskokwim Mountains, and in southwestern Alaska. Pre-Ordovician metamorphism affected the rocks in central Alaska and on southern Prince of Wales Island. Mid-Paleozoic metamorphism probably affected the rocks in east-central Alaska. Most of the metamorphic belts in Alaska developed during Mesozoic or early Tertiary time in conjuction with accretion of many terranes. Examples are Jurassic metamorphism in east-central Alaska, Early Cretaceous metamorphism in the southern Brooks Range and along the rim of the Yukon-Kovyukuk basin, and late Cretaceous to early Tertiary metamorphism in the central Alaska Range. Regional thermal metamorphism was associated with multiple episodes of Cretaceous plutonism in southeastern Alaska and with early Tertiary plutonism in the Chugach Mountains. Where possible, metamorphism is related to tectonism. Meeting participants are encouraged to comment on the present version of the metamorphic facies map.

  3. The Alaska Arctic Vegetation Archive (AVA-AK)

    SciTech Connect

    Walker, Donald; Breen, Amy; Druckenmiller, Lisa; Wirth, Lisa W.; Fisher, Will; Raynolds, Martha K.; Sibik, Jozef; Walker, Marilyn D.; Hennekens, Stephan; Boggs, Keith; Boucher, Tina; Buchhorn, Marcel; Bultmann, Helga; Cooper, David; Daniels, Fred J. A.; Davidson, Scott J.; Ebersole, James J.; Elmendorf, Sara C.; Epstein, Howard E.; Gould, William A.; Hollister, Robert D.; Iversen, Colleen M.; Jorgenson, M. Torre; Kade, Anja; Lee, Michael T.; MacKenzie, William H.; Peet, Robert K.; Peirce, Jana L.; Schickhoff, Udo; Sloan, Victoria L.; Talbot, Stephen S.; Tweedie, Craig E.; Villarreal, Sandra; Webber, Patrick J.; Zona, Donatella

    2016-05-17

    The Alaska Arctic Vegetation Archive (AVA-AK, GIVD-ID: NA-US-014) is a free, publically available database archive of vegetation-plot data from the Arctic tundra region of northern Alaska. The archive currently contains 24 datasets with 3,026 non-overlapping plots. Of these, 74% have geolocation data with 25-m or better precision. Species cover data and header data are stored in a Turboveg database. A standardized Pan Arctic Species List provides a consistent nomenclature for vascular plants, bryophytes, and lichens in the archive. A web-based online Alaska Arctic Geoecological Atlas (AGA-AK) allows viewing and downloading the species data in a variety of formats, and provides access to a wide variety of ancillary data. We conducted a preliminary cluster analysis of the first 16 datasets (1,613 plots) to examine how the spectrum of derived clusters is related to the suite of datasets, habitat types, and environmental gradients. Here, we present the contents of the archive, assess its strengths and weaknesses, and provide three supplementary files that include the data dictionary, a list of habitat types, an overview of the datasets, and details of the cluster analysis.

  4. The Alaska Arctic Vegetation Archive (AVA-AK)

    DOE PAGES

    Walker, Donald; Breen, Amy; Druckenmiller, Lisa; ...

    2016-05-17

    The Alaska Arctic Vegetation Archive (AVA-AK, GIVD-ID: NA-US-014) is a free, publically available database archive of vegetation-plot data from the Arctic tundra region of northern Alaska. The archive currently contains 24 datasets with 3,026 non-overlapping plots. Of these, 74% have geolocation data with 25-m or better precision. Species cover data and header data are stored in a Turboveg database. A standardized Pan Arctic Species List provides a consistent nomenclature for vascular plants, bryophytes, and lichens in the archive. A web-based online Alaska Arctic Geoecological Atlas (AGA-AK) allows viewing and downloading the species data in a variety of formats, and providesmore » access to a wide variety of ancillary data. We conducted a preliminary cluster analysis of the first 16 datasets (1,613 plots) to examine how the spectrum of derived clusters is related to the suite of datasets, habitat types, and environmental gradients. Here, we present the contents of the archive, assess its strengths and weaknesses, and provide three supplementary files that include the data dictionary, a list of habitat types, an overview of the datasets, and details of the cluster analysis.« less

  5. Geochemical Interpretation of Collision Volcanism

    NASA Astrophysics Data System (ADS)

    Pearce, Julian

    2014-05-01

    Collision volcanism can be defined as volcanism that takes place during an orogeny from the moment that continental subduction starts to the end of orogenic collapse. Its importance in the Geological Record is greatly underestimated as collision volcanics are easily misinterpreted as being of volcanic arc, extensional or mantle plume origin. There are many types of collision volcanic province: continent-island arc collision (e.g. Banda arc); continent-active margin collision (e.g. Tibet, Turkey-Iran); continent-rear-arc collision (e.g. Bolivia); continent-continent collision (e.g. Tuscany); and island arc-island arc collision (e.g. Taiwan). Superimposed on this variability is the fact that every orogeny is different in detail. Nonetheless, there is a general theme of cyclicity on different time scales. This starts with syn-collision volcanism resulting from the subduction of an ocean-continent transition and continental lithosphere, and continues through post-collision volcanism. The latter can be subdivided into orogenic volcanism, which is related to thickened crust, and post-orogenic, which is related to orogenic collapse. Typically, but not always, collision volcanism is preceded by normal arc volcanism and followed by normal intraplate volcanism. Identification and interpretation of collision volcanism in the Geologic Record is greatly facilitated if a dated stratigraphic sequence is present so that the petrogenic evolution can be traced. In any case, the basis of fingerprinting collision terranes is to use geochemical proxies for mantle and subduction fluxes, slab temperatures, and depths and degrees of melting. For example, syn-collision volcanism is characterized by a high subduction flux relative to mantle flux because of the high input flux of fusible sediment and crust coupled with limited mantle flow, and because of high slab temperatures resulting from the decrease in subduction rate. The resulting geochemical patterns are similar regardless of

  6. Selected Geochemical Data for Modeling Near-Surface Processes in Mineral Systems

    USGS Publications Warehouse

    Giles, Stuart A.; Granitto, Matthew; Eppinger, Robert G.

    2009-01-01

    The database herein was initiated, designed, and populated to collect and integrate geochemical, geologic, and mineral deposit data in an organized manner to facilitate geoenvironmental mineral deposit modeling. The Microsoft Access database contains data on a variety of mineral deposit types that have variable environmental effects when exposed at the ground surface by mining or natural processes. The data tables describe quantitative and qualitative geochemical analyses determined by 134 analytical laboratory and field methods for over 11,000 heavy-mineral concentrate, rock, sediment, soil, vegetation, and water samples. The database also provides geographic information on geology, climate, ecoregion, and site contamination levels for over 3,000 field sites in North America.

  7. Alaska Interagency Ecosystem Health Work Group

    USGS Publications Warehouse

    Shasby, Mark

    2009-01-01

    The Alaska Interagency Ecosystem Health Work Group is a community of practice that recognizes the interconnections between the health of ecosystems, wildlife, and humans and meets to facilitate the exchange of ideas, data, and research opportunities. Membership includes the Alaska Native Tribal Health Consortium, U.S. Geological Survey, Alaska Department of Environmental Conservation, Alaska Department of Health and Social Services, Centers for Disease Control and Prevention, U.S. Fish and Wildlife Service, Alaska Sea Life Center, U.S. Environmental Protection Agency, and Alaska Department of Fish and Game.

  8. Geochemical surveys in the Lusi mud eruption

    NASA Astrophysics Data System (ADS)

    Sciarra, Alessandra; Mazzini, Adriano; Etiope, Giuseppe; Inguaggiato, Salvatore; Hussein, Alwi; Hadi J., Soffian

    2016-04-01

    The Lusi mud eruption started in May 2006 following to a 6.3 M earthquake striking the Java Island. In the framework of the Lusi Lab project (ERC grant n° 308126) we carried out geochemical surveys in the Sidoarjo district (Eastern Java Island, Indonesia) to investigate the gas bearing properties of the Watukosek fault system that crosses the Lusi mud eruption area. Soil gas (222Rn, CO2, CH4) concentration and flux measurements were performed 1) along two detailed profiles (~ 1km long), trending almost W-E direction, and 2) inside the Lusi embankment (about 7 km2) built to contain the erupted mud. Higher gas concentrations and fluxes were detected at the intersection with the Watukosek fault and the antithetic fault system. These zones characterized by the association of higher soil gas values constitute preferential migration pathways for fluids towards surface. The fractures release mainly CO2 (with peaks up to 400 g/m2day) and display higher temperatures (up to 41°C). The main shear zones are populated by numerous seeps that expel mostly CH4. Flux measurements in the seeping pools reveal that φCO2 is an order of magnitude higher than that measured in the fractures, and two orders of magnitude higher for φCH4. An additional geochemical profile was completed perpendicularly to the Watukosek fault escarpement (W-E direction) at the foots of the Penanngungang volcano. Results reveal CO2 and CH4 flux values significantly lower than those measured in the embankment, however an increase of radon and flux measurements is observed approaching the foots of the escarpment. These measurements are complemented with a database of ~350 CH4 and CO2 flux measurements and some soil gas concentrations (He, H2, CO2, CH4 and C2H6) and their isotopic analyses (δ13C-CH4, δD-CH4 and δ13C-CO2). Results show that the whole area is characterized by diffused gas release through seeps, fractures, microfractures and soil degassing. The collected results shed light on the origin of the

  9. A survey of radioactive fallout data in Alaska

    SciTech Connect

    DePhillips, M.P.

    1995-10-23

    Considerable attention has been directed by the scientific community to assessing the levels and fate of radionuclides in Arctic ecosystems. The following text and tables present available data and discussion of radionuclide fallout in Alaska. A literature search of 23 on-line databases (Table 1) using Alaska, Strontium (Sr), Cesium (Cs), Plutonium (Pu) and Radionuclide as constraint terms responded with 177 possible citations. After eliminating duplicate citations, 31 articles were available: 17 were relevant to the subject matter; the remainder addressed geologic issues. All of the cited literature addressed {sup 137}Cs, {sup 90}Sr and {sup 239,240}Pu as a result of radionuclide fallout from nuclear testing or accidental release.

  10. Operation IceBridge Alaska

    NASA Astrophysics Data System (ADS)

    Larsen, C.

    2015-12-01

    The University of Alaska Fairbanks (UAF) has flown LiDAR missions for Operation IceBridge in Alaska each year since 2009, expanding upon UAF's airborne laser altimetry program which started in 1994. These observations show that Alaska's regional mass balance is -75+11/-16 Gt yr-1 (1994-2013) (Larsen et al., 2015). A surprising result is that the rate of surface mass loss observed on non-tidewater glaciers in Alaska is extremely high. At these rates, Alaska contributes ~1 mm to global sea level rise every 5 years. Given the present lack of adequate satellite resources, Operation IceBridge airborne surveys by UAF are the most effective and efficient method to monitor this region's impact on global sea level rise. Ice depth measurements using radar sounding have been part of these airborne surveys since 2012. Many of Alaska's tidewater glaciers are bedded significantly below sea level. The depth and extent of glacier beds below sea level are critical factors in the dynamics of tidewater retreat. Improved radar processing tools are being used to predict clutter using forward simulation. This is essential to properly sort out true bed returns, which are often masked or obscured by valley wall returns. This presentation will provide an overview of the program, highlighting recent findings and observations from the most recent campaigns, and focusing on techniques used for the extrapolation of surface elevation changes to regional mass balances.

  11. Alaska's Children, 1998. Alaska Head Start State Collaboration Project, Quarterly Report.

    ERIC Educational Resources Information Center

    Douglas, Dorothy, Ed.

    1998-01-01

    This document consists of four issues of the quarterly report "Alaska's Children," which provides information on the Alaska Head Start State Collaboration Project and updates on Head Start activities in Alaska. Regular features in the issues include a calendar of conferences and meetings, a status report on Alaska's children, reports…

  12. 77 FR 58731 - Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-21

    ... Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska During the 2013... Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska During the... and Wildlife Service (Service or we) proposes migratory bird subsistence harvest regulations in...

  13. Explanation of fields used in the Alaska Resource Data File of mines, prospects, and mineral occurrences in Alaska

    USGS Publications Warehouse

    ,

    1996-01-01

    Descriptions of mines, prospects, and mineral occurrences in the Alaska Resource Data File (ARDF) are published for individual U.S. Geological Survey 1:250,000 scale quadrangles in Alaska (see accompanying map) and are available for downloading from USGS World Wide Web site: http://www-rnrs-ak.wr.usgs.gov/ardf.These descriptions are divided into a number of fields which describe features of each mine, prospect, or mineral occurrence. These descriptions were complied from published literature and from unpublished reports and data from industry, the U.S. Bureau of Mines, and the U.S. Geological Survey and other sources. Compilation of this database is an ongoing process and each report is essentially a progress report. The authors of the individual quadrangle reports would appreciate any corrections or additional information that users may be able to contribute.

  14. Alaska Athabascan stellar astronomy

    NASA Astrophysics Data System (ADS)

    Cannon, Christopher M.

    2014-01-01

    Stellar astronomy is a fundamental component of Alaska Athabascan cultures that facilitates time-reckoning, navigation, weather forecasting, and cosmology. Evidence from the linguistic record suggests that a group of stars corresponding to the Big Dipper is the only widely attested constellation across the Northern Athabascan languages. However, instruction from expert Athabascan consultants shows that the correlation of these names with the Big Dipper is only partial. In Alaska Gwich'in, Ahtna, and Upper Tanana languages the Big Dipper is identified as one part of a much larger circumpolar humanoid constellation that spans more than 133 degrees across the sky. The Big Dipper is identified as a tail, while the other remaining asterisms within the humanoid constellation are named using other body part terms. The concept of a whole-sky humanoid constellation provides a single unifying system for mapping the night sky, and the reliance on body-part metaphors renders the system highly mnemonic. By recognizing one part of the constellation the stargazer is immediately able to identify the remaining parts based on an existing mental map of the human body. The circumpolar position of a whole-sky constellation yields a highly functional system that facilitates both navigation and time-reckoning in the subarctic. Northern Athabascan astronomy is not only much richer than previously described; it also provides evidence for a completely novel and previously undocumented way of conceptualizing the sky---one that is unique to the subarctic and uniquely adapted to northern cultures. The concept of a large humanoid constellation may be widespread across the entire subarctic and have great antiquity. In addition, the use of cognate body part terms describing asterisms within humanoid constellations is similarly found in Navajo, suggesting a common ancestor from which Northern and Southern Athabascan stellar naming strategies derived.

  15. Geothermal energy resource assessment of parts of Alaska. Final report

    SciTech Connect

    Wescott, E.M.; Turner, D.L.; Kienle, J.

    1982-08-01

    The central Seward Peninsula was the subject of a geological, geophysical and geochemical reconnaissance survey during a 30-day period in the summer of 1980. The survey was designed to investigate the geothermal energy resource potential of this region of Alaska. A continental rift system model was proposed to explain many of the Late Tertiary-to-Quaternary topographic, structural, volcanic and geothermal features of the region. Geologic evidence for the model includes normal faults, extensive fields of young alkalic basalts, alignment of volcanic vents, graben valleys and other features consistent with a rift system active from late Miocene time to the present. Five traverses crossing segments of the proposed rift system were run to look for evidence of structure and geothermal resources not evident from surface manifestation. Gravity, helium and mercury soil concentrations were measured along the traverses. Seismic, resistivity, and VLF studies are presented.

  16. Proceedings of the workshop on geochemical modeling

    SciTech Connect

    Not Available

    1986-01-01

    The following collection of papers was presented at a workshop on geochemical modeling that was sponsored by the Office of Civilian Radioactive Waste Management Program at the Lawrence Livermore National Laboratory (LLNL). The LLNL Waste Management Program sponsored this conference based on their belief that geochemical modeling is particularly important to the radioactive waste disposal project because of the need to predict the consequences of long-term water-rock interactions at the proposed repository site. The papers included in this volume represent a subset of the papers presented at the Fallen Leaf Lake Conference and cover a broad spectrum of detail and breadth in a subject that reflects the diverse research interests of the conference participants. These papers provide an insightful look into the current status of geochemical modeling and illustrate how various geochemical modeling codes have been applied to problems of geochemical interest. The emphasis of these papers includes traditional geochemical modeling studies of individual geochemical systems, the mathematical and theoretical development and refinement of new modeling capabilities, and enhancements of data bases on which the computations are based. The papers in this proceedings volume have been organized into the following four areas: Geochemical Model Development, Hydrothermal and Geothermal Systems, Sedimentary and Low Temperature Environments, and Data Base Development. The participants of this symposium and a complete list of the talks presented are listed in the appendices.

  17. Atomic Databases

    NASA Astrophysics Data System (ADS)

    Mendoza, Claudio

    2000-10-01

    Atomic and molecular data are required in a variety of fields ranging from the traditional astronomy, atmospherics and fusion research to fast growing technologies such as lasers, lighting, low-temperature plasmas, plasma assisted etching and radiotherapy. In this context, there are some research groups, both theoretical and experimental, scattered round the world that attend to most of this data demand, but the implementation of atomic databases has grown independently out of sheer necessity. In some cases the latter has been associated with the data production process or with data centers involved in data collection and evaluation; but sometimes it has been the result of individual initiatives that have been quite successful. In any case, the development and maintenance of atomic databases call for a number of skills and an entrepreneurial spirit that are not usually associated with most physics researchers. In the present report we present some of the highlights in this area in the past five years and discuss what we think are some of the main issues that have to be addressed.

  18. Alaska GeoFORCE, A New Geologic Adventure in Alaska

    NASA Astrophysics Data System (ADS)

    Wartes, D.

    2011-12-01

    RAHI, the Rural Alaska Honors Institute is a statewide, six-week, summer college-preparatory bridge program at the University of Alaska Fairbanks for Alaska Native and rural high school juniors and seniors. A program of rigorous academic activity combines with social, cultural, and recreational activities. Students are purposely stretched beyond their comfort levels academically and socially to prepare for the big step from home or village to a large culturally western urban campus. This summer RAHI is launching a new program, GeoFORCE Alaska. This outreach initiative is designed to increase the number and diversity of students pursuing STEM degree programs and entering the future high-tech workforce. It uses Earth science as the hook because most kids get excited about dinosaurs, volcanoes and earthquakes, but it includes physics, chemistry, math, biology and other sciences. Students will be recruited, initially from the Arctic North Slope schools, in the 8th grade to begin the annual program of approximately 8 days, the summer before their 9th grade year and then remain in the program for all four years of high school. They must maintain a B or better grade average and participate in all GeoFORCE events. The carrot on the end of the stick is an exciting field event each summer. Over the four-year period, events will include trips to Fairbanks, Arizona, Oregon and the Appalachians. All trips are focused on Earth science and include a 100+ page guidebook, with tests every night culminating with a final exam. GeoFORCE Alaska is being launched by UAF in partnership with the University of Texas at Austin, which has had tremendous success with GeoFORCE Texas. GeoFORCE Alaska will be managed by UAF's long-standing Rural Alaska Honors Insitute (RAHI) that has been successfully providing intense STEM educational opportunities for Alaskan high school students for almost 30 years. The Texas program, with adjustments for differences in culture and environment, will be

  19. Geologic studies in Alaska by the U.S. Geological Survey, 1990

    USGS Publications Warehouse

    Bradley, Dwight C.; Ford, Arthur B.

    1992-01-01

    This collection of papers continues the annual series of U.S. Geological Survey (USGS) reports on geologic investigations in Alaska. From 1975 through 1988, the series was published as USGS circulars. The first of these appeared under the title "The United States Geological Survey in Alaska: Accomplishments during 1975," and the series continued to the last annual circular entitled "Geologic studies in Alaska by the U.S. Geological Survey during 1987," which reflects a title change made in 1986. This 1990 volume continues the bulletin format started in 1988. As in 1989, this volume separates shorter contributions as Geologic Notes from more extensive Articles.This 1990 volume of 18 Articles and 4 Geologic Notes represents the broad range of USGS research activities carried out in Alaska over the past few years. These studies include topics on mineral and other resources such as gold (Y eend), platinum-group elements (Cathrall and Antweiler), coal (Roberts, Stricker, and Affolter), and petroleum (Howell, Bird, and others). Many other investigations provide background geochemical (Kilburn, Box, and others) and geologic data needed for resource evaluation as well as for determining the general geologic framework of Alaska, as in stratigraphic, sedimentologic, and paleontologic and radiometric age studies (Blodgett, Clough, and others; Box and Elder; Dickinson and Skipp; Marincovich and Moriya; McLean and Stanley; Stanley, Flores, and Wiley; Roeske, Pavlis, and others); geophysics (Sampson, Labson, and Long); structure and tectonic evaluations (Bradley and Kosky; Clendenen, Sliter, and Byrne; Karl; Csejtey; Howell, Johnsson, and others); and geomorphic and late Quaternary studies (Carter and Hillhouse; Galloway, Huebner, and others; McGimsey, Richter, and others; Nelson and Carter). These studies span nearly the entire State from the North Slope and Brooks Range to interior, southwestern, and south-central Alaska (fig. 1).Two bibliographies (White) at the end of the

  20. Element concentrations in soils and other surficial materials of Alaska

    USGS Publications Warehouse

    Gough, L.P.; Severson, R.C.; Shacklette, H.T.

    1988-01-01

    the materials. The distribution of variability in element concentrations o Alaskan surficial-material samples was, for most elements, largely among sampling locations, with only a samll part of the variability occurring between replicate samples at a location. The geochemical uniformity within sampling locations in Alaska is an expression of uniform geochemical cycling processes within small geographic areas. The concentration values for 35 elements in 266 samples were plotted on maps by symbols representing classes of concentration frequency distributions. These plotted symbols form patterns that may or may not be possible to interpret but nevertheless show differences that are observable at several geographical scales. The largest pattern is one generally low concentrations of many elements in materials from arctic and oceanic tundra regions, as contrasted to their often high concentrations in samples from interior and southeastern Alaska. The patttern for sodium isespecially pronounced. Intermediate-sized patterns are shown, for example, by the generally high values for magnesium and low values for silicon in the coastal forest region of southeastern Alaska. Many elements occur at low concentratoins in samples from the Alaskan peninsula and the Aleutian Islands. The degree of confidence in patterns of element abundance is expected to be in direct proportion to the number of samples included in the area. As the patterns become smaller, the probability increases that the patterns are not reproducible.

  1. 50 CFR 17.5 - Alaska natives.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... resides in Alaska; or (2) Any non-native permanent resident of an Alaskan native village who is primarily... pursuant to paragraph (a) of this section may be sold in native villages or towns in Alaska for native consumption within native villages and towns in Alaska. (c) Non-edible by-products of endangered or...

  2. Alaska Women's Commission Regional Conferences 1986.

    ERIC Educational Resources Information Center

    Callahan, Christine

    This booklet describes the work of the Alaska Women's Commission, a state agency dedicated to the achievement of equal legal, economic, social, and political status for women in Alaska. Since its inception, the Alaska Women's Commission has provided funding for regional women's conferences in rural parts of the state. The document describes four…

  3. 75 FR 45649 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ... to the Alaska Native Claims Settlement Act. The lands are in the vicinity of Holy Cross, Alaska, and... Bureau of Land Management Alaska Native Claims Selection AGENCY: Bureau of Land Management, Interior. ACTION: Notice of decision approving lands for conveyance. SUMMARY: As required by 43 CFR...

  4. Alaska Performance Scholarship Outcome Report 2015

    ERIC Educational Resources Information Center

    Rae, Brian

    2015-01-01

    The Alaska Performance Scholarship was established in state law in 2011 and first offered to Alaska high school graduates beginning with the class of 2011. Described as "an invitation to excellence" to Alaska's high school students, its goal was to inspire students to push themselves academically in areas that correlate to success in…

  5. Trends in Alaska's People and Economy.

    ERIC Educational Resources Information Center

    Leask, Linda; Killorin, Mary; Martin, Stephanie

    This booklet provides data on Alaska's population, economy, health, education, government, and natural resources, including specific information on Alaska Natives. Since 1960, Alaska's population has tripled and become more diverse, more stable, older, less likely to be male or married, and more concentrated. About 69 percent of the population…

  6. Geochemical data synthesis and analysis

    NASA Technical Reports Server (NTRS)

    Philpotts, J. A.

    1979-01-01

    Data obtained at the Goddard Flight Center were collected for the purpose of completing analyses started at Goddard in order to maximize the scientific yield of the geochemistry program which was terminated in 1977. The major analytical task undertaken was to complete Gd analyses on a large number of samples already analyzed by mass spectrometry for other rare earth element abundances at Goddard. Gd values are important for pinning down the central part of the geochemically significant rare earth abundance pattern and are especially useful in the high precision definition of the utilitarian Eu anomaly. Isotope-dilution Gd abundances were obtained for 39 samples. The data are for 27 partition-coefficient samples, six Apollo 15 and 16 breccia samples, four terrestrial impactities, and associated rock standards.

  7. Geochemical challenge to earthquake prediction.

    PubMed

    Wakita, H

    1996-04-30

    The current status of geochemical and groundwater observations for earthquake prediction in Japan is described. The development of the observations is discussed in relation to the progress of the earthquake prediction program in Japan. Three major findings obtained from our recent studies are outlined. (i) Long-term radon observation data over 18 years at the SKE (Suikoen) well indicate that the anomalous radon change before the 1978 Izu-Oshima-kinkai earthquake can with high probability be attributed to precursory changes. (ii) It is proposed that certain sensitive wells exist which have the potential to detect precursory changes. (iii) The appearance and nonappearance of coseismic radon drops at the KSM (Kashima) well reflect changes in the regional stress state of an observation area. In addition, some preliminary results of chemical changes of groundwater prior to the 1995 Kobe (Hyogo-ken nanbu) earthquake are presented.

  8. PHREEQC. Geochemical Speciation Mass Transfer

    SciTech Connect

    Parkhurst, D.L.

    1995-01-01

    PHREEQC is designed to model geochemical reactions. Based on an ion association aqueous model, PHREEQC can calculate pH, redox potential, and mass transfer as a function of reaction progress. It can be used to describe geochemical processes for both far-field and near-field performance assessment and to evaluate data acquisition needs and test data. It can also calculate the composition of solutions in equilibrium with multiple phases. The data base, including elements, aqueous species, and mineral phases, is independent of the program and is completely user-definable. PHREEQC requires thermodynamic data for each solid, gaseous, or dissolved chemical species being modeled. The two data bases, PREPHR and DEQPAK7, supplied with PHREEQC are for testing purposes only and should not be applied to real problems without first being carefully examined. The conceptual model embodied in PHREEQC is the ion-association model of Pearson and Noronha. In this model a set of mass action equations are established for each ion pair (and controlling solid phases when making mass transfer calculations) along with a set of mass balance equations for each element considered. These sets of equations are coupled using activity coefficient values for each aqueous species and solved using a continued fraction approach for the mass balances combined with a modified Newton-Raphson technique for all other equations. The activity coefficient expressions in PHREEQC include the extended Debye-Huckel, WATEQ Debye-Huckel, and Davies equations from the original United States Geological Survey version of the program. The auxiliary preprocessor program PHTL, which is derived from EQTL, converts EQ3/6 thermodynamic data to PHREEQC format so that the two programs can be compared. PHREEQC can be used to determine solubility limits on the radionuclides present in the waste form. These solubility constraints may be input to the WAPPA leach model.

  9. Terpane biomarkers and carbon isotopes in environmental geochemistry-application of a case study from Prince William Sound, Alaska

    SciTech Connect

    Kvenvolden, K.A.; Hostettler, F.D.; Rosenbauer, R.J.; Hostetter, D.E.; Castle, W.T.

    1996-12-31

    Geochemical studies in Prince William Sound, Alaska, following the 1989 Exxon Valdez oil spill have provided information that is being used to interpret preliminary environmental geochemical observations made in coastal California. Although the shorelines of Prince William Sound still retain traces of the 1989 oil spill, most of the flattened tar balls that can be found today on these shorelines are not residues of Exxon Valdez oil. Rather, the hydrocarbon-biomarker and carbon-isotopic signatures of these tar balls have remarkably similar characteristics that are consistent with those of oil products that originated from Monterey Formation source rocks of California. Some of these products were spilled into the sound during the 1964 Alaskan earthquake. Selected terpane biomarker ratios and carbon isotope composition of whole oil samples can geochemically distinguish Exxon Valdez residues from the tar balls. Results are discussed.

  10. Stackfile Database

    NASA Technical Reports Server (NTRS)

    deVarvalho, Robert; Desai, Shailen D.; Haines, Bruce J.; Kruizinga, Gerhard L.; Gilmer, Christopher

    2013-01-01

    This software provides storage retrieval and analysis functionality for managing satellite altimetry data. It improves the efficiency and analysis capabilities of existing database software with improved flexibility and documentation. It offers flexibility in the type of data that can be stored. There is efficient retrieval either across the spatial domain or the time domain. Built-in analysis tools are provided for frequently performed altimetry tasks. This software package is used for storing and manipulating satellite measurement data. It was developed with a focus on handling the requirements of repeat-track altimetry missions such as Topex and Jason. It was, however, designed to work with a wide variety of satellite measurement data [e.g., Gravity Recovery And Climate Experiment -- GRACE). The software consists of several command-line tools for importing, retrieving, and analyzing satellite measurement data.

  11. Malaspina Glacier, Alaska

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra satellite covers an area of 55 by 40 kilometers (34 by 25 miles) over the southwest part of the Malaspina Glacier and Icy Bay in Alaska. The composite of infrared and visible bands results in the snow and ice appearing light blue, dense vegetation is yellow-orange and green, and less vegetated, gravelly areas are in orange. According to Dr. Dennis Trabant (U.S. Geological Survey, Fairbanks, Alaska), the Malaspina Glacier is thinning. Its terminal moraine protects it from contact with the open ocean; without the moraine, or if sea level rises sufficiently to reconnect the glacier with the ocean, the glacier would start calving and retreat significantly. ASTER data are being used to help monitor the size and movement of some 15,000 tidal and piedmont glaciers in Alaska. Evidence derived from ASTER and many other satellite and ground-based measurements suggests that only a few dozen Alaskan glaciers are advancing. The overwhelming majority of them are retreating.

    This ASTER image was acquired on June 8, 2001. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next six years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and

  12. Geochemical Atlas of Slovakia and examples of its applications to environmental problems

    NASA Astrophysics Data System (ADS)

    Rapant, S.; Bodiš, D.; Vrana, K.; Cvečková, V.; Kordík, J.; Krčmová, K.; Slaninka, I.

    2009-03-01

    Results of comprehensive geochemical mapping and thematic studies of the Slovak territory (rocks, soils, stream sediments, groundwaters, biomass, and radioactivity) in the first half of the 1990s led to several new research programmes in Slovakia, within the frame of which new methodologies for geochemical data evaluation and map visualization were elaborated. This study describes the application and elaboration of data from the Geochemical Atlas of the Slovak Republic at national and regional levels. Based on the index of environmental risk (IER = ΣPEC/PNEC), the level of contamination for the geological component of the environment in Slovakia was evaluated. Approximately 10.5% of Slovakia’s territory was characterized as being environmentally disturbed to highly disturbed. In the areas where environmental loadings have accumulated, 14 regions where environmental risks existed due to high element concentrations were defined. The model calculations of health risk estimates based on the databases of the Geochemical Atlas for groundwater and soils indicate that the possible risk occurrence of carcinogenic diseases from groundwater arsenic contents is high in more than 10% of Slovakia, whereas the chronic risk is negligible. To determinate the background and threshold levels a combined statistical-geochemical approach was developed and applied as an example for groundwater at the national level as well as for single groundwater bodies. The results of statistical method application for the whole groundwater body (GBW) were compared with the background values for anthropogenically non-influenced areas in GBW. Final background value took into account time variations and spatial distribution of the element in GBW. Furthermore, based on the database from the Geochemical Atlas for groundwater, groundwater bodies potentially at qualitative risk were delineated for the whole of Slovakia. From a total of 101 groundwater bodies 17 were characterized as being at risk and 22

  13. Hydrograph separation of a sub-arctic glacial watershed, Interior Alaska

    NASA Astrophysics Data System (ADS)

    Gatesman, T.; Douglas, T. A.; Liljedahl, A. K.; Trainor, T.

    2015-12-01

    Glacier melt affect several Alaska rivers and thus far, the contribution to larger-scale watershed runoff has attracted limited attention, and in particular, a quantitative assessment. Geochemically-based hydrograph separation techniques in combination with glacier mass balance and runoff measurements can help refine our understanding of the contributing sources and therefore, support the refinement of both short-term flood forecasts and long-term runoff projections. Our study was designed to quantify the contribution of glacier melt, snow melt and rainfall to lowland streamflow of a sub-arctic basin and to assess hydrologic pathways of glacier wastage. Jarvis Creek watershed (634 km2), Interior Alaska, drains the north-facing Eastern Alaska Range, starting at the Jarvis Glacier (6.7 km2) and flows 69 km to its outlet in the Delta River, Delta Junction. Glacial contribution accounts for at least 15% of total runoff as estimated from measured glacier melt and lowland runoff. Daily stable water isotope samples near the Jarvis Creek outlet show distinct chemical signatures in contributing sources and large seasonal and interannual δ18O variability. For example, geochemical measurements from 2011 show low rainfall contribution into Jarvis Creek, whereas 2014 show high input of rainfall; and, unlike 2014, spring 2013 show a strong snowmelt contribution in late spring. Stable water isotopes will be the primary signature to inform our end-member volumetric mixing modeling efforts, while dissolved ion concentrations will support a differentiation between glacier- and groundwater sources. Ultimately, the combination of glacier mass balance, hydrological and geochemical measurements will allow us to gain a fundamental knowledge about the current regional hydrologic system.

  14. Geospatial compilation of results from field sample collection in support of mineral resource investigations, Western Alaska Range, Alaska, July 2013

    USGS Publications Warehouse

    Johnson, Michaela R.; Graham, Garth E.; Hubbard, Bernard E.; Benzel, William M.

    2015-07-16

    This Data Series summarizes results from July 2013 sampling in the western Alaska Range near Mount Estelle, Alaska. The fieldwork combined in situ and camp-based spectral measurements of talus/soil and rock samples. Five rock and 48 soil samples were submitted for quantitative geochemi­cal analysis (for 55 major and trace elements), and the 48 soils samples were also analyzed by x-ray diffraction to establish mineralogy and geochemistry. The results and sample photo­graphs are presented in a geodatabase that accompanies this report. The spectral, mineralogical, and geochemical charac­terization of these samples and the sites that they represent can be used to validate existing remote-sensing datasets (for example, ASTER) and future hyperspectral studies. Empiri­cal evidence of jarosite (as identified by x-ray diffraction and spectral analysis) corresponding with gold concentrations in excess of 50 parts per billion in soil samples suggests that surficial mapping of jarosite in regional surveys may be use­ful for targeting areas of prospective gold occurrences in this sampling area.

  15. Alaska Energy Inventory Project: Consolidating Alaska's Energy Resources

    NASA Astrophysics Data System (ADS)

    Papp, K.; Clough, J.; Swenson, R.; Crimp, P.; Hanson, D.; Parker, P.

    2007-12-01

    Alaska has considerable energy resources distributed throughout the state including conventional oil, gas, and coal, and unconventional coalbed and shalebed methane, gas hydrates, geothermal, wind, hydro, and biomass. While much of the known large oil and gas resources are concentrated on the North Slope and in the Cook Inlet regions, the other potential sources of energy are dispersed across a varied landscape from frozen tundra to coastal settings. Despite the presence of these potential energy sources, rural Alaska is mostly dependent upon diesel fuel for both electrical power generation and space heating needs. At considerable cost, large quantities of diesel fuel are transported to more than 150 roadless communities by barge or airplane and stored in large bulk fuel tank farms for winter months when electricity and heat are at peak demands. Recent increases in the price of oil have severely impacted the price of energy throughout Alaska, and especially hard hit are rural communities and remote mines that are off the road system and isolated from integrated electrical power grids. Even though the state has significant conventional gas resources in restricted areas, few communities are located near enough to these resources to directly use natural gas to meet their energy needs. To address this problem, the Alaska Energy Inventory project will (1) inventory and compile all available Alaska energy resource data suitable for electrical power generation and space heating needs including natural gas, coal, coalbed and shalebed methane, gas hydrates, geothermal, wind, hydro, and biomass and (2) identify locations or regions where the most economic energy resource or combination of energy resources can be developed to meet local needs. This data will be accessible through a user-friendly web-based interactive map, based on the Alaska Department of Natural Resources, Land Records Information Section's (LRIS) Alaska Mapper, Google Earth, and Terrago Technologies' Geo

  16. A petroleum system model for gas hydrate deposits in northern Alaska

    USGS Publications Warehouse

    Lorenson, T.D.; Collett, Timothy S.; Wong, Florence L.

    2011-01-01

    Gas hydrate deposits are common on the North Slope of Alaska around Prudhoe Bay, however the extent of these deposits is unknown outside of this area. As part of a United States Geological Survey (USGS) and the Bureau of Land Management (BLM) gas hydrate research collaboration, well cutting and mud gas samples have been collected and analyzed from mainly industry-drilled wells on the Alaska North Slope for the purpose of prospecting for gas hydrate deposits. On the Alaska North Slope, gas hydrates are now recognized as an element within a petroleum systems approach or TPS (Total Petroleum System). Since 1979, 35 wells have been samples from as far west as Wainwright to Prudhoe Bay in the east. Geochemical studies of known gas hydrate occurrences on the North Slope have shown a link between gas hydrate and more deeply buried conventional oil and gas deposits. Hydrocarbon gases migrate from depth and charge the reservoir rock within the gas hydrate stability zone. It is likely gases migrated into conventional traps as free gas, and were later converted to gas hydrate in response to climate cooling concurrent with permafrost formation. Gas hydrate is known to occur in one of the sampled wells, likely present in 22 others based gas geochemistry and inferred by equivocal gas geochemistry in 11 wells, and absent in one well. Gas migration routes are common in the North Slope and include faults and widespread, continuous, shallowly dipping permeable sand sections that are potentially in communication with deeper oil and gas sources. The application of this model with the geochemical evidence suggests that gas hydrate deposits may be widespread across the North Slope of Alaska.

  17. The Alaska SAR processor

    NASA Technical Reports Server (NTRS)

    Carande, R. E.; Charny, B.

    1988-01-01

    The Alaska SAR processor was designed to process over 200 100 km x 100 km (Seasat like) frames per day from the raw SAR data, at a ground resolution of 30 m x 30 m from ERS-1, J-ERS-1, and Radarsat. The near real time processor is a set of custom hardware modules operating in a pipelined architecture, controlled by a general purpose computer. Input to the processor is provided from a high density digital cassette recording of the raw data stream as received by the ground station. A two pass processing is performed. During the first pass clutter-lock and auto-focus measurements are made. The second pass uses the results to accomplish final image formation which is recorded on a high density digital cassette. The processing algorithm uses fast correlation techniques for range and azimuth compression. Radiometric compensation, interpolation and deskewing is also performed by the processor. The standard product of the ASP is a high resolution four-look image, with a low resolution (100 to 200 m) many look image provided simultaneously.

  18. Alaska Pipeline Insulation

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Crude oil moving through the 800-mile Trans-Alaska Pipeline must be kept at a relatively high temperature, about 180 degrees Fahrenheit, to maintain the fluidity of the oil. In Arctic weather, that demands highly effective insulation. General Electric Co.'s Space Division, Valley Forge, Pennsylvania, provided it with a spinoff product called Therm-O-Trol. Shown being installed on the pipeline, Therm-O-Trol is a metal-bonded polyurethane foam especially formulated for Arctic insulation. A second GE spinoff product, Therm-O-Case, solved a related problem involved in bringing hot crude oil from 2,000-foot-deep wells to the surface without transferring oil heat to the surrounding permafrost soil; heat transfer could melt the frozen terrain and cause dislocations that might destroy expensive well casings. Therm-O-Case is a double-walled oil well casing with multi-layered insulation which provides an effective barrier to heat transfer. Therm-O-Trol and Therm-O-Case are members of a family of insulating products which stemmed from technology developed by GE Space Division in heat transferlthermal control work on Gemini, Apollo and other NASA programs.

  19. Alexander Archipelago, Southeastern Alaska

    NASA Technical Reports Server (NTRS)

    2002-01-01

    West of British Columbia, Canada, and south of the Yukon Territory, the southeastern coastline of Alaska trails off into the islands of the Alexander Archipelago. The area is rugged and contains many long, U-shaped, glaciated valleys, many of which terminate at tidewater. The Alexander Archipelago is home to Glacier Bay National Park. The large bay that has two forks on its northern end is Glacier Bay itself. The eastern fork is Muir inlet, into which runs the Muir glacier, named for the famous Scottish-born naturalist John Muir. Glacier Bay opens up into the Icy Strait. The large, solid white area to the west is Brady Icefield, which terminates at the southern end in Brady's Glacier. To locate more interesting features from Glacier Bay National Park, take a look at the park service map. As recently as two hundred years ago, a massive ice field extended into Icy Strait and filled the Glacier Bay. Since that time, the area has experienced rapid deglaciation, with many large glaciers retreating 40, 60, even 80 km. While temperatures have increased in the region, it is still unclear whether the rapid recession is part of the natural cycle of tidewater glaciers or is an indicator of longer-term climate change. For more on Glacier Bay and climate change, read an online paper by Dr. Dorothy Hall, a MODIS Associate Science Team Member. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  20. Inorganic Carbon Isotopes and Chemical Characterization of Watershed Drainages, Barrow, Alaska, 2013

    DOE Data Explorer

    Heikoop, Jeffrey H.; Wilson, Cathy J.; Newman, Brent D.; Throckmorton, Heather M.

    2015-09-25

    Data include results from geochemical and isotopic analyses for samples collected in Barrow, Alaska during July and September 2013. Samples were soil pore waters from 17 drainages that could be interlake (basins with polygonal terrain), different-aged drain thaw lake basins (young, medium, old, or ancient), or a combination of different aged basins. Samples taken in different drainage flow types at three different depths at each location in and around the Barrow Environmental Observatory. This dataset used in Throckmorton, et.al. 2015.

  1. East-China Geochemistry Database (ECGD):A New Networking Database for North China Craton

    NASA Astrophysics Data System (ADS)

    Wang, X.; Ma, W.

    2010-12-01

    North China Craton is one of the best natural laboratories that research some Earth Dynamic questions[1]. Scientists made much progress in research on this area, and got vast geochemistry data, which are essential for answering many fundamental questions about the age, composition, structure, and evolution of the East China area. But the geochemical data have long been accessible only through the scientific literature and theses where they have been widely dispersed, making it difficult for the broad Geosciences community to find, access and efficiently use the full range of available data[2]. How to effectively store, manage, share and reuse the existing geochemical data in the North China Craton area? East-China Geochemistry Database(ECGD) is a networking geochemical scientific database system that has been designed based on WebGIS and relational database for the structured storage and retrieval of geochemical data and geological map information. It is integrated the functions of data retrieval, spatial visualization and online analysis. ECGD focus on three areas: 1.Storage and retrieval of geochemical data and geological map information. Research on the characters of geochemical data, including its composing and connecting of each other, we designed a relational database, which based on geochemical relational data model, to store a variety of geological sample information such as sampling locality, age, sample characteristics, reference, major elements, rare earth elements, trace elements and isotope system et al. And a web-based user-friendly interface is provided for constructing queries. 2.Data view. ECGD is committed to online data visualization by different ways, especially to view data in digital map with dynamic way. Because ECGD was integrated WebGIS technology, the query results can be mapped on digital map, which can be zoomed, translation and dot selection. Besides of view and output query results data by html, txt or xls formats, researchers also can

  2. GIS Methodic and New Database for Magmatic Rocks. Application for Atlantic Oceanic Magmatism.

    NASA Astrophysics Data System (ADS)

    Asavin, A. M.

    2001-12-01

    There are several geochemical Databases in INTERNET available now. There one of the main peculiarities of stored geochemical information is geographical coordinates of each samples in those Databases. As rule the software of this Database use spatial information only for users interface search procedures. In the other side, GIS-software (Geographical Information System software),for example ARC/INFO software which using for creation and analyzing special geological, geochemical and geophysical e-map, have been deeply involved with geographical coordinates for of samples. We join peculiarities GIS systems and relational geochemical Database from special software. Our geochemical information system created in Vernadsky Geological State Museum and institute of Geochemistry and Analytical Chemistry from Moscow. Now we tested system with data of geochemistry oceanic rock from Atlantic and Pacific oceans, about 10000 chemical analysis. GIS information content consist from e-map covers Wold Globes. Parts of these maps are Atlantic ocean covers gravica map (with grid 2''), oceanic bottom hot stream, altimeteric maps, seismic activity, tectonic map and geological map. Combination of this information content makes possible created new geochemical maps and combination of spatial analysis and numerical geochemical modeling of volcanic process in ocean segment. Now we tested information system on thick client technology. Interface between GIS system Arc/View and Database resides in special multiply SQL-queries sequence. The result of the above gueries were simple DBF-file with geographical coordinates. This file act at the instant of creation geochemical and other special e-map from oceanic region. We used more complex method for geophysical data. From ARC\\View we created grid cover for polygon spatial geophysical information.

  3. Alaska volcanoes guidebook for teachers

    USGS Publications Warehouse

    Adleman, Jennifer N.

    2011-01-01

    Alaska’s volcanoes, like its abundant glaciers, charismatic wildlife, and wild expanses inspire and ignite scientific curiosity and generate an ever-growing source of questions for students in Alaska and throughout the world. Alaska is home to more than 140 volcanoes, which have been active over the last 2 million years. About 90 of these volcanoes have been active within the last 10,000 years and more than 50 of these have been active since about 1700. The volcanoes in Alaska make up well over three-quarters of volcanoes in the United States that have erupted in the last 200 years. In fact, Alaska’s volcanoes erupt so frequently that it is almost guaranteed that an Alaskan will experience a volcanic eruption in his or her lifetime, and it is likely they will experience more than one. It is hard to imagine a better place for students to explore active volcanism and to understand volcanic hazards, phenomena, and global impacts. Previously developed teachers’ guidebooks with an emphasis on the volcanoes in Hawaii Volcanoes National Park (Mattox, 1994) and Mount Rainier National Park in the Cascade Range (Driedger and others, 2005) provide place-based resources and activities for use in other volcanic regions in the United States. Along the lines of this tradition, this guidebook serves to provide locally relevant and useful resources and activities for the exploration of numerous and truly unique volcanic landscapes in Alaska. This guidebook provides supplemental teaching materials to be used by Alaskan students who will be inspired to become educated and prepared for inevitable future volcanic activity in Alaska. The lessons and activities in this guidebook are meant to supplement and enhance existing science content already being taught in grade levels 6–12. Correlations with Alaska State Science Standards and Grade Level Expectations adopted by the Alaska State Department of Education and Early Development (2006) for grades six through eleven are listed at

  4. Geochemical Data on Waters, gases, scales, and rocks from the Dixie Valley Region, Nevada (1996-1999)

    SciTech Connect

    Goff, Fraser; Bergfeld, Deborah; Janik, C.J.; et al

    2002-08-01

    This report tabulates an extensive geochemical database on waters, gases, scales, rocks, and hot-spring deposits from the Dixie Valley region, Nevada. The samples from which the data were obtained were collected and analyzed during 1996 to 1999. These data provide useful information for ongoing and future investigations on geothermal energy, volcanism, ore deposits, environmental issues, and groundwater quality in this region.

  5. Geochemical heterogeneity in a small, stratigraphically complex moraine aquifer system (Ontario, Canada): Interpretation of flow and recharge using multiple geochemical parameters

    USGS Publications Warehouse

    Stotler, R.L.; Frape, S.K.; El Mugammar, H.T.; Johnston, C.; Judd-Henrey, I.; Harvey, F.E.; Drimmie, R.; Jones, J.P.

    2011-01-01

    The Waterloo Moraine is a stratigraphically complex system and is the major water supply to the cities of Kitchener and Waterloo in Ontario, Canada. Despite over 30 years of investigation, no attempt has been made to unify existing geochemical data into a single database. A composite view of the moraine geochemistry has been created using the available geochemical information, and a framework created for geochemical data synthesis of other similar flow systems. Regionally, fluid chemistry is highly heterogeneous, with large variations in both water type and total dissolved solids content. Locally, upper aquifer units are affected by nitrate and chloride from fertilizer and road salt. Typical upper-aquifer fluid chemistry is dominated by calcium, magnesium, and bicarbonate, a result of calcite and dolomite dissolution. Evidence also suggests that ion exchange and diffusion from tills and bedrock units accounts for some elevated sodium concentrations. Locally, hydraulic "windows" cross connect upper and lower aquifer units, which are typically separated by a clay till. Lower aquifer units are also affected by dedolomitization, mixing with bedrock water, and locally, upward diffusion of solutes from the bedrock aquifers. A map of areas where aquifer units are geochemically similar was constructed to highlight areas with potential hydraulic windows. ?? 2010 Springer-Verlag.

  6. Collected radiochemical and geochemical procedures

    SciTech Connect

    Kleinberg, J

    1990-05-01

    This revision of LA-1721, 4th Ed., Collected Radiochemical Procedures, reflects the activities of two groups in the Isotope and Nuclear Chemistry Division of the Los Alamos National Laboratory: INC-11, Nuclear and radiochemistry; and INC-7, Isotope Geochemistry. The procedures fall into five categories: I. Separation of Radionuclides from Uranium, Fission-Product Solutions, and Nuclear Debris; II. Separation of Products from Irradiated Targets; III. Preparation of Samples for Mass Spectrometric Analysis; IV. Dissolution Procedures; and V. Geochemical Procedures. With one exception, the first category of procedures is ordered by the positions of the elements in the Periodic Table, with separate parts on the Representative Elements (the A groups); the d-Transition Elements (the B groups and the Transition Triads); and the Lanthanides (Rare Earths) and Actinides (the 4f- and 5f-Transition Elements). The members of Group IIIB-- scandium, yttrium, and lanthanum--are included with the lanthanides, elements they resemble closely in chemistry and with which they occur in nature. The procedures dealing with the isolation of products from irradiated targets are arranged by target element.

  7. Geochemical methods of prospecting for hydrocarbons

    SciTech Connect

    Duchscherer, W. Jr.

    1980-12-01

    Because the commonly used reflection-seismograph exploration technique misses many marginal low-relief structural prospects and regardless of its electronic computer sophistication, overlooks almost all stratigraphic traps, the hydrocarbon exploration industry should take a look at geochemical prospecting methods, which detect geochemical anomalies in the near-surface soils by measuring the thermal dissociation of the soil carbonates that are found overlying hydrocarbon accumulations. To promote understanding of such prospecting techniques, Geochemical Surveys reviews the methods used, the soil-alteration patterns, the lateral and vertical migration of hydrocarbon gases, the halo phenomenon (a ring or annual anomaly), the geochemical modification of sediments, and the data-interpretation and exploration procedures involved in a carbonate ..delta.. C analysis, which measures the residual, stable, cumulative effect of hydrocarbon migration.

  8. Teshekpuk Lake, Alaska

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This ASTER image of Teshekpuk Lake on Alaska's North Slope, within the National Petroleum Reserve, was acquired on August 15, 2000. It covers an area of 58.7 x 89.9 km, and is centered near 70.4 degrees north latitude, 153 degrees west longitude.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 58.7 by 89.9 kilometers (36.4 by 55.7 miles) Location: 70.4 degrees North latitude, 153 degrees West longitude Orientation: North at top Image Data: ASTER Bands 3, 2, and 1 Original Data Resolution: ASTER 30 meters (98.4 feet) Dates Acquired: August 15, 2000

  9. Dental caries in rural Alaska Native children--Alaska, 2008.

    PubMed

    2011-09-23

    In April 2008, the Arctic Investigations Program (AIP) of CDC was informed by the Alaska Department of Health and Social Services (DHSS) of a large number of Alaska Native (AN) children living in a remote region of Alaska who required full mouth dental rehabilitations (FMDRs), including extractions and/or restorations of multiple carious teeth performed under general anesthesia. In this remote region, approximately 400 FMDRs were performed in AN children aged <6 years in 2007; the region has approximately 600 births per year. Dental caries can cause pain, which can affect children's normal growth and development. AIP and Alaska DHSS conducted an investigation of dental caries and associated risk factors among children in the remote region. A convenience sample of children aged 4-15 years in five villages (two with fluoridated water and three without) was examined to estimate dental caries prevalence and severity. Risk factor information was obtained by interviewing parents. Among children aged 4-5 years and 12-15 years who were evaluated, 87% and 91%, respectively, had dental caries, compared with 35% and 51% of U.S. children in those age groups. Among children from the Alaska villages, those aged 4-5 years had a mean of 7.3 dental caries, and those aged 12-15 years had a mean of 5.0, compared with 1.6 and 1.8 dental caries in same-aged U.S. children. Of the multiple factors assessed, lack of water fluoridation and soda pop consumption were significantly associated with dental caries severity. Collaborations between tribal, state, and federal agencies to provide effective preventive interventions, such as water fluoridation of villages with suitable water systems and provision of fluoride varnishes, should be encouraged.

  10. Hydrological and geochemical response and recovery in disturbed Arctic ecosystems

    SciTech Connect

    Not Available

    1992-01-01

    This progress report is a funding, extension request to continue the database work for the Hydrological and Geochemical Response and Recovery in Disturbed Arctic Ecosystems Program. Throughout the period from 1985 to 1992 the Department of Energy supported research on the hydrology and geochemistry of the headwater basin of Imnavait Creek has focused on the quantification of the input from atmospheric sources of biologically significant and other related chemical variables; the transport of these variables in surface and subsurface flow and their efflux from the basin; and the development of geochemical budgets. The acquisition of multi-year data sets (the longest and most detailed sets in the Arctic) have made it possible to define seasonal ranges and amplitudes; determine spatial and temporal relationships within the different flow compartments; to begin to model the pathways and rates of movement through and across different landscape units. The length of record has also made it possible to examine the quantity and influence of local and extra-regional additions.

  11. Adventures in the Alaska Economy.

    ERIC Educational Resources Information Center

    Jackstadt, Steve; Huskey, Lee

    This publication was developed to increase students' understanding of basic economic concepts and the historical development of Alaska's economy. Comics depict major historical events as they occurred, but specific characters are fictionalized. Each of nine episodes is accompanied by several pages of explanatory text, which enlarges on the episode…

  12. Survey of Alaska Information Systems.

    ERIC Educational Resources Information Center

    Allen, Anda; Sokolov, Barbara J.

    This survey by the Arctic Environmental Information and Data Center at the University of Alaska identifies and describes information and data collections within Alaskan libraries and agency offices which pertain to fish and wildlife or their habitat. Included in the survey are descriptions of the location, characteristics, and availability of…

  13. Alaska and Bering Sea Bloom

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Alaska was relatively clear as was part of the Bering Sea where the aquamarine bloom is still visible in this SeaWiFS image. Credit: Provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  14. Licensed Optometrists in Alaska 1973.

    ERIC Educational Resources Information Center

    Health Resources Administration (DHEW/PHS), Bethesda, MD. Div. of Manpower Intelligence.

    This report presents preliminary findings from a mail survey of all optometrists licensed to practice in the State of Alaska. The survey was conducted in 1973 by the International Association of Boards of Examiners in Optometry as part of a national endeavor to collect data on all optometrists in the United States. Since there was a 100 percent…

  15. Legal Guide for Alaska Youth.

    ERIC Educational Resources Information Center

    Nesbitt, Buell, Ed.; And Others

    This legal guide, developed by the Alaska Congress of Parents and Teachers, is intended for young citizens and parents to advise youth of their civil rights and explain what constitutes a criminal offense. The aim is to objectively state the law in understandable terms. The book is arranged in four sections. Section one explains the legal rights…

  16. Tuberculosis among Children in Alaska.

    ERIC Educational Resources Information Center

    Gessner, Bradford D.

    1997-01-01

    The incidence of tuberculosis among Alaskan children under 15 was more than twice the national rate, with Alaska Native children showing a much higher incidence. Children with household exposure to adults with active tuberculosis had a high risk of infection. About 22 percent of pediatric tuberculosis cases were identified through school…

  17. Antidote: Civic Responsibility. Alaska Law.

    ERIC Educational Resources Information Center

    Phi Alpha Delta Law Fraternity International, Washington, DC.

    Designed for middle school through high school students, this unit contains eight lesson plans that focus on Alaska state law. The state lessons correspond to lessons in the volume, "Antidote: Civic Responsibility. Drug Avoidance Lessons for Middle School & High School Students." Developed to be presented by educators, law student,…

  18. Minority Women's Health: American Indians/Alaska Natives

    MedlinePlus

    ... Minority Women's Health > American Indians/Alaska Natives Minority Women's Health American Indians/Alaska Natives Related information How ... conditions common in American Indian and Alaska Native women Accidents Alcoholism and drug abuse Breast cancer Cancer ...

  19. Chronic Liver Disease and American Indians/Alaska Natives

    MedlinePlus

    ... American Indian/Alaska Native > Chronic Liver Disease Chronic Liver Disease and American Indians/Alaska Natives Among American Indians and Alaska Natives, chronic liver disease is a leading cause of death. While ...

  20. Stroke Mortality Among Alaska Native People

    PubMed Central

    Horner, Ronnie D.; Day, Gretchen M.; Lanier, Anne P.; Provost, Ellen M.; Hamel, Rebecca D.

    2009-01-01

    Objectives. We aimed to describe the epidemiology of stroke among Alaska Natives, which is essential for designing effective stroke prevention and intervention efforts for this population. Methods. We conducted an analysis of death certificate data for the state of Alaska for the period 1984 to 2003, comparing age-standardized stroke mortality rates among Alaska Natives residing in Alaska vs US Whites by age category, gender, stroke type, and time. Results. Compared with US Whites, Alaska Natives had significantly elevated stroke mortality from 1994 to 2003 but not from 1984 to 1993. Alaska Native women of all age groups and Alaska Native men younger than 45 years of age had the highest risk, although the rates for those younger than 65 years were statistically imprecise. Over the 20-year study period, the stroke mortality rate was stable for Alaska Natives but declined for US Whites. Conclusions. Stroke mortality is higher among Alaska Natives, especially women, than among US Whites. Over the past 20 years, there has not been a significant decline in stroke mortality among Alaska Natives. PMID:19762671

  1. Geologic map of Saint Lawrence Island, Alaska

    USGS Publications Warehouse

    Patton, William W.; Wilson, Frederic H.; Taylor, Theresa A.

    2011-01-01

    north to near Boxer Bay on the south. Headlands having rugged cliffs or narrow, boulder-strewn beaches characterize the southwest coastline. The geologic map of Saint Lawrence Island was prepared from published and unpublished field investigations carried out between 1966 and 1971 by W.W. Patton, Jr., Bela Csejtey, Jr., T.P. Miller, J.T. Dutro, Jr., J.M. Hoare, and W.H. Condon (Patton and Csejtey, 1971, 1980) and data from Ormiston and Fehlmann (1969). Fossils collected during these investigations are reported in the Alaska Paleontological Database (www.alaskafossil.org), and mineral resource information is summarized in the online Alaska Resource Data File (Hudson, 1998).

  2. Sampson v. state of Alaska: in the Supreme Court of the state of Alaska.

    PubMed

    Bostrom, B A

    2001-01-01

    HELD: The Alaska Constitution's guarantees of privacy and liberty do not afford terminally ill persons the right to a physician's assistance in committing suicide and Alaska's statute prohibiting suicide assistance does not violate their right of equal protection.

  3. The southwestern alaska mercury belt and its relationship to the circum-pacific metallogenic mercury province

    USGS Publications Warehouse

    Gray, J.E.; Gent, C.A.; Snee, L.W.

    2000-01-01

    A belt of small but numerous mercury deposits extends for about 500 km in the Kuskokwim River region of southwestern Alaska. The southwestern Alaska mercury belt is part of widespread mercury deposits of the circumPacific region that are similar to other mercury deposits throughout the world because they are epithermal with formation temperatures of about 200??C, the ore is dominantly cinnabar with Hg-Sb-As??Au geochemistry, and mineralized forms include vein, vein breccias, stockworks, replacements, and disseminations. The southwestern Alaska mercury belt has produced about 1,400 t of mercury, which is small on an international scale. However, additional mercury deposits are likely to be discovered because the terrain is topographically low with significant vegetation cover. Anomalous concentrations of gold in cinnabar ore suggest that gold deposits are possible in higher temperature environments below some of the Alaska mercury deposits. We correlate mineralization of the southwestern Alaska mercury deposits with Late Cretaceous and early Tertiary igneous activity. Our 40Ar/39Ar ages of 70??3 Ma from hydrothermal sericites in the mercury deposits indicate a temporal association of igneous activity and mineralization. Furthermore, we suggest that our geological and geochemical data from the mercury deposits indicate that ore fluids were generated primarily in surrounding sedimentary wall rocks when they were cut by Late Cretaceous and early Tertiary intrusions. In our ore genesis model, igneous activity provided the heat to initiate dehydration reactions and expel fluids from hydrous minerals and formational waters in the surrounding sedimentary wall rocks, causing thermal convection and hydrothermal fluid flow through permeable rocks and along fractures and faults. Our isotopic data from sulfide and alteration minerals of the mercury deposits indicate that ore fluids were derived from multiple sources, with most ore fluids originating from the sedimentary wall

  4. Geochemical processes at mineral surfaces

    SciTech Connect

    Davis, J.A.; Hayes, K.F.

    1986-01-01

    This volume includes 32 papers which were presented at a symposium on geochemical processes at mineral-water interfaces in 1985 and which bring to bear on this area a very wide range of expertise. The discontinuities in properties which occur at the mineral-water interface have profound effects on the movement of naturally occurring ions. Weathering and precipitation processes control the concentrations and speciation of ions in natural waters and the movements of these within the hydrosphere; both classes of processes take place at mineral-water interfaces. After an introductory overview, the book is divided into seven major sections, each dealing with one of the aspects of the processes occurring at the mineral-water interface. Five papers deal with the physical properties of the mineral-water interface; these represent a well-balanced mix of experimental and theoretical (mathematical modeling) work. Adsorption phenomena are dealt with in another five papers; these are largely experimental in character. Ion-exchange processes are discussed in four papers, one of which addresses the use of relaxation methods to study ion exchange kinetics at the microscopic level. Spectroscopic techniques (including electron-spin resonance and Moessbauer spectroscopy) are utilized in four papers. Chemical reactions, mainly redox processes, at mineral-water interfaces are treated in four papers, one of which deals with non-biological organic reactions. Solid-solution formation and equilibria are the subjects of another set of four articles, and the last group of papers deals with the processes involved in precipitation and dissolution, including weathering.

  5. Organic geochemical constraints on paleoelevation

    NASA Astrophysics Data System (ADS)

    Polissar, P. J.; Rowley, D. B.; Currie, B. S.; Freeman, K. H.

    2012-12-01

    The elevation history of the land surface is an important factor in the interpretation of past tectonic, climate and ecological processes. However, quantitative estimates of paleoelevation are difficult to produce and new techniques are needed. Organic geochemical approaches to quantifying paleoelevations provide a new perspective on this difficult task. The hydrogen isotopic composition of organic biomarker molecules synthesized by plants and algae is systematically related to the water used for growth. Organic molecules in ancient sediments can provide values for the isotopic composition of this water and thus elevation, provided the relationship between elevation and isotopic values is known. Molecular hydrogen isotope ratios from Cenozoic lake sediments on the Tibetan Plateau demonstrate the utility of a biomarker approach. Terrestrial plant-wax D/H values on Neogene sediments from the Namling-Oiyug Basin provide new paleoelevation estimates that compare well with previous studies. Plant wax D/H ratios paired with lacustrine carbonate oxygen isotope values from the Lunpola and Hoh-Xil basins illustrate how paired isotope systems can unravel the isotopic composition of precipitation from evaporative enrichment of lake waters. A potentially fruitful avenue for future research is illustrated by D/H analyses on older sediments from the Namling-Oiyug Basin. These sediments—like many that could be useful for paleoaltimetry—have experienced significant burial and heating. As temperatures approach the oil window it becomes possible to exchange hydrogen in both the extractable organic molecules (bitumen) and the insoluble organic residue (kerogen). The extent to which this exchange alters the original isotopic composition will determine the usefulness of D/H analyses on thermally mature organic matter. The potential payoff and pitfalls of D/H analyses on heated sediments is illustrated with thermally immature and mature samples from the Namling-Oiyug Basin.

  6. Geochemical Origin of Biological Molecules

    NASA Astrophysics Data System (ADS)

    Bassez, Marie-Paule

    2013-04-01

    A model for the geochemical origin of biological molecules is presented. Rocks such as peridotites and basalts, which contain ferromagnesian minerals, evolve in the presence of water. Their hydrolysis is an exothermic reaction which generates heat and a release of H2 and of minerals with modified structures. The hydrogen reacts with the CO2 embedded inside the rock or with the CO2 of the environment to form CO in an hydrothermal process. With the N2 of the environment, and with an activation source arising from cosmic radiation, ferromagnesian rocks might evolve towards the abiotic formation of biological molecules, such as peptide like macromolecules which produce amino acids after acid hydrolysis. The reactions concerned are described. The production of hydrothermal CO is discussed in geological sites containing ferromagnesian silicate minerals and the low intensity of the Earth's magnetic field during Paleoarchaean Era is also discussed. It is concluded that excitation sources arising from cosmic radiation were much more abundant during Paleoarchaean Era and that macromolecular structures of biological relevance might consequently form during Archaean Eon, as a product of the chemical evolution of the rocks and of their mineral contents. This synthesis of abiotically formed biological molecules is consecutively discussed for meteorites and other planets such as Mars. This model for the geochemical origin of biological molecules has first been proposed in 2008 in the context of reactions involving catalysers such as kaolinite [Bassez 2008a] and then presented in conferences and articles [Bassez 2008b, 2009, 2012; Bassez et al. 2009a to 2012b]. BASSEZ M.P. 2008a Synthèse prébiotique dans les conditions hydrothermales, CNRIUT'08, Lyon 29-30/05/2008, Conf. and open access article:http://liris.cnrs.fr/~cnriut08/actes/ 29 mai 11h-12h40. BASSEZ M.P. 2008b Prebiotic synthesis under hydrothermal conditions, ISSOL'08, P2-6, Firenze-Italy, 24-29/08/2008. Poster at the

  7. An overview of the geochemical code MINTEQ: Applications to performance assessment for low-level wastes

    SciTech Connect

    Peterson, S.R.; Opitz, B.E.; Graham, M.J.; Eary, L.E.

    1987-03-01

    The MINTEQ geochemical computer code, developed at the Pacific Northwest Laboratory (PNL), integrates many of the capabilities of its two immediate predecessors, MINEQL and WATEQ3. The MINTEQ code will be used in the Special Waste Form Lysimeters-Arid program to perform the calculations necessary to simulate (model) the contact of low-level waste solutions with heterogeneous sediments of the interaction of ground water with solidified low-level wastes. The code can calculate ion speciation/solubilitya, adsorption, oxidation-reduction, gas phase equilibria, and precipitation/dissolution of solid phases. Under the Special Waste Form Lysimeters-Arid program, the composition of effluents (leachates) from column and batch experiments, using laboratory-scale waste forms, will be used to develop a geochemical model of the interaction of ground water with commercial, solidified low-level wastes. The wastes being evaluated include power-reactor waste streams that have been solidified in cement, vinyl ester-styrene, and bitumen. The thermodynamic database for the code was upgraded preparatory to performing the geochemical modeling. Thermodynamic data for solid phases and aqueous species containing Sb, Ce, Cs, or Co were added to the MINTEQ database. The need to add these data was identified from the characterization of the waste streams. The geochemical model developed from the laboratory data will then be applied to predict the release from a field-lysimeter facility that contains full-scale waste samples. The contaminant concentrations migrating from the waste forms predicted using MINTEQ will be compared to the long-term lysimeter data. This comparison will constitute a partial field validation of the geochemical model.

  8. Geochemical baseline distribution of harmful elements in the surface soils of Campania region.

    NASA Astrophysics Data System (ADS)

    Albanese, Stefano; Lima, Annamaria; Qu, Chengkai; Cicchella, Domenico; Buccianti, Antonella; De Vivo, Benedetto

    2015-04-01

    Environmental geochemical mapping has assumed an increasing relevance and the separation of values to discriminate between anthropogenic pollution and natural (geogenic) sources has become crucial to address environmental problems affecting the quality of life of human beings. In the last decade, a number of geochemical prospecting projects, mostly focused on surface soils (topsoils), were carried out at different scales (from regional to local) across the whole Campania region (Italy) to characterize the distribution of both harmful elements and persistent organic pollutants (POP) in the environment and to generating a valuable database to serve as reference in developing geomedical studies. During the 2014, a database reporting the distribution of 53 chemical elements in 3536 topsoil samples, collected across the whole region, was completed. The geochemical data, after necessary quality controls, were georeferenced and processed in a geochemistry dedicated GIS software named GEODAS. For each considered element a complete set of maps was generated to depict both the discrete and the spatially continuous (interpolated) distribution of elemental concentrations across the region. The interpolated maps were generated using the Multifractal Inverse Distance eighted (MIDW) algorithm. Subsequently, the S-A method, also implemented in GEODAS, was applied to MIDW maps to eliminate spatially limited anomalies from the original grid and to generate the distribution patterns of geochemical baselines for each element. For a selected group of elements geochemical data were also treated by means of a Compositional Data Analysis (CoDA) aiming at investigating the regionalised structure of the data by considering the joint behaviour of several elements constituting for each sample its whole composition. A regional environmental risk assessment was run on the basis of the regional distribution of heavy metals in soil, land use types and population. The risk assessment produced a

  9. JICST Factual Database JICST DNA Database

    NASA Astrophysics Data System (ADS)

    Shirokizawa, Yoshiko; Abe, Atsushi

    Japan Information Center of Science and Technology (JICST) has started the on-line service of DNA database in October 1988. This database is composed of EMBL Nucleotide Sequence Library and Genetic Sequence Data Bank. The authors outline the database system, data items and search commands. Examples of retrieval session are presented.

  10. Fisheries Education in Alaska. Conference Report. Alaska Sea Grant Report 82-4.

    ERIC Educational Resources Information Center

    Smoker, William W., Ed.

    This conference was an attempt to have the fishing industry join the state of Alaska in building fisheries education programs. Topics addressed in papers presented at the conference include: (1) fisheries as a part of life in Alaska, addressing participation of Alaska natives in commercial fisheries and national efforts; (2) the international…

  11. Selected 1970 Census Data for Alaska Communities. Part 2 - Northwest Alaska.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Community and Regional Affairs, Juneau. Div. of Community Planning.

    As 1 of 6 regional reports supplying statistical information on Alaska's incorporated and unincorporated communities (those of 25 or more people), this report on Northwest Alaska presents data derived from the 1970 U.S. Census first-count microfilm. Organized via the 3 Northwest Alaska census division, data are presented for the 32 communities of…

  12. 78 FR 53137 - Flint Hills Resources Alaska, LLC, BP Pipelines (Alaska) Inc., ConocoPhillips Transportation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Flint Hills Resources Alaska, LLC, BP Pipelines (Alaska) Inc., Conoco... Pipeline Proceedings, 18 CFR 343.2 (2013), Flint Hills Resources Alaska, LLC (FHR or Complainant) filed...

  13. 76 FR 68263 - Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-03

    ... Department of the Interior Fish and Wildlife Service 50 CFR Part 92 Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska During the 2012 Season; Proposed Rule #0;#0...-1231-9BPP-L2] RIN 1018-AX55 Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations...

  14. 78 FR 11988 - Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ... Fish and Wildlife Service 50 CFR Part 92 RIN 1018-AY70 Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska During the 2013 Season AGENCY: Fish and Wildlife Service... migratory bird subsistence harvest regulations in Alaska for the 2013 season. These regulations enable...

  15. 77 FR 17353 - Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-26

    ... Fish and Wildlife Service 50 CFR Part 92 RIN 1018-AX55 Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska During the 2012 Season AGENCY: Fish and Wildlife Service... migratory bird subsistence harvest regulations in Alaska for the 2012 season. These regulations will...

  16. 76 FR 303 - Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ... AGENCY 40 CFR Parts 239 and 258 Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit... proposes to approve Alaska's modification of its approved Municipal Solid Waste Landfill (MSWLF) permit... Domenic Calabro, Office of Air, Waste, and Toxics, U.S. EPA, Region 10, 1200 Sixth Avenue, Suite...

  17. Low-density geochemical mapping and the robustness of geochemical patterns

    USGS Publications Warehouse

    Smith, D.B.; Reimann, C.

    2008-01-01

    Geochemical mapping of entire continents and, ultimately, the world is still a challenge for applied geochemists. At sample densities traditionally used for geochemical exploration (1 site per 1-25 km2), geochemical mapping of whole continents is logistically extremely demanding and tremendously expensive. The first low-density geochemical surveys (1 site per 200 km2) were carried out during the late 1960s in Africa. Later surveys conducted in various parts of the world had sample densities ranging from 1 site per 300 km2 to 1 site per 18 000 km2. Although these surveys were deemed successful by the investigators in defining variations in background element content on a regional scale, the scientific community was sceptical that low-density geochemical mapping was possible and would provide useful information. The main area of criticism centred around the concern that at such low sample densities the resulting maps would not be robust, i.e. if the same area were resampled and remapped, different geochemical patterns would emerge. Different examples from the USA, Europe, China and Africa demonstrate that low-density geochemical mapping will result in stable and robust geochemical patterns at the continental scale. Such maps are urgently needed for a wide variety of applications. ?? 2008 AAG/ Geological Society of London.

  18. Forestry timber typing. Tanana demonstration project, Alaska ASVT. [Alaska

    NASA Technical Reports Server (NTRS)

    Morrissey, L. A.; Ambrosia, V. G.

    1982-01-01

    The feasibility of using LANDSAT digital data in conjunction with topographic data to delineate commercial forests by stand size and crown closure in the Tanana River basin of Alaska was tested. A modified clustering approach using two LANDSAT dates to generate an initial forest type classification was then refined with topographic data. To further demonstrate the ability of remotely sensed data in a fire protection planning framework, the timber type data were subsequently integrated with terrain information to generate a fire hazard map of the study area. This map provides valuable assistance in initial attack planning, determining equipment accessibility, and fire growth modeling. The resulting data sets were incorporated into the Alaska Department of Natural Resources geographic information system for subsequent utilization.

  19. Lithological and geochemical facies of Shublik Formation (Triassic), North Slope, Alaska

    SciTech Connect

    Parrish, J.T.

    1985-04-01

    The Shublik Formation is a heterogeneous unit consisting of several distinct facies, including: (1) fossiliferous sandstone or siltstone; (2) glauconitic sandstone or siltstone; (3) siltstone, calcareous mudstone, or limestone with phosphate nodules; and (4) black, calcareous mudstone or black limestone, usually fossilferous. This sequence of lithologies is interpreted as having been deposited along an onshore-offshore (north to south) gradient. Bioturbation of the sediments is variable but generally decreases offshore. Organic carbon increases offshore, and phosphate increases from the paleoshoreline and decreases again farthest offshore. The distribution of glauconite, phosphate, and organic-carbon-rich rock is consistent with the facies expected in a zone that has a well-developed oxygen minimum. Glauconite is consistent with dysoxic conditions, and well-laminated, organic-carbon-rich rock in the offshore facies is consistent with anoxic conditions. High biologic productivity coupled with normal oceanic circulation may have caused the basin's low-oxygen conditions, as indicated by the presence of phosphate nodules and the extreme abundance of bivalves that have been interpreted to be pelagic. Phosphate indicates a high rate of supply of organic matter to the sediment-water interface, where it was mobilized from the organic matter within the anoxic zone, and reprecipitated at the zone's edges. Pelagic bivalves (Monotis and Halobia) are present in such large numbers as to suggest unusually abundant food supply; in addition, their distribution is consistent with mass dills, which are common among fish in zones.

  20. Geochemical changes in crude oil spilled from the Exxon Valdez supertanker into Prince William Sound, Alaska

    USGS Publications Warehouse

    Hostettler, Frances D.; Kvenvolden, Keith A.

    1994-01-01

    North Slope crude oil spilled from the T/V Exxon Valdez in March 1989 and contaminated about 500 km of Prince William Sound shoreline. Aliphatic and aromatic hydrocarbons in oil samples collected in August 1990 and June 1992 from beaches on six islands impacted by the spill have been compared with the hydrocarbons from North Slope crude oil taken from the stricken tanker. Degradation processes have changed the physical appearance of this residual spilled oil; the beached oil as collected ranged from a light brown color, to a heavy black viscous oil, to a black, powder-like residue. In these physically different samples, terpane, sterane, and aromatic sterane distributions, as well as carbon isotope values, are similar and correlate with the original Exxon Valdez oil. On the other hand, n-alkanes, isoprenoids, and many of the polycyclic aromatic hydrocarbons which are present in the original crude oil are dramatically altered in the oil samples collected from the beaches.

  1. Geochemical investigation of the hydrothermal system on Akutan Island, Alaska, July 2012

    USGS Publications Warehouse

    Bergfeld, D.; Lewicki, Jennifer L.; Evans, William C.; Hunt, Andrew G.; Revesz, Kinga; Huebner, Mark

    2014-01-01

    We have studied the geochemistry of the hot springs on Akutan Island in detail for the first time since the early 1980s. Springs in four discrete groups (A-D) along Hot Springs Creek showed generally higher temperatures and substantially higher Na, Ca, and Cl concentrations than previously reported, and total hot-spring discharge has also increased markedly. The springs now account for a heat output of ~29 MW, about an order of magnitude more than in 1981. Gas samples from the hot springs and from a fumarolic area on the flank of Akutan Volcano show high 3He/4He ratios (>6.4 RA) after correction for air contamination and reveal a common magmatic heat source. Hot-spring gases are unusually rich in N2, Ar, and CH4, suggesting that the water has boiled and lost CO2 during upflow beneath the flank fumarole field. Gas geothermometry calculations applied to the flank fumarole field implies temperatures of 200–240 °C for the reservoir, and Na-K-Ca geothermometry implies temperatures near 180 °C for the outflow waters that feed the hot springs. The results of our study confirm the existence of a substantial geothermal resource on the island.

  2. Unified Ecoregions of Alaska: 2001

    USGS Publications Warehouse

    Nowacki, Gregory J.; Spencer, Page; Fleming, Michael; Brock, Terry; Jorgenson, Torre

    2003-01-01

    Major ecosystems have been mapped and described for the State of Alaska and nearby areas. Ecoregion units are based on newly available datasets and field experience of ecologists, biologists, geologists and regional experts. Recently derived datasets for Alaska included climate parameters, vegetation, surficial geology and topography. Additional datasets incorporated in the mapping process were lithology, soils, permafrost, hydrography, fire regime and glaciation. Thirty two units are mapped using a combination of the approaches of Bailey (hierarchial), and Omernick (integrated). The ecoregions are grouped into two higher levels using a 'tri-archy' based on climate parameters, vegetation response and disturbance processes. The ecoregions are described with text, photos and tables on the published map.

  3. USGS releases Alaska oil assessment

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    With the U.S. Congress gearing up for a House-Senate conference committee battle about whether to open the Alaska National Wildlife Refuge (ANWR) for oil drilling, a new assessment of the amount of oil in the federal portion of the U.S. National Petroleum Reserve in Alaska (NRPA) is influencing the debate.The U.S. Geological Survey has found that the NPRA holds "significantly greater" petroleum resources than had been estimated previously This finding was disclosed in a 16 May report. The assessment estimated that technically recoverable oil on NPRA federal lands are between 5.9 and 13.2 billion barrels of oil; a 1980 assessment estimated between 0.3 and 5.4 billion barrels.

  4. 1964 Great Alaska Earthquake: a photographic tour of Anchorage, Alaska

    USGS Publications Warehouse

    Thoms, Evan E.; Haeussler, Peter J.; Anderson, Rebecca D.; McGimsey, Robert G.

    2014-01-01

    On March 27, 1964, at 5:36 p.m., a magnitude 9.2 earthquake, the largest recorded earthquake in U.S. history, struck southcentral Alaska (fig. 1). The Great Alaska Earthquake (also known as the Good Friday Earthquake) occurred at a pivotal time in the history of earth science, and helped lead to the acceptance of plate tectonic theory (Cox, 1973; Brocher and others, 2014). All large subduction zone earthquakes are understood through insights learned from the 1964 event, and observations and interpretations of the earthquake have influenced the design of infrastructure and seismic monitoring systems now in place. The earthquake caused extensive damage across the State, and triggered local tsunamis that devastated the Alaskan towns of Whittier, Valdez, and Seward. In Anchorage, the main cause of damage was ground shaking, which lasted approximately 4.5 minutes. Many buildings could not withstand this motion and were damaged or collapsed even though their foundations remained intact. More significantly, ground shaking triggered a number of landslides along coastal and drainage valley bluffs underlain by the Bootlegger Cove Formation, a composite of facies containing variably mixed gravel, sand, silt, and clay which were deposited over much of upper Cook Inlet during the Late Pleistocene (Ulery and others, 1983). Cyclic (or strain) softening of the more sensitive clay facies caused overlying blocks of soil to slide sideways along surfaces dipping by only a few degrees. This guide is the document version of an interactive web map that was created as part of the commemoration events for the 50th anniversary of the 1964 Great Alaska Earthquake. It is accessible at the U.S. Geological Survey (USGS) Alaska Science Center website: http://alaska.usgs.gov/announcements/news/1964Earthquake/. The website features a map display with suggested tour stops in Anchorage, historical photographs taken shortly after the earthquake, repeat photography of selected sites, scanned documents

  5. Ophiolitic terranes of northern and central Alaska and their correlatives in Canada and northeastern Russia

    SciTech Connect

    Patton, W.W. Jr. )

    1993-04-01

    All of the major ophiolitic terranes (Angayucham, Tozitna, Innoko, Seventymile, and Goodnews terranes) in the northern and central Alaska belong to the Tethyan-type' of Moores (1982) and were obducted onto Paleozoic and Proterozoic continental and continental margin terranes in Mesozoic time. Tethyan-type' ophiolitic assemblages also occur in the Slide Mountain terrane in the Canadian Cordillera and extend from western Alaska into northeastern Russia. Although investigators have suggested widely different ages from their times of abduction onto the continent, these ophiolitic terranes display some remarkably similar features: (1) they consist of a stack of imbricated thrust slices dominated by ocean floor sediments, basalt, and high-level gabbro of late Paleozoic and Triassic age; (2) their mafic-ultramafic complexes generally are confined to the uppermost thrust sheets; (3) they lack the large tectonic melanges zones and younger accretionary flysch deposits associated with the ophiolitic terranes of southern Alaska and the Koryak region of northeastern Russia; (4) blueschist mineral assemblages occur in the lower part of these ophiolite terranes and (or) in the underlying continental terranes; and (5) they are bordered on their outboard' side by Mesozoic intraoceanic volcanic arc terranes. Recent geochemical and geologic studies of the mafic-ultramafic complexes in the Anagayucham and Tozitna terranes strongly suggest they were generated in a supra-subduction zone (SSZ) and that they are directly overlain by volcanic rocks of the Koyukuk terrane.

  6. Alaska Natives and Alaska Higher Education, 1960-1972: A Descriptive Study. Alaska Native Human Resources Development Program, Publication 1.

    ERIC Educational Resources Information Center

    Jacquot, Louis F.

    Utilizing data derived from numerous sources (institutions, Alaska Native organizations, Federal and State agencies, conferences, etc.), this descriptive study is divided into 6 chapters which trace the evolution of and the necessity for Alaska Native higher education. Following a detailed introduction, Chapter 2 describes the physical and…

  7. ORTHOPHOTOQUAD MAPPING PROGRAM FOR ALASKA.

    USGS Publications Warehouse

    Plasker, James R.

    1985-01-01

    The U. S. Geological Survey (USGS) is the lead civilian mapping agency in the United States and is responsible for creating and maintaining numerous map series. In Alaska the standard topographic map series is at a scale of 1:63,360, and maps at that scale have been available from the USGS since the late 1940's. In 1981 USGS initiated production of orthophotoquads of Alaska, also at a scale of 1:63,360 to be compatible with the topographic map series. An orthophotoquad (OQ) is prepared from a rectified or differentially rectified and scaled black-and-white photographic image published in quadrangle format. The current status of the Alaska OQ program is summarized and sample OQ's are illustrated. Engineering applications of orthophotoquads are discussed, with an emphasis on their use in the on-shore and near-shore areas. A combination of orthophoto imagery and topographic line maps is described as a planning and engineering tool. Sources of map separates and orthophotoquads are provided.

  8. Reflective Database Access Control

    ERIC Educational Resources Information Center

    Olson, Lars E.

    2009-01-01

    "Reflective Database Access Control" (RDBAC) is a model in which a database privilege is expressed as a database query itself, rather than as a static privilege contained in an access control list. RDBAC aids the management of database access controls by improving the expressiveness of policies. However, such policies introduce new interactions…

  9. Databases: Beyond the Basics.

    ERIC Educational Resources Information Center

    Whittaker, Robert

    This presented paper offers an elementary description of database characteristics and then provides a survey of databases that may be useful to the teacher and researcher in Slavic and East European languages and literatures. The survey focuses on commercial databases that are available, usable, and needed. Individual databases discussed include:…

  10. Status Report on the Creation of a Preliminary Data Model and Dictionary for a New Petrologic Database

    SciTech Connect

    Mackley, Rob D.; Serkowski, John A.; Last, George V.

    2008-06-30

    A preliminary database has been developed that will allow mineralogy and bulk-rock geochemical information to be managed under configuration control and facilitate electronic querying. The database is currently developed in Microsoft Access as a collection of tables, views, and entry forms. Each field and table has been described in a data dictionary.

  11. Kaguyak dome field and its Holocene caldera, Alaska Peninsula

    USGS Publications Warehouse

    Fierstein, J.; Hildreth, W.

    2008-01-01

    Kaguyak Caldera lies in a remote corner of Katmai National Park, 375??km SW of Anchorage, Alaska. The 2.5-by-3-km caldera collapsed ~ 5.8 ?? 0.2??ka (14C age) during emplacement of a radial apron of poorly pumiceous crystal-rich dacitic pyroclastic flows (61-67% SiO2). Proximal pumice-fall deposits are thin and sparsely preserved, but an oxidized coignimbrite ash is found as far as the Valley of Ten Thousand Smokes, 80??km southwest. Postcaldera events include filling the 150-m-deep caldera lake, emplacement of two intracaldera domes (61.5-64.5% SiO2), and phreatic ejection of lakefloor sediments onto the caldera rim. CO2 and H2S bubble up through the lake, weakly but widely. Geochemical analyses (n = 148), including pre-and post-caldera lavas (53-74% SiO2), define one of the lowest-K arc suites in Alaska. The precaldera edifice was not a stratocone but was, instead, nine contiguous but discrete clusters of lava domes, themselves stacks of rhyolite to basalt exogenous lobes and flows. Four extracaldera clusters are mid-to-late Pleistocene, but the other five are younger than 60??ka, were truncated by the collapse, and now make up the steep inner walls. The climactic ignimbrite was preceded by ~ 200??years by radial emplacement of a 100-m-thick sheet of block-rich glassy lava breccia (62-65.5% SiO2). Filling the notches between the truncated dome clusters, the breccia now makes up three segments of the steep caldera wall, which beheads gullies incised into the breccia deposit prior to caldera formation. They were probably shed by a large lava dome extruding where the lake is today.

  12. Kaguyak dome field and its Holocene caldera, Alaska Peninsula

    NASA Astrophysics Data System (ADS)

    Fierstein, Judy; Hildreth, Wes

    2008-10-01

    Kaguyak Caldera lies in a remote corner of Katmai National Park, 375 km SW of Anchorage, Alaska. The 2.5-by-3-km caldera collapsed ~ 5.8 ± 0.2 ka ( 14C age) during emplacement of a radial apron of poorly pumiceous crystal-rich dacitic pyroclastic flows (61-67% SiO 2). Proximal pumice-fall deposits are thin and sparsely preserved, but an oxidized coignimbrite ash is found as far as the Valley of Ten Thousand Smokes, 80 km southwest. Postcaldera events include filling the 150-m-deep caldera lake, emplacement of two intracaldera domes (61.5-64.5% SiO 2), and phreatic ejection of lakefloor sediments onto the caldera rim. CO 2 and H 2S bubble up through the lake, weakly but widely. Geochemical analyses ( n = 148), including pre-and post-caldera lavas (53-74% SiO 2), define one of the lowest-K arc suites in Alaska. The precaldera edifice was not a stratocone but was, instead, nine contiguous but discrete clusters of lava domes, themselves stacks of rhyolite to basalt exogenous lobes and flows. Four extracaldera clusters are mid-to-late Pleistocene, but the other five are younger than 60 ka, were truncated by the collapse, and now make up the steep inner walls. The climactic ignimbrite was preceded by ~ 200 years by radial emplacement of a 100-m-thick sheet of block-rich glassy lava breccia (62-65.5% SiO 2). Filling the notches between the truncated dome clusters, the breccia now makes up three segments of the steep caldera wall, which beheads gullies incised into the breccia deposit prior to caldera formation. They were probably shed by a large lava dome extruding where the lake is today.

  13. Natural gas hydrates on the North Slope of Alaska

    SciTech Connect

    Collett, T.S.

    1991-01-01

    Gas hydrates are crystalline substances composed of water and gas, mainly methane, in which a solid-water lattice accommodates gas molecules in a cage-like structure, or clathrate. These substances often have been regarded as a potential (unconventional) source of natural gas. Significant quantities of naturally occurring gas hydrates have been detected in many regions of the Arctic including Siberia, the Mackenzie River Delta, and the North Slope of Alaska. On the North Slope, the methane-hydrate stability zone is areally extensive beneath most of the coastal plain province and has thicknesses as great as 1000 meters in the Prudhoe Bay area. Gas hydrates have been identified in 50 exploratory and production wells using well-log responses calibrated to the response of an interval in one well where gas hydrates were recovered in a core by ARCO Alaska and EXXON. Most of these gas hydrates occur in six laterally continuous Upper Cretaceous and lower Tertiary sandstone and conglomerate units; all these gas hydrates are geographically restricted to the area overlying the eastern part of the Kuparuk River Oil Field and the western part of the Prudhoe Bay Oil Field. The volume of gas within these gas hydrates is estimated to be about 1.0 {times} 10{sup 12} to 1.2 {times} 10{sup 12} cubic meters (37 to 44 trillion cubic feet), or about twice the volume of conventional gas in the Prudhoe Bay Field. Geochemical analyses of well samples suggest that the identified hydrates probably contain a mixture of deep-source thermogenic gas and shallow microbial gas that was either directly converted to gas hydrate or first concentrated in existing traps and later converted to gas hydrate. The thermogenic gas probably migrated from deeper reservoirs along the same faults thought to be migration pathways for the large volumes of shallow, heavy oil that occur in this area. 51 refs., 11 figs., 3 tabs.

  14. Human Mitochondrial Protein Database

    National Institute of Standards and Technology Data Gateway

    SRD 131 Human Mitochondrial Protein Database (Web, free access)   The Human Mitochondrial Protein Database (HMPDb) provides comprehensive data on mitochondrial and human nuclear encoded proteins involved in mitochondrial biogenesis and function. This database consolidates information from SwissProt, LocusLink, Protein Data Bank (PDB), GenBank, Genome Database (GDB), Online Mendelian Inheritance in Man (OMIM), Human Mitochondrial Genome Database (mtDB), MITOMAP, Neuromuscular Disease Center and Human 2-D PAGE Databases. This database is intended as a tool not only to aid in studying the mitochondrion but in studying the associated diseases.

  15. Want To Work in Alaska's Schools? A Guide for Educators.

    ERIC Educational Resources Information Center

    LaBerge, MaryEllen

    This manual offers practical advice to educators on conducting a job search and obtaining a position in Alaska. Alaska Teacher Placement (University of Alaska Fairbanks) is a statewide clearinghouse for the placement of educators. Although Alaska's certification requirements are similar to those of other states, school administrators are also…

  16. 40 CFR 81.402 - Alaska.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Alaska. 81.402 Section 81.402 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF... Visibility Is an Important Value § 81.402 Alaska. Area name Acreage Public Law establishing Federal...

  17. 43 CFR 9239.3 - Grazing, Alaska.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Grazing, Alaska. 9239.3 Section 9239.3..., DEPARTMENT OF THE INTERIOR TECHNICAL SERVICES (9000) TRESPASS Kinds of Trespass § 9239.3 Grazing, Alaska. (a) Reindeer. (1) Any use of the Federal lands for reindeer grazing purposes, unless authorized by a...

  18. Alaska School District Cost Study Update

    ERIC Educational Resources Information Center

    Tuck, Bradford H.; Berman, Matthew; Hill, Alexandra

    2005-01-01

    The Legislative Budget and Audit Committee of the Alaska Legislature has asked The Institute of Social and Economic Research (ISER) at the University of Alaska Anchorage to make certain changes and adjustments to the Geographic Cost of Education Index (GCEI) that the American Institutes for Research (AIR) constructed and reported on in Alaska…

  19. Some Books about Alaska Received in 1990.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education, Juneau. Div. of State Libraries.

    This annual bibliography of Alaska- and Arctic-related publications received by the Alaska Division of State Libraries is divided into three categories. There are 26 titles in the "Juvenile Fiction" section, 122 in the "Adult Non-Fiction" section, and 19 in the "Adult Fiction" section. Government publications are…

  20. 75 FR 9427 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-02

    ..., Limited. The lands are in the vicinity of Holy Cross and Huslia, Alaska, and are located in: Kateel River... Bureau of Land Management [AA-8103-63, AA-8103-65, F-21902-06, F-21903-54, F-21903-55, F-21903- 56; LLAK-96400-L14100000-KC0000-P] Alaska Native Claims Selection AGENCY: Bureau of Land Management,...

  1. Alaska Performance Scholarship Outcome Report 2016

    ERIC Educational Resources Information Center

    Rae, Brian

    2016-01-01

    Five years ago Alaska's high school graduating class of 2011 became the first with the opportunity to accept the state's "invitation to excellence," the Alaska Performance Scholarship (APS), to pursue their postsecondary studies. Eligible graduates could receive up to $4,755 per year for up to four years to study at a participating…

  2. Viewpoints: Reflections on the Principalship in Alaska.

    ERIC Educational Resources Information Center

    Hagstrom, David A., Ed.

    In this collection, 32 Alaskan principals, retired principals, assistant principals, and principals-to-be share their experiences as administrators and reflect on their feelings about the nature of the work and about schooling issues in Alaska. Nine of the writings were selected from "Totem Tales," the newsletter of Alaska's Association…

  3. Distance Learning in Alaska's Rural Schools.

    ERIC Educational Resources Information Center

    Bramble, William J.

    1986-01-01

    The distance education and instructional technology projects that have been undertaken in Alaska over the last decade are detailed in this paper. The basic services offered by the "Learn Alaska Network" are described in relation to three user groups: K-12 education; postsecondary education; and general public education and information.…

  4. Building a Workforce Development System in Alaska

    ERIC Educational Resources Information Center

    Spieker, Sally

    2004-01-01

    The Alaska Human Resources Investment Council developed a blueprint to guide a system that is needs-driven, accessible, interconnected, accountable, sustainable, and has collaborative governance. Vocational Technical Education Providers (VTEP) representing secondary education, technical schools, proprietary institutions, the University of Alaska,…

  5. 75 FR 43199 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ... approving the conveyance of surface estate for certain lands to Beaver Kwit'chin Corporation, pursuant to... Doyon, Limited when the surface estate is conveyed to Beaver Kwit'chin Corporation. The lands are in the vicinity of Beaver, Alaska, and are located in: Fairbanks Meridian, Alaska T. 16 N., R. 1 E., Secs. 1 to...

  6. Alaska interim land cover mapping program

    USGS Publications Warehouse

    ,

    1987-01-01

    In order to meet the requirements of the Alaska National Interest Lands Conservation Act (ANILCA) for comprehensive resource and management plans from all major land management agencies in Alaska, the USGS has begun a program to classify land cover for the entire State using Landsat digital data. Vegetation and land cover classifications, generated in cooperation with other agencies, currently exist for 115 million acres of Alaska. Using these as a base, the USGS has prepared a comprehensive plan for classifying the remaining areas of the State. The development of this program will lead to a complete interim vegetation and land cover classification system for Alaska and allow the dissemination of digital data for those areas classified. At completion, 153 Alaska 1:250,000-scale quadrangles will be published and will include land cover from digital Landsat classifications, statistical summaries of all land cover by township, and computer-compatible tapes. An interagency working group has established an Alaska classification system (table 1) composed of 18 classes modified from "A land use and land cover classification system for use with remote sensor data" (Anderson and others, 1976), and from "Revision of a preliminary classification system for vegetation of Alaska" (Viereck and Dyrness, 1982) for the unique ecoregions which are found in Alaska.

  7. Women's Legal Rights in Alaska. Reprint.

    ERIC Educational Resources Information Center

    Tatter, Sue Ellen; Saville, Sandra K.

    This publication is intended to help women in Alaska learn about their legal rights. Some of the information is of a general nature and will be of interest to women in other states. Some of the laws and resources are relevant to Alaska only. The publication can serve as a model to other states wanting to develop a resource to inform women about…

  8. Bill Demmert and Native Education in Alaska

    ERIC Educational Resources Information Center

    Barnhardt, Ray

    2011-01-01

    This article describes the influences of William Demmert's formative years growing up in Alaska and his years as an educator of Native American students upon his career in Native education policy. It focuses on Alaska Native education during a ten-year period between 1980 and 1990 during which time he served as the director of the Center for…

  9. Alaska Volcano Observatory at 20

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.

    2008-12-01

    The Alaska Volcano Observatory (AVO) was established in 1988 in the wake of the 1986 Augustine eruption through a congressional earmark. Even within the volcanological community, there was skepticism about AVO. Populations directly at risk in Alaska were small compared to Cascadia, and the logistical costs of installing and maintaining monitoring equipment were much higher. Questions were raised concerning the technical feasibility of keeping seismic stations operating through the long, dark, stormy Alaska winters. Some argued that AVO should simply cover Augustine with instruments and wait for the next eruption there, expected in the mid 90s (but delayed until 2006), rather than stretching to instrument as many volcanoes as possible. No sooner was AVO in place than Redoubt erupted and a fully loaded passenger 747 strayed into the eruption cloud between Anchorage and Fairbanks, causing a powerless glide to within a minute of impact before the pilot could restart two engines and limp into Anchorage. This event forcefully made the case that volcano hazard mitigation is not just about people and infrastructure on the ground, and is particularly important in the heavily traveled North Pacific where options for flight diversion are few. In 1996, new funding became available through an FAA earmark to aggressively extend volcano monitoring far into the Aleutian Islands with both ground-based networks and round-the-clock satellite monitoring. Beyond the Aleutians, AVO developed a monitoring partnership with Russians volcanologists at the Institute of Volcanology and Seismology in Petropavlovsk-Kamchatsky. The need to work together internationally on subduction phenomena that span borders led to formation of the Japan-Kamchatka-Alaska Subduction Processes (JKASP) consortium. JKASP meets approximately biennially in Sapporo, Petropavlovsk, and Fairbanks. In turn, these meetings and support from NSF and the Russian Academy of Sciences led to new international education and

  10. Dust transport from glacierized rivers of southern Alaska to the Gulf of Alaska: Interannual variability in magnitude and sources

    NASA Astrophysics Data System (ADS)

    Crusius, J.; Schroth, A. W.; Campbell, R. W.; Resing, J.; Gasso, S.

    2014-12-01

    Dust from high latitudes is underappreciated and little studied. We recently identified new sites of dust formation, and a new dust generation mechanism, from the southern AK coastline, in Crusius et al, 2011. Dust is generated each autumn from glacierized river valleys as river levels and discharge decrease following summer peak glacier melt. The most prominent such river is the Copper River, the single largest freshwater source to the Gulf of Alaska. Each autumn the exposed river floodplains contain abundant, fine glacial flour and represent a large dust source region, prior to significant snowfall. Strong katabatic winds channeled down mountain river valleys generate dust from the fine glacial flour, which is transported as much as several hundred kilometers into the ocean. This dust is an important source of Fe to the Gulf of Alaska, where phytoplankton growth is limited by available Fe (a micronutrient). Glaciers are rapidly losing mass in this region, so there is an increasing supply of fine glacial flour during the summer melt season, and possibly increased deposition of fine glacial flour in the dust source regions. We initiated continuous, year-round time-series measurements of dust concentration, and its geochemical composition, in August of 2011 on Middleton Island, AK, which lies in the path of the dust plume extending from the Copper River valley. Dust is clearly generated from other glacierized river valleys along the southern coast of AK, as well. We will discuss results from our continuous record spanning three dust seasons, which prominently shows these events each autumn, and displays substantial interannual variability. Dust appears to remain in the boundary layer, but is transported hundreds of kilometers into the ocean, into Fe-limited waters. It is also possible that some of this dust is redeposited on snow or glacier surfaces, enhancing melting. This dust source is not accounted for in typical global dust models.

  11. Laboratory simulation of organic geochemical processes.

    NASA Technical Reports Server (NTRS)

    Eglinton, G.

    1972-01-01

    Discussion of laboratory simulations that are important to organic geochemistry in that they provide direct evidence relating to geochemical cycles involving carbon. Reviewed processes and experiments include reactions occurring in the geosphere, particularly, short-term diagenesis of biolipids and organochlorine pesticides in estuarine muds, as well as maturation of organic matter in ancient sediments.

  12. Geochemical Reaction Mechanism Discovery from Molecular Simulation

    DOE PAGES

    Stack, Andrew G.; Kent, Paul R. C.

    2014-11-10

    Methods to explore reactions using computer simulation are becoming increasingly quantitative, versatile, and robust. In this review, a rationale for how molecular simulation can help build better geochemical kinetics models is first given. We summarize some common methods that geochemists use to simulate reaction mechanisms, specifically classical molecular dynamics and quantum chemical methods and discuss their strengths and weaknesses. Useful tools such as umbrella sampling and metadynamics that enable one to explore reactions are discussed. Several case studies wherein geochemists have used these tools to understand reaction mechanisms are presented, including water exchange and sorption on aqueous species and mineralmore » surfaces, surface charging, crystal growth and dissolution, and electron transfer. The impact that molecular simulation has had on our understanding of geochemical reactivity are highlighted in each case. In the future, it is anticipated that molecular simulation of geochemical reaction mechanisms will become more commonplace as a tool to validate and interpret experimental data, and provide a check on the plausibility of geochemical kinetic models.« less

  13. Geochemical Reaction Mechanism Discovery from Molecular Simulation

    SciTech Connect

    Stack, Andrew G.; Kent, Paul R. C.

    2014-11-10

    Methods to explore reactions using computer simulation are becoming increasingly quantitative, versatile, and robust. In this review, a rationale for how molecular simulation can help build better geochemical kinetics models is first given. We summarize some common methods that geochemists use to simulate reaction mechanisms, specifically classical molecular dynamics and quantum chemical methods and discuss their strengths and weaknesses. Useful tools such as umbrella sampling and metadynamics that enable one to explore reactions are discussed. Several case studies wherein geochemists have used these tools to understand reaction mechanisms are presented, including water exchange and sorption on aqueous species and mineral surfaces, surface charging, crystal growth and dissolution, and electron transfer. The impact that molecular simulation has had on our understanding of geochemical reactivity are highlighted in each case. In the future, it is anticipated that molecular simulation of geochemical reaction mechanisms will become more commonplace as a tool to validate and interpret experimental data, and provide a check on the plausibility of geochemical kinetic models.

  14. Spatial distribution of thermokarst landforms across Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Farquharson, L. M.; Grosse, G.; Romanovsky, V. E.; Jones, B. M.; Arp, C. D.; McGuire, A. D.

    2013-12-01

    Arctic Alaska is characterized by widespread past and present thaw of ice rich permafrost and subsequent thermokarst development. Variations in ice content and distribution, and topography across Arctic Alaska result in thermokarst landform diversity. Thermokarst causes a number of biogeochemical and ecological shifts that include changes in soil carbon dynamics, nutrient cycling, vegetation composition, wildlife habitat, and fresh water availability. Ongoing climate change may lead to an increase in thermokarst landscape features. Thus, a better understanding of the current temporal and spatial dynamics of thermokarst is needed in order to project its future dynamics. Understanding how vulnerable Arctic Alaska is to future thermokarst development is critical for resource management, industry development, and subsistence hunting. We focused on the distribution of thermokarst landforms among ten study sites aligned with the NSF CALON (Towards a Circum-Arctic Lakes Observation Network) project in Arctic Alaska. Sites represent diverse substrates including eolian silt, eolian sand, marine sand, deltaic, and marine silt. We conducted thermokarst landform mapping and spatial and morphometric analyses using high-resolution aerial photography, an interferometric synthetic aperture radar derived digital elevation model (IfSAR DEM), and hydrographic layers from the National Land Cover Database derived from Landsat-7. Non-lake thermokarst landforms were visually mapped and hand digitized using aerial photographs and the IfSAR DEM. Initial results show thermokarst forms are most prevalent in marine silt areas with up to 99% of study areas affected by thermokarst activity. Eolian sand areas are the least thermokarst affected (mean of 57%). Drained thermokarst lake basins, thermokarst lakes, and areas affected by thermokarst pit formation were the dominant thermokarst landforms, covering up to 70%, 54%, and 8% of the landscape. The number of overlapping lake and basin

  15. A COMSOL-GEMS interface for modeling coupled reactive-transport geochemical processes

    NASA Astrophysics Data System (ADS)

    Azad, Vahid Jafari; Li, Chang; Verba, Circe; Ideker, Jason H.; Isgor, O. Burkan

    2016-07-01

    An interface was developed between COMSOL MultiphysicsTM finite element analysis software and (geo)chemical modeling platform, GEMS, for the reactive-transport modeling of (geo)chemical processes in variably saturated porous media. The two standalone software packages are managed from the interface that uses a non-iterative operator splitting technique to couple the transport (COMSOL) and reaction (GEMS) processes. The interface allows modeling media with complex chemistry (e.g. cement) using GEMS thermodynamic database formats. Benchmark comparisons show that the developed interface can be used to predict a variety of reactive-transport processes accurately. The full functionality of the interface was demonstrated to model transport processes, governed by extended Nernst-Plank equation, in Class H Portland cement samples in high pressure and temperature autoclaves simulating systems that are used to store captured carbon dioxide (CO2) in geological reservoirs.

  16. Geobiochemistry: Placing Biochemistry in Its Geochemical Context

    NASA Astrophysics Data System (ADS)

    Shock, E.; Boyer, G. M.; Canovas, P. A., III; Prasad, A.; Dick, J. M.

    2014-12-01

    Goals of geobiochemistry include simultaneously evaluating the relative stabilities of microbial cells and minerals, and predicting how the composition of biomolecules can change in response to the progress of geochemical reactions. Recent developments in theoretical geochemistry make it possible to predict standard thermodynamic properties of proteins, nucleotides, lipids, and many metabolites including the constituents of the citric acid cycle, at all temperatures and pressures where life is known to occur, and beyond. Combining these predictions with constraints from geochemical data makes it possible to assess the relative stabilities of biomolecules. Resulting independent predictions of the environmental occurrence of homologous proteins and lipid side-chains can be compared with observations from metagenomic and metalipidomic data to quantify geochemical driving forces that shape the composition of biomolecules. In addition, the energetic costs of generating biomolecules from within a diverse range of habitable environments can be evaluated in terms of prevailing geochemical variables. Comparisons of geochemical bioenergetic calculations across habitats leads to the generalization that the availability of H2 determines the cost of autotrophic biosynthesis relative to the aquatic environment external to microbial cells, and that pH, temperature, pressure, and availability of C, N, P, and S are typically secondary. Increasingly reduced conditions, which are determined by reactions of water with mineral surfaces and mineral assemblages, allow many biosynthetic reactions to shift from costing energy to releasing energy. Protein and lipid synthesis, as well as the reverse citric acid cycle, become energy-releasing processes under these conditions. The resulting energy balances that determine habitability contrast dramatically with assumptions derived from oxic surface conditions, such as those where human biochemistry operates.

  17. Databases for rRNA gene profiling of microbial communities

    DOEpatents

    Ashby, Matthew

    2013-07-02

    The present invention relates to methods for performing surveys of the genetic diversity of a population. The invention also relates to methods for performing genetic analyses of a population. The invention further relates to methods for the creation of databases comprising the survey information and the databases created by these methods. The invention also relates to methods for analyzing the information to correlate the presence of nucleic acid markers with desired parameters in a sample. These methods have application in the fields of geochemical exploration, agriculture, bioremediation, environmental analysis, clinical microbiology, forensic science and medicine.

  18. Geochemical modeling research related to the surface disposal of processed oil shale solid waste. [Elements and compounds in oil shale wastes

    SciTech Connect

    Reddy, K. J.; Drever, J. I.

    1987-10-01

    Several geochemical codes are available in the literature to model chemical processes such as oxidation-reduction, precipitation-dissolution, formation of solution complex, adsorption, and ion exchange. However, these models differ in the environments to which they apply. The objective of this research was to evaluate the applicability of existing geochemical codes to predict water quality from an oil shale solid waste environment. We selected EQ3/EQ6, GEOCHEM, MINTEQ, PHREEQE, SOLMNEQ, and WATEQFC geochemical models for further evaluation. We concluded that all these models lack thermodynamic data for minerals and solution complexes which are important for oil shale solid waste studies. Selection of any one of the models would require development of a more reliable thermodynamic database, and this report describes the initiation of that work. So far, critical evaluation of thermodynamic data has been completed for Sr, F, Mo, and Se. 64 refs., 15 tabs.

  19. Fossil locations and data for the Taylor Mountains, and parts of the Bethel, Goodnews, and Dillingham quadrangles, southwestern Alaska

    USGS Publications Warehouse

    Karl, S.M.; Blodgett, R.B.; Labay, K.A.; Box, S.E.; Bradley, D.C.; Miller, M.L.; Wallace, W.K.; Baichtal, J.F.

    2011-01-01

    Information about fossils collected by U.S. Geological Survey, State of Alaska, academic, and industry geologists that have been reported in literature or archived in reports from the former U.S. Geological Survey Branch of Paleontology and Stratigraphy are compiled on a plate and table in this report to provide comprehensive paleontologic age data for the Taylor Mountains quadrangle area in southwestern Alaska. The reports used to compile the table in this report were submitted by recognized paleontologic experts. Some of the information is derived from reports that date back almost 100 years. Many of the data are available in more detail in the Alaska Paleontological Database (http://www.alaskafossil.org/). The 287 entries in this table are shown on the accompanying plate, on which symbols representing the entries are color-coded by geologic age. This report represents the most comprehensive and most recently updated compilation of paleontologic data for this area.

  20. Alaska Village Electric Load Calculator

    SciTech Connect

    Devine, M.; Baring-Gould, E. I.

    2004-10-01

    As part of designing a village electric power system, the present and future electric loads must be defined, including both seasonal and daily usage patterns. However, in many cases, detailed electric load information is not readily available. NREL developed the Alaska Village Electric Load Calculator to help estimate the electricity requirements in a village given basic information about the types of facilities located within the community. The purpose of this report is to explain how the load calculator was developed and to provide instructions on its use so that organizations can then use this model to calculate expected electrical energy usage.

  1. Metalliferous lode deposits of Alaska

    USGS Publications Warehouse

    Berg, Henry C.; Cobb, Edward Huntington

    1967-01-01

    This report summarizes from repoAs of Federal and State agencies published before August 31, 1965, the geology of Alaska's metal-bearing lodes, including their structural or stratigraphic control, host rock, mode of origin, kinds of .Q minerals, grade, past production, and extent of exploration. In addition, the lists of mineral occurrences that accompany the 35 mineral-deposit location maps constitute an inventory of the State's known lodes. A total of 692 localities where m&alliferous deposits have been found are shown on the maps. The localities include 1,739 mines, prospects, and reported occurrences, of which 821 are described individually or otherwise cited in the text.

  2. Hyperspectral surveying for mineral resources in Alaska

    USGS Publications Warehouse

    Kokaly, Raymond F.; Graham, Garth E.; Hoefen, Todd M.; Kelley, Karen D.; Johnson, Michaela R.; Hubbard, Bernard E.

    2016-07-07

    Alaska is a major producer of base and precious metals and has a high potential for additional undiscovered mineral resources. However, discovery is hindered by Alaska’s vast size, remoteness, and rugged terrain. New methods are needed to overcome these obstacles in order to fully evaluate Alaska’s geology and mineral resource potential. Hyperspectral surveying is one method that can be used to rapidly acquire data about the distributions of surficial materials, including different types of bedrock and ground cover. In 2014, the U.S. Geological Survey began the Alaska Hyperspectral Project to assess the applicability of this method in Alaska. The primary study area is a remote part of the eastern Alaska Range where porphyry deposits are exposed. In collaboration with the Alaska Division of Geological and Geophysical Surveys, the University of Alaska Fairbanks, and the National Park Service, the U.S. Geological Survey is collecting and analyzing hyperspectral data with the goals of enhancing geologic mapping and developing methods to identify and characterize mineral deposits elsewhere in Alaska.

  3. Physiological Information Database (PID)

    EPA Science Inventory

    EPA has developed a physiological information database (created using Microsoft ACCESS) intended to be used in PBPK modeling. The database contains physiological parameter values for humans from early childhood through senescence as well as similar data for laboratory animal spec...

  4. THE ECOTOX DATABASE

    EPA Science Inventory

    The database provides chemical-specific toxicity information for aquatic life, terrestrial plants, and terrestrial wildlife. ECOTOX is a comprehensive ecotoxicology database and is therefore essential for providing and suppoirting high quality models needed to estimate population...

  5. A geostatistical method applied to the geochemical study of the Chichinautzin Volcanic Field in Mexico

    NASA Astrophysics Data System (ADS)

    Robidoux, P.; Roberge, J.; Urbina Oviedo, C. A.

    2011-12-01

    The origin of magmatism and the role of the subducted Coco's Plate in the Chichinautzin volcanic field (CVF), Mexico is still a subject of debate. It has been established that mafic magmas of alkali type (subduction) and calc-alkali type (OIB) are produced in the CVF and both groups cannot be related by simple fractional crystallization. Therefore, many geochemical studies have been done, and many models have been proposed. The main goal of the work present here is to provide a new tool for the visualization and interpretation of geochemical data using geostatistics and geospatial analysis techniques. It contains a complete geodatabase built from referred samples over the 2500 km2 area of CVF and its neighbour stratovolcanoes (Popocatepetl, Iztaccihuatl and Nevado de Toluca). From this database, map of different geochemical markers were done to visualise geochemical signature in a geographical manner, to test the statistic distribution with a cartographic technique and highlight any spatial correlations. The distribution and regionalization of the geochemical signatures can be viewed in a two-dimensional space using a specific spatial analysis tools from a Geographic Information System (GIS). The model of spatial distribution is tested with Linear Decrease (LD) and Inverse Distance Weight (IDW) interpolation technique because they best represent the geostatistical characteristics of the geodatabase. We found that ratio of Ba/Nb, Nb/Ta, Th/Nb show first order tendency, which means visible spatial variation over a large scale area. Monogenetic volcanoes in the center of the CVF have distinct values compare to those of the Popocatepetl-Iztaccihuatl polygenetic complex which are spatially well defined. Inside the Valley of Mexico, a large quantity of monogenetic cone in the eastern portion of CVF has ratios similar to the Iztaccihuatl and Popocatepetl complex. Other ratios like alkalis vs SiO2, V/Ti, La/Yb, Zr/Y show different spatial tendencies. In that case, second

  6. Aviation Safety Issues Database

    NASA Technical Reports Server (NTRS)

    Morello, Samuel A.; Ricks, Wendell R.

    2009-01-01

    The aviation safety issues database was instrumental in the refinement and substantiation of the National Aviation Safety Strategic Plan (NASSP). The issues database is a comprehensive set of issues from an extremely broad base of aviation functions, personnel, and vehicle categories, both nationally and internationally. Several aviation safety stakeholders such as the Commercial Aviation Safety Team (CAST) have already used the database. This broader interest was the genesis to making the database publically accessible and writing this report.

  7. Scopus database: a review.

    PubMed

    Burnham, Judy F

    2006-03-08

    The Scopus database provides access to STM journal articles and the references included in those articles, allowing the searcher to search both forward and backward in time. The database can be used for collection development as well as for research. This review provides information on the key points of the database and compares it to Web of Science. Neither database is inclusive, but complements each other. If a library can only afford one, choice must be based in institutional needs.

  8. Beryllium deposits of the western Seward Peninsula, Alaska

    USGS Publications Warehouse

    Sainsbury, C.L.

    1963-01-01

    Deposits of beryllium ore in the Lost River area of the western Seward Peninsula, Alaska, consist of replacement veins, pipes, and stringer lodes is limestone in a zone about 7 miles long and 2 to 3 miles wide which is faulted and intruded by dikes and stocks. The ores are remarkably alike and typically consist of the following minerals, in percent: fluorite, 45-65; diaspore, 5-10; tourmaline, 0-10; chrysoberyl, 3-10; white mica, 0-5; small amounts of hematite, sulfide minerals, manganese oxide, other beryllium minerals; and traces of minerals not yet identified. The ores generally are cut by late veinlets which are of the same mineralogy as the groundmass ore, or which consist of fluorite, white mica, and euclase. The ores are fine grained, and many of the individual mineral grains, except fluorite, are less than 1 mm in size. The beryllium content of bulk samples of ore ranges from 0.11 to 0.54 percent (0.31 to 1.50 percent BeO). High-grade nodules, composed principally of chrysoberyl, diaspore, fluorite, and mica, contain as much as 6 percent BeO. Geochemical reconnaissance has disclosed other areas of anomalous beryllium in stream sediments elsewhere on the Seward Peninsula, generally around biotite granites that have them associated with tin deposits; additional exploration probably will disclose other deposits.

  9. JICST Factual Database

    NASA Astrophysics Data System (ADS)

    Hayase, Shuichi; Okano, Keiko

    Japan Information Center of Science and Technology (JICST) has started the on-line service of JICST Crystal Structure Database (JICST CR) in this January (1990). This database provides the information of atomic positions in a crystal and related informations of the crystal. The database system and the crystal data in JICST CR are outlined in this manuscript.

  10. Alaska LandCarbon wetland distribution map

    USGS Publications Warehouse

    Wylie, Bruce K.; Pastick, Neal J.

    2017-01-01

    This product provides regional estimates of specific wetland types (bog and fen) in Alaska. Available wetland types mapped by the National Wetlands Inventory (NWI) program were re-classed into bog, fen, and other. NWI mapping of wetlands was only done for a portion of the area so a decision tree mapping algorithm was then developed to estimate bog, fen, and other across the state of Alaska using remote sensing and GIS spatial data sets as inputs. This data was used and presented in two chapters on the USGS Alaska LandCarbon Report.

  11. Review: groundwater in Alaska (USA)

    USGS Publications Warehouse

    Callegary, J.B.; Kikuchi, C.P.; Koch, J.C.; Lilly, M.R.; Leake, S.A.

    2013-01-01

    Groundwater in the US state of Alaska is critical to both humans and ecosystems. Interactions among physiography, ecology, geology, and current and past climate have largely determined the location and properties of aquifers as well as the timing and magnitude of fluxes to, from, and within the groundwater system. The climate ranges from maritime in the southern portion of the state to continental in the Interior, and arctic on the North Slope. During the Quaternary period, topography and rock type have combined with glacial and periglacial processes to develop the unconsolidated alluvial aquifers of Alaska and have resulted in highly heterogeneous hydrofacies. In addition, the long persistence of frozen ground, whether seasonal or permanent, greatly affects the distribution of aquifer recharge and discharge. Because of high runoff, a high proportion of groundwater use, and highly variable permeability controlled in part by permafrost and seasonally frozen ground, understanding groundwater/surface-water interactions and the effects of climate change is critical for understanding groundwater availability and the movement of natural and anthropogenic contaminants.

  12. Seeking a geochemical identifier for authigenic carbonate

    PubMed Central

    Zhao, Ming-Yu; Zheng, Yong-Fei; Zhao, Yan-Yan

    2016-01-01

    Authigenic carbonate was recently invoked as a third major global carbon sink in addition to primary marine carbonate and organic carbon. Distinguishing the two carbonate sinks is fundamental to our understanding of Earth's carbon cycle and its role in regulating the evolution of atmospheric oxygen. Here, using microscale geochemical measurements of carbonates in Early Triassic strata, we show that the growth of authigenic carbonate follows a different trajectory from primary marine carbonate in a cross-plot of uranium concentration and carbon isotope composition. Thus, a combination of the two geochemical variables is able to distinguish between the two carbonate sinks. The temporal distribution of authigenic carbonates in the Early Triassic strata suggests that the increase in the extent of carbonate authigenesis acted as a negative feedback to the elevated atmospheric CO2 concentration. PMID:26947562

  13. A late quaternary record of eolian silt deposition in a maar lake, St. Michael Island, western Alaska

    USGS Publications Warehouse

    Muhs, D.R.; Ager, T.A.; Been, J.; Bradbury, J.P.; Dean, W.E.

    2003-01-01

    Recent stratigraphic studies in central Alaska have yielded the unexpected finding that there is little evidence for full-glacial (late Wisconsin) loess deposition. Because the loess record of western Alaska is poorly exposed and not well known, we analyzed a core from Zagoskin Lake, a maar lake on St. Michael Island, to determine if a full-glacial eolian record could be found in that region. Particle size and geochemical data indicate that the mineral fraction of the lake sediments is not derived from the local basalt and is probably eolian. Silt deposition took place from at least the latter part of the mid-Wisconsin interstadial period through the Holocene, based on radiocarbon dating. Based on the locations of likely loess sources, eolian silt in western Alaska was probably deflated by northeasterly winds from glaciofluvial sediments. If last-glacial winds that deposited loess were indeed from the northeast, this reconstruction is in conflict with a model-derived reconstruction of paleowinds in Alaska. Mass accumulation rates in Zagoskin Lake were higher during the Pleistocene than during the Holocene. In addition, more eolian sediment is recorded in the lake sediments than as loess on the adjacent landscape. The thinner loess record on land may be due to the sparse, herb tundra vegetation that dominated the landscape in full-glacial time. Herb tundra would have been an inefficient loess trap compared to forest or even shrub tundra due to its low roughness height. The lack of abundant, full-glacial, eolian silt deposition in the loess stratigraphic record of central Alaska may be due, therefore, to a mimimal ability of the landscape to trap loess, rather than a lack of available eolian sediment. ?? 2003 University of Washington. Published by Elsevier Inc. All rights reserved.

  14. Geochemical engineering and materials program plan

    SciTech Connect

    1982-08-01

    The Department of Energy (DOE) was designated as lead agency in discharging the overall legislative mandate for federal R&D to assist the private sector in developing appropriate technology for exploiting geothermal energy resources. The Geochemical Engineering and Materials (GEM) Program was conceived, as part of DOE'S overall strategy, to address specific and plant-wide problems and uncertainties in the use of materials and in geochemical engineering. This program assists industry in the conduct of long-term,high-risk R&D needed to overcome the significant technical and economic GEM-related obstacles faced by developers and potential developers of this alternative energy source. The program focuses on: (1) Increasing the knowledge about the properties of materials and their performance under geothermal energy system conditions; (2) Developing and utilizing more reliable and/or cost-effective materials than previously available; and (3) Developing a greater understanding of and control over geochemical processes during fluid production and transport, energy conversion, and waste management. As a stand-alone program and as support to other DOE geothermal technology development programs, the GEM Program contributes to the feasibility of designing and operating efficient, reliable, and safe fluid handling and energy conversion systems.

  15. Soil organic carbon stocks in Alaska estimated with spatial and pedon data

    USGS Publications Warehouse

    Bliss, Norman B.; Maursetter, J.

    2010-01-01

    Temperatures in high-latitude ecosystems are increasing faster than the average rate of global warming, which may lead to a positive feedback for climate change by increasing the respiration rates of soil organic C. If a positive feedback is confirmed, soil C will represent a source of greenhouse gases that is not currently considered in international protocols to regulate C emissions. We present new estimates of the stocks of soil organic C in Alaska, calculated by linking spatial and field data developed by the USDA NRCS. The spatial data are from the State Soil Geographic database (STATSGO), and the field and laboratory data are from the National Soil Characterization Database, also known as the pedon database. The new estimates range from 32 to 53 Pg of soil organic C for Alaska, formed by linking the spatial and field data using the attributes of Soil Taxonomy. For modelers, we recommend an estimation method based on taxonomic subgroups with interpolation for missing areas, which yields an estimate of 48 Pg. This is a substantial increase over a magnitude of 13 Pg estimated from only the STATSGO data as originally distributed in 1994, but the increase reflects different estimation methods and is not a measure of the change in C on the landscape. Pedon samples were collected between 1952 and 2002, so the results do not represent a single point in time. The linked databases provide an improved basis for modeling the impacts of climate change on net ecosystem exchange.

  16. The NCBI Taxonomy database.

    PubMed

    Federhen, Scott

    2012-01-01

    The NCBI Taxonomy database (http://www.ncbi.nlm.nih.gov/taxonomy) is the standard nomenclature and classification repository for the International Nucleotide Sequence Database Collaboration (INSDC), comprising the GenBank, ENA (EMBL) and DDBJ databases. It includes organism names and taxonomic lineages for each of the sequences represented in the INSDC's nucleotide and protein sequence databases. The taxonomy database is manually curated by a small group of scientists at the NCBI who use the current taxonomic literature to maintain a phylogenetic taxonomy for the source organisms represented in the sequence databases. The taxonomy database is a central organizing hub for many of the resources at the NCBI, and provides a means for clustering elements within other domains of NCBI web site, for internal linking between domains of the Entrez system and for linking out to taxon-specific external resources on the web. Our primary purpose is to index the domain of sequences as conveniently as possible for our user community.

  17. Geology of the Alaska-Juneau lode system, Alaska

    USGS Publications Warehouse

    Twenhofel, William Stephens

    1952-01-01

    The Alaska-Juneau lode system for many years was one of the worlds leading gold-producing areas. Total production from the years 1893 to 1946 has amounted to about 94 million dollars, with principal values in contained gold but with some silver and lead values. The principal mine is the Alaska-Juneau mine, from which the lode system takes its name. The lode system is a part of a larger gold-bearing belt, generally referred to as the Juneau gold belt, along the western border of the Coast Range batholith. The rocks of the Alaska-Juneau lode system consist of a monoclinal sequence of steeply northeasterly dipping volcanic, state, and schist rocks, all of which have been metamorphosed by dynamic and thermal processes attendant with the intrusion of the Coast Range batholith. The rocks form a series of belts that trend northwest parallel to the Coast Range. In addition to the Coast Range batholith lying a mile to the east of the lode system, there are numerous smaller intrusives, all of which are sill-like in form and are thus conformable to the regional structure. The bedded rocks are Mesozoic in age; the Coast Range batholith is Upper Jurassic and Lower Cretaceous in age. Some of the smaller intrusives pre-date the batholith, others post-date it. All of the rocks are cut by steeply dipping faults. The Alaska-Juneau lode system is confined exclusively to the footwall portion of the Perseverance slate band. The slate band is composed of black slate and black phyllite with lesser amounts of thin-bedded quartzite. Intrusive into the slate band are many sill-like bodies of rocks generally referred to as meta-gabbro. The gold deposits of the lode system are found both within the slate rocks and the meta-gabbro rocks, and particularly in those places where meta-gabbro bodies interfinger with slate. Thus the ore bodies are found in and near the terminations of meta-gabbro bodies. The ore bodies are quartz stringer-lodes composed of a great number of quartz veins from 6

  18. Cross Cultural Scientific Communication in Alaska

    NASA Astrophysics Data System (ADS)

    Bertram, K. B.

    2006-12-01

    An example of cross-cultural education is provided by the Aurora Alive curriculum. Aurora Alive communicates science to Alaska Native students through cross-cultural educational products used in Alaska schools for more than a decade, including (1) a CDROM that provides digital graphics, bilingual (English and Athabascan language) narration-over-text and interactive elements that help students visualize scientific concepts, and (2) Teacher's Manuals containing more than 150 hands-on activities aligned to national science standards, and to Alaska Standards for Culturally Responsive Schools. Created by Native Elders and teachers working together with University Alaska Fairbanks Geophysical Institute scientists, Aurora Alive blends Native "ways of knowing" with current "western" research to teach the physics and math of the aurora.

  19. Advancing Efforts to Energize Native Alaska (Brochure)

    SciTech Connect

    Not Available

    2013-04-01

    This brochure describes key programs and initiatives of the DOE Office of Indian Energy Policy and Programs to advance energy efficiency, renewable energy, and energy infrastructure projects in Alaska Native villages.

  20. 75 FR 43198 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ... Alaska Native Claims Settlement Act. The subsurface estate in these lands will be conveyed to Bristol Bay... times in the Bristol Bay Times. DATES: Any party claiming a property interest in the lands affected...

  1. 76 FR 67472 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-01

    ... lands are located east of Teller, Alaska, and contain 47.87 acres. Notice of the decision will also be... email at ak.blm.conveyance@blm.gov . Persons who use a Telecommunications Device for the Deaf (TDD)...

  2. American Indians, Alaska Natives, and the Flu

    MedlinePlus

    ... CDC Features American Indians, Alaska Natives, and the Flu Recommend on Facebook Tweet Share Compartir Vaccination against ... the flu. Protect Indian Country by Getting Your Flu Vaccine A flu vaccine not only protects you ...

  3. Columbia Glacier, Alaska, 1986-2011

    NASA Video Gallery

    The Columbia Glacier in Alaska is one of many vanishing around the world. Glacier retreat is one of the most direct and understandable effects of climate change. The consequences of the decline in ...

  4. Alaska Simulator - A Journey to Planning

    NASA Astrophysics Data System (ADS)

    Weber, Barbara; Pinggera, Jakob; Zugal, Stefan; Wild, Werner

    The Alaska Simulator is an interactive software tool developed at the University of Innsbruck which allows people to test, analyze and improve their own planning behavior. In addition, the Alaska Simulator can be used for studying research questions in the context of software project management and other related fields. Thereby, the Alaska Simulator uses a journey as a metaphor for planning a software project. In the context of software project management the simulator can be used to compare traditional rather plan-driven project management methods with more agile approaches. Instead of pre-planning everything in advance agile approaches spread planning activities throughout the project and provide mechanisms for effectively dealing with uncertainty. The biggest challenge thereby is to find the right balance between pre-planning activities and keeping options open. The Alaska Simulator allows to explore how much planning is needed under different circumstances.

  5. Renewed unrest at Mount Spurr Volcano, Alaska

    USGS Publications Warehouse

    Power, John A.

    2004-01-01

    The Alaska Volcano Observatory (AVO),a cooperative program of the U.S. Geological Survey, the University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys, has detected unrest at Mount Spurr volcano, located about 125 km west of Anchorage, Alaska, at the northeast end of the Aleutian volcanic arc.This activity consists of increased seismicity melting of the summit ice cap, and substantial rates of C02 and H2S emission.The current unrest is centered beneath the volcano's 3374-m-high summit, whose last known eruption was 5000–6000 years ago. Since then, Crater Peak, 2309 m in elevation and 4 km to the south, has been the active vent. Recent eruptions occurred in 1953 and 1992.

  6. Cardiovascular Disease Among Alaska Native Peoples

    PubMed Central

    Jolly, Stacey E.; Howard, Barbara V.; Umans, Jason G.

    2013-01-01

    Although Alaska Native peoples were thought to be protected from cardiovascular disease (CVD), data now show that this is not the case, despite traditional lifestyles and high omega-3 fatty acid intake. In this article, the current understanding of CVD and its risk factors among Alaska Native peoples, particularly among the Yupik and Inupiat populations, will be discussed, using data from three major studies funded by the National Institutes of Health: Genetics of Coronary Artery Disease among Alaska Natives (GOCADAN), Center for Native Health Research (CANHR), and Education and Research Towards Health (EARTH). Data from these epidemiologic studies have focused concern on CVD and its risk factors among Alaska Native peoples. This review will summarize the findings of these three principal studies and will suggest future directions for research and clinical practice. PMID:24367710

  7. 78 FR 53158 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-28

    ...) to Sea Lion Corporation. The decision approves the surface estate in the lands described below for... Lion Corporation. The lands are in the vicinity of Hooper Bay, Alaska, and are located in:...

  8. Ranking Geochemical Energy Availability in Hydrothermal Ecosystems

    NASA Astrophysics Data System (ADS)

    Holland, M. E.; Shock, E. L.; Meyer-Dombard, D.; Amend, J. P.

    2004-12-01

    The energy available to hyperthermophilic microorganisms in hot springs can be theoretically estimated using thermodynamic calculations based on geochemical measurements. The relative abundance of different geochemical energy sources (the "ranking" of these reactions) in particular hot springs may provide one explanation for the differences in hot spring microbial communities and also facilitate the culture of ecologically-relevant microorganisms. Geochemical sampling of seven Yellowstone National Park hot springs was repeated five times from 1999 to 2004 with the intent to compare the geochemistry and geochemical energy available to microorganisms. These seven hot springs were located in three separate regions of Yellowstone National Park: three hot springs, including Obsidian Pool, were sampled in the Mud Volcano area; two in the Sylvan Springs area (Gibbon Meadows); and one each in Imperial Meadows and Sentinel Meadows (Lower Geyser Basin). The hot springs were 75 to 93° C (with one 65° C exception) and spanned the bulk of the pH range at Yellowstone (pH 1.8 to 7.6). Geochemical measurements made on hot springs included redox-active species containing C, N, O, H, S, and Fe; these species were measured by field spectrophotometry and ion chromatography of fluid samples and gas chromatographic analysis of gas samples. From these measurements chemical affinities were calculated for 179 inorganic reactions which encompass the suite of autotrophic energy sources potentially available in each pool. Composite affinities for each reaction were compiled for each of the seven primary pools. The composite for each pool was assembled from repeat measurements from the primary pool as well as nearby pools with similar geochemistry. Calculations show that over half of these inorganic reactions could provide enough energy for a microorganism to survive, based on the threshold value of energy required by {it E. coli} (20 kJ per mole of electron pairs). Some microorganisms

  9. IDPredictor: predict database links in biomedical database.

    PubMed

    Mehlhorn, Hendrik; Lange, Matthias; Scholz, Uwe; Schreiber, Falk

    2012-06-26

    Knowledge found in biomedical databases, in particular in Web information systems, is a major bioinformatics resource. In general, this biological knowledge is worldwide represented in a network of databases. These data is spread among thousands of databases, which overlap in content, but differ substantially with respect to content detail, interface, formats and data structure. To support a functional annotation of lab data, such as protein sequences, metabolites or DNA sequences as well as a semi-automated data exploration in information retrieval environments, an integrated view to databases is essential. Search engines have the potential of assisting in data retrieval from these structured sources, but fall short of providing a comprehensive knowledge except out of the interlinked databases. A prerequisite of supporting the concept of an integrated data view is to acquire insights into cross-references among database entities. This issue is being hampered by the fact, that only a fraction of all possible cross-references are explicitely tagged in the particular biomedical informations systems. In this work, we investigate to what extend an automated construction of an integrated data network is possible. We propose a method that predicts and extracts cross-references from multiple life science databases and possible referenced data targets. We study the retrieval quality of our method and report on first, promising results. The method is implemented as the tool IDPredictor, which is published under the DOI 10.5447/IPK/2012/4 and is freely available using the URL: http://dx.doi.org/10.5447/IPK/2012/4.

  10. Major disruption of D'' beneath Alaska: D'' Beneath Alaska

    SciTech Connect

    Sun, Daoyuan; Helmberger, Don; Miller, Meghan S.; Jackson, Jennifer M.

    2016-05-01

    D'' represents one of the most dramatic thermal and compositional layers within our planet. In particular, global tomographic models display relatively fast patches at the base of the mantle along the circum-Pacific which are generally attributed to slab debris. Such distinct patches interact with the bridgmanite (Br) to post-bridgmanite (PBr) phase boundary to generate particularly strong heterogeneity at their edges. Most seismic observations for the D'' come from the lower mantle S wave triplication (Scd). Here we exploit the USArray waveform data to examine one of these sharp transitions in structure beneath Alaska. From west to east beneath Alaska, we observed three different characteristics in D'': (1) the western region with a strong Scd, requiring a sharp δVs = 2.5% increase; (2) the middle region with no clear Scd phases, indicating a lack of D'' (or thin Br-PBr layer); and (3) the eastern region with strong Scd phase, requiring a gradient increase in δVs. To explain such strong lateral variation in the velocity structure, chemical variations must be involved. We suggest that the western region represents relatively normal mantle. In contrast, the eastern region is influenced by a relic slab that has subducted down to the lowermost mantle. In the middle region, we infer an upwelling structure that disrupts the Br-PBr phase boundary. Such an interpretation is based upon a distinct pattern of travel time delays, waveform distortions, and amplitude patterns that reveal a circular-shaped anomaly about 5° across which can be modeled synthetically as a plume-like structure rising about 400 km high with a shear velocity reduction of ~5%, similar to geodynamic modeling predictions of upwellings.

  11. An Introduction to Database Structure and Database Machines.

    ERIC Educational Resources Information Center

    Detweiler, Karen

    1984-01-01

    Enumerates principal management objectives of database management systems (data independence, quality, security, multiuser access, central control) and criteria for comparison (response time, size, flexibility, other features). Conventional database management systems, relational databases, and database machines used for backend processing are…

  12. Propagation measurements in Alaska using ACTS beacons

    NASA Technical Reports Server (NTRS)

    Mayer, Charles E.

    1991-01-01

    The placement of an ACTS propagation terminal in Alaska has several distinct advantages. First is the inclusion of a new and important climatic zone to the global propagation model. Second is the low elevation look angle from Alaska to ACTS. These two unique opportunities also present problems unique to the location, such as extreme temperatures and lower power levels. These problems are examined and compensatory solutions are presented.

  13. Mercury in polar bears from Alaska

    SciTech Connect

    Lentfer, J.W.; Galster, W.A.

    1987-04-01

    Alaskan polar bear (Ursus maritimus) muscle and liver samples collected in 1972 were analyzed for total mercury. Bears north of Alaska had more mercury than bears west of Alaska. The only difference between young and adult animals was in the northern area where adults had more mercury in liver tissue than young animals. Levels were probably not high enough to be a serious threat to bears.

  14. Oil-and-gas resources of Alaska

    SciTech Connect

    Not Available

    1985-01-01

    This is a short information circular on the history of oil-and-gas development in Alaska. It discusses the past discoveries and the future prospects and the estimated reserve base of the state. It also briefly discusses the oil-and-gas leasing program and exploration activity in the Arctic National Wildlife Refuge. A map of Alaska showing oil-and-gas fields, reserves, and lease boundaries is also provided.

  15. Accretion tectonics and crustal structure in Alaska

    USGS Publications Warehouse

    Coney, P.J.; Jones, D.L.

    1985-01-01

    The entire width of the North American Cordillera in Alaska is made up of "suspect terranes". Pre-Late Cretaceous paleogeography is poorly constrained and the ultimate origins of the many fragments which make up the state are unclear. The Prince William and Chugach terranes accreted since Late Cretaceous time and represent the collapse of much of the northeast Pacific Ocean swept into what today is southern Alaska. Greater Wrangellia, a composite terrane now dispersed into fragments scattered from Idaho to southern Alaska, apparently accreted into Alaska in Late Cretaceous time crushing an enormous deep-marine flysch basin on its inboard side. Most of interior eastern Alaska is the Yukon Tanana terrane, a very large entirely fault-bounded metamorphic-plutonic assemblage covering thousands of square kilometers in Canada as well as Alaska. The original stratigraphy and relationship to North America of the Yukon-Tanana terrane are both obscure. A collapsed Mesozoic flysch basin, similar to the one inboard of Wrangellia, lies along the northern margin. Much of Arctic Alaska was apparently a vast expanse of upper Paleozoic to Early Mesozoic deep marine sediments and mafic volcanic and plutonic rocks now scattered widely as large telescoped sheets and Klippen thrust over the Ruby geanticline and the Brooks Range, and probably underlying the Yukon-Koyukuk basin and the Yukon flats. The Brooks Range itself is a stack of north vergent nappes, the telescoping of which began in Early Cretaceous time. Despite compelling evidence for thousands of kilometers of relative displacement between the accreted terranes, and large amounts of telescoping, translation, and rotation since accretion, the resulting new continental crust added to North America in Alaska carries few obvious signatures that allow application of currently popular simple plate tectonic models. Intraplate telescoping and strike-slip translations, delamination at mid-crustal levels, and large-scale lithospheric

  16. Environmental Assessment for North Warning System (Alaska)

    DTIC Science & Technology

    1986-11-10

    native villages; thus, an Environmental Impact Statement (EIS) on the Alaskan portion of the NWS was judged necessary. A recent reconfiguration of tile... Native and non- Native individuals. Thaw lake - A lake or pond formed by localized thawing of permafrost. Thermokarst - Refers to irregular topography...Preservation AFOSH - Air Force Occupational Safety and Health Standard AFR - Air Force Regulation AHRS - Alaska Heritage Resource Survey ANCSA - Alaska Native

  17. Alaska Native Parkinson’s Disease Registry

    DTIC Science & Technology

    2007-11-01

    Questionable 0 DK f. seborrheic dermatitis 0 Yes 0 No 0 Questionable 0 DK Exclusion criteria O Prominent postural instability in the first 3...4 A. Introduction Parkinsonism (PS) is a syndrome characterized by tremor, rigidity, slowness of movement, and problems with walking and balance...the Alaska Native Medical Center. B. Body The intent of this proposal is to establish a registry of parkinsonism cases among Alaska native

  18. Modeling Background Radiation in our Environment Using Geochemical Data

    SciTech Connect

    Malchow, Russell L.; Marsac, Kara; Burnley, Pamela; Hausrath, Elisabeth; Haber, Daniel; Adcock, Christopher

    2015-02-01

    Radiation occurs naturally in bedrock and soil. Gamma rays are released from the decay of the radioactive isotopes K, U, and Th. Gamma rays observed at the surface come from the first 30 cm of rock and soil. The energy of gamma rays is specific to each isotope, allowing identification. For this research, data was collected from national databases, private companies, scientific literature, and field work. Data points were then evaluated for self-consistency. A model was created by converting concentrations of U, K, and Th for each rock and soil unit into a ground exposure rate using the following equation: D=1.32 K+ 0.548 U+ 0.272 Th. The first objective of this research was to compare the original Aerial Measurement System gamma ray survey to results produced by the model. The second objective was to improve the method and learn the constraints of the model. Future work will include sample data analysis from field work with a goal of improving the geochemical model.

  19. Crustal structure of Bristol Bay Region, Alaska

    SciTech Connect

    Cooper, A.K.; McLean, H.; Marlow, M.S.

    1985-04-01

    Bristol Bay lies along the northern side of the Alaska Peninsula and extends nearly 600 km southwest from the Nushagak lowlands on the Alaska mainland to near Unimak Island. The bay is underlain by a sediment-filled crustal downwarp known as the north Aleutian basin (formerly Bristol basin) that dips southeast toward the Alaska Peninsula and is filled with more than 6 km of strata, dominantly of Cenozoic age. The thickest parts of the basin lie just north of the Alaska Peninsula and, near Port Mollar, are in fault contact with older Mesozoic sedimentary rocks. These Mesozoic rocks form the southern structural boundary of the basin and extend as an accurate belt from at least Cook Inlet to Zhemchug Canyon (central Beringian margin). Offshore multichannel seismic-reflection, sonobuoy seismic-refraction, gravity, and magnetic data collected by the USGS in 1976 and 1982 indicate that the bedrock beneath the central and northern parts of the basin comprises layered, high-velocity, and highly magnetic rocks that are locally deformed. The deep bedrock horizons may be Mesozoic(.) sedimentary units that are underlain by igneous or metamorphic rocks and may correlate with similar rocks of mainland western Alaska and the Alaska Peninsula. Regional structural and geophysical trends for these deep horizons change from northeast-southwest to northwest-southeast beneath the inner Bering shelf and may indicate a major crustal suture along the northern basin edge.

  20. The future of successful aging in Alaska

    PubMed Central

    Lewis, Jordan

    2013-01-01

    Background There is a paucity of research on Alaska Natives and their views on whether or not they believe they will age successfully in their home and community. There is limited understanding of aging experiences across generations. Objective This research explores the concept of successful aging from an urban Alaska Native perspective and explores whether or not they believe they will achieve a healthy older age. Design A cultural consensus model (CCM) approach was used to gain a sense of the cultural understandings of aging among young Alaska Natives aged 50 years and younger. Results Research findings indicate that aging successfully is making the conscious decision to live a clean and healthy life, abstaining from drugs and alcohol, but some of Alaska Natives do not feel they will age well due to lifestyle factors. Alaska Natives see the inability to age well as primarily due to the decrease in physical activity, lack of availability of subsistence foods and activities, and the difficulty of living a balanced life in urban settings. Conclusions This research seeks to inform future studies on successful aging that incorporates the experiences and wisdom of Alaska Natives in hopes of developing an awareness of the importance of practicing a healthy lifestyle and developing guidelines to assist others to age well. PMID:23984300

  1. A geochemical atlas of South Carolina--an example using data from the National Geochemical Survey

    USGS Publications Warehouse

    Sutphin, David M.

    2005-01-01

    National Geochemical Survey data from stream-sediment and soil samples, which have been analyzed using consistent methods, were used to create maps, graphs, and tables that were assembled in a consistent atlas format that characterizes the distribution of major and trace chemical elements in South Carolina. Distribution patterns of the elements in South Carolina may assist mineral exploration, agriculture, waste-disposal-siting issues, health, environmental, and other studies. This atlas is an example of how data from the National Geochemical Survey may be used to identify general or regional patterns of elemental occurrences and to provide a snapshot of element concentration in smaller areas.

  2. Systems Performance Analyses of Alaska Wind-Diesel Projects; Selawik, Alaska (Fact Sheet)

    SciTech Connect

    Baring-Gould, I.

    2009-04-01

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in Selawik, Alaska. Data provided for this project include community load data, wind turbine output, diesel plant output, thermal load data, average wind speed, average net capacity factor, optimal net capacity factor based on Alaska Energy Authority wind data, average net wind penetration, and estimated fuel savings.

  3. 2011 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Maharrey, J. Zebulon; Neal, Christina A.

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near three separate volcanic centers in Alaska during 2011. The year was highlighted by the unrest and eruption of Cleveland Volcano in the central Aleutian Islands. AVO annual summaries no longer report on activity at Russian volcanoes.

  4. 78 FR 73144 - Subsistence Management Program for Public Lands in Alaska; Western Interior Alaska Federal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-05

    ... Subsistence Management Program for Public Lands in Alaska; Western Interior Alaska Federal Subsistence... purpose of the Council is to provide recommendations and information to the Federal Subsistence Board, to review policies and management plans, and to provide a public forum for subsistence issues. DATES:...

  5. 75 FR 3888 - Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-25

    ... Fish and Wildlife Service 50 CFR Part 92 RIN 1018-AW67 Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska During the 2010 Season AGENCY: Fish and Wildlife Service... Wildlife Service, are reopening the public comment period on our proposed rule to establish migratory...

  6. 77 FR 2972 - City and Borough of Sitka, Alaska, Alaska; Notice of Availability of Environmental Assessment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-20

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission City and Borough of Sitka, Alaska, Alaska; Notice of Availability of Environmental Assessment In accordance with the National Environmental Policy Act of 1969 and the Federal Energy Regulatory Commission's (Commission...

  7. Building Alaska's Science and Engineering Pipeline: Evaluation of the Alaska Native Science & Engineering Program

    ERIC Educational Resources Information Center

    Bernstein, Hamutal; Martin, Carlos; Eyster, Lauren; Anderson, Theresa; Owen, Stephanie; Martin-Caughey, Amanda

    2015-01-01

    The Urban Institute conducted an implementation and participant-outcomes evaluation of the Alaska Native Science & Engineering Program (ANSEP). ANSEP is a multi-stage initiative designed to prepare and support Alaska Native students from middle school through graduate school to succeed in science, technology, engineering, and math (STEM)…

  8. Alaska Native Languages: Past, Present, and Future. Alaska Native Language Center Research Papers No. 4.

    ERIC Educational Resources Information Center

    Krauss, Michael E.

    Three papers (1978-80) written for the non-linguistic public about Alaska Native languages are combined here. The first is an introduction to the prehistory, history, present status, and future prospects of all Alaska Native languages, both Eskimo-Aleut and Athabaskan Indian. The second and third, presented as appendixes to the first, deal in…

  9. Trophic ecology of introduced populations of Alaska blackfish (Dallia pectoralis) in the Cook Inlet Basin, Alaska.

    PubMed

    Eidam, Dona M; von Hippel, Frank A; Carlson, Matthew L; Lassuy, Dennis R; López, J Andrés

    2016-07-01

    Introduced non-native fishes have the potential to substantially alter aquatic ecology in the introduced range through competition and predation. The Alaska blackfish (Dallia pectoralis) is a freshwater fish endemic to Chukotka and Alaska north of the Alaska Range (Beringia); the species was introduced outside of its native range to the Cook Inlet Basin of Alaska in the 1950s, where it has since become widespread. Here we characterize the diet of Alaska blackfish at three Cook Inlet Basin sites, including a lake, a stream, and a wetland. We analyze stomach plus esophageal contents to assess potential impacts on native species via competition or predation. Alaska blackfish in the Cook Inlet Basin consume a wide range of prey, with major prey consisting of epiphytic/benthic dipteran larvae, gastropods, and ostracods. Diets of the introduced populations of Alaska blackfish are similar in composition to those of native juvenile salmonids and stickleback. Thus, Alaska blackfish may affect native fish populations via competition. Fish ranked third in prey importance for both lake and stream blackfish diets but were of minor importance for wetland blackfish.

  10. Alaska public health law reform.

    PubMed

    Meier, Benjamin Mason; Hodge, James G; Gebbie, Kristine M

    2008-04-01

    The Turning Point Model State Public Health Act (Turning Point Act), published in September 2003, provides a comprehensive template for states seeking public health law modernization. This case study examines the political and policy efforts undertaken in Alaska following the development of the Turning Point Act. It is the first in a series of case studies to assess states' consideration of the Turning Point Act for the purpose of public health law reform. Through a comparative analysis of these case studies and ongoing legislative tracking in all fifty states, researchers can assess (1) how states codify the Turning Point Act into state law and (2) how these modernized state laws influence or change public health practice, leading to improved health outcomes.

  11. Thermodynamic Data for Geochemical Modeling of Carbonate Reactions Associated with CO2 Sequestration – Literature Review

    SciTech Connect

    Krupka, Kenneth M.; Cantrell, Kirk J.; McGrail, B. Peter

    2010-09-01

    Permanent storage of anthropogenic CO2 in deep geologic formations is being considered as a means to reduce the concentration of atmospheric CO2 and thus its contribution to global climate change. To ensure safe and effective geologic sequestration, numerous studies have been completed of the extent to which the CO2 migrates within geologic formations and what physical and geochemical changes occur in these formations when CO2 is injected. Sophisticated, computerized reservoir simulations are used as part of field site and laboratory CO2 sequestration studies. These simulations use coupled multiphase flow-reactive chemical transport models and/or standalone (i.e., no coupled fluid transport) geochemical models to calculate gas solubility, aqueous complexation, reduction/oxidation (redox), and/or mineral solubility reactions related to CO2 injection and sequestration. Thermodynamic data are critical inputs to modeling geochemical processes. The adequacy of thermodynamic data for carbonate compounds has been identified as an important data requirement for the successful application of these geochemical reaction models to CO2 sequestration. A review of thermodynamic data for CO2 gas and carbonate aqueous species and minerals present in published data compilations and databases used in geochemical reaction models was therefore completed. Published studies that describe mineralogical analyses from CO2 sequestration field and natural analogue sites and laboratory studies were also reviewed to identify specific carbonate minerals that are important to CO2 sequestration reactions and therefore require thermodynamic data. The results of the literature review indicated that an extensive thermodynamic database exists for CO2 and CH4 gases, carbonate aqueous species, and carbonate minerals. Values of ΔfG298° and/or log Kr,298° are available for essentially all of these compounds. However, log Kr,T° or heat capacity values at temperatures above 298 K exist for less than

  12. Ocean plateau-seamount origin of basaltic rocks, Angayucham terrane, central Alaska

    USGS Publications Warehouse

    Barker, F.; Jones, D.L.; Budahn, J.R.; Coney, P.J.

    1988-01-01

    The Angayucham terrane of north-central Alaska (immediately S of the Brooks Range) is a large (ca. 500 km E-W), allochthonous complex of Devonian to Lower Jurassic pillow basalt, diabase sills, gabbro plutons, and chert. The mafic rocks are transitional normal-to-enriched, mid-ocean-ridge (MORB) type tholeiites (TiO2 1.2-3.4%, Nb 7-23 ppm, Ta 0.24-1.08 ppm, Zr 69-214 ppm, and light REE's slightly depleted to moderately enriched). Geologic and geochemical constraints indicate that Angayucham terrane is the upper "skin' (ca. 3-4 km thick) of a long-lived (ca. 170-200 ma) oceanic plateau whose basaltic-gabbroic rocks are like those of seamounts of the East Pacific Rise. -Authors

  13. Merged aeroradiometric data for Alaska; a web site for distribution of gridded data and plot files

    USGS Publications Warehouse

    Saltus, R.W.; Riggle, F.E.; Clark, B.T.; Hill, P.L.

    1999-01-01

    The National Uranium Resource Evaluation (NURE) program was conducted by the U.S. Government between 1974 and 1983. The NURE program was administered by the Grand Junction, CO, office of the Department of Energy. The program included airborne gamma-ray spectrometry and magnetic data collection as well as extensive geochemical sample collection and processing. Aeroradiometric and aeromagnetic surveys of 98 1° by 3° quadrangles were flown in Alaska between 1975 and 1980. The data were flown in 15 surveys by Texas Instruments (T.I.), Lockwood, Kessler, and Bartlett (LKB), and AeroServices (Aero) under contract to the U.S. Government. A series of contractor reports document the surveys on a quadrangle by quadrangle basis. We list references to these reports on the detailed survey index pages accessible through the Survey Irfo page.

  14. TRACY ARM-FORDS TERROR WILDERNESS STUDY AREA AND VICINITY, ALASKA.

    USGS Publications Warehouse

    Brew, David A.; Kimball, A.L.

    1984-01-01

    The Tracy Arm-Fords Terror Wilderness study area lies on the southwest flank of the Coast Range about 45 mi southeast of Juneau, Alaska. A mineral-resource survey of the area identified two areas with substantiated mineral-resource potential: the Sumdum Glacier mineral belt with gold, copper, and zinc potential; and the Endicott Peninsula area with zinc, silver, and gold potential. The Sumdum Glacier belt is estimated to contain between 3 and 15 mineral deposits and there are 5 known mining areas in the Endicott Peninsula. Further work, particularly in the southern part of the belt, would be of significant help in refining the evaluation of that area. Relatively little activity has occurred in the Endicott Peninsula area; intense geochemical and geophysical work would remove many of the present uncertainties and probably would refine the present limit of the favorable areas. 2 refs.

  15. 2010 Worldwide Gasification Database

    DOE Data Explorer

    The 2010 Worldwide Gasification Database describes the current world gasification industry and identifies near-term planned capacity additions. The database lists gasification projects and includes information (e.g., plant location, number and type of gasifiers, syngas capacity, feedstock, and products). The database reveals that the worldwide gasification capacity has continued to grow for the past several decades and is now at 70,817 megawatts thermal (MWth) of syngas output at 144 operating plants with a total of 412 gasifiers.

  16. ITS-90 Thermocouple Database

    National Institute of Standards and Technology Data Gateway

    SRD 60 NIST ITS-90 Thermocouple Database (Web, free access)   Web version of Standard Reference Database 60 and NIST Monograph 175. The database gives temperature -- electromotive force (emf) reference functions and tables for the letter-designated thermocouple types B, E, J, K, N, R, S and T. These reference functions have been adopted as standards by the American Society for Testing and Materials (ASTM) and the International Electrotechnical Commission (IEC).

  17. Geochemical modeling of leaching of Ca, Mg, Al, and Pb from cementitious waste forms

    SciTech Connect

    Martens, E.; Jacques, D.; Van Gerven, T.; Wang, L.; Mallants, D.

    2010-08-15

    Results from extraction tests on cement-waste samples were simulated with a thermodynamic equilibrium model using a consistent database, to which lead data were added. Subsequent diffusion tests were modeled by means of a 3D diffusive transport model combined with the geochemical model derived from the extraction tests. Modeling results of the leached major element concentrations for both uncarbonated and (partially) carbonated samples agreed well with the extraction test using the set of pure minerals and solid solutions present in the database. The observed decrease in Ca leaching with increasing carbonation level was qualitatively predicted. Simulations also revealed that Pb leaching is not controlled by dissolution/precipitation only. The addition of the calcite-cerrusite solid solution and adsorption reactions on amorphous Fe- and Al-oxides improved the predictions and are considered to control the Pb leaching during the extractions tests. The dynamic diffusive leaching tests were appropriately modeled for Na, K, Ca and Pb.

  18. Veterans Administration Databases

    Cancer.gov

    The Veterans Administration Information Resource Center provides database and informatics experts, customer service, expert advice, information products, and web technology to VA researchers and others.

  19. Mugshot Identification Database (MID)

    National Institute of Standards and Technology Data Gateway

    NIST Mugshot Identification Database (MID) (PC database for purchase)   NIST Special Database 18 is being distributed for use in development and testing of automated mugshot identification systems. The database consists of three CD-ROMs, containing a total of 3248 images of variable size using lossless compression. A newer version of the compression/decompression software on the CDROM can be found at the website http://www.nist.gov/itl/iad/ig/nigos.cfm as part of the NBIS package.

  20. Databases for Microbiologists

    DOE PAGES

    Zhulin, Igor B.

    2015-05-26

    Databases play an increasingly important role in biology. They archive, store, maintain, and share information on genes, genomes, expression data, protein sequences and structures, metabolites and reactions, interactions, and pathways. All these data are critically important to microbiologists. Furthermore, microbiology has its own databases that deal with model microorganisms, microbial diversity, physiology, and pathogenesis. Thousands of biological databases are currently available, and it becomes increasingly difficult to keep up with their development. Finally, the purpose of this minireview is to provide a brief survey of current databases that are of interest to microbiologists.

  1. Databases for Microbiologists

    PubMed Central

    2015-01-01

    Databases play an increasingly important role in biology. They archive, store, maintain, and share information on genes, genomes, expression data, protein sequences and structures, metabolites and reactions, interactions, and pathways. All these data are critically important to microbiologists. Furthermore, microbiology has its own databases that deal with model microorganisms, microbial diversity, physiology, and pathogenesis. Thousands of biological databases are currently available, and it becomes increasingly difficult to keep up with their development. The purpose of this minireview is to provide a brief survey of current databases that are of interest to microbiologists. PMID:26013493

  2. HIV Sequence Databases

    PubMed Central

    Kuiken, Carla; Korber, Bette; Shafer, Robert W.

    2008-01-01

    Two important databases are often used in HIV genetic research, the HIV Sequence Database in Los Alamos, which collects all sequences and focuses on annotation and data analysis, and the HIV RT/Protease Sequence Database in Stanford, which collects sequences associated with the development of viral resistance against anti-retroviral drugs and focuses on analysis of those sequences. The types of data and services these two databases offer, the tools they provide, and the way they are set up and operated are described in detail. PMID:12875108

  3. Combined thermodynamic-geochemical modeling in metamorphic geology: Boron as tracer of fluid-rock interaction

    NASA Astrophysics Data System (ADS)

    Konrad-Schmolke, Matthias; Halama, Ralf

    2014-11-01

    Quantitative geochemical modeling is today applied in a variety of geological environments from the petrogenesis of igneous rocks to radioactive waste disposal. In addition, the development of thermodynamic databases and computer programs to calculate equilibrium phase diagrams has greatly advanced our ability to model geodynamic processes. Combined with experimental data on elemental partitioning and isotopic fractionation, thermodynamic forward modeling unfolds enormous capacities that are far from exhausted. In metamorphic petrology the combination of thermodynamic and trace element forward modeling can be used to study and to quantify processes at spatial scales from μm to km. The thermodynamic forward models utilize Gibbs energy minimization to quantify mineralogical changes along a reaction path of a chemically open fluid/rock system. These results are combined with mass balanced trace element calculations to determine the trace element distribution between rock and melt/fluid during the metamorphic evolution. Thus, effects of mineral reactions, fluid-rock interaction and element transport in metamorphic rocks on the trace element and isotopic composition of minerals, rocks and percolating fluids or melts can be predicted. Here we illustrate the capacities of combined thermodynamic-geochemical modeling based on two examples relevant to mass transfer during metamorphism. The first example focuses on fluid-rock interaction in and around a blueschist-facies shear zone in felsic gneisses, where fluid-induced mineral reactions and their effects on boron (B) concentrations and isotopic compositions in white mica are modeled. In the second example, fluid release from a subducted slab, the associated transport of B as well as variations in B concentrations and isotopic compositions in liberated fluids and residual rocks are modeled. We compare the modeled results of both examples to geochemical data of natural minerals and rocks and demonstrate that the combination

  4. Glaciers of North America - Glaciers of Alaska

    USGS Publications Warehouse

    Molnia, Bruce F.

    2008-01-01

    Glaciers cover about 75,000 km2 of Alaska, about 5 percent of the State. The glaciers are situated on 11 mountain ranges, 1 large island, an island chain, and 1 archipelago and range in elevation from more than 6,000 m to below sea level. Alaska's glaciers extend geographically from the far southeast at lat 55 deg 19'N., long 130 deg 05'W., about 100 kilometers east of Ketchikan, to the far southwest at Kiska Island at lat 52 deg 05'N., long 177 deg 35'E., in the Aleutian Islands, and as far north as lat 69 deg 20'N., long 143 deg 45'W., in the Brooks Range. During the 'Little Ice Age', Alaska's glaciers expanded significantly. The total area and volume of glaciers in Alaska continue to decrease, as they have been doing since the 18th century. Of the 153 1:250,000-scale topographic maps that cover the State of Alaska, 63 sheets show glaciers. Although the number of extant glaciers has never been systematically counted and is thus unknown, the total probably is greater than 100,000. Only about 600 glaciers (about 1 percent) have been officially named by the U.S. Board on Geographic Names (BGN). There are about 60 active and former tidewater glaciers in Alaska. Within the glacierized mountain ranges of southeastern Alaska and western Canada, 205 glaciers (75 percent in Alaska) have a history of surging. In the same region, at least 53 present and 7 former large ice-dammed lakes have produced jokulhlaups (glacier-outburst floods). Ice-capped volcanoes on mainland Alaska and in the Aleutian Islands have a potential for jokulhlaups caused by subglacier volcanic and geothermal activity. Because of the size of the area covered by glaciers and the lack of large-scale maps of the glacierized areas, satellite imagery and other satellite remote-sensing data are the only practical means of monitoring regional changes in the area and volume of Alaska's glaciers in response to short- and long-term changes in the maritime and continental climates of the State. A review of the

  5. Alaska

    Atmospheric Science Data Center

    2014-05-15

    ... help to darken the room lights when viewing the image on a computer screen. The Yukon River is seen wending its way from upper left to ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  6. Biogeochemical characterization of an undisturbed highly acidic, metal-rich bryophyte habitat, east-central Alaska, U.S.A.

    USGS Publications Warehouse

    Gough, L.P.; Eppinger, R.G.; Briggs, P.H.; Giles, S.

    2006-01-01

    We report on the geochemistry of soil and bryophyte-laden sediment and on the biogeochemistry of willows growing in an undisturbed volcanogenic massive sulfide deposit in the Alaska Range ecoregion of east-central Alaska. We also describe an unusual bryophyte assemblage found growing in the acidic metal-rich waters that drain the area. Ferricrete-cemented silty alluvial sediments within seeps and streams are covered with the liverwort Gymnocolea inflata whereas the mosses Polytrichum commune and P. juniperinum inhabit the area adjacent to the water and within the splash zone. Both the liverwort-encrusted sediment and Polytrichum thalli have high concentrations of major and trace metal cations (e.g., Al, As, Cu, Fe, Hg, La, Mn, Pb, and Zn). Soils in the area do not reflect the geochemical signature of the mineral deposit and we postulate they are influenced by the chemistry of eolian sediments derived from outside the deposit area. The willow, Salix pulchra, growing mostly within and adjacent to the larger streams, has much higher concentrations of Al, As, Cd, Cr, Fe, La, Pb, and Zn when compared to the same species collected in non-mineralized areas of Alaska. The Cd levels are especially high and are shown to exceed, by an order of magnitude, levels demonstrated to be toxic to ptarmigan in Colorado. Willow, growing in this naturally occurring metal-rich Red Mountain alteration zone, may adversely affect the health of browsing animals. ?? 2006 Regents of the University of Colorado.

  7. 77 FR 13683 - Alaska Federal Lands Long Range Transportation Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... Federal Highway Administration Alaska Federal Lands Long Range Transportation Plan AGENCY: Federal Highway..., announced the availability of the draft Alaska Federal Lands Long Range Transportation Plans (LRTP) for... Alaska Federal Lands draft Long Range Transportation Plans. The draft Plans are available on our...

  8. Alaska Native Population and Manpower: 1975. A Report.

    ERIC Educational Resources Information Center

    Bland, Laurel L.

    Numbering approximately 62,005 and representing 15.3% of the total Alaska population in 1975, Alaska Natives are a finite and predominately rural subpopulation. However, a significant portion of the Alaska Native Work Force (estimated at 13,854) now resides in the major urban areas and is available to the Statewide Work Force. Statistics from May,…

  9. 50 CFR 18.94 - Pacific walrus (Alaska).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Pacific walrus (Alaska). 18.94 Section 18... Marine Mammal Species § 18.94 Pacific walrus (Alaska). (a) Pursuant to sections 101(a)(3)(A) 103, and 109... walrus (Odobenus rosmarus) in waters or on lands subject to the jurisdiction of the State of Alaska,...

  10. 50 CFR 18.94 - Pacific walrus (Alaska).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 9 2013-10-01 2013-10-01 false Pacific walrus (Alaska). 18.94 Section 18... Marine Mammal Species § 18.94 Pacific walrus (Alaska). (a) Pursuant to sections 101(a)(3)(A) 103, and 109... walrus (Odobenus rosmarus) in waters or on lands subject to the jurisdiction of the State of Alaska,...

  11. 50 CFR 18.94 - Pacific walrus (Alaska).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 9 2012-10-01 2012-10-01 false Pacific walrus (Alaska). 18.94 Section 18... Marine Mammal Species § 18.94 Pacific walrus (Alaska). (a) Pursuant to sections 101(a)(3)(A) 103, and 109... walrus (Odobenus rosmarus) in waters or on lands subject to the jurisdiction of the State of Alaska,...

  12. 24 CFR 598.515 - Alaska and Hawaii.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 3 2013-04-01 2013-04-01 false Alaska and Hawaii. 598.515 Section 598.515 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued....515 Alaska and Hawaii. A nominated area in Alaska or Hawaii is deemed to satisfy the criteria...

  13. 24 CFR 598.515 - Alaska and Hawaii.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 3 2014-04-01 2013-04-01 true Alaska and Hawaii. 598.515 Section 598.515 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued....515 Alaska and Hawaii. A nominated area in Alaska or Hawaii is deemed to satisfy the criteria...

  14. 24 CFR 598.515 - Alaska and Hawaii.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 3 2012-04-01 2012-04-01 false Alaska and Hawaii. 598.515 Section 598.515 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued....515 Alaska and Hawaii. A nominated area in Alaska or Hawaii is deemed to satisfy the criteria...

  15. 24 CFR 598.515 - Alaska and Hawaii.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 3 2011-04-01 2010-04-01 true Alaska and Hawaii. 598.515 Section 598.515 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued....515 Alaska and Hawaii. A nominated area in Alaska or Hawaii is deemed to satisfy the criteria...

  16. 33 CFR 110.233 - Prince William Sound, Alaska.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Prince William Sound, Alaska. 110... ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.233 Prince William Sound, Alaska. (a) The anchorage grounds. In Prince William Sound, Alaska, beginning at a point at latitude 60°40′00″ N., longitude...

  17. 33 CFR 110.233 - Prince William Sound, Alaska.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Prince William Sound, Alaska. 110... ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.233 Prince William Sound, Alaska. (a) The anchorage grounds. In Prince William Sound, Alaska, beginning at a point at latitude 60°40′00″ N., longitude...

  18. 33 CFR 110.233 - Prince William Sound, Alaska.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Prince William Sound, Alaska. 110... ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.233 Prince William Sound, Alaska. (a) The anchorage grounds. In Prince William Sound, Alaska, beginning at a point at latitude 60°40′00″ N., longitude...

  19. 33 CFR 110.233 - Prince William Sound, Alaska.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Prince William Sound, Alaska. 110... ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.233 Prince William Sound, Alaska. (a) The anchorage grounds. In Prince William Sound, Alaska, beginning at a point at latitude 60°40′00″ N., longitude...

  20. 33 CFR 110.233 - Prince William Sound, Alaska.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Prince William Sound, Alaska. 110... ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.233 Prince William Sound, Alaska. (a) The anchorage grounds. In Prince William Sound, Alaska, beginning at a point at latitude 60°40′00″ N., longitude...

  1. A History of Schooling for Alaska Native People.

    ERIC Educational Resources Information Center

    Barnhardt, Carol

    2001-01-01

    Reviews the geographic and demographic contexts of Alaska schooling, federal policies that have affected education in Alaska, and the evolution of schooling for Alaska Native people. Describes the development of a dual federal/territorial system of schools, the initiation of federal and state reform efforts, Native-sponsored educational…

  2. 43 CFR 3101.5-3 - Alaska wildlife areas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Alaska wildlife areas. 3101.5-3 Section... § 3101.5-3 Alaska wildlife areas. No lands within a refuge in Alaska open to leasing shall be available until the Fish and Wildlife Service has first completed compatability determinations....

  3. 43 CFR 3101.5-3 - Alaska wildlife areas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Alaska wildlife areas. 3101.5-3 Section... § 3101.5-3 Alaska wildlife areas. No lands within a refuge in Alaska open to leasing shall be available until the Fish and Wildlife Service has first completed compatability determinations....

  4. 43 CFR 3101.5-3 - Alaska wildlife areas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Alaska wildlife areas. 3101.5-3 Section... § 3101.5-3 Alaska wildlife areas. No lands within a refuge in Alaska open to leasing shall be available until the Fish and Wildlife Service has first completed compatability determinations....

  5. 43 CFR 3101.5-3 - Alaska wildlife areas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Alaska wildlife areas. 3101.5-3 Section... § 3101.5-3 Alaska wildlife areas. No lands within a refuge in Alaska open to leasing shall be available until the Fish and Wildlife Service has first completed compatability determinations....

  6. 30 CFR 716.6 - Coal mines in Alaska.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mines in Alaska. 716.6 Section 716.6... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.6 Coal mines in Alaska. (a) Permittees of surface coal mining operations in Alaska from which coal has been mined on or after August 3, 1977,...

  7. 30 CFR 716.6 - Coal mines in Alaska.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mines in Alaska. 716.6 Section 716.6... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.6 Coal mines in Alaska. (a) Permittees of surface coal mining operations in Alaska from which coal has been mined on or after August 3, 1977,...

  8. 30 CFR 716.6 - Coal mines in Alaska.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mines in Alaska. 716.6 Section 716.6... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.6 Coal mines in Alaska. (a) Permittees of surface coal mining operations in Alaska from which coal has been mined on or after August 3, 1977,...

  9. 30 CFR 716.6 - Coal mines in Alaska.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mines in Alaska. 716.6 Section 716.6... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.6 Coal mines in Alaska. (a) Permittees of surface coal mining operations in Alaska from which coal has been mined on or after August 3, 1977,...

  10. 30 CFR 716.6 - Coal mines in Alaska.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mines in Alaska. 716.6 Section 716.6... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.6 Coal mines in Alaska. (a) Permittees of surface coal mining operations in Alaska from which coal has been mined on or after August 3, 1977,...

  11. Regional Fluid Flow and Basin Modeling in Northern Alaska

    USGS Publications Warehouse

    Kelley, Karen D.

    2007-01-01

    INTRODUCTION The foothills of the Brooks Range contain an enormous accumulation of zinc (Zn) in the form of zinc sulfide and barium (Ba) in the form of barite in Carboniferous shale, chert, and mudstone. Most of the resources and reserves of Zn occur in the Red Dog deposit and others in the Red Dog district; these resources and reserves surpass those of most deposits worldwide in terms of size and grade. In addition to zinc and lead sulfides (which contain silver, Ag) and barite, correlative strata host phosphate deposits. Furthermore, prolific hydrocarbon source rocks of Carboniferous and Triassic to Early Jurassic age generated considerable amounts of petroleum that may have contributed to the world-class petroleum resources of the North Slope. Deposits of Zn-Pb-Ag or barite as large as those in the Brooks Range are very rare on a global basis and, accordingly, multiple coincident favorable factors must be invoked to explain their origins. To improve our understanding of these factors and to contribute to more effective assessments of resources in sedimentary basins of northern Alaska and throughout the world, the Mineral Resources Program and the Energy Resources Program of the U.S. Geological Survey (USGS) initiated a project that was aimed at understanding the petroleum maturation and mineralization history of parts of the Brooks Range that were previously poorly characterized. The project, titled ?Regional Fluid Flow and Basin Modeling in Northern Alaska,? was undertaken in collaboration with industry, academia, and other government agencies. This Circular contains papers that describe the results of the recently completed project. The studies that are highlighted in these papers have led to a better understanding of the following: *The complex sedimentary facies relationships and depositional settings and the geochemistry of the sedimentary rocks that host the deposits (sections 2 and 3). *The factors responsible for formation of the barite and zinc deposits

  12. Holocene tephrochronology of the Cold Bay area, southwest Alaska Peninsula

    USGS Publications Warehouse

    Carson, E.C.; Fournelle, J.H.; Miller, T.P.; Mickelson, D.M.

    2002-01-01

    The major-element glass geochemistry of 92 tephra samples from the southwest Alaska Peninsula provides the basis for establishing a Holocene tephrochronology for the region. Electron microprobe analysis has been combined with field descriptions of samples, stratigraphic relationships between tephra samples and sample localities, and glass shard micro-morphology to correlate these sampled distal tephra units throughout the area of Cold Bay and adjacent Morzhovoi Bay. Radiocarbon dating provides age constraints on correlated horizons. Previous research had clearly delineated only one horizon in the region, the so-called 'Funk/Fisher' ash, dating to between 8425 ± 350 and 9130 ± 140 14C yr BP. In addition to constraining the bimodal andesitic and dacitic glass chemistry of that horizon, this study has recognized six additional tephra layers in the area. Two horizons pre-date the Funk/Fisher ash and four are younger than it. A tephra containing dacitic and andesitic components was identified in the vicinity of Morzhovoi Bay, with a minimum age of 9300 ± 80 14C yr BP and a maximum age of 10,200 ± 75 14C yr BP. A rhyolitic horizon composed of cm-sized, rounded pumice clasts was identified in the vicinity of Cold Bay; it has been correlated to the ca 9500 BP eruption of Roundtop volcano on Unimak Island. The four younger tephra beds date to between 6070 ± 340 and 3600 ± 140 14C yr BP. The oldest of the four is rhyodacitic, followed by a mixed rhyodacitic-andesitic horizon, another rhyodacitic horizon, and finally an andesitic layer. Comparison of all the correlated horizons to proximal samples collected on Unimak Island provides conclusive geochemical evidence that the ca 9100 BP Caldera-forming eruption of Fisher volcano is the source of the Funk/Fisher ash. Correlation between the rhyodacitic tephra horizons and proximal samples from Fisher volcano suggests that Fisher Caldera is the source of one of the rhyodacitic tephra horizons that post-dates the Funk

  13. Site Scientist for the North Slope of Alaska Site

    SciTech Connect

    Verlinde, Johannes

    2016-03-11

    Under this grant our team contributed scientific support to the Department of Energy Atmospheric Radiation Program’s (DOE-ARM) Infrastructure team to maintain high quality research data at the DOE-ARM North Slope of Alaska with special emphasis on the radars. Under our guidance two major field campaigns focusing on mixed-phase Arctic clouds were conducted that greatly increased the community’s understanding of the many processes working together to control the evolution of single-layer cloud mixed-phase clouds. A series of modeling and observational studies revealed that the longevity of the radiatively important liquid phase is strongly dependent on how the ice phase develops in mixed-phase clouds. A new ice microphysics parameterization was developed to capture better the natural evolution of ice particle growth in evolving environments. An ice particle scattering database was developed for all ARM radar frequencies. This database was used in a radar simulator (Doppler spectrum and polarimetric variables) to aid in the interpretation of the advanced ARM radars. At the conclusion of this project our team was poised to develop a complete radar simulator consistent with the new microphysical parameterization, taking advantage of parameterization’s advanced characterization of the ice shape and ice density.

  14. Consumer Product Category Database

    EPA Pesticide Factsheets

    The Chemical and Product Categories database (CPCat) catalogs the use of over 40,000 chemicals and their presence in different consumer products. The chemical use information is compiled from multiple sources while product information is gathered from publicly available Material Safety Data Sheets (MSDS). EPA researchers are evaluating the possibility of expanding the database with additional product and use information.

  15. BioImaging Database

    SciTech Connect

    David Nix, Lisa Simirenko

    2006-10-25

    The Biolmaging Database (BID) is a relational database developed to store the data and meta-data for the 3D gene expression in early Drosophila embryo development on a cellular level. The schema was written to be used with the MySQL DBMS but with minor modifications can be used on any SQL compliant relational DBMS.

  16. Biological Macromolecule Crystallization Database

    National Institute of Standards and Technology Data Gateway

    SRD 21 Biological Macromolecule Crystallization Database (Web, free access)   The Biological Macromolecule Crystallization Database and NASA Archive for Protein Crystal Growth Data (BMCD) contains the conditions reported for the crystallization of proteins and nucleic acids used in X-ray structure determinations and archives the results of microgravity macromolecule crystallization studies.

  17. Online Database Searching Workbook.

    ERIC Educational Resources Information Center

    Littlejohn, Alice C.; Parker, Joan M.

    Designed primarily for use by first-time searchers, this workbook provides an overview of online searching. Following a brief introduction which defines online searching, databases, and database producers, five steps in carrying out a successful search are described: (1) identifying the main concepts of the search statement; (2) selecting a…

  18. HIV Structural Database

    National Institute of Standards and Technology Data Gateway

    SRD 102 HIV Structural Database (Web, free access)   The HIV Protease Structural Database is an archive of experimentally determined 3-D structures of Human Immunodeficiency Virus 1 (HIV-1), Human Immunodeficiency Virus 2 (HIV-2) and Simian Immunodeficiency Virus (SIV) Proteases and their complexes with inhibitors or products of substrate cleavage.

  19. Atomic Spectra Database (ASD)

    National Institute of Standards and Technology Data Gateway

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  20. Structural Ceramics Database

    National Institute of Standards and Technology Data Gateway

    SRD 30 NIST Structural Ceramics Database (Web, free access)   The NIST Structural Ceramics Database (WebSCD) provides evaluated materials property data for a wide range of advanced ceramics known variously as structural ceramics, engineering ceramics, and fine ceramics.

  1. Morchella MLST database

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Welcome to the Morchella MLST database. This dedicated database was set up at the CBS-KNAW Biodiversity Center by Vincent Robert in February 2012, using BioloMICS software (Robert et al., 2011), to facilitate DNA sequence-based identifications of Morchella species via the Internet. The current datab...

  2. A Quality System Database

    NASA Technical Reports Server (NTRS)

    Snell, William H.; Turner, Anne M.; Gifford, Luther; Stites, William

    2010-01-01

    A quality system database (QSD), and software to administer the database, were developed to support recording of administrative nonconformance activities that involve requirements for documentation of corrective and/or preventive actions, which can include ISO 9000 internal quality audits and customer complaints.

  3. Knowledge Discovery in Databases.

    ERIC Educational Resources Information Center

    Norton, M. Jay

    1999-01-01

    Knowledge discovery in databases (KDD) revolves around the investigation and creation of knowledge, processes, algorithms, and mechanisms for retrieving knowledge from data collections. The article is an introductory overview of KDD. The rationale and environment of its development and applications are discussed. Issues related to database design…

  4. Ionic Liquids Database- (ILThermo)

    National Institute of Standards and Technology Data Gateway

    SRD 147 Ionic Liquids Database- (ILThermo) (Web, free access)   IUPAC Ionic Liquids Database, ILThermo, is a free web research tool that allows users worldwide to access an up-to-date data collection from the publications on experimental investigations of thermodynamic, and transport properties of ionic liquids as well as binary and ternary mixtures containing ionic liquids.

  5. Database Reviews: Legal Information.

    ERIC Educational Resources Information Center

    Seiser, Virginia

    Detailed reviews of two legal information databases--"Laborlaw I" and "Legal Resource Index"--are presented in this paper. Each database review begins with a bibliographic entry listing the title; producer; vendor; cost per hour contact time; offline print cost per citation; time period covered; frequency of updates; and size…

  6. Forensic Analysis using Geological and Geochemical Techniques

    NASA Astrophysics Data System (ADS)

    Hoogewerff, J.

    2009-04-01

    Due to the globalisation of legal (and illegal) trade there is an increasing demand for techniques which can verify the geographical origin and transfer routes of many legal and illegal commodities and products. Although geological techniques have been used in forensic investigations since the emergence of forensics as a science in the late eighteen hundreds, the last decade has seen a marked increase in geo-scientists initiating concept studies using the latest analytical techniques, including studying natural abundance isotope variations, micro analysis with laser ablation ICPMS and geochemical mapping. Most of the concept studies have shown a good potential but uptake by the law enforcement and legal community has been limited due to concerns about the admissibility of the new methods. As an introduction to the UGU2009 session "Forensic Provenancing using Geological and Geochemical Techniques" I will give an overview of the state of the art of forensic geology and the issues that concern the admissibility of geological forensic evidence. I will use examples from the NITECRIME and FIRMS networks, the EU TRACE project and other projects and literature to illustrate the important issues at hand.

  7. Is formamide a geochemically plausible prebiotic solvent?

    PubMed

    Bada, Jeffrey L; Chalmers, John H; Cleaves, H James

    2016-07-27

    From a geochemical perspective, significant amounts of pure formamide (HCONH2) would have likely been rare on the early Earth. There may have been mixed formamide-water solutions, but even in the presence of catalyst, solutions with >20 weight% water in formamide would not have produced significant amounts of prebiotic compounds. It might be feasible to produce relatively pure formamide by a rare occurrence of freezing formamide/water mixtures at temperatures lower than formamide's freezing point (2.55 °C) but greater than the freezing point of water. Because of the high density of formamide ice it would have sunk and accumulated at the bottom of the solution. If the remaining water froze on the surface of this ice, and was then removed by a sublimation-ablation process, a small amount of pure formamide ice might have been produced. In addition a recent report suggested that ∼85 weight% formamide could be prepared by a geochemical type of fractional distillation process, offering another possible route for prebiotic formamide production.

  8. Geochemical controls on groundwater chemistry in shales

    SciTech Connect

    Von Damm, K.L.

    1989-01-01

    The chemistry of groundwaters is one of the most important parameters in determining the mobility of species within a rock formation. A three pronged approach was used to determine the composition of, and geochemical controls, on groundwaters specifically within shale formations: (1) available data were collected from the literature, the US Geological Survey WATSTORE data base, and field sampling, (2) the geochemical modeling code EQ3/6 was used to simulate interaction of various shales and groundwaters, and (3) several types of shale were reacted with synthetic groundwaters in the laboratory. The comparison of model results to field and laboratory data provide a means of validating the models, as well as a means of deconvoluting complex field interactions. Results suggest that groundwaters in shales have a wide range in composition and are primarily of the Na-Cl-HCO/sub 3/- type. The constancy of the Na:Cl (molar) ratio at 1:1 and the Ca:Mg ratio from 3:1 to 1:1 suggests the importance of halite and carbonates in controlling groundwater compositions. In agreement with the reaction path modeling, most of the groundwaters are neutral to slightly alkaline at low temperatures. Model and experimental results suggest that reaction (1) at elevated temperatures, or (2) in the presence of oxygen will lead to more acidic conditions. Some acetate was found to be produced in the experiments; depending on the constraints applied, large amounts of acetate were produced in the model results. 13 refs., 1 tab.

  9. Archean crust-mantle geochemical differentiation

    NASA Technical Reports Server (NTRS)

    Tilton, G. R.

    1983-01-01

    Isotope measurements on carbonatite complexes and komatiites can provide information on the geochemical character and geochemical evolution of the mantle, including the sub-continental mantle. Measurements on young samples establish the validity of the method. These are based on Sr, Nd and Pb data from the Tertiary-Mesozoic Gorgona komatiite and Sr and Pb data from the Cretaceous Oka carbonatite complex. In both cases the data describe a LIL element-depleted source similar to that observed presently in MORB. Carbonatite data have been used to study the mantle beneath the Superior Province of the Canadian Shield one billion years (1 AE) ago. The framework for this investigation was established by Bell et al., who showed that large areas of the province appear to be underlain by LIL element-depleted mantle (Sr-85/Sr-86=0.7028) at 1 AE ago. Additionally Bell et al. found four complexes to have higher initial Sr ratios (Sr-87/Sr-86=0.7038), which they correlated with less depleted (bulk earth?) mantle sources, or possibly crustal contamination. Pb isotope relationships in four of the complexes have been studied by Bell et al.

  10. Caledonian Deformation in Polydeformed Pre-Mississippian Rocks of the Northeast Brooks Range, Alaska

    NASA Astrophysics Data System (ADS)

    Johnson, B. G.; Toro, J.; Benowitz, J.

    2013-12-01

    In the northeastern Brooks Range of Alaska there are polydeformed metasedimentary and metavolcanic rocks exposed below a major pre-Mississippian unconformity. Elsewhere in northern Alaska it has been challenging to correlate the tectonic fabrics of these early Paleozoic to Neoproterozoic rocks to the different orogenic events of the Arctic because of the strong overprint of Mesozoic and Tertiary Brookian deformation. However, our recent field investigations along the Kongakut and Aichiklik rivers of ANWR have identified an older (pre-Brookian) structural event based on the orientation of penetrative cleavage planes and a contrast in folding style to Brookian structures. Many of the cleavage planes are north dipping and orientated parallel to the axial planes of south-vergent folds. Although metamorphic grade is generally low, in localized areas the cleavage planes contain white micas, whose petrologic and isotopic characteristics indicate that they crystallized during fabric formation. 40Ar/39Ar dating of the white micas yield a metamorphic age of ~400 Ma (Early Devonian). This is evidence for a south-directed structural event which is contemporaneous with Caledonian deformation in East Greenland and Svalbard. Stratigraphicaly, the basement consists of a diverse package of highly deformed marine clastic sediments, and a thick section of basaltic to andesitic flows and volcaniclastic rocks, the Whale Mountain volcanics, which have a sharp southern contact but grade northward and upwards into the clastic rocks. All units are metamorphosed to lower greenschist facies. We are currently investigating the age and geochemical characteristics of the Whale Mountain volcanics to determine their tectonic affinity and role in the assemblage of the North Slope block of Northern Alaska.

  11. Geologic framework of the Aleutian arc, Alaska

    USGS Publications Warehouse

    Vallier, Tracy L.; Scholl, David W.; Fisher, Michael A.; Bruns, Terry R.; Wilson, Frederic H.; von Huene, Roland E.; Stevenson, Andrew J.

    1994-01-01

    The Aleutian arc is the arcuate arrangement of mountain ranges and flanking submerged margins that forms the northern rim of the Pacific Basin from the Kamchatka Peninsula (Russia) eastward more than 3,000 km to Cooke Inlet (Fig. 1). It consists of two very different segments that meet near Unimak Pass: the Aleutian Ridge segment to the west and the Alaska Peninsula-the Kodiak Island segment to the east. The Aleutian Ridge segment is a massive, mostly submerged cordillera that includes both the islands and the submerged pedestal from which they protrude. The Alaska Peninsula-Kodiak Island segment is composed of the Alaska Peninsula, its adjacent islands, and their continental and insular margins. The Bering Sea margin north of the Alaska Peninsula consists mostly of a wide continental shelf, some of which is underlain by rocks correlative with those on the Alaska Peninsula.There is no pre-Eocene record in rocks of the Aleutian Ridge segment, whereas rare fragments of Paleozoic rocks and extensive outcrops of Mesozoic rocks occur on the Alaska Peninsula. Since the late Eocene, and possibly since the early Eocene, the two segments have evolved somewhat similarly. Major plutonic and volcanic episodes, however, are not synchronous. Furthermore, uplift of the Alaska Peninsula-Kodiak Island segment in late Cenozoic time was more extensive than uplift of the Aleutian Ridge segment. It is probable that tectonic regimes along the Aleutian arc varied during the Tertiary in response to such factors as the directions and rates of convergence, to bathymetry and age of the subducting Pacific Plate, and to the volume of sediment in the Aleutian Trench.The Pacific and North American lithospheric plates converge along the inner wall of the Aleutian trench at about 85 to 90 mm/yr. Convergence is nearly at right angles along the Alaska Peninsula, but because of the arcuate shape of the Aleutian Ridge relative to the location of the plates' poles of rotation, the angle of convergence

  12. 77 FR 4290 - TransCanada Alaska Company, LLC; Notice of Public Scoping Meeting for the Planned Alaska Pipeline...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-27

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission TransCanada Alaska Company, LLC; Notice of Public Scoping Meeting for the... cancelled on January 4, 2012, because TransCanada Alaska Company, LLC (TC Alaska) had not filed its...

  13. 76 FR 78642 - TransCanada Alaska Company, LLC; Notice of Public Scoping Meetings for the Planned Alaska...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-19

    ... Federal Energy Regulatory Commission TransCanada Alaska Company, LLC; Notice of Public Scoping Meetings... would transport gas produced on the Alaska North Slope to the Alaska-Canada border to connect with a pipeline system in Canada for onward delivery to markets in North America. The APP is being...

  14. 76 FR 33171 - Fisheries of the Exclusive Economic Zone Off Alaska; Alaska Plaice in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ... Economic Zone Off Alaska; Alaska Plaice in the Bering Sea and Aleutian Islands Management Area AGENCY... Bering Sea and Aleutian Islands management area (BSAI). This action is necessary to prevent exceeding the 2011 Alaska plaice total allowable catch (TAC) specified for the BSAI. DATES: Effective 1200...

  15. 76 FR 33172 - Fisheries of the Exclusive Economic Zone Off Alaska; Alaska Plaice in the Bering Sea and Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ... Economic Zone Off Alaska; Alaska Plaice in the Bering Sea and Aleutian Islands Management Area AGENCY... of the non-specified reserve to the initial total allowable catch of Alaska plaice in the Bering Sea and Aleutian Islands management area (BSAI). This action is necessary to allow the fisheries...

  16. Alaska Native Languages: A Bibliographical Catalogue. Part One: Indian Languages. Alaska Native Language Center Research Papers, Number 3.

    ERIC Educational Resources Information Center

    Krauss, Michael E.; McGary, Mary Jane

    This catalogue describes Alaska native language materials at the research library and archive of the Alaska Native Language Center, University of Alaska, Fairbanks. The volume covers the sections of the library devoted to Indian languages as well as the general and bibliography sections. Since the collection is almost exhaustive, the catalogue is…

  17. Alaska climate divisions based on objective methods

    NASA Astrophysics Data System (ADS)

    Angeloff, H.; Bieniek, P. A.; Bhatt, U. S.; Thoman, R.; Walsh, J. E.; Daly, C.; Shulski, M.

    2010-12-01

    Alaska is vast geographically, is located at high latitudes, is surrounded on three sides by oceans and has complex topography, encompassing several climate regions. While climate zones exist, there has not been an objective analysis to identify regions of homogeneous climate. In this study we use cluster analysis on a robust set of weather observation stations in Alaska to develop climate divisions for the state. Similar procedures have been employed in the contiguous United States and other parts of the world. Our analysis, based on temperature and precipitation, yielded a set of 10 preliminary climate divisions. These divisions include an eastern and western Arctic (bounded by the Brooks Range to the south), a west coast region along the Bering Sea, and eastern and western Interior regions (bounded to the south by the Alaska Range). South of the Alaska Range there were the following divisions: an area around Cook Inlet (also including Valdez), coastal and inland areas along Bristol Bay including Kodiak and Lake Iliamna, the Aleutians, and Southeast Alaska. To validate the climate divisions based on relatively sparse station data, additional sensitivity analysis was performed. Additional clustering analysis utilizing the gridded North American Regional Reanalysis (NARR) was also conducted. In addition, the divisions were evaluated using correlation analysis. These sensitivity tests support the climate divisions based on cluster analysis.

  18. History of petroleum development in Arctic Alaska

    SciTech Connect

    Gryc, G. )

    1991-03-01

    Long before recorded history, tar from oil seepages and oil shale that burned like wood were used for fuel by the Inuit (native people of Arctic Alaska). The first published descriptions of these oil seepages that identified Arctic Alaska as a petroliferous province appeared in 1909. In 1921, several applications for prospecting permits were filed by private groups under the old mining laws, but the permits were never issued. In 1923, President Harding set aside about half of the North Slope of Alaska, including most of the seepage areas, as Naval Petroleum Reserve No. 4. This was followed by three periods of federally sponsored exploration programs in the reserve and the adjoining areas during the periods 1923 to 1926, 1944 to 1952, and 1974 to 1982. Noncommercial oil and gas deposits were discovered in the reserve, the gas deposits at Barrow were developed for local use, and the feasibility of petroleum exploration and development in the Arctic was established. Industry exploration began in 1958 when the lands adjacent to the reserve were opened for lease. Prudhoe Bay, North America's largest oil field, was discovered in 1968. The history of petroleum development in Arctic Alaska provides an interesting study of the building of a geologic, geographic, and logistic base, of the lead time required for resource exploitation, of the interaction of government and industry, and of the expansion of the US resource base during a time of expanding ecologic awareness. Petroleum exploration in the Canadian Arctic region was stimulated by the activity across the border in Alaska.

  19. Geochemistry of placer gold, Koyukuk-Chandalar mining district, Alaska

    USGS Publications Warehouse

    Mosier, E.L.; Cathrall, J.B.; Antweiler, J.C.; Tripp, R.B.

    1989-01-01

    The Koyukuk-Chandalar mining district of the Brooks Range mineral belt in north-central Alaska contains numerous placer gold deposits but few known lode gold sources. Gold grains, collected from 46 placer localities and 6 lode gold sites in the district, were analyzed for Ag and 37 trace elements utilizing direct current-arc optical emission spectroscopy. When possible, several measurements were made on each sample and averaged. Gold content was calculated by the summation of the 38 elements determined and subtracting from 100. The objectives of our study were to characterize the deposits by defining the type and number of distinct geochemical characteristics for the Au, to determine relationships of Au in placer deposits to possible lode sources (placer and lode), to identify possible primary sources of placer gold, and to study processes of placer formation. Interpretation of results emphasize that the Au grains are almost invariably ternary (Au-Ag-Cu) alloys. The average Cu content is 0.040% and the average Ag content and fineness [(Au/Au+Ag)??1,000] are 10.5% and 893 parts per thousand, respectively, for the 46 placer localities. Six geochemically distinct types of placer gold can be identified in the Koyukuk-Chandalar mining district based on Ag and Cu values. One type with an average Ag content of 21.2%, an average Cu content of 0.007%, and 786 average fineness is found only in the eastern part of the district. Placer gold grains that have an average Ag content of 6.0%, an average Cu content of 0.276%, and 940 average fineness were found in the western part of the district. Four intermediate types generally occur in order across the district. Variations in the chemistry of the placer gold can be related to variable depositional environments at the primary gold sources. Placer gold geochemistry is important in determining the origin and depositional environment of the primary Au sources and could add to the knowledge of the thermal history of the southcentral

  20. Offshore marine observation of Willow Ptarmigan, including water landings, Kuskokwim Bay, Alaska

    USGS Publications Warehouse

    Zimmerman, Christian E.; Hillgruber, Nicola; Burril, Sean E.; St. Peters, Michelle A.; Wetzel, Jennifer D.

    2005-01-01

    We report an observation of Willow Ptarmigan (Lagopus lagopus) encountered 8 to 17 km from the nearest shoreline on Kuskokwim Bay, Alaska, on 30 August 2003. The ptarmigan were observed flying, landing on our research vessel, and landing and taking off from the water surface. We also report on one other observation of ptarmigan sitting on the water surface and other marine observations of ptarmigan from the North Pacific Pelagic Seabird Database. These observations provide evidence that Willow Ptarmigan are capable of dispersing across large bodies of water and landing and taking off from the water surface.

  1. GEOROC and GeoReM Databases - Linking Chemical Data and Data Quality

    NASA Astrophysics Data System (ADS)

    Sarbas, B.; Jochum, K. P.; Nohl, U.

    2007-12-01

    Since its introduction in 1999, the geochemical database GEOROC (Geochemistry of Rocks of the Oceans and Continents, http://georoc.mpch-mainz.gwdg.de) of the Max-Planck-Institut fuer Chemie in Mainz established itself as a major online resource available to the scientific community. GEOROC provides geochemical data published for volcanic whole rocks, glasses, minerals and inclusions from ocean islands, large igneous provinces, convergent margins, Archean greenstone belts, rift and intraplate volcanic regions. The database now provides about 300,000 analyses published in about 6,800 papers (status: 07/2007). The web interface of GEOROC allows the selection of samples by bibliographic, tectonic, geographic, petrological as well as chemical criteria. As part of the bibliographic query, the search for the GEOROC Reference Number permits an easier reproduction of published data plots created with the help of the database. A new query based on age information will be added in the near future. The geochemical database GeoReM (Geological and Environmental Reference Materials, http://georem.mpch- mainz.gwdg.de/) for reference materials and isotopic standards includes reference samples from rock powders, glasses, minerals, isotopic standards, river water, and seawater. GeoReM is a relational database with a structure compatible to that of GEOROC and contains published analytical and compilation data (major and trace element concentrations, radiogenic and stable isotope ratios), important metadata about the analytical values, such as uncertainty, uncertainty type, method and laboratory. Sample information and references are also included. Five different queries are now possible: Samples or materials, GeoReM preferred values, chemical criteria, bibliography, and methods and institutions. GeoReM contains more than 1500 geological reference materials and 14000 analyses (status: 07/2007). References available in both databases are linked to each other. It is now possible to get

  2. National Database of Geriatrics

    PubMed Central

    Kannegaard, Pia Nimann; Vinding, Kirsten L; Hare-Bruun, Helle

    2016-01-01

    Aim of database The aim of the National Database of Geriatrics is to monitor the quality of interdisciplinary diagnostics and treatment of patients admitted to a geriatric hospital unit. Study population The database population consists of patients who were admitted to a geriatric hospital unit. Geriatric patients cannot be defined by specific diagnoses. A geriatric patient is typically a frail multimorbid elderly patient with decreasing functional ability and social challenges. The database includes 14–15,000 admissions per year, and the database completeness has been stable at 90% during the past 5 years. Main variables An important part of the geriatric approach is the interdisciplinary collaboration. Indicators, therefore, reflect the combined efforts directed toward the geriatric patient. The indicators include Barthel index, body mass index, de Morton Mobility Index, Chair Stand, percentage of discharges with a rehabilitation plan, and the part of cases where an interdisciplinary conference has taken place. Data are recorded by doctors, nurses, and therapists in a database and linked to the Danish National Patient Register. Descriptive data Descriptive patient-related data include information about home, mobility aid, need of fall and/or cognitive diagnosing, and categorization of cause (general geriatric, orthogeriatric, or neurogeriatric). Conclusion The National Database of Geriatrics covers ∼90% of geriatric admissions in Danish hospitals and provides valuable information about a large and increasing patient population in the health care system. PMID:27822120

  3. Hazard Analysis Database Report

    SciTech Connect

    GRAMS, W.H.

    2000-12-28

    The Hazard Analysis Database was developed in conjunction with the hazard analysis activities conducted in accordance with DOE-STD-3009-94, Preparation Guide for U S . Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, for HNF-SD-WM-SAR-067, Tank Farms Final Safety Analysis Report (FSAR). The FSAR is part of the approved Authorization Basis (AB) for the River Protection Project (RPP). This document describes, identifies, and defines the contents and structure of the Tank Farms FSAR Hazard Analysis Database and documents the configuration control changes made to the database. The Hazard Analysis Database contains the collection of information generated during the initial hazard evaluations and the subsequent hazard and accident analysis activities. The Hazard Analysis Database supports the preparation of Chapters 3 ,4 , and 5 of the Tank Farms FSAR and the Unreviewed Safety Question (USQ) process and consists of two major, interrelated data sets: (1) Hazard Analysis Database: Data from the results of the hazard evaluations, and (2) Hazard Topography Database: Data from the system familiarization and hazard identification.

  4. Tephra layers as correlation tools of neogene coal-bearing strata from the Kenai lowland, Alaska

    SciTech Connect

    Reinink-Smith, L.M.

    1995-03-01

    Thirty-two tephra layers, exposed in coal beds of the Miocene and Pliocene Beluga and Sterling Formations along the shores of the Kenai lowland on the northwestern Kenai Peninsula, Alaska, were studied in detail to improve the geochronology and regional correlation of the Sterling Formation and test prior correlations that were based on palynology and physical tracing of beds over short distances. Published radiogenic isotope data suggest an age span of approximately 4 m.y. for the Sterling Formation at this location but give discordant ages for individual samples depending on dating techniques. A crystal-rich tephra layer near the middle of the section was traced across the Kenai lowland as one or two ash falls based on stratigraphic position, inertinite contents of adjacent coal, geochemical and mineralogical analyses, and individual characteristics. A pumice-rich layer deposited near the top of the Sterling Formation is preserved at two localities on the northwestern and southeastern sides of the Kenai lowland. Geochemical similarities, similar glass morphologies, and an absence of opaque phases characterize this layer as a single ash fall and allow correlation. On a regional scale, these correlations concur with previous correlations and show that a shallow anticline with a northwest-southeast-trending axis extends across the Kenai lowland. 28 refs., 14 figs., 1 tab.

  5. Glycoproteomic and glycomic databases.

    PubMed

    Baycin Hizal, Deniz; Wolozny, Daniel; Colao, Joseph; Jacobson, Elena; Tian, Yuan; Krag, Sharon S; Betenbaugh, Michael J; Zhang, Hui

    2014-01-01

    Protein glycosylation serves critical roles in the cellular and biological processes of many organisms. Aberrant glycosylation has been associated with many illnesses such as hereditary and chronic diseases like cancer, cardiovascular diseases, neurological disorders, and immunological disorders. Emerging mass spectrometry (MS) technologies that enable the high-throughput identification of glycoproteins and glycans have accelerated the analysis and made possible the creation of dynamic and expanding databases. Although glycosylation-related databases have been established by many laboratories and institutions, they are not yet widely known in the community. Our study reviews 15 different publicly available databases and identifies their key elements so that users can identify the most applicable platform for their analytical needs. These databases include biological information on the experimentally identified glycans and glycopeptides from various cells and organisms such as human, rat, mouse, fly and zebrafish. The features of these databases - 7 for glycoproteomic data, 6 for glycomic data, and 2 for glycan binding proteins are summarized including the enrichment techniques that are used for glycoproteome and glycan identification. Furthermore databases such as Unipep, GlycoFly, GlycoFish recently established by our group are introduced. The unique features of each database, such as the analytical methods used and bioinformatical tools available are summarized. This information will be a valuable resource for the glycobiology community as it presents the analytical methods and glycosylation related databases together in one compendium. It will also represent a step towards the desired long term goal of integrating the different databases of glycosylation in order to characterize and categorize glycoproteins and glycans better for biomedical research.

  6. Chariot, Alaska Site Fact Sheet

    SciTech Connect

    2013-01-16

    The Chariot site is located in the Ogotoruk Valley in the Cape Thompson region of northwest Alaska. This region is about 125 miles north of (inside) the Arctic Circle and is bounded on the southwest by the Chukchi Sea. The closest populated areas are the Inupiat villages of Point Hope, 32 miles northwest of the site, and Kivalina,41 miles to the southeast. The site is accessible from Point Hope by ATV in the summer and by snowmobile in the winter. Project Chariot was part of the Plowshare Program, created in 1957 by the U.S. Atomic Energy Commission (AEC), a predecessor agency of the U.S. Department of Energy (DOE), to study peaceful uses for atomic energy. Project Chariot began in 1958 when a scientific field team chose Cape Thompson as a potential site to excavate a harbor using a series of nuclear explosions. AEC, with assistance from other agencies, conducted more than40 pretest bioenvironmental studies of the Cape Thompson area between 1959 and 1962; however, the Plowshare Program work at the Project Chariot site was cancelled because of strong public opposition. No nuclear explosions were conducted at the site.

  7. Research drilling at Katmai, Alaska

    NASA Astrophysics Data System (ADS)

    Eichelberger, John C.; Hildreth, Wes

    1986-10-01

    Drilling observations made in a young igneous system following a single, recent, well-described volcanic event can greatly improve our understanding of magmatic and hydrothermal processes and of the rates at which these processes operate. A group of geoscientists (Table 1) has been working since May 1985 to formulate and advance a plan for research at the site of the historically important 1912 eruption at Katmai, Alaska, as part of the Continental Scientific Drilling Program (CSDP). The plan was presented at the June 12-13, 1986, CSDP Workshop, held in Rapid City, S.Dak., and has now entered a more formal proposal development stage for consideration by the U.S. Department of Energy, National Science Foundation, and U.S. Geological Survey as an interagency effort. This report is provided to inform the geoscience community of the rationale for CSDP research at Katmai and of the forthcoming opportunities for participation in this multidisciplinary effort in the field of magmatic processes.

  8. Southeastern Alaska tectonostratigraphic terranes revisited

    SciTech Connect

    Brew, D.A.; Ford, A.B.

    1985-04-01

    The presence of only three major tectonostratigraphic terranes (TSTs) in southeastern Alaska and northwestern British Columbia (Chugach, Wrangell, and Alexander) is indicated by critical analysis of available age, stratigraphic, and structural data. A possible fourth TST (Stikine) is probably an equivalent of part or all of the Alexander. The Yakutat block belongs to the Chugach TST, and both are closely linked to the Wrangell and Alexander(-Stikine) TSTs; the Gravina TST is an overlap assemblage. THe Alexander(-Stikine) TSTs is subdivided on the basis of age and facies. The subterranes within it share common substrates and represent large-scale facies changes in a long-lived island-arc environment. The Taku TSTs is the metamorphic equivalent of the upper part (Permian and Upper Triassic) of the Alexander(-Stikine) TSTs with some fossil evidence preserved that indicates the age of protoliths. Similarly, the Tracy Arm TST is the metamorphic equivalent of (1) the lower (Ordovician to Carboniferous) Alexander TST without any such fossil evidence and (2) the upper (Permian to Triassic) Alexander(-Stikine) with some newly discovered fossil evidence. Evidence for the ages of juxtaposition of the TSTs is limited. The Chugach TST deformed against the Wrangell and Alexander TSTs in late Cretaceous. Gravina rocks were deformed at the time and also earlier. The Wrangell TST was stitched to the Alexander(-Stikine) by middle Cretaceous plutons but may have arrived before its Late Jurassic plutons were emplaced. The Alexander(-Stikine) and Cache Creek TSTs were juxtaposed before Late Triassic.

  9. Amchitka, Alaska Site Fact Sheet

    SciTech Connect

    2011-12-15

    Amchitka Island is near the western end of the Aleutian Island chain and is the largest island in the Rat Island Group that is located about 1,340 miles west-southwest of Anchorage, Alaska, and 870 miles east of the Kamchatka Peninsula in eastern Russia. The island is 42 miles long and 1 to 4 miles wide, with an area of approximately 74,240 acres. Elevations range from sea level to more than 1,100 feet above sea level. The coastline is rugged; sea cliffs and grassy slopes surround nearly the entire island. Vegetation on the island is low-growing, meadow-like tundra grasses at lower elevations. No trees grow on Amchitka. The lowest elevations are on the eastern third of the island and are characterized by numerous shallow lakes and heavily vegetated drainages. The central portion of the island has higher elevations and fewer lakes. The westernmost 3 miles of the island contains a windswept rocky plateau with sparse vegetation.

  10. Moose soup shigellosis in Alaska.

    PubMed Central

    Gessner, B D; Beller, M

    1994-01-01

    Following a community gathering held in early September 1991, an outbreak of gastroenteritis occurred in Galena, Alaska. We conducted an epidemiologic investigation to determine the cause of the outbreak. A case of gastroenteritis was defined as diarrhea or at least 2 other symptoms of gastrointestinal illness occurring in a Galena resident within a week of the gathering. Control subjects included asymptomatic residents who either resided with an affected person or were contacted by us during a telephone survey. Of 25 case-patients, 23 had attended the gathering compared with 33 of 58 controls. Among persons who attended the gathering and from whom we obtained a food consumption history, 17 of 19 case-patients and 11 of 22 controls ate moose soup. No other foods served at the gathering were associated with illness. Ten case-patients had culture-confirmed Shigella sonnei. Many pots of moose soup were served each day, and persons attended the gathering and ate moose soup on more than 1 day. Moose soup was prepared in private homes, allowed to cool, and usually served the same day. We identified 5 women who had prepared soup for the gathering and in whose homes at least 1 person had a gastrointestinal illness occur at the time of or shortly before soup preparation. This investigation suggests that eating contaminated moose soup at a community gathering led to an outbreak of shigellosis and highlights the risk of eating improperly prepared or stored foods at public gatherings. PMID:8048226

  11. Correlation of tertiary formations of Alaska

    USGS Publications Warehouse

    MacNeil, F.S.; Wolfe, J.A.; Miller, D.J.; Hopkins, D.M.

    1961-01-01

    Recent stratigraphic and paleontologic studies have resulted in substantial revision of the age assignments and inter-basin correlations of the Tertiary formations of Alaska as given in both an earlier compilation by P. S. Smith (1939) and a tentative chart prepared for distribution at the First International Symposium on Arctic Geology at Calgary, Alberta (Miller, MacNeil, and Wahrhaftig, 1960). Current work in Alaska by the U. S. Geological Survey and several oil companies is furnishing new information at a rapid rate and further revisions may be expected. The correlation chart (Fig. 1), the first published chart to deal exclusively with the Tertiary of Alaska, had the benefit of a considerable amount of stratigraphic data and fossil collections from some oil companies, but recent surface mapping and drilling by other oil companies in several Tertiary basins undoubtedly must have produced much more information. Nevertheless, the extent of available data justifies the publication of a revised correlation chart at this time.

  12. Phase Equilibria Diagrams Database

    National Institute of Standards and Technology Data Gateway

    SRD 31 NIST/ACerS Phase Equilibria Diagrams Database (PC database for purchase)   The Phase Equilibria Diagrams Database contains commentaries and more than 21,000 diagrams for non-organic systems, including those published in all 21 hard-copy volumes produced as part of the ACerS-NIST Phase Equilibria Diagrams Program (formerly titled Phase Diagrams for Ceramists): Volumes I through XIV (blue books); Annuals 91, 92, 93; High Tc Superconductors I & II; Zirconium & Zirconia Systems; and Electronic Ceramics I. Materials covered include oxides as well as non-oxide systems such as chalcogenides and pnictides, phosphates, salt systems, and mixed systems of these classes.

  13. JICST Factual Database

    NASA Astrophysics Data System (ADS)

    Suzuki, Kazuaki; Shimura, Kazuki; Monma, Yoshio; Sakamoto, Masao; Morishita, Hiroshi; Kanazawa, Kenji

    The Japan Information Center of Science and Technology (JICST) has started the on-line service of JICST/NRIM Materials Strength Database for Engineering Steels and Alloys (JICST ME) in this March (1990). This database has been developed under the joint research between JICST and the National Research Institute for Metals (NRIM). It provides material strength data (creep, fatigue, etc.) of engineering steels and alloys. It is able to search and display on-line, and to analyze the searched data statistically and plot the result on graphic display. The database system and the data in JICST ME are described.

  14. Plant Genome Duplication Database.

    PubMed

    Lee, Tae-Ho; Kim, Junah; Robertson, Jon S; Paterson, Andrew H

    2017-01-01

    Genome duplication, widespread in flowering plants, is a driving force in evolution. Genome alignments between/within genomes facilitate identification of homologous regions and individual genes to investigate evolutionary consequences of genome duplication. PGDD (the Plant Genome Duplication Database), a public web service database, provides intra- or interplant genome alignment information. At present, PGDD contains information for 47 plants whose genome sequences have been released. Here, we describe methods for identification and estimation of dates of genome duplication and speciation by functions of PGDD.The database is freely available at http://chibba.agtec.uga.edu/duplication/.

  15. Geochemical Evidence for a Terrestrial Magma Ocean

    NASA Technical Reports Server (NTRS)

    Agee, Carl B.

    1999-01-01

    The aftermath of phase separation and crystal-liquid fractionation in a magma ocean should leave a planet geochemically differentiated. Subsequent convective and other mixing processes may operate over time to obscure geochemical evidence of magma ocean differentiation. On the other hand, core formation is probably the most permanent, irreversible part of planetary differentiation. Hence the geochemical traces of core separation should be the most distinct remnants left behind in the mantle and crust, In the case of the Earth, core formation apparently coincided with a magma ocean that extended to a depth of approximately 1000 km. Evidence for this is found in high pressure element partitioning behavior of Ni and Co between liquid silicate and liquid iron alloy, and with the Ni-Co ratio and the abundance of Ni and Co in the Earth's upper mantle. A terrestrial magma ocean with a depth of 1000 km will solidify from the bottom up and first crystallize in the perovskite stability field. The largest effect of perovskite fractionation on major element distribution is to decrease the Si-Mg ratio in the silicate liquid and increase the Si-Mg ratio in the crystalline cumulate. Therefore, if a magma ocean with perovskite fractionation existed, then one could expect to observe an upper mantle with a lower than chondritic Si-Mg ratio. This is indeed observed in modern upper mantle peridotites. Although more experimental work is needed to fully understand the high-pressure behavior of trace element partitioning, it is likely that Hf is more compatible than Lu in perovskite-silicate liquid pairs. Thus, perovskite fractionation produces a molten mantle with a higher than chondritic Lu-Hf ratio. Arndt and Blichert-Toft measured Hf isotope compositions of Barberton komatiites that seem to require a source region with a long-lived, high Lu-Hf ratio. It is plausible that that these Barberton komatiites were generated within the majorite stability field by remelting a perovskite

  16. Methodological approaches in estimating anomalous geochemical field structure

    NASA Astrophysics Data System (ADS)

    Gavrilov, R.; Rudmin, M.

    2015-02-01

    Mathematical statistic methods were applied to analyze the core samples from vertical expendable wells in Chertovo Koryto gold ore field. The following methods were used to analyse gold in samples: assay tests and atomic absorption method (AAS), while emission spectrum semiquantative method was applied to identify traces. The analysis of geochemical association distribution in one central profile demonstrated that bulk metasomatic aureoles are characteristic of concentric zonal structure. The distribution of geochemical associations is correlated to the hydrothermal stages of mineral formation identified in this deposit. It was proved that the processed geochemical data by factor and cluster analyses provided additional information on the anomalous geochemical field structure in gold- bearing black-shale strata. Such methods are effective tools in interpretating specific features of geochemical field structures in analogous potential ore-bearing areas.

  17. Urban geochemical mapping studies: how and why we do them.

    PubMed

    Johnson, Christopher C; Ander, E Louise

    2008-12-01

    Geochemical mapping is a technique rooted in mineral exploration but has now found worldwide application in studies of the urban environment. Such studies, involving multidisciplinary teams including geochemists, have to present their results in a way that nongeochemists can comprehend. A legislatively driven demand for urban geochemical data in connection with the need to identify contaminated land and subsequent health risk assessments has given rise to a greater worldwide interest in the urban geochemical environment. Herein, the aims and objectives of some urban studies are reviewed and commonly used terms such as baseline and background are defined. Geochemists need to better consider what is meant by the term urban. Whilst the unique make up of every city precludes a single recommended approach to a geochemical mapping strategy, more should be done to standardise the sampling and analytical methods. How (from a strategic and presentational point of view) and why we do geochemical mapping studies is discussed.

  18. Regional Observations of Alaska Glacier Dynamics

    NASA Astrophysics Data System (ADS)

    Burgess, E. W.; Forster, R. R.; Hall, D. K.

    2010-12-01

    Alaska glaciers contribute more to sea level rise than any other glacierized mountain region in the world. Alaska is loosing ~84 Gt of ice annually, which accounts for ~0.23 mm/yr of SLR (Luthcke et al., 2008). Complex glacier flow dynamics, frequently related to tidewater environments, is the primary cause of such rapid mass loss (Larsen et al., 2007). Indirect observations indicate these complex flow dynamics occur on many glaciers throughout Alaska, but no comprehensive velocity measurements exist. We are working to measure glacier surface velocities throughout Alaska using synthetic aperture radar (SAR) offset tracking. This work focuses on the Seward/Malaspina, Bering, Columbia, Kaskawulsh, and Hubbard Glaciers and uses a MODIS land surface temperature "melt-day" product (Hall et al., 2006, 2008) to identify potential links between velocity variability and summertime temperature fluctuations. Hall, D., R. Williams Jr., K. Casey, N. DiGirolamo, and Z. Wan (2006), Satellite-derived, melt-season surface temperature of the Greenland Ice Sheet (2000-2005) and its relationship to mass balance, Geophysical Research Letters, 33(11). Hall, D., J. Box, K. Casey, S. Hook, C. Shuman, and K. Steffen (2008), Comparison of satellite-derived and in-situ observations of ice and snow surface temperatures over Greenland, Remote Sensing of Environment, 112(10), 3739-3749. Larsen, C. F., R. J. Motyka, A. A. Arendt, K. A. Echelmeyer, and P. E. Geissler (2007), Glacier changes in southeast Alaska and northwest British Columbia and contribution to sea level rise, J. Geophys. Res. Luthcke, S., A. Arendt, D. Rowlands, J. McCarthy, and C. Larsen (2008), Recent glacier mass changes in the Gulf of Alaska region from GRACE mascon solutions, Journal of Glaciology, 54(188), 767-777.

  19. Numeric Databases in the Sciences.

    ERIC Educational Resources Information Center

    Meschel, S. V.

    1984-01-01

    Provides exploration into types of numeric databases available (also known as source databases, nonbibliographic databases, data-files, data-banks, fact banks); examines differences and similarities between bibliographic and numeric databases; identifies disciplines that utilize numeric databases; and surveys representative examples in the…

  20. A geochemical basis for endomyocardial fibrosis.

    PubMed

    Valiathan, M S; Kartha, C C; Panday, V K; Dang, H S; Sunta, C M

    1986-09-01

    In a search for geochemical factors that could play a role in the pathogenesis of tropical endomyocardial fibrosis, endomyocardial tissue samples obtained from patients at necropsy or operation were analysed for major elements present in laterite and monazite, which are important soil constituents of Kerala State of India. Atomic absorption spectrophotometry was used for detecting iron, silicon, aluminium, zinc, magnesium, calcium, sodium, potassium, and manganese and neutron activation analysis for thorium. Compared with control samples from victims of fatal accidents, an excess of thorium, sodium, and calcium and a deficiency of magnesium were present in samples from patients. It has been shown earlier that the staple diets of people in Kerala have high concentrations of thorium, and these data show that thorium can become concentrated in cardiac tissues. It is speculated that thorium excess in conjunction with magnesium deficiency may play a role in the causation of tropical endomyocardial fibrosis.

  1. Geochemical Arrays at Woolsey Mound Seafloor Observatory

    NASA Astrophysics Data System (ADS)

    Sleeper, K.; Wilson, R. M.; Chanton, J.; Lapham, L.; Farr, N.; Camilli, R.; Martens, C. S.; Pontbriand, C.

    2011-12-01

    A suite of geochemical monitoring arrays has been developed for the Woolsey Mound Seafloor Observatory in the northern Gulf of Mexico to evaluate the oceanographic and tectonic forcing factors on the formation and stability of gas hydrates. These arrays are designed to collect sustained, time-series data of chemical concentrations, gradients and fluxes from the subsurface to the seafloor and into the near bottom water column. A Pore Fluid Array provides time-series measurements of methane, sulfate and salinity in subsurface pore waters to evaluate microbial activity, hydrate formation and/or hydrate dissociation. A Chimney Sampler Array collects in situ chemical and physical readings at the benthic boundary. The array is designed around a vertical cylinder with a known volume and washout rate for measuring chemical gradients and flux at the seafloor. The Benthic Boundary Layer Array extends into the water column with a package of sensors in a node close to the seafloor and a similar node 20 m above the seafloor to evaluate upward, downward and transversely advecting fluids. The three arrays can be used in concert to evaluate a release of methane by the dissociation of gas hydrates: the Pore Fluid Array identifies the breakdown of gas hydrates in the subsurface, the Chimney Array determines the rate of flux at the seafloor and the Benthic Boundary Layer Array evaluates the fate of the release in the water column. Combining the data from the geochemical arrays with output from the geophysical arrays provides key information to evaluate the specific and relative importance of tectonic and oceanographic triggers for hydrate dissociation. New probes and deployment platforms have been developed for the installation and maintenance of the arrays and new systems are in place and under development for the recovery of the data. Generally, the complete array or its components have to be recovered to download the data. However, this summer 2011, a new optic modem system was

  2. The geochemical record in rock glaciers

    USGS Publications Warehouse

    Steig, E.J.; Fitzpatrick, J.J.; Potter, N.; Clark, D.H.

    1998-01-01

    A 9.5 m ice core was extracted from beneath the surficial debris cover of a rock glacier at Galena Creek, northwestern Wyoming. The core contains clean, bubble-rich ice with silty debris layers spaced at roughly 20 cm intervals. The debris layers are similar in appearance to those in typical alpine glaciers, reflecting concentration of debris by melting at the surface during the summer ablation season. Profiles of stable isotope concentrations and electrical conductivity measurements provide independent evidence for melting in association with debris layers. These observations are consistent with a glacial origin for the ice, substantiating the glacigenic model for rock glacier formation. The deuterium excess profile in the ice indicates that the total depth of meltwater infiltration is less than the thickness of one annual layer, suggesting that isotope values and other geochemical signatures are preserved at annual resolution. This finding demonstrates the potential for obtaining useful paleoclimate information from rock glacier ice.

  3. A Farside Geochemical Window into the Moon

    NASA Astrophysics Data System (ADS)

    Martel, L. M. V.

    2008-04-01

    A low-albedo area on the lunar farside near Dewar crater has the geochemical characteristics of mare basalt despite the fact that no maria have ever been identified there. The area sits in the previously-mapped Feldspathic Highlands Terrane (FHT) that is characterized by very low thorium and iron oxide abundances. Yet further remote sensing studies show the featured area near Dewar has anomalously elevated thorium, samarium, iron oxide, and titanium oxide values compared to the FHT. Samuel Lawrence (formerly at the Hawaii Institute of Geophysics and Planetology and now at Arizona State University) and colleagues from Hawaii, Los Alamos National Lab, and USGS Flagstaff analyzed a suite of Lunar Prospector data, Clementine ultraviolet-visible (UVVIS) images, and Lunar Orbiter photographs to determine the composition and probable origin of the Dewar anomaly. The body of evidence points to excavated material from a farside buried mare basalt, or cryptomare, derived from a mag ma with enhanced thorium concentrations.

  4. THE CTEPP DATABASE

    EPA Science Inventory

    The CTEPP (Children's Total Exposure to Persistent Pesticides and Other Persistent Organic Pollutants) database contains a wealth of data on children's aggregate exposures to pollutants in their everyday surroundings. Chemical analysis data for the environmental media and ques...

  5. Chemical Kinetics Database

    National Institute of Standards and Technology Data Gateway

    SRD 17 NIST Chemical Kinetics Database (Web, free access)   The NIST Chemical Kinetics Database includes essentially all reported kinetics results for thermal gas-phase chemical reactions. The database is designed to be searched for kinetics data based on the specific reactants involved, for reactions resulting in specified products, for all the reactions of a particular species, or for various combinations of these. In addition, the bibliography can be searched by author name or combination of names. The database contains in excess of 38,000 separate reaction records for over 11,700 distinct reactant pairs. These data have been abstracted from over 12,000 papers with literature coverage through early 2000.

  6. Hawaii bibliographic database

    NASA Astrophysics Data System (ADS)

    Wright, Thomas L.; Takahashi, Taeko Jane

    The Hawaii bibliographic database has been created to contain all of the literature, from 1779 to the present, pertinent to the volcanological history of the Hawaiian-Emperor volcanic chain. References are entered in a PC- and Macintosh-compatible EndNote Plus bibliographic database with keywords and s or (if no ) with annotations as to content. Keywords emphasize location, discipline, process, identification of new chemical data or age determinations, and type of publication. The database is updated approximately three times a year and is available to upload from an ftp site. The bibliography contained 8460 references at the time this paper was submitted for publication. Use of the database greatly enhances the power and completeness of library searches for anyone interested in Hawaiian volcanism.

  7. Enhancing medical database security.

    PubMed

    Pangalos, G; Khair, M; Bozios, L

    1994-08-01

    A methodology for the enhancement of database security in a hospital environment is presented in this paper which is based on both the discretionary and the mandatory database security policies. In this way the advantages of both approaches are combined to enhance medical database security. An appropriate classification of the different types of users according to their different needs and roles and a User Role Definition Hierarchy has been used. The experience obtained from the experimental implementation of the proposed methodology in a major general hospital is briefly discussed. The implementation has shown that the combined discretionary and mandatory security enforcement effectively limits the unauthorized access to the medical database, without severely restricting the capabilities of the system.

  8. Uranium Location Database Compilation

    EPA Pesticide Factsheets

    EPA has compiled mine location information from federal, state, and Tribal agencies into a single database as part of its investigation into the potential environmental hazards of wastes from abandoned uranium mines in the western United States.

  9. Livestock Anaerobic Digester Database

    EPA Pesticide Factsheets

    The Anaerobic Digester Database provides basic information about anaerobic digesters on livestock farms in the United States, organized in Excel spreadsheets. It includes projects that are under construction, operating, or shut down.

  10. Hawaii bibliographic database

    USGS Publications Warehouse

    Wright, T.L.; Takahashi, T.J.

    1998-01-01

    The Hawaii bibliographic database has been created to contain all of the literature, from 1779 to the present, pertinent to the volcanological history of the Hawaiian-Emperor volcanic chain. References are entered in a PC- and Macintosh-compatible EndNote Plus bibliographic database with keywords and abstracts or (if no abstract) with annotations as to content. Keywords emphasize location, discipline, process, identification of new chemical data or age determinations, and type of publication. The database is updated approximately three times a year and is available to upload from an ftp site. The bibliography contained 8460 references at the time this paper was submitted for publication. Use of the database greatly enhances the power and completeness of library searches for anyone interested in Hawaiian volcanism.

  11. Nuclear Science References Database

    SciTech Connect

    Pritychenko, B.; Běták, E.; Singh, B.; Totans, J.

    2014-06-15

    The Nuclear Science References (NSR) database together with its associated Web interface, is the world's only comprehensive source of easily accessible low- and intermediate-energy nuclear physics bibliographic information for more than 210,000 articles since the beginning of nuclear science. The weekly-updated NSR database provides essential support for nuclear data evaluation, compilation and research activities. The principles of the database and Web application development and maintenance are described. Examples of nuclear structure, reaction and decay applications are specifically included. The complete NSR database is freely available at the websites of the National Nuclear Data Center (http://www.nndc.bnl.gov/nsr) and the International Atomic Energy Agency (http://www-nds.iaea.org/nsr)

  12. ARTI Refrigerant Database

    SciTech Connect

    Calm, J.M.

    1994-05-27

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  13. Code System to Model Aqueous Geochemical Equilibria.

    SciTech Connect

    PETERSON, S. R.

    2001-08-23

    Version: 00 MINTEQ is a geochemical program to model aqueous solutions and the interactions of aqueous solutions with hypothesized assemblages of solid phases. It was developed for the Environmental Protection Agency to perform the calculations necessary to simulate the contact of waste solutions with heterogeneous sediments or the interaction of ground water with solidified wastes. MINTEQ can calculate ion speciation/solubility, adsorption, oxidation-reduction, gas phase equilibria, and precipitation/dissolution ofsolid phases. MINTEQ can accept a finite mass for any solid considered for dissolution and will dissolve the specified solid phase only until its initial mass is exhausted. This ability enables MINTEQ to model flow-through systems. In these systems the masses of solid phases that precipitate at earlier pore volumes can be dissolved at later pore volumes according to thermodynamic constraints imposed by the solution composition and solid phases present. The ability to model these systems permits evaluation of the geochemistry of dissolved traced metals, such as low-level waste in shallow land burial sites. MINTEQ was designed to solve geochemical equilibria for systems composed of one kilogram of water, various amounts of material dissolved in solution, and any solid materials that are present. Systems modeled using MINTEQ can exchange energy and material (open systems) or just energy (closed systems) with the surrounding environment. Each system is composed of a number of phases. Every phase is a region with distinct composition and physically definable boundaries. All of the material in the aqueous solution forms one phase. The gas phase is composed of any gaseous material present, and each compositionally and structurally distinct solid forms a separate phase.

  14. New geochemical insights into volcanic degassing.

    PubMed

    Edmonds, Marie

    2008-12-28

    Magma degassing plays a fundamental role in controlling the style of volcanic eruptions. Whether a volcanic eruption is explosive, or effusive, is of crucial importance to approximately 500 million people living in the shadow of hazardous volcanoes worldwide. Studies of how gases exsolve and separate from magma prior to and during eruptions have been given new impetus by the emergence of more accurate and automated methods to measure volatile species both as volcanic gases and dissolved in the glasses of erupted products. The composition of volcanic gases is dependent on a number of factors, the most important being magma composition and the depth of gas-melt segregation prior to eruption; this latter parameter has proved difficult to constrain in the past, yet is arguably the most critical for controlling eruptive style. Spectroscopic techniques operating in the infrared have proved to be of great value in measuring the composition of gases at high temporal resolution. Such methods, when used in tandem with microanalytical geochemical investigations of erupted products, are leading to better constraints on the depth at which gases are generated and separated from magma. A number of recent studies have focused on transitions between explosive and effusive activity and have led to a better understanding of gas-melt segregation at basaltic volcanoes. Other studies have focused on degassing during intermediate and silicic eruptions. Important new results include the recognition of fluxing by deep-derived gases, which buffer the amount of dissolved volatiles in the melt at shallow depths, and the observation of gas flow up permeable conduit wall shear zones, which may be the primary mechanism for gas loss at the cusp of the most explosive and unpredictable volcanic eruptions. In this paper, I review current and future directions in the field of geochemical studies of volcanic degassing processes and illustrate how the new insights are beginning to change the way in

  15. The geochemical atlas of Italian soils

    NASA Astrophysics Data System (ADS)

    De Vivo, Benedetto; Cicchella, Domenico; Albanese, Stefano; Dinelli, Enrico; Giaccio, Lucia; Lima, Annamaria; Valera, Paolo

    2014-05-01

    The geochemical Atlas of Italian agricultural and grazing land soils was carried out as part of GEMAS project whose objective was to characterize soils of rural areas of the whole Europe. Soil samples were collected at an average sampling density of 1 site per 2500 km2. Two different sample types were collected: (1) 121 agricultural soils (Ap) on regularly ploughed land to a depth of 20 cm and (2) 121 grazing land soils (Gr) (land under permanent grass cover) to a depth of 10 cm. All soil samples were air dried, sieved to <2 mm, homogenised and finally split into 10 sub-samples. Both sample types (Ap and Gr) were analysed at the BGR for a suite of 41 elements by WD-XRFS. The same samples were also analysed after AR and MMI extractions by a combination of ICP-AES and ICP-MS for 53 elements. In addition, other parameters were determined: pH, TOC, total carbon and total sulphur, LOI, CEC, Sr-isotopes, Pb-isotopes, MIR-spectra. By means of a GIS software, georeferenced data of the Italian territory were used to produce the geochemical maps of all the analysed elements for both agricultural and grazing land soils. Specifically, for each element and sampling media a map reporting interpolated data and graduated dots was produced; univariate statistics and graphs were also associated to each map. The Atlas also contain: 5 maps for regional variability of factor scores of elemental associations resulting from R-mode factor analysis and 15 baseline and land use maps for some selected elements (As, Be, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sb, Se, Sn, Tl, V, Zn) following the Italian intervention criteria.

  16. Geochemical microanalysis: The link between textural and geochemical characterization of igneous rocks

    NASA Astrophysics Data System (ADS)

    Kent, A. J.

    2003-12-01

    In this presentation I will review recent advances in microanalytical techniques that allow us to directly couple textural and geochemical information to the study of igneous rocks, particularly with respect to the analysis of silicate melt inclusions. Textural examination has long been a mainstay of the classification and petrologic study of igneous materials. The advent of the electron microprobe over 50 years ago allowed textural and geochemical observations to be coupled at small spatial scales and directly related to the physical and chemical conditions of formation and subsequent melt evolution. This resulted in a revolution in the petrological investigation and understanding of igneous rocks that continues today. Recent advances in geochemical microanalysis techniques are providing exciting access to new geochemical information at smaller and smaller spatial scales. These are enabling measurement of the abundances, and in some cases isotopic compositions, of a range of elements in correspondingly smaller sample volumes. A case in point is the study of silicate melt inclusions. Although melt inclusions have been recognized and studied for over a century, there has been a recent surge in interest directly tied to development of techniques capable of performing in-situ analysis of trace element and volatile components at small spatial scales. Melt inclusions allow direct sampling of melts present during crystal formation, and are particularly useful for relating crystal textures and compositions to those of their source melts. Chemical compositions of melt inclusions reveal the diversity of igneous compositions present in igneous systems, and may be combined with textural observations to constrain a wide range of igneous processes, including degassing, assimilation, fractional crystallization and mixing.

  17. Volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory 1993

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.; Doukas, Michael P.

    1996-01-01

    During 1993, the Alaska Volcano Observatory (AVO) responded to episodes of eruptive activity or false alarms at nine volcanic centers in the state of Alaska. Additionally, as part of a formal role in KVERT (the Kamchatkan Volcano Eruption Response Team), AVO staff also responded to eruptions on the Kamchatka Peninsula, details of which are summarized in Miller and Kurianov (1993). In 1993, AVO maintained seismic instrumentation networks on four volcanoes of the Cook Inlet region--Spurr, Redoubt, Iliamna, and Augustine--and two stations at Dutton Volcano near King Cove on the Alaska Peninsula. Other routine elements of AVO's volcano monitoring program in Alaska include periodic airborne measurement of volcanic SO2 and CO2 at Cook Inlet volcanoes (Doukas, 1995) and maintenance of a lightning detection system in Cook Inlet (Paskievitch and others, 1995).

  18. Querying genomic databases

    SciTech Connect

    Baehr, A.; Hagstrom, R.; Joerg, D.; Overbeek, R.

    1991-09-01

    A natural-language interface has been developed that retrieves genomic information by using a simple subset of English. The interface spares the biologist from the task of learning database-specific query languages and computer programming. Currently, the interface deals with the E. coli genome. It can, however, be readily extended and shows promise as a means of easy access to other sequenced genomic databases as well.

  19. Database computing in HEP

    SciTech Connect

    Day, C.T.; Loken, S.; MacFarlane, J.F. ); May, E.; Lifka, D.; Lusk, E.; Price, L.E. ); Baden, A. . Dept. of Physics); Grossman, R.; Qin, X. . Dept. of Mathematics, Statistics and Computer Science); Cormell, L.; Leibold, P.; Liu, D

    1992-01-01

    The major SSC experiments are expected to produce up to 1 Petabyte of data per year each. Once the primary reconstruction is completed by farms of inexpensive processors. I/O becomes a major factor in further analysis of the data. We believe that the application of database techniques can significantly reduce the I/O performed in these analyses. We present examples of such I/O reductions in prototype based on relational and object-oriented databases of CDF data samples.

  20. Human mapping databases.

    PubMed

    Talbot, C; Cuticchia, A J

    2001-05-01

    This unit concentrates on the data contained within two human genome databasesGDB (Genome Database) and OMIM (Online Mendelian Inheritance in Man)and includes discussion of different methods for submitting and accessing data. An understanding of electronic mail, FTP, and the use of a World Wide Web (WWW) navigational tool such as Netscape or Internet Explorer is a prerequisite for utilizing the information in this unit.

  1. Steam Properties Database

    National Institute of Standards and Technology Data Gateway

    SRD 10 NIST/ASME Steam Properties Database (PC database for purchase)   Based upon the International Association for the Properties of Water and Steam (IAPWS) 1995 formulation for the thermodynamic properties of water and the most recent IAPWS formulations for transport and other properties, this updated version provides water properties over a wide range of conditions according to the accepted international standards.

  2. Antarctic Tephra Database (AntT)

    NASA Astrophysics Data System (ADS)

    Kurbatov, A.; Dunbar, N. W.; Iverson, N. A.; Gerbi, C. C.; Yates, M. G.; Kalteyer, D.; McIntosh, W. C.

    2014-12-01

    Modern paleoclimate research is heavily dependent on establishing accurate timing related to rapid shifts in Earth's climate system. The ability to correlate these events at local, and ideally at the intercontinental scales, allows assessment, for example, of phasing or changes in atmospheric circulation. Tephra-producing volcanic eruptions are geologically instantaneous events that are largely independent of climate. We have developed a tephrochronological framework for paleoclimate research in Antarctic in a user friendly, freely accessible online Antarctic tephra (AntT) database (http://cci.um.maine.edu/AntT/). Information about volcanic events, including physical and geochemical characteristics of volcanic products collected from multiple data sources, are integrated into the AntT database.The AntT project establishes a new centralized data repository for Antarctic tephrochronology, which is needed for precise correlation of records between Antarctic ice cores (e.g. WAIS Divide, RICE, Talos Dome, ITASE) and global paleoclimate archives. The AntT will help climatologists, paleoclimatologists, atmospheric chemists, geochemists, climate modelers synchronize paleoclimate archives using volcanic products that establishing timing of climate events in different geographic areas, climate-forcing mechanisms, natural threshold levels in the climate system. All these disciplines will benefit from accurate reconstructions of the temporal and spatial distribution of past rapid climate change events in continental, atmospheric, marine and polar realms. Research is funded by NSF grants: ANT-1142007 and 1142069.

  3. The comprehensive peptaibiotics database.

    PubMed

    Stoppacher, Norbert; Neumann, Nora K N; Burgstaller, Lukas; Zeilinger, Susanne; Degenkolb, Thomas; Brückner, Hans; Schuhmacher, Rainer

    2013-05-01

    Peptaibiotics are nonribosomally biosynthesized peptides, which - according to definition - contain the marker amino acid α-aminoisobutyric acid (Aib) and possess antibiotic properties. Being known since 1958, a constantly increasing number of peptaibiotics have been described and investigated with a particular emphasis on hypocrealean fungi. Starting from the existing online 'Peptaibol Database', first published in 1997, an exhaustive literature survey of all known peptaibiotics was carried out and resulted in a list of 1043 peptaibiotics. The gathered information was compiled and used to create the new 'The Comprehensive Peptaibiotics Database', which is presented here. The database was devised as a software tool based on Microsoft (MS) Access. It is freely available from the internet at http://peptaibiotics-database.boku.ac.at and can easily be installed and operated on any computer offering a Windows XP/7 environment. It provides useful information on characteristic properties of the peptaibiotics included such as peptide category, group name of the microheterogeneous mixture to which the peptide belongs, amino acid sequence, sequence length, producing fungus, peptide subfamily, molecular formula, and monoisotopic mass. All these characteristics can be used and combined for automated search within the database, which makes The Comprehensive Peptaibiotics Database a versatile tool for the retrieval of valuable information about peptaibiotics. Sequence data have been considered as to December 14, 2012.

  4. Drinking Water Database

    NASA Technical Reports Server (NTRS)

    Murray, ShaTerea R.

    2004-01-01

    This summer I had the opportunity to work in the Environmental Management Office (EMO) under the Chemical Sampling and Analysis Team or CS&AT. This team s mission is to support Glenn Research Center (GRC) and EM0 by providing chemical sampling and analysis services and expert consulting. Services include sampling and chemical analysis of water, soil, fbels, oils, paint, insulation materials, etc. One of this team s major projects is the Drinking Water Project. This is a project that is done on Glenn s water coolers and ten percent of its sink every two years. For the past two summers an intern had been putting together a database for this team to record the test they had perform. She had successfully created a database but hadn't worked out all the quirks. So this summer William Wilder (an intern from Cleveland State University) and I worked together to perfect her database. We began be finding out exactly what every member of the team thought about the database and what they would change if any. After collecting this data we both had to take some courses in Microsoft Access in order to fix the problems. Next we began looking at what exactly how the database worked from the outside inward. Then we began trying to change the database but we quickly found out that this would be virtually impossible.

  5. The Transporter Classification Database

    PubMed Central

    Saier, Milton H.; Reddy, Vamsee S.; Tamang, Dorjee G.; Västermark, Åke

    2014-01-01

    The Transporter Classification Database (TCDB; http://www.tcdb.org) serves as a common reference point for transport protein research. The database contains more than 10 000 non-redundant proteins that represent all currently recognized families of transmembrane molecular transport systems. Proteins in TCDB are organized in a five level hierarchical system, where the first two levels are the class and subclass, the second two are the family and subfamily, and the last one is the transport system. Superfamilies that contain multiple families are included as hyperlinks to the five tier TC hierarchy. TCDB includes proteins from all types of living organisms and is the only transporter classification system that is both universal and recognized by the International Union of Biochemistry and Molecular Biology. It has been expanded by manual curation, contains extensive text descriptions providing structural, functional, mechanistic and evolutionary information, is supported by unique software and is interconnected to many other relevant databases. TCDB is of increasing usefulness to the international scientific community and can serve as a model for the expansion of database technologies. This manuscript describes an update of the database descriptions previously featured in NAR database issues. PMID:24225317

  6. Specialist Bibliographic Databases.

    PubMed

    Gasparyan, Armen Yuri; Yessirkepov, Marlen; Voronov, Alexander A; Trukhachev, Vladimir I; Kostyukova, Elena I; Gerasimov, Alexey N; Kitas, George D

    2016-05-01

    Specialist bibliographic databases offer essential online tools for researchers and authors who work on specific subjects and perform comprehensive and systematic syntheses of evidence. This article presents examples of the established specialist databases, which may be of interest to those engaged in multidisciplinary science communication. Access to most specialist databases is through subscription schemes and membership in professional associations. Several aggregators of information and database vendors, such as EBSCOhost and ProQuest, facilitate advanced searches supported by specialist keyword thesauri. Searches of items through specialist databases are complementary to those through multidisciplinary research platforms, such as PubMed, Web of Science, and Google Scholar. Familiarizing with the functional characteristics of biomedical and nonbiomedical bibliographic search tools is mandatory for researchers, authors, editors, and publishers. The database users are offered updates of the indexed journal lists, abstracts, author profiles, and links to other metadata. Editors and publishers may find particularly useful source selection criteria and apply for coverage of their peer-reviewed journals and grey literature sources. These criteria are aimed at accepting relevant sources with established editorial policies and quality controls.

  7. Specialist Bibliographic Databases

    PubMed Central

    2016-01-01

    Specialist bibliographic databases offer essential online tools for researchers and authors who work on specific subjects and perform comprehensive and systematic syntheses of evidence. This article presents examples of the established specialist databases, which may be of interest to those engaged in multidisciplinary science communication. Access to most specialist databases is through subscription schemes and membership in professional associations. Several aggregators of information and database vendors, such as EBSCOhost and ProQuest, facilitate advanced searches supported by specialist keyword thesauri. Searches of items through specialist databases are complementary to those through multidisciplinary research platforms, such as PubMed, Web of Science, and Google Scholar. Familiarizing with the functional characteristics of biomedical and nonbiomedical bibliographic search tools is mandatory for researchers, authors, editors, and publishers. The database users are offered updates of the indexed journal lists, abstracts, author profiles, and links to other metadata. Editors and publishers may find particularly useful source selection criteria and apply for coverage of their peer-reviewed journals and grey literature sources. These criteria are aimed at accepting relevant sources with established editorial policies and quality controls. PMID:27134485

  8. Crude Oil Analysis Database

    DOE Data Explorer

    Shay, Johanna Y.

    The composition and physical properties of crude oil vary widely from one reservoir to another within an oil field, as well as from one field or region to another. Although all oils consist of hydrocarbons and their derivatives, the proportions of various types of compounds differ greatly. This makes some oils more suitable than others for specific refining processes and uses. To take advantage of this diversity, one needs access to information in a large database of crude oil analyses. The Crude Oil Analysis Database (COADB) currently satisfies this need by offering 9,056 crude oil analyses. Of these, 8,500 are United States domestic oils. The database contains results of analysis of the general properties and chemical composition, as well as the field, formation, and geographic location of the crude oil sample. [Taken from the Introduction to COAMDATA_DESC.pdf, part of the zipped software and database file at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the zipped file to your PC. When opened, it will contain PDF documents and a large Excel spreadsheet. It will also contain the database in Microsoft Access 2002.

  9. Watershed-Scale Geochemical Inventory of Soils by Portable X-Ray Fluorescence

    NASA Astrophysics Data System (ADS)

    Beaudette, D. E.; Stupi, L. K.; Swarowsky, A.; O'Geen, A. T.; Chang, J. F.; Gallagher, B.

    2009-12-01

    Spatial databases of geochemical data are an excellent source of point-scale information on naturally occurring toxic elements (arsenic, selenium or radon), contamination from industrial processes (lead, mercury, or cesium), mineralogical variability, and the fate of toxic compounds (i.e. sorption of pesticides to iron oxyhydroxide minerals) in soil. Sample preparation time, safety concerns associated with HF or HNO3 acid dissolution, instrument availability, and cost are all common constraints that limit the scale at which new geochemical surveys can be conducted. We used a Thermo-Fisher Niton portable X-Ray fluorescence (XRF) meter to perform comparatively rapid geochemical surveys in soils of two (35 ha) watersheds. The watersheds have contrasting parent materials, one formed from metavolcanic rock and the other from granite. The X-Ray fluorescence inventory of genetic soil horizons (n=660) was used to identify trends in soil development and landscape processes. Since soil samples are usually sieved and ground for standard laboratory characterization, the additional time required to prepare samples for XRF analysis was minimal, approximately 2 minutes for sample preparation and 6 minutes for machine scan time per sample. Preliminary analysis of the resulting geochemical data show strong spatial trends in watershed- and hillslope-scale variability in weathering indices (FeCBD:FeTotal and K:Ti), inferred mineralogy (Si:Al, Si:Al+Fe), and geologic signatures (multivariate analysis of 20 common elements). Depth trends and spatial patterns were correlated with common terrain-shape indices (slope, upslope contributing area, surface curvatures, local prominence, etc.), degree of soil development, parent material, and hydrological conditions. For example, Si:Al was higher in soils with greater upslope contributing area, and in seasonally saturated soils (Fig 1). Our findings demonstrate that portable XRF technology is a promising new tool for rapid lab-based and in situ

  10. Digital Shaded-Relief Image of Alaska

    USGS Publications Warehouse

    Riehle, J.R.; Fleming, Michael D.; Molnia, B.F.; Dover, J.H.; Kelley, J.S.; Miller, M.L.; Nokleberg, W.J.; Plafker, George; Till, A.B.

    1997-01-01

    Introduction One of the most spectacular physiographic images of the conterminous United States, and the first to have been produced digitally, is that by Thelin and Pike (USGS I-2206, 1991). The image is remarkable for its crispness of detail and for the natural appearance of the artificial land surface. Our goal has been to produce a shaded-relief image of Alaska that has the same look and feel as the Thelin and Pike image. The Alaskan image could have been produced at the same scale as its lower 48 counterpart (1:3,500,000). But by insetting the Aleutian Islands into the Gulf of Alaska, we were able to print the Alaska map at a larger scale (1:2,500,000) and about the same physical size as the Thelin and Pike image. Benefits of the 1:2,500,000 scale are (1) greater resolution of topographic features and (2) ease of reference to the U.S. Geological Survey (USGS) (1987) Alaska Map E and the statewide geologic map (Beikman, 1980), which are both 1:2,500,000 scale. Manually drawn, shaded-relief images of Alaska's land surface have long been available (for example, Department of the Interior, 1909; Raisz, 1948). The topography depicted on these early maps is mainly schematic. Maps showing topographic contours were first available for the entire State in 1953 (USGS, 1:250,000) (J.H. Wittmann, USGS, written commun., 1996). The Alaska Map E was initially released in 1954 in both planimetric (revised in 1973 and 1987) and shaded-relief versions (revised in 1973, 1987, and 1996); topography depicted on the shaded-relief version is based on the 1:250,000-scale USGS topographic maps. Alaska Map E was later modified to include hypsometric tinting by Raven Maps and Images (1989, revised 1993) as copyrighted versions. Other shaded-relief images were produced for The National Geographic Magazine (LaGorce, 1956; 1:3,000,000) or drawn by Harrison (1970; 1:7,500,000) for The National Atlas of the United States. Recently, the State of Alaska digitally produced a shaded-relief image

  11. Deep-seated gravitational slope deformations near the Trans-Alaska Pipeline, east-central Alaska Range, Alaska, USA

    NASA Astrophysics Data System (ADS)

    Newman, S. D.; Clague, J. J.; Rabus, B.; Stead, D.

    2013-12-01

    Multiple, active, deep-seated gravitational slope deformations (DSGSD) are present near the Trans-Alaska Pipeline and Richardson Highway in the east-central Alaska Range, Alaska, USA. We documented spatial and temporal variations in rates of surface movement of the DSGSDs between 2003 and 2011 using RADARSAT-1 and RADARSAT-2 D-InSAR images. Deformation rates exceed 10 cm/month over very large areas (>1 km2) of many rock slopes. Recent climatic change and strong seismic shaking, especially during the 2002 M 7.9 Denali Fault earthquake, appear to have exacerbated slope deformation. We also mapped DSGSD geological and morphological characteristics using field- and GIS-based methods, and constructed a conceptual 2D distinct-element numerical model of one of the DSGSDs. Preliminary results indicate that large-scale buckling or kink-band slumping may be occurring. The DSGSDs are capable of generating long-runout landslides that might impact the Trans-Alaska Pipeline and Richardson Highway. They could also block tributary valleys, thereby impounding lakes that might drain suddenly. Wrapped 24-day RADARSAT-2 descending spotlight interferogram showing deformation north of Fels Glacier. The interferogram is partially transparent and is overlaid on a 2009 WorldView-1 panchromatic image. Acquisition interval: August 2 - August 26, 2011. UTM Zone 6N.

  12. Birds and Wetlands of Alaska. Alaska Sea Week Curriculum Series. Alaska Sea Grant Report 88-1.

    ERIC Educational Resources Information Center

    King, James G.; King, Mary Lou

    This curriculum guide is the fourth (Series V) in a six-volume set that comprises the Sea Week Curriculum Series developed in Alaska. Twelve units contain 45 activities with worksheets that cover the following topics: (1) bird lists and field guides; (2) definitions of a bird; (3) parts of a bird; (4) bird watching; (5) bird migration; (6) wetland…

  13. Databases: Peter's Picks and Pans.

    ERIC Educational Resources Information Center

    Jacso, Peter

    1995-01-01

    Reviews the best and worst in databases on disk, CD-ROM, and online, and offers judgments and observations on database characteristics. Two databases are praised and three are criticized. (Author/JMV)

  14. National geochemical data base; PLUTO geochemical data base for the United States

    USGS Publications Warehouse

    Baedecker, Philip A.; Grossman, Jeffrey N.; Buttleman, Kim P.

    1998-01-01

    The PLUTO CD-ROM data base contains inorganic geothermal data obtained by the analytical laboratories of the Geologic Division of the U.S. Geological Survey (USGS) for the United States, including Hawaii and Alaska, in support of USGS program activities requiring chemical data. This CD-ROM was produced in accordance with the ISO 9660 standard and can be accessed by any computer system that has the appropriate software to read the ISO 9660 discs; however, the disc is intended for use in a DOS environment.

  15. Great Basin paleontological database

    USGS Publications Warehouse

    Zhang, N.; Blodgett, R.B.; Hofstra, A.H.

    2008-01-01

    The U.S. Geological Survey has constructed a paleontological database for the Great Basin physiographic province that can be served over the World Wide Web for data entry, queries, displays, and retrievals. It is similar to the web-database solution that we constructed for Alaskan paleontological data (www.alaskafossil.org). The first phase of this effort was to compile a paleontological bibliography for Nevada and portions of adjacent states in the Great Basin that has recently been completed. In addition, we are also compiling paleontological reports (Known as E&R reports) of the U.S. Geological Survey, which are another extensive source of l,egacy data for this region. Initial population of the database benefited from a recently published conodont data set and is otherwise focused on Devonian and Mississippian localities because strata of this age host important sedimentary exhalative (sedex) Au, Zn, and barite resources and enormons Carlin-type An deposits. In addition, these strata are the most important petroleum source rocks in the region, and record the transition from extension to contraction associated with the Antler orogeny, the Alamo meteorite impact, and biotic crises associated with global oceanic anoxic events. The finished product will provide an invaluable tool for future geologic mapping, paleontological research, and mineral resource investigations in the Great Basin, making paleontological data acquired over nearly the past 150 yr readily available over the World Wide Web. A description of the structure of the database and the web interface developed for this effort are provided herein. This database is being used ws a model for a National Paleontological Database (which we am currently developing for the U.S. Geological Survey) as well as for other paleontological databases now being developed in other parts of the globe. ?? 2008 Geological Society of America.

  16. Reducing Alaska Native paediatric oral health disparities: a systematic review of oral health interventions and a case study on multilevel strategies to reduce sugar-sweetened beverage intake

    PubMed Central

    Chi, Donald L.

    2013-01-01

    Background Tooth decay is the most common paediatric disease and there is a serious paediatric tooth decay epidemic in Alaska Native communities. When untreated, tooth decay can lead to pain, infection, systemic health problems, hospitalisations and in rare cases death, as well as school absenteeism, poor grades and low quality-of-life. The extent to which population-based oral health interventions have been conducted in Alaska Native paediatric populations is unknown. Objective To conduct a systematic review of oral health interventions aimed at Alaska Native children below age 18 and to present a case study and conceptual model on multilevel intervention strategies aimed at reducing sugar-sweetened beverage (SSB) intake among Alaska Native children. Design Based on the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) Statement, the terms “Alaska Native”, “children” and “oral health” were used to search Medline, Embase, Web of Science, GoogleScholar and health foundation websites (1970–2012) for relevant clinical trials and evaluation studies. Results Eighty-five studies were found in Medline, Embase and Web of Science databases and there were 663 hits in GoogleScholar. A total of 9 publications were included in the qualitative review. These publications describe 3 interventions that focused on: reducing paediatric tooth decay by educating families and communities; providing dental chemotherapeutics to pregnant women; and training mid-level dental care providers. While these approaches have the potential to improve the oral health of Alaska Native children, there are unique challenges regarding intervention acceptability, reach and sustainability. A case study and conceptual model are presented on multilevel strategies to reduce SSB intake among Alaska Native children. Conclusions Few oral health interventions have been tested within Alaska Native communities. Community-centred multilevel interventions are promising

  17. Practical aspects with multifractal simulation of a geochemical landscape

    NASA Astrophysics Data System (ADS)

    Yao, Lingqing

    2015-04-01

    Geochemical prospecting plays important role in mineral exploration and environmental risk monitoring. Either targeting a potential mineralized area or evaluating the environmental risk, has close relationship with identification of geochemical anomalies, which are featured by spatial patterns of geochemical elements. Simulation technique helps to mathematically capture the mechanism of formation of a geochemical landscape, and to reproduce the related spatial patterns. Traditionally, conditional simulations are used to reproduce the frequency distributions and spatial correlations of geochemical landscapes. The traditional approaches to conditional simulation assume wide sense stationary and Gaussian distribution, and thus have limitations with simulating the skewed distributions and reflecting singularity of geochemical anomalies. Multifractal simulation provides an alternative to generate the spatial patterns of the geochemical landscapes, and most importantly, to reproduce the singularity of geochemical concentrations. Multiplicative cascade process has been one most compelling method to implement multifractal simulation and there are several different ways to perform the simulation in the context of different disciplines or mechanisms, and thus the results can also be different. In the present work, moment method is used to find the scaling law and to analyze the multifractal spectra. A second-order spatial correlation as a power-law model is constructed from the scaling properties of the data, and conditional simulation is carried out with the correlation model. Moreover, multifractal simulations are generated from the multiplicative cascade models which are discrete-in-scale and continuous-in-scale, respectively. A specific data is used as an example to carry out the simulations with different methods, and some findings with respect to the practical aspects of multifractal simulations of a geochemical landscape are given from further analysis and comparison

  18. The Alaska Journal of Art, 1989.

    ERIC Educational Resources Information Center

    Welter, Cole H., Ed.

    1989-01-01

    The inaugural issue of this annual journal explores issues affecting art education practices in Alaska and seeks to contribute to a national dialogue on art education policy. "Art as General Education" (Harry S. Broudy) addresses the essential value and nature of the arts in general education. It argues for visual arts education as a key…

  19. USGS US topo maps for Alaska

    USGS Publications Warehouse

    Anderson, Becci; Fuller, Tracy

    2014-01-01

    In July 2013, the USGS National Geospatial Program began producing new topographic maps for Alaska, providing a new map series for the state known as US Topo. Prior to the start of US Topo map production in Alaska, the most detailed statewide USGS topographic maps were 15-minute 1:63,360-scale maps, with their original production often dating back nearly fifty years. The new 7.5-minute digital maps are created at 1:25,000 map scale, and show greatly increased topographic detail when compared to the older maps. The map scale and data specifications were selected based on significant outreach to various map user groups in Alaska. This multi-year mapping initiative will vastly enhance the base topographic maps for Alaska and is possible because of improvements to key digital map datasets in the state. The new maps and data are beneficial in high priority applications such as safety, planning, research and resource management. New mapping will support science applications throughout the state and provide updated maps for parks, recreation lands and villages.

  20. 14 CFR 99.45 - Alaska ADIZ.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Alaska ADIZ. 99.45 Section 99.45 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES SECURITY CONTROL OF AIR TRAFFIC Designated Air Defense...

  1. Discovering Alaska's Salmon: A Children's Activity Book.

    ERIC Educational Resources Information Center

    Devaney, Laurel

    This children's activity book helps students discover Alaska's salmon. Information is provided about salmon and where they live. The salmon life cycle and food chains are also discussed. Different kinds of salmon such as Chum Salmon, Chinook Salmon, Coho Salmon, Sockeye Salmon, and Pink Salmon are introduced, and various activities on salmon are…

  2. American Indians and Alaska Natives with Disabilities.

    ERIC Educational Resources Information Center

    Johnson, Marilyn J.

    American Indian and Alaska Native children with special needs experience the same ineffective and inefficient services as other minority language children. This paper discusses the special needs of Native children, assessment and curriculum issues, and recommendations for improvement. It provides statistics for various categories of handicaps and…

  3. Integrated resource inventory for southcentral Alaska (INTRISCA)

    NASA Technical Reports Server (NTRS)

    Burns, T.; Carson-Henry, C.; Morrissey, L. A.

    1981-01-01

    The Integrated Resource Inventory for Southcentral Alaska (INTRISCA) Project comprised an integrated set of activities related to the land use planning and resource management requirements of the participating agencies within the southcentral region of Alaska. One subproject involved generating a region-wide land cover inventory of use to all participating agencies. Toward this end, participants first obtained a broad overview of the entire region and identified reasonable expectations of a LANDSAT-based land cover inventory through evaluation of an earlier classification generated during the Alaska Water Level B Study. Classification of more recent LANDSAT data was then undertaken by INTRISCA participants. The latter classification produced a land cover data set that was more specifically related to individual agency needs, concurrently providing a comprehensive training experience for Alaska agency personnel. Other subprojects employed multi-level analysis techniques ranging from refinement of the region-wide classification and photointerpretation, to digital edge enhancement and integration of land cover data into a geographic information system (GIS).

  4. 33 CFR 110.232 - Southeast Alaska.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ANCHORAGE REGULATIONS Anchorage Grounds § 110.232 Southeast Alaska. (a) The anchorage grounds—(1) Hassler Harbor—explosives anchorage. The waters of Hassler Harbor within a circular area with a radius of 1,500...) Except in an emergency, only a vessel that is transporting, loading or discharging explosives may...

  5. 77 FR 24217 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-23

    ... Bureau of Land Management Alaska Native Claims Selection AGENCY: Bureau of Land Management, Interior...), notice is hereby given that the Bureau of Land Management (BLM) will issue an appealable decision to Iqfijouaq Company. The decision approves for conveyance the surface estate in the lands described...

  6. 50 CFR 17.5 - Alaska natives.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS (CONTINUED) ENDANGERED AND THREATENED WILDLIFE AND PLANTS Introduction and General Provisions § 17.5 Alaska... endangered wildlife, and any provision of subpart D of this part relating to the importation or the taking...

  7. 40 CFR 81.302 - Alaska.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Unclassifiable/Attainment Barrow Election District Fairbanks N. Star Borough Area other than portion of Fairbanks... 09 Northern Alaska Intrastate Unclassifiable/Attainment Denali Borough Fairbanks North Star Borough... Star Borough Unclassifiable/Attainment. Nome Census Area Unclassifiable/Attainment. North Slope...

  8. 40 CFR 81.302 - Alaska.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Fairbanks N. Star Borough Area other than portion of Fairbanks urban area designated Nonattainment Kobuk... Denali Borough Fairbanks North Star Borough Nome Census Area North Slope Borough Northwest Arctic Borough... Alaska Intrastate: Denali Borough Unclassifiable/Attainment. Fairbanks North Star Borough...

  9. 40 CFR 81.302 - Alaska.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Fairbanks N. Star Borough Area other than portion of Fairbanks urban area designated Nonattainment Kobuk... Unclassifiable/Attainment Denali Borough Fairbanks North Star Borough Nome Census Area North Slope Borough... Northern Alaska Intrastate: Denali Borough Unclassifiable/Attainment. Fairbanks North Star...

  10. 1996 annual report on Alaska's mineral resources

    USGS Publications Warehouse

    Schneider, Jill L.

    1997-01-01

    This is the fifteenth annual report that has been prepared in response to the Alaska National Interest Lands Conservation Act. Current Alaskan mineral projects and events that occurred during 1995 are summarized. For the purpose of this document, the term 'minerals' encompasses both energy resources (oil and gas, coal and peat, uranium, and geothermal) and nonfuel-mineral resources (metallic and industrial minerals).

  11. 78 FR 16527 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Bureau of Land Management [AA-10782, AA-11132, AA-10784, AA-12440, AA-11020, AA-10783, AA-10774; LLAK-944000-L14100000-HY0000-P] Alaska Native Claims Selection AGENCY: Bureau of Land Management,...

  12. 76 FR 5395 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-31

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Bureau of Land Management [AA-12252, AA-12250, AA-12280, AA-12291, AA-12292, AA-12293; LLAK- 962000-L14100000-HY0000-P] Alaska Native Claims Selection AGENCY: Bureau of Land Management, Interior....

  13. 76 FR 75899 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-05

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Bureau of Land Management [AA-9915, AA-9916, AA-9921, AA-9936, AA-9937, AA-9965; LLAK-965000- L14100000-HY0000-P] Alaska Native Claims Selection AGENCY: Bureau of Land Management, Interior. ACTION: Notice...

  14. 75 FR 13296 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Bureau of Land Management [AA-6679-B, AA-6679-C, AA-6679-F, AA-6679-G, AA-6679-K, AA-6679-M, AA- 6679-A2, LLAK964000-L14100000-KC0000-P] Alaska Native Claims Selection AGENCY: Bureau of Land Management,...

  15. 75 FR 65644 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Bureau of Land Management [AA-11937, AA-11938, AA-11939, AA-11940, AA-11944, AA-11943, AA-11941, AA-11936, AA-11933, AA-11928, AA-11929, AA-11931, AA-11932; LLAK- 962000-L14100000-HY0000-P] Alaska...

  16. 76 FR 55415 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Bureau of Land Management [AA-9428, AA-9752, AA-11237, AA-9755, AA-9837, AA-10075, AA-11467; LLAK-965000-L14100000-HY0000-P] Alaska Native Claims Selection AGENCY: Bureau of Land Management, Interior....

  17. 75 FR 21033 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Bureau of Land Management [AA-6670-F, AA-6670-L, AA-6670-M, AA-6670-A2; LLAK964000-L14100000- HY0000-P] Alaska Native Claims Selection AGENCY: Bureau of Land Management, Interior. ACTION: Notice of...

  18. 75 FR 80838 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Bureau of Land Management [AA-11908, AA-11915, AA-11916, AA-11917, AA-11909, AA-11913, AA-11914; LLAK-962000-L14100000-HY0000-P] Alaska Native Claims Selection AGENCY: Bureau of Land Management,...

  19. 77 FR 72383 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-05

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Bureau of Land Management [AA-10282, AA-10291, AA-10292, AA-10369; LLAK-944000-L14100000-HY0000- P] Alaska Native Claims Selection AGENCY: Bureau of Land Management, Interior. ACTION: Notice of...

  20. 76 FR 43340 - Alaska Native Claims Selection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-20

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Bureau of Land Management [AA-6682-B, AA-6682-D, AA-6682-E, AA-6682-G, AA-6682-H, AA-6682-I, AA- 6682-A2; LLAK965000-L14100000-KC0000-P] Alaska Native Claims Selection AGENCY: Bureau of Land Management,...